
Attacking SIKE
- A survey of known attacks -

Nikolai T. Opdan

August 18, 2021

Abstract

We survey known attacks against NIST’s post-quantum cryptography standardization
candidate SIKE, ranging from specialized attacks on static keys, curves defined over Fp,
unbalanced keys, and general attacks such as the Tani’s quantum algorithm, the classical
vOW-algorithm, subgraphs, and side-channel attacks.

1 Introduction

Due to the threat of Shor’s algorithm on quantum computers breaking many of todays public-key
cryptosystems in polynomial time, the National Institute of Standards and Technology (NIST)
is currently hosting a process of finding new post-quantum cryptographic standardizations. One
of the remaining candidates is the cryptosystem SIKE (Supersingular Isogeny Key Encryption),
the only candidate employing elliptic curves. In the process of establishing new standardizations,
the security of the candidates is investigated by many researcher. It is the purpose of this article
to collect and survey such attacks.

The attacks on SIKE range from specialized attacks on parameters and implementations of
the underlying SIDH protocol, to general attacks by classical and quantum computers. By an
attack we mean an algorithm that may (or may not) be implemented on a (quantum) computer
in order to break (or weaken) the security of the protocol. Although specialized, it is important
that an implementation of SIKE must avoid the conditions under with specialized attacks
operate. In considering such attacks we therefore also discuss methods of prevention, and
thereby relevance. For general attacks it is interesting to investigate the necessary resources
needed to carry the attack. This provides us with an estimate on the future security of the
protocol.

The article is structured as follows: In section 2 we give the basic preliminaries on elliptic
curves. The protocol uses a considerable amount of mathematics, and we have in this section
tried to include the necessary background material for non-specialists. In section 3 we explore
the underlying SIDH-protocol, while section 4 is about SIKE, an explicit implementation
of SIDH. The articles main body is section 5, in which we survey known attacks on SIKE.
We have divided the attacks into specialized attacks, i.e. attacks operating under certain
conditions, and generalized attacks, that is attacks assuming no extra information. We end
with a short discussion in section 6 about generalizing the SIDH-protocol to curves of higher
genus (hyperelliptic curves) and varieties of higher dimension (abelian varieties).

1

2 Preliminaries

For our purposes we are interested in elliptic curves on Montgomery form 1

Ea,b : by2 = x3 + ax2 + x,

where a, b are elements in the finite field Fp2 with p2 elements. The points of Ea,b over a general
field k, denoted Ea,b(k), consists of pairs (x, y) ∈ k×k satisfying the equation by2 = x3+ax2+x,
together with the point O at infinity. We often have b = 0, in which case we write Ea := Ea,0,
and if the value a is understood from context, we will often just abbreviate Ea as E.

Our prime p is usually a very large prime of the form p ≡ 3 mod 4, and of the p2 elements
in Fp2 we are interested in a subset of bp/12c+ 2 elements [Sil09, Theorem V.4.1(c)]. These are
the supersingular j-invariants over Fp2 , which corresponds exactly to the supersingular elliptic
curves over Fp2 . Indeed, every elliptic curve have a unique (up to isomorphism) j-invariants
over Fp2 given by

j(Ea) =
256(a2 − 3)3

a2 − 4
,

and every j-invariant over Fp2 corresponds to exactly one (isomorphism class of an) elliptic
curve. For cryptographic purposes, singular elliptic curves have the most efficient algorithms,
and all known classical and quantum attacks have exponential complexity (contrary to the case
for ordinary curves).

Elliptic curves have the important property that their points can be given a group structure:
Geometrically for Ea(R), we define the multiplication P ∗Q of two distinct points P and Q by
first drawing the line connecting them. Such a line intersects the curve in a third point −R.
Subject to the group law P ∗Q ∗R = 0, we define the point R as the reflection of −R by the
x-axis (see fig. 1). Points are added to themselves by instead drawing the tangent, and the
point at infinity O acts as the identity. This creates a group structure on Ea(R).

Figure 1: Point multiplication on the real solutions of the elliptic curve (on Weierstrass-form)
y2 = x3 − 7x.

For our purposes, we are interested in E(Fp2), which is just a collection of distinct points
(see fig. 2). Here our geometric intuition is no longer valid, but we may define the same point

1For a general field k of characteristic not 2 or 3, every elliptic curve is isomorphic to an elliptic curve on Weierstrass
form y2 = x3 + ax + b.

2

multiplication algebraically: Given two distinct points P1 = (x1, y1) and P2 = (x2, y2) we define
P3 := P1 ∗ P2 by(

(x2y1 − x1y2)2

x1x2(x2 − x1)2
,

(2x1 + x2 + a)(y2 − y1)

x2 − x1
− (y2 − y1)2

(x2 − x1)3
− y1

)
.

An important subgroup is the group generated by one point P , denoted E[P] := 〈P 〉.
An isogeny is a map φ : E → E′ that preserves the point at infinity, i.e. φ(O) = O, and it

induces a map between the corresponding group structure. An isogeny from a curve to itself is
called an endomorphism, where the multiplication-by-n map

[n] :

{
E −→ E
P 7−→ [n]P

,

where [n]P denotes P added to itself n-times, is an important example. We denote the set of all
endomorphism on E by End(E). Composing isogenies gives a new isogeny, and the existence of
an dual isogeny φ̂ for every isogeny φ, equips this set with a group structure. For a supersingular
elliptic curves it is always isomorphic to the Q-algebra

Q⊕ iQ⊕ jQ⊕ ij Q,

where i2 = −1, j2 = −p and ij = −ji, although the isomorphism is often highly non-canonical.

0 20 40 60 80 100 120
x

0

20

40

60

80

100

120

y

Figure 2: The elliptic curve E6(F2
11).

Montgomery curves are often the preferred choice of cryptographers since it enables x-only
arithmetic. That is given a endomorphism φ we can recover the image of the y-coordinate from
the x-coordinate by c ·φ′(x) for a fixed constant c. This gives the doubling map on Montgomery
curves the simple form

[2] :

{
Ea −→ Ea

x 7−→ (x2−1)2

4x(x2+ax+1)

,

and the tripling map the form

[3] :

{
Ea −→ Ea

x 7−→ x(x4−6x2−4ax3−3)

(3x4+4ax3+6x2−1)2
.

3

©Costello, Supersingular isogeny key exchange

Figure 3: The supersingular Isogeny graph G(431, 2).

An important fact is that for every subgroup G ⊂ E(Fp2) there exists a unique curve E′

and an (separable) isogeny φ : E → E′ with kernel G. Explicit formulas are provided by Vélu
[Vél71].

The kernel of the multiplication-by-l map is isomorphic to Z /l ⊕ Z /l when p - l, and an
isogeny given as a subgroup of Z /l⊕Z /l is called an l-isogeny, for which there are l+ 1 different
maps. We call two elliptic curves l-isogenous if there is an l-isogeny between them. Moreover the
image curve of a supersingular elliptic curve by an l-isogeny remains supersingular. Hence we
can consider the supersingular isogeny graph G(p, l) whose nodes are supersingular j-invariants
over Fp2 and the edges are l-isogenies (see section 2). This graph is connected and l regular, and
for sufficiently large p it is an Ramanujan graph ([Piz90]). This means roughly that a relatively
small number of steps (logarithmic in the number of nodes) is needed for a random walk to
converge to a random distribution, which is important for cryptographic applications. The
graph is directed, but since there for every isogeny exists a dual isogeny going in the opposite
direction, we often draw the graph undirected.

4

3 The SIDH-protocol

SIDH (Supersingular Isogeny Diffie-Hellman) was introduced in 2011 by Jao and De Feo in
[JD11]. It is one of two cryptosystems that is based on walks in supersingular isogeny graphs 2.
The basic idea is to have Alice and Bob take random paths in two distinct isogeny graphs with
the same vertex set.

We begin by choosing a prime p of the form p := f · 2eA3eB − 1, with f, eA, eB ∈ N, and
fix an elliptic curve E (on Montgomery form). We often have (for reasons we will see later)
2eA ≈ 3eB and choose the parameter f to make p prime. Since such primes are abundant we
can often have f equal to 1.

The protocol begin with Alice choosing points

〈P2, Q2〉 ∈ E[2eA] ∼= Z2eA⊕Z2eA ,

on E, and a secret point S2, typically (in SIKE) by

S2 := P2 + [kA]Q2, kA ∈ [[0, 1, · · · 2eA)),

where [[0, 1, · · · 2eA)) denotes the set of integers in the interval [0, 1, · · · 2eA).
Meanwhile, Bob chooses points

〈P3, Q3〉 = E[3eB] ∼= Z3eB⊕Z3eB ,

and a secret point
S3 := P3 + [b2]Q3, b1, b2 ∈ [[0, 1, · · · 3eB)).

Alice then finds an isogeny φA : E → EA, with EA := E/〈S2〉 in the 2-isogeny graph
G(p2, 2), and publishes her public key

PKA :=
(
EA, P

′
3, Q

′
3

)
=
(
φA(E), φA(P3), φA(Q3)

)
,

while Bob computes φB : E → EB in the 3-isogeny 3 G(p2, 3) and publishes his public key

PKB :=
(
EB , P

′
2, Q

′
2

)
=
(
φB(E), φB(P2), φB(Q2)

)
.

By using Bobs public key, Alice calculates S′2 = P ′2 + [ka]Q′2 and φ′A : EB → EAB where
EAB = EB/〈S′2〉, and finds the shared secret jAB = j(EAB).

On the other hand, Bob uses Alice’s public key and computes S′3 = P ′B + [kB]Q′3 and
φ′B : EA → EBA with EBA = EA/〈S′2〉, and finds the secret jBA = j(EBA), which agrees with
Alice’s secret jAB .

The image points φB(P2), φB(Q2), φA(P3), φA(Q3) are needed to circumvent the important
fact (which does not make SIDH vulnerable to quantum attacks) that composing isogenies
φA : E → EA and φB : E → EB does not make sense. Hence we need a way for Alice to
compute a isogeny starting from Bob’s curve, and visa versa. Moving through each other base
points solves this problem, which makes it possible to arrive at the same j−invariant.

2The other one first appeared in [Cou06], and was later popularized in [RS06] and [Sto10]. That being said,
the protocol is very slow, and more importantly, [CJS14] found an quantum algorithm that breaks the protocol in
subexponential time.

3We choose the primes 2 and 3 for simplicity and efficiency. In general a larger prime l yields a more complicated
l-isogeny graph.

5

Initial parameters:
Prime number p := f · 2eA3eB − 1
Elliptic curve Ea, a ∈ Fp2
Points P2, Q2 ∈ E[2eA] and P3, Q3 ∈ E[3eB]

Public keys:
PKA :=

(
EA, P

′
3, Q

′
3

)
PKB :=

(
EB , P

′
2, Q

′
2

)
Secret information:

Alice’s secret key kA ∈ [[0, · · · 2eA))
Bob’s secret key kB ∈ [[0, · · · 3eB))
Alice’s secret isogeny φA : E → EA
Bob’s secret isogeny φB : E → EB
Shared secret j(EAB) = j(EBA)

Table 1: Information in the SIDH-protocol.

4 SIKE

SIKE (Supersingular Isogeny Key Encapsulation) is a implementation of SIDH currently under
consideration by the US National Institute of Standards and Technology (NIST) for becoming
(one of) the standardized post-quantum cryptosystems [Jao+19]. It is currently a round 3
“alternative candidate”.

The submission consists of four proposals,

SIKEpXXX for XXX ∈ {434, 503, 610, 751},

where XXX corresponds to the bit-length of the given prime. These are chosen so as to meet,
respectfully, NIST’s level 1, 2, 4, 5 security requirements.

The public parameters are

• Two positive integers eA and eB such that p = 2eA3eB − 1 is a large prime and 2eA ∼= 3eB .
The smallest instance of SIKE, SIKEp434, uses the prime p = 22163137 − 1. We will refer
to this prime as p434.

• The starting curve
E6 : y2 = x3 + 6x2 + x.

• Two points P2, Q2 ∈ E[2eA] and two points P3, Q3 ∈ E[3eB].

We make 2eA ∼= 3eB in order for it to be equally hard to attack either Alice’s or Bob’s
private key. Moreover, for very unbalanced parameters (3eB� 2eA) there are attacks on SIKE
running in polynomial time (see section 5.1.3).

We usually fix the representation

Fp2 ∼= Fp(i) ∼= Fp[x]/(x2 + 1)

and define the points P2, Q2, P3 and Q3 as sums where P2 = PA,1+i·PA,2 and Q2 = QA,1+i·QA,2
(and similar for P3 andQ3). For efficiency reasons we also provideR2 = P2−Q2 andR3 = P3−Q3.

6

Public paramteters: a, p, eA, eB , P2, Q2, P3, Q3

Alice Public Domain Bob
1 Choose kA ∈ [[0, 2eA)) Choose kB ∈ [[0, 3eB))
2 Calculate the group Calculate the group

〈P2 + [kA]Q2〉 〈P3 + [kB]Q3〉
3 Find Find

EA := E/〈P2+[kA]Q2〉, EB := E/〈P3+[kB]Q3〉,
and and

φA : E → EA φB : E → EB
4 Compute Compute

φA(P3), φA(Q3) ∈ EA φB(P2)φB(Q2) ∈ EB
5 Send Receive

PKA •
Receive Send

• PKB

6 Compute Compute
EBA := EB/〈φB(P2)+[kA]φB(Q2)〉 EAB := EA/〈φA(P3)+[kB]φA(Q3)〉

7 Compute shared key Compute shared key
j(EBA) j(EAB)

Table 2: Summary of the SIDH-protocol.

Hence the actual protocol contains the parameter set

p,E6,A, PA,1, PA,2, QA,1, QA,2, RA,1, RA,2,

B, PB,1, PB,2, QB,1, QB,2, RB,1, RB,2.

The protocol also include parameters sets

SIKEpXXXc for XXX ∈ {434, 503, 610, 751},

which employs public key compression to trade-off 12.5% larger ciphertexts with 1.6-1.7 times
faster decapsulation.

SIKE’s initial proposal used the curve E0 : y2 = x3 + x [Jao+19][NIST 1. round proposal],
but they later changed it to E6 : y2 = x3 + 6x2 + x [Jao+19][§1.3.2] (with j-invariant 287496).
The reason for this was that the initial curve had j-invariant 1728, which made it having
only one non-isomorphic 2-isogeny curve. This meant that an attacker would know the first
step taken in G(p2, 2). Moreover, there are only two non-isomorphic 3-isogenous curves with
j-invariant 1728. Although, the NIST submission does not mention the choice of curve, it seems
likely that the initial curve was chosen since it is the smallest (of the possible values of a)
elliptic curve over Fp2 . It seems that the choice of the second curve, E6, is due to being the
smallest supersingular curve with j-invariant not 1728, see fig. 4. In general, [dQue+21] argues
that for certain curves Ea one can generate backdoors which enables polynomial-time attacks.
Moreover, such curves are difficult to distinguish from random curves, hence we should not
trust curves coming from unknown sources.

As we will see below (section 5.1.1), SIDH is vulnerable to the use of static keys, that is
where Alice (or Bob) uses a long term secret isogeny. For this reason instances of SIDH must
either insist on all parties not reusing keys or maintain a way for Alice to reuse a long-term
secret. SIKE employs the last strategy: Instead of Bob choosing his secret kB at random, he lets
kB = H(PKA,m), where m is a chosen integer and H is a cryptographic hash function. He then

7

a j(Ea) Supersingular
0 1728 Yes
1 2048/3 No
2 - -
3 55296/3 No
4 140608/3 No
5 2725888/21 No
6 287496 Yes
7 24918016/45 No
8 14526784/5 No
9 121485312/77 No
10 7301384/3

Figure 4: j-invariants of the first curves over Fp4342 . Here supersingular means supersingular
for p434, p503, p610, and p751.

XOR the value m, and instead of sending the public key, he sends Alice (PKB , H(j(EBA))⊕m)
where H(j(EAB)) is a hash of the shared secret j(EAB) and ⊕ denotes the XOR-operation.
Alice can then hash her shared secret with the same hash and use this to recover m. She uses
this to calculate Bob’s secret kB which enables her to ensure that PKB is as it should be.

The advantage of SIKE compared to other NIST proposals is in its very short key size.
However, this comes with the cost of being the slowest of all candidates; Using data from the
ECRYPT Benchmarking of Cryptographic Systems we see that an implementation of SIKEp503

uses 161613410 cycles (on average), in comparison to another NIST candidate McEliece ([Ber17])
which only uses 875025 cycles (a factor of 100 times less). Moreover, SIKE allows for no
decryption errors, no complicated statistical distributions of error vectors, and no “reconciliation”
in the protocol. We (as we will see in section 5.2) also emphasize that all known generic attacks
on SIKE are exponential, even on quantum computers.

5 Attacking SIKE

Most of todays cryptosystems are breakable in subexponential time on quantum computers.
For the widely used Elliptic Curve Diffie-Hellman (ECDH)-protocol this is largely due to the
commutativity of the group structure of its points which enables an attack based on commutative
ring theory [CJS14]. SIDH avoids such attack because of its non-commutative nature (see
section 3).

All known attacks on SIKE focuses on first recovering one party’s private key to obtain the
shared secret. Since SIKE uses balances parameters we will always assume to be attacking
Alice’s private key. Specifically, they all try to solve the following problem:

The SuperSingular Isogeny problem.
[SSI] Given elliptic curves E and EA, find an isogeny φ : E → EA.

An answer to this problem gives explicit descriptions of End(E) and End(EA) which, by
[Gal+16a, Theorem 4.1], enables us to recover the isogeny of smallest degree between the curves.
Since Alice’s isogeny is much smaller than the diameter of the graph (216� log(p2)), this is
very likely to be Alice’s secret isogeny.

The SSI-problem has so far resisted all attacks, i.e. all known attacks requires exponential
(in the bit length of the keys) time or memory, even on quantum computers. Actually, as [Cos21]

8

points out, classical attacks currently beat attacks by quantum computers. However, SIKE has
only been around for about a decade, which is relatively new with respect to cryptographic
standards. Moreover, limited research has been done on quantum-algorithms, which is a general
concern for all post-quantum cryptosystems.

An attacker not only has information of the two curves; she also has knowledge of the points
φA(P2), φA(Q2), φB(P3) and φB(Q3). This she might use to her advantage, and instead solve
the following problem:

The SuperSingular Isogeny problem 2.
[SSI-T] Let φA be a secret isogeny between E and EA. Given knowledge of the points φA(P3)
and φA(Q3) compute φA.

However, we know of no such attacks that are more efficient than those attacks approaching
the first problem. Hence it is assumed that knowledge of the auxiliary points does not leak
information to an attacker.

5.1 Specialized attacks

Specialized attacks are attacks that operates under certain assumptions, and in this section we
will be presenting such attacks. An effective implementation of SIDH must therefore circumvent
such conditions. In presenting the specialized attacks, we therefore also present their security
relevance, and ways in which they can be avoided. SIKE employs all such security measures,
hence no specialized attacks are known to break SIKE.

5.1.1 Static Keys

One of few successful attacks on SIDH is [Gal+16b] from 2016 where it was shown that the
protocol is vulnerable to the use of static keys. Indeed, they show that a malicious party can
recover the entire private secret by preforming as many interactions as the bit-length of the
secret.

Lets say that Alice performs many interactions (ex. a server), and due to the inconvenience
of computing points on elliptic curves and corresponding subgroups, she decides to reuse her
public key. On the other hand, lets assume that Eve wants to learn Alice’s secret. Then instead
of following the protocol, Eve adds a point T2 of order 2 (i.e. [2]T2 = O) to her second image
point and sends

PK′E = (EB , P
′
2, Q

′
2 + T2).

She then takes Alice’s static key and her secret to arrive at what would be the shared secret,
while Alice follows the protocol and calculates

S!
2 := P ′2 + [kA](Q′2 + T2) = P ′2 + [kA]Q′2 + [kA]T2.

Since T2 is a point of order 2, the extra addend will only vanish if kA is even. If her secret is
odd, the protocol fails, and she lands at a wrong shared secret EB/〈S!

2 〉. Either way Eve learns
a bit of Alice’s secret by analyzing whether the protocol fails or not.

Because of this, an implementation of SIDH must either insist on all parties using each key
exactly once, or implement a way of securing that both parties arrive at the same common
secret. SIKE overcomes this obstacle by insisting on Bob sending not only his public key PKB ,
but also a hash of the common secret H(j) (see section 4). Alice can then check if her common
secret matches Bobs hash before using the common secret for encryption, which could otherwise
leak information of her secret key.

9

5.1.2 Initial and terminal curve over Fp
Exploiting the Fp subgraph was first studied in by Delfs-Gelbraith in [DG13] which led to a
classic attack on SIKE. This attack applies when both the initial and terminal curve happen
to be defined over Fp (contrary to the ordinary case of being defined over Fp2). Moreover,
Biasse, Jao and Sankar improved this in [BJS14] to an efficient quantum attack which solves
the SSI-problem in sub-exponential time.

The Fp-subgraph is a distinguished subset of the full isogeny graph with approximately√
p/12 elements, which is easily recognizable once we have found it. The attack exploits the fact

that it makes it very simple to compute isogenies between the corresponding nodes. Specifically,
the quantum attack reduces the time cost of connecting two Fp-curves to

Lp(1/2,
√

3/2) := exp

((√
3/2 + o(1)

) √
log p√

(log log p)

)

We mention that the initial curve E6 is already defined over Fp, hence the security of SIKE
relies on the curves EA and EB not randomly being defined over Fp. That being said the
plausibility of that happening becomes exceedingly small as p gets very large. We include a
general discussion of exploiting other subgraphs in section 5.2.3.

5.1.3 Exploiting the torsion points, Petit’s attack

In SIDH we are not only given the curves of Alice and Bob; We also have the auxiliary points P2

and Q2 on EA, and P3 and Q3 on EB . A torsion point attack is an attack on the Supersingular
Isogeny problem 2.

Petit found in [Pet17] a way of exploiting the auxiliary points if the parameters 2eA and 3eB

are very unbalanced, i.e. if 3eB � 2eA . He used this information to construct an endomorphism
φ ∈ End(EA), which using the auxiliary points, enables him to evaluate in on the 3eB -torsion
in polynomial time to reconstruct Alice’s secret isogeny φA. It is for this reason that SIKE uses
balances parameters 2eA ∼= 3eB .

On balanced parameters this attack performs much worse than brute force attacks and is
therefore irrelevant for the SIKE-protocol.

5.1.4 Exploiting the torsion points, Quantum Hidden Shift Attack (QHSA)

The security of the SIDH to quantum attacks lies in the non-commutative nature of its
endomorphism ring, which does not make it vulnerable to Kuperberg’s subexponential algorithm
(that breaks DH, ECDH, etc.).

It turns out that [dQue+21] found another way of exploiting the torsion points, named the
Quantum Hidden shift attack (QHSA). Namely elements θ in the quotient group

G = (End(E)/(eA · End(E)))∗

act on all curves that are 2eA -isogenous to E, which can be shown equal to GL2(Z /2eA Z), i.e.
2× 2 matrices with entries in the group Z /2eA Z.

In detail, the group acts as follows: If an elliptic curve E/〈P 〉 is 2eA -isogenous curve and
θ ∈ G an endomorphism, then if the degree of θ is coprime to 2eA , the curve E/〈θ(P) 〉 is also a
2eA -isogenous curve. Hence endomorphisms of G acts on the set of eA-isogenous curves [KP21].

Knowing the action of φA on E[3eB], we approach the SSI-problem by computing
E/〈θ(kerφA)〉 for an endomorphism θ ∈ G, thus permuting the curves isogenous to EA.
The point is that we then have a commutative diagram

10

E EA = E/〈kerφA 〉

E/〈ker θ 〉 E/〈θ(kerφA)〉 ' EA/〈φA(ker θ)〉.

φA

θ

Now, instead of calculating E/〈θ(kerφA)〉 knowing E/〈ker θ 〉, we can instead go the other way
around and compute EA/〈φA(ker θ)〉 by using EA. This is computable if the degree of θ divides
3eB , which it in general does not. However, we can efficiently compute (in subexponential
time) a different representative φ′ ∈ G for φ such that the degree of φ′ divides 3eB when
3eB > p · 24∗eA . For a suitable subgroup of G this action becomes free and transitive, which
provides a commutative free group structure on the curves that are 2e

a

-isogenous to E. This
allows us to apply Kuperberg’s algorithm to solve SSI-problem in polynomial time.

If the condition on the parameters is not satisfied, we can still compute try to compute the
different representative φ′ for φ, but the complexity of such an approach is much worse than
Petit’s attack. Hence because of SIKE’s balanced parameters, this attack does not present an
security issue, but it undoubtedly presents a new approach to the problem.

The same paper also describes ways of constructing certain “backdoor” curves which allows
for a polynomial time attack when eB > e2A, and similarly also certain “backdoor” primes. They
also point out the difficulty of detecting such curves, hence we should not trust curves coming
from unknown sources.

5.2 General (black box) attacks

General (black box) attacks are attacks assuming no extra information, i.e. assuming no extra
knowledge apart from the initial parameters and what passes through public channels.

The most naive way to attack SIKE is do a brute-force attack, starting at E or EA, and
search for a path connecting them of length eA. Since there (l+ 1)leA−1 paths of length eA, we
expect this to take O(leA) time and memory (an infeasible bound), hence (as we would expect)
has no impact on the security of SIKE.

5.2.1 Tani’s algorithm

Better then the brute force attack is to preform a meet-in-the-middle attack, searching for paths
emitting from both E and EA of length eA/2, and look for collisions. Letting X (resp. Y) be
all such paths originating from E (resp. EA), and Z = Fp2 , this corresponds to solving the
Claw finding problem.

The Claw-Finding problem. Let X,Y, Z be finite set and assume that there are functions
f : X → Z and g : Y → Z. The (resp. Golden) Claw-finding problem is to find (resp. unique
element) (x, y) ∈ X × Y such that f(x) = g(y) (i.e. compute the fibre product X ×Z Y).

Here f : X → Z and g : Y → Z is the evaluation of the j-invariant of the end curve in the
path.

Tani found in [Tan07b] an quantum algorithm that solves the Claw fining problem on a
quantum computer. This represents the best known attack on SIKE using quantum computers.
It relies on a generalization of Grover’s algorithm to preform a search by quantum walks on the
so-called Johnson graph.

We define the Johnson graph, denoted J(X,R), of a finite set X and a parameter 0 < R < |X|
as the graph with nodes being subsets of X with R elements (for which there are

(|X|
R

)
) and

where two nodes U, V ⊂ X are adjacent if |U ∩ V | = R− 1.

11

Now given the situation of the Claw-finding problem, consider the following two Johnson
graphs

J(Xf , Rf), where Xf := {(x, f(x) : x ∈ X} and 0 < Rf < |Xf |,
J(Yg, Rg), where Yg := {(y, g(y) : y ∈ Y } and 0 < Rg < |Yg|.

Then compute the product graph J(Xf , Rf)× J(Yg, Rg), i.e. where nodes are pairs (U, V) such
that U ∈ J(Xf , Rf) and V ∈ J(Yg, Rg) and two nodes (U, V) and (U ′, V ′) are adjacent if U is
adjacent to U ′ and V is adjacent to V ′. The parameter R is chosen in order to fit the number
of qubits and memory, and the best known implementation uses R ∼= (XY)1/3 [Tan07a].

Such a meet-in-the-middle attack can be implemented on a quantum computer running
in O(4

√
p) time. However, a significant drawback is the requirement of exponential storage;

Indeed, when running the algorithm above, it is overwhelmingly unlikely that we hit the same
endpoint from both sides simultaneously. We therefore need to store the endpoints of each path
emanating from E and EA, which we would expect to require

√
(p)/2 storage on average [JS19].

For the lowest case of SIKE, namely SIKEp434, this we would require more than 2108-bits,
which is more than the collective storage resources on the planet.

It is possible to generalize this attack by assuming knowledge some of the nodes E1, . . . , En
that appears in computing Alice’s secret isogeny, and applying Tani’s algorithm to pairwise
neighboring nodes. In the worst case scenario, all the known nodes line up in one end of Alice’s
path, and the search reduces to a search of length eA − n starting from En. In the best case
scenario, n = e−A, in which case we are done. Acquiring such information may be performed
by a side-channel attack (see section 5.2.4).

5.2.2 The vOW-Collision Finding Algorithm

One way to overcome the memory problem of Tani’s algorithm (section 5.2.1)is to fix an
upper bound on the possible memory, say 280 (a possible but yet infeasible bound). The van
Oorschot-Wiener’s (vOW) algorithm [OW13] does exactly this in order to solve the SSI-problem.
It is considered the best known general attack on SIKE [JS19].

The idea is that since we cannot store all the 2 · 2eA/2-isogenous curves of E or EA
simultaneously, we do a pseudorandom walk on the supersingular isogeny graph S, where we
only store certain distinguished curves in memory. The procedure of distinguishing curves may
be purely arbitrary (it should be efficiently computable, ex. checking a hash for 30 leading
zeroes), and we should only distinguish one out of 280/2109 ≈ 1/230 curves to assure us that
the memory never gets full. We achieve a pseudorandom walk in S by defining a deterministic,
but pseudorandom, function f : S → S that inputs a j−invariant of a point and outputs a
cryptographic hash. We use one bit of the hash to determine if we are to compute an isogeny
from E or EA, and then use the rest of the hash to produce an isogeny/subgroup from E or
EA respectfully, which in turn provides us with a new j-invariant.

We begin the procedure by choosing a random starting point x0 ∈ S, and repeatedly apply
f until we reach an distinguished element xn after n iterations. We check the memory for
other walks that end in xn, and if there are none we store the triple (x0, xn, n), and pick a
new random starting point. If there is already a path (x′0, xn, n

′) in memory that ends in xn,
we have a collision, and a possible solution to our problem. Assuming that n < n′, we check
whether this is indeed the correct solution by applying f n-times to check if fn(x0) = fn(x′0),
in which case we are done. Otherwise we rewrite the old triple with the new triple and continue.

Since f is deterministic, we can recover the isogeny to xn from the starting point x0 without
storing all the intermediate points xi. However, f being pseudorandom introduces new problems:
Although we know that there is a eA-isogeny from E to EA, this algorithm is not guarantied
to find a solution after having filled the memory with distinguished points, and we have no

12

way of knowing that this will happen with such an f in advance. In that case we must
abandon all previous computations and start all over with a new function f . This makes both
implementations and runtime analysis of this algorithm non-trivial. However, [OW13, §4.2]
(and verified in [JS19]) has computed that holding w elements in memory from a set of size S
running on m processors working in parallel, the runtime T of the algorithm is

T =

(
2.5

m

√
|S|3
w

)
· t,

where t is the cycle time of the processor. In SIDH we have |S| = bp/12c, hence this algorithm
becomes worse then the generic meet-in-the-middle attack above. However it remains the best
known implementable algorithm for solving the isogeny problem underlying SIDH.

5.2.3 Finding subgraphs

When one (or both curves) are not defined over Fp we could try to localize the Fp-subgraph, and
by connecting them to the Fp-subgraph apply an attack as in section 5.1.2. Nevertheless, there
is no quantum-algorithm for finding the Fp-subgraph in the first place, so such implementation
must use a brute force attack which has a time cost of Õ(

√
p). Hence such an attack is not

cheaper than breaking SIDH directly through the general meet-in-the-middle attack.
Like exploiting the Fp subgraph, we could try to find another subgraph of the supersingular

isogeny graphs to exploit. However, we know of no such attacks in general. Nonetheless, always
having knowledge of the supersingular isogeny graph and the initial curve, we could try to do a
pre-computational attack on the graph. This we could use to narrow down the search once we
know the public keys by remove loops and other unsuited paths, and in general try to connect
initial and terminal curves with paths of specific lengths. The problem with such an attack is
the sheer size of the graph, which would make such an approach requiring enormous storage.
Therefore we conclude that this does not seem like a fruitful attempt.

5.2.4 Side-Channel Attacks

There have been several investigations into side-channel attacks on SIDH with various success
[[GGK21][Tas+21], [KAJ17]]. Side-Channel attacks are attacks where one assumes some access
to the machine carrying out the protocol, and employs methods like timing attacks, power
analysis, electromagnetic analysis, etc., to obtain information of the secret.

In the case of SIDH, a side-channel attacks can focus on one of the two phases that take
place during the secret isogeny computation:

• Scalar Multiplication: Computing the secret kernel point S2 = P2+[kA]Q2 given knowledge
of kA, P2 and Q2.

• Isogeny computation: Given the kernel point S2 and the public starting curve E, compute
the secret isogeny φA : E → EA.

The first point is also relevant for ECDH, hence we have over two decades of research
into protecting against such attacks. However, as is the case with traditional elliptic curve
cryptography, power analysis and fault injection attacks seems hard to defend against.

Attacking the second point can provide the attacker with knowledge of specific walks in
the isogeny graph, thus reducing the problem of computing the secret isogeny on a smaller
subgraph, weakening the security of SIKE. This is a point of concern, but such attacks applies
to most, if not all, of the post-quantum cryptosystems candidates (at least to some extent). On
the other hand, SIKE already has the benefit of good side-channel analysis of elliptic curve
arithmetic from the much in use cryptosystem ECDH.

13

6 Generalizing SIDH

We briefly mentions that there has been attempts at generalizing the SIDH-protocol to curves
of higher genus (hyperelliptic curves) and varieties of higher dimensions (abelian varieties) in
[CS20]. Such generalizations allow for even shorter key sizes, but suffers under less efficient
implementations. Compared to other NIST candidates, SIKE’s efficiency is already concerning,
hence we have not looked further at the security of such generalizations.

References

[Ber17] Bernstein, D. Classic McEliece: Conservative Code-Based Cryptography.
2017. (Visited on 07/22/2021).

[BJS14] Biasse, J.-F., Jao, D., and Sankar, A. “A Quantum Algorithm for Computing
Isogenies between Supersingular Elliptic Curves”. In: Progress in Cryptology
– INDOCRYPT 2014. Ed. by Meier, W. and Mukhopadhyay, D. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2014,
pp. 428–442.

[CJS14] Childs, A. M., Jao, D., and Soukharev, V. “Constructing Elliptic Curve
Isogenies in Quantum Subexponential Time”. In: Journal of Mathematical
Cryptology vol. 8, no. 1 (Jan. 1, 2014), pp. 1–29. arXiv: 1012.4019.

[Cos21] Costello, C. The Case for SIKE: A Decade of the Supersingular Isogeny
Problem. 543. 2021.

[Cou06] Couveignes, J.-M. “Hard Homogeneous Spaces.” In: IACR Cryptology ePrint
Archive vol. 2006 (Jan. 1, 2006), p. 291.

[CS20] Costello, C. and Smith, B. “The Supersingular Isogeny Problem in Genus 2
and Beyond”. In: Post-Quantum Cryptography. Ed. by Ding, J. and Tillich,
J.-P. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, pp. 151–168.

[DG13] Delfs, C. and Galbraith, S. D. “Computing isogenies between supersingular
elliptic curves over Fp”. In: (2013). arXiv: 1310.7789 [math.NT].

[dQue+21] De Quehen, V., Kutas, P., Leonardi, C., Martindale, C., Panny, L., Petit,
C., and Stange, K. E. Improved Torsion Point Attacks on SIDH Variants.
Mar. 2, 2021. (Visited on 07/07/2021).

[Gal+16a] Galbraith, S. D., Petit, C., Shani, B., and Ti, Y. B. On the Security of
Supersingular Isogeny Cryptosystems. 859. 2016.

[Gal+16b] Galbraith, S. D., Petit, C., Shani, B., and Ti, Y. B. “On the Security of
Supersingular Isogeny Cryptosystems”. In: (2016).

[GGK21] Genêt, A., Guertechin, N. L. de, and Kaluderović, N. Full Key Recovery
Side-Channel Attack against Ephemeral SIKE on the Cortex-M4. 858. 2021.

[Jao+19] Jao, D. et al. “Supersingular Isogeny Key Encapsulation (NIST Round 2)”.
In: (Apr. 2019).

14

http://arxiv.org/abs/1012.4019
http://arxiv.org/abs/1310.7789

[JD11] Jao, D. and De Feo, L. “Towards Quantum-Resistant Cryptosystems from
Supersingular Elliptic Curve Isogenies”. eng. In: Post-Quantum Cryptog-
raphy. Vol. 7071. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 19–34.

[JS19] Jaques, S. and Schanck, J. “Quantum Cryptanalysis in the RAM Model:
Claw-Finding Attacks on SIKE”. In: Aug. 2019, pp. 32–61.

[KAJ17] Koziel, B., Azarderakhsh, R., and Jao, D. “Side-Channel Attacks on
Quantum-Resistant Supersingular Isogeny Diffie-Hellman”. In: SAC. 2017.

[KP21] Kutas, P. and Petit, C. Torsion Point Attacks on ”SIDH-like” Cryptosystems.
2021. url: https://csrc.nist.gov/CSRC/media/Events/third-pqc-
standardization- conference/documents/accepted- papers/kutas-

torsion-point-pqc2021.pdf.

[OW13] Oorschot, P. V. and Wiener, M. “Parallel Collision Search with Cryptana-
lytic Applications”. In: Journal of Cryptology (2013).

[Pet17] Petit, C. “Faster Algorithms for Isogeny Problems Using Torsion Point
Images”. In: Advances in Cryptology – ASIACRYPT 2017. Ed. by Takagi,
T. and Peyrin, T. Vol. 10625. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2017, pp. 330–353.

[Piz90] Pizer, A. K. “Ramanujan Graphs and Hecke Operators”. In: Bulletin (New
Series) of the American Mathematical Society vol. 23, no. 1 (July 1990),
pp. 127–137.

[RS06] Rostovtsev, A. and Stolbunov, A. “Public-Key Cryptosystem Based on
Isogenies”. In: IACR Cryptol. ePrint Arch. (2006).

[Sil09] Silverman, J. H. The Arithmetic of Elliptic Curves. 2nd ed. Graduate Texts
in Mathematics. New York: Springer-Verlag, 2009.

[Sto10] Stolbunov, A. “Constructing Public-Key Cryptographic Schemes Based on
Class Group Action on a Set of Isogenous Elliptic Curves”. In: Advances in
Mathematics of Communications - ADV MATH COMMUN vol. 4 (May 1,
2010), pp. 215–235.

[Tan07a] Tani, S. “An Improved Claw Finding Algorithm Using Quantum Walk”. In:
Mathematical Foundations of Computer Science 2007. Ed. by Kučera, L.
and Kučera, A. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2007, pp. 536–547.

[Tan07b] Tani, S. “Claw Finding Algorithms Using Quantum Walk”. In: Theoretical
Computer Science - TCS vol. 410 (Aug. 20, 2007).

[Tas+21] Tasso, É., Feo, L. D., Mrabet, N. E., and Pontié, a. S. Resistance of Isogeny-
Based Cryptographic Implementations to a Fault Attack. 850. 2021.

[Vél71] Vélu, J. “Isogénies entre courbes elliptiques”. In: CR Acad. Sci. Paris,
Séries A vol. 273 (1971), pp. 305–347.

15

https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/kutas-torsion-point-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/kutas-torsion-point-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/kutas-torsion-point-pqc2021.pdf

A Implementing SIDH

The following program contains an minimal working example of the SIDH-protocol implemented
in Python for illustrative purposes. It has not been heavily optimized, hence struggles for large
primes (like the case of SIKE). In general we do not recommend an actual implementation of
SIKE in Python. See SIKE’s NIST proposal for implementation purposes.

1 import numpy as np
2 import sys
3
4 ###
5 # This program implements a ins tance o f the
6 # SIDH−pro toco l .
7 #
8 # WARNING: This program in not optimized , and
9 # w i l l not terminate f o r l a r g e

10 # primes . I t i s only intended as an
11 # i l l u s t r a t i n g example .
12 # An e f f e c t i v e implementation o f
13 # SIKE shou ld be wr i t t en in a more
14 # opt imized language than Python .
15 # (See SIKE”s NIST−submiss ion on
16 # which t h i s program i s based upon)
17 ###
18
19 def modular sqrt (a , p) :
20 ””” Find square roo t s o f numbers modulo p ,
21 t ha t i s \ s q r t {2}{n} mod p .
22
23 The code i s due to S v e t l i n Nakov .
24 ”””
25
26 def l egendre symbol (a , p) :
27 ””” Compute the Legendre symbol a | p using
28 Eulers c r i t e r i o n . p i s a prime , a i s
29 r e l a t i v e l y prime to p (i f p d i v i d e s
30 a , then a | p = 0)
31 Returns 1 i f a has a square root modulo
32 p , −1 o therwi se .
33 ”””
34 l s = pow(a , (p − 1) // 2 , p)
35 return −1 i f l s == p − 1 else l s
36
37 ””” Find a quadra t i c r e s idue (mod p) o f ”a ” . p
38 must be an odd prime .
39 So lve the congruence o f the form :
40 xˆ2 = a (mod p)
41 And re turns x . Note t ha t p − x
42 i s a l s o a root . 0 i s re turned i s no square
43 root e x i s t s f o r the se a and p .
44 The Tone l l i−Shanks a lgor i thm i s used
45 (excep t f o r some simple cases in which
46 the s o l u t i on i s known from an i d e n t i t y) .
47 This a lgor i thm runs in polynomial time
48 (un l e s s the g ene ra l i z e d Riemann
49 hypo the s i s i s f a l s e) .
50 ”””
51 # Simple cases

16

52 i f l egendre symbol (a , p) != 1 :
53 return 0
54 e l i f a == 0 :
55 return 0
56 e l i f p == 2 :
57 return p
58 e l i f p % 4 == 3 :
59 return pow(a , (p + 1) // 4 , p)
60 # Par t i t i on p−1 to s ∗ 2ˆe fo r an odd s (i . e .
61 # reduce a l l the powers o f 2 from p−1)
62 s = p − 1
63 e = 0
64 while s % 2 == 0 :
65 s //= 2
66 e += 1
67 # Find some ”n” with a l egendre symbol n | p = −1.
68 n = 2
69 while l egendre symbol (n , p) != −1:
70 n += 1
71 x = pow(a , (s + 1) // 2 , p)
72 b = pow(a , s , p)
73 g = pow(n , s , p)
74 r = e
75 while True :
76 t = b
77 m = 0
78 for m in range (r) :
79 i f t == 1 :
80 break
81 t = pow(t , 2 , p)
82 i f m == 0 :
83 return x
84 gs = pow(g , 2 ∗∗ (r − m − 1) , p)
85 g = (gs ∗ gs) % p
86 x = (x ∗ gs) % p
87 b = (b ∗ g) % p
88 r = m
89
90 class SIDH :
91 def i n i t (s e l f , e 2 =4, e 3 =3, a=6, b=1) :
92 ###
93 # I n i t i a l parameters :
94 # Values a , b d e f i n i n g an e l l i p t i c curve
95 # E ab : b∗yˆ2 = xˆ3 + a∗xˆ2+bx .
96 # Values e 2 and e 3 such tha t
97 # p=2ˆe 2 ∗ 3ˆ e 3 −1
98 # i s prime , and 2ˆ{ e 2 } \cong 3ˆ{ e 3 } .
99 ###

100
101 s e l f . e 2 = e 2
102 s e l f . e 3 = e 3
103 p = 2∗∗ s e l f . e 2 ∗ 3∗∗ s e l f . e 3−1
104 s e l f . p = p
105 s e l f . q = p∗∗2
106 i f a == 2 :
107 sys . e x i t (
108 ” Error : a=2 i s not a v a l i d parameter ”
109)

17

110 else :
111 s e l f . a = a
112 #The curve E ab : byˆ2 = xˆ3 + axˆ2 + x
113 s e l f . b=b
114
115 def pr ima l i t y (s e l f , p) :
116 ””” Returns True i f p i s prime .
117 Otherwise re turns False .
118 ”””
119 for i in range (2 , np . f l o o r (np . s q r t (p))+1) :
120 i f p%i == 0 :
121 return False
122 return True
123
124 def inv (s e l f , n) :
125 n=n%s e l f . q
126 ””” Finds the (mu l t i p l i c a t i v e) inve r s e o f
127 n mod q . Returns the inve r s e or 0 .
128 ”””
129 i f n%s e l f . q == 0 :
130 return 0
131 for i in range (1 , s e l f . q) :
132 i f (i ∗n)%s e l f . q == 1 :
133 return i
134 return 0
135
136 def sq (s e l f , n) :
137 ””” Finds the square root o f n mod q
138 ”””
139 return modular sqrt (n , s e l f . q)
140
141 def FindPoints (s e l f , n=0) :
142 ””” Finds a l l po in t s up to a l im i t n
143 on the curve and return them in a l i s t
144 ”””
145 i f n == 0 :
146 n=s e l f . q
147 l i s t = [(0 , 0)]
148 for i in range (1 , n) :
149 for j in range (1 , n) :
150 i f (s e l f . b∗ j ∗∗2−
151 (i ∗∗3+ s e l f . a
152 ∗ i ∗∗2+ i))%s e l f . q == 0 :
153 l i s t . append ((i%s e l f . q , j%s e l f . q))
154 return l i s t
155
156 def xDBL(s e l f , x , y , a=6, b=1, e=1) :
157 ””” e−t imes doub l ing s o f the po in t
158 P=(x , y) on E a
159 ”””
160 i f x == f loat (” i n f ”) or y== f loat (” i n f ”) :
161 return (f loat (” i n f ”) , f loat (” i n f ”))
162 else :
163 X = ((x∗∗2−1)∗∗2
164) ∗ s e l f . inv (4∗x∗(x∗∗2+a∗x+1))
165 Y = y∗(x∗∗2−1) ∗(x∗∗4+2∗a∗x∗∗3+
166 6∗x∗∗2+2∗a∗x+1)∗ s e l f . inv (8∗
167 x∗∗2∗(x∗∗2+a∗x+1)∗∗2)

18

168 for i in range (1 , e) :
169 X, Y = s e l f .xDBL(X, Y, a , b)
170 i f X==f loat (” i n f ”) and Y == f loat (” i n f ”) :
171 return X, Y
172 print (” b la ”)
173 return X%s e l f . q , Y%s e l f . q
174
175 def xADD(s e l f , x p , y p , x q , y q , a=6, b=1) :
176 ””” Adds the po in t s (x p , y p) and (x q , y q) . ”””
177 i f x p == f loat (” i n f ”) and y p == f loat (” i n f ”) :
178 return x q , y q
179 e l i f x q == f loat (” i n f ”) and y q == f loat (” i n f ”) :
180 return x p , y p
181 e l i f x p == x q and y p==y q :
182 return s e l f .xDBL(x p , y p , a , b)
183 e l i f (x p+x q)%s e l f . q==0 and (y p+y q)%s e l f . q==0:
184 return (f loat (” i n f ”) , f loat (” i n f ”))
185 else :
186 l = (y p−y q) ∗ s e l f . inv (x p−x q)
187 X = b∗ l ∗∗2−(x p+x q)−a
188 Y = l ∗(x p − X)−y p
189 return X%s e l f . q , Y%s e l f . q
190
191 def xTPL(s e l f , x , y , a=6, b=1, e=1) :
192 ””” Tr ip l ing a po in t e times , i . e . P −−−> [3ˆ e]P”””
193 Double = s e l f .xDBL(x , y , a , b , e=1)
194 Tr ip l e = s e l f .xADD(x , y , Double [0] , Double [1] , a , b)
195 X = Tr ip l e [0]
196 Y = Tr ip l e [1]
197 for i in range (1 , e) :
198 Tr ip l e e = s e l f . xTPL(X, Y, a , b , 1)
199 X = Tr ip l e e [0]
200 Y = Tr ip l e e [1]
201 i f (X, Y) == (f loat (” i n f ”) , f loat (” i n f ”)) :
202 return (X, Y)
203 return X%s e l f . q , Y%s e l f . q
204
205 def double and add (s e l f , binary , x , y , a=6, b=1) :
206 ””” Double and add s ca l a r mu l t i p l i c a t i o n ”””
207 x 0 = 0
208 y 0 = 0
209 for i in range (len (b inary)−1, 0 , −1) :
210 x 0 , y 0 = s e l f .xDBL(x 0 , y 0 , a , b)
211 i f binary [i]==1:
212 x 0 , y 0 = s e l f .xADD(x 0 , y 0 , x , y , a , b)
213 return x 0%s e l f . q , y 0%s e l f . q
214
215 def j i n v (s e l f , a=6) :
216 ””” Computes the j−i n va r i an t o f the curve E a”””
217 i f a == 2 :
218 sys . e x i t (” Error : a=2 i s not a v a l i d parameter ”)
219 j = 256∗(a−3)∗∗3∗ s e l f . inv (a∗∗2−4)
220 return j%s e l f . q
221
222 def c u r v e 2 i s o (s e l f , x 2 , y 2 , a=6, b=1) :
223 ””” Ca l cu l a t e s the 2− i sogenous curve when
224 P 2 has exac t order 2 on E ab . Returns a− b−.”””
225 i f a == 2 :

19

226 sys . e x i t (” Error : a=2 i s not a v a l i d parameter ”)
227 a 1 = 2∗(1−2∗ x 2 ∗∗2)
228 b 1 = x 2 ∗ b
229 return a 1%s e l f . q , b 1%s e l f . q
230
231 def e v a l 2 i s o (s e l f , x p , y p , x 2) :
232 ””” Eva luates the 2− i sogeny corresponding to
233 P 2 of the po in t P on E ab”””
234 X = (x p ∗∗2∗ x 2−x p) ∗ s e l f . inv (x p−x 2)
235 Y = y p ∗ (x p ∗∗2∗ x 2−2∗x p∗ x 2∗∗2+x 2
236) ∗ s e l f . inv ((x p−x 2) ∗∗2)
237 return X%s e l f . q , Y%s e l f . q
238
239 def c u r v e 3 i s o (s e l f , x 3 , y 3 , a=6, b=1) :
240 ””” Ca l cu l a t e s the 2− i sogenous curve when
241 P 3 has exac t order 3 on E ab . Returns a− b−.”””
242 i f a == 2 :
243 sys . e x i t (” Error : a=2 i s not a v a l i d parameter ”)
244 a 1 = (a∗x 3−6∗x 3 ∗∗2+6)∗ x 3
245 b 1 = b∗ x 3 ∗∗2
246 return a 1%s e l f . q , b 1%s e l f . q
247
248 def e v a l 3 i s o (s e l f , x p , y p , x 3) :
249 ””” Eva luates the 4− i sogeny corresponding to
250 P 3 of the po in t P on E ab”””
251 X = (x p ∗(x p∗x 3−1)∗∗2) ∗ s e l f . inv ((x p−x 3) ∗∗2)
252 Y = y p ∗ ((x p∗x 3−1)∗(x p ∗∗2∗ x 3−3∗x p∗ x 3 ∗∗2
253 +x p+x 3)) ∗ s e l f . inv ((x p−x 3) ∗∗3)
254 return X%s e l f . q , Y%s e l f . q
255
256 def c u r v e 4 i s o (s e l f , x 4 , y 4 , b=1) :
257 ””” Ca l cu l a t e s the 2− i sogenous curve when
258 P 4 has exac t order 2 on E ab . Returns a− b−.”””
259 a 1 = 4∗ x 4∗∗4−2
260 b 1 = −x 4 ∗(x 4 ∗∗2+1)∗b∗ s e l f . inv (2)
261 return a 1%s e l f . q , b 1%s e l f . q
262
263 def e v a l 4 i s o (s e l f , x p , y p , x 4) :
264 ””” Eva luates the 2− i sogeny corresponding to
265 P 4 of the po in t P”””
266 X = (−(x p∗ x 4∗∗2+x p−2∗x 4) ∗x p ∗(x p∗x 4−1)∗∗2
267) ∗ s e l f . inv ((x p−x 4) ∗∗2∗(2∗ x p∗x 4−x 4 ∗∗2−1))
268 Y = (−2∗x 4 ∗∗2∗(x p∗x 4−1)∗(x 4 ∗∗4∗(x 4 ∗∗2+1)
269 −4∗x p ∗∗3∗(x 4∗∗3+x 4)+2∗x p ∗∗2∗(x 4∗∗4+5∗x 4 ∗∗2)
270 −4∗x p ∗(x 4∗∗3+x 4)+x 4 ∗∗2+1)) ∗ s e l f . inv ((
271 x p−x 4) ∗∗3∗(2∗ x p∗x 4−x 4 ∗∗2−1) ∗∗2)
272 return X%s e l f . q , Y%s e l f . q
273
274 def i s o 2 e (s e l f , x s , y s , a=6, b=1, l i s t =[]) :
275 ””” Comutes (a” , b ”) corresponding to the curve
276 E a”b” = E/<S>”””
277 e 2 = s e l f . e 2
278 i f s e l f . e 2%2 == 1 :
279 print (” h e l l o ”)
280 x t , y t = s e l f .xDBL(x s , y s , a , b , s e l f . e 2−1)
281 a , b = s e l f . c u r v e 2 i s o (x t , b)
282 x s , y s = s e l f . e v a l 2 i s o (x s , y s , x t)
283 l i s t 2 =[]

20

284 for i n s t ance in l i s t :
285 x = in s tance [0]
286 y = in s tance [1]
287 x , y = s e l f . e v a l 2 i s o (x , y , x t)
288 l i s t 2 . append ((x , y))
289 e 2 = s e l f . e 2−1
290 l i s t=l i s t 2
291 for e in range (e 2 −2, 0 −2) :
292 x t , y t = s e l f .xDBL(x s , y s , a , b , e)
293 a , b = s e l f . c u r v e 4 i s o (x t , y t , b)
294 i f e != 0 :
295 x s , y s = s e l f . e v a l 4 i s o (x s , y s , x t)
296 l i s t 3 =[]
297 for i n s t ance in l i s t :
298 print (i n s t ance [0] , i n s t anc e [1])
299 x = in s tance [0]
300 y = in s tance [1]
301 x , y = s e l f . e v a l 4 i s o (x , y , x t)
302 l i s t 3 . append ((x , y))
303 l i s t=l i s t 3
304 return a%s e l f . q , b%s e l f . q , l i s t
305
306 def i s o 3 e (s e l f , x s , y s , a=6, b=1, l i s t =[]) :
307 ””” Comutes (a” , b ”) corresponding to the
308 curve E a”b” = E/<S>, where S has exac t
309 order 3ˆ e 3 on E ab .
310 ”””
311 for e in range (s e l f . e 3 −2, 0 −1) :
312 x t , y t = s e l f . xTPL(x s , y s , a , b , e)
313 a , b = s e l f . c u r v e 3 i s o (x t , y t , b)
314 i f e != 0 :
315 x s , y s = s e l f . e v a l 3 i s o (x s , y s , x t)
316 for i n s t ance in l i s t :
317 in s t ance [0] , i n s t anc e [1] = s e l f . eval (
318 in s t ance [0] , i n s t anc e [1] , x t)
319 return a%s e l f . q , b%s e l f . q , l i s t
320
321 def get xR (s e l f , a , b , x p , y p , x q , y q) :
322 ””” Recovering o f the x−coord inate o f R”””
323 x r , y r = s e l f .xADD(x p , y p , x q , −y q , a , b)
324 i f x r == f loat (” i n f ”) :
325 return x r
326 else :
327 return x r%s e l f . q
328
329 def get A (s e l f , x p , x q , x q p) :
330 ””” Recovers the Montgomery curve c o e f f i c i e n t
331 from the po in t s x p , x q , x {q−p}
332 ”””
333 a = ((1−x p∗x q−x p∗x q p−x q∗ x q p) ∗∗2
334) ∗ s e l f . inv (4∗ x p∗x q∗ x q p) −x p − x q − x q p
335 return a%s e l f . q
336
337 def get yP yQ A B (s e l f , x p , x q , x r) :
338 ””” Recovers the y−coord ina te s o f P and Q,
339 and the Montgomery curve c o e f f i c i e n t a
340 ”””
341 a = s e l f . get A (x p , x q , x r)

21

342 b = 1
343 t 1 = x p ∗∗2
344 t 2 = x p ∗ t 1
345 t 1 = a∗ t 1+t 2+x p
346 y p = s e l f . sq (t 1)
347 t 1 = x q ∗∗2
348 t 2 = x q∗ t 1
349 t 1 = a∗ t 1 + t 2+x q
350 y q = s e l f . sq (t 1)
351 x t , y t = s e l f .xADD(x p , y p , x q , −y q , a , b)
352 i f x t != x r :
353 y q = −y q
354 return y p%s e l f . q , y q%s e l f . q , a%s e l f . q , b%s e l f . q
355
356 def i s ogen2 (s e l f , sk2 , x p2 , y p2 , x q2 , y q2 ,
357 x p3 , y p3 , x q3 , y q3 , a=6, b=1) :
358 ”””Computing pu b l i c keys in the 3− t o r s i on ”””
359 x s , y s = s e l f . double and add ([int (d i g i t) for
360 d i g i t in bin (sk2) [2 :]] , x q2 , y q2)
361 x s , y s = s e l f .xADD(x p2 , y p2 , x s , y s)
362 a , b , l i s t = s e l f . i s o 2 e (x s , y s ,
363 l i s t =[(x s , y s) , (x p3 , y p3) , (x q3 , y q3)])
364 x p3 = l i s t [1] [0]
365 y p3 = l i s t [1] [1]
366 x q3 = l i s t [2] [0]
367 y q3 = l i s t [2] [1]
368 x r3 = s e l f . get xR (a , b , x p3 , y p3 ,
369 x q3 , y q3)
370 return x p3%s e l f . q , x q3%s e l f . q , x r3
371
372 def i s ogen3 (s e l f , sk3 , x p2 , y p2 , x q2 , y q2 ,
373 x p3 , y p3 , x q3 , y q3 , a=6, b=1) :
374 ”””Computing pu b l i c keys in the 3− t o r s i on ”””
375 x s , y s = s e l f . double and add ([int (d i g i t)
376 for d i g i t in bin (sk3) [2 :]] , x q3 , y q3 , a , b)
377 x s , y s = s e l f .xADD(x p3 , y p3 , x s , y s , a , b)
378 a , b , l i s t = s e l f . i s o 3 e (a , b ,
379 l i s t =[(x s , y s) , (x p2 , y p2) , (x q2 , y q2)])
380 x p2 = l i s t [1] [0]
381 y p2 = l i s t [1] [1]
382 x q2 = l i s t [2] [0]
383 y q2 = l i s t [2] [1]
384 x r2 = s e l f . get xR (a , b , x p2 , y p2 ,
385 x q2 , y q2)
386 return x p2%s e l f . q , x q2%s e l f . q , x r2
387
388 def i s o ex2 (s e l f , sk2 , x p2 , x q2 , x r2) :
389 ””” Es t a b l i s h e s the shared key in the 2− t o r s i on ”””
390 y p2 , y q2 , a , b = s e l f . get yP yQ A B (x p2 , x q2 , x r2)
391 x s , y s = s e l f . double and add ([int (d i g i t)
392 for d i g i t in bin (sk2) [2 :]] , x q2 , y q2 , a , b)
393 x s , y s = s e l f .xADD(x p2 , y p2 , x s , y s , a , b)
394 a , b , l i s t = s e l f . i s o 2 e (a , b , x s , y s)
395 j2 = s e l f . j i n v (a)
396 return j 2%s e l f . q
397
398 def i s o ex3 (s e l f , sk3 , x p3 , x q3 , x r3) :
399 ””” Es t a b l i s h e s the shared key in the 3− t o r s i on ”””

22

400 y p3 , y q3 , a , b = s e l f . get yP yQ A B (x p3 , x q3 , x r3)
401 x s , y s = s e l f . double and add ([int (d i g i t) for
402 d i g i t in bin (sk3) [2 :]] , x q3 , y q3 , a , b)
403 x s , y s = s e l f .xADD(x p3 , y p3 , x s , y s , a , b)
404 a , b , l i s t = s e l f . i s o 2 e (a , b , x s , y s)
405 j3 = s e l f . j i n v (a)
406 return j 3%s e l f . q
407
408 # # Pub l i c parameters :
409 # # \\Mini−implementation o f SIDH
410 # # See the paper o f Co s t e l l o
411 # # en t i t l e d ” Supers ingu lar i sogeny
412 # # key exchange f o r beg inners ”
413
414 # e 2 = 2 , e 3 = 1 , a=6, b=1
415 # p = 2∗∗ e 2 ∗ 3∗∗ e 3−1 = 11
416 # q = p∗∗2 # 11∗∗2=121
417 # P2 = (10 , 20) , Q2 = (76 , 90)
418 # P3 = (60 , 4) , Q3 = (60 , 117)
419
420 # S = SIDH(e 2=2, e 3=1)
421 # k A = 3
422 # PK A = (60 , 60 , 116)
423 # k B = 4
424 # PK B = (10 , 76 , 29)
425
426 # # Computing the shared s e c r e t
427 # pr in t (S . i soex2 (3 , 10 , 76 , 29))
428 # pr in t (S . i soex3 (4 , 60 , 60 , 116))

B Finding Supersingular j-invariants

The following program finds all the j-invariants of Fp2 , and the second program checks for
supersingularity through a Monte Carlo method.

1 import numpy . polynomial . polynomial as poly
2 from SIDH import SIDH
3
4 ###
5 # Find a l l s upe r s ingu l a r j−i n va r i an t s in F p ˆ2.
6 #
7 # This program uses the f a c t t ha t a curve E a
8 # i s supe r s ingu l a r i f f i t on Weierstrassform
9 # given by yˆ2= f (x) we have t ha t the c o e f f i c i e n t

10 # of xˆ{p−1} in f ˆ{(p−1)/2}(x) i s zero .
11 #
12 # The func t ion re turns a l i s t o f t u p l e s (i , a) ,
13 # where i corresponds to the curve E i and a
14 # correspons to i t s corresponding j−i n va r i an t .
15 #
16 # WARNING: This program in not optimized , and
17 # w i l l not terminate f o r l a r g e primes .
18 # I t i s only intended as an i l l u s t r a t i n g
19 # example .
20 ###
21

23

22 S = SIDH()
23
24 def Super s ingu la r (p) :
25 l i s t = []
26 for i in range (0 , p) :
27 a = S . j i n v (i , p)
28 a 1 = ((3−a ∗∗2) ∗S . inv (3 , p))%p
29 a 0 = ((2∗ a∗∗3 − 9∗a) ∗S . inv (27 , p))%p
30 e = poly . polypow ([1 , a 1 , a 0] ,
31 (p−1)∗S . inv (2 , p))
32 i f e [−(p−1)−1]%p==0:
33 l i s t . append (i , a)
34 return l i s t

1 from SIDH import SIDH
2 import random
3
4 def MonteCarlo (A, n=1000 , e a =4, e b =3) :
5 ###
6 # Employs a Monte Carlo s imu la t ion
7 # in order to determine i f E a i s
8 # Supers ingu lar . According to [Sut16]
9 # a curve i s l i k e l y to be supersingu−

10 # ar i f t h i s a lgor i thm re turns True
11 # for l a r g e primes p .
12 #
13 # The func t ion take s in an v a r i a b l e
14 # A determining the curve E A,
15 # a number n tha t r e s t r i c t the search
16 # of po in t s on E A, and parameters
17 # e a and e b determing the prime p .
18 # I t re turns False i f the curve i s
19 # ordinary , and True i f i t i s l i k e l y
20 # to be supe r s ingu l a r .
21 ###
22
23 p = 2∗∗ e a ∗3∗∗ e b−1 #prime number
24 S = SIDH(e 2=e a , e 3=e b , a=A)
25 P = random . cho i c e (S . FindPoints (n) [1 :])
26 #Choosing a random point in the l i s t
27 #(without zero)
28 Q = (0 ,0)
29 for i in range (p−1) :
30 Q = S .xADD(P [0] , P [1] , Q[0] , Q[1] , a=A)
31 #Q = [p−1]P
32 i f Q == (0 ,0) :
33 return True #E A[p−1] not 0 !
34 else :
35 Q = S .xADD(P [0] , P [1] , Q[0] , Q[1] , a=A)
36 Q = S .xADD(P [0] , P [1] , Q[0] , Q[1] , a=A)
37 #Q = [P+1]P
38 i f Q == (0 ,0) :
39 return True #E A[p+1] not 0 !
40 else :
41 return False , P, Q

24

	Introduction
	Preliminaries
	The SIDH-protocol
	SIKE
	Attacking SIKE
	Specialized attacks
	Static Keys
	Initial and terminal curve over Fp
	Exploiting the torsion points, Petit's attack
	Exploiting the torsion points, Quantum Hidden Shift Attack (QHSA)

	General (black box) attacks
	Tani's algorithm
	The vOW-Collision Finding Algorithm
	Finding subgraphs
	Side-Channel Attacks

	Generalizing SIDH
	Implementing SIDH
	Finding Supersingular j-invariants

