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3 Fourier analysis
Here we discuss how arbitrary oscillations can be represented as superpositions of
simple harmonic oscillations in time e−iωt or along a line eikx or in space eik·r, and how
arbitrary waves can be represented as superpositions of simple harmonic waves in
one dimension ei(kx−ωt) or in several dimensions ei(k·r−ωt). Here t is time, the position
vector can be in two-dimensional plane r = xix + yiy or three-dimensional space
r = xix + yiy + ziz, ω is the angular frequency, k is the wavenumber, and k is the
wavenumber vector in two-dimensional plane k = kxix + kyiy or three-dimensional
space k = kxix + kyiy + kziz.

We start by giving a brief review of some of the tools that will be most useful
in the following, the inner product and the corresponding norm defined on a linear
space of complex functions or complex sequences.

3.1 Inner product spaces

Consider a complex vector space Ω with an inner product 〈f, g〉 and with a norm
‖f‖, where f and g are vectors in Ω. Often the vectors can be complex functions
f(x) on a finite or infinite interval of x, or they can be finite or infinite complex
sequences {fj}.

Let us recall the requirements to be an inner product: Let f, g, h ∈ Ω and let
α, β ∈ C, we have 〈f, g〉 : Ω× Ω→ C, where

1. 〈f, g〉 = 〈g, f〉

2. 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉

3. 〈f, f〉 ≥ 0

4. 〈f, f〉 = 0 if and only if f = 0

Two vectors f and g are orthogonal if their inner product is zero 〈f, g〉 = 0.
Similarly, let us recall the requirements to be a norm: Let f, g ∈ Ω and let α ∈ C,

we have ‖f‖ : Ω→ R, where

1. ‖f + g‖ ≤ ‖f‖+ ‖g‖

2. ‖αf‖ = |α| ‖f‖

3. ‖f‖ ≥ 0

4. ‖f‖ = 0 if and only if f = 0

We shall only be interested in the particular norm that is associated with the
inner product:

‖f‖ =
√
〈f, f〉.
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3.1.1 Exercises

1. Show that the Cauchy–Schwartz inequality holds:

|〈f, g〉| ≤ ‖f‖ ‖g‖

Hint: Start with 〈f − αg, f − αg〉 ≥ 0, where α is a complex scalar, and set
α = 〈f, g〉/〈g, g〉.

2. Show that the triangle inequality, also known as the Minkowski inequality,
holds for the norm associated with the inner product ‖f‖ =

√
〈f, f〉:

‖f + g‖ ≤ ‖f‖+ ‖g‖

Hint: Start with ‖f + g‖2 = 〈f + g, f + g〉, recall that the real value of a
complex number is smaller than or equal to the absolute value of the number,
and use the Cauchy–Schwartz inequality.

3. Show that for the space of complex functions on the interval a ≤ x ≤ b, the
integral

〈f, g〉 =

∫ b

a

f(x)g∗(x) dx (1)

is an inner product.

The norm ‖f(x)‖ =
√∫ b

a
|f(x)|2 dx is often called the L2-norm.

4. Show that for the space of complex sequences with index j, the sum

〈f, g〉 =
∑
j

fjg
∗
j (2)

is an inner product.

The norm ‖fj‖ =
√∑

j |fj|2 is often called the l2-norm.

5. Show that the functions {1, cos(nx), sin(nx);n = 1, 2, . . .} on the interval 0 ≤
x ≤ 2π are orthogonal subject to the inner product (1).

6. Show that the functions {1, exp(inx);n = ±1,±2, . . .} are orthogonal on the
interval 0 ≤ x ≤ 2π subject to the inner product (1).

7. Show that the functions {sin(nx);n = 1, 2, . . .} are orthogonal on the interval
0 ≤ x ≤ π subject to the inner product (1).
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8. Show that the functions {1, cos(nx);n = 1, 2, . . .} are orthogonal on the inter-
val 0 ≤ x ≤ π subject to the inner product (1).

9. Show that the sequences or N -tuples φn = (φn,1, φn,2, . . . , φn,N) where φn,j =
exp 2πinj

N
, for n = 1, 2 . . . N , are orthogonal subject to the inner product (2).

10. Show that the sequences or N -tuples φn = (φn,J , φn,J+1, . . . , φn,J+N−1) where
φn,j = exp 2πinj

N
, for n = M,M+1 . . .M+N−1, whereM and J are arbitrary

integers, are orthogonal subject to the inner product (2).

3.2 Generalized Fourier series

If we have a set of N linearly independent basis vectors {φn;n = 1, 2, . . . , N} span-
ning a subspace of Ω, and if we have some vector f ∈ Ω not necessarily within that
subspace, we can project f into the subspace

f ∼
N∑
n=1

f̂nφn.

We use the notation ∼ since f may not lie entirely within the subspace. This expan-
sion is known as a generalized Fourier series. The generalized Fourier coefficients f̂n
are determined by insisting on equality when taking the inner product of both sides
with φm

〈f, φm〉 =
N∑
n=1

f̂n〈φn, φm〉 for m = 1, 2, . . . , N. (3)

These are N linear equations in N unknowns, which can be solved in O(N3) opera-
tions.

The system of equations (3) minimizes the error in the norm, see exercise below.
A great computational as well as analytical advantage is achieved if the set of

basis vectors is orthogonal, i.e. 〈φn, φm〉 = 0 for n 6= m. In that case the right-hand
side simplifies such that we can write the explicit solution

f̂n =
〈f, φn〉
‖φn‖2

for n = 1, 2, . . . , N.

Typically, it takes O(N) operations to compute each inner product, so the set of all
the coefficients can be computed in O(N2) operations. The so-called Fast Fourier
Transform (FFT) is an algorithm that reduces the computational burden further to
only O(N logN) operations.
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3.2.1 Exercises

1. Show that the system of equations (3), for the determination of the Fourier
coefficients f̂n, minimizes the error in the norm ‖f − PNf‖, where

PNf =
N∑
n=1

f̂nφn.

Hint: Minize the square of the norm, and treat f̂n and f̂ ∗n as independent
variables.

2. Show that Bessel’s inequality holds for a generalized Fourier series:

If we represent f by a projection PNf into a subspace spanned by orthogonal
basis vectors φn

f ∼ PNf =
N∑
n=1

f̂nφn

where the Fourier coefficients are f̂n = 〈f, φn〉/‖φn‖2, then

N∑
n=1

|f̂n|2‖φn‖2 ≤ ‖f‖2.

Hint: Start with ‖f − PNf‖2 = 〈f − PNf, f − PNf〉 ≥ 0.

Remark: If the error in the norm vanishes, ‖f−PNf‖ → 0, as N →∞, we say
that we have convergence in the mean. This corresponds to Bessel’s inequality
becoming an equality.

3.3 Generalized functions, distributions

The subsequent analysis is greatly simplified if we extend our notion of functions to
the so-called generalized functions (also known as distributions). Care will be needed
since these generalized functions cannot always be used in nonlinear expressions, the
product of two generalized functions of the same argument is not necessarily well
defined.

We will define a generalized function by its action on test functions under an
integral. Suppose g(x) is a generalized function and φ(x) is a test function, the
generalized function is defined by the value of the integral∫ ∞

−∞
g(x)φ(x) dx. (4)

Test functions are ordinary functions that satisfy conditions of regularity. Dif-
ferent regularity conditions for the test functions give rise to different classes of
generalized functions. In general the test functions are real φ(x) : R → R and are
infinitely smooth, i.e. are infinitely differentiable.
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In the following we employ for simplicity infinitely smooth test functions with
compact support, i.e. they are identical to zero outside a finite domain in x.

Generalized functions can also be introduced as the limit of sequences of ordi-
nary functions, as discussed in the book “An introduction to Fourier analysis and
generalized functions” by Lighthill (1958).

3.3.1 Dirac delta

The Dirac delta δ(x) is defined by the requirement∫ ∞
−∞

δ(x)φ(x) dx = φ(0). (5)

No ordinary function has this property, therefore we take the above integral as a
defining property of δ(x) rather than an integral in the ordinary sense. We say that
this generalized function is singular rather than regular.

Sometimes it is stated that the Dirac delta is zero everywhere except at the
origin. However, such a requirement is not only unnecessary, it is not even true for
an important representation that we shall use for δ(x). In any case, as a graphical
representation for the Dirac delta we draw a function that is zero everywhere except
at the origin where we draw an arrow with unit length:

x

1

0

Example: Compute aδ(bx + c) where δ is the Dirac delta, and where a, b and
c are three non-zero constants: We look at the action of the expression above on a
test function φ(x) under an integral. With the substitution y = bx+ c we get∫ ∞

−∞
aδ(bx+ c)φ(x) dx =

∫ ∞
−∞

δ(y)
a

b
φ(
y − c
b

) dy =
a

b
φ(−c

b
).

Based on the previous example we deduce that the physical dimension of the
Dirac delta is equal to the inverse of the physical dimension of its argument.

Example: Compute the derivative of the Dirac delta δ′(x). We do this by finding
the action of this derivative on a test function under an integral. Using integration
by parts we get∫ ∞

−∞
δ′(x)φ(x) dx = [δ(x)φ(x)]∞−∞ −

∫ ∞
−∞

δ(x)φ′(x) dx = −φ′(0)

where the fact that [δ(x)φ(x)]∞−∞ = 0 is due to the test function having compact
support, i.e. it vanishes outside a finite domain in x.
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We define the Heaviside step function by

H(x) =


0 for x < 0
1/2 for x = 0
1 for x > 0

The value at the origin is sometimes taken to be 0 or 1 instead of 1/2, but for our
purposes it does not matter which finite value we take at the origin.

Example: Compute the derivative of the Heaviside step function H ′(x). In this
case it is obvious that the derivative is zero for any non-zero x. However, we want
to be careful in order to check what happens at the discontinuity at the origin, thus
we check the action of H ′(x) on a test function under an integral. Using integration
by parts we get∫ ∞
−∞

H ′(x)φ(x) dx = [H(x)φ(x)]∞−∞−
∫ ∞
−∞

H(x)φ′(x) dx =

∫ ∞
0

φ′(x) dx = [φ(x)]∞0 = φ(0)

where the fact that [H(x)φ(x)]∞−∞ = 0 is due to the test function having compact
support (it vanishes outside a finite domain in x), and the fact that the value of
H(0) does not matter is due to the test function being infinitely smooth.

Thus we conclude that H ′(x) = δ(x).

Example: Compute the integral∫ ∞
−∞

eikx dk.

First we notice that the integrand is not absolutely integrable. In order to make
this integral meaningful we insist that the upper and lower limits go equally fast to
infinity ∫ ∞

−∞
eikx dk ≡ lim

a→∞
I(x, a)

where
I(x, a) =

∫ a

−a
eikx dk =

2 sin(xa)

x
.

It is easy to see that I(0, a) = 2a. It can also be found that
∫∞
−∞ I(x, a) dx =

4 Si(∞) = 2π (we show this as an exercise below). It is interesting to plot I(x, a)
for some values of a, on the left I(x, 2) and on the right I(x, 10):
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As a → ∞ the value at the origin becomes infinitely large at the same time as
the oscillations become infinitely fast everywhere except at the origin. This prompts
us to employ the method of stationary phase when we check the action of I(x, a)
on a test function under an integral. In the limit of large a the contributions to
the integral will cancel out everywhere except in a small region around the origin
−ε < x < ε such that the following approximation can be used∫ ∞

−∞
I(x, a)φ(x) dx ≈

∫ ε

−ε
I(x, a)φ(x) dx

≈ φ(0)

∫ ε

−ε
I(x, a) dx

≈ φ(0)

∫ ∞
−∞

I(x, a) dx = 2πφ(0)

In the limit a→∞ this result becomes exact. Thus we conclude that∫ ∞
−∞

eikx dk = 2πδ(x)

The above example shows that the essential behavior
∫∞
−∞ δ(x)φ(x) dx = φ(0)

does not depend on an additional assumption or requirement that δ(x) = 0 for
x 6= 0. Indeed, as a→∞ we see that I(x, a) does not vanish for non-zero x, but its
action on a test function under an integral is as if it had been zero for non-zero x.

3.3.2 Products of generalized functions

It is well defined to multiply a singular generalized function g(x) by a regular function
r(x), since the action on a test function φ(x) under the integral is to consider the
generalized function g(x) acting on the new test function r(x)φ(x),∫ ∞

−∞
[g(x)r(x)]φ(x) dx =

∫ ∞
−∞

g(x) [r(x)φ(x)] dx,

where we may consider the product r(x)φ(x) as another test function.

Example: Compute the product of a regular function r(x) and the Dirac delta
δ(x): ∫ ∞

−∞
[δ(x)r(x)]φ(x) dx =

∫ ∞
−∞

δ(x) [r(x)φ(x)] dx = r(0)φ(0).

The product of two generalized functions with two different arguments is also
well defined by the following obvious extension: Let g(x, y) be such a product, i.e. a
generalized function of two arguments, and let φx(x) and φy(y) be test functions of
each of the two arguments, we define the generalized function by its action on the
test functions under the double integral∫ ∞

−∞

∫ ∞
−∞

g(x, y)φx(x)φy(y) dx dy.
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We use the short-hand notation δ(r) = δ(x)δ(y) for a two-dimensional vector
r = xix + yiy. Similarly we use the short-hand notation δ(r) = δ(x)δ(y)δ(z) for a
three-dimensional vector r = xix + yiy + ziz.

Example: Compute the product of the two Dirac deltas δ(x)δ(y) of the two
Cartesian coordinates {x, y}: We look at the action of this product on the test
functions φx(x) and φy(y) under a double integral,∫ ∞

−∞

∫ ∞
−∞

δ(x)δ(y)φx(x)φy(y) dx dy = φx(0)φy(0).

Example: Compute ∇2 ln r where ∇2 is the two-dimensional Laplace operator
and where r = |r| is the distance from the origin in the two-dimensional plane:
Let the position vector relative to the origin be r = xix + yiy = rir with polar
coordinates {r, θ}. Straightforward computation reveals that the result is zero at all
non-singular points of the logarithm

∇2 ln r =
1

r

∂

∂r

(
r
∂ ln r

∂r

)
= 0 for r 6= 0,

but in order to take a careful look at what happens at the singular point at the
origin we look at the action of ∇2 ln r on a test function φ(r) under a double integral.
Using the identity φ∇2g = ∇ · (φ∇g) − ∇φ · ∇g, and integrating over the domain
Ω = {r : |r| ≤ R} with boundary ∂Ω = {r : |r| = R}, we have∫

Ω

φ∇2 ln r dσ =

∫
Ω

∇ · (φ∇ ln r)−∇φ · ∇ ln r dσ =

∫
Ω

∇ ·
(
φ
ir
r

)
− 1

r

∂φ

∂r
dσ.

Using Gauss theorem we get∫
Ω

φ∇2 ln r dσ =

∫
∂Ω

(
φ
ir
r

)
· n ds−

∫
Ω

1

r

∂φ

∂r
dσ.

Upon recognizing that n ds = ir rdθ on the boundary, and that dσ = rdrdθ, we get∫
Ω

φ(r)∇2 ln r dσ = 2πφ(0)

Thus we conclude that for two-dimensional r and r = |r| we have

∇2 ln r = ∇ ·
(
ir
r

)
= 2πδ(r)

Finally, we note that the product of two singular generalized functions of the
same argument is not well defined. In particular, the square of the Dirac delta,
δ2(x) = δ(x)δ(x) is not well defined.1Thus it may not be straightforward to employ
generalized functions to solve nonlinear problems.

1The problem of multiplication of singular generalized functions of the same argument is related
to the so-called “Schwartz’ impossibility result”: all the natural requirements for being an associative
algebra cannot be simultaneously satisfied (Schwartz 1954).
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3.3.3 Exercises

1. Derivative of an arbitrary step

Let the function h(x) be given by

h(x) =

{
h1 for x < a
h2 for x ≥ a

for arbitrary constants h1, h2 and a. Compute the derivative h′(x).

Hint: Compute h′(x) for x 6= a, and compute
∫∞
−∞ h

′(x)φ(x) dx for a test-
function φ(x). Use integration by parts.

2. Here is the graph of a function g(x):

x

Sketch the graphs of the first derivative g′(x) and the second derivative g′′(x).

3. Compute δ′′(x).

Hint: Integration by parts twice.

4. The sine integral Si(x) — the integral of the sinc function2 sincx = sinx
x

The sine integral is defined as

Si(x) =

∫ x

0

sinc ξ dξ
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2The sinc function is also known as the cardinal sine function. There are two common definitions,
we use the unnormalized sinc function adopted by Mathematica. The normalized sinc function
sincx = sin(πx)

πx is adopted by Python and Matlab and Octave and by DLMF. Wikipedia recognizes
both definitions. The Spherical Bessel function of the first kind is a sinc, j0(x) = sin x

x , see DLMF
and MathWorld.
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(a) Show using l’Hôpital’s rule that sinc 0 = 1.
(b) Show that Si(x) has:

i. local extrema for x = ±π,±2π,±3π, . . .

ii. Si(0) = 0

iii. Si(−x) = − Si(x)

(c) Show that Si(∞) = π
2
.

Hint: There are several ways to show this, one way is as follows:
i. Observe that the integrand is even, integrate only from 0 to ∞.
ii. Rewrite as a double integral using

∫∞
0
e−xt dt = 1

x
.

iii. Reverse the order of integration.
iv. Perform two integrations by parts.
v. Recognize the integral that defines arctan∞ = π/2.

5. Three-dimensional Dirac delta δ(r)

Show that ∇2 1
|r| is proportional to the Dirac delta δ(r) for a three-dimensional

position vector r.
Hint: Use Gauss theorem and spherical coordinates.

3.4 Fourier transform on infinite interval

Let f(x) be defined on the entire real axis −∞ < x <∞. We would like to express
f(x) as a superposition of the basis functions eikx. In this case, with no boundary
conditions along the x-axis, we allow all real k so we express this as an integral

f(x) ∼
∫ ∞
−∞

F (k)eikx dk.

Using the inner product 〈f, g〉 =
∫∞
−∞ f(x)g∗(x) dx, the basis functions are orthogo-

nal 〈eikx, eilx〉 = 2πδ(k− l) where δ(k) is the Dirac delta, and we have the expression
for the Fourier transform

F (k) =
1

2π

∫ ∞
−∞

f(x)e−ikx dx.

Differentiation of f(x) can now be expressed by a multiplication of F (k) by some
power of (ik),

dα

dxα
f(x) ∼

∫ ∞
−∞

(ik)αF (k)eikx dk.

Example: Fractional derivatives.
In the above expression for the α-th derivative of f(x), there is no reason why α

needs to be an integer. Suppose we consider f(x) = sinx we have
dαf

dxα
(x) = (−i)α

i

2
e−ix − (i)α

i

2
eix =

i

2
e−i(x+πα

2
) − i

2
ei(x+πα

2
) = sin(x+

πα

2
)

This gives a smooth transition from one integral derivative to the next!
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3.4.1 Exercises

1. Let f(x) = cos(3x). Compute the Fourier transform F (k). Let g(x) = f ′(x),
compute G(k). Show that the differentiation consists of carrying out a multi-
plication of F (k) by some power of ik.

2. If we suppose that the differentiation formula can also be used for fractional
α, compute d1/2

dx1/2
cos(3x).

3. Let f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . Compute the Fourier transform F (k).

3.5 Fourier series on finite interval

Let f(x) be defined on the finite interval 0 ≤ x < L. We consider that f(x) can
be extended as a periodic function over the entire real axis, thus f(x) = f(x + L).
We would like to express f(x) as a superposition of the basis functions eiknx subject
to the condition that the basis functions should be both continuous and periodic on
the interval. Thus we must impose the condition eiknL = eikn0 = 1 which requires
kn = n∆k with ∆k = 2π/L and n ∈ Z, so we express this as a sum

f(x) ∼
∞∑

n=−∞

f̂neiknx.

Using the inner product 〈f, g〉 =
∫ L

0
f(x)g∗(x) dx, the basis functions are orthogonal

〈eiknx, eikmx〉 = Lδn,m where δn,m is the Kronecker delta, δn,m = 0 for n 6= m and
δn,n = 1, and we have the expression for the Fourier coefficients

f̂n =
1

L

∫ L

0

f(x)e−iknx dx.

Example: Compute the Fourier series of the function

f(x) = ae
2πix
L for 0 ≤ x < L

on the interval 0 ≤ x < L and compute the Fourier transform of the periodic
extension

f(x) = ae
2πix
L for −∞ < x <∞.

Computing the Fourier coefficients of the Fourier series, we find

f̂n = aδn,1

where δn,1 is the Kronecker delta and the discrete wavenumber is kn = 2πn/L.
Computing the Fourier transform we find

F (k) = aδ(k − 2π

L
)

where δ(k) is the Dirac delta.
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Finally we see that both representations give exact reconstruction of the original
function ∫ ∞

−∞
F (k)eikx dk =

∞∑
n=−∞

f̂neiknx = ae
2πix
L .

This illustrates that a Fourier series can be written as a Fourier integral provided
we allow the Fourier transform to be a generalized function.

Example:
Compute the Fourier series of the function

f(x) =

{
1 for 0 ≤ x < π
0 for π ≤ x < 2π

on the interval 0 ≤ x < 2π.
With the basis functions einx for n ∈ Z, we have the representation

f(x) ∼
∞∑

n=−∞

f̂neinx

Using the inner product 〈f, g〉 =
∫ 2π

0
f(x)g∗(x) dx, the basis functions are orthogonal

〈einx, eimx〉 = 2πδn,m, and

f̂n =
1

2π

∫ 2π

0

f(x)e−inx dx =

{
1
2

for n = 0
−i

2πn
[1− (−1)n] for n 6= 0

Thus we may write

f(x) ∼ 1

2
+
∞∑
n=1

1− (−1)n

πn
sin(nx)

Example: The Gibbs phenomenon.
Suppose we limit the above sum to a finite number of terms N

sN(x) =
1

2
+

N∑
n=1

1− (−1)n

πn
sin(nx)

it is interesting to study how sN(x) behaves as N increases. Plot this function on
the interval 0 ≤ x < 2π for some values N = 0, 1, 2, 5, 10, 100, 1000. Notice the
behavior near the discontinuities at x = 0 and x = π and x = 2π.

In order to study the convergence of a Fourier series more closely, we first define

PNf(x) =
N∑

n=−N

f̂neinx

Several types of convergence can be considered. For example:
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1. Pointwise convergence. It can be shown that

lim
N→∞

PNf(x) =
1

2
(f(x+) + f(x−)) for each fixed x

2. Uniform convergence. It can be shown that near a point of discontinuity there
is an overshoot of approximately 0.089 times the discontinuous jump, thus we
do not have uniform convergence for discontinuous f(x).

3. Convergence in norm, or convergence in the mean,

lim
N→∞

‖PNf − f‖ = 0

We shall not deal further with convergence here. For more thorough discussion on
convergence the reader is referred to other textbooks.

3.5.1 Differentiation of Fourier series term by term

Given the representation

f(x) ∼
∞∑

n=−∞

f̂neiknx

we may hope that the derivatives of f(x) can be obtained by differentiating the
series term by term

dαf

dxα
(x) ∼

∞∑
n=−∞

(ikn)αf̂neiknx.

This works fine for sufficiently smooth functions, e.g. consider sinx = i
2
e−ix − i

2
eix

which gives d
dx

sinx = (−i) i
2
e−ix − (i) i

2
eix = 1

2
e−ix + 1

2
eix = cosx, however there are

some challenges if the function is not smooth as suggested in the following example:

Example:
For the discontinuous function considered above,

f(x) =

{
1 for 0 ≤ x < π
0 for π ≤ x < 2π

on the interval 0 ≤ x < 2π, we found the infinite Fourier series

f(x) ∼ 1

2
+
∞∑
n=1

1− (−1)n

πn
sin(nx)

If we differentiate this series term by term we get

f ′(x) ∼
∞∑
n=1

1− (−1)n

π
cos(nx),

which is a divergent series for x = 0 and x = π.
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On the other hand, if we compute the derivative of f(x) in the sense of generalized
functions we get

f ′(x) = δ(x)− δ(x− π)

and upon computing the Fourier series for this representation of f ′(x) we get pre-
cisely the divergent series given above. The perfectly acceptable generalized function
f ′(x) has a divergent Fourier series expansion which can be obtained by termwise dif-
ferentiation of the Fourier series for f(x). Thus the concept of generalized functions
allows us to ascribe meaning to divergent series expansions!

Example: Fractional derivatives — again.
In the above expression for the α-th derivative of f(x), there is no reason why α

needs to be an integer. Suppose we consider f(x) = sinx we have

dαf

dxα
(x) = (−i)α

i

2
e−ix − (i)α

i

2
eix =

i

2
e−i(x+πα

2
) − i

2
ei(x+πα

2
) = sin(x+

πα

2
)

This gives a smooth transition from one integral derivative to the next!

3.5.2 Exercises

1. Compute the Fourier series of f(x) = x for 0 ≤ x < 2π. Differentiate the
Fourier series for f(x) term by term and show that the result is divergent at
the point of discontinuity x = 0. Find g(x) = f ′(x) by direct differentiation
and find the Fourier series for g(x). Show that the divergent series for f ′(x)
found by termwise differentiation is equal to the Fourier series for the direct
derivative g(x). Show graphically on the computer that the Fourier series for
f(x) suffers from the Gibbs phenomenon.

3.6 Discrete Fourier Transform (DFT)

We consider complex sequences with N elements, {fj; j = 1, 2, . . . , N}. We would
like to express fj as a superposition of the basis functions {e 2πijn

N ; j = 1, 2, . . . , N}
for n = 1, 2, . . . , N so we express this as a sum

fj =
N∑
n=1

f̃ne
2πinj
N .

Using the inner product 〈f, g〉 =
∑N

j=1 fjg
∗
j the basis functions are orthogonal

〈e 2πijn
N , e

2πijm
N 〉 = Nδn,m where δn,m is the Kronecker delta, and we have the ex-

pression for the Discrete Fourier Transform

f̃n =
1

N

N∑
j=1

fje
− 2πinj

N .

The DFT has the property that it allows cyclic permutation of the sequences
{fj} and {f̃n}. To this end we suppose that fj and f̃n are continued periodically
with fj+N = fj and f̃n+N = f̃n for any j and n.

14



We can start either of the above sums at arbitrary integer coefficients and still
get the same result, thus for arbitrary integers r and s we have

fj =
r+N−1∑
n=r

f̃ne
2πijn
N

and

f̃n =
1

N

s+N−1∑
j=s

fje
− 2πijn

N .

For practical applications of DFT it is often useful to consider the index j to
denote a discrete set of values for the position x, and to consider the index n to
denote a discrete set of values for the wavenumber k. For a function f(x) on the
interval 0 ≤ x < L we set xj = j∆x = Lj

N
for j = 0, 1, . . . , N − 1, and consider the

samples fj = f(xj). Similarly we set kn = n∆k = 2πn
L

for n = 0, 1, . . . , N − 1. The
DFT transform pair then becomes

fj ≡ f(xj) =
N−1∑
n=0

f̃ne
iknxj

and

f̃n =
1

N

N−1∑
j=0

fje
−iknxj

where both of these sums can be subject to arbitrary cyclic permutation.

3.6.1 Exercises

1. Show that arbitrary cyclic permutations for any integers r and s are allowed
for the above DFT transform pair.

2. On the computer there are functions fftshift and ifftshift that perform
cyclic permutations for particular values of r. For which values of r? Check
the behavior for even and odd N . Under which conditions are fftshift and
ifftshift inverses? Under which conditions is fftshift the inverse of itself?

3. On the computer we can perform the DFT and its inverse with the functions
fft and ifft. These are often defined differently for different systems, and
differently from the definitions we have used so far. Usually they are defined
by

ifft: fj = A

r+N−1∑
n=r

f̃ne
± 2πi(n−p)(j−q)

N

and

fft: f̃n = B

s+N−1∑
j=s

fje
∓ 2πi(n−p)(j−q)

N

15



Choose your favorite computer system and determine the appropriate values
for A, B, r, s, p, q and the appropriate signs in the exponents for fft and
ifft.

For the pair {fft, ifft} to be exact inverses it is necessary that ABN = 1 and
that the signs are opposite. This turns out not to be satisfied on all computer
systems! Is it satisfied on your system?

Hint: If the documentation of your computer system does not tell you the
answer, set N to some small values and compute some sample transforms.

3.7 Folding or aliasing

Suppose we have a function f(x) on the interval 0 ≤ x < L. We can represent the
function as a Fourier series

f(x) ∼
∞∑

n=−∞

f̂ne
iknx, with f̂n =

1

L

∫ L

0

f(x)e−iknx dx,

where kn = 2πn
L
. Alternatively, we can sample f(x) at the discrete points xj =

j∆x = Lj
N

for j = 0, 1, . . . , N − 1, and represent the sample values fj ≡ f(xj) by
means of a DFT

fj =
N−1∑
n=0

f̃ne
iknxj , with f̃n =

1

N

N−1∑
j=0

fje
−iknxj .

We want to know the relationship between the continuous and the discrete
Fourier coefficients f̂n and f̃n.

If we evaluate the infinite Fourier series at the discrete sampling points, and take
the inner product with e

2πijm
N , and make use of the identity

N−1∑
j=0

e
2πijn
N = N

∞∑
l=−∞

δn,lN

where n is an arbitrary integer, we get the formula for aliasing or folding

f̃n =
∞∑

l=−∞

f̂n+lN . (6)

This formula shows that if f̂n is zero outside an interval for n of length N , then
the values of f̃n will be equal to the values of f̂n within that interval.

The most common way to employ the above result is that if f̂n is zero for |n| ≥ N
2
,

or correspondingly for |kn| ≥ kN
2
, then the values of f̃n will be equal to the values

of f̂n within that interval. The particular wavenumber kN
2

is called the Nyquist
wavenumber, and this criterion is called the Nyquist sampling criterion.

For practical application we should make sure that N is chosen sufficiently large
such that f̂n is sufficiently small outside an appropriate interval for n of length N ,
then f̃n will be approximately equal to f̂n within that interval.
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3.7.1 Exercises

1. Show that
r+N−1∑
j=r

e
2πijn
N = N

∞∑
l=−∞

δn,lN

for arbitrary starting index r.

Note: The result is an infinite row of Kronecker delta functions.

2. Consider the complex function

f(x) = 2e5ix + 12e7ix

for 0 ≤ x < 2π.

We wish to sample this function at the points xj = 2πj
N

for j = 0, 1, . . . , N − 1,
and to represent the function by its DFT Fourier coefficients f̃n such that the
values of f̃n are not contaminated by aliasing.

Determine the smallest value of N needed to avoid aliasing, and also determine
the smallest value of N according to the standard Nyquist sampling criterion
|kn| < kN

2
.

This problem demonstrates that with a clever use of cyclic permutation, and a
thorough understanding of aliasing, it is sometimes possible to use a substan-
tially smaller value for N than the value suggested by the standard Nyquist
sampling criterion.

3.8 Interpolation and differentiation using DFT

Suppose the function f(x) is sampled at N points xj = Lj
N
, fj = f(xj), for j =

0, 1, 2, . . . , N − 1, and suppose we have computed the DFT coefficients f̃n for n =
0, 1, 2, . . . , N − 1. We certainly have the reconstruction formula at the sampling
points with arbitrary cyclic permutation

fj =
r+N−1∑
n=r

f̃ne
iknxj ,

with kn = 2πn
L
. However, suppose we remove the index j in order to use this formula

as an interpolation between the sampling points

g(x; r) =
r+N−1∑
n=r

f̃ne
iknx,

we recognize that the interpolation will depend dramatically on the value of r. The
question becomes: For which value of r of the cyclic permutation does this interpo-
lation best resemble the original function f(x)? Without knowing anything about
the function f(x) the optimal choice is usually considered to be the interpolation
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with the slowest possible oscillations, corresponding to r = −N/2. On the other
hand, if we know something about f(x), the optimal value for r can be deduced
from the aliasing formula relating f̃n with f̂n such that the appropriate range for n
is such that f̃n is most exactly equal to f̂n.

After the appropriate value of r has been determined, and for N sufficiently large
to minimize aliasing, we can approximate the derivative

dαf

dxα
(xj) ≈

r+N−1∑
n=r

(ikn)αf̃ne
iknxj

3.8.1 Exercises

1. Consider again the complex function

f(x) = 2e5ix + 12e7ix

for 0 ≤ x < 2π sampled at the points xj = 2πj
N

for j = 0, 1, . . . , N − 1 with the
smallest value of N needed to avoid aliasing. Determine the required value of
r to correctly compute the derivative at the sampling points, f ′(xj).

3.9 The smoothness of a function

We have seen that if we differentiate a discontinuous function like the Heaviside step,
we get a Dirac delta after only one differentiation. If we differentiate a continuous
function with a discontinuous derivative, such as |x|, we get a step function after
the first differentiation and a Dirac delta after two differentiations.

Taking inspiration from the above, we may define an index α to be the number
of times needed to differentiate a function f(x) such that a Dirac delta appears. For
the Heaviside step we have α = 1, for the absolute value we have α = 2, while for a
smooth function like f(x) = sinx we have α = ∞. We shall employ the value of α
as the degree of smoothness of f(x).

Then let us consider how this affects the Fourier transform. Suppose we let f(x)
be defined on the entire real axis, let us apply an integration by parts on the integral
for the Fourier transform F (k)

F (k) =
1

2π

∫ ∞
−∞

f(x)e−ikx dx =

[
i

2πk
f(x)e−ikx

]∞
x=−∞

− i

2πk

∫ ∞
−∞

f ′(x)e−ikx dx

Since we suppose that f(x) → 0 as x → ±∞, only the last integral remains. Two
possibilities exist: Either f ′(x) contains a Dirac delta, and we have |F (k)| ∼ β|k|−1

as k → ±∞. Here β is some constant and the symbol ∼ means “behaves asymptot-
ically as”. Or else we can carry out one more integration by parts. Repeating this
procedure multiple times, we realize that the procedure stops after α integrations
by part, and we have

|F (k)| ∼ β|k|−α as k → ±∞
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If α =∞ we say that F (k) goes to zero faster than algebraically.
A nice way to plot this graphically is to use a log-log plot

log |F (k)| ∼ log β − α log |k| as k → ±∞

so the determination of the index α amounts to determine the slope of a straight
line.

As in the case of the fractional derivative, there is no reason to limit the value
of α to be an integer, thus we allow the degree of smoothness of a function f(x) to
be any real value for the index α. It will be fun to discover that the ocean surface
typically exhibits such a “fractional” smoothness.

Example: We have previously seen that the step function has Fourier coefficients
proportional to k−1. We have previously also seen that the trigonometric functions
sinx and cosx have Fourier coefficients identical to zero for |k| > 1 which means
they go to zero faster than algebraically.

3.9.1 Exercises

1. Show that if we draw the graph of y = axb in a doubly logarithmic coordinate
system, then the result will be a straight line, and the values of a and b can be
determined by respectively the point of intersection with the second axis and
the slope of the line.

Choose suitable values for a and b and demonstrate that this actually works by
plotting the graph on the computer with both plot(x,y) and loglog(x,y).

2. Look at the three functions

f(x) = x g(x) = |x− π| h(x) = cos(x) for 0 ≤ x < 2π

a) Plot the graphs of the three functions and explain how fast the Fourier
coefficients f̂n, ĝn and ĥn are expected to approach zero when n→ ±∞.

Use the computer to show that the expectation above is correct: First discretize
x with N equally spaced values xj = 2πj/N . Then compute the Fourier
coefficients by means of fft(y), where yj is the value of the function evaluated
at xj. Finally plot abs(fft(y)) in a doubly logarithmic coordinate system.

b) Explain why the command x = linspace(0,2*pi,N) is not correct, and
show how it must be done correctly.

c) Use plot to plot the graphs of abs(fft(y)) for the three functions in the
same linear coordinate system. Plot the graph of abs(fftshift(fft(y)))
in the same linear coordinate system. Explain why we only need to study
half of the Fourier transform.
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d) Use loglog to plot the graph of ε+abs(fft(y)) in the same doubly log-
arithmic coordinate system. Plot straight lines with the expected slopes
for the f and g. Show that you achieve the expected result for all three
functions!

Hint 1: The constant 0 < ε� 1 has been included to avoid that the computer
complains about taking the logarithm of non-positive numbers. A useful value
could be ε = 10−15.

Hint 2: In order to avoid aliasingN must be chosen sufficiently large, N = 1024
is probably sufficient.

e) Show that if we commit the error associated with the linspace command
above, then we ruin the nice behavior of ĥ.

3.10 Parseval’s theorem

Parseval’s theorem is a special case of Plancherel’s theorem. Suppose we look at
functions f(x) and g(x) on the real line x ∈ R, and suppose we consider the two
Fourier integrals

f(x) =

∫ ∞
−∞

F (k)eikx dx

and
g(x) =

∫ ∞
−∞

G(k)eikx dx.

Then we have ∫ ∞
−∞

f(x)g∗(x) dx = 2π

∫ ∞
−∞

F (k)G∗(k) dk.

In particular, we have ∫ ∞
−∞
|f(x)|2 dx = 2π

∫ ∞
−∞
|F (k)|2 dk.

The integral
∫∞
−∞ |f(x)|2 dx is sometimes denoted the “energy” of the “signal”

f(x), even though the units or the interpretation of f(x) may not necessarily cor-
respond to mechanical energy. We recognize that Parseval’s theorem is only mean-
ingful if the energy of the signal is finite.

The following three examples show that a function can be absolutely integrable
without having finite energy, a function can have finite energy without being abso-
lutely integrable, and a function can have a well defined Fourier transform in terms
of a generalized function without neither having finite energy nor being absolutely
integrable.

Example: Consider the function

f(x) =

{ 1√
x

for 0 < x < 1

0 elsewhere
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Notice that
∫∞
−∞ |f(x)| dx = 2 while

∫∞
−∞ |f(x)|2 dx is infinite.

Example: Consider the function

f(x) =

{
1
x

for x > 1
0 elsewhere

Notice that
∫∞
−∞ |f(x)| dx is infinite while

∫∞
−∞ |f(x)|2 dx = 1.

Example: Consider the function f(x) = sinx on the real line x ∈ R. Any
attempt to apply Parseval’s theorem will fail for two reasons: Firstly because the
energy of f(x) is infinite on the real line. Secondly because F (k) is a generalized
function containing a couple of Dirac delta, and the multiplication of a Dirac delta
with itself is not well defined.

Also notice that even though f(x) = sin x neither is absolutely integrable nor
has finite energy, it still has a well defined Fourier transform in terms of generalized
functions.

The above example suggests that a different approach should be taken. One
possible approach is to consider the “power” of the signal rather than the “energy”.
By the “power” of the signal f(x) we mean the energy divided by the length of the
interval along the x-axis, taking inspiration from the mechanical power being energy
divided by time. In the present case we have an infinite interval and we can employ
the following as the “power” of f(x)

lim
L→∞

1

2L

∫ L

−L
|f(x)|2 dx.

On the other hand, if we can represent

f(x) =
∞∑

n=−∞

f̂neiknx

for some fixed values of kn not depending on L, we get

lim
L→∞

1

2L

∫ L

−L
|f(x)|2 dx = lim

L→∞

1

2L

∫ L

−L

(
∞∑

n=−∞

f̂neiknx

)(
∞∑

m=−∞

f̂meikmx

)∗
dx

=
∞∑

n=−∞

∞∑
m=−∞

f̂nf̂
∗
m lim
L→∞

1

2L

∫ L

−L
ei(kn−km)x dx

=
∞∑

n=−∞

∞∑
m=−∞

f̂nf̂
∗
mδn,m

=
∞∑

n=−∞

|f̂n|2

This demonstrates that functions with infinite energy need not be problematic pro-
vided they have finite power.
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For Fourier series representation of functions f(x) on a finite interval 0 ≤ x < L
Parseval’s theorem follows immediately from Bessel’s inequality in the case that we
have convergence in the mean∫ L

0

|f(x)|2 dx = L

∞∑
n=−∞

|f̂n|2

For DFT we have simply

N∑
j=1

|fj|2 = N

N∑
n=1

|f̃n|2

3.10.1 Exercises

1. Show the slightly more general relation

N∑
j=1

fjg
∗
j = N

N∑
n=1

f̃ng̃
∗
n

3.11 Convolution

Suppose f(x) and g(x) are functions on the entire real axis. By the convolution of
f(x) and g(x) we mean a new function c(x) defined by

c(x) = (f ∗ g)(x) =

∫ ∞
−∞

f(x− y)g(y) dy.

Suppose we have the Fourier transforms F (k) and G(k),

f(x) =

∫ ∞
−∞

F (k)eikx dk

and
g(x) =

∫ ∞
−∞

G(k)eikx dk,

substitution into the convolution integral gives

c(x) =

∫ ∞
−∞

∫ ∞
−∞

F (k)eik(x−y) dk

∫ ∞
−∞

G(l)eily dl dy = 2π

∫ ∞
−∞

F (k)G(k)eikx dk.

Thus we have that the Fourier transform of the convolution is equal to 2π times the
product of the Fourier transforms.
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3.11.1 Exercises

1. Suppose we have a function f(x) on the interval 0 ≤ x < L and we consider
the truncated Fourier sum

PNf(x) =
N∑

n=−N

f̂neiknx

where kn = 2πn
L

and where

f̂n =
1

L

∫ L

0

f(x)e−iknx dx.

Show that we can write PNf(x) as a convolution of f(x) and the Dirichlet
kernel DN(x)

PNf(x) =
1

2π

∫ L

0

DN(x− y)f(y) dy

where the Dirichlet kernel is

DN(x) =
sin

2π(N+ 1
2

)x

L

sin πx
L

.

-10
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0
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15

20

25

0 5 10 15 20

x

DN(x) for N=10 and L=20

Hint: Change the order of the sum and the integral, and compute the geometric
series of the complex exponentials!

2. Consider multiplication of two polynomials

p(x) =
N∑
n=0

pnx
n

and

q(x) =
N∑
n=0

qnx
n,
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and let the product be another polynomial

c(x) = p(x)q(x) =
2N∑
n=0

cnx
n.

Show that the coefficients of the product polynomial are given by the discrete
convolution

cn =
N∑
m=0

pn−mqm for n = 0, 1, 2, . . . , 2N.

Show that the DFT of cn is given by the product of the DFTs of pn and qn.

Select your favorite polynomials p(x) and q(x) and show that the coefficients
of the product polynomial c(x) can be found by two calls to fft and one call
to ifft on the computer!

Notice that the direct computation of the coefficients cn above requires the
order of N2 operations (2N + 1 coefficients, each requiring N + 1 multipli-
cations), while the use of the Fast Fourier Transform requires the order of
N logN operations, thus for large N the polynomial multiplication with FFT
is much faster! You should time your program and find out exactly how large
N needs to be on your computer in order that the FFT-method for polynomial
multiplication is faster than direct evaluation of the convolution!
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3.12 Poisson’s summation formula

Recall that in the derivation of the formula for aliasing (6) was obtained by combin-
ing the DFT with the infinite Fourier series. We can also combine the continuous
Fourier transform with the infinite Fourier series for another useful result.

We start by considering the Dirac delta at the origin, δ(x), repeated as a periodic
function with period L. This can be represented as an infinite Fourier series

g(x) ≡
∞∑

j=−∞

δ(x− jL) =
∞∑

n=−∞

ĝne
2πinx
L

where the coefficients are determined by integrating over one period L within which
there is exactly one Dirac delta,

ĝn =
1

L

∫ L

0

∞∑
j=−∞

δ(x− jL)e−
2πinx
L dx =

1

L

Then we consider the Fourier transform of a (non-periodic) function f(x) defined
on the entire real axis

f(x) =

∫ ∞
−∞

F (k)eikx dk

If we sample this function at even intervals 2π/L, and take the sum, we get

∞∑
n=−∞

f(
2πn

L
) =

∫ ∞
−∞

F (k)
∞∑

n=−∞

e
2πikn
L dk =

∫ ∞
−∞

F (k)L
∞∑

j=−∞

δ(k − jL) dk

Thus we get the final result

∞∑
n=−∞

f(
2πn

L
) = L

∞∑
j=−∞

F (jL)

3.12.1 Exercises

1. Let f(x) = e−|x| and compute the sum
∞∑
j=1

1

1 + j2
.
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