English version of this page

Gjesteforelesninger og seminarer - Side 4

Tid og sted: , Niels Henrik Abels hus, 9th floor

Cavitation is a ubiquitous and sometimes destructive, phenomenon. For instance, cavitation bubbles may interrupt water flow in plants or severely damage the surfaces of machines such as pumps and propellers. The so-called tribonucleation of vapor bubbles has been proposed to be responsible for the cracking sound produced by the manipulation of human synovial joints. To study cavitation up close we have developed an experimental setup where a sphere in water abruptly leaves a flat surface starting from a separation of only 10 nm.

Upon upward movement of the spherical surface, a cavitation bubble forms and develops branched fingers through the Saffmann-Taylor instability. Simultaneously, negative liquid pressures in the range of ∼10atm are observed. These large tension values occasionally lead to secondary nucleation events. The bubble sizes satisfy a predicted Familiy-Vicsek scaling law where the bubble area is proportional to the inverse bubble lifetime. The fact that creeping flow cavitation bubbles are more short lived the larger they are separate them from bubbles that are governed by inertial dynamics.

Tid og sted: , NHA 723 and Online
Tid og sted: , NHA 108

QOMBINE seminar by Satvik Singh (University of Cambridge): The PPT2 conjecture for diagonal unitary covariant map

Tid og sted: , Niels Henrik Abels hus, 9th floor

Self-assembly is the spontaneous generation of order in systems driven by thermal agitation and interactions. At the molecular level, self-assembly plays an important role in the formation of giant com- plex macromolecules, being quite relevant for living systems. At the mesoscopic level, capillary driven self-assembly has been proposed for building structures in the gap between classical bottom-up and top-down fabrication methods, i.e. at the scales in between 10 micrometers and 1 millimeter. Although the method was proposed 20 years ago, only regular or simple structures were achieved so far. Using both experimental and statistical physics ideas, we demonstrate how to exploit subtle capillary interactions to create elaborate complex structures, as well as functional micromachines. On top of that, we show how such mescoscopic systems can be the analogues of many different physical systems such as folding molecules, molecular locks and keys, and crystal formation.

Tid og sted: , NHA108

C*-algebra seminar talk by Suvrajit Bhattacharjee (University of Oslo)

Tid og sted: , Niels Henrik Abels hus, 9th floor

Active solids consume energy to allow for actuation and shape change not possible in equilibrium. In this talk, I will focus on the elasticity of systems as wide-ranging as far-from-equilibrium hydrogels, nanoparticles, and mechanical structures composed of active robotic components. First, I will introduce our recent work on hydrogel spheres being lowered onto a hot plate. As the bottom vaporises, the resulting flow couples tightly to elastic deformations within the sphere, giving either spontaneous bouncing or steady-state floating as manifestations of the so-called elastic Leidenfrost effect. I will present theory and simulations of the floating case, which demonstrate a remarkable phenomenon: the heavier the solid, the higher it floats. I will then discuss the general competition between active boundary stresses and an elastic bulk, giving rise to so-called active elastocapillarity. Finally, I will discuss our current work on using non-reciprocal interactions in active elastic media to program robust mechanical actuation and locomotion. In each case, our results provide theoretical underpinning for recent experimental advances, and point to the design of novel soft machines.

 
Tid og sted: , NHA 723 and Online
Tid og sted: , NHA B1120

I will discuss the “geometric method” for syzygies and discuss applications to the study of tautological bundles of linear spaces. From this, I will explain how to pass from realizable matroids to all matroids via initial degenerations. This is joint work in progress with Alex Fink and Chris Eur.

Tid og sted: , NHA B1020

A finite graph determines a Kirchhoff polynomial, which is a squarefree, homogeneous polynomial in a set of variables indexed by the edges. The Kirchhoff polynomial appears in an integrand in the study of particle interactions in high-energy physics, and this provides some incentive to study the motives and periods arising from the projective hypersurface cut out by such a polynomial.

From the geometric perspective, work of Bloch, Esnault and Kreimer (2006) suggested that the most natural object of study is a polynomial determined by a linear matroid realization, for which the Kirchhoff polynomial is a special case.

I will describe some ongoing joint work with Delphine Pol, Mathias Schulze, and Uli Walther on the interplay between geometry and matroid combinatorics for this family of objects.

Tid og sted: , NHA108

QOMBINE seminar by Roy Araiza (University of Illinois Urbana-Champaign)

Tid og sted: , Niels Henrik Abels hus, 9th floor

Innovations in fluid mechanics are leading to better food since ancient history, while creativity in cooking inspires applied and fundamental science. In this talk, I will discuss how recent advances in hydrodynamics are changing food science, and how the surprising phenomena that arise in the kitchen lead to discoveries and technologies across the disciplines, including rheology and soft matter. Central topics include cocktails and champagne (multiphase flows), whipped cream (complex fluids) and pancake making (viscous flows). For every topic, I will present the state-of-the-art knowledge, the open problems, and likely directions for future research.

Publications:
Mathijssen, A. J., Lisicki, M., Prakash, V. N., & Mossige, E. J. (2023). Culinary fluid mechanics and other currents in food science. Reviews of Modern Physics, 95(2), 025004.

Fuller, G. G., Lisicki, M., Mathijssen, A. J., Mossige, E. J., Pasquino, R., Prakash, V. N., & Ramos, L. (2022). Kitchen flows: Making science more accessible, affordable, and curiosity driven. Physics of Fluids, 34(11).

Tid og sted: , NHA108

C*-algebra seminar talk by Valerio Proietti (University of Oslo)

Tid og sted: , NHA B1120
In this talk, I explain how we explicitly construct a motivic analog of the fundamental group of the circle. We construct a group structure on the set of pointed naive homotopy classes of maps from the Jouanolou device to the projective line. The group operation is defined via matrix multiplication on generating sections of line bundles and only requires basic algebraic geometry. In particular, it is completely independent of the construction of the motivic homotopy category. Based on joint work with William Hornslien, Gereon Quick, and Glen Matthew Wilson.
Tid og sted: , NHA108

QOMBINE seminar talk by Ruben Bassa (SINTEF)

Tid og sted: , NHA 108

Franz Fuchs (Sintef/UiO) will give a talk with title "Hamiltonians with time evolution restricted to subspaces"

Tid og sted: , Niels Henrik Abels hus, 9th floor

We have developed a pump-less recirculation Organ-on-Chip (rOoC) platform that generates a directional gravity-driven flow. This platform can be adapted to various flow conditions and enables the study of endothelial lining, blood vessel sprouting, circulation of immune cells, pathogens or other particles, and incorporation of 3D cell models like organoids. Additionally, we have developed a computational model to predict shear stress and mass transport within the rOoC, allowing for customization of the platform for various use-cases.

The rOoC platform is very versatile and can be used to model for instance drug-induced liver-injury (DILI) that mimics the complex interaction between resident human stem cell-derived liver organoids (3D-HLO) and circulating immune cells. Moreover, we show the functional crosstalk between 3D-HLOs and human pancreatic islets to model the onset of type-2 diabetes.

Tid og sted: , NHA 723 and Online
Tid og sted: , NHA B1120

Markus Spitzweck (Universität Osnabrück) will present the talk «Representation categories and motives».

Tid og sted: , Niels Henrik Abels hus, 9th floor

This seminar will consist of two separate presentations, each about 15-minute long.

1) Magnetic Quincke Rollers with tunable single particle dynamics and collective states
2) Electrically controllable ferrofluids

Tid og sted: , Niels Henrik Abels hus, 9th floor
It is well known that if the singular values of a matrix are distinct, then its best rank-n approximation in the Frobenius norm is uniquely determined and given by the truncated singular value decomposition. On the other hand, this uniqueness is in general not true for best rank-n approximations in the spectral norm. In this talk we relate the problem of finding best rank-n approximations in the spectral norm to Kolmogorov n-widths and corresponding optimal spaces. By providing new criteria for optimality of subspaces with respect to the n-width, we describe a large family of best rank-n approximations to a given matrix. This results in a variety of solutions to the best low-rank approximation problem and provides alternatives to the truncated singular value decomposition. This variety can be exploited to obtain best low-rank approximations with problem-oriented properties.
We further discuss the generalization of these results to compact operators in L2, and explain how they can be used to both describe the out-performance of smooth spline approximations of solutions to differential equations when compared to classical finite element methods, and to solve the outlier-problem in isogeometric analysis.
This talk is based on work done in collaboration with Michael Floater, Carla Manni and Hendrik Speleers.
Tid og sted: , Room 1119, Niels Henrik Abels hus

The Section 4 seminar for the Spring of 2023 will be held on Wednesdays at 10:15–12:00 (see the schedule)

Tid og sted: , NHA107

C*-algebra seminar talk by John Quigg (Arizona State University)

Tid og sted: , Niels Henrik Abels hus, 9th floor

I will discuss some of our recent results on active chiral and nematic membranes. The chiral stresses we consider give rise to a novel form of odd elasticity. To outline this phenomenology I will give explicit calculations outlining spontaneous flow transitions and shape instabilities. I will discuss the relevance of these results in developmental biology and their relation to active nematics, in particular how certain limits of active nematic membranes can reduce to a theory of an isotropic membrane with an active stress defined by the deviatoric part of the shape operator.

Tid og sted: , NHA107

C*-algebra seminar talk by Roberto Conti (Sapienza University of Rome)