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Lecture 1:
Birational invariants and specialization



These talks will revolve around a paper written with Johannes Nicaise:

J. Nicaise, J.C. Ottem. Tropical degenerations and stable rationality (2020).

In the paper we give a quite general method for the (stable) rationality problem for
hypersurfaces and complete intersections in toric varieties.



We work over a field k of characteristic 0.
(Usually k = C).

Two varieties X and Y are stably birational if X × Pm ∼bir Y × Pl for some m, l ≥ 0.

X is stably rational if it is stably birational to Pn.



The Rationality Problem
Determine whether a given variety is (stably) rational or not.

The Rationality problem for hypersurfaces
For which d, n is a general degree d-hypersurface in Pn+1 (stably) irrational?



Two of the main applications

Theorem (Nicaise-O.)

The very general complex quartic fivefold in P6 is not stably rational.

Theorem (Nicaise-O.)

A very general complete intersection of a quadric and a cubic in P6 is not stably rational.

The goal of the lectures is to explain the proofs of these theorems.



Other results

• New proofs for hypersurfaces of higher degree or lower dimension

• Many new classes of complete intersections in Pn.

• Many new classes of hypersurfaces in other toric varieties.

Theorem

Consider a very general ample hypersurface X of bidegree (a, b) in P1 × P4

xa0f0 + xa−1
0 x1f1 + . . .+ xa1fa = 0

Then X is stably rational if and only if

• a = 1; or

• b ≤ 2



Overview of the lectures

Monday

Rationality problems, basic birational invariants, specialization methods.

Tuesday

The Grothendieck ring of varieties, Nicaise–Shinder’s motivic volume

Wednesday

First applications: Quartic fivefolds, (2, 3)-complete intersections, ..

Thursday

Toric degenerations

Friday

Further applications



Ingredients

The proof uses

• Specialization of birational types (Nicaise–Shinder, Kontsevich–Tschinkel)

• Tropical geometry, toric degenerations

• Stable irrationality of known lower-dimensional varieties



General strategy for rationality problems

There are two basic steps:

(1) Look for obstructions to rationality (birational invariants)
e.g., the Brauer group.

(2) Show that the obstruction is non-trivial.



Two themes in the lectures
Verify (2) by specialization to a simpler, but sometimes singular variety.

Construct suitable degenerations combinatorially:



Preliminaries



Cohomology of blow-ups

If X is a smooth complex variety,

W = BlZX, the blow-up in a smooth center Z ⊂ X of codimension c,

Then there is a natural isomorphism

Hp(W,Z) = Hp(X,Z)⊕Hp−2(Z,Z)[E]⊕ · · ·Hp−2(c−1)(Z,Z)[E]c−1 (1)

where E ⊂W is the exceptional divisor.



Chow groups of blow-ups

There is a similar description for Chow groups:

CHp(W,Z) = CHp(X,Z)⊕ CHp−1(Z,Z)[E]⊕ · · · ⊕ CHp−(c−1)(Z,Z)[E]c−1 (2)



Birational invariants



Hypersurfaces in Pn

Obstruction to rationality: Differential forms H0(X,Ωp
X)

The obstruction is non-trivial when d ≥ n+ 1.



Hypersurfaces in Pn

Obstruction to rationality: The intermediate jacobian H1,2(X)/H3(X,Z).
The obstruction is non-trivial: Analyse the singularities of the theta divisor.



Hypersurfaces in Pn

Obstruction to rationality: The birational automorphism group Bir(X) is finite.
The obstruction is non-trivial: Use the Noether-Fano inequalities.



The example of Artin–Mumford

Stable birational invariant: H3(X,Z)tors

This is 0 for X = Pn.

H3(X,Z)tors is clearly invariant under taking products with Pm.

If π : W → X is a blow-up in a smooth center Z ⊂ X, then

H3(W,Z) = H3(X,Z)⊕H1(Z,Z)[E]

and by the Universal Coefficient Theorem,

H1(Z,Z)tors = H0(Z,Z)tors = 0

// H3(W,Z) and H3(X,Z) have the same torsion.



The invariant is non-trivial for rather special varieties:

Proposition (Artin-Mumford)

There exist (resolutions of) double quartic solids X → P3 given by

w2 = f(x, y, z, t)

for which H3(X,Z)tors 6= 0.

These are unirational threefolds.

This invariant is closely related to the Brauer group.



Hypersurfaces in Pn



Kollár’s strategy

Obstruction to rationality: Rational varieties are ruled (=birational to P1 × Y )

The obstruction is non-trivial: Specialize X modulo p such that:
for a resolution Y → Xp, Ωn−1

Y contains a positive line subbundle.

// Xp is not ruled.
// X is not ruled (Ruledness specializes in families [Matsusaka]).
// X is not rational.



Decomposition of the diagonal



Recent developments



Recent developments



Recent developments



Recent developments



Recent developments



Decomposition of the diagonal

Consider the diagonal embedding of X

∆ ⊂ X ×X

We say that X admits a decomposition of the diagonal if there is an equality

∆ = [X × x] + Z in CHn(X ×X) (3)

where Z ⊂ X ×X is a subvariety which does not dominate X via the first projection.



Decomposition of the diagonal

Obstruction to Rationality: Any stably rational variety has a decomposition of ∆.

For X = Pn, we have a decomposition (in CHn(Pn × Pn)):

∆ =

n∑
i=0

p∗1h
i · p∗2hn−i

Here p∗2h
n ∼ [Pn × x] and the other terms are supported on D ×X for some D ⊂ X.

Stable birational invariance follows from the formulas for the Chow groups of blow-ups.



Main point: ∆ acts as a correspondence in a special way (the identity map).

Example

Let X be a smooth projective curve of genus ≥ 1.

Claim: X does not have a decomposition of ∆:

Let ω ∈ H0(X,Ω1
X) denote a global holomorphic 1-form. Then

[X × x]∗ω = pr2∗(pr
∗
2[x] · pr∗1ω) = 0

and
Z∗ω = pr2∗(Z · pr∗1ω) = pr2∗(0) = 0

// ∆ 6= [X × x] + Z, because ∆∗ω = ω.



Example

A similar argument shows that a variety with a decomposition of ∆ satisfies

• H0(X,Ωp
X) = 0 for p > 0

• H3(X,Z)tors = 0



How to prove that X admits no decomposition of ∆? This is a delicate matter.

Voisin’s specialization method:

Degenerate to a variety X0 with mild singularities.

Show that (some resolution of) X0 does not admit a decomposition of the diagonal.

Deduce from this that X does not admit a decomposition of the diagonal either.

// X is not stably rational.



Families of varieties and specialization



A family of varieties is a flat morphism

f : X → B

of k-varieties; we will usually require f to be projective.



In this situation, it is natural to ask how the following vary in the fibers of f :

• The (stable) rationality of Xb
• The Chow groups CHp(Xb)
• The cohomology groups H i(Xb,Z)

Example

If X → B is smooth, and we are over k = C, then all the fibers Xb are diffeomorphic
(Ehresmann’s fibration theorem). Hence H i(Xb,Z) are all isomorphic.

However, the two first items can vary drastically in the family.

For instance, in a smooth family X → A1, it can happen that there are exactly
countably infinitely many fibers Xt which admit a decomposition of ∆.



Specialization of Rationality

The behaviour of rationality in families can be subtle:

Example (Rational specializing to irrational)

Consider the family

X =
{
x3

0 + x3
1 + x3

2 + tx3
3 = 0

}
⊂ P3 × A1

For t 6= 0, the fiber Xt is a cubic surface, hence rational.

But the fiber over t = 0 is a cone C(V ) over the elliptic curve V := {x3
0 + x3

1 + x3
2 = 0},

which is irrational.



The last example shows that rationality behaves strangely in families with very singular
fibers.

Example

If X → B is a family of smooth projective surfaces, and Xb is rational for some b ∈ B,
then every fiber is rational.

This follows by Castelnuouvo’s criterion, because the groups

H1(Xb,OXb
), H0(Xb,O(2KXb

))

are constant in the family



Example (Irrational specializing to rational)

Consider the family

X =
{
x3

0 + x2
1x2 + tx3

2 = 0
}
⊂ P2 × A1

For t 6= 0, the fiber Xt is a smooth cubic curve, hence irrational.

But the fiber over t = 0 is a nodal cubic, which is rational.

Classical question: Can this happen in families of smooth varieties?



Example (Irrational specializing to rational II)

Consider a smooth (2, 2)-divisor X ⊂ P2 × P3.

If X is very general, it is known to be stably irrational [Hassett-Pirutka-Tschinkel].

However, if the equation of X is of the form

y0F0 + y1F1 + y2F2 = 0

where Fi are generic (2, 1)-forms, then X is smooth, and rational.

(X contains the P2 given by {y0 = y1 = y2 = 0}, which defines a section of the quadric
bundle X → P2, so X is rational.)



The last example is in fact rather wild:

“Most” (2, 2)-divisors are stably irrational.
But there are also infinitely many divisors in the parameter space of smooth
(2, 2)-divisors parametrizing rational hypersurfaces.

In general, for a family f : X → B, we define the Rational locus as

Rat(f) = {b ∈ B | Xb is rational}

Proposition

Rat(f) is a countable union of locally closed subsets of B.



Main idea of the proof.

Let n denote the relative dimension of n and let P = PnB.

Let Z ⊂ X ×B P be a closed subvariety. If Zb → Xb and Zb → Pb are both birational,
then we obtain a birational map Xb 99K Pb.
Conversely, any such birational map arises in this way.

We reduce to looking at certain subvarieties of X ×B P .

There is a relative Hilbert scheme Hilb(X ×B P/B) paramterizing subvarieties in the
fibers of X ×B P → B.

This Hilbert scheme has only countably many components // OK.



Definition

A property is said to hold for b ∈ B very general, if it is holds outside a countable union
of closed subsets in B.

Important observation:

Proposition

For b ∈ B very general, the fiber Xb is isomorphic (as a scheme) to the geometric
generic fiber XK , where K = k(B).

More precisely, there is a field isomorphism K → k(b), and isomorphisms Xb → XK
making the following diagram commute:

Xb XK

Spec k(b) SpecK



Therefore, if we only care about the very general member of some family of varieties
(e.g., the very general hypersurface), this is the same thing as the geometric generic
fiber.



Specialization

Let R be a DVR, and let X be an integral R-scheme.

We will often be in the situation where we have a diagram of the form

XK X Xk

SpecK SpecR Spec k

K = Frac(R) is the fraction field;
k = R/m is the residue field.

Definition

X = XK is called the generic fiber, wheras Y = Xk is the special fiber.



Specialization

We say that a variety X/K specializes to a variety Y/k if there exists a scheme X/R as
above, with XK ' X and Xk ' Y .



Specialization of cycles

For a codimension p subvariety Z ⊂ XK , we can take its Zariski closure in X and obtain
a subvariety Z of X . Intersecting with the special fiber, we get a codimension p-cycle Zk
on Xk.

This is compatible with rational equivalence, which gives the specialization map of Chow
groups

CHp(XK)→ CHp(Xk)



Obstructing rationality via specialization/degeneration

In general, birational invariants such as Br(X) are hard to compute.
For our purposes, it is also enough to know that they are non-zero.

Common strategy: specialize to a simpler, perhaps singular, variety X0,
and hope that X0 contains enough information to deduce that the generic fiber is
non-stably rational.

The rational obstruction needs to be suffiently sophisticated for this to work:

The “cone over an elliptic curve”-example shows that one also needs to consider families
with “controlled” singularities.



Quartic threefolds (sketch)

Construct a degeneration X → B of quartic threefolds, so that X0 is birational to the
Artin-Mumford example Y .

// X0 carries a non-trivial unramified Brauer class α0 ∈ Br(k(X0))[2].

// some resolution X̃0 has non-trivial Br(X̃0)[2].

// X̃0 does not admit a decomposition of ∆

// Xb does not admit a decomposition of ∆, for b ∈ B very general

// the very general Xb is not stably rational.



Lecture 2:
The motivic volume



The Grothendieck ring

Let F be a field. The Grothendieck group K(VarF ) of F -varieties is the abelian group
with the following presentation:

• Generators: isomorphism classes [X] of F -schemes X of finite type;

• Relations: whenever X is an F -scheme of finite type, and Y is a closed subscheme
of X, then [X] = [Y ] + [X − Y ].

Ring structure: induced by [X] · [X ′] = [X ×F X ′] for all F -schemes X and X ′ of finite
type.

Identity element: 1 = [SpecF ], the class of the point.

Lefschetz motive: L = [A1
F ] ∈ K(VarF ).



Example

[An] = [A1 × · · · × A1] = L× · · · × L = Ln

Example

Partitioning PnF into the hyperplane at infinity and its complement, we find

[PnF ] = [Pn−1
F ] + [AnF ] = [Pn−1

F ] + Ln.

Now it follows by induction on n that

[PnF ] = 1 + L + . . .+ Ln

in K(VarF ).



The Grothendieck ring K(VarF ) is insensitive to non-reduced structures:
if X is an F -scheme of finite type, then the complement of Xred in X is empty, so that
[X] = [Xred].



K(VarF ) can be generated by smooth and proper F -varieties:

Theorem (Bittner 2004)

Let F be a field of characteristic zero. Then K(VarF ) has also the following
presentation:

• Generators: isomorphism classes [X] of connected smooth and proper F -schemes X;

• Relations: [∅] = 0, and, whenever X is a connected smooth and proper F -scheme
and Y is a connected smooth closed subscheme of X,

[BlYX]− [E] = [X]− [Y ] (4)

where BlYX denotes the blow-up of X along Y , and E is the exceptional divisor.



Question: When do X and X ′ define the same class in K(VarF )?

Obvious sufficient condition: X and X ′ be piecewise isomorphic,
(i.e., they can be partitioned into subschemes that are pairwise isomorphic)

// [X] = [X ′] (by scissor relations).

Example

Let C ⊂ A2
F be the affine plane cusp given by

y2 − x3 = 0.

Then C is piecewise isomorphic to A1
F :

C − {(0, 0)} ' A1
F − {0}.

So [C] = L in K(VarF ).



However, this condition is not necessary:

Example (Borisov)

There exist two smooth varieties X and X ′ over C such that [X] = [X ′] but X and X ′

are not birational, and therefore not piecewise isomorphic.

This is due to issues of cancellation:

X and X ′ can be embedded into a common C-variety W such that W −X and W −X ′
can be partitioned into pairwise isomorphic subschemes W1, . . . ,Wr and W ′1, . . . ,W

′
r,

respectively.

It follows that

[X] = [W ]−
r∑
i=1

[Wi] = [W ]−
r∑
i=1

[W ′i ] = [X ′],

even though X and X ′ are not piecewise isomorphic.

Remark

The varieties X and X ′ in Borisov’s example are smooth, but not proper.



The ring of stable birational types

SBF = set of stable birational equivalence classes of integral F -varieties

[X]sb = equivalence class of X.

We consider the free abelian group Z[SBF ].

For any F -scheme X of finite type, we set

[X]sb = [X1]sb + . . .+ [Xr]sb in Z[SBF ]

where X1, . . . , Xr are the irreducible components.

In particular, [Xred]sb = [X]sb in this group.

Ring product: [X]sb · [Y ]sb = [X ×F Y ]sb.



The Larsen–Lunts theorem

Theorem (Larsen & Lunts 2003)

Let F be a field of characteristic zero. Then there exists a unique map

sb:K(VarF )→ Z[SBF ]

that maps [X] to [X]sb for every smooth and proper F -scheme X.

The morphism sb is a surjective ring morphism, and its kernel is the ideal in K(VarF )
generated by L.

Therefore,
K(VarF )/(L) ' Z[SBF ]



Sketch of proof.

The morphism sb maps L = [P1
F ]− [SpecF ] to 0, because SpecF is stably birational to

P1
F . Thus sb induces

sb:K(VarF )/LK(VarF )→ Z[SBF ].

Here is the inverse:
By resolution of singularities, every class in SBF has a representative X that is a
connected smooth proper F -scheme.
For every m ≥ 0, we have

[X ×F PmF ]− [X] = [X](L + L2 + . . .+ Lm)

in K(VarF ) by the scissor relations.
Thus [X ×F PmF ] and [X] are congruent modulo L.



Sketch of proof.

Moreover, the class of [X ×F PmF ] modulo L is independent under blow-ups of smooth
closed subschemes of X ×F PmF , because the exceptional divisor of such a blow-up is a
projective bundle over the center.

Weak Factorization Theorem =⇒ the class of X in K(VarF )/LK(VarF ) only depends
on the stable birational equivalence class of X.

This yields a ring map
Z[SBF ]→ K(VarF )/LK(VarF )

that is inverse to sb.



Beware: sb([X]) is usually different from [X]sb when X is not smooth and proper.

Example

In K(V arF ), we have [A1] = [P1]− [SpecF ],so

sb(A1) = sb(P1)− sb[SpecF ] = 0

So sb(A1) = 0 6=
[
A1
]
sb

.

Example

If X is a nodal cubic in P2
F , then it follows from the scissor relations that

[X] = L

in K(VarF ). Thus sb([X]) = 0.



Corollary

Let F be a field of characteristic zero, and let X and X ′ be smooth and proper
F -schemes.
Then X and X ′ are stably birational if and only if [X] ≡ [X ′] modulo L in K(VarF ).

In particular, [X] ≡ c modulo L for some integer c if and only if every connected
component of X is stably rational; in that case, c is the number of connected
components of X.

Remark

Again the corollary is false without the assumption that X and X ′ are smooth and
proper (Borisov’s example).



Some notation

Field of Puiseux series:

K = C{{t}} =
⋃
m>0 C((t1/m))

Valuation ring:

R =
⋃
m>0 C[[t1/m]]



An R-scheme is strictly semi-stable if, Zariski locally, it admits an étale morphism to a
scheme of the form

SpecR[z1, . . . , zs]/(z1 · · · zr − tq)

where s ≥ r ≥ 0 and q is a positive rational number.



In short, we will consider families X → SpecR, and want to compare the rationality
properties of the generic fiber XK , to that of the special fiber, XC.

Note however that XC may have several irreducible components, so it makes most sense
to do this comparison in Z[SBC].



The theorem of Nicaise–Shinder

Definition

If X is strictly semi-stable, then a stratum of the special fiber Xk is a connected
component E of an intersection of irreducible components of Xk.

S(X ) := the set of strata of Xk.

Theorem (Nicaise–Shinder)

There exists a unique ring morphism

Vol:Z[SBK ]→ Z[SBk]

such that, for every strictly semistable proper R-scheme X with smooth generic fiber
X = XK , we have

Vol([X]sb) =
∑

E∈S(X)

(−1)codim(E)[E]sb. (5)



Let us make the following observations:

• Vol sends [SpecK]sb to [SpecC]sb.

• If X → SpecR is smooth and proper, then Vol([XK ]sb) = [XC]sb.

These two in conjunction have an important consequence, namely that if X → SpecR is
smooth and proper, and the generic fiber XK is geometrically stably rational, then so is
the special fiber.

Theorem

Stable rationality specializes in smooth and proper families.

This was a long-standing open question, solved by Nicaise–Shinder (and
Kontsevich–Tschinkel with ‘stable rationality’ replaced by ‘rationality’).



More generally:

Corollary

Let S be a Noetherian Q-scheme, and let X → S and Y → S be smooth and proper
morphisms.
Then the set

{s ∈ S |X ×S s is stably birational to Y ×S s for any geometric point s based at s}

is a countable union of closed subsets of S.

In particular, the set

{s ∈ S |X ×S s is stably rational, for any geometric point s based at s}

is a countable union of closed subsets of S.



Example (Rational specializing to irrational)

Consider the family

X =
{
x3

0 + x3
1 + x3

2 + t3x3
3 = 0

}
⊂ P3 × A1

The fiber over t = 0 is a cone C(V ) over the elliptic curve V := {x3
0 + x3

1 + x3
2 = 0},

which is irrational.

What goes wrong in this example?



Example (Rational specializing to irrational)

Issue: The family X is not strictly semi-stable.
Consider the blow-up Y → X of the vertex of the cone X0 = C(V ):

Y → A1

This is now strictly semi-stable.
The fiber Ỹ0 has two components X̃0 and the exceptional divisor E.
We have E ' cubic surface, so

Vol(XK) = Vol(YK) =
[
X̃0

]
sb

+ [E]sb −
[
E ∩ X̃0

]
sb

=
[
P1 × V

]
sb

+
[
P2
]
sb
− [V ]sb

= [SpecF ]sb

So there is no contradiction.



Toroidal models

For our main applications, we need a more flexible notion than semi-stability:

Definition

A monoid M is called toric if it is isomorphic to the monoid of lattice points in a
strictly convex rational polyhedral cone.

To any monoid M we can attach its monoid R-algebra R[M ]; the monomial associated
with an element m ∈M will be denoted by xm.

Definition

Let X be a flat separated R-scheme of finite presentation.
We say that X is strictly toroidal if, Zariski-locally on X , we can find a smooth
morphism

X → SpecR[M ]/(xm − tq)

for some toric monoid M , some positive rational number q, and some element m in M
such that k[M ]/(xm) is reduced.



Example

Consider the scheme
SpecR[x, y, z, w]/(t− xy, t− zw),

which is clearly strictly toroidal.

The special fiber has four irreducible components of dimension 2 intersecting at the
origin, which never happens for strictly semi-stable schemes.



The following schemes will be important when degenerating complete intersections:

Example

Let r and s be positive integers, and let a = (a1, . . . , ar) and b = (b1, . . . , bs) be tuples
of positive integers. Consider the R-schemes

Xa = SpecR[xi,j | i = 1, . . . , r; j = 1, . . . , ai]/(t−
a1∏
j=1

x1,j , . . . , t−
ar∏
j=1

xr,j),

Yb = SpecR[yi,j | i = 1, . . . , s; j = 0, . . . , bi]/(ty1,0 −
b1∏
j=1

y1,j , . . . , tys,0 −
bs∏
j=1

ys,j).

Then Xa, Yb and Xa ×R Yb are strictly toroidal.

Note that X is strictly semi-stable if it admits Zariski-locally a smooth morphism to a
scheme of the form Xa with r = 1.



Advantages of toroidal singularities

• The product of two strictly toroidal R-schemes is again strictly toroidal. This is no
longer true for strictly-semistable.

• The condition of strict semi-stability is quite restrictive, and producing a
semi-stable model often leads to many blow-ups which which are hard to analyze.
The toroidal condition is much more flexible, and reduces the computations
substantially.

• Strictly toroidal degenerations also arise naturally when we break up projective
hypersurfaces into pieces of smaller degrees:



Example

Let f0, . . . , fr ∈ k[z0, . . . , zn+1] be general homogeneous polynomials of positive degrees
d0, . . . , dr such that d0 = d1 + . . .+ dr.
Then

X = ProjR[z0, . . . , zn+1]/(tf0 − f1 · . . . · fr)

is strictly toroidal.

X is not strictly semi-stable at the points of Xk where f0 and at least two among
f1, . . . , fr vanish.



The theorem of Nicaise-Shinder (toroidal version)

Recall:

S(X ) = the set of strata of the special fiber Xk.

Theorem (Nicaise-Shinder)

There exists a unique ring morphism

Vol:Z[SBK ]→ Z[SBk]

such that, for every strictly toroidal proper R-scheme X with smooth generic fiber
X = XK , we have

Vol([X]sb) =
∑

E∈S(X)

(−1)codim(E)[E]sb. (6)



Lecture 3:
First applications



A quick summary so far

SBF = set of stable birational equivalence classes of integral F -varieties

The ring of stable birational types: Z[SBF ].

K = C{{t}} =
⋃
m>0 C((t1/m)), R =

⋃
m>0 C[[t1/m]].

We consider schemes X/R which are either semistable, or more generally, toroidal.



The theorem of Nicaise–Shinder

Theorem (Nicaise–Shinder)

There exists a unique ring morphism

Vol:Z[SBK ]→ Z[SBk]

such that, for every strictly semistable (or toroidal) proper R-scheme X with smooth
generic fiber X = XK , we have

Vol([X]sb) =
∑

E∈S(X)

(−1)codim(E)[E]sb.

Here S(X ) denotes the set of strata of Xk.

Important observation: Vol maps SpecK to Spec k.



A key idea in [NO20], is to use this an obstruction to stable rationality of XK :

Corollary

1. Let X be a smooth and proper K-scheme. If

Vol([X]sb) 6= [Spec k]sb

in Z[SBk], then X is not stably rational.

2. Let X be a strictly semistable proper R-scheme with smooth generic fiber X = XK .
If ∑

E∈S(X )

(−1)codim(E)[E]sb 6= [Spec k]sb

in Z[SBk], then X is not stably rational.

Proof.

If X is stably rational, then [X]sb = [SpecK]sb so that Vol([X]sb) = [Spec k]sb.
The second part of the statement follows immediately from the formula for Vol.



Example (Voisin)

A very general double quartic threefold is irrational.

Sketch of proof.

Let f, g ∈ C[x, y, z, w] denote quartics, so that f appears in the Artin-Mumford example

w2 = f(x, y, z, w) ⊂ P(1, 1, 1, 1, 2).

Consider the family

X = {w2 = f(x, y, z, w) + tg(x, y, z, w)} ⊂ P(1, 1, 1, 1, 2)× A1

Note: X0 is the Artin-Mumford threefold.



Sketch of proof.

The family X/A1 becomes semi-stable after blowing up the 10 nodes in the special fiber
X0.
Let Y → A1 denote the resulting family.
As the blow-ups only introduce rational varieties in the special fiber, we get

Vol(XK) = Vol(YK)

= [X̃0]sb + a[SpecC]sb for some a ∈ Z
6= [SpecC]sb in Z[SBC]

because [X̃0] is not stably rational.
// XK is not stably rational.
// the very general double quartic solid is not stably rational.



For our main applications, we get better results using degenerations with many
components.

Main strategy in [NO20]:
Look for suitable degenerations

X → SpecR

with XK ⊂ Pn+1
K smooth hypersurface, with the property that

stably irrational strata of low dimension do not cancel out in the alternating sum

Vol([X]sb) =
∑

E∈S(X)

(−1)codim(E)[E]sb.

∴ We deduce irrationality of XK from that of varieties of lower dimension.



Example (Two components in the special fiber)

Suppose the special fiber XC = X0 ∪X1, intersecting along X01.

The motivic volume takes the form

Vol(XK) = [X0]sb + [X1]sb − [X01]sb

From this, we deduce that either of the following conditions guarantee that the generic
fiber XK is not stably rational:

i) Exactly one of X0, X1, X01 is stably irrational.

ii) X0 and X1 are both stably irrational.

iii) X0 and X01 are stably irrational, but they are not stably birational to each other.

iv) X0, X1, X01 are all stably irrational.



Quartic fivefolds



Quartic fivefolds

Let F ∈ C[x0, . . . , x6] be a very general homogeneous polynomial of degree 4.

Consider the following R-scheme

X = ProjR[x0, . . . , x6, y]/(x5x6 − ty, y2 − F ) (7)

where the variable y has weight 2.

Note that the generic fiber XK is isomorphic to a smooth quartic hypersurface in P6
K

(inverting t allows us to eliminate y using the first equation).

Moreover, X is strictly toroidal.



The special fiber has two components:

X0 = ProjC[x0, . . . , x6, y]/(x5, y
2 − F )

X1 = ProjC[x0, . . . , x6, y]/(x6, y
2 − F ).

Note that these are both very general quartic double fivefolds.

We do not know whether these are stably rational or not.

However, their intersection,

X01 = ProjC[x0, . . . , x4, y]/(y2 − F )

is a very general quartic double fourfold, and thus stably irrational
[Hassett–Pirutka–Tschinkel].

In either case, we get

Vol([XK ]sb) = [X0]sb + [X1]sb − [X01]sb
6= [SpecC]sb



On (2,3)-complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in Pn are stably irrational
for n ≤ 6.

Our main contribution is stable irrationality for n = 6.

History related to the Lüroth problem:

• Fano (1908): (Incorrect) proof of irrationality for n = 5

• Enriques (1912): Proof of unirationality for n = 5

• Hassett–Tschinkel (2018): Stable irrationality for n = 5.

• Morin (1955), Conte–Murre (1998): Unirationality for n = 6.

The above result settles the rationality problem for all complete intersections of
dimension ≤ 4 - except cubic fourfolds.



The proof for (2, 3)-complete intersections

Let P6 = Proj k[x0, . . . , x6] and let P = {x0 = . . . = x3 = 0} ' P2.

Y = {q = c = 0} ⊂ P6

for q and c very general of degree 2 and 3.
We assume Y contains P and is very general with respect to this property.

Blow up the plane P :

X ⊂ BlPP6 P6

P3

π

p

X = Q ∩ C where Q ∈ |2H − E| and C ∈ |3H − E|.



It suffices to show that generic intersections

X = Q ∩ C ⊂ BlPP6

where Q ∈ |2H − E| and C ∈ |3H − E| are stably irrational.

Now degenerate Q to Q0 + E where Q0 ∈ |2H − 2E|= |2p∗h|.

This induces a degeneration of X → A1 with special fiber X0 = X1 ∪X2:

There are three strata:

• X1 = Q0 ∩ C
• X2 = E ∩ C
• X12 = Q0 ∩ E ∩ C



The stratum X1 = Q0 ∩ C:

Q0 = PP1×P1(O3 ⊕O(1, 1)) P(O3 ⊕O(1)) P6

P1 × P1 P3

π

p

C|Q0 is a very general divisor in |O(2)⊗ p∗O(1, 1)| in PP1×P1(O3 ⊕O(1, 1)).

// X1 is stably irrational by [Schreieder 2017].



The strata X2 = E ∩ C and X12 = E ∩Q0 ∩ C

C restricts to a (1, 2)-divisor on E ' P2 × P3

Q0 restricts to a (0, 2)-divisor on E ' P2 × P3.

// X2 and X12 are both rational.

By the motivic volume formula:

Vol([X ]sb) = [X1]sb + [X2]sb − [X12]sb

= [X1]sb + [SpecC]sb − [SpecC]sb

= [X1]sb

6= [SpecC]sb

This implies that a very general X is stably irrational. �



Improvements

Remark

[Pavic–Schreieder 2021] extended this proof to show that a very general quartic fivefold
does not admit a decomposition of ∆.

Remark

The result on (2, 3) complete intersections was extended by [Skauli 2021], who:

• Showed that these fourfolds do not admit a decomposition of ∆.

• Gave explicit examples (over Q) of stably irrational (2, 3)-fourfolds.

Here the decomposition of the ∆-technique leads to more computations, but has the
advantage it also works in positive characteristic.



Lecture 4:
Toric degenerations



A quick summary so far

SBF = set of stable birational equivalence classes of integral F -varieties

The ring of stable birational types: Z[SBF ].

K = C{{t}} =
⋃
m>0 C((t1/m)), R =

⋃
m>0 C[[t1/m]].

We consider schemes X/R which are either semistable, or more generally, toroidal.



The theorem of Nicaise–Shinder

Theorem (Nicaise–Shinder)

There exists a unique ring morphism

Vol:Z[SBK ]→ Z[SBk]

such that, for every strictly semistable (or toroidal) proper R-scheme X with smooth
generic fiber X = XK , we have

Vol([X]sb) =
∑

E∈S(X)

(−1)codim(E)[E]sb.

Here S(X ) denotes the set of strata of Xk.

Important observation: Vol maps SpecK to Spec k.



Projective toric varieties

{
projective toric varieties (X,L),
L basepoint free ample line bundle

}
⇐⇒

{
lattice polytopes ∆ ⊂ Rn
L defined up to translation

}
1-1 inclusion preserving correspondence between faces of ∆ and toric strata of X:



We use the standard notations M , N , MR, NR from toric varieties.

Let ∆ ⊂MR be a lattice polyhedron.

Consider the cone over ∆:

C(∆) = closure of {(rm, r)|m ∈ ∆, r ≥ 0} ⊂MR ⊕ R

This cone is rational polyhedral, with asymptotic cone

C(∆) ∩ (MR ⊕ 0) = Asym(∆)

(asymptotic cone of ∆ = Hausdorff limit of r∆ as r → 0).



The finitely generated k-algebra

S∆ := k[C(∆) ∩ (M ⊕ Z)]

has a grading given by deg z(m,d) = d.

Degree 0 part:
(S∆)0 = k[Asym(∆) ∩M ]

The toric variety
X(∆) := ProjS∆

is projective over Spec k[Asym(∆) ∩M ].



Projective embedding: (if ∆ is ”very ample”):

If mi = (mi1, . . . ,min) ∈ Zn i = 0, . . . , r are the integral points of ∆, we get a map

φ : (C∗)n → Pr

x 7→ [xm0 , . . . , xmr ]

where we (as usual) write
xmi := xmi1

1 · · ·xmin
n

Then X(∆) is the closure of the image of φ.



Facts

• There is a 1-1 inclusion preserving correspondence between faces of ∆ and toric
strata of X(∆).

• Since X(∆) is defined as a Proj, there is a natural line bundle L = O(1).

H0(Σ∆,O(1)) has a basis corresponding to the integral points of ∆.



Example (Projective space)

(Pn,O(1)) is given by the n-dimensional simplex

∆ =
{∑

xi ≤ 1, xi ≥ 0
}

More generally, (Pn,O(d)) is given by the dialated simplex

d∆ =
{∑

xi ≤ d, xi ≥ 0
}

This is the d-th Veronese embedding of Pn.



Example (Product polytopes)

If (X,L) and (Y,M) correspond to polytopes PX ⊂ Rn and PY ⊂ Rm, then the product

(X × Y,L�M)

is given by the product polytope PX × PY ⊂ Rn+m.

For instance (P1 × P1,O(a, b)) is given by the rectangle

Pa,b = {(x, y) | 0 ≤ x ≤ a, 0 ≤ y ≤ b}



Example (Blow-up)

Consider the trapezoid

Ta,b = {(x, y)|0 ≤ x, 0 ≤ y ≤ b, x+ y ≤ a}

T3,1

The corresponding toric variety is X = BlpP2 polarized by the line bundle
L = aH − (a− b)E.

In general, one obtains the polytope of a blow-up X of a variety Y by ”chopping off a
corner” of the polytope ∆Y .



Regular subdivisions

A subdivision P of ∆ is called regular if there is a piecewise linear function
φ : ∆→ R≥0 such that

(i) The polytopes of P are the orthogonal projections on the hyperplane z = 0 of
Rn+1 of the faces of the upper convex hull

∆̃ := {(x, z) ∈ ∆× R|0 ≤ z ≤ φ(x)}

which are not vertical nor equal to ∆.

(ii) The function φ is strictly convex, i.e., the hyperplanes determined by each of the
faces of ∆̃ intersect ∆̃ only along that face.



The Mumford Degeneration

Given a regular subdivision P, we can construct a (flat) degeneration

X → A1,

satisfying:
• X − X0 ' X(∆)× C∗.
• The special fiber X0 is a union of toric varieties

X0 =
⋃
P∈P

X(P )

• The components intersect according to the combinatorics of the subdivision:
If P,Q ∈P share a common face R, then X(P ) ∩X(Q) can be identified with the
toric variety X(R) (which is a subvariety of both).





Let φ : ∆→ R≥0 be a piecewise linear function taking integer values on ∆ ∩M .

∆̃ = {(m, r)|m ∈ ∆, r ≥ φ(m)} ⊂MR ⊕ R

Example

∆ = [0, 2] ←→ (P1,O(2)).
Define φ by φ(0) = φ(1) = 0, φ(2) = 2.

Subdivision: P = {[0, 1], [1, 2], {1}}



Asymptotic cone of ∆̃:
Asym(∆) = 0⊕ R≥0

// k[C(∆̃) ∩ (M ⊕ Z⊕ Z)] is a k[N]-algebra.

// X(∆̃) is a toric variety with a projective morphism

π : X(∆̃)→ A1
k

This is the Mumford degeneration associated to ∆ and φ.



∆̃ has two types of faces:

• Horizontal faces: mapping homeomorphically to elements of P.

For a maximal face δ for which φ|δ has slope nδ ∈ N has normal cone = ray
generated by (−nδ, 1).

• Vertical faces: mapping non-homeomorphically to faces of ∆.

If δ is a vertical face, the normal cone N
∆̃

(δ) lies in NR × 0 (and is a cone in the
normal fan to ∆).



The projection
π : X(∆̃)→ A1

k

is given by the monomial zρ, where ρ = (0, 1) ∈ Asym(∆̃) ⊂MR ⊕ R.

The primitive generators for the rays of Σ(∆̃) are either of the form (n, 0) or (n, 1) for
n ∈ N .

// zρ does not vanish on divisors corresponding to rays of the first type, and
vanishes with order 1 along the divisors corresponding to the second type.

Hence (scheme-theoretically),

π−1(0) =
⋃

δ∈Pmax

X(δ)



X(∆̃)− π−1(0) is isomorphic to X(∆)× C∗:

Reason:

Localize k[C(∆̃) ∩ (M ⊕ Z⊕ Z)] at z(0,1,0).

This is the same thing as replacing ∆̃ with ∆× R

X(∆× R) = X(∆)× Spec k[Z] = X(∆)× C∗.



Example

P has two maximal faces, so
π−1(0) = D1 ∪D2

D1 ∩D2 is defined by the vertex v = (1, 0) ∈ ∆̃.



Example

The normal fan:

The monoid Kv∆̃ ∩ Z2 has generators (−1, 0), (1, 2), (0, 1).

k[Kv∆̃ ∩ Z2] ' k[z1, z2, t]/(z1z2 − t2)

where z1 = z(−1,0), z2 = z(−1,0), t = z(0,1).

This is a local model of the smoothing of a node.



In this example, the total space has an A1-singularity.

We can understand this from the normal fan:

Start with A1 × P1 and perform a weighted blow-up by adding the ray (−2, 1).

This gives another P1 and an A1 singularity.



Newton subdivision

Let
f =

∑
m

cmx
m ∈ K[M ]

be a Laurent polynomial with Newton polytope ∆ ⊂ Rn+1.

φ : ∆→ R given by the lower convex envelope of the function

m 7→ ordt(cm).

// regular subdivision P + corresponding degeneration of X(∆).



For every face δ of P, set

fδ =
∑

Zn+1∩δ

cmx
m

Non-degeneracy condition: We assume that Z(fδ) is smooth for all δ.

Let X = X(∆)×k[t] R.

// XK = XK(∆) and Xk =
⋃
P∈Pmax

X(P ).

Taking the Zariski closure of Z(f) in XK , we also get a degeneration

Y → A1
k

with YK = Z(f).

Proposition

Assuming that f is non-degenerate in the above sense, the corresponding degeneration
has toroidal singularities. Hence we can apply the motivic volume formula.



Definition

A polytope ∆ is called stably irrational if:
for every algebraically closed field F of characteristic 0, and every very general
polynomial g ∈ F [M ] with Newton polytope ∆, the hypersurface Z(g) is stably
irational.

Otherwise we say ∆ is stably rational.



Example

The dilated (n+ 1)-simplex d∆ ⊂ Rn+1 is stably irrational if and only if the very
general degree d hypersurface in Pn+1 is not stably rational.

Example

The product polytope 2∆2 × 2∆3 ⊂ R5 is stably irrational
(by Hassett-Pirutka-Tschinkel).



Degenerating a hypersurface

Example (Lattice width 1)

If ∆ is a polytope with lattice width 1, then ∆ is stably rational.

Reason: A polynomial f with that Newton polytope is linear in one variable (after a
change of coordinates).

e.g., 1 + 2x+ x3 + xy + x2y has Newton polytope:

A nodal cubic curve



Example

f0 := general homogeneous polynomial of degree d in k[z1, . . . , zn+1]
f1 :=general homogeneous polynomial of degree d− 1 in k[z0, . . . , zn+1]

Let

f = tf0 + z0f1

Newton polytope:

∆ = {(u0, . . . , un+1)|u0 + . . .+ un+1 = d} ⊂ Rn+2
≥0



Example

The subdivision is induced by φ = max{0, 1− u0}:

Two maximal cells:
δ≤ = {(u0, . . . , un+1)|u0 ≤ 1}

δ≥ = {(u0, . . . , un+1)|u0 ≥ 1}

With intersection
δ= = {(u0, . . . , un+1)|u0 = 1}



Example

The toric k[t]-scheme X(∆̃) defined by φ is the blow-up of

Pn+1
k[t] = Proj k[t][z0, . . . , zn+1]

in H = {z0 = t = 0} ⊂ Pn+1
k .

For the R-scheme X = X(∆̃)×k[t] R, we have

Xk = D1 +D2

where
D1 ' Pn+1

k (strict transform);
D2 ' P(OH ⊕OH(1)) (exceptional divisor).
D1 ∩D2 ' Pnk .



Example

The Zariski closure
Y → SpecR

of Z(f) ⊂ XK = Pn+1
K in X gives a proper and semistable R-model of Z(f).

Two components in the special fiber:

E1 = Y ∩D1 = degree (d− 1)-hypersurface defined by f1 = 0.
E2 = Y ∩D2 = section of O(1)⊕ π∗O(d− 1) in P(OH ⊕OH(1)) // rational.
Also,
E1 ∩ E2 = degree (d− 1)-hypersurface defined by f1(0, z1, . . . , zn+1) = 0.



Conslusion:

Theorem

Suppose that a very general hypersurface of degree d− 1 in Pn is stably irrational.

Then at least one of the following must hold:

(i) a very general hypersurface of degree d in Pn+1 is stably irrational;

(ii) a very general hypersurface of degree d in Pn is stably irrational

We will improve this result in the next example.

Example

The result for quartic 5-folds implies that we also get stable irrationality for

• Quintic 6-folds

• Sextic 7-folds

• . . .



Lecture 5:
Further applications



Recap
The ring of stable birational types: Z[SBF ].

K = C{{t}} =
⋃
m>0 C((t1/m)), R =

⋃
m>0 C[[t1/m]].

Theorem (Nicaise–Shinder)

There exists a unique ring morphism

Vol:Z[SBK ]→ Z[SBk]

such that, for every strictly semistable (or toroidal) proper R-scheme X with smooth
generic fiber X = XK , we have

Vol([X]sb) =
∑

E∈S(X)

(−1)codim(E)[E]sb.

Here S(X ) denotes the set of strata of Xk.

Obstruction to rationality: Vol maps [SpecK]sb to [Spec k]sb.



A regular subdivision P // degeneration of X(∆)

X → A1,

satisfying:

X0 =
⋃
P∈P

X(P )

and if P,Q ∈P share a common face R, then X(P ) ∩X(Q) can be identified with the
toric variety X(R) (which is a subvariety of both).



Further applications

General strategy for hypersurfaces in a toric variety X(∆):

Construct a subdivision P of ∆, so that all but one lower-dimensional polytope is
stably rational (or make sure that the various intersections do not cancel out in the
alternating formula for Vol).



Theorem (Increasing degree / decreasing dimension)

Suppose that a very general hypersurface of degree d in Pn+1 is stably irrational.

Then we also have that:

(i) A very general hypersurface of degree d+ 1 in Pn+1 is stably rational.

(ii) A very general hypersurface of degree d in Pn is stably rational.



Proof of (i)

Consider the following subdivision of (d+ 1)∆n+1:



Proof of (i)

Consider the following subdivision of (d+ 1)∆n+1:



Proof of (i)

The red polytope corresponds to a degree d hypersurface Y ⊂ Pn.

All other polytopes have lattice width 1 (hence they are rational).

We get a degeneration X → SpecR of degree (d+ 1)-hypersurfaces in Pn+1 with

Vol(XK) = [Y ]sb + a[SpecC]sb

6= [SpecC]sb

�



The Quartic fivefold again
Newton polytope: ∆ =

{
(x1, . . . , x6) ∈ R6

≥0|
∑

i xi ≤ 4
}

Subdivision below // degeneration with special fiber X1 ∪X2 ∪X3 ∪X4.

Red polytope = (2, 2)-divisor Y ⊂ P2 × P3

// stably irrational by [Hassett–Pirutka–Tschinkel 2016].

All other polytopes have lattice width 1, hence rational.

Thus
Vol(XK) = [Y ]sb + a[SpecC]sb 6= [SpecC]sb

�



The Quartic fivefold again

Here is the previous degeneration:

Red polytope = double quartic 4-fold.



Variation of birational types

Question: In a family of hypersurfaces

X → B,

how does the stable rationality types vary in the fibers Xb?

Intuition: If some fiber is stably irrational, then the stable birational types should vary.



Theorem

Let W be a variety over k.

Let ∆ be a polytope such that

• ∆ is stably irrational.

• ∆ admits a regular subdivision P such that every face of P which is not
contained in ∂∆ is stably rational.

Then for every very general polynomial g ∈ k[M ] with Newton polytope ∆, the
hypersurface

Z(g) = {g = 0} ⊂ (C∗)n

is not stably birational to W .



Corollary (Shinder)

Let W be a k-variety.

If a very general degree-d hypersurface in Pn is stably irrational,
then a very general degree-d hypersurface in Pn is not birational to W .



Proposition

Let H be a hyperplane in Pn+1
k .

Let X be a degree d hypersurface in Pn+1
k that is very general with respect to H.

If X is stably irrational, then X is not stably birational to X ∩H.

Proof:



Proposition

Let H be a hyperplane in Pn+1
k .

Let X be a degree d hypersurface in Pn+1
k that is very general with respect to H.

If X is stably irrational, then X is not stably birational to X ∩H.

Proof:

There is a more general result for other polytopes ∆.



Results for complete intersections

Many new classes of complete intersections in Pn

(i) Logarithmic bounds à la Schreieder

(ii) Complete intersections of r quadrics in Pn are stably irrational if r ≥ 3 and
2r ≥ n− 1.

(iii) In dimension 4:

(4), (5), (2,3), (2, 4), (3, 3), (2, 2, 2), (2, 2, 3), (2,2,2,2)

(iv) In dimension 5:

(4), (5), (6), (2,4), (2, 5), (3,3), (3, 4), (2,2,3), (2, 2, 4), (2, 3, 3),
(2,2,2,2), (2, 2, 2, 3), (2,2,2,2,2).



Proposition

A very general intersection of a quadric and a quartic in P8 is not stably rational.

Let q, f ∈ k[x0, . . . , x8] be very general of degrees 2, 4.

X := ProjR[x0, . . . , x8]/(f, tq − x7x8)

Then Xk = E1 ∪ E2 where

• E1 = {f = x7 = 0}
• E2 = {f = x8 = 0}
• E12 = {f = x7 = x8 = 0} (stably irrational)

In any case,

Vol(XK) = [E1]sb + [E2]sb − [E12]sb
6= [SpecC]sb



Proposition

A very general intersection of two cubics in P7 is not stably rational.

Let q1, q2, c1, c2 ∈ k[x0, . . . , x7] be very general forms of degrees 2, 2, 3, 3.

X := ProjR[x0, . . . , x7]/(c1, tc2 − x7q2)

Then Xk = E1 ∪ E2, where

• E1 = {c1(x0, . . . , x6, 0) = 0}
• E2 = {c1 = q2 = 0}
• E12 = E1 ∩ E2 = {c1 = q2 = x7 = 0} (stably irrational)

As
Vol(XK) = [E1]sb + [E2]sb − [E1 ∩ E2]sb

it suffices to prove:
Claim 1. E1 is not stably birational to E12

Claim 2. E2 is not stably birational to E12



Claim 1. E1 is not stably birational to E12

E1 = {c1(x0, . . . , x6, 0) = 0}
E12 = E1 ∩ E2 = {c1 = q2 = x7 = 0} (stably irrational)

Consider the family

Y = Proj k[t][x0, . . . , x7]/(tc1 − x6q2, x7)

We have
Yk = (x6 = x7 = 0) ∪ (q2 = x7 = 0)

a union of two rational varieties intersecting along a rational subvariety, so

Vol(Y ×k[t] K) = [Spec k]sb 6= [E1 ∩ E2]sb

Hence Y ×k[t] K is not birational to E12 ×k K.

The proof of Claim 2 is very similar.



Theorem

Let d1, . . . , dr be positive integers such that dr ≥ di for all i.
Assume that

n+ r ≥
r−1∑
i=1

di + 2

and that there exists a stably irrational smooth hypersurface of degree dr in

Pn+r−
∑r−1

i=1 di
k .

Then a very general complete intersection in Pn+r
k of multidegree (d1, . . . , dr) is not

stably rational.

Corollary

Let d1, . . . , dr be positive integers such that dr ≥ 4 and dr ≥ di for all i. Assume that

r−1∑
i=1

di + 2 ≤ n+ r ≤ 2dr−2 +

r∑
i=1

di − 3.

Then a very general complete intersection in Pn+r
k of multidegree (d1, . . . , dr) is not

stably rational.



Proposition

Let n and r be integers such that

n ≥ 3, r ≥ 3, r ≥ n− 1.

Then a very general complete intersection of r quadrics in Pn+r
k is stably irrational.

For
X = (q1, . . . , qr) ⊂ Pn+r,

degenerate qr // xn+rxn+r−1 and use induction on r.



Products of projective spaces

Theorem

A very general (2, 3)-divisor X ⊂ P1 × P4 is not stably rational.

Subdivisions of the polytope a∆1 × b∆n allows us to raise degree/dimension:

(a, b) in Pm × Pn stably irrational =⇒ (a, b+ 1) and (a+ 1, b) also stably irra-
tional in Pm × Pn and Pm × Pn+1.

∴ we get all bidegrees corresponding to rational/irrational hypersurfaces.



The Hassett–Pirutka–Tschinkel quartic

Consider Y ⊂ P2 × P3, bidegree (2, 2), defined by

xyU2 + xzV 2 + yzW 2 + (x2 + y2 + z2 − 2(xy + xz + yz))T 2 = 0

Hassett–Pirutka–Tschinkel/Schreieder:
Anything that specializes to Y does not admit a decomposition of ∆ (hence is stably
irrational).



(2, 3)-divisors in P1 × P4

P = the Newton polytope of the HPT quartic.

= convex hull of column vectors of


0 2 0 1 0 1
0 0 2 1 1 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


Starting observation: P is contained in the Newton polytope of a general (2, 3)-divisor:

2∆1 × 3∆4 = {(u, v) ∈ R1+4
≥0 |u ≤ 2, v1 + . . .+ v4 ≤ 3}.

In concrete terms, the following bidegree (2, 3) polynomial

x2
0y

3
0 − 2x0x1y

3
0 + x2

1y
3
0 − 2x2

0y
2
0y1 − 2x0x1y

2
0y1

+ x2
0y0y

2
1 + x0x1y1y

2
2 + x2

0y1y
2
3 + x0x1y0y

2
4

dehomogenizes to the HPT quartic.



Let P denote the regular subdivision of the polytope 2∆1 × 3∆4 induced by the convex
function

f :R5 → R, x 7→ minz∈P ‖x− z‖2

The cells in P:

dim δ 0 1 2 3 4 5

number 43 192 353 323 146 26

// degeneration of P1 × P4 into a union of 26 toric varieties.



Going through the cells of dimension 2 and 4 reveals that any face δ of even dimension
either

• has lattice width one (rational, as the equation is linear with respect to a variable)

• corresponds to a quadric bundle over P1
k (rational).

• defines a conic bundle over A3 with a section (rational)

In Z[SBC] we have

Vol([X ]sb) = [HPT ] +
∑

#I odd

[XI ] + a[SpecC] for some a ∈ Z

As this is 6= [SpecC], a very general X is stably irrational. �
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