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1 Elementary description of waves

1.1 Monochromatic waves

A monochromatic, or regular, or simple-harmonic wave is a sinusoidal wave with a
unique period T and a unique wavelength λ. The frequency f , angular frequency ω
and wavenumber k are given by

f =
1

T
, ω =

2π

T
, k =

2π

λ
. (1)

Even though the wave itself is real, it can be convenient to represent it by a
complex amplitude A which can be expressed by a modulus |A| and an argument
argA, with A = |A|ei argA,

η(r, t) = Re{Aei(k·r−ωt)} (2)

=
A

2
ei(k·r−ωt) + c.c. (3)

= |A| cos(k · r − ωt+ argA). (4)

Here k = kxix + kyiy + kziz is the wavenumber vector, and r = xix + yiy + ziz is
the position vector. The wavenumber is the magnitude of the wavenumber vector
k = |k| =

√
k2
x + k2

y + k2
z . The notation c.c. means the complex conjugate of the

previous expression.
We use the symbols {ix, iy, iz} to denote the unit vectors along the {x, y, z}-axes.

The common convention with {i, j,k} being unit vectors along the {x, y, z}-axes is
problematic since we want to reserve the symbol k for the wavenumber vector.

We denote the phase function by

χ(r, t) = k · r − ωt+ argA. (5)

A phase surface in (r, t) space is an equiscalar surface of the phase function, χ =
constant. The wavenumber vector is orthogonal to the phase surface since k = ∇χ.
Some phase surfaces are so special that they have their own names. With reference to
the use of cosχ in (4) a crest (Norwegian kam) is a local maximum and is achieved
for χ = 2πn, a trough (Norwegian buk) is a local minimum and is achieved for
χ = π + 2πn, and zero-crossings are achieved for χ = π/2 + πn, where n is an
arbitrary integer.

In the expression for the phase function (5) we have chosen opposite signs for
the term with the wavenumber vector k and the term with the angular frequency
ω. In this case, and provided ω > 0, the phase surfaces move in the direction of the
wavenumber vector k as time increases.
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Figure 1: The distance between two phase surfaces along a direction di�erent from
that of the wavenumber vector is longer than the wavelength.

The phase speed is the ratio between the wave length and the wave period, or
equivalently, the ratio between the angular frequency and the wavenumber

c =
λ

T
=

ω

k
. (6)

The phase speed is the speed that the phase surface moves in its normal direction,
i.e. in the direction of the wavenumber vector k. The wavelength is by default
supposed to be measured along the direction of the wavenumber vector.

If we want to �project� the phase speed onto a direction di�erent from the
wavenumber vector k, we will have to �nd the distance between two phase surfaces
along that direction di�erent from k. This gives a longer �projected� wavelength,
see �gure 1, thus the projected phase speed will be greater than the original value
c. This is not how a vector projection works. We shall adopt the convention that
velocity (Norwegian hastighet) is a vector and speed (Norwegian fart) is a scalar. As
the phase speed does not obey the rules for vector projection, it should not be called
a velocity. This curiosity arises from the fact that the phase surface is a geometrical
rather than a material location. The phase speed is not the speed of translation of
a material property like mass, momentum, energy, etc.

1.2 Free and bound waves, dispersion relation

A wave is said to be free if it can exist on its own without being forced, or equiva-
lently, if its amplitude can be freely chosen. Otherwise, if the amplitude cannot be
freely chosen, we say it is bound or forced.

Usually, in order for waves to be free, a certain relationship needs to be satis�ed
between the wavenumber vector k and the angular frequency ω, this is the dispersion
relation, ω = ω(k).

When we refer to a linear dispersion relation we mean that the dispersion relation
is independent of the amplitude A, otherwise the dispersion relation is said to be
nonlinear. This refers to the linearity of the equations governing the wave motion,
not a linear relationship between k and ω.

2



If the dispersion relation speci�es a proportionality between the wavenumber k
and the angular frequency ω the waves are said to be non-dispersive, otherwise we
say they are dispersive. For non-dispersive waves the phase speed does not depend
on the frequency, for dispersive waves it depends on the frequency.

If the dispersion relation depends only on the wavenumber k and not on the
direction of the wavenumber vector k the waves are said to be isotropic, otherwise we
say they are anisotropic. Isotropic waves have the same properties in all directions,
anisotropic waves have di�erent properties in di�erent directions.

For example, let us consider the two-dimensional wave equation

∂2η

∂t2
− c2

(
∂2η

∂x2
+

∂2η

∂y2

)
= 0. (7)

If we try a solution η = Aei(k·r−ωt), with k = kxix + kyiy, we get(
−ω2 + c2(k2

x + k2
y)
)
Aei(k·r−ωt) = 0

We recognize that the amplitude can be freely chosen provided we satisfy the dis-
persion relation

ω2 = c2(k2
x + k2

y) = c2k2 (8)

where k = |k| =
√

k2
x + k2

y. Our solution is a free non-dispersive and isotropic wave
with phase speed c.

The group velocity is the gradient cg =
∂ω
∂k
. For the example above we �nd

cg =
∂ω

∂k

∂k

∂k
= c

k

k
.

We recognize that for non-dispersive isotropic waves the magnitude of the group
velocity is equal to the phase speed. We also recognize that for isotropic waves the
direction of the group velocity is given by k.

Consider another example, the forced wave equation

∂2η

∂t2
− c2

(
∂2η

∂x2
+

∂2η

∂y2

)
= b cos(k1x− ω1t) (9)

where b and k1 and ω1 are constants pertaining to the forcing. It is natural to assume
a particular solution similar to the forcing,

η = a cos(k1x− ω1t). (10)

Plugging in we �nd the amplitude of the forced wave

a =
b

k2
1c

2 − ω2
1

. (11)

It should be noticed that this wave can only exist while the forcing is on (b ̸= 0) and
the forced wave does not satisfy the dispersion relation.
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1.3 Irregular waves as superposition of monochromatic waves

If the governing equations are linear (in η) and unforced, we can limit attention to
free waves like the monochromatic solutions of the form η(r, t) = Aei(k·r−ωt) and use
the principle of linear superposition to synthesize irregular wave solutions

η(r, t) = ηL(r, t) ≡
∑
n

Ane
i(kn·r−ωnt) (12)

where each term is a free monochromatic wave satisfying the dispersion relation
ωn = ω(kn) with complex amplitude An. In this setting there is no reason why the
individual terms should interact. If the amplitudes An are independent stochastic
variables, then the Central Limit Theorem predicts that the statistics of the resulting
wave �eld should be Gaussian.

If the governing equations are nonlinear, the principle of linear superposition is
not valid. However, if the governing equations are only weakly nonlinear, with the
nonlinear contribution characterized by a small parameter ϵ ≪ 1, it may be possible
to express an irregular wave solution by

η(r, t) = ηL(r, t) + ϵηNL(r, t) (13)

where the leading order linear contribution ηL(r, t) is given by (12). However, in this
setting there are two reasons why the Central Limit Theorem will not be valid any
more: (I) The nonlinear contribution ηNL(r, t) will depend on the linear contribution
ηL(r, t), and (II) the coe�cients An within the linear contribution will depend on
each other.

The ultimate goal of this course is to understand how the statistical properties of
the wave �eld di�er between the linear solution (12) and the nonlinear solution (13).
First we will look at some examples of weakly nonlinear problems, in particular the
case of water surface waves.

1.4 Exercises

1. Isotropic waves.

Show that for isotropic waves, the group velocity cg is in the direction of the
wavenumber vector k.

2. Free waves.

Find the dispersion relations, phase speeds and group velocities of the following
equations, and characterize the free waves as being dispersive/non-dispersive
and isotropic/anisotropic:

(a) The wave equation
∂2η

∂t2
− c2∇2η = 0

(b) The heat equation
∂η

∂t
= κ∇2η
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(c) The linear Schrödinger equation

i
∂η

∂t
+ α

∂2η

∂x2
+ β

∂2η

∂y2
= 0

(d) The advection equation

∂η

∂t
+ v · ∇η = 0

3. Some solutions of the wave equation.

Consider the wave equation

∂2η

∂t2
− c2∇2η = 0

(a) If n is a unit vector in any �xed direction, show that the wave equation
has solutions

η(r, t) = f(n · r − ct) + g(n · r + ct)

where f and g are any twice di�erentiable functions.

(b) For three-dimensional space, and if r is the radial distance in spherical
coordinates, show that the wave equation has solutions

η(r, t) =
f(r − ct) + g(r + ct)

r

where f and g are any twice di�erentiable functions.

(c) For two-dimensional space, with r and θ being plane polar coordinates
such that x = r cos θ and y = r sin θ, and seeking solutions by separation
of variables η(r, t) = Rn(r)e

i(nθ−ωt) for integer n, show that the radial
functions Rn(r) are solutions of the Bessel equation

r2R′′
n + rR′

n + (k2r2 − n2)Rn = 0

where k = ω
c
. The solution can be expressed as a combination of the

Bessel functions of the �rst and second kind, Jn(kr) and Yn(kr). Al-

ternatively, we can employ the Hankel functions H
(1)
n (kr) = Jn(kr) +

iYn(kr) and H
(2)
n (kr) = Jn(kr)− iYn(kr), which have asymptotic behav-

ior for large arguments H
(1)
n (kr) ∼

√
2

πkr
ei(kr−

1
2
nπ− 1

4
π) and H

(1)
n (kr) ∼√

2
πkr

e−i(kr− 1
2
nπ− 1

4
π). We see that H

(1)
n (kr) represents an outgoing wave

and H
(2)
n (kr) represents an incoming wave.

(d) For three-dimensional space in spherical coordinates {r, θ, φ}, assuming
radial symmetry such that η is only a function of r and t, set η(r, t) =
u(r)e−iωt and show that u satis�es the Bessel equation

ξ2
d2u

dξ2
+ 2ξ

du

dξ
+ (ξ2 − n(n+ 1))u = 0
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where ξ = ωr/c and where n = 0.

Two independent solutions are the spherical Bessel functions of the �rst
and second kind, jn(ξ) and yn(ξ), or alternatively the two spherical Hankel

functions h
(1)
n (ξ) = jn(ξ)+iyn(ξ) and h

(2)
n (ξ) = jn(ξ)−iyn(ξ). In particular

we have

j0(ξ) =
sin(ξ)

ξ

y0(ξ) = −cos(ξ)

ξ

Show that j0(ξ) and y0(ξ) correspond to standing waves, h
(1)
0 (ξ) corre-

sponds to an outgoing wave, and h
(2)
0 (ξ) corresponds to an incoming wave.

(e) Including the angular dependence among the spherical coordinates show
how the case n ̸= 0 appears.

4. Free and bound waves.

Suppose waves in one horizontal direction x behave according to the equation

∂η

∂t
+ c0

∂η

∂x
= f(x− c1t)

where c0 and c1 are two unequal constants, and where f is some function.
The left-hand side of the equation is called the homogeneous part while the
right-hand side is called a forcing or inhomogeneous part.

Show that without forcing, f = 0, the equation supports free waves.

Show that with forcing, f ̸= 0, the equation has a bound wave solution that
does not satisfy the linear dispersion relation.

Show that the full solution is a linear superposition of a bound wave (the
particular or inhomogeneous solution) and an in�nite number of free waves
(the homogeneous solution).

5. �Projection� of the phase speed.

Next time you go to the coast or a lake, �nd a long pier that does not ob-
struct the water surface waves below. Suppose the waves are long-crested and
monochromatic and have wave vector pointing in the x-direction, i.e., crests
aligned in the y-direction. Suppose the pier is oriented at an angle θ with the
x-axis. You want to run along the pier such that you follow one particular
crest. Show that you need to run at a speed c/ cos θ where c is the phase speed
of the waves. How fast would you have to run in the limit that the crests
become parallel to the pier?

6. Resonant growth.

Starting from rest, with η(x, y, t) = 0 and ∂η
∂t
(x, y, t) = 0 at t = 0, and with

a forcing that satis�es the dispersion relation, k1c = ω1, �nd a solution of the
forced wave equation (9) for t > 0.
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