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2 Nonlinear theory

2.1 Free and forced oscillations

This is a review of several techniques of applied mathematics that are likely to be
taught in various other courses. The main point here is to illustrate how nonlinearity
can act in two different ways.

2.1.1 Free oscillations

Counsider the linear harmonic oscillator
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where ¢ is time and w is the angular frequency. This equation is homogeneous, or
unforced. It can be solved by assuming z = e, giving the characteristic polynomial

N4 w? =0, (2)
which has two distinct roots A = iw and A = —iw both with multiplicity one. If we
want a real solution we can write

T = acoswt + bsinwt = Ae’ + A*e ! = Ae! +c.c. (3)

where a and b are real, A is complex, a raised * signifies complex conjugation, and
c.c. denotes the complex conjugate of the previous terms. This oscillation will be
denoted “free” since it does not depend on being forced.

2.1.2 Forced oscillations

Consider the forced linear harmonic oscillator

d’z 9
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where the forcing is given on the right-hand side as an oscillation with amplitude
f and angular frequency p. The equation is inhomogeneous or forced due to the

expression on the right-hand side. The solution can be written
T =Th+ Ty (5)

where xj, is the solution of the homogeneous problem previously found in and
z, is a particular (or inhomogeneous or forced) solution proportional to the forcing



amplitude f. We may anticipate z, = ccos ut, which after substitution into (4)
yields
f
=5 s (6)
This solution breaks down when the forcing frequency u coincides with the natural
frequency w of the linear oscillator, in which case we have resonance.

In order to find a solution for the resonant case y = w we may resort to the
method of undetermined coefficients. We then need to identify an operator, called
an annihilator, which has the property that the right-hand side of becomes zero.
The desired operator is

— K (7)

Applying this operator to both sides of we get

(517 . M2> (f? _ WQ) r=0 ®)

For the resonant case u = w we get the characteristic polynomial
(AN —w?)?=0 (9)

which has two distinct roots, each with multiplicity two, A € {iw, iw, —iw, —iw}. The
general real solution can now be written as

T = acoswt+ bsinwt + ct coswt + dt sin wt
Aet 4 Cte*' + c.c. (10)

To complete the method of undetermined coefficients, this solution must be substi-

tuted into the original equation (4) which yields

S if

c=0, d=— C=—-—— 11
2w’ 4w (11)

while a, b and A are free. The resonant solution is seen to grow linearly in time,

without bounds, see figure [1}

2.1.3 Nonlinearly forced oscillations
Counsider the nonlinear oscillator

d?x 9 3
— +w'r = eax

D (12)

where 0 < € < 1 is a small (nondimensional) ordering parameter and « is a physical
constant of order 1. If the solution x is bounded, then we may expect that the non-
linear term is small compared to the terms on the left-hand side, so to a leading order
we have the same linear harmonic oscillator as we studied above. At a higher order
the linear harmonic oscillator is forced by its own oscillation at a previous order.
The analysis is conveniently done by means of a regular perturbation expansion.
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Figure 1: Resonant solution with unbounded growth, w =p=a = f =1 and b= 0.

2.1.4 Regular perturbation expansion
Let us assume the regular perturbation expansion

T =T+ exr, + a0+ ... (13)
When this is substituted into equation (12)) we get

dQ.I'O dQ.Tl
+ €
dt? dt?

From here we extract equations of the first two orders

+ . iy ety .= eaxp 4. (14)

d2
d;“ +win = (15)
and £
dj;l + w?r = ax) (16)

The solution of is known to be zy = Ae“! + c.c., with complex amplitude A.
Substituting this into (16]) we get
d2331

¥ +w?ry = aA®e™ 4 3a|A|* Ae™ +c.c. (17)

It is convenient to express the solution of this equation as the superposition
Ty = Tip + L1+ T13 (18)

where z; ), = Ae“! +c.c. is the homogeneous solution, x1,1 1s a particular solution in
response to the forcing terms proportional to e*! and x 3 is a particular solution
in response to the forcing terms proportional to ™3,

We know from equations and that the solution for z;; is unbounded
as time increases. In fact, we will show that equation has unbounded solutions.



However, if it had been our goal to study an unbounded solution we should not
have employed the small parameter € to characterize the smallness of the solution
as it appears in the perturbation expansion . On the other hand, equation ((12)
also has solutions that remain bounded. Let us first verify that both bounded and
unbounded solutions exist, and then modify the perturbation approach in order to
study the bounded solutions.

2.1.5 Global solution illustrated by phase portrait

Let us express the second-order equation ([12)) as a system of two first-order equations

dx

D 19

& y (19)
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We can interpret (x,y) to be a two-dimensional position, and (i—f, %) to be a two-

dimensional velocity field. We can check that the velocity field is divergence free.
Therefore we know that a stream function exists

B P (21)

such that ‘(ii—f = —g—f and % = g—f. The phase portrait, i.e. the streamlines, is given
by the contours of constant 1, shown as the solid curves in figure

For positive « there are three fixed points of the system (L9)—(20), they are all
on the z-axis with z = 0 or 22 = ‘;—z Through the latter two fixed points we can

€Q 2 w

5 (x — 5) which are two parabolas. Clearly,

a solution is bounded for all time provided it is inside the “eye” delimited by the

separatrices near the origin, a solution is unbounded if it is outside the separatrices.
For negative « there is only one fixed point at the origin.

compute the separatrices y = +

2.1.6 Multiple scales perturbation expansion

Looking carefully at figure [1| we may anticipate that the amplitude of the oscillation
should vary slowly in comparison with the fundamental oscillation. Therefore we
now try a multiple scales approach to see if that can arrest the unbounded growth
in the case that the solution should remain bounded.

Now we assume that while the rapid time for oscillation is ¢y = t, the relevant
time for modulation is t; = et or even slower scales t,, = €"t. The variable x will
now be assumed to be a function of both ¢y and ¢; and all the slower scales. We
develop the time derivative by means of the chain rule

i—%i+%i+ —i_|_ i_|_ (22)
dt  dt oty dt ot; T Oty o, T

and , ) ) )
d 0 0 0 0
— == Fe— ... ===+ 2e— +.... 2
a2 (atg o ) A T T (23)
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Figure 2: Solid lines: Phase portrait of the nonlinear oscillator, for w = a = 1 and
e = 0.2. Dashed lines: Approximation found by the multiple scales perturbation
expansion.

Equation (12)) now becomes

P,
o2 " " oteot,

+ ...+ Wiz = ear® (24)

which is conveniently solved by assuming the regular perturbation expansion
T =120+ er; +ET0+ ... (25)
When this is substituted into the above equation we get

9% N 0%xy P 0?1y
= 4 % et e——
G AT TS 2

+ . Wi e .. = eaxp + ... (26)

From here we extract equations for the first two orders

8_t§ + wrg = 0 (27)
and o o2
€ 2 3 Zo
— = -2 . 28
T R TS (28)

The solution of is known to be zy = A(t)e“" + c.c., where the complex
amplitude A(t;) is now a function of the slow modulation time. Substituting this
into (28) we get

9? , . OA .
_x; +wir; = aA%eP 4 3a] AP Aet — 2iw——e“ + c.c. (29)

It is convenient to express the solution of this equation as the superposition

T1=T1p T 211+ 213 (30)



where z1 ), = Ae“ 4 c.c. is the homogeneous solution, x11 1s a particular solution
due to the forcing terms proportional to e*“ and x 3 is a particular solution due
to the forcing terms proportional to e*3wto,

In order to avoid unbounded growth of x1; we need to make sure that there is
no forcing on the right-hand side proportional to e“%. This can now be achieved by
requiring such terms to cancel out, giving a governing equation for A

0A  3a.,

which is readily solved as . '
A = ge a5t (32)

where @ and 6 are two real constants.

We may now set both z;;, and x; to zero since they to not contribute anything
new.

The only inhomgeneous solution that needs to be considered is

o .
T13 = —@Age?"“t0 + c.c.. (33)

In the end we get the solution accurate to second order

x = 2acos(w't+0) — %ag cos3(w't + ) (34)
w

where W' = w — 3942

The solution ?Uﬂ equation is shown as dashed curves in figure 2] The defor-
mation of the streamlines is well captured near the origin and well inside the “eye”,
but is not so well captured near the separatrices.

The second-order modification causes the oscillation to be slower for a > 0 and
faster for v < 0. This is not captured by figure[2] but is suggested in figure [3] Orbits
along the separatrices take infinite time, but this is not captured by the second-order
approximation.

2.1.7 Solution in the style of WKB

With hindsight, we could have anticipated that the bounded solution had to be
a superposition of oscillations proportional to e*“* and e™“! with appropriately
slowly varying amplitudes. Using such hindsight, it is possible to focus on the slow
modulation timescale only, t; = €t, and express the equation in terms of this slow

coordinate only
4%z 2 3
€ — +wr =car (35)
dty

and assume a solution that is a superposition of first and third harmonic oscillations
of the form

z = Aje N 4 e Aged N L O(2) + e (36)
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Figure 3: Leading order solution 2a cos(wt + @) shown in solid black line, second
order solution shown in dotted blue line, forw =a=a=1,0 =0 and ¢ = 0.2.

The symbol “c.c.” indicates the complex conjugate of the previous terms, as usual.
Substituting this into yields

9] .y .y
€ {(—6_2w2A1 + 26‘%0%)66 et (et Ag)ed Wt Ly C.C.}
1

+ w? {Aleefliw“ 1 oeAgede Wt c.c.}
= e {BA‘I’e?’(liw“ + 3| A P Ae W c.c.} (37)

Extracting the first and third harmonics we get

—w? A + 261&)% + w? Ay = 3ae| A PA; + O(2) (38)
1
and
—9ew’ Az + ew’ Az = ea3 A + O(e?) (39)

which are seen to yield exactly the same result as previously achieved by the multiple
scales approach, however, now with much less effort.

2.1.8 Summary of nonlinear effects in this section

We have found that, for a description of bounded solutions of an essentially linear
oscillator with a small nonlinear modification, it is useful to distinguish two essen-
tially different types of nonlinear response: “static” and “dynamic”. The “static”
nonlinear response is due to non-resonant forcing (the symbols z; 3 and Az above).
The “dynamic” nonlinear response is governed by an “evolution equation” imposed
to avoid resonant forcing leading to unbouned growth (the differential equations for
A and for A, above).

On the other hand, for a description of the solutions that actually blow up, the
distinction between “static” and “dynamic” response is not so useful.



2.1.9 Exercises

1. Nonlinear oscillator with quadratic nonlinear term.

Consider the nonlinear oscillator

d?x 9 9

— tw'r =eax 40
where 0 < € < 1 is a small (nondimensional) ordering parameter and « is a
physical constant of order 1.

(a) In the case that we attempt a solution by a regular perturbation expansion
(13), with no consideration of slow time modulation, discuss why this equation
will not suffer from unbounded resonant growth in the solution to second-order
accuracy (x1), but will suffer from unbounded resonant growth in the solution
to third-order accuracy (z5).

(b) Discuss the global solution in terms of a phase portrait, and try to find
evidence that a solution that remains bounded for all time can exist.

(c) Use either a multiple-scales or a WKB approach to solve this equation to
the third order, without allowing unbounded resonant growth.

Hint: The relevant slow scale is likely ¢, = €?t. The solution is probably

2 2 2.2
r = 2acos(wW't+0)+ ew—O;aQ — e%cﬁ cos2(w't+0) + 66%@3 cos3(w't+0)+...

3w3
the solution has been compared to the leading order, the second order and

the third order. The second-order modification causes the oscillations to be
slightly uplifted, while the third-order modification causes the oscillations to
be slower.

(41
where w' = w — 222242 and where a and 6 are real constants. In figure

2. Physical pendulum.

The differential equation which represents the motion of a simple pendulum is

a0 g .

@ + 7 sinf =0
where g is the acceleration of gravity, [ is the length of the pendulum, and 6
is the angular displacement.

For small displacements this can be approximated by a simple-harmonic os-
cillator. For slightly larger displacements the solution can be approximated
by the technique of multiple-scale expansion illustrated above. For arbitrary
displacements it is possible to draw the phase portrait distinguishing motion
back and forth or motion always rotating around in the same direction.



Figure 4: Leading order solution 2a cos(wt + €) shown in solid black line, second

order solution 2a cos(wt +6) + €23 a® — e2%a? cos 2(wt +0) shown in dashed blue line,
third order solution shown in dash-dotted red line, forw =a=a =1,0 =0

and € = 0.2.

2.2 Nonlinear water surface waves: Governing equations, po-
tential theory and nonresonant waves

We consider a liquid such as water, with density p(r,t), pressure p(r,t), and velocity
v(r,t). The vertical component of the velocity will be denoted w. The liquid
is bounded below by the bottom at z = —h(x,t) and above by the free surface
z = n(ax,t). Above the free surface we have air with density p,(r,t) and pressure
pa(r,t), however since the density of air is small in comparison with water we will
not consider the movement of the air. We denote time by ¢, the three-dimensional
position vector by r = 1, + yi, + 22, and the two-dimensional horizontal position
vector by = w1, + yz,. We let 2,,7,,%. be unit vectors in the z,y, 2-directions.
The positive z-direction is oriented up. The acceleration of gravity is g = —gz1..
The free surface is subject to surface tension, and the coefficient of surface tension

is 7.

2.2.1 The basic equations

The continuity equation expresses the conservation of mass

0
a—f%—v-Vp—l—pV-v:O. (42)
In the case of an incompressible fluid,
Dp  0p
PR E — . pr— 4
%= o +v-Vp=0, (43)

including the special case of constant density, the continuity equation reduces to

V-v=0. (44)



Euler’s equation expresses the conservation of momentum for an inviscid fluid

ov 1

— +v-Vo=—--Vp+g. 45
5 SVptg (45)
The kinematic bottom condition is the requirement that liquid cannot flow

through the bottom

%+U-Vh:—w at z = —h (46)

where w = 1, - v is the vertical component of the velocity. In the case of a stationary
and horizontal bottom, we have

w=0 at z = —h. (47)

The kinematic free surface condition is the requirement that liquid cannot flow
through the free surface, or alternatively that a fluid particle at the free surface must
stay at the free surface
@—F’U-VT]:U} at z = . (48)
ot

The dynamic free surface condition is the requirement that the sum of all forces
on an infinitesimal surface element is zero. Let S be a surface element of the interface
between water and air. On S there will be a pressure force F,, from the water below,
a pressure force Fj, from the air above, and surface tension force F, on the lateral
side 0S. Here 0S is a closed curve on the interface between water and air, delimiting
the surface element S from the rest of the interface. The pressure forces are

F - / pndo (49)
S

and
F, = —/pan do (50)
s

where p is the pressure in the water below, p, is the pressure in the air above, n is
a unit normal vector to the free surface pointing out from water into air, and do is
an infinitesimal surface element. The surface tension force is

Fa,:—/ 7n><dr:—/7nV~ndcr (51)
o3 s

where the transition from a curve integral to a surface integral has been achieved
by an application of Stokes theorem. If we can assume the surface element S has
a “thickness”, within which a mass m is contained, then the acceleration a of the
surface element is according to Newton’s second law F,, + F, + F, = ma. Now
letting S shrink to zero thickness and extent, the mass shrinks to zero as well. In
order that the acceleration does not become infinite, we must insist that the sum of
the forces vanishes, thus

P—ps—YV-n=0 at z = . (52)

10



As an exercise one can show that
2

2 On on 9
_8$2+8y +8:c2( ) +#(£) _252;:1%%8% (53)

3
P 2 9 2 2
(1+ @+ (2))
It is common to see this expressed compactly in terms of the principal radii of

curvature of the surface, however we prefer to use the above expression for subsequent
analysis.

V-n=

2.2.2 Potential flow

It is often a good approximation to consider the flow to be irrotational, V x v = 0.
Then the velocity can be derived from a velocity potential ¢(r, )

v=Vo. (54)

The continuity equation for an incompressible fluid now becomes the Laplace
equation

V¢ = 0. (55)
The Euler equation becomes, in the case of constant density,
8¢ p—p
5 (Vo) = S =gz + (1) (56)

where py is a constant reference pressure and f(t¢) is a constant of integration (con-
stant with respect to space). We can get rid of this constant of integration by a
redefinition of the velocity potential ¢ — ¢ + [ ! f(&)d¢. This redeﬁnition does not
affect the definition of velocity in (54)), therefore we can simply set f(¢) = 0 in (56)).
A slight rewriting provides the Euler pressure equatior[]]

p="po— (gf S (Vo)* + 92) : (57)

The kinematic bottom condition becomes in the case of a stationary and hori-
zontal bottom

0
8_f =0 at z = —h. (58)
The kinematic free surface condition becomes
an _ 09 B
o +Vo¢-Vn =5, at z = . (59)

The dynamic free surface condition can now be rewritten with the help of the
Euler pressure equation . Upon selecting the reference pressure py equal to the
constant air pressure py = p, we get

9 |
8t

IThe Euler pressure equation for unsteady potentlal flow should not be confused with the
Bernoulli equation for steady flow stating that 2 riaa v + gz is constant along a streamline with no
requirement of irrotationality.

(V¢)+ + = Vnzo at z =1 (60)

11



2.2.3 Normalization for weakly nonlinear waves

Let us assume that k. is a characteristic wave number, w, is a characteristic angular
frequency, and a. is a characteristic amplitude for the surface elevation. Let us
introduce the (characteristic) steepness € = k.a.. We can then perform the following
normalizations

2 2
Wele o Wer 0 Wl

o UTRY TR
such that all the above primed quantities are supposed to be of “order one”. We also
normalize the depth

($/7y,7 Z/) = kc(ma Y, Z) t = wet n= acn ¢ =

h' = k.h

which will not be required to be “order one”, but can be arbitrarily large. When this
is substituted into the equations of the previous subsection we get

o’ o 09
_ I ) 1
(915’ +eV'e - V'ny =5, at 2/ =en (61)

agb, ! ! ’Y/ !/
Z V' -n= "= en 2
70 T3 e(qu) +g77—|—p/V n=0 atzZ=en (62)
V%' =0  for —h' <2 <enf (63)

aqS/ ! /

In the above equations we shall drop the primes, but keep the steepness € as an
indicator of the magnitude of each term.

The resulting normalized equations look identical to the original equations, ex-
cept for the presence of the ordering parameter e. This representation is advanta-
geous since it can be interpreted in two different ways: Set e = 1 and we recover the
original dimensional and un-normalized equations. Set g and p and ~ to unity and
we get dimensionless and properly normalized

For small steepness, ¢ < 1, we can perform a Taylor-expansion around z = 0
such that for any function f(z)

0 02
Flen) = F(0) + en g (0) + 20 1(0) 4+ (65)
and we get within the first three orders
on d¢ ¢ P 1, 253¢ 3 _
8t+€V¢ Vn+ € nVa— Vn—&— €Ngs ~ 5€ 63—0(6) at z =0 (66)

0¢ 82(/5 2283¢ 2 0¢ Y 2
at+ naat+ —€e*n a2at (V¢)+env¢-va+gn——{Vn

0%n on on ., Pn (. .0n, On 9%n On on
_ 2227 ZN2 i i Y2
26 [8:52 (3(8I) * (ay) ) - oy? (3(8y) * (&B) ) +48$8y8x8y]}

= 0(€®) at z=0 (67)
Vig=0 for —h<z<0 (68)
% =0 at z = —h (69)
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2.2.4 Regular perturbation expansion
To solve equations f it is tempting to try regular perturbation expansions
n=1m+en+en+ - (70)

¢ =1+ epy+ p3+ - (71)

The leading order problem
After substituting (70)(71)) into (66)-(69), the leading order problem is

om Oy
% D, 0 at z =10 (72)
0
% +gm — %v%h —0 atz=0 (73)
Vi =0 for —h < 2<0 (74)
O¢,
= = — 75
P 0 at z h (75)

This system is solved by assuming a monochromatic elementary wave solution

m (wu t) ) ( fh ) i(k-z—wt)
= - e 76
(5 )= (ot )
where k = k1, + k1, is the wave vector, x is the horizontal position vector, r is

the three-dimensional position vector, and w is the angular frequency.
The solution for ¢, is found from (74)—(75)) as

A coshk(z+h
5, _ ok h)

e sinh kh (77)

where &k = |k| = /k2 + k? is the wavenumber. The ratio of cosh over sinh is
x Y

preferred in order that for deep water, h — oo, the limiting behavior is ngﬁl = Ae*.
The two surface conditions then give the linear system

—iw —k mY_ (0
(94_%]{2 —iwcothkh)(A)_<0) )

A nontrivial solution requires the determinant of the coefficient matrix to be zero,
which provides us the dispersion relation

W = (gk + k%) tanh kh. (79)
p

A nontrivial solution for k£ > 0 can then be expressed by

~

_b wb
771*2

and A=—-i—- (80)

where b is a complex amplitude.
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Corresponding to k = 0, the system (72)—(75]) has the nontrivial solution n = 0
and ¢ = Uz + Vy corresponding to a horizontal current with a flat water surface.

Since the leading order problem is linear, we can employ the principle of superpo-
sition to compose a general solution for an irregular sea as a sum of monochromatic
waves. For a discrete superposition of real monochromatic waves we can write

n(x,t) = Zbe‘(kww7)+cc—2|b|cosk T — w;t + argb;) (81)
J

and

wj cosh (kj(z + h))
I{Zj Sll’lh(kjh)

1 T,
¢1(rt) =Ur +Vy+ 3 ; (—ibjeltks ™=t 4 c.c.) (82)

where b; are complex amplitudes, and where each pair of wave vector k; and angular
frequency w; satisfies the dispersion relation (79)).

Notice that since we want the surface elevation to be real, the sum over j should
include complex conjugates as appropriate.

Higher order problems

The general form of the problem of order n > 1 is

o, 0pn B
0P 7 o2
_ L = = 4
pr pV M = G at 2 =10 (84)
Vi, =0  for —h<z<0 (85)
Opn B
where we have
P
Fy=—=V¢1 -V +m 9.2 (87)
Po 1 2
Gy = —m 020t §(V¢1) (88)
9, 0? 0? 1,0
Fy = ~V6, -V~ Vor -V~ Vo T+ m S 2 4 Lp OO (s9)
Py Oy 2 ¢y D
G =g o ~ Mgz~ V02 Vo1~ _7’10 o~ MYV Vs

V[ Pm (o Ome O\ | P (O O 0% dm Om
- — 3(— — 3(—— — 4
2p{8x2<(8x)+(8y) +8y2 (Gy) +<8x) + dxdy Ox Oy
If the first-order solution is a superposition of two monochromatic waves
m(x,t) = Re {bjei(kj'm_“jt) + blei(kl'm_“”t)} (91)
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then the second-order forcing will have oscillations with wavenumber vectors K]i =
k; £ k; and angular frequencies Q;.tl = w;j £ w;, and we anticipate the particular

solutions
nm(a: t) ) ( M )ei(Kfl.mQ;%lt) 99
( Cbggz('r t) ¢2,]l( z) %)

For non-zero K]il the solution for qbQ?j,l is found from (B5)—(86) as

cosh K]il(z +h)
sinh K h

Paja = Azj (93)

where ijfl = |K]il| and where the ratio of cosh over sinh is chosen in order that for

~ i
deep water, h — oo, the limiting behavior is ¢§tjl = AjE 1€ Kjaz,

If we denote the corresponding contributions to F5 and G2 by F2 € (K @)

and Gi] (K e —00) , then the two surface conditions (83) and (84) with the two
right-hand sides and (88) give the linear system

j: + A
g+ 7Kﬂ: —iQ7 coth K h AS Gi

2,5,

This matrix equation can be solved when the pair Kil and Qi does not satisfy the
dispersion relation (| . because then the determlnant of the coefficient matrix is
non-zero.

If the pair K7 ;1 and Q , does satisfy the dispersion relation then we are forcing the
linear system Wlth its o WII natural wave solution. Our previous experience suggests
this will give resonant blow-up unless we introduce slow modulation scales ; = ex
and t; = et.

To be more accurate, we should invoke the Fredholm alternativeﬂ here, which
can be expressed as follows:

Let M be a matrix, and let X, Y and B be vectors. The matrix system
MX = B has a solution for X if and only if any left eigenvector Y with
zero eigenvalue, Y M = 0, is orthogonal to B, i.e. Y B = 0. This is called a
solvability condition.

The left eigenvector with zero eigenvalue is (—Kfl,infl). While there could
possibly be some special combination of depth and interacting waves that
could allow the amplitudes of the leading-order problem to be non-zero, we
can anticipate the requirement will in general be that the amplitudes of the
first-order solution must be set to zero.

In order to avoid having to set the amplitudes of the first-order solution to zero,
we can choose between enhancing the assumed solution with resonantly
growing terms or introducing slow modulation scales; we shall prefer the latter.

’https://en.wikipedia.org/wiki/Fredholm_alternative
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Finally, if Kjil = ( then we are forcing a second-order solution that is not a
propagating wave. In particular we find

0=,
2 4

where we have used the notation C; = coth(k;h). This implies a change of pressure
without affecting either the velocity field nor the surface elevation.

Ny =0 and @y = (95)

Summarizing what we have found so far, assuming the first-order solution is given
by and we realize that the second-order solution can suffer unbounded

resonant growth if three waves can resonate in a triad
ki + ko = ks and Wi + wy = ws (96)

in which case we anticipate that the complex amplitudes of the leading-order solution
should be modulated on the slow scales ; = ex and ¢; = €t.

Similarly, we anticipate that the third-order solution can suffer unbounded res-
onant growth if four waves can resonate in a quartet

kil + kg + kg = k4 and w1 + w2 + Wz = Wy (97)

in which case we anticipate that the complex amplitudes of the leading-order solution
should be modulated on the slow scales x5 = €2x and t, = €%t.

For this reason we should investigate under which conditions the dispersion re-
lation allows triad or quartet resonance before we attempt to solve the second-
and third-order problems.

2.2.5 Exercises
1. Expand V - n to third order in steepness € = k.a., where n is the unit normal
vector to the surface z = 7.
Hint: It may be useful to start by showing that for |v| < 1 we have

1

=1—v+12—13+. ..
1+v

2. In order to appreciate the relative importance of equations and , let
us consider a spherical raindrop with diameter 2 mm, let us cut it horizontally
through its center. Compute the air pressure force from above on the
upper half of the sphere, the surface tension force acting on the circular
cut around the sphere, and the weight of the raindrop.

You may use the air pressure of one standard atmosphere 101325 Pa and the
surface tension between water and air 0.07286 N/m and the water density
p = 998.2 kg/m3 both at 20°C.

3. The dispersion relation has an inflection point, a minimum phase speed
and a minimum group velocity. Find all of these in the limit of infinite depth.

You may use the acceleration of gravity 9.81 m/s®> and the surface tension
between water and air 0.07286 N/m and the water density p = 998.2 kg/m?
both at 20°C.
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4. Discuss how the dispersion relation can be approximated for (i) pure
capillary waves on deep water, (ii) capillary—gravity waves on deep water, (iii)
gravity waves on shallow water.

Discuss how long waves should be in order to be “deep water” waves, and how
short waves should be in order to be “capillary” waves.

2.3 Nonlinear resonance conditions

We inquire if three or four waves can resonantly interact such that the conditions
kl -+ kg = kg and W1 + wy = w3 (98)

or
kl -+ kg = k?3 + k4 and W1 + Wo = W3 + Wy (99)

are satisfied. Here w,, and k,, are related according to the dispersion relation.
In particular we shall be concerned with the dispersion relation for gravity—
capillary waves on arbitrary depth

w? = (gk + Lk®) tanh(kh). (100)
p

2.3.1 Three-wave resonance of long waves

For non-dispersive waves, w = ak where « is a constant, the resonance conditions
are satisfied for co-linear wave vectors.

The dispersion relation is approximately non-dispersive for long waves.
This is seen by Taylor expansion of around k£ =0

w = +/ghk + @ <i—; - h2) k4 O(k®) (101)

To the second order in k this equation is non-dispersive.
It is even possible to achieve non-dispersive gravity—capillary waves accurate to

fourth order in k by setting h = 4 /‘:’)—g. With typical values g = 9.81 m/s?, p = 998.2

kg/m? and v = 0.07286 N/m (values for 20°C), we get the target depth h = 4.7
mm, which is not interesting for ocean waves, but could be quite interesting for
laboratory experiments or for waves that occur on paved roads on a rainy day.

2.3.2 Three-wave resonance of one long and two short waves

In equation let k1 =~ ks, then k, is quite small. We consider wave 1 and wave
3 to be the “short” waves while wave 2 is the “long” wave. In this case there can be
three-wave resonance if the phase speed of the long wave is equal to the component
of the group velocity of the short waves (e.g. wave 1) in the direction of the long
wave. This is seen by Taylor-expanding w3 around k;

ow
W3 = W(kg) ~ w(kl) + (kg - k1> : % = wi + kg *Cg1 (102)
k1
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Figure 5: Resonant triad of gravity—capillary waves on infinite depth, normalized

against k; oriented along the first axis, with I' = "’p—lf = 0.5 (green); 1 (blue); 2 (red).

thus we must check if the phase speed of the long wave satisfies
= — & — ¢y (103)

The dispersion relation (100f) allows this condition to be satisfied in the limit of
long gravity waves when all three waves have the same direction, then this becomes
a limiting case of the result in section [2.3.1} For other types of dispersion relations,
or interactions between surface and internal waves, one could expect this condition
to give more interesting triad resonance configurations.

2.3.3 Three-wave resonance of deep-water capillary—gravity waves

Consider infinite depth and set I' = Ly figure |5| the wave vector k; is oriented
) P9
along the first axis. The green, blue and red curves show the locus where wave
vectors ko and k3 should meet for I' having values 0.5, 1 and 2.
This configuration of resonant triads of gravity—capillary waves on infinite depth
was first investigated by McGoldrick| (1965).

2.3.4 Three-wave resonance of two unidirectional capillary—gravity waves
(Wilton’s ripples)

As a special case of the previous triad resonance, if we limit to the special case
k, = ko then it can be shown that the resonance condition is satisfied when

k= /8. With typical values g = 9.81 m/s%, p =998 kg/m? and v = 0.0728 N/m

(values for 20°C), we get k; = 259 m~! which corresponds to the long wavelength
AL = i—’lr = 2.4 cm and short wavelength \3 = i—’; = 1.2 cm.
These waves are commonly called Wilton’s ripples, after Wilton| (1915), although

they were previously described by Harrison| (1909)).
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Figure 6: Resonant quartet of gravity waves on infinite depth.

2.3.5 No three-wave resonances of deep-water gravity waves

For the limit of infinite depth and no capillarity, so that the dispersion relation
becomes w? = gk, there are no resonant triads of gravity waves.

One way to show this is to let the angle between wave vectors k; and ks be 0,
eliminate ks from equations by the expression k3 = k? + k3 + 2k ko cos 6, and
derive the following expression for the angle

2(ky + ko)
Vkiks

There are obviously no solutions for cosf > 3.

The nonexistence of resonant triads of gravity waves on deep water was first
shown by [Phillips| (1960).

cosf = + 3. (104)

2.3.6 Quartet resonance of gravity waves

Let us simplify the problem by letting k; = ko = (k;1,0). Then let us write k3 =
(ky, ky) = k1(1 + z,y) and ky = k1(1 — z, —y) for non-dimensional variables = and
y. In the case of infinite depth the resonance condition requires that

(1422 + 92+ [(1— )2 +7) =2 (105)

For y = 0 we have the three solutions x = 0 and z = j:g. The full solution for infinite
depth is shown in figure [6] where the first axis corresponds to = and the second axis
corresponds to y, and where the four resonating wave vectors are indicated. The red
curve is known as the “figure 8 of Phillips” after Phillips| (1960)).

It is interesting to show how equation and figure [6] are modified as the
depth decreases from infinite to small, this is shown in figure [7| It is interesting to
notice that these curves do not simply “shrink” as kh decreases, instead the “figure
of 8 deforms first by increasing slightly in size before it decreases.
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2.3.7 Exercises

1.

2.4

Show that for non-dispersive isotropic waves, w = ak where « is a constant
and k = |k|, the three-wave resonance conditions are satisfied when the
wave vectors point in the same direction.

Show analytically that (103)) is satisfied for non-dispersive isotropic waves when
the wave vectors point in the same direction.

Show numerically that (103]) is satisfied for one shallow-water gravity wave,
w = /ghk, and two “short” gravity waves on finite depth, w? = gk tanh(kh),
only in the limit that kh — 0.

Show that there can be quartet resonance for gravity—capillary waves on infinite
depth with three identical waves k; = ks = k3 and a fourth wave k4 pointing
in the same direction, with resonance conditions 3k; = k; and 3w; = wy.
What are the wavelengths of these waves?

This resonance was also discussed by Harrison| (1909) and Wilton| (1915]).

Derive the modification of equation (105)) for finite depth needed to produce
the curves shown in figure

Show that there can be quintet resonance for gravity—capillary waves on infinite
depth with four identical waves k; = ko = ks = k4 and a fifth wave k5 pointing
in the same direction, with resonance conditions 4k, = k5 and 4w, = ws. What
are the wavelengths of these waves?

Show that there can be quintet resonance for gravity waves on infinite depth
with three waves that are identical k; = ko = k3 = (k1,0). The two additional
waves k4 and k5 do not have to be parallel to the first three.

Hint: Take inspiration from the derivation of the quartet resonance, and show
that you get a picture like that shown in figure

Try to show that gravity waves on finite depth have no triad resonance.

Hint: This is much easier to sketch graphically than to prove analytically.

Second-order nonlinear gravity waves

Having established that there are no resonances at the second order for gravity waves,
on water of deep or finite depth, we can proceed to solve the particular solution at
the second order.

If the first-order solution is a sum of monochromatic waves

771(53’ t) _ ZRG {bjei(kj'w—wjt)} (106)
J

then the second-order forcing will be

= Z Re {FQTj’lei(K;l'm_Qth) + szj,zei(KJ-rl'm_Qj_’lt)} (107)
4.l
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and
Gy=Y Re {G;’jyleﬂffirwiz” + G;,j,le“"jfl'“’*%“} (108)
3l

where Kjil =k; £ k; and Qj[l = wj = w;. The corresponding coefficients are

A igbjbl kij kl n
Faji=—"% {;] o K;, (109)
A igbiby [k K _
FQ,j,z ) {w_j + Jl ) Kj,l (110)
. b:b; 7’k - Kk
and b;b ’k; -k
A .h* g .. i
GQ,j,l = J?l {WJQ — (,dj(JJl + OJZQ — W} (112)

The particular solution will be according to (92). For non-zero K]il we need to
solve the system

( —i0F | i_ij’[l N > < ﬁ;j:j,l ) — }Til (113)
g —iQ5cothK5h )\ A3, G

We know that the matrix is not singular, the inverse matrix is

. ( i0F coth(Kh) —KF, ) (114)

and the solution is

A 4\ At + At
1Qj’l coth(Kj’lh)Flj’l — Kj,sz,j,z

4
2 OF? coth(KEh) — gk, (115)
and L o
" gly;, + 105,65 )
2,7,0 = + 2 + + (116)
Special case k; = k; and w; = w;
Then K, = 2k; and ) = 2w; and we get the solution
) 3 —s?
i = ~ga kb (117)
J
and 31 )
~ — S=
AF, = —iw; ( " J)b§ (118)
J
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where we have used the notation s; = tanh(k;h). Notice that for infinite depth,
sj = 1, we have

A ]- 2 N
Mg = 7kt and A

=0 for h — oo (119)

In this case we further have K, =0 and €2;; = 0 and we get the solution

1= I,
8

ﬁij,j =0 and ¢£j,j = (120)

where C; = coth(k;h). This implies a change of pressure without affecting either
the velocity field or the surface elevation.

2.5 Nonlinear Stokes wave on finite depth

The Stokes wave corresponds to the leading order solution being a monochromatic
simple-harmonic wave

1. . 1 .

and

b1 = w cosh(k(z + h))
Y72k sinh(kh)
where the complex amplitude b is expressed by its magnitude a = |b| and phase

0 = argbh, thus b = aexp(if), and where we have introduced the phase function
x =kr —wt+6.

(—iaeX + c.c.) (122)

2.5.1 Second-order nonlinear Stokes wave

Taking advantage of the previously found second-order solution we have

3— s 2 2
=g ka“eX + c.c. (123)
and
w1 —=s%) o  3w(l—s®) cosh(2k(z + h)) 5 o
S S —i X .C. 124
b2 452 tal”+ 8s3 sinh(2kh) (Hia’e™ + ) (124)

where s = tanh kh.

It is remarkable that for deep water, kh — oo and tanh kh — 1 and therefore
¢3 = 0. There is no second-order nonlinear correction to the velocity field on deep
water!

We summarize the solution for the surface elevation to the second order, n =
M + 19, for a being a constant and real amplitude,

3—s2

n=acosx + ka® cos 2x (125)

53
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which on deep water reduces to
1
N =acosy + ikaZ cos 2x (126)

On shallow water, kh small, we have tanh kh ~ kh < 1 which means that the
second-order term in (125 can become arbitrarily large. In this case we may want to
impose a consistency condition on the Stokes wave expansion that the second-order
term should be smaller than the first-order term, which reduces to

ka 4

Ur = (i)’ <3 when kh is small. (127)

The quantity Ur is known as the Ursell number. In general, the Stokes wave expan-
sion diverges when the Ursell number is not small.

2.5.2 Third-order nonlinear Stokes wave

Since we know that there are resonances at the third order for gravity waves on any
depth, we anticipate the need to introduce slow scales x5 and t,.
It turns out that in this special case it is enough to introduce the slow time %,
only, thus we set b = b(t3) in the first-order solution above.
The solvability condition that ends up being imposed at the third order is
0b

— = ialb|? 12
o ia|b|“b (128)

for some constant «, and which has the solution
b= ac@* (129)

thus the magnitude a remains constant while the phase changes slowly. This means
that the solutions ((125]) and (126]) remain the same to second order with only a small
change of the phase function

x = kx — wt + aa’t, + 6.

We could now have proceeded to find the constant o above, as well as the par-
ticular solutions for n3 and ¢s3, ...

However, that will not be very useful because it turns out that the limitation to
slow modulation on scale t, = €t is not representative for realistic ocean waves, and
it also turns out that the Stokes wave is unstable for infinitesimal perturbations of
waves close to the leading-order monochromatic wave.

Mathematicians sometimes like to employ the less slow scales &1 = ex and
t1 = €t in order to get a nice model equation at third order, the standard nonlinear
Schrodinger equation. More realistic description for ocean waves require the even
less slow scales T = ez and t% = et

2.5.3 Exercises

1. Discuss how the horizontal and vertical velocity fields are modified due to
second-order corrections, similar to (125)) and ((126)) for the surface elevation.
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2.6 Linear modulation of narrow-banded waves

Looking back at where the dispersion relation came from, we notice that associating

w with the operation i% and k with the operation —i%, we have
. 0 0 .
(w— (k) elka=wt) — (ia — d}(—ia—m)) cilk@=wt) — (130)

where the notation @ indicates the functional expression for the dispersion relation.

We may now assume that the wave field is characterized by a characteristic wave
vector k. and a characteristic angular frequency w., and that modulation around
the characteristic wave can be expressed in terms of slow scales, e.g.

1 .
m= §Bel(k"m_“ct) + e (131)

where B depends on some general slow scales x5 = dx and t5 = §t where 0 < 1is a
small parameter characterizing the bandwidth of the spectrum of 7, i.e. modulation
of n typically happens over length g—g and time g—w.

Note: § = €2 is required for arresting resonant growth at third order, § = € is
what typically make mathematicians happy, while § = /e is more appropriate for
realistic ocean waves.

With this two-scale approach we have a% — a% + 58%5 and % — % + 58%.
Similarly we may substitute k = k.+ Ak and w = w.+ Aw in the dispersion relation,
where the ratio Aw/w. = O(J) < 1. We can therefore associate w. with the rapid
derivative operation i% and associate Aw with the slow derivative operation iéa%.

Writing

(we + Aw — &(k. + AK)) B(xs, t5)e'*@=wt) = (132)
the slow derivatives should act on the complex amplitude B thus giving an evolution
equation for B

'5i—~k: —'(Si B=0 (133)
we +1 o ok, —1i (9:1:5) =
We can now do a power series expansion of the dispersion relation with respect to
the small parameter 6 and arrive at the linear Schrédinger equation

0B n 0B N 1. 0% 0°B

i—+ic,- — + =0 ——

ot Y 0x 2 OkOk  OxOx

where both the group velocity and the second derivative of the frequency are evalu-

ated at the characteristic wave, and where we have been too lazy to write the slow
derivatives.

+0(6*) =0 (134)

2.6.1 Exercises

Show that if the characteristic wave is oriented in the z-direction, k. = (k.,0), then
the linear Schrodinger equation on deep water becomes

0B L e 0B N iw. B iw, 0°B 0
ot 2k, O0x = 8k20x2  4k2 Oy?

(135)
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2.7 Cubic nonlinear Schrédinger (NLS) equation

Suppose we consider a generalization of the solution discussed above, of the form
1 : . :
n= 627_] + 5 {Be1(kc-w7wct) + 632621(kc-w7wct) + 6233631(1%-a:fwcz‘,) + C.C.} (136)
and a corresponding equation for the velocity potential,
_ 1 . . .
Qb _ €¢ + 5 {Ael(kc-w—wct) + 6A2e21(kc~93—wct) + €2A3631(kc-$—wct) + C.C.} (137)

where B, By, By, A, Ay, Az, 7 and ¢ all depend on the slow horizontal and time
scales ©1 = ex and t; = et (this is the most typical choice for slow scales), and where
A, Ay, A; and ¢ in addition depend on the vertical scale.

In equations and the particular scaling for the first terms 7 and ¢
are based on hindsight for the case of deep water, for small depth these terms will
be bigger.

We expect that a solvability condition should appear at the third order to arrest
unbounded resonant growth due to four-wave quartet resonances (the figure 8 of
Phillips). On deep water this solvability condition is the cubic nonlinear Schrodinger
(NLS) equation

0B w,0B iw.0’B iw.0’B n ik*w,
2

ot i 2k, Ox N 8k2 0x2  4k2 Oy?

|BI>B =0 (138)

where we have been too lazy to write the slow scales with their index ;. There are
two accompanying relations

ke
By = 532 (139)
Ay =0, (140)

and the other quantities Bs, As, 77 and ¢ are too small to be considered within this
truncation level.
2.7.1 Stokes wave

Assuming a solution uniform in space, with amplitude independent of the modulation
scales in the x- and y-directions, we see by inspection that we have

B = Bye~ ziwekelBol’t (141)

which gives us the Stokes wave.

2.7.2 Benjamin—Feir instability

It can be shown that is unstable to slow perturbations in space and time. This
instability is a modulational instability known as the Benjamin—Feir instability.

We can carry out this instability analysis by assuming a small perturbation of
the form

B = By(1 + a + if)e” 7iwekel Dol (142)
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where the real quantities o and  are small perturbations.
After linearization in « and § we get the linear system that can be solved by
assuming a plane wave solution

( g ) _ ( g )ei(Am+uy—Qt) +ec.c. (143)

The dispersion relation for the perturbation (the condition for nontrivial solution

for & and f) is
1 1 1 1 1
- - a2 (2 22— B2
Q 2/\i\/(8/\ 4,u) (8)\ & | By ) (144)

There is instability when the radicand becomes negative. This can be shown
to happen within a domain delimited by two straight lines crossing at the origin,
A2 — 2% = 0, and two branches of a hyperbola, A — 2u* = 8| By|>.

The maximum growth rate occurs along another pair of branches of a hyperbola,
A2 — 242 = 4| By|*. Notice that we have the same maximum growth rate along this
entire hyperbola.

2.8 Other solutions of the NLS equation

The NLS equation has localized solutions that propagate with permanent shape,
so-called solitons. Suppose we assume such a solution

1 .
B = f(z — §t)e°“t (145)
Substituting into the NLS equation we get
1 " 1 3
gf —l—ozf+§f =0 (146)

which has solutions of the form f(£) = vsech(5£). A general solution is thus

1 i
B = By sech (\/5\30](35 — 515)) ol Pol*t (147)

If we limit to one horizontal coordinate x, and perform a coordinate transforma-
tion

1
t'=—t 2 =V8(x+=t)

2
we transform the NLS equation into the standard form
0B 0°B 9
1@ + B +2B|B|* = 0. (148)

A plane wave solution (the Stokes wave) and a soliton can now be written

g oit!
B =t and B = -
cosh z

(149)
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A special type of solutions are called “breathers” because they approach the plane
wave solution when ' — £o00. One of the most famous breathers is known as the
Peregrine-breather, given by

A(1 + 4it')

B — 2it’ o
¢ 1+ 422 + 1612

(150)
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