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Fano varieties with torsion in the third
cohomology group

By John Christian Ottem at Oslo and Jørgen Vold Rennemo at Oslo

With an appendix by János Kollár at Princeton

Abstract. We construct first examples of Fano varieties with torsion in their third co-
homology group. The examples are constructed as double covers of linear sections of rank
loci of symmetric matrices, and can be seen as higher-dimensional analogues of the Artin–
Mumford threefold. As an application, we answer a question of Voisin on the coniveau and
strong coniveau filtrations of rationally connected varieties.

1. Introduction

If X is a nonsingular complex projective variety, the torsion subgroup of the integral
cohomology group H 3.X;Z/ is an important stable birational invariant. It was introduced by
Artin and Mumford in [1], where they used the invariant to show that a certain unirational
threefold is not rational.

For rationality questions, perhaps the most interesting class of varieties is that of Fano
varieties, that is, smooth varieties with ample anticanonical divisor. In dimension at most 2,
these are all rational, withH 3.X;Z/ D 0. In dimension 3, there are 105 deformation classes of
Fano varieties [20,21,23], and direct inspection shows that, in each class, the group H 3.X;Z/
is torsion free. Beauville asked on MathOverflow whether the same statement holds for Fano
varieties in all dimensions [32] (an incorrect counterexample is proposed in the answer to [32];
see Section 4.4). In this paper, we answer the question in the negative.

Theorem 1.1. For each even d � 4, there is a d -dimensional Fano variety X of Picard
rank 1 with H 3.X;Z/ D Z=2.

As a consequence, by [6,15], the varietyX is rationally connected but not stably rational.
We do not know if it is unirational.
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TheX in the theorem is a complete intersection in a double cover of the space of quadrics
of rank at most 4 in Pd=2C2. The families of maximal linear subspaces of these quadrics give
Brauer–Severi varieties over X , and via the isomorphism Br.X/ Š TorsH 3.X;Z/, the associ-
ated Brauer class maps to the non-zero element inH 3.X;Z/. Our examples can be regarded as
higher-dimensional analogues of the Artin–Mumford threefold from [1], whose construction is
closely related to that of our X (see Section 4.3).

Starting in dimension 6, the Fano varieties we consider have a further exotic property.

Theorem 1.2. When d � 6, the d -dimensional Fano variety X from Theorem 1.1 has
the property that the coniveau and strong coniveau filtrations differ. More precisely,

0 D zN 1H 3.X;Z/ ¤ N 1H 3.X;Z/ D H 3.X;Z/ Š Z=2:

The two coniveau filtrations zN cH l.X;Z/ � N cH l.X;Z/ ofH l.X;Z/were introduced
in the paper [3]. The subgroups of the filtrations contain the cohomology classes in H l.X;Z/
obtained via pushforward from smooth projective varieties (resp. possibly singular projective
varieties) of codimension at least c. In the case c D 1, l D 3, they are described as follows.
The group N 1H 3.X;Z/ consists of classes in H 3.X;Z/ supported on some divisor of X .
Its subgroup zN 1H 3.X;Z/ consists of pushforwards f�ˇ of classes ˇ 2 H 1.S;Z/ via proper
maps f WS ! X , where S is nonsingular of dimension dimX � 1.

An inequality of the two coniveau filtrations is particularly interesting for c D 1 because,
for each l � 0, the quotient

(1.1) N 1H l.X;Z/= zN 1H l.X;Z/

is a stable birational invariant for smooth projective varieties [3, Proposition 2.4].
While the examples of [3] show that this quotient can be non-zero in general, it is known

to be zero for certain classes of varieties. Voisin [31] proved that, for a rationally connected
threefold, any class inH 3.X;Z/modulo torsion lies in zN 1H 3.X;Z/. Tian [28, Theorem 1.23]
strengthened this to show that H 3.X;Z/ D zN 1H 3.X;Z/ for any rationally connected three-
fold. Theorem 1.2 shows that the quotient (1.1) can be non-zero for rationally connected X of
higher dimension, answering a question of Voisin (see [31, Question 3.1] and [3, Section 7.2]).

The paper is organized as follows. Section 2 begins with background on the geometry
of symmetric determinantal loci and their double covers. In Section 2.2, we explain how these
symmetric determinantal loci and their double covers are GIT quotients of affine space by an
action of an orthogonal similitude group. In Section 2.3 (more specifically Definition 2.13), we
define the main examples in Theorem 1.1 as linear sections of the double covers of symmetric
rank loci.

In Section 3, we use the presentation of the double symmetric rank loci as GIT quotients
to show that their smooth part has nontrivial torsion classes ˛ 2 H 3.X;Z/. Taking a linear
section and applying a generalized Lefschetz hyperplane theorem then proves Theorem 1.1,
restated more precisely as Theorem 4.1. In Section 4, we study some special examples appear-
ing in our construction and compute their geometric invariants, in particular, the “minimal”
example of a 4-dimensional Fano variety.

In the final Section 5, we prove Theorem 1.2, restated precisely as Theorem 5.3. The
key point is that the mod 2 reduction of the generator ˛ ofH 3.X;Z/ satisfies ˛2 ¤ 0 .mod 2/,
which implies that ˛ is not of strong coniveau 1 by a topological obstruction described in [3].
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1.1. Notation. We work over the complex numbers C. We use the notation for pro-
jective bundles where P .E / consists of lines in E . By a Fano variety, we mean a nonsingular
projective variety with ample anticanonical bundle.

2. Symmetric determinantal loci and related varieties

Here we survey basic facts on symmetric determinantal loci. Some of these are well
known; we in particular follow the works of Hosono–Takagi [13, Section 2] and Tyurin [29].

Let V D Cn. We identify P .Sym2 V _/ with the space of quadrics in P .V / and let
Zr;n � P .Sym2 V _/ denote the subset of quadrics of rank r . The setZr;n is a quasi-projective
variety; its closure Zr;n parameterizes the quadrics of rank at most r and is defined by the van-
ishing of the .r C 1/ � .r C 1/-minors of a generic n � n symmetric matrix. We define Z0;n
and Z0;n to be empty. These give a nested chain of subvarieties of P .Sym2 V _/,

Z1;n � Z2;n � � � � � Zn;n D P .Sym2 V _/;

where Z1;n is the second Veronese embedding of Pn�1, and Zn�1;n is the degree n hyper-
surface defined by the determinant.

Proposition 2.1. The variety Zr;n is irreducible of dimension

(2.1) dimZr;n D rn �
1

2
r2 C

1

2
r � 1:

The singular locus of Zr;n is Zr�1;n, unless r D 1 or r D n, in which case Zr;n is smooth.

This result can be checked using the incidence variety zZr;n parameterizing .n � r � 1/-
planes contained in the singular loci of quadrics

zZr;n D ¹.ŒL�;Q/ j P .L/ � sing.Q/º � Gr.n � r; V / � P .Sym2 V _/:

For ŒL� 2 Gr.n � r; V /, the fiber of the first projection �1, can be identified with the space
of quadrics in P .V=L/ ' P r�1, so �1 is a P r.rC1/=2�1-bundle over Gr.n � r; V /. It follows
that zZr;n is nonsingular, and its dimension is given by (2.1). Moreover, it is straightforward
to check that the second projection gives a desingularization �2W zZr;n ! Zr;n. For the claim
about the singular locus, see [13, Section 2].

Example 2.2. For n D 5, P .Sym2 V _/ ' P14, and there are 4 closed rank loci.

� Z4;5 is a quintic hypersurface defined by the determinant of the generic 5 � 5-symmetric
matrix.

� Z3;5 is a codimension 3 subvariety of degree 20.

� Z2;5 ' Sym2 P4 is a codimension 6 subvariety of degree 35.

� Z1;5 is the second Veronese embedding of P4 in P14; it is a fourfold of degree 16.
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2.1. Double covers. We will only be interested in the case when the rank r is even. In
this case, we can define a double cover � WWr;n ! Zr;n which is ramified exactly over the locus
Zr�1;n, of codimension n � r C 1 in Zr;n. The construction is based on the classical fact, that
for a quadric Q of rank r in n variables, the variety of .n � r=2 � 1/-planes in Q � Pn�1

is isomorphic to the orthogonal Grassmannian OG.r=2; r/, which has two connected com-
ponents.

The formal construction of Wr;n from this observation starts with the incidence variety

(2.2) Ur;n D ¹.L;Q/ j Q 2 Zr;n and P .L/ � Qº � Gr.n � r=2; V / �Zr;n:

Taking the Stein factorization of the projection Ur;n ! Zr;n, we get a new variety Wr;n and
morphisms

(2.3) �WUr;n ! Wr;n and � WWr;n ! Zr;n;

where � has connected fibers and � is finite. The fiber of � at a general point of Wr;n is iso-
morphic to a connected component of OG.r=2; r/. The morphism � is a double cover, ramified
exactly along Zr�1;n (see [13, Proposition 2.3]).

For the remainder of the paper, we will let H D ��OZr;n
.1/ be the pullback of the

polarization from P .Sym2 V _/. The basic geometric properties of Wr;n are as follows.

Proposition 2.3. The variety Wr;n has Gorenstein canonical singularities contained in
��1.Zr�2;n/. It has Picard number 1 and its anticanonical divisor is

(2.4) �KWr;n
D
rn

2
H:

In particular, Wr;n is a singular Fano variety.

Proof. See [13, Proposition 2.5].

Example 2.4. In the setting of Example 2.2, one can directly see that �KW4;5
D 10H

because Z4;5 � P14 is a quintic hypersurface and � is étale over Z4;5 �Z2;5.

2.2. (Double) symmetric determinantal loci as GIT quotients. In this section, we
explain how the varieties Zr;n and Wr;n can be presented as GIT quotients of affine spaces,
which is a key ingredient in the cohomology computations needed in Theorems 1.1 and 1.2.

Let r be even, let S D Cr , and let !S 2 Sym2 S_ be a nondegenerate quadratic form.
The orthogonal similitude group GO.S/ � GL.S/ consists of the linear automorphisms of S
which preserve !S up to scaling.1) In other words, an invertible linear map �WS ! S lies in
GO.S/ if there exists a �.�/ 2 C� such that, for all v 2 S ,

�.�/!S .v; v/ D !S .�.v/; �.v//:

The map �WGO.S/! C� defined by this relation is a group homomorphism, and we have an
exact sequence

1! O.S/! GO.S/
�
! C� ! 1:

1) The group GO.S/ could more properly be denoted GO.S; !S /, but since the choice of !S does not
matter, we omit it from the notation.
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The group GO.S/ naturally acts on the orthogonal Grassmannian OG.r=2; S/. The variety
OG.r=2; S/ has two connected components, and the action of GO.S/ on this two-element set
gives an exact sequence

1! GO.S/ı ! GO.S/! �2 ! 1;

where GO.S/ı is connected. We further have SO.S/DO.S/\GO.S/ı and an exact sequence

1! SO.S/! GO.S/ı
�
! C� ! 1:

Consider now the affine space Hom.V; S/ ' Arn. The group GO.S/ acts on Hom.V; S/
via

GO.S/ � Hom.V; S/! Hom.V; S/;

.�; f / 7! � ı f:

We have a morphism of affine spaces

� WHom.V; S/! Sym2 V _;

defined by, for any f 2 Hom.V; S/ and v;w 2 V ,

�.f /.v; w/ D f �!S .v; w/ D !S .f .v/; f .w//:

Let CZr;n � Sym2 V _ be the subset of Sym2 V _ corresponding to quadratic forms of rank r
so that Zr;n D CZr;n=C�. The set ��1.CZr;n/ � Hom.V; S/ consists of the f WV ! S such
that f �!S has rank r .

Lemma 2.5. The group GO.S/ acts freely on ��1.CZr;n/.

Proof. If f 2 ��1.CZr;n/, then f is surjective, so no element of GO.S/ fixes f .

Lemma 2.6. The group GO.S/ı acts freely on ��1.CZr;n [ CZr�1;n/.

Proof. The previous lemma shows that GO.S/ı acts freely on ��1.CZr;n/. So let
f 2 ��1.CZr�1;n/, and let � 2 GO.S/ be an element which fixes f . We will show that �
is the identity.

Since f �!S has rank r � 1, we may find a basis v1; : : : ; vn of V such that

f �.!S /.vi ; vj / D !S .f .vi /; f .vj // D

´
1 if 1 � i D j � r � 1;

0 otherwise:

The elements f .v1/; : : : ; f .vr�1/ 2 S are orthonormal, so we can choose a vector e 2 S
such that f .v1/; : : : ; f .vr�1/; e is an orthonormal basis for S . Since � fixes f , we have
�.f .vi // D f .vi / for 1 � i � r � 1. We have

!S .�.e/; �.e// D !S .e; e/

and, for each i ,
!S .�.f .vi //; �.e// D !S .f .vi /; e/:

This implies that �.e/ D ˙e, and then the fact that � 2 GO.S/ı forces �.e/ D e. This means
that � is the identity element.
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Lemma 2.7. The codimension of ��1.CZr�2;n/ in Hom.V; S/ equals n � r C 2.

Proof. Let f 2 Hom.V; S/. The rank of f �!S equals the rank of !S jf .V /. Thus if
f �!S has rank r � 2, we either have that f .V / has dimension r � 2 or that f .V / has dimen-
sion r � 1 and P .f .V // is tangent to the quadric V.!S / � P .S/. The set of maps f of rank
r � 2 has codimension 2.n � r C 2/, while the set of f with rank r � 1 has codimension
n � r C 1. The further requirement that P .f .V // is tangent to the quadric gives codimension
n � r C 2.

The character � of GO.S/ induces a GO.S/-linearization of OHom.V;S/ such that

x 2 H 0.Hom.V; S/;OHom.V;S//

is GO.S/-invariant if and only if, for all � 2 GO.S/ and f 2 Hom.V; S/, we have

x.�f / D �.�/x.f /:

Let Hom.V; S/ss � Hom.V; S/ denote the associated GIT semistable locus and let

Hom.V; S/us
D Hom.V; S/ � Hom.V; S/ss:

Let
� WHom.V; S/ � ��1.0/! P .Sym2 V /

be given by �.f / D Œ�.f /�.

Lemma 2.8. We have
Hom.V; S/us

D ��1.0/;

and there is an isomorphism

Hom.V; S/ss � GO.S/ ' Zr;n;

given on closed orbits by GO.S/ � f 7! �.f /. This isomorphism induces a bijection between
GO.S/-orbits of ��1.CZr;n/ and points of Zr;n.

Proof. Let R be the coordinate ring of Hom.V; S/. The GIT quotient

Hom.V; S/ss � GO.S/

is given by ProjRO.S/, where the ring RO.S/ is graded by the action of GO.S/, an action
which factors through �WGO.S/! C�. Any linear function x on Sym2 V _ defines an element
��.x/ 2 RO.S/, and the first fundamental theorem of invariant theory for orthogonal groups
says that these ��.x/ generateRO.S/ (see [24, p. 390]). This shows that Hom.V;S/usD ��1.0/,
and moreover that � gives a closed embedding Hom.V; S/ss � GO.S/! P .Sym2 V _/. It is
easy to see that its image is Zr;n.

For the final claim, note that ��1.Zr;n/ D ��1.CZr;n/, and so we have an isomorphism
��1.CZr;n/ � GO.S/ ' Zr;n. By Lemma 2.5, the action of GO.S/ on ��1.CZr;n/ is free, so
the points of ��1.CZr;n/ � GO.S/ are GO.S/-orbits.
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Thinking of � as a character of GO.S/ı, we get a GO.S/ı-linearization of OHom.V;S/.
The associated GIT semistable locus in Hom.V; S/ is the same as for the GO.S/-linearization,
since GO.S/ı has finite index in GO.S/.

Lemma 2.9. The GIT quotient Hom.V; S/ss � GO.S/ı is isomorphic to Wr;n.

Proof. Since GO.S/ı has finite index in GO.S/, the morphism

Hom.V; S/ss � GO.S/ı ! Hom.V; S/ss � GO.S/

is finite. Since Hom.V; S/ss is smooth, Hom.V; S/ss � GO.S/ı is normal [22, p. 5].
The open subset

��1.CZr;n/ � GO.S/ı � Hom.V; S/ss � GO.S/ı

is isomorphic to ��1.Zr;n/ � Wr;n by the following construction. Fix an r=2-dimensional
isotropic linear subspace LS � S . Recall the variety Ur;n from (2.2) and define a morphism

 W ��1.CZr;n/! Ur;n by sending f 2 ��1.CZr;n/ to the pair of the quadric

Q D ¹Œv� 2 P .V / j f �!S .v; v/ D 0º

and the linear subspace f �1.LS / � V . Composing with �WUr;n ! Wr;n gives a morphism
� ı 
 W ��1.CZr;n/! Wr;n.

This morphism � ı 
 is GO.S/ı-invariant, and we claim that it gives a bijection between
the GO.S/ı-orbits in ��1.CZr;n/ and the points of ��1.Zr;n/. To see this, note first that there
are natural GL.V /-actions on Hom.V; S/ and Ur;n, which in turn induce GL.V /-actions on
��1.CZr;n/, on Wr;n and on ��1.Zr;n/. Moreover, 
 and � respect these group actions, and
so � ı 
 does as well.

The GL.V /-action on ��1.��1.Zr;n// has a single orbit since, for every

.Q;L/ 2 ��1.��1.Zr;n//;

we can find coordinates x1; : : : ; xn on V such that Q is defined by x1x2 C � � � C xr�1xr and
L is defined by .x2; x4; : : : ; xr/. It follows that ��1.Zr;n/ has a single GL.V /-orbit, and so
� ı 
 surjects onto ��1.Zr;n/.

Consider now the commutative diagram

��1.CZr;n/=GO.S/ı ��1.Zr;n/

��1.CZr;n/=GO.S/ Zr;n;

 !

 

!

 ! �

 

!

where the top arrow is the map induced by � ı 
 . The bottom arrow is a bijection by Lemma 2.8.
The right-hand map is surjective with fibers of cardinality 2, as is the left-hand map, since
GO.S/ı has index 2 in GO.S/. From this and surjectivity of � ı 
 , we get that the top arrow is
a bijection, as claimed.

Since ��1.Zr;n/ is smooth by Proposition 2.3, it follows from Zariski’s main theorem
that the induced morphism

 W ��1.CZr;n/ � GO.S/ı ! ��1.Zr;n/

is an isomorphism.
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The birational map  fits in the following commutative diagram:

Hom.V; S/ss � GO.S/ı Wr;n

Hom.V; S/ss � GO.S/ Zr;n

 !

 

!
 

 ! �

 

!
'

LetL be the function field of Hom.V; S/ss � GO.S/ı, identified with the function field ofWr;n.
Since these two varieties are normal and finite over Zr;n, they are both equal to the relative
normalization of Zr;n in SpecL, and so  extends to an isomorphism of varieties.

Proposition 2.10. Étale locally near a point p 2 ��1.Zr�2;n/, the pair .Wr;n; p/ is
isomorphic to .C �AM ; .0; 0//, where C is the affine cone over the Segre embedding of
Pn�rC1 � Pn�rC1, 0 2 C is the singular point, and M D dimWr;n � dimC .

Proof. We use the isomorphism

Hom.V; S/ss � GO.S/ı ' Wr;n:

Let f 2 Hom.V; S/ss be a point whose orbit maps to ��1.Zr�2;n/ under this isomorphism.
Then f 2 ��1.CZr�2;n/, and we can choose a basis v1; : : : ; vn for V such that

f �!S .vi ; vj / D !S .f .vi /; f .vj // D

´
1 if 1 � i D j � r � 2;

0 otherwise:

This means that the elements f .v1/; : : : ; f .vr�2/ are orthonormal in S , and we extend
this sequence to a basis of S by adding vectors e1; e2 such that

!S .ei ; ej / D ıij ;

!S .ei ; f .vj // D 0 for all i; j:

Since the f .vr�1/; : : : ; f .vn/ are orthogonal to each other and to each f .vi /, 1 � i � r � 2,
the space hf .vr�1/; : : : ; f .vn/i is an isotropic subspace of hf .v1/; : : : ; f .vr�2/i? D he1; e2i.

The isotropic subspaces of he1; e2i are he1i and he2i. Reordering the ei , we may assume
that f .vr�1/; : : : ; f .vn/ are all contained in he1i. After linearly transforming the vi , we may
assume that f .vr�1/ D 
e1 for some 
 2 C and f .vi / D 0 for i � r . There is a subgroup
T � GO.S/ı, with T Š C�, consisting of elements �� 2 GO.S/ı, with � 2 C�, defined by

��.f .vi // D f .vi /; i D 1; : : : ; r � 2;

��.e1/ D �e1;

��.e2/ D �
�1e2:

There are now two cases to consider. If 
 ¤ 0, the stabilizer group of f in GO.S/ı is triv-
ial. The GO.S/ı-orbit of f is not closed in Hom.V; S/ss since lim�!0.��f / is a point of
Hom.V; S/ss. If 
 D 0, the stabilizer group of f is T . In this case, the GO.S/ı-orbit of f
is closed in Hom.V; S/ss since the orbit has minimal dimension among orbits mapping to
��1.Zr�2;n/.
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Let us write Ai .j / for a T -representation of dimension i with weight j . We then have
an isomorphism of T -representations

THom.V;S/;f Š Hom.V; S/ Š An.1/˚An.�1/˚An.r�2/.0/:

The Luna étale slice theorem implies that étale locally near the orbit of f , the variety
Hom.V; S/ss � GO.S/ı is isomorphic to Nf � T , where Nf D THom.V;S/;f =TGO.S/ıf;f is
the normal space to the GO.S/ı-orbit of f . As T -representations,

TGO.S/ıf;f Š Lie.GO.S/ı/=Lie.T /:

Computing
Lie.GO.S/ı/ Š Ar�2.1/˚Ar�2.�1/˚A.

r�2
2 /C2.0/;

Lie.T / D A1.0/

gives, for some M ,

Nf Š An�rC2.1/˚An�rC2.�1/˚AM .0/:

The quotient Nf � T is isomorphic to C �AM with C the cone over Pn�rC1 � Pn�rC1, so
this completes the proof.

Corollary 2.11. If r � 4, the singular locus of Wr;n is ��1.Zr�2;n/.

Proof. By Proposition 2.3, Wr;n is nonsingular away from ��1.Zr�2;n/. If r � 4, then
Wr;n is singular at every p 2 ��1.Zr�2;n/, by Proposition 2.10, and the claim follows since
the singular locus is closed.

2.3. Linear sections of double symmetric determinantal loci. The varieties appear-
ing in Theorems 1.1 and 1.2 will be constructed by taking general linear sections of the double
cover Wr;n, i.e., complete intersections

(2.5) X D Wr;n \H1 \ � � � \Hc ;

where the Hi are general divisors in jH j. In other words, X is a ramified double cover of
a linear section of Zr;n,

X ! Zr;n \ L1 \ � � � \ Lc

for hyperplanes L1; : : : ; Lc in P .Sym2 V _/.
We are particularly interested in the case when X is also a Fano variety. This can happen

only when r < 6.

Lemma 2.12. Let X denote a general linear section of Wr;n. If 6 � r � n, then either
X is singular, or KX is base-point free.

Proof. Write X as in (2.5) for divisors Hi 2 jH j. As the Hi are general, and Wr;n is
Gorenstein with canonical singularities, it follows that the same holds forX . By Proposition 2.3
and adjunction, the canonical divisor is given by

(2.6) KX D
�
c �

rn

2

�
H:
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Therefore, if c > rn=2, X is of general type, and for c D rn=2, it is Calabi–Yau. If c < rn=2,
we note that

dim ��1.Zr�2;n/ � c � dimZr�2;n � rn=2C 1 D .n � r/.r � 4/=2C r=2 � 3;

which is non-negative for our choices of r and n. This means that X meets the singular locus
of Wr;n, and hence it must be singular.

By Lemma 2.12, we obtain Fano varieties as linear sections of Wr;n only when r D 2 or
r D 4. The case r D 2 givesW2;n D Pn�1 � Pn�1, and many linear sections of Pn�1 � Pn�1

are indeed Fano, but these varieties do not have interesting cohomology groups from the point
of view of this paper.

We therefore focus on the case r D 4. In this case, the existence of the double cover
� WW4;n ! Z4;n is explained as follows. A smooth quadric surface in P3 contains two families
of lines; thus a quadric of rank 4 in n variables contains two families of .n � 2/-planes, each
parameterized by a P1. Thus W4;n parameterizes quadrics plus a choice of one of the two
families.

The dimensions of the first few rank loci Zi are given by

dimZ4;n D 4n � 7; dimZ3;n D 3n � 4; dimZ2;n D 2n � 2; dimZ1;n D n � 1:

By Corollary 2.11, the double coverW4;n is singular along ��1.Z2;n/, which has codimension
2n � 5 in W4;n. By (2.4), the canonical divisor of W4;n equals KW4;n

D �2nH .

Definition 2.13. Given n � 4 and c � 0, let Xn;c be a general complete intersection

Xn;c D W4;n \H1 \ � � � \Hc :

The varietiesX in Theorems 1.1 and 1.2 areXn;2n�1 with n � 5 and n � 6, respectively.

3. Cohomology computations

LetX sm
n;c be the smooth part ofXn;c . In this section, we compute the low degree cohomol-

ogy of X sm
n;c . In Proposition 3.1, we compute the low degree cohomology of BGO.4/ı, and in

Proposition 3.5, we show that this agrees with low degree cohomology of X sm
n;c . We summarize

the consequences for the cohomology of X sm
n;c in Corollary 3.6. In order to prove Theorem 1.1,

we want a non-zero 2-torsion cohomology class of degree 3, and for Theorem 1.2, the class
should furthermore have a non-zero square modulo 2 (this will be explained in Proposition 5.2).

3.1. Cohomology of BSO.4/. The cohomology rings with integer coefficients of the
classifying spaces BSO.n/ were computed by Brown [5] and Feshbach [9]. For n D 4, the ring
is given by

H�.BSO.4/;Z/ D ZŒ�; e; p�=.2�/;

where e is the Euler class (of degree 4), p is the Pontrjagin class (degree 4), and � is a 2-torsion
class of degree 3. Thus the low degree cohomology groups of BSO.4/ are given by

H 0 H 1 H 2 H 3 H 4 H 5 H 6

Z 0 0 Z=2 � � Zp ˚ Ze 0 Z=2 � �2
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The cohomology ring of BSO.4/ with Z=2-coefficients is given by

H�.BSO.4/;Z=2/ D Z=2Œw2; w3; w4�;

where w2; w3; w4 2 H�.BSO.4/;Z=2/ denote the Stiefel–Whitney classes [19].
The class � is equal to ˇZ.w2/ 2 H

3.BSO.4/;Z/, where ˇZ is the Bockstein homomor-
phism associated with 0! Z! Z! Z=2! 0. Moreover, the mod 2 reduction of � is given
by w3 (see [12, p. 97]). Therefore, the mod 2 reduction of �2 equals

w23 ¤ 0 in H 6.BSO.4/;Z=2/:

3.2. Cohomology of BGO.4/ı. In the following, we compute the low degree cohomol-
ogy of BGO.4/ı.

Proposition 3.1. We have

H 1.BGO.4/ı;Z/ D 0; H 2.BGO.4/ı;Z/ D Z; H 3.BGO.4/ı;Z/ D Z=2:

Moreover, if 0 ¤ 
 2 H 3.BGO.4/ı;Z/, the mod 2 reduction of 
2 is non-zero.

Proof. We use the exact sequence

1! SO.4/! GO.4/ı ! C� ! 1:

This gives a fiber bundle � WBSO.4/!BGO.4/ı with fiber C�. The associated Gysin sequence
for this circle bundle takes the form

� � � ��! H i .BGO.4/ı;Z/
��

��! H i .BSO.4/;Z/
��
��! H i�1.BGO.4/ı;Z/ ��! � � � :

Using the fact that H 0.BSO.4/;Z/! H 0.BGO.4/ı;Z/ is an isomorphism and

H 1.BSO.4/;Z/ D H 2.BSO.4/;Z/ D 0;

this sequence gives that

H 1.BGO.4/ı;Z/ D 0 and H 2.BGO.4/ı;Z/ D Z:

Since H 3.BSO.4/;Z/ D Z=2, the map H 3.BSO.4/;Z/! H 2.BGO.4/ı;Z/ is 0, and so
H 3.BGO.4/;Z/ D Z=2. If 0 ¤ 
 2 H 3.BGO.4/ı;Z/, then ��.
2/ D �2, which has reduc-
tion w23 ¤ 0 modulo 2. It follows that 
2 has non-zero reduction modulo 2.

3.3. Cohomology of hyperplane sections of W sm
r;n . Let S be a quadratic r-dimensional

vector space and L � P .Sym2 V _/ is a codimension c linear subspace. We analyze the natural
homomorphism

(3.1) H�.BGO.S/ı;Z/! H�.L �P.Sym2 V _/ W
sm
r;n ;Z/

and show that it is an isomorphism in low degrees. To define the homomorphism, begin with
the pullback maps

H�.BGO.S/ı;Z/
'
!H�GO.S/ı.Hom.V;S/;Z/!H�GO.S/ı.Hom.V;S/� ��1.CZr�2;n/;Z/;
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with � and CZr�2;n as defined in Section 2.2. By Lemma 2.5 and Corollary 2.11, the variety
W sm
r;n is isomorphic to .Hom.V; S/ � ��1.CZr�2;n/=GO.S/ı, where the group action is free,

so we get an isomorphism

H�GO.S/ı.Hom.V; S/ � ��1.CZr�2;n/;Z/
'
! H�.W sm

r;n ;Z/:

Finally, we have the pullback homomorphism

H�.W sm
r;n ;Z/! H�.L �P.Sym2 V _/ W

sm
r;n ;Z/;

and composing these maps gives (3.1).

Lemma 3.2. Let G be an algebraic group on an affine space AN . Let Z � AN be
a closed, G-invariant subset of codimension c, and let U D AN �Z. Then the natural homo-
morphisms

H l
G.pt;Z/! H l

G.U;Z/; H l
G.pt;Z=2/! H l

G.U;Z=2/

are isomorphisms for l < 2c � 1 and injective for l D 2c � 1.

Proof. The Leray–Serre spectral sequence for equivariant cohomology [18, p. 501] has
E2-pageH i

G.pt;H j .U // and converges toH iCj
G .U /. SinceH j .U / D 0 for 0 < j � 2c � 2,

there are no nontrivial differentials whose domain is of degree .i; j / with i C j � 2c � 2. The
claim of the theorem follows from this.

Lemma 3.3. The homomorphisms

H i
GO.S/ı.pt;Z/! H i

GO.S/ı.Hom.V; S/ � ��1.CZr�2;n/;Z/;

H i
GO.S/ı.pt;Z=2/! H i

GO.S/ı.Hom.V; S/ � ��1.CZr�2;n/;Z=2/

are isomorphisms for i < 2n � 2r C 3 and injective for i D 2n � 2r C 3.

Proof. Combine Lemma 2.7 and Lemma 3.2.

Lemma 3.4. Let L � P .Sym2 V _/ be a generic codimension c linear subspace. The
homomorphisms

H i .W sm
r;n ;Z/! H i .L �P.Sym2 V /_ W

sm
r;n ;Z/;

H i .W sm
r;n ;Z=2/! H i .L �P.Sym2 V _/ W

sm
r;n ;Z=2/

are isomorphisms for i � dimWr;n � c and injective for i D dimWr;n � c.

Proof. The generalized Lefschetz theorem of Goresky and MacPherson [10, Theorem,
p. 150] states that we have isomorphisms on the level of homotopy groups for low degrees.
Combining this with the Hurewicz theorem gives the statement for cohomology groups.

Proposition 3.5. Let L � P .Sym2 V _/ be a generic codimension c subspace. The
homomorphisms

H j .BGO.S/ı;Z/! H�.L �P.Sym2 V _/ W
sm
r;n ;Z/;

H j .BGO.S/ı;Z=2/! H�.L �P.Sym2 V _/ W
sm
r;n ;Z=2/
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are isomorphisms for j < N and injective for j D N , where

N D min.2n � 1; dimWr;n � c/:

Proof. Combine Lemmas 3.2, 3.3 and 3.4.

Corollary 3.6. If c � 4n � 11, then

H 0.X sm
n;c ;Z/ D Z;H 1.X sm

n;c ;Z/ D 0;H
2.X sm

n;c ;Z/ D Z;H 3.X sm
n;c ;Z/ D Z=2:

If moreover c � 4n � 13, then the square of the non-zero class inH 3.X sm
n;c ;Z/ does not vanish

modulo 2.

Proof. Since Xn;c D L �P.Sym2 V _/ W4;n for a generic codimension c subspace L,
Bertini’s theorem implies X sm

n;c D L �P.Sym2 V _/ W
sm
4;n.

The first claim then follows from Propositions 3.1 and 3.5. For the second claim, let

�WH�.BGO.4/ı;Z/! H�.X sm
n;c ;Z/

be the natural homomorphism. Taking 0 ¤ 
 2 H 3.BGO.4/ı;Z/, we know from Proposi-
tion 3.1 that 
2 ¤ 0 .mod 2/. If c � 4n � 13, Proposition 3.5 implies that the map

H 6.BGO.4/ı;Z=2/! H 6.X sm
n;c ;Z=2/

is injective, and it follows that �.
/2 D �.
2/ ¤ 0 .mod 2/.

Remark 3.7. When Xn;c is smooth and rationally connected, the torsion subgroup of
H 3.Xn;c ;Z/ can be identified with the Brauer group Br.Xn;c/. Under this identification, the
generator of H 3.Xn;c ;Z/ ' Z=2 is represented by the Brauer–Severi variety given by the
restriction of �WU4;n ! W4;n to Xn;c .

4. The varieties Xn;c

We now analyze a few particularly interesting choices of n and c.

4.1. The case c D 2n � 1. Suppose that X D Xn;2n�1. Collecting our work, we have
now proved Theorem 1.1, restated more precisely as follows.

Theorem 4.1. The variety X is nonsingular of dimension 2n � 6 with KX D �H , and
hence Fano. It has Picard number 1 and H 3.X;Z/ D Z=2.

Proof. The singular locus in W4;n has dimension 2n � 2 by Proposition 2.1 and Corol-
lary 2.11, so it follows that X is nonsingular by Bertini’s theorem. The canonical divisor is
given by KX D �H by (2.6). Finally, H 3.X;Z/ is computed in Corollary 3.6.

4.2. The Fano fourfold. Specializing further, let X D X5;9. The strata Zi;5 were de-
scribed in Example 2.2. The quintic hypersurface Z4;5 � P14 parameterizes singular quadrics
in 5 variables, i.e., cones over quadrics in P3. The double coverW4;n ! Z4;5 is ramified along
the Z2;5 � P14, which is a singular 8-fold.
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Proposition 4.2. The fourfold X is a Fano variety with invariants

(1) Pic.X/ D ZH , with H 4 D 10,

(2) �KX D H ,

(3) h1;3.X/ D 9, h2;2.X/ D 67,

(4) H 3.X;Z/ D Z=2.

Proof. Parts (1), (2) and (4) follow from Theorem 4.1. Part (3) follows from Lemma 4.4
and Corollary 4.5 below.

4.2.1. Homological projective duality. In the paper [25], the second named author
studies derived categories of linear sections of the stack Sym2 Pn�1 from the perspective of
homological projective duality [17]. When n is odd, the paper defines a noncommutative res-
olution Yn of Wn�1;n, and shows that linear sections of this noncommutative resolution are
related to dual linear sections of Sym2 Pn�1 in precisely the way predicted by HP duality,
which strongly suggest that Yn is HP dual to Sym2 Pn�1.

Specializing to the case n D 5 and linear sections of the appropriate dimensions gives the
following result. Let V D C5, let L1; : : : ; L9 be general hyperplanes in P .Sym2 V /, and let L
be their intersection. Let L? D hL1; : : : ; L9i � P .Sym2 V _/ be the orthogonal complement.

In this language, X D L �P.Sym2 V / W4;5. Since X avoids the singular locus of W4;5,
the noncommutative resolution Y5 of W4;5 is equivalent to W4;5, and the main theorem of [25]
applies. On the other side of the HP duality, we find

(4.1) S D L? �P.Sym2 V _/ Sym2 P .V _/;

which is the intersection of 6 general .1; 1/-divisors in Sym2 P .V _/ D Sym2 P4. The follow-
ing is a slight amplification of the main result of [25].

Proposition 4.3. The category D.X/ admits a semiorthogonal decomposition

D.X/ D hD.S/;E1; E2; E3; E4i;

where the Ei are exceptional objects.

The amplification consists in the fact that [25] only proves that D.S/ includes as a semi-
orthogonal piece in D.X/. The fact that the orthogonal complement is generated by four
exceptional objects is not difficult to show using the techniques of the paper.

Lemma 4.4. The surface S in (4.1) is smooth of degree 35with respect to the embedding
S � P .Sym2 V _/. It has Hodge numbers

h1;0.S/ D 0; h2;0.S/ D 9; h1;1.S/ D 65:

Proof. The map P4 � P4! Sym2.P4/ induces an étale double cover � WT ! S , where
T is a general complete intersection of 6 symmetric .1; 1/-divisors in P4 � P4. In particular,
T is simply connected by the Lefschetz theorem. Furthermore, we find that

KT D OP4�P4.1; 1/jT ;
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which gives dimH 0.T;KT / D 19 and K2T D 70. From Noether’s formula,

�.OS / D 1C h
2;0.S/ D .1C 19/=2 D 10;

giving h2;0.S/D 9. As � is étale of degree 2,KT D ��KS ,K2S D 35, and hence �top.S/D 85

by Noether’s formula. From this, we find that h1;1.S/ D 65.

Corollary 4.5. With S and X as above, we have

4X
iD0

hi;i .X/ D

2X
iD0

hi;i .S/C 4;

h1;2.X/ D h0;1.S/;

h1;3.X/ D h0;2.S/:

Proof. The semiorthogonal decomposition in Proposition 4.3 gives the relation of Hoch-
schild homology groups

HH�.X/ Š HH�.S/˚C4:

Expressing Hochschild homology via Hodge numbers through

dim HHi .�/ D
X

p�qDi

hp;q.�/;

and using the fact that h0;i .X/ D 0 since X is Fano gives the result.

Remark 4.6. The fact that TorsH 3.X;Z/ ¤ 0 can be seen as a consequence of the fact
that the conic bundle �WU4;5 ! W4;5 does not admit a rational section.

To see this, recall that U4;5 is a projective bundle over the Grassmannian G D Gr.3; V /.
Explicitly, U4;5 D P .E/, where E is the rank 9 vector bundle appearing as the kernel of the
natural map S2.V _ ˝OG/! S2.U_/, and where U is the universal subbundle of rank 3.
Now, if D � P .E/ is the divisor determined by a rational section of �, then D is linearly
equivalent to a divisor of the form aLC bG, where L D OP.E/.1/ and G is the pullback of
OGr.3;V /.1/. We must also have D � L13 D 10 (as the 1-cycle L13 is represented by 10 fibers
of P .E/! W4;5). On the other hand, using the Chern classes of S2.U_/, we compute that
D � L13 D �20b, contradicting the condition that b is an integer.

This shows that the Brauer group of W sm
4;5 is nontrivial. In our case, we may identify

the Brauer group with TorsH 3.W sm
4;5;Z/ because H 2.W sm

4;5;Z/ D Z is generated by algebraic
classes [2, Proposition 4]. Finally, Lemma 3.4 shows that H 3.W sm

4;5;Z/! H 3.X;Z/ is an
isomorphism, so the latter group has nontrivial torsion part as well.

For an alternative approach to the absence of rational sections, see Claim A.2 in the
appendix.

4.3. The case c D 2n � 2. Let X D Xn;2n�2. Then X has dimension 2n � 5, isolated
singularities in ��1.Z2;n/ \X , and KX D �2H . Let zX ! X be the blow-up at the singular
points. Then the exceptional divisor E is a disjoint union of components E1; : : : ; Es , all of
which are isomorphic to Pn�3 � Pn�3, by Proposition 2.10.
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By Corollary 3.6, we haveH 3.X sm;Z/ D Z=2. Since X sm ' zX �E, we get a pullback
map H 3. zX;Z/! H 3.X sm;Z/. This map is an isomorphism by the exact sequence

H 1.E;Z/! H 3. zX;Z/! H 3.X �E;Z/! H 2.E;Z/;

using also that H 1.E;Z/ D 0 and H 2.E;Z/ is torsion free.

Proposition 4.7. For each n � 4, zX is a smooth projective variety of dimension 2n � 5
with TorsH 3. zX;Z/ ¤ 0. The variety zX is unirational, but not stably rational.

Proof. Only the unirationality remains to be proved. The incidence variety U4;n of (2.3)
is a P2n�2-bundle over the Grassmannian Gr.n � 2; V /. This means that if X is a com-
plete intersection of 2n � 2 divisors in W4;n, the preimage UX D ��1.X/ is birational to
Gr.n � 2; V /. Therefore, UX is rational, and hence X is unirational.

Example 4.8. When n D 4,X is a double cover of P3 branched along a singular quartic
surface. This is the example famously studied by Artin and Mumford in [1], and for which they
prove Proposition 4.7. Here X has 10 ordinary double points and the blow-up zX contains 10
exceptional divisors isomorphic to P1 � P1.

4.4. The case n D 4, c < 6. The Artin–Mumford examples of X4;6 can also naturally
be generalized to X4;c with c < 6. We will explain that, at least when c D 4 or 5, these do
not have torsion in H 3 in their smooth models (correcting a claim made in a MathOverflow
answer [32]).

The singular locus of X4;c has codimension 3 and is a smooth Enriques surface or
a smooth genus 6 curve when c D 4 and c D 5, respectively. There is a resolution � W zX ! X4;c
obtained by blowing up the singular locus, where the exceptional divisor is a P1 � P1-bundle
over the singular locus.

Proposition 4.9. With zX as above, we have that the groupH 3. zX;Z/ is torsion free for
c D 5 and 0 for c D 4.

Proof. To show thatH 3. zX;Z/ is torsion free, we first remark thatH 3.X;Z/ has no tor-
sion by Corollary 4.11 below. Next, we consider the Leray spectral sequence associated to the
blow-up � W zX ! X , with E2-page Hp.X;Rq��Z/ converging to HpCq. zX;Z/. Let S � X
be the singular locus. We haveR0��Z zX D ZX ,R1��Z D 0,R2��Z zX D F andR3��Z D 0,
where F is a rank two local system. More explicitly, we have F D R2��ZE , and since E is
a P1 � P1-bundle over S , this means F Š R0f�ZS 0 , where f WS 0 ! S is the étale double
cover of S corresponding to the two families of lines in each fiber of E ! S .

By Corollary 4.11, we have H 3.X;Z/ D 0, and so the only non-vanishing term of the
E2-page of the spectral sequence is

H 1.X;R2��Z zX / Š H
1.S;R0f�ZS 0/ D H

1.S 0;Z/:

Running the spectral sequence then gives

0! H 3. zX;Z/! H 1.S 0;Z/! H 4.X;Z/:
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Since H 1.S 0;Z/ is torsion free, the same is true for H 3. zX;Z/. When c D 4, the variety S
is an Enriques surface so that S 0 is either a K3 surface or two copies of S ; in either case,
H 1.S 0;Z/ D 0, which gives H 3. zX;Z/ D 0.

The proof of Proposition 4.9 relies on the following version of the weak Lefschetz
hyperplane theorem for singular varieties.

Proposition 4.10. Let V be a projective variety of dimension nC 1 and let D be an
ample divisor which is disjoint from the singular locus sing.V /. Then the natural maps

Hi .D;Z/! H 2nC2�i .V;Z/

are isomorphisms for i < n and surjective for i D n.

Proof. Letting U D V �D, the relative cohomology sequence takes the form

� � � ! H i .V; V �D;Z/! H i .V;Z/! H i .U;Z/! H iC1.V; V �D;Z/! � � � :

Moreover, since V is smooth in a neighborhood of D, we may identify H i .V; V �D;Z/ with
HBM
2nC2�i .D/ D H2nC2�i .D/. Now, using that U is affine of dimension nC 1, the cohomol-

ogy groups H i .U;Z/ vanish for all i > nC 1, by Artin’s vanishing theorem.

Corollary 4.11. Let � WX ! Pn be a ramified double cover. Then, for each i < n
2

,

(i) H2i .X;Z/ D Z and H2i�1.X;Z/ D 0,

(ii) H 2i .X;Z/ D Z and H 2i�1.X;Z/ D 0.

Proof. Note that X can be defined by an equation of the form z2 D f .x0; : : : ; xn/ in
the weighted projective space V D P .1; : : : ; 1; d

2
/. Thus X is an ample divisor, disjoint from

the one singular point of V . Thus the conditions of Proposition 4.10 hold, and we find that
Hj .X;Z/ D H 2n�j .V;Z/ when j < n. The cohomology of V is computed in [14, Theo-
rem 1], which gives claim (i), and claim (ii) follows by the Universal Coefficient Theorem.

5. Proof of Theorem 1.2

In this section, we state and prove a precise version of Theorem 1.2. We first recall some
general background on the coniveau filtrations on cohomology of algebraic varieties, referring
to [3] for details. We restrict ourselves to the case of cohomology with integral coefficients
H l.X;Z/ on a smooth projective variety X over C.

A cohomology class ˛ 2 H l.X;Z/ is said to be of coniveau at least c if it restricts
to 0 on X �Z, where Z is a closed subset of codimension at least c in X . These classes
give the coniveau filtration N cH l.X;Z/ � H l.X;Z/. Equivalently, viewing H l.X;Z/ as
H2n�l.X;Z/ via Poincaré duality, a class ˛ 2 H2n�l.X;Z/ is of coniveau at least c if and
only if ˛ D j�ˇ for some ˇ 2 H2n�l.Y;Z/, where j WY ! X is the inclusion of a closed
algebraic subset of X of codimension at least c. So, for example, N cH 2c.X;Z/ consists of
exactly the algebraic classes in H 2c.X;Z/.
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A class ˛ 2 H l.X;Z/ is said to be of strong coniveau at least c if ˛ D f�ˇ, where
f WZ ! X is a proper morphism, Z is a smooth complex variety of dimension at most n � c,
and ˇ 2 H l�2c.Z;Z/. Equivalently, ˛ has strong coniveau at least 1 if ˛ D zj�ˇ is the Gysin
pushforward of a class ˇ 2 H�. zY ;Z/ and zj W zY ! Y is the desingularization of a closed subset
of codimension at least c. These classes give the strong coniveau filtration

zN cH l.X;Z/ � H l.X;Z/:

We have zN cH l.X;Z/ � N cH l.X;Z/ for every c. Moreover, the quotient

N 1H l.X;Z/= zN 1H l.X;Z/

is a birational invariant among smooth projective varieties [3]. This invariant is particularly
interesting for rationally connected varieties X . In this case, all cohomology classes are of
coniveau at least 1.

Proposition 5.1. Let X be a rationally connected smooth projective complex variety.
Then, for any l > 0,

N 1H l.X;Z/ D H l.X;Z/:

Proof. See [4] for the case l D 3, and [7] in general.

In [31, Question 3.1], Voisin asked whether zN 1H l.X;Z/ D N 1H l.X;Z/ for X a ratio-
nally connected variety, i.e., whether all cohomology classes are of strong coniveau 1 (see
also [3, Section 7.2]). In the same paper, she proved that any class in H 3.X;Z/ modulo tor-
sion is of strong coniveau 1. This was extended by Tian [28, Theorem 1.23] who proved that
H 3.X;Z/ D zN 1H 3.X;Z/ for any rationally connected threefold. Our Fano varieties give the
first rationally connected examples where the two coniveau filtrations are different.

In [3], the following topological obstruction to strong coniveau at least 1 was introduced.

Proposition 5.2. If ˛ 2 H 3.X;Z/ is a class of strong coniveau at least 1, then the
mod 2 reduction N̨ 2 H 3.X;Z=2/ satisfies N̨2 D 0 in H 6.X;Z=2/.

Proof. This is a special case of [3, Proposition 3.5].

Here is the precise version of Theorem 1.2.

Theorem 5.3. For n � 6, the variety Xn;2n�1 from Definition 2.13 is a Fano variety of
dimension 2n � 6 with KX D �H , such that

0 D zN 1H 3.X;Z/ ¤ N 1H 3.X;Z/ D H 3.X;Z/ Š Z=2:

Proof. Let X D Xn;2n�1. The computation of dimX , H 3.X;Z/ and KX is part of
Theorem 4.1. Since X is Fano, it is rationally connected, so Proposition 5.1 gives

N 1H 3.X;Z/ D H 3.X;Z/:

Corollary 3.6 shows that the non-zero class ˛ in H 3.X;Z/ is such that the mod 2 reduction of
˛2 is non-zero. Proposition 5.2 then implies ˛ … zN 1H 3.X;Z/, so zN 1H 3.X;Z/ D 0.
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Remark 5.4. We can obtain examples of other rationally connected varieties where
zN cH l ¤ N cH l for any c � 1 and l � 2c C 1 by taking appropriate products with projective

spaces (see, e.g., [3, Theorem 4.3]).

Remark 5.5 (The Artin–Mumford example). In light of Theorem 1.2, it is natural to ask
whether the 2-torsion class ˛ 2 H 3.X;Z/ in the Artin–Mumford example has strong coniveau
at least 1, i.e., whether the birational invariant (1.1) is zero. It turns out that this is indeed the
case: inspecting Artin–Mumford’s “brutal procedure” in [1, pp. 82–83] shows that the class ˛
is obtained from a cylinder map H 1.C;Z/! H 3.X;Z/ from an elliptic curve C . In other
words, ˛ is the pushforward from a class in H 1 from some ruled surface S over C .

Note that this can also be seen as a special case of [28, Theorem 1.23].

5.1. Open questions. We conclude with two open questions regarding the two coniveau
filtrations.

Question 1. Are there rationally connected varieties X with

zN 1H l.X;Z/ ¤ N 1H l.X;Z/

for some l > 0 and torsion free H l.X;Z/?

Question 2. Are there rationally connected varieties of dimension 4 or 5 where

zN 1H l.X;Z/ ¤ N 1H l.X;Z/

for some l > 0?

Remark 5.6. Let X D X5;9 be the fourfold from Section 4.2. Then we do not know
if the generator ˛ of H 3.X;Z/ has strong coniveau at least 1. We can show, however, that
˛2 D 0 in H 6.X;Z=2/, so the topological obstruction of Proposition 5.2 vanishes. To see
this, we use the fact that the third integral Steenrod square Sq3ZWH

p.Z;Z/! HpC3.X;Z/ is
naturally identified with the third differential d3 in the Atiyah–Hirzebruch spectral sequence of
topological K-theory, with E2-page

Hp.X;Kq.pt// D

´
Hp.X;Z/; q even;

0 otherwise;

converging to KpCq.X/. Now H�.X;Z/ has torsion only in degrees 3 and 6, with torsion
part Z=2 in each of these degrees. It also has torsion Z=2˚ Z=2 in its topological K-theory,
by Proposition 4.3 (because S is a general type surface with fundamental group Z=2). This
implies d3 D 0, since otherwise the Atiyah–Hirzebruch spectral sequence would give that the
topological K-theory of X was torsion free. Since Sq3Z is an integral lift of the usual (mod 2)
Steenrod square Sq3, we then get

˛ [ ˛ D Sq3.˛/ D 0:

In general, it would be interesting to find other obstructions to the equality of the two
coniveau filtrations than the topological obstructions of [3].
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A. Comments on the Fano fourfold
by János Kollár

In the present paper, Ottem and Rennemo construct smooth Fano fourfolds X such that

H2.X;Z/ Š ZC Z=2:

This appendix gives a shorter computation of H2.X;Z/; see Claims A.2 and A.4.
We also add two new results. In Claim A.6, we exhibit two lines L0; L00 � X such that

L0 � L00 generates the torsion in H2.X;Z/ Š ZC Z=2.
Then, in Paragraph A.14, we show that X is birational to a double cover of P4 ramified

along a degree 18 hypersurface R, which is obtained as the 5-secants of a degree 15, smooth,
determinantal surface S D .rankN � 4/ � P4, where N is a 6 � 5 matrix whose entries are
linear forms. Although S is smooth, it is not a general determinantal surface, since the latter
have only 1-parameter families of 5-secants.

The higher-dimensional examples constructed in the paper can also be treated with minor
changes.

We refer to [26, Chapters VIII–IX] for symmetric determinantal varieties and to [16, 27]
for the classification of lines on them.

A.1 (Basic set-up). We recall the construction of the Fano fourfolds in the paper. This is
the case when r D 4 and n D 5 (see Section 4.2). Let Zi � P14 be the space of rank at most i
quadrics in P4. Our main interest is Z D Z4 � P14, the space of rank at most 4 quadrics
in P4. It is a quintic hypersurface.

The universal deformation of a rank 3 quadric is given by

x20 � x
2
1 � x

2
2 C

X
i�j

zijxixj D 0:

For i D 0; 1; 2, we replace xi by xi
p
1C zi i and complete the squares to get the normal form

(A.1.1) x20 � x
2
1 � x

2
2 C z33x

2
3 C z34x3x4 C z44x

2
4 D 0:

This has rank at most 4 if and only if z234 � 4z33z44 D 0. So Z is singular along Z3, with
transversal singularity type A1.

As in (2.2), define U to be the space of pairs .L2 � Q/, where L2 � P4 is a 2-plane and
Q � P4 a quadric. We have projections

G
p1
 � U

p2
�! Z;

and Pic.U / Š Z2 is generated by p�1OG.1/ and p�2OZ.1/.
Let U2 � U be the closed subset where the quadric has rank at most 2. These quadrics

split into two hyperplanes, one of which must contain L2. So U2 is a P1 � P4-bundle over
Grass.2; 4/. Set U ı´ U � U2. This is the preimage of the open set Zı´ Z4 �Z2.

Since U2 � U has codimension 3, H i .U ı;Z/ D H i .U;Z/ for i � 4 D 2.3 � 1/. In
particular,

H 0.U ı;Z/ D Z; H 1.U ı;Z/ D 0; H 2.U ı;Z/ D Z2; H 3.U ı;Z/ D 0:
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As in Section 2.1, we define W using the Stein factorization of p2WU ! Z,

U
�
�! W

�
�! Z:

In coordinates (A.1.1), Z Š .z22 � 4z1z3 D 0/ �A11. Set w1´
p
z1 and w3´

p
z3. Since

w1w3 D z2=2, adjoining both w1; w2 is a degree 2 covering and

z1x
2
3 C z2x3x4 C z3x

2
4 D .w1x3 C w3x4/

2:

Thus, locally analytically over the points of Z3 �Z2, we have W Š A2w1;w2
�A11, and the

family of quadrics becomes

.x20 � x
2
1 � x

2
2 C .w1x3 C w2x4/

2
D 0/ �A11:

Thus U is the family of 2-planes in the same family as�
x0 � x1 D x2 � .w1x3 C w2x4/ D 0

�
:

Each of these has a unique intersection point with .x3 D x4 D 0/. Thus U is locally analyti-
cally isomorphic to the trivial family

W � .x20 � x
2
1 � x

2
2 D 0/ � W � P2:

Therefore, restricting to U ı, we get

U ı
�ı

�! W ı
�ı

�! Zı;

and �ıWU ı ! W ı is a smooth morphism with conics as fibers.

Claim A.2. H 3.W ı;Z/ Š Z=2 and � has no rational sections.

Proof. Let ŒQ� 2 W ı be a rank 2 quadric. It is obtained by taking the cone over a conic
C twice. Thus the planes in Q are identified by the points of C ; this is also the fiber FQ of �
over ŒQ�. As C degenerates to a pair of lines, we get that FQ is homologous to 2-times a curve
parametrizing a pencil of planes. Thus the image of

H 2.U ı;Z/! H 2.FQ;Z/ Š Z

is twice the generator. (Note that this splitting of FQ into two components happens in the fibers
over Z2, thus outside Zı.)

In the Leray spectral sequence for �ı, the only interesting map is on the E3 page,

Z Š H 0.W ı; R2�ı�Z/! H 3.W ı;Z/:

As we noted, the kernel is 2Z and H 3.U ı;Z/ D 0. Thus

H 3.W ı;Z/ Š Z=2 and H 2.W ı;Z/ Š Z:

Definition A.3 (Construction of X ). As in Section 4.2, let XZ � Z be the complete
intersection of 9 general hyperplanes and X ´ XW � W its preimage. Then X � W ı is a
Fano fourfold with KX � ���H .
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Claim A.4. H2.X;Z/ Š ZC Z=2.

Proof. The isomorphism H2.X;Z/ Š H2.W ı;Z/ follows from the quasi-projective
version of the Lefschetz hyperplane theorem of [11]; see also [10, p. 153] and Section 4.2.

Note that, by [30], H2.X;Z/ is generated by algebraic curves. Next we write down
a difference of two smooth, degree 1 rational curves that generates the Z=2-summand of
H2.X;Z/.

Claim A.5. Let L � Z �Z3 � P14 be a line. Its preimage in W is a pair of lines
L0 [ L00 such that

(1) L0 and L00 are numerically equivalent,

(2) U �W L0 is the ruled surface F1 Š BpP2,

(3) U �W L00 is the ruled surface F0 Š P1 � P1, and

(4) L0 � L00 is a generator of the Z=2-summand of H2.W ı;Z/ Š ZC Z=2.

By Paragraph A.12, XZ contains a 2-parameter family of lines, and Claim A.5 applies to
them. Thus we obtain the following.

Claim A.6. Let L � XZ �Z3 be a line. Its preimage in X is a pair of lines L0 [ L00,
and L0 � L00 is a generator of the Z=2-summand of H2.X;Z/ Š ZC Z=2.

A.7 (Beginning of the proof of Claim A.5). By Claim A.4, H2.X;Z/=.torsion/ is gen-
erated by KX � ���H , so L0 and L00 are numerically equivalent.

By Paragraph A.11, in suitable coordinates, we can write L as a family of quadrics

Q.�W�/´
�
x0.�x2 � �x3/ D x1.�x4 � �x3/

�
:

All of these contain the 2-plane .x0 D x1 D 0/, defining a section s0WL! U .
The preimage of L in W is a disjoint union of 2 lines L0 [ L00. We choose L0 to be

� ı s0WL! U ! W .
For any non-zero linear form ` D a�C b�, a section C 0.`/ of � WU ! W over L0 is

given by
`x0 D �x4 � �x3 and �x2 � �x3 D `x1:

For `1 ¤ `2, the two sections C 0.`1/; C 0.`2/ meet at the point where `1 D `2. Thus U �W L0

is the ruled surface F1.
In the other family of 2-planes, we have sections C 00.`/ given by

cx0 D x1 and �x4 � �x3 D c.�x2 � �x3/:

These are disjoint for c1 ¤ c2. Thus U �W L00 is the trivial P1-bundle.
These show Claim A.5 (2)–(3).

Claim A.5 (4) is a formal consequence of Claim A.5 (1)–(3). To see this, we need to
discuss how to detect 2-torsion in H2 using P1-bundles. (Similarly, n-torsion can be detected
using Pn�1-bundles.)
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A.8 (Comments on P1-bundles). Let X be a normal, proper variety and � WY ! X

a P1-bundle (étale locally trivial). For a smooth curve C ! X , let CY ! YC ´ C �X Y be
a lifting. Set

(A.8.1) �Y .C /´ .CY �KYC =C / mod 2:

This is well defined as a function on A1.X/, the group of 1-cycles modulo algebraic equiva-
lence.

If X is smooth and Y ! X has a rational section S � Y , then KY=X � �2S C ��D
for some Cartier divisor D on X . In this case, �Y .C / � .C �D/ mod 2. Conversely, assume
that we are over C, H2.X;Z/ is generated by algebraic curves, and �Y .C / � .C �D/ mod 2
for every C . ThenKY=X � ��D is divisible by 2, giving a rational section. In any case, we get
the following.

Claim A.9. If there is a numerically trivial 1-cycle C such that �Y .C / � 1 mod 2, then
ŒC � is a nontrivial torsion element in H2.X;Z/, and Y ! X has no rational sections.

A.10 (End of the proof of Claim A.5). Since U �W L0 Š F1, (A.8.1) shows that

�U .L
0/ � 1 mod 2:

Similarly, U �W L00 Š F0 implies that �U .L00/ � 0 mod 2. Thus C ´ L0 � L00 is numer-
ically trivial and �U .C / � 1 mod 2. We can now apply Claim A.9.

In both cases, we could have used the isomorphism

!U=W Š p
�
1OG.�1/˝ p

�
2OZ.1/

to compute �U .L0/ and �U .L00/.

A.11 (Lines on Z). By [16], the lines on Z �Z2 form three families of dimension 20
each. These are the following.

(1) hQ1;Q2i where the Qi contain a common 2-plane. The general such line L is disjoint
from Z3, and its preimage in W is a pair of disjoint lines L0 [ L00. After coordinate
change, these can be written as

x0.�x2 � �x3/ D x1.�x4 � �x3/:

(2) hQ1;Q2i where the Qi have a common singular point. After coordinate change, these
can be written as

�q1.x1; : : : ; x4/C �q2.x1; : : : ; x4/ D 0;

where the qi are quadratic forms. The general such line L intersects Z3 at four points,
and its preimage in W is a smooth, elliptic curve of degree 2.

(3) hQ1;Q2i where the Qi have rank 2 and singQi is tangent to Q3�i . The general such
line L intersects Z3 at two points, and its preimage in W is a smooth, rational curve of
degree 2. After coordinate change, these can be written as

�.x20 C x1x2/C �.x2x3 C x
2
4/ D 0:



24 Ottem and Rennemo, Fano varieties with torsion in the third cohomology group

A.12 (Lines on XZ). The space of lines in Z �Z3 has dimension 20, and with each
hyperplane section the dimension drops by 2. So the lines on XZ form three families of
dimension 2 each. Only A.11 (1) contains lines that are disjoint from singXZ .

Since there are no lines on Z3 �Z2, the only common lines to any two of these families
are the finitely many double tangents of singXZ .

A.13 (Another representation of XZ). Let P5 be a general 5-dimensional linear system
of quadrics on P4´ P4. For i D 4; 5, we have the projections �i WP4 � P5 ! Pi . For brevity,
let us write .a; b/´ a��4H4 C b�

�
5H5, where Hi is the hyperplane class on Pi . Set

Y ´ ¹.p;Q/ W p 2 P4; Q 2 P5; p 2 singQº � P4 � P5:

The condition p 2 singQ is equivalent to the partial derivatives of the equation ofQ vanishing
at p. Thus Y � P4 � P5 is the complete intersection of five divisors of bidegree .1; 1/. Write
these as

(A.13.1)
4X
iD0

5X
jD0

a`ijyixj for ` D 1; : : : ; 5:

Over P5, (A.13.1) is equivalent to a 5 � 5 symmetric matrix whose entries are the linear forms
m`i D

P5
jD0 a

`
ijxj . The condition det.m`i / D 0 defines XZ as in Paragraph A.3.

Over P4, (A.13.1) is equivalent to a 6 � 5 matrix whose entries are the linear forms
n`j D

P4
iD0 a

`
ijyi . Note that �4WY ! P4 is birational. Its inverse is the blow-up of a surface2)

S � P4; defined by rank.n`j / � 4:

Let E4 � Y denote the exceptional divisor, and Y defines a rational map P4 Ü XZ � P5,
which is given by the 5 � 5 subdeterminants of .n`j /. Thus E4 � .5;�1/jY .

The inverse rational map XZ Ü P4 is a bit harder to see. It is given by a linear system
of divisors as follows. Let H 2 jH4j be a hyperplane and set

DH ´ ¹Q 2 XZ W H \ singQ ¤ ;º � XZ :

Note that the conditionH \ singQ is equivalent toQjH being singular. (Here we need thatQ
itself is singular.) This gives us the equation det.QjH / D 0 for DH . It has degree 4.

We claim that the intersection of .det.QjH / D 0/ with XZ has multiplicity 2. To see
this, choose coordinates such that H D .x0 D 0/ and Q D .x20 C x

2
2 C x

2
3 C x

2
4 D 0/. For its

deformations, we can make linear coordinate changes to the x2; x3; x4, but x0 can only be
multiplied by a constant. Thus we get a miniversal deformation family

.x20 C t1x0x1 C t2x
2
1 C x

2
2 C x

2
3 C x

2
4 D 0/ � P5 �A2t1;t2 :

For a given t1; t2, the quadric has rank 4 if and only if t21 � 4t2 D 0, and the singular point is
on .x0 D 0/ if and only if t2 D 0. Their intersection is the length 2 scheme .t21 D 0/.

Thus the DH � XZ have degree 10 D 1
2
.4 � 5/ and 2DH � 4H5jY . In particular, the

divisor class DH � 2H5jY is 2-torsion in the class group Cl.XZ/. The corresponding double
cover is our X , constructed in Paragraph A.3.

2) This is not the surface S of Section 4.2.
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Let E5 � Y denote the exceptional divisor of �5WY ! XZ . The previous computations
suggest that it should be linearly equivalent to .�1; 2/. However, XZ has multiplicity 2 along
the base locus of jDH j, so the correct bidegree is .�2; 4/.

On P4, the three families of lines A.11 (1)–(3) correspond to

(1) conics that are 9-secants of S ,

(2) fibers of E4 ! S , and

(3) lines that are 4-secants of S .

A.14 (X as a double P4). By the previous description, X is birational to a double cover
of P4 ramified along the hypersurface R´ �4.E5/ � P4.

The degree of R is given by .1; 0/3ŒE5�.1; 1/5, which works out to be 18. The degree
of the surface S is .1; 0/2ŒE4�.0; 1/.1; 1/5 D 15. Note that S is a 6 � 5 determinantal surface.
However, it is not general since we have a symmetry condition on the P5 side, so results about
general determinantal surfaces do not apply to S .

The multiplicity of Y along S is 4. This follows from the computation

.1; 0/2ŒE4�ŒE5�.1; 1/
5
D 60 D 4 � degS:

Thus R is in the fourth symbolic power of the homogeneous ideal of S , but not in its fourth
power. For general determinantal surfaces, these are equal by [8].

Another interesting property of S is that the fibers of E5 ! singXZ give 5-secants of S .
Thus S has a 2-parameter family of 5-secants. Note that, by A.13 (3), the family of 4-secants
has dimension 2 as well.

Most surfaces in P4, including general 6 � 5 determinantal surfaces, have only 1-param-
eter families of 5-secants.
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