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2 Nonlinear theory

2.1 Free and forced oscillations

This is a review of several techniques of applied mathematics that are likely to be
taught in various other courses. The main point here is to illustrate how nonlinearity
can act in two di�erent ways.

2.1.1 Free oscillations

Consider the linear harmonic oscillator

d2x

dt2
+ ω2x = 0 (1)

where t is time and ω is the angular frequency. This equation is homogeneous, or
unforced. It can be solved by assuming x = eλt, giving the characteristic polynomial

λ2 + ω2 = 0, (2)

which has two distinct roots λ = iω and λ = −iω both with multiplicity one. If we
want a real solution we can write

x = a cosωt+ b sinωt = Aeiωt + A∗e−iωt = Aeiωt + c.c. (3)

where a and b are real, A is complex, a raised ∗ signi�es complex conjugation, and
c.c. denotes the complex conjugate of the previous terms. This oscillation will be
denoted �free� since it does not depend on being forced.

2.1.2 Forced oscillations

Consider the forced linear harmonic oscillator

d2x

dt2
+ ω2x = f cosµt (4)

where the forcing is given on the right-hand side as an oscillation with amplitude
f and angular frequency µ. The equation is inhomogeneous or forced due to the
expression on the right-hand side. The solution can be written

x = xh + xp (5)

where xh is the solution of the homogeneous problem previously found in (3) and
xp is a particular (or inhomogeneous or forced) solution proportional to the forcing
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amplitude f . We may anticipate xp = c cosµt, which after substitution into (4)
yields

c =
f

ω2 − µ2
. (6)

This solution breaks down when the forcing frequency µ coincides with the natural
frequency ω of the linear oscillator, in which case we have resonance.

In order to �nd a solution for the resonant case µ = ω we may resort to the
method of undetermined coe�cients. We then need to identify an operator, called
an annihilator, which has the property that the right-hand side of (4) becomes zero.
The desired operator is

d2

dt2
− µ2. (7)

Applying this operator to both sides of (4) we get(
d2

dt2
− µ2

)(
d2

dt2
− ω2

)
x = 0. (8)

For the resonant case µ = ω we get the characteristic polynomial

(λ2 − ω2)2 = 0 (9)

which has two distinct roots, each with multiplicity two, λ ∈ {iω, iω,−iω,−iω}. The
general real solution can now be written as

x = a cosωt+ b sinωt+ ct cosωt+ dt sinωt

= Aeiωt + Cteiωt + c.c. (10)

To complete the method of undetermined coe�cients, this solution must be substi-
tuted into the original equation (4) which yields

c = 0, d =
f

2ω
, C = − if

4ω
(11)

while a, b and A are free. The resonant solution is seen to grow linearly in time,
without bounds, see �gure 1.

2.1.3 Nonlinearly forced oscillations

Consider the nonlinear oscillator

d2x

dt2
+ ω2x = ϵαx3 (12)

where 0 < ϵ≪ 1 is a small (nondimensional) ordering parameter and α is a physical
constant of order 1. If the solution x is bounded, then we may expect that the non-
linear term is small compared to the terms on the left-hand side, so to a leading order
we have the same linear harmonic oscillator as we studied above. At a higher order
the linear harmonic oscillator is forced by its own oscillation at a previous order.
The analysis is conveniently done by means of a regular perturbation expansion.
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Figure 1: Resonant solution with unbounded growth, ω = µ = a = f = 1 and b = 0.

2.1.4 Regular perturbation expansion

Let us assume the regular perturbation expansion

x = x0 + ϵx1 + ϵ2x2 + . . . (13)

When this is substituted into equation (12) we get

d2x0
dt2

+ ϵ
d2x1
dt2

+ . . .+ ω2x0 + ϵω2x1 + . . . = ϵαx30 + . . . (14)

From here we extract equations of the �rst two orders

d2x0
dt2

+ ω2x0 = 0 (15)

and
d2x1
dt2

+ ω2x1 = αx30 (16)

The solution of (15) is known to be x0 = Aeiωt + c.c., with complex amplitude A.
Substituting this into (16) we get

d2x1
dt2

+ ω2x1 = αA3e3iωt + 3α|A|2Aeiωt + c.c. (17)

It is convenient to express the solution of this equation as the superposition

x1 = x1,h + x1,1 + x1,3 (18)

where x1,h = A1e
iωt+c.c. is the homogeneous solution, x1,1 is a particular solution in

response to the forcing terms proportional to e±iωt, and x1,3 is a particular solution
in response to the forcing terms proportional to e±3iωt.

We know from equations (10) and (11) that the solution for x1,1 is unbounded
as time increases. In fact, we will show that equation (12) has unbounded solutions.
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However, if it had been our goal to study an unbounded solution we should not
have employed the small parameter ϵ to characterize the smallness of the solution
as it appears in the perturbation expansion (13). On the other hand, equation (12)
also has solutions that remain bounded. Let us �rst verify that both bounded and
unbounded solutions exist, and then modify the perturbation approach in order to
study the bounded solutions.

2.1.5 Global solution illustrated by phase portrait

Let us express the second-order equation (12) as a system of two �rst-order equations

dx

dt
= y (19)

dy

dt
= ϵαx3 − ω2x (20)

We can interpret (x, y) to be a two-dimensional position, and (dx
dt
, dy
dt
) to be a two-

dimensional velocity �eld. We can check that the velocity �eld is divergence free.
Therefore we know that a stream function exists

ψ =
αϵ

4
x4 − ω2

2
x2 − 1

2
y2 (21)

such that dx
dt

= −∂ψ
∂y

and dy
dt

= ∂ψ
∂x
. The phase portrait, i.e. the streamlines, is given

by the contours of constant ψ, shown as the solid curves in �gure 2.
For positive α there are three �xed points of the system (19)�(20), they are all

on the x-axis with x = 0 or x2 = ω2

αϵ
. Through the latter two �xed points we can

compute the separatrices y = ±
√

ϵα
2

(
x2 − ω2

ϵα

)
which are two parabolas. Clearly,

a solution is bounded for all time provided it is inside the �eye� delimited by the
separatrices near the origin, a solution is unbounded if it is outside the separatrices.

For negative α there is only one �xed point at the origin.

2.1.6 Multiple scales perturbation expansion

Looking carefully at �gure 1 we may anticipate that the amplitude of the oscillation
should vary slowly in comparison with the fundamental oscillation. Therefore we
now try a multiple scales approach to see if that can arrest the unbounded growth
in the case that the solution should remain bounded.

Now we assume that while the rapid time for oscillation is t0 = t, the relevant
time for modulation is t1 = ϵt or even slower scales tn = ϵnt. The variable x will
now be assumed to be a function of both t0 and t1 and all the slower scales. We
develop the time derivative by means of the chain rule

d

dt
=

dt0
dt

∂

∂t0
+

dt1
dt

∂

∂t1
+ . . . =

∂

∂t0
+ ϵ

∂

∂t1
+ . . . (22)

and
d2

dt2
=

(
∂

∂t0
+ ϵ

∂

∂t1
. . .

)2

=
∂2

∂t20
+ 2ϵ

∂2

∂t0∂t1
+ . . . . (23)
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Figure 2: Solid lines: Phase portrait of the nonlinear oscillator, for ω = α = 1 and
ϵ = 0.2. Dashed lines: Approximation found by the multiple scales perturbation
expansion.

Equation (12) now becomes

∂2x

∂t20
+ 2ϵ

∂2x

∂t0∂t1
+ . . .+ ω2x = ϵαx3 (24)

which is conveniently solved by assuming the regular perturbation expansion

x = x0 + ϵx1 + ϵ2x2 + . . . (25)

When this is substituted into the above equation we get

∂2x0
∂t20

+ 2ϵ
∂2x0
∂t0∂t1

+ . . .+ ϵ
∂2x1
∂t20

+ . . .+ ω2x0 + ϵω2x1 + . . . = ϵαx30 + . . . (26)

From here we extract equations for the �rst two orders

∂2x0
∂t20

+ ω2x0 = 0 (27)

and
∂2x1
∂t20

+ ω2x1 = αx30 − 2
∂2x0
∂t0∂t1

. (28)

The solution of (27) is known to be x0 = A(t1)e
iωt0 + c.c., where the complex

amplitude A(t1) is now a function of the slow modulation time. Substituting this
into (28) we get

∂2x1
∂t20

+ ω2x1 = αA3e3iωt0 + 3α|A|2Aeiωt0 − 2iω
∂A

∂t1
eiωt0 + c.c. (29)

It is convenient to express the solution of this equation as the superposition

x1 = x1,h + x1,1 + x1,3 (30)
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where x1,h = A1e
iωt0 + c.c. is the homogeneous solution, x1,1 is a particular solution

due to the forcing terms proportional to e±iωt0 , and x1,3 is a particular solution due
to the forcing terms proportional to e±3iωt0 .

In order to avoid unbounded growth of x1,1 we need to make sure that there is
no forcing on the right-hand side proportional to eiωt0 . This can now be achieved by
requiring such terms to cancel out, giving a governing equation for A

∂A

∂t1
+

3α

2ω
i|A|2A = 0 (31)

which is readily solved as
A = ae−

3α
2ω

ia2t1+iθ (32)

where a and θ are two real constants.
We may now set both x1,h and x1,1 to zero since they to not contribute anything

new.
The only inhomgeneous solution that needs to be considered is

x1,3 = − α

8ω2
A3e3iωt0 + c.c.. (33)

In the end we get the solution accurate to second order

x = 2a cos(ω′t+ θ)− ϵα

4ω2
a3 cos 3(ω′t+ θ) (34)

where ω′ = ω − 3ϵα
2ω
a2.

The solution in equation (34) is shown as dashed curves in �gure 2. The defor-
mation of the streamlines is well captured near the origin and well inside the �eye�,
but is not so well captured near the separatrices.

The second-order modi�cation causes the oscillation to be slower for α > 0 and
faster for α < 0. This is not captured by �gure 2, but is suggested in �gure 3. Orbits
along the separatrices take in�nite time, but this is not captured by the second-order
approximation.

2.1.7 Solution in the style of WKB

With hindsight, we could have anticipated that the bounded solution had to be
a superposition of oscillations proportional to e±iωt and e±3iωt, with appropriately
slowly varying amplitudes. Using such hindsight, it is possible to focus on the slow
modulation timescale only, t1 = ϵt, and express the equation in terms of this slow
coordinate only

ϵ2
d2x

dt21
+ ω2x = ϵαx3 (35)

and assume a solution that is a superposition of �rst and third harmonic oscillations
of the form

x = A1e
ϵ−1iωt1 + ϵA3e

3ϵ−1iωt1 +O(ϵ2) + c.c. (36)
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Figure 3: Leading order solution 2a cos(ωt + θ) shown in solid black line, second
order solution (34) shown in dotted blue line, for ω = a = α = 1, θ = 0 and ϵ = 0.2.

The symbol �c.c.� indicates the complex conjugate of the previous terms, as usual.
Substituting this into (35) yields

ϵ2
{
(−ϵ−2ω2A1 + 2ϵ−1iω

∂A1

∂t1
)eϵ

−1iωt1 + (−9ϵ−1ω2A3)e
3ϵ−1iωt1 + . . .+ c.c.

}
+ ω2

{
A1e

ϵ−1iωt1 + ϵA3e
3ϵ−1iωt1 + . . .+ c.c.

}
= ϵα

{
3A3

1e
3ϵ−1iωt1 + 3|A1|2A1e

ϵ−1iωt1 + . . .+ c.c.
}

(37)

Extracting the �rst and third harmonics we get

−ω2A1 + 2ϵiω
∂A1

∂t1
+ ω2A1 = 3αϵ|A1|2A1 +O(ϵ2) (38)

and
−9ϵω2A3 + ϵω2A3 = ϵα3A3

1 +O(ϵ2) (39)

which are seen to yield exactly the same result as previously achieved by the multiple
scales approach, however, now with much less e�ort.

2.1.8 Summary of nonlinear e�ects in this section

We have found that, for a description of bounded solutions of an essentially linear
oscillator with a small nonlinear modi�cation, it is useful to distinguish two essen-
tially di�erent types of nonlinear response: �static� and �dynamic�. The �static�
nonlinear response is due to non-resonant forcing (the symbols x1,3 and A3 above).
The �dynamic� nonlinear response is governed by an �evolution equation� imposed
to avoid resonant forcing leading to unbouned growth (the di�erential equations for
A and for A1 above).

On the other hand, for a description of the solutions that actually blow up, the
distinction between �static� and �dynamic� response is not so useful.
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2.1.9 Exercises

1. Nonlinear oscillator with quadratic nonlinear term.

Consider the nonlinear oscillator

d2x

dt2
+ ω2x = ϵαx2 (40)

where 0 < ϵ ≪ 1 is a small (nondimensional) ordering parameter and α is a
physical constant of order 1.

(a) In the case that we attempt a solution by a regular perturbation expansion
(13), with no consideration of slow time modulation, discuss why this equation
will not su�er from unbounded resonant growth in the solution to second-order
accuracy (x1), but will su�er from unbounded resonant growth in the solution
to third-order accuracy (x2).

(b) Discuss the global solution in terms of a phase portrait, and try to �nd
evidence that a solution that remains bounded for all time can exist.

(c) Use either a multiple-scales or a WKB approach to solve this equation to
the third order, without allowing unbounded resonant growth.

Hint: The relevant slow scale is likely t2 = ϵ2t. The solution is probably

x = 2a cos(ω′t+ θ)+ ϵ
2α

ω2
a2− ϵ

2α

3ω2
a2 cos 2(ω′t+ θ)+

ϵ2α2

6ω4
a3 cos 3(ω′t+ θ)+ . . .

(41)
where ω′ = ω − 5ϵ2α2

3ω3 a
2 and where a and θ are real constants. In �gure 4

the solution has been compared to the leading order, the second order and
the third order. The second-order modi�cation causes the oscillations to be
slightly uplifted, while the third-order modi�cation causes the oscillations to
be slower.

2. Physical pendulum.

The di�erential equation which represents the motion of a simple pendulum is

d2θ

dt2
+
g

l
sin θ = 0

where g is the acceleration of gravity, l is the length of the pendulum, and θ
is the angular displacement.

For small displacements this can be approximated by a simple-harmonic os-
cillator. For slightly larger displacements the solution can be approximated
by the technique of multiple-scale expansion illustrated above. For arbitrary
displacements it is possible to draw the phase portrait distinguishing motion
back and forth or motion always rotating around in the same direction.
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Figure 4: Leading order solution 2a cos(ωt + θ) shown in solid black line, second
order solution 2a cos(ωt+θ)+ϵ2α

ω2a
2−ϵ 2α

3ω2a
2 cos 2(ωt+θ) shown in dashed blue line,

third order solution (41) shown in dash-dotted red line, for ω = a = α = 1, θ = 0
and ϵ = 0.2.

2.2 Nonlinear water surface waves: Governing equations, po-
tential theory and nonresonant waves

We consider a liquid such as water, with density ρ(r, t), pressure p(r, t), and velocity
v(r, t). The vertical component of the velocity will be denoted w. The liquid
is bounded below by the bottom at z = −h(x, t) and above by the free surface
z = η(x, t). Above the free surface we have air with density ρa(r, t) and pressure
pa(r, t), however since the density of air is small in comparison with water we will
not consider the movement of the air. We denote time by t, the three-dimensional
position vector by r = xix + yiy + ziz, and the two-dimensional horizontal position
vector by x = xix + yiy. We let ix, iy, iz be unit vectors in the x, y, z-directions.
The positive z-direction is oriented up. The acceleration of gravity is g = −giz.
The free surface is subject to surface tension, and the coe�cient of surface tension
is γ.

2.2.1 The basic equations

The continuity equation expresses the conservation of mass

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0. (42)

In the case of an incompressible �uid,

Dρ

dt
≡ ∂ρ

∂t
+ v · ∇ρ = 0, (43)

including the special case of constant density, the continuity equation reduces to

∇ · v = 0. (44)
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Euler's equation expresses the conservation of momentum for an inviscid �uid

∂v

∂t
+ v · ∇v = −1

ρ
∇p+ g. (45)

The kinematic bottom condition is the requirement that liquid cannot �ow
through the bottom

∂h

∂t
+ v · ∇h = −w at z = −h (46)

where w = iz ·v is the vertical component of the velocity. In the case of a stationary
and horizontal bottom, we have

w = 0 at z = −h. (47)

The kinematic free surface condition is the requirement that liquid cannot �ow
through the free surface, or alternatively that a �uid particle at the free surface must
stay at the free surface

∂η

∂t
+ v · ∇η = w at z = η. (48)

The dynamic free surface condition is the requirement that the sum of all forces
on an in�nitesimal surface element is zero. Let S be a surface element of the interface
between water and air. On S there will be a pressure force Fw from the water below,
a pressure force Fa from the air above, and surface tension force Fγ on the lateral
side ∂S. Here ∂S is a closed curve on the interface between water and air, delimiting
the surface element S from the rest of the interface. The pressure forces are

Fw =

∫
S

pn dσ (49)

and

Fa = −
∫
S

pan dσ (50)

where p is the pressure in the water below, pa is the pressure in the air above, n is
a unit normal vector to the free surface pointing out from water into air, and dσ is
an in�nitesimal surface element. The surface tension force is

Fγ = −
∫
∂S

γn× dr = −
∫
S

γn∇ · n dσ (51)

where the transition from a curve integral to a surface integral has been achieved
by an application of Stokes theorem. If we can assume the surface element S has
a �thickness�, within which a mass m is contained, then the acceleration a of the
surface element is according to Newton's second law Fw + Fa + Fγ = ma. Now
letting S shrink to zero thickness and extent, the mass shrinks to zero as well. In
order that the acceleration does not become in�nite, we must insist that the sum of
the forces vanishes, thus

p− pa − γ∇ · n = 0 at z = η. (52)
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As an exercise one can show that

∇ · n = −
∂2η
∂x2

+ ∂2η
∂y2

+ ∂2η
∂x2

(∂η
∂y
)2 + ∂2η

∂y2

(
∂η
∂x

)2 − 2∂η
∂x

∂η
∂y

∂2η
∂x∂y(

1 +
(
∂η
∂x

)2
+
(
∂η
∂y

)2) 3
2

. (53)

It is common to see this expressed compactly in terms of the principal radii of
curvature of the surface, however we prefer to use the above expression for subsequent
analysis.

2.2.2 Potential �ow

It is often a good approximation to consider the �ow to be irrotational, ∇× v = 0.
Then the velocity can be derived from a velocity potential ϕ(r, t)

v = ∇ϕ. (54)

The continuity equation for an incompressible �uid now becomes the Laplace
equation

∇2ϕ = 0. (55)

The Euler equation becomes, in the case of constant density,

∂ϕ

∂t
+

1

2
(∇ϕ)2 = −p− p0

ρ
− gz + f(t) (56)

where p0 is a constant reference pressure and f(t) is a constant of integration (con-
stant with respect to space). We can get rid of this constant of integration by a
rede�nition of the velocity potential ϕ → ϕ+

∫ t
f(ξ) dξ. This rede�nition does not

a�ect the de�nition of velocity in (54), therefore we can simply set f(t) ≡ 0 in (56).
A slight rewriting provides the Euler pressure equation1

p = p0 − ρ

(
∂ϕ

∂t
+

1

2
(∇ϕ)2 + gz

)
. (57)

The kinematic bottom condition becomes in the case of a stationary and hori-
zontal bottom

∂ϕ

∂z
= 0 at z = −h. (58)

The kinematic free surface condition becomes

∂η

∂t
+∇ϕ · ∇η =

∂ϕ

∂z
at z = η. (59)

The dynamic free surface condition can now be rewritten with the help of the
Euler pressure equation (57). Upon selecting the reference pressure p0 equal to the
constant air pressure p0 = pa we get

∂ϕ

∂t
+

1

2
(∇ϕ)2 + gη +

γ

ρ
∇ · n = 0 at z = η (60)

1The Euler pressure equation for unsteady potential �ow should not be confused with the

Bernoulli equation for steady �ow stating that p
ρ +

1
2v

2+ gz is constant along a streamline with no

requirement of irrotationality.
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2.2.3 Normalization for weakly nonlinear waves

Let us assume that kc is a characteristic wave number, ωc is a characteristic angular
frequency, and ac is a characteristic amplitude for the surface elevation. Let us
introduce the (characteristic) steepness ϵ = kcac. We can then perform the following
normalizations

(x′, y′, z′) = kc(x, y, z) t′ = ωct η = acη
′ ϕ =

ωcac
kc

ϕ′ g =
ω2
c

kc
g′

γ

ρ
=
ω2
c

k3c

γ′

ρ′

such that all the above primed quantities are supposed to be of �order one�. We also
normalize the depth

h′ = kch

which will not be required to be �order one�, but can be arbitrarily large. When this
is substituted into the equations of the previous subsection we get

∂η′

∂t′
+ ϵ∇′ϕ′ · ∇′η′ =

∂ϕ′

∂z′
at z′ = ϵη′ (61)

∂ϕ′

∂t′
+

1

2
ϵ (∇′ϕ′)

2
+ g′η′ +

γ′

ρ′
∇′ · n = 0 at z′ = ϵη′ (62)

∇′2ϕ′ = 0 for −h′ < z′ < ϵη′ (63)

∂ϕ′

∂z′
= 0 at z′ = −h′ (64)

In the above equations we shall drop the primes, but keep the steepness ϵ as an
indicator of the magnitude of each term.

The resulting normalized equations look identical to the original equations, ex-
cept for the presence of the ordering parameter ϵ. This representation is advanta-
geous since it can be interpreted in two di�erent ways: Set ϵ = 1 and we recover the
original dimensional and un-normalized equations. Set g and ρ and γ to unity and
we get dimensionless and properly normalized

For small steepness, ϵ ≪ 1, we can perform a Taylor-expansion around z = 0
such that for any function f(z)

f(ϵη) = f(0) + ϵη
∂f

∂z
(0) +

1

2
ϵ2η2

∂2f

∂z2
(0) + · · · (65)

and we get within the �rst three orders

∂η

∂t
+ ϵ∇ϕ ·∇η+ ϵ2η∇∂ϕ

∂z
·∇η− ∂ϕ

∂z
− ϵη∂

2ϕ

∂z2
− 1

2
ϵ2η2

∂3ϕ

∂z3
= O(ϵ3) at z = 0 (66)

∂ϕ

∂t
+ ϵη

∂2ϕ

∂z∂t
+

1

2
ϵ2η2

∂3ϕ

∂z2∂t
+

1

2
ϵ (∇ϕ)2 + ϵ2η∇ϕ · ∇∂ϕ

∂z
+ gη − γ

ρ

{
∇2η

− 1

2
ϵ2
[
∂2η

∂x2

(
3(
∂η

∂x
)2 + (

∂η

∂y
)2
)
+
∂2η

∂y2

(
3(
∂η

∂y
)2 + (

∂η

∂x
)2
)
+ 4

∂2η

∂x∂y

∂η

∂x

∂η

∂y

]}
= O(ϵ3) at z = 0 (67)

∇2ϕ = 0 for −h < z < 0 (68)

∂ϕ

∂z
= 0 at z = −h (69)
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2.2.4 Regular perturbation expansion

To solve equations (66)�(69) it is tempting to try regular perturbation expansions

η = η1 + ϵη2 + ϵ2η3 + · · · (70)

ϕ = ϕ1 + ϵϕ2 + ϵ2ϕ3 + · · · (71)

The leading order problem
After substituting (70)�(71) into (66)�(69), the leading order problem is

∂η1
∂t

− ∂ϕ1

∂z
= 0 at z = 0 (72)

∂ϕ1

∂t
+ gη1 −

γ

ρ
∇2η1 = 0 at z = 0 (73)

∇2ϕ1 = 0 for −h < z < 0 (74)

∂ϕ1

∂z
= 0 at z = −h (75)

This system is solved by assuming a monochromatic elementary wave solution(
η1(x, t)
ϕ1(r, t)

)
=

(
η̂1

ϕ̂1(z)

)
ei(k·x−ωt) (76)

where k = kxix + kyiy is the wave vector, x is the horizontal position vector, r is
the three-dimensional position vector, and ω is the angular frequency.

The solution for ϕ̂1 is found from (74)�(75) as

ϕ̂1 = A
cosh k(z + h)

sinh kh
(77)

where k = |k| =
√
k2x + k2y is the wavenumber. The ratio of cosh over sinh is

preferred in order that for deep water, h→ ∞, the limiting behavior is ϕ̂1 = Aekz.
The two surface conditions then give the linear system(

−iω −k
g + γ

ρ
k2 −iω coth kh

)(
η̂1
A

)
=

(
0
0

)
(78)

A nontrivial solution requires the determinant of the coe�cient matrix to be zero,
which provides us the dispersion relation

ω2 = (gk +
γ

ρ
k3) tanh kh. (79)

A nontrivial solution for k > 0 can then be expressed by

η̂1 =
b

2
and A = −i

ω

k

b

2
(80)

where b is a complex amplitude.
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Corresponding to k = 0, the system (72)�(75) has the nontrivial solution η = 0
and ϕ = Ux+ V y corresponding to a horizontal current with a �at water surface.

Since the leading order problem is linear, we can employ the principle of superpo-
sition to compose a general solution for an irregular sea as a sum of monochromatic
waves. For a discrete superposition of real monochromatic waves we can write

η1(x, t) =
1

2

∑
j

bje
i(kj ·x−ωjt) + c.c. =

∑
j

|bj| cos(kj · x− ωjt+ arg bj) (81)

and

ϕ1(r, t) = Ux+ V y +
1

2

∑
j

ωj cosh (kj(z + h))

kj sinh(kjh)

(
−ibje

i(kj ·x−ωjt) + c.c.
)

(82)

where bj are complex amplitudes, and where each pair of wave vector kj and angular
frequency ωj satis�es the dispersion relation (79).

Notice that since we want the surface elevation to be real, the sum over j should
include complex conjugates as appropriate.

Higher order problems
The general form of the problem of order n > 1 is

∂ηn
∂t

− ∂ϕn
∂z

= Fn at z = 0 (83)

∂ϕn
∂t

+ gηn −
γ

ρ
∇2ηn = Gn at z = 0 (84)

∇2ϕn = 0 for −h < z < 0 (85)

∂ϕn
∂z

= 0 at z = −h (86)

where we have

F2 = −∇ϕ1 · ∇η1 + η1
∂2ϕ1

∂z2
(87)

G2 = −η1
∂2ϕ1

∂z∂t
− 1

2
(∇ϕ1)

2 (88)

F3 = −∇ϕ2 · ∇η1 −∇ϕ1 · ∇η2 − η1∇
∂ϕ1

∂z
· ∇η1 + η2

∂2ϕ1

∂z2
+ η1

∂2ϕ2

∂z2
+

1

2
η21
∂3ϕ1

∂z3
(89)

G3 = −η2
∂2ϕ1

∂z∂t
− η1

∂2ϕ2

∂z∂t
−∇ϕ2 · ∇ϕ1 −

1

2
η21
∂3ϕ1

∂z2∂t
− η1∇ϕ1 · ∇

∂ϕ1

∂z

− γ

2ρ

{
∂2η1
∂x2

(
3(
∂η1
∂x

)2 + (
∂η1
∂y

)2
)
+
∂2η1
∂y2

(
3(
∂η1
∂y

)2 + (
∂η1
∂x

)2
)
+ 4

∂2η1
∂x∂y

∂η1
∂x

∂η1
∂y

}
(90)

If the �rst-order solution is a superposition of two monochromatic waves

η1(x, t) = Re
{
bje

i(kj ·x−ωjt) + ble
i(kl·x−ωlt)

}
(91)
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then the second-order forcing will have oscillations with wavenumber vectors K±
j,l =

kj ± kl and angular frequencies Ω±
j,l = ωj ± ωl, and we anticipate the particular

solutions (
η±2,j,l(x, t)

ϕ±
2,j,l(r, t)

)
=

(
η̂±2,j,l

ϕ̂±
2,j,l(z)

)
ei(K

±
j,l·x−Ω±

j,lt) (92)

For non-zero K±
j,l the solution for ϕ̂±

2,j,l is found from (85)�(86) as

ϕ̂±
2,j,l = A±

2,j,l

coshK±
j,l(z + h)

sinhK±
j,lh

(93)

where K±
j,l = |K±

j,l| and where the ratio of cosh over sinh is chosen in order that for

deep water, h→ ∞, the limiting behavior is ϕ̂±
2,j,l = A±

2,j,le
K±

j,lz.

If we denote the corresponding contributions to F2 and G2 by F̂
±
2,j,le

i(K±
j,l·x−Ω±

j,lt)

and Ĝ±
2,j,le

i(K±
j,l·x−Ω±

j,lt), then the two surface conditions (83) and (84) with the two
right-hand sides (87) and (88) give the linear system(

−iΩ±
j,l −K±

j,l

g + γ
ρ
K±
j,l

2 −iΩ±
j,l cothK

±
j,lh

)(
η̂±2,j,l
A±

2,j,l

)
=

(
F̂±
2,j,l

Ĝ±
2,j,l

)
(94)

This matrix equation can be solved when the pair K±
j,l and Ω±

j,l does not satisfy the
dispersion relation (79), because then the determinant of the coe�cient matrix is
non-zero.

If the pairK±
j,l and Ω±

j,l does satisfy the dispersion relation then we are forcing the
linear system with its own natural wave solution. Our previous experience suggests
this will give resonant blow-up unless we introduce slow modulation scales x1 = ϵx
and t1 = ϵt.

To be more accurate, we should invoke the Fredholm alternative2 here, which

can be expressed as follows:

Let M be a matrix, and let X, Y and B be vectors. The matrix system

MX = B has a solution for X if and only if any left eigenvector Y with

zero eigenvalue, YM = 0, is orthogonal to B, i.e. Y B = 0. This is called a

solvability condition.

The left eigenvector with zero eigenvalue is (−K±
j,l, iΩ

±
j,l). While there could

possibly be some special combination of depth and interacting waves that

could allow the amplitudes of the leading-order problem to be non-zero, we

can anticipate the requirement will in general be that the amplitudes of the

�rst-order solution must be set to zero.

In order to avoid having to set the amplitudes of the �rst-order solution to zero,

we can choose between enhancing the assumed solution (92) with resonantly

growing terms or introducing slow modulation scales; we shall prefer the latter.

2https://en.wikipedia.org/wiki/Fredholm_alternative
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Finally, if K±
j,l = 0 then we are forcing a second-order solution that is not a

propagating wave. In particular we �nd

η−2,j,j = 0 and ϕ−
2,j,j =

ω2
j (1− C2

j )

2

|bj|2

4
t (95)

where we have used the notation Cj = coth(kjh). This implies a change of pressure
without a�ecting either the velocity �eld nor the surface elevation.

Summarizing what we have found so far, assuming the �rst-order solution is given
by (81) and (82) we realize that the second-order solution can su�er unbounded
resonant growth if three waves can resonate in a triad

k1 + k2 = k3 and ω1 + ω2 = ω3 (96)

in which case we anticipate that the complex amplitudes of the leading-order solution
should be modulated on the slow scales x1 = ϵx and t1 = ϵt.

Similarly, we anticipate that the third-order solution can su�er unbounded res-
onant growth if four waves can resonate in a quartet

k1 + k2 + k3 = k4 and ω1 + ω2 + ω3 = ω4 (97)

in which case we anticipate that the complex amplitudes of the leading-order solution
should be modulated on the slow scales x2 = ϵ2x and t2 = ϵ2t.

For this reason we should investigate under which conditions the dispersion re-
lation (79) allows triad or quartet resonance before we attempt to solve the second-
and third-order problems.

2.2.5 Exercises

1. Expand ∇ ·n to third order in steepness ϵ = kcac, where n is the unit normal
vector to the surface z = η.

Hint: It may be useful to start by showing that for |ν| < 1 we have

1

1 + ν
= 1− ν + ν2 − ν3 + . . .

2. In order to appreciate the relative importance of equations (50) and (51), let
us consider a spherical raindrop with diameter 2 mm, let us cut it horizontally
through its center. Compute the air pressure force from above (50) on the
upper half of the sphere, the surface tension force (51) acting on the circular
cut around the sphere, and the weight of the raindrop.

You may use the air pressure of one standard atmosphere 101325 Pa and the
surface tension between water and air 0.07286 N/m and the water density
ρ = 998.2 kg/m3 both at 20◦C.

3. The dispersion relation (79) has an in�ection point, a minimum phase speed
and a minimum group velocity. Find all of these in the limit of in�nite depth.

You may use the acceleration of gravity 9.81 m/s2 and the surface tension
between water and air 0.07286 N/m and the water density ρ = 998.2 kg/m3

both at 20◦C.
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4. Discuss how the dispersion relation (79) can be approximated for (i) pure
capillary waves on deep water, (ii) capillary�gravity waves on deep water, (iii)
gravity waves on shallow water.

Discuss how long waves should be in order to be �deep water� waves, and how
short waves should be in order to be �capillary� waves.

2.3 Nonlinear resonance conditions

We inquire if three or four waves can resonantly interact such that the conditions

k1 + k2 = k3 and ω1 + ω2 = ω3 (98)

or
k1 + k2 = k3 + k4 and ω1 + ω2 = ω3 + ω4 (99)

are satis�ed. Here ωn and kn are related according to the dispersion relation.
In particular we shall be concerned with the dispersion relation for gravity�

capillary waves on arbitrary depth

ω2 = (gk +
γ

ρ
k3) tanh(kh). (100)

2.3.1 Three-wave resonance of long waves

For non-dispersive waves, ω = αk where α is a constant, the resonance conditions
(98) are satis�ed for co-linear wave vectors.

The dispersion relation (100) is approximately non-dispersive for long waves.
This is seen by Taylor expansion of (100) around k = 0

ω =
√
ghk +

√
gh

6

(
3γ

ρg
− h2

)
k3 +O(k5) (101)

To the second order in k this equation is non-dispersive.
It is even possible to achieve non-dispersive gravity�capillary waves accurate to

fourth order in k by setting h =
√

3γ
ρg
. With typical values g = 9.81 m/s2, ρ = 998.2

kg/m3 and γ = 0.07286 N/m (values for 20◦C), we get the target depth h = 4.7
mm, which is not interesting for ocean waves, but could be quite interesting for
laboratory experiments or for waves that occur on paved roads on a rainy day.

2.3.2 Three-wave resonance of one long and two short waves

In equation (98) let k1 ≈ k3, then k2 is quite small. We consider wave 1 and wave
3 to be the �short� waves while wave 2 is the �long� wave. In this case there can be
three-wave resonance if the phase speed of the long wave is equal to the component
of the group velocity of the short waves (e.g. wave 1) in the direction of the long
wave. This is seen by Taylor-expanding ω3 around k1

ω3 = ω(k3) ≈ ω(k1) + (k3 − k1) ·
∂ω

∂k

∣∣∣∣
k1

= ω1 + k2 · cg1 (102)
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Figure 5: Resonant triad of gravity�capillary waves on in�nite depth, normalized

against k1 oriented along the �rst axis, with Γ ≡ γk21
ρg

= 0.5 (green); 1 (blue); 2 (red).

thus we must check if the phase speed of the long wave satis�es

c2 ≡
ω2

k2
≈ k2

k2
· cg1. (103)

The dispersion relation (100) allows this condition to be satis�ed in the limit of
long gravity waves when all three waves have the same direction, then this becomes
a limiting case of the result in section 2.3.1. For other types of dispersion relations,
or interactions between surface and internal waves, one could expect this condition
to give more interesting triad resonance con�gurations.

2.3.3 Three-wave resonance of deep-water capillary�gravity waves

Consider in�nite depth and set Γ =
γk21
ρg
. In �gure 5 the wave vector k1 is oriented

along the �rst axis. The green, blue and red curves show the locus where wave
vectors k2 and k3 should meet for Γ having values 0.5, 1 and 2.

This con�guration of resonant triads of gravity�capillary waves on in�nite depth
was �rst investigated by McGoldrick (1965).

2.3.4 Three-wave resonance of two unidirectional capillary�gravity waves
(Wilton's ripples)

As a special case of the previous triad resonance, if we limit to the special case
k1 = k2 then it can be shown that the resonance condition (98) is satis�ed when

k =
√

ρg
2γ
. With typical values g = 9.81 m/s2, ρ = 998 kg/m3 and γ = 0.0728 N/m

(values for 20◦C), we get k1 = 259 m−1 which corresponds to the long wavelength
λ1 =

2π
k1

= 2.4 cm and short wavelength λ3 =
2π
k3

= 1.2 cm.
These waves are commonly called Wilton's ripples, after Wilton (1915), although

they were previously described by Harrison (1909).
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Figure 6: Resonant quartet of gravity waves on in�nite depth.

2.3.5 No three-wave resonances of deep-water gravity waves

For the limit of in�nite depth and no capillarity, so that the dispersion relation
becomes ω2 = gk, there are no resonant triads of gravity waves.

One way to show this is to let the angle between wave vectors k1 and k2 be θ,
eliminate k3 from equations (98) by the expression k23 = k21 + k22 + 2k1k2 cos θ, and
derive the following expression for the angle

cos θ =
2(k1 + k2)√

k1k2
+ 3. (104)

There are obviously no solutions for cos θ ≥ 3.
The nonexistence of resonant triads of gravity waves on deep water was �rst

shown by Phillips (1960).

2.3.6 Quartet resonance of gravity waves

Let us simplify the problem by letting k1 = k2 = (k1, 0). Then let us write k3 =
(kx, ky) = k1(1 + x, y) and k4 = k1(1 − x,−y) for non-dimensional variables x and
y. In the case of in�nite depth the resonance condition (99) requires that[

(1 + x)2 + y2
] 1

4 +
[
(1− x)2 + y2

] 1
4 = 2. (105)

For y = 0 we have the three solutions x = 0 and x = ±5
4
. The full solution for in�nite

depth is shown in �gure 6 where the �rst axis corresponds to x and the second axis
corresponds to y, and where the four resonating wave vectors are indicated. The red
curve is known as the ��gure 8 of Phillips� after Phillips (1960).

It is interesting to show how equation (105) and �gure 6 are modi�ed as the
depth decreases from in�nite to small, this is shown in �gure 7. It is interesting to
notice that these curves do not simply �shrink� as kh decreases, instead the ��gure
of 8� deforms �rst by increasing slightly in size before it decreases.
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Figure 8: Resonant quintet of gravity waves on in�nite depth.

20



2.3.7 Exercises

1. Show that for non-dispersive isotropic waves, ω = αk where α is a constant
and k = |k|, the three-wave resonance conditions (98) are satis�ed when the
wave vectors point in the same direction.

2. Show analytically that (103) is satis�ed for non-dispersive isotropic waves when
the wave vectors point in the same direction.

3. Show numerically that (103) is satis�ed for one shallow-water gravity wave,
ω =

√
ghk, and two �short� gravity waves on �nite depth, ω2 = gk tanh(kh),

only in the limit that kh→ 0.

4. Show that there can be quartet resonance for gravity�capillary waves on in�nite
depth with three identical waves k1 = k2 = k3 and a fourth wave k4 pointing
in the same direction, with resonance conditions 3k1 = k4 and 3ω1 = ω4.
What are the wavelengths of these waves?

This resonance was also discussed by Harrison (1909) and Wilton (1915).

5. Derive the modi�cation of equation (105) for �nite depth needed to produce
the curves shown in �gure 7.

6. Show that there can be quintet resonance for gravity�capillary waves on in�nite
depth with four identical waves k1 = k2 = k3 = k4 and a �fth wave k5 pointing
in the same direction, with resonance conditions 4k1 = k5 and 4ω1 = ω5. What
are the wavelengths of these waves?

7. Show that there can be quintet resonance for gravity waves on in�nite depth
with three waves that are identical k1 = k2 = k3 = (k1, 0). The two additional
waves k4 and k5 do not have to be parallel to the �rst three.

Hint: Take inspiration from the derivation of the quartet resonance, and show
that you get a picture like that shown in �gure 8.

8. Try to show that gravity waves on �nite depth have no triad resonance.

Hint: This is much easier to sketch graphically than to prove analytically.

2.4 Second-order nonlinear gravity waves

Having established that there are no resonances at the second order for gravity waves,
on water of deep or �nite depth, we can proceed to solve the particular solution at
the second order.

If the �rst-order solution is a sum of monochromatic waves

η1(x, t) =
∑
j

Re
{
bje

i(kj ·x−ωjt)
}

(106)

then the second-order forcing will be

F2 =
∑
j,l

Re
{
F̂+
2,j,le

i(K+
j,l·x−Ω+

j,lt) + F̂−
2,j,le

i(K−
j,l·x−Ω−

j,lt)
}

(107)
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and
G2 =

∑
j,l

Re
{
Ĝ+

2,j,le
i(K+

j,l·x−Ω+
j,lt) + Ĝ−

2,j,le
i(K−

j,l·x−Ω−
j,lt)
}

(108)

where K±
j,l = kj ± kl and Ω±

j,l = ωj ± ωl. The corresponding coe�cients are

F̂+
2,j,l = − igbjbl

8

{
kj
ωj

+
kl
ωl

}
·K+

j,l (109)

F̂−
2,j,l = − igbjb

∗
l

8

{
kj
ωj

+
kl
ωl

}
·K−

j,l (110)

Ĝ+
2,j,l =

bjbl
8

{
ω2
j + ωjωl + ω2

l −
g2kj · kl
ωjωl

}
(111)

and

Ĝ−
2,j,l =

bjb
∗
l

8

{
ω2
j − ωjωl + ω2

l −
g2kj · kl
ωjωl

}
(112)

The particular solution will be according to (92). For non-zero K±
j,l we need to

solve the system(
−iΩ±

j,l −K±
j,l

g −iΩ±
j,l cothK

±
j,lh

)(
η̂±2,j,l
A±

2,j,l

)
=

(
F̂±
2,j,l

Ĝ±
2,j,l

)
(113)

We know that the matrix is not singular, the inverse matrix is

1

Ω±
j,l

2
coth(K±

j,lh)− gK±
j,l

(
iΩ±

j,l coth(K
±
j,lh) −K±

j,l

g iΩ±
j,l

)
(114)

and the solution is

η̂±2,j,l =
iΩ±

j,l coth(K
±
j,lh)F̂

±
2,j,l −K±

j,lĜ
±
2,j,l

Ω±
j,l

2
coth(K±

j,lh)− gK±
j,l

(115)

and

A±
2,j,l =

gF̂±
2,j,l + iΩ±

j,lG
±
2,j,l

Ω±
j,l

2
coth(K±

j,lh)− gK±
j,l

(116)

Special case kj = kl and ωj = ωl
Then K+

j,l = 2kj and Ω+
j,l = 2ωj and we get the solution

η̂+2,j,j =
3− s2j
8s3j

kjb
2
j (117)

and

Â+
2,j,j = −iωj

3(1− s2j)

8sj
b2j (118)
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where we have used the notation sj = tanh(kjh). Notice that for in�nite depth,
sj = 1, we have

η̂+2,j,j =
1

4
kjb

2
j and Â+

2,j,j = 0 for h→ ∞ (119)

In this case we further have K−
j,l = 0 and Ω−

j,l = 0 and we get the solution

η̂−2,j,j = 0 and ϕ̂−
2,j,j =

ω2
j (1− C2

j )|bj|2

8
t (120)

where Cj = coth(kjh). This implies a change of pressure without a�ecting either
the velocity �eld or the surface elevation.

2.5 Nonlinear Stokes wave on �nite depth

The Stokes wave corresponds to the leading order solution being a monochromatic
simple-harmonic wave

η1 =
1

2
bei(kx−ωt) + c.c. =

1

2
aeiχ + c.c. (121)

and

ϕ1 =
ω

2k

cosh(k(z + h))

sinh(kh)

(
−iaeiχ + c.c.

)
(122)

where the complex amplitude b is expressed by its magnitude a = |b| and phase
θ = arg b, thus b = a exp(iθ), and where we have introduced the phase function
χ = kx− ωt+ θ.

2.5.1 Second-order nonlinear Stokes wave

Taking advantage of the previously found second-order solution we have

η2 =
3− s2

8s3
ka2e2iχ + c.c. (123)

and

ϕ2 = −ω
2(1− s2)

4s2
t|a|2 + 3ω(1− s2)

8s3
cosh(2k(z + h))

sinh(2kh)

(
−ia2e2iχ + c.c.

)
(124)

where s = tanh kh.
It is remarkable that for deep water, kh → ∞ and tanh kh → 1 and therefore

ϕ2 = 0. There is no second-order nonlinear correction to the velocity �eld on deep
water!

We summarize the solution for the surface elevation to the second order, η =
η1 + η2, for a being a constant and real amplitude,

η = a cosχ+
3− s2

4s3
ka2 cos 2χ (125)
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which on deep water reduces to

η = a cosχ+
1

2
ka2 cos 2χ (126)

On shallow water, kh small, we have tanh kh ≈ kh ≪ 1 which means that the
second-order term in (125) can become arbitrarily large. In this case we may want to
impose a consistency condition on the Stokes wave expansion that the second-order
term should be smaller than the �rst-order term, which reduces to

Ur ≡ ka

(kh)3
<

4

3
when kh is small. (127)

The quantity Ur is known as the Ursell number. In general, the Stokes wave expan-
sion diverges when the Ursell number is not small.

2.5.2 Third-order nonlinear Stokes wave

Since we know that there are resonances at the third order for gravity waves on any
depth, we anticipate the need to introduce slow scales x2 and t2.

It turns out that in this special case it is enough to introduce the slow time t2
only, thus we set b = b(t2) in the �rst-order solution above.

The solvability condition that ends up being imposed at the third order is

∂b

∂t2
= iα|b|2b (128)

for some constant α, and which has the solution

b = aeiαa
2t2 (129)

thus the magnitude a remains constant while the phase changes slowly. This means
that the solutions (125) and (126) remain the same to second order with only a small
change of the phase function

χ = kx− ωt+ αa2t2 + θ.

We could now have proceeded to �nd the constant α above, as well as the par-
ticular solutions for η3 and ϕ3, . . .

However, that will not be very useful because it turns out that the limitation to
slow modulation on scale t2 = ϵ2t is not representative for realistic ocean waves, and
it also turns out that the Stokes wave is unstable for in�nitesimal perturbations of
waves close to the leading-order monochromatic wave.

Mathematicians sometimes like to employ the less slow scales x1 = ϵx and
t1 = ϵt in order to get a nice model equation at third order, the standard nonlinear
Schrödinger equation. More realistic description for ocean waves require the even
less slow scales x 1

2
= ϵ

1
2x and t 1

2
= ϵ

1
2 t.

2.5.3 Exercises

1. Discuss how the horizontal and vertical velocity �elds are modi�ed due to
second-order corrections, similar to (125) and (126) for the surface elevation.
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2.6 Linear modulation of narrow-banded waves

Looking back at where the dispersion relation came from, we notice that associating
ω with the operation i ∂

∂t
and k with the operation −i ∂

∂x
, we have

(ω − ω̃(k)) ei(k·x−ωt) =

(
i
∂

∂t
− ω̃(−i

∂

∂x
)

)
ei(k·x−ωt) = 0 (130)

where the notation ω̃ indicates the functional expression for the dispersion relation.
We may now assume that the wave �eld is characterized by a characteristic wave

vector kc and a characteristic angular frequency ωc, and that modulation around
the characteristic wave can be expressed in terms of slow scales, e.g.

η1 =
1

2
Bei(kc·x−ωct) + c.c. (131)

where B depends on some general slow scales xδ = δx and tδ = δt where δ ≪ 1 is a
small parameter characterizing the bandwidth of the spectrum of η, i.e. modulation
of η typically happens over length 2π

δk
and time 2π

δω
.

Note: δ = ϵ2 is required for arresting resonant growth at third order, δ = ϵ is
what typically make mathematicians happy, while δ =

√
ϵ is more appropriate for

realistic ocean waves.
With this two-scale approach we have ∂

∂x
→ ∂

∂x
+ δ ∂

∂xδ
and ∂

∂t
→ ∂

∂t
+ δ ∂

∂tδ
.

Similarly we may substitute k = kc+∆k and ω = ωc+∆ω in the dispersion relation,
where the ratio ∆ω/ωc = O(δ) ≪ 1. We can therefore associate ωc with the rapid
derivative operation i ∂

∂t
and associate ∆ω with the slow derivative operation iδ ∂

∂tδ
.

Writing
(ωc +∆ω − ω̃(kc +∆k))B(xδ, tδ)e

i(k·x−ωt) = 0 (132)

the slow derivatives should act on the complex amplitude B thus giving an evolution
equation for B (

ωc + iδ
∂

∂tδ
− ω̃(kc − iδ

∂

∂xδ

)

)
B = 0 (133)

We can now do a power series expansion of the dispersion relation with respect to
the small parameter δ and arrive at the linear Schrödinger equation

i
∂B

∂t
+ icg ·

∂B

∂x
+

1

2
δ
∂2ω

∂k∂k
:
∂2B

∂x∂x
+O(δ2) = 0 (134)

where both the group velocity and the second derivative of the frequency are evalu-
ated at the characteristic wave, and where we have been too lazy to write the slow
derivatives.

2.6.1 Exercises

Show that if the characteristic wave is oriented in the x-direction, kc = (kc, 0), then
the linear Schrödinger equation on deep water becomes

∂B

∂t
+

ωc
2kc

∂B

∂x
+

iωc
8k2c

∂2B

∂x2
− iωc

4k2c

∂2B

∂y2
= 0 (135)
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2.7 Cubic nonlinear Schrödinger (NLS) equation

Suppose we consider a generalization of the solution discussed above, of the form

η = ϵ2η̄ +
1

2

{
Bei(kc·x−ωct) + ϵB2e

2i(kc·x−ωct) + ϵ2B3e
3i(kc·x−ωct) + c.c.

}
(136)

and a corresponding equation for the velocity potential,

ϕ = ϵϕ̄+
1

2

{
Aei(kc·x−ωct) + ϵA2e

2i(kc·x−ωct) + ϵ2A3e
3i(kc·x−ωct) + c.c.

}
(137)

where B, B2, B3, A, A2, A3, η̄ and ϕ̄ all depend on the slow horizontal and time
scales x1 = ϵx and t1 = ϵt (this is the most typical choice for slow scales), and where
A, A2, A3 and ϕ̄ in addition depend on the vertical scale.

In equations (136) and (137) the particular scaling for the �rst terms η̄ and ϕ̄
are based on hindsight for the case of deep water, for small depth these terms will
be bigger.

We expect that a solvability condition should appear at the third order to arrest
unbounded resonant growth due to four-wave quartet resonances (the �gure 8 of
Phillips). On deep water this solvability condition is the cubic nonlinear Schrödinger
(NLS) equation

∂B

∂t
+

ωc
2kc

∂B

∂x
+

iωc
8k2c

∂2B

∂x2
− iωc

4k2c

∂2B

∂y2
+

ik2cωc
2

|B|2B = 0 (138)

where we have been too lazy to write the slow scales with their index 1. There are
two accompanying relations

B2 =
kc
2
B2 (139)

A2 = 0, (140)

and the other quantities B3, A3, η̄ and ϕ̄ are too small to be considered within this
truncation level.

2.7.1 Stokes wave

Assuming a solution uniform in space, with amplitude independent of the modulation
scales in the x- and y-directions, we see by inspection that we have

B = B0e
− 1

2
iωck2c |B0|2t (141)

which gives us the Stokes wave.

2.7.2 Benjamin�Feir instability

It can be shown that (141) is unstable to slow perturbations in space and time. This
instability is a modulational instability known as the Benjamin�Feir instability.

We can carry out this instability analysis by assuming a small perturbation of
the form

B = B0(1 + α + iβ)e−
1
2
iωck2c |B0|2t (142)
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where the real quantities α and β are small perturbations.
After linearization in α and β we get the linear system that can be solved by

assuming a plane wave solution(
α
β

)
=

(
α̂

β̂

)
ei(λx+µy−Ωt) + c.c. (143)

The dispersion relation for the perturbation (the condition for nontrivial solution
for α̂ and β̂) is

Ω =
1

2
λ±

√(
1

8
λ2 − 1

4
µ2

)(
1

8
λ2 − 1

4
µ2 − |B0|2

)
(144)

There is instability when the radicand becomes negative. This can be shown
to happen within a domain delimited by two straight lines crossing at the origin,
λ2 − 2µ2 = 0, and two branches of a hyperbola, λ2 − 2µ2 = 8|B0|2.

The maximum growth rate occurs along another pair of branches of a hyperbola,
λ2 − 2µ2 = 4|B0|2. Notice that we have the same maximum growth rate along this
entire hyperbola.

2.8 Other solutions of the NLS equation

The NLS equation has localized solutions that propagate with permanent shape,
so-called solitons. Suppose we assume such a solution

B = f(x− 1

2
t)eαit (145)

Substituting into the NLS equation we get

1

8
f ′′ + αf +

1

2
f 3 = 0 (146)

which has solutions of the form f(ξ) = γ sech(βξ). A general solution is thus

B = B0 sech

(√
2|B0|(x−

1

2
t)

)
e−

i
4
|B0|2t (147)

If we limit to one horizontal coordinate x, and perform a coordinate transforma-
tion

t′ = −t x′ =
√
8(x+

1

2
t)

we transform the NLS equation into the standard form

i
∂B

∂t′
+
∂2B

∂x′2
+ 2B|B|2 = 0. (148)

A plane wave solution (the Stokes wave) and a soliton can now be written

B = e2it
′

and B =
eit

′

coshx′
. (149)
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A special type of solutions are called �breathers� because they approach the plane
wave solution when t′ → ±∞. One of the most famous breathers is known as the
Peregrine-breather, given by

B = e2it
′
[
1− 4(1 + 4it′)

1 + 4x′2 + 16t′2

]
(150)
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