Specialization techniques and stable rationality

John Christian Ottem

University of Oslo
January 14, 2022

Lecture 1:
Birational invariants and specialization

These talks will revolve around a paper written with Johannes Nicaise:
J. Nicaise, J.C. Ottem. Tropical degenerations and stable rationality (2020).

In the paper we give a quite general method for the (stable) rationality problem for hypersurfaces and complete intersections in toric varieties.

We work over a field k of characteristic 0 . (Usually $k=\mathbb{C}$).

Two varieties X and Y are stably birational if $X \times \mathbb{P}^{m} \sim_{b i r} Y \times \mathbb{P}^{l}$ for some $m, l \geq 0$.
X is stably rational if it is stably birational to \mathbb{P}^{n}.

The Rationality Problem

Determine whether a given variety is (stably) rational or not.

The Rationality problem for hypersurfaces

For which d, n is a general degree d-hypersurface in \mathbb{P}^{n+1} (stably) irrational?

Two of the main applications

Theorem (Nicaise-O.)

The very general complex quartic fivefold in \mathbb{P}^{6} is not stably rational.

Theorem (Nicaise-O.)

A very general complete intersection of a quadric and a cubic in \mathbb{P}^{6} is not stably rational.

The goal of the lectures is to explain the proofs of these theorems.

Other results

- New proofs for hypersurfaces of higher degree or lower dimension
- Many new classes of complete intersections in \mathbb{P}^{n}.
- Many new classes of hypersurfaces in other toric varieties.

Theorem

Consider a very general ample hypersurface X of bidegree (a, b) in $\mathbb{P}^{1} \times \mathbb{P}^{4}$

$$
x_{0}^{a} f_{0}+x_{0}^{a-1} x_{1} f_{1}+\ldots+x_{1}^{a} f_{a}=0
$$

Then X is stably rational if and only if

- $a=1$; or
- $b \leq 2$

Overview of the lectures

Monday

Rationality problems, basic birational invariants, specialization methods.

Tuesday

The Grothendieck ring of varieties, Nicaise-Shinder's motivic volume

Wednesday

First applications: Quartic fivefolds, (2,3)-complete intersections, ..

Thursday

Toric degenerations

Friday

Further applications

Ingredients

The proof uses

- Specialization of birational types (Nicaise-Shinder, Kontsevich-Tschinkel)
- Tropical geometry, toric degenerations
- Stable irrationality of known lower-dimensional varieties

General strategy for rationality problems

There are two basic steps:
(1) Look for obstructions to rationality (birational invariants) e.g., the Brauer group.
(2) Show that the obstruction is non-trivial.

Two themes in the lectures

Verify (2) by specialization to a simpler, but sometimes singular variety.

Construct suitable degenerations combinatorially:

Preliminaries

Cohomology of blow-ups

If X is a smooth complex variety,
$W=B l_{Z} X$, the blow-up in a smooth center $Z \subset X$ of codimension c,
Then there is a natural isomorphism

$$
\begin{equation*}
H^{p}(W, \mathbb{Z})=H^{p}(X, \mathbb{Z}) \oplus H^{p-2}(Z, \mathbb{Z})[E] \oplus \cdots H^{p-2(c-1)}(Z, \mathbb{Z})[E]^{c-1} \tag{1}
\end{equation*}
$$

where $E \subset W$ is the exceptional divisor.

Chow groups of blow-ups

There is a similar description for Chow groups:

$$
\begin{equation*}
C H^{p}(W, \mathbb{Z})=C H^{p}(X, \mathbb{Z}) \oplus C H^{p-1}(Z, \mathbb{Z})[E] \oplus \cdots \oplus C H^{p-(c-1)}(Z, \mathbb{Z})[E]^{c-1} \tag{2}
\end{equation*}
$$

Birational invariants

Hypersurfaces in \mathbb{P}^{n}

d	curves	surfaces	3-folds	4-folds	5-folds	6-folds	7-folds	8-folds
2					Rational			
3								
4								
5								
6								
7			Easy cases					
8								
9								

Obstruction to rationality: Differential forms $H^{0}\left(X, \Omega_{X}^{p}\right)$
The obstruction is non-trivial when $d \geq n+1$.

Hypersurfaces in \mathbb{P}^{n}

d	curves	surfaces	3-folds	4-folds	5-folds	6-folds	7-folds	8-folds
2					Rational			
3			Clemens-Griffiths					
4			Iskovskikh Manin				M 2	
5								
6								
7			Easy cases					
8								
9								

Obstruction to rationality: The intermediate jacobian $H^{1,2}(X) / H^{3}(X, \mathbb{Z})$.
The obstruction is non-trivial: Analyse the singularities of the theta divisor.

Hypersurfaces in \mathbb{P}^{n}

Obstruction to rationality: The birational automorphism group $\operatorname{Bir}(X)$ is finite. The obstruction is non-trivial: Use the Noether-Fano inequalities.

The example of Artin-Mumford

Stable birational invariant: $H^{3}(X, \mathbb{Z})_{\text {tors }}$
This is 0 for $X=\mathbb{P}^{n}$.
$H^{3}(X, \mathbb{Z})_{\text {tors }}$ is clearly invariant under taking products with \mathbb{P}^{m}.
If $\pi: W \rightarrow X$ is a blow-up in a smooth center $Z \subset X$, then

$$
H^{3}(W, \mathbb{Z})=H^{3}(X, \mathbb{Z}) \oplus H^{1}(Z, \mathbb{Z})[E]
$$

and by the Universal Coefficient Theorem,

$$
H^{1}(Z, \mathbb{Z})_{\text {tors }}=H_{0}(Z, \mathbb{Z})_{\text {tors }}=0
$$

$\leadsto H^{3}(W, \mathbb{Z})$ and $H^{3}(X, \mathbb{Z})$ have the same torsion.

The invariant is non-trivial for rather special varieties:

Proposition (Artin-Mumford)

There exist (resolutions of) double quartic solids $X \rightarrow \mathbb{P}^{3}$ given by

$$
w^{2}=f(x, y, z, t)
$$

for which $H^{3}(X, \mathbb{Z})_{\text {tors }} \neq 0$.
These are unirational threefolds.
This invariant is closely related to the Brauer group.

Hypersurfaces in \mathbb{P}^{n}

d	curves	surfaces	3 -folds	4-folds	5-folds	6 -folds	7-folds	8-folds
2					Rational			
3			Clemens-Griffiths					
4			Colliot-ThelenePirutka					
5				Birational rigidity				
6					Birational rigidity	Kollár		
7			Easy cases			Birational rigidity		
8							Birational rigidity	Kollár
9								Birational rigidity

Kollár's strategy

Obstruction to rationality: Rational varieties are ruled (=birational to $\mathbb{P}^{1} \times Y$)
The obstruction is non-trivial: Specialize X modulo p such that: for a resolution $Y \rightarrow X_{p}, \Omega_{Y}^{n-1}$ contains a positive line subbundle.
$\sim X_{p}$ is not ruled.
$\leadsto X$ is not ruled (Ruledness specializes in families [Matsusaka]).
$\sim X$ is not rational.

Decomposition of the diagonal

Recent developments

d	curves	surfaces	3 -folds	4-folds	5-folds	6-folds	7-folds	8-folds
2					Rational			
3			Clemens-Griffiths					
4			Colliot-ThelenePirutka			-		
5				Birational rigidity				
6					Birationa rigidity			
7			Easy cases					
8								
9								

Recent developments

2			Rational			
3	Clemens-Griffiths					
4	Colliot-ThelenePirutka	Totaro				
5		Birational rigidity				
6			Birational rigidity	Kollár	Totaro	
7	Easy cases			Birational rigidity	Totaro	
8					Birational rigidity	Kollár
9						Birational rigidity

Recent developments

d	curves	surfaces	3 -folds	4-folds	5-folds	6 -folds	7-folds	8-folds
2					Rational			
3			Clemens-Grifiths				-	
4			Colliot-ThelenePirutka	Totaro				
5				Birational rigidity	Schreieder			
6					Birational rigidity	Kollár	Totaro	
7			Easy cases			Birational rigidity	Totaro	
8							Birational rigidity	Kollár
9								Birational rigidity

Recent developments

9-folds	10 -folds	11 -folds	12 -folds	13 -folds	14 -folds	15 -folds	16 -folds	17 -folds	18 -folds	19 -folds

Recent developments

d	curves	surfaces	3-folds	4-folds	5-folds	6-folds	7-folds	8-folds
2					Rational			
3			Clemens-Griffiths	???				
4			Colliot-ThelenePirutka	Totaro	Quartic fivefolds			
5				Birational rigidity	Schreieder			
6					Birational rigidity	Kollár	Totaro	
7			Easy cases			Birational rigidity	Totaro	
8							Birational rigidity	Kollár
9								Birational rigidity

Decomposition of the diagonal

Consider the diagonal embedding of X

$$
\Delta \subset X \times X
$$

We say that X admits a decomposition of the diagonal if there is an equality

$$
\begin{equation*}
\Delta=[X \times x]+Z \text { in } C H_{n}(X \times X) \tag{3}
\end{equation*}
$$

where $Z \subset X \times X$ is a subvariety which does not dominate X via the first projection.

Decomposition of the diagonal

Obstruction to Rationality: Any stably rational variety has a decomposition of Δ.
For $X=\mathbb{P}^{n}$, we have a decomposition (in $C H^{n}\left(\mathbb{P}^{n} \times \mathbb{P}^{n}\right)$):

$$
\Delta=\sum_{i=0}^{n} p_{1}^{*} h^{i} \cdot p_{2}^{*} h^{n-i}
$$

Here $p_{2}^{*} h^{n} \sim\left[\mathbb{P}^{n} \times x\right]$ and the other terms are supported on $D \times X$ for some $D \subset X$.
Stable birational invariance follows from the formulas for the Chow groups of blow-ups.

Main point: Δ acts as a correspondence in a special way (the identity map).

Example

Let X be a smooth projective curve of genus ≥ 1.
Claim: X does not have a decomposition of Δ :
Let $\omega \in H^{0}\left(X, \Omega_{X}^{1}\right)$ denote a global holomorphic 1-form. Then

$$
[X \times x]^{*} \omega=p r_{2 *}\left(p r_{2}^{*}[x] \cdot p r_{1}^{*} \omega\right)=0
$$

and

$$
Z^{*} \omega=p r_{2 *}\left(Z \cdot p r_{1}^{*} \omega\right)=p r_{2 *}(0)=0
$$

$\leadsto \Delta \neq[X \times x]+Z$, because $\Delta^{*} \omega=\omega$.

Example

A similar argument shows that a variety with a decomposition of Δ satisfies

- $H^{0}\left(X, \Omega_{X}^{p}\right)=0$ for $p>0$
- $H^{3}(X, \mathbb{Z})_{\text {tors }}=0$

How to prove that X admits no decomposition of Δ ? This is a delicate matter.

Voisin's specialization method:

Degenerate to a variety X_{0} with mild singularities.
Show that (some resolution of) X_{0} does not admit a decomposition of the diagonal.
Deduce from this that X does not admit a decomposition of the diagonal either.
$\leadsto X$ is not stably rational.

Families of varieties and specialization

A family of varieties is a flat morphism

$$
f: \mathcal{X} \rightarrow B
$$

of k-varieties; we will usually require f to be projective.

In this situation, it is natural to ask how the following vary in the fibers of f :

- The (stable) rationality of \mathcal{X}_{b}
- The Chow groups $C H^{p}\left(\mathcal{X}_{b}\right)$
- The cohomology groups $H^{i}\left(\mathcal{X}_{b}, \mathbb{Z}\right)$

Example

If $\mathcal{X} \rightarrow B$ is smooth, and we are over $k=\mathbb{C}$, then all the fibers \mathcal{X}_{b} are diffeomorphic (Ehresmann's fibration theorem). Hence $H^{i}\left(\mathcal{X}_{b}, \mathbb{Z}\right)$ are all isomorphic.

However, the two first items can vary drastically in the family.
For instance, in a smooth family $\mathcal{X} \rightarrow \mathbb{A}^{1}$, it can happen that there are exactly countably infinitely many fibers \mathcal{X}_{t} which admit a decomposition of Δ.

Specialization of Rationality

The behaviour of rationality in families can be subtle:

Example (Rational specializing to irrational)
Consider the family

$$
\mathcal{X}=\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+t x_{3}^{3}=0\right\} \subset \mathbb{P}^{3} \times \mathbb{A}^{1}
$$

For $t \neq 0$, the fiber \mathcal{X}_{t} is a cubic surface, hence rational.
But the fiber over $t=0$ is a cone $C(V)$ over the elliptic curve $V:=\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}=0\right\}$, which is irrational.

The last example shows that rationality behaves strangely in families with very singular fibers.

Example

If $\mathcal{X} \rightarrow B$ is a family of smooth projective surfaces, and \mathcal{X}_{b} is rational for some $b \in B$, then every fiber is rational.

This follows by Castelnuouvo's criterion, because the groups

$$
H^{1}\left(\mathcal{X}_{b}, \mathcal{O}_{\mathcal{X}_{b}}\right), \quad H^{0}\left(\mathcal{X}_{b}, \mathcal{O}\left(2 K_{\mathcal{X}_{b}}\right)\right)
$$

are constant in the family

Example (Irrational specializing to rational)

Consider the family

$$
\mathcal{X}=\left\{x_{0}^{3}+x_{1}^{2} x_{2}+t x_{2}^{3}=0\right\} \subset \mathbb{P}^{2} \times \mathbb{A}^{1}
$$

For $t \neq 0$, the fiber \mathcal{X}_{t} is a smooth cubic curve, hence irrational.
But the fiber over $t=0$ is a nodal cubic, which is rational.

Classical question: Can this happen in families of smooth varieties?

Example (Irrational specializing to rational II)

Consider a smooth (2,2)-divisor $X \subset \mathbb{P}^{2} \times \mathbb{P}^{3}$.
If X is very general, it is known to be stably irrational [Hassett-Pirutka-Tschinkel].
However, if the equation of X is of the form

$$
y_{0} F_{0}+y_{1} F_{1}+y_{2} F_{2}=0
$$

where F_{i} are generic (2,1)-forms, then X is smooth, and rational.
(X contains the \mathbb{P}^{2} given by $\left\{y_{0}=y_{1}=y_{2}=0\right\}$, which defines a section of the quadric bundle $X \rightarrow \mathbb{P}^{2}$, so X is rational.)

The last example is in fact rather wild:
"Most" (2, 2)-divisors are stably irrational.
But there are also infinitely many divisors in the parameter space of smooth (2,2)-divisors parametrizing rational hypersurfaces.

In general, for a family $f: \mathcal{X} \rightarrow B$, we define the Rational locus as

$$
\operatorname{Rat}(f)=\left\{b \in B \mid \mathcal{X}_{b} \text { is rational }\right\}
$$

Proposition

$\operatorname{Rat}(f)$ is a countable union of locally closed subsets of B.

Main idea of the proof.
Let n denote the relative dimension of n and let $P=\mathbb{P}_{B}^{n}$.
Let $Z \subset X \times_{B} P$ be a closed subvariety. If $Z_{b} \rightarrow X_{b}$ and $Z_{b} \rightarrow P_{b}$ are both birational, then we obtain a birational map $X_{b} \rightarrow P_{b}$.
Conversely, any such birational map arises in this way.
We reduce to looking at certain subvarieties of $X \times_{B} P$.
There is a relative Hilbert scheme $\operatorname{Hilb}\left(X \times_{B} P / B\right)$ paramterizing subvarieties in the fibers of $X \times_{B} P \rightarrow B$.

This Hilbert scheme has only countably many components \sim OK.

Definition

A property is said to hold for $b \in B$ very general, if it is holds outside a countable union of closed subsets in B.

Important observation:

Proposition

For $b \in B$ very general, the fiber \mathcal{X}_{b} is isomorphic (as a scheme) to the geometric generic fiber $\mathcal{X}_{\bar{K}}$, where $K=k(B)$.

More precisely, there is a field isomorphism $\bar{K} \rightarrow k(b)$, and isomorphisms $\mathcal{X}_{b} \rightarrow \mathcal{X}_{\bar{K}}$ making the following diagram commute:

Therefore, if we only care about the very general member of some family of varieties (e.g., the very general hypersurface), this is the same thing as the geometric generic fiber.

Specialization

Let R be a DVR, and let \mathcal{X} be an integral R-scheme.
We will often be in the situation where we have a diagram of the form

$K=\operatorname{Frac}(R)$ is the fraction field;
$k=R / m$ is the residue field.

Definition

$X=\mathcal{X}_{K}$ is called the generic fiber, wheras $Y=X_{k}$ is the special fiber.

Specialization

We say that a variety X / K specializes to a variety Y / k if there exists a scheme \mathcal{X} / R as above, with $\mathcal{X}_{K} \simeq X$ and $\mathcal{X}_{k} \simeq Y$.

Specialization of cycles

For a codimension p subvariety $Z \subset \mathcal{X}_{K}$, we can take its Zariski closure in \mathcal{X} and obtain a subvariety \mathcal{Z} of \mathcal{X}. Intersecting with the special fiber, we get a codimension p-cycle Z_{k} on \mathcal{X}_{k}.

This is compatible with rational equivalence, which gives the specialization map of Chow groups

$$
C H^{p}\left(\mathcal{X}_{K}\right) \rightarrow C H^{p}\left(\mathcal{X}_{k}\right)
$$

Obstructing rationality via specialization/degeneration

In general, birational invariants such as $\operatorname{Br}(X)$ are hard to compute. For our purposes, it is also enough to know that they are non-zero.

Common strategy: specialize to a simpler, perhaps singular, variety X_{0}, and hope that X_{0} contains enough information to deduce that the generic fiber is non-stably rational.

The rational obstruction needs to be suffiently sophisticated for this to work:
The "cone over an elliptic curve"-example shows that one also needs to consider families with "controlled" singularities.

Quartic threefolds (sketch)

Construct a degeneration $\mathcal{X} \rightarrow B$ of quartic threefolds, so that \mathcal{X}_{0} is birational to the Artin-Mumford example Y.
$\sim \mathcal{X}_{0}$ carries a non-trivial unramified Brauer class $\alpha_{0} \in \operatorname{Br}\left(k\left(\mathcal{X}_{0}\right)\right)[2]$.
\sim some resolution $\widetilde{\mathcal{X}}_{0}$ has non-trivial $\operatorname{Br}\left(\widetilde{\mathcal{X}_{0}}\right)[2]$.
$\sim \widetilde{\mathcal{X}}_{0}$ does not admit a decomposition of Δ
$\sim \mathcal{X}_{b}$ does not admit a decomposition of Δ, for $b \in B$ very general
\sim the very general \mathcal{X}_{b} is not stably rational.

Lecture 2:
 The motivic volume

The Grothendieck ring

Let F be a field. The Grothendieck group $\mathbf{K}\left(\operatorname{Var}_{F}\right)$ of F-varieties is the abelian group with the following presentation:

- Generators: isomorphism classes $[X]$ of F-schemes X of finite type;
- Relations: whenever X is an F-scheme of finite type, and Y is a closed subscheme of X, then $[X]=[Y]+[X-Y]$.

Ring structure: induced by $[X] \cdot\left[X^{\prime}\right]=\left[X \times_{F} X^{\prime}\right]$ for all F-schemes X and X^{\prime} of finite type.

Identity element: $1=[\operatorname{Spec} F]$, the class of the point.
Lefschetz motive: $\mathbb{L}=\left[\mathbb{A}_{F}^{1}\right] \in \mathbf{K}\left(\operatorname{Var}_{F}\right)$.

Example

$$
\left[\mathbb{A}^{n}\right]=\left[\mathbb{A}^{1} \times \cdots \times \mathbb{A}^{1}\right]=\mathbb{L} \times \cdots \times \mathbb{L}=\mathbb{L}^{n}
$$

Example

Partitioning \mathbb{P}_{F}^{n} into the hyperplane at infinity and its complement, we find

$$
\left[\mathbb{P}_{F}^{n}\right]=\left[\mathbb{P}_{F}^{n-1}\right]+\left[\mathbb{A}_{F}^{n}\right]=\left[\mathbb{P}_{F}^{n-1}\right]+\mathbb{L}^{n} .
$$

Now it follows by induction on n that

$$
\left[\mathbb{P}_{F}^{n}\right]=1+\mathbb{L}+\ldots+\mathbb{L}^{n}
$$

in $\mathbf{K}\left(\operatorname{Var}_{F}\right)$.

The Grothendieck ring $\mathbf{K}\left(\operatorname{Var}_{F}\right)$ is insensitive to non-reduced structures: if X is an F-scheme of finite type, then the complement of $X_{\text {red }}$ in X is empty, so that $[X]=\left[X_{\text {red }}\right]$.
$\mathbf{K}\left(\operatorname{Var}_{F}\right)$ can be generated by smooth and proper F-varieties:

Theorem (Bittner 2004)

Let F be a field of characteristic zero. Then $\mathbf{K}\left(\operatorname{Var}_{F}\right)$ has also the following presentation:

- Generators: isomorphism classes $[X]$ of connected smooth and proper F-schemes X;
- Relations: $[\emptyset]=0$, and, whenever X is a connected smooth and proper F-scheme and Y is a connected smooth closed subscheme of X,

$$
\begin{equation*}
\left[\mathrm{Bl}_{Y} X\right]-[E]=[X]-[Y] \tag{4}
\end{equation*}
$$

where $\mathrm{Bl}_{Y} X$ denotes the blow-up of X along Y, and E is the exceptional divisor.

Question: When do X and X^{\prime} define the same class in $\mathbf{K}\left(\operatorname{Var}_{F}\right)$?
Obvious sufficient condition: X and X^{\prime} be piecewise isomorphic, (i.e., they can be partitioned into subschemes that are pairwise isomorphic) $\sim[X]=\left[X^{\prime}\right]$ (by scissor relations).

Example

Let $C \subset \mathbb{A}_{F}^{2}$ be the affine plane cusp given by

$$
y^{2}-x^{3}=0 .
$$

Then C is piecewise isomorphic to \mathbb{A}_{F}^{1} :
$C-\{(0,0)\} \simeq \mathbb{A}_{F}^{1}-\{0\}$.
So $[C]=\mathbb{L}$ in $\mathbf{K}\left(\operatorname{Var}_{F}\right)$.

However, this condition is not necessary:

Example (Borisov)

There exist two smooth varieties X and X^{\prime} over \mathbb{C} such that $[X]=\left[X^{\prime}\right]$ but X and X^{\prime} are not birational, and therefore not piecewise isomorphic.

This is due to issues of cancellation:
X and X^{\prime} can be embedded into a common \mathbb{C}-variety W such that $W-X$ and $W-X^{\prime}$ can be partitioned into pairwise isomorphic subschemes W_{1}, \ldots, W_{r} and $W_{1}^{\prime}, \ldots, W_{r}^{\prime}$, respectively.

It follows that

$$
[X]=[W]-\sum_{i=1}^{r}\left[W_{i}\right]=[W]-\sum_{i=1}^{r}\left[W_{i}^{\prime}\right]=\left[X^{\prime}\right]
$$

even though X and X^{\prime} are not piecewise isomorphic.

Remark

The varieties X and X^{\prime} in Borisov's example are smooth, but not proper.

The ring of stable birational types

$\mathrm{SB}_{F}=$ set of stable birational equivalence classes of integral F-varieties $[X]_{\mathrm{sb}}=$ equivalence class of X.

We consider the free abelian group $\mathbb{Z}\left[\mathrm{SB}_{F}\right]$.
For any F-scheme X of finite type, we set

$$
[X]_{\mathrm{sb}}=\left[X_{1}\right]_{\mathrm{sb}}+\ldots+\left[X_{r}\right]_{\mathrm{sb}} \quad \text { in } \mathbb{Z}\left[\mathrm{SB}_{F}\right]
$$

where X_{1}, \ldots, X_{r} are the irreducible components.
In particular, $\left[X_{\mathrm{red}}\right]_{\mathrm{sb}}=[X]_{\mathrm{sb}}$ in this group.
Ring product: $[X]_{\mathrm{sb}} \cdot[Y]_{\mathrm{sb}}=\left[X \times_{F} Y\right]_{\mathrm{sb}}$.

The Larsen-Lunts theorem

Theorem (Larsen \& Lunts 2003)

Let F be a field of characteristic zero. Then there exists a unique map

$$
\mathrm{sb}: \mathbf{K}\left(\operatorname{Var}_{F}\right) \rightarrow \mathbb{Z}\left[\mathrm{SB}_{F}\right]
$$

that maps $[X]$ to $[X]_{\mathrm{sb}}$ for every smooth and proper F-scheme X.
The morphism sb is a surjective ring morphism, and its kernel is the ideal in $\mathbf{K}\left(\operatorname{Var}_{F}\right)$ generated by \mathbb{L}.

Therefore,

$$
\mathbf{K}\left(\operatorname{Var}_{F}\right) /(\mathbb{L}) \simeq \mathbb{Z}\left[\mathrm{SB}_{F}\right]
$$

Sketch of proof.

The morphism sb maps $\mathbb{L}=\left[\mathbb{P}_{F}^{1}\right]-[\operatorname{Spec} F]$ to 0 , because $\operatorname{Spec} F$ is stably birational to \mathbb{P}_{F}^{1}. Thus sb induces

$$
\overline{\mathrm{sb}}: \mathbf{K}\left(\operatorname{Var}_{F}\right) / \mathbb{L} \mathbf{K}\left(\operatorname{Var}_{F}\right) \rightarrow \mathbb{Z}\left[\mathrm{SB}_{F}\right] .
$$

Here is the inverse:
By resolution of singularities, every class in SB_{F} has a representative X that is a connected smooth proper F-scheme.
For every $m \geq 0$, we have

$$
\left[X \times_{F} \mathbb{P}_{F}^{m}\right]-[X]=[X]\left(\mathbb{L}+\mathbb{L}^{2}+\ldots+\mathbb{L}^{m}\right)
$$

in $\mathbf{K}\left(\operatorname{Var}_{F}\right)$ by the scissor relations.
Thus $\left[X \times_{F} \mathbb{P}_{F}^{m}\right]$ and $[X]$ are congruent modulo \mathbb{L}.

Sketch of proof.

Moreover, the class of $\left[X \times_{F} \mathbb{P}_{F}^{m}\right]$ modulo \mathbb{L} is independent under blow-ups of smooth closed subschemes of $X \times_{F} \mathbb{P}_{F}^{m}$, because the exceptional divisor of such a blow-up is a projective bundle over the center.

Weak Factorization Theorem \Longrightarrow the class of X in $\mathbf{K}\left(\operatorname{Var}_{F}\right) / \mathbb{L} \mathbf{K}\left(\operatorname{Var}_{F}\right)$ only depends on the stable birational equivalence class of X.

This yields a ring map

$$
\mathbb{Z}\left[\mathrm{SB}_{F}\right] \rightarrow \mathbf{K}\left(\operatorname{Var}_{F}\right) / \mathbb{L} \mathbf{K}\left(\operatorname{Var}_{F}\right)
$$

that is inverse to $\overline{\mathrm{sb}}$.

Beware: $\operatorname{sb}([X])$ is usually different from $[X]_{\mathrm{sb}}$ when X is not smooth and proper.

Example

In $\mathbf{K}\left(\operatorname{Var}_{F}\right)$, we have $\left[\mathbb{A}^{1}\right]=\left[\mathbb{P}^{1}\right]-[\operatorname{Spec} F]$,so

$$
\operatorname{sb}\left(\mathbb{A}^{1}\right)=\operatorname{sb}\left(\mathbb{P}^{1}\right)-\operatorname{sb}[\operatorname{Spec} F]=0
$$

$\operatorname{So~} \operatorname{sb}\left(\mathbb{A}^{1}\right)=0 \neq\left[\mathbb{A}^{1}\right]_{\mathrm{sb}}$.

Example

If X is a nodal cubic in \mathbb{P}_{F}^{2}, then it follows from the scissor relations that

$$
[X]=\mathbb{L}
$$

in $\mathbf{K}\left(\operatorname{Var}_{F}\right)$. Thus $\operatorname{sb}([X])=0$.

Corollary

Let F be a field of characteristic zero, and let X and X^{\prime} be smooth and proper F-schemes.
Then X and X^{\prime} are stably birational if and only if $[X] \equiv\left[X^{\prime}\right]$ modulo \mathbb{L} in $\mathbf{K}\left(\operatorname{Var}_{F}\right)$.
In particular, $[X] \equiv c$ modulo \mathbb{L} for some integer c if and only if every connected component of X is stably rational; in that case, c is the number of connected components of X.

Remark

Again the corollary is false without the assumption that X and X^{\prime} are smooth and proper (Borisov's example).

Some notation

Field of Puiseux series:

$$
K=\mathbb{C}\{\{t\}\}=\bigcup_{m>0} \mathbb{C}\left(\left(t^{1 / m}\right)\right)
$$

Valuation ring:

$$
R=\bigcup_{m>0} \mathbb{C}\left[\left[t^{1 / m}\right]\right]
$$

An R-scheme is strictly semi-stable if, Zariski locally, it admits an étale morphism to a scheme of the form

$$
\operatorname{Spec} R\left[z_{1}, \ldots, z_{s}\right] /\left(z_{1} \cdots z_{r}-t^{q}\right)
$$

where $s \geq r \geq 0$ and q is a positive rational number.

In short, we will consider families $\mathcal{X} \rightarrow \operatorname{Spec} R$, and want to compare the rationality properties of the generic fiber \mathcal{X}_{K}, to that of the special fiber, $\mathcal{X}_{\mathbb{C}}$.

Note however that $\mathcal{X}_{\mathbb{C}}$ may have several irreducible components, so it makes most sense to do this comparison in $\mathbb{Z}\left[\mathrm{SB}_{\mathbb{C}}\right]$.

The theorem of Nicaise-Shinder

Definition

If \mathcal{X} is strictly semi-stable, then a stratum of the special fiber \mathcal{X}_{k} is a connected component E of an intersection of irreducible components of \mathcal{X}_{k}.

$$
\mathcal{S}(\mathcal{X}):=\text { the set of strata of } \mathcal{X}_{k}
$$

Theorem (Nicaise-Shinder)

There exists a unique ring morphism

$$
\mathrm{Vol}: \mathbb{Z}\left[\mathrm{SB}_{K}\right] \rightarrow \mathbb{Z}\left[\mathrm{SB}_{k}\right]
$$

such that, for every strictly semistable proper R-scheme \mathcal{X} with smooth generic fiber $X=\mathcal{X}_{K}$, we have

$$
\begin{equation*}
\operatorname{Vol}\left([X]_{\mathrm{sb}}\right)=\sum_{E \in \mathcal{S}(X)}(-1)^{\operatorname{codim}(E)}[E]_{\mathrm{sb}} \tag{5}
\end{equation*}
$$

Let us make the following observations:

- Vol sends $[\operatorname{Spec} K]_{\mathrm{sb}}$ to $[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}$.
- If $\mathcal{X} \rightarrow \operatorname{Spec} R$ is smooth and proper, then $\operatorname{Vol}\left(\left[\mathcal{X}_{K}\right]_{\mathrm{sb}}\right)=\left[\mathcal{X}_{\mathbb{C}}\right]_{\mathrm{sb}}$.

These two in conjunction have an important consequence, namely that if $\mathcal{X} \rightarrow$ Spec R is smooth and proper, and the generic fiber \mathcal{X}_{K} is geometrically stably rational, then so is the special fiber.

Theorem

Stable rationality specializes in smooth and proper families.
This was a long-standing open question, solved by Nicaise-Shinder (and Kontsevich-Tschinkel with 'stable rationality' replaced by 'rationality').

More generally:

Corollary

Let S be a Noetherian \mathbb{Q}-scheme, and let $X \rightarrow S$ and $Y \rightarrow S$ be smooth and proper morphisms.
Then the set
$\left\{s \in S \mid X \times_{S} \bar{s}\right.$ is stably birational to $Y \times{ }_{S} \bar{s}$ for any geometric point \bar{s} based at $\left.s\right\}$
is a countable union of closed subsets of S.
In particular, the set

$$
\left\{s \in S \mid X \times_{S} \bar{s} \text { is stably rational, for any geometric point } \bar{s} \text { based at } s\right\}
$$

is a countable union of closed subsets of S.

Example (Rational specializing to irrational)

Consider the family

$$
\mathcal{X}=\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+t^{3} x_{3}^{3}=0\right\} \subset \mathbb{P}^{3} \times \mathbb{A}^{1}
$$

The fiber over $t=0$ is a cone $C(V)$ over the elliptic curve $V:=\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}=0\right\}$, which is irrational.

What goes wrong in this example?

Example (Rational specializing to irrational)

Issue: The family \mathcal{X} is not strictly semi-stable.
Consider the blow-up $\mathcal{Y} \rightarrow \mathcal{X}$ of the vertex of the cone $\mathcal{X}_{0}=C(V)$:

$$
\mathcal{Y} \rightarrow \mathbb{A}^{1}
$$

This is now strictly semi-stable.
The fiber \widetilde{Y}_{0} has two components \widetilde{X}_{0} and the exceptional divisor E.
We have $E \simeq$ cubic surface, so

$$
\begin{aligned}
\operatorname{Vol}\left(\mathcal{X}_{K}\right)=\operatorname{Vol}\left(\mathcal{Y}_{K}\right) & =\left[\widetilde{X}_{0}\right]_{\mathrm{sb}}+[E]_{\mathrm{sb}}-\left[E \cap \widetilde{X}_{0}\right]_{\mathrm{sb}} \\
& =\left[\mathbb{P}^{1} \times V\right]_{\mathrm{sb}}+\left[\mathbb{P}^{2}\right]_{\mathrm{sb}}-[V]_{\mathrm{sb}} \\
& =[\operatorname{Sec} F]_{\mathrm{sb}}
\end{aligned}
$$

So there is no contradiction.

Toroidal models

For our main applications, we need a more flexible notion than semi-stability:

Definition

A monoid M is called toric if it is isomorphic to the monoid of lattice points in a strictly convex rational polyhedral cone.

To any monoid M we can attach its monoid R-algebra $R[M]$; the monomial associated with an element $m \in M$ will be denoted by x^{m}.

Definition

Let \mathcal{X} be a flat separated R-scheme of finite presentation.
We say that \mathcal{X} is strictly toroidal if, Zariski-locally on \mathcal{X}, we can find a smooth morphism

$$
\mathcal{X} \rightarrow \operatorname{Spec} R[M] /\left(x^{m}-t^{q}\right)
$$

for some toric monoid M, some positive rational number q, and some element m in M such that $k[M] /\left(x^{m}\right)$ is reduced.

Example

Consider the scheme

$$
\operatorname{Spec} R[x, y, z, w] /(t-x y, t-z w),
$$

which is clearly strictly toroidal.
The special fiber has four irreducible components of dimension 2 intersecting at the origin, which never happens for strictly semi-stable schemes.

The following schemes will be important when degenerating complete intersections:

Example

Let r and s be positive integers, and let $a=\left(a_{1}, \ldots, a_{r}\right)$ and $b=\left(b_{1}, \ldots, b_{s}\right)$ be tuples of positive integers. Consider the R-schemes

$$
\begin{aligned}
& \mathcal{X}_{a}=\operatorname{Spec} R\left[x_{i, j} \mid i=1, \ldots, r ; j=1, \ldots, a_{i}\right] /\left(t-\prod_{j=1}^{a_{1}} x_{1, j}, \ldots, t-\prod_{j=1}^{a_{r}} x_{r, j}\right) \\
& \mathcal{Y}_{b}=\operatorname{Spec} R\left[y_{i, j} \mid i=1, \ldots, s ; j=0, \ldots, b_{i}\right] /\left(t y_{1,0}-\prod_{j=1}^{b_{1}} y_{1, j}, \ldots, t y_{s, 0}-\prod_{j=1}^{b_{s}} y_{s, j}\right) .
\end{aligned}
$$

Then $\mathcal{X}_{a}, \mathcal{Y}_{b}$ and $\mathcal{X}_{a} \times_{R} \mathcal{Y}_{b}$ are strictly toroidal.
Note that \mathcal{X} is strictly semi-stable if it admits Zariski-locally a smooth morphism to a scheme of the form \mathcal{X}_{a} with $r=1$.

Advantages of toroidal singularities

- The product of two strictly toroidal R-schemes is again strictly toroidal. This is no longer true for strictly-semistable.
- The condition of strict semi-stability is quite restrictive, and producing a semi-stable model often leads to many blow-ups which which are hard to analyze. The toroidal condition is much more flexible, and reduces the computations substantially.
- Strictly toroidal degenerations also arise naturally when we break up projective hypersurfaces into pieces of smaller degrees:

Example

Let $f_{0}, \ldots, f_{r} \in k\left[z_{0}, \ldots, z_{n+1}\right]$ be general homogeneous polynomials of positive degrees d_{0}, \ldots, d_{r} such that $d_{0}=d_{1}+\ldots+d_{r}$.
Then

$$
\mathcal{X}=\operatorname{Proj} R\left[z_{0}, \ldots, z_{n+1}\right] /\left(t f_{0}-f_{1} \cdot \ldots f_{r}\right)
$$

is strictly toroidal.
\mathcal{X} is not strictly semi-stable at the points of \mathcal{X}_{k} where f_{0} and at least two among f_{1}, \ldots, f_{r} vanish.

The theorem of Nicaise-Shinder (toroidal version)

Recall:

$$
\mathcal{S}(\mathcal{X})=\text { the set of strata of the special fiber } \mathcal{X}_{k}
$$

Theorem (Nicaise-Shinder)

There exists a unique ring morphism

$$
\mathrm{Vol}: \mathbb{Z}\left[\mathrm{SB}_{K}\right] \rightarrow \mathbb{Z}\left[\mathrm{SB}_{k}\right]
$$

such that, for every strictly toroidal proper R-scheme \mathcal{X} with smooth generic fiber $X=\mathcal{X}_{K}$, we have

$$
\begin{equation*}
\operatorname{Vol}\left([X]_{\mathrm{sb}}\right)=\sum_{E \in \mathcal{S}(X)}(-1)^{\operatorname{codim}(E)}[E]_{\mathrm{sb}} \tag{6}
\end{equation*}
$$

Lecture 3:
First applications

A quick summary so far

$\mathrm{SB}_{F}=$ set of stable birational equivalence classes of integral F-varieties
The ring of stable birational types: $\mathbb{Z}\left[\mathrm{SB}_{F}\right]$.

$$
K=\mathbb{C}\{\{t\}\}=\bigcup_{m>0} \mathbb{C}\left(\left(t^{1 / m}\right)\right), \quad R=\bigcup_{m>0} \mathbb{C}\left[\left[t^{1 / m}\right]\right]
$$

We consider schemes \mathcal{X} / R which are either semistable, or more generally, toroidal.

The theorem of Nicaise-Shinder

Theorem (Nicaise-Shinder)

There exists a unique ring morphism

$$
\mathrm{Vol}: \mathbb{Z}\left[\mathrm{SB}_{K}\right] \rightarrow \mathbb{Z}\left[\mathrm{SB}_{k}\right]
$$

such that, for every strictly semistable (or toroidal) proper R-scheme \mathcal{X} with smooth generic fiber $X=\mathcal{X}_{K}$, we have

$$
\operatorname{Vol}\left([X]_{\mathrm{sb}}\right)=\sum_{E \in \mathcal{S}(X)}(-1)^{\operatorname{codim}(E)}[E]_{\mathrm{sb}}
$$

Here $\mathcal{S}(\mathcal{X})$ denotes the set of strata of \mathcal{X}_{k}.
Important observation: Vol maps $\operatorname{Spec} K$ to Spec k.

A key idea in [NO20], is to use this an obstruction to stable rationality of \mathcal{X}_{K} :

Corollary

1. Let X be a smooth and proper K-scheme. If

$$
\operatorname{Vol}\left([X]_{\mathrm{sb}}\right) \neq[\operatorname{Spec} k]_{\mathrm{sb}}
$$

in $\mathbb{Z}\left[\mathrm{SB}_{k}\right]$, then X is not stably rational.
2. Let \mathcal{X} be a strictly semistable proper R-scheme with smooth generic fiber $X=\mathcal{X}_{K}$. If

$$
\sum_{E \in \mathcal{S}(\mathcal{X})}(-1)^{\operatorname{codim}(E)}[E]_{\mathrm{sb}} \neq[\operatorname{Spec} k]_{\mathrm{sb}}
$$

in $\mathbb{Z}\left[\mathrm{SB}_{k}\right]$, then X is not stably rational.

Proof.

If X is stably rational, then $[X]_{\mathrm{sb}}=[\operatorname{Spec} K]_{\mathrm{sb}}$ so that $\operatorname{Vol}\left([X]_{\mathrm{sb}}\right)=[\operatorname{Spec} k]_{\mathrm{sb}}$. The second part of the statement follows immediately from the formula for Vol.

Example (Voisin)

A very general double quartic threefold is irrational.

Sketch of proof.

Let $f, g \in \mathbb{C}[x, y, z, w]$ denote quartics, so that f appears in the Artin-Mumford example

$$
w^{2}=f(x, y, z, w) \subset \mathbb{P}(1,1,1,1,2)
$$

Consider the family

$$
\mathcal{X}=\left\{w^{2}=f(x, y, z, w)+\operatorname{tg}(x, y, z, w)\right\} \subset \mathbb{P}(1,1,1,1,2) \times \mathbb{A}^{1}
$$

Note: \mathcal{X}_{0} is the Artin-Mumford threefold.

Sketch of proof.

The family $\mathcal{X} / \mathbb{A}^{1}$ becomes semi-stable after blowing up the 10 nodes in the special fiber \mathcal{X}_{0}.
Let $\mathcal{Y} \rightarrow \mathbb{A}^{1}$ denote the resulting family.
As the blow-ups only introduce rational varieties in the special fiber, we get

$$
\begin{aligned}
\operatorname{Vol}\left(\mathcal{X}_{K}\right) & =\operatorname{Vol}\left(\mathcal{Y}_{K}\right) \\
& =\left[\widetilde{X_{0}}\right]_{\mathrm{sb}}+a[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}} \text { for some } a \in \mathbb{Z} \\
& \neq[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}} \quad \text { in } \mathbb{Z}\left[\mathrm{SB}_{\mathbb{C}}\right]
\end{aligned}
$$

because $\left[\widetilde{X_{0}}\right]$ is not stably rational.
$\sim \mathcal{X}_{K}$ is not stably rational.
\sim the very general double quartic solid is not stably rational.

For our main applications, we get better results using degenerations with many components.

Main strategy in [NO20]:
Look for suitable degenerations

$$
\mathcal{X} \rightarrow \operatorname{Spec} R
$$

with $\mathcal{X}_{K} \subset \mathbb{P}_{K}^{n+1}$ smooth hypersurface, with the property that stably irrational strata of low dimension do not cancel out in the alternating sum

$$
\operatorname{Vol}\left([X]_{\mathrm{sb}}\right)=\sum_{E \in \mathcal{S}(X)}(-1)^{\operatorname{codim}(E)}[E]_{\mathrm{sb}} .
$$

\therefore We deduce irrationality of \mathcal{X}_{K} from that of varieties of lower dimension.

Example (Two components in the special fiber)
Suppose the special fiber $\mathcal{X}_{\mathbb{C}}=X_{0} \cup X_{1}$, intersecting along X_{01}.

The motivic volume takes the form

$$
\operatorname{Vol}\left(\mathcal{X}_{K}\right)=\left[X_{0}\right]_{\mathrm{sb}}+\left[X_{1}\right]_{\mathrm{sb}}-\left[X_{01}\right]_{\mathrm{sb}}
$$

From this, we deduce that either of the following conditions guarantee that the generic fiber \mathcal{X}_{K} is not stably rational:
i) Exactly one of X_{0}, X_{1}, X_{01} is stably irrational.
ii) X_{0} and X_{1} are both stably irrational.
iii) X_{0} and X_{01} are stably irrational, but they are not stably birational to each other.
iv) X_{0}, X_{1}, X_{01} are all stably irrational.

Quartic fivefolds

Quartic fivefolds

Let $F \in \mathbb{C}\left[x_{0}, \ldots, x_{6}\right]$ be a very general homogeneous polynomial of degree 4 .
Consider the following R-scheme

$$
\begin{equation*}
\mathcal{X}=\operatorname{Proj} R\left[x_{0}, \ldots, x_{6}, y\right] /\left(x_{5} x_{6}-t y, y^{2}-F\right) \tag{7}
\end{equation*}
$$

where the variable y has weight 2 .
Note that the generic fiber \mathcal{X}_{K} is isomorphic to a smooth quartic hypersurface in \mathbb{P}_{K}^{6} (inverting t allows us to eliminate y using the first equation).

Moreover, \mathcal{X} is strictly toroidal.

The special fiber has two components:

$$
\begin{aligned}
X_{0} & =\operatorname{Proj} \mathbb{C}\left[x_{0}, \ldots, x_{6}, y\right] /\left(x_{5}, y^{2}-F\right) \\
X_{1} & =\operatorname{Proj} \mathbb{C}\left[x_{0}, \ldots, x_{6}, y\right] /\left(x_{6}, y^{2}-F\right)
\end{aligned}
$$

Note that these are both very general quartic double fivefolds.
We do not know whether these are stably rational or not.
However, their intersection,

$$
X_{01}=\operatorname{Proj} \mathbb{C}\left[x_{0}, \ldots, x_{4}, y\right] /\left(y^{2}-F\right)
$$

is a very general quartic double fourfold, and thus stably irrational [Hassett-Pirutka-Tschinkel].

In either case, we get

$$
\begin{aligned}
\operatorname{Vol}\left(\left[\mathcal{X}_{K}\right]_{\mathrm{sb}}\right) & =\left[X_{0}\right]_{\mathrm{sb}}+\left[X_{1}\right]_{\mathrm{sb}}-\left[X_{01}\right]_{\mathrm{sb}} \\
& \neq[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}
\end{aligned}
$$

On (2,3)-complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in \mathbb{P}^{n} are stably irrational for $n \leq 6$.

Our main contribution is stable irrationality for $n=6$.
History related to the Lüroth problem:

- Fano (1908): (Incorrect) proof of irrationality for $n=5$
- Enriques (1912): Proof of unirationality for $n=5$
- Hassett-Tschinkel (2018): Stable irrationality for $n=5$.
- Morin (1955), Conte-Murre (1998): Unirationality for $n=6$.

The above result settles the rationality problem for all complete intersections of dimension ≤ 4 - except cubic fourfolds.

The proof for (2,3)-complete intersections

Let $\mathbb{P}^{6}=\operatorname{Proj} k\left[x_{0}, \ldots, x_{6}\right]$ and let $P=\left\{x_{0}=\ldots=x_{3}=0\right\} \simeq \mathbb{P}^{2}$.

$$
Y=\{q=c=0\} \subset \mathbb{P}^{6}
$$

for q and c very general of degree 2 and 3 .
We assume Y contains P and is very general with respect to this property.
Blow up the plane P :

$$
\begin{aligned}
& X \subset \\
& B l_{P} \mathbb{P}^{6} \xrightarrow{\pi} \mathbb{P}^{6} \\
& \\
& \mathbb{P}^{3}
\end{aligned}
$$

$X=Q \cap C$ where $Q \in|2 H-E|$ and $C \in|3 H-E|$.

It suffices to show that generic intersections

$$
X=Q \cap C \subset B l_{P} \mathbb{P}^{6}
$$

where $Q \in|2 H-E|$ and $C \in|3 H-E|$ are stably irrational.
Now degenerate Q to $Q_{0}+E$ where $Q_{0} \in|2 H-2 E|=\left|2 p^{*} h\right|$.
This induces a degeneration of $\mathcal{X} \rightarrow \mathbb{A}^{1}$ with special fiber $\mathcal{X}_{0}=X_{1} \cup X_{2}$:

There are three strata:

- $X_{1}=Q_{0} \cap C$
- $X_{2}=E \cap C$
- $X_{12}=Q_{0} \cap E \cap C$

The stratum $X_{1}=Q_{0} \cap C$:

$$
\begin{gathered}
Q_{0}=\mathbb{P}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\left(\mathcal{O}^{3} \oplus \mathcal{O}(1,1)\right) \longrightarrow \mathbb{P}\left(\mathcal{O}^{3} \oplus \mathcal{O}(1)\right) \xrightarrow{\pi} \mathbb{P}^{6} \\
\underset{\mathbb{P}^{1} \times \mathbb{P}^{1}}{\downarrow} \underset{\downarrow}{\downarrow} \mathbb{P}^{3}
\end{gathered}
$$

$\left.C\right|_{Q_{0}}$ is a very general divisor in $\left|\mathcal{O}(2) \otimes p^{*} \mathcal{O}(1,1)\right|$ in $\mathbb{P}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\left(\mathcal{O}^{3} \oplus \mathcal{O}(1,1)\right)$.
$\leadsto X_{1}$ is stably irrational by [Schreieder 2017].

The strata $X_{2}=E \cap C$ and $X_{12}=E \cap Q_{0} \cap C$
C restricts to a (1,2)-divisor on $E \simeq \mathbb{P}^{2} \times \mathbb{P}^{3}$
Q_{0} restricts to a $(0,2)$-divisor on $E \simeq \mathbb{P}^{2} \times \mathbb{P}^{3}$.
$\sim X_{2}$ and X_{12} are both rational.
By the motivic volume formula:

$$
\begin{aligned}
\operatorname{Vol}\left([\mathcal{X}]_{\mathrm{sb}}\right) & =\left[X_{1}\right]_{\mathrm{sb}}+\left[X_{2}\right]_{\mathrm{sb}}-\left[X_{12}\right]_{\mathrm{sb}} \\
& =\left[X_{1}\right]_{\mathrm{sb}}+[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}-[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}} \\
& =\left[X_{1}\right]_{\mathrm{sb}} \\
& \neq[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}
\end{aligned}
$$

This implies that a very general X is stably irrational.

Improvements

Remark

[Pavic-Schreieder 2021] extended this proof to show that a very general quartic fivefold does not admit a decomposition of Δ.

Remark

The result on $(2,3)$ complete intersections was extended by [Skauli 2021], who:

- Showed that these fourfolds do not admit a decomposition of Δ.
- Gave explicit examples (over \mathbb{Q}) of stably irrational $(2,3)$-fourfolds.

Here the decomposition of the Δ-technique leads to more computations, but has the advantage it also works in positive characteristic.

Lecture 4:
Toric degenerations

A quick summary so far

$\mathrm{SB}_{F}=$ set of stable birational equivalence classes of integral F-varieties
The ring of stable birational types: $\mathbb{Z}\left[\mathrm{SB}_{F}\right]$.

$$
K=\mathbb{C}\{\{t\}\}=\bigcup_{m>0} \mathbb{C}\left(\left(t^{1 / m}\right)\right), \quad R=\bigcup_{m>0} \mathbb{C}\left[\left[t^{1 / m}\right]\right]
$$

We consider schemes \mathcal{X} / R which are either semistable, or more generally, toroidal.

The theorem of Nicaise-Shinder

Theorem (Nicaise-Shinder)

There exists a unique ring morphism

$$
\mathrm{Vol}: \mathbb{Z}\left[\mathrm{SB}_{K}\right] \rightarrow \mathbb{Z}\left[\mathrm{SB}_{k}\right]
$$

such that, for every strictly semistable (or toroidal) proper R-scheme \mathcal{X} with smooth generic fiber $X=\mathcal{X}_{K}$, we have

$$
\operatorname{Vol}\left([X]_{\mathrm{sb}}\right)=\sum_{E \in \mathcal{S}(X)}(-1)^{\operatorname{codim}(E)}[E]_{\mathrm{sb}}
$$

Here $\mathcal{S}(\mathcal{X})$ denotes the set of strata of \mathcal{X}_{k}.
Important observation: Vol maps $\operatorname{Spec} K$ to Spec k.

Projective toric varieties

$$
\left\{\begin{array}{c}
\text { projective toric varieties }(X, L), \\
L \text { basepoint free ample line bundle }
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
\text { lattice polytopes } \Delta \subset \mathbb{R}^{n} \\
L \text { defined up to translation }
\end{array}\right\}
$$

1-1 inclusion preserving correspondence between faces of Δ and toric strata of X :

We use the standard notations $M, N, M_{\mathbb{R}}, N_{\mathbb{R}}$ from toric varieties.
Let $\Delta \subset M_{\mathbb{R}}$ be a lattice polyhedron.
Consider the cone over Δ :

$$
C(\Delta)=\text { closure of }\{(r m, r) \mid m \in \Delta, r \geq 0\} \subset M_{\mathbb{R}} \oplus \mathbb{R}
$$

This cone is rational polyhedral, with asymptotic cone

$$
C(\Delta) \cap\left(M_{\mathbb{R}} \oplus 0\right)=\operatorname{Asym}(\Delta)
$$

(asymptotic cone of $\Delta=$ Hausdorff limit of $r \Delta$ as $r \rightarrow 0$).

The finitely generated k-algebra

$$
S_{\Delta}:=k[C(\Delta) \cap(M \oplus \mathbb{Z})]
$$

has a grading given by $\operatorname{deg} z^{(m, d)}=d$.
Degree 0 part:

$$
\left(S_{\Delta}\right)_{0}=k[\operatorname{Asym}(\Delta) \cap M]
$$

The toric variety

$$
X(\Delta):=\operatorname{Proj} S_{\Delta}
$$

is projective over $\operatorname{Spec} k[\operatorname{Asym}(\Delta) \cap M]$.

Projective embedding: (if Δ is "very ample"):
If $m_{i}=\left(m_{i 1}, \ldots, m_{i n}\right) \in \mathbb{Z}^{n} i=0, \ldots, r$ are the integral points of Δ, we get a map

$$
\begin{aligned}
\phi:\left(\mathbb{C}^{*}\right)^{n} & \rightarrow \mathbb{P}^{r} \\
x & \mapsto\left[x^{m_{0}}, \ldots, x^{m_{r}}\right]
\end{aligned}
$$

where we (as usual) write

$$
x^{m_{i}}:=x_{1}^{m_{i 1}} \cdots x_{n}^{m_{i n}}
$$

Then $X(\Delta)$ is the closure of the image of ϕ.

Facts

- There is a 1-1 inclusion preserving correspondence between faces of Δ and toric strata of $X(\Delta)$.
- Since $X(\Delta)$ is defined as a Proj, there is a natural line bundle $L=\mathcal{O}(1)$.
$H^{0}\left(\Sigma_{\Delta}, \mathcal{O}(1)\right)$ has a basis corresponding to the integral points of Δ.

Example (Projective space)

$\left(\mathbb{P}^{n}, \mathcal{O}(1)\right)$ is given by the n-dimensional simplex

$$
\Delta=\left\{\sum x_{i} \leq 1, x_{i} \geq 0\right\}
$$

More generally, $\left(\mathbb{P}^{n}, \mathcal{O}(d)\right)$ is given by the dialated simplex

$$
d \Delta=\left\{\sum x_{i} \leq d, x_{i} \geq 0\right\}
$$

This is the d-th Veronese embedding of \mathbb{P}^{n}.

$\left(\mathbb{P}^{3}, O(y)\right)$

Example (Product polytopes)

If (X, L) and (Y, M) correspond to polytopes $P_{X} \subset \mathbb{R}^{n}$ and $P_{Y} \subset \mathbb{R}^{m}$, then the product

$$
(X \times Y, L \boxtimes M)
$$

is given by the product polytope $P_{X} \times P_{Y} \subset \mathbb{R}^{n+m}$.
For instance $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(a, b)\right)$ is given by the rectangle

$$
P_{a, b}=\{(x, y) \mid 0 \leq x \leq a, 0 \leq y \leq b\}
$$

$$
\left(\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}, \alpha_{1}, 1\right)
$$

Example (Blow-up)

Consider the trapezoid

$$
T_{a, b}=\{(x, y) \mid 0 \leq x, 0 \leq y \leq b, x+y \leq a\}
$$

$$
T_{3,1}
$$

The corresponding toric variety is $X=B l_{p} \mathbb{P}^{2}$ polarized by the line bundle $L=a H-(a-b) E$.

In general, one obtains the polytope of a blow-up X of a variety Y by "chopping off a corner" of the polytope Δ_{Y}.

Regular subdivisions

A subdivision \mathscr{P} of Δ is called regular if there is a piecewise linear function $\phi: \Delta \rightarrow \mathbb{R}_{\geq 0}$ such that
(i) The polytopes of \mathscr{P} are the orthogonal projections on the hyperplane $z=0$ of \mathbb{R}^{n+1} of the faces of the upper convex hull

$$
\widetilde{\Delta}:=\{(x, z) \in \Delta \times \mathbb{R} \mid 0 \leq z \leq \phi(x)\}
$$

which are not vertical nor equal to Δ.
(ii) The function ϕ is strictly convex, i.e., the hyperplanes determined by each of the faces of $\widetilde{\Delta}$ intersect $\widetilde{\Delta}$ only along that face.

The Mumford Degeneration

Given a regular subdivision \mathscr{P}, we can construct a (flat) degeneration

$$
\mathcal{X} \rightarrow \mathbb{A}^{1}
$$

satisfying:

- $\mathcal{X}-\mathcal{X}_{0} \simeq X(\Delta) \times \mathbb{C}^{*}$.
- The special fiber \mathcal{X}_{0} is a union of toric varieties

$$
\mathcal{X}_{0}=\bigcup_{P \in \mathscr{P}} X(P)
$$

- The components intersect according to the combinatorics of the subdivision: If $P, Q \in \mathscr{P}$ share a common face R, then $X(P) \cap X(Q)$ can be identified with the toric variety $X(R)$ (which is a subvariety of both).

Ex

$\left(\mathbb{P}^{2}, \sigma(1)\right) \cup\left(\mathbb{P}^{2}, O(1)\right)$
intersecting along a $\left.\left(\mathbb{P}^{\prime}, O_{1}\right)\right)$.

\leadsto union of two toxic 3 folds undessecting along $\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$.

Let $\phi: \Delta \rightarrow \mathbb{R}_{\geq 0}$ be a piecewise linear function taking integer values on $\Delta \cap M$.

$$
\widetilde{\Delta}=\{(m, r) \mid m \in \Delta, r \geq \phi(m)\} \subset M_{\mathbb{R}} \oplus \mathbb{R}
$$

Example

$\Delta=[0,2] \longleftrightarrow\left(\mathbb{P}^{1}, \mathcal{O}(2)\right)$.
Define ϕ by $\phi(0)=\phi(1)=0, \phi(2)=2$.

Subdivision: $\mathscr{P}=\{[0,1],[1,2],\{1\}\}$

Asymptotic cone of $\widetilde{\Delta}$:

$$
\operatorname{Asym}(\Delta)=0 \oplus \mathbb{R}_{\geq 0}
$$

$\leadsto k[C(\widetilde{\Delta}) \cap(M \oplus \mathbb{Z} \oplus \mathbb{Z})]$ is a $k[\mathbb{N}]$-algebra.
$\leadsto X(\widetilde{\Delta})$ is a toric variety with a projective morphism

$$
\pi: X(\widetilde{\Delta}) \rightarrow \mathbb{A}_{k}^{1}
$$

This is the Mumford degeneration associated to Δ and ϕ.
$\widetilde{\Delta}$ has two types of faces:

- Horizontal faces: mapping homeomorphically to elements of \mathscr{P}.

For a maximal face δ for which $\left.\phi\right|_{\delta}$ has slope $n_{\delta} \in N$ has normal cone $=$ ray generated by $\left(-n_{\delta}, 1\right)$.

- Vertical faces: mapping non-homeomorphically to faces of Δ.

If δ is a vertical face, the normal cone $N_{\widetilde{\Delta}}(\delta)$ lies in $N_{\mathbb{R}} \times 0$ (and is a cone in the normal fan to Δ).

The projection

$$
\pi: X(\widetilde{\Delta}) \rightarrow \mathbb{A}_{k}^{1}
$$

is given by the monomial z^{ρ}, where $\rho=(0,1) \in \operatorname{Asym}(\widetilde{\Delta}) \subset M_{\mathbb{R}} \oplus \mathbb{R}$.
The primitive generators for the rays of $\Sigma(\widetilde{\Delta})$ are either of the form $(n, 0)$ or $(n, 1)$ for $n \in N$.
$\sim z^{\rho}$ does not vanish on divisors corresponding to rays of the first type, and vanishes with order 1 along the divisors corresponding to the second type.

Hence (scheme-theoretically),

$$
\pi^{-1}(0)=\bigcup_{\delta \in \mathscr{P}_{\max }} X(\delta)
$$

$X(\widetilde{\Delta})-\pi^{-1}(0)$ is isomorphic to $X(\Delta) \times \mathbb{C}^{*}:$
Reason:
Localize $k[C(\widetilde{\Delta}) \cap(M \oplus \mathbb{Z} \oplus \mathbb{Z})]$ at $z^{(0,1,0)}$.
This is the same thing as replacing $\widetilde{\Delta}$ with $\Delta \times \mathbb{R}$
$X(\Delta \times \mathbb{R})=X(\Delta) \times \operatorname{Spec} k[\mathbb{Z}]=X(\Delta) \times \mathbb{C}^{*}$.

Example

\mathscr{P} has two maximal faces, so

$$
\pi^{-1}(0)=D_{1} \cup D_{2}
$$

$D_{1} \cap D_{2}$ is defined by the vertex $v=(1,0) \in \widetilde{\Delta}$.

Example

The normal fan:

The monoid $K_{v} \widetilde{\Delta} \cap \mathbb{Z}^{2}$ has generators $(-1,0),(1,2),(0,1)$.

$$
k\left[K_{v} \widetilde{\Delta} \cap \mathbb{Z}^{2}\right] \simeq k\left[z_{1}, z_{2}, t\right] /\left(z_{1} z_{2}-t^{2}\right)
$$

where $z_{1}=z^{(-1,0)}, z_{2}=z^{(-1,0)}, t=z^{(0,1)}$.
This is a local model of the smoothing of a node.

In this example, the total space has an A_{1}-singularity.

We can understand this from the normal fan:
Start with $\mathbb{A}^{1} \times \mathbb{P}^{1}$ and perform a weighted blow-up by adding the ray $(-2,1)$. This gives another \mathbb{P}^{1} and an A_{1} singularity.

Newton subdivision

Let

$$
f=\sum_{m} c_{m} x^{m} \in K[M]
$$

be a Laurent polynomial with Newton polytope $\Delta \subset \mathbb{R}^{n+1}$.
$\phi: \Delta \rightarrow \mathbb{R}$ given by the lower convex envelope of the function

$$
m \mapsto \operatorname{ord}_{t}\left(c_{m}\right)
$$

\sim regular subdivision $\mathscr{P}+$ corresponding degeneration of $X(\Delta)$.

For every face δ of \mathscr{P}, set

$$
f_{\delta}=\sum_{\mathbb{Z}^{n+1} \cap \delta} c_{m} x^{m}
$$

Non-degeneracy condition: We assume that $Z\left(f_{\delta}\right)$ is smooth for all δ.
Let $\mathcal{X}=X(\Delta) \times_{k[t]} R$.
$\leadsto \mathcal{X}_{K}=X_{K}(\Delta)$ and $\mathcal{X}_{k}=\bigcup_{P \in \mathscr{P}_{\max }} X(P)$.
Taking the Zariski closure of $Z(f)$ in \mathcal{X}_{K}, we also get a degeneration

$$
\mathcal{Y} \rightarrow \mathbb{A}_{k}^{1}
$$

with $\mathcal{Y}_{K}=Z(f)$.

Proposition

Assuming that f is non-degenerate in the above sense, the corresponding degeneration has toroidal singularities. Hence we can apply the motivic volume formula.

Definition

A polytope Δ is called stably irrational if: for every algebraically closed field F of characteristic 0 , and every very general polynomial $g \in F[M]$ with Newton polytope Δ, the hypersurface $Z(g)$ is stably irational.

Otherwise we say Δ is stably rational.

Example

The dilated $(n+1)$-simplex $d \Delta \subset \mathbb{R}^{n+1}$ is stably irrational if and only if the very general degree d hypersurface in \mathbb{P}^{n+1} is not stably rational.

$$
\left.\left(\mathbb{P}^{3}, a y\right)\right)
$$

Example

The product polytope $2 \Delta_{2} \times 2 \Delta_{3} \subset \mathbb{R}^{5}$ is stably irrational (by Hassett-Pirutka-Tschinkel).

Degenerating a hypersurface

Example (Lattice width 1)

If Δ is a polytope with lattice width 1 , then Δ is stably rational.
Reason: A polynomial f with that Newton polytope is linear in one variable (after a change of coordinates).
e.g., $1+2 x+x^{3}+x y+x^{2} y$ has Newton polytope:

A nodal cubic curve

Example

$f_{0}:=$ general homogeneous polynomial of degree d in $k\left[z_{1}, \ldots, z_{n+1}\right]$ $f_{1}:=$ general homogeneous polynomial of degree $d-1$ in $k\left[z_{0}, \ldots, z_{n+1}\right]$

Let

$$
f=t f_{0}+z_{0} f_{1}
$$

Newton polytope:

$$
\Delta=\left\{\left(u_{0}, \ldots, u_{n+1}\right) \mid u_{0}+\ldots+u_{n+1}=d\right\} \subset \mathbb{R}_{\geq 0}^{n+2}
$$

Example

The subdivision is induced by $\phi=\max \left\{0,1-u_{0}\right\}$:

Two maximal cells:

$$
\begin{aligned}
& \delta_{\leq}=\left\{\left(u_{0}, \ldots, u_{n+1}\right) \mid u_{0} \leq 1\right\} \\
& \delta_{\geq}=\left\{\left(u_{0}, \ldots, u_{n+1}\right) \mid u_{0} \geq 1\right\}
\end{aligned}
$$

With intersection

$$
\delta_{=}=\left\{\left(u_{0}, \ldots, u_{n+1}\right) \mid u_{0}=1\right\}
$$

Example

The toric $k[t]$-scheme $X(\widetilde{\Delta})$ defined by ϕ is the blow-up of

$$
\mathbb{P}_{k[t]}^{n+1}=\operatorname{Proj} k[t]\left[z_{0}, \ldots, z_{n+1}\right]
$$

in $H=\left\{z_{0}=t=0\right\} \subset \mathbb{P}_{k}^{n+1}$.
For the R-scheme $\mathcal{X}=X(\widetilde{\Delta}) \times_{k[t]} R$, we have

$$
\mathcal{X}_{k}=D_{1}+D_{2}
$$

where
$D_{1} \simeq \mathbb{P}_{k}^{n+1}$ (strict transform);
$D_{2} \simeq \mathbb{P}\left(\mathcal{O}_{H} \oplus \mathcal{O}_{H}(1)\right)$ (exceptional divisor).
$D_{1} \cap D_{2} \simeq \mathbb{P}_{k}^{n}$.

Example

The Zariski closure

$$
\mathcal{Y} \rightarrow \operatorname{Spec} R
$$

of $Z(f) \subset X_{K}=\mathbb{P}_{K}^{n+1}$ in \mathcal{X} gives a proper and semistable R-model of $Z(f)$.
Two components in the special fiber:
$E_{1}=\mathcal{Y} \cap D_{1}=$ degree $(d-1)$-hypersurface defined by $f_{1}=0$.
$E_{2}=\mathcal{Y} \cap D_{2}=$ section of $\mathcal{O}(1) \oplus \pi^{*} \mathcal{O}(d-1)$ in $\mathbb{P}\left(\mathcal{O}_{H} \oplus \mathcal{O}_{H}(1)\right) \sim$ rational. Also,
$E_{1} \cap E_{2}=$ degree $(d-1)$-hypersurface defined by $f_{1}\left(0, z_{1}, \ldots, z_{n+1}\right)=0$.

Conslusion:

Theorem

Suppose that a very general hypersurface of degree $d-1$ in \mathbb{P}^{n} is stably irrational.
Then at least one of the following must hold:
(i) a very general hypersurface of degree d in \mathbb{P}^{n+1} is stably irrational;
(ii) a very general hypersurface of degree d in \mathbb{P}^{n} is stably irrational

We will improve this result in the next example.

Example

The result for quartic 5 -folds implies that we also get stable irrationality for

- Quintic 6-folds
- Sextic 7-folds
- ...

Lecture 5:
Further applications

Recap

The ring of stable birational types: $\mathbb{Z}\left[\mathrm{SB}_{F}\right]$.

$$
\left.K=\mathbb{C}\{\{t\}\}=\bigcup_{m>0} \mathbb{C}\left(\left(t^{1 / m}\right)\right), \quad R=\bigcup_{m>0} \mathbb{C}\left[t^{1 / m}\right]\right] .
$$

Theorem (Nicaise-Shinder)

There exists a unique ring morphism

$$
\text { Vol: } \mathbb{Z}\left[\mathrm{SB}_{K}\right] \rightarrow \mathbb{Z}\left[\mathrm{SB}_{k}\right]
$$

such that, for every strictly semistable (or toroidal) proper R-scheme \mathcal{X} with smooth generic fiber $X=\mathcal{X}_{K}$, we have

$$
\operatorname{Vol}\left([X]_{\mathrm{sb}}\right)=\sum_{E \in \mathcal{S}(X)}(-1)^{\operatorname{codim}(E)}[E]_{\mathrm{sb}} .
$$

Here $\mathcal{S}(\mathcal{X})$ denotes the set of strata of \mathcal{X}_{k}.
Obstruction to rationality: Vol maps $[\operatorname{Spec} K]_{\mathrm{sb}}$ to $[\operatorname{Spec} k]_{\mathrm{sb}}$.

A regular subdivision $\mathscr{P} \leadsto$ degeneration of $X(\Delta)$

$$
\mathcal{X} \rightarrow \mathbb{A}^{1}
$$

satisfying:

$$
\mathcal{X}_{0}=\bigcup_{P \in \mathscr{P}} X(P)
$$

and if $P, Q \in \mathscr{P}$ share a common face R, then $X(P) \cap X(Q)$ can be identified with the toric variety $X(R)$ (which is a subvariety of both).

Further applications

General strategy for hypersurfaces in a toric variety $X(\Delta)$:
Construct a subdivision \mathscr{P} of Δ, so that all but one lower-dimensional polytope is stably rational (or make sure that the various intersections do not cancel out in the alternating formula for Vol).

Theorem (Increasing degree / decreasing dimension)

Suppose that a very general hypersurface of degree d in \mathbb{P}^{n+1} is stably irrational.
Then we also have that:
(i) A very general hypersurface of degree $d+1$ in \mathbb{P}^{n+1} is stably rational.
(ii) A very general hypersurface of degree d in \mathbb{P}^{n} is stably rational.

Proof of (i)

Consider the following subdivision of $(d+1) \Delta_{n+1}$:

Proof of (i)

Consider the following subdivision of $(d+1) \Delta_{n+1}$:

Proof of (i)

The red polytope corresponds to a degree d hypersurface $Y \subset \mathbb{P}^{n}$.
All other polytopes have lattice width 1 (hence they are rational).
We get a degeneration $\mathcal{X} \rightarrow \operatorname{Spec} R$ of degree $(d+1)$-hypersurfaces in \mathbb{P}^{n+1} with

$$
\begin{aligned}
\operatorname{Vol}\left(\mathcal{X}_{K}\right) & =[Y]_{\mathrm{sb}}+a[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}} \\
& \neq[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}
\end{aligned}
$$

The Quartic fivefold again

Newton polytope: $\Delta=\left\{\left(x_{1}, \ldots, x_{6}\right) \in \mathbb{R}_{\geq 0}^{6} \mid \sum_{i} x_{i} \leq 4\right\}$
Subdivision below $\leadsto \sim$ degeneration with special fiber $X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$.

Red polytope $=(2,2)$-divisor $Y \subset \mathbb{P}^{2} \times \mathbb{P}^{3}$
\sim stably irrational by [Hassett-Pirutka-Tschinkel 2016].
All other polytopes have lattice width 1, hence rational.
Thus

$$
\operatorname{Vol}\left(\mathcal{X}_{K}\right)=[Y]_{\mathrm{sb}}+a[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}} \neq[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}
$$

The Quartic fivefold again

Here is the previous degeneration:

Red polytope $=$ double quartic 4 -fold.

Variation of birational types

Question: In a family of hypersurfaces

$$
\mathcal{X} \rightarrow B
$$

how does the stable rationality types vary in the fibers \mathcal{X}_{b} ?

Intuition: If some fiber is stably irrational, then the stable birational types should vary.

Theorem

Let W be a variety over k.
Let Δ be a polytope such that

- Δ is stably irrational.
- Δ admits a regular subdivision \mathscr{P} such that every face of \mathscr{P} which is not contained in $\partial \Delta$ is stably rational.
Then for every very general polynomial $g \in k[M]$ with Newton polytope Δ, the hypersurface

$$
Z(g)=\{g=0\} \subset\left(\mathbb{C}^{*}\right)^{n}
$$

is not stably birational to W.

Corollary (Shinder)

Let W be a k-variety.
If a very general degree- d hypersurface in \mathbb{P}^{n} is stably irrational, then a very general degree- d hypersurface in \mathbb{P}^{n} is not birational to W.

Proposition

Let H be a hyperplane in \mathbb{P}_{k}^{n+1}.
Let X be a degree d hypersurface in \mathbb{P}_{k}^{n+1} that is very general with respect to H. If X is stably irrational, then X is not stably birational to $X \cap H$.

Proof:

Proposition

Let H be a hyperplane in \mathbb{P}_{k}^{n+1}.
Let X be a degree d hypersurface in \mathbb{P}_{k}^{n+1} that is very general with respect to H.
If X is stably irrational, then X is not stably birational to $X \cap H$.
Proof:

There is a more general result for other polytopes Δ.

Results for complete intersections

Many new classes of complete intersections in \mathbb{P}^{n}
(i) Logarithmic bounds à la Schreieder
(ii) Complete intersections of r quadrics in \mathbb{P}^{n} are stably irrational if $r \geq 3$ and $2 r \geq n-1$.
(iii) In dimension 4:

$$
(4),(5),(\mathbf{2}, \mathbf{3}),(2,4),(3,3),(2,2,2),(2,2,3),(\mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{2})
$$

(iv) In dimension 5:

$$
\begin{aligned}
& (\mathbf{4}),(5),(6),(\mathbf{2}, \mathbf{4}),(2,5),(\mathbf{3}, \mathbf{3}),(3,4),(\mathbf{2}, \mathbf{2}, \mathbf{3}),(2,2,4),(2,3,3), \\
& (\mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{2}),(2,2,2,3),(\mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{2}) .
\end{aligned}
$$

Proposition

A very general intersection of a quadric and a quartic in \mathbb{P}^{8} is not stably rational.
Let $q, f \in k\left[x_{0}, \ldots, x_{8}\right]$ be very general of degrees 2,4 .

$$
\mathcal{X}:=\operatorname{Proj} R\left[x_{0}, \ldots, x_{8}\right] /\left(f, t q-x_{7} x_{8}\right)
$$

Then $\mathcal{X}_{k}=E_{1} \cup E_{2}$ where

- $E_{1}=\left\{f=x_{7}=0\right\}$
- $E_{2}=\left\{f=x_{8}=0\right\}$
- $E_{12}=\left\{f=x_{7}=x_{8}=0\right\}$ (stably irrational)

In any case,

$$
\begin{aligned}
\operatorname{Vol}\left(\mathcal{X}_{K}\right) & =\left[E_{1}\right]_{\mathrm{sb}}+\left[E_{2}\right]_{\mathrm{sb}}-\left[E_{12}\right]_{\mathrm{sb}} \\
& \neq[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}
\end{aligned}
$$

Proposition

A very general intersection of two cubics in \mathbb{P}^{7} is not stably rational.
Let $q_{1}, q_{2}, c_{1}, c_{2} \in k\left[x_{0}, \ldots, x_{7}\right]$ be very general forms of degrees $2,2,3,3$.

$$
\mathcal{X}:=\operatorname{Proj} R\left[x_{0}, \ldots, x_{7}\right] /\left(c_{1}, t c_{2}-x_{7} q_{2}\right)
$$

Then $\mathcal{X}_{k}=E_{1} \cup E_{2}$, where

- $E_{1}=\left\{c_{1}\left(x_{0}, \ldots, x_{6}, 0\right)=0\right\}$
- $E_{2}=\left\{c_{1}=q_{2}=0\right\}$
- $E_{12}=E_{1} \cap E_{2}=\left\{c_{1}=q_{2}=x_{7}=0\right\}$ (stably irrational)

As

$$
\operatorname{Vol}\left(\mathcal{X}_{K}\right)=\left[E_{1}\right]_{\mathrm{sb}}+\left[E_{2}\right]_{\mathrm{sb}}-\left[E_{1} \cap E_{2}\right]_{\mathrm{sb}}
$$

it suffices to prove:
Claim 1. E_{1} is not stably birational to E_{12}
Claim 2. E_{2} is not stably birational to E_{12}

Claim 1. E_{1} is not stably birational to E_{12}
$E_{1}=\left\{c_{1}\left(x_{0}, \ldots, x_{6}, 0\right)=0\right\}$
$E_{12}=E_{1} \cap E_{2}=\left\{c_{1}=q_{2}=x_{7}=0\right\}$ (stably irrational)
Consider the family

$$
\mathcal{Y}=\operatorname{Proj} k[t]\left[x_{0}, \ldots, x_{7}\right] /\left(t c_{1}-x_{6} q_{2}, x_{7}\right)
$$

We have

$$
\mathcal{Y}_{k}=\left(x_{6}=x_{7}=0\right) \cup\left(q_{2}=x_{7}=0\right)
$$

a union of two rational varieties intersecting along a rational subvariety, so

$$
\operatorname{Vol}\left(\mathcal{Y} \times_{k[t]} K\right)=[\operatorname{Spec} k]_{\mathrm{sb}} \neq\left[E_{1} \cap E_{2}\right]_{\mathrm{sb}}
$$

Hence $\mathcal{Y} \times_{k[t]} K$ is not birational to $E_{12} \times_{k} K$.
The proof of Claim 2 is very similar.

Theorem

Let d_{1}, \ldots, d_{r} be positive integers such that $d_{r} \geq d_{i}$ for all i.
Assume that

$$
n+r \geq \sum_{i=1}^{r-1} d_{i}+2
$$

and that there exists a stably irrational smooth hypersurface of degree d_{r} in $\mathbb{P}_{k}^{n+r-\sum_{i=1}^{r-1} d_{i}}$.
Then a very general complete intersection in \mathbb{P}_{k}^{n+r} of multidegree $\left(d_{1}, \ldots, d_{r}\right)$ is not stably rational.

Corollary

Let d_{1}, \ldots, d_{r} be positive integers such that $d_{r} \geq 4$ and $d_{r} \geq d_{i}$ for all i. Assume that

$$
\sum_{i=1}^{r-1} d_{i}+2 \leq n+r \leq 2^{d_{r}-2}+\sum_{i=1}^{r} d_{i}-3
$$

Then a very general complete intersection in \mathbb{P}_{k}^{n+r} of multidegree $\left(d_{1}, \ldots, d_{r}\right)$ is not stably rational.

Proposition

Let n and r be integers such that

$$
n \geq 3, \quad r \geq 3, \quad r \geq n-1 .
$$

Then a very general complete intersection of r quadrics in \mathbb{P}_{k}^{n+r} is stably irrational.
For

$$
X=\left(q_{1}, \ldots, q_{r}\right) \subset \mathbb{P}^{n+r}
$$

degenerate $q_{r} \leadsto x_{n+r} x_{n+r-1}$ and use induction on r.

Products of projective spaces

Theorem

A very general (2,3)-divisor $X \subset \mathbb{P}^{1} \times \mathbb{P}^{4}$ is not stably rational.

Subdivisions of the polytope $a \Delta_{1} \times b \Delta_{n}$ allows us to raise degree/dimension:
(a, b) in $\mathbb{P}^{m} \times \mathbb{P}^{n}$ stably irrational $\Longrightarrow(a, b+1)$ and $(a+1, b)$ also stably irrational in $\mathbb{P}^{m} \times \mathbb{P}^{n}$ and $\mathbb{P}^{m} \times \mathbb{P}^{n+1}$.
\therefore we get all bidegrees corresponding to rational/irrational hypersurfaces.

The Hassett-Pirutka-Tschinkel quartic

Consider $Y \subset \mathbb{P}^{2} \times \mathbb{P}^{3}$, bidegree $(2,2)$, defined by

$$
x y U^{2}+x z V^{2}+y z W^{2}+\left(x^{2}+y^{2}+z^{2}-2(x y+x z+y z)\right) T^{2}=0
$$

Hassett-Pirutka-Tschinkel/Schreieder:

Anything that specializes to Y does not admit a decomposition of Δ (hence is stably irrational).

$(2,3)$-divisors in $\mathbb{P}^{1} \times \mathbb{P}^{4}$

$P=$ the Newton polytope of the HPT quartic.

$$
=\text { convex hull of column vectors of }\left(\begin{array}{cccccc}
0 & 2 & 0 & 1 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

Starting observation: P is contained in the Newton polytope of a general (2, 3)-divisor:

$$
2 \Delta_{1} \times 3 \Delta_{4}=\left\{(u, v) \in \mathbb{R}_{\geq 0}^{1+4} \mid u \leq 2, v_{1}+\ldots+v_{4} \leq 3\right\}
$$

In concrete terms, the following bidegree $(2,3)$ polynomial

$$
\begin{aligned}
& x_{0}^{2} y_{0}^{3}-2 x_{0} x_{1} y_{0}^{3}+x_{1}^{2} y_{0}^{3}-2 x_{0}^{2} y_{0}^{2} y_{1}-2 x_{0} x_{1} y_{0}^{2} y_{1} \\
& \quad+x_{0}^{2} y_{0} y_{1}^{2}+x_{0} x_{1} y_{1} y_{2}^{2}+x_{0}^{2} y_{1} y_{3}^{2}+x_{0} x_{1} y_{0} y_{4}^{2}
\end{aligned}
$$

dehomogenizes to the HPT quartic.

Let \mathscr{P} denote the regular subdivision of the polytope $2 \Delta_{1} \times 3 \Delta_{4}$ induced by the convex function

$$
f: \mathbb{R}^{5} \rightarrow \mathbb{R}, x \mapsto \min _{z \in P}\|x-z\|^{2}
$$

The cells in \mathscr{P} :

$\operatorname{dim} \delta$	0	1	2	3	4	5
number	43	192	353	323	146	26

\sim degeneration of $\mathbb{P}^{1} \times \mathbb{P}^{4}$ into a union of 26 toric varieties.

Going through the cells of dimension 2 and 4 reveals that any face δ of even dimension either

- has lattice width one (rational, as the equation is linear with respect to a variable)
- corresponds to a quadric bundle over \mathbb{P}_{k}^{1} (rational).
- defines a conic bundle over \mathbb{A}^{3} with a section (rational)

In $\mathbb{Z}\left[\mathrm{SB}_{\mathbb{C}}\right]$ we have

$$
\operatorname{Vol}\left([\mathcal{X}]_{\mathrm{sb}}\right)=[H P T]+\sum_{\# I \text { odd }}\left[X_{I}\right]+a[\operatorname{Spec} \mathbb{C}] \quad \text { for some } a \in \mathbb{Z}
$$

As this is $\neq[\operatorname{Spec} \mathbb{C}]$, a very general X is stably irrational.

