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Abstract. We consider different cohomology theories for a ranked poset with a local orienta-

tion. Under certain condidtions on the poset we show that the cohomology theories coincide.

Introduction

In spline theory we consider piecewise polynomial functions on some space, which possesses a
certain degree of smoothness in the subspaces where the polynomial pieces connect. The general
framwork for this set-up is a partial ordered set Λ and a projective system F of abelian groups
on Λ. The partial ordered set gives the combinatorial structure of a grid or a triangulation of the
underlying space. The projective system is a system of polynomial functions of bounded degree,
where smoothness is encoded algebraically in the restriction of the system to the connection
subspaces. The problem of determine the space of piecewise polynomial functions with the given
degree of smoothness, in particular the dimension of the space, has been discussed by several
authors, by various methods. See e.g. [2], [3], [4], [5], [7], [8] and [9].

The idea of using cellular (co-)homology theory to determine the dimension of the space of
picewise polynomial functions is not new, it was already introduced by Billera ([?, B2] in the
late 80ś. Our approach to the problem is to use a general theory of limits of projective systems
on partial ordered sets. This theory was thoroughly explored in an early paper by Laudal [6].
In his treatise he considers mainly constant projective systems. For our purpose more general
projective systems is required.

The partial ordered structures of grids or triangulations have an additional structure given by
a rank function, corresponding to the geometrical dimension of the actual facet. Under certain
conditions on the ranked partial ordered set, including the existence of a local orientation, we
show that cellular (co-)homology of these abstract cell complexes coincide with the theory of
inverse limits of projective systems developed in [6]. The correspondance between the cellular
(co-)homology theory and the invers limit approach was also treated by Basak in [1], but limited
to constant projective systems. The advantage of our approach is that the general theory of invers
limits of projective systems provides us with usefull tools to attack more applied problems in
e.g. spline theory. We will discuss the applied aspect in a forthcoming paper.

1. Ranked posets

A ranked poset Λ is a finite, connected poset, equipped with a strict order-preserving
dimension function d : Λ→ N0. The maximum value dΛ of the dimension function is called the
geometric dimension of the poset, and the minimum value is called the minimal rank of Λ,
denoted mΛ. We say that Λ is of pure dimension if all maximal elements of Λ have the same
dimension, and of pure minimal rank if all minimal elements have the same dimension. An
element λ ∈ Λ of dimension q = d(λ) is called a q-cell of Λ, and the set Λq ⊂ Λ of all q-cells is
the q-skeleton of Λ. If λ1 < λ2 we say that λ1 is a facet of λ2 of codimension d(λ2) − d(λ1).
A facet λ1 < λ2 of codimension 1 is called a face of λ2. For any cell λ in Λ, ∆λ denotes the set
of faces of λ and for any subset S ⊂ Λ, ∆S = {τ ∈ ∆σ | for some σ ∈ S}. If λ1 is a face of λ2,
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then the pair λ1 < λ2 is called a cover in Λ, and the set of all covers in Λ is denoted Cov(Λ).
The set of facets of codimension k is denoted ∆kλ. Dually, a cell that have λ as one of its faces
is called a co-face of λ. The set of cofaces is denoted ∇λ.

Definition 1.1. An abstract cell complex is a ranked poset satisfying the following condition:
For any λ1 ∈ ∆2λ2, ∆λ2 ∩∇λ1 = {τ1, τ2}, i.e. there exists exactly two elements in ∆λ2, τ1 and
τ2, such that λ1 < τi < λ2, i = 1, 2.

An abstract cell complex does in general not have a geometrical realization. Consequently
there is no natural orientation of the cell complex. In order to define (co-)homology on an
abstract cell complex we need to impose a local orientation on Λ.

Definition 1.2. A local orientation of an abstract cell complex Λ is a map ε : Cov(Λ)→ {±1}
such that for λ1 ∈ ∆2λ2, with ∆λ2 ∩∇λ1 = {τ1, τ2} we have

ελ1<τ1ετ1<λ2
+ ελ1<τ2ετ2<λ2

= 0

where we use the notation ελ<τ = ε(λ < τ).

Two local orientations ε, ε′ are equivalent if there exists a map µ : Λ → {±1} such that
ελ<τ = µ(τ)µ(λ)−1ε′λ<τ .

In general, the existence of a local orientation is a rather strict condition on the ranked poset.
Notice also that if d(λ2) = d(λ1) + 2, there may not exist any λ1 < τ < λ2. In that case the
condition of Definition 1.2 is vacuous.

An abstract cell complex Λ of pure dimension n is called non-singular if each (n − 1)-cell
of Λ is a face of at most two maximal cells and dually, each 1-cell of Λ has at most two vertices.
A local orientation of an non-singular abstract cell complex is an orientation of Λ if for any
(n − 1)-cell τ with ∇ τ = {σ1, σ2}, ετ<σ1 = −ετ<σ2 , and for each 1-cell τ with ∆ τ = {γ1, γ2},
εγ1<τ = −εγ2<τ . The abstract cell complex is orientable if there exist an orientation.

The dual poset Λ∗ of a poset Λ has the same objects as Λ, but with reversed ordering. We
use the notation λ∗ ∈ Λ∗ for the corresponding object of λ ∈ Λ in Λ∗. The dual S∗ of a subset
S ⊂ Λ is the set S∗ = {λ∗ |λ ∈ S} of dual elements. If Λ is ranked, there is also a natural ranking
of Λ∗; the dimension of the dual element λ∗ is the codimension of λ, i.e. d(λ∗) = dΛ−d(λ), where
dΛ is the geometric dimension of Λ. Thus the q-skeleton of Λ corresponds to the (dΛ−q)-skeleton
of Λ∗. Notice that for λ ∈ Λp

∇λ∗ = {σ∗ ∈ (Λ∗)d−p−1 |λ∗ < σ∗} = {σ ∈ Λp−1 |σ < λ}∗ = (∆λ)∗

The dual complex Λ∗ has geometrical dimension dΛ∗ = dΛ −mΛ and minimal rank mΛ∗ = 0.
There is an isomorphism Λ∗∗ ' Λ, given by a dimension shift mΛ, with equality Λ∗∗ = Λ if and
only if Λ has minimal rank mΛ = 0.

The order dimension r(Λ) of a finite poset Λ is the maximum length of ordered chains of
elements, i.e.

r(Λ) = max{p |λ0 < λ1 < · · · < λp ∈ Λ}
Since the dimension function of Λ is strict order-preserving, it follows that dΛ ≥ r(Λ). For a
poset Λ we denote by Λ(1) the induced order complex of Λ. It is a ranked poset of geometric
dimension dΛ(1) = r(Λ) and minimal rank mΛ(1) = 0. The p-skeleton of Λ(1) consists of sequences

λ0 < λ1 < · · · < λp

and the ordering ≺ is by inclusion. One can show that the order complex Λ(1) has the structure
of a simplicial complex, i.e. a cell complex where every q-cell, q ≥ 1, has exactly q + 1 faces,
∆λ = {τ0, τ1, . . . , τq}, such that if q ≥ 2, τi ∩ τj is a (q − 2)-cell for any pair i 6= j. The order

complex Λ(1) is equipped with the local orientation ε given by

ε(λ0 < · · · λ̂i · · · < λp ≺ λ0 < · · · < λi < · · · < λp) = (−1)i
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2. Cellular (co-)homology

Definition 2.1. Let Λ be a poset, and let A be the category of abelian groups (or any abelian
category). A projective system with values in A on Λ is a contravariant functor F : Λ→ A,
where Λ is considered as a category, i.e. for any λ ∈ Λ we associate an object F (λ), and for a
relation λ < σ, a morphism Fλ<σ : F (σ)→ F (λ) in A.

Let Λ be a locally oriented ranked poset of geometric dimension dΛ, with local orientation ε,
and let F be a projective system on Λ. We define a chain complex

Cp(Λ, F ) =
∐
λ∈Λp

F (λ)[λ] p ≥ 0

with differential δ : Cp(Λ, F )→ Cp−1(Λ, F ) given by

δ(fσ[σ]) =
∑
λ∈∆σ

ελ<σFλ<σ(fσ)[λ]

for any fσ ∈ F (σ). By the local orientation property, δ2 = 0. In fact,

δ2(fσ[σ]) =
∑
τ∈∆σ

∑
λ∈∆τ

ελ<τ ετ<σFλ<σ(fσ)[λ] =
∑

λ∈∆2σ

(
∑

λ<τ<σ

ελ<τ ετ<σ)Fλ<σ(fσ)[λ] = 0

Definition 2.2. The homology groups of the complex (C•(Λ, F ), δ)

Hp(Λ, F ) = Hp(C∗(Λ, F )), p ≥ 0

are called the cellular homology groups of the locally oriented ranked poset Λ with coefficients
in the projective system F .

Notice that equivalent local orientations give isomorphic cellular homology groups.

Let F ∗ be a projective system of abelian groups on Λ∗. Define a cochain complex

Cp(Λ, F ∗) =
∏
λ∈Λp

F ∗(λ∗)

with differential ∂ : Cp(Λ, F ∗)→ Cp+1(Λ, F ∗) given by

∂ξ(σ) =
∑
λ∈∆σ

ελ<σF
∗
σ∗<λ∗ξ(λ)

Again we have ∂2 = 0 by the local orientation property.

Definition 2.3. The cohomology groups of the complex (C•(Λ, F ∗), ∂)

Hp(Λ, F ∗) = Hp(C∗(Λ, F ∗), ∂), p ≥ 0

are called the cellular cohomology groups of the locally oriented ranked poset Λ with coeffi-
cients in the projective system F ∗.

A projective system F on Λ induces a projective system F ∗ = Homk(F, k) on Λ∗ by

F ∗(λ∗) = Homk(F (λ), k) = F (λ)∗

and F ∗σ∗<λ∗ : F ∗(λ∗)→ F ∗(σ∗) given by

F ∗σ∗<λ∗(φ(λ))(fσ) = φ(λ) ◦ Fλ<σ(fσ)

where φ ∈ F ∗, and φ(λ) : F (λ)→ k. Thus we have

Cp(Λ, F ∗) =
∏
λ∈Λp

F ∗(λ∗) =
∏
λ∈Λp

Homk(F (λ), k)

= Homk(
∐
λ∈Λp

F (λ), k) = Homk(Cp(Λ, F ), k) = Cp(Λ, F )∗
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The differential ∂ : Cp(Λ, F ∗) → Cp+1(Λ, F ∗) of the cochain complex is induced by the differ-
ential δ : Cp+1(Λ, F )→ Cp(Λ, F ). In fact we have

∂φ(σ)(fσ) =
∑
λ∈∆σ

ελ<σFσ∗<λ∗φ(λ)(fλ) =
∑
λ∈∆σ

ελ<σ
(
φ(λ) ◦ Fλ<σ

)
(fλ)

= φ
( ∑
λ∈∆σ

ελ<σFλ<σ
)
(fλ[λ]) = φ(δ(fσ[σ])

for any σ ∈ Λp+1. It follows that

Hq(Λ, F ∗) ' Hq(Λ, F )∗, q ≥ 0

For the constant projective system F = Z on Λ we write Hp(Λ,Z) = Hp(Λ) (resp. Hp(Λ,Z∗) =
Hp(Λ)).

Notice also that for finite Λ and a projective system F on Λ we have an isomorphism

Cp(Λ∗, F ) =
∏

λ∈(Λ∗)p

F (λ)
β−→

∐
λ∈Λd−p

F (λ)[λ] = Cd−p(Λ, F )

given by

β(ξ) =
∑

λ∈Λd−p

ξ(λ∗)[λ]

It is easily seen that β∂(ξ) = δβ(ξ). Thus we have,

Proposition 2.4. Let Λ be a locally oriented finite poset, and F a projective system of abelian
groups on Λ. Then there are natural isomorphisms

Hp(Λ∗, F ) ' Hd−p(Λ, F ) , p ≥ 0

where d = dΛ is the geometric dimension of Λ.

3. Limits of projective systems

Let Λ be a finite poset, and Λ1 ⊂ Λ a closed subposet. Let CΛ be the abelian category of
projective systems on Λ with values in the category A of abelian groups. The category CΛ has
enough injectives and projectives. As in [6] we define a covariant functor

lim←−
Λ/Λ1

: CΛ −→ A

as follows; for any projective system F , the projective limit lim←−
Λ/Λ1

F is an abelian group,

together with a family of group homomorphisms Πλ : lim←−
Λ/Λ1

F −→ F (λ). It is unique, up to

isomorphism, and universal with the above property. The homomorphisms define a natural
transformation lim←−

Λ/Λ1

F −→ F , of the constant projective system lim←−
Λ/Λ1

F into F . For all λ ∈ Λ1,

we have Πλ = 0. One can show that the limit exist and that the functor is left exact. If Λ1 = ∅,
we set lim←−

Λ/∅
= lim←−

Λ

.

Denote by ZΛ/Λ1
the projective system on Λ given by ZΛ/Λ1

(λ) = Z if λ 6∈ Λ1 and ZΛ/Λ1
(λ) =

0 if λ ∈ Λ1. Then we have [6]

lim←−
Λ/Λ1

(•)F = R• lim←−
Λ/Λ1

F ' Ext•CΛ(ZΛ/Λ1
, F )

The functor lim←−
Λ/Λ1

is left-exact, thus an exact sequence

0→ F ′′ −→ F −→ F ′ → 0
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of projective systems of abelian groups on Λ induces a long-exact sequence of abelian groups

· · · → lim←−
Λ/Λ1

(j)F ′′ −→ lim←−
Λ/Λ1

(j)F −→ lim←−
Λ/Λ1

(j)F ′ −→ lim←−
Λ/Λ1

(j+1)F ′′ → · · ·

for j ≥ 0.

In [6] it is shown that the complex

Dp(Λ, F ) =
∏

λ0<λ1<···<λp∈Λ

F (λ0)

with differential δ : Dp(Λ, F )→ Dp+1(Λ, F ) given by

δξ(λ0 < · · · < λp+1) = Fλ0<λ1ξ(λ1 < · · · < λp+1) +

p+1∑
i=1

(−1)iξ(λ0 < · · · λ̂i · · · < λp+1)

is a resolving complex for the inverse limit functor, i.e. we have

Hp(D•(Λ, F )) = lim←−
Λ

(p)F , p ≥ 0

There is also a relative version of the D-complex. Let Λ1 ⊂ Λ be a closed subposet. Define

Dp(Λ,Λ1, F ) = {ξ ∈ Dp(Λ, F ) | ξ(λ0 < λ1 < · · · < λp) = 0 ifλp ∈ Λ1}
In this case we have

Hp(D•(Λ,Λ1, F )) = lim←−
Λ/Λ1

(p)F p ≥ 0

A projective system F on Λ induces a projective system F̃ on the dual of the order complex,
(Λ(1))∗, given by

F̃ (λ0 < · · · < λp) = F (λ0)

and

F̃ (λ0 < · · · λ̂i · · · < λp ≺ λ0 < · · · < λp) =

{
Fλ0<λ1 if i = 0
IdF (λ0) if i 6= 0

By similarity of the definitions we have Dp(Λ, F ) = Cp(Λ(1), F̃ ). Denote by Dp(F ), for p ≥ 0,
the projective system on Λ given by

Dp(F )(λ) = Cp(λ̂(1), F̃ ) =
∏

λ0<λ1<···<λp≤λ

F (λ0)

where, for λ < σ, Dp(F )(σ) → Dp(F )(λ) is the projection. The differential δ : Dp(F )(λ) →
Dp+1(F )(λ) is given by

δξ(λ0 < · · · < λp+1 ≤ λ) = Fλ0<λ1
ξ(λ1 < · · · < λp+1 ≤ λ)+

p+1∑
i=1

(−1)iξ(λ0 < · · · λ̂i · · · < λp+1 ≤ λ)

In fact, (D•(F ), δ) defines a projective system of cochain complexes on Λ and we have

D•(Λ, F ) = lim←−
Λ

D•(F )

We define a double complex by considering the projective system D•(F ) as a projective
system on Λ∗∗ ' Λ. The double complex is given by

Cp,q = Cp(Λ∗, Dq(F ))

The differential δ : Cp,q → Cp,q+1 is the differential of the complex D•(λ̂, F ), for any λ ∈ Λ and
∂ : Cp,q → Cp+1,q is the differential of the cell complex. It is obvious that the two differentials
commute, i.e. ∂δ = δ∂. The total differential of the double complex D = ∂ + (−1)pδ satisfies
D2 = 0. It is a first quadrant double complex, and the two spectral sequences

′Ep,q2 = Hp(Λ∗, lim
←−
λ̂

(q) F̃ )
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and
′′Ep,q2 = Hq(Hp(Λ∗, D•(F )))

both converge to the cohomology of the total complex.

Lemma 3.1. For any λ ∈ Λ we have

lim←−̂
λ

(q)F̃ =

{
F (λ) if q = 0
0 if q 6= 0

Proof. We define a contracting cochain homotopy s : Cq+1(λ̂(1), F )→ Cq(λ̂(1), F ) by

sξ(λ0 < · · · < λq ≤ λ) =

{
0 if λq = λ
ξ(λ0 < · · · < λq < λ ≤ λ) else

For λq 6= λ, we have

(∂s−s∂)ξ(λ0 < · · · < λq ≤ λ)

= Fλ0<λ1
(ξ(λ1 < · · · < λq < λ ≤ λ)) +

q∑
i=1

(−1)iξ(λ0 < · · · λ̂i · · · < λq < λ ≤ λ)

− Fλ0<λ1
(ξ(λ1 < · · · < λq < λ))−

q∑
i=1

(−1)iξ(λ0 < · · · λ̂i · · · < λq < λ ≤ λ)

− (−1)q+1ξ(λ0 < · · · < λq ≤ λ) = (−1)qξ(λ0 < · · · < λq ≤ λ)

For λq = λ we have

(∂s− s∂)ξ(λ0 < · · · < λq ≤ λ) = (−1)qξ(λ0 < · · · < λq−1 < λq ≤ λ)

�

It follows that the first spectral sequences degenerates and we have,

′Ep,q2 = Hp(Λ∗, lim←−̂
λ

(q)F̃ ) =

{
Hp(Λ∗, F ) for q = 0
0 for q 6= 0

Denote by F j the projective system on (Λ(1))∗ given by

F j(λ0 < · · · < λq) = Cj(λ̂∗q , F (λ0))

where F (λ0) denotes the constant projective system on λ̂∗q . An inclusion of sequences λ0 <

· · · λ̂i · · · < λq ≺ λ0 < · · · < λq gives rise to a map

F j(λ0 < · · · λ̂i · · · < λq) −→ F j(λ0 < · · · < λq)

which is the projection for i = q, the map F (λ1)→ F (λ0) for i = 0, and the identity for 0 < i < q.

Let ξ ∈ Cp(Λ∗, Dq(F )). For a q-cell λ0 < · · · < λq of Λ(1) define ξ[λ0,...,λq ] ∈ C
p(λ̂∗q , F (λ0)) by

ξ[λ0,...,λq ](λ
∗) = ξ(λ∗)(λ0 < · · · < λq ≤ λ)

for λ∗ ∈ (λ̂∗q)p.

Proposition 3.2. Fix q ≥ 0. The map ξ 7→ ξ induces an isomorphism of cochain complexes

Cp(Λ∗, Dq(F )) −→
∏

λ0<···<λq

Cp(λ̂∗q , F (λ0))
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Proof. We have an isomorphism of cochain groups

Cp(Λ∗, Dq(F )) =
∏

λ∗∈(Λ∗)p

∏
λ0<···<λq<λ

F (λ0) =
∏

λ0<···<λq

∏
λ∗<λ∗q
λ∗∈(Λ∗)p

F (λ0)

=
∏

λ0<···<λq

Cp(λ̂∗q , F (λ0))

where F (λ0) is the constant projective system. For σ ∗ ∗ ∈ λ̂∗q , i.e. for λq ≤ σ we have

∂ξ[λ0...λq ](σ
∗) = ∂ξ(σ∗)(λ0 < · · · < λq ≤ σ)

=
∑

λ∗∈∆σ∗

εσ<λD
q(F )σ<λξ(λ

∗)(λ0 < · · · < λq ≤ σ)

=
∑

λ∗∈∆σ∗

εσ<λξ(λ
∗)(λ0 < · · · < λq ≤ λ)

and

∂ξ[λ0...λq ](σ
∗) =

∑
λ∗∈∆σ∗

εσ<λξ[λ0...λq ](λ
∗)

=
∑

λ∗∈∆σ∗

εσ<λξ(λ
∗)(λ0 < · · · < λq ≤ λ)

which shows that the map is a map of cochains. �

Thus, for the second spectral sequence we have

′′Ep,q2 = Hq (Hp (C• (Λ∗, D• (F )))) = Hq(Hp(
∏

λ0<···<λ•

C•(λ̂∗•, F (λ0))))

= Hq

( ∏
λ0<···<λ•

Hp
(
λ̂∗•, F (λ0)

))
= lim←−

Λ

(q)Hp
(
λ̂∗•, F (λ0)

)

Thus, we have proved the following theorem,

Theorem 3.3. There is a first quadrant spectral sequence

Ep,q2 = lim←−
Λ

(q)Hp(λ̂∗•, F (λ0))

converging to cellular cohomology Hn(Λ∗, F )

If Λ∗ has acyclic closed cells, i.e.

Hp(λ̂∗•, F (λ0)) =

{
F (λ0) for p = 0
0 for p 6= 0

the spectral sequence degenerates, and we obtain the main result,

Corollary 3.4. Let Λ be a locally oriented combinatorial cell complex of geometrical dimension
d, such that Λ∗ has acyclic closed cells, and let F be projective system of A-modules on Λ. Then
we have

Hp(Λ, F ) = lim←−
Λ

(d−p)F, p ≥ 0

where d is the geometric dimension of Λ.

Proof. In case of acyclic closed cells, the two spectral sequences degenerate. Combining this with
Proposition 2.4 the result follows. �
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An important tool in computations of inverse limits is the use of κ-functors. Let Γ and Λ be
two posets. A order-preserving map κ : Γ −→ Λ(1) such that κ(γ) ⊂ Λ(1) is closed for all γ ∈ Γ
is called a κ-functor of Γ in Λ. For a projective system F on Λ we define a projective system on
Γ by

γ 7→ lim←−
κ(γ)

F

Denote by imκ =
⋃
γ∈Γ κ(γ) ⊂ Λ. Then for any γ ∈ Γ there is a canonical homomorphism

lim←−
imκ

F −→ lim←−
κ(γ)

F

and this family of homomorphisms define a canonical homomorphism

lim←−
imκ

F −→ lim←−
Γ

lim←−
κ(γ)

F

Theorem 3.5. Let κ : Γ → Λ(1) be a κ-functor with imκ = Λ, and such tht if γ1, γ2 ∈ Γ,
and λ ∈ κ(γ1) ∩ κ(γ2), then there exixts γ < γ1, γ2 such that λ ∈ κ(γ). Then there is a spectral
sequence

Ep,q2 = lim←−
Γ

(p) lim
←−
κ(γ)

(q) F

converging to

lim←−
Λ

(•)F

Proof. See [6] for a proof. �
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