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Lecture 1:
Birational invariants and specialization



These talks will revolve around a paper written with Johannes Nicaise:

J. Nicaise, J.C. Ottem. Tropical degenerations and stable rationality (2020).

In the paper we give a quite general method for the (stable) rationality problem for
hypersurfaces and complete intersections in toric varieties.



We work over a field k of characteristic 0.
(Usually k& = C).

Two varieties X and Y are stably birational if X x P ~yp;. Y X P! for some m,1 > 0.

X is stably rational if it is stably birational to P”.



The Rationality Problem
Determine whether a given variety is (stably) rational or not.

The Rationality problem for hypersurfaces
For which d,n is a general degree d-hypersurface in P"*! (stably) irrational?



Two of the main applications

Theorem (Nicaise-O.)

The very general complex quartic fivefold in P% is not stably rational.

Theorem (Nicaise-O.)

A very general complete intersection of a quadric and a cubic in PY is not stably rational.

The goal of the lectures is to explain the proofs of these theorems.



Other results

® New proofs for hypersurfaces of higher degree or lower dimension
e Many new classes of complete intersections in P™.

e Many new classes of hypersurfaces in other toric varieties.

Theorem

Consider a very general ample hypersurface X of bidegree (a,b) in P! x P*
x8f0+x871x1f1 +...+z2{f, =0

Then X is stably rational if and only if
® g=1;or
e Hh<2



Overview of the lectures

Monday

Rationality problems, basic birational invariants, specialization methods.

Tuesday

The Grothendieck ring of varieties, Nicaise—Shinder’s motivic volume

Wednesday

First applications: Quartic fivefolds, (2, 3)-complete intersections, ..

Thursday

Toric degenerations

Friday

Further applications



Ingredients

The proof uses
¢ Specialization of birational types (Nicaise-Shinder, Kontsevich—Tschinkel)
e Tropical geometry, toric degenerations

e Stable irrationality of known lower-dimensional varieties



General strategy for rationality problems

There are two basic steps:

(1) Look for obstructions to rationality (birational invariants)
e.g., the Brauer group.

(2) Show that the obstruction is non-trivial.



Two themes in the lectures
Verify (2) by specialization to a simpler, but sometimes singular variety.

*x

®
®
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Construct suitable degenerations combinatorially:




Preliminaries



Cohomology of blow-ups

If X is a smooth complex variety,
W = Blz X, the blow-up in a smooth center Z C X of codimension c,
Then there is a natural isomorphism
HP(W,Z) = HP(X,Z) & HP"%(Z,Z)|E| @ - -- HP~2"Y (7, 7)|E]°*™ (1)

where £ C W is the exceptional divisor.



Chow groups of blow-ups

There is a similar description for Chow groups:

CH?(W,Z) = CHP(X,Z) & CH" N (Z,Z)[E] & --- & CH" " V(Z,Z)[E]"  (2)



Birational invariants



Hypersurfaces in P”

d | curves surfaces 3-folds 4-folds

5-folds

Rational

6-folds

7-folds

8-folds

Obstruction to rationality: Differential forms HY(X, Q%)
The obstruction is non-trivial when d > n + 1.




Hypersurfaces in P”

curves | surfaces 3-folds 4-folds 5-folds 6-folds 7-folds 8-folds

Rational

Clemens—Griffiths

Obstruction to rationality: The intermediate jacobian H'2(X)/H?3(X,Z).
The obstruction is non-trivial: Analyse the singularities of the theta divisor.



Hypersurfaces in P”

curves surfaces 3-folds 4-folds 5-folds 6-folds 7-folds 8-folds

Rational

Clemens—Griffiths

Iskovskikh-Manin

Obstruction to rationality: The birational automorphism group Bir(X) is finite.
The obstruction is non-trivial: Use the Noether-Fano inequalities.



The example of Artin-Mumford

Stable birational invariant: H3(X, Z)ors
This is 0 for X = P".
H3(X,Z)tors is clearly invariant under taking products with P™.

If #: W — X is a blow-up in a smooth center Z C X, then
H3(W,Z) = H¥(X,Z) ® H (Z,7)[F)]
and by the Universal Coefficient Theorem,
HY(Z, L)tors = Ho(Z, L)tors = 0
~—~> H3*(W,Z) and H3(X,Z) have the same torsion.



The invariant is non-trivial for rather special varieties:

Proposition (Artin-Mumford)

There exist (resolutions of) double quartic solids X — P3 given by
w? = f(z,y,2,1)

for which H3(X,Z)sors # 0.

These are unirational threefolds.

This invariant is closely related to the Brauer group.



Hypersurfaces in P"

d | curves surfaces 3-folds 4-folds 5-folds 6-folds 7-folds 8-folds

2 Rational
3 Clemens—Griffiths
4 Colliot-Thelene—
Pirutka
5 Birational
rigidity
6 Bu.'a}:u.)nal Kollar
rigidity
7 Birational

rigidity
Birational
rigidity

Kollar

Birational
rigidity



Kollar’s strategy

Obstruction to rationality: Rational varieties are ruled (=birational to P! x ')

The obstruction is non-trivial: Specialize X modulo p such that:
for a resolution ¥ — X, Q?ﬁl contains a positive line subbundle.

~—~> X, is not ruled.
~~> X is not ruled (Ruledness specializes in families [Matsusaka)).
~~> X is not rational.



Decomposition of the diagonal



Recent developments

curves  surfaces 3-folds 4-folds 5-folds 6-folds 7-folds 8-folds

Rational

Clemens—Griffiths

Colliot-Thelene—

Birational



Recent developments

2 Rational
3 Clemens—Griffiths
4 Colliot-Thelene— Totaro
Pirutka

5 Birational

rigidity
6 Bn.faj:lc')nal Kollar Totaro

rigidity
irational

7 Birationa Tarers

rigidity
Birational
rigidity

Kollar

Birational
rigidity



Recent developments

curves  surfaces 3-folds 4-folds 5-folds 6-folds 7-folds 8-folds

2 Rational
3 Clemens—Griffiths
4 Colliot-Thelene— Totaro
Pirutka
5 B|!'aj£|(.)na| Schreieder
rigidity
6 Blra‘tl?nal Kollar Totaro
rigidity
7 Birational
irationa T

rigidity
Birational
rigidity

Kollar

Birational
rigidity



Recent developments

9-folds 10-folds = 11-folds 12-folds 13-folds 14-folds 15-folds 16-folds 17-folds = 18-folds = 19-folds




Recent developments

curves  surfaces 3-folds 4-folds 5-folds 6-folds 7-folds 8-folds

2 Rational
3 Clemens—Griffiths m
4 Colliot-Thelene— Totaro Quartic
Pirutka fivefolds
5 Birational
|ra.t|?na Schreieder
rigidity
6 Bu.'a.tl?nal Kollar Totaro
rigidity
7 Birational
. Totaro
rigidity
8 Bl.ra.tlc.)nal Kollsr
rigidity
9 Birational

rigidity



Decomposition of the diagonal

Consider the diagonal embedding of X
ACXxX
We say that X admits a decomposition of the diagonal if there is an equality
A=[X xz]+Zin CH,(X x X) (3)

where Z C X x X is a subvariety which does not dominate X via the first projection.



Decomposition of the diagonal

Obstruction to Rationality: Any stably rational variety has a decomposition of A.
For X =", we have a decomposition (in CH"(P" x P")):

n
A= pint i
=0

Here pih™ ~ [P™ x z] and the other terms are supported on D x X for some D C X.

Stable birational invariance follows from the formulas for the Chow groups of blow-ups.



Main point: A acts as a correspondence in a special way (the identity map).

Example

Let X be a smooth projective curve of genus > 1.

Claim: X does not have a decomposition of A:

Let w € H(X, QL) denote a global holomorphic 1-form. Then
[X x 2]*w = pro.(pr3[a] - priw) =0

and
Z*w = pro.(Z - priw) = pro.(0) =0

~~> A #[X X x|+ Z, because A*w = w.



Example

A similar argument shows that a variety with a decomposition of A satisfies

e HY(X, 05 )=0forp>0
O H3(XaZ)tors =0



How to prove that X admits no decomposition of A? This is a delicate matter.
Voisin’s specialization method:

Degenerate to a variety Xy with mild singularities.

Show that (some resolution of) X does not admit a decomposition of the diagonal.
Deduce from this that X does not admit a decomposition of the diagonal either.

~~> X is not stably rational.



Families of varieties and specialization



A family of varieties is a flat morphism
f:X—>B

of k-varieties; we will usually require f to be projective.

*x



In this situation, it is natural to ask how the following vary in the fibers of f:
e The (stable) rationality of A}
¢ The Chow groups CHP(&})
® The cohomology groups H*(Xj, Z)

Example

If X — B is smooth, and we are over k = C, then all the fibers A}, are diffeomorphic
(Ehresmann’s fibration theorem). Hence H*(X},Z) are all isomorphic.

However, the two first items can vary drastically in the family.

For instance, in a smooth family X — A!, it can happen that there are exactly
countably infinitely many fibers X; which admit a decomposition of A.



Specialization of Rationality

The behaviour of rationality in families can be subtle:

Example (Rational specializing to irrational)

Consider the family
X = {x%+x?+x§'+t:€§ =0} C P3 x Al
For t # 0, the fiber X} is a cubic surface, hence rational.

But the fiber over t = 0 is a cone C(V) over the elliptic curve V := {23 + 23 + 23 = 0},



The last example shows that rationality behaves strangely in families with very singular
fibers.

Example

If X — B is a family of smooth projective surfaces, and X} is rational for some b € B,
then every fiber is rational.

This follows by Castelnuouvo’s criterion, because the groups
HY(%,0x,),  H°(X,0(2Ky,))

are constant in the family



Example (Irrational specializing to rational)

Consider the family

X = {2} + 2fzs + tzi =0} C P? x Al
For t # 0, the fiber X} is a smooth cubic curve, hence irrational.
But the fiber over ¢ = 0 is a nodal cubic, which is rational.

X,

o X,

Classical question: Can this happen in families of smooth varieties?



Example (Irrational specializing to rational II)

Consider a smooth (2,2)-divisor X C P? x P3.
If X is very general, it is known to be stably irrational [Hassett-Pirutka-Tschinkel].
However, if the equation of X is of the form
YoFo +y1 1 +y2f2 =0
where F; are generic (2, 1)-forms, then X is smooth, and rational.

(X contains the P? given by {yo = y1 = y2 = 0}, which defines a section of the quadric
bundle X — P2 so X is rational.)



The last example is in fact rather wild:

“Most” (2,2)-divisors are stably irrational.
But there are also infinitely many divisors in the parameter space of smooth
(2,2)-divisors parametrizing rational hypersurfaces.

In general, for a family f : X — B, we define the Rational locus as
Rat(f) = {b € B| A, is rational}

Proposition

Rat(f) is a countable union of locally closed subsets of B.



Main idea of the proof.

Let n denote the relative dimension of n and let P = P.

Let Z C X xp P be a closed subvariety. If Z, — X, and Z;, — P, are both birational,
then we obtain a birational map X --» B.
Conversely, any such birational map arises in this way.

We reduce to looking at certain subvarieties of X xpg P.

There is a relative Hilbert scheme Hilb(X X p P/B) paramterizing subvarieties in the
fibers of X xg P — B.

This Hilbert scheme has only countably many components ~~~> OK. [



Definition

A property is said to hold for b € B very general, if it is holds outside a countable union
of closed subsets in B.

Important observation:
Proposition
For b € B very general, the fiber A}, is isomorphic (as a scheme) to the geometric

generic fiber A%, where K = k(B).

More precisely, there is a field isomorphism K — k(b), and isomorphisms &} — X
making the following diagram commute:

Xb a i

| !

Speck(b) ———— Spec K



Therefore, if we only care about the very general member of some family of varieties
(e.g., the very general hypersurface), this is the same thing as the geometric generic
fiber.



Specialization

Let R be a DVR, and let & be an integral R-scheme.

We will often be in the situation where we have a diagram of the form

X < X < ’Xk

| l |

Spec K —— Spec R <—— Speck

K = Frac(R) is the fraction field;
k = R/m is the residue field.

Definition

X = Xk is called the generic fiber, wheras Y = X, is the special fiber.



Specialization

/7

XI
> Yo .

X,
Spc R _—

Sfu. K Spe @

We say that a variety X/K specializes to a variety Y/k if there exists a scheme X /R as
above, with X ~ X and A ~ Y.



Specialization of cycles

/'X
XI
* X« %
X
Spc R S

STU' K Spe €

(4

For a codimension p subvariety Z C X, we can take its Zariski closure in X and obtain
a subvariety Z of X. Intersecting with the special fiber, we get a codimension p-cycle Zj
on Xk.

This is compatible with rational equivalence, which gives the specialization map of Chow

groups
CHP(XK) — CHp(Xk>



Obstructing rationality via specialization/degeneration

In general, birational invariants such as Br(X) are hard to compute.
For our purposes, it is also enough to know that they are non-zero.

Common strategy: specialize to a simpler, perhaps singular, variety Xg,
and hope that Xy contains enough information to deduce that the generic fiber is
non-stably rational.

The rational obstruction needs to be suffiently sophisticated for this to work:

The “cone over an elliptic curve”-example shows that one also needs to consider families
with “controlled” singularities.



Quartic threefolds (sketch)

Construct a degeneration X — B of quartic threefolds, so that A} is birational to the
Artin-Mumford example Y.

~—~> A) carries a non-trivial unramified Brauer class oy € Br(k(Xp))[2].
~~—> some resolution X has non-trivial Br(:\.’\a)m.

> 2?0 does not admit a decomposition of A

~~~> X}, does not admit a decomposition of A, for b € B very general

~~~> the very general A}, is not stably rational.



Lecture 2:
The motivic volume



The Grothendieck ring

Let F be a field. The Grothendieck group K(Varg) of F-varieties is the abelian group
with the following presentation:

¢ Generators: isomorphism classes [X]| of F-schemes X of finite type;

® Relations: whenever X is an F-scheme of finite type, and Y is a closed subscheme
of X, then [X]=[Y]+[X -Y].

Ring structure: induced by [X] - [X'] = [X xr X'] for all F-schemes X and X' of finite
type.

Identity element: 1 = [Spec F], the class of the point.

Lefschetz motive: L = [AL] € K(Varp).



Example
[A"] =[Al x - xAl]=Lx---xL=L"

Example
Partitioning P?% into the hyperplane at infinity and its complement, we find
[P = [PE1] + [A%] = [PE1] + L™
Now it follows by induction on n that
Pr]=14+L+...+L"

in K(Varg).



The Grothendieck ring K(Varg) is insensitive to non-reduced structures:
if X is an F-scheme of finite type, then the complement of X,.q in X is empty, so that
[X ] = [Xred]'



K (Varp) can be generated by smooth and proper F-varieties:

Theorem (Bittner 2004)
Let F be a field of characteristic zero. Then K(Varg) has also the following

presentation:

® (enerators: isomorphism classes [X] of connected smooth and proper F-schemes X;

® Relations: [@] = 0, and, whenever X is a connected smooth and proper F-scheme
and Y is a connected smooth closed subscheme of X,

[Bly X] — [E] = [X] - [Y] (4)

where Bly X denotes the blow-up of X along Y, and F is the exceptional divisor.



Question: When do X and X' define the same class in K(Varg)?

Obvious sufficient condition: X and X’ be piecewise isomorphic,
(i.e., they can be partitioned into subschemes that are pairwise isomorphic)
~~> [X] = [X'] (by scissor relations).

Example
Let C C A% be the affine plane cusp given by

y? —z® = 0.
Then C' is piecewise isomorphic to A}p:

€~ {(0,0)} = A} — {0}.
So [C] =L in K(Varp).



However, this condition is not necessary:
Example (Borisov)
There exist two smooth varieties X and X’ over C such that [X] = [X'] but X and X’

are not birational, and therefore not piecewise isomorphic.

This is due to issues of cancellation:

X and X’ can be embedded into a common C-variety W such that W — X and W — X’
can be partitioned into pairwise isomorphic subschemes Wi,..., W, and Wy,..., W/,
respectively.

It follows that

s T

[X] = W] = Wil = W] = > W] = [X],

i=1 i=1
even though X and X’ are not piecewise isomorphic.

Remark

The varieties X and X’ in Borisov’s example are smooth, but not proper.



The ring of stable birational types

SBr = set of stable birational equivalence classes of integral F-varieties
[X]sb = equivalence class of X.
We consider the free abelian group Z[SBr].
For any F-scheme X of finite type, we set
[(Xlsb = [Xi]sp+ ...+ [X:]sp  in Z[SBp]
where X1,..., X, are the irreducible components.
In particular, [Xyed]sb = [X]sp in this group.

Ring product: [X]sp - [Y]sp = [X X Ysp-



The Larsen—Lunts theorem

Theorem (Larsen & Lunts 2003)

Let F be a field of characteristic zero. Then there exists a unique map
sb: K(Varp) — Z[SBF]
that maps [X]| to [X]y, for every smooth and proper F-scheme X.

The morphism sb is a surjective ring morphism, and its kernel is the ideal in K(Varg)
generated by L.

Therefore,
K(Varp)/(L) ~ Z[SBF]



Sketch of proof.

The morphism sb maps L = [PL] — [Spec F] to 0, because Spec F is stably birational to
IP)},. Thus sb induces
sb: K(Varg) /LK (Varg) — Z[SBF].

Here is the inverse:

By resolution of singularities, every class in SBr has a representative X that is a
connected smooth proper F-scheme.

For every m > 0, we have

[X xp PP — [X] = [X](L+L2+...+L™)

in K(Varg) by the scissor relations.
Thus [X xp PR] and [X] are congruent modulo L.



Sketch of proof.

Moreover, the class of [X X PJ] modulo L is independent under blow-ups of smooth
closed subschemes of X x g P, because the exceptional divisor of such a blow-up is a
projective bundle over the center.

Weak Factorization Theorem = the class of X in K(Varp)/LK(Varg) only depends
on the stable birational equivalence class of X.

This yields a ring map
Z[SBF] — K(Varp)/]LK(VarF)

that is inverse to sb. OJ



Beware: sb([X]) is usually different from [X]y when X is not smooth and proper.
Example
In K(Varg), we have [Al] = [P!] — [Spec F],s0
sb(A!) = sb(P') — sb[Spec F] = 0
So sb(A!) =0 # [Al]sb.
Example
If X is a nodal cubic in IP%, then it follows from the scissor relations that
[X]=L

in K(Varg). Thus sb([X]) = 0.



Corollary

Let F be a field of characteristic zero, and let X and X’ be smooth and proper

F-schemes.
Then X and X' are stably birational if and only if [X] = [X’] modulo L in K(Varp).

In particular, [X] = ¢ modulo L for some integer ¢ if and only if every connected
component of X is stably rational; in that case, ¢ is the number of connected
components of X.

Remark
Again the corollary is false without the assumption that X and X’ are smooth and
proper (Borisov’s example).



Some notation

Field of Puiseux series:

K = C{t}} = U0 C((t/™))

Valuation ring:

R = Upso CllEY™]]



An R-scheme is strictly semi-stable if, Zariski locally, it admits an étale morphism to a
scheme of the form
Spec R[z1,...,2s]/(z1 - zr — t9)

where s > r > 0 and ¢ is a positive rational number.

/e
X
* X .
Aoy
—

Stec R

Sfu. K Spe €



In short, we will consider families X — Spec R, and want to compare the rationality
properties of the generic fiber X, to that of the special fiber, AX¢.

/e
X
* Yo %
Aoy

Seec R P
B SfecK Spe €

Note however that A may have several irreducible components, so it makes most sense
to do this comparison in Z[SB¢].



The theorem of Nicaise-Shinder

Definition

If X is strictly semi-stable, then a stratum of the special fiber A}, is a connected
component F of an intersection of irreducible components of Xj.

S(X) := the set of strata of Xj.

Theorem (Nicaise-Shinder)

There exists a unique ring morphism
Vol: Z[SBK] — Z[SBk]

such that, for every strictly semistable proper R-scheme X with smooth generic fiber
X = Xk, we have

Vol([X]g,) = Z (—1)COdim(E)[E]sb- (5)
EeS(X)



Let us make the following observations:

® Vol sends [Spec K], to [SpecCl, .
e If X — Spec R is smooth and proper, then Vol([Xk|y ) = [Xcly,-

These two in conjunction have an important consequence, namely that if X — Spec R is
smooth and proper, and the generic fiber X' is geometrically stably rational, then so is
the special fiber.

Theorem

Stable rationality specializes in smooth and proper families.

This was a long-standing open question, solved by Nicaise-Shinder (and
Kontsevich—-Tschinkel with ‘stable rationality” replaced by ‘rationality’).



More generally:

Corollary

Let S be a Noetherian Q-scheme, and let X — S and Y — S be smooth and proper
morphisms.
Then the set

{s € S| X xg 73 is stably birational to Y x g5 for any geometric point s based at s}
is a countable union of closed subsets of S.
In particular, the set
{s € S| X xg 3 is stably rational, for any geometric point s based at s}

is a countable union of closed subsets of S.



Example (Rational specializing to irrational)

Consider the family
X ={az}+a}+ 23 +t3%25 =0} CP? x A!

The fiber over ¢t = 0 is a cone C(V') over the elliptic curve V := {x3 + 23 + 23 = 0},

SR ERYAN

What goes wrong in this example?

which is irrational.



Example (Rational specializing to irrational)

Issue: The family X is not strictly semi-stable.

Consider the blow-up ) — X of the vertex of the cone Xy = C(V):
Yy — Al

This is now strictly semi-stable.
The fiber Yy has two components X and the exceptional divisor E.
We have E ~ cubic surface, so

Vol(X) = Vol(Vk) = [Xo] L+ (Bl - [0 %o N
= []P)l x V] sb + [P2:| sb [V]Sb
= [Spec F,

So there is no contradiction.



Toroidal models

For our main applications, we need a more flexible notion than semi-stability:

Definition

A monoid M is called toric if it is isomorphic to the monoid of lattice points in a
strictly convex rational polyhedral cone.

To any monoid M we can attach its monoid R-algebra R[M]; the monomial associated
with an element m € M will be denoted by x™.

Definition

Let X be a flat separated R-scheme of finite presentation.
We say that X is strictly toroidal if, Zariski-locally on X, we can find a smooth
morphism

X — Spec R[M]/(z™ — t9)

for some toric monoid M, some positive rational number g, and some element m in M
such that k[M]/(z™) is reduced.



Example

Consider the scheme
SpeCR[az, Y, z, w]/(t -2y, t— Z’LU),

which is clearly strictly toroidal.

The special fiber has four irreducible components of dimension 2 intersecting at the
origin, which never happens for strictly semi-stable schemes.



The following schemes will be important when degenerating complete intersections:
Example

Let r and s be positive integers, and let a = (ay,...,a,) and b = (by, ..., bs) be tuples
of positive integers. Consider the R-schemes

al ar
Xo = SpecRlz;j|li=1,...,r;j= 1,...,ai]/(t—Hml,j,...,t—Ha:,ﬂ’j),
i il

b1 bs
Yo = SpecRlyijli=1,...,85=0,....b/(tyro — [ vrgs - twso — [ ] vss)-
=1 =1

Then X,, )V, and X, X ) are strictly toroidal.

Note that X is strictly semi-stable if it admits Zariski-locally a smooth morphism to a
scheme of the form X, with r = 1.



Advantages of toroidal singularities

® The product of two strictly toroidal R-schemes is again strictly toroidal. This is no
longer true for strictly-semistable.

® The condition of strict semi-stability is quite restrictive, and producing a
semi-stable model often leads to many blow-ups which which are hard to analyze.
The toroidal condition is much more flexible, and reduces the computations
substantially.

e Strictly toroidal degenerations also arise naturally when we break up projective
hypersurfaces into pieces of smaller degrees:



Example

Let fo,..., fr € k[20,. .., 2n+1] be general homogeneous polynomials of positive degrees
do,...,d, such that dg =dy + ...+ d,.
Then

X :PI'OjR[Z(),...,Zn+1]/(tf0—f1 f’f‘)

is strictly toroidal.

X is not strictly semi-stable at the points of X where fy and at least two among
fi,..., fr vanish.



The theorem of Nicaise-Shinder (toroidal version)

Recall:

S(X) = the set of strata of the special fiber Xj,.

Theorem (Nicaise-Shinder)

There exists a unique ring morphism

such that, for every strictly toroidal proper R-scheme X with smooth generic fiber
X = Xk, we have

Vol([X]y,) = Y (1)@= ®E],. (6)
EeS(X)



Lecture 3:
First applications



A quick summary so far
SBr = set of stable birational equivalence classes of integral F-varieties

The ring of stable birational types: Z[SBr].

K =C{{t}} = Upso C((t"™), R = U, Cl[tY™]].

We consider schemes X' /R which are either semistable, or more generally, toroidal.

/7
X
* X %
X
Sec R -

Sfu K Spe €



The theorem of Nicaise-Shinder

Theorem (Nicaise-Shinder)
There exists a unique ring morphism

such that, for every strictly semistable (or toroidal) proper R-scheme X with smooth
generic fiber X = Xi, we have

Vol([X]y) = Y (~1)°i™EE],.
EeS(X)

Here S(X) denotes the set of strata of Xj.

Important observation: Vol maps Spec K to Speck.



A key idea in [NO20], is to use this an obstruction to stable rationality of Xx:
Corollary

1. Let X be a smooth and proper K-scheme. If

Vol([X]g,) # [Specklg,

in Z[SBg], then X is not stably rational.

2. Let X be a strictly semistable proper R-scheme with smooth generic fiber X = Xk.
If

> () eimEE], # [Speck]y,
EeS(X)

in Z[SBy], then X is not stably rational.

Proof.

If X is stably rational, then [X], = [Spec K] so that Vol([X] ) = [Speck],.
The second part of the statement follows immediately from the formula for Vol. O



Example (Voisin)

A very general double quartic threefold is irrational.

Sketch of proof.
Let f,g € Clz,y, z,w| denote quartics, so that f appears in the Artin-Mumford example

w? = f(z,y,2z,w) C P(1,1,1,1,2).
Consider the family
X = {w? = f(z,y,z,w) + tg(z,y, z,w)} C P(1,1,1,1,2) x Al

Note: Ap is the Artin-Mumford threefold.



Sketch of proof.

The family X' /A! becomes semi-stable after blowing up the 10 nodes in the special fiber
Xo.

Let ) — Al denote the resulting family.

As the blow-ups only introduce rational varieties in the special fiber, we get

Vol(Xg) = Vol(Vx)
= [)A(B]Sb + a[Spec Clg, for some a € Z
# [SpecCls,  in Z[SBc]

because [)?/0] is not stably rational.
~~—> X is not stably rational.
~~> the very general double quartic solid is not stably rational. [



For our main applications, we get better results using degenerations with many
components.

Main strategy in [NO20]:
Look for suitable degenerations
X — Spec R

with X C ]P’}?H smooth hypersurface, with the property that
stably irrational strata of low dimension do not cancel out in the alternating sum

VOI([X]sb) = Z (_1)COdim(E) [E]sb'
EecS(X)

.. We deduce irrationality of Xx from that of varieties of lower dimension.



Example (Two components in the special fiber)

Suppose the special fiber Xz = Xg U X1, intersecting along X .

The motivic volume takes the form
Vol(Xk) = [Xo]sb + [Xi1lsb — [Xo1]sb

From this, we deduce that either of the following conditions guarantee that the generic
fiber Xk is not stably rational:

i) Exactly one of Xy, X1, X1 is stably irrational.

ii) Xp and X7 are both stably irrational.

)
iii) Xo and Xo; are stably irrational, but they are not stably birational to each other.
)

iv) Xp, X1, Xo1 are all stably irrational.



Quartic fivefolds



Quartic fivefolds

Let F € Clxg, ..., x¢] be a very general homogeneous polynomial of degree 4.
Consider the following R-scheme

X = Proj R[xq, .. ., x6,y]/ (w526 — ty,y* — F) (7)
where the variable y has weight 2.

Note that the generic fiber Xk is isomorphic to a smooth quartic hypersurface in IP’(}{
(inverting t allows us to eliminate y using the first equation).

Moreover, X is strictly toroidal.



The special fiber has two components:

XO - PI'OJ(C[.’EO,...7I6,y]/(x5,y2—F)
Xl - Projc[wau737679]/(1'6792_F)-

Note that these are both very general quartic double fivefolds.
We do not know whether these are stably rational or not.
However, their intersection,

Xo1 = ProjClxo, . .., z4,9]/(y> — F)

is a very general quartic double fourfold, and thus stably irrational
[Hassett—Pirutka—Tschinkel].

In either case, we get

Vol([Xklg) = [Xolg, + [Xilg — [Xoulg,



On (2,3)-complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in P™ are stably irrational
for n < 6.

Our main contribution is stable irrationality for n = 6.

History related to the Liiroth problem:
e Fano (1908): (Incorrect) proof of irrationality for n =5
e Enriques (1912): Proof of unirationality for n =5
¢ Hassett—Tschinkel (2018): Stable irrationality for n = 5.
e Morin (1955), Conte-Murre (1998): Unirationality for n = 6.

The above result settles the rationality problem for all complete intersections of
dimension < 4 - except cubic fourfolds.



The proof for (2, 3)-complete intersections

Let PS = Proj k[zg,...,z¢) and let P = {29 = ... = 23 = 0} ~ P2,

Y ={¢g=c=0}CP®
for ¢ and ¢ very general of degree 2 and 3.

We assume Y contains P and is very general with respect to this property.

Blow up the plane P:
X C BlpP% —"— PS
IE
P3
X =QnNC where Q € |2H — E| and C € |3H — E|.



It suffices to show that generic intersections

X =QnNC c BlpP®
where Q € |2H — E| and C € [3H — E| are stably irrational.
Now degenerate @ to Qo + E where Qg € [2H — 2E|= |2p*h]|.

This induces a degeneration of X — A! with special fiber Xy = X; U Xo:

There are three strata:
°* X;=QoNnC
e Xo=FENnC
°* Xio=QoNnENC



The stratum X; = Qg NC:

Qo = Ppryp1 (02 @ O(1,1)) —— P(O* @ O(1)) —=— PS

| lr

P! x P! > P3

C|g, is a very general divisor in |O(2) @ p*O(1,1)| in Pp1,p (0% & O(1,1)).

~~—~> X is stably irrational by [Schreieder 2017].



The strata Xo =FNC and X1o=ENQyNC

C restricts to a (1, 2)-divisor on £ ~ P? x P3

Qo restricts to a (0, 2)-divisor on E ~ P? x P3,
~~> X9 and X9 are both rational.

By the motivic volume formula:

Vol([X]sp) [Xa]sb + [Xa]sb — [X12]sp
= [Xi]sp + [Spec Clgp, — [Spec Clgp,
- [Xl]sb
# [SpecClg,

This implies that a very general X is stably irrational.



Improvements

Remark

[Pavic—Schreieder 2021] extended this proof to show that a very general quartic fivefold
does not admit a decomposition of A.

Remark
The result on (2,3) complete intersections was extended by [Skauli 2021], who:
e Showed that these fourfolds do not admit a decomposition of A.

e Gave explicit examples (over Q) of stably irrational (2, 3)-fourfolds.

Here the decomposition of the A-technique leads to more computations, but has the
advantage it also works in positive characteristic.



Lecture 4:
Toric degenerations



A quick summary so far
SBr = set of stable birational equivalence classes of integral F-varieties

The ring of stable birational types: Z[SBr].

K =C{{t}} = Upso C((t"™), R = U, Cl[tY™]].

We consider schemes X' /R which are either semistable, or more generally, toroidal.

/7
X
* X %
X
Sec R -

Sfu K Spe €



The theorem of Nicaise-Shinder

Theorem (Nicaise-Shinder)
There exists a unique ring morphism

such that, for every strictly semistable (or toroidal) proper R-scheme X with smooth
generic fiber X = Xi, we have

Vol([X]y) = Y (~1)°i™EE],.
EeS(X)

Here S(X) denotes the set of strata of Xj.

Important observation: Vol maps Spec K to Speck.



Projective toric varieties

projective toric varieties (X, L), lattice polytopes A C R™
L basepoint free ample line bundle L defined up to translation

1-1 inclusion preserving correspondence between faces of A and toric strata of X:




We use the standard notations M, N, Mg, Nr from toric varieties.
Let A C Mg be a lattice polyhedron.
Consider the cone over A:

C(A) = closure of {(rm,r)im € A;,r >0} C Mr &R

This cone is rational polyhedral, with asymptotic cone
C(A)N (Mg ®0) = Asym(A)

(asymptotic cone of A = Hausdorff limit of rA as r — 0).



The finitely generated k-algebra
Sa = Ek[C(A)N (M & Z)]
has a grading given by deg z(™4) = d.

Degree 0 part:
(Sa)y = k[Asym(A) N M]

The toric variety
X(A) := Proj Sa

is projective over Spec k[Asym(A) N M].



Projective embedding: (if A is ”very ample”):

If mj = (mj1,...,mip) € Z" i =0,...,r are the integral points of A, we get a map

¢ (CH)" — P

mo
5.

x = |z

cox™r]

where we (as usual) write
xmi = .,L,Tlnil . .’,UZL”L

Then X (A) is the closure of the image of ¢.



Facts

® There is a 1-1 inclusion preserving correspondence between faces of A and toric
strata of X (A).

¢ Since X(A) is defined as a Proj, there is a natural line bundle L = O(1).

HO(Xa,0(1)) has a basis corresponding to the integral points of A.



Example (Projective space)

(P™, O(1)) is given by the n-dimensional simplex

A:{inSLHTiZU}

More generally, (P™, O(d)) is given by the dialated simplex

dAZ{Z$i§d; mzzO}

This is the d-th Veronese embedding of P".

24 (ool

X, +¥, %24

(04,0)
s

(420)

(7, o)



Example (Product polytopes)
If (X, L) and (Y, M) correspond to polytopes Px C R™ and Py C R™, then the product

(X x Y, L® M)
is given by the product polytope Py x Py C R*T™,
For instance (P! x P!, O(a, b)) is given by the rectangle

Pop={(z,9)|0< 2 <a,0<y<b}

(7', o)



Example (Blow-up)
Consider the trapezoid

Ta,b:“%?J)\OS%OSZISQSU‘FZ/S@}

(0,0) (1,0) (2,0) (3.0)
o (] ) [ ]
T34

The corresponding toric variety is X = BlpIP’2 polarized by the line bundle
L=aH — (a—b)E.

In general, one obtains the polytope of a blow-up X of a variety Y by ”chopping off a
corner” of the polytope Ay.



Regular subdivisions

A subdivision & of A is called regqular if there is a piecewise linear function
¢ : A — R>( such that

(i) The polytopes of & are the orthogonal projections on the hyperplane z = 0 of
R™*1 of the faces of the upper convexr hull

A:={(z,2) e AxR|0< z < ¢(z)}

which are not vertical nor equal to A.

(ii) The function ¢ is strictly convex, i.e., the hyperplanes determined by each of the
faces of A intersect A only along that face.



The Mumford Degeneration

Given a regular subdivision &, we can construct a (flat) degeneration
X — Al
satisfying:
o X — Xy~ X(A) x C*.
® The special fiber Ay is a union of toric varieties

X= ] x(P)

Pew

® The components intersect according to the combinatorics of the subdivision:
If P,Q € & share a common face R, then X (P)N X (Q) can be identified with the
toric variety X (R) (which is a subvariety of both).



Qn\diﬁh
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Let ¢ : A — R>( be a piecewise linear function taking integer values on A N M.

A={(m,r)meAr>¢m}cMpgdR

Example

A =10,2] «— (P, 0(2)).
Define ¢ by ¢(0) = ¢(1) =0, ¢(2) = 2.

3> ~
A
2 ©° ° 2. 4 °
./0
D ) z

3

Subdivision: & = {[0,1],[1,2],{1}}



Asymptotic cone of A:
Asym(A) =04 Rxg

~> E[C(A)N (M & Z & Z)] is a k|N]-algebra.

~= X (ﬁ) is a toric variety with a projective morphism

7 X(A) — A}

This is the Mumford degeneration associated to A and ¢.



A has two types of faces:

e Horizontal faces: mapping homeomorphically to elements of &2.

For a maximal face § for which ¢|s has slope ns € N has normal cone = ray
generated by (—ng,1).

® Vertical faces: mapping non-homeomorphically to faces of A.

1 z 3

If 0 is a vertical face, the normal cone Nx(§) lies in Ng x 0 (and is a cone in the
normal fan to A).



The projection B
7 X(A) — A}
is given by the monomial z°, where p = (0,1) € Asym(A) C Mg ® R.
The primitive generators for the rays of S(A) are either of the form (n,0) or (n,1) for
n € N.
~~—~> 2P does not vanish on divisors corresponding to rays of the first type, and
vanishes with order 1 along the divisors corresponding to the second type.

Hence (scheme-theoretically),

=0 = |J X0

0€ Pmax



X(A) — 71(0) is isomorphic to X (A) x C*:

Reason:
Localize k[C(A) N (M & Z & Z)] at 2010,

This is the same thing as replacing A with A x R

X(A x R) = X(A) x Speck[Z] = X(A) x C*.



Example

& has two maximal faces, so
71'_1(0) = D1 U Dy

D1 N Dy is defined by the vertex v = (1,0) € A.

00%.0

—



Example

The normal fan:

Cul)

The monoid K,A N Z? has generators (—1,0), (1,2), (0,1).

k[K,ANZ2 ~ k[z1, 22, 1] /(2122 — 12)

where z; = (710 25 = 2(=10) ¢ = (O1)

This is a local model of the smoothing of a node.



In this example, the total space has an A;-singularity.

1)

We can understand this from the normal fan:
Start with A! x P! and perform a weighted blow-up by adding the ray (—2,1).

This gives another P! and an A; singularity.



Newton subdivision

Let
f=) cma™ e K[M]

be a Laurent polynomial with Newton polytope A ¢ R*+1,

¢ : A — R given by the lower convex envelope of the function

m > ordg(cp,).

~~> regular subdivision & + corresponding degeneration of X (A).



For every face § of &2, set

fs= Z cma™

znting

Non-degeneracy condition: We assume that Z(f5) is smooth for all é.
Let X = X(A) X k[t] R.

~= XK:XK(A) and Xk:UPE!? X(P)

max

Taking the Zariski closure of Z(f) in Xk, we also get a degeneration
Y — Aj

with Vi = Z(f).
Proposition

Assuming that f is non-degenerate in the above sense, the corresponding degeneration
has toroidal singularities. Hence we can apply the motivic volume formula.



Definition

A polytope A is called stably irrational if:

for every algebraically closed field F' of characteristic 0, and every very general
polynomial g € F[M] with Newton polytope A, the hypersurface Z(g) is stably
irational.

Otherwise we say A is stably rational.



Example
The dilated (n + 1)-simplex dA C R™*! is stably irrational if and only if the very

general degree d hypersurface in P**! is not stably rational.

23 (ool

¥, +%, +¥%2&4

(940)
o

(400)

(P, @)

Example

The product polytope 2As x 2A3 C R? is stably irrational
(by Hassett-Pirutka-Tschinkel).

(7, e00)



Degenerating a hypersurface

Example (Lattice width 1)
If A is a polytope with lattice width 1, then A is stably rational.

Reason: A polynomial f with that Newton polytope is linear in one variable (after a
change of coordinates).

e.g., 1 + 2z + 23 + 2y + 2%y has Newton polytope:
(0.1 1,1) 2,1
% ) {. ) (. )
(0,0) (1,0) (2,0) (3.0)
@ ([ ) o

A nodal cubic curve



Example

fo := general homogeneous polynomial of degree d in k[z1, ..., 2z,41]
f1 :=general homogeneous polynomial of degree d — 1 in k[zp, ..., 2Zn+1]
Let

f=tfo+zh

Newton polytope:

A= {(uo,...,un+1)|uo + ...t Upp1 = d} C Rg—é_Q



Example

The subdivision is induced by ¢ = max{0,1 — up}:

Two maximal cells:
o< = {(ug; -, upt1)luo < 1}

0> = {(uo; -, unt1)|ug > 1}

With intersection
6= = {(to0, -, tny1) o = 1}



Example

The toric k[t]-scheme X (A) defined by ¢ is the blow-up of

IP)Z[El = Proj k[t][z0, - - -, Zn+t1]

in H={2=t=0} cPyt.

For the R-scheme X' = X(A) Xy R, we have
X = D1+ Do

where

Dy ~ Pt (strict transform);

Dy ~P(Op & On(1)) (exceptional divisor).
Dy N Dy ~ PP,



Example

The Zariski closure
Y — Spec R

of Z(f) C Xk = P?(H in X' gives a proper and semistable R-model of Z(f).
Two components in the special fiber:

Ey =Y N Dy = degree (d — 1)-hypersurface defined by f; = 0.

Ey =Y N Dy = section of O(1) @ 7*O(d — 1) in P(Og @ On (1)) ~~> rational.
Also,

Ey N Ey = degree (d — 1)-hypersurface defined by f1(0,21,...,2,+1) = 0.



Conslusion:

Theorem

Suppose that a very general hypersurface of degree d — 1 in P" is stably irrational.

Then at least one of the following must hold:
(i) a very general hypersurface of degree d in P"*! is stably irrational;

(ii) a very general hypersurface of degree d in P" is stably irrational

We will improve this result in the next example.

Example

The result for quartic 5-folds implies that we also get stable irrationality for
¢ QQuintic 6-folds
e Sextic 7-folds



Lecture 5:
Further applications



Recap
The ring of stable birational types: Z[SBp].

K = CHtH = Upsg ©UE™), B = Uy €A™

Theorem (Nicaise-Shinder)
There exists a unique ring morphism

such that, for every strictly semistable (or toroidal) proper R-scheme X with smooth
generic fiber X = Xx, we have

VOI([X]sb) = Z (_1)COdim(E) [E]sb'
EecS(X)

Here S(X) denotes the set of strata of Xj.

Obstruction to rationality: Vol maps [Spec K] to [Speck],.



A regular subdivision & ~~~> degeneration of X(A)
X — AY
satisfying:

pPe»

and if P,@Q € & share a common face R, then X (P) N X (Q) can be identified with the
toric variety X (R) (which is a subvariety of both).



Further applications

General strategy for hypersurfaces in a toric variety X(A):

Construct a subdivision & of A, so that all but one lower-dimensional polytope is
stably rational (or make sure that the various intersections do not cancel out in the

alternating formula for Vol).




Theorem (Increasing degree / decreasing dimension)
Suppose that a very general hypersurface of degree d in P"*! is stably irrational.
Then we also have that:

(i) A very general hypersurface of degree d + 1 in P"*! is stably rational.

(ii) A very general hypersurface of degree d in P is stably rational.



Proof of (i)

Consider the following subdivision of (d + 1)A,41:

° . ° .
° ) ° .
° . ° .
° . ° .
o . o .



Proof of (i)

Consider the following subdivision of (d + 1)Ap41:




Proof of (i)

The red polytope corresponds to a degree d hypersurface Y C P™.
All other polytopes have lattice width 1 (hence they are rational).

We get a degeneration X — Spec R of degree (d + 1)-hypersurfaces in P**! with

Vol(Xk) = [V]s + a[SpecClg,
# [SpecCls



The Quartic fivefold again
Newton polytope: A = {(z1,...,z6) € R620| S <4}
Subdivision below ~~~> degeneration with special fiber X1 U X5 U X3 U X4.

Red polytope = (2,2)-divisor Y C P? x P3
~~> stably irrational by [Hassett—Pirutka—Tschinkel 2016].

All other polytopes have lattice width 1, hence rational.

Thus
Vol(Xk) = [Y]sb + a[SpecClsy, # [Spec Clsy



The Quartic fivefold again

Here is the previous degeneration:

Red polytope = double quartic 4-fold.



Variation of birational types

Question: In a family of hypersurfaces
X — B,

how does the stable rationality types vary in the fibers A7

Intuition: If some fiber is stably irrational, then the stable birational types should vary.



Theorem

Let W be a variety over k.

Let A be a polytope such that
® A is stably irrational.

e A admits a regular subdivision & such that every face of &2 which is not
contained in A is stably rational.

Then for every very general polynomial g € k[M] with Newton polytope A, the
hypersurface

Z(g) ={g9=0}c(C)"
is not stably birational to W.

Hl




Corollary (Shinder)
Let W be a k-variety.

If a very general degree-d hypersurface in P” is stably irrational,
then a very general degree-d hypersurface in P" is not birational to W.



Proposition

: +1
Let H be a hyperplane in P,
Let X be a degree d hypersurface in }P’ZH that is very general with respect to H.

If X is stably irrational, then X is not stably birational to X N H.

Proof:



Proposition

: +1
Let H be a hyperplane in P;™".
Let X be a degree d hypersurface in IP’ZH that is very general with respect to H.

If X is stably irrational, then X is not stably birational to X N H.

Proof:

There is a more general result for other polytopes A.



Results for complete intersections

Many new classes of complete intersections in P"
(i) Logarithmic bounds & la Schreieder

(ii) Complete intersections of r quadrics in P™ are stably irrational if r > 3 and
2r>n—1.

(iii) In dimension 4:

4),(5),(2,3),(2,4),(3,3),(2,2,2),(2,2,3),(2,2,2,2)

(iv) In dimension 5:



Proposition

A very general intersection of a quadric and a quartic in P® is not stably rational.

Let q, f € k[xo, ..., xg] be very general of degrees 2, 4.
X := Proj Rxo, ..., xs]/(f,tq — w773)

Then X}, = 1 U Ey where
* By ={f=27=0}
* By ={f=u25=0}
® F19={f =uz7=x3 =0} (stably irrational)

In any case,

Vol(Xg) = [Eilgy, + [Ealg, — [Ei2lg,



Proposition

A very general intersection of two cubics in P is not stably rational.

Let q1,q2,c1,c2 € k[xg,...,27] be very general forms of degrees 2,2, 3, 3.
X := Proj R[zg, ..., z7|/(c1,tca — x7q2)

Then X, = E1 U Es, where
° F = {Cl(l‘o, e ,mG,O) = 0}
L] E2:{Clzq2:o}
® Fio=FE1NEy;={c; =q=x7 =0} (stably irrational)

As
Vol(Xx) = [E1]y, + [Ealy, — [E1 N Ealy,

it suffices to prove:
Claim 1. Eq is not stably birational to E19
Claim 2. Es is not stably birational to E1o



Claim 1. Eq is not stably birational to E19

E1 == {Cl(on, e ,$6,0) = 0}
Eiy = E1 N Ey = {c1 = g2 = x7 = 0} (stably irrational)

Consider the family
Y = Proj k[t][xo, . .., z7]/(tc1 — x6q2, 7)

We have
Vi=(x6=27=0)U(q2 =27 =0)

a union of two rational varieties intersecting along a rational subvariety, so
VOl(y Xk[t] K) = [Spec k]sb #* [El N EQ}Sb
Hence Y Xy K is not birational to Eia X K.

The proof of Claim 2 is very similar.



Theorem

Let dy, ..., d, be positive integers such that d,. > d; for all 7.

Assume that
r—1

ntr>> di+2
=1
and that there exists a stably irrational smooth hypersurface of degree d,. in
n+r722;1 d;
P, e
Then a very general complete intersection in IF’ZJFT of multidegree (di,...,d,) is not

stably rational.

Corollary
Let dy,...,d, be positive integers such that d,. > 4 and d, > d; for all i. Assume that

r—1 &
ddi+2<n+r<2h4> d; -3
i=1 =1

Then a very general complete intersection in PZ” of multidegree (di,...,d,) is not

stably rational.



Proposition
Let n and r be integers such that
n>3 r>3 r>n-—1
Then a very general complete intersection of r quadrics in PZ” is stably irrational.

For
X = (Ql7' . 'aqr) C ]P)TH_T)

degenerate ¢, ~~> Zp1,Tp1r—1 and use induction on r.



Products of projective spaces

Theorem
A very general (2, 3)-divisor X C P! x P* is not stably rational.
Subdivisions of the polytope aA; x bA,, allows us to raise degree/dimension:

(a,b) in P™ x P™ stably irrational = (a,b+ 1) and (a + 1,b) also stably irra-
tional in P™ x P™ and P™ x P+,

.. we get all bidegrees corresponding to rational/irrational hypersurfaces.



The Hassett—Pirutka—T'schinkel quartic

Consider Y C P2 x P3| bidegree (2,2), defined by

eyU? + 22V 4 y2W? 4+ (2?2 + 2 + 22 = 2wy + 22+ y2)) T2 =0

Hassett—Pirutka—Tschinkel /Schreieder:
Anything that specializes to Y does not admit a decomposition of A (hence is stably
irrational).



(2, 3)-divisors in Pt x P

P = the Newton polytope of the HPT quartic.
020101
002110
= convex hull of column vectorsof |0 0 0 2 0 0
0000 20
00000 2

Starting observation: P is contained in the Newton polytope of a general (2, 3)-divisor:
2A1 x 3A4 = {(u,v) € RE [u <2, vy +... + vy <3}
In concrete terms, the following bidegree (2,3) polynomial

x%yg’ - 25170171?48 =+ x%yg - 2x3y3y1 — 2xox1y§y1
+ T3YoYL + ToT1Y1Y3 + TEYIY3 + ToT1YoYs

dehomogenizes to the HPT quartic.



Let &2 denote the regular subdivision of the polytope 2A; x 3A4 induced by the convex
function
f:R®> 5 R,  + min.cp|lz — z|?

The cells in Z2:
dim 6 ‘

number ‘

~~> degeneration of P! x P? into a union of 26 toric varieties.



Going through the cells of dimension 2 and 4 reveals that any face ¢ of even dimension
either
® has lattice width one (rational, as the equation is linear with respect to a variable)

® corresponds to a quadric bundle over IP’,Ic (rational).

® defines a conic bundle over A3 with a section (rational)

In Z[SBc] we have

Vol([X]sp) = [HPT] + Z [X1] + a[Spec C] for some a € Z
#I odd

As this is # [Spec C], a very general X is stably irrational. O
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