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4 Stochastic theory
Stochastic description of the sea surface can be found in the books by Kinsman
(1984), Ochi (1998), Goda (2000) and Tucker & Pitt (2001). The book by Naess &
Moan (2013) is also recommended, although being more oriented toward structural
response. For an introduction to probability and stochastic analysis, see the book
by Papoulis & Pillai (2002).

4.1 Stochastic description of the sea surface

Suppose we want to describe the vertical displacement η(r, t) of the water surface as
a function of horizontal position r = xix+yiy and time t. A quick look at any water
surface under the action of wind suggests that a deterministic description is highly
unsatisfactory. Given otherwise identical conditions (wind, etc.) it is our everyday
experience that the waves are random and unpredictable. We may therefore think
of the surface displacement as a stochastic process with several possible outcomes or
realizations. A collection of realizations will be called an ensemble. The process of
achieving a realization can be thought of as an experiment.

In figure 1 we see a few possible time series for the vertical elevation jη(t) of
ocean surface waves measured at a fixed point. Here the upper left index j denotes
the outcome or realization.
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Figure 1: Some realizations for a typical wave time series jη(t), for realizations
indexed by j = 0, 1, 2, 3, each plotted offset by the value of j.

It is useful to think about how an ensemble like that shown in figure 1 can be
achieved: We could consider the realizations as measurements by distinct buoys at
different locations in the ocean, however such a model is not useful if our purpose
is to describe how the surface elevation is related between the different locations.
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We could consider the realizations as measurements at different hours of the day or
different days of the month, however such a model is not useful if our purpose is to
describe the long time evolution of the waves. We could consider the realizations as
pertaining to different and parallel worlds, this is easier to imagine in our fantasy
than to achieve in reality. A different approach is to carry out a set of experiments
in the laboratory or a set of simulations on the computer.

A stochastic variable Z is a rule that assigns a number jz to every outcome j of
an experiment.

A stochastic process Z(t) is a rule that assigns a function jz(t) to every outcome
j of an experiment. Of fundamental interest to us, we shall describe the vertical
displacement of the sea surface as a stochastic process Z(r, t) being a rule that
assigns a spatio-temporal sea surface jz(r, t) to every outcome j of an experiment.
(We switched notation from η to Z and from jη to jz.)

We may now distinguish at least four different interpretations of a stochastic
process Z(t) like the one illustrated in figure 1:

1. We consider the process Z(t) for all times t and all outcomes j.

2. Given a particular outcome j1, we consider a time series j1z(t) for all times t.

3. Given a particular time t1, we consider a stochastic variable Z(t1) for all out-
comes j.

4. Given a particular outcome j1 and a particular time t1, we consider a number
j1z(t1).

In order to characterize a stochastic process we may want to extract averaged
parameters. Figure 1 suggests there are at least two ways to extract such averages:

1. Averaging in time (or in space) for a single realization.

2. Averaging over an ensemble.

As an example, we consider the mean level η̄ of the ocean surface. Averaging in
time for a single realization j we have

j η̄ = lim
T→∞

1

2T

∫ T

−T

jη(t) dt.

Averaging over ensemble for a fixed time t we have

η̄(t) = lim
N→∞

1

N

N−1∑
j=0

jη(t).

Here we have made some assumptions: The less important assumption is that the
realizations are countable, however there is no reason why they cannot be uncount-
able. The more important assumptions are that each realization is equally likely and
that as the size of the ensemble becomes large, the ensemble does indeed represent
the true properties of the original process.

2



If the average over ensemble is independent of time (or space), we say that the
process is stationary (or homogeneous). If the average over ensemble is equal to the
average over time (or space), η̄(t) = j η̄, we say that the process is ergodic. It is clear
that in order to be ergodic, the process needs to be stationary (or homogeneous).
However, it is possible for a process to be stationary (or homogeneous) without being
ergodic as the example in figure 2 suggests.
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Figure 2: Some realizations for a constant time series jη(t), for realizations indexed
by j = 0, 1, 2, 3, each plotted offset by the value of j.

Of particular interest for characterizing a stochastic process Z(t) is the cumula-
tive distribution function of the process. The simplest case is to consider one fixed
time t, the cumulative distribution function is the proportion of realizations that are
bounded from above by a threshold value z

F (z; t) = lim
N→∞

#N{jz(t) ≤ z}
N

where the notation #N{·} means the number of realizations within an ensemble of
size N that satisfy the condition specified within the curly braces.

We can also consider the joint cumulative distribution function for two times t1
and t2, which is the proportion of realizations that are bounded from above by the
two threshold values z1 and z2 at the two times respectively

F (z1, z2; t1, t2) = lim
N→∞

#N{jz(t1) ≤ z1,
jz(t2) ≤ z2}

N
.

This can be further generalized to the joint cumulative distribution function for
any number of times and threshold values.

If the process is stationary then the cumulative distribution function for a single
time is not a function of time, and if the process is in addition ergodic then we can
obtain the cumulative distribution function by consideration of a single realization

F (z) = lim
T→∞

#T{jz(t) ≤ z}
T
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where the notation #T{·} means the amount of time within a total time T that the
condition specified within the curly braces is satisfied.

For the above limits we have again assumed that each realization is equally
likely and that as the size of the ensemble becomes large, the ensemble does indeed
represent the true properties of the original process.

The above considerations are rather empirical. In the following we continue
with an elementary introduction from a more non-empirical point of view without
evaluation of the limits above.

Example: Staircase time series assumed to be ergodic.
Suppose a stochastic process Z(t) has been measured by the single time series

shown in figure 3. The time series is a repeating staircase with three horizontal
steps, each horizontal step has equal length and the time series is periodic with
period equal to three such lengths.

z

t

−a

a

Figure 3: Staircase time series with horizontal parts of equal length.

Provided the process is ergodic, we can compute the statistics from this single
realization, and we then find the mean value µ = 0 and the cumulative distribution
function

F (z) =


0 for z < −a
1
3

for −a ≤ z < 0
2
3

for 0 ≤ z < a

1 for a ≤ z

4.2 One real stochastic variable

Suppose X is a real stochastic variable. With the notation {X ≤ x} we refer to
the collection of all outcomes jx of the stochastic variable X such that jx ≤ x.
The probability for this collection of outcomes defines the cumulative distribution
function

F (x) ≡ P{X ≤ x}

where P{·} reads the “probability of {·}”. The cumulative probability function has
the properties that
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1. F (−∞) = 0,

2. F (∞) = 1,

3. F (x) is a non-decreasing function, F (x1) ≤ F (x2) for x1 < x2.

The probability that an outcome is between a lower and an upper bound is P{a <
X ≤ b} = F (b)− F (a). Similarly, the probability that an outcome is in an interval
of infinitesimal width is P{x < X ≤ x+dx} = F (x+dx)−F (x) ≈ dF

dx
dx = f(x)dx.

We define the probability density function as

f(x) ≡ dF

dx
.

The probability density function has the properties that

1. f(x) ≥ 0,

2.
∫∞
−∞ f(x) dx = 1,

3. F (x) =
∫ x
−∞ f(ξ) dξ.

We define the mode (Norwegian typetall) of a stochastic variable X to be the
value of x such that the probability density function f(x) achieves its maximum. If
the probability density has a single maximum it is said to be unimodal. If it has two
maxima it is said to be bimodal, etc.

We define the median of a stochastic variable X to be the value of x such that
the cumulative distribution function F (x) = 0.5. It is equally probable that the
stochastic variable X gives an outcome smaller than or greater than the median.

The expected value µ of a stochastic variable X is defined as the weighted average

µ = E[X] =

∫ ∞
−∞

xf(x) dx.

The expected value of a function g(X) of the stochastic variable X is the weighted
average

E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx.

It is seen that the expected value operator is linear. Suppose we have two functions
g(X) and h(X) and two constants a and b, then we have

E[ag(X) + bh(X)] = aE[g(X)] + bE[h(X)].

The variance σ2 = Var[X] of a stochastic variable X is defined by

σ2 = Var[X] = E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2f(x) dx.

By the linearity of the expected value operator, this can be written

σ2 = E[(X − µ)2] = E[X2 − 2µX + µ2] = E[X2]− 2µE[X] + µ2 = E[X2]− µ2.
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Figure 4: Probability distributions with positive (left) and negative (right) skewness.
Solid lines are probability density functions, dashed lines are medians, dottet lines
are means. Left: mode 0, median ≈ 0.49, mean µ ≈ 0.92, skewness γ ≈ 0.56. Right:
Same values with opposite signs.

The standard deviation σ of a stochastic variable is defined as the square root of the
variance.

The nth moment of a stochastic variable X is defined as

mn = E[Xn] =

∫ ∞
−∞

xnf(x) dx,

while the nth central moment is defined as

µn = E[(X − µ)n] =

∫ ∞
−∞

(x− µ)nf(x) dx.

The variance can thus be defined as the second central moment of the stochastic
variable. We see that µ = m1 and σ2 = m2 −m2

1 = µ2 and µ1 = 0.
The skewness γ of a stochastic variable is defined as the third central moment

normalized by the cube of the standard deviation

γ =
E[(X − µ)3]

σ3
=
µ3

σ3
.

The skewness is a measure of the asymmetry of the probability distribution. In
figure 4 we see examples of probability distributions with positive and negative
skewness.

The kurtosis κ of a stochastic variable is defined as the fourth central moment
normalized by the square of the variance

κ =
E[(X − µ)4]

σ4
=
µ4

σ4
.

Sometimes the excess kurtosis is introduced as the kurtosis minus 3. For zero excess
kurtosis (κ = 3) the distribution is said to bemesokurtic. For positive excess kurtosis
(κ > 3) the distribution is said to be leptokurtic. For negative excess kurtosis (κ < 3)
the distribution is said to be platykurtic.

The kurtosis is a measure of the weight of the tails of the probability distribu-
tion. In figure 5 we see examples of a mesokurtic, a leptokurtic and a platykurtic
distribution.
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Figure 5: Probability density functions with mean 0 and variance 1. Solid line:
Laplace distribution, κ = 6, positive excess kurtosis, leptokurtic. Dotted line: Gaus-
sian distribution, κ = 3, zero excess kurtosis, mesokurtic. Dashed line: Uniform
distribution, κ = 1.8, negative excess kurtosis, platykurtic.

Given a stochastic variable X we can transform it into a new stochastic variable
Y as a function of X. Particularly useful is the transformation given by

Y (X) =
X − µ
σ

. (1)

The cumulative distribution function of Y is

FY (y) = P{Y ≤ y} = P{X − µ
σ

≤ y} = P{X ≤ µ+ σy} = FX(µ+ σy).

The probability density function of Y is

fY (y) =
dFY (y)

dy
=

dFX(µ+ σy)

dy
= σfX(µ+ σy).

For the special transformation (1) with µ and σ2 being the mean and variance of X,
we notice that the mean of Y is

E[Y ] = E[
X − µ
σ

] =
1

σ
E[X]− µ

σ
= 0,

the variance of Y is

E[Y 2] = E[
(X − µ)2

σ2
] =

1

σ2
E[(X − µ)2] = 1,

while the skewness and kurtosis of Y are the same as the skewness and kurtosis of
X, respectively.

The characteristic function φ(k) of a stochastic variable X is defined as the
expected value of eikX ,

φ(k) = E[eikX ] =

∫ ∞
−∞

f(x)eikx dx.

We immediately recognize this as the Fourier transform of the probability density
function, and we therefore have the inverse transform

f(x) =
1

2π

∫ ∞
−∞

φ(k)e−ikx dk.
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The variable k used here should not be confused with the wavenumber of some
waves. We can formally expand the complex exponential function in a power series

eikx = 1 + ikx− 1

2
k2x2 − i

6
k3x3 + . . .+

in

n!
knxn + . . .

and thus by the linearity of the expectation operator the characteristic function can
be written as a superposition of all the moments

φ(k) = 1 + ikm1 −
1

2
k2m2 −

i

6
k3m3 + . . .+

in

n!
knmn + . . .

This can be used to derive a convenient formula for the n-th moment simply by
differentiating the characteristic function n times and evaluating the result at k = 0

mn = (−i)n
dn

dkn
φ(k)

∣∣∣∣
k=0

.

Example: A discrete distribution.
Let us again consider the staircase in figure 3. We find the probability density

function by computing the derivative

f(z) =
1

3
(δ(z + a) + δ(z) + δ(z − a))

where we get a sum of three Dirac deltas. This is, in fact, a discrete probability
distribution, but we treat it as a special case of a continuous probability distribution
with the help of the Dirac delta generalized function.

The mean is µ = 1
3
(−a + 0 + a) = 0. The variance is σ2 = 1

3
((−a)2 + 02 +

a2) = 2
3
a2. The standard deviation is σ =

√
2
3
a. The third central moment is

µ3 = 1
3
((−a)3 + 03 + a3) = 0, and thus the skewness is also zero. The fourth central

moment is µ4 = 1
3
((−a)4 +04 +a4) = 2

3
a4, and thus the kurtosis is κ = µ4

σ4 = 3
2
so the

distribution is platykurtic. The characteristic function is φ(k) = 1
3
(1 + 2 cos(ak)).

Example: Gaussian or normal distribution.
A stochastic variable X is said to be Gaussian or normally distributed with mean

µ and variance σ2 with the probability density function given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

This distribution is shown in figure 5 above. The cumulative distribution function
is

F (x) =

∫ x

−∞

1√
2πσ

e−
(ξ−µ)2

2σ2 dξ =
1

2
+

1

2
erf(

x− µ√
2σ

) = 1− 1

2
erfc(

x− µ√
2σ

)

where erf(x) = 2√
π

∫ x
0

e−t
2

dt is the error function and erfc(x) = 1 − erf(x) is the
complementary error function. The stochastic variable X is unimodal with mode µ.
The median is also µ since erf(0) = 0.

8



L−L

Im z

ikσ
2

Re z

Figure 6: Contour for computation of the characteristic function of the normal
distribution.

The characteristic function is1

φ(k) = e−
σ2k2

2
+iµk.

The computation of the moments of the normal distribution can be done by
direct computation of the expectation integrals, or by means of the characteristic
function. The results are the mean E[X] = µ, the variance E[(X − µ)2] = σ2, the
skewness γ = 0 and the kurtosis κ = 3

Notice that in the limit of zero variance the characteristic function converges to
φ(k) = eiµk and thus the probability density function converges to a Dirac delta
f(x) = δ(x− µ).

Example: Uniform distribution.
A stochastic variable X is said to be uniformly distributed on the interval a ≤

X ≤ b with the probability density function given by

f(x) =

{
1
b−a a ≤ x ≤ b

0 otherwise

This distribution is shown in figure 5 above. The cumulative distribution function
is

F (x) =


0 x < a
x−a
b−a a ≤ x ≤ b

1 x ≥ b

The mode (maximum) is not well defined since f(x) does not have an isolated
extremal point. The median is xmedian = a+b

2
.

The characteristic function is

φ(k) =
eikb − eika

ik(b− a)
.

1In order to show that this is the characteristic function we extend consideration from the real
line to the complex plane. Rewrite the exponent into a square∫ ∞

−∞

1√
2πσ

e−
(z−µ)2

2σ2
+iµk dz = e−

σ2k2

2 +iµk

∫ ∞
−∞

1√
2πσ

e−
(z−µ−ikσ2)2

2σ2 dz

Then we integrate around the contour in the complex plane as suggested in figure 6, along the real
axis from −L to L, up to a line parallell to the real axis at imaginary value ikσ2, to the left and
back. As L→∞ the contribution from the vertical segments vanish. There are no singular points
so the integral around the closed loop is zero.
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The mean is µ = E[X] = a+b
2
. The variance is σ2 = E[(X − µ))2] = 1

12
(b − a)2.

The skewness is γ = 0. The kurtosis is κ = 9/5.

4.2.1 Exercises

1. Central moments computed by the characteristic function

Show that the central moments can be obtained from the characteristic func-
tion by the formula

µn = (−i)n
dn

dkn
(
e−iµkφ(k)

)∣∣∣∣
k=0

.

2. Rayleigh distribution

A stochastic variable X is said to be Rayleigh distributed with parameter α
with the probability density function given by

f(x) =

{
x
α2 e−

x2

2α2 x ≥ 0
0 x < 0

Find the mode, median, mean, variance, standard deviation, skewness and
kurtosis.

Hint: Maybe the characteristic function is difficult to compute, so it is easier
to find the moments by direct integration?

3. Exponential distribution

A stochastic variable X is said to be exponentially distributed with parameter
α with the probability density function given by

f(x) =

{
αe−αx x ≥ 0

0 x < 0

where α > 0.

Find the mode, median, characteristic function, mean, variance, standard de-
viation, skewness and kurtosis.

4. Laplace distribution

A stochastic variable X is said to be Laplace distributed with parameter α
with the probability density function given by

f(x) =
1

2α
e−
|x|
α

where α > 0. This distribution is shown in figure 5 above.

Find the mode, median, characteristic function, mean, variance, standard de-
viation, skewness and kurtosis.
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5. Cauchy distribution

A stochastic variable X is said to be Cauchy distributed with parameter α
with the probability density function given by

f(x) =
1

π

α

x2 + α2

Find the mode, median and the characteristic function.

Notice that the characteristic function is not differentiable at the origin, so
the convenient formula for computing the moments by differentiation of the
characteristic function will not work. In fact, the Cauchy distribution does not
have moments higher than the zeroth moment. The mean, variance, standard
deviation, skewness and kurtosis are not defined!

6. Markov’s inequality

Let X be a nonnegative random variable with mean µ, and let a > 0, show
that

P{X ≥ a} ≤ µ

a
.

7. Chebyshev’s inequality

Let X be a random variable with mean µ and variance σ2, and let k > 0, show
that

P{|X − µ| ≥ kσ} ≤ 1

k2
.

4.3 Two real stochastic variables

LetX and Y be two real stochastic variables. With the notation {X ≤ x and Y ≤ y}
we refer to the collection of all outcomes of the two stochastic variables X and Y
such that X ≤ x and Y ≤ y simultaneously. The probability for this collection of
outcomes defines the joint (Norwegian simultan) cumulative distribution function
F (x, y) ≡ P{X ≤ x and Y ≤ y}. The joint cumulative probability function has the
properties that

1. F (−∞,−∞) = 0,

2. F (∞,∞) = 1,

3. F (x1, y1) ≤ F (x2, y2) for x1 ≤ x2 and y1 ≤ y2.

The marginal cumulative distribution functions are defined as

FX(x) = F (x,∞) and FY (y) = F (∞, y).

The probability that the joint outcome is within a rectangle is P{ax < X ≤
bx and ay < Y ≤ by} = F (bx, by) − F (bx, ay) − F (ax, by) + F (ax, ay). Therefore the
probability that an outcome is in a rectangle of infinitesimal widths is P{x < X ≤
x+ dx and y < Y ≤ y + dy} ≈ ∂2F

∂x∂y
dxdy = f(x, y)dxdy.
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The joint probability density function is defined as

f(x, y) ≡ ∂2F (x, y)

∂x∂y

and has the properties that

1. f(x, y) ≥ 0,

2.
∫∞
−∞

∫∞
−∞ f(x, y) dx dy = 1,

3. F (x, y) =
∫ x
−∞

∫ y
−∞ f(ξ, η) dηdξ.

The marginal probability density functions are defined as

fX(x) =

∫ ∞
−∞

f(x, y) dy =
∂FX(x)

∂x
and fY (y) =

∫ ∞
−∞

f(x, y) dx =
∂FY (y)

∂y
.

Two stochastic variables X and Y are said to be statistically independent if the
joint distribution function can be factorized F (x, y) = FX(x)FY (y), or equivalently
the probability density function can be factorized f(x, y) = fX(x)fY (y).

The mean values of X and Y are

µX = E[X] =

∫ ∞
−∞

∫ ∞
−∞

xf(x, y) dx dy =

∫ ∞
−∞

xfX(x) dx,

µY = E[Y ] =

∫ ∞
−∞

∫ ∞
−∞

yf(x, y) dx dy =

∫ ∞
−∞

yfY (y) dy.

The covariance of two stochastic variables X and Y is defined as

Cov[X, Y ] = E[(X − µX)(Y − µY )] = E[XY ]− µXµY .

The correlation coefficient of the two stochastic variables is defined as the ratio

r =
Cov[X, Y ]

σXσY
.

Example: Show that the magnitude of the correlation coefficient is not greater
than one. This can be done by looking at

E[(a(X − µX) + (Y − µY ))2] = a2σ2
X + 2aCov[X, Y ] + σ2

Y ≥ 0

where a is a real parameter. Solving for a when the above expression is zero we get

a =
−Cov[X, Y ]±

√
Cov[X, Y ]2 − σ2

Xσ
2
Y

σ2
X

,

but observing that there cannot be two distinct real solutions for a, the radicand
must be non-positive Cov[X, Y ]2 ≤ σ2

Xσ
2
Y . So we conclude that |r| ≤ 1.

For another proof of |r| ≤ 1 see exercise below.
Two stochastic variables X and Y are said to be uncorrelated if Cov[X, Y ] = 0,

which is equivalent to the correlation coefficient r = 0, and which is equivalent to
E[XY ] = E[X]E[Y ].

We observe that if two stochastic variables are statistically independent, then
they are uncorrelated. The converse is not always true, see exercise below.
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4.3.1 Exercises

1. Uncorrelated does not imply independent

Let X be uniformly distributed on the interval −1 ≤ X ≤ 1 and let Y = X2.
Compute the means ofX and Y , µx and µy. Compute the covariance Cov[X, Y ]
and show that X and Y are uncorrelated. Compute the two marginal distri-
bution functions FX(x) and FY (y). Show that the joint distribution function
is not the product of the two marginal distribution functions. Thus conclude
that X and Y are not independent.

Hint: It is easier to work with the joint cumulative distribution function than
the joint probability density.

2. Geometric interpretation of real stochastic variables

First, if we interpret the two real stochastic variables X and Y as vectors,
show that 〈X, Y 〉 = E[XY ] satisfies all the requirements for being an inner
product. Show that the associated norm is ‖X‖ =

√
E[X2].

Show that the cosine of the associated angle between the vectors X and Y
is bounded by 1 in magnitude as a consequence of the Cauchy–Schwartz in-
equality. We say that X and Y are orthogonal if E[XY ] = 0 and we can write
X ⊥ Y .

Next, if we interpret the two real stochastic variables X and Y as vectors,
show that 〈X, Y 〉 = Cov[X, Y ] satisfies all the requirements for being an inner
product. Show that the associated norm is the standard deviation of X.

Show that the bound for the correlation coefficient, |r| ≤ 1, is a consequence
of the Cauchy–Schwartz inequality.

3. Let X be a Rayleigh distributed real stochastic variable with mode α. Find
the distribution of Y = X2.

4. Let X and Y be two independent identically distributed real Gaussian stochas-
tic variables with mean µ and variance σ2. Introduce the new variables R and
Θ by X = R cos Θ + µ and Y = R sin Θ + µ. Show that R and Θ are indepen-
dent variables and find their distributions.

5. Let X be a Laplace distributed real stochastic variable with parameter α. Find
the distribution of Y =

√
|X|.

6. Let X and Y be two independent identically distributed real Gaussian stochas-
tic variables. Conclude that the sum of squared S = X2 + Y 2 is exponentially
distributed with standard deviation equal to its expected value.

4.4 Complex stochastic variable

A complex stochastic variable Z = X + iY is defined by the joint distribution of
its real and imaginary parts X and Y . It does not make sense to compare is one
complex number is smaller than or greater than another complex number, but we
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can apply such criteria to the real and imaginary parts separately. The probability
distribution of a complex variable Z is therefore the joint distribution of its real and
imaginary parts X and Y .

For the expected value of Z we have

µZ = E[Z] = E[X] + iE[Y ] = µX + iµY .

There are three real second order moments associated with the complex variable
Z = X + iY : The variances σ2

X = CXX = Var[X] and σ2
Y = CY Y = Var[Y ] and the

covariance CXY = Cov[X, Y ].
We extend the covariance to complex variables by defining the ordinary complex

covariance by the criterion that the second argument should be conjugated. Suppose
U and V are two complex stochastic variables with means µU and µV , we define their
ordinary complex covariance to be

CUV = Cov[U, V ] = E[(U − µU)(V − µV )∗] = E[UV ∗]− µUµ∗V .

We also have the complex pseudo-covariance (also called the complex complementary
variance) for which no conjugate is taken

PUV = E[(U − µU)(V − µV )] = E[UV ]− µUµV .

The variance of a complex variable is the ordinary complex covariance of the
variable and itself

Var[Z] = CZZ = Cov[Z,Z] = E[(Z − µZ)(Z − µZ)∗] = E[|Z|2]− |µZ |2 = σ2
X + σ2

Y

while the complex pseudo-covariance of the variable and itself is

PZZ = E[(Z − µZ)(Z − µZ)] = σ2
X − σ2

Y + 2iCXY .

We can now recover the real second-order moments from the complex ones by

σ2
X =

1

2
Re(CZZ + PZZ), σ2

Y =
1

2
Re(CZZ − PZZ) and CXY =

1

2
ImPZZ .

4.4.1 Exercises

1. Geometric interpretation of complex stochastic variables

First, if we interpret the two complex stochastic variables U and V as vectors,
show that 〈U, V 〉 = E[UV ∗] satisfies all the requirements for being an inner
product. Show that the associated norm is ‖U‖ =

√
E[|U |2].

Show that the cosine of the associated angle between the vectors U and V is
bounded by 1 in magnitude as a consequence of the Cauchy–Schwartz inequal-
ity. We say that U and V are orthogonal if E[UV ∗] = 0 and we can write
U ⊥ V .
Next, if we interpret the two complex stochastic variables U and V as vectors,
show that 〈U, V 〉 = Cov[U, V ] satisfies all the requirements for being an inner
product. Show that the associated norm is the standard deviation of U .
Show that the bound for the correlation coefficient |r| ≤ 1, is a consequence
of the Cauchy–Schwartz inequality.
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4.5 Multivariate stochastic variable

Sometimes we are interested in vector-valued stochastic variables. Let X be a real
n× 1 vector

X =


X1

X2
...
Xn


The mean of X is µX = E[X] which can be computed componentwise due to

the linearity of the expected value.
The joint cumulative distribution function F (x1, x2, . . . , xn) and the joint prob-

ability density function are related by

f(x1, x2, . . . , xn) =
∂nF (x1, x2, . . . , xn)

∂x1∂x2 . . . ∂xn
.

We say that the n variables X1, X2, . . . , Xn are statistically independent if the
distribution functions can be factorized

f(x1, x2, . . . , xn) =
n∏
j=1

fXj(xj) and F (x1, x2, . . . , xn) =
n∏
j=1

FXj(xj).

The covariance matrix of the components of X is

C = Cov[X,X] = E[(X − µX)(X − µX)T ]

where AT denotes the transpose of A.
We say that the n variables X1, X2, . . . , Xn are mutually uncorrelated if the

covariances are zero Cov[Xj, Xl] = 0 for j 6= l.
The characteristic function of X is

φ(k) = E

[
exp

(
i

n∑
j=1

kjXj

)]
= E

[
exp

(
ikTX

)]
where k = (k1, k2, . . . , kn)T .

Sometimes we are also interested in multivariate complex stochastic variables.
Let Z be a complex n× 1 vector

Z =


Z1

Z2
...
Zn


The mean of Z is µZ = E[Z].
The covariance matrix of the components of Z is

C = Cov[Z,Z] = E[(Z − µZ)(Z − µZ)H ]
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where AH means the Hermitian or conjugate transpose of A. We let A be the
complex conjugate of A, AT be the transpose of A, and A∗ = AH = AT = AT be
the Hermitian or conjugate transpose of A.2

The covariance matrix is positive semi-definite, i.e. kHCk is real and non-negative

kHCk = kH E[(Z − µZ)(Z − µZ)H ]k = E[|kH(Z − µZ)|2] ≥ 0

For complex variables it may also necessary to compute the pseudo-covariance
matrix of the components of Z

P = E[(Z − µZ)(Z − µZ)T ]

4.5.1 Multivariate real normal distribution

A real multivariate stochastic variable X = (X1, X2, . . . , Xn)T is said to normally
distributed, or equivalently the variables Xj are said to be jointly normally dis-
tributed, with the probability density function given by

f(x) =

√
|A|

(2π)n/2
exp

(
−1

2

n∑
j,l=1

(xj − µj)ajl(xl − µl)

)

where x = (x1, x2, . . . , xn)T , where the matrix A = {ajl} = C−1, where |A| denotes
the determinant of A, where µj = E[Xj] are the mean values, and where C = {cjl}
is the covariance matrix with components cjl = Cov[Xj, Xl] = E[(Xj−µj)(Xl−µl)].

The characteristic function is given by the n-dimensional Fourier transform

φ(k) = E
[
exp

(
ikTX

)]
= exp

(
−1

2
kTCk + ikTµ

)
(2)

where k = (k1, k2, . . . , kn)T .
Notice that since the covariance matrix is positive semi-definite, the real part of

the exponent is always non-positive, and therefore |φ(k)| ≤ 1.

Example: Multivariate real normal distribution in the limit of zero
variance.

It is useful to consider the limit when one of the variances vanishes σ2
j = cjj = 0

for one of the variables Xj. In this case the covariance matrix becomes singular,
it cannot be inverted, and the probability density function becomes a generalized
function. However, the characteristic function is still a well defined ordinary func-
tion.

Since it is a perfectly acceptable situation that at least one of the variables Xj

has zero variance, it is convenient to take the characteristic function in equation (2)
as the definition of the multivariate normal distribution.

Example: For multivariate real Gaussian variables, being uncorrelated
is equivalent to being statistically independent.

2Matlab and Octave have the very strange commands A' for Hermitian transpose and A.' for
just transpose. More logical notations are also available, conj(A) for just conjugate, transpose(A)
for just transpose, and ctranspose(A) for Hermitian transpose.
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Suppose that the variable X1 is uncorrelated with all the other variables Xj.
Then the covariances cj,1 = c1,j = 0 for all j 6= 1, and thus the n-dimensional
characteristic function can be factorized φ(k1, k2, . . . , kn) = φ1(k1)φ2,...,n(k2, . . . , kn).
From the multi-dimensional inverse Fourier transform, it follows that the probabil-
ity density function can be factorized likewise. Hence for joint normally distributed
stochastic variables, being statistically independent is equivalent to being uncorre-
lated.

Example: X being multivariate real Gaussian is equivalent to any lin-
ear combination of the components of X being univariate real Gaussian.

We will show thatX being multivariate real Gaussian is equivalent to the variable
Y =

∑n
j=1 λjXj being real Gaussian for any choice of λj.

First, suppose that X is multivariate real Gaussian. In that case the character-
istic function for Y is

φY (κ) = E[eiκY ] = E[eiκ(λ1X1+...+λnXn)] = exp

(
−1

2

∑
j,l

κλjcjlκλl + i
∑
j

κλjµj

)

= exp

(
−1

2
κ2
∑
j,l

λjcjlλl + iκ
∑
j

λjµj

)
.

so we see that Y is Gaussian with mean µY =
∑

j λjµj and variance σ2
Y =

∑
j,l λjcjlλl.

Second, if Y is Gaussian with mean µY and variance σ2
Y then from the sum

defining Y we have

µY = E

[∑
j

λjXj

]
=
∑
j

λjµj

and

σ2
Y = E

(∑
j

λjXj −
∑
j

λjµj

)2
 = E

[∑
j,l

λjλl(Xj − µj)(Xl − µl)

]
=
∑
j,l

λjλlcj,l

so the characteristic function of Y can be written as

φY (κ) = E[eiκY ] = e−
1
2
κ2σ2

Y +iκµY = exp

(
−1

2

∑
j,l

κλjcjlκλl + i
∑
j

κλjµj

)
which is the characteristic function of a multivariate Gaussian variable by the asso-
ciation kj = κλj, so X is multivariate Gaussian.

There also exist a multivatiate complex Gaussian distribution, which is not pre-
sented here. More properties of joint multivariate normal variables can be found in
Appendix A of Øksendal (2003) and in Papoulis & Pillai (2002).

4.5.2 Exercises

1. Let A and B be bivariate Gaussian stochastic variables, and let X = αA+βB.
Show that X is Gaussian and find its mean and variance.
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4.6 The Central Limit Theorem

Let us form a new stochastic variable Y taking the superposition of n statistically
independent variables Xj with mean values µj and variances σ2

j , respectively,

Y = X1 +X2 + . . .+Xn.

The assumption of statistical independence means that the joint probability density
function can be factorized

f(x1, x2, . . . , xn) = f1(x1)f2(x2) . . . fn(xn).

The expected value of Y is

E[Y ] = E

[∑
j

Xj

]
=
∑
j

E[Xj] =
∑
j

µj = µ.

The variance of Y is

Var[Y ] = E[(Y − E[Y ])2] = E

(∑
j

(Xj − µj)

)2


=
∑
j

E[(Xj − µj)2] +
∑
j 6=l

E[(Xj − µj)(Xl − µl)] =
∑
j

σ2
j = σ2

where the sum over all j 6= l vanishes because the Xj are statistical independent
(here it is enough that they are mutually uncorrelated). We have defined µ as the
sum of the means and σ2 as the sum of the variances.

We introduce the transformed variable

Z =
Y − µ
σ

=
n∑
j=1

Xj − µj
σ

=
n∑
j=1

Zj

where Zj =
Xj−µj
σ

. It can be shown that E[Z] = 0 and E[Z2] = 1. We do not assume
that the distribution of Xj is known, however we can write down the first few terms
of the power series expansion of the characteristic function of Zj

φZj(k) = E[eik
Xj−µj
σ ] =

∞∑
l=0

il
kl

l!σl
E[(Xj−µj)l] = 1−

k2σ2
j

2σ2
−i
k3σ3

j

3!σ3
γj+

k4σ4
j

4!σ4
κj+. . .

where γj and κj are the skewness and kurtosis. Notice that if the distributions of
Xj are somewhat similar, then we can estimate the asymptotic behavior σj

σ
∝ 1√

n
as

n→∞.
The characteristic function for Z has a power series expansion

φZ(k) = E[eikZ ] = E
[
eik

∑n
j=1

Xj−µj
σ

]
= E

[
n∏
j=1

eik
Xj−µj
σ

]

=
n∏
j=1

E
[
eik

Xj−µj
σ

]
=

n∏
j=1

(
1−

k2σ2
j

2σ2
+ . . .

)
= (1− k2

2n
)n +R
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where the interchange of the product and the expected value operator depends on
statistical independence. Here R is a remainder which we anticipate is proportional
to 1√

n
for the case that the distributions of Xj are somewhat similar.

Now we let n→∞, we disregard the remainder term R because it vanishes, and
we recall the limit (

1− x

n

)n
→ e−x as n→∞.

Therefore it follows that
φZ(k)→ e−

k2

2

and thus the asymptotic probability density of the transformed variable Z is

f(z)→ 1√
2π

e−
z2

2 ,

which is the Gaussian distribution with mean 0 and variance 1.
If all the variables Xj are equally distributed it becomes particularly simple

to demonstrate that R = O(n−1/2). If the Xj are not equally distributed, sufficient
conditions for the vanishing of R could depend on certain conditions on the variances
σ2
j and higher moments of Xj, see e.g. Papoulis & Pillai (2002).

4.6.1 Exercises

1. LetX1 andX2 be two identically distributed statistically independent variables
with mean µX = 0, variance σ2

X , skewness γX 6= 0 and kurtosis κX 6= 3. Let
Y = X1 +X2. Compute the mean µY , variance σ2

Y , skewness γY and kurtosis
κY of Y . Can we say that Y is closer to Gaussian than X1?

4.7 Stochastic processes

A stochastic process X(t) along the time axis t is a collection of stochastic variables
X(t1), X(t2), . . ., for any selection of times t1, t2, . . .. It is also possible to talk about
a stochastic field X(r) where r is a spatial position vector. In the most general case
we will allow both spatial and temporal dependence.

The set of possible values of t or r is the so-called index set of the process. Given
that time t and space r are continuous, there is not only an infinite number of index
values, they cannot even be counted. We may fear that a description of the stochastic
processX(t) requires consideration of the joint statistics of an uncountable infinity of
distinct times. Fortunately, it turns out that it is enough, at least for the processes of
interest to us, only to consider the joint statistics for a finite number of times. Thus
the stochastic process will be completely described by the multivariate distribution
of X = (X1, . . . , Xn)T , with Xj = X(tj), for finite n. The joint distribution of a
process at n fixed times is called the n-th order distribution.

The first order distribution for a real process X(t) is

F (x1; t1) = P{X(t1) ≤ x1} and f(x1; t1) =
∂F (x1; t1)

∂x1

.
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The second order distribution for a real process X(t) is

F (x1, x2; t1, t2) = P{X(t1) ≤ x1 and X(t2) ≤ x2}

and
f(x1, x2; t1, t2) =

∂2F (x1, x2; t1, t2)

∂x1∂x2

.

Several compatibility relations follow, e.g. F (x1; t1) = F (x1,∞; t1, t2), etc.
In principle we can proceed to derive the n-th order distribution for the joint

behavior at n fixed times F (x1, x2, . . . , xn; t1, t2, . . . , tn), however, the first and second
order distributions will suffice in the following.

For a complex process Z(t) = X(t) + iY (t) we need to consider the joint distri-
bution of the real and imaginary parts, thus the first order distribution is

F (x1, y1; t1) = P{X(t1) ≤ x1 and Y (t1) ≤ y1} and f(x1, y1; t1) =
∂2F (x1, y1; t1)

∂x1∂y1

and similarly for the second order distribution F (x1, y1, x2, y2; t1, t2).
Care should be taken not to be confused by our double use of the word “order”:

The order of a distribution of a stochastic process refers to the number of simultane-
ous values from the index set employed for joint statistics. The order of nonlinearity
refers to the power of the steepness that measures the importance of wave-wave
interactions.

The expected value of a real stochastic process is

µ(t) = E[X(t)] =

∫ ∞
−∞

xf(x; t) dx.

The autocorrelation function of a real process is

R(t1, t2) = E[X(t1)X(t2)] =

∫ ∞
−∞

∫ ∞
−∞

x1x2f(x1, x2; t1, t2) dx1 dx2.

For the complex stochastic process Z(t) = X(t) + iY (t) the expected value is

µ(t) = E[Z(t)] =

∫ ∞
−∞

∫ ∞
−∞

(x+ iy)f(x, y; t) dxdy

and the autocorrelation function is

R(t1, t2) = E[Z(t1)Z∗(t2)] =

∫ ∞
−∞

(x1+iy1)(x2−iy2)f(x1, y1, x2, y2; t1, t2) dx1 dy1dx2 dy2

(where there should have been four integrals).
The mean power of the process is defined as the second moment R(t, t) =

E[|Z(t)|2].
The autocovariance function is defined as

C(t1, t2) = E[(Z(t1)− µ(t1))(Z(t2)− µ(t2))∗] = R(t1, t2)− µ(t1)µ∗(t2).
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A process is said to be steady state or stationary if the statistical properties
are independent of translation of the origin, i.e. Z(t) and Z(t + τ) have the same
distributions. For the first order distribution we need f(z1; t1) = f(z1). For the
second order distribution we need f(z1, z2; t1, t2) = f(z1, z2; τ) where τ = t1 − t2.
Similarly, the distributions at any higher order should only depend on the time
intervals and not the absolute times.

A process is said to be weakly stationary if the expected value is constant with
respect to time E[Z(t)] = µ and the autocorrelation function is independent of
translation of the origin R(t1, t2) = E[Z(t1)Z∗(t2)] = R(τ) where τ = t1 − t2.

A process Z(t) is said to be ergodic (with respect to time-averaging) for the
computation of some function g(Z(t)) if ensemble-averaging gives the same result
as time-averaging, e.g.

E[g(Z(t))] = lim
T→∞

1

2T

∫ T

−T
g(z(t)) dt

where z(t) is any realization of Z(t).
It is obvious that ergodicity is only meaningful provided the process has some

kind of stationarity. Ergodicity with respect to first and second order statistics, such
as the mean and the autocorrelation, is meaningful for a weakly stationary process.

Example: A stationary and non-ergodic process
Consider the process X(t) = A where A is uniformly distributed on the interval

[−1, 1]. We know that the probability density of A is f(a) = 1
2
for −1 ≤ a ≤ 1 and

zero elsewhere. It is obvious that the process is stationary since it does not depend
on time. The mean of the process is

µ(t) = E[A] =

∫ 1

−1

a
1

2
da = 0.

Time averaging over a realization gives

lim
T→∞

1

2T

∫ T

−T
a dt = a

for some a in the interval [−1, 1], which is almost certainly not the mean of the
process. Therefore the process is not ergodic.

Example: A weakly stationary and ergodic process
Consider the process X(t) = cos(ωt+ Θ) where ω is any real number and where

Θ is uniformly distributed on the interval [0, 2π]. We know that the probability
density of Θ is f(θ) = 1

2π
for 0 ≤ θ ≤ 2π and zero elsewhere. The mean of the

process is

µ(t) = E[cos(ωt+ Θ)] =

∫ 2π

0

cos(ωt+ θ)
1

2π
dθ = 0

and the autocorrelation of the process is

R(t1, t2) = E[cos(ωt1 + Θ) cos((ωt2 + Θ)]

=
1

2
E[cos(ω(t1 + t2) + 2Θ)] +

1

2
cos(ω(t1 − t2)) =

1

2
cos(ωτ)
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where we have used the identity cosu cos v = 1
2

(cos(u+ v) + cos(u− v)) and we
have set τ = t1 − t2. Thus we conclude that the process is weakly stationary.

Time averaging over a realization for ω 6= 0 also gives the mean and the auto-
correlation

µ = lim
T→∞

1

2T

∫ T

−T
cos(ωt+ θ) dt = 0

and

R(τ) = lim
T→∞

1

2T

∫ T

−T
cos(ω(t+ τ) + θ) cos(ωt+ θ) dt

= lim
T→∞

1

4T

∫ T

−T
cos(ω(2t+ τ) + 2θ) + cos(ωτ) dt =

1

2
cos(ωτ)

for some θ in the interval [0, 2π]. Thus we conclude that the process is ergodic for
ω 6= 0 for the computation of mean and autocorrelation.

For ω = 0 the process is not ergodic since we cannot achieve the mean or the
autocorrelation by time averaging of a single realization. In this case the process in
this example is not the same as in the previous example since cos Θ is not uniformly
distributed on [−1, 1].

Example: Gaussian process
A process X(t) is said to be Gaussian if and only if for every finite set of

times t1, . . . , tn the stochastic variables X(t1), . . . , X(tn) are multivariate Gaus-
sian. We have seen that this is equivalent to saying that every linear combination
Y =

∑n
j=1 λjX(tj) is univariate Gaussian for any choice of λj. We showed that these

two statements are equivalent in the last example of the previous section.

4.7.1 Exercises

1. Consider the real stochastic process X(t) = a cos(ωt+Θ) where Θ is uniformly
distributed on [0, 2π] and a is a constant. Compute the skewness and the
kurtosis of the process. Determine if this is a Gaussian process.

2. Consider the real stochastic process X(t) = A cos(ωt)+B sin(ωt) where A and
B are bivariate stochastic variables (A and B being uncorrelated, statistically
independent or equally distributed are special cases). Determine if this is a
weakly stationary process, or find some criterion for the bivariate distribution
of A and B for it to be weakly stationary.

3. Consider the real stochastic process X(t) = A cos(ωt) + B sin(ωt) where A
and B are bivariate Gaussian stochastic variables (A and B being statistically
independent or equally distributed are special cases). Determine if this is a
Gaussian process.

4. Consider the complex stochastic process X(t) = ae−i(ωt+Θ) where Θ is uni-
formly distributed on [0, 2π]. Determine if this process is weakly stationary,
and if it is ergodic for computation of the mean and the autocorrelation func-
tion.

22



4.8 Properties of the autocorrelation function for a weakly
stationary processes

In order to proceed we need to impose some kind of stationarity. We limit to weakly
stationary processes, and thus we assume that the mean is a constant

µ = E[X(t)]

and the autocorrelation is only a function of the time difference

R(τ) = E[X(t+ τ)X∗(t)]. (3)

We shall use the convention that the time lag τ should be added to the first factor
while the second factor should be complex conjugated, always keeping in mind that
process can be complex.

In the following we describe some properties of the autocorrelation function for
weakly stationary processes:

• For a complex process R(−τ) = R∗(τ), and for a real process R(−τ) = R(τ),

R(−τ) = E[Z(t− τ)Z∗(t)] = E[Z(t)Z∗(t+ τ)] = R∗(τ).

• R(0) is real and non-negative,

R(0) = E[Z(t)Z∗(t)] = E[|Z(t)|2] ≥ 0.

The quantity R(0) is often called the mean power of the process, and we
recognize it as the variance of the process in the case of zero expected value
µ = 0.

• R(0) ≥ |R(τ)|
This is most easily seen by considering U = X(t + τ) and V = X(t) as two
vectors, and introducing the inner product 〈U, V 〉 = E[UV ∗]. Then the above
statement is simply the Cauchy–Schwartz inequality.

• If X(t) and Y (t) are uncorrelated processes with zero mean, and Z(t) = X(t)+
Y (t), then

RZZ(τ) = E[(X(t+ τ) + Y (t+ τ))(X∗(t) + Y ∗(t))] = RXX(τ) +RY Y (τ).

Also recall that statistically independent processes are uncorrelated.

4.9 The power spectrum or variance spectrum

The power spectrum or variance spectrum S(ω) of a weakly stationary process is
defined as the Fourier transform of the autocorrelation function R(τ).3

3In mathematics the word “spectrum” means the set of all eigenvalues of an operator. Sometimes
the word “spectrum” is used as a synonym for Fourier transform, being interpreted as eigenvalues
with corresponding complex exponential functions as eigenvectors. Sometimes we are sloppy and
say “spectrum” when we should have said “power spectrum” or “variance spectrum”.
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Whereas the Fourier transform in general is undetermined by a multiplicative
constant, we shall require the spectrum to be uniquely defined by the constraint
that the integral of the spectrum over the domain of the frequency axis should be
equal to the mean power of the process.

S(ω) =
1

2π

∫ ∞
−∞

R(τ)eiωτ dτ, (4)

R(τ) =

∫ ∞
−∞

S(ω)e−iωτ dω, (5)

and we notice that the normalization criterion is satisfied

R(0) =

∫ ∞
−∞

S(ω) dω.

The Fourier transform pair (4)–(5) is known as the Wiener–Khintchine relations.
The power spectrum S(ω) has the following three important properties:

• S(ω) is real.

In order to show this recall that R(−τ) = R∗(τ), and let us split the integral

S(ω) =
1

2π

∫ ∞
−∞

R(τ)eiωτ dτ =
1

2π

∫ 0

−∞
R(τ)eiωτ +

1

2π

∫ ∞
0

R(τ)eiωτ dτ.

If we apply the substitution τ → −τ and apply the complex symmetry of R(τ)
in the first integral, we get

S(ω) =
1

2π

∫ ∞
0

R∗(τ)e−iωτ +
1

2π

∫ ∞
0

R(τ)eiωτ dτ

so clearly S(ω) is real.

• For a real process S(ω) is even.

In order to show this recall that in this case the autocorrelation function is
real and even R(−τ) = R(τ) and thus we may write

S(−ω) =
1

2π

∫ ∞
−∞

R(τ)e−iωτ dτ =
1

2π

∫ ∞
−∞

R(−τ)e−iωτ dτ

and with the substitution τ → −τ we get

S(−ω) =
1

2π

∫ ∞
−∞

R(τ)eiωτ dτ = S(ω).

• S(ω) is nonnegative.

In order to show this we can introduce

X̂T (ω) =
1

2π

∫ T

−T
X(t)eiωt dt
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and
ST (ω) = E

[π
T
|X̂T (ω)|2

]
.

Clearly, ST (ω) ≥ 0.

We can now do the following manipulations

ST (ω) = E
[
π

T

1

2π

∫ T

−T
X(t)eiωt dt

1

2π

∫ T

−T
X∗(s)e−iωs ds

]
Writing this as a double integral, we let the expected value operator act on
the integrand and make use of weak stationarity, E[X(t)X∗(s)] = R(t− s), we
may introduce the new integration variables{
τ = t− s
ξ = t+ s

}
or

{
t = 1

2
(ξ + τ)

s = 1
2
(ξ − τ)

}
with Jacobian

∂(t, s)

∂(τ, ξ)
=

∣∣∣∣ 1
2

1
2

−1
2

1
2

∣∣∣∣ =
1

2

such that

ST (ω) =
π

(2π)2T

∫ T

−T

∫ T

−T
E[X(t)X∗(s)]eiω(t−s) dtds

=
1

8πT

∫ 2T

−2T

∫ 2T−|τ |

−2T+|τ |
R(τ)eiωτ dξdτ =

1

2π

∫ 2T

−2T

(
1− |τ |

2T

)
R(τ)eiωτ dτ.

Finally taking the limit we get

lim
T→∞

ST (ω) = S(ω) ≥ 0.

There is another more heuristic approach to arrive at the same result. Starting
with the right-hand side of (4), using (3) and substituting X(t+ τ) and X∗(t)
by their Fourier transforms, we have the expression

1

2π

∫ ∞
−∞

E
[∫ ∞
−∞

X̂(ω1)e−iω1(t+τ) dω1

∫ ∞
−∞

X̂∗(ω2)eiω2t dω2

]
eiωτ dτ

which we bravely rewrite into the form∫ ∞
−∞

∫ ∞
−∞

E[X̂(ω1)X̂∗(ω2)]e−i(ω1−ω2)t

∫ ∞
−∞

1

2π
ei(ω−ω1)τ dτ dω1 dω2.

Here we notice that the innermost τ -integral is δ(ω−ω1), and we notice that for
the process to be weakly stationary it is necessary that E[X̂(ω1)X̂∗(ω2)] = 0
for ω1 6= ω2. We arrive at the desired result making the identification

E[X̂(ω1)X̂∗(ω2)] = S(ω1)δ(ω1 − ω2)

from which it follows that S(ω) ≥ 0. Two important remarks must be made
regarding this equation. First, the Dirac delta has physical dimension inverse
of its argument. Second, even if the Fourier transform of X(t) may contain
a Dirac delta, the above equation does not imply the product of two Dirac
deltas of the same argument.
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4.9.1 One-sided spectrum

The fact that a real process has an even spectrum is often used to introduce a one-
sided spectrum for non-negative frequencies. The desired Fourier transform pair is
then

Sone-sided(ω) =
1

π

∫ ∞
−∞

R(τ)eiωτ dτ =
2

π

∫ ∞
0

R(τ) cos(ωτ) dτ, (6)

R(τ) =

∫ ∞
0

Sone-sided(ω) cos(ωτ) dω. (7)

Here we have
Sone-sided(ω) =

{
2S(ω) for ω > 0
S(0) for ω = 0

We notice that the normalization criterion is satisfied∫ ∞
0

Sone-sided(ω) dω = R(0).

4.9.2 Power spectrum of continuous periodic process

Let us consider how this becomes for a process X(t) periodic on the interval 0 ≤
t < T . Suppose we have the Fourier transform pair

X̂n =
1

T

∫ T

0

X(t)eiωnt dt

X(t) =
∞∑

n=−∞

X̂ne−iωnt

where ωn = n∆ω where ∆ω = 2π
T
.

We can let the spectrum and the autocorrelation function be given by the Fourier
transform pair

Sn =
1

2π

∫ T

0

R(τ)eiωnτ dτ

R(τ) = ∆ω
∞∑

n=−∞

Sne−iωnτ

Notice that the normalization criterion is satisfied

R(0) =
∞∑

n=−∞

Sn ∆ω

where this sum can be considered as an approximation to the area under the spectral
curve. Recall that the criterion for Sn and R(τ) to be a Fourier transform pair is that
∆ω
2π

= 1
T
, which is obviously satisfied. However, also recall that while the Fourier

transform in general is undetermined by a multiplicative constant, the spectrum
becomes uniquely defined by the constraint that the integral of the spectrum over
the domain of the frequency axis should be equal to the mean power of the process.
Hence our particular choice of using ∆ω for the normalization.
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Let us investigate further the consequences of X(t) being weakly stationary. The
mean should be constant

µ = E[X(t)] = E

[∑
n

X̂ne−iωnt

]
=
∑
n

E[X̂n]e−iωnt

so weak stationarity requires E[X̂n] = 0 for n 6= 0, therefore we have E[X̂n] = µδn,0.
Similarly for the autocorrelation function

R(τ) = E[X(t+ τ)X∗(t)] = E

[∑
n

X̂ne−iωn(t+τ)
∑
m

X̂∗meiωmt

]
=
∑
n,m

E[X̂nX̂
∗
m]ei(ωm−ωn)t−iωnτ

so weak stationarity requires E[X̂nX̂
∗
m] = 0 for n 6= m. Comparison with the above

reveals that E[X̂nX̂
∗
m] = Snδn,m∆ω, or alternatively

Sn =
1

∆ω
E[|X̂n|2]. (8)

If X(t) is real we may employ the one-sided spectrum

Sone-sided,n =

{
2

∆ω
E[|X̂n|2] for n > 0

1
∆ω

E[|X̂0|2] for n = 0

for which the normalization criterion is satisfied

R(0) =
∞∑
n=0

Sone-sided,n ∆ω

4.9.3 Power spectrum of discrete periodic process

Let us consider how this becomes for a finite length discrete process Xj = X(tj)
periodic on the interval 0 ≤ j < N . Suppose we have the Fourier transform pair

X̂n =
1

N

N−1∑
j=0

Xje
2πinj
N

Xj =
N−1∑
n=0

X̂ne−
2πinj
N

where we may think that the exponent is ωntj where ωn = n∆ω where ∆ω = 2π
T

and
tj = j∆T where ∆T = T

N
.

We can let the spectrum and the autocorrelation function be given by the Fourier
transform pair

Sn =
1

N

N−1∑
j=0

Rje
2πinj
N
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Rj =
N−1∑
n=0

Sne−
2πinj
N

Notice that the normalization criterion is satisfied

R0 =
N−1∑
n=0

Sn

where this sum can be considered as an approximation to the area under the spectral
curve.

Let us investigate further the consequences of Xj being weakly stationary. The
mean should be constant

µ = E[Xj] = E

[
N−1∑
n=0

X̂ne−
2πinj
N

]
=
∑
n

E[X̂n]e−
2πinj
N

so weak stationarity requires E[X̂n] = 0 for n 6= 0, therefore we have E[X̂n] = µδn,0.
Similarly for the autocorrelation function

Rj = E[Xl+jX
∗
l ] = E

[∑
n

X̂ne−
2πin(l+j)

N

∑
m

X̂∗me
2πiml
N

]
=
∑
n,m

E[X̂nX̂
∗
m]e

2πi(m−n)l
N

− 2πinj
N

so weak stationarity requires E[X̂nX̂
∗
m] = 0 for n 6= m. Comparison with the above

reveals that E[X̂nX̂
∗
m] = Snδn,m, or alternatively

Sn = E[|X̂n|2]. (9)

If Xj is real we may employ the one-sided spectrum (for 0 ≤ n ≤ N/2)

Sone-sided,n =


E[|X̂0|2] for n = 0

2E[|X̂n|2] for 0 < n < N/2

E[|X̂n|2] for n = N/2 for n even

for which the normalization criterion is satisfied

R0 =

bN/2c∑
n=0

Sone-sided,n

4.9.4 Exercises

1. Consider the complex stochastic process X(t) = ae−i(ω0t+Θ) where Θ is uni-
formly distributed on [0, 2π]. Compute the Fourier transform X̂(ω), the mean
µ(t), the autocorrelation function R(t1, t2), and determine if the process is
weakly stationary. If the process is weakly stationary compute the power
spectrum S(ω).
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2. Consider the real stochastic processX(t) = a cos(ω0t+Θ) where Θ is uniformly
distributed on [0, 2π]. Compute the Fourier transform X̂(ω), the mean µ(t),
the autocorrelation function R(t1, t2), and determine if the process is weakly
stationary. If the process is weakly stationary compute the two-sided power
spectrum S(ω) and the one-sided power spectrum.

3. Consider the real stochastic process X(t) = A cos(ω0t) + B sin(ω0t) where A
and B are independent identically distributed Gaussian stochastic variables
with mean 0 and variance σ2

0. Compute the Fourier transform X̂(ω), the mean
µ(t), the autocorrelation function R(t1, t2), and determine if the process is
weakly stationary. If the process is weakly stationary compute the two-sided
power spectrum S(ω) and the one-sided power spectrum.

4.10 Directional wave spectrum

Assume that r is an n-dimensional spatial position vector, and the t is time, and
that the process η(r, t) is weakly stationary in time and weakly homogeneous in
space, we simply say it is weakly stationary.

Example: We can assume a Gaussian wave field of the form

η(r, t) =
∑
j

Aj cos(kj · r − ωjt) +Bj sin(kj · r − ωjt)

where Aj and Bj are statistically independent Gaussian distributed stochastic vari-
ables with mean zero and variance σ2

j .
The assumption of weak stationarity means that the mean is constant

µ = E[η(r, t)]

and the autocorrelation function only depends on the relative position and time

R(ξ, τ) = E[η(r + ξ, t+ τ)η∗(r, t)].

The (n+ 1)-dimensional wave spectrum is

F (n+1)(k, ω) =
1

(2π)n+1

∫ ∞
−∞

∫ ∞

−∞
R(ξ, τ)e−i(k·ξ−ωτ) dnξdτ.

If the original process is real we have the symmetry F (n+1)(k, ω) = F (n+1)(−k,−ω)
and we may limit attention to half of the (k, ω)-space, e.g. to only positive frequen-
cies, without sacrificing the resolution of the propagation direction of the waves.

It should be noticed that our convention of considering the most basic wave
as ei(k·r−ωt) ensures that waves going in “positive” direction, i.e. positive direction
of time and all the spatial components of r, will be located in the first quad-
rant/octant/etc. of the (k, ω) space.

The n-dimensional wavenumber vector spectrum is

F (n)(k) =

∫ ∞
−∞

F (n+1)(k, ω) dω.
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For a real process we have the symmetry F (n)(k) = F (n)(−k), so clearly we have
lost the resolution of the propagation direction of the waves. However, in the case of
a real process we can keep the resolution of propagation direction by only integrating
over positive frequencies

Ψ(k) = F
(n)
+ (k) = 2

∫ ∞
0

F (n+1)(k, ω) dω

where the quantity Ψ(k) = F
(n)
+ (k) may be called the unambiguous directional

wavenumber vector “spectrum” although it is not really a spectrum since it lacks
the necessary symmetry properties. The factor 2 has been inserted so that the
normalization criterion is still satisfied. The two-dimensional wavenumber vector
spectrum can then be recovered by the relation F (n)(k) = 1

2

(
F

(n)
+ (k) + F

(n)
+ (−k)

)
.

Likewise, the frequency spectrum can be obtained by integrating the (n + 1)-
dimensional wave spectrum over the wavenumber vector

S(ω) =

∫ ∞

−∞
F (n+1)(k, ω) dnk.

Given the above spectra, we may consider changing variables. The most elemen-
tary case is to use frequency instead of angular frequency. With the substitution
ω = 2πf , and insisting that the amount of power in some domain D remains the
same, we have ∫

D
S(ω) dω =

∫
D
S(ω(f)) 2π df =

∫
D
S̃(f) df

and we see that S̃(f) = 2πS(ω).
Limiting to two spatial dimensions, n = 2, we may also want to change from

Cartesian wavenumber vector components to polar representation with scalar wavenum-
ber k and directional angle θ. Suppose we want to transform the unambiguous
wavenumber vector spectrum Ψ(k) for a two-dimensional wavenumber vector (kx, ky)
to polar representation with scalar wavenumber k and direction θ, kx = k cos θ and
ky = k sin θ. This transformation has Jacobian k. For the unambiguous wavenumber
vector spectrum we have∫

D
Ψ(k) d2k =

∫
D

Ψ(k(k, θ))k dkdθ

In none of the above manipulations we assumed any relationship between the
wave vector and the frequency.

If we now assume the existence of an isotropic dispersion relation ω = ω(k), with
k = |k|, and we furthermore assume that for any given wavenumber k there is only
one frequency ω, then we may make the substitution ω = ω(k) with dω = cgdk,
where cg = ∂ω/∂k is the group velocity and cg = |cg| = dω/dk,∫

D
Ψ(k) d2k =

∫
D

Ψ(k(k(ω), θ))
k(ω)

cg
dωdθ =

∫
D
E(ω, θ)dωdθ
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We thus have derived the directional frequency “spectrum”, which is not really a
spectrum because it lacks the necessary symmetry,

E(ω, θ) = Ψ(k(k(ω), θ))
k(ω)

cg(ω)
.

It is common to write this in terms of the one-sided frequency spectrum and a
directional distribution

E(ω, θ) = Sone-sided(ω)D(θ, ω)

where the directional distribution satisfies the requirements for being a probability
distribution D(θ, ω) ≥ 0 and

∫ 2π

0
D(θ, ω) dθ = 1.

4.10.1 Exercises

1. Let r be an n-dimensional position vector, let t be time, and let η(r, t) be a
real and weakly stationary (and weakly homogeneous) stochastic process. Let
the autocorrelation function be

R(ξ, τ) = E[η(r + ξ, t+ τ)η(r, t)].

Show that the power spectrum

F (n+1)(k, ω) =
1

(2π)n+1

∫ ∞

−∞

∫ ∞
−∞

R(ξ, τ)e−i(k·ξ−ωτ) dnξ dτ

has the symmetry
F (n+1)(k, ω) = F (n+1)(−k,−ω).

2. Suppose that the unambiguous directional wave spectrum for wind-generated
waves is

Ψ(k) = F
(2)
+ (k) = 2

∫ ∞
0

F (2+1)(k, ω) dω =

{
0 for |k| ≤ k0

A|k|−4 cos2 θ
2

for |k| > k0

where k = kxi+ kyj = k(i cos θ + j sin θ).

(a) Explain why Ψ(k) is not really a spectrum. Hint: Which symmetry
property does it not have?

(b) Compute the mean power of the process from Ψ(k).

(c) Determine the corresponding directional frequency spectrum E(ω, θ), the
one-sided frequency spectrum S(ω) and the directional distributionD(θ, ω),
where we have E(ω, θ) = S(ω)D(θ, ω). Do this for deep water with dis-
persion relation ω2 = gk and for shallow water with dispersion relation
ω2 = ghk2 where g is the acceleration of gravity and h is the depth.

(d) Show that the mean power of the process can also be computed from
S(ω).
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4.11 Distributions of surface elevation

4.11.1 Exercises

1. Let the surface elevation at a given point be given by the real stochastic pro-
cess η(t) = A cos(ωpt) + B sin(ωpt) where A and B are independent Gaussian
variables with mean 0 and variance σ2.

(a) Show that the surface elevation is a Gaussian process.

(b) Show that the surface elevation of one particular realization, i.e. a time
series for one particular choice of A and B, is not Gaussian with respect
to time.

(c) Derive the distribution of the surface elevation for one particular realiza-
tion (alternatively, you may compute the mean, variance, skewness and
kurtosis of the surface elevation for one particular realization with respect
to time).

4.12 Distributions of crests and wave heights for narrowband
processes

The (relative) bandwidth of the spectrum S(ω) is a ratio between of the absolute
width and the centerpoint. Here we will limit attention to the case that we can
approximate the process by only a single wavenumber vector kp and frequency ωp.

In the following we will suppose that the process is Gaussian and that it can be
approximated by

η(r, t) = A cos(kp · r − ωpt) +B sin(kp · r − ωpt) = R cos(kp · r − ωpt+ Θ)

where A and B are independent Gaussian variables with mean 0 and variance σ2.
The phase Θ is uniformly distributed and the crest height ηc = R =

√
A2 +B2 is

Rayleigh distributed
fR(r) =

r

σ2
e−

r2

2σ2 for r ≥ 0. (10)

Of particular interest is the exceedance probability Pe(r) = P{R > r} that the
crest height is greater than some threshold

Pe(r) = e−
r2

2σ2 for r ≥ 0

which is a parabola when plotted with linear first axis and logarithmic second axis.
In the limit that the bandwidth goes to zero, the wave height is twice the crest

height, H = 2R, and is also Rayleigh distributed

fH(h) =
h

4σ2
e−

h2

8σ2 for h ≥ 0. (11)

Of particular interest is the exceedance probability Pe(h) = P{H > h} that the
wave height is greater than some threshold

Pe(h) = e−
h2

8σ2 for h ≥ 0
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which is a parabola when plotted with linear first axis and logarithmic second axis.
Let us consider the distribution of the 1/N highest waves. The probability den-

sity for wave height (11) is shown in figure 7. The threshold height H∗ that divides
the 1/N highest waves from the smaller waves is the solution of∫ ∞

H∗

z

4σ2
e−

z2

8σ2 dz =
1

N

which is H∗ =
√

8 lnNσ. The probability distribution for the 1/N highest waves is

fH≥H∗(z) = N
z

4σ2
e−

z2

8σ2 for z ≥ H∗

and the mean height of the 1/N highest waves is

H1/N = N

∫ ∞
H∗

z2

4σ2
e−

z2

8σ2 dz =
[√

8 lnN +
√

2πN erfc
√

lnN
]
σ

where erfc z = 2√
π

∫∞
z

e−t
2

dt is the complementary error function. Traditionally the
significant wave height was defined as the mean height of the 1/3 highest waves.
If we set N = 3 then we get H1/3 = 4.0043σ which should be compared with the
modern definition Hs = 4σ.

It should be stressed that the relationship between H1/N and σ depends on the
distribution of the wave heights. The above derivation assumes Rayleigh distribution
with certain parameters appropriate for the limit of zero bandwidth, these assump-
tions are usually not satisfied, and the actual value of H1/3 is typically smaller than
the estimate above.
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Figure 7: Highest 1/N waves, threshold height H∗, definition sketch using Rayleigh
distribution (σ = 0.1, N = 3).
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4.12.1 Second-order nonlinear narrowbanded waves with Gaussian first
harmonic — Tayfun distributions

In order to capture the statistical distribution of nonlinear waves we may distin-
guish two different types of nonlinear contributions. One is the higher harmonic
contribution to the reconstruction of the wave profile. Another is the effect of the
nonlinear evolution equations that show up as solvability conditions, such as the
nonlinear Schrödinger (NLS) equation. If the second type of contribution can be
neglected (corresponding to the Stokes wave), then it is reasonable to assume that
the first-order contribution to the harmonic expansion has a Gaussian distribution.
Let us make this assumption, and consider the second-order expansion

η(x, t) =
1

2

(
Bei(kcx−ωct) + βB2e2i(kcx−ωct) + c.c.

)
where β is a constant that depends on the depth. For deep water we have β = kc/2.

We now recognize that the nonlinear crest heights are

ηc = |B|+ β|B|2

and the nonlinear trough depths are

ηt = −|B|+ β|B|2.

These formulas are valid only in the case of zero bandwidth, i.e. the case that |B|
does not depend on x or t, corresponding to the Stokes wave. The distribution of
wave height is the distribution of the distance between upper and lower envelope,
H = ηc−ηt = 2|B|, thus the wave height is Rayleigh distributed to second nonlinear
order in the limit of vanishing bandwidth.

Given that |B| is Rayleigh distributed, we get the distribution for the second
order nonlinear crest height

fηc(z) =
1

2γσ2

(
1− 1√

1 + 4βz

)
exp{

√
1 + 4βz − 1− 2βz

(2βσ)2
} for z > 0. (12)

This distribution was first derived by Tayfun (1980).
Using the second-order nonlinear Tayfun distribution (12) the exceedance prob-

ability for the crest height is

Pe(z) = P{ηc > z} = exp

(√
1 + 4βz − 1− 2βz

(2βσ)2

)

Probability densities corresponding to the Rayleigh and Tayfun distributions for
infinite depth and steepness 0.1 are seen in figure 8.

4.12.2 Exercises

1. (not so easy) Find the Tayfun distribution for wave trough depths ηt in the
case of zero bandwidth.
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Figure 8: Probability density functions (top) and exceedance probability (bottom)
for linear axes (left) and logarithmic second axis (right) for crest height correspond-
ing to the Rayleigh distribution (—) and the second-order nonlinear Tayfun distri-
bution (– –). These plots correspond to infinite depth and steepness 0.1.
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4.13 The envelope, Hilbert transform, distribution of the en-
velope

There are several alternative definitions of the envelope of a process. The discussion
below considers the envelope associated with the Hilbert transform. The present
discussion is based on information found in Ochi (1998), Papoulis & Pillai (2002)
and Lindgren (2013).

First consider an elementary case, the monochromatic oscillation x(t) = cosωpt.
The function x(t) is the real part of the complex function z(t) = eiωpt = cosωpt +
i sinωpt. A useful envelope is achieved by computing |z(t)| = 1.

Then consider a slightly more complicated case, the bichromatic oscillation x(t) =

cosω1t + cosω2t. We have x(t) = 2 cos (ω2−ω1)t
2

cos (ω2+ω1)t
2

, for ω1 ≈ ω2 this is the
slow beat of a rapid oscillation. The function x(t) is the real part of a complex
function z(t) = eiω1t+eiω2t = cosω1t+cosω2t+i sinω1t+i sinω2t. A useful envelope
is achieved by computing the absolute value with turns out to be the slow beat
|z(t)| = 2| cos (ω2−ω1)t

2
|.

Closer inspection reveals the reason why the above examples work: The imag-
inary part of z(t) is a phase-shifted version of the real part of z(t), for positive
frequencies the phase-shift is π/2 in the positive time direction, for negative fre-
quencies the phase-shift is π/2 in the negative time direction. Thus if x̂(ω) is the
Fourier transform of x(t) then the Fourier transform of the imaginary part of z(t)
is ĝ(ω)x̂(ω) where ĝ(ω) = −i signω. The imaginary part of z(t) is the Hilbert
transform of x(t), which we will denote x̃(t).

4.13.1 Hilbert transform defined by Fourier transform

Let the Fourier transform pair of the process X(t) be

X̂(ω) =
1

2π

∫ ∞
−∞

X(t)eiωt dt

X(t) =

∫ ∞
−∞

X̂(ω)e−iωt dω

If we assume X(t) is a real process then we know that the Fourier transform
is complex conjugate symmetric X̂(−ω) = X̂∗(ω), thus it is natural to look for a
representation of X(t) using only half of the Fourier integral. The Hilbert transform
will be defined as the imaginary part of this half of the Fourier integral.

We write

X(t) =

∫ ∞
−∞

X̂(ω)e−iωt dω =

∫ 0

−∞
X̂(ω)e−iωt dω +

∫ ∞
0

X̂(ω)e−iωt dω

For simplicity we have assumed that X̂(0) is finite at the origin.
With the transformation ω′ = −ω in the first integral, and using the complex

conjugate symmetry, we get upon dropping the primes

X(t) =

∫ ∞
0

X̂∗(ω)eiωt dω +

∫ ∞
0

X̂(ω)e−iωt dω
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Defining the complex process

Z(t) = X(t) + iX̃(t) = 2

∫ ∞
0

X̂(ω)e−iωt dω

we define the Hilbert transform of X(t) to be

X̃(t) =
i

2
(Z(t)− Z∗(t)) = −i

∫ ∞
0

X̂∗(ω)eiωt dω+i

∫ ∞
0

X̂(ω)e−iωt dω =

∫ ∞
−∞

ĝ(ω)X̂(ω)e−iωt dω

where we have introduced

ĝ(ω) = −i signω ≡


i for ω < 0
0 for ω = 0
−i for ω > 0

Matlab: The function hilbert(x) is equivalent to:

n = length(x);
ft = ifft(x);
hilt = ft.*[0; i*ones(n/2-1,1); 0; -i*ones(n/2-1,1)];
hil = x + i*fft(hilt);

or

n = length(x);
ft = ifft(x);
hilt = ft.*[0; i*ones(ceil(n/2)-1,1); -i*ones(ceil(n/2)-1,1)];
hil = x + i*fft(hilt);

for even and odd n, respectively. It should therefore be clear that this function
returns our Z(t) and that the Hilbert transform of X(t) is achieved by taking the
imaginary part imag(hilbert(x)).

4.13.2 Convolution integral

It can be seen that X̃(t) is given as an inverse Fourier transform of a product of two
Fourier transforms. By the convolution theorem

̂g(t) ∗X(t)(ω) = 2πĝ(ω)X̂(ω)

we then have
X̃(t) =

1

2π
g(t) ∗X(t)

It can be shown that
g(t) =

2

t
.

We then finally have the desired result

X̃(t) =
1

π
P
∫ ∞
−∞

X(ξ)

t− ξ
dξ (13)

where the symbol P indicates the Cauchy Principal Value, i.e. the Fourier integral
must be evaluated upon approaching the singular point at the origin equally fast
from both sides.
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Figure 9: Original time series X(t) (blue) and Hilbert envelope R(t) (red) for a
narrowbanded process (left) and a broadbanded process (right).

4.13.3 Analytical signal, Hilbert envelope, total phase and instantaneous
frequency

The complex process Z(t) defined above, which is what the Matlab function hilbert(x)
returns, is known as the analytical signal of X(t).

Writing
X(t) = E(t) cosψ(t)

X̃(t) = E(t) sinψ(t)

we say that E(t) =
√
X2(t) + X̃2(t) is the Hilbert envelope of X(t) and ψ(t) is the

total phase of X(t). Sometimes we also say that dψ
dt

is the instantaneous angular
frequency of X(t).

Figure 9 should make it clear that the Hilbert envelope touches the crests of a
narrowbanded series, but does not touch the crests of a broadbanded series.

4.13.4 Optimum envelope

It can be anticipated from figure 9 that we could have imagined several different
“envelopes”. For the broadbanded process it appears to be an issue that the Hilbert
envelope is necessarily non-negative while the process maybe could have been better
characterized by an envelope that could have been negative. It appears to be an
issue if the envelope should touch every local crest or if it should only touch some
extreme crests.

In Papoulis & Pillai (2002) chapter 10 it is shown that the Hilbert envelope is
optimum subject to the criterion that E[|Z ′(t)|2] should be minimized.

4.13.5 Correlation between X(t) and X̃(t)

Let X(t) be weakly stationary, with zero mean E[X(t)] = 0, and with spectrum
S(ω). We have E[X̃(t)] = 0. The covariance between X(t) and X̃(t) is (recall that
they are both real)

Cov[X, X̃] = E[X(t+τ)X̃∗(t)] =

∫ ∞
−∞

∫ ∞
−∞

ĝ∗(ω2)E[X̂(ω1)X̂∗(ω2)]e−iω1(t+τ)+iω2t dω1dω2
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Using the fact that for weakly stationary processes we have E[X̂(ω1)X̂∗(ω2)] =
δ(ω1 − ω2)S(ω1) we arrive at

Cov[X, X̃] = −
∫ ∞

0

Sone-sided(ω) sin(ωτ) dω

This expression evaluates to zero for τ = 0, therefore the processX(t) is uncorrelated
with its Hilbert transform X̃(t) at the same time.

4.13.6 Distribution of X̃(t)

We first show that the variance of X̃(t) is equal to the variance of X(t),

Var[X̃] = E[X̃(t)X̃∗(t)] =

∫ ∞
−∞

∫ ∞
−∞

ĝ(ω1)ĝ∗(ω2)E[X̂(ω1)X̂∗(ω2)]ei(ω2−ω1)t dω1dω2

Again using the fact that for weakly stationary processes we have E[X̂(ω1)X̂∗(ω2)] =
δ(ω1 − ω2)S(ω1) we see that X̃(t) indeed has the same variance as X(t).

Second we note that the convolution integral (13) gives X̃(t) as a linear super-
position of different time instances of X(t) and therefore since X(t) is a Gaussian
process we have that X̃(t) is Gaussian.

4.13.7 Distribution of the Hilbert envelope E(t)

We have shown that if X(t) is a weakly stationary Gaussian process then X̃(t) is an
identically distributed Gaussian process. We have also shown that these two pro-
cesses are uncorrelated at the same time. It then follows that they are independent
at the same time. In this case we know that the envelope E(t) is Rayleigh distributed
and the total phase ψ(t) is uniformly distributed.

In practical applications, nonlinearity will introduce dependencies between dif-
ferent frequencies/wavenumbers. Then the Central Limit Theorem can be broken,
and the non-Gaussian behavior of X(t) can imply deviation from the Rayleigh dis-
tribution for E(t).

4.13.8 Exercises

1. Show that we arrive at the same expression for the Hilbert transform also with
the opposite sign convention for the exponents of the Fourier transform pair.

2. With X(t) = cos t, show that the Hilbert transform is X̃(t) = sin t and that
both the envelope and the instantaneous angular frequency are 1.

3. With X(t) = sin t, show that the Hilbert transform is X̃ = − cos t and that
both the envelope and the instantaneous angular frequency are 1.

4. (trivial) Show that |X(t)| ≤ E(t) and that E(t) ≥ 0.

5. For the narrowbanded model η(x, t) = a cos(kcx− ωct+ θ) where a and θ are
slowly varying with respect to x and t, show that the Hilbert envelope is E = a.
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4.14 Estimation

We will be concerned about the estimation of various quantities related to stochastic
variables or stochastic processes. Our main challenge is that we do not know the
distributions of the stochastic variables or processes. Even if we may assume their
distributions, we still have the challenge that we do not know the parameters of
those distributions. Our main approach is to collect an ensemble of independent
observations or realizations, and to average over the ensemble.

4.14.1 Estimation of mean

Suppose the stochastic variableX has mean µ = E[X] and variance σ2 = Var[X]. We
make n independent observations X1, X2, . . . , Xn, and realize that each observation
has the same distribution as the original variable X.

As an estimate of the mean we can use the sample mean

µ̄ =
1

n

n∑
j=1

Xj.

This is an unbiased estimator for the mean

E[µ̄] = E

[
1

n

n∑
j=1

Xj

]
=

1

n

n∑
j=1

E[Xj] = µ.

The variability of the estimator can be assessed by its variance

Var[µ̄] = E

( 1

n

n∑
j=1

Xj − µ

)2


=
1

n2

n∑
j=1

E[(Xj − µ)2] +
1

n2

∑
j 6=l

E[Xj − µ]E[Xl − µ] =
σ2

n

where we have used the assumption that Xj and Xl are independent for j 6= l.
The standard deviation of the estimator µ̄ goes to zero asymptotically as the

inverse of the square root of the number of observations for large ensembles. This
result is obtained without any knowledge about the distribution of X other than
assuming its (unknown) variance σ2 is finite.

4.14.2 Estimation of variance

The variance of X can be estimated either by the population variance or by the
sample variance.

The estimator for population variance is

σ̂2 =
1

n

n∑
j=1

(Xj − µ)2
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and requires that the mean µ is know. This is an unbiased estimator for the variance

E[σ̂2] =
1

n

n∑
j=1

E[(Xj − µ)2] = σ2.

The problem with the population variance as an estimator for the variance is that
we usually do not know the mean µ.

The biased estimator for sample variance is

σ2
x =

1

n

n∑
j=1

(Xj − µ̄)2

and employs the sample mean µ̄ rather than the true mean µ. As suggested by its
name this is a biased estimator for the variance

E[σ2
x] =

1

n

n∑
j=1

E[(Xj − µ̄)2] =
n− 1

n
σ2.

The unbiased estimator for sample variance can therefore be constructed as

s2 =
1

n− 1

n∑
j=1

(Xj − µ̄)2.

In order to find the variability of the estimators for variance we need to assume a
distribution for X. Assuming that X is Gaussian, we will need the Gamma function
Γ(z) and the χ2

n distribution (chi square distribution with n degrees of freedom).
The Gamma function is defined by

Γ(z) =

∫ ∞
0

xz−1e−x dx

It can be show that

• Γ(z + 1) = zΓ(z)

• Γ(1) = 1

• Γ(n) = (n− 1)! for positive integers n

• Γ(1
2
) =
√
π

Suppose that the stochastic variables Xj are independent and identically Gaus-
sian distributed with mean 0 and variance 1, and let the stochastic variable Y =∑n

j=1X
2
j . Then Y is said to have χ2

n distribution, chi squared distribution with n
degrees of freedom, with probability density function

f(y) =
1

2
n
2 Γ(n

2
)
y
n
2
−1e−

y
2H(y)
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where H(y) is the Heaviside step function.
In order to show that this is the case we can proceed in three steps, first show

that the characteristic function for the χ2
n distribution is φY (k) = (1−2ik)−

n
2 , second

show that the characteristic function for X2
j is φX2

j
(k) = (1−2ik)−

1
2 , and third recall

that all the variables Xj are independent.
It can bee shown that the expected value of the χ2

n distribution is E[Y ] = n and
the variance is Var[Y ] = 2n.

Now it is trivial to recognize that if we slightly rewrite the expression for the

population variance, σ̂2 = σ2

n

∑n
j=1

(
Xj−µ
σ

)2

, the sum is recognized as having a χ2
n

distribution and we have the variance Var[σ̂2] = 2σ4

n
. Thus the standard deviation

of the population variance estimator for the variance is
√

2
n
σ2.

After some more work it can be shown that the variance of the unbiased sample
variance estimator is Var[s2] = 2σ4

n−1
.

4.14.3 Estimation of spectrum

Taking inspiration from equation (9) we may anticipate that the spectrum of a
periodic process can be estimated by

Ŝn =
1

∆ω
|X̂n|2. (14)

From equation (9) we already know that this is an unbiased estimator

E[Ŝn] = Sn

In order to find the variability of this estimator for the spectrum, we need to
assume a distribution for the underlying process. Assume

X(t) = A cos(ωpt) +B sin(ωpt)

for 0 ≤ t ≤ T , with ∆ω = 2π/T and ωp = p∆ω for some integer p, and where A and
B are statistically independent equally distributed Gaussian variables with mean 0
and variance σ2. We find the mean E[X(t)] = 0 and the autocorrelation function

R(τ) = E[X(t+ τ)X∗(t)] = σ2 cos(ωpτ).

We find the spectrum to be

Sn =
σ2

2∆ω
(δn,p + δn,−p).

On the other hand we have the Fourier coefficients

X̂n =
A− iB

2
δn,−p +

A+ iB

2
δn,p

and the spectrum estimator

Ŝn =
A2 +B2

4∆ω
(δn,−p + δn,p)
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which is the sum of the squares of two Gaussian variables. We therefore recog-
nize that Ŝn has a χ2

2 distribution which is the exponential distribution. From the
properties of the χ2

2 distribution (see above) we therefore conclude that

Var[Ŝn] = S2
n

or alternatively that the estimator has standard deviation equal to its expected value.
Sometimes we introduce the so-called coefficient of variation (C.O.V.) as the ratio
of the standard deviation and the expected value, in the present case the coefficient
of variation is unity.

4.14.4 Estimation with Matlab etc.

In Matlab and Octave we have the following routines which do not follow the same
pattern for default behavior:

• var(X) = var(X,0) is the unbiased estimator for population variance, dividing
by N-1 if N>1 where N is the sample size. var(X,1) divides by N and thus
produces the second moment of the sample about its mean, which is the biased
sample variance.

• std(X) = std(X,0) is the unbiased estimator for population standard devia-
tion, dividing by N-1 if N>1 where N is the sample size. std(X,1) normalizes
by N and produces the square root of the second moment of the sample about
its mean, which is the biased sample standard deviation.

• skewness(X) = skewness(X,1) is the biased sample skewness. skewness(X,0)
is the bias-corrected skewness returning an unbiased estimate of the population
skewness.

• kurtosis(X) = kurtosis(X,1) is the biased sample kurtosis. kurtosis(X,0)
is the bias-corrected kurtosis returning an unbiased estimate of the population
kurtosis for normal populations.

• pwelch(...) estimates the power spectral density.

4.14.5 Exercises

1. Derive the properties of the Gamma function: Γ(z + 1) = zΓ(z), Γ(1) = 1,
Γ(n) = (n− 1)! for positive integers n, and Γ(1

2
) =
√
π.

2. Let the stochastic variables Xj be independent and identically Gaussian dis-
tributed with mean 0 and variance 1, and let the stochastic variable Y =∑n

j=1X
2
j . Then Y is said to have χ2

n distribution, chi squared distribution
with n degrees of freedom.

Carry out the following three steps in order to derive the χ2
n distribution:

First show that the characteristic function for the χ2
n distribution is φY (k) =
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(1− 2ik)−
n
2 . Second show that the characteristic function for X2

j is φX2
j
(k) =

(1− 2ik)−
1
2 . Third recall that all the variables Xj are independent.

Shown that the expected value of the χ2
n distribution is E[Y ] = n and the

variance is Var[Y ] = 2n.

3. Show that the χ2
2 distribution is an exponential distribution. If Y is χ2

n-
distributed, then we say that Z =

√
Y is χn-distributed, chi distributed with

n degrees of freedom. Show that the χ2 distribution is a Rayleigh distribution.

4. The real stochastic process X(t) = a cos(ωpt + Θ) has been measured over a
time interval T . Here Θ is uniformly distributed on [0, 2π], ωp = p∆ω for some
integer p, and ∆ω = 2π/T . We attempt to estimate the power spectral density
S(ω) with the estimator Ŝn = 1

∆ω
|X̂n|2 where X̂n are the Fourier coefficients of

X(t). Compute the coefficient of variation (C.O.V.) of the spectrum estimate.
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