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Au reste il me parait que si l’on veut faire des progres dans les mathematiques il
faut étudier les maitres et non pas les ecoliers.

Niels Henrik Abel†

† “Finally, it appears to me that if one wants to make progress in mathematics, one should study
the masters, not their students.” In: “Memoires de Mathématiques par N. H. Abel”, Paris, August
9, 1826, in the margin of p. 79. Original (Ms.fol. 351 A) in The National Library of Norway.
Reprinted with permission.



Preface

This book constitutes the fourth volume1 in a series on the Abel Laureates, covering
the period 2018–2022.

As in previous volumes there is one part per year. Each part starts with the full
citation from the Abel Committee, followed by an autobiographical piece by the
laureate(s). The autobiographical pieces are enhanced by photos – old and new.
Then comes a description of the scientific accomplishments of the laureate(s). The
parts end with a curriculum vitae and a complete bibliography of each laureate.

In the first part, James Arthur writes on the work of Robert Langlands, while in
the second part, Simon Donaldson presents the work of Karen K. Uhlenbeck. The
third part contains Vitaly Bergelson, Eli Glasner, and Benjamin Weiss’s article on
the work of Hillel Furstenberg, as well as Alex Eskin, David Fisher, and Dmitry
Kleinbock’s article on the work of Gregory Margulis. In the fourth part, the work of
Lázló Lovász is presented by Martin Grötschel and Jaroslav Nesetril, and that of Avi
Wigderson by Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan, and Nisheeth Vish-
noi. In the fifth part Edson de Faria, Sebastian von Strien, and Shmuel Weinberger
write on the work of Dennis Sullivan.

The traditional award ceremonies in Oslo could not take place in 2020 and 2021
due to the COVID-19 pandemic. They were replaced by award ceremonies in the
Norwegian embassies in the countries of the laureates. Lectures were given by the
laureates, but there were no traditional Abel lectures. Fortunately, in 2022, we could
return to the normal award ceremony in Oslo, where Dennis Sullivan received the
Abel Prize from His Majesty King Harald. We were happy that also the laureates
from the two previous years, Hillel Furstenberg, Gregory Margulis, Lázló Lovász,
and Avi Wigderson could be present in Oslo on that occasion.

The last part is meant to give, through a collection of photos, an idea of all the
activities that took place in connection with the Abel Prize during the last five years.

1 H. Holden, R. Piene (eds.): The Abel Prize 2003–2007. The First Five Years, Springer, Heidel-
berg, 2010, The Abel Prize 2008–2012, Springer, Heidelberg, 2014, and The Abel Prize 2013–2017,
Springer, Heidelberg, 2019.

vii



viii Preface

The back matter contains updates regarding publications and curriculum vitae
for all laureates. Finally, we list the members of the Abel Committee and the Abel
Board for the period 2018–2022.

The annual interview of the Abel Laureate(s) – The Abel Prize Interviews – can
be watched on the video channel of the Norwegian Academy of Science and Letters.
Transcripts of the interviews have been published, and publication details can be
found in the back matter.

We would like to express our gratitude to the laureates for collaborating with us
on this project, especially for providing the autobiographical pieces and the photos.
We would like to thank the mathematicians who agreed to write about the scientific
work of the laureates, and thus are helping us in making the laureates’ work known
to a broader audience.

Thanks go Marius Thaule and Erlend Due Børve for their LATEX expertise and
the preparation of the bibliographies as well as copyediting the manuscripts.

The technical preparation of the manuscript was financed by the Niels Henrik
Abel Board.

Trondheim, Norway Helge Holden
Oslo, Norway Ragni Piene
June 6, 2023
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Part I
2018 Robert P. Langlands

“for his visionary program connecting
representation theory to number theory”





Citation

The Norwegian Academy of Science and Letters has decided to award the Abel
Prize for 2018 to Robert P. Langlands, Institute for Advanced Study, Princeton,
New Jersey, USA,

“for his visionary program connecting representation theory to number theory.”

The Langlands program predicts the existence of a tight web of connections be-
tween automorphic forms and Galois groups. The great achievement of algebraic
number theory in the first third of the 20th century was class field theory. This the-
ory is a vast generalisation of Gauss’s law of quadratic reciprocity. It provides an
array of powerful tools for studying problems governed by abelian Galois groups.
The non-abelian case turns out to be substantially deeper. Langlands, in a famous
letter to André Weil in 1967, outlined a far-reaching program that revolutionised the
understanding of this problem.

Langlands’s recognition that one should relate representations of Galois groups
to automorphic forms involves an unexpected and fundamental insight, now called
Langlands functoriality. The key tenet of Langlands functoriality is that automorphic
representations of a reductive group should be related, via L-functions, to Galois
representations in a dual group.

Jacquet and Langlands were able to establish a first case of functoriality for
GL(2), using the Selberg trace formula. Langlands’s work on base change for GL(2)
proved further cases of functoriality, which played a role in Wiles’s proof of impor-
tant cases of the Shimura–Taniyama–Weil conjecture.

The group GL(2) is the simplest example of a non-abelian reductive group. To
proceed to the general case, Langland’s saw the need for a stable trace formula,
now established by Arthur. Together with Ngô’s proof of the so-called Fundamental
Lemma, conjectured by Langlands, this has led to the endoscopic classification of
automorphic representations of classical groups, in terms of those of general linear
groups.

3
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Functoriality dramatically unifies a number of important results, including the
modularity of elliptic curves and the proof of the Sato–Tate conjecture. It also
lends weight to many outstanding conjectures, such as the Ramanujan–Peterson and
Selberg conjectures, and the Hasse–Weil conjecture for zeta functions.

Functoriality for reductive groups over number fields remains out of reach, but
great progress has been achieved by the work of many experts, including the Fields
medallists Drinfeld, Lafforgue and Ngô, all inspired by the guiding light of the
Langlands program. New facets of the theory have evolved, such as the Langlands
conjectures over local fields and function fields, and the geometric Langlands pro-
gram. Langlands’s ideas have elevated automorphic representations to a profound
role in other areas of mathematics, far beyond the wildest dreams of early pioneers
such as Weyl and Harish-Chandra.



Autobiography∗

Robert P. Langlands

I was born and passed the first two decades of my life in the vicinity of Vancouver,
British Columbia, an area now overwhelmed by immigration from the Orient, above
all, China and India. More precisely, I was born in New Westminster in 1936, spent
the first few years of my childhood on the shore about seventy miles to the north, in
Lang Bay close to Powell River, returned to New Westminster to begin school, then
moved to White Rock, where I passed my adolescence, and then went to Vancouver,
of which New Westminster is now a suburb, to the University for five years, leaving
in 1958 for graduate school, never to return except for short visits. I recall first
the geography of the area, then the circumstances there in the nineteenth century
and the beginning of the twentieth as well as the circumstances of my family and
me. It is an area that has seen changes that, although peaceful have been definitive:
a semi-rural, even partly rural environment, with a population that, apart from a
visible, but small, indigenous component, still had close ties to the Old Country,
generally meaning Great Britain and Ireland, and to Eastern Canada, has become
more urban, much more cosmopolitan, and undoubtedly much more sophisticated,
and apparently, much wealthier.

Canada, like its neighbour, the United States, like most countries, was built on
conquest and oppression. In the area where the two countries now meet, this con-
quest is often referred to as a discovery, and this discovery, in so far as overland
voyages are concerned is recent: Alexander Mackenzie reached the mouth of the
Bella Coola river in 1793; Lewis and Clark reached the mouth of the Columbia
River in 1805; Simon Fraser reached the mouth of the Fraser river in 1808. The first
and last of these rivers lie in Canada, the second reaches the ocean in the USA.

∗ Based on a manuscript published in Langlands’ Program and His Mathematical World. Some
paragraphs have been removed by the editors. Reprinted with permission.

R. Langlands
Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA, e-mail: rpl@ias.edu
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6 Robert P. Langlands

My childhood and youth were passed in a very small compass, first New West-
minster and elementary school, then White Rock and high school, then Vancouver
and university, I recall the geography. Vancouver lies with its back to the northern
bank of the Fraser River at its mouth; New Westminster lies just a little upstream.
The mouth of the river itself is formed from alluvial islands and the region south
of it, Surrey and Delta, as far as the border with the US, a matter of 15–20 miles
is also alluvial. When I was child, it was almost largely farmland, although some
of the farmers had employment elsewhere. Three of my uncles were longshoremen
(stevedores) on the docks at New Westminster and two of these also had small farms
in Surrey. As I recall the only livestock consisted of fowl. White Rock lay at the time
in Surrey but on the coast, almost at the point where the border with the USA first
reaches the sea, not far from the mouth of a small river, the Campbell. I had at its
source a more distant relative, married to a cousin, perhaps, of my grandfather, with
a genuine farm: cows to be milked, something I attempted there but never since, and
fruit to be harvested. He was also a water diviner and the owner of the last horse and
buggy in Langley, the municipality adjacent to Surrey.

Lang Bay, about half-way between Vancouver and Bella Coola, was isolated and
on the shore. My first recollections are from there, where we lived in a rented sum-
mer house, with two neighbours, an elderly woman and her grand-daughter. My
memory is largely of sea, shore, the woods, which were boggy, the neighbour’s
fields, and a grazing goat. Occasionally but seldom, there were visitors from the
south. When I came of school age, my mother, a Catholic of Irish descent, was ea-
ger to return to New Westminster where there was a parochial school and, I suppose,
to her large family, three living sisters and six brothers. I flourished in the school,
appreciated the nuns, who were often young, often pretty and gentle. The tradi-
tional costume, now largely, perhaps completely, abandoned, I regarded as normal.
I learned to read quickly, had no trouble with the arithmetic, and skipped a grade.
I liked to read, even, under the influence of the Books of Knowledge, popular at
the time and pedalled door-to-door, tried, for reasons otherwise forgotten, to learn
French on my own, accompanying in the various volumes a little British family,
complete with dog, on its voyage to Paris and France. Like today’s more desperate
voyagers, I never got beyond Calais, although I was going in the opposite direction.
It was many years before I returned to the language, but then with somewhat more
success. My faith was also fervent for a brief period—I even toyed at the age of
seven or eight with the notion of becoming a priest, something that would have cor-
responded to my mother’s ambitions for my recently discovered academic ability,
as it would have to those of many Catholic mothers of the period, but already before
leaving New Westminster my faith was failing and my desire for a greater freedom
growing. In particular, I wanted to leave the parochial school for the public school.

We moved to White Rock very shortly after the war, where I spent my adoles-
cence, arriving in 1946 and leaving for university in 1953. These were not academic
years. There were very few Catholics in White Rock, indeed the children with whom
I consorted never saw the inside of a church. My mother was, unfortunately attached
to the Church and eager, even desperate that I remain in it. The marriage was a mixed
marriage and my father, to compensate for his own sins—principally, perhaps only,
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gambling—would join in her efforts to bring me to church every Sunday morning,
where I was a reluctant altar boy to a disagreeable priest of Irish descent. He himself
stayed at home. Church meant also confession, a vicious practice, to which, for me,
the only response after the age of twelve was prevarication or invention. There are,
of course, many other practices that are very much worse and not far to seek. I was
ashamed, as an adolescent, of my inability to resist my parents’ pressure and still
do not like to recall my youthful weakness. Luckily, once I left home to attend Uni-
versity and I was then not yet seventeen, I could abandon the Church and churches
completely except for one midnight mass, the occasional funeral, and some touristic
visits. Also as a concession to my wife, who was pleasing her mother, who herself
appears to have been negligent about such niceties, we were married in a church,
not however a Catholic church.

The Catholic Church aside, I would say that my childhood—in a society that had
not yet ceased to be a frontier society, thus a society of people who had acquired
independence at more of a cost to others, in this instance largely to the indigenous
inhabitants, than to themselves, among people who, by and large, were indifferent
to any but an extremely modest success, financial or otherwise, major success be-
ing beyond their imagination, and only a few of whom were unlucky enough to
have occasion to be confronted with authority,—encouraged a natural, even if not
necessarily bold, independence, a very useful characteristic for a mathematician.

I do not entirely understand my mother’s relation to the Church. A good part of
her large family did not take the Church nearly so seriously as she did. Her child-
hood had some difficult elements. Her father was, I believe, a fireman on the Cana-
dian National Railroad, who barely survived a head-on clash with another train and
did not recover from the incident, suffering in following years from epilepsy, se-
vere psychic disorders, as well as, I understand, alcoholism. He spent a good deal of
his time in an institution, although he could, apparently, return home on weekends,
from Essondale to New Westminster on foot accompanied by his dog. That was
a substantial trek. So my grandmother, who had been married at sixteen, was re-
sponsible for the family. She worked as a charwoman, in the houses of women who
were better off. As a result, my mother, who was apparently a lively, popular young
woman, on her school’s basketball team, found herself wearing the cast-off clothes
of her classmates. She never forgot it. My grandmother, Emily, whose maiden name
was Dickson, was, so far as I know, above such feelings. She was a tremendously
warm woman, beloved of her children and grandchildren. I knew her only for a few
years. Dickson is not an Irish name, but my mother’s ancestors seem otherwise to
have been almost entirely Irish and they seem largely, perhaps entirely, to have left
Ireland, usually south-east Ireland, for example, Kilkenny Co., before the famine. I
believe that the South-East was not strongly affected by it. My grandfather’s family
name, Phelan, is distinctly Irish and has, I believe, its origins in a region farther to
the west, in the town of Cork, but as I recall reading once in a history of Ireland, the
tribe of the Phelans was displaced by the Norman invaders, whom it was attempting
to resist, to south-eastern Ireland in the 12th Century, whence some of them came
much later to Canada.
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One exception to the Irish descent of my mother is an ancestor, a young German
named Schildknecht who left Wittenberg or Wittenberge in Germany just before
the American Revolution, in which he fought as a corporal in the South Carolina
Loyalist Regiment. As compensation after Great Britain’s loss, he was granted land
in Ship Harbour, Nova Scotia where he settled with his wife, born in the American
colonies but clearly the daughter of German emigrants. The name Schildknecht be-
came Shellnutt and their descendants mixed with the Irish immigrants. A daughter
Mary Catherine Shellnutt married an O’Bryan. My grandmother’s mother was her
granddaughter. They must have had a number of male children as well because the
surname Shellnutt seems to be fairly common in Nova Scotia. As I observed, three
of my mother’s brothers were longshoreman. So was her paternal grandfather. He
was killed in the famous Halifax explosion of 1917 when a French cargo ship that
was carrying munitions exploded in the harbour leaving 2000 residents of the city
dead and 9000 injured. He was not working at the time, rather he was, with his wife,
on the way home from mass.

In these peripheral ways my mother’s family was affected by the fortuities of
the world’s affairs. They themselves were not much concerned with these. Even
the genealogical information on both sides is not traditional, but has been, by and
large, the result of efforts of a later generation. My father’s family were more re-
cent immigrants. My mother’s parents moved across Canada from Halifax to New
Westminster, stopping for an unsuccessful attempt at farming in the province of
Saskatchewan where my mother was born. My father seems to have been conceived
in England and his mother, who was apparently not prepared for life in a tent in
British Columbia, returned with her children to England for a couple of years not
long after his birth. That he had two sisters, one his twin, the other born a very short
time before him, did not make her life any easier.

She was the sixth child in a family of seven. Her paternal grandfather—I know
nothing of her mother—had been a private in the British Army, who stationed for a
while in Cork, Ireland met and married, either then or later, a woman called Mary.
Nothing more is known about her antecedents, nor about her surname. She may
have been Irish or, perhaps, the daughter of an English soldier. I cannot say. On
the other hand, like my mother’s mother, perhaps even more so, she seems to have
been a very resourceful and courageous woman. The marriage was apparently first
recorded in Hobart, Tasmania, at the time their first child was born. Her husband
died in Tasmania in 1845 at the age of 36, not in the course of his military duties but
of an illness. His grave and gravestone are still to be found in a famous cemetery,
the Isle of the Dead, in Tasmania. His wife managed not only to find her way back
to England, with at least two sons, of which my great-grandfather was the youngest
and two daughters, and to enroll the sons in the Duke of York’s Military School,
a school near London for the orphans of soldiers. She found employment for her-
self in the same institution as a laundress and for her eldest daughter as well. The
whole family is listed in the 1851 Census as residing in the School. The individual
indications with place of birth are as follows: (i) Flowers, Elizabeth, 13, servant of
Quartermaster, Enniskillin, Ireland; Flowers, Mary. F., 39, Laundress, Cork, Ireland;
Richard Flowers, 10, soldier’s son, Manchester, England; Robert Flowers, 10, sol-
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Fig. 1: Five months old (Photo: private)

dier’s son, Hobart, Van Diemen’s Land, Australia. The sons were not twins, but the
birth of the second was only eight months after that of the first. There was also a
second sister, Mary Ann, eight years old at the time. A last son seems to have died in
infancy. All in all, five children were born in about five years. Apparently the older
son remained in the school and then joined the British army as a private, a rank at
which he remained all his life. The younger son, Robert Flowers, my grandmother’s
father, asked to be released into his mother’s custody, became first a draper and then
an auctioneer, and with time, he became, in Newcastle upon Tyne, first a councillor
and then an alderman. He seems to have been a responsible son. Although, I have no
information as to his mother’s fate, it is clear that his two sisters came to Newcastle
upon Tyne, presumably with him, where they married and, much later, died.
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My paternal grandmother was married relatively late, as she was approaching
thirty, perhaps past it. My reading of the circumstances is that she expected to re-
main at home, in her father’s house, which I believe was a substantial house in West-
gate, so far as I know a well-to-do quarter in Newcastle. However at some point her
father, who was a widower, decided to marry again. His new wife was considerably
younger, almost thirty years, also well-to-do, and apparently took up enough space
in his home that there was no longer room for my grandmother. So she herself mar-
ried, a slightly younger man, my grandfather. They appear to have been members of
the same Methodist congregation, but I am not certain. So far as I know, her father’s
marriage, however unwelcome it may have been for her, was a blessing for him in
his later years.

My grandmother was the only member of her family to emigrate. From her and
from my grandfather as well, not from my mother’s family, I acquired the notion
of the old country, a notion often invoked in their house. It was represented in their
home by a bust of Kitchener, labelled Kitchener of Khartoum, invoking his famous
colonial exploits in Africa. I was, myself, disabused of any notion of a special rela-
tion to the old country when I later met, as a mathematician, a number of English-
men. I may simply have been unfortunate in my first encounters. I came to know
more agreeable specimens later.

Some time after my grandparents’ marriage, two or three years, the business
of my paternal grandfather’s father, who was a cabinet maker, seems to have col-
lapsed, whether for general economic reasons or for illness, mental or physical,
I cannot say. His whole family moved to Canada: two daughters, both of whom
were married to clergymen, one apparently a missionary to the Indians of Kispiox,
in northern British Columbia, where my great-grandfather is buried, and two sons,
both carpenters, presumably trained in their father’s shop, one of whom was later
killed in an accident during the construction of the Hudson Bay building in Vancou-
ver. My grandmother appears to have been an unhappy woman, although she was, in
comparison with her husband, her children, and my mother’s family, cultivated. She
could play the piano and, when I began university and acquired some intellectual
interests, it was from her that I borrowed the The Imitation of Christ by Thomas
Kempis, a famous medieval work of devotional literature. I confess that I neglected
to return it. So far as I know, she passed a good many hours with the Bible and other
devotional matters, but by the time I became curious about the world, I had little
occasion to talk to her and, she, in any case, was growing senile. Whatever culti-
vation she had, she had acquired, I should think, in her parents’ home. I had many
more maternal cousins than paternal, but there was a greater awareness of the value,
at least commercial, of a university education among the paternal cousins, two had
business degrees and became accountants, another had a degree in engineering from
a prominent American university and worked for International Business Machines.
His mother, my father’s eldest sister, had been trained first as an elementary school
teacher and, then, as a nurse, while her sister and her two brothers all left high-school
early, presumably, at least in the case of the boys, to become apprentice carpenters.
A friend of my grandfather with whom he had emigrated from Newcastle and to
whom he remained close until my grandfather’s death told me, at my grandfather’s
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funeral, that he had reproached my grandfather for favouring the eldest daughter,
but was told that the others would not profit so well as she from any more extensive
education. What role my grandmother played in these decisions, I do not know.

I knew her as a frail, rather withdrawn woman, who had little support from her
children as she aged. My father perhaps assumed more of the charge than any other,
but my mother did not cooperate. New Westminster was not a large town, and my
mother’s brothers and sisters would have formed a large and boisterous group, not
all so pious as my mother. My grandmother did not approve of the marriage and did
not, I believe, disguise her feelings. My father made, however, a better marriage than
he deserved. I doubt that my grandmother was aware of his more serious failings,
although she expressed in the Bible she gave him on his fifteenth birthday only a
feeble hope that he would read it.

I had far more cousins on my mother’s side and found them more congenial,
at least as an adolescent. They were easier with each other and with their mother,
although my father was certainly close to his twin sister. So far as I know, apart
from me, only one or two of the very youngest of my maternal cousins attended
university. This did not, necessarily, prevent them from prospering. I myself, as a
high-school student, had no notion whatsoever of attending university. My dream
was to quit school, as one said, as soon as the law permitted, namely at the age of
fifteen, and to take to the road, hitch-hiking to Toronto. Certainly, a large number of
students in White Rock left at this age and found work, often seasonal, as loggers
or as unskilled labourers of one kind or another. My mother, by temperament or as
a consequence of her childhood experience and of my response to reading, writing,
and arithmetic, will have had some ambitions for me, but more likely as a priest or a
medical doctor. It was certainly noticed at the high school I attended, by observation
or from the IQ tests to which we were all subject, that I had more than the usual
aptitude for academic topics, but I myself was not impressed.

The few years spent in New Westminster were an occasion to meet a good many
of my numerous cousins, a good proportion of whom were of about my age. New
Westminster was a pleasant city in which to pass the first half of the 1940s. It was
founded in 1858 as the capital of the Colony of British Columbia and remained
larger than Vancouver, itself founded considerably later, until into the twentieth
century. It was well and carefully planned, not large but with broad chestnut-lined
streets, spacious boulevards and parks. It was a joy to be in. Thanks to the Second
World War, the streets were during my early childhood almost entirely free of mo-
torized vehicles. The port itself, on the river, did not intrude and the town, hardly
more than a mile or two square was everywhere accessible to a child between the
ages of six and nine. So as an introduction to urban life it could not have been gen-
tler. I was told later by my mother that I had some trouble at first protecting myself
from larger bellicose schoolmates, but I have no memory of that. The only child-
hood fisticuffs I remember were in White Rock. There were only two incidents. In
the first, not provoked by me, I, in a burst of fury, pummelled my larger opponent
and had to be pulled off him by the spectators; in the second, provoked by me, I had
my nose broken.
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Very few events from New Westminster are fixed in my memory: an older brother
of some playmates ran away from home, and so far as I know, never returned. A
classmate at the Catholic school, a girl my age, Maruka, Ukrainian I believe, whose
parents were gardeners who later opened a prosperous nursery, was taken ill by one
of the childhood diseases feared at the time and died within a few days. She was
also a neighbour and we walked to school together. Although I was not particularly
troubled by her death at the time, her image has stayed with me. I also remember
her mother weeping as my own mother tried to console her, as well as a second at-
tempt at consolation a couple of years later, just before the war’s end, when a second
neighbour received the notice of her son’s death. My own family, uncles in particu-
lar, were not affected. Perhaps they all had children. One uncle, the youngest, served
in the Air Force although he never went abroad, and a cousin, who had been born
in the American state of Montana, went off to serve in the US Navy, returning to
New Westminster some time later. His own father had spent some time in the USA,
having run off, I believe, to join the American Navy towards the end of the First
World War. My grandfather had brought him home from a similar earlier attempt,
but yielded to his obstinacy. Both the father and the son married Americans.

In White Rock there was a small area of land, an Indian reserve, reserved for the
members of a local tribe, of which there were only a few members remaining. The
tribe, like many others, had been decimated in the nineteenth century by a disease
that arrived with the colonists. The few children went to the local school but did not
remain long and were pretty much ignored by the other children. This seemed to me
at the time a normal state of affairs. There were also a few Métis in the town, but they
were not distinguished from the rest of the population. My parent’s store and our
home above it were across the street from the reserve, but not from its residences.
The chief came occasionally to buy lumber or other building material and would
chat with my mother, who was usually at the cash register. Those boys in the town
who were fond of fishing and of solitude would spend time in the reserve because
the river ran through it, as did the trail to the border and the adjacent American town
of Blaine.

I was nine, almost ten, years old when we arrived in White Rock, sixteen when
I left it for university, returning only in the summer, and nineteen when I left it
for good. It was a pleasant, but a strange, place for an adolescent. There was the
ocean and the shore, although there were few boats. Except for the crab fisherman,
the owners of the few boats, namely small rowboats, were usually Americans with
a summer cottage. There was little exchange between the children on our side of
the border and those on the other. The Americans were considered richer and were
recognizable, from the front or from the back, by a slight plumpness.

Before the war the town’s principal function was as a resort village in proxim-
ity to New Westminster and, to a lesser extent because of the lack of bridges and
tunnels, to Vancouver. After the war, it served a different function, or so it seems
to me on reflection. The summer cottages afforded inexpensive lodging. So there
were a good number of families with no father, with a father who appeared only
infrequently, or a feckless father. The proprietor of the local hotel or of the local
dance hall were in my eyes rich. There were other families and their children as
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well, but those children whose families allowed them, for one reason or another,
more freedom appealed to me.

My wife has a copy of the year book of the high school with photos of the classes,
thus for grades 7 to 12. They suggest that there were about four hundred children in
the school. Their faces and names are by and large familiar, but many of them came
from the surrounding rural areas and many kept pretty much to themselves returning
home directly after school, so that I knew much less about them and their circum-
stances than about those in the town itself, where there were also those youths who
had left early to find work full or part time. Schooling was only compulsory until
age 15. A hint of restiveness, a desire for independence, drew me to those who had
left school or were free, for one reason or another, of parental constraints, but I was
very young, not very bold, and could not entirely free myself from the interdictions
imposed on me by my mother and, in her wake, my father. As a Catholic child, I
believed, without any question that any sins would be observed not only by God
above but by my recently deceased grandmother, whom I cherished, at his side.

It is not that I was up to the company of the children or youths whom I admired
or envied. I had started school rather early and had skipped a grade, while a good
number of my classmates had failed a grade, thus been kept back, and not just once
but several times, so that they were substantially older than I was. Moreover they
had substantially more freedom than I. They may not have been able to read or write
with any ease, but I envied them, both the boys and the girls. My mother, curiously
enough, because it was not shared by a good number of her brothers and sisters, had
a fear of sin, in particular of books, not of course childrens’ books, as a source of
sin, that made life with her difficult. My father, whose Methodist/Wesleyan (in the
diluted Canadian form of the United Church) background had not left him immune
to sin, but had left him with a strong sense of propriety and of possible disapproval
of the neighbours, provided no relief. So I had to struggle for whatever freedom I
had. I did quickly take to foul language, although I could not use it at home. From
the age of twelve to the age of fourteen, I could probably compete with the most
imaginative or coarse of Indian taxi-drivers in Vancouver or of current American
politicians, but between the ages of fourteen and sixteen my passion for this form
of expression slowly dissipated. In those years I met, at one of the school dances,
called mixers and introduced to encourage civilized social intercourse between the
boys and the girls in the school, someone almost as timid as I but, in contrast to me,
with plans for the future. This was a decisive, perhaps the decisive, event in my life.

A determining feature of those years may have been labour. The period after the
war was an economically favourable period. My parents had moved to White Rock,
away from New Westminster, probably at the urging of my mother, where they had
founded a business—lumber and building supplies. My father provided the tech-
nical competence—he had training as a carpenter, although he never acquired his
journeyman’s papers—while my mother took care of the books. As would be nor-
mal at the time, perhaps today as well, my father was responsible for the collection
of overdue accounts, which were frequent enough. This was, for him, not an agree-
able task. For me, the fortunate aspect of the business was to provide me with an
occupation to fill time that would otherwise have been idled away. Although in no
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Fig. 2: Wedding 1956 (Photo: private)

way fragile, I was not a particularly strong youth, nor was I particularly athletic. I
tried but I was younger than my classmates, so that I was never chosen for school
athletic teams. On the other hand, in those days, kegs of nails, sacks of cement,
agricultural tiles, plywood, plasterboard, and lumber of all kinds were loaded onto
trucks by hand and unloaded in the same way. From the age of twelve or thirteen that
was how I spent my time after school and on Saturdays. During the university years
it was how I spent the summers, earning the funds to pay for the winter’s food and
lodging. It meant, above all, that I arrived at twenty reasonably robust, with a body
that has not failed me, at least not seriously, over the next sixty years. It also meant
that, without being particularly adroit physically, I could manage, although not with
great skill, those household tasks associated with the building trades. However, as
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time went on I was ever more disinclined to undertake anything outside mathemat-
ics that demanded patience. With age, mathematics demands that quality more and
more.

On reflection and I have, oddly enough, never indulged myself in reflection about
these matters, after my early childhood, even during, I had little to do with my father
outside these common labours. There was little disagreeable about them. Although
he was occasionally impatient with my lack of dexterity, it was pleasant to work
with my father. He was generous with my pay, adequate to allow me to indulge my
juvenile sartorial extravagance, to go to the movies and so on, and, now and again, as
a diversion, he suggested that I work as a swamper, a term used only in Canada, thus
as a helper on the local light-delivery truck, which was not only more leisurely, with
a good deal of time spent beside the driver watching the world go by, but entailed
occasionally a trip to Vancouver or New Westminster for a load of cement, drainage
tiles, or sashes and doors. This was hardly work!

The postwar years were prosperous; the business thrived, ostensibly under the
hand of my father, but the determination was, I believe, my mother’s, although this
was not apparent to me at the time. My father had a modest taste for luxury. As
the business prospered, they were soon able to construct a building to house it, with
an apartment upstairs for the family. With a stone facing and large plate glass win-
dows, it was at that time and place an imposing edifice. It now houses a restaurant.
With time, my father was able to buy himself a Buick, at that time a luxury auto-
mobile, and to construct a house in the best part of town, on a cliff on the shore
with a splendid view over the Strait of Juan de Fuca. Unfortunately, as my mother
grew older and became ill, she was no longer able to save him from himself, and a
vice—gambling—that had been present from the beginning, although hidden from
the children, and a constant source of anxiety to her, took over. He, and thus they,
slowly lost everything. By then, I was far away. It fell to my two sisters to do what
they could, and it was considerable, to mitigate the disaster.

To return to my own development, how did it happen that rather than hitchhiking
to Toronto, I went to university? It may have been the effect of my new acquaintance,
but that would have been an unconscious effect, although I doubt that she would
have encouraged my hitchhiking plans. She would certainly not have been willing
to be a part of them. It would undoubtedly have meant that we parted ways.

There were two things. First of all, in the last year of high school, we had a
new teacher, Crawford Vogler, and a new textbook, a textbook that introduced us
to English literature. He was a very enthusiastic, very sympathetic teacher. I recall
that he gave two or three students special assignments. I was asked to report on the
novel The Ordeal of Richard Feverel by the well-known Victorian novelist George
Meredith. It was all a little puzzling to me and any expectation on his part must have
been disappointed. However, as I remarked above, I will have been given an IQ test
and he will have been aware of any unusual talent. That will have been the source
of his disappointed confidence in me. Nonetheless, he took, either then or on some
other occasion, a full class period to explain to me in front of the other students that
I must go to university. Going to university meant going to the University of British
Columbia. There were then no other universities in the province and the possibility
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of going elsewhere would never have crossed my mind. I was impressed then and
there by the suggestion and decided not only to take the entrance examinations but
to study for them. I was successful; I even received a bursary to pay the academic
fees.

Secondly, although my father had left school after nine years to become an ap-
prentice, my wife, not at that time of course, was the child of a man with a more mea-
gre educational background—born on Prince Edward Island, into a mixed, Franco-
Irish marriage his mother died when he was two years old and he was given into the
care of a Scottish family. So his initial language was Gaelic, but apparently some-
what frail and uncomfortable with the robust sons of the family, he left home at
an early age, working in the logging camps of Quebec, where he learned French,
as spoken by the loggers. He must have been quite agile, since his task was some-
times to clear log-jams. This was done by inserting an explosive in the jam and then
running away, from one log to another, in order to be clear of the jam before the
explosion freed the logs—a slip would be fatal.

What he had not learned neither with the Scots nor in the logging camps was to
read and write. His chance came during the Great Depression, when various unions
or political parties undertook not only to feed the unemployed but also to educate
them. He had kept some books, by Frederick Engels, Karl Kautsky, August Bebel
and other socialist authors, that he undertook to read at that time, most of which we
still have. He liked to cite at length various passages from these books. He had a
good memory but reading was always difficult for him. I think his wife, my mother-
in-law, gave him further lessons after their marriage. My own father could read
well enough, although writing was another matter. I do not think I ever received
more than one brief note from him, in an emergency. One book in particular, I took
away from my future father-in-law’s library to read, The Story of the World’s Great
Thinkers by Ernest R. Trattner with biographies of many of the world’s renowned
thinkers, for example, Copernicus, Hutton,. . . , Marx, Pasteur, Freud,. . . , Einstein.
I remember being particularly impressed by the story of Hutton and the age of the
Earth. The book itself had been very popular, deservedly so, in the late thirties and
early forties of the last century. So second-hand copies are still easily found.

I recalled at length various genealogical facts related to my family. I recall one
or two related to my wife. They are striking. Her mother’s family, like my mother’s
large with ten children, had emigrated not from England but from Scotland at the
time of the First World War. My grandfather and his brother had returned to the
Old Country as soldiers but they were sufficiently old that they never, so far as I
know, saw battle. Lord Kitchener, who as I recalled was a familiar figure to me from
my grandparents’ dining room, was the Secretary of State for War for Great Britain
at the beginning and had introduced the policy of sending brothers together to the
battlefield on the principle that side-by-side they would fight better. The result was
that many families lost all their sons at one stroke. My wife’s grandfather’s family
seem to have been so affected, not her grandfather and one of his brother’s who
had also emigrated, who survived, although injured, as members of the Canadian
army, but the four brothers who remained in Scotland and fought with the British
army all perished, at least three apparently as a result of Kitchener’s policy, which
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I believe was finally abandoned. Part at least of her father’s family had been in
Canada much longer, descendants of a Basque fisherman and his Micmac wife, who
are to be found in the census undertaken by the British after the conquest in 1763.
My children are aware of their descent, although it is hardly apparent. Nevertheless,
one of my daughters, the blonde among the four children, learned recently from
her dentist that there is an aspect of her dental structure that is a sure sign of an
indigenous ancestor.

Almost the first event marking the change from childhood years to university
years were aptitude tests. They were followed by consultation with some member
of the university’s teaching staff. I was offered, given my arithmetic talent, such
possibilities as accountancy although academic possibilities were also mentioned. I
suppose I expressed an intention to study mathematics and physics and it was ob-
served that in that case I might even want to take a Ph.D. degree. I listened and,
my studies not having yet begun, returned to White Rock, where for some rea-
son or other I visited the house of my future in-laws, who were in bed. I took the
opportunity of asking my future father-in-law what a Ph.D. was. Somewhat surpris-
ingly, now but not then, he knew. Sometime later, I consulted with a mathematician,
Dr. Jennings, with the title for professors customary in Canadian universities, who
suggested to me that as a mathematician there would be several foreign languages
to be learned. I took his remark seriously, although, initially, seriously may not have
entailed effectively. One year of French or some other language was a normal re-
quirement. At the end of the first year I acquired a basic text for German grammar
and reading it over the summer felt that I was adequately equipped in that direction,
and in the second year moved on to a course in Russian.

In retrospect, these efforts were a little ridiculous, but I had occasion later to
make more serious and more effective attempts to master these and other languages.
I pity the mathematicians of today, not only the native speakers of English who
have no occasion to learn the classical European languages, which offered until re-
cently, outside mathematics and within mathematics as well, a great deal but also
the European mathematicians and mathematicians from elsewhere, but especially
the Europeans—the French who have all but destroyed Breton, the Germans, who
have destroyed above all Yiddish but also less important languages as well, like
Wendish/Sorbian—who now are assiduously rendering their own more and more
difficult of access. They, with a notion that acquiring English is today still a cul-
tural achievement, merit perhaps more contempt than pity. Some, of course, like
the editors of Springer Verlag, are in it for the money. It may be that the response
as to whether mathematics should be a matter of several languages or of one will
ultimately be given by the Chinese.

In my first year of university, my principal preoccupation was some mastery of
English. As I have implied I was in high-school negligent and had ignored the basics
not of English orthography but of English grammar. I was assiduous—to the amuse-
ment of the other students, some of them adults, and the teacher, Dr. Morrison—
consulting the dictionary for every unfamiliar word in every poem and learning, in
particular, to avoid comma splices.
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The mathematics was new to me but by today’s standards elementary, largely,
as I recall, trigonometry. The second year was again relatively slow, mathematics
and a course of logic, a subject about which, as a mathematician, I have tried to
inform myself but always unsuccessfully. The physics course, the Russian course,
and the course on English literature, from the beginning to the nineteenth century,
Chaucer, Fielding, and a good number of other authors, all appealed to me. We had
been introduced to Shakespeare in high-school.

The third year was more interesting. For various reasons the multi-variable cal-
culus courses were not successful, a bad and indifferent teacher undermined the
efforts of a conscientious and potentially excellent teacher, Dr. Leimanis. However
Marvin Marcus, now very old but still, I believe, with us, recommended Courant’s
classic book on differential and integral calculus, which I studied, but occasionally,
as with the inverse function theorem, in too superficial a manner. Either in the sec-
ond but more likely third year, I had two other courses, each, as I recall, half-year
courses. Dr. Christian gave an excellent course on algebra from a well-known book
of Dickson. Once again, I did not always grasp adequately the interest of various
important points, for example, the theory of the cubic equation. The textbook in the
other course, on linear algebra and geometry was also a widely used American text,
the names of whose authors I forget, but during the summer, at the suggestion of
Christian, I read Halmos’s book on vector spaces, widely used at the time. I con-
fess that I fell in love with the abstraction of his presentation, a passion good in its
way for a mathematician, but it is best not to be overwhelmed by it. A book that,
in some sense, was a surer sign of my fate as a specialist of automorphic forms and
the Hecke theory was a book that I found on my own, a translation Modern Algebra
and Matrix Theory of a once familiar German text by Schreier and Sperner where
the theory of elementary divisors is treated at length.

By the fourth year, I could give myself up almost completely to mathematics.
Not entirely through a fault of my own, I had abandoned any intention I may have
had to become a physicist. In retrospect, I did not and do not have the right kind of
imagination, but the decisive event was a course in thermodynamics in the third year.
This is a difficult subject, in particular the topics of heat and entropy and in response
to a homework question I wrote an extravagantly long essay, which unfortunately
I did not keep. Given my age—I had just turned nineteen—and my lack of a solid
pre-university education, it probably was not so bad. The teacher, an English exper-
imentalist, chose to mock it in class. That, I think, was the turning point. Certainly,
given the nature of whatever talent I had, it was for the best. I did, that year, have a
physics course that I much enjoyed, the optics course, above all the experiments. I
was fortunate to have a partner, Alan Goodacre, in the laboratory experiments that
were an important part of the course and that in his hands always yielded the ex-
pected, thus the correct, results. There was a division of labour, in which I took the
easy half, the theory, and he the difficult half, the experiments. I still have occa-
sion to meet him occasionally in Ottawa, where he was an experimentalist with the
dominion laboratories for many years.
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So, in the fourth year, I focussed except for a second course in Russian on math-
ematics. I learned or began to learn a great deal: function theory, in particular from
the third volume, which I studied on my own, of the prescribed text, a translation
of a German text by Konrad Knopf, the Weierstrass theory of elliptic functions; or-
dinary differential equations, including something about special functions and the
beginnings of spectral theory, which I supplemented later in graduate school and the
years immediately following, with the book of Coddington and Levinson and with
M. H. Stone’s book on the spectral theory of operators in Hilbert space, both excel-
lent preparation for the general theory of Eisenstein series, which has been a major
concern of my career and which led to its major achievement, what is often referred
to as the Langlands programme. Galois theory was the principal topic in another
course but it went by, I am afraid, more or less unremarked. I also participated in
my fourth year at university, or more likely in the following year, in a seminar on
commutative algebra, based on the book Ideal Theory of D. G. Northcott. In any
case, I managed during the following year to write, on my own initiative, a master’s
thesis on some idea or problem that I found in it. None of the professor’s were fa-
miliar with the topic so that they were uncertain what to do. Out of the goodness
of their hearts and, I suppose, because my performance was otherwise satisfactory
they accepted it—even though I had had to confess at some point during the pro-
ceedings that I had found an important error in it—and let me move on to graduate
school. That year 1957–58, between my four undergraduate years and my two grad-
uate years at Yale, was one of the most demanding of my life. I had been married a
year before, at a very young age, was teaching one undergraduate course, my first
experience of lecturing, was taking enough courses to acquire the necessary credits
for a master’s degree, without which I could not move on to the important stage of
a doctoral degree, and finally I was writing the master’s thesis. I remember almost
nothing from that year: life in a trailer with my wife; a charming girl in the fresh-
man class I was teaching who seemed to be taken with me, an infatuation to which
unmarried and otherwise uncommitted I would have been happy to respond; as well
as an incident with a second professor of physics. This I remember clearly.

The occasion was the final examination of a course on mathematical methods in
physics, a course for graduate students offered by this professor, an immigrant from
Europe. The focus was the representation theory of finite groups, characters, orthog-
onality and so on. The single problem assigned was to analyze the representation of
the tetrahedral group on the sum of the four tangent spaces at the vertices, each a
three-dimensional space, which he thought of as provided with the natural metric.
He expected the students to decompose the representation using the orthogonality
relations. The best, most direct solution is of course to use a non-orthogonal basis
directed away from the vertices along the edges. Then the problem is solved by in-
spection. He looked at all the zeros and ones in the calculation and was persuaded
that I, as a thick-headed student, had inappropriately introduced the regular repre-
sentation and was about to fail me, which would have meant no master’s degree and
no move to Yale. He seemed to be obdurate, but for unexplained reasons ultimately
gave me a passing grade. Perhaps a colleague explained the solution to him.
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Fig. 3: Ankara, Turkey, in 1967. (Photo: private)

All in all, the years at the University of British Columbia were very profitable.
I learned something: how to write English, a beginning in three other languages,
a little bit of physics that did no harm and, both in the courses and on my own,
a good deal of mathematics. The campus too was a pleasure, small and forested.
Photographs I have seen suggest that it is now an asphalt desert, but so are many
places.

I add as well that I was by and large satisfied with my independent reading in var-
ious mathematical domains. It still seems to me that a mathematician’s obligation, as
much, even more, than proving theorems, an activity that sometimes demands more
ingenuity than insight or foresight, is the preservation of the creations of the past,
not necessarily all, but certainly those that sustain the subject’s depth and intellectual
pertinence. Although I had an exaggerated fondness for abstraction, one nourished
by Halmos, it was sated by the book of Dixmier, Les algèbres d’opérateurs dans
l’espace hilbertien which I believe I managed to read from beginning to end as a
part of my studies for the master’s degree. Nor was I able to maintain a sustained
interest in logic, even the introductory text The elements of mathematical logic by
Paul Rosenbloom defeated me.

I set off for Yale University full of hope and my wife followed in a couple of
months with our first child. A second one was to be born less than a year later. At
Yale I followed two or three helpful courses, one on the basics of functional analysis
with Nelson Dunford, using the book Linear Operators, Part 1, that he wrote with
Jack Schwartz. As one can see from the second volume of the book, it was in this
course that I first proved something that could be called a theorem. Another course
was formally given by Einar Hille and made use of his book Functional Analysis
and Semi-groups. Hille was a consummate analyst and it was a pleasure to acquire
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some familiarity with various objects of classical analysis, especially the Laplace
transform, from it. A third course was given by Felix Browder on partial differen-
tial equations, especially the topics of current concern to specialists. He was never
well-prepared, often taking two or three runs at a proof without ever succeeding in
completing it. I, however, was diligent, took my notes home and usually managed
to put the collected information together to arrive at a proof, so that I gained much
from his lectures.

I also read a great deal, especially from Dover paperbacks, which were available
cheaply. I remember, in particular, D. V. Widder’s book, The Laplace transform,
in the Princeton University Press series, Burnside’s book The Theory of Groups of
Finite Order, and the first edition of Zygmund’s book Trigonometrical Series, a
book I read carefully. I read the second book superficially, forming the extravagant
ambition of proving the Burnside conjecture on groups of odd order, proved not
much later by Feit and Thompson. Zygmund’s book I seemed to have read quite
carefully, for it saved me from failing the oral examinations at the end of the year.
I had not systematically prepared for them, thinking I could take a chance with
what I knew. It turned out that I had largely forgotten what I had learned about
commutative algebra in Vancouver. So things were looking bad. After algebra came
analysis, and the examiner Shizuo Kakutani fortunately knew a great deal about
various convexity theorems, due to one or the other of the brothers Riesz, that I
too had at my fingertips—at the time, from a recent reading of Zygmund’s book on
trigonometrical series, but not today. So I was saved by a kind of miracle.

Sometime during the year, I solved a problem about Lie semi-groups, a topic
introduced by Hille and during the summer, putting together on my own what I had
learned about elliptic partial differential and about Lie semi-groups, wrote what I
considered an acceptable thesis. As with my master’s thesis in Vancouver, no-one
on the faculty could read it, so that there was some question as to whether it could
be accepted. Kakutani was opposed to this, but his colleagues decided none the less
to accept it. Fortunately, I did not discover any errors and much of the material
was later incorporated into the book Elliptic Operators and Lie groups by Derek
Robinson. So it had some success.

Having prepared the doctoral thesis I was completely free for the entire second
year of my stay at Yale. This was one of the happiest years of my professional life.
For the first time in several years, my time was my own. There was one seminar
proposed on functions of several complex variables that, as it turned out, never took
place because of some discord between the organizers, and lectures by S. Gaal on
the paper of Selberg on the trace formula and what Godement began to refer to as
Eisenstein series, a topic begun by Hecke and Maaß, a student of Hecke. I read the
articles that were to be treated in the seminar on my own. By a fortunate coincidence
the material on domains of holomorphy they contained allowed me to prove some
relatively simple theorems on the holomorphic continuation of the Eisenstein series,
a topic in Gaal’s lectures which later became central for me. I forget the titles of the
articles and the names of their authors.
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I would like to insert here a note of appreciation to Yale for the two years I spent
there as a student. After deciding to apply for admission to a doctoral program in
mathematics, I applied at Harvard, Yale, and Wisconsin. Harvard accepted me, but
with no money; Yale accepted me with a bursary; and Wisconsin accepted me with
a position as teaching assistant. Yale was thus the best choice. What I want to admit
or to explain here is how fortunate I believe I was to be spared the trial of a sudden
immersion in an atmosphere of competitive and well-trained young mathematicians
who had spent their undergraduate years in major centres and to have had rather two
stressless years if not to make a mathematician of myself at least to have a start at it.
When I arrived at Princeton after these two years my schooling was up to the more
demanding style of my contemporaries, the students, and of the young faculty.

In fact my arrival at Princeton was a matter largely of chance. I would have pre-
ferred to stay at Yale and, I believe, most of the faculty would have been happy to
keep me, but Kakutani was again opposed and this time successfully. The place,
Princeton, and the time were chosen by hazard. Leonard Gross, then at Yale, but
who later spent his career at Cornell University, suggested to me and a friend a trip
to the Institute for Advanced Study, where some of his friends from his student days
in Chicago, among them Edward Nelson and Paul Cohen, were spending a year. I
happened to speak briefly with Nelson about my work on Lie semi-groups. It turned
out that he had investigated similar topics. He was favourably impressed and, as
he was to become an assistant professor at Princeton University in the following
year, suggested to his future colleagues that they appoint me as an instructor. I re-
ceived the appointment with no application, no letters of recommendation, nothing,
only the oral recommendation of Nelson. The lives of young mathematicians, and
of their older colleagues as well, in the USA, and no doubt elsewhere as well—the
USA often serves as an unfortunate model far beyond its borders—are more bur-
dened with red tape than they once were. If I had become a mathematician in the
present context, domestic and international, I would, I believe, have become quite a
different one and, indeed, abandoned the undertaking, or perhaps never have begun
it. Semi-groups had, however, little to do with my first years at Princeton. In part
because of the work of Selberg, a good many mathematicians had returned to the
study of Hecke and Robert Gunning was offering a course on his theory in Prince-
ton which I attended. There was also a seminar on analysis, that Salomon Bochner
attended and, I believe, fostered. I was asked to deliver a talk on my own work and,
not having anything else to offer, discussed the somewhat accidental efforts inspired
by Gaal’s seminar. Bochner appreciated it, not, I would guess, so much because of
the material, but because it had no relation whatsoever to my thesis, an indication
of independent thought. Bochner was an analyst of broad scope, who during the
early part of his career in Germany had known, I believe, Helmut Hasse, Emmy
Noether and others in the Göttingen school. He encouraged me to pursue the study
of these series and, thus of automorphic forms, in particular to extend the consid-
erations from the field of rational numbers to finite extensions of this field, thus to
learn about algebraic numbers. This was my first introduction to German texts, a
text of Landau and that, Vorlesungen über die Theorie der Algebraischen Zahlen,
of Hecke, and then, rather quickly as I pursued the topic of Eisenstein series, the
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papers of Hecke and Siegel, in which the modern theory of automorphic forms was
created. Sometime during this period I also came across the monograph The general
theory of Dirichlet’s series by Hardy and M. Riesz that contains the very important
theorem of Landau on Dirichlet series with positive coefficients, a theorem that was,
I believe, implicit in the work of Rankin and Selberg on Ramanujan’s conjecture.
Rankin was a student of Hardy.

I observed in the paper Problems in the theory of automorphic forms, that ap-
peared in 1970, that functoriality in my sense and the theorem of Landau taken
together would yield not only Ramanujan’s conjecture itself but also a very gen-
eral form of it. This is a conviction I had not afterwards questioned. On writing this
preface, however, I glanced again at that paper and observed that functoriality and
the theorem of Landau were not in themselves sufficient; one would need in addi-
tion the principal theorem of Godement and Jacquet in their treatise Zeta functions
of simple algebras as well as the understanding of the spectral decomposition of
L2(GL(n;F)\GL(n;AF)), available in a paper of Moeglin and Waldspurger. There
is no reference to these works, both of which appeared later, in my paper. I have
to return to the Godement–Jacquet theorem and understand why and how it is so
strong.

After Siegel the modern theory was created, hardly entirely but I would say deci-
sively, first by Selberg, whose trace formula, although a form of the Frobenius reci-
procity theorem, was at a much more difficult analytic level, and Harish-Chandra,
whose work on reduction theory, although in comparison with his work on repre-
sentation theory minor, transformed the theory of automorphic forms into a part of
the theory not of particular reductive groups but of all reductive groups and, ulti-
mately, an aspect of representation theory. Certainly I, as a young mathematician,
moved naturally along this route. It was inevitable; as I just observed, the trace for-
mula, which became almost immediately after its introduction central to the theory,
is intrinsically representation-theoretic.

A topic that was less obvious, but in its way also inevitable, was class field theory.
Not only was it in the air in Princeton, from which Artin had not long been absent,
but it was apparently also a topic that Bochner felt was important, and it must have
been in late summer of 1963 that he suggested that I should or declared that I must
offer a course in class field theory, at the time an arcane topic, of no interest to the
bulk of mathematicians. I was flabbergasted! I had hardly begun to learn algebraic
number theory and the semester was about to begin. I protested that it was out of the
question, but he insisted. I yielded and set about preparing the course, which placed
the problem of a non-abelian class field theory, if not at the centre, certainly on the
fringes of my mathematical ambition.

The academic year 1964–65 I spent at Berkeley in California with no teaching re-
sponsibilities. My initial ambition was to learn algebraic geometry. This was before
Grothendieck dominated the subject and I took with me Weil’s Algebraic Geometry
and Conforto’s Abelsche Funktionen und Algebraische Geometrie. I even organized
with Phillip Griffiths a seminar on algebraic geometry from which he clearly prof-
ited much more than I. I was also infatuated during that year with Harish-Chandra’s
papers on spherical functions and matrix coefficients and wanted to construct that
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theory along the lines of the theory of hypergeometric functions with which I was
taken at the time, but was unsuccessful. All in all, I was disappointed with my math-
ematical accomplishments during that year.

The next year, back in Princeton, was no better. I had formed two ambitions, both
rather extravagant, to make some progress in non-abelian class field theory and to
create a general theory of Hecke L-functions. I made no progress and by the spring
of 1966 was coming to believe that mathematics was not the career for me. Indeed I
had sentiments of this sort already during the year in Berkeley. The year 1963/64, a
year in which I not only was learning class field theory for the course I was giving
but also writing up the extremely long paper on Eisenstein series, may have caused
an unrecognized exhaustion that was the source of the mathematical famine of the
Berkeley year. Anyhow, as I have recounted elsewhere, a friend, Orhan Türkay,
whom I had met in Princeton and who was also spending a year in Berkeley, sug-
gested I come to Turkey, not to his university where he taught economics but to the
newly created Middle East Technical University. It was not a suggestion that I ini-
tially took seriously. However, after my return to Princeton and a fruitless struggle
with the two topics mentioned, I recalled his invitation and began, influenced per-
haps by Agatha Christie novels, to reflect on the possibility of a romantic trip to the
Middle East, today a somewhat incredible notion, especially for someone accompa-
nied by a wife and four young children.

As a diversion, a pleasant one, during 1965–66 I offered to teach mathematics
for engineers, a task that was beneath the dignity of my colleagues. I enjoyed it and
the engineering students and I had, as well, the pleasure of consulting various books
that appealed to me. From Maxwell’s Electricity and Magnetism I learned methods
for plotting the level lines of harmonic functions, an amusing occupation for me
and for the students; Relton’s book on Bessel functions was an opportunity to learn
some concrete spectral theory. I do not suppose that specialized monographs were
better or more readily available fifty or sixty years ago than today, but I was more
likely to find the time, the energy, and the patience to read them.

Once having begun to make the arrangements for a year, or more, abroad, life
became simpler and more relaxed. For lack of anything better to do, I began, perhaps
in the summer or the autumn, to make some idle calculations of the constant terms
of the Eisenstein series. Once calculated, it was, as I recall, almost immediately
evident that they offered examples of a general notion of a Hecke L-function, what
I had been searching for in vain. I did not change my plans, but did abandon my
efforts to learn Turkish and to improve my knowledge of Russian, both appealing
pastimes that had to be abandoned in order to investigate the implications of these
calculations. By the end of the year I had a fairly clear idea of what might be done
and, during a brief, unexpected conversation with André Weil began to explain what
I had in mind. A more detailed hand-written explanation sent after the conversation
he did not find persuasive, but he did invite me to attend a seminar in which he was
explaining how he hoped to extend the Hecke theory for GL(2) to general number
fields. He was having trouble with the complex case. I explained the theory in this
case to him in two letters, one sent before the departure for Turkey, one after my
arrival, in which, thanks to the knowledge of ordinary differential equations acquired
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over the years and to my own experiences in attempting to create a generalized
Hecke theory, the complex case was treated. Weil was unable to read them, but
turned to Jacquet for help, and this led to the joint effort with Jacquet to develop
a theory of automorphic forms for GL(2) compatible with my expectations, and
perhaps with Jacquet’s as well.

Apart from childhood excursions across the nearby border and my years at Yale,
Princeton, and Berkeley, I had never been abroad, never visited French-speaking
Canada, so that Turkey was my first experience with a genuinely different coun-
try. Although it was a pleasant and instructive visit that did not interfere with my
mathematical projects, I did not accomplish what I had hoped, scarcely, in spite of
my intentions, learned the language, scarcely visited the country and acquired only
a superficial understanding of its history. My first mistake was not to take an im-
mediate linguistic plunge, not to understand that for an anglophone English is, in
many respects, a handicap in one’s encounter with the world. The language itself
attracts too many people and the wrong sort; it alienates others and is, by and large,
an obstacle to a genuine intimacy with a land and its people. I exaggerate but for,
say, an academic to acquire English today is scarcely more difficult than learning to
drive an automobile, yet there are many academics, in particular, a good number of
my fellow mathematicians, who regard it as a genuine intellectual accomplishment,
which they are eager to display whenever the occasion arises. They and, in particu-
lar, their excessive use of English as a vehicle of publication deprives the field of a
great deal of whatever secondary intellectual pleasures it offers. Before my first visit
to Turkey, I did not understand this. The situation was not so extreme in 1967 as it
is today. At all events during this visit I acquired some knowledge of the language,
some acquaintances among the students that, when many years later, more experi-
enced, better prepared, I returned, served me well. A number of the former students
became friends.

In the meantime, I had been more determined in my efforts, linguistic and histor-
ical, but since my major preoccupation was always mathematics, I was not able to
satisfy these predilections to any satisfactory extent. I have presently one final math-
ematical project, but once it is accomplished, or even if I make some encouraging
progress, I hope to pass the time left to me indulging them. My memory is failing;
so are my energies, but I am nevertheless hopeful.

The major undertaking of my mathematical career has been the theory of auto-
morphic forms and its many manifestations, and a secondary one has been renor-
malization. I think that most of my colleagues regard me as competent to discuss
automorphic forms; very few will regard me as competent to discuss renormaliza-
tion. I shall nevertheless attempt to do so very briefly, because I fear it is a subject
with enormous potential and enormous depth although also enormously difficult that
has not been met with any genuinely adequate effort on the part of mathematicians.
Here, however, as with automorphic forms, the principal failing seems to be a reluc-
tance to come to terms with the central issues, to forget that the central problem in
both cases is to construct a theory, not to prove something that with a certain amount
of good will passes muster as a theorem.
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Automorphic forms are another matter, for the major problems have not been en-
tirely neglected, but there is still much more that we do not understand than that we
understand. At present, the subject has strong ties to arithmetic, to analytic number
theory, to algebraic geometry, and to differential geometry. There are three different
theories, relevant in three different contexts: the theory over an algebraic number
field; the theory over a function field in one variable over a finite field; the theory
over a compact Riemann surface, thus over a function field in one variable over C.
They have many similarities, but a number of important differences. There is a fa-
mous analogy of earlier forms of them, in which reductive Lie groups, apart from
GL(1), played no role, with the Rosetta stone. Weil has written a brief and charm-
ing description of it in the essay De la métaphysique aux mathématiques, but the
analogy is less persuasive for the modern theories. The essay is none the less well
worth reading. There is an extension of the analogy in a Bourbaki lecture of Edward
Frenkel, Gauge theory and Langlands duality, that appeared in a Bourbaki lecture
in 2009. He has our three topics, which he lists as Number theory, Curves over Fq,
Riemann surfaces but he adds a fourth, Quantum Physics. I prefer to remain in this
essay within the domain of pure mathematics, indeed lack of competence forces me
to do so.

Fig. 4: In 1999. (Photograph by C.J. Mozzochi, courtesy of the Simons Foundation.)

It is well to recall that the first theory, which is central to the theory of algebraic
numbers and diophantine equations, has a history beginning late in the eighteenth
century or early in the nineteenth, with Gauss and Kummer and continuing without
interruption until the middle of the last century; the second, which may ultimately
form a major part of the theory of finite fields, is thus a theory that begins perhaps
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with Galois, but began to play a much larger role with the introduction by Hasse
and Weil of an algebraic geometry over finite fields; the third is at best a part of
the theory of Riemann surfaces, which itself does not, as one remarks when re-
calling Euler’s concern with elliptic integrals, begin entirely with early nineteenth
century mathematicians like Abel, Jacobi, Weierstrass, and Riemann and their study
of algebraic curves or Riemann surfaces, but acquires at that time a new richness.
It also entails—even without turning to the fourth, neglected topic—a relation to,
perhaps speculative, physical theories, the introduction—in the definition of the ge-
ometric form of the Hecke operators—of differential geometry, curvature, and the
Chern–Gauss–Bonnet theorem, which appears—in spite of its name—to be, in its
present form, largely a twentieth century creation. I, myself, greatly regret as my
career draws to a close not having spent enough time with the writings of the early
founders of these theories.

It is certainly not necessary to understand the theories as a whole to contribute
to the theory of automorphic forms. On the other hand, deliberately to restrict one’s
attention to a few tried methods and to a few familiar concepts, and deliberately to
turn one’s back on a marvelous fusion and coherence of many of the principal math-
ematical concepts of the past 250 years, seems to me an unpardonable form of self-
mutilation, rendered more tempting by the linguistic, thus intellectual, inadequacies
noted above. For many, even most, contemporary mathematicians, the mathematical
past is largely inaccessible. This ignorance is unfortunate. Humans have not been on
the earth for such a long time that it is appropriate to forget our history, or that of our
accomplishments, mathematics among them. The indifference to the mathematical
past and the distance from it will, I suppose, nevertheless become more pronounced
if or when the Asian nations assume a major role in mathematics and even English
ceases to be the principal, or even an adequate, medium of communication. The pos-
sibility of reducing mathematics to a trivial pursuit, a struggle for a large number of
citations, for a prize, or just for a tenured position, is also there. It is difficult not to
be pessimistic! In my view, or at least in a coarse simplification of my view, a great
deal has been lost or destroyed in the largely successful European—at least initially,
for the centre of power shifted in the last century—attempt to conquer or dominate
the world and little is done to preserve what remains.

To return to the three theories. I have spent most time with the first and believe
that it the most difficult, although it may now have the fewest practitioners. The
two principal questions are very general: functoriality and reciprocity. Functoriality
entails an answer to such questions as Ramanujan’s conjecture in its general form,
thus it entails establishing all the expected properties of automorphic L-functions
short of the Riemann hypothesis. A first tool is the trace formula in the form estab-
lished and developed extensively by James Arthur. Then it requires a development
of the trace formula, in the sense of analytic number theory, say in the form with
which Ali Altuğ has been struggling, whose goal would be, in my view, the formu-
lation and the proof of the diophantine equalities, thus a comparison of the number
of solutions of two different diophantine equations, necessary for the comparisons
envisaged in my essay A prologue to functoriality and reciprocity: Part 1. This is
not work that I myself have undertaken, perhaps because I have no ideas, but largely
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because I think of it as an undertaking that requires decades and I myself do not
have decades. Once functoriality has been established or some progress with it has
been accomplished, there will remain reciprocity: is the motivic galoisian group a
quotient of the automorphic galoisian group? This is an even more daunting prob-
lem. There may be domains and mathematicians whose efforts suggest solutions but
my ignorance is so great that I am reluctant to offer any advice. Otherwise, we have
only scraps of results, scraps of a method, but they are serious scraps, prominent in,
for example, the proof of the Fermat conjecture. I do not suppose we shall ever have
any general information about these two groups more concrete than a statement that
one is a quotient of the other. Specific information is another matter.

In the article in preparation whose title appears above, I broach the problem of
an explicit description of the automorphic galoisian group for the third form of the
theory of automorphic forms, thus the theory over a Riemann surface. There is no
analogue of the motivic galoisian group. I confine myself in the article to unramified
representations, thus to a nevertheless large and interesting quotient of the galoisian
group, and define a group that I call the AB-group because it was introduced by
Atiyah and Bott and make some effort to persuade the reader that it is indeed the
unramified automorphic galoisian group for the third theory. Further reflection is,
however, necessary.

Fig. 5: In 1990. (Photograph by C.J. Mozzochi, courtesy of the Simons Foundation.)

I have not yet had a chance to examine the geometric theory over a finite field,
but, after hearing of the work of Vincent Lafforgue, I am tempted to ask myself
whether the automorphic galoisian group over function fields over a finite field κ

is not pretty much the Galois group of the function field Fκ , the field of rational
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functions on the curve defined over κ , although I have not yet had the leisure to
study his papers.

For a period of several years, I was absorbed by an altogether different math-
ematical theory. Sometime in 1984/85 I had the good fortune of an enlightening
conversation with the physicist Giovanni Gallavotti. As we strolled on the grounds
of the Institute for Advanced Study, he described to me the mathematical problems
arising from renormalization. They are very beautiful, of very general concern, and,
in some sense, not sufficiently studied by mathematicians. There is, as I discovered,
a great deal to learn if one wishes to understand their significance, whether in quan-
tum field theory or fluid dynamics, or even in a more mathematical context. I was
never able to come to grips with all these matters, although a colleague Yvan Saint-
Aubin and I spent a great deal of time with numerical experiments. Once again I
hope, after I have succeeded in explaining what I see as the expression of func-
toriality in the automorphic theory over (the function fields of) Riemann surfaces,
to return to renormalization, not in the expectation of accomplishing anything, but
rather in the desire to understand the problems in more depth than before.

Let me try to describe the relevant issues in a very simple, somewhat factitious
example. I am hardly in a position to discuss quantum field theory or fluid me-
chanics. Renormalization is related to a change of scale. Suppose we have a cube
(my personal experience is limited to dimension two) of porous material whose pre-
cise constitution is unknown, although we know the probability—referred to as a
crossing probability—that water forced into the material on one small area α on the
surface can make its way to another small area β , thus that there is an open channel
between them. The collection of crossing probabilities {π(α,β )} is a property of
the material used. An extreme case would be that the initial choice was between
a solid, thus impassable, cube with probability x and an empty cube, in which all
crossings are possible, with probability 1− x. We can then think of taking eight of
such cubes and placing them together to form a cube with double the original linear
dimension. It will have different crossing probabilities, because in the larger cube,
they are affected by the possibility of a very large number of paths, moving in and
out of the eight constituent cubes. Then we change scale so that the new cube has
edges of length one, thus so that the original cube has sides of length 1/2. We con-
tinue in this way. Thus we start with something very small and perhaps very simple,
as nature seems to do, and arrive at something very large. What happens? We can
expect that most of the time, thus for most initial probability distributions, as the
size grows, complete permeability or complete impermeability become more and
more likely. On the other hand, it may be that some other configurations maintain
themselves or are generated in the process. There are of course an infinite number of
initial distributions, even an infinite-dimensional space of initial distributions. Nev-
ertheless there may be a tendency for all of it, or for large chunks of it, to be shrunk
by an infinite number of repetitions to a point. These points and their nature are
of considerable interest. What happens, for example, if we start from a point in the
vicinity of one these limit points. Typically, there is a subspace of finite codimension
that contracts under the operation described to the point while there is an expansion
in the remaining directions, so that each orbit under repeated applications of the
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process described forms a kind of discrete hyperbola, except for those that start on
the subspace. These dynamics are very simple.

It is, however, not even well understood how to create such systems. More to the
point it is not well understood, certainly not in a mathematical sense, how to create
such systems that are physically relevant nor how to demonstrate that some system,
presumed to be physically relevant, has the expected mathematical properties. It
would, I think, be a pleasure to reflect on these matters, to try to understand some
part of what is known and something of what is not known, but with absolutely no
ambitions.



The work of Robert Langlands

James G. Arthur

Foreword

A more accurate title might have been On the Work of Robert Langlands in Rep-
resentation Theory, Automorphic Forms, Number Theory and Arithmetic Geometry.
For I have left out a significant part of Langlands’ work, his papers in percolation
theory and in mathematical physics, published in the years 1988–2000. I have how-
ever included a brief description of his recent work on the geometric theory. It occurs
near the end of §11, the last section otherwise devoted to Beyond Endoscopy.

There is more than enough to discuss in the subjects I will be considering. I hope
to be able to communicate the remarkable continuity that runs throughout all of
the work of Langlands, with its roots in several fundamental areas of mathematics.
What is now known as the Langlands program represents a unification of some of
the deepest parts of these areas.

For example, it has been suggested that the Langlands program is ultimately a
theory of L-functions, with its roots in analytic number theory. With this interpre-
tation it goes back to Euler. Others might see the Langlands program at its most
striking in its discovery of the long sought reciprocity laws for nonabelian class
field theory, a culmination of perhaps two centuries of study of algebraic number
theory. This of course goes back to Gauss, and his law of quadratic reciprocity. Both
interpretations are equally valid, and they come together in the work from the 1920s
and 1930s of Emil Artin. But they are by no means the full story. The origins of
the subject for Langlands, and the power he was able to bring to it right from the
beginning, came from harmonic analysis and group representations, specifically the
work of Harish-Chandra. He was the first mathematician to gain a deep understand-
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ing of the fundamental contributions of Harish-Chandra to the representation theory
of semisimple/reductive Lie groups. This analytic side of the subject has continued
to inform the Langlands program right up to the present time. I note, for no par-
ticular reason except perhaps for some further sense of unity, that Harish-Chandra
was a graduate student of Paul Dirac at Cambridge. However, his early career as a
physicist ended when he switched completely to mathematics a few years later.

My hope has been to bring the work of Langlands to a more general mathematical
audience. In the attempt to emphasize the continuity of the work, I have tried to
write the report as a narrative that evolves with time. This entails fewer statements
of formal theorems, and more efforts to describe underlying ideas. It also includes
more repetition than would a formal paper. The fundamental ideas of Langlands
occur again and again, often in different guises. Seeing them appear in this way
might give a broader sense of the symmetry of the subject.

For example, Section 2 on Langlands’ fundamental manuscript on Eisenstein
series is certainly among the more technical sides of the report. We then follow it
in Section 3 with a relatively leisurely introduction to class field theory. In general,
I hope that a nonspecialist reader will be encouraged by the more elementary parts,
and initially at least, not feel the need to take the more difficult passages as seriously.

A reader might also find it helpful to consult Langlands’ later commentary on his
various papers, to be found in the different sections of his website. I have certainly
gained insight from it in the preparation of this report. I should add that I know some
of the papers better than others, and I apologize in advance for any misstatements in
my attempts to make this deep and fundamental work as accessible as I can.
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1 Group representations and harmonic analysis

As we have noted in the Foreword above, Langlands’ early work came from group
representations and harmonic analysis. These areas have remained at the heart of
much of what is now known as the Langlands program. The analytic power in their
methods has been indispensable in many of Langlands’ greatest discoveries.



The work of Robert Langlands 33

The groups in question are (unimodular) locally compact groups H. A unitary
representation of H is a (weakly continuous) homomorphism

R : H→ U(H )

from H to the group of unitary operators on a Hilbert space H . For example, one
could take H to be a product

H = G×G

of a group G with itself, and H to be the Hilbert space L2(G) of square integrable
complex-valued functions on G with respect to a Haar measure. One then has the
regular representation

(RH(y1,y2)φ)(x) = φ(y−1
1 xy2), φ ∈ L2(G), x,y1,y2 ∈ G,

of G×G on H . Another broad example is associated with a discrete subgroup Γ of
H = G, in which one assumes that the quotient space Γ \H of right cosets has finite
volume with respect to an H-invariant measure. In this case, one has the unitary
representation

(RΓ (y)φ)(x) = φ(xy), φ ∈ L2(Γ \H), x ∈ Γ \H, y ∈ H,

of H by right translation on H = L2(Γ \H).
A representation π of H on a Hilbert space V is irreducible if V has no closed,

π-invariant subspaces other than {0} and V . Recall also that two unitary represen-
tations (π,V ) and (π ′,V ′) of H are (unitarily) equivalent if

π
′(y) =Uπ(y)U−1, y ∈ H,

for a unitary, linear, intertwining isomorphism U from V to V ′. For any given H, one
would like to classify Πunit(H), the set of equivalence classes of irreducible unitary
representations of H. This can be regarded as the fundamental problem in group
representations.

The fundamental problem for harmonic analysis would apply to any natural uni-
tary representation R of H, such as R=RH or R=RΓ as above. It is to find an explicit
decomposition of R into irreducible representations. This presupposes a knowledge
of Πunit(H), or at least a subset of Πunit(H) that is large enough to support the mea-
sure class of Πunit(H) that governs the decomposition of R.

For example, in the special case of the additive group H =R⊕R, the irreducible
unitary representations are the one-dimensional representations

π(y1,y2) = eλ1y1eλ2y2 , (y1,y2) ∈ R⊕R,

where (λ1,λ2) ranges over the points in the imaginary space iR⊕ iR. The decompo-
sition of RH is just classical harmonic analysis, the Fourier transform φ → φ̂ being
an explicit unitary isomorphism from L2(R) onto L2(iR) such that
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(RH(y1,y2)φ)
∧(λ ) = e−λy1 φ̂eλy2 , λ ∈ iR.

From the other broad example, consider the special case that H = R and Γ = Z. In
this case, the map that assigns Fourier coefficients to functions is an explicit unitary
isomorphism from L2(Z \R) onto the Hilbert space L2(2πiZ) of functions on the
subset of irreducible representations of R that occur in the decomposition of R.

The mathematical area Langlands entered in 1960 was considerably more elab-
orate than these basic examples would suggest. In particular, the groups H were
nonabelian, which meant that the irreducible unitary representations π ∈ Πunit(H)
were typically infinite-dimensional. One consequence of this for harmonic analy-
sis was that the decompositions of representations RH and RΓ typically had both a
continuous part, qualitatively like the theory of Fourier transforms, and a discrete
part, like the theory of Fourier series. By 1960, the theory was already rich and
sophisticated, thanks in large measure to the ongoing efforts of Harish-Chandra.

From the beginning, Harish-Chandra had limited his efforts to semisimple Lie
groups, such as the special linear groups SL(n,R), the special orthogonal groups
SO(p,q,R) and the symplectic groups Sp(2n,R). In contrast to abstract locally
compact groups, semisimple Lie groups have a rich structure, which gives rise to
an even richer structure for their representations. Harish-Chandra’s goal was to es-
tablish the Plancherel formula for any such G. It includes the problem of the explicit
decomposition of the regular representation RG×G. The problem is actually a little
more precise. A solution would in fact include a natural measure, the Plancherel
measure, within the measure class that gives the decomposition into irreducible rep-
resentations. Harish-Chandra ultimately established the Plancherel formula around
1975, but by 1960, he was well on his way to constructing the discrete series1 for
G. These are irreducible representations π ∈Πunit(G) of G such that the products

π
∨⊗π → (y1,y2) =

t
π(y−1

1 )⊗π(y2)

give the representations that occur discretely in the decomposition of RG×G. His
construction of the discrete series was completed around 1965, and is among Harish-
Chandra’s greatest achievements.

In 1960, Harish-Chandra’s papers were regarded by many as being simply too
difficult for anyone to read. Nonetheless, Langlands set about doing a comprehen-
sive study of Harish-Chandra’s work. Within a couple of years, he had acquired a
mastery of at least part of it, including the nascent discrete series. This was demon-
strated widely in three remarkable contributions to the 1965 AMS Summer Sympo-
sium in Boulder, Colorado, a broad conference designed to assess the general state
of the subject.

Before I discuss Langlands’ Boulder contributions, let me mention a later pa-
per, because it bears directly on the work of Harish-Chandra. There are a couple of
points to be made first. Harish-Chandra had found that, paradoxically, it was more
natural to study the set Π(G) of equivalence classes of all irreducible representa-

1 Harish-Chandra no doubt appropriated this term from Valentine Bargmann, the physicist who
classified the irreducible unitary representations of the group SL(2,R) in 1947.
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tions of G, rather than just the unitary ones. To be sure, his Plancherel measure was
to be supported on the subset Πtemp(G) of tempered representations that he would
introduce in 1966 [88], and these are all unitary. But much of his developing analytic
power required a command of the full set Π(G). Another curious fact is that there
are interesting unitary representations π ∈Πunit(G) that do not lie in Πtemp(G). This
contradicts our intuition from classical Fourier analysis, in which the irreducible
representations of R are one-dimensional quasi-characters

x→ e−λx, x ∈ R, λ ∈ C,

while both the unitary and the tempered representations coincide with the set of
characters on R, in which λ is purely imaginary.

In 1973, Langlands gave a classification of the full set of irreducible representa-
tions Π(G) [151], modulo a knowledge of the subset Πtemp(G) of tempered repre-
sentations. By that time, the set Πtemp(G) had been classified by Harish-Chandra
up to a set of Plancherel measure 0. The remaining singular representations in
Πtemp(G) were classified soon afterwards by Knapp and Zuckerman [114] [115],
which meant that the Langlands classification then gave all the irreducible represen-
tations. The setting in Langlands’ paper was actually slightly different. He replaced
Harish-Chandra’s semisimple Lie groups by groups G(R) of real points, in which
G here represents a reductive algebraic group over R. (A reductive algebraic group
is a finite quotient of the product of a semisimple algebraic group with an alge-
braic torus.) The Langlands classification was soon extended to p-adic groups, in the
weaker sense that it classifies all irreducible representations π ∈Π(G(Qp)) in terms
of representations that are tempered. (The tempered representations Πtemp(G(Qp))
of a p-adic group are another story, which we will come to in due course.) It thus
pertains to all the local ingredients of general automorphic representations. For ob-
vious reasons, the Langlands classification has become very influential. We shall
return to it in Section 10, as a foundation for Langlands’ later theory of endoscopy.

The three earlier contributions of Langlands to the Boulder proceedings were all
striking, but one of them, on the theory of Eisenstein series [134], dominates the
others in depth and importance. We leave it until the next section, and describe the
other two here.

All three of Langlands’ Boulder articles pertain to the quotients Γ \H, which
come with the associated representations RΓ of H on L2(Γ \H). The paper [135]
concerns the space Γ \H itself. It applies to the case

Γ = G(Z)⊂ G(R) = H

for a split (Chevalley) algebraic group G over Q, such as for example the group
G = SL(n). The problem arose from the work of Tamagawa and Weil on the volume
of Γ \H, with respect to a canonical measure obtained from what is known as the
Tamagawa measure.

Langlands established an explicit formula for the volume of Γ \H in this case,
in terms of special values of the Riemann zeta function. His short proof was an
ingenious combination of an interesting contour integral motivated by his theory
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of Eisenstein series, a well known real variable integral formula of Gindikin and
Karpelevich (which had been used by Harish-Chandra in a different context), and
some standard properties of Chevalley groups. At the time there was also a famous
conjecture for the volume attached to any G [251], which Weil had formulated in
adelic form for simply connected groups. Langlands’ paper confirmed Weil’s con-
jecture in the special case of split groups. This was extended to quasi-split groups
in 1972 by K. F. Lai [130], using the method of Langlands. Then later, following
the suggestion of Jacquet and Langlands on p. 525 of [103], Kottwitz [122] ex-
tended Lai’s result to arbitrary G, using a simple form [22, Corollary 23.6] of the
general trace formula.2 More precisely, Kottwitz extended the result to any G that
satisfies the Hasse principle, which was known at the time for any group without
factors of type E8. The Hasse principle was later established for that last case by
Chernousov [49]. Langlands’ Boulder paper [135] thus became the foundation for a
general proof of Weil’s conjecture.

The second Boulder paper [133] to discuss here concerns the representation RΓ .
Langlands used it to introduce a version in higher rank of the Selberg trace formula
for compact quotient.

Suppose that H = G is a semisimple Lie group, and that Γ is a discrete subgroup
with Γ \G compact. Among other things, Selberg introduced a formula that could
be applied to the representation RΓ in this case. It is an identity

∑
{γ}

vol(Γγ \Gγ)
∫

Gγ\G
f (x−1

γx)dx = ∑
{π}

multΓ (π) tr(π( f )), (1)

in which f ∈C∞
c (G) is to be regarded as a general test function on G. On the left-

hand side, {γ} stands for a set of representations of conjugacy classes in Γ , Γγ is the
centralizer of γ in Γ , Gγ is the centralizer of γ in G, and vol(Γγ \Gγ) is the volume
of the quotient Γγ \Gγ with respect to the right invariant measure defined by a fixed
Haar measure on Gγ . The integral over Gγ \G is taken with respect to the quotient
of a fixed Haar measure on G by the chosen measure on Gγ . On the right-hand side
{π} ranges over Πunit(G), multΓ (π) is the multiplicity (a finite nonnegative integer)
with which π occurs discretely in the irreducible decomposition of L2(Γ \G), and
tr(π( f )) is the trace of the operator

π( f ) =
∫

G
f (x)π(x)dx

on the Hilbert space V on which π acts. The left-hand side is often called the geomet-
ric side, since the objects {γ} have natural geometric interpretations. The right-hand
side is called the spectral side, since the coefficients multΓ (π) concern spectral data
in the decomposition of RΓ . We note that if G is a finite group, the formula be-
comes the well known theorem of Frobenius reciprocity, or rather the special case
that applies to the trivial one-dimensional representation of the subgroup Γ ⊂ G.

2 For simplicity we shall often restrict references for the general trace formula to this introductory
survey. The reader can then consult the original articles listed there, as needed.
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In [133], Langlands derived (1) from first principles. He followed the original
argument of Selberg, but the form of (1) is in some sense new. It differs from that
of Selberg in that it reflects the theory of group representations, and in particular,
the work of Harish-Chandra. Langlands then posed the question of using (1) to
derive an explicit formula for the multiplicity multΓ (π) of π . One does not expect
a closed formula for all π . Langlands was asking about the case that π lies in the
subset Π2(G) of discrete series. Incidentally, the subscript 2 here means “square
integrable”, in the sense that every matrix coefficient

x→ (π(x)φ ,ψ), φ ,ψ ∈V, (2)

of π is a square integrable function of x ∈ G. Harish-Chandra had earlier noted that
π belongs to the discrete series if and only if it is square integrable. Armed with the
simple trace formula (1), Langlands proposed letting the test function f be a matrix
coefficient of π as above (with φ ,ψ ̸= 0). The problem with this, however, was that
f is not compactly supported. In particular, the integrals in (1) need not converge.
Langlands added the condition that π lie in the smaller subset Π1(G) of integrable
discrete series. With this assumption, the integrals do converge, and he was able to
use the work of Harish-Chandra to compute the terms in (1) explicitly. He thereby
obtained a simple, explicit formula for multΓ (π).

As a supplement, Langlands added a conjectural interpretation of his multiplic-
ities multΓ (π) in terms of the cohomology of complex vector bundles. It was a
generalization of the Borel–Weil formula for compact groups, suggested perhaps by
a later proof of Kostant. It was very appealing at the time, especially to mathemati-
cians with a background in complex analysis, and for a few years was sometimes
known as “The Langlands Conjecture”. This was of course before the sweeping con-
jectures that evolved into the Langlands program. The original Langlands conjecture
from [133] was established a few years later by Wilfried Schmid [201].

Langlands’ formula for multΓ (γ) is an explicit, finite linear combination of
terms. These were attached to the values of the character of π at regular, elliptic
elements, namely points γ at which the centralizer Gγ is a compact abelian sub-
group of G. We shall not pause here to describe the formula precisely, or to recall
how Harish-Chandra was able to construct the character of the infinite-dimensional
representation π as a locally integrable class function on G. We note only that the
formula obtained by Langlands, simple as it may be, is part of the foundation of
the ongoing comparison of spectral data in representation theory with arithmetic
spectral data in Shimura varieties. To be sure, it is the adelic version of the formula
with its enrichment by Hecke operators that is relevant today, as well as a further
stabilization of the formula. But it is still interesting to think that this early result of
Langlands would have an implicit role in the study of Shimura varieties he began
ten years later. We shall discuss these matters in Section 8.

It is also interesting that we now have a proper chain

Π1(G)⊂Π2(G)⊂Πtemp(G)⊂Πunit(G)⊂Π(G) (3)
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of sets of (equivalence classes of) irreducible representations of G. Each of these
families has its own role to play in some aspect of the theory. It is not hard to describe
Π1(G) explicitly as a proper subset of Π2(G) in terms of the parametrization Harish-
Chandra gave to the discrete series, a problem that arose with the publication of
Langlands’ paper, and that was solved shortly thereafter.

Langlands’ paper on multiplicities provides a good introduction to the trace for-
mula (1) for compact quotient. There is now a trace formula for general arithmetic
quotients Γ \G, such as

Γ \G = SL(n,Z)\SL(n,R),

which are typically noncompact (see [22]). This is much more difficult to establish,
owing to the rather severe singularities at the boundary (which manifest themselves
analytically as badly divergent integrals). However, the trace formula has been cen-
tral to the subject. It represents an essential part of the work of Langlands, as a force
behind proofs of fundamental theorems such as those for inner twists of GL(2)
[103], base change for GL(2) [149], L-indistinguishably for ŜL(2) [127] and the
cohomology of Shimura varieties [140], as well as foundation of broader theories,
such as Endoscopy [150] and Beyond Endoscopy [155] that remain conjectural.

2 Eisenstein series

The remaining Boulder article [134] of Langlands was a concise summary (with
some supplementary ideas that were later used [11] in the development of a general
trace formula) of his unpublished 270-page manuscript On the Functional Equa-
tions Satisfied by Eisenstein Series. The manuscript was later published, with four
supplementary Appendices, as the monograph [141]. It was well ahead of its time,
and was described in the preface of [141] of having been “almost impenetrable”.
Harish-Chandra temporarily suspended his work on the Plancherel formula to study
the manuscript. The result was a set of expository lecture notes [89], which were
a little closer to his own perhaps more familiar style, but which did not contain
the most difficult part of the manuscript, the final Chapter 7. Langlands’ theory of
Eisenstein series has gradually become more widely understood. There are now a
number of expositions of varying length, the most comprehensive being the mono-
graph [178] of Mœglin and Waldspurger. Our aim here is to discuss some of the
background and the content of Langlands’ theory.

Eisenstein series have to do with the spectral decomposition of a space L2(Γ \G).
In general, there is an orthogonal decomposition

L2(Γ \G) = L2
disc(Γ \G)⊕L2

cont(Γ \G)

where L2
cont(Γ \G) is an RΓ -invariant subspace of L2(Γ \G) that decomposes into

a continuous direct sum (sometimes known as a direct integral), and L2
disc(Γ \G) is

a subspace that decomposes discretely. Langlands’ manuscript provided an explicit
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description of the continuous part of RΓ . More precisely, it gave a decomposition of
the continuous spectrum L2

cont(Γ \G) in terms of discrete spectra L2
disc(M∩Γ \M),

for a finite set of proper subgroups M of G. Before we recall how this works, we
should review the general setting of Langlands’ work, and the way it is usually
formulated today.

Langlands took G to be a semisimple Lie group and Γ to be a discrete subgroup
such that the quotient Γ \G satisfies some general axioms. By far the most important
case is that of an arithmetic quotient Γ (N)\G, where G is now a reductive algebraic
group over Q, with a Z-scheme structure (such as SL(n)), and

Γ = Γ (N) = {γ ∈ G(Z) : γ ≡ 1(mod N)}

is a principal congruence subgroup of G(Z). The right regular representation of
G(R) on L2(Γ (N)\G(R)) is best studied in the modern adelic formulation, which
we pause briefly to review. (The reader can also refer to Langlands’ adelic reformu-
lation of his results in Appendix II of [141].)

The real field R is the completion of Q with respect to the usual archimedean
absolute value | · |= | · |∞. For every prime number p, there is also a p-adic absolute
value | · |p on Q, defined by setting |x|p = p−r if

x = (ab−1)pr,

for integers a, b and r with (a, p) = (b, p) = 1, and |x|p = 0 if x = 0. Like R, its
completion Qp is a locally compact field in which Q embeds as a dense subfield,
and to which | · |p extends continuously. Unlike R, Qp has an open, compact subring

Zp = {xp ∈Qp : |x|p ≤ 1}.

The ring product of all these completions is no longer locally compact. Suppose
however that

S⊂ {v}= {∞}∪{p prime}

indexes a finite subset of these valuations that contains the archimedean absolute
value | · |∞. The product

ẐS = ∏
p̸∈S

Zp

is then a compact ring, while the larger product

AS =

(
∏
v∈S

Qv

)
ẐS

is a locally compact ring. The topological direct limit

A= lim−→
S

AS
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of adeles is therefore a locally compact ring. It contains the diagonal image of the
field Q as a discrete, cocompact subring.

For the given algebraic group G over Q, we can form the group G(A) of points
with values in the adele ring A = AQ of Q. It is a locally compact group, which
contains G(Q) as a discrete subgroup. The pair

Γ = G(Q)⊂ H = G(A)

is thus an example of the kind of object we have been considering, and to which
we can attach a Hilbert space L2(G(Q)\G(A)). This looks very different from the
concrete Hilbert space L2(Γ (N)\G(R)) above. It is not.

Suppose that K = K∞ is an open compact subgroup of the nonarchimedean part

G(A∞) =

{
x = ∏

v
xv ∈ G(A) : x∞ = 1

}
of G(A). The product G(R)K is then an open subgroup of G(A). Under some natural
conditions on G, the set of (G(Q),G(R)K) double cosets in G(A) is then finite.
Writing

G(A) =
n∏

i=1

(
G(Q) · xi ·G(R)K

)
,

for elements x1 = 1,x2, . . . ,xn in G(A∞), we obtain a right G(R)-invariant decom-
position

G(Q)\G(A)/K =
n∏

i=1
G(Q)\ (G(Q) · xi ·G(R)K)/K

∼=
n∏

i=1
(Γ i \G(R)),

for discrete subgroups

Γ
i = G(R)∩

(
G(Q) · xiK(xi)−1)

of G(R), and a G(R)-isomorphism of Hilbert spaces

L2(G(Q)\G(A)/K) =
n⊕

i=1

(
Γ

i \G(R)
)
. (4)

Each discrete group Γ i is defined by congruence conditions, which are determined
by the choice of K and xi. Each Hilbert space on the right-hand side of (4) is thus a
modest generalization of the space L2(Γ (N)\G(R)) above. But we can see directly
that it contains more information that just the regular representation of G(R).

On one hand, the action of G(R) on the spaces on either side of (4) corresponds to
the action by right convolution on either space by functions in the algebra Cc(G(R)).
But there is a supplementary convolution algebra, the Hecke algebra H (G(A∞),K)
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of compactly supported functions that are left and right invariant under translation
by the group K. It also acts by right convolution on the left-hand side of (4), in
a way that clearly commutes with the action of G(R). The corresponding action
of H (G(A∞),K) on the right-hand side of (4) includes general analogues of the
operators defined by Hecke on classical modular forms.

Hecke operators for general groups are at the heart of the theory. They contain the
data that according to Langlands’ later conjectures govern much of the arithmetic
world. One builds them into the representation theory by setting

C∞
c (G(A)) =Cc(G(R))⊗C∞

c (G(A∞))

where C∞
c (G(A∞)) denotes the space of locally constant, complex-valued functions

of compact support on G(A∞). Any function in C∞
c (G(A)) is bi-invariant under

translation by an open compact subgroup K = K∞ of G(A∞), and therefore acts
by right convolution on the corresponding space (4). When we vary f , and hence
K, we are working with the understanding that the action of the convolution algebra
C∞

c (G(A)) on the Hilbert space L2(G(Q) \G(A)) is equivalent to the right regu-
lar representation RG of G(A) on the space. This is the standard modern setting,
which despite possible appearances, streamlines the joint study of the right regular
representation of G(R) and the underlying Hecke operators.

We would now like to describe Langlands’ work on Eisenstein series. Following
the statement in [22], we shall describe the main results in complete detail, making
the rest of this section one of the more technical parts of our report. For a start,
the results are formulated in terms of the basic structure of algebraic groups, which
we will have to apply with only limited comments. We should first take care of the
minor annoyance that G(A) can have noncompact centre, which implies for trivial
reasons that L2(G(Q) \G(A)) will have no discrete spectrum. One deals with it
either by replacing G(A) by the quotient AG(R)0 \G(A), in which AG is the Q-split
component of the centre Z = Z(G) of G, or by the subgroup

G(A)1 = {x ∈ G(A) : |χ(x)|= 1, χ ∈ X(G)Q},

in which X(G)Q is the group of characters from G to Gm = GL(1) defined over Q,
and

|χ(x)|= ∏
v
|χ(xv)|v

is the (adelic) absolute value on the group A∗ = GL(1,A) of ideles.
The two modifications are equivalent. It is clear that G(Q) embeds as a discrete

subgroup of either G(A)1 or AG(R)0 \G(A). Moreover, there is a surjective homo-
morphism HG from the group G(A) onto the real vector space

aG = Hom(X(G)Q,R),

defined by setting

e⟨HG(x),χ⟩ = |χ(x)|, x ∈ G(A),χ ∈ X(G)Q,
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whose kernel is G(A)1, and whose restriction to the central subgroup AG(R)0 of
G(A) is an isomorphism onto aG. It follows that

G(A) = G(A)1×AG(R)0.

In particular, there is a unitary (G(A) = G(A)1×AG(R)0)-equivariant isomorphism
between the two Hilbert spaces

L2(G(Q)\G(A)1)∼= L2(G(Q)AG(R)0 \G(A)),

each of which will have nontrivial discrete spectra

L2
disc(G(Q)\G(A)1)∼= L2

disc(G(Q)AG(R)0 \G(A)),

(unless G is a split torus over Q). The spaces on the left are perhaps more natural.
For among other things, we can identify the irreducible unitary representations π ∈
Πunit(G) of G(A)1 with the ia∗G-orbits

{πλ (x) = π0(x)e−λ (HG(x)) : x ∈ G(A),λ ∈ ia∗G}

of irreducible unitary representations of G(A). The base point π0 can be any irre-
ducible unitary representation of G(A) whose restriction of G(A)1 is π . A similar
convention holds if π is replaced by any representation R of G(A)1, such as for
example the representation RG,disc of G(A)1 on L2

disc(G(Q) \G(A)1), and λ is any
point in the complex vector space a∗G,C = a∗G⊗C, with the understanding that R0 is
a representation of AG(R)0 \G(A). These conventions are due to Harish-Chandra,
and are quite natural, even if they might seem cumbersome at first.

We fix a minimal parabolic subgroup P0 of G over Q, together with a Levi decom-
position P0 = M0N0, where M0 (resp. N0) is a reductive (resp. unipotent) subgroup
of P0 over Q. We also fix a suitable maximal compact subgroup K0 = ∏v Kv of G(A)
[12, p. 9] with G(A) = P0(A)K0. We shall then work in what remains of this section
with the finite set of standard parabolic groups, namely the subgroups P of G which
contain P0. Any such P has a unique Levi decomposition

P = MPNP,

in which the Levi component MP contains M0. Since P contains P0, we then have a
decomposition

G(A) = P(A)K0 = NP(A)MP(A)K0 = NP(A)MP(A)1AP(R)0K0,

where AP = AMP in the notation above (with MP in place of G). This allows us to
define a continuous mapping

HP : G(A)→ aP, aP = aMP ,

by setting
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HP(nmk) = HMP(m), n ∈ NP(A),m ∈MP(A),k ∈ K,

where HMP and aP = aMP are again as above. Finally, we fix Haar measures dx, dn,
dm, da and dk on the groups G(A), NP(A), MP(A)1 (or MP(A), depending on the
context), AP(R)0 and K such that for the decomposition above, we have

dx = e2ρP(HP(a)) dndmdadk.

Here ρP is the familiar vector in aP such that e2ρP(HP(·)) is the modular function on
the (nonunimodular) group P(A). The notation is again due to Harish-Chandra, and
is convenient for working with representations of G(A) induced from P(A).

Suppose that P is a standard parabolic subgroup of G, and that λ lies in a∗P,C. We
write

y→IP(λ ,y), y ∈ G(A),

for the induced representation

IndG(A)
P(A) (INP(A)⊗RMP,disc,λ )

of G(A) obtained from λ and the discrete spectrum of the reductive group MP. This
representation acts on the Hilbert space HP of measurable functions

φ : NP(A)MP(Q)AP(R)0 \G(A)→ C

such that the function
φx : m→ φ(mx),

belongs to L2
disc(MP(Q)\MP(A)1) for almost all x ∈ G(A), and such that

∥φ∥2 =
∫

K

∫
MP(Q)\MP(A)1

|φ(mk)|2 dmdk < ∞.

For any y ∈ G(A), IP(λ ,y) maps a function φ ∈HP to the function

(IP(λ ,y)φ)(x) = φ(xy)e(λ+ρP)(HP(xy))e−(λ+ρP)(HP(x)).

We have put the twist by λ into the operator IP(λ ,y), rather than the underlying
Hilbert space HP, in order that HP be independent of λ . The function eρP(HP(·)) is
included in the definition in order that the representation IP(λ ) be unitary whenever
the inducing representation is unitary, which is to say, whenever λ belongs to the
subset ia∗P of a∗P,C.

Suppose that
RMP,disc ∼=

⊕
π

π ∼=
⊕

π

(⊗
v

πv

)
is the decomposition of RMP,disc into irreducible representations π =

⊗
v πv of

MP(A)/AP(R)0. The induced representation IP(λ ) then has a corresponding de-
composition
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IP(λ )∼=
⊕

π

IP(πλ )∼=
⊕

π

(⊗
v

IP(πv,λ )
)

in terms of induced representations IP(πv,λ ) of local groups G(Qv). This follows
from the definition of induced representation, and the fact that

eλ (HMP (m)) = ∏
v

eλ (HMP (mv)),

for any point m=∏v mv in MP(A). If λ ∈ ia∗P is in general position, all of the induced
representations IP(πv,λ ) are irreducible. Thus, if we understand the decomposition
of the discrete spectrum of MP into irreducible representations of the local groups
MP(Qv), we understand the decomposition of the generic induced representations
IP(λ ) into irreducible representations of the local groups G(Qv).

The aim of the theory of Eisenstein series is to construct intertwining operators
between the induced representations IP(λ ) and the continuous part of the regular
representation R of G(A). The problem includes being able to construct intertwin-
ing operators among the representations IP(λ ), as P and λ vary. The symmetries
among pairs (P,λ ) are given by the Weyl sets W (aP,aP′) of Langlands. For a given
pair P and P′ of standard parabolic subgroups, W (aP,aP′) is defined as the set of
distinct linear isomorphisms from aP ⊂ a0 onto aP′ ⊂ a0 obtained by restrictions of
elements in the (restricted) Weyl group

W0 = Norm(G,A0)/Cent(G,A0).

Suppose for example that G = GL(n). If P and P′ correspond to the partitions
(n1, . . .np) and (n′1, . . .n

′
p′) of n, the set W (aP,aP′) is empty unless p = p′, in which

case
W (aP,aP′)∼= {s ∈ Sp : n′i = ns(i), 1≤ s≤ p}.

In general, we say that P and P′ are associated if the set W (aP,aP′) is nonempty. We
would expect a pair of induced representations IP(λ ) and IP′(λ

′) to be equivalent
if P and P′ belong to the same associated class, and λ ′ = sλ for some element
s ∈W (aP,aP′).

The formal definitions apply to any elements x ∈ G(A), φ ∈HP and λ ∈ a∗M,C.
The associated Eisenstein series is

E(x,φ ,λ ) = ∑
δ∈P(Q)\G(Q)

φ(δx)e(λ+ρP)(HP(δx)). (5)

If s belongs to W (aP,aP′), the operator

M(s,λ ) : HP→HP′

that intertwines IP(λ ) with IP′(sλ ) is defined by

M(s,λ )(x) =
∫

φ(w−1
s nx)e(λ+ρP)(HP(w−1

s nx))e(−sλ+ρP′ )(HP′ (x)) dn, (6)
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where the integral is taken over the quotient

NP′(A)∩wsNP(A)w−1
s \NP′(A),

and ws is any representative of s in G(Q). A reader so inclined could motivate both
definitions in terms of finite group theory. Each definition is a formal analogue of
a general construction of Mackey [169] for the space of intertwining operators be-
tween two induced representations IndH

H1
(ρ1) and IndH

H2
(ρ2) of a finite group H.

It follows formally from the definitions that

E(x,IP(λ ,y)φ ,λ ) = E(xy,φ ,λ )

and
M(s,λ )IP(λ ,y) = IP′(sλ ,y)M(s,λ ).

These are the desired intertwining properties. However, (5) and (6) are defined by
sums and integrals over noncompact spaces. They do not generally converge. It is
this fact that makes the theory of Eisenstein series so difficult.

Let H 0
P be the subspace of vectors φ ∈HP that are K0-finite, in the sense that

the subset
{IP(λ ,k)φ : k ∈ K0}

of HP spans a finite-dimensional space, and that lie in a finite sum of irreducible
subspaces of HP under the action of IP(λ ) of G(A). The two conditions do not
depend on the choice of λ . Taken together, they are equivalent to the requirement
that the function

φ(x∞x∞), x∞ ∈ G(R), x∞ ∈ G(A∞)

be locally constant in x∞, and smooth, KR-finite and Z∞-finite in x∞, where Z∞ =
ZG,∞ denotes the algebra of bi-invariant differential operators on G(R). The space
H 0

P is dense in HP.
For any P, we can form the chamber

(a∗P)
+ = {Λ ∈ a∗P : Λ(α∨)> 0, α ∈ ∆P}

in a∗P, in which ∆P denotes the set of simple parabolic roots of (P,AP).

Lemma (Langlands). Suppose that φ ∈H 0
P and that λ lies in the open subset

{λ ∈ a∗P,C : Re (λ ) ∈ ρP +(a∗P)
+}

of a∗P,C. Then the sum (5) and the integral (6) that define E(x,φ ,λ ) and (M(s,λ )φ)(x)
both converge absolutely to analytic functions of λ .

For spectral theory, one is interested in points λ such that IP(λ ) is unitary, which
is to say that λ belongs to the real subspace ia∗P of a∗P,C. This is outside the domain
of absolute convergence for (5) and (6). The problem is to show that the functions
E(x,φ ,λ ) and M(s,λ )φ have analytic continuation to this space. The following
theorem summarizes Langlands’ main results in Eisenstein series.
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Main Theorem (Langlands).

(a) Suppose that φ ∈H 0
P . Then E(x,φ ,λ ) and M(s,λ )φ can be analytically contin-

ued to meromorphic functions of λ ∈ a∗P,C that satisfy the functional equations

E(x,M(s,λ )φ ,sλ ) = E(x,φ ,λ ) (7)

and
M(ts,λ ) = M(t,sλ )M(s,λ ), t ∈W (aP,aP′). (8)

If λ ∈ ia∗P, both E(x,φ ,λ ) and M(s,λ ) are analytic, and M(s,λ ) extends to a
unitary operator from HP to HP′ .

(b) Given an associated class P = {P}, define L̂P to be the Hilbert space of fam-
ilies of measurable functions

F = {FP : ia∗P→HP, P ∈P}

that satisfy the symmetry condition

FP′(sλ ) = M(s,λ )FP(λ ), s ∈W (aP,aP′),

and the finiteness condition

∥F∥2 = ∑
P∈P

n−1
P

∫
ia∗P
∥FP(λ )∥2 dλ < ∞,

where
nP = ∑

P′∈P

|W (aP,aP′)|

for any P ∈P . Then the mapping that sends F to the function

∑
P∈P

n−1
P

∫
ia∗P

E(x,FP(λ ),λ )dλ , x ∈ G(A),

defined whenever FP(λ ) is a smooth, compactly supported function of λ with
values in a finite-dimensional subspace of H 0

P , extends to a unitary map-
ping from L̂P onto a closed G(A)-invariant subspace L2

P(G(Q) \G(A)) of
L2(G(Q) \G(A)). Moreover, the original space L2(G(Q) \G(A)) has an or-
thogonal direct sum decomposition

L2(G(Q)\G(A)) =
⊕
P

L2
P(G(Q)\G(A)). (9)

The theorem gives a qualitative description of the decomposition of R. It provides
a finite decomposition

R =
⊕
P

RP ,
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where RP is the restriction of R to the invariant subspace L2
P(G(Q) \G(A)) of

L2(G(Q)\G(A)). It also provides a unitary intertwining operator from RP onto the
representation R̂P of G(A) on L̂P defined by

(R̂P(y)F)P(λ ) = IP(λ ,y)FP(λ ), F ∈ L̂2
P , P ∈P.

The theorem is thus compatible with the general intuition we retain from the theory
of Fourier series and Fourier transforms.

In summary, let us say that while it might seem a little overwhelming at first,
the theorem is quite comprehensive, and ultimately, remarkably simple. It is exactly
what one might hope for in terms of an explicit decomposition of the continuous
spectrum L2

cont(G(Q) \G(A)) into irreducible representations. On the other hand,
the proof of the theorem is long and complex, to an extent that is hard to quantify
in a few words. Langlands had to overcome many obstacles, the most severe being
the analytic problems treated in Chapter 7 of [141]. This last chapter consists of
a sophisticated residue scheme, designed to construct inaccessible constituents of
discrete spectra L2

disc(M(Q) \M(A)1) and their Eisenstein series from residues of
cuspidal Eisenstein series.

We define a locally integrable function φ on G(Q) \G(A) to be cuspidal if for
every standard parabolic subgroup P = MN distinct from G, the integral∫

N(Q)\N(A)
φ(nx)dn, x ∈ G(A),

vanishes for almost all x. The main property of these functions is that they lie in the
relative discrete spectrum [10], [141]. In other words, the G(A)-invariant subspace
L2

cusp(G(Q)\G(A)) of cuspidal functions in L2(G(Q)\G(A)) lies in the summand
L2

G(G(Q)\G(A)) of the decomposition (9) attached to P = {G}, which is the space
of functions φ whose restriction to G(A)1 lies in L2

disc(G(Q)\G(A)1). For any P, let
H 0

P,cusp be the subspace of functions φ in H 0
P such that the function φx(m) = φ(mx)

defined above is cuspidal for almost all x. A cuspidal Eisenstein series is then a
series (5) in which φ lies in the subspace H 0

P,cusp of H 0
P .

Langlands studied cuspidal Eisenstein series in the first six chapters of the vol-
ume. These objects were difficult enough, but there were some available techniques
of Selberg, especially for the case of rank 1 (in which dim(AP) = 1). Langlands
used these techniques, and others that he created. By the end of Chapter 6, he had
established the analytic continuation and functional equations from Part (b) of the
theorem, for cuspidal Eisenstein series.

Noncuspidal Eisenstein series, however, were a different matter. We now have a
classification for the noncuspidal discrete spectrum for general linear groups [177],
as well as a conjectural classification [18] in general, but it does not help us with
their Eisenstein series. It was Langlands’ indirect residue scheme that ultimately
led to the required properties. His resolution was a very delicate interplay between
the desired analytic continuation and the required spectral properties, all within an
extended induction argument.
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In general, the irreducible representations (typically induced) in the spectral de-
composition of each space L2

P(G(Q) \G(A)) are called automorphic representa-
tions (while the associated Eisenstein series are called automorphic forms). Let us
write Πtemp(G) for the set of such representations, where the subscript stands for
“globally tempered”, in whatever sense this term would have if there were a global
Schwartz space on G(Q)\G(A). (It does not mean that the local constituents of rep-
resentations are tempered.) We can also write Π2(G) and Π1(G) for the subset of
automorphic representations in the decompositions of the spaces L2

G(G(Q)\G(A))
and L2

cusp(G(Q) \G(A)). Finally, we should say that the formal definition of auto-
morphic representations [35, 145] gives a wider class of irreducible representations
Π(G) of G(A), which of course includes the subset Πunit(G) of unitary automorphic
representations. We obtain a proper chain

Π1(G)⊂Π2(G)⊂Πtemp(G)⊂Πunit(G)⊂Π(G) (10)

of sets of irreducible automorphic representations of G(A), with obvious analogy to
the chain (3) for real groups. This global notation leaves us free to write Πcusp(G)
for the set of all cuspidal automorphic representations of G(A), thereby allowing
for nonunitary central characters. We then have

Π1(G) = Πcusp(G)∩Π2(G) = Πcusp(G)∩Πtemp(G) = Πcusp(G)∩Πunit(G).

The analogy between the local and global chains (3) and (9) is a little fanciful,
but suggests analogies between the two kinds of representations. The local chain
(3) was actually taken for a semisimple Lie group G, in which the centre is finite.
At this point, we would take G to be a Lie group that has been implicitly identified
with the group of real points G(R) of a reductive group over R. The symbol Π2(G)
in (3) would then stand for the relative discrete series, which is to say, tempered
representations π of G(R) whose restrictions to G(R)1 are in the discrete series.
The equivalent term square integrable would then be understood to mean square
integrable modulo the centre of G. This slight generalization was in fact Harish-
Chandra’s original definition.

We will not try to formulate an analogue of the chain (9) for spaces A (G) of
automorphic forms. However, this is a good opportunity to say a few words about
these objects, even if we do not recall their precise definition from [35]. We are of
course speaking here of the modern day generalizations of classical modular forms
on the upper half plane from which the subject as a whole now takes its name. (See
[31].)

Roughly speaking, an automorphic form is a function on G(Q) \G(A), while
an (irreducible) automorphic representation is a representation π of G(A) by right
translation on a space of automorphic forms. We usually think of π as a representa-
tion (often unitary) on a Hilbert space. However, an automorphic form on G(A) is
required to satisfy finiteness conditions akin to those on the pre-Hilbert space H 0

G
stated prior to the lemma above (KR = K∞-finite and ZR = Z∞-finite in the com-
ponent x∞, K∞-finite and compactly supported in the component x∞, of the variable
x= x∞x∞), as well as a condition of moderate growth (slowly increasing). With these
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constraints, we have therefore to treat π as a representation of the “group algebra”

H = H∞⊗H ∞ = HR⊗H R

of G(A) (not to be confused with the Hilbert space HG above). The factor H ∞ is
the convolution algebra of locally constant functions of compact support on G(A∞),
while H∞ is the convolution algebra of distributions on the real group GR = G∞

that are supported on the maximal compact subgroup KR = K∞. They are often
called Hecke algebras, and they act by right convolution on the space of automor-
phic forms. The algebra HR = H∞ is less well known, but it is quite elegant. It
streamlines the archimedean actions as a (gR,KR)-module (gR is the Lie algebra of
GR) into that of a single convolution algebra, which thus becomes parallel to the
nonarchimedean action. It seems to have been first introduced by Flath [72], and
was a basic part of the definitions in [35].

In practice, one generally wants to quantify the spaces of automorphic forms
under consideration. Suppose that τ is the idempotent element in H∞ attached to a
finite set of irreducible characters on K∞, that J is an ideal of finite codimension in
Z∞, that K is any open compact subgroup of G(A∞) and that N is a positive, slowly
increasing function of G∞ = G(R). One can then write A (τ,J,K,N) for the space
of smooth (complex-valued) functions f on G(A) with the following properties

(a) f (γx) = f (x), γ ∈ G(Q), x ∈ G(A),
(b) f ∗ τ = f ,
(c) z f = 0, z ∈ J,
(d) f (xk) = f (x), x ∈ G(A), k ∈ K,
(e) | f (x∞)| ≤ c f N(x∞), x∞ ∈ G∞,

for some positive constant c f .

Then A (τ,J,K,N) is a space of automorphic forms on G(A), which is stabilized
by the natural subalgebra of H attached to τ and K.

It is the nonarchimedean component of this subalgebra, the Hecke algebra

H (G(A∞),K) = H (K \G(A∞)/K)

of compactly supported, K-biinvariant functions on G(A∞), that is particularly rele-
vant to number theory. At the centre of its study are the unramified local factors

Hv = H (Gv,Kv) = H (Kv \Gv/Kv)

at which Kv is a hyperspecial maximal compact subgroup of Gv = G(Qv). These
spherical Hecke algebras are abelian. What they revealed soon after Langlands’
work on Eisenstein series became a critical part of his next great discovery.

The notion of an automorphic form owes much to Harish-Chandra [89], as well
as to Langlands. It is presented in [35, (1.3), (4.2)]. Borel and Jacquet followed
this with the formal definition [35, (4.6)] of an automorphic representation as an
irreducible constituent of a space of automorphic forms. This was supplemented
with an equivalent formulation by Langlands [145, Proposition 2] as an irreducible
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constituent of a representation of G(A) parabolically induced from a cuspidal au-
tomorphic representation. The passage between them was provided by Langlands’
theory of Eisenstein series.

The spectral theory of Eisenstein series was initiated by Selberg [205], [206],
[207]. He established versions of the Langlands Main Theorem for various non-
compact quotients

Γ \X+
∼= Γ \SL(2,R)/SO(2,R)

of the upper half plane
X+ = {z ∈ C : Im (z)> 0}

and more generally, for the line bundles on these quotients attached to characters of
the stabilizer SO(2,R) of

√
−1. This amounts to the theory of Eisenstein series on

a noncompact quotient Γ \SL(2,R). Selberg also included classical Hecke opera-
tors for modular forms into his constructions. This amounts in turn to the theory of
Eisenstein series for the adelic quotient SL(2,Q)\SL(2,A).

Selberg regarded Eisenstein series as a step towards a trace formula for noncom-
pact quotient. In adelic terms, his aim was to find a concrete formula for the trace of
the operator Rdisc( f ) obtained by restricting the right convolution operator

R( f ) =
∫

SL(2,A)
f (x)R(x)dx, f ∈C∞

c (SL(2,A)),

on L2(SL(2,Q)\SL(2,A)) to the discrete spectrum. By definition

Rdisc( f ) = R( f )−Rcont( f )

where Rcont( f ) is the restriction of R( f ) to the continuous spectrum. The purpose
of Eisenstein series was to provide an explicit construction for Rcont( f ). We shall
return to this topic in Section 6.

3 L-functions and class field theory

The next period in Langlands’ work is often identified with his 1967 letter to Weil
[132]. It was subsequently expanded [138] to the series of far-reaching conjectures
and their consequences that became known as the Langlands program. Most im-
mediately striking perhaps was Langlands’ discovery of the long sought nonabelian
class field theory. It will be a topic for the next section. In this section, we shall pre-
pare the way. We shall review the theory of L-functions, and its relation to abelian
class field theory. At the end, we shall then describe the hints Langlands found in
Eisenstein series of what was lying ahead.

The last section might have seemed rather technical to a nonspecialist. We shall
try to make amends in this section by moving at a more leisurely pace. In particu-
lar, we shall begin our discussion with the almost universally familiar notion of a
Dirichlet series.
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We recall that a Dirichlet series is an infinite series of the form

∞

∑
n=1

ann−s

for complex coefficients an and a complex number s. If the coefficients satisfy a
bound

|an| ≤Cna, n ∈ N,

for positive numbers C and a, the series converges absolutely to an analytic func-
tion of s in the right half plane Re (s) > a+ 1. The original model is of course the
Riemann zeta function

ζ (s) =
∞

∑
n=1

n−s.

It converges to an analytic function of s in the right half plane Re (s)> 1. It also has
an analytic continuation to a meromorphic function of s ∈ C, whose only singular-
ity is a simple pole at s = 1, and which satisfies a functional equation relating its
values at s and 1− s. The Riemann zeta function also has an Euler product. By the
fundamental theorem of arithmetic, it can be represented as a product

ζ (s) = ∏
p

(
1− p−s)−1

= ∏
p

(
∞

∑
k=1

(pk)−s

)

of Dirichlet series attached to prime numbers.
An L-function is a Dirichlet series with supplementary properties. There seems

to be no universal agreement as to the definition, but let us say that an L-function
is a Dirichlet series that converges in some right half plane, and that has an Euler
product of the general form

L(s) = ∏
p

(
∞

∑
k=1

cp,k p−ks

)
,

for complex numbers cp,k. We will not insist on analytic continuation and funda-
mental equation, simply because this has not been established for many of the L-
functions that arise naturally, even though it is widely expected to hold.

In algebraic number theory, L-functions are used to encode arithmetic data. The
coefficients cp,k in the Euler product turn out to provide a natural way to repre-
sent fundamental properties of the prime numbers. The essential examples are the
L-functions of E. Artin, which were constructed from data that govern class field
theory.

The goal of class field theory, as its name suggests, is to classify fields. More
precisely, one would like to classify the Galois extensions of a given number field
F . Let us review the problem in elementary terms.
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We have been working in this paper with the base field F =Q for simplicity. Sup-
pose then that K is a finite Galois extension of Q, which we assume to be monogenic.
This means that we can represent K as the splitting field of a monic, irreducible, in-
tegral polynomial

f (x) = xn +an−1xn−1 + · · ·+a1x+a0, ai ∈ Z.

We then consider the factorization of f (x) modulo a variable prime p. It is best to
exclude the finite set of ramified primes for which f (x) has repeated factors modulo
p, a set S in which we also include the archimedean place ∞ to be consistent with
earlier notation. For each p ̸∈ S, the corresponding factorization,

f (x)≡ f1(x) · · · fr(x)(mod p)

of f is then a product of distinct irreducible polynomials fi(x), whose degrees give
us an (ordered) partition

Πp = (n1, . . . ,nr), ni = deg( fi),

of n. We thus obtain a mapping from unramified primes p ̸∈ S to partitions Πp of n.
(If K/Q is not monogenic, f (x) need not be monic. In this case, we simply enlarge
S to include all prime divisors of the leading coefficient an.)

The interest in this mapping is in its implication for the Galois group

ΓK/Q = Gal(K/Q)

of K over Q. This group is given by f (x) as a conjugacy class of subgroups of the
symmetric group Sn. Suppose for a moment that it equals the full symmetric group.
The conjugacy classes of Gal(K/Q) are then parametrized by partitions of n. If Φp
is the conjugacy class of Πp in Gal(K/Q), the factorization of f (x) modulo p then
gives us a mapping

p→Φp (11)

from primes p ̸∈ S to conjugacy classes Φp in ΓK/Q. In general, as we have said,
Gal(K/Q) is determined by f only as a conjugacy class of subgroups of Sn. How-
ever, a basic construction in algebraic number theory attaches a canonical conjugacy
class in Gal(K/Q) to the unramified prime p, the Frobenius class

Frobp = Φp.

Its implication for the factorization of f is that among the conjugacy classes in ΓK/Q
attached to a partition Πp, there is one that is canonical, the Frobenius class of p.

In these concrete terms, the problem for class field theory would be to charac-
terize the prime p factorization data of f (x) in independent terms. More precisely,
for any Galois extension (K/Q), any partition Π of n, and any conjugacy class c in
Gal(K/Q) that maps to the conjugacy class of Π in Sn say, can one characterize the
fibre
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PS(c,K/Q) = {p ̸∈ S : Φp = c}

of c in some independent way? Of special interest is the case that c is the trivial class
1 in Gal(K/Q). In this case, the fibre

Spl(K/Q) = SplS(K/Q) = PS(1,K/Q),

the set of primes that split completely in K, is just the set of primes for which f (x)
breaks into linear factors modulo p. Its importance is in the fact, which can be
obtained as a direct consequence of the Tchebotarev density theorem for example,
that the mapping

K/Q→ Spl(K/Q),

from finite Galois extensions of Q to subsets of prime numbers {p}, is injective. In
other words, the set Spl(K/Q) of primes represents a “signature” for the extension
(K/Q), in the sense that it characterizes it completely. The problem for class field
theory would then be to characterize the image of this mapping in some independent
fashion. This would provide a classification of Galois extensions of Q.

These remarks are primarily for motivation, since the subject is inevitably more
subtle. Nevertheless, such considerations were behind the development of (abelian)
class field theory in the early part of the twentieth century. They also led E. Artin
to define the L-functions that bear his name, as a way to encode the data provided
by the conjugacy classes {Φp} in Gal(K/Q). The coefficients in L-functions are
of course numbers. The simplest way to attach numbers to a conjugacy class is to
embed the underlying Galois group into a general linear group, and then take the
coefficients of the resulting characteristic polynomials. An Artin L-function for a
Galois extension (K/Q) therefore depends on the choice of a representation

r : Gal(K/Q)→ GL(n,C).

In its simplest form, it is defined as an Euler product

LS(s,r) = ∏
p ̸∈S

Lp(s,r), (12)

with local factors
Lp(s,r) = det(1− r(Φp)p−s)−1,

built out of unramified Frobenius conjugacy classes Φp in Gal(K/Q). It converges
for Re (s)> 1 to an analytic function of s.

Artin showed that the Euler product LS(s,r) actually has analytic continuation to
a meromorphic function of s∈C, with a functional equation that relates its values at
s and 1−s. More precisely, he defined Euler factors Lv(s,r) at the finite set of places
v ∈ S, including the archimedean place v = ∞. He then showed that the completed
product

L(s,r) = LS(s,r)LS(s,r) = ∏
v

Lv(s,r) (13)

satisfies the precise functional equation
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L(s,r) = ε(s,r)L(1− s,r∨), (14)

for the contragredient representation

r∨ = tr(g−1), g ∈ Gal(K/Q),

of r, and a certain rather mysterious monomial

ε(s,r) = abs, a ∈ C×, b > 0.

Given the analytic continuation, Artin then made the following remarkable con-
jecture.

Conjecture (Artin). Suppose that r is irreducible. Then L(s,r) is an entire function
of s∈C, unless r is the trivial 1-dimensional representation, in which case LS(s,r)=
L∞(s,r) is the Riemann zeta function.

Artin’s proof of the analytic continuation and functional equation was intimately
tied to abelian class field theory. This is the study of abelian extensions (K/F) of a
number field F , which is to say finite Galois extensions (K/F) with abelian Galois
group

ΓK/F = Gal(K/F).

We shall say a few words about this fundamental subject, continuing for the moment
to assume that F =Q in order to be as concrete as possible.

Consider the special case of Artin’s construction in which the Galois group
ΓK/F = ΓK/Q is abelian, and the representation r is irreducible. In other words, r is a
1-dimensional character on ΓK/F . If p lies outside the finite set S of ramified places,
the associated Frobenius class Φp in ΓK/Q is simply an element in this abelian group.
We can use the nonzero complex numbers

{r(Φp) : p ̸∈ S}

to define a character χS on the locally compact group

GL(1,AS) = (A∗)S = {xS ∈∏
p ̸∈S

Q∗p : |xp|p = 1 for almost all p}=
∼

∏
p̸∈S

Q∗p

by setting
χ

S(xS) = ∏
p̸∈S

χp(xp) = ∏
p̸∈S

r(Φp)
vp(xp), (15)

for the valuation
vp(xp) =− logp(|xp|p), xp ∈Q∗p.

Class field theory asserts that χS is the restriction to
(
AS
)∗ of a uniquely determined

automorphic representation of GL(1). In other words, there is a unique continuous,
complex character χ on the quotient
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CF = F∗ \A∗F = GL(1,F)\GL(1,AF), F =Q,

whose restriction to the image of (A∗)S equals χS. Moreover, with a minor ad-
justment in the definition, the mapping r→ χ becomes an isomorphism of abelian
groups. We can think of this property as a fundamental arithmetic law of nature. We
restate it formally as follows.

Let
Γ

ab
F = Gal(Fab/F), F =Q,

be the Galois group of the maximal abelian extension Fab of F =Q (in some fixed
algebraic closure F of F). It is an inverse limit

Γ
ab

F = lim←−
K

ΓK/F

over finite abelian extensions, and hence a compact, totally disconnected group. A
continuous 1-dimensional character r in Γ ab

F has cofinite kernel, and can therefore
be identified with a character on the Galois group ΓK/F of a finite extension (K/F).
This in turn maps to a character χS on the group of S-idèles

IS
F = (A∗F)S = {xp ∈ F∗p : p ̸∈ S} ⊂ IF = A∗F , F =Q,

for a finite set of valuations S outside of which r is unramified. The following big
theorem, in which we have taken F = Q, is then the central assertion of class field
theory.

Global Reciprocity Law. For any r, the character χS on IS
F descends to a unique

character χ on the idèle class group

CF = F∗ \ IF = F∗ \A∗F , F =Q.

The resulting mapping r→ χ becomes an isomorphism from the group of characters
r on Γ ab

F onto the group of characters χ of finite order on CF . The dual (Artin)
mapping

θF : CF → Γ
ab

F

is therefore a continuous surjective homomorphism, whose kernel is the connected
component C0

F of 1 in CF .

This assertion is a culmination of work by mathematicians over many years,
from the law of quadratic reciprocity of Gauss to the full reciprocity law of Artin,
which is a more precise version of the assertion. For the Artin reciprocity law also
characterizes the preimage of each finite quotient ΓK/F of Γ ab

F as the cokernel of the
norm mapping NK/F from CK to CF . In general, the importance of the reciprocity
law lies especially in the fact that it applies, as stated, if F is any number field. We
need only replace prime numbers p in Q by prime ideals in F in the definitions
above.
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Needless to say, the proof of the reciprocity law is deep. The original argument
had a large analytic component, based on the properties of certain L-functions. A
purely algebraic proof based on the cohomology of Galois groups came later. For
the field F = Q, the proof is actually much easier than in the general case. This
is reflected in the Kronecker–Weber theorem, which characterizes Qab explicitly as
the field generated by the complex numbers

{e
2πi
n : n ∈ N}.

A similarly explicit result holds for any imaginary quadratic extension F of Q. For
in this case, the Kronecker Jugendtraum characterizes Fab in terms of special values
of elliptic functions attached to elliptic curves over Q with complex multiplication in
F . We recall that Hilbert’s twelfth problem was to characterize the maximal abelian
extension Fab of any F in terms of special values of natural analytic functions. Little
progress has since been made on this problem, apart from the 1955 generalization
of the Jugendtraum by Shimura and Taniyama to a totally complex extension of a
totally real field.

How did Artin use the reciprocity law to prove his functional equation? We
must first recall that Hecke has earlier attached an L-function LS(s,χ) to any
(quasi)character χ on the group CF = F∗ \ A∗F . We are using adelic notation
here, as we did in our discussion of the reciprocity law, even though it was only
later that Chevalley introduced the group of idèles I = A∗F . Hecke called χ a
Grössencharacter, as a generalization of a Dirichlet character and of its analogue
introduced by Weber for the number field F , which we can now take to be arbitrary.
As a character on CF (rather than what Hecke would have considered a generalized
ideal class character), χ has an unramified part χS on the locally compact group

(
AS

F
)∗

=
∼

∏
v̸∈S

F∗v .

It takes the form
χ

S(xS) = ∏
v ̸∈S

χv(xv) = ∏
v ̸∈S

cv(xv)
v

for complex numbers cv ∈C∗ attached to χ , and with v being the normalized valua-
tion of F∗v . This of course is parallel to (15), where we had F =Q. In particular, S is
a finite set of valuations of F that contains both the set V∞ of archimedean places and
the set of finite places v at which χv is ramified. The unramified Hecke L-function
is then the infinite product

LS(s,χ) = ∏
v ̸∈S

Lv(s,χ) = ∏
v ̸∈S

(1− cvq−s
v )−1,

where qv is the order of the residue field F∗v . After introducing this function, Hecke
defined Euler factors Lv(s,χ) at the remaining places v∈ S, and then proved that the
completed product
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L(s,χ) = LS(s,χ)LS(s,χ) = ∏
v

Lv(s,χ)

satisfies the functional equation

L(s,χ) = ε(s,χ)L(1− s,χ∨) (16)

where χ∨(x) = χ(x−1) and

ε(s,χ) = abs, a ∈ C∗, b > 0.

The central tenet of (global) class field theory can be formulated as an asser-
tion that every abelian Artin L-function LS(s,r) over F equals a Hecke L-function
LS(s,χ). This follows from the earlier definition of the mapping r → χ , the def-
inition of the L-functions themselves, and of course, the Global Reciprocity Law.
Therefore LS(s,r) inherits all the properties established by Hecke for LS(s,χ). It
has a completion that equals L(s,χ), and therefore has analytic continuation, and
functional equation (16). This is a fundamental fact, that to this day has no direct
proof. It was the main step in Artin’s derivation of the functional equation (14) for
an arbitrary (nonabelian) representation

r : Gal(E/F)→ GL(n,C).

The other step was a formal decomposition

LS(s,r) = ∏
i

LS(s,ri)
ai ,

for representations ri of cyclic Galois groups Γi ⊂ Gal(K/F) and rational numbers
ai, obtained by Artin by first proving a character-theoretic decomposition

r = ∑
i

ai Ind(Γ ,Γi; ri), Γ = Gal(K/F),

of r, and then using the compatibility of the L-functions with representation theo-
retic operations such as induction and direct sums. He was then able to use this to
construct his completed L-function L(s,r) from those of Hecke. The last step was to
use the resulting formal identity of quotients

L(s,r)
L(1− s,r∨)

= ∏
i

(
L(s,ri)

L(1− s,r∨i )

)ai

= ∏
i
(aibs

i )
ai

to establish the identity

L(s,r)
L(1− s,r∨)

= abs, a ∈ C∗, b > 0.

This is the functional equation (16).
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We refer the reader to the article [53] of Cogdell on Artin L-functions for discus-
sion of this and other questions. The earlier history of class field theory is clearly
presented in the articles [252] and [93]. We also note that the argument sketched
above becomes quite clear after the later proof of the Brauer Induction Theorem.
This establishes that the rational numbers ai may in fact be taken to be integers. We
should point out, however, that this improvement gives little information about the
Artin conjecture stated above. To rule out any poles of the L-function L(s,r), we
would need to control the zeros of the abelian L-functions LS(s,ri) with ai < 0. This
of course would be a tall order.

It was with the thesis [236] of Tate that the work of Hecke was put into the adelic
form that we have followed here. This made many of Hecke’s arguments more trans-
parent. For example, the functional equation (16) is seen to be a natural consequence
of the Poisson summation formula on the locally compact abelian group AF , with
respect to the discrete subgroup F . It is at this point that a new ingredient enters the

theory, a nontrivial additive character ψ on AF/F , with decomposition ψ =
∼
∏vψv

into additive characters on the groups Fv. Its role is to identify the Pontryagin dual
of AF with AF itself. The adelic formulation of [236] also leads to an important
new way to see the final result. Tate showed that the global ε-factor in (16) has a
canonical decomposition

ε(s,χ) = ∏
v∈S

εv(s,χv,ψv) (17)

into local ε-factors
εv(s,χv,ψv) = ε(χv,ψv)q

−nv(s− 1
2 )

v

that depend only in the localizations ψv and χv of ψ and χ , for nonzero complex
numbers

ε(χv,ψv) = ε( 1
2 ,χv,ψv),

integers nv = n(rv,ψv) known as conductors, and integers qv given by the residual
degree of Fv if v is nonarchimedean, and 1 if v is archimedean. The local ε-factors in
the functional equation turned out to have a fundamental role in the local Langlands
program.

We can now turn to the work of Langlands. The first thing to mention is the
volume [81] in which Godement and Jacquet generalize Tate’s thesis from GL(1)
to GL(n). This was a major step forward, which was not due to Langlands. How-
ever, its possible existence was clearly part of his thinking right from the beginning.
Langlands was in regular communication with Godement in the 1960s, and he men-
tions the extension of Tate’s thesis on pp. 31–32 of his fundamental paper [138] as
an essential premise for his conjectures. In fact, the special case with n = 2 was
established in the volume [103] of Jacquet and Langlands and was announced in the
original article [138]. We shall return to this briefly in Section 5, but we might as
well stay with the more general case here for the motivation.
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The problem in [81] was to attach an L-function L(s,π) to every automorphic
representation

π =
∼⊗
v

πv

of G(AF), for the group G = GL(n) over a number field F , and to prove that this
function has analytic continuation and functional equation. The initial step will by
now be quite familiar. Given π , we fix a finite set of valuations S⊃ S∞ of F such that
the local constituent πv of π is unramified for any v outside of S. This means that
the restriction of πv to the maximal compact subgroup G(Ov) of G(Fv) contains the
trivial one-dimensional representation. For any such v there is a general bijection

πv→ c(πv),

from unramified representations of G(Fv) onto semisimple conjugacy classes in the
complex group G(C). We shall discuss this last point again, for more general groups,
in the next section. Semisimple conjugacy classes in G(C) =GL(n,C) can of course
be identified with complex diagonal matrices, taken only up to permutation of their
entries. The unramified global L-function of π is then defined as the Euler product

LS(s,π) = ∏
v̸∈S

Lv(s,π),

where
Lv(s,π) = L(s,πv) = det(1− c(πv)q−s

v )−1.

The local problem in [81] was to attach local L-functions

Lv(s,π) = L(s,πv)

and the ε-factors

εv(s,π,ψ) = ε(s,πv,ψv) = ε(πv,ψv)q
−nv(s− 1

2 )
v

to the remaining valuations v ∈ S. This is naturally much more subtle for the non-
abelian group GL(n), but the basic ideas resemble those for GL(1) in [236]. The
same is true of the global problem of analytic continuation and functional equation.
The essential tool was again the Poisson summation formula, this time for the addi-
tive group g(AF) = Mn(AF) of (n×n)-adelic matrices, with respect to the discrete
subgroup g(F) = Mn(F) of rational matrices. In the end, the authors constructed
the local L-functions and ε-factors above for places v ∈ S, such that the full Euler
product

L(s,π) = LS(s,π)LS(s,π) = ∏
v

Lv(s,π)

has analytic continuation, and satisfies the functional equation

L(s,π) = ε(s,π)L(1− s,π∨), (18)
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for
ε(s,π) = ∏

v∈S
εv(s,π,ψ). (19)

This is the general analogue for GL(n) of the functional equation (16) established
by Tate for GL(1). We note that the global solution in [81] was established only in
the case that π is a cuspidal automorphic representation. However, the general case
follows from this and the properties of Langlands’ Eisenstein series. (See [33] and
[102, §6].)

With the Artin L-functions of degree n and the automorphic L-functions of
GL(n), our exposition has acquired a certain symmetry. Given the Global Reci-
procity Law for GL(1), a reader could well ask whether every Artin L-function is an
automorphic L-function. If so, we would have a general extension of the reciprocity
law to what we could regard as nonabelian class field theory. We would also have
a proof of the Artin conjecture stated above. For it is a fundamental consequence
of the harmonic analysis used by Jacquet and Godement (and Tate and Hecke for
n = 1) that the automorphic L-functions L(s,π) are entire, apart from certain ob-
vious exceptions related to unramified 1-dimensional automorphic representations.
Would this then be the final word on the subject?

There are three points to consider in regards to the last question. One would be
the uncomfortable prospect of having to prove such a general nonabelian reciprocity
law, given the historical difficulty in establishing just the abelian theory. We could
expect that nonabelian class field theory, whatever form it might take, would be diffi-
cult. It would be reassuring to think that the problem at least has some further struc-
ture. A second point concerns this last possibility. Suppose that r′ is an irreducible
Galois representation of degree n′, and that ρ ′ is an irreducible n-dimensional rep-
resentation of GL(n′,C). The composition

ρ : ΓF
r′−→ GL(n′,C) ρ ′−→ GL(n,C)

is then a Galois representation (often irreducible) of degree n. The Frobenius classes
that define the L-functions satisfy the following relation

ρ(Φv) = (ρ ′ ◦ r′)(Φv), v ̸∈ S.

How would this structure be reflected in the corresponding automorphic representa-
tions? Finally, the work of Harish-Chandra has taught us that representations should
be studied uniformly for all reductive groups. If some interesting phenomenon is
discovered for one group, or one family of groups such as {GL(n)}, it should
be investigated for all groups. What are the implications of this for automorphic
L-functions?

These considerations were undoubtedly part of the thinking of Langlands that led
up to the Principle of Functoriality. However, perhaps the most decisive hints were
in his theory of Eisenstein series. They came from L-functions he discovered in the
global intertwining operators
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M(w,λ ) : HP→HP′ , w ∈W (aP,aP′), (20)

defined by (6). (We have written w here because we want to reserve s for the complex
variable of an L-function.)

Suppose for a moment that G equals the group SL(2) over Q, and that P is the
Borel subgroup of upper triangular matrices, that φ lies in the one-dimensional space
of constant functions in Hp, and that w is the non-trivial Weyl element in W (aP,aP).
Then M(w,λ ) is a scalar multiple of φ given for a suitable λ by a convergent adelic
integral over

N(A) =
{(

1 x
0 1

)
: x ∈ A

}
.

It is not hard to evaluate. Recall that λ ∈ a∗P,C is a complex-valued linear form on aP,
a real 1-dimensional vector space we can in turn identify with the Cartan subalgebra{(

u 0
0 −u

)
: u ∈ R

}
of the Lie algebra of SL(2,R). The mapping

λ → s = λ

( 1
2 0
0 − 1

2

)
identifies λ with a complex number s ∈ C. It can then be shown that

M(w,λ ) =
L(s)

L(s+1)
,

for the completed Riemann zeta function

L(s) = L∞(s)ζ (s).

This simple, well known formula is suggestive. If the Riemann zeta function is at the
heart of the global intertwining operator for SL(2), something new and interesting
must surely be contained in the operators for groups of larger rank. (For further
background, see [78, §2].)

In his investigation of the more general intertwining operators in [141], Lang-
lands discovered some completely new L-functions. Suppose that G is a split, simple
group, say over Q, and that

P = MN ⊃ B

is a standard maximal parabolic subgroup. Suppose also that

π =
∼⊗
v

πv = π∞⊗
( ∼⊗

p
πp

)
is a cuspidal automorphic representation of M(A) that is unramified at every place
v of Q. The parametrization of unramified representations πv of a local group
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Mv = M(Qv) is not difficult, but it was not particularly well known at the time.
One can identify them either with complex-valued homomorphisms

H (KM,v \Mv/KM,v)→ C

of the unramified Hecke algebra (under convolution) of functions in C∞
c (Mv) biin-

variant under a suitable maximal compact KM,v, or with their induction parameters
given by Weyl orbits of unramified characters on the Borel subgroup Bv∩Mv of Mv.
Langlands investigated them in terms of Hecke algebras, and made a remarkable
observation. For any v, the unramified representations πv of Mv are parametrized by
the semisimple conjugacy classes c(πv) in a different group, the complex dual group
M̂ of M.

The dual group Ĝ of G is a complex simple group whose Coxeter–Dynkin dia-
gram is dual to that of G, in the sense that the directions of any arrows are reversed,
and whose maximal torus

T̂ = X∗(T )⊗C∗, T ⊂M ⊂ G,

is dual to that of G. The roots {α∨} of (Ĝ, T̂ ) are the co-roots of (G,T ), and the
corresponding fundamental dominant weights {ϖ∨} = {ϖ∨α } form the dual basis
of the set of co-roots {(α∨)∨} = {α} of (G,T ). Finally, to the maximal parabolic
subgroup P = MN of G, there corresponds a maximal parabolic subgroup P̂ = M̂N̂
of Ĝ, whose Levi component M̂ represents the dual group of M. We assume for
simplicity that the unipotent radical N̂ of P̂ is abelian, and we write r for the adjoint
representation of M̂ in the Lie algebra n̂ of N̂. We shall say more about the dual
group Ĝ, and its more sophisticated companion the L-group LG, in the next section,
but we will still not give the precise construction. For this, we simply refer the reader
to the article [233] by Springer.

Given G, P, π and v, we thus have a semisimple conjugacy class c(πv), according
to what Langlands discovered in [139]. In general, M̂ is not a general linear group,
so it does not have a characteristic polynomial. However, Langlands used r to define

Lv(s,π,r) = L(s,πp,r) = det(1− r(c(πp))p−s)−1

explicitly for v = p nonarchimedean. He also defined

Lv(s,π,r) = L(s,π∞,r) = ∏
α∨

(
π
−(s+cα )/2

Γ ( s+cα

2 )
)

implicitly for v = ∞ archimedean, for complex numbers cα = cα(πϖ ,r), and roots
α∨ of (Ĝ, T̂ ) that are not roots of (M̂, T̂ ). He then showed that the Euler product

L(s,π,r) = ∏
v

Lv(s,π,r)

converged absolutely to an analytic function on some right half plane, which he
conjectured had analytic continuation with functional equation
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L(s,π,r) = L(1− s,π,r∨), (21)

for the contragredient representation r∨(x) = tr(x)−1 of r.
This was suggested by Langlands’ theory of Eisenstein series, specifically the

operators M(w,λ ) in (20). Since P is maximal, there will be a unique nontrivial
Weyl element w ∈W (aP,aP′) (for a standard parabolic subgroup P′ ⊂ B). Since π

is unramified, HP and HP′ both have canonical, one-dimensional subspaces of con-
stant functions, which are preserved both under translation by w and by the opera-
tors M(w,λ ) themselves. We can therefore identify M(w,λ ) with a complex-valued
scalar function, as was the case for G = SL(2) above. Let ϖ∨P = ϖ∨α be the funda-
mental dominant weight for (Ĝ, T̂ ), attached to the simple root α of (G,T ) that is
nontrivial on the split component AP = AMP of P. The mapping

λ → s = λ (ϖ∨P )

then identifies λ with a complex number s ∈ C. The main result of [139] is the
formula

M(w,λ ) =
L(s,π,r∨)

L(s+1,π,r∨)
, λ → s, (22)

for the scalar-valued restriction of the operator (20). Langlands proved it for G, P
and π (and, slightly modified, if N̂ is nonabelian) by the formula of Gindikin and
Karpelevic for G∞ [80], and analogues he derived for the p-adic groups Gp.

The formula (22) not only motivated the introduction of many new automorphic
L-functions, but also raised interesting new questions on Artin L-functions. Given
G and P, consider a continuous homomorphism

ρ : ΓQ→ M̂.

One could ask whether there is an automorphic representation π of M(A), and a
corresponding L-function L(s,π,r∨) such that

L(s,r∨ ◦ρ) = L(s,π,r∨).

Langlands’ conjectural answer to this will be taken up in the next section.

4 Global Functoriality and its implications

The Principle of Functoriality is the centre of the Langlands program. It postulates
deep relationships among automorphic representations on different groups G. These
in turn tie fundamental arithmetic data from number theory to equally fundamental
spectral data from harmonic analysis. The global relationships also suggest local re-
lationships that should lead to a local classification of representations. These should
in turn give rise to local L-functions and ε-factors. We shall discuss Global Functo-
riality in this section, and Local Functoriality in the next.
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The general functoriality conjecture was introduced in the revolutionary paper
[138], a preprint of which was written shortly after the letter [132] to Weil. Lang-
lands had to anticipate a number of basic properties of automorphic representations
to be able even to formulate the conjecture. The name functoriality itself did not
appear in the paper. Nor did the term automorphic representation, which seems to
have been first introduced by A. Borel in his Bourbaki lecture [32, (5.1)].

In the original paper [138], Langlands spoke simply of an irreducible represen-
tation π of G(A) that “occurs in” L2(G(F) \G(A)). This amounts to an informal
definition of an automorphic representation of G(A), with the understanding that it
includes the nonunitary representations obtained by analytic continuation of their
internal parameters into the complex domain. He also took for granted that any such
representation could be obtained uniquely as a restricted tensor product

π =
⊗̃

v
πv, (23)

where for any v, πv is an irreducible representation of G(Qv). This brought harmonic
analysis into an area that was already broad, but that had applied mainly to complex
analysis, number theory and arithmetic geometry. The formal definition was given
later by Borel and Jacquet [35] in terms of automorphic forms. As we noted in §2,
this was accompanied by the somewhat more direct characterization by Langlands in
terms of induced cuspidal representations [145]. The tensor product decomposition
was established at the same time by Flath [72].

Langlands’ paper [139] on Euler products, discussed very briefly at the end of
the last section, was a precursor to the functoriality paper [138] we are discussing
now. Both papers required some ad hoc background to elementary properties of
automorphic representations that had yet to be developed. These properties are by
now well understood. We shall review a few of them here from the perspective of
[138], even if this entails some repetition from our last section.

We are assuming for the moment that G is a connected reductive algebraic group
over the field F = Q. A fundamental concept introduced in [138] was Langlands’
notion of the dual group Ĝ of G, and more generally, the associated L-group

LG = Ĝ⋊Gal(K/F), (24)

where K is a suitably large finite Galois extension of F . Once again, the names came
later, from Borel [32] in the case of L-group, and Kottwitz [119] for the dual group.
We recall from Section 3 that Ĝ is a complex, connected, reductive algebraic Lie
group, with maximal torus

T̂ = X∗(T )⊗C∗

dual to the maximal torus T of G, in the sense that

X∗(T̂ ) = Hom(X∗(T ),Z).
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Langlands took care to make this construction rigid by among other things fixing
Borel subgroups B ⊃ T and B̂ ⊃ T̂ of G and Ĝ respectively. The supplementary
structure is conveniently accommodated by letting G represent a based root datum
and Ĝ represent the canonical dual based root datum [233]. With this understand-
ing, any outer automorphism α ∈ Out(G) of G comes with a canonical dual outer
automorphism α̂ ∈Out(Ĝ) of Ĝ. As a reductive group over F =Q, G comes with a
homomorphism

Gal(K/F)→ Out(G). (25)

The L-group (24) is defined as the semidirect product of Ĝ with Gal(K/F) under
the corresponding dual homomorphism

Gal(K/F)→ Out(Ĝ).

As predicted in [138], the Langlands L-group has turned out to be exactly the right
object to accommodate the parameters of automorphic representations.

We are taking for granted here some knowledge of the structure of reductive
algebraic groups over number fields. The introductory article [233] quoted above
is perhaps the most convenient reference. It is the first paper in the two volume
proceedings from the 1977 AMS summer symposium in Corvallis, Oregon, which
was the natural successor to the 1964 Boulder conference we discussed in Section
1. Its goal was primarily to bring the subsequent work of Langlands to a broader
audience.

Langlands formulated the Principle of Functoriality (minus the name) in [138], in
its full generality. However, it is easier to recognize its beauty and power if we first
describe a special case, the unramified part of functoriality, for split groups G over
Q. This means that the image of the outer twisting homomorphism (25) is trivial.
In particular, the semidirect product (24) that gives the L-group is actually a direct
product. It also allows us for many purposes to take K equal to our base field F =Q,
and therefore to take LG = Ĝ.

For the given split group, suppose that π is an automorphic representation of
G(A), with decomposition (23) into local constituents. The formal definition [35]
of automorphic representation includes a weak continuity condition. This implies
that there is a finite set S of valuations of Q containing the archimedean place v = ∞

such that for any p ̸∈ S, πp is an unramified representation of G(Qp). Unramified in
turn means that the restriction of πp to the maximal compact subgroup Kp = G(Zp)
of G(Qp) contains the trivial one-dimensional representation. (It is understood here
that as a split group over Q, G comes with a suitable Z-scheme structure.) What
makes automorphic representations π interesting is the fact, established now in some
cases and conjectured by Langlands in others, is that for many π , there are deep and
fundamental relationships among its unramified constituents {πp : p ̸∈ S}.

To better appreciate the phenomenon, we recall that there is a simple classifica-
tion of the unramified representations {πp} of a split p-adic group G(Qp). It takes
the form of a bijective mapping

πp→ c(πp) (26)
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in which c(πp) ranges over the semisimple conjugacy classes in the complex dual
group Ĝ of G. For as Langlands pointed out in [138], any semisimple element cp ∈ Ĝ
determines an unramified, one-dimensional quasi-character on a Borel subgroup
B(Qp) of G(Qp). The corresponding induced representation π̃p of G(Qp) then de-
pends only on the conjugacy class c̃p of cp in Ĝ. A given unramified representation
πp of G(Qp) thus occurs as the unique irreducible constituent of π̃p, for a unique
semisimple conjugacy class c̃p = c(πp) in Ĝ. We therefore have a mapping

π → cS(π) = {cp(π) = c(πp) : p ̸∈ S} (27)

from automorphic representations π of G(A) to families of semisimple conjugacy
classes in Ĝ.

The semisimple conjugacy classes cp(π) in Ĝ are concrete objects. They can
be described in terms of complex numbers. For example, if G equals GL(n), the
semisimple classes in Ĝ = GL(n,C) are given by nonsingular complex diagonal
matrices, taken up to permutation of their entries. These are in turn parametrized by
their characteristic polynomials, or if one prefers, elements in the space Cn−1×C∗
of coefficients defined by the characteristic polynomial. A general automorphic rep-
resentation therefore gives us a family cS(π) of objects cp(π) with natural complex
parameters. It is in the relations among these complex parameters, as p varies, that
the most fundamental interest of automorphic representations lies.

We can now state the global Principle of Functoriality. In the most basic case
under present consideration, it applies to a pair of split groups G′ and G over the
field F =Q, together with a homomorphism

ρ
′ : LG′→ LG

between the corresponding dual groups Ĝ′= LG′ and Ĝ and LG. The homomorphism
defines a mapping of semisimple conjugacy classes in the two groups, which we also
denote by ρ ′.

Conjecture (Langlands’ Principle of Global Functoriality). Given G′, G and ρ ′,
suppose we also have an automorphic representation π ′ of G′(A). Then there is an
automorphic representation π of G(A) such that

cS(π) = ρ
′(cS(π ′)).

In other words, there is a finite set S of primes outside of which π ′ and π are both
unramified, and for which

cp(π) = ρ
′(cp(π

′)), p ̸∈ S.

We can remove the finite set S from the assertion by defining an equivalence
relation on the set of families cS of semisimple conjugacy classes in Ĝ. We write
cS ∼ cS1

1 for two such families cS and cS1
1 if
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cp = c1,p,

for almost all p ̸∈ S∪S1. For any π in the set

Πaut(G) = Π(G)

of automorphic representations of G(A), we then write c(π) for the equivalence
class that contains the family cS(π). We thus obtain a surjective mapping

π → c(π), π ∈Πaut(G),

from Πaut(G) onto the set

Caut(G) = {c(π) : π ∈Πaut(G)}.

If G = GL(n), the restriction of the mapping to the subset Πcusp(G) of cuspidal
automorphic representations is injective. This is the theorem of strong multiplicity
1 for GL(n) [189], [108]. It gives a bijection from Πcusp(G) onto the set

Ccusp(G) = {c(π) : π ∈Πcusp(G)},

and thus allows us to identify a cuspidal automorphic representation of GL(n) with
(the equivalence class of) a family of complex characteristic polynomials. In gen-
eral, however, the mapping is not injective, for a variety of reasons that range from
obvious to deep. A full understanding of the fibres of the mapping remains an im-
portant unsolved problem.

Consider the category whose objects are split reductive groups G over Q, and
for which the morphisms from G′ to G are the complex homomorphisms from Ĝ′
to Ĝ. To any object G, we can associate the set of (equivalence classes of) families
Caut(G). For any morphism ρ ′ : Ĝ′→ Ĝ, we can associate the function

Caut(ρ
′) : c′→ c = ρ

′(c′), c′ ∈ Caut(G′),

postulated by the Principle of Functoriality. The correspondence Caut is then a func-
tor from the category of groups we have just defined to the category of sets. This is
essentially the origin of the term functoriality.

In his original paper [138], Langlands formulated what would become global
functoriality in the setting of a general (connected) reductive algebraic group G
over a number field F . We should say something about the general analogue of the
assertion of functoriality above for split groups.

A general group G over F can be constructed from a canonical quasi-split group
G∗ over F by an inner twist of its Galois action, a standard technique in the theory
of algebraic groups. The group G∗ is obtained in turn from a canonical split group
G∗,spl = Gspl by an outer twist of its Galois action, attached to a homomorphism
from a finite Galois group ΓK/F = Gal(K/F) into the group Out(Gspl) of outer ho-
momorphisms of Gspl. It is the dual of this action on Ĝ∗ that gives the L-group
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LG∗ = Ĝ∗⋊ΓK/F , ΓK/F = Gal(K/F)

described for F = Q earlier in this section. Since the dual Ĝ of G equals the dual
Ĝ∗ of G (as complex groups with actions of ΓK/F ), the L-groups LG = Ĝ⋊ΓK/F

and LG∗ = Ĝ∗⋊ΓK/F of G and G∗ are equal. In particular, the general version of
functoriality postulated by Langlands in [138] includes the case of the identity map
ρ from LG to LG∗, and hence a correspondence from the automorphic representa-
tions of G to those of the quasi-split group G∗. These days, this question is generally
regarded as part of endoscopy, a separate theory proposed later by Langlands that
seeks among other things to describe the precise nature of this correspondence. We
are therefore free to consider functoriality in the more restricted context of quasi-
split groups. (We shall discuss Langlands’ theory of endoscopy in Section 10.)

Suppose then that G is a quasi-split group over a number field F , which for the
moment we may again take to be Q. Our discussion above for a split group carries
over with little change. In particular, an automorphic representation π of G(A) has
a decomposition (23) such that πp is unramified for any p outside a finite set S [72].
The classification of unramified representations for split groups extends, with one
minor adjustment. In the quasi-split case, the bijection πp→ cp takes the unramified
representations of G(Qp) onto the set of Ĝ-orbits (under conjugation) in LG = Ĝ⋊
ΓK/F that map to the Frobenius class Φp in ΓK/F . This really is a generalization
of the bijection from the special case of split groups. For we recall in general that
K/Q can be any Galois extension through which the Galois action on Ĝ factors. In
particular, if G is split, we could take LG = Ĝ×ΓK/F , a direct product of Ĝ with the
Galois group ΓK/F = Gal(K/Q) of any convenient finite Galois extension K/Q. In
this case, cp(π) would just be the product of a semisimple conjugacy class in Ĝ with
an element in the Frobenius class Φp in ΓK/F .

The assertion of Langlands’ global functoriality conjecture then carries over to
the quasi-split group G as stated, with one proviso. The mapping

ρ
′ : LG′→ LG

between L-groups must be an L-homomorphism, by which we mean that it com-
mutes with the projections of LG′ and LG onto ΓK/F . With this understanding, we
can also extend the category we have defined to quasi-split groups, and the functor
Caut from this category to sets. Finally, everything we have described in this section
remains valid if we allow the base field F to be an arbitrary number field. We took
F =Q in order that the technical background might seem a little more concrete.

There is one further matter that requires comment. We could have referred to
the Langlands conjecture above as “unramified global functoriality”, since the term
functoriality by itself often connotes a correspondence π ′→ π of automorphic rep-
resentations that applies to the ramified local places v ∈ S as well as the unramified
v ̸∈ S. This is certainly how Langlands introduced it in [138] (without the name).
The resulting global assertion is more complicated, and presupposes Langlands’ lo-
cal functoriality. Langlands actually began with a question on general automorphic
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L-functions, both local and global. He then presented local and global functoriality
as questions motivated by a desire to understand the L-functions. We shall discuss
these matters in the next section.

In this section, we have presented unramified global functoriality as the primary
assertion in order to give a concrete statement, and also to follow the natural pro-
gression begun with our discussion of abelian class field theory in the last section.
We must now define the corresponding unramified automorphic L-function.

Suppose again that G is a quasi-split reductive group over a number field F . An
automorphic representation π of G(AF) gives a family

cS(π) = {cv(π) : v ̸∈ S}

of semisimple conjugacy classes in LG. To attach an automorphic L-function to π ,
we would need a family of semisimple conjugacy classes in a general linear group
GL(n,C) rather than in LG. We therefore fix a finite-dimensional representation

r : LG→ GL(n,C)

in addition to the automorphic representation π of G(A). We then define the associ-
ated unramified automorphic L-function as the Euler product

LS(s,π,r) = ∏
v̸∈S

Lv(s,π,r) = ∏
v̸∈S

det(1− r(cv(π))q−s
v )−1, (28)

with qv being the degree of the residue class field of Fv. Once again, the product
converges absolutely to an analytic function in some right half plane. The analogy
with the Artin L-function (12) is clear. We can think of it as the same definition, but
Gal(K/F) replaced by the group LG, along with the extra structure provided by π .

In addition to defining automorphic L-functions and introducing the Principle
of Functoriality, Langlands sketched the following four applications in his seminal
paper [138].

1. Analytic continuation and functional equation. Langlands pointed out that
the analytic continuation and functional equation of a general automorphic L-
function would follow from functoriality and the special case that G = GL(n) and
r = St(n), the standard n-dimensional representation of GL(n). This special case
(at least for cuspidal π) was established soon afterwards by Godement and Jacquet
[81], as we saw in the last section.

2. Artin L-functions. We have noted that quasi-split groups are the natural set-
ting for functoriality. The Galois factor Gal(K/Q) is then an essential part of the
L-group LG. In particular, the construction naturally includes the seemingly trivial
case that G is the 1-element group {1}. Its L-group will then be an arbitrary finite
Galois group Gal(K/Q), while r becomes simply an n-dimensional representation
of Gal(K/Q). The associated automorphic L-function L(s,π,r) (with π being of
course the trivial 1-dimensional automorphic representation of G) is then just the
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general Artin L-function LS(s,r). The Principle of Functoriality can thus be inter-
preted as an identity

LS(s,r) = LS(s,π,St(n)) (29)

between a general Artin L-function and a standard automorphic L-function for
GL(n). This represents a general and entirely unexpected formulation of nonabelian
class field theory. It identifies purely arithmetic objects, Artin L-functions, with ob-
jects associated with harmonic analysis, automorphic L-functions, thereby imply-
ing that the arithmetic L-functions have meromorphic continuation and functional
equation, and that they are essentially entire. Functoriality would thus include a
proof of the Artin conjecture stated in the last section. Abelian class field theory
amounts to the special case that the dimension n of r equals 1. Its original aim was
to establish that abelian L-functions are the Hecke–Tate L-functions attached to the
automorphic representations of GL(1), and thereby have analytic continuation and
functional equation.

3. Generalized Ramanujan conjecture. The generalized Ramanujan conjecture

asserts that a unitary cuspidal automorphic representation π =
∼⊗

vπv of GL(n) is
locally tempered. This means that the character

fv→ tr(π( fv)), fv ∈C∞
c (GL(n,Fv)),

of each local constituent πv of π is tempered, in the sense that it extends to a con-
tinuous linear form on the Schwartz space C (GL(n,Fv)) of GL(n,Fv) defined by
Harish-Chandra. We recall that the classical Ramanujan conjecture applies to the
case that n = 2, and that π comes from the cusp form of weight 12 and level 1.
It was proved by Deligne [63], who established more generally (for n = 2) that
the conjecture holds if π is attached to any holomorphic cusp form. (The case that π

comes from a Maass form remains an important open problem.) Langlands observed
that functoriality, combined with expected properties of the correspondence π ′→ π ,
would imply the generalized Ramanujan conjecture for GL(n). His representation-
theoretic argument is strikingly similar to Deligne’s geometric proof [63].

4. Sato–Tate conjecture. The Sato–Tate conjecture for the distribution of num-
bers Np(E) of solutions (mod p) of an elliptic curve E over Q has a general analogue
for automorphic representations. Suppose for example that π is a (unitary) cuspidal
automorphic representation of GL(n). The generalized Ramanujan conjecture of 3.
above asserts that the conjugacy classes, represented by diagonal Sn-orbits

cp(π) =

cp,1(π) 0
. . .

0 cp,n(π)

/Sn,

have eigenvalues of absolute value 1. The generalized Sato–Tate conjecture de-
scribes their distribution in the maximal torus U(1)n of the maximal compact sub-
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group U(n) of the dual group GL(n,C). If π is primitive (a notion that requires
functoriality even to define, as we will describe in Section 9), the distribution of
these classes should be given by the weight function in the Weyl integration formula
for the unitary group U(n). Langlands sketched a rough argument for establishing
such a result from general functoriality. Clozel, Harris, Shepherd-Barron and Taylor
followed this argument in their proof of the original Sato–Tate conjecture, but using
base change for GL(n) and deformation results in place of functoriality. (See [91],
[238].)

5 Local Functoriality and early results

Within a short time of his introduction [138] of functoriality, Langlands presented
some striking results that in addition to the interest they held in their own right, of-
fered evidence for the general principle. They are contained in four3 major works:
a long, unpublished manuscript [137] related to the local properties of Artin L-
functions, a classification of representations of algebraic tori [153], the properties of
Euler products from Eisenstein series [139] mentioned in Section 3, and the mono-
graph [103] of Jacquet and Langlands on GL(2). Each of these represents a deep
and original contribution to the subject, even if like functoriality itself, each one
may have been ahead of its time.

We shall describe the four contributions in sequence in the latter part of the sec-
tion. A later contribution, Langlands’ monograph [149] on base change for GL(2),
with its dramatic applications to Artin’s conjecture, will be treated separately in
Section 7. In the first part of this section, we shall discuss the local aspects of the
Principle of Functoriality. We should also take the opportunity to add some further
remarks about the structure of Langlands’ fundamental paper [138].

It is important to remember that the Langlands conjectures were so revolutionary
in 1970 that they took many years to be accepted (or even noticed) by the gen-
eral mathematical public. The paper [138] was dense and difficult. It consisted of
seven questions (not conjectures), three local and three global. The other question,
which came first, was both local and global. It concerned the possibility of defin-
ing (completed) automorphic L-functions. It was actually presented as the central
problem, with six supplementary questions related to functoriality being a strategy
for attacking it. This is the opposite of our exposition here, in which (unramified)
global functoriality was presented as the centre of the Langlands program. However,
the logic of [138] is compelling. As we described in the last section, it represents
a (nonabelian) analogue for automorphic representations of Artin’s use of abelian
class field theory to establish analytic continuation and functional equation for his
(abelian) L-functions.

3 We could have added Langlands’ classification of representations of real groups [151] mentioned
in Section 1, as the fifth work, but we are postponing its further discussion until Section 10.
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Suppose that G is a reductive group over a number field F . We then have the
global L-group

LG = Ĝ⋊Gal(K/F),

where (K/F) is a finite Galois extension over which G splits. For any valuation v
of F , we have a local Galois extension (Kv/Fv), for which Gal(Kv/Fv) represents a
conjugacy class of subgroups of Gal(K/F). We also have the local L-group

LGv = Ĝ⋊Gal(Kv/Fv),

which comes with a conjugacy class of L-embeddings LGv ↪→ LG. At this point,
we are free to take motivation from the special case of automorphic L-functions
for GL(n) discussed near the end of Section 3, and the unramified automorphic
L-functions LS(s,π,r) from Section 4. In particular we fix a finite-dimensional rep-
resentation

r : LG→ GL(n,C),

a nontrivial additive character

ψ : F∗ \A∗F → C∗,

and an automorphic representation π of G, objects that come with natural localiza-
tions rv, ψv and πv. Langlands’ first question was then as follows.

Question 1 (Langlands [138]). Is it possible to define local L-functions

Lv(s,π,r) = L(s,πv,rv)

and local ε-factors

εv(s,π,r,ψ) = ε(s,πv,rv,ψv) = ε(πv,rv.ψv)q
−(nv− 1

2 s)
v ,

for the valuations v ∈ S, with (Gv,rv,πv,ψv) ramified (or archimedean), such that
the full Euler product

L(s,π,r) = LS(s,π,r)LS(s,π,r) = ∏
v

Lv(s,π,r)

has analytic continuation, and satisfies the functional equation

L(s,π,r) = ε(s,π,r)L(1− s,π,r∨), (30)

for
ε(s,π,r) = ∏

v∈S
εv(s,π,r,ψ)?

It is remarkable to see Langlands’ comments immediately following his state-
ment of Question 1 [138, pp. 31–32]. He devotes one sentence each to: the moti-
vation [139] he took from Eisenstein series, which we mentioned in Section 3, and
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which led to the Langlands–Shahidi method; his anticipation of the extension of the
thesis of Tate from GL(1) to GL(n), established shortly thereafter [81]; and most
striking of all, his description of his subsequent questions on functoriality as the
nonabelian analogue of “the idea that led Artin to the general (abelian) reciprocity
law”. It is like reading fifty years of past and future history unfold in one short
paragraph.

Having already stated the unramified version of global functoriality, we shall not
restate all of Langlands’ remaining questions. Questions 2 and 3 concern the local
and global correspondence between the representations of a non-quasi-split inner
twist of G and those of G, which are now regarded as part of the conjectural theory
of endoscopy. It is the next two Questions 4 and 5 that introduce functoriality. To
state the first of these as local functoriality, we take quasi-split groups G′v and Gv
over a localization Qv of Q, together with a local L-homomorphism

ρ
′
v : LG′v→ LGv

between their L-groups.

Conjecture (Langlands’ Principle of Local Functoriality). There is a natural
correspondence

π
′
v→ πv, π

′
v ∈Π(G′v),

from the (equivalence classes of) irreducible representations of G′v to those of Gv
such that

L(s,πv,rv) = L(s,π ′v,ρ
′
v ◦ rv)

and
ε(s,πv,rv,ψv) = ε(s,π ′v,ρ

′
v ◦ rv,ψv),

for every finite-dimensional representation rv of LGv and every nontrivial additive
character ψv on Fv.

Notice that unlike the statement of unramified Global Functoriality in Section 4,
this conjecture is not rigid as stated, in that it does not characterize the correspon-
dence. The property on the L- and ε- factors, which is based on a suitable answer
to Question 1, represents a condition it must satisfy. Another condition is the global
expectation that if G′v, Gv and ρ ′v are localizations of global objects G′, G and ρ for
each v, and if π ′ =

⊗
v π ′v is an automorphic representation of G′(AF), one can then

choose a representation πv ∈ Π(Gv) in the image of the correspondence π ′v → πv
for each v such that the product π =

⊗
v πv is an automorphic representation of G.

Langlands actually imposes a stronger condition in Question 5, his general form of
Global Functoriality. Namely, if πv is any representation in the image of the cor-
respondence π ′v → πv for each v, is the product an automorphic representation of
G(AF)? He soon realized that this was asking for a little too much. Langlands’ later
theory of endoscopy, which has now been established in a number of cases [23] and
which we will discuss in Section 10, characterizes both the correspondence π ′v→ πv,
and which products attached to a given π ′ are actually automorphic representations
of G(A).
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Questions 6 and 7 represent an important extension of functoriality to Weil
groups. My understanding is that Langlands first took his conjectures to Weil in
the form of Questions 1–5, as an automorphic analogue of Artin L-functions and the
Artin reciprocity law. Weil pointed out that he had some years earlier introduced a
natural generalization of Artin L-functions. Langlands was no doubt happy to find
that his questions/conjectures extended seamlessly to Weil’s L-functions, and that
they were in fact the richer for it. Of the four major works that followed, and that
we will be discussing presently, three depend intimately on the extensions of Galois
groups Weil had discovered in abelian class field theory.

In the interest of making this report seem more concrete, we have sometimes
avoided the most general setting. Let us now try to be a little more efficient. From
this point on, we shall work over an arbitrary base field F of characteristic 0, local
or global. Everything discussed earlier in the case of Q then carries over as stated
with F in place of either Q or one of its completions Qv. We can also work over the
absolute Galois group

ΓF = lim←−ΓK/F , ΓK/F = Gal(K/F),

instead of the finite Galois group ΓK/F , if we agree that earlier homomorphisms r
and ρ ′ are to be continuous. This is of course because the kernel of r and ρ ′ in the
totally disconnected, compact group ΓF is a normal subgroup of ΓK of finite index,
so that the quotient

ΓF/ΓK = ΓK/F

becomes the Galois group of the finite Galois extension K/F . We shall freely adopt
this convention in referring to past discussion, usually without further comment.

Weil groups are variants WK/F and WF of the local and global Galois groups
ΓK/F and ΓF (with K/F still being a finite Galois extension). We set CF equal to the
multiplicative group F∗ if F is local, and to the idele class group F∗ \A∗F if F is
global. The relative Weil group WK/F is then an extension

1→CK →WK/F → ΓK/F → 1

in both cases. It is a locally compact group, which comes with an isomorphism
rK/F : CF →W ab

K/F in addition to its projection onto ΓK/F , while if K = F , WK/F

obviously equals CF .
In either the local or global setting, consider a field E with F ⊂ E ⊂ K. Then

WK/E is a subgroup of finite index in WK/F , and there is a bijection

WK/F/WK/E
∼= ΓK/F/ΓK/E

of finite coset spaces. If K/E is Galois, the subgroup WK/E is then normal in WK/F ,
and the quotient on the left is isomorphic to the Galois group ΓE/F that equals the
quotient on the right. To obtain the Weil group WE/F as a quotient in this case, we
need to take the commutator subgroup W c

K/F instead of WK/F . We then obtain an
isomorphism
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WK/F/W c
K/E
∼=WE/F .

In particular, we have a continuous projection from WK/F onto WE/F .
The family

{WK/F : K/F Galois}

is thus an inverse system. The absolute Weil group of F is the corresponding inverse
limit

WF = lim←−
K

WK/F .

It is a locally compact group, equipped with a continuous homomorphism

φF : WF → ΓF

with dense image, and an isomorphism

rF : CF →W ab
F .

If F =C, WF =WC/C =C∗. If F =R, WF =WC/R is the group generated by C∗ and
an element w, subject to the relations w2 =−1, and wzw−1 = z for any z ∈ C∗. If F
is a local nonarchimedean field, WF turns out to be the dense subgroup of elements
ΓF whose image in the quotient

ΓF,un ∼= ΓF/IF = Ẑ

of ΓF by its inertia subgroup IF is the dense subgroup Z of Ẑ. Finally, if F is global,
WF is given by a more complicated blend of these properties.

We refer the reader to the beginning [237, §1] of the article of Tate in the Corvallis
proceedings. He takes the absolute Weil groups {WF} as the basic objects, equipped
with mappings φF and rF as above that satisfy four axioms. He then defines the
relative Weil groups as quotients

WK/F =WF/W c
K .

Tate also comments very briefly [237, (1.2)] on how class field theory is implicit in
the existence of Weil groups, specifically the algebraic derivation of local and global
class field theory in terms of Galois cohomology.

Observe that any continuous, complex finite-dimensional representation of ΓF
pulls back to a unique continuous representation of WF . Representations of Weil
groups are then more general than those of Galois groups. It is for this reason that
mathematicians have taken to working with the absolute Weil form

LG = Ĝ⋊WF

of the L-group of a quasi-split group G over F , rather than the absolute Galois form
Ĝ⋊ΓF , or the original, less canonical form Ĝ⋊ΓK/F . It is of course understood that
the action of WF on Ĝ is through the pullback to ΓF of a suitable finite quotient ΓK/F .
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For the assertions of functoriality, one would want to take the absolute Weil form
of both L-groups LG′ and LG, with ρ ′ being an L-homomorphism from LG′ to LG,
in the obvious sense that it commutes with the two projections onto WF . One also
has to insist that the ρ ′-image in Ĝ of any element in WF be semisimple, since WF
is only locally compact. We shall again feel free to extend past discussions to this
general context, without comment.

Langlands’ final two Questions 6 and 7 apply to the Weil form of local and global
functoriality, or rather the special case in which the first group G′ equals the trivial
group {1}. In other words, φ = ρ ′ is an L-homomorphism from WF to LG. (Lang-
lands also replaces the complex dual group of G by a compact real form, in anticipa-
tion perhaps of his later comments on the generalized Ramanujan conjecture.) The
two questions ask for a correspondence from L-homomorphisms φ : WF → LG to
representations of G(F) if F is local and to automorphic representations of G(AF)
if F is global. This is where we see the advantage of the role of the Weil group.
For there are many more such homomorphisms than there would be for the Galois
group ΓF . The case of a local field F is of particular importance. Indeed, the irre-
ducible representations of G(F) obtained in this way are believed to account for
most (though not all) such representations. In fact, Question 6 has evolved into what
is now known as the local Langlands classification (or the local Langlands corre-
spondence). It has been established in a significant number of cases, for G = GL(n)
in [92], [94] and [202], and for quasi-split classical groups in [23] and [181], even as
it remains conjectural in general. (For the archimedean case, it is the original form
of Question 6 that is relevant. It gives the Langlands classification for the real group,
which we discussed in Section 1, and to which we will return later.)

We turn now to the four works mentioned in the beginning of the section. With
many other things to discuss, we shall have to be brief, despite the importance of
the results. We shall give a short description in each case, with further comments as
needed later in the report.

1. Artin L-functions [137]. The reader might have noticed an irregularity in
our claim of symmetry in Section 3 between n-dimensional Artin L-functions and
the automorphic L-functions for GL(n) of Godement and Jacquet. The ε-factor in
Artin’s functional equation (14) is a nonconstructive global function, while its au-
tomorphic counterpart in (18) has a finite product decomposition (19) into purely
local functions. The problem was to find a corresponding local decomposition for
Artin ε-factors and of course, their generalizations for Weil groups.

There were good reasons for trying to do this. Langlands was thinking of the
possibility of classifying Π(G), the set of irreducible representations of a real or
p-adic group G(F). The key to this would be local functoriality, as stated earlier in
this section, but with G′ = {1} and with the local Weil group WF in place of ΓF . In
other words, Π(G) should be closely tied to the L-homomorphisms

φ : WF → LG.
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An essential condition would then be that for every representation r of LG, the local
L- and ε-functions L(s,π,r) and ε(s,π,r,ψ) for a representation π corresponding to
φ , which were conjectured for any G in Question 1 and established for G = GL(n)
and r = St(n) by Godement–Jacquet, would match independently defined functions
L(s,r ◦φ) and ε(s,r ◦φ ,ψ) for φ .

The local L-functions were already part of the Artin/Weil definition, but the con-
struction of local ε-factors ε(s,r◦φ ,ψ) turned out to be very difficult. It was studied
with some success by B. Dwork [70], [131] for Artin L-functions. Langlands used
Dwork’s results in his investigation of Weil L-functions. His goal was to characterize
the local ε-factors

ε(s,r,ψ), r : WF → GL(n,C), F local,

as the unique family of functions that satisfies several natural conditions as F , r and
ψ vary. This question gave rise in turn to four concrete, but very complex lemmas
on Gaussian sums. My understanding is that Langlands obtained a complete solu-
tion, but that it was not all contained in the manuscript [137], which itself was not
published. (See [137, (3.4.1)], and Langlands’ later comments on [137] in his 1969
letter [136] to Deligne.)

Langlands’ proof was purely local. Some time later, Deligne [62] found a strik-
ing global argument that led to a much shorter proof. The result was the desired
canonical construction of local ε-factors

ε(s,r,ψ) = ε(r,ψ)q
−nF (s− 1

2 )
F , (31)

for integers nF = n(r,ψ) and qF , and any nontrivial additive character ψ on the
multiplicative group F∗ of the local field F . The global result remains the functional
equation (14) for any Artin/Weil L-function

L(s,r), r : WF → GL(n,C), F global, (32)

but with the global ε-factor in (14) now having a product decomposition

ε(s,r) = ∏
v∈S

ε(s,rv,ψv)

into purely local ε-factors.

2. Automorphic representations of tori [153]. This paper gives a classification
of representations (local and global) for abelian reductive algebraic groups, which is
to say, for (algebraic) tori. Recall that a torus is an algebraic group that is isomorphic
to a product GL(1)k of multiplicative groups. A torus over F (our local or global
field) comes also with an outer twisting over F , namely a homomorphism from a
finite Galois group Gal(K/F) into the group of automorphisms of this product. The
correspondence

T → X∗(T ) = Hom(T,GL(1))
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gives an antiisomorphism from the category of algebraic tori over F that split over
the finite Galois extension K, and the category of torsion free Gal(K/F)-modules
of finite rank. (See [233], for example.)

The paper [153] here is not nearly so complex as the last one [137]. It is still
very interesting, a verification of functoriality in the simplest nontrivial case, and an
elegant illustration of some of the ideas of Langlands implicit in [138]. It applies to
the Weil form of functoriality in our description of Questions 6 and 7, specifically
the special case that G is an algebraic torus over F , a local or global field (of charac-
teristic 0), and that G′ as before is the trivial group {1}. Functoriality then concerns
the L-homomorphisms

φ : WF → LT = T̂ ⋊WF .

The purpose of [153] is to establish functoriality in this case, and to establish further
that the resulting correspondence is surjective.

To be more precise, we fix a local or global field F , and we write Φ(T ) for the
set of T̂ -conjugacy classes of L-homomorphisms φ . As we have done earlier, we
also write Π(T ) for the set of equivalence classes of irreducible representations of
T (F) if F is local, and of automorphic representations of T (AF) if F is global. In
the global case we have the localization mappings φ → φv and π → πv, from Φ(T )
to Φ(Tv) and Π(T ) to Π(Tv) respectively. Theorem 2 is the main result of [153]. It
asserts that there is a canonical mapping

Φ(T )→Π(T ), φ → π,

which is a bijection if F is local, and a surjection if F is global. In the global case,
the mapping commutes with the associated localizations, and its fibres are the local
equivalence classes in Φ(T ), relative to the equivalence relation φ ′ ∼ φ in Φ(T ) if
φ ′v ∼ φv in Φ(Tv) for every localization Fv of F .

Langlands describes his proofs as “exercises in class field theory”. Observe that
a mapping φ in Φ(T ) is completely determined by the projection of its image onto
T̂ . This leads to an isomorphism from Φ(T ) (as an abelian group) onto the Galois
cohomology group H1(WF , T̂ ) of continuous 1-cocycles from WF to T̂ , modulo con-
tinuous coboundaries. Such is the stuff of class field theory, in its algebraic form.
It would indeed be a good exercise to study the proofs of Langlands, streamlined
perhaps according to Tate–Nakayama duality [234].

3. Euler products [139]. We discussed this paper at the end of Section 3, as
historical motivation for the Principle of Functoriality. It also represents concrete
evidence for functoriality, specifically the properties of L-functions in Question 1.

Suppose that G, P, π and r are as in the formula (22) for the global intertwining
operator (20) in terms of what was then the new L-function L(s,π,r∨). We write
(22) as

L(s,π,r∨) = L(s+1,π,r∨)M(w,λ ),

where M(w,λ ) now represents a meromorphic scalar-valued function of the image
s ∈ C of λ , according to the notation in Section 3 and the first assertion (a) of the
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Main Theorem in Section 2. We see from this that if L(s,π,r∨) is meromorphic in a
right half plane Re(s)> b, it continues to a meromorphic function of Re(s)> b−1.
Since we know that the Euler product for L(s,π,r∨) converges in some right half
plane, we conclude that L(s,π,r∨) does have analytic continuation to a meromor-
phic function of s in the complex plane.

What of the proposed functional equation

L(s,π,r) = L(1− s,π,r∨)

conjectured in Question 1 of [138]? The analogue of the formula (22) for the inter-
twining operator

M(w−1,wλ ) : HP′ →HP, w−1 ∈W (aP′ ,aP),

is

M(w−1,wλ ) =
L(−s,π,r)

L(−s+1,π,r)
,

as one sees from the definitions [139, p. 47]. In general, the operators M(w,λ ) sat-
isfy their own functional equation (8). In the case at hand, this becomes

M(w−1,wλ )M(w,λ ) = M(w−1w,λ ) = M(1,λ ) = 1.

This gives the identity

L(−s,π,r)
L(−s+1,π,r)

L(s,π,r∨)
L(s+1,π,r∨)

= 1

of meromorphic functions of s. On the other hand, if we substitute the conjectured
functional equation for the first factor in the left, the product on the left becomes

L(1+ s,π,r∨)
L(s,π,r∨)

L(s,π,r∨)
L(s+1,π,r∨)

,

which is also equal to 1. In other words, the conjectural functional equation for
L(s,π,r) is compatible with the established functional equation for M(w,λ ), but
is not implied by it. Nonetheless, this represents further evidence from Eisenstein
series for Langlands’ theory of automorphic L-functions and the Principle of Func-
toriality.

These observations were part of Langlands’ article [139]. He did not assume that
the dual unipotent radical N̂ was abelian, although M still represents a maximal Levi
subgroup. For G, P = MN and π as above, but without this assumption on N̂, the
Lie algebra of N̂ has a decomposition

n̂=
k⊕

i=1

n̂i,
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for
n̂i = {U ∈ n̂ : ad(ϖ∨P )U = iU},

and for 1≤ k ≤ 6 (as is well known). The generalization of (22) is the formula

M(w,λ ) =
k

∏
i=1

L(is,π,r∨i )
L(is+1,π,r∨i )

, λ → s,

where ri is the adjoint representation of M̂ in n̂i. (We have been following the no-
tation of [78, (1.2.5.3)] which is slightly simpler than that of Langlands at the end
of Section 5 of [139].) If one can show that the L-functions L(s,π,r∨i ) for M have
analytic continuation for 1≤ i < k, the argument above establishes that the same is
true for L(s,π,r∨k ). The extent to which this is possible is governed by the relevant
Coxeter–Dynkin diagrams. At the end of the article [139], Langlands gives an ex-
tended table of such diagrams, which establish that for all but three simple groups M,
there is at least one nontrivial representation r of M̂ for which the function L(s,π,r)
has meromorphic continuation.

Some years later, Shahidi began a sustained study that greatly expanded the the-
ory [211], [214], [212], [213]. (See also [45], [44].) With an assumption on Whit-
taker models (well known for general linear groups M), he was able to treat general
cuspidal automorphic representations π ∈Πcusp(M) (without the condition that they
be unramified everywhere). The resulting theory, known now as the Langlands–
Shahidi method, has established functional equations in addition to the meromor-
phic continuation for many of the L-functions L(s,π,r) attached to Eisenstein se-
ries. A further examination of some special cases led to a remarkable application to
functoriality. Partly in collaboration with H. Kim (the case n = 5 below), Shahidi
established functoriality for any π ′ ∈ Πcusp(G′), where G′ equals GL(2), G equals
GL(4) or GL(5), and

ρ
′ : Ĝ′ = GL(2,C)→ Ĝ = GL(n,C), n = 4,5,

is the symmetric cube or fourth power representation. This was thought to have
been inaccessible, and has led to significant improvements in the bounds required
by Ramanujan’s conjecture for π ′. (See [215], and the references therein.)

4. Automorphic representations of GL(2) [103]. The 348-page monograph of
Jacquet–Langlands was a partial exception to a remark from the beginning of this
section. It really consists of two parts, the first twelve Sections 1–12 culminating in
a striking application to Artin L-functions, and the last two Sections 15–16 on the
comparison of representations of G = GL(2) with those of an inner twist, the multi-
plicative group G′ of a quaternion algebra. The two intermediate Sections 13–14 are
in some sense transitional. They extend the methods from Tate’s thesis from GL(1)
to GL(2) in Section 13, anticipating the later volume [81] of Godement–Jacquet for
GL(n) we mentioned in our Section 3, and from GL(1) to G′ in Section 14, in an-
ticipation of the comparisons in Sections 15 and 16. The first part of the monograph
was widely read by mathematicians at the time, and quickly became a basic part of
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their thinking. The second part was slower to be taken up, but the principal result (as
opposed perhaps to its proof) did soon find important applications among number
theorists.

The main theme of the first part is an extension of Hecke theory to all auto-
morphic representations of GL(2). Hecke was the first to attach L-functions to what
amounted to a special class of cuspidal automorphic representations π for GL(2). He
showed that these L-functions have analytic continuation, with functional equation,
to entire functions on C. Hecke was of course working with classical holomorphic
modular forms of weight k for, let us say SL(2,Z). It was to forms in this space that
he attached his L-functions. Hecke also introduced the operators {Tn} on the space
that bear his name, and he proved that for any simultaneous eigenform of these op-
erators, the associated L-function has an Euler product. The local components of
the corresponding automorphic representation π =

⊗
v πv are then characterized at

the p-adic places by the natural relation between the conjugacy classes c(πp) and
the eigenvalues of Tp, and at the archimedean valuation ∞ by the requirement that
π∞ be a discrete series representation corresponding to k in the parametrization of
Harish-Chandra.

Of particular relevance to [103] is the converse theorem Hecke then established.
He showed that any Dirichlet series with certain properties, the main ones being an
Euler product, the analytic continuation to an entire function of s, and an appropriate
functional equation, gives rise to a cuspidal automorphic L-function L(s,π). Unlike
the original theorem, which was actually for modular forms of level N (that is, for
congruence subgroups Γ0(N), or equivalently automorphic representations π with
ramified components πp for p|N), Hecke’s converse theorem really was restricted to
forms for the full modular group Γ0(1) = SL(2,Z). It took thirty years for it to be
extended. In 1967, Weil [250] established a converse theorem for modular forms of
level N, but with more sophisticated requirements on the given Dirichlet series. In
so doing, he was able to make what became known as the Shimura–Taniyama–Weil
conjecture on the modularity of elliptic curves considerably more precise.

The goal of the first part, Sections 1–12 of [103], was to extend the converse
theorem of Hecke and Weil for G = GL(2) to any number field F and to any cus-
pidal automorphic representation π ∈ Πcusp(G). This was a bigger task than one
might perhaps imagine. If F is an imaginary quadratic extension of Q, there are no
archimedean discrete series representations π∞ ∈ Π2(G∞) of G(F∞), and the corre-
sponding modular forms are all Maass forms. Even if F = Q, one wants a theory
that includes all Maass forms as well as holomorphic modular forms. This leaves
no choice but to extend the classical results for modular forms to a full theory for
automorphic representations of the adele group G(AF). In particular, one must first
establish a robust theory for the irreducible representations πv of the local compo-
nents GL(Fv) of G(AF).

Chapter I (Sections 1–8) was devoted to the local theory. For the archimedean
local fields Fv = R or Fv = C, the authors used basic results of Harish-Chandra to
classify the irreducible representations πv of G(Fv) (Sections 5–6). In the earlier sec-
tions (1–4), they studied the irreducible representations πv of the nonarchimedean
groups G(Fv) through Weil representations, Kirillov models and Whittaker models
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[249], [100], [110], [79]. They constructed various examples of representations in
this case, in what amounts to be a partial classification. In all cases, they constructed
local L-functions L(s,πv) and ε-factors ε(s,πv,ψv) for each πv.

Chapter II (Sections 9–12) is concerned with global Hecke theory. In Theorem
11.1, the authors proved that for any π ∈Πcusp(G), the global L-function

L(s,π) = ∏
v

L(s,πv) (33)

has analytic continuation to an entire function of s and a functional equation

L(s,π) = ε(s,π)L(1− s,π∨) (34)

with
ε(s,π) = ∏

v
ε(s,πv,ψv). (35)

In fact, they verified these properties for a larger family of L-functions L(s,ω⊗π)
in Corollary 11.2, where ω ranges over quasicharacters on CF = F∗ \A∗F , following
Weil’s extension of Hecke’s converse theorem.

The general converse theorem is Theorem 11.3 of [103]. In common with its
predecessors, it asserts that the necessary conditions are sufficient. More precisely,
any representation π =

⊗
v πv of G(AF) that satisfies the conclusions of Theorem

11.1 and Corollary 11.2, together with two further necessary conditions, is actually
a cuspidal automorphic representation of G = GL(2). One of the extra conditions
is a bound, imposed in Theorem 11.3 to ensure that the Euler product for L(s,π)
converges in a right half plane. The other is a requirement that the local constituents
πv of π all be infinite-dimensional. This is needed for the construction of a global
Whittaker model for π [103, Proposition 9.2], which in turn is a foundation for the
desired embedding of π into the space of cusp forms. (The last condition is known
to hold for any π ∈ Πcusp(G), a property for which the reader can consult the hints
in the last paragraph of Section 14.)

The culmination of what we are calling the first part of [103] (Chapters I and II)
is the application in Section 12 of this converse theorem to Artin L-functions. We are
speaking now of the generalizations of these objects to continuous representations of
the global Weil group WF (rather than the global Galois group ΓF ). The fundamental
question is whether any irreducible two-dimensional representation

r : WF → Ĝ = GL(2,C)

corresponds to a cuspidal automorphic representation π ∈ Πcusp(G), according to
precepts of local and global functoriality.

The authors begin in Section 12 by appealing to [250]. This yields a global L-
function L(s,r) and ε-factor ε(s,r) that satisfy analogues of the properties (33), (34)
and (35), or rather their extensions from Corollary 11.2, but with the proviso that
the global L-function need not be entire. The converse theorem actually applies to
a given representation π =

⊗
πv of G(AF), so one first needs a way to construct
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the local components πv = π(rv) of π from the local components rv of r. This is
exactly the form taken by the partial local classification from Chapter I. For any rv,
the authors prove that there is at most one πv = π(rv) such that, in addition to some
obvious requirements, the corresponding families of local L-functions and ε-factors
are equal. (See p. 395 of [103] for a precise statement, which was extracted from
the local results in Sections 4–6.) For the given two-dimensional representation r of
WF , Theorem 12.2 of [103] then asserts that if both L(s,ω ⊗ r) and L(s,ω−1⊗ r∨)
are entire functions for every quasicharacter ω on CF , the representation πv = π(rv)
exists for every v, and π =

⊗
πv is a cuspidal automorphic representations of G(A).

There is a striking interpretation of this theorem. Recall the conjecture of Artin,
which asserts that the L-function L(s,r) attached to any irreducible representation
r of dimension greater than 1 is entire. Artin’s conjecture therefore implies func-
toriality for r when its dimension equals 2. Since this conjecture has been with us
for almost a century, and is widely held to be true, we thus have strong evidence
for functoriality for the case r→ π . Langlands cites Theorem 12.2, together with
the partial local classification rv→ πv based on L- and ε-factors, as one of the two
principal contributions of [103] to the understanding of functoriality.

The other principal contribution cited by Langlands is the local and global corre-
spondence

π
′ =

⊗
v

π
′
v→ π =

⊗
v

πv, (36)

from the representations of the multiplicative group G′ of a quaternion algebra M′

to those of G = GL(2). Its apotheosis is the comparison in Section 16, but there was
considerable preparation laid down earlier in the volume. In particular, the authors
introduced the local correspondence π ′v → πv = π(π ′v) at the same time and in the
same spirit as their partial Galois/Weil correspondence rv → πv = π(rv) described
above. That is, they attached local L- and ε-factors L(s,ωv⊗π ′v) and ε(s,ωv⊗π ′v,ψv)
to any π ′v, and then defined πv = π(π ′v) as the unique representation whose L- and
ε-factors (which had already been constructed) match those of π ′v. (See p. 469 of
[103] for the precise statement, taken from Sections 4 and 5.)

The local factors attached to G′ were of necessity defined in terms of the Lie alge-
bra of G′, which is just the underlying four-dimensional quaternion algebra M′ over
F . These amount to the analogue for G′ of the local construction from Tate’s thesis.
On the other hand, the local factors for G were defined, according to the require-
ments of the converse from Hecke theory, in terms of the Mellin transform attached
to a one-dimensional vector space. The analogue for G of Tate’s thesis would be
based on a different transform attached to the Lie algebra of G, the four-dimensional
matrix algebra M over F . It would have in many ways been more natural. In Section
13, the authors investigate the local factors for G that arise in this manner, and show
in Theorem 13.1 that they do actually match the earlier local factors for G defined
by Hecke theory. In Section 14, they combine the global methods of Tate’s thesis
with the local factors already in place for G′. Theorem 14.1 asserts that if π ′ is an
automorphic representation of G′(AF), the corresponding L-function L(s,π ′) satis-
fies analogues of (33), (34) and (35), apart from the requirement that it be entire.
But Corollary 14.3 then asserts that so long as π ′ is not a one-dimensional repre-
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sentation attached a quasicharacter χ on CF , the global L-functions L(s,ω⊗π ′) and
L(s,ω−1⊗ (π ′)∨) are indeed all entire. Finally in Theorem 14.4 at the end of Sec-
tion 14, the authors establish the essential property of the global correspondence
(36). If we also take for granted the hints at the end of the section, as we did in the
discussion of the converse theorem above, we can conclude that if π ′ is not the one-
dimensional representation attached to a quasicharacter χ on CF , its global image π

lies in Πcusp(G).
In Theorem 15.2, the authors deal with the local correspondence π ′v→ πv. They

prove that it maps Π(G′v) injectively onto the relative discrete series Π2(Gv) of Gv,
a term that carries the same meaning at any local place v as that defined for v = R
at the end of §2. Here, they use the local constructions of Tate for GL(2), and in
particular, their own conclusion from Theorem 13.1 that the Tate local factors for πv
match the Hecke local factors in terms of which the local correspondence was de-
fined. (The statement of Theorem 15.2 was actually for nonarchimedean v, but only
because the authors describe the image more explicitly as the set of representations
πv that are either supercuspidal or “special”, the latter being representations in the
relative discrete series that are subquotients of induced representations. The result
for archimedean v is simpler, and is contained in the discussion in Section 5.) The
authors supplement this result with an important formula for the characters of repre-
sentations, regarded as locally integrable, conjugacy invariant functions Θ(πv, ·) on
the group. In Proposition 15.5, they establish that corresponding characters satisfy
the identity

Θ(π ′v,b
′
v) =−Θ(πv,bv), π

′
v→ πv, (37)

where b′v→ bv is the natural bijection between the regular elliptic conjugacy classes
on the two groups.

This is as far as Hecke theory goes. However, the authors still had more to say.
In Section 16, they used the Selberg trace formula, something entirely different, to
give a remarkable characterization of the image of the global correspondence (36).
Combined with their characterization of the local correspondence π ′v→ πv we have
just described, the final result is the assertion that the global correspondence π ′→ π

from G′ to G is a bijection, from the set of representations π ′ ∈Π(G′) not attached
to a quasicharacter χ on CF onto the set of representations π ∈ Πcusp(G) with the
property that for every v such that G′v is not split, πv lies in the relative discrete series
Π2(Gv) of Gv.

This is what Langlands cited as the second principal contribution of [103] to the
understanding of functoriality. Since it characterizes automorphic representations of
G′ as a natural subset of the cuspidal automorphic representations of its quasi-split
inner form G = GL(2), it suggests that functoriality can be formulated purely in
terms of of quasi-split groups, as we have done here. As we have noted, the auto-
morphic representations of groups that are not quasi-split are now usually treated
as part of a separate theory of Langlands, the theory of endoscopy. But we could
still regard the global comparison between G′ and G as the first result in endoscopy,
established years before the theory was formally proposed. We shall postpone our
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description of the actual comparison to the next section, as part of a general discus-
sion of the trace formula.

Incidentally, the complementary set of automorphic representations of G′, those
attached to quasicharacters χ of CF , are just the one-dimensional automorphic rep-
resentations of G′. They are naturally bijective with the set of one-dimensional au-
tomorphic representations of G, which represent the complement of Πcusp(G) in the
set Π2(G) of representations that comprise the full automorphic (relative) discrete
spectrum of G. However, the formal correspondence between these two sets is dif-
ferent from (36). Its analogue for general groups was introduced [13], [18] as an
attempt to describe the representations in the automorphic discrete spectrum of any
group that do not satisfy the general analogue of Ramanujan’s conjecture. We shall
return to it in later sections.

6 Trace formula and first comparison

Selberg introduced his trace formula in 1956 [205]. He might actually have discov-
ered it earlier, but since he published very little of his work, it is difficult to say.
There are actually two formulas. One is the identity for compact quotient Γ \H,
whose elegant proof Langlands reconstructed in [133], as we discussed in Section
1. See also [79]. The other applies to many noncompact quotients Γ \H of rank 1.
The rank here means the number of degrees of freedom one has to approach infinity
in Γ \H. This is more difficult. It requires among other things the theory of Eisen-
stein series, which we discussed in Section 2, and which Selberg had introduced for
this express purpose.

In particular, Selberg established an explicit trace formula for Γ \SL(2,R) (in the
sense we discussed in Section 1), where Γ equals SL(2,Z), or a congruence sub-
group of SL(2,Z), or more generally, any discrete subgroup of SL(2,R) with a rea-
sonable fundamental domain. He also established extended formulas that included
the traces of the supplementary Hecke operators attached to a congruence subgroup
of SL(2,Z). As we have noted, these operators are an integral part of the adelic
framework that has since been adopted. Selberg used his formulas to prove striking
estimates for the closed geodesics on the Riemann surface attached to Γ ⊂ SL(2,R),
taken from the geometric side, and for the eigenvalues of the Laplacian on the Rie-
mann surface, taken from the spectral side.

Langlands’ interest in the trace formula was different. He saw it as an opportunity
to study functoriality. Global Functoriality postulated deep reciprocity laws between
automorphic representations for pairs of groups G′ and G. The trace formula for any
one group, especially insofar as it existed for noncompact quotient, was clearly a
complex identity. But might it be possible to compare the formulas for G′ and G,
without having to evaluate the various terms in either case explicitly?

This brings us to the second part [103, §15–16] of the volume of Jacquet–
Langlands. We put it aside in the previous section in order that it might serve us here
as a simple introduction to the general comparison of trace formulas. On pp. 516–



86 James G. Arthur

517 of the volume, the authors stated the adelic version of Selberg’s trace formula
for the group GL(2). This was perhaps the first time the formula was stated in full,
Selberg having limited his publications to specializations of the formula. In addition,
it represents a two-fold extension of the formula, from a modular quotient of the up-
per half plane to a modular quotient of GL(2,R), and then to the adelic quotient
GL(2,F) \GL(2,A) for a number field F . (In fact, the statement in [103] applies
to any global field F , but as always for us, F will be of characteristic zero.) The
authors also gave a clean and concise sketch of the proof. Detailed proofs of the
adelic version of Selberg’s formula for PSL(2) [69] and groups G of F rank 1 [9]
appeared later.

Suppose for a moment that G is an arbitrary reductive group over a number field
F . We could then take f to be a function in the natural space4 of test functions

C∞
c (G(AF)) = lim−→

S

(
C∞

c (G∞)⊗C∞
c (G

∞
S )⊗1S)

on G(A). Right convolution by f in the Hilbert space L2(G(F)\G(AF)) obviously
converges. It is easily seen to be an integral operator, with kernel

K(x,y) = ∑
γ∈G(F)

f (x−1
γy), x,y ∈ G(A). (38)

If G(F) \G(AF) is compact, R( f ) is of trace class, by standard methods in func-
tional analysis. Its trace is given by the identity (1) from Section 1, but with G(F)
and G(AF) in place of Γ and G. Indeed, the spectral extension on the right-hand side
of (1) equals the trace of R( f ), by definition, while the left-hand side amounts to the
geometric expression for the trace derived originally by Selberg, and by Langlands
in [133].

Suppose however that G(F) \G(AF) is not compact. Then R( f ) is not of trace
class. The problem is with the continuous spectrum L2

cont(G(F) \G(AF)). The re-
striction Rcont( f ) of R( f ) to this invariant subspace is no more of trace class than
would be the convolution operator on L2(R) of a function in C∞

c (R). One must sub-
tract the contribution of Rcont( f ) to the kernel K(x,y) of R( f ) to obtain an operator
that is better behaved. This is the role of Langlands’ general theory of Eisenstein
series. The point is that Eisenstein series provide a spectral formula for K(x,y). As
a formal consequence of Langlands’ Main Theorem from Section 2, one obtains a
spectral expansion

K(x,y) = ∑
P

n−1
p

∫
ia∗P

∑
φ∈BP

E(x,IP(λ , f )φ ,λ )E(y,φ ,λ )dλ (39)

4 Here S ⊃ S∞ is a finite set of valuations of F , while C∞
c (G∞) is the ordinary space of test

functions on the archimedean component G∞ = G(F∞), and G∞
c (G

∞
S ) is the space of locally con-

stant, complex-valued functions of compact support on the “ramified” nonarchimedian component
G∞

S = G(F∞
S ). We write 1S for the characteristic function of a suitable natural compact subgroup

KS of the remaining “unramified” component GS = G(AS) of G(A).
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in which BP is an orthonormal basis of the Hilbert space HP on which the induced
representation IP(λ ) acts, for the kernel to accompany the simpler geometric ex-
pression (38). (See for example [22, (7.6)].) The multiple integral converges abso-
lutely, even though there are no reasonable pointwise estimates for the integrand.
The argument for this, which I learned from Langlands, and is due to Selberg, is to
combine the Schwartz inequality with the fact that for a positive definite function
f = h∗h∗, the diagonal value K(x,x) of the kernel bounds that of the integral in (39)
over any compact subset of the domain. (See for example [22].) We shall return to
these matters when we discuss the general trace formula in Section 10.

For the group G = GL(2) in §16 of [103], there are two terms indexed by P in
(39). One is given by the Borel subgroup P = P0 = B of upper triangular matrices in
G. The other corresponds to P = G. It is the kernel of the operator Rdisc( f ) obtained
by restricting R( f ) to the relative discrete spectrum.

The group GL(2) has a split, one-dimensional centre, the group Z = AG ∼= GL(1)
of scalar matrices, so to have a trace at all, one must make the usual minor adjust-
ment. However, instead of either restricting f to the subgroup G(A)1 of G(A) or
projecting it onto a function invariant under a subgroup A+

G,∞
∼= R+ of AG(F∞), ac-

cording to the discussion in Section 2, the authors take f to be η−1-equivariant,
for a character η on the full adelic quotient Z(F)\Z(AF) of the centre. The kernel
K(x,y) is easy to adjust. For the original function f , the integral∫

Z(F)\Z(AF )
K(zx,y)η(z)dz

becomes the kernel for the η−1-equivariant function

x→
∫

f (zx)η(z)dz.

The formulas (38) and (39) for the kernel are essentially unchanged, even if G is a
general group. They can be taken as stated so long as we understand that:

(i) f now belongs to the space C∞
c (G(AF),η

−1) of η−1-equivariant test functions.
(ii) R( f ) is the right convolution over Z(AF) \ G(AF) of f on the space

L2(G(F) \ G(AF),η) of square integrable, η-equivariant functions on
G(F)\G(AF).

(iii) The integrals in (39) are really taken over the kernel ia∗,GP in ia∗P of the canonical
linear projection of ia∗P into ia∗G, in which the original notation holds if we treat
the dependence of IP(λ , f ) on the image of λ in ia∗G as a Dirac distribution.

The two formulas (38) and (39) for K(x,y) become η−1-equivariant functions
in x and y on G(F) \G(AF), making their diagonal values at y = x functions on
Z(AF)G(F)\G(AF). The trace of the restriction Rdisc( f ) of R( f ) to the η-discrete
spectrum becomes the integral over this set of the expression with P = G in (39).

For our group G = GL(2), the trace of Rdisc( f ) is thus the integral over x = y in
Z(AF)G(F)\G(AF) of the difference between (38) and the expression with P = B
in (39). Neither of these last two functions is integrable. To obtain a trace formula,
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one must see how their nonintegrable parts cancel, and then find an explicit formula
for the integral of what remains. As we noted, Jacquet and Langlands gave a sketch
of the process in §16 of [103]. The answer they obtained for the trace of Rdisc( f ) is
given as a sum of the eight terms (i)–(viii) on p. 516–517. We shall say a few brief
words about the argument, to give ourselves some general perspective.

The value of (38) at y = x is the more transparent of the two expressions (and
would of course be the only expression to consider in case of compact quotient). It
can again be written as

∑
{γ}

∑
δ∈Gγ (F)\G(F)

f (x−1
δ
−1

γδx),

where {γ} is a set of representatives of G(F)-conjugacy classes in AG(F) \G(F).
If we proceed formally as if G were a group with Z(AF)G(F)\G(AF) compact, in
which all multiple integrals are absolutely convergent, we could write the integral
of this function as

∑
{γ}

∫
Z(AF )G(F)\G(AF )

∑
δ∈Gγ (F)\G(F)

f (x−1
δ
−1

γδx)dx, (40)

which in turn is equal to

∑
{γ}

∫
Z(AF )Gγ (F)\Gγ (AF )

·
∫

Gγ (AF )\G(AF )
f (x−1

γx)dx,

and hence also to

∑
{γ}

vol(Z(AF)Gγ(F)\Gγ(AF)) ·
∫

Gγ (AF )\G(AF )
f (x−1

γx)dx. (41)

This would match the left-hand side of Selberg’s trace formula for compact quotient,
which we quoted from [133] as (1) in Section 1. But in the case G = GL(2) at hand,
the integrals do not all converge. There are four kinds of terms in (40), two good
and two bad.

If γ is a scalar matrix, it can be represented by 1. In this case, the corresponding
integral in (40) gives a contribution

vol(Z(AF)G(F)\G(AF)) · f (1). (42)

to (41). This is the term (i) on p. 516 in [103]. If the characteristic polynomial of γ is
irreducible over F , its eigenvalues generate a quadratic extension E = Eγ of F , and
Gγ(F) is isomorphic to E∗. In this case the corresponding integral in (40) converges.
The contribution

∑
{γ}

vol(A∗F E∗γ \A∗Eγ
) ·
∫

Gγ (AF )\G(AF )
f (x−1

γx)dx (43)
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of these integrals to (41) gives the term (ii) on p. 516 of [103]. The term (iii) in [103]
vanishes, being a sum over the empty set of inseparable quadratic extensions of the
number field F . The other terms in (40) are bad. If the characteristic polynomial
of γ is a product of two distinct linear factors over F , the corresponding integral
in (40) diverges. The explanation is that in the associated summand in (41), the
integral converges but the volume coefficient is infinite. The remaining terms in
(40) are attached to nontrivial unipotent elements, namely the complement of the
scalar matrix 1 from (42) in the classes {γ}, with characteristic polynomial being
the square of a linear factor. The explanation here is the other way around, where
the associated volume is finite, and the integral is what diverges. The two kinds of
bad classes {γ} ultimately contribute to the trace formula as the respective terms
(iv) and (v) on p. 514 of [103].

The other half of the trace formula concerns the spectral expansion of the kernel,
specifically the value at y = x of the summand of P = B in (39). Following Selberg’s
basic ideas, Jacquet and Langlands multiplied the difference between the value of
y = x at (38) and this spectral function by the characteristic function of a large
compact subset

{x : HP(x)≤ logc1}

of Z(AF)G(F)\G(AF), defined in terms of the usual fundamental domain for any
large positive number c1. This effectively led them to a cancellation of the noninte-
grable parts of each function. More precisely, they showed that for each of the two
truncated functions in the difference, the integral is a sum of three linear forms in
f : an explicit distribution that is independent of c1, the product of logc1 with a sim-
pler distribution, and a distribution that appears to be quite complicated, but which
approached 0 as c1 approaches infinity. The two multiples of logc1 are easily seen
to cancel. The terms that approach 0 can be ignored. This leaves only the distribu-
tions that are independent of c1. They are equal to the sum of the terms (i)–(v) on
p. 516 of [103] from the geometric kernel we have discussed above, and the terms
(vi)–(viii) on p. 517 from the spectral kernel.

This completes our general remarks on the trace formula for GL(2) in [103]. It
is a curious fact, observed a couple of years later, that with a minor change in the
truncation process that takes into account the noncuspidal discrete spectrum (part of
the term with P = G in (39)), each of the two distributions that approach 0 actually
vanishes if logc1 is sufficiently large. This turned out to be a general phenomenon,
which carried over to the later trace formula of an arbitrary group G. In the general
case, the truncation parameter T1 = logc1 for GL(2) is replaced by a vector T in the
positive chamber a+P0

that is far from the walls. It gives rise to a uniform truncation
operation on the diagonal values (x,x) of each of the two expansions (38) and (39)
of K(x,x). The integrals of the resulting two functions of x in turn come with their
own expansions, whose terms are polynomials in T if T is far from the walls of
a+P0

(in a sense that depends only on the support of f ). The general trace formula
comes from this. It is the identity of distributions obtained by setting the polynomial
variable T equal to a canonical point T0 (often 0), which is determined by the choice
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of a suitable maximal compact subgroup K0 ⊂ G(AF). (See [12, §1–2] and [22,
Theorem 9.1].)

There is another matter, which is a little more disturbing. Given a locally compact
group H, one says that a continuous linear form F in h ∈Cc(H) is invariant if

F(hu) = F(h), hu(x) = h(u−1xu), u ∈ H,

for every h and u. In the case of H = GL(2,AF), the trace tr(Rdisc( f )) is an invariant
distribution. One might therefore expect all of the terms (i)–(viii) in the formula for
tr(Rdisc( f )) also to be invariant distributions. They are not. The problem is that the
truncation operation interferes with the symmetry under conjugation. In particular,
it renders the geometric terms (iv) and (v) and the spectral terms (viii) noninvariant.
However, there is a natural “renormalization” process, which converts these terms
to invariant distributions, and which applies uniformly to any reductive group G. We
refer the reader to the formula (2) of the introduction of [15] for a general statement
of the final invariant trace formula, and to [22, §22–23] for a description of the
general correction process.

These refinements are not actually needed for the comparison in §16 of [103].
Suppose again that G is a general reductive group over F , with standard parabolic
subgroup P = MN, and that fw is a function in C∞

c (Gw), for a valuation w of F . It is
convenient to define a supplementary function fw,M on Π(Mw) (the set of irreducible
representations of Mw = M(Fw)) by setting

fw,M(σw) = tr(I G
P (σw, fw)), σw ∈Π(Mw),

the character of the representation of Gw parabolically induced from σw. We then
say that function f = ∏v fv in C∞

c (G(AF)) is cuspidal at w if fw,M = 0 for every
parabolic subgroup P ̸= G. The term really ought to be “invariantly cuspidal” so as
not to conflict with the earlier notion of a cuspidal function from Section 2. However,
the context should rule out any future confusion. In any case, the relevance of the
property is that if f is cuspidal at two places v1 and v2, the general invariant trace
formula simplifies dramatically [15, Theorem 7.1]. It reduces to something close to
what it would be if G(F)\G(AF) were compact. In the case G = GL(2) of present
interest, the result for any such f is that the terms (iii)–(viii) all vanish, and hence
that the trace of Rdisc( f ) equals the sum of the terms (i) and (ii). Thus, for the group
GL(2) (or for any group of semisimple F-rank 1), one does not need the invariant
trace formula for this simplification. It follows easily from the basic trace formula,
as Jacquet and Langlands point out for GL(2) in §16.

We can now begin our brief account of the comparison theorem in §16 of [103]
for the global correspondence of representations (36). We should first say something
on the structure of the multiplicative group G′ of a quaternion algebra. For a broader
view of this, we extract what we need from the structure of general groups.

As we suggested in Section 2, there is a remarkable classification theory for
general (connected) reductive groups G over local and global fields F . I take the
liberty of representing it as a diagram of four steps.
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(1) {semisimple Lie algebras over C}y
(2) {reductive groups over C}y
(3) {split reductive groups over F}y
(4) {quasi-split reductive groups over F}y
(5) {general reductive groups over F}

Complex semisimple Lie algebras are bijective with Coxeter–Dynkin diagrams.
These in turn are finite disjoint unions of connected diagrams, of which there are
four infinite families and five exceptional diagrams. This is the starting point.

The first step (1)→ (2) follows from the theory of covering groups, which is
easy to manage in this setting. It is founded on our explicit knowledge of the finite
abelian groups Z(Gsc(C)), where Gsc(C) ranges over the simple, simply-connected
complex groups attached to the connected diagrams, and the fact that any complex
reductive group is a quotient of a finite direct product of groups Gsc(C) and a com-
plex torus, by a finite central subgroup. The second step (2)→ (3) is a bijection,
obtained from a special case of the basic construction of Chevalley groups. The
third step (3)→ (4) is given by outer twistings of the Galois action on the given split
group. Its main ingredient is a homomorphism (of finite image) from the Galois
group ΓF = Gal(F/F) to the group of automorphisms of the underlying diagram.
The last step (4)→ (5) is based on class field theory. It is given by inner twistings
of the Galois action on the given quasi-split group G∗ over F , or in purely algebraic
terms, elements in the Galois cohomology set H1(ΓF ,G∗ad(F)). These objects are
a part of abelian class field theory, for they reduce to Galois cohomology groups
H∗(ΓF ,X), attached to abelian ΓF -modules X , to which Tate–Nakayama duality ap-
plies. To view these matters in terms of Langlands dual groups, we refer the reader
to [121, §1 (F local) and §2 (F global)].

This description of the general classification goes well beyond what is needed
for quaternion groups, but it does represent an implicit foundation for various topics
that will arise later. For the quaternion groups G′, the classification is simple. In par-
ticular, one needs only the last step (4)→ (5), since the underlying quasi-split group
is the split group G = GL(2). The conclusions are as follows. If F is local, with
F ̸= C, there is exactly one quaternion group up to isomorphism. (If F = C, there
are no quaternion groups.) If F is global, the isomorphism classes of quaternion
groups G′ over F are parametrized by finite, even, nonempty sets S of valuations of
F (with Fv ̸= C for each v ∈ S). For any such S, G′ is characterized by the property
that for any valuation v, G′v equals the unique quaternion group over Fv if v lies in S,
and is equal to GL(2)v otherwise.
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Suppose then that G′ is a quaternion group over F with F global, and with centre
Z′ = Z(G′). The characteristic polynomial gives a natural bijection b′v→ bv between
the regular elliptic conjugacy classes in G′v = G′(Fv) and Gv = G(Fv), as in the
character formula (37). If G′v does not split, any regular, semisimple class is elliptic.
For the group Gv, however, there are also regular hyperbolic conjugacy classes av
in Gv. We recall that according to the general definitions, a semisimple conjugacy
class γ = γv in Gv (or G′v) is regular if the centralizer Gγ is a torus, and that the
regular, semisimple classes in Gv form an open dense set. The class γ is elliptic if
the quotient Z(Fv)\Gγ(Fv) is compact, and hyperbolic otherwise.

For the comparison of trace formulas, Jacquet and Langlands chose match-
ing functions f ′ ∈ C∞

c (G
′(A),η) and f ∈ C∞

c (G(A),η) in the relevant spaces of
η-equivariant test functions. More precisely, given a function f ′ = ∏ f ′v for G′, they
chose a function f = ∏ fv for G by defining the local factors fv as follows. If G′

is split at v, they simply identified fv with f ′v under any of the isomorphisms from
G′(Fv) to G(Fv) in the G(Fv)-conjugacy class of isomorphisms attached to G′v as an
inner twist. If G′v is not split, they took fv to be any function such that

tr( fv(πv)) = δ (πv) · tr( f ′v(π
′
v)), (44)

where πv is any (irreducible) tempered representation of G(Fv), and δ (πv) = 1 if πv
is the image of π ′v under the local correspondence π ′v → πv in (36), and δ (πv) = 0
otherwise. This is a spectral relation. One sees from the character formula (37) that
it is equivalent to the geometric relation∫

Gγ (Fv)\G(Fv)
fv(x−1

v γxv)dxv = ε(γ)
∫

G′
γ ′ (Fv)\G′(Fv)

f ′v(x
−1
v γ

′xv)dxv (45)

in which γ is any regular conjugacy class in G(Fv), and ε(γ) equals (−1) if γ =
bv is the image of an (elliptic) class γ ′ = b′v in G′(Fv), and equals 0 if γ = av is
a hyperbolic class. The function fv is not uniquely determined by either of these
relations. However, if Iv is any invariant distribution on G(Fv), Iv( fv) is uniquely
determined. We also note that if G′v is not split, the function fv is cuspidal, in the
sense above.

For the group G′, the quotient Z′(AF)G′(F)\G′(AF) is compact. The trace for-
mula for G′ is therefore the Selberg trace formula for compact quotient, discussed
above and in Section 1. The trace of the operator R( f ′) = Rdisc( f ′) is accordingly
equal to the sum of the two terms

(Z′(AF)G′(F)\G′(AF)) · f ′(1) (46)

and

∑
{γ ′}

vol(A∗F E∗
γ ′ \A∗E

γ ′
)
∫

G
γ ′ (AF )\G′(AF )

f ′((x′)−1
γ
′x′)dx′, (47)

given by the analogues of (42) and (43), which is to say, of the terms (i) and (ii) in
Chapter 16 of [103] for G′. As for the group G, the trace of Rdisc( f ) equals the larger
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sum of terms (i)–(viii) from [103]. But since the local factor fv is cuspidal at any
place v at which G′v does not split, and since the set S of such places is nonempty
and even, f is cuspidal at (at least) two places v. Therefore, as the authors observe
on p. 523, the terms (iv)–(viii) vanish for the given f . The term (iii) vanishes for any
number field, so this leaves only the sum of (42) and (43), the terms (i) and (ii) for
G.

The sum (47) is over regular, globally elliptic conjugacy classes γ ′ in G′(F),
which is to say, classes whose characteristic polynomial is irreducible over F . The
same is true of the sum over γ in (43). As in the local case, the characteristic polyno-
mials then give a bijection γ ′→ γ between the two indices of summation. Moreover,
it follows from (45) (and the fact that S is even) that the summands of γ ′ and γ are
equal. Therefore, the sums (47) and (43) are equal, as the authors note on p. 524. All
that remains of the two trace formulas are the terms (42) and (46). It follows that

tr(Rdisc( f ′))− tr(Rdisc( f ))

= vol(Z′(AF)G′(F)\G′(AF)) · f ′(1)−vol(Z(AF)G(F)\G(AF)) · f (1).

With further simple arguments, the authors refine this formula into three identities
between its basic components. For example, an approximation obtained by varying
f ′ (and its corresponding image f ) shows that each side of the last formula van-
ishes. Orthogonality relations for discrete series, with the corresponding Plancherel
formulas for f ′(1) and f (1), establish that f ′(1) = f (1). From this it follows that

vol(Z′(AF)G′(F)\G′(AF)) = vol(Z(AF)G(F)\G(AF)) (48)

and that
tr(Rdisc( f ′)) = tr(Rdisc( f )) (49)

(See [103, pp. 524–525].)
The volume identity (48) is of independent interest. The authors pointed out that

while it was well known, the methods used to obtain it were not. They suggested
that a similar comparison of the trace formula (unknown at the time) of an arbitrary
group with that of a quasi-split inner form might be used to establish a similar iden-
tity in general. This could then be combined with Langlands’ early formula [135]
for the corresponding volume of a Chevalley group (or rather, its imputed general-
ization to quasi-split groups). The goal would be to give a general proof of Weil’s
conjecture on Tamagawa numbers. As we noted in Section 1, this is exactly what
happened, with the subsequent work of Lai and Kottwitz (and the final step for E8
by Chernousov). Weil’s conjecture, incidentally, is the elegant volume formula

τ(G) = vol(G(F)\G(A)) = 1,

for any simply connected group G over F , taken with respect to the canonical Tam-
agawa measure on G(A). It is understood that our discussion has been for Haar
measures on G′(A) and G(A) that are compatible, in the sense that they coincide
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under transfer by the inner twist, even though they do not have to be the Tamagawa
measures.

It is of course the other identity (49) that is the main point. We have been dis-
cussing the proof sketched in [103, §16] of Theorem 16.1, the basic characteriza-
tion of the global correspondence π ′ → π . As we noted in Section 5, it is equiv-
alent to the assertion that the mapping π ′ → π is a bijection between the subsets
Πcusp(G′) = Π(G′) and Πcusp(G) described at the end of Section 5. Having already
shown the mapping to be injective, the authors established the surjectivity assertion
by combining (49) with some elementary functional analysis. (See [103, pp. 403–
503].)

This at last completes our discussion of §16 from the monograph of Jacquet and
Langlands. It represents the earliest comparison of adelic trace formulas. I hope that
our rather extended treatment of it will serve as an introduction to the increasingly
complex comparisons that followed. We note that special cases had been established
earlier by Shimizu [225], [226], [227], with comparisons of Selberg’s original (non-
adelic) trace formulas [205], [206], [207].

7 Base change

In their introduction to [103], the authors wrote of the comparison we have just
reviewed,

“... the theorem of §16 is important and its proof is such a beautiful illustration of the power
and ultimate simplicity of the Selberg trace formula and the theory of harmonic analysis on
semi-simple groups that we could not resist adding it. Although we are very dissatisfied with
the methods of the first fifteen paragraphs we see no way to improve on those of §16. They
are perhaps the methods with which to attack the question left unsettled in §12.”

For a short time afterwards, Langlands was apparently unhappy with the last sen-
tence, possibly thinking that it was premature. It is ironic then that he found an
supportive answer only a few years later.

It came from base change. Suppose again that G = GL(2) over the number field
F , and that E is a cyclic extension of F of prime degree ℓ. The restriction of scalars
functor then attaches a quasi-split reductive group G0

E = ResE/F(G) over F to the
pair (G,E) such that G0

E(F) = G(E). (The reason for the superscript 0 will become
clear presently.) The L-group of G0

E can be taken to be

LG0
E = Ĝ0

E ⋊ΓE/F = GL(2,C)×·· ·×GL(2,C)︸ ︷︷ ︸
ℓ

⋊Gal(E/F),

where the cyclic group ΓE/F = Gal(E/F) acts by permutation on the product of
groups GL(2,C). Taking LG = Ĝ×ΓE/F as the L-group of G, we then have an
L-homomorphism
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ρ : g×σ → (g, . . . ,g)︸ ︷︷ ︸
ℓ

⋊σ , g ∈ Ĝ = GL(2,C), σ ∈ ΓE/F ,

from LG = Ĝ×ΓE/F into LG0
E = Ĝ0

E ⋊ΓE/F . Functoriality for ρ is what is known as
base change, a problem that may be formulated in this way if G is any quasi-split
group over F , and E/F is any finite extension.

Langlands had earlier [138] proposed base change for GL(2) as one of several
natural questions chosen to illustrate the difficulty of functoriality. His unexpected
solution of the problem in 1975 followed new ideas of Saito and Shintani. (The
work of both Shintani and Langlands was published only later, Shintani [231] in the
1979 Corvallis proceedings, and Langlands in his 1980 monograph [149].) Moti-
vated by the special case solved by Shintani, Langlands established a general cor-
respondence π → πE from the local and global representations of G to those of
G0

E . The solution represents a new comparison of trace formulas, considerably more
sophisticated than that of the local and global correspondence π ′ → π of (36) for
quaternion groups. As such, it amounts to something beyond a proof of functoriality
for this case. Like the correspondence π ′→ π , and in common with what one might
hope for in any new comparison of trace formulas, the method allows also for a
characterization of the image of the functorial correspondence.

We draw on the introduction of [149] for a brief history of the problem. Doi and
Naganuma treated cases with F = Q, E a real quadratic extension, and with the
archimedean component π∞ of π being in the discrete series [68]. Jacquet extended
these results to more general F and π in [101], but as in [68], without characterizing
the image of the correspondence. It was Saito [193] who introduced the twisted trace
formula with respect to E/F , a new kind of trace formula that he was then able to
compare with that of GL(2). He was thus able to establish base change for more
general cyclic extensions E/F of prime degree, and also to characterize its image.
Finally, Shintani formulated these ideas in terms of representation theory and adele
groups (rather than the classical framework of holomorphic modular forms). This
allowed him to deal with critical problems related to the construction of a local
correspondence πv → πv,E at the ramified places of π . However, Shintani was still
restricted to representations π whose local archimedean constituents πv belonged to
Harish-Chandra’s discrete series, a condition that means that the local test function
fv is chosen to be cuspidal. The problem for him was in the complexity of the trace
formulas that would otherwise have to be compared. We now have some idea of this
difficulty, having seen the complexity of the full trace formula for GL(2), with its
eight terms (i)–(viii) from [103, §16]. The restriction under which Shintani worked
is essentially the condition that f be cuspidal at two places, which reduces that trace
formula to the simple terms (i) and (ii), as in the comparison for quaternion groups
from [103].

Langlands understood how to work with the full trace formula. By comparing
the twisted trace formula for G0

E with the unrestricted trace formula for G = GL(2),
he was able to establish the general base change correspondence π → πE for any
extension E/F of prime order ℓ and any π . It was only after having removed all
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the restrictions that had gone before that he was able to establish its remarkable
applications to Artin L-functions.

Having discussed the trace formula for GL(2) and its comparisons from [103] in
some detail, we shall be content with a briefer summary of the twisted trace formula.
Even for GL(2), the twisted trace formula and its comparison with the ordinary trace
formula are rather more technical. A reader could bypass our summary, which leads
directly to the spectral comparison identity (53) (or (54), written in the notation of
Langlands), and proceed to the subsequent review of the properties of the resulting
base change lifting (55).

The origin of the twisted trace formula is the (algebraic) automorphism σE of the
quasisplit group G0

E over F . Its action on G0
E(F) is given by the Galois automor-

phism σ of G(E). It also acts on G0
E(AF), and on the quotient G0

E(F) \G0
E(AF),

and indeed, on the adelic quotient ME(F) \ME(AF) of any σE -stable subgroup
ME of G0

E over F . Langlands introduced a σE -stable character ξE on the adelic
quotient ZE(F) \ ZE(AF) of the centre ZE = Z(GE) of G0

E . This is the setting of
the trace formula for GL(2) discussed in the last section. In particular, for any
ξ
−1
E -equivariant test function f 0

E ∈C∞
c (G

0
E(AF),ξ

−1
E ), we have the operator Rdisc( f 0

E)
in the ξE -discrete spectrum

L2
disc(ξE) = L2

disc(G
0
E(F)\G0

E(AF),ξE)

whose trace is the object of the trace formula. But it is the twisted trace of Rdisc( f 0
E)

that is of interest here.
We form the semidirect product

G+
E = G0

E ⋊ ⟨σE⟩,

and write
GE = G0

E ⋊σE

for the connected component attached to a fixed generator σE of ΓE/F . The action

(σEφ)(y) = φ(σ−1
E (y)), y ∈ G0

E(F)\G0
E(AF),

of σE on the Hilbert space L2(ξE) gives a canonical extension RE of the representa-
tion R0

E of G0
E(AF) to the group generated by GE(AF) = σE ·G0

E(AF). In particular,
for any test function fE ∈C∞

c (GE(AF),ξE), we have a unitary operator

RE( fE) =
∫

ZE (AF )\GE (AF )
fE(x)RE(x)dx

on L2(ξE). Our notation here is slightly different from that of Langlands, as has
sometimes been the case in past discussion, but it makes no difference in the argu-
ment.

The twisted trace formula is an explicit formula for the trace of the operator
Rdisc( fE). Its proof is very similar to that of the standard trace formula. For a start,
Rdisc( fE) is an integral operator on L2(ξE), whose kernel is given by either the geo-
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metric expansion (38) or the spectral expression (39). Both expansions are actually
valid as stated for any G (taken to be a connected component of a nonconnected
reductive group G+ over F), so long as we understand that x and y are variables
in G0(A), while in (39), P ranges over standard parabolic subsets of G over F .
(See [16, §1].) Langlands sketched the proof of the (twisted) trace formula in §10 of
[149], following the derivation of the standard trace formula for GL(2) from [103].
There is a minor difference here in the standard trace formula for GL(2) used in
[103]. Instead of the character η on Z(F)\Z(AF) in [103], Langlands here takes a
character ξ on the subgroup

Z(F)∩NE/F(Z(AE))\NE/F(Z(AE))

of finite index, and then takes ξE to be the pullback of ξ to ZE(F) \ZE(AF) under
the norm map NE/F .

To compare the trace formulas, Langlands introduced a local correspondence

fE = ∏
v

fE,v→∏
v

fv = f (50)

of global test functions. For a given valuation v of F , let γv be a regular orbit in
GE,v = GE(Fv) under conjugation by the group G0

E,v = G0
E(Fv). Then its ℓth power

γℓv is a subset of G0
E,v, which Langlands intersected with the subgroup Gv = G(Fv).

He then proved that the mapping

γv→ δv = Gv∩ γ
ℓ
v

is a well defined injection from the regular G0
E,v-orbits in GE,v to the regular conju-

gacy classes in Gv. (See [149, §4 and §8].) Our G0
E,v-conjugacy in GE,v is the same

as σE -conjugacy in G0
E,v, while the power γℓv becomes the norm NEv/Fv in the group

G0(Ev). (My apologies for reversing the notation for γ and δ in [149], for the sole
purpose of having the formulas (38) and (39) for the kernel extend as stated to a
twisted group. It is actually quite appropriate, for it helps to unify more sophisti-
cated notions of endoscopy.) Langlands then defined the correspondence fE,v→ fv
from local test functions fE,v ∈ C∞

c (GE,v,ξE,v) to functions fv ∈ C∞
c (Gv,reg,ξv) in

terms of orbital integrals

Orb(γv, fE,v) =
∫

G0
E,γv (Fv)\G0

E (Fv)
fE,v(x−1

v γvxv)dxv

and
Orb(δv, fv) =

∫
Gδv (Fv)\G(Fv)

fv(x−1
v δvxv)dxv

by setting

Orb(δv, fv) =

{
Orb(γv, fE,v), if γv→ δv,

0, if there is no such γv.
(51)
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This determines the orbital integrals of fv uniquely, but of course not the function
itself.

The goal of Langlands was to compare the terms in the two trace formulas, for
any pair of matching global functions fE and f in (50). There were three serious
problems, and what we might call a curiosity, to be resolved along the way, none of
which arose in the comparison [103, §16] for quaternion groups.

The first problem is obvious. One needs to know that for v and fE,v, the smooth
function fv on the open subset Gv,reg of regular elements in Gv can be chosen to have
an extension (a priori unique) to a test function in the space C∞

c (Gv,ξv). Langlands
solved the problem in §6 and §8 of [149]. He called the set of regular orbital integrals
of any function fv ∈C∞

c (Gv,ξv) a Harish-Chandra family, and the set of functions
of points δv obtained as above (with the vanishing condition) from a function fE,v in
C∞

c (GE,v,ξE,v) a Shintani family. In Lemma 6.2 of [149], he proved that any Shintani
family is a Harish-Chandra family, and conversely, that any Harish-Chandra family
with the appropriate vanishing condition is a Shintani family. His solution required a
careful comparison of the singularities of the two kinds of functions at points δv and
γv near the boundary of their common domain, while keeping track of the invariant
measures used to define the orbital integrals. The case that E splits at v was treated
separately in §8 of [149]. It is much simpler. For in this case, there is a canonical
choice for the function fv, as a convolution of ℓ different functions in C∞

c (Gv,ξv).
The second problem is what later became known as the fundamental lemma.

It amounts to a more explicit version for spherical functions of the local transfer
mapping we have just discussed. In its most basic form it applies to the characteristic
function 1v of G(Ov) in G(Fv) and the characteristic function 1E,v of GE(Ov) in
GE(Fv), at any unramified valuation v for E/F . The assertion is that 1v represents
the image of 1E,v under the transfer mapping fE,v→ fv, or in other words, that the
orbital integrals of 1E,v and 1v correspond as above. This can be regarded as the
remaining step in the proof of the global correspondence (50). Namely, if fE lies
in C∞

c (GE(AF),ξE), the function f is itself globally smooth, in the sense that it
lies in the space C∞

c (G(AF),ξ ). The fundamental lemma here was established by
Langlands in §4 of [149] for general spherical functions. As a series of relations
among the vertices in certain bounded subsets of the Bruhat–Tits tree for SL(2,Fv),
it appeared at the time to be an interesting but purely combinatorial question.

The third problem concerns the more complicated “parabolic terms” in the trace
formula for G (and GE ). We recall that they vanished in the comparison of [103,
§16], because the test function f was cuspidal at two places. No such restriction
was permitted here for what Langlands had in mind. He was able to handle the
comparison of these terms by an extended analytic argument over the final three
Sections 9–11 of [149]. We shall give a short description of it, if only to give a
reader the chance to look up and compare the corresponding terms, (i), (ii), (iv), (v),
(vi), (vii) and (viii) from [103, pp. 516–517] and (10.9), (10.8), (10.12), (10.15),
(10.30), (10.28) and (10.29) from [149, §10], in the two trace formulas.
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We write the difference of the two trace formulas schematically as

tr(Rdisc( fE))− tr(Rdisc( f )) = [(10.9)− (i)]+ [(10.8)− (ii)]+ [(10.12)− (iv)]
+ [(10.15)− (v)]+ [(10.30)− (vi)]+ [(10.28)− (vii)]+ [(10.29)− (viii)].

The first two square brackets contain the elliptic terms from the two trace formulas.
The differences they represent are each 0. The remaining five square brackets con-
tain the supplementary parabolic terms. Two of them, the brackets containing (vi)
and (vii), still represent invariant distributions (in fE and f ). The second of these
vanishes. The first one does not, but it does represent a discrete linear combination
of characters (in fE and f ). We transfer it to the left-hand side of the formula, and
thereby write

tr(Rdisc( fE))− tr(Rdisc( f ))− [(10.30)− (vi)]
= [(10.12)− (iv)]+ [(10.15)− (v)]+ [(10.29)− (viii)].

(52)

The right-hand side now consists entirely of parabolic noninvariant distributions in
fE and f . It is where the real analytic work of Langlands began. He first wrote the
sum of the noninvariant geometric terms, those in the brackets containing (iv) and
(v), as a sum over the discrete group F∗ of values of a certain function in A∗F . He
then showed that this function (apart from some manageable error terms we shall
ignore here), although not infinitely differentiable at the archimedean places, was
smooth enough to apply the (multiplicative) Poisson summation formula for the
discrete group F∗ of A∗F . Langlands then studied the formula thus obtained from
(52), roughly speaking, as an identity in the local spectral parameters of the match-
ing test functions fE → f . The left-hand side is discrete in this sense, but thanks
to Poisson summation, the terms on the right-hand side all become at least partly
continuous. Langlands’ sophisticated analytic argument allowed him to deduce at
length that each side of (52) vanishes. The formula

tr(Rdisc( fE))+ [(vi)− (10.30)] = tr(Rdisc( f )) (53)

thus followed.
The curiosity we mentioned is the anomaly [(vi)− (10.30)] in the last formula. It

is interesting because it comes from simple but essential terms in the two trace for-
mulas.The contribution in each case comes from the “discrete part”of the (spectral
side) of the trace formula. It represents a term that comes from Eisenstein series, and
is not part of the automorphic discrete spectrum. (These terms are not be confused
with the one-dimensional automorphic representations that represent the noncuspi-
dal part of the automorphic discrete spectrum.) The question is one of interpretation.
What role do they play in the final formula (53)? We shall give the answer presently.
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We have completed our discussion of the base change comparison of the two
trace formulas. Our notation differs somewhat from [149].5. Langlands observes
that the extra term [(vi)− (10.30)] in (53), which vanishes unless the prime ℓ equals
2, is a twisted character in fE . The left-hand side of (53) is therefore itself a twisted
character in fE , which Langlands wrote as

tr(R(φ)R(σ)) = tr(Rdisc( fE))+ [(vi)− (10.30)].

He also wrote
tr(r( f )) = tr(Rdisc( f ))

for the character in f on the right-hand side of (53). The identity (53) is therefore

tr(R(φ)R(σ)) = tr(r( f )), (54)

in his notation. It was stated by Langlands as Theorem 11.1 of [149]. His proof,
which includes the arguments from Chapters 9 and 10 of [149] that we have tried
to summarize, was completed finally on p. 211 of Chapter 11 (at the end of the first
paragraph there). The rest of Langlands’ last chapter, Propositions 11.4–11.5 and
Lemmas 11.6–11.7, was then given to deriving the properties of the base change
lifting

π =
⊗

v
πv→ πE =

⊗
v

πE,v, π ∈Π(G), (55)

of automorphic representations, stated in Chapter 2 of [149], and dual to the transfer
fE,v → fv of functions in (50). The means for this were of course provided by the
comparison identity (53) or (54).

Suppose that πv ∈Π(Gv), and that πE,v ∈Π(G0
E,v) is σE -stable, in the sense that

the representation

(σEπE,v)(xv) = πE,v(σ
−1
E (xv)), xv ∈ G0

E,v,

is equivalent to πE,v. The theory of Whittaker models then gives a canonical inter-
twining operator IE,v, with

(σEπE,v)(xv) = IE,v ◦πE,v(xv)◦ I−1
E,v.

We can say that πE,v is a local lifting of πv if its twisted character Θ(πE,v× IE,v, ·)
matches the character Θ(πv, ·) of πv under the norm mapping. In other words,

5 Langlands wrote φ for a test function on G(AE) = G0
E(AF ) rather than our test function fE on

GE(AF ) = G0
E(AF )σE . He then took R(φ) to be the operator Rdisc( fE) on

L2(G0
E(F)\G+

E (AF )) = L2
disc(G

0
E(F)\G0

E(AF )⋊ΓE/F )

rather than the the operator Rdisc( fE) on

L2(G0
E(F)\G0

E(AF )) = L2
disc(G

0
E(F)\G0

E(AF )σE).

This accounts for the integer ℓ he inserted in the definition of p. 199 of [149].



The work of Robert Langlands 101

Θ((πE,v× IE,v),xv×σE) =Θ(πv,Nvxv), Nv = NEv/Fv , (56)

whenever Nvxv is regular. (See [149, p. 11 and Definition 6.1] as well as [27, p. 51].)
The automorphic representation πE in (55) would then be a global lifting of π if for
each v, πE,v is a local lifting of πv. The word “lifting” here is used interchangeably
with the phrases “base change lifting” or “base change transfer”, or even just “base
change”. The word transfer best describes the phenomenon in general settings.

We should remind ourselves that the base change of automorphic representations
is what corresponds to the restriction of Galois (or Weil group) representations. That
is, if π is the functorial image r→ π of a two-dimensional representation r of WF ,
then πE would be the functorial image rE → πE of the restriction rE of r to the sub-
group WE of index 2 in WF . This follows from the functorial interpretation of base
change given at the beginning of this discussion. It can also be proved directly from
a comparison of global L-functions, the strong multiplicity one theorem for GL(2),
and the local Langlands classification of representations in terms of L-functions and
ε-factors.

Langlands showed that every πv has a unique local lifting πE,v, and that every
π has a unique global lifting πE . Therefore (55) is a well defined mapping of au-
tomorphic representations from Π(G) to Π(G0

E), whose restriction is easily seen
to map the subset Πtemp(G) to Πtemp(G0

E). (Recall that we defined Πtemp(G) some-
what informally as the subset of globally tempered automorphic representations in
Π(G). It is the set of representations that occur in the spectral decomposition of
L2(G(F)\G(A)), which by the theory of Eisenstein series, is the more concrete set
of irreducible representations

{I G
P (σ) : σ ∈Π2(M), P = MN},

induced parabolically from unitary, automorphic representations in the (relative) au-
tomorphic discrete spectrum of M.) This represents a proof of functoriality for cyclic
(prime order) base change. It is the fundamental assertion from among the various
local and global properties of base change that Langlands derives from the compar-
ison identity (54), and for which the reader can consult from the two lists in [149,
§2].

The most important of the remaining properties is the characterization of the
image of the mapping. This is the analogue for base change of the problem solved
for quaternion groups by Jacquet and Langlands by the comparison of trace formulas
in [103, §16]. To describe it, we assume that πE belongs to the subset Πtemp(G0

E)
of Π(G0

E). With this assumption, Langlands proves that πE is a base change lift if
and only if it is σE -stable, in which case its preimage is a finite subset of Πtemp(G).
Moreover, if πE belongs to the subset

Π1(G0
E) = Πcusp,2(G0

E) = Πcusp(G0
E)∩Π2(G0

E)

of cuspidal unitary representations, its preimage is the set

{π⊗ω
k
E/F : 1≤ k ≤ ℓ}
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of order ℓ, where π lies in the associated subset

Π1(G) = Πcusp,2(G) = Πcusp(G)∩Π2(G)

of cuspidal unitary representations of G, and the ωE/F is the class field character
of order ℓ associated to E/F . Conversely, suppose that π is a representation in the
subset Π1(G) of the domain Πtemp(G). Then its base change image πE lies in the
subset Π1(G0

E) if and only if either ℓ ̸= 2 or ℓ= 2 but π⊗ωE/F is not equivalent to
π . In this case, π becomes one of the ℓ representations in the fibre of πE .

The remaining case that

π ∼= π⊗ωE/F , π ∈Π1(G), ℓ= 2,

is of special interest. It is dihedral, in the sense that π is the image r→ π under func-
toriality of an irreducible induced representation r of the Weil group attached to the
quadratic extension E/F . In other words, r is induced from a character χE on the
subgroup CE of index 2 in WE/F , with σE χE ̸= χE . Then L(s,r) equals the entire,
abelian L-function L(s,χE). In fact it is easy to check that, conversely, any dihe-
dral representation r satisfies all the necessary conditions of Theorem 12.2 of [103],
and therefore corresponds to a cuspidal automorphic representation π ∈Π1(G). The
character χE of CE can of course be interpreted as an automorphic representation of
GL(1)E . With this interpretation, the mapping χE → π is sometimes called auto-
morphic induction.

The dihedral representations π are the source of the extra term on the left side of
(53). On the one hand, π contributes less than expected to the discrete spectrum in
the trace formula of G, since the fibre of πE consists of π alone (rather than a set of
order 2). But on the other hand, its base change lifting

πE = IndG0
E

B0
E

(
χE 0
0 σE χE

)
is an induced representation, and does not contribute at all to the cuspidal discrete
spectrum of G0

E in the twisted trace formula for G0
E . The extra term in (53) measures

this discrepancy. It comes entirely from the explicit Eisenstein terms (vi) and (10.30)
in the “discrete parts” of the two trace formulas. In the case of G = GL(2), or even
that of GL(n) [27, §3.6], one can calculate the discrepancy independently of the
two trace formulas. In more complex situations, however, one must undertake a full,
direct computation of “discrete parts” of the relevant trace formulas. (See [23, §4].)

To summarize, base change represents a new case of functoriality, with the pair
(G0

E ,G) = (ResE/F GL(2),GL(2)) in the role of a general pair (G,G′) from the
statements in §4 and §5. But it comes with more information than would a gen-
eral case. This includes the characterization of its image and the other properties
we have just described, by virtue of its origin in a comparison of trace formulas. It
was these supplementary properties in particular that led Langlands to the spectac-
ular applications to Artin’s conjecture and functoriality for certain two-dimensional
representations ρ of WF . They were established in §3 in [149].
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There are four classes of irreducible representations

r : WK/F → GL(2,C),

for the global Weil group

1→CK →WK/F → ΓK/F → 1

attached to a finite Galois extension K/F of number fields. Their images are dihe-
dral, tetrahedral, octahedral and icosahedral (in the sense of geometric symmetry
described below). The ultimate goal would be to show for each r that L(s,r) equals
L(s,π), for a cuspidal automorphic representation π ∈Π1(G) = Πcusp,2(G).

If the image of r is dihedral, we can arrange that K/F is a quadratic extension,
and that r(CK) is not central in Ĝ = GL(2,C). It follows that r is the irreducible
representation induced from a character χK on CK , and is dihedral in the sense above.
There is consequently an automorphic representation π ∈Π1(G) with

L(s,χK) = L(s,r) = L(s,π),

as desired.
In the remaining cases, the image r(CK) consists of scalar matrices, since it is

easy to see that r would otherwise be dihedral. The composition

WK/F → GL(2,C)→ PGL(2,C) ∼−→ SO(3,C)

is then a proper orthogonal representation of the Galois group ΓK/F , which by con-
tracting K if necessary, we can assume is faithful. As a finite subgroup of SO(3,C),
ΓK/F becomes the group of rigid proper motions of a tetrahedron, octahedron or
icosahedron, or in algebraic terms, the group A4, S4 or A5. Nothing was known
about the Artin conjecture in any of these cases before Langlands’ base change. He
was able to use base change to establish functoriality for any tetrahedral ρ . This was
the first progress in Artin’s conjecture in fifty years.

Langlands’ argument, which is the content of Section 3 of [149], is both striking
and suggestive. It is also quite compressed. We shall review it for the tetrahedral
case, in which he obtains complete results. We will then say a few words about
Tunnell’s extension of Langlands’ argument that also leads to complete results in
the octahedral case. For this discussion, we shall follow the standard practice of
writing π = π(r) for the functorial image in Π1(G), if it exists, of an irreducible
representation r of WK/F . We shall also write rE for the restriction of r to a subgroup
WK/E of WK/F , as we have been doing, and πE = BCE/F(π) for the base change
image in Πtemp(G0

E) of a representation π ∈Πtemp(G).
Suppose that r is tetrahedral. Since r(CK) is contained in the group of scalar

matrices in GL(2,C), given that r is not dihedral, r maps the corresponding quo-
tient ΓK/F of WK/F into the group SO(3,C) ∼= PGL(2,C). Its image is equal to the
tetrahedral group A4, a group of order 12 with normal subgroup



104 James G. Arthur

V4 = {1,(12)(34),(13)(24),(14)(23)} ∼= (Z/2Z)× (Z/2Z)

of index 3. We can identify this subgroup in turn with the bijective image in
PGL(2,C) of the set {(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 1
−1 0

)}
.

Let E be the Galois extension of F of degree 3 in K/F fixed by the subgroup V4
of A4. One sees easily that the restriction rE of r to WK/E is dihedral. Indeed, the
image of rE is a semidirect product{(

z 0
0 zε

)}
⋊
〈(

0 1
1 0

)〉
,

where
(

z 0
0 z

)
ranges over the nontrivial image of CK and ε ranges over the image of

the quadratic character attached to the subgroup
{(

1 0
0 ±1

)}
of ΓE/F . It therefore

has a functorial image πE = π(rE) in Π1(G0
E). It is also easy to see that σEπE is

isomorphic to πE , by inspection of the action of σE on the normal subgroup ΓK/E of
ΓK/F . Therefore πE = BCE/F(π) is the base change lift of a cuspidal automorphic
representation π ∈ Π1(G) of GL(2) over F . This last representation is uniquely
determined only as an element in the set

{π⊗ω
k
E/F : 1≤ k ≤ 3}. (57)

Now the determinant ωr of r and the central character ωπ of π are both characters
on CF , which pull back under the norm mapping to the same character on CE . They
therefore differ by a uniquely determined power of the class field character ωE/F .
Replacing π by its product with this power of ωE/F , which is to say the unique ele-
ment in (57), we can assume that ωr = ωπ , and hence that π is uniquely determined
by r. We would expect that π equals the functorial image π(r) of r, but perhaps
surprisingly at first glance, we do not yet have enough information to prove it. In
pointing this out, Langlands noted that the properties of global base change we have
described above establish that if r does have a functorial image, it must necessarily
be equal to π . (See [149, p. 25], where Langlands writes πps(r) = πpseudo(r) for π .)

What is missing? By strong multiplicity 1 for GL(2) [189], the representation
π ∈Π1(G) is uniquely determined by the family

{cv(π) = c(πv) : v ̸∈ S}

of semisimple conjugacy classes in Ĝ = GL(2,C), for a finite set S ⊃ S∞ of valu-
ations of F . We can of course choose S so that r as well as π is unramified at any
v ̸∈ S. We then also have the family
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{rv(Φ) = r(Φv) : v ̸∈ S},

where Φ = Φv is the Frobenius class in WK/F . Then π equals the functorial image
π(r) of r if and only if the two families are equal. We know that πE = π(rE), and
hence that

c(πE,w) = rE(Φw)

for any w outside the set SE of valuations of E over S. Moreover, if w lies above v, it
follows from the definition of base change that rE(Φw) = r(Φv)

n(w) and c(πE,w) =

c(πv)
n(w), where n(w) equals the degree [Ew : Fv]. Therefore

c(πv)
n(w) = r(Φv)

n(w).

There are two possibilities for v. If v splits completely in E, n(w) = 1, and

c(πv) = r(Φv),

as required. Otherwise v is inert, in which case n(w) = 3, and we have only the
relation

r(Φv)
3 = c(πv)

3.

Therefore, if r(Φv) =

(
av 0
0 bv

)
, for numbers av,bv ∈ C∗, then c(πv) is conjugate

to
(

ξ1av 0
0 ξ2bv

)
with ξ 3

1 = ξ 3
2 = 1. But the central character ωπ of π equals the

determinant of c(πv), which is therefore equal to the determinant ωr of r. It follows
that

c(πv) =

(
ξ av 0
0 ξ 2bv

)
, v ̸∈ S, (58)

for a complex number ξ = ξv with ξ 3 = 1.
This was as far as the purely base change argument went. It still remained to be

shown that ξ = 1. The means to do so came from two new cases of functoriality
established shortly before base change, both related to the diagram

PGL(2,C) = SO(3,C)

GL(2,C) SL(3,C)

GL(3,C),
φ

for the dual groups Ĝ1 = PGL(2,C), Ĥ1 = SL(3,C) and Ĥ = GL(3,C) of
G1 = SL(2), H1 = PGL(3) and H = GL(3) respectively, and for φ the adjoint repre-
sentation of GL(2,C). The first was due to Jacquet, Piatetskii-Shapiro and Shalika
[104]. It implied functoriality for the 3-dimensional Galois representation σ = φ ◦r.
In other words there is cuspidal automorphic representation π1 = π(σ) of GL(3)
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such that
c(π1

v ) = σ(Φv) = φ(r(Φv))

for almost all v. The second was due to Gelbart and Jacquet [77]. It implied func-
toriality for φ , and the cuspidal automorphic representation π = πps(r) of GL(2)
we described above. Namely, there is a cuspidal automorphic representation π2 of
GL(3) such that

c(π2
v ) = φ(c(πv))

for almost all v. Notice that these two families of conjugacy classes are obtained by
composing those of r and π , the ones we are trying to see are equal, by φ . It was
therefore expected π1 be equivalent to π2. But even this required something else.

Langlands established the equivalence of π1 and π2 by using a fundamental crite-
rion of Jacquet, Piatetskii-Shapiro and Shalika [104], based on the Rankin–Selberg
L-functions

L(s,π1×π2), πi ∈Π1(GL(ni)), i = 1,2,

they had recently constructed [106]. These are the automorphic L-functions for the
group GL(n1)×GL(n2) attached to the tensor product representation of degree
n1n2. As in the special case of Tate [236] (with n1 = n2 = 1) and Godement–Jacquet
[81] (with n1 = n and n2 = 1), the authors established the analytic continuation and
functional equation, and what is relevant here, a criterion for L(s,π1×π2) to have a
pole. It is that L(s,π1×π2) is entire unless n1 = n2 and π2 equals the contragredient
π∨1 of π1, in which case L(s,π1×π2) has a simple pole at s = 1.

Langlands applied the criterion with n1 = n2 = 3, π1 = π2 and π2 = (π1)∨. The
condition implies that π2 is equivalent to π1 if and only if

L(s,π1
v × (π1

v )
∨) = L(s,π2

v × (π1
v )
∨)

for almost all v, by strong multiplicity 1. That is, if and only if

det(1−|ϖv|s · c(π1
v )⊗ tc(π1

v )
−1
) = det(1−|ϖv|s · c(π2

v )⊗ tc(π1
v )
−1
)

for almost all v, where ϖv is a uniformizing parameter for v. This would of course
be implied by the desired equality of the classes c(π1

v ) = φ(r(Φv)) and c(π2
v ) =

φ(r(πv)), but it is in fact something that can be checked directly. Langlands did so
in [149, p. 27], appealing implicitly to the fact he had noted earlier that σ is the
representation of ΓK/F = A4 induced from a character θ of order 3 on the subgroup
ΓK/F = V4. This established that φ(c(πv)) equals φ(r(Φv)) for almost all v, and
hence that π1 equals π2.

The final step was to combine this with (58). The result is that the conjugacy
class

φ(c(πv)) = Ad
(

ξ av 0
0 ξ 2bv

)
=

ξ 2a2
v 0 0

0 ξ 3avbv 0
0 0 ξ 4b2

v

=

ξ 2a2
v 0 0

0 avbv 0
0 0 ξ b2

v
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is the same as

φ(r(Φv)) = Ad
(

av 0
0 bv

)
=

a2
v 0 0

0 avbv 0
0 0 b2

v

∼
b2

v 0 0
0 avbv 0
0 0 a2

v

 .

As Langlands then argued on p. 28 of [149], this implies that either ξ = 1, from
which (58) then becomes

c(πv) =

(
ξ av 0
0 ξ 2bv

)
= r(Φv)

as required, or that
a2 = ξ b2.

Taking square roots, one sees that this in turn implies either that av = ξ 2bv, which
again gives ξ = 1 as required, or that av = −ξ 2bv. But if the very last condition
holds, we get

φ(r(Φv))
3 =

(
av 0
0 bv

)3

=

(
−b3

v 0
0 b3

v

)
̸= 1.

This would imply that the class φ(r(Φv)) has order 6, which is impossible, since
r(Φv) lies in the dihedral group A4.

It thus follows without exception that c(πv) equals r(Φv) for almost all v. The
theorem of strong multiplicity 1 then yields the following result.

Theorem (Langlands [149]). If F is a number field and r is a two-dimensional
representation of the Weil group WF of F of tetrahedral type, there is a cuspidal
automorphic representation π of GL(2,AF) such that π = π(r). In particular, the
L-function

L(s,r) = L(s,π)

is entire.

The argument we have reviewed is by any account a highly sophisticated proof.
We note in passing that the two supplementary cases of functoriality [104], [77]
needed to complete the argument did not use the trace formula in their proof. They
were both established in the spirit of [103, Theorem 12.2], with an extension to
GL(3) by Piatetskii-Shapiro of the converse theorem of Hecke and Weil. However,
they would probably also be consequences of two later applications of the trace
formula. The first would be automorphic induction from GL(1) to GL(3) of the
character θ on ΓK/E above. This is a special case of general construction founded on
base change for GL(n) [27] that we will mention at the end of the section. The sec-
ond would be a special case of the general endoscopic classification in [23]. It is the
correspondence between automorphic representations of the group Sp(2) = SL(2),
with dual group PGL(2,C) = SO(3,C), and self-dual automorphic representations
of GL(3). We will discuss the general endoscopic classification in Section 10.
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Langlands’ theorem for tetrahedral representations was the foundation for its ex-
tension by Tunnell to octahedral representations. Langlands himself treated some
octahedral representations over F = Q at the end of §3 of [149], using a converse
result of Deligne and Serre [67]. Shortly thereafter, Tunnell used something differ-
ent, a case of nonnormal base change for GL(2) [105] to extend Langlands’ result
for tetrahedral representations to general octahedral representations. We shall add a
few remarks on Tunnell’s proof [240].

Suppose that K/F is a Galois extension of number fields, and that r is a faithful,
two-dimensional representation of the Galois group ΓK/F of octahedral type. In other
words, the image of r in PGL(2,C)∼= SO(3,C) is equal to the octahedral group S4.
There is one respect in which the octahedral case is simpler. It is that the binary
octahedral group, the two-fold “covering group” given by its preimage in Spin(3,C)
is a direct product (S4×Z/2Z). The binary tetrahedral group, on the other hand,
is the nonsplit extension S4 of A4. It was for this reason that we took r to be a
tetrahedral representation of the Weil group WK/F earlier. In the octahedral case, we
are free to let r simply be a representation of the Galois group ΓK/F , as we have just
done.

Let F ′/F be the quadratic extension in K/F that is fixed by A4, regarded as a
normal subgroup of the Galois group ΓK/F

∼= S4. Then the restriction r′ = rF ′ of r to
ΓK/F ′

∼= A4 is an (irreducible) subrepresentation of tetrahedral type. We also choose
a 2-Sylow subgroup Q8 of Gal(K/F) (from the three conjugate subgroups of S4 of
order 8), and take L to be the fixed field of this group in K. Finally, we let E be
the composite of L ·F ′. We then have the master diagram of fields (Fig. 1), with
corresponding Galois groups indicated by parentheses, for which I am indebted to
W. Casselman. It can perhaps serve as a mnemonic for the complex arguments we
have described. (See also p. 174 of [240].)

According to Langlands’ tetrahedral theorem above, there is a cuspidal auto-
morphic representation π ′ = π(r′) of GL(2,AF ′) that is the functorial image of
r′. There are then exactly two cuspidal automorphic representations π1 and π2 of
GL(2,AF) whose base change liftings BCF ′/F(πi) are equal to π ′. They are re-
lated by π2 = π1⊗ωF ′/F . On the other hand, the quaternion group Q8 of order 8
is nilpotent, and hence monomial. It then follows from the converse theorem [103,
Theorem 12.2] that there is a cuspidal automorphic representation πL = π(rL) of
GL(2,AL) that is the functorial image of the restriction rL of r to ΓK/L.

Combining these ingredients with the nonnormal base change theorem of [105],
Tunnell was able to show that there is a unique index i = 1,2 such that the base
change lift BCL/F(πi) of πi equals πL [240, Lemma, p. 174]. Following the argu-
ments described on p. 175 of [240], he then reached the following conclusion.

Theorem (Langlands–Tunnell [240]). If F is a number field and r is a two-
dimensional representation of the Galois group ΓF of octahedral type, there is a
cuspidal automorphic representation π of GL(2,AF) such that π = π(r). In partic-
ular, the L-function

L(s,r) = L(s,π)

is entire.
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K

E

L

F ′

F

V4

Z/3
Z/2

S4

A4

S3

Q8

Fig. 1: Master diagram of fields

Motivated by Langlands’ paper for GL(2), L. Clozel and I were later able to
establish base change for the group GL(n) [27], again for a cyclic extension E/F of
prime order ℓ. The general argument followed that of Langlands, but the comparison
of trace formulas was more complicated. Recall that in our discussion of GL(2),
there were three problems to be solved in the comparison. The first was to show that
in the local transfer for functions, the image of a test function in C∞

c (GE,v,ξE,v) could
be chosen to lie in C∞

c (Gv,ξv). Its analogue for GL(n) was established in [27, §1.3]
by straightforward methods of local descent. The second problem was the explicit
form of local transfer for the special case of nonarchimedean spherical functions
(known later as the fundamental lemma). Its analogue for GL(n) was established
in [27, §1.4]. The authors were able to rely here on a new observation [120] of
Kottwitz, for the important special case of the unit functions fE,v = 1E,v and fv = 1v.
It took the form of a bijection between the summands in the two finite series that
define the orbital integrals (twisted and ordinary), Orb(γv,1E,v) and Orb(δv,1v), in
which the summands themselves were equal. Kottwitz was thus able to prove the
required equality

Orb(γv,1E,v) = Orb(δv,1v), γv→ δv

of the two functions without evaluating either one of them explicitly.
The relative ease with which the problems of local transfer and fundamental

lemma were solved for GL(n) does not reflect how difficult they turned out to be in
more general situations. However, the third problem, that of comparing the supple-
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mentary parabolic terms in the two trace formulas, does contain many of the diffi-
culties encountered in general endoscopy [21], [179], [180]. Its solution, which took
up much of Chapter 2 of [27], can be regarded as a blueprint for the situation in gen-
eral. It is different from the global analytic argument used by Langlands for GL(2).
The final result was a series of term by term identities (the geometric Theorem A
and the spectral Theorem B, in §2.5 and §2.9 of [27]) between the constituents of
the invariant trace formula for GL(n) (a special case of [15]) and their analogues for
the twisted invariant trace formula for GL(n)E . Theorem B then led directly to the
analogue for GL(n) of the spectral comparison identity (53) for GL(2).

The consequences of the base change comparison for G = GL(n) were derived in
Chapter 3 of [27]. We shall state them for automorphic representations π ∈Πtemp(G)
and πE ∈ Πtemp(GE), even though they were derived in [27] only for the special
case of “induced from cuspidal” automorphic representations, as opposed to auto-
morphic representations induced from representations in the full discrete spectrum.
The notion of a global lifting πE of π is defined as for GL(2) above. Then

(i) Any π has a unique global base change lifting πE .
(ii) A given πE is a base change lift if and only if it is σE -stable, which is of

course to say that the representation σEπE is equivalent to πE , in which case
its preimage in Πtemp(G) is finite.

(iii) Suppose that πE lies in the subset Π1(GE) = Πcusp,2(GE) of cuspidal repre-
sentations in Πtemp(GE), and that it is σE -stable. Then its preimage under base
change is a set of order ℓ of the form

{π⊗ω
k
E/F : 1≤ k ≤ ℓ},

for some π ∈Π1(G).
(iv) Suppose that πE belongs to Π1(GE), but is not σE -stable. Then the induced

representation

ΠE = IndG0
E

P0
E
(πE ⊗σEπE ⊗·· ·⊗σ

ℓ−1
E πE),

which is an automorphic representation in Πtemp(GL(nℓ)E) by virtue of the
theory of Eisenstein series, is σE -stable, and is a base change lifting of ex-
actly one representation Π ∈ Π1(GL(nℓ)). The resulting map πE → Π is an
n-dimensional form of automorphic induction.

As an application of these results, the authors established a functorial correspon-
dence r→ π(r) from the irreducible n-dimensional representations r of a nilpotent
Galois group over F to cuspidal automorphic representations π = π(r) in Π1(G).
However, since Artin’s conjecture was already known for nilpotent groups, this gave
no new analytic information about their L-functions.

Base change for GL(n) was used in the proof of R. Taylor, in partial collabora-
tion with Clozel, M. Harris and N. Shepherd-Barron, in the proof of the Sato–Tate
conjecture for many elliptic curves over any totally real field F , as we noted the



The work of Robert Langlands 111

end of Section 4 [238], [51], [91]. My understanding is that base change served as a
substitute for functoriality in the early argument suggested by Langlands in [138].

I mention finally a recent preprint [52] of Clozel and M. S. Rajan, in which
they characterize the image and fibres of solvable base change for GL(n). It will be
interesting to see what applications come of it.

8 Shimura varieties

The theory of Shimura varieties has developed into a vast field, with fundamental
ties to automorphic representations. I cannot do justice to the subject, or to Lang-
lands’ major contributions to it, especially in one section. I will do my best to de-
scribe some of the basic ideas and problems, with emphasis on their ties to automor-
phic representations. As a result, the section will perhaps be less technical, and no
doubt less complete, than our earlier ones.

Shimura varieties are algebraic varieties whose complex points come from Her-
mitian, arithmetic, locally symmetric spaces. They are to algebraic geometry what
general arithmetic locally symmetric spaces are to Riemannian geometry. The clas-
sic example is the quotient

Γ (N)\X+ = {γ ∈ SL(2,Z) : γ ≡ 1(mod N)}\{z ∈ C : Im (z)> 0}

of the upper half plane, or more correctly, a certain disjoint union of such quotients.
They can be compactified by adding a finite set of points, thereby becoming a (dis-
joint union of) compact Riemann surfaces. We shall give the formal definition of a
Shimura variety SK presently, noting here only that it is defined canonically over a
certain number field E, known as the reflex field of SK .

Langlands’ interest in Shimura varieties was in their relations with automorphic
forms. As was the case for number fields, Shimura varieties also come with Galois
representations, and with automorphic representations to which they are supposed
to be related. The Galois representations are more complicated, in the sense that
they take values in a general linear group over Qℓ (or rather, some finite extension
Lλ of Qℓ), instead of over C. (By convention, ℓ is a prime to be distinguished from
p, another prime that might be engaged elsewhere.) However, the associated auto-
morphic representations are expected to be more manageable, in the sense that their
archimedean components π∞ should typically be square integrable (as in a holomor-
phic modular form of weight ≥ 2), rather than an induced representation (as in a
Maass form). It is for this reason that the reciprocity laws between ℓ-adic represen-
tations and automorphic forms tend to be more concrete.

Langlands’ first paper on Shimura varieties (or indeed, any aspect of algebraic
geometry) is the fundamental article [140] on the basic 1-dimensional Shimura va-
rieties SK attached to the group GL(2). The 1972 Antwerp conference at which
Langlands gave the lectures was timely, coming soon after his long monograph
[103] with Jacquet on the automorphic representations of GL(2). His article for
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these proceedings could be considered the second member of a trilogy, which also
includes the monograph [149] on base change for GL(2) we have just discussed.
Each of its three members is dedicated to a different but complementary side of the
representation theory of GL(2).

Langlands’ goal in [140] was to establish reciprocity laws between the two-
dimensional λ -adic representations that arise from the étale cohomology of SK and
the automorphic representations of GL(2). This is essentially equivalent to showing
that the L-functions of these λ -adic representations, defined at least at the unramified
places in the same way as Artin L-functions, are equal to automorphic L-functions
for GL(2). In particular, they would have analytic continuation with functional equa-
tion to entire functions of s ∈ C. This in turn should then lead ultimately to explicit
formulas for the Hasse–Weil zeta functions of the varieties SK [146]. (Langlands’
paper [146] is actually devoted to the compact Shimura varieties associated to vari-
ous quaternion algebras, rather than the noncompact varieties SK attached to GL(2)
over Q.) Not surprisingly, perhaps, the power to establish such things comes from
the Selberg trace formula for GL(2). More precisely, the results are consequences
of an intricate comparison of Selberg’s formula with a completely different formula,
the Lefschetz trace formula, originally for a (nonsingular, projective) algebraic vari-
ety over a finite field. Let us first say something about the general theory of Shimura
varieties, after which we can return to our discussion of [140] and other papers of
Langlands.

In general, a Shimura variety SK is a quasiprojective variety with some auxiliary
data, which is attached to a certain reductive group G over Q, and which as we have
noted is naturally defined over an associated number field E. The subject owes its
existence to the efforts of Goro Shimura over many years. Among other things, he
studied the auxiliary data to be attached to various groups G, gave a conjectural
formulation of the reflex field of definition E in terms of these data, and proved
the conjecture in some cases. He also studied the internal arithmetic objects of SK
(as did M. Eichler at about the same time). In some cases he was able to establish
reciprocity laws between these objects and automorphic forms. His most complete
results were for what are now known as Shimura curves, where

G = ResF/Q GF

for the multiplicative group GF of a quaternion algebra over F (as in Sections 6
and 7 here), with the requirement that F be a totally real field that splits at exactly
one archimedean place. In particular, G = GQ could be the multiplicative group of
a quaternion algebra that splits over R. (See [230], and the references there.)

Deligne made a study of Shimura’s work, on which he reported to Bourbaki in
1971 [61]. He reformulated Shimura’s constructions in adelic terms. In this setting,
a Shimura variety amounts to a family of complex varieties S = {SK} attached to
a Shimura datum (G,X), with G being a reductive group over Q and X a G(R)-
conjugacy class of homomorphisms

h : R(R) = C∗→ G(R)
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defined over R, for the R-torus

R = ResC/R(Gm), Gm = GL(1),

which satisfy the natural conditions (a), (b) and (c) on pp. 213–214 of [144]. In
particular, if Kh is the centralizer of h(C) in G(R) for some h ∈ X , the quotient

G(R)/Kh ∼= X

is required to have a complex Hermitian structure. The subscripts K range over open,
compact, subgroups of G(A∞). For any such K, the associated variety has complex
points parametrized by the adelic coset space

SK(C) = G(Q)\ (X×G(A∞)/K) = G(Q)\G(A)/KhK.

This space may or may not be compact. In any case, each of its (finitely many)
connected components has a complex embedding into projective space, according to
the Bailey–Borel compactification. Therefore, SK(C) is a complex quasiprojective
manifold, and hence the set of complex points of a quasiprojective algebraic variety
over C. (See [61, §1.8], [144, §4], [176].)

The Shimura variety attached to the datum (G,X) is formally taken to be the
inverse limit

S = S(G,X) = lim←−
K

SK .

It is a complex proalgebraic variety, with complex points

S(C) = G(Q)\ (X×G(A∞))∼= G(Q)\G(A)/Kh,

on which the group

G(A∞) = {x ∈ G(A) : x∞ = xR = 1}

acts algebraically by right translation. The quasiprojective variety attached to any
K ⊂ G(A∞) then equals the quotient

SK = SK(G,X) = S/K.

It is also often called a Shimura variety, as we have already done above.
The simplest examples are given by the case that G = T is a torus. For X then

consists of a single point h. For an open compact subgroup U of T (A∞), the set
SU (C) is then finite, and the corresponding Shimura variety SU = SU (T,h) is zero-
dimensional. If (G,X) is a general Shimura datum, a special pair for (G,X) is a pair
(T,h) with T ⊂G and h∈X . Then if U =K∩T (A∞), for an open compact subgroup
K ⊂G(A∞), SU (C) is a finite subset of SK(C), consisting of what are called special
points for SK . Similar notions apply to the proalgebraic complex varieties attached
to the inverse limits over U and K.
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Suppose that (G,X) is a Shimura datum. We first note that there are two simple
homomorphisms

µ,w : Gm→R,

which are basic to the general theory of Hodge structures [175, p. 214]. The first is
defined over C by

µ(z) = (z,1), z ∈Gm(C)∼= C∗.

The second is defined over R by

w(r) = r−1, r ∈Gm(R)∼= R∗.

(In both cases, we want to keep in mind that

R(R) = C∗ ∼= {(z,z) : z ∈ C∗} ⊂ {(z1,z2) ∈ (C∗)2} ∼= R(C),

and that it is in terms of these isomorphisms that the maps are defined.) Now suppose
that h ∈ X . We then also have the two homomorphisms, the cocharacter

µh = h◦µ : Gm→ G, z→ h(z,1),

which is defined over C, and the weight

wX = wh = h◦w : Gm→ G, r→ h(r)−1,

which is defined over R. The cocharacter gives rise to a highest weight µ̂ for Ĝ,
which leads to a finite-dimensional representation r = rX of LG. This in turn is used
to form the automorphic L-functions L(s,π,r) that should ultimately be a part of
the automorphic formula for the Hasse–Weil zeta function of the Shimura varieties
associated to (G,X). The weight of h depends only on the G(R)-conjugacy class
X of h, since its image lies in the centre of G ([144, condition (a), p. 213]). One
can therefore write wX in place of wh as above and call it the weight of (G,X). The
homomorphisms µh and wh are foundations for the role of Hodge structures in the
moduli of Shimura varieties ([144, §4], [175, §1]).

The cocharacter µh of h∈ X also determines the reflex field E(G,X) of the datum
(G,X). Let C be the G(C)-conjugacy class of µh. Then E(G,X) ⊂ C is the field of
definition of C. One can show that the intersection C∩G(Q) is a G(Q)-conjugacy
class of homomorphisms Gm → G over Q, and hence that E(G,X) ⊂ Q is also its
field of definition (see [173, Proposition 4.6(c)]). In particular, E(G,X) is a number
field. Finally, if T is any maximal torus of G, the intersection C∩T (Q) is a (finite)
orbit in T (Q) under the Weyl group W of (G,T ). It follows that E(G,X) is the field
of definition of this Weyl-orbit, namely the subfield of Q fixed by the subgroup of
elements in ΓQ = Gal(Q/Q) that stabilize the fixed finite subset C∩T (Q) of T (Q).

We should also say something about the canonical model of S = S(G,X). In
general, a model of S over a subfield k of C is a scheme M over k, endowed with a
right action of G(A∞) over k, and a G(A∞)-equivariant isomorphism
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S ∼−→M×k C.

There could be many models of S over k.
The canonical model is a model M over the reflex field E(G,X) with special

points that satisfy a certain reciprocity law based on class field theory. If (T,h) is a
special pair for (G,X), the reflex field E(T,h) of the associated Shimura variety is
contained in the reflex field E = E(G,X) of S. For any such pair, and any element
a ∈ G(A∞), we write [h,a] for the point in

M(C)∼= S(C) = G(Q)⊂ X×G(A∞)

attached to the product ha. We also write

r(T,h) : A∗E → T (A∞), A∞ = A∞
Q,

for the composition of elementary maps

A∗E
ResE/Q(µh)−−−−−−→ T (AE)

NE/Q−−−→ T (A)→ T (A∞),

obtained from the restriction of scalars functor applied to µh : Gm → T , the norm
map from T (AE) to T (A), and the projection A→ A∞ onto the finite adeles of Q.
The model M is then a canonical model for S if for every (T,h), and any a∈G(A∞),
the following two conditions are met.

(i) The point [h,a] in M(C) is defined over the maximal abelian extension Eab of
E = E(T,h).

(ii) The special points [h,a] satisfy the reciprocity law

θE(s)[h,a] = [h,r(s)a], s ∈ A∗E , r = r(T,h), (59)

where θE(s) is the image of s in Γ ab
E = Gal(Eab/E) under the Artin map (from

the Artin reciprocity law stated in Section 3).

The idea of a canonical model is remarkable. What makes it especially deep and
interesting is the presence of the Artin map from abelian class field theory. The
phenomenon was discovered by Shimura, who proved its existence in a number of
cases. Deligne [61] established it in other cases, and as I understand it, the general
case was established “somewhat independently” by Milne [173] and Borovoi [37] in
the course of proving a conjecture of Langlands from [144]. (The later article [144]
of Langlands will be our main topic for the next section.) As the name suggests, the
canonical model M of a Shimura variety S is unique, up to a unique isomorphism.
(See [175, Corollary 3.6].) For this reason, it is customary to identify M with S, and
then simply to regard S = S(G,X) and its quotients SK = SK(G,X) as varieties over
E(G,X).
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The basic example is the Shimura datum (G,X) in which G = GL(2) and X is
the set of G(R)-conjugates of the R-homomorphism

z = a+ ib→
(

a −b
b a

)
, z ∈ C∗,

from R(R)∼=C∗ to G(R). The corresponding Shimura varieties SK were the objects
Langlands studied in [140]. Before that, reciprocity laws between Frobenius classes
and Hecke operators on modular curves were established by Eichler and Shimura
[71], [228], [230]. It was an extension (to higher weight) of these results that Deligne
[58] used to reduce the Ramanujan conjecture (for holomorphic modular forms)
to the last of the Weil conjectures, which he later established in 1974 [63]. The
congruence relations used by Eichler and Shimura do not generalize easily beyond
modular curves, whereas the trace formulas extend in principle to arbitrary Shimura
varieties. However, as in the cases of the Jacquet–Langlands correspondence and
of base change, any attempt to exploit the trace formula presents an entirely new
set of difficulties. Ihara [97] was the first to study the comparison in some cases,
apparently following a suggestion of Sato. It was at this point that Langlands began
his investigations.

Not surprisingly, the problems Langlands set out to solve were in the same spirit
as those from [103, §16] and [149]. In particular, he wanted to extend the reciprocity
laws to ramified places p. As in the Jacquet–Langlands extension of Shimizu [227]
and the Shintani extension of Saito [193], this entailed reformulating the comparison
in purely adelic terms. He also wanted to lay down the results for the basic noncom-
pact varieties SK attached to GL(2). We recall that the noncompactness in [103, §16]
was not a problem, since the test function f for GL(2) was cuspidal at two places,
forcing the extra terms on the geometric side of the trace formula to vanish. For the
Langlands extension of Shintani [231] in base change, however, the noncompact-
ness was very much a problem, since f could not be assumed to be cuspidal at any
places. Its resolution required Section 9 of [149], titled “The Primitive State of our
Subject Revealed”, which we discussed briefly at the end of our last section. In the
case here, the problem for Langlands was to extend the Lefschetz formula to the
open Shimura varieties SK for GL(2), and to compare the results with the Selberg
formula. This was a serious task, and the main reason for the length of [140]. We
do note that the difficulties for the Selberg formula were halfway between those of
[103] and [149]. For in this case, the test function f is taken to be the cuspidal at
one place.

The λ -adic representations of ΓQ = Gal(Q/Q) are on the étale cohomology
groups H1

et(SK) of SK . What does this have to do with automorphic representations?
We have mentioned the later paper [145] of Langlands, in which he elucidated the
precise relationship between automorphic representations and automorphic forms.
The latter objects are well named. They are closely related to differential forms on
SK(C), typically with values in a locally constant sheaf F . They can therefore be
used to construct de Rham cohomology groups H1

c (SK(C),F (C)), which in turn
lead to an interpretation of these groups in terms of automorphic representations.
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Langlands studied the de Rham cohomology in §2 of [140]. In §3, he discussed
the implications for its structure, particularly as it relates to Hecke operators. Hecke
operators act on the analytic cohomology H1

c (SK(C),F (C)) because they act on
SK(C) as an analytic manifold. They act on the arithmetic cohomology H1

et(SK ,F )
because they act on SK as an algebraic variety over the reflex field E(G,h) =Q. The
intertwining operators between these two actions, combined with the theorem of
strong multiplicity 1 for GL(2), led formally at the end of §3 to a general bijective
correspondence

π → σ(π), (60)

between (certain) automorphic representations π of G and (certain) two-dimensional
λ -adic representations σ of ΓQ = Gal(Q/Q). The reciprocity problem was then to
describe the correspondence explicitly. Langlands was able to formulate this as a
precise conjecture at the end of §4. The rest of the paper [140] was devoted to the
proof of two (out of three) cases of the conjecture.

We are treating [140] as the foundation of Langlands’ contributions to arithmetic
geometry. We shall elaborate a little further on this basic paper before turning more
briefly to his subsequent articles, and to some of the new ideas they represent.

We should begin by considering the de Rham cohomology for the complex vari-
ety SK(C) treated in [140, §2]. Langlands was of course working with the Shimura
variety attached to GL(2), but since the ideas have natural and interesting general-
izations, we assume for the moment that S is attached to an arbitrary Shimura datum
(G,X). The space SK(C) is typically noncompact, so one must account for the be-
havior of differential forms at infinity. Langlands takes the image of the cohomology
of compact support H∗c (·) in the full de Rham cohomology. In general, it is better
to work with L2 (de Rham)-cohomology H∗(2)(·), as has been the custom since the
introduction of intersection cohomology, with its role in Zucker’s conjecture. We
write Afin =A∞, as is convenient, and take the open compact subgroup K ⊂G(Afin)
to be small enough so that SK(C) is nonsingular.

We write (ξ ,V ) = (ξ ,Vξ ) for a fixed irreducible, finite-dimensional rational rep-
resentation of G, following notation from Langlands’ later article [144, §4] (rather
than his notation (µ,L) from [140, §2]). Then

F = Fξ =Vξ ×G(Q) (X×G(Afin)/K),

the space of G(Q)-orbits in V × (X×G(Afin)/K) under the action

γ : v× (x,h)→ (ξ (γ),v)× (γx,h), γ ∈ G(Q), h ∈ G(Afin)/K,

is a locally constant sheaf Fξ (C). One is interested in the L2-cohomology

H∗(2)(SK(C),F ) =
2n⊕

d=0

Hd
(2)(SK(C),F ), n = dimSK(C), (61)
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of SK(C) with coefficients in F . We recall that this is the cohomology of the com-
plex of F -valued, smooth differentiable forms ω on SK(C) such that both ω and
dω are square integrable.

The graded, complex vector space (61) has a spectral decomposition⊕
π

(
m2(π) ·H∗(gR,KR;πR⊗ξ )⊗π

K
fin

)
, (62)

where π = πR⊗πfin ranges over automorphic representations of G with archimedean
and nonarchimedean components πR = π∞ and πfin = π∞ as indicated, while m2(π)
is the multiplicity with which π occurs in the L2-discrete spectrum (with appro-
priate central character determined by ξ ),6 and πK

fin is the finite-dimensional space
of K-invariant vectors for πfin. The informal proof of this decomposition is essen-
tially a consequence [36, VII] of the definition [36, §1.5.1] of the remaining fac-
tor, the graded, finite-dimensional, complex vector space H∗(gR,KR; ·) of (gR,KR)-
cohomology, in which gR is the Lie algebra of G(R), and KR is the stabilizer of a
chosen point in X . The formal proof for L2-cohomology is in [34].

For (gR,KR)-cohomology, we recall that a (gR,KR)-module is a (semisimple,
locally KR-finite) complex, KR-module M, with an action of gR that is compatible
with the adjoint action of KR on gR. As we noted in §2, this is the same thing
as a module over the real Hecke algebra HR. However, we retain the Lie algebra
formulation here, to emphasize its relation with differential forms. In general, the
(gR,KR)-cohomology H∗(gR,KR;M) of M is the (gR,KR)-variant of the usual Lie
algebra cohomology (See [36, §I.2.2].) In the case at hand, the product πR⊗ ξ in
(61) stands for the (gR,KR)-module

M =V (πR,KR)⊗Vξ

where M = V (πR,KR) stands for the space of KR-finite vectors in the space V (πR)
on which πR acts. It is easily seen to vanish unless the infinitesimal character and
central character of πR equal those of ξ . (See [36, Theorem I.5.3].)

Consider now the case of [140], the Shimura variety attached to the group G =
GL(2) above. We take the representation ξ of G as

ξ = ξk⊗ (det)m,

where
ξk = symk−1(St)

is the (k− 1)-symmetric power of the standard representation of G (of dimension
k), and det is the 1-dimensional determinant representation, for integers k ∈ N and
m, with 0≤ m < k. The character of ξ at a diagonal matrix then equals

6 If ξ is nontrivial, this definition requires further comment. In general, one takes functions φ on
G(Q) \G(A) that are ξ (z)−1-equivariant under translation by any z ∈ Z(R)0. But since ξ is not
generally unitary on Z(R)◦, one must also scale these functions by a fixed function on G(Q)\G(A)
whose restriction to Z(R)◦ equals the character |ξ (z)|. We shall discuss the case of GL(2) presently,
following [140, p. 379].
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tr
(

ξ

(
α 0
0 β

))
= (αk−1 +α

k−2
β + · · ·+αβ

k−2 +β
k−1)(αβ )m

= (αk+m−1
β

m +α
k+m−2

β
m+1 + · · ·+α

m
β

k+m−1)

=
αnβ m−αmβ n

α−β
, n = k+m,

as on p. 389 of [140]. For each such ξ , the cohomology (60) is supported in degrees
0, 1 and 2, but as usual, it is the middle degree d = 1 that is most interesting. In this
case, there is precisely one irreducible representation πR = πR(ξ ) that contributes
to the (gR,KR)-cohomology in (61). It is characterized by the properties

(i) πR(z) = ξ (z−1I), z ∈ Z(R)◦,
(ii) the representation

xR→ |ξ (detxR)|
1
2 πR(xR), xR ∈ G(R), (63)

is unitary.7

These conditions imply that the vector space

H1(πR,ξ ) = H1(gR,KR;πR⊗ξ )

has dimension 2. (See [140, pp. 388–389 and Theorem 2.10].) There is thus a de-
composition

H1
(2)(SK(C),F ) =

⊕
{π : πR=πR(ξ )}

(
m2(π)

(
H1(πR,ξ )⊗π

K
fin
))

(64)

of the first cohomology group. The multiplicity m2(π) here needs to be interpreted
according to the last footnote 6. For it is understood that π acts on the space of
functions h on G(Q)\G(A) with

h(zx) = ξ (z)−1h(x), z ∈ Z(R)◦, x ∈ G(A),

such that the function
|ξ (detx)|

1
2 h(x)

is square integrable on Z(R)◦G(Q)\G(A). The representation

(R(y)h)(x) = |dety|
1
2 h(xy), x,y ∈ G(A),

of G(A) on this space is then unitarily equivalent to the regular representation of
G(A) on L2(Z(R)◦G(Q)\G(A)). (See [140, pp. 379].) This gives the interpretation

7 The representation in (ii) lies in the relative discrete series of GL(2,R). Even though we men-
tioned these objects first early in Section 1, we have so far avoided describing Harish-Chandra’s
general parametrization. In the case of G = GL(2,R) here, the relative discrete series with trivial
central character are parametrized by the positive integers {k}. The representations {πR} satisfying
(i) and (ii) are therefore indexed by the same pairs (k,m) that parametrize {ξ}.
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of the multiplicities m2(π). The existence of the correspondence (60) then follows
as above from the global properties of λ -adic (étale) cohomology.

Langlands’ conjectural reciprocity law for SK is an explicit description of the
local properties of the correspondence π → σ = σ(π). The domain consists of the
automorphic representations π that give nonzero summands in (64), while the image
is the corresponding set of 2-dimensional λ -adic representations σ . For any such π ,
Langlands sets

π
′(x) = |detx|−

1
2 π(x), x ∈ G(A). (65)

His conjecture asserts roughly that the local components π ′p of π ′ at primes p ̸= ℓ

are images under the local Langlands correspondence8 of Langlands parameters
attached to the local components σp of σ . To set this up, he fixes an embedding of
Q into Qℓ, and then takes on a supplementary conjectural assertion that for every
element s in the group

WQp =WQp/Qp
⊂ ΓQp = ΓQp/Qp

,

the trace of σp(s) lies in the subfield Q of Qℓ. He then uses this in §4 (pp. 403–405)
to convert the Qℓ-valued homomorphism

σp = σp(π) : ΓQp → GL(2,Qℓ)

to a complex-valued homomorphism

φ
′
p = φ

′
p(π) : WQp ×SU(2,C)→ GL(2,C).

The conjecture stated at the end of §4 then includes the supplementary assertion,
with the resulting precise statement being that for any π and p, π ′p is the image
under the local Langlands correspondence of the complex-valued homomorphism
φ ′p thus constructed.

We have largely followed the notation of Langlands from [140]. We should add a
comment on the correspondence π → π ′ of automorphic representations in (65). It
represents a transition from automorphic data to arithmetic data. Suppose for sim-
plicity that ξ = 1. Consider then the archimedean parameters

φR,φ
′
R : WR→ GL(2,C)

8 As we have noted before, the conjectural local Langlands correspondence has its origins in the
Local Functoriality conjecture. For G = GL(2), it asserts a bijection from conjugacy classes of
homomorphisms

φv : LFv → GL(2,C), (66)

known now as local Langlands parameters, and irreducible representations πv of GL(2,Qv), where

LQv =

{
WQv , if v is archimedean,
WQv ×SU(2), if v is p-adic,

such that πv is tempered if and only if the image of φv is bounded. (We shall discuss the general
case in Section 10.)
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attached to the local components πR and π ′R of π and π ′, or rather, just the restriction
of these parameters to the subgroup C∗ of index 2 in WR. We can assume that the im-
age of the restriction of each parameter lies in the group of diagonal matrices. When
composed with the standard two-dimensional representation of GL(2,C), the pa-
rameters φ ′R gives a two-dimensional representation of the group C∗ = S(R), which
amounts to a real Hodge structure of weight 2. It follows that

φ
′
R(z) =

(
z−1 0
0 z̄−1

)
.

On the other hand, the preimage φR of φ ′R should be bounded, since it is supposed
to be attached to a tempered automorphic representation π . To see that this is so, we
note that for the archimedean parameters, (65) implies the identity

φ
′
R(z) =

∣∣∣∣det
(

z 0
0 z̄

)∣∣∣∣− 1
2

φR(z),

and hence that

φR(z) = |zz̄|
1
2 φ
′
R(z) =

(
(z/z̄)−

1
2 0

0 (z̄/z)−
1
2

)
.

The remaining Sections 5–7 of [140] were devoted to a new comparison of trace
formulas, culminating in the proof of a significant part of the conjecture. Having
spent our two last sections on the two comparisons from [103] and [149], we shall
not discuss the details of the remaining comparison here, even though the Lefschetz
trace formula from arithmetic geometry is quite different. Section 5 of [140] con-
sists of some calculations on the terms in the Selberg trace formula suitable for the
new comparison. Section 6 is a general description of the Selberg trace formula
for GL(2), along the lines of our own discussion in the last two sections. Section
7 contains the comparison of the Selberg and Lefschetz trace formula. Langlands
then uses this to prove his conjectures on the local parameters φ ′p in two cases. The
first is that the two-dimensional representation φ ′p is reducible. It includes the case
of good reduction, where φ ′p is a direct sum of two unramified quasicharacters on
WQp , to which most if not all earlier work on the subject had been confined. The
second is of “multiplicative reduction”, where the homomorphism φ ′p is special, in
the sense that it is nontrivial on the subgroup SU(2) of LQp . The remaining case is of
“additive reduction”, in which φ ′p is an irreducible two-dimensional representation
of the subgroup WQp of LQp , and the corresponding representation π ′p of GL(2,Qp)
is supercuspidal. Langlands did not study this case. However, it was resolved soon
afterwards, with an extension of the methods of Langlands by Carayol [43]. (See
[152].)

We have emphasized the Langlands Antwerp paper [140] on GL(2) over some
of his later contributions to Shimura varieties for a couple of reasons. One we have
already mentioned is that it joins the volumes [103] and [149] discussed in the past
two sections as the third member of his GL(2)-trilogy. These works were designed
to illustrate Langlands’ revolutionary ideas on functoriality in the simplest of cases.
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They are interrelated, and the influence they each have individually is amplified
when they are taken together. Another reason is that [140] is essentially complete
(given the later addition of Carayol for supercuspidal representations of GL(2)).
With its focus on the noncompact variety SK(C) and on the reciprocity laws at places
of bad reduction, it has served as a model for subsequent work on Shimura varieties,
which continues to this day.

Langlands’ Corvallis article [144] on motives will be our topic for the next sec-
tion. Of his other articles, the most influential might be his remarkable conjectural
description [142] of the set of points on a general Shimura variety modulo a prime of
good reduction. It has been a foundation for a great deal of the work in in the subject
since then. Other papers include the overview [143] of the question of the Hasse–
Weil zeta function, and a more technical article [146] that answers the question for
some simple Shimura varieties SK(G,X) for groups G related to GL(2). There is
also a short article [148] on the general question of the reduction at a prime of bad
reduction, the longer article [85] (with Harder and Rapoport) on the Tate conjec-
ture for a Shimura variety attached to a Hilbert–Blumenthal surface (with G equal
to ResF/Q GL(2), for a real quadratic field F), and the important paper [164] with
Rapoport that includes a motivic refinement of the conjecture from [142]. I have
not studied these last three papers, interesting as they are, and will not have much
further comment on them. A final paper [152] on Shimura varieties contains some
later comments of Langlands, ostensibly on the problem from [143] of calculating
the Hasse–Weil zeta function, but with observations on the other papers as well. It
is very informative.

What is particularly far reaching in Langlands’ later papers on Shimura varieties
is the emergence of two fundamental phenomena that were also beginning to gov-
ern his work in the basic theory of automorphic forms [127], [150]. His discovery
that they would have a parallel, central role in the theory of Shimura varieties seems
to have been completely unexpected, perhaps because they were not critical in the
Shimura varieties of small dimension that has been studied up until then. One is the
question of the fundamental lemma, which we have already seen in the context of
cyclic base change. It arises in the local geometric terms in the Selberg and Lef-
schetz trace formulas at the unramified place p at which one is trying to establish
the reciprocity law. The other is a broader phenomenon, which includes the funda-
mental lemma, and is now known as endoscopy rather than Langlands’ original term
L-indistinguishability.9 This affects most of the terms in the two trace formulas one
is trying to compare. For the regular elliptic orbital integrals on the geometric side
of the Selberg formula, it is a reflection of the fact that two elements γ1 and γ2 in
G(Q) over whose G(A)-conjugacy classes one would like to integrate a test func-
tion f , might be conjugate over G(C) but not over G(Q). The theory of endoscopy
will be the topic of Section 10.

9 “L-indistinguishability” is a better description of what is going on. However, the fact that it
has more than twice the number of syllables than does “endoscopy”, together with the increasing
demands being placed on mathematicians’ time, may have forced the change!
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Before beginning any comparison, one must first understand the explicit form
taken by the Grothendieck–Lefschetz trace formula when applied to a Shimura va-
riety SK . Recall that the original Lefschetz formula [167] is an identity

∑
x

i(φ ,x) =
n

∑
k=0

(−1)k tr(Hk(φ)) (67)

attached to any suitable mapping φ , from say a compact manifold M of dimension
n to itself. The (spectral) right-hand side is an alternating sum of traces of the oper-
ators

Hk(φ ,Q) : Hk(M,Q)→ Hk(M,Q), 0≤ k ≤ n, (68)

on ordinary (Betti) cohomology attached to φ . The (geometric) left-hand side is a
sum over the fixed points x of φ in M of certain indices i(φ ,x).

Motivated by this classical formula and the Weil conjectures [248], Grothendieck
introduced his version [98] for an arithmetic variety. At its simplest, it applies to a
nonsingular projective variety X over a finite field F of characteristic p. It is the
analogue of (67) for X , with φ replaced by some power Φ of the Frobenius endo-
morphism, and Hk(M,Q) replaced on the spectral side by Hk(M,Qℓ), the ℓ-adic
(étale) cohomology of X at a prime ℓ ̸= p. The geometric side becomes a sum over
the finite set

X(F′), F′ = (F)Φ

of points in X(F) fixed by Φ .
Suppose for simplicity that the Shimura reflex field E of SK = SK(G,X) equals Q,

and as usual, that K is small enough that SK(C) is nonsingular. We fix a number field
L that is sufficiently large in a sense that depends in K, together with an embedding
L⊂C. The finite-dimensional complex representation ξ will then be assumed to be
defined over L.

To proceed, it is necessary to have an explicit description of the set of points
SK(Fp) at an unramified prime p. More precisely, for any p such that

K = KpK p, K p ⊂ G(Ap
fin),

for an unramified maximal compact subgroup Kp ⊂ G(Qp), one wants a suitable
Zp-scheme structure on SK , and a description in terms of G of the set SK(Fp) of
points on SK over the algebraic closure Fp, equipped with an action of the (geomet-
ric) Frobenius endomorphism Frobp. The purpose of Langlands’ paper [142] was to
give a conjectural such formula under very general conditions on SK . He arrived at
it after a study of the special case of Shimura varieties of PEL (polarization, endo-
morphism ring, level structure) type. PEL varieties are a rather small subset of all
Shimura varieties. (See [176, §9].) However, they still represent a major generaliza-
tion of Shimura curves. They had been introduced by Shimura [229], but so far as I
know, without any particular interest in the Lefschetz formula.
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PEL varieties parametrize abelian varieties with additional structure. They in-
clude the varieties attached to GL(2) [140] we discussed above, which parametrize
elliptic curves E. They also include Siegel modular varieties, the higher-dimensional
generalizations attached to general symplectic groups G = GSp(2n).

Siegel modular varieties SK = SK(G,X) parametrize abelian varieties A. More
precisely, the set of complex points

SK(C) = G(Q)\ (X×G(Afin)/K), G = GSp(2n),

in SK is bijective with the set of G(Q)-orbits of pairs (A,g), where A is a principally
polarized abelian variety over C up to isogeny, and g is a K-level structure (which
is to say a coset in G(Afin)/K). What makes the problem treated by Langlands in
[142] more accessible in this case is that SK(G,X) has a canonical model, not just
over the reflex field E = Q, but also over the ring Z, and that elevates SK to the
role of a universal modular variety over Spec(Z). As I understand it, this means that
there is an isomorphism class of families

AK → SK

of principally polarized abelian varieties over Spec(Z), equipped with a K-level
structure, which is universal in the sense that the set of all such families A′K → S′K
over any Z-scheme S′K is in bijection with the Spec(Z)-morphisms φ : S′K → SK
under the pullback mapping

A′K = φ
∗AK .

I will not try to define these various terms here. But the reader can refer to [142]
for the discussion of a related case, motivated by Kronecker’s Jugendtraum and
Hilbert’s twelfth problem.

The point is that in representing a functor, SK allows one to identify the set of
points

SK(Fp) = {φ p : Spec(F p)→ SK}

with families Ap = φ
∗
pAK over Spec(F p). Equipped with the action of the Frobe-

nius endomorphism, this set amounts in turn to a classification of isogeny classes of
n-dimensional abelian varieties over Fp with K p-level structure. Such objects have
been well understood for some time according to Honda–Tate theory [235], [96],
and can be described explicitly. These modular properties extend to the locally con-
stant, λ -adic sheaf FK =FK,ξ on SK attached to any finite-dimensional representa-
tion ξ of G over Q. They are also compatible with the Hecke correspondence f p on
SK defined by right translation on SK(C) by any element gp in G(Ap

fin). (See [124,
p. 375].) The classification of abelian varieties over Fp then leads to a description
of the set of fixed points of the composition

Φp ◦ f p, Φp = Φp, j = (Frobp)
j, j ∈ N, (69)
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acting as a correspondence on the set SK(Fp). This result can be regarded as
an explicit description of of the main (elliptic) part of the geometric side of the
Grothendieck–Lefschetz trace formula, for the case at hand.

These are the ideas that led Langlands in [142] to conjecture a general such for-
mula for any Shimura variety. It was a bold step, which was refined and made clearer
in his later paper [164] with Rapoport. In fact, the conjectured formula was subject
to further evolution, leading up to what might be its final version in §3 in the pa-
per [123] of Kottwitz. My understanding is that this formula is still far from proved
in general. The case of general PEL-Shimura varieties has itself turned out to be a
challenging problem. Progress was made by Milne [172] and Zink [256], while the
special case of Siegel modular varieties discussed here was established in [123] and
[174]. The proof for general PEL varieties was completed in [124], [174] and [191].
(See [50] and the introduction of [124].) As an aside, I have found it difficult at times
to sort out what has been established from the literature, owing no doubt to my own
imperfect grasp of the technical complexities of the subject. (See the introduction to
[171], which is itself quite complex.)

With a formula (either proven or conjectured) for the geometric side of the arith-
metic (Grothendieck–Lefschetz) trace formula, it would then be possible to study
its comparison with the geometric side of the automorphic (Arthur–Selberg) trace
formula. In particular, one could consider the problems of endoscopy that had been
emphasized by Langlands in his papers following [140].

Kottwitz took up the fundamental lemma in [118]. In this paper, he was able to
reduce it to a more familiar problem, the identity for twisted spherical functions
required for cyclic base change. This was the problem solved by Langlands in the
special case of GL(2). In a subsequent paper [120], Kottwitz reduced the problem
further. For the special case of the unit function in the Hecke algebra of spherical
functions, he reduced the twisted fundamental lemma to its original version for or-
bital integrals. The special case of GL(n) of this last reduction was, incidentally, an
essential ingredient of the proof of base change for GL(n) in [27].

In each paper, Kottwitz was able to treat the problem as a natural combinatorial
identity. In fact, in each case he observed that two finite series were equal simply
because there was a term by term matching of their summands. However, the orig-
inal fundamental lemma has turned out to be much more subtle. Even its statement
draws upon the deeper notions from endoscopy, such as stability, endoscopic groups
and transfer factors, that will be part of our discussion in Section 10. In particular,
it is not just a combinatorial problem. Its ultimate proof by Ngô Bao Châu, drawing
on the work of Waldspurger, came considerably later [186]. It required among other
things, his remarkable observation that the Hitchin fibration over the field of mero-
morphic functions on a compact Riemann surface matches the geometric side of the
trace formula (in characteristic p) over the global field of functions on a smooth
projective curve in characteristic p.

The fundamental lemma is an important ingredient for our understanding of
the automorphic properties of the problem. However, the full comparison requires
something more, what can be called the stabilization of the Lefschetz trace formula.
As such, it becomes one of a number of such constructions, beginning with the sta-
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bilization [21] of the basic automorphic trace formula (for a quasisplit group G∗),
its analogue [21] for an inner form G of G∗, the stabilization of the general twisted
trace formula [179], [180], the expected stabilization of a metaplectic trace formula,
possible stabilizations of various relative trace formulas, and who know what else.
In all such constructions, the basic ingredient is the stable trace formula for a quasis-
plit group G∗, which is defined by an inductive process from the basic automorphic
(Arthur–Selberg) trace formula for G∗. In the other cases, the comparison is not
just with this stable trace formula for G∗, but rather a linear combination of stable
trace formulas for a collection of quasisplit groups G′, known as endoscopic groups
(attached to the problem at hand).

In [123, §4, §7], Kottwitz stabilized the elliptic part of the Lefschetz trace for-
mula, which is to say, his proposed formula from §3 of [123]. In so doing, he ap-
pealed to his earlier results in [121] and [119], as well as Langlands’ original mono-
graph [150] on stabilization. We shall describe his construction in a way that can be
compared with our general discussion of endoscopy in Section 10.

To simplify the notation, we shall allow G to represent the given Shimura datum
SK(G,X), as well as the reductive group over Q that is its essential ingredient. This
is similar to a convention from the theory of endoscopy, in which G′ is often used
to represent a full endoscopic datum (G′,s′,G ′,ξ ′) attached to any G under consid-
eration, as well as the quasisplit group G′ that is its main component. While we are
at it, let us also write f here in place of the triplet (ξ ,Φp, f p) in keeping track of
the dependence of the Lefschetz trace formula on these quantities. We cannot quite
think of f as a test function on G(A), which we would have if we were dealing with
the automorphic trace formula. However, for any endoscopic datum G′ attached to
G, there is a transfer mapping

f → f ′ = f ′∞ · f ′p · ( f p)′

from triplets f to test functions f ′ on G′(A), defined by Kottwitz in [123, §7]. We
shall write Λ

p
ell( f ) for the conjectural elliptic part of the Lefschetz trace formula to

exhibit its dependence on p as well as f . It is by definition given by the formula
[123, (3.1)].

The stabilization in [123] is then an expansion

Λ
p
ell( f ) = ∑

G′
ι(G,G′)Ŝ′ell( f ′) (70)

of this linear form in terms of corresponding stable, linear forms10 in various sta-
ble (automorphic) trace formulas.10 The groups G′ on the right-hand side represent
equivalence classes of elliptic endoscopic data10 for G, according to the convention
above. For any such G′, S′ell is the elliptic part of the geometric side of the stable
trace formula

S′geom(·) = S′spec(·)

10 We are asking a reader unfamiliar with these other terms to wait until (or look ahead to) Section
10, where they will be discussed in somewhat greater detail.
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for G′. The corresponding test function f ′ for G′ is the transfer of f mentioned
above, defined by the general transfer factors Langlands and Shelstad. It is deter-
mined only up to the values it takes when paired with a stable distribution on G′(A).
With this proviso in mind, we have written Ŝ′ell( f ′) for the uniquely determined
pairing of the stable distribution S′ell(·) with the function f ′. Finally, the coefficients
ι(G,G′) are constructed in an elementary manner from G to G′. (See [123, Theo-
rem 7.2].)

We should perhaps pause to remind ourselves of the ultimate goal. It is founded
on the two interpretations of cohomology and the fundamental data they support.
On the one hand, we have the L2-de Rham cohomology H∗(2)(SK(C),F ), and its
decomposition (62) in terms of automorphic representations. On the other hand,
we have the intersection cohomology IH∗(SK(C),F ) of the Baily–Borel compact-
ification SK(C), equipped with the correspondences defined by Hecke operators.
Zucker’s conjecture [257], established around 1988 [168], [198], asserts that these
two complex graded vector spaces are isomorphic. We are assuming that the sheaf
F , assigned as it is to the representation ξ of G, is defined over the chosen num-
ber field L. Like ordinary Betti cohomology, one can vary the coefficient field of
IH∗(SK(C),F ), taking it here to be L. If λ is any finite place of L not lying over p,
the tensor product

IH∗
λ
= IH∗(SK(C),Fλ ) = IH∗(SK(C),F )⊗L Lλ

represents a change of coefficients from L to the λ -adic field Lλ . What makes it
all work is that the last space is isomorphic to the λ -adic (étale) cohomology of
the variety SK at its reduction modulo p. In particular, this λ -adic vector space
comes with a representation of Gal(Q/Q)×HK , where HK is the Hecke algebra
of compactly supported L-valued functions in K \G(Afin)/K. In this setting, the
spectral side of the Lefschetz trace formula is the Euler number

Λ
p
spec( f ) =

m

∑
k=0

(−1)k tr(IHk
λ
(Φp× f p)), (71)

for the operator on IHk
λ

attached to the composition (69). (This discussion follows
the beginnings of §1 of [123].)

The actual Lefschetz formula is an identity

Λ
p
geom( f ) = Λ

p
spec( f ). (72)

The geometric side Λ
p
geom( f ) includes the elliptic part Λ

p
ell( f ) studied by Kottwitz

[123]. In general, however, there are complementary terms attached to fixed points
“at infinity”, or more precisely, in strata of SK(C) attached to proper parabolic sub-
groups P of G. (The largest stratum SK(C) ⊂ SK(C) is attached to the group G
itself.) These are more difficult. However, they do not occur if SK(C) is already
compact, and are not significant in many noncompact Shimura varieties. For exam-
ple, if G = ResF/Q(H), for a split reductive group H over a totally real number field
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F with more than one archimedean valuation, the nonelliptic terms on the geomet-
ric side of the automorphic trace formula vanish [15, Theorem 7.1(b)], a property
that should be reflected in the corresponding terms in Λ

p
geom( f ). However, in the

basic case G = GSp(2n) of Siegel modular varieties we have discussed, there are
complementary terms in Λ

p
geom( f ). Their analysis is part of the work of S. Morel.

At any rate, Kottwitz’ stabilization (70) of Λ
p
ell( f ) leads us to expect a similar

stabilization
Λ

p
geom( f ) = ∑

G′
ι(G,G′)Ŝ′geom( f ′) (73)

of the full geometric side of the Lefschetz trace formula. We should point out that
the linear forms on each side of (73) are defined, since the left-hand side equals that
of (72), while the right-hand side is given by the stable trace formula of each of the
groups G′. It is just that we cannot say that the two sides are equal unless Λ

p
ell( f )

equals Λ
p
geom( f ). (Even in this last case, the inequality still rests on Kottwitz’ basic

conjectural formula [123, (3.1)].) Similar comments apply to the stabilization

Λ
p
spec( f ) = ∑

G′
ι(G,G′)Ŝ′spec( f ′) (74)

of the spectral side, which would follow formally from (73), when combined with
the identities Λ

p
spec( f ) = Λ

p
geom( f ) (the Lefschetz formula (72)) and

Ŝ′spec( f ′) = Ŝ′geom( f ′)

(the stable formula for G′). In particular, (74) would follow from Part I of [123]
(Sections 1–7) if Λ

p
ell( f ) equals Λ

p
geom( f ) and the conjectured formula [123, (3.1)]

is valid.
Part II of [123] (Section 8–10) is what Kottwitz calls the destabilization of (74).

The ultimate goal of the theory would be to deduce reciprocity laws for SK , of the
kind established by Langlands for G = GL(2) in [140], from the identity (74). But
there are not shortcuts. The only way we can expect to prove (74) is to derive it
from the geometric stabilization (73), and this would rest on the imposing task of
proving the explicit fixed point formula [123, (3.1)] for SK , and its extension to the
compactification for SK . After this, there would be a new set of problems on the
interpretation of the right-hand side of (74). These concern a set of conjectures on
the classification of the automorphic discrete spectrum that I described in [18], and
applied to the cohomology of Shimura varieties in §9 of that paper.

Kottwitz assumed these conjectures in [123]. He then compared the explicit ex-
pression they yield for the right-hand side of (74) with the right-hand side of (71).
The former concerns the characters of automorphic representations, the latter the
virtual, λ -adic characters from intersection cohomology. By manipulating the terms
in (74), he obtained a concrete formula [123, (10.5)] for the alternating sum of traces
in (71) in terms of automorphic characters. This in turn suggested an explicit de-
composition of the virtual, λ -adic representation of Gal(Q/Q)×HL on the étale
cohomology of SK in terms of the automorphic discrete spectrum of G. It is the
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direct sum displayed in the last paragraph of §10 of [123], but unfortunately not
labeled.

This last decomposition from [123] could be regarded as the ultimate goal. It
represents something beyond the character formula given by (10.5) of [123], even
with all the conjectures that were taken for granted. For one thing, the integer j in
(10.5) has for technical reasons to be taken to be sufficiently large. With the formula
established, one could presumably extend it to all j by extrapolating the behavior
of each side for j in the restricted range. This would give the reciprocity law for
the unramified places p. The remaining finite set of places p with SK ramified are
more serious. They would require a solution for general G of the problems for GL(2)
solved by Langlands and Carayol. Their solution would presumably give reciprocity
laws for SK = SK(G,X) at all places. In particular, it should ultimately express the
associated motivic L-function

L(s, IHk(SK ,F )), 0≤ k ≤ 2d = 2dim(SK),

of weight k, and the Hasse–Weil zeta function ζ (s,SK(G,X)) of SK , explicitly in
terms of automorphic L-functions.

In the final Part III of [123], Kottwitz established the conjectural fixed point for-
mula [123, (3.1)] for the Siegel modular varieties SK = SK(G,X) attached to the
groups G = GSp(2n). This represents a grounding of sorts for the conjectured iden-
tity whose general version had itself been the foundation for Parts I and II of the
article, and for our discussion above. Siegel modular varieties have been studied
more recently by Morel, as we have noted. She established explicit formulas for
their complementary terms in Λ

p
geom( f ) [182], those given by boundary compo-

nents in SK attached to proper parabolic subgroups P of G. The stabilization (73)
of Λ

p
geom( f ) was then given an explicit form in her paper [183]. This was based on

a formula [17] for the associated nonelliptic geometric terms in the automorphic
trace formula, in terms of the characters of Harish-Chandra’s discrete series, and
the stabilization of this formula treated in [82]. The only thing now standing in the
way of a complete solution for Siegel modular varieties, or at least the immediate
precursor [123, (10.5)] of a complete solution, is the “destabilization” of the expan-
sion (73) of Λ

p
spec( f ). This requires the local and global conjectures in [18] for the

group GSp(2n). The conjectures have now been established for the group Sp(2n)
[23]. It is obviously important to try to extend them to GSp(2n), even though there
are indications that new difficulties arise.

Siegel modular varieties attached to the groups G = GSp(2n) represent a funda-
mental class of examples. We can think of their role in the general theory of Shimura
varieties as something akin to that of the groups GL(N) in the general theory of au-
tomorphic forms. The groups GL(N) themselves are disqualified from this larger
role since they are only attached to Shimura varieties when N = 2 (in which case
GL(2) = GSp(2n)).

I have written more on Shimura varieties than I had originally intended. I wanted
simply to give some sense of the foundations laid down by Langlands in this very
rich field, following Shimura himself [230] and Deligne [61]. As we have seen,
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these include the comprehensive beginnings with GL(2), the conjectural formula
for the points of a Shimura variety modulo p, and the recognition of the central role
played by the fundamental lemma and endoscopy. Nonetheless, we shall return to
the subject in the next section. In the second half of the section, we shall discuss
the conclusions of Kottwitz from another point of view, which includes a conjec-
tural derivation in terms of motives. This is turn will serve as a springboard for the
introduction of further questions and problems.

9 Motives and Reciprocity

One of Grothendieck’s great insights was the idea of a motive. In general terms,
motives are supposed to have two simultaneous roles. On the one hand, they are to
be regarded as fundamental building blocks of algebraic varieties. On the other, they
represent also a universal cohomology functor for algebraic varieties, of which Betti
cohomology, (algebraic) de Rham cohomology, ℓ-adic étale cohomology and crys-
talline cohomology become concrete realizations. Their existence was predicated
by Grothendieck on a number of conjectures [112], [113] which are still largely
unproved today. Perhaps for this reason, they were not widely discussed in formal
mathematical circles before 1977. However, the unwritten understanding, if it ex-
isted, came to an end with the articles of Tate [237] and Langlands [144] in the
1979 Corvallis proceedings.

We are speaking of pure motives, which are the semisimple objects in the larger
category of mixed motives. They would be the objects obtained from the category
(SProj)F of smooth, projective algebraic varieties over a field F , as opposed to all
varieties. Our object is to describe their role in [144], the article in which Lang-
lands proposed what is now known as the Reciprocity Conjecture. Roughly speak-
ing, Reciprocity is the analogue for general (smooth, projective) varieties of the
Shimura–Taniyama–Weil conjecture for elliptic curves over Q. Together with Func-
toriality, it is often regarded as one of the two fundamental pillars of the Langlands
program.

Consider a pair of fields (F,Q) of characteristic 0, equipped with a complex
embedding F ⊂ C for F . The category MotF,Q of (pure) motives over F with co-
efficients in Q (or just Q-motives over F) should be a semisimple, Q-linear cate-
gory (which is to say, an abelian category in which short exact sequences split, and
in which the abelian groups Hom(M,N) have been enriched to Q-vector spaces),
equipped with a functor

(SProj)F →MotF,Q (75)

from the category of smooth projective varieties over F . It would in fact be a tensor
category, equipped with a tensor product structure ⊗ over Q, satisfying several nat-
ural axioms. With the complex embedding F ↪→C of F , ordinary Betti cohomology
of complex varieties with Q-coefficients gives a functor

HB = H∗B : (SProj)F → (Vect)Q
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with values in the category (Vect)Q of graded Q-vector spaces. This should factor
through MotF,Q to a ⊗-functor

HB = H∗B : MotF,Q→ (Vect)Q. (76)

It is interesting to note that the two arrows in the composition

(SProj)F →MotF,Q→ (Vect)Q (77)

of (75) and (76), paired with the corresponding fields F and Q, illustrate the dual
roles played by motives. The first arrow describes motives as building blocks of
smooth projective varieties (given the grading of MotF,Q by weights implicit in the
second one). The second arrow for its part suggests a role for MotF,Q as a cohomol-
ogy theory for smooth projective varieties. This would be universal, in the sense that
there should be similar “realizations” for all the various arithmetic cohomology the-
ories for (SProj)F . (See [65].) In the case of Shimura varieties, F equals the reflex
field E.

Suppose now that F and Q are number fields. In fact, we might as well assume
that Q =Q, since Betti cohomology comes with a restriction of scalars functor. The
functor

HB : MotF,Q→ (Vect)Q

in (76) is called a fibre functor for the tensor category MotF,Q over Q. It gives MotF,Q
the structure of a natural (neutral) Tannakian category. A fundamental observa-
tion of Grothendieck was that a Tannakian category is equivalent to the category
of (finite-dimensional) representations over the ground field (Q in this case) of an
affine proalgebraic group. There would then be an (anti)equivalence from MotF,Q to
the category of representations of a proalgebraic group

GF = GF,Q = Aut⊗(HB)

over Q. This group would be an extension

GF,Q 7→ ΓF ,

of the absolute Galois group of F by a connected, reductive, proalgebraic group over
Q, whose finite-dimensional representations over Q parametrize (up to equivalence)
the objects M in MotF = MotF,Q. (See [210].)

With the Shimura–Taniyama–Weil conjecture in mind, Langlands was interested
in the relations between motives and automorphic representations. Treating general
automorphic representations and motives as objects over the complex numbers, he
considered the complexification

GF = GF,C = GF,Q×Q Spec(C)

of the motivic Galois group above. (We are identifying the Q-group GF = GF,Q
above with its associated group GF = GF,Q ∼= GF(C) of complex points here.) It is
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an extension
GF → ΓF

of ΓF by a complex, reductive proalgebraic group whose finite-dimensional complex
representations parametrize complex F-motives. Langlands then suggested that the
best (and perhaps only) way to express the relations would be through a parallel
automorphic Galois group.

It was an audacious proposal. As far as I know, nothing of the sort had ever been
imagined before. Langlands had studied the L-homomorphisms

φ : WF → LG (78)

of the global Weil group WF ten years earlier as a means to parametrize some auto-
morphic representations of G. But by 1977, it was well understood that these objects
could not account for most automorphic representations (except in the case of a torus
G= T [153]). There seemed to be a general feeling that there would be nothing more
in this particular direction to say.

Langlands formulated the construction of an automorphic Galois group, again as
an extension

GΠ(F)→ ΓF

of ΓF by a connected, complex reductive group. Its representations of degree n would
parametrize the set of automorphic representations Π(F) of GL(n) over F that he
called isobaric. These are the representations of GL(n,AF) denoted symbolically
by

π = π1 ⊞ · · ·⊞πr, πi ∈Πcusp(GL(ni)), (79)

on p. 207 of [144]. The ranks ni correspond to a partition (n1, . . . ,nr) of n, and π

stands for a canonical irreducible constituent of the associated induced representa-
tion from the standard parabolic subgroup of GL(n,AF) attached to the partition.

Langlands’ idea was to try to attach a Tannakian category to the representations
(79). For a start, it was necessary to have a classification of automorphic represen-
tations of GL(n) in terms of the isobaric representations (79), which he formulated
at the bottom of p. 207 of [144]. The classification was established soon afterwards
by Jacquet and Shalika [107], using their theory with Piatetskii-Shapiro of Rankin–
Selberg L-functions. This gave Π(F) the structure of an abelian category. However,
to obtain a tensor category from Π(F) would require something much stronger,
functoriality attached to the tensor product representations

GL(ni,C)×GL(n j,C)→ GL(nin j,C)

of dual groups. This is one of the deepest cases of functoriality, and is still far from
being resolved. The final ingredient would be a suitable fibre functor

Π(F)→ (Vect)C.
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It is hard to imagine any construction of this last ingredient, but one could hope
that it would be a part of the eventual proof of the cases of functoriality above. At
any rate, this would essentially make the tensor category Π(F) into a Tannakian
category, of which the complex automorphic Galois group GΠ(F) would then be a
consequence.

The group GΠ(F) would be a replacement for the Weil group, in its role (78) for
parameters of automorphic representations. As we have noted, the n-dimensional
representations of GΠ(F) would parametrize all isobaric representations of
G = GL(n)F . This would include all of the globally tempered representations
Πtemp(G), which we recall are the irreducible representations of G(AF) that occur
in the decomposition of L2(G(F)\G(AF)). More generally, if G is any connected,
quasisplit group over F , the algebraic L-homomorphisms

φ : GΠ(F)→ LG

over ΓF would parametrize disjoint global packets of automorphic representations
of G (L-packets) whose union contains Πtemp(G). The representation theory of a
general reductive group G will thus be more complicated than that of GL(n), and
will probably be best understood, through the theory of endoscopy, in terms of the
theory for its quasisplit inner twist.

Langlands assumed the existence of GΠ(F), and turned to the problem of relating
motives to automorphic representations. His proposed solution of the problem, after
the first bold step of postulating the existence of GΠ(F), was elegant and simple. It
was to conjecture the existence of a surjective canonical mapping

GΠ(F)→ GF (80)

of complex, proalgebraic groups over ΓF . Among other things, the mapping would
be compatible with local data attached to each of the two groups, which we will dis-
cuss presently in a slightly different guise. The surjectivity of the mapping (80) was
not stated explicitly in [141], but it was clearly a part of Langlands’ thinking, in the
Tate conjecture [152] and his implicit aim of formulating a general analogue of the
Shimura–Taniyama–Weil conjecture. A complex F-motive M, being identified with
a finite-dimensional complex representation of GF pulls back to a complex finite-
dimensional representation rM of GΠ(F). The local data in GΠ(F) and GF would
then yield an identity

L(s,rM) = L(s,M) (81)

of L-functions. In particular, the motivic L-functions on the right would inherit
the analytic continuation and functional equation from the standard automorphic
L-functions on the left-hand side. It is the conjectured mapping (80) that is known
today as Langlands’ Reciprocity Conjecture.

A number of cases of the Reciprocity Conjecture have already been established,
if we are prepared to state them directly as relations between motives and automor-
phic representations (that is, without the universal groups in (80)). For example, any
complex n-dimensional representation of ΓF is a motive, known for obvious rea-
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sons as an Artin motive [185, §2]. Reciprocity in this case amounts to functoriality
for Artin L-functions. As we discussed in Section 7, it was established by Langlands
for complex two-dimensional Galois representations of dihedral, tetrahedral and oc-
tahedral representations, with Galois groups isomorphic respectively to D2n, A4 and
S4 (the latter with Tunnell).

Shimura varieties will be another source of examples. For the Shimura varieties
attached to GL(2), there are many complex two-dimensional motives, which should
correspond to many cuspidal automorphic representations of GL(2). The local com-
putations required to state Reciprocity in this case were the content of the conjecture
at the end of §4 of [140]. As we discussed in Section 8, this was established later in
the same article and the subsequent article of Carayol. The same phenomena occur
for general Shimura varieties, although they are more subtle. For a general Shimura
datum (G,X), the co-character µh defined in Section 8 is dual to a minuscule weight
µ̂ of Ĝ, which in turn gives rise to the finite-dimensional representation r = rX of the
L-group LG. This assigns motives to the various constituents of the L2-cohomology
(62) of SK(C) obtained from (gR,KR)-cohomology. On the other hand, automorphic
representations of G could be attached to the global parameters φ in the generaliza-
tion of (78) if we had the group GΠ(F). The reciprocity correspondence between
the two kinds of objects would then be within reach if one could establish a local
reciprocity law at any place v of Q. This would be the general analogue for (G,v)
of the conjecture [140, §4] for (G,v) = (GL(2), p). (See [144, Lemma, p. 240] and
[18, Proposition 9.1] for the archimedean case v = ∞, topics we will take up later in
this section, and the discussion in [123, §8–10] reviewed in the last section for the
case v = p.)

The most famous example of Reciprocity is of course the Shimura–Taniyama–
Weil (STW) conjecture. It applies to the motive of weight 1 (corresponding to the
first cohomology group H1) of an arbitrary elliptic curve E over Q. The problem
was to show that it corresponds to a cusp form f of weight 2 over Q such that

L(s,π) = L(s,E),

where π is the automorphic representation of GL(2) attached to f in the L-function
on the left, and E is identified with its motive of weight 1 on the right. In other
words, the local data of the two objects match, in the sense of [140, §4], discussed
in the last section and above. This includes the requirement that the conductors of f
and E, independently defined nonnegative integers, also match. We recall that this
last condition was the quantitative improvement [250] Weil added to the conjecture
in 1967. The problem was of course much deeper than the similar question above
for a two-dimensional motive in a Shimura variety SK attached to GL(2). For in the
latter case, there was all the geometric structure of SK that drove the Lefschetz trace
formula, and its comparison with the Selberg trace formula.

The STW conjecture was established for semistable elliptic curves E by Andrew
Wiles in 1995 [253], in partial collaboration with Richard Taylor [239]. Semistable
means that for each prime p, E either has good reduction or multiplicative reduc-
tion. For example, it is included in the two conditions from [140, §4] under which
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Langlands established the local reciprocity law for SK in §7 of that paper. The au-
thors were content to work with this restriction on E, since according to the results
of Ribet [192], it was sufficient to establish Fermat’s last theorem. Their proof of
the STW conjecture relied on techniques [170] that were quite different from what
we have been discussing in this article, as well as new methods developed expressly
for the purpose. However there was one fundamental theorem from Langlands’ work
that was critical. It was the Langlands–Tunnell theorem, the reciprocity law for two-
dimensional representations of Galois groups isomorphic to S4. With the exceptional
isomorphism

S4 ∼= PGL2(F3),

the theorem was the starting point for Wiles’ extended study of deformation rings
and the congruence properties for modular forms. (See [184], [83], [56] for general
introductions to Wiles’ proof.)

Six years after the two papers of Wiles and Taylor, C. Breuil, B. Conrad,
F. Diamond and R. Taylor published a proof of the STW conjecture [40] for general
E. They built on the work of various authors to remove the ramification constraints
step by step, the most difficult being various calculations associated with the prime
p = 3. The proof of the general STW conjecture has led to the proofs of unsolv-
ability of other Fermat-like diophantine equations. Taken on its own, it represents a
milestone in number theory, the proof of a longstanding fundamental case of what
is now the general Reciprocity Conjecture. (See [55].)

We return now to Langlands’ proposed universal automorphic Galois group
GΠ(F). Shortly after the publication of [144], Kottwitz pointed out that the Lang-
lands group would be simpler if it were taken to be in the category of locally com-
pact groups, rather than complex proalgebraic groups [119, §12]. In this formula-
tion, the universal group would be an extension LF of the absolute Weil group WF
by a connected compact group. It would thus take its place in a sequence

LF →WF → ΓF

of three locally compact groups, all having ties to the arithmetic of the global field
F .

This represented a less severe conceptual change from what had been in place
before 1979. The earlier set of global Langlands parameters, as L-homomorphisms
of WF into the complex group LG, would simply be enriched to the larger set of
L-homomorphisms of LF into LG. Local Langlands parameters would remain the
same, namely L-homomorphisms from the locally compact group

LFv =

{
WFv , if v is archimedean,
WFv ×SU(2), if v is nonarchimedean,

(82)

into the complex group LGv ⊂ LG. (Langlands had introduced the product
WFv × SL(2,C) in [144, §4] as an equivalent version of the Weil–Deligne group
[237, §4]. Kottwitz chose SU(2) in place of SL(2,C) in order that the bounded lo-
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cal parameters (with respect to their images in Ĝ) would continue to be ones that
correspond to locally tempered representations of G(Fv).) The global locally com-
pact group LF should then be equipped with a commutative diagram

LFv WFv ΓFv

LF WF ΓF

(83)

of continuous homomorphisms for each valuation v of F . As usual, the vertical
embedding on the left in (83) would be determined only up to conjugacy, and would
extend the embeddings of local Weil and Galois groups.

Kottwitz proposed a set of axioms for LF , but he seems to have been thinking
of a group directly related to Langlands’ construction of GΠ(F). Roughly speaking,
GΠ(F) would be regarded as the “algebraic hull” of LF , a proalgebraic group over
F whose algebraic representations were in bijection with the continuous represen-
tations of LF . In other words, if the proposed Tannakian category exists, thereby
giving rise to a group GΠ(F), the existence of a group LF should follow formally.
The algebraic hulls of the local groups LFv introduced in [144], could then revert
back to the original groups (83). Finally Langlands’ Reciprocity Conjecture (80)
would become the existence of a continuous L-homomorphism

LF → GF . (84)

Motivated by Langlands’ paper, and the supplementary remarks by Kottwitz, I
introduced a constructive version [20] of the group LF in 2002. It is more concrete,
and it leads to a correspondingly concrete description of the motivic Galois group
GF . It also has the advantage of not requiring a Tannakian category for its existence.
The construction is still conjectural. It relies on the Principle of Functoriality, as
formulated in its unramified form in Section 4. Moreover, some further conditions
related to functoriality would be needed for the resulting group to have the desired
properties. These were discussed somewhat tentatively in §5 of [20]. They will prob-
ably be resolved one way or another by Beyond Endoscopy, the strategy proposed
by Langlands around 2000 for attacking functoriality.

In Langlands’ conjectural definition of GΠ(F), the basic building blocks are cusp-
idal automorphic representations of general linear groups. This follows the implicit
definition of the motivic Galois group in terms of irreducible (complex) motives. But
there are automorphic representations that could be regarded as more fundamental.
These would be the cuspidal, tempered automorphic representations of quasisplit
groups G that are not functorial images from any smaller group. Let us be more
precise.

We first recall the set

C (G) = Caut(G) = {c(π) : π ∈Π(G)}

introduced in Section 4. It consists of equivalence classes of families
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cS(π) = {cv(π) = c(πv) : π ∈Π(G), v ̸∈ S}

of semisimple conjugacy classes in LG. It is best that we then consider the sub-
set Cbdd(G) of classes c ∈ C (G) that are bounded, in the sense that for almost all
v, the projection of cv onto Ĝ meets a maximal compact subgroup of Ĝ. These
would be the classes c = c(π) attached to the globally tempered representations
π ∈Πtemp(G) (which we recall means that they should occur in the spectral decom-
position of L2(G(F) \G(AF)), but with the further condition that they be locally
tempered, in the sense that they satisfy the bounds from the general analogue of
Ramanujan’s conjecture. We are assuming functoriality. This implies that the un-
ramified L-functions

LS(s,c,r) = ∏
v̸∈S

Lv(s,cv,r), c ∈ C (G), (85)

attached to representations r of LG have analytic continuation and functional equa-
tion. The L-functions attached to classes c ∈ Cbdd(G) are the ones for which the
Euler product on the right converges absolutely for Re (s)> 1.

Suppose that G is simple and simply connected, as well as quasisplit. In this case,
we say that a class c ∈ Cbdd(G) is primitive if for any r,

ords=1 LS(s,c,r) = [r : 1LG].

This amounts to asking that c not be a proper functorial image ρ ′(c′), for some
c′ ∈ Cbdd(G′), and some L-homomorphism

ρ
′ : LG′→ LG (86)

whose image in LG is proper. We write Cprim(G) for the set of primitive classes in
Cbdd(G), for the simply connected group G. It is these objects, or if one prefers, cor-
responding automorphic representations π ∈Πprim(G), that represent the fundamen-
tal building blocks of LF . They are the smallest family in the embedded sequence

Cprim(G)⊂ Ccusp(G)∩Cbdd(G)⊂ Cbdd(G)

where Ccusp(G) is the subset of classes c = c(π) in C (G) for which π is cuspidal.
The main ingredient in the construction of LF is an indexing set CF . It consists

of isomorphism classes of pairs

(G,c), c ∈ Cprim(G),

with G simple and simply connected, in which (G,c) is isomorphic to (G1,c1) if
there is an isomorphism of groups G→ G1 over F , and a dual isomorphism LG1→
LG that takes c1 to c. Suppose that c belongs to CF (in the sense that it represents
an isomorphism class of pairs (G,c)). Since the group G is simply connected, the
complex dual group Ĝ is of adjoint type. We write Kc for a compact real form of its
simply connected cover Ĝsc. The Weil group WF acquires an action on Kc from the
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semidirect product
LG = Ĝ⋊WF .

For any such c, there is then a natural extension

1→ Kc→ Lc→WF → 1 (87)

of WF by Kc, which does not generally split. There are two separate constructions of
this extension, for which a reader can consult [20, §4]. The second of these includes
a description of localizations

LFv WFv

Lc WF

(88)

for the group Lc, which is based on the local Langlands correspondence.
The extensions (87) and localizations (88) attached to elements c ∈ CF are what

is needed to construct the locally compact Langlands group LF . It is defined as the
fibre product

LF = ∏
c∈CF

(Lc→WF) (89)

over WF . As such, it is an extension

1→ KF → LF →WF → 1 (90)

of WF by the compact simply connected group

KF = ∏
c∈CF

Kc,

and is hence locally compact. The required localizations (83) follow from their ana-
logues (88) for each Lc.

We have appealed to functoriality in the definition of the sets Cprim(G), and there-
fore in the indexing set CF used to define LF . The expectation is that LF will lead
to a classification of automorphic representations. The best outcome would be that
for any quasisplit G, the set Πbdd(G) of locally tempered representations that oc-
cur in the spectral decomposition of L2(G(F)\G(AF)) is a disjoint union of global
L-packets, parametrized by Ĝ-conjugacy classes of L-homomorphisms

φ : LF → LG

whose image in Ĝ is bounded. This reflects what might be expected for the subset
of such representations attached to parameters φ for the Weil group WF . As we have
said, the matter would likely be resolved with a proof of functoriality by the methods
of Beyond Endoscopy. In particular, if the proposed classification above needs only
minor adjustments, these ought to become clear from Beyond Endoscopy.
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We should emphasize that LF represents a “thickening” of the Weil group WF .
The two groups should satisfy similar qualitative properties, such as those outlined
for the Weil group by Tate in §1 of [237]. For example, if E is a finite extension of
F , LE would be the preimage of ΓE ⊂ ΓF in LF under the composition

LF →WF → ΓF .

In particular, this could serve as a definition of LF in terms of the group LQ.
In §6 of [20], there is also a tentative construction of the complex motivic Galois

group GF (which could conceivably serve at some point as an actual definition). It is
modeled on the construction of LF and the version (84) of Langlands’ Reciprocity
homomorphism. For a quasisplit group G over F , we could define a complex G-
motive to be an L-homomorphism from GF to LG (with the Galois form LG= Ĝ⋊ΓF
of the L-group, since GF is to be regarded as a complex proalgebraic group over ΓF ).
In the case that G is simple and simply connected, we would also speak of primitive
G-motives. They would correspond to elements c ∈ Cprim(G) that are algebraic (or
motivic). This means that if c = c(π) for an automorphic representation π , and if

φv : WFv → LGv

is a Langlands parameter for πv at an archimedean place v, the composition of φv
with any finite-dimensional representation r of LG whose kernel contains a subgroup
of finite index in WF is of Hodge type. In other words, the restriction of r ◦φv to the
subgroup C∗ of WFv is a direct sum of (quasi)characters of the form

z→ z−pz−q, z ∈ C∗, p,q ∈ Z. (91)

Our restriction on r would in fact imply that each of these is of weight 0, in the sense
that p+q = 0, and hence a character of the form

z→ (z/z)q .

The construction of GF amounts to a fibre product analogous to (89), but with
two changes.

(i) The indexing set CF in (89) is replaced by the subset CF,alg of algebraic indices
c ∈ CF .

(ii) The diagram (87) of locally compact groups is replaced by a diagram

1→Dc→ Gc→TF → 1

of complex proalgebraic groups, in which Dc equals the simply connected com-
plex dual Ĝsc of the group G attached to c, and TF is the Taniyama group over
ΓF introduced by Langlands in Section 5 of [144].
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The automorphic Galois group would then be given as a fibre product

GF = ∏
c∈CF,alg

(Gc→TF)

over TF . The construction would thus express GF explicitly in terms of the families
CF,alg. Otherwise said, it builds GF out of primitive G-motives rather than irreducible
GL(n)-motives. With this proposed construction of GF , the homomorphism (84)
is then defined concretely on the last page 481 of [20]. It is to be regarded as an
L-homomorphism of groups over ΓF .

Given GF , and any G over F , we write Φalg(G) for the set of G-motives. This is
a set (possibly empty) of Ĝ-conjugacy classes of proalgebraic L-homomorphisms

Φ : GF → LG,

with respect to the projections of GF and LG onto ΓF . We can then identify these
mappings with their restrictions to LF under Langlands’ proposed reciprocity map-
ping φ : LF → GF , since the Reciprocity Conjecture should imply that the two sets
are indeed in bijection. In other words, we can also regard a parameter Φ ∈Φalg(G)

as Ĝ-conjugacy class of L-homomorphisms

Φ : LF → LG

(with respect again to the two projections onto ΓF ) that is of Hodge type. Namely, if
(r,V ) is any finite-dimensional representation of LG, and v is any archimedean place
of F , the restriction of Φv to the subgroup C∗ of WFv is a direct sum of characters of
the form (91). For any such v, we write Φalg(Gv) for the obvious local analogue of
this set.

The algebraic Langlands parameters Φ ∈ Φalg(G) generally have nonzero
weights, which means that they are nontempered. However, they can be projected
naturally onto tempered parameters. To see this, we first introduce the weight ho-
momorphism

w : CF → LF

for LF . It is the mapping from CF = F∗ \A∗F into the preimage

L0
F = KFW 0

F

in LF of the identity component W 0
F of WF , defined by mapping the norm ∥c∥ for

any c ∈CF to the multiplicative subgroup R+ of W 0
F described in [237, (1.4.4)]. We

also have the Tate homomorphism

t : LF →CF ,

which can be expressed in terms of the composition of the projection LF →WF
and WF → CF . One sees that the image of w lies in the centre of LF , and that the
composition (t ◦w) maps any c ∈ CF to ∥c∥−2. For any algebraic parameter Φ ∈
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Φalg(G), the modified Langlands parameter

φ(x) = Φ(x · (w◦ t)(x)−
1
2 ), x ∈ LF , (92)

then lies in Φtemp(G). It has the property that if v is an archimedean valuation of F
and rv is a finite-dimensional representation of LGv, and if (rv ◦Φv)(z) is a sum of
algebraic characters (91), then (rv ◦ φv)(z) is the corresponding sum of continuous
characters

(z/|z|
1
2 )−p(z/|z|

1
2 )−q = (z/z)−

1
2 (p−q). (93)

We can write Φtemp,alg(G) for the set of parameters φ ∈ Φtemp(G) obtained in this
way, and

Φ2,alg(G) = Φ2(G)∩Φtemp,alg(G)

for the subset of such parameters in Φ2(G). We note that the correspondence φv←→
Φv is a generalization of Langlands’ dual correspondences φv←→ φ ′v and πv←→ π ′v
for GL(2) described in the last section.

We observe in passing that there is a parallel structure for the motivic Galois
group GF . It was pointed out by Serre [210], who noted that GF comes with a weight
homomorphism

w : Gm→ GF ,

whose image lies in the centre of GF . It has the property that for a representation
r of GF , the weights of the corresponding motive are given by the decomposition
of r ◦w into characters of Gm. The motivic Galois group also comes with the Tate
motive

t : GF →Gm

of weight (−2), which is to say that t(w(x)) = x−2. These objects for GF would
follow immediately from their analogues for LF and the basic properties of the
Taniyama group TF .

Langlands’ statement of the Reciprocity Conjecture actually came at the begin-
ning of the article [144]. According to his introduction in §1, the original intent
was to study two specific problems in the theory of Shimura varieties. These were
taken up in the final two Sections 6 and 7 of the article. The earlier sections arose
from his afterthoughts on the problems, but were for reasons of exposition presented
in the reverse order. Section 2 contains the proposed mapping (80), on which our
discussion to this point has been based.

Section 3 of [144] contains a brief discussion of another question, automorphic
representations Langlands called anomalous. Unlike what happens for GL(n), these
can include cuspidal automorphic representations that are not locally tempered. The
first examples had been introduced for the group PSp(4) by Kurokawa shortly be-
fore the Corvallis conference. A second family of examples for PSp(4), discovered
by Howe and Piatetskii-Shapiro, was discussed informally at the conference. These
both turned out to be special cases of the representations for general groups intro-
duced in [18], which we discussed in the last section as part of the conjectural stabi-
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lization (73) of spectral side of the Lefschetz trace formula. The relevant conjectures
have now been established for quasisplit classical groups [23], [181].

In §4 of [144], Langlands returned to his original topic, the theory of Shimura va-
rieties. This section again concerns motives, and as such, provides a bridge between
the specific problems in the later sections of [144] and the formulation of the gen-
eral Reciprocity Conjecture in Section 2. However, it applies to the motives as they
are thought to appear on the geometric side of the Lefschetz trace formula, rather
than the motives on the spectral side that would govern Reciprocity. This dual role
would serve as a grand generalization of what happens for elliptic curves, which
on the one hand represent moduli on the geometric side of the Lefschetz trace for-
mula for GL(2), and on the other, spectral objects classified by the (now resolved)
STW-conjecture. An equally fundamental analogy is the dual way of representing
extensions of a number field F that is at the core of the automorphic trace formula
for GL(n). On the one hand, they come from the irreducible polynomials of degree
n over F in the elliptic part of the geometric side, as governed by the base of the
Steinberg–Hitchin fibration that we will recall in the final section, and on the other,
the irreducible complex representations of Gal(F/F) of degree n that are conjec-
tured to be basic components of the discrete part of the spectral side.

The conjectural formula in Section 3 of Kottwitz’ paper [123], as it evolved from
[142] and [164], is what allows us to understand the spectral properties of Shimura
varieties SK . However, its proof was restricted to cases in which SK(C) could be real-
ized as a moduli space for geometric objects related to abelian varieties. Many, if not
most, Shimura varieties are not PEL varieties, the basic moduli spaces of this sort.
Abelian varieties are of course motives. The idea of §4 of [144], which Langlands
learned from Deligne, was to treat an arbitrary Shimura variety SK(G,X) (apart from
those that behave badly on the cocentre, that is with G ̸= G0 in the notation of [144,
p. 217]), as a moduli space of motives. Deligne regarded Shimura varieties as pa-
rameter spaces for certain Hodge structures. His construction was predicated on a
conjecture that these objects in turn parametrize uniquely determined motives. We
shall review it as presented in [144] to get a further sense of the remarkable internal
structure of a general Shimura variety.

As we have done with motives, we speak here of pure Hodge structures. Fol-
lowing the beginning of §4 of [144], we recall that a real Hodge structure V is a
finite-dimensional real vector space VR whose complexification has a decomposi-
tion

VC =
⊕

p,q∈Z
V p,q,

for complex subspaces V p,q such that V q,p = V p,q. It is equivalent to a finite-
dimensional representation σ of the group R = ResC/R(Gm) over R, with

V p,q = {v ∈VC =VR⊗C : σ(z1,z2)v = z−p
1 z−q

2 v}.

It is also essentially the same as an archimedean parameter

φR : WR→ GL(n,C)
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of Hodge type, of the kind that classifies representations of GL(n,R) of motivic sig-
nificance, as we can recall from the quasicharacters (91) and the related parameters
φ ′R for GL(2) in Section 8. With either interpretation, the set of real Hodge struc-
tures is a Tannakian category, with associated group R. A real Hodge structure V is
of weight n if V p,q = 0 unless p+q = n.

Recall also that a rational Hodge structure V is a finite-dimensional vector space
VQ over Q with a direct sum decomposition

VQ =
⊕

n
V n
Q,

together with real Hodge structures of weight n on the real vector spaces
V n
R = V n

Q ⊗Q R. The basic example is the Tate rational Hodge structure Q(1) of
weight −2, in which Q(1)Q = 2πiQ⊂ C and Q(1)C =Q(1)−1,−1. Rational Hodge
structures V contain much more information than real Hodge structures. In particu-
lar, if real Hodge structures give representations of general linear groups GL(n,R)
in terms of archimedean Langlands parameters, supplementary Q-structures should
in many cases lead to motives, and therefore the enriched structure of automorphic
representations of the groups GL(n). A necessary condition for this, however, is
that V be polarizable, in the sense that it can be endowed with a bilinear form of the
sort described on p. 215 of [144]. The situation is a generalization of the theory of
abelian varieties, whereby a complex torus represents an abelian variety if and only
if it has a Riemann bilinear form. The category

Hod = HodC,Q = {V = (VC,VQ)}

of polarizable rational Hodge structures is Tannakian, with fibre functor V → VQ,
and a corresponding Hodge group H = HC = HC,Q over Q.

Recall finally that Mot = MotC,Q is the Tannakian category of Q-motives over
C, with motivic Galois group G = GC = GC,Q. Every object in this category comes
with a polarizable rational Hodge structure, according to the properties of Q-Betti
cohomology of nonsingular complex projective varieties. There is consequently a
⊗-functor

hBH : Mot→ Hod

of categories, and a corresponding group homomorphism

h∗BH : H → G

over Q. The Hodge conjecture implies that the functor is fully faithful, which means
that no data is lost from a motive (over C) in passing to its Hodge structure.

The construction described in §4 of [144] applies to any Shimura variety
SK = SK(G,X) with G = G0. It also depends on a rational representation (ξ ,V )
of G. The idea is to associate to every point x = (h,g) in the space

XK = X× (G(Afin)/K)
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a pair of objects (V x,φ x
fin) as follows. The first component V x is the rational Hodge

structure on the vector space V x
Q = VQ = V given by the representation ξ ◦ h of

R(R) = C∗ on VC. The second component φ x
fin is the isomorphism V x

Afin
→ VAfin

given by v→ ξ (g)−1v, with the understanding that it be defined only up to com-
position by an element of ξ (K). Each such pair is also implicitly fitted with an
underlying family of polarizations Px of V x, described briefly on p. 216 of [144],
with the property that if x′ = γx = (γh,γg) for some γ ∈ G(Q), there is a natural
map γ : Px→Px′ .

With this machinery in place, Langlands varies the representation

ξ = (ξ ,V ) = (ξ ,V (ξ )).

The construction then attaches to any x a functor

η
x : (ξ ,V (ξ ))→V x(ξ )Q, V (ξ ) =V,

from the category Rep(G) of rational representations of G to the category Hod of po-
larizable rational Hodge structures. It is a ⊗-functor (commuting with tensor prod-
ucts), with a matching

ωHod ◦η
x = ωRep(G)

of underlying fibre functors. But Hod is equivalent to the category Rep(H ). The
properties of Tannakian categories then provide a homomorphism φ x : H →G over
Q for which ηx can be identified with the functor

η
x : (ξ ,V (ξ ))→ (ξ ◦φ

x,V (ξ )).

A comparison of φ x with the given mapping φ x
fin then leads in [144] back to the

original element g in the pair x = (h,g).
The conclusion reached on p. 214 on [144] is that XK parametrizes pairs (φ ,g),

where φ is a homomorphism from H to G over Q, and g is an element in G(Afin)
taken only up to right multiplication by an element in K. Moreover, φ is subject to
the constraint that its composition φ ◦ h with the canonical homomorphism h from
R to H lies in the set X of homomorphisms from R to G in the original Shimura
datum (G,X).

Langlands notes finally that this construction of Deligne comes with the
hope/expectation that any homomorphism φ ′ : H → G over Q such that φ ′ ◦h lies
in X is a composition φ ′ = φ ◦ h∗BH, for a (uniquely determined) homomorphism
φ : G → G over Q, which is to say, a G-motive over C with coefficients in Q. The
complex variety SK(C) would then parametrize equivalence classes of pairs

{(φ ,g) : φ : G → G, φ ◦h ∈ X , g ∈ G(Afin)/K},

where (φ ′,g′) is equivalent to (φ ,g) if, for some γ ∈ G(Q),

(φ ′,g′) = (ad(γ)φ ,γg).
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This completes our discussion of §4 of [144]. Langlands observed that it did not
yet yield a “moduli problem in the usual sense”. He also asserted that “nonetheless,
there is a good deal to be learned” from the discussion we have just sketched. Indeed
there is. I have yet to learn much of the subsequent history of the problem. Among
other things, I am puzzled by what seems to be a paucity of later references to a
construction that seems so compelling (brief as our distilled review here is). I have
not yet studied the later paper [164] of Langlands and Rapoport, or the fundamental
volume [66] on absolute Hodge cycles, or later papers of Milne such as [173] and
[175]. I presume that this construction has had to be reformulated in terms of gerbes
in order to accommodate relations among motives in different characteristic. The
reduction of a moduli space modulo p was of course essential to the proof of any
case of the conjectural formula [142], [164], [123] for the terms on the geometric
side of the Lefschetz trace formula. A recent paper of [111] of Kisin establishes the
formula for Shimura varieties of abelian type. (As I understand it [176, §9], a motive
is of abelian type if it lies in the category generated by abelian varieties; a Shimura
variety SK = SK(G,X) with rational weight wX is of abelian type if it is a moduli
space in the sense of the construction above of abelian motives.)

It was in §5 of [144] that Langlands introduced the Taniyama group TF . We
recall that it is the replacement of the Weil group WF in the diagrams (89) and (90)
for the construction we have proposed for the motivic Galois group GF . It is an
extension

1→SF →TF → ΓF → 1

of the Galois group ΓF =Gal(F/F) (with F embedded in C) by the Serre group. The
Serre group S is in turn a complex proalgebraic torus, with a continuous action of
ΓQ = Gal(Q/Q). (We are writing SF for the same group, but with its Galois action
restricted from ΓQ to the subgroup ΓF .) It was actually defined by Langlands in §4,
following Serre’s construction in [208]. The Serre group should be the commutator
quotient of both H and G , and thereby fit into a diagram

H 7→ G →S

of complex, connected groups. The (polarizable, rational) Hodge structures and
(complex) motives defined by representations of S are then said to be of CM-type.

Langlands defined TF by an explicit 2-cycle from ΓF with values in SF . He then
used it in §6 to formulate the conjectural solution to a moduli problem he had posed
at the end of §4. The problem was just one of a number of questions that would need
to be resolved in order to be able to treat a general Shimura variety SK = SK(G,X)
as a moduli space, as in the special case of a PEL-variety. It concerned how the
proposed parametrization of SK(C) by pairs (φ ,g) changes under an automorphism
τ of C. Langlands observed in general terms that (φ ,g) would be replaced by a pair
(φ ′,g′) attached to another Shimura datum (G′,X ′) = (Gτ,φ ,Xτ,φ ). The problem
was to describe the group Gτ ,φ explicitly. We will not review Langlands’ conjec-
tural resolution, obtained as part of his construction of the Taniyama group, but we
recall that the conjecture was proved soon afterwards, independently by Borovoi
[37] and Milne [173]. The Taniyama group itself has remained an important part
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of the theory. Besides its fundamental role in the motivic Galois group GF , and in
the volume [66] on absolute Hodge cycles and elsewhere, it has also been used in
a rather different context. The paper [6] introduced an extension of the Taniyama
group, which in turn has become a part of a very interesting generalization [75] of
the theory of motives.

The last Section 7 of [144] contains remarks of Langlands on the cohomology of
general Shimura varieties SK = SK(G,X), with a view towards the Hasse–Weil zeta
function of SK . These were taken up, at least implicitly, in the later paper [123] of
Kottwitz discussed in the last section. I will not review them here, and in particular,
their bearing on the inner twist Gτ,φ of G introduced by Langlands in §4, and studied
further in §5 and §6 of [144].

However, I would like to draw attention to the lemma of Langlands on p. 240
of [144]. We shall use it as the starting point for a discussion related to the final
formula obtained by Kottwitz in §10 of [123], which we reviewed (but did not state)
at the end of the last section. We shall describe a reciprocity identity for any Shimura
variety, based on the general conjectures for motives. We shall then discuss some
further motivic questions suggested by the identity.

Langlands considered an archimedean parameter in the set

{φ ∈Φ(GR) : S0
φ ⊂ Z(ĜR)}

such that the graded vector space

H∗(φ ,ξ ) =
⊕

π∈Πφ

H∗(gR,KR;π⊗ξ )

in (62) is nonzero. He then attached two representations of the real Weil group WR
to φ with two different roles in mind, one motivic and one automorphic. The lemma
asserts that the two representations are equivalent.

The “motivic” representation for φ comes from a real Hodge structure on the
space H∗(φ ,ξ ), introduced by Langlands at the lower half of p. 239 of [144]. We
note that it is to be regarded as a spectral object, in contrast to the Hodge structures
from §4 of [144] we have just reviewed. As a representation of C∗ on H∗(φ ,ξ ),
it is defined on a subgroup of index 2 in WR. To extend it, he first considered the
archimedean Weil group WC/E = WE , where E is the Shimura field over which SK

is defined, and E is its completion defined by the embedding E ⊂C with which it is
equipped. If E = R, Langlands observed that the action of C∗ on H∗(φ ,ξ ) extends
naturally to the Weil group WR =WC/R. With this in hand, his representation of WR
can then be taken in general to be

H∗(φ ,ξ )+ = Ind(WR,WE ,H
∗(φ ,ξ )),

the representation on a space H∗(φ ,ξ )+ obtained by inducing the subrepresentation
of WE on H∗(φ ,ξ ).
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Langlands’ other representation of WR, the one whose role would be automor-
phic, is given by the parameter

φR : WR→ LGR

itself. We recall from the last section that SK = SK(G,X) comes with a cocharacter
µ = µh for G, and a corresponding character µ̂ that serves as the highest weight
for an irreducible representation (r,V (r)) of Ĝ. It follows from the definition of the
reflex field E of SK that the Galois group ΓE stabilizes the Ĝ-orbit of the minuscule
weight µ̂ , and hence that r extends to a representation rE of the L-group LGE =
Ĝ⋊ΓE of E such that ΓE acts trivially on the weight space of µ̂ . Langlands then
introduced the representation

r+ = Ind(LG,LGE ,rE) (94)

of the L-group LG = Ĝ⋊ΓQ obtained by induction from the representation rE of
LGE to LG. His second representation of WR can then be defined as

r+ ◦Φ ,

where
Φ(w) = φ(w)|w|−

d
2 , d = dimSK , w ∈WR.

It is not hard to see from the definitions that Φ is algebraic, in the sense that it is
the local component of a parameter in the global set Φalg(G), or equivalently, that
its constituents are of the form (91). The lemma on p. 240 of [144] can be taken as
the assertion that the two representations of WR are equivalent.

There are several deeper phenomena suggested by this lemma, simple as it may
be. With one representation of WR acting on an archimedean cohomology group,
and the other given explicitly in terms of an archimedean Langlands parameter, it
is suggestive of the local archimedean component of the Global Reciprocity corre-
spondence between motives and automorphic representations. We would be dealing
with a specific motive here. It is represented by the de Rham cohomology (62) of
SK(C), and can therefore simply be regarded as the motive of the Shimura variety
SK over E. We are in fact speaking of what is known as a realization of the motive,
specifically the Hodge realization. We can think of the lemma as a property of the
local archimedean part of the mapping Φ → φ from Φalg(G) to Φtemp(G) in (92).

There is something else in Langlands’ lemma. It suggests a broader global per-
spective, one that goes beyond the reflex field E and the complex embedding E ⊂C.
The local archimedean reflection of this phenomenon is given by the extensions
H∗(φ)+ and V (r)+ of the complex vector spaces H∗(φ) and V (r) on which Lang-
lands’ two representations act. The global implication is that we would need to con-
sider an extension of the motive of SK , with components attached to Galois conju-
gates E ′ ⊂C of E ⊂C. What would these motives be? Are they attached to Shimura
varieties S′K′? The conjecture of Langlands of §6 of [144], established not long af-
terwards [37], [173] asserted that they are.
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Before I try to expand on these global implications, I should first describe the
local generalization [18, Proposition 9.1] that was motivated by Langlands’ lemma.
This in turn relies on the local conjectures of [18, §8], which together with their
global counterparts were a part of our discussion of Kottwitz’ conjectural spectral
(de)stabilization of the Lefschetz trace formula from the last section.

The local conjectures apply to any completion Fv of a number field F . They
concern enriched parameters

ψv : LFv ×SL(2,C)→ LGv, ψv ∈Ψ(Gv),

taken as usual up to conjugacy by Ĝ, but with the property that the image of LFv

projects onto a bounded subset of Ĝ. In other words, the restriction φv of ψv to LFv

is a tempered Langlands parameter. Given ψv, one forms the centralizer

Sψv = Cent(ψ(LFv ×SL(2,C)), Ĝ)

in Ĝ of its image, and the finite group

Sψv = Sψv/S0
ψv Z(Ĝ)Γv ,

often abelian, of connected components in Sψv modulo the Galois invariants in the
centre of Ĝ. For each ψv, the conjectures assert the existence of a finite set Πψv of
representations of G(Fv). This set would parametrize (in a noncanonical way) the
irreducible characters

sv→ ⟨sv,πv⟩, sv ∈ Sψv , πv ∈Πψv ,

on the group Sψv . However, in contrast to the (bounded) Langlands parameters φv,
the representations πv ∈ Πψv need not be either tempered or irreducible. On the
other hand they are conjectured to be unitary, and to be finite sums of irreducible
representations. The local parameters ψv and packets Πψv , together with their global
counterparts ψ and Πψ , are really a part of the theory of endoscopy. We have men-
tioned this term regularly in earlier sections, but we have not yet said what it is. We
shall do so in the next section.

For the proposition from [18], we take v to be the real valuation of Q, and start
with a parameter ψR in the set

Ψ2(GR) = {ψR ∈Ψ(GR) : S0
ψR
⊂ Z(ĜR)}.

The groups SψR and SψR are then abelian. However, the situation here is slightly
different from that of Langlands’ lemma, given the requirement that the ψR-image
of LR = WR be bounded in Ĝ. We are regarding the irreducible representation ξ

of G as algebraic, which means that its restriction to GR generally has nonunitary
central character. This in turn forces the cohomology H∗(gR,KR,πR⊗ξ ) to vanish
for representations πR in the packet ΠψR . To rectify the problem, we write
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ξR(xR) = ξ (xR)|det(xR)|αξ , xR ∈ GR = G(R),

where αξ ∈ R+ is the number that makes the central character of ξR unitary. (This
is related to the earlier footnote 6 and the ensuing discussion for GL(2). It is also
implicit in the discussion on p. 61 of [20].) With this understanding, we define
Ψ2(GR,ξR) to be the subset of archimedean parameters in Ψ2(GR) such that the
graded vector space

H∗(ψR,ξR) =
⊕

πR∈ΠψR

H∗(gR,KR;πR⊗ξR)

is nonzero. The representations πR ∈ ΠψR are interesting examples of the unitary
representations with cohomology classified by Vogan and Zuckerman [244].

Consider then a parameter ψR in the set Ψ2(GR,ξR). The representations πR ∈
Πψ then give rise to a real Hodge structure. This relies on the analysis of such
parameters by Adams and Johnson [2], [18, §5]. It in turn gives a representation of
C∗ on H∗(ψR,ξR), but with components of the form (93) rather than (91), for our
having replaced ξ by ξR. The group SψR also acts on H∗(ψR,ξR), and commutes
with the action of C∗. The extra ingredient in the parameter is the group SL(2,C).
It also acts on the space H∗(ψR,ξR), where it governs the grading in the manner
familiar from the hard Lefschetz theorem. Since it commutes with the action of the
product of SψR×C∗, we obtain a representation of the product SψR×C∗×SL(2,C)
on the space H∗(ψR,ξR). Following Langlands, we can then construct an induced
representation

ρ
+
ψR

(s,(w,u)), (s,w,u) ∈ SψR × (WR×SL(2,C)),

of the product SψR × (WφR ×SL(2,C)) on a graded vector space H∗(ψR,ξR)
+ that

contains H∗(ψR,ξR) and that is the analogue of the space H∗(φ ,ξ )+ introduced
above. This is the “motivic” representation for ψR.

The “automorphic” representation for ψR is constructed as above, but in terms of
the new parameter ψR. It equals

σ
+
ψR

(s,(w,u)) = r+R(ψR(w,u)s), (s,w,u) ∈ SψR × (WR×SL(2,C)), (95)

where r+R is the representation of LGR attached as above to the Shimura datum
(G,X). Proposition 9.1 of [18] amounts to the assertion

ρ
+
ψR
∼= σ

+
ψR

(96)

that the two representations of SψR × (WR×SL(2,C)) are equivalent. It reduces to
the lemma of Langlands in the case that the parameter ψR = φR lies in the subset
Φ2(GR) of Ψ2(GR), which is to say that its restriction to SL(2,C) is trivial. (The
proposition was actually formulated and proved for the smaller representations with
C∗ in place of WR, but its extension follows from the various definitions.)
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We can now turn to the global implications of these local results. We shall in-
troduce two global representations, one motivic and one automorphic, which for
the moment serve simply to help us focus our thoughts. They depend on the global
conjectures from [18, §8], about which we can first say a few words.

If G is any reductive group over a number field F , we write Ψ(G) for the set of
L-homomorphisms

ψ : LF ×SL(2,C)→ LG

such that LF has bounded image in Ĝ, taken up to Ĝ-conjugacy. The domain here
now includes the hypothetical global Langlands group LF , in which the local groups
LFv are imbedded. Any ψ would therefore give local parameters ψv ∈Ψ(Gv), local
packets Πψv of representations, and a global packet Πψ of representations

π =
⊗̃

v
πv, πv ∈Πψv ,

of G(A), in which πv is required to be unramified in a certain sense for almost all v.
The natural mappings sv→ s from the local groups Sψv to the corresponding global
group Sψ = Sψ/S0

ψ Z(Ĝ)Γ will then attach a global pairing

s→ ⟨s,π⟩= ∏
v
⟨sv,πv⟩, s ∈ Sψ , π ∈Πψ ,

on Sψ to any representation in the global packet. The factors on the right will equal 1
for almost all v, while the product of the noncanonical local pairings ⟨sv,πv⟩will be-
come canonical. The result would be a canonical finite-dimensional character ⟨·,π⟩
on Sψ for every representation π in the global packet Πψ . Finally, suppose that ψ

lies in the subset Ψ2(G) of global parameters such that the connected centralizer S0
ψ

is contained in Z(Ĝ). In general, there is a natural one-dimensional sign character
εψ on Sψ , constructed in a simple way from symplectic root numbers attached to
ψ . The main conjecture is then that the automorphic discrete spectrum of G (taken
modulo the centre) is a direct sum over ψ ∈Ψ2(G) of representations π ∈Πψ , taken
with multiplicities equal to the multiplicities

m2(π) = |Sψ |−1
∑

s∈Sψ

εψ(s)⟨s,π⟩, π ∈Πψ , (97)

of εψ in ⟨·,π⟩. (See [18, §8].)
We return now to the Shimura varieties SK = SK(G,X), with F equal to either

Q or the reflex field E. Our main global representation will be the one that is “au-
tomorphic”. It is built in a natural way from the archimedean representation (95)
introduced above and its nonarchimedean complement from the corresponding ex-
pression (62) for the L2-cohomology of SK(C). It is the representation⊕

ψ∈Ψ2(G,ξ )

⊕
π∈Πψ

(σ+
ψ ⊗π

K
fin)εψ

(98)
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of (LQ×SL(2,C))×HK(G), whose terms we describe as follows. The representa-
tion itself is a direct sum over global parameters

ψ : LQ×SL(2,C)→ LG

in the subset Ψ2(G,ξ ) of parameters in Ψ2(G) that restrict to archimedean param-
eters in the subset Ψ2(GR,ξR) of Ψ2(GR), and representations π of G(A) in the
corresponding global packet Πψ . For any ψ and π , (σ+

ψ ⊗πK
fin)εψ

is then the repre-
sentation of (LQ×SL(2,C))×HK given by the multiplicity of the sign character
εψ on Sψ in the representation

(σ+
ψ ⊗π

K
fin)((w,u),s, f ) = r+(ψ(w,u)s)⊗⟨s,πK

fin⟩(πK
fin( f ))

of (LQ×SL(2,C))×Sψ ×HK . In other words,

(σ+
ψ ⊗π

K
fin)((w,u), f ) = |Sψ |−1

∑
s∈Sψ

εψ(s)
(
r+(ψ(w,u)s)

)
⊗⟨s,πK

fin⟩
(
π

K
fin( f )

)
. (99)

The representation (98) is the centre of our discussion. The essential point is that
it should be equivalent to the natural representation of (LQ×SL(2,C))×HK on our
expression

H∗(2)(SK(C),F )+ =
⊕

π

m2(π)
(
H∗(gR,KR,πR×ξR)

+⊗π
K
fin
)

(100)

for the extended L2-cohomology. Indeed (100) is defined in the same way as (98),
but with the archimedean representation σ+

ψR
of (95) replaced by the representation

ρ+
ψR

on (gR,KR)-cohomology. The equivalence of the two representations (98) and
(100) would then follow from the equivalence (96) of ρ+

ψR
and σ+

ψR
, the form (97)

for the multiplicity m2(π) in terms of the parameter ψ and the sign character, and
the various definitions.

The analogue of (98) for the actual L2-cohomology H∗(2)(SK(C),F ) is a similar
representation, but with the group LE in place of LQ. It amounts to the formula stated
as [18, (9.3)] (with the local representation ρψR in place of σψR ), where it follows
from the definition of ρψR and the actual assertion of Proposition 9.1 of [18]. We
can think of (98) as the representation of LQ induced from this representation of LE .
This relation is in keeping with the bijections

LQ/LE ∼=WQ/WE ∼= ΓQ/ΓE ∼= Hom(E,C)

that we expect of the Langlands group, and that are stated for the Weil and Galois
groups on the first page of Tate’s article [237].

Remarks. 1. The representation (98) is an interesting expression on several
counts. It provides some insight into automorphic representations (acting on spaces
of automorphic forms) rather than the characters in terms of which they were clas-
sified in [23]. By displaying the global parameters and their corresponding families
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of HK-modules {πK
fin} together as tensor products, it bears a philosophical resem-

blance to the theta correspondence. The automorphic modules πK are lacking the
archimedean components πR, but these are hidden in the representations σ+

ψ , or
rather the (gR,KR)-cohomology within the equivalent representations ρ+

ψ .
2. The finite group Sψ is abelian, since it is a subgroup of the archimedean group

SψR , which in the case of the algebraic parameters ψ is itself abelian [2]. However,
the other groups Sψv need not be abelian, so ⟨s,πK

fin⟩ can be a higher-dimensional
character, which means that σ+

ψ ⊗πK
fin is not strictly a representation of the compo-

nent group {s} = Sψ . It perhaps ought to be replaced in the notation by a higher-
dimensional Sψ -module. But the formula (98) makes sense as stated, and in any
case, the groups Sψv are typically abelian, making ⟨s,πK

fin⟩ a one-dimensional char-
acter.

3. The sign character εψ is an interesting arithmetic object in its own right. That
it occurs in the basic automorphic expression (98) for Shimura varieties is perhaps
surprising.

4. It is the automorphic expression (98) that is closely related to the formula
of Kottwitz displayed in the last paragraph of [123, §10], and that was our object
of discussion at the end of the last section. His derivation of the formula by the
comparison of trace formulas, even though it rests on the conjectural fixed point
formula [123, (3.1)] and the conjectures of [18, §8], of course brings us closer to an
actual proof of the formula than our derivation of (98) by Langlands’ Functoriality
and Reciprocity. Our goal for (98) has been conceptual.

5. The isomorphism of H∗(2)(SK(C),F )+ with the representation (98) could be
regarded as a global counterpart of a conjectural formula of Kottwitz [190] for the
representations of local groups in the cohomology of local Shimura varieties.

The automorphic representation (98) can be regarded as the primary object of
this discussion, from which the others follow, and to which subsequent questions
ultimately return. The representation of the product (LQ×SL(2,C))×HK on the
extended L2-cohomology (100), while being equivalent to (98), is really secondary.
For as we have noted, it is essentially a realization of a motive. The true motivic
companion of (98) would be a more direct analogue. We define it formally as the
algebraic representation ⊕

Ψ

⊕
Π∈ΠΨ

(Σ+
Ψ
⊗Π

K
fin)εΨ

(101)

of (GQ× SL(2,C))×HK whose pullback to (LQ× SL(2,C))×HK under Reci-
procity equals (98). In particular, Ψ is the preimage of the parameter ψ ∈Ψ2(G,ξ )
from (98), under the analogue of the mapping (92). The automorphic representations
in (101), which we have written as Π ∈ ΠΨ in place of π ∈ Πψ are an interesting
part of the construction. They are representations of HK , as an algebra of cycles in
the extended cohomology space that commutes with the motivic representation of
GQ×SL(2,C), and which in turn acts as a kind of diagonalization of this algebra.

The motivic representation (101) does not display much of its internal structure.
This is because we have been treating it as a representation of the complex group
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GQ = GQ(C), the group of complex points of the underlying group GQ,Q over Q.
(We adopted the overlapping notation earlier to emphasize the parallel conjectural
structure of the universal groups LF and GF . Applied to GF alone, the ambiguity is
harmless; we can regard GF either as the group of complex points of a scheme over
Q, or more traditionally, as a complex group with underlying structure as a group
defined over Q. In the case here of F = Q, we shall often write G = GQ simply
for the reductive group over Q.) It is this Q-structure that governs the arithmetic
properties of (100).

Among other things, the Q-structure is needed to complete the Hodge realization
of the Shimura variety SK on the extended cohomology space H∗(2)(SK(C),F )+. We
saw in the construction of the motivic representation (100) (using (96) and Lang-
lands’ earlier lemma) how to define the real Hodge structure on the space. To extend
it to a rational Hodge structure, we would need to use the fact that the representa-
tion (100) of GQ×SL(2,C) as a fibre functor can be defined over Q. The Q-Hodge
structure is required in turn to be polarizable [144, p. 215]. We would want to be
able to attach an explicit polarization to the motivic parameters. This should bear a
simple relation to the Lefschetz structure given by the SL(2,C)-component of the
parameters.

The most widely studied realization functor for motives is defined by their étale
cohomology and its corresponding compatible families of ℓ-adic Galois represen-
tations. Known as the Afin-realization [65], it is of obvious arithmetic importance.
For the Shimura variety SK , it was the main topic of our last section. As we recall,
the Galois representations act on the ℓ-adic (étale) version of the intersection coho-
mology IH∗(SK ,Fλ )

+ for the Baily–Borel compactification of SK . Like the Hodge
realization, it depends very much on the Q-structure of the group GQ. As a matter of
fact, we cannot really speak of the Afin-realization of SK , and the individual ℓ-adic
representations in particular, without this Q-structure. For it is considerably more
subtle than the Q-structure on the Shimura group G. Without it, one has to work
with compatible families of λ -adic representations, where λ ranges over the non-
archimedean completions of a finite extension L of Q that depends on the group K.
This was the point of view of Langlands in [140] and Kottwitz in [123].

We display the representation spaces we have discussed in the diagram

H∗(2)(SK ,F )+
⊕

ψ

⊕
π

(
σ
+
ψ ⊗π

K
fin
)

εψ
(98)

IH∗(SK ,F )+
⊕
Ψ

⊕
Π

(
Σ
+
Ψ
⊗Π

K
fin
)

εΨ
(101)

∼

The diagram is somewhat impressionistic, but it is helpful for us in keeping track
of what is highly conjectural, and what is better understood and more concrete. The
vertical arrow on the right is in the former category. Indeed, its domain in the upper
right-hand corner is given in terms of the hypothetical automorphic Galois group
LF , whose existence is closely related to Langlands’ Principle of Functoriality. The
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ultimate proof of this would be the goal of Beyond Endoscopy, the recent long term
program of Langlands we will discuss in §11. The codomain in the lower right-hand
corner depends on the hypothetical motivic Galois group GF , while the arrow itself
is given by Langlands’ Reciprocity Conjecture. There is no concrete program for
the proof of this, but it will surely demand everything we can prove about Shimura
varieties. The vertical arrow on the left is the isomorphism of Zucker’s conjecture,
which we recall has been known for twenty years. The lower horizontal arrow is
given by the Afin-realization of S+K , while its composition with the isomorphism on
the left is the Hodge realization of S+K . The upper horizontal arrow is built out of
Langlands’ lemma and the proposition from [18] with which we began this discus-
sion. It seems clear from these remarks that the automorphic representation in the
upper right-hand corner can indeed be regarded as the foundation of the other spaces
and arrows in the diagram.

We shall conclude this discussion with a list of five problems. These represent
refinements of conjectures that would enhance our understanding, as opposed to
ideas that might be applied to their eventual proofs. Some of them are accessible,
requiring perhaps only a little careful thought. In fact, some of these may in fact
already be known. But taken together, they present a broader picture that can only
serve to help us.

Problems: 1. Realizations of SK . We are thinking again of the Hodge and Afin-
realizations of the (extended) Shimura motive (101). The problem would include a
more explicit description of the fibre functor, as a Q-refinement of the complex rep-
resentation (101) of GQ×SL(2,C) on either H∗(2)(SK ,F )+ or IH∗(SK ,F )+. This
can be considered as a special case of the corresponding problem for the full motivic
Galois group GQ, which we will state as Problem 3 below. However, there are some
supplementary (and simpler) questions we could ask about the case of a Shimura
variety SK here.

For example, (101) is the direct sum over a finite set of parameters Ψ ∈Ψalg(G)
(the analogue of Φalg(G) for Φ(G)) of complex representations of GQ×SL(2,C).
What is the partition of this set that gives the decomposition of the sum, as a rep-
resentation over Q? Can one answer this question without a full understanding of
the Q-structure on GQ? What supplementary information might be required on the
complex Hecke algebra

HK = H (K \G(Afin)/K)

as a rational algebra of correspondences of cycles on SK , and on its representa-
tions on the relevant space of automorphic forms Aξ (G(Q) \G(A)/K). Further-
more, for each Ψ , the representation Σ

+
Ψ

in (101) is defined as in (98) in terms of an
L-homomorphism of GQ×SL(2,C) into the complex L-group LG. Do we need to
impose a Q-structure on LG to be able to ask these questions on the Q-fibre functor?
I have not thought about the problem, even to the point of being confident in posing
the questions.
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2. Hasse–Weil zeta function of SK . This is of course a famous longstanding
problem. It was posed in this context by Langlands [146, 159, 152], but I am not
quite sure of its present status. The question here is of a conjectural formula, since
the expressions (98) and (101) on which it could be based are hypothetical. The
same is true of the similar formula at the end of [123, §10], even though its conjec-
tural foundations are much less severe. The problem appears to be quite accessible,
amounting no doubt to a careful collection of the relevant terms in either of the for-
mulas above, but it would be well worth any time taken to fully understand it. For
the special case of Picard modular surfaces, a family of Shimura surfaces attached
to various forms of the unitary group in three variables, the answer is known, and
has been fully proved. We refer the reader to the volume on the subject edited by
Langlands and Ramakrishnan, and their summary [163] from the volume of its main
result.

We note that there are really two zeta functions. One is the zeta function of SK as a
variety over E. The other is attached to the disconnected variety over Q represented
by the extended cohomology spaces on the left-hand side of the diagram above. It
would be a product of zeta functions taken over its components. Each factor would
be the zeta function of a separate Shimura variety, obtained from SK by the inner
twist proposed by Langlands in Sections 4–6 of [144].

I will try to return to the representations in (98) and (101) elsewhere, with sup-
plementary details and possible extensions. The goal would be to give a precise
(conjectural) formula for these zeta functions.

3. Q-structure on GF . We have given an explicit conjectural description of the
complex motivic Galois group GF over a number field F . It is a fibre product

∏
c
(Gc→TF),

over a set CF,alg of equivalence classes of pairs (G,c), of extensions

Gc→TF → ΓF

of complex simply connected groups Gc. The problem would be to give an explicit
conjectural description of the Q-structure on GF attached to the complex embedding
F ⊂ C and the corresponding Betti fibre functor. (We should not forget that the two
fields F and Q here are the two fields F and Q in (77), and have quite different
sources.) Langlands’ Taniyama group TF is the set of complex points of a proalge-
braic group that is already defined over Q. The problem is to extend this Q-structure
to the fibre product of groups Gc. Might the solution be given in terms of the equiv-
alence classes of concrete families c = {cv} of semisimple conjugacy classes in LG
that make up the indexing set CF,alg?

There would be two steps. We have been writing GF for the group over Q whose
structure we seek. Let us write G spl

F for the same group of complex points, but with
the structure of a (disconnected) split group over Q. Intermediate between GF and
G spl

F would be a quasisplit group G ∗F = G qs
F . The first step would be to describe G ∗F
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explicitly by an outer twist of the Galois action on G spl
F . The second step would be

to describe GF as an inner twist of G ∗F .
How would we approach the first step? The co-ordinates of the conjugacy classes

c = {cv} ought to be algebraic numbers. This is known in many cases, where it can
be established from the “finite form” of the trace formula, with the test function f
being cuspidal at an Archimedean place. It would follow in general from functorial-
ity, which we have already taken as a prerequisite for this section. The Galois group
ΓQ would then act by permutation of the families c, and hence on the indices CF,alg
in the fibre product that defines GF . It is tempting to think of using this to construct
a quasisplit outer form of G spl

F over Q.
Our concern here is the Betti realization. It would be attached to the fibre functor

that assigns to a motive defined over F its Betti cohomology with Q-coefficients.
This should give a quasisplit outer form over F of the original group G. The problem
is that it has also to depend on the embedding of F into C in order to become a
group over Q. This leads to the second step, the description of the inner twist GF
of G ∗F . The problem is to describe the associated nonabelian cohomology class in
H1(Q,G∗ad)

∼= H1(Q, Ĝ) explicitly.
I regret not having had the time to think about the question (as well as many other

things!), because I suspect that the answer is both simple and interesting. To exploit
it, we would note that motivic Galois groups should behave like Weil groups, in the
sense that as a complex group, GF would be the preimage of the subgroup ΓF ⊂ ΓQ
in the projection GQ→ ΓQ for any field Q⊂ F , and hence that

GQ/GF ∼= ΓQ/ΓF ∼= HomQ(F,C).

Taking Q to be the rational field Q, we could then write G ∗Q as a disjoint union of
groups G ∗F , taken over the embeddings that parameterize the different Betti fibre
functors. They define an inner twist of G ∗Q that depends only on F . The inner form
GQ of G ∗Q that we seek would then presumably be the direct limit over increasing
fields F of the inner twists defined in this way for each F . Note that as a reductive
proalgebraic group with Q-structure (over the group ΓQ), GQ is completely canoni-
cal. To finish the second step, we could simply take GF to be the preimage of ΓF ⊂ΓQ
in GQ→ ΓQ attached to an embedding F ⊂ C.

What we have just described is related to the conjecture of Langlands stated in
§6 of [144] (and proved in [37, 173]). The conjecture applies to a Shimura vari-
ety over the reflex field E ⊂ C. It attaches different Shimura varieties to different
complex embeddings of E, each obtained from the original one by an explicit inner
twist. What we called the extended cohomology H∗(2)(SK ,F )+ (with locally con-
stant sheaf F ) for the resulting motive over Q then becomes a disjoint union of the
motives of the different Shimura varieties, or rather the Hodge realizations of these
motives. It would be very interesting to compare this conjecture, and its solution,
with the second step above. I hope to return to some of these questions in a future
paper.
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4. Realizations for GF . The Hodge and Afin realizations of a Shimura variety
are a fundamental part of its theory. A full solution of Problem 3 would give us a
different way to view the realizations of any motive, each based on some further
structure on the group GF .

The Afin-realization of a motive is a compatible family of ℓ-adic representations⊗
ℓ̸=p

rℓ, ℓ ̸∈ S,

of ΓQ. The prime p represents a Q-rational conjugacy class cp, which embed diag-
onally in the ℓ-adic vector spaces. This formulation presupposes that as a represen-
tation of GF , the motive is defined over Q. But without the Q-structure in hand, one
has to work implicitly with the groups G spl

F . As we have noted, this is what necessi-
tates taking λ -adic representations for the completions of a finite extension L of Q.
But we are now supposing that we have the Q-structure on GF attached to a Betti
fibre functor. The Afin-realization then becomes more fundamental. For it would
amount to a compatible family of ℓ-adic homomorphisms from ΓQ to GF over Q.

Similar comments would also apply to the Hodge realization. I have not thought
precisely about how best to express them, but it would clearly be interesting to
formulate the Hodge realization as further structure on the group GF . It is closely
related to the period realization, which we will discuss in a moment. We should add
that for any index (G,c) in CF,alg, the ramified local complements

{Φv ∈Φ(Gv) : v ∈ S}

of the family c = {cv : v ̸∈ S} ought to be uniquely determined by c itself. In partic-
ular, c would give us the archimedean parameter Φ∞ on which the Hodge structure
depends. This presumably follows from the theorem of strong multiplicity one for
GLN , and the fact that c is primitive.

There are other realizations for motives. One would like to understand them all
in terms of GF . We shall say a few more words about one of them, the period re-
alization (which I believe is the same as what is often called the De Rham–Betti
realization). It is yet another extraordinary side of Grothendieck’s vision for mo-
tives. It suggests a systematic approach to classical transcendental number theory.
Even more remarkable is that it represents an extension of algebraic number theory
to many of the classical transcendental numbers that have been with us as definite
integrals or infinite series since the advent of calculus. The role of the classical Ga-
lois group ΓF is then played by its extension given by the totally disconnected group
GF(Q). The full theory has also to include mixed motives, which we will discuss
very briefly as Problem 5, but the ideas are perhaps easier to sketch in terms of pure
motives. (See [116], [7].)

The basic idea comes from the familiar De Rham theorem, which asserts that for
a manifold X , the pairing

Hk
DR(X ,C)×Hk(X ,C)→ C, (φ ,c)→

∫
c
φ ,
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between De Rham cohomology and complex Betti homology is nonsingular, and
therefore gives an isomorphism from Hk

DR(X ,C) to complex Betti cohomology
Hk

B(X ,C) = Hk(X ,C)∗. Suppose now that X is a nonsingular, projective alge-
braic variety over Q. The Betti cohomology of X(C) can of course have Q-
coefficients, and so becomes a graded vector space HB(X) over Q. A deep theorem
of Grothendieck asserts that the same is true of De Rham cohomology. Namely,
there is a rational graded vector space HDR(X) over Q whose complexification
equals HDR(X ,C), together with a canonical isomorphism

ϖX : HDR(X)⊗C ∼−→ HB(X)⊗C.

The isomorphism is that of the original De Rham theorem. It assigns a complex
number

⟨ϖX (φ),c⟩=
∫

c
φ

to every rational differential form φ and every rational singular cycle c of a given
degree on X . These numbers are called periods of X .

The main point is that this construction extends to the Tannakian category MotQ
of motives over Q. The period realization of MotQ is the ⊗-functor

M→ (HDR(M),HB(M),ϖM)

from MotQ to the Tannakian category of triples

(V,W,ϖ), V,W ∈ VectQ,

where ϖ is an isomorphism between the complex vector spaces VC and WC.
Grothendieck’s period conjecture represents an analogue for the period realization
of the Hodge conjecture for the Hodge realization, or the Tate conjecture for the
Afin-realization, fundamental foundations we have not been able to discuss. It im-
plies that the period realization is fully faithful. The actual conjecture stated in [7,
4.1.1] applies to the period torsor

Pmot(M) = Isom⊗(HDR|⟨M⟩,HB|⟨M⟩),

where ⟨M⟩ is the Tannakian subcategory of MotQ generated by a motive M, and
H•|⟨M⟩ stands for the restriction of the realization H• to ⟨M⟩. The period torsor is
the (noncanonical) subvariety over Q given by a finite-dimensional affine general
linear group over Q. It is a torsor under the motivic Galois group of M, the finite-
dimensional quotient G (M) = GQ(M) of G = GQ attached to the subcategory ⟨M⟩
of MotQ. Grothendieck’s conjecture asserts that the canonical complex point

ϖM ∈ Pmot(M,C)

is the generic point in Pmot(M). It amounts to the assertion that the smallest algebraic
subvariety of Pmot(C) defined over Q and containing ϖM is Pmot itself. It is in this
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form that the conjecture suggests applications to transcendental number theory (see
[7, §4]).

Taking the natural extension to M of the definition for M = X , we define the
periods of M to be the entries in the matrix of ϖM with respect to bases of the Q-
vector spaces HDR(M) and HB(M). (To be canonical, we allow the bases to vary, or
equivalently, we take the periods to be the Q-vector space P(M) generated by the
periods with respect to any fixed pair of bases.) Grothendieck’s period conjecture
implies that any polynomial relations with rational coefficients among the periods
of M are among the relations that define the variety Pmot(M). It follows easily that
the algebra over Q generated by the periods coincides with the algebra Q[Pmot(M)]
over Q. This implies in turn that Q[Pmot(M)] coincides with the Q-algebra P(⟨M⟩)
obtained by taking the periods of all motives in the category ⟨M⟩. On the other hand,
the group G (M,Q) of rational points in G (M) acts simply transitively on the rational
points Pmot(M,Q) in Pmot(M), and hence on the Q-algebra

P(⟨M⟩) =Q[Pmot(M)].

Taking limits over M, we see finally that the group

G (Q) = lim←−
M

(
G (M,Q)

)
of Q-rational points in the motivic Galois group G acts canonically on the Q-algebra

P = lim−→
M

(
P(⟨M⟩)

)
of motivic periods over Q. This is clearly a generalization of Galois theory for Q/Q,
with G (Q) being an extension of the Galois group ΓQ and P a Q-algebra that
contains the algebraic closure Q of Q in C. (See [7, §5.1] for further analogies with
classical Galois theory.)

I have followed the short introduction [7] in saying a few words on the Galois
theory of periods. I have not stated a specific problem. Let us simply ask the same
question about the period realization that we posed above for the Afin and Hodge
realizations. Namely, can we formulate the theory above strictly in terms of sup-
plementary internal structure on the motivic Galois group G over Q? Even if this
makes sense, it would not seem to have any immediate application. But in adding to
the underlying structure of G , it would clearly give us a broader understanding.

5. Mixed motives. Our discussion to this point has applied only to pure motives.
Grothendieck’s original vision was for a broader theory of mixed motives. (See [209,
p. 345].) They would be attached to varieties over F that need not be either projective
or nonsingular. (The case of open Shimura varieties is actually an anomaly, since
L2-cohomology and intersection cohomology take it back into the domain of pure
motives.) The theory of mixed motives was subsequently developed by Deligne,
initially through his extensive theory of mixed Hodge structures [59], [60], [64],
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and more recently, through other means such as those in [66] and [65]. It remains a
major area of activity, encompassing many deep and fundamental concepts.

One of Grothendieck’s basic tenets was the existence of a broader group, the
mixed motivic Galois group. Over the number field F , it would be a semidirect
product

G +
F = NF ⋊GF

of the (pure) motivic Galois group GF with a proalgebraic unipotent radical NF . Its
existence was again predicated on the theory of Tannakian categories. In particular,
with a suitable fibre functor, G +

F would again become a proalgebraic group over
Q. However, Grothendieck’s axioms for mixed motives are deep and difficult. They
generalize his standard conjectures for pure motives, which are still far from proved.
My impression is that much current work in the area is to find other means to char-
acterize mixed motives and the group G +

F , which are more concrete and perhaps less
difficult to establish.

The problem we pose here would be to find a concrete conjectural description of
G +

F , comparable to what we considered for pure motives in Problem 3. This would
be harder than the other problems, and might seem unrealistic to some. But if we
were to go ahead, there would be two possible ways to proceed. One would be to try
to extend Langlands’ Reciprocity Conjecture. This is the approach of Harder [84],
who has studied automorphic analogues of mixed motives in terms of the (nonuni-
tary) values of Eisenstein series. The other would be to combine a solution of Prob-
lem 3 for the group GF with a description of the unipotent radical NF in elementary
terms. There is an explicit solution of this problem for the category of mixed Tate
motives, which yields the simplest interesting mixed motivic Galois group, and is
attached to the (pure) Tate motive Q(1) [144, p. 214]. The solution was remarkably
simple, if also quite difficult to prove [65], [41]. It is perhaps a good omen.

Everything we have discussed for pure motives should extend to the theory of
mixed motives. In particular, the conjectural category of mixed motives over Q, say,
would have a period resolution that adds greatly to the set of periods, a list that
would then include algebraic numbers, the periods of elliptic curves over Q (these
sets both being pure motives), the number π , values of the logarithm at rational
numbers q ̸∈ {−1,0,1}, special values of the gamma function, special values of the
hypergeometric function, and perhaps most striking of all, the unknown values

{ζ (2n+1) : n ∈ N}

of the Riemann zeta function that have been a preoccupation of mathematicians
since the time of Euler. (See [7, §5.2–5.7] and also [116] for more examples.)

There is one number that is conspicuously absent from the list. The exponential
base e is in fact not a period. But it is an exponential period, a larger (countable)
class of transcendental numbers attached to what are known as exponential motives
[75].
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Coda: Particle physics. There is a third conjectural universal group, in addi-
tion to the automorphic and (mixed) motivic Galois groups. This was proposed by
P. Cartier, who called it the cosmic Galois group. It would be a quotient C+ = C+

Q
of the mixed motivic Galois group G + = G +

Q . The corresponding group C+
Q (Q) of

rational points would act like a Galois group on the Q-vector space of periods of
Feynman integrals, sums of which form the amplitudes attached to Feynman graphs
[42], [54]. It is apparently unknown what this quotient should be, even as C+ might
well turn out to be the full (mixed) motivic Galois group G +. This group suggests a
fundamental relationship between the arithmetic Langlands program and basic par-
ticle physics, of the kind perhaps that is sometimes dreamt of. (See [188, p. 503],
for example.) I am hardly a disinterested observer, and my knowledge of physics is
fragmentary at the very best, but I would argue as follows.

Feynman integrals have long been a foundation for the theory of fundamental
particles. In principle, they ought to give the quantum probabilities for the output
data, measured from collision experiments with given input data. However, the cal-
culations have traditionally been purely numerical, and of great difficulty. The in-
finite sums that go into a Feynman amplitude were originally thought to provide a
convergent series. However, according to my very limited understanding, they were
shown by Dyson around 1950 not to converge, but rather to give only an asymptotic
formula, except in the idealized case of free particles, with input Lagrangian having
only kinetic (quadratic) terms. As an approximation of this asymptotic formula, the
first few terms of the infinite series, taken at points close to the origin, still give
astonishing good results in the case of QED (quantum electrodynamics). However,
they fail in more complex experiments. It is a fundamental problem in physics to
discover a more sophisticated theory for describing quantum amplitudes in general,
but which would still reduce to Feynman amplitudes in simple situations.11

It was shortly before the year 2000 that the physicist D. Kreimer discovered the
number ζ (3) among the more complex calculations of QED. He was later joined by
A. Connes, and as I understand it, they soon found that many other such calcula-
tions also gave periods of mixed motives. Moreover, the Galois action of G +(Q) on
periods, or rather its restriction to the unipotent radical N (Q), seemed to be closely
related to the conceptually difficult (at least for mathematicians) physical process of
renormalization.

The mixed motivic Galois group G + is at the heart of much of modern arithmetic
geometry. However, it has generally been regarded as inaccessible. Langlands’ Reci-
procity Conjecture makes it much more concrete. Combined with suitable conjec-
tural solutions for Problems 3, 4 and 5, it would impose a rich internal automorphic
structure on both G + and its associated Galois group G +(Q) for periods. Put sim-
ply, Functoriality and Reciprocity would give us the automorphic Galois group LF ,
together with its close ties to the motivic Galois group GF . They are the centre of
the Langlands program. On the other hand, Feynman diagrams have long been cen-
tral to theoretical particle physics. It is expected that there will be something more

11 I thank Marco Gualtieri for illuminating conversations. Any misinterpretations are entirely my
doing.
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fundamental that could eventually take their place. Whatever this might turn out to
be, it is also reasonable to believe that the Langlands program would be a part of it.

This completes the second of our two sections on arithmetic geometry. Some of
it is clearly speculative. However, I hope that the mathematical side of it at least will
hold in principle, and that any inaccuracies will require only minor adjustments. In
general, I will be happy if my attempts to describe some of the broader ideas behind
Langlands’ work and their subsequent development are some compensation for any
misstatements that might also be present.

10 The theory of endoscopy

There were a number of natural questions arising from his ideas that Langlands
thought deeply about in the decade of the 1970s. For example, the conjectural cor-
respondence

π
′ =

⊗
v

π
′
v→

⊗
v

πv = π

of functoriality (Questions 4 and 5 of [138]) was just that, a correspondence. Could
it be reformulated as a well defined mapping? Compared to the explicit results
for GL(2) in [103], the representation theory of the group SL(2) has more struc-
ture. What was the explanation? Also, with his more recently gained experience in
the λ -adic representations of Shimura varieties, Langlands found some unexpected
anomalies in the associated Hasse–Weil zeta functions [143]. Again, what was the
explanation? And finally, in Harish-Chandra’s classification of the discrete series
representations for a real group G(R), a monumental achievement that was ahead of
its time, there were some unusual aspects of his formulas for their characters. Could
they be related to Local Functoriality? Langlands confronted this last problem in the
work that led to his classification [151], and in his later work [165] and [166] with
Shelstad.

The questions all turned out to be related. The underlying phenomena eventually
became part of Langlands’ conjectural theory of endoscopy. We have mentioned
endoscopy a number of times already, most notably in Kottwitz’ conjectural stabi-
lization of the Lefschetz trace formula in Section 8. In this section, we shall try to
give a more systematic description of the theory, and of some of the progress that
has come in its development.

Given his success with the trace formula for GL(2) (as described in the three ap-
plications from our Sections 6, 7 and 8), Langlands would of course have considered
how these methods might be applied to other groups, and to more general cases of
functoriality. There was no clear strategy on how to proceed. But he appears to have
acquired a strong sense that the trace formula would ultimately lead to a solution,
informed no doubt by his general theory of Eisenstein series, and perhaps also by
a skepticism as to whether other possible approaches would have the power to treat
the general case.
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One might try to think about comparing trace formulas for two groups G′ and
G related by the L-homomorphism ρ ′ : LG′ → LG of functoriality. The immedi-
ate question would be to relate the basic elliptic terms on the geometric side of
each trace formula. The conjugacy classes γ ∈ Γell,reg(G) that index these terms for
G have coordinates defined by the algebra of G-invariant polynomials on G. One
could think of using ρ ′ to relate these coordinates for G and G′. However, a serious
problem arises immediately. The coordinates parametrize only geometric conjugacy
classes, while for most groups G other than GL(n), there can be distinct (elliptic,
regular) conjugacy classes in G(F) over a ground field F ⊂ C that represent the
same conjugacy class in G(C). The theory of endoscopy begins with this problem.
It brings to bear on it some sophisticated new techniques that originate with (abelian)
class field theory.

Consider the example of SL(2), with F = R. The regular elliptic elements{
γ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, δ =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)}
, θ ∈ (0,π),

are not conjugate in SL(2,R). However, the matrix g =

(
i 0
0 −i

)
in SL(2,C) has the

property that

gγg−1 =

(
i 0
0 i−1

)(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
i−1 0
0 i

)
=

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
= δ ,

so the two elements are conjugate in SL(2,C). The regular elliptic conjugacy classes
γ ∈ Γreg,ell(SL(2)) for SL(2,R) thus occur naturally in pairs (γ,δ ) that map to the
same conjugacy class in SL(2,C). The dual spectral property concerns the represen-
tations π ∈Π2(SL(2)) in the discrete series for SL(2,R). They too occur naturally in
pairs (π+

n ,π−n ), which are parametrized by the positive integers n. Harish-Chandra’s
theory of infinite-dimensional characters, which we will discuss presently, shows
that the two phenomena are indeed dual in a precise sense. The characters of any
pair (π+

n ,π−n ), as locally integrable functions on regular conjugacy classes, differ
only on the pairs (γ,δ ), and for these, only in a simple manner.

The group G = SL(2) is quite special. For in this case, the dual properties have
formulations in terms of the real group G′(R) with G′ = GL(2), as well as for the

complex group G(C). Since the element g =

(
i 0
0 −i

)
in SL(2,C) is the product of

the central element
(

i 0
0 i

)
in GL(2,C) with the matrix g1 =

(
1 0
0 −1

)
in GL(2,R),

g1γg−1
1 equals δ , and the elements γ and δ are also conjugate in GL(2,R). With this

interpretation, the dual spectral property can be regarded as a very special case of
Local Functoriality. It applies to G′ = GL(2) and G = SL(2), with the homomor-
phism

ρ
′ : Ĝ′ = GL(2,C)→ Ĝ = PGL(2,C)
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being the natural projection. In the local classification for GL(2,R), the representa-
tions π ′n ∈Π2(G′) in the relative discrete series for GL(2,R) (with respect to a fixed
central character) are parametrized by irreducible 2-dimensional representations φ ′

of WR. These in turn are bijective with positive integers {n}. The corresponding
pairs of representations {π±n } ⊂ Π2(G) for SL(2,R) are attached to composite ho-
momorphisms

φ = ρ
′ ◦φ

′ : WR→ PGL(2,C), φ
′ ∈Φ2(G′).

They consist simply of the irreducible constituents of the restriction of π ′n to the sub-
group SL(2,R) of GL(2,R). One can obviously think of the pair {π+

n ,π−n } attached
in this way to φ as a torsor under the group

Sφ = Cent(φ(WR), Ĝ) = Z/2Z.

The sets πφ = {π+
n ,π−n } and πφ ′ = {π ′n} are called local L-packets for G and G′.

The description of Sφ as a torsor is an obvious tautology in the case of G =
SL(2), but its generalization to arbitrary groups became part of the local Langlands
classification. There were still interesting questions for SL(2), and particularly, for
groups related to SL(2) and its inner twists over local and global fields F . The paper
[127] of Langlands with Labesse contains a comprehensive study of them.

To see how Langlands’ ideas progress in general, suppose that G is a (connected)
reductive group over a local or global field of characteristic 0. Quasisplit groups
again play a special role in the theory, which for questions of transfer entail an
underlying, fixed inner twist

ψ : G→ G∗,

of G to a quasisplit group G∗ over F . One also has to work with classes γ ∈ Γreg(G)
that are strongly regular, in the sense that the centralizer Gγ in G of (any represen-
tative of) γ is a maximal torus T . (Regular elements satisfy the weaker property
that the identity component G0

γ is a maximal torus.) We may as well simplify our
notation slightly by agreeing to have the subscript reg mean strongly regular rather
than regular. The problem then is to understand the set Γreg(G) of strongly regular
conjugacy classes of G(F) in a given stable conjugacy class. (A strongly regular sta-
ble conjugacy class is by definition the intersection of G(F) with a strongly regular
conjugacy class in the group G(F) of points over an algebraic closure of F .)

Suppose that δ ∈ G(F) is strongly regular, with centralizer the maximal torus
T ⊂ G over F , and that γ ∈ G(F) is another element in the stable class of δ . Then
γ equals g−1δg, for some element g ∈ G(F). If σ lies in the Galois group ΓF =
Gal(F/F), we see that

δ = σ(δ ) = σ(gγg−1) = σ(g)γσ(g)−1 = t(σ)−1
δ t(σ),

where t(σ) is the 1-cocycle gσ(g)−1 from ΓF to T (F). It is easy to check that
a second element γ1 ∈ G(F) in the stable class of δ is G(F)-conjugate to γ if and
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only if the corresponding 1-cocycle t1(σ) has the same image as t(σ) in the Galois
cohomology group

H1(F,T ) = H1(ΓF ,T ),

which is to say that t1(σ)t(σ)−1 is of the form t ′σ(t ′)−1, for some element t ′ ∈
T (F). Conversely, a class in H1(F,T ) comes from an element γ1 if and only if it is
represented by a 1-cocycle of the form gσ(g)−1. The mapping γ→{t(σ)} therefore
defines a bijection from the set of G(F)-conjugacy classes in the stable conjugacy
class of δ to the kernel

D(T ) = D(T/F) = ker(H1(F,T )→ H1(F,G)).

The codomain H1(F,G) is only a set with distinguished element 1, since G is
generally not abelian. The preimage D(T ) of this element in H1(F,T ) therefore
need not be a subgroup. However, D(T ) is contained in the subgroup

E (T ) = E (T/F) = Im (H1(F,Tsc)→ H1(F,T ))

of H1(F,T ), where Tsc is the preimage of T in the simply connected cover Gsc of
the derived group of G. This is because the canonical map D(Tsc)→ D(T ) is sur-
jective. If H1(F,Gsc) = {1}, which is the case whenever F is a nonarchimedean
local field [232, §3.2], D(T ) actually equals the subgroup E (T ). This is why Lang-
lands worked with the groups E (T ) in place of D(T ), and why the simply con-
nected group Gsc plays an important role in the theory. Langlands introduced these
ideas in the initial pages of his foundational article [147], although he had discussed
them widely in the years preceding it. We are following some of the discussion in
[22, §27].

We have referred to the trace formula regularly in this report, especially in the
last three sections. However, to understand the refinements that originate with Lang-
lands’ observations above, we need to say something more formal. Continuing with
the reductive group G, we now take its field of definition F to be global. The (in-
variant) trace formula for G is a general identity

Igeom( f ) = Ispec( f ), f ∈C∞
c (G(A)), (102)

obtained by integrating the geometric and spectral expansions (38) and (39) of the
kernel K(x,y) over x = y in G(F) \G(A)1. As we have noted, this cannot be taken
literally, since neither integral converges in general. Making sense of it is a long
process, but roughly speaking, one truncates the two expansions of K(x,x) in a con-
sistent way so that the integrals converge. One then observes that as functions of the
of variable of truncation T , a vector in some translate of a positive cone a+0 , the in-
tegrals are polynomials in T . One can then set T equal to the polynomial variable at
T0 ∈ a0, a canonical point that depends on a maximal compact subgroup K0 ⊂G(A)
and a minimal parabolic subgroup P0 ⊂ G, both of which are part of the truncation
process. The result is a natural identity
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Jgeom( f ) = Jspec( f ), f ∈C∞
c (G(A)), (103)

which is independent of the choice of P0.
However, (103) is only an intermediate step. We recall that a distribution J on

G(A) is said to be invariant if

J( f y) = J( f ), f ∈C∞
c (G(A)), y ∈ G(A),

where
f y(x) = f (yxy−1), x ∈ G(A).

The point here is that the linear forms on each side of (103) are noninvariant. One
has then to “renormalize” the identity. There is no need to describe this explicitly,
although I have been told that it is in the same spirit as a similar (but more com-
plex) operation in quantum field theory that restores the symmetry that was lost
in the truncation of divergent intervals. (I may however have misunderstood this.
Renormalization seems actually to be a physics analogue of the original truncation
process.) In any case, it leads to the identity (102), in which each side is now an
invariant distribution. Moreover, the choice of the point T0 makes each side of (102)
independent of K0 as well as P0.

We should emphasize that neither (102) nor (103) is just an abstract formula.
As in the case of GL(2), each side of (102) represents a rather complex expansion
into explicit invariant linear forms, one geometric and one spectral, which can all be
decomposed explicitly into their local constituents ([14], [15]). For example, on the
geometric side, we have the strongly regular elliptic part

Iell,reg( f ) = ∑
γ∈Γell,reg(G)

vol(γ)Orb(γ, f ), (104)

where
Orb(γ, f ) =

∫
Gγ (A)\G(A)

f (x−1
γx)dx

and
vol(γ) = vol(Z+Gγ(F)\Gγ(A)).

Its analogue on the spectral side would be the trace

I2( f ) = ∑
π∈Π2(G)

mult(π)Θ(π, f ) (105)

where

Θ(π, f ) = tr(π( f )) = tr
(∫

G(A)
f (x)π(x)dx

)
,

and mult(π) is the multiplicity with which π occurs discretely in
L2(Z+G(F) \G(A)). We are writing Z+ here for a fixed connected, central sub-
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group of G(A) that is a complement to the subgroup G(A)1, defined as in §2 in case
F =Q.

These terms have been familiar12 since Selberg introduced his original trace for-
mula for compact quotient. The complementary terms on each side are in some
sense just as explicit, but often considerably more complex. We shall not discuss
them here. In fact, we will allow ourselves to write

Iell,reg( f )∼ I2( f ) (106)

as a heuristic approximation of the invariant trace formula. The right-hand side is
what one wants to understand, and left-hand side represents the means by which one
hopes to investigate it. It was with this strategy that Langlands created the conjec-
tural theory of endoscopy in the 1970s.

In the larger scheme of things, the invariant trace formula (102) is itself an inter-
mediate step. The final goal was the stable trace formula, which came later [21]. We
shall describe it in general terms for further perspective.

First of all, it is useful to keep in mind that there is a simple description of the
space of invariant distributions on Gv = G(Fv), for any localization Fv of F . For it is
known that this space is the closed linear span (with respect to the weak topology)
of either the set

Orb(γv, fv), γv ∈ Γreg(Gv), fv ∈C∞
c (Gv),

of strongly regular orbital integrals, or the set

Θ(πv, fv), πv ∈Πtemp(Gv), fv ∈C∞
c (Gv),

of irreducible tempered characters. We can also use the first description here to
define the notion of a stable distribution. Let ∆reg(Gv) be the set of strongly regular
stable conjugacy classes in Gv. For any δv in this set, we define the stable orbital
integral as the associated sum

SOrb(δv, fv) = ∑
γv→δv

Orb(γv, fv), f ∈C∞
c (Gv),

of orbital integrals over the finite set of conjugacy classes γv in δv. We then define
the subspace of stable distributions on Gv to be the closed linear span of the space
of stable orbital integrals. The spectral analogue of this description should also be
true, but it requires us to know what a stable (tempered) character is. An explicit
description of this notion is available in many cases, but not in general. Its general
formulation is one of the main goals of the local theory of endoscopy.

12 In particular, the analogues Jell,reg( f ) and J2( f ) in the original (noninvariant) trace formula
were already invariant, as we can recall from the discussion of the special case of GL(2), and are
therefore the same as Iell,reg( f ) and I2( f ).
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The stable trace formula for a quasisplit13 group G over F is a refinement

SG
geom( f ) = SG

spec( f ), f ∈C∞
c (G(A)), (107)

of the invariant trace formula (102) in which each side is stable.14 Its construction,
and its role in the broader operation of stabilization,13 is not difficult to describe in
general terms. It is in fact quite similar to the stabilization of the Lefschetz trace
formula we discussed briefly in Section 8.

Suppose for a moment that F is a local or global field, and that G is any reductive
group over F . One of the central notions of endoscopy is the assignment to G of a
family of endoscopic data (G′,G ′,s′,ξ ′), where G′ is a quasisplit reductive group
over F , G ′ is a split extension of WF by Ĝ′, s′ is a semisimple element in Ĝ, and
ξ ′ : G ′→ LG is an L-homomorphism, subject to various conditions.15 Equivalence
of endoscopic data is also defined, by a relation that is closely related to conjugation
in LG by elements g ∈ Ĝ. (See [165, (1.2)].)

This is an admittedly technical part of the theory, but the basic idea is sim-
ple enough. Its origins in Langlands’ sets D(T ) and E (T ), which we will review
presently, are really quite remarkable. Basically one wants to attach smaller quasis-
plit groups G′ to G by taking the dual group Ĝ′ to be the connected centralizer in Ĝ
of a semisimple element s′, and by constructing the L-group LG′, which then deter-
mines G′ as a quasisplit group, in terms of the centralizer of s′ in the larger group
LG. If the derived group of G is simply connected, one can identify the subgroup
ξ ′(G ′) of LG with LG′ [147]. The general case, however, is a little more subtle, and
one has to attach some auxiliary data to G′ that serve the same purpose. (See [19]
for example). As in Section 8, we write G′ to represent the full endoscopic datum
(G′,G ′,s′,ξ ′). One says that G′ is elliptic if the image ξ ′(G ′) in LG is contained
in no proper parabolic subgroup of LG, or equivalently, if (Z(Ĝ′)ΓF )0 is mapped
by ξ ′ onto (Z(Ĝ)ΓF )0. Finally, if F is local, there are only finite many equivalence
classes of endoscopic data, while if F is global, there are finitely many classes that
are unramified outside a given finite set of places.

At the centre of the theory is the endoscopic transfer f → f ′ of functions from
G to G′, a topic we can revisit after our brief discussions from Sections 6–8. It was
defined formally by Langlands and Shelstad [165], following Shelstad’s treatment
of the case of real groups [221]. If F is local, it is a mapping from functions f ∈
C∞

c (G(F)) to smooth functions f ′ on ∆reg(G′). The Langlands–Shelstad transfer
conjecture was then formulated in [165] as the hypothesis that

f ′(δ ′) = SOrb(δ ′,h′), δ
′ ∈ ∆reg(G′),

13 The stable trace formula is best regarded as a phenomenon for quasisplit groups. On the other
hand, stabilization, which we will describe presently applies to arbitrary groups.
14 A stable distribution on G(A) would of course be a continuous linear form that is stable on each
of the factors Gv of G(A).
15 The main conditions are (iv), (a) and (b), on p. 234 of [165]. They identify Ĝ′ under the restric-
tion of ξ ′ with the connected centralizer of s′ in Ĝ, and relate G ′ under ξ ′ with the full centralizer
s′ in LG.
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for some function h′ ∈C∞
c (G

′(F)). It had already been established for archimedean
F by Shelstad in [221], using the foundations of harmonic analysis on real groups
laid out by Harish-Chandra, as we shall discuss later in this section. In the case
of nonarchimedian F , the conjecture was reduced to the fundamental lemma by
Waldspurger [245], which we have already noted was finally established by Ngô
[186], with further contributions [246] from Waldspurger. If F is global, and f =

∏v fv lies in C∞
c (G(A)), the global mapping is defined by setting f ′ = ∏v f ′v. One

sees that it satisfies the global version of the Langlands–Shelstad conjecture, namely
that f ′ is the image of a function h′ ∈C∞

c (G
′(AF)), by applying the local conjecture

to the local functions fv, and the fundamental lemma at places v ̸∈ S for which fv is
the unramified unit function.

With all of this background, we can now describe, again in quite general terms,
the stabilization of the invariant trace formula (102). We are assuming that F is
a global field, that G is any reductive group over F , and that f is a function in
C∞

c (G(AF)). The stabilization is then represented by decompositions

Igeom( f ) = ∑
G′

ι(G,G′)Ŝ′geom( f ′) (108)

and
Ispec( f ) = ∑

G′
ι(G,G′)Ŝ′spec( f ′) (109)

of the two sides of (102). These are entirely analogous to the decompositions (73)
and (74) of the two sides of the Lefschetz trace formula. The summands are in-
dexed by the equivalence classes of elliptic endoscopic data G′ for G, while f ′ is
the Langlands–Shelstad transfer of f to G′(AF). The linear forms S′geom = SG′

geom

and S′spec = SG′
spec are the analogues for the quasisplit groups G′ of the linear forms

on each side of (107). In particular, they are stable, and therefore have uniquely
determined pairings Ŝ′geom( f ′) and Ŝ′spec( f ′) with the function f ′, in the notation of
(73) and (74). The coefficients ι(G,G′) attached to G and G′ were defined in [150],
and given a particularly simple formula in [119]. The expansions (108) and (109)
for arbitrary G, and the stable trace formula (107) for quasisplit G, are then proven
together.

The basic strategy is quite simple. We emphasize that the linear forms Ŝ′geom( f ′)
and Ŝ′spec( f ′) in the expansions depend only16 on G′, as a quasisplit group, even
though the coefficients ι(G,G′), the function f , the other components G ′, s′ and ξ ′

of G′ as an endoscopic datum, and the family {G′} itself, all depend on G as well.
The summands with G′ ̸=G in (108) and (109) can therefore be assumed inductively
to have been defined.

16 They are also the same as in the summands in the stabilization (72) and (73) of the Lefschetz
trace formula.
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Suppose first that G is quasisplit. Then G′=G is among the indices of summation
in the expansions (108) and (109). We can therefore rewrite them as

Sgeom( f ) = Igeom( f )− ∑
G′ ̸=G

ι(G,G′)Ŝ′geom( f ′)

and
Sspec( f ) = Ispec( f )− ∑

G′ ̸=G
ι(G,G′)Ŝ′spec( f ′).

This extends the inductive definition to G, and establishes the formula (107) from
its analogues for G′ and the formula (102). However, there is still something serious
to prove in this case. One must show that the right-hand side of each of these two
expansions is a stable linear form in f . Suppose next that G is not quasisplit. Then
the sums in (108) and (109) include the term with G′ equal to G∗, the quasisplit inner
form of G. Assuming that we have already dealt with this case, we may suppose
that all of the terms in (108) and (109) are defined. The remaining problem, then, is
simply to establish the two identities in this case. Its proof is deep, but turns out to
be quite similar to the proof of stability in the quasisplit case.

This discussion is a useful overview, but it is slightly misleading. For once again,
the stable trace formula (107) is not to be regarded as just an abstract identity. Like
its predecessors (103) and (102), each side of (107) represents a complex expan-
sion into explicit linear forms, one geometric and one spectral, which are now all
stable. The stable trace formula (107) is then to be understood as the identity be-
tween these two complex expansions. This is how it is proved, and how it is to be
used in the applications of endoscopy. The stabilizations (108) and (109), can be
regarded heuristically as an identification of the invariant trace formula (102) with a
stable trace formula (represented by the summands with G=G∗ in (108) and (109)),
modulo an unstable error term (represented by the sum over G ̸= G∗).

These remarks may not be specific enough to be of much help to a general reader.
Part of the reason for rehearsing them is for their application to the concrete terms in
the heuristic approximation (106) of the invariant trace formula. They are essentially
how Langlands constructed a conjectural but explicit stabilization of each side of
(106). More precisely, he constructed a stabilization

Iell,reg( f ) = ∑
G′

ι(G,G′)Ŝ′ell,G-reg( f ′) (110)

of the left-hand side of (106) that adheres to the general principles above, but which
was obtained directly from its definition (104) in terms of orbital integrals.17 Using
this for guidance, enhanced by the results established for special cases in [127],
Langlands then conjectured a partial stabilization of the right-hand side of (106).
Some of his ideas are contained in the expository sections of the volume [150].

17 The subscript G-reg on the right side of (110) denotes the subset of classes in Γell,reg(G′) that
are images of strongly regular classes in G(F). Its dependence on G is an anomaly that would
disappear if we had started on the left with the larger set Γell(G) of all (elliptic) semisimple classes
in G(F).
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To review these things, we can return to the earlier discussion of the sets D(T )
and E (T ) introduced by Langlands to analyze stable conjugacy classes. We are
taking G to be a reductive group with quasisplit inner twist G∗, over the local or
global field F , with a maximal torus T ⊂G over F . The sets E (T ) are to be regarded
as geometric objects, for they are clearly founded on the terms on the left-hand side
of the (approximate) trace formula (106). It is in their spectral counterparts that class
field theory appears, specifically in the Tate–Nakayama duality theory [234].

If F is local, the theory provides a canonical isomorphism

H1(F,T ) = H1(Γ ,T ) ∼−→ π0(T̂Γ )∗, Γ = ΓF = Gal(F/F),

of H1(F,T ) with the group of characters on the component group of the Gal(F/F)-
invariants in the dual torus T̂ . In the case that F is global, it provides a canonical
isomorphism

H1(F,T (AF)/T (F)) = H1(Γ ,T (AF)/T (F))
∼−→ π0(T̂Γ )∗.

Using standard techniques, specifically, an application to the short exact sequence

1→ T (F)→ T (AF)→ T (AF)/T (F)→ 1

of ΓF -modules to the isomorphism

H1(F,T (AF))
∼−→
⊕

v
H1(Fv,T )

provided by Shapiro’s lemma, one then obtains a characterization of the diagonal
image of H1(F,T ) in the direct sum over v of the groups H1(Fv,T ). It is given by a
canonical isomorphism from the cokernel

coker1(F,T ) = coker(H1(F,T )→
⊕

v
H1(Fv,T ))

onto the image
im
(⊕

v
π0(T̂Γv)∗→ π0(T̂Γ )∗

)
(See [30], [234] and [121, §1–2].)

If these results are combined with their analogues for Tsc, they provide similar
assertions for the subgroups E (T/F) of H1(F,T ). In the local case, one has only
to replace π0(T̂Γv) by the group K (T/Fv) of elements in π0(T̂/Z(Ĝ)Γ ) whose im-
age in H1(Fv,Z(Ĝ)) is trivial. In the global case, one replaces π0(T̂Γ ) by the group
K (T/F) of elements in π0(T̂/Z(Ĝ)Γ ) whose image in H1(F,Z(Ĝ)) is locally triv-
ial, in the sense that their image in H1(Γv,Z(Ĝ)) is trivial for each v. (See [150] and
[121].)

Langlands introduced these ideas to be able to construct the stabilization (110) of
the strongly regular part of the trace formula. The first step was to write the left-hand
side as
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Iell,reg( f ) = ∑
γ∈Γ ell,reg(G)

vol(γ)Orb(γ, f )

= ∑
δ∈∆ell,reg(G)

vol(δ )
(

∑
γ→δ

Orb(γ, f )
)
,

where γ is summed in the brackets over the preimage of δ in Γell,reg(G), and vol(δ )=
vol(γ) depends only on δ . We are of course assuming that F is global here. The last
sum over γ looks as if it might be stable in f . But stability is a local concept, and
there are not enough rational conjugacy classes γ to make this sum stable in each
component fv of f . The problem is the failure of every G(AF)-conjugacy class in the
G(AF)-stable class of δ ∈ ∆ell,reg(G) to have a representative γ in G(F). If T = Gδ ,
the cokernel we denoted by coker1(F,T ) gives a measure of this failure. Langlands’
construction treats the sum

(
∑γ→δ Orb(γ, f )

)
as the value at 1 of a function on

the finite abelian group coker1(F,T ). The critical step is to expand this function
according to Fourier inversion on coker1(F,T ). It leads naturally to the definition of
endoscopic data {G′}, and finally the desired stabilization (110).

To simplify the construction, we might as well assume for the present that G =
Gsc. Then T = Tsc, while E (T/F) = H1(F,T ) and K (T/F) = π0(T̂Γ ) if F is either
local or global. In particular, K (T/F) = T̂Γ if T is elliptic in G over F .

With this condition on G, we apply Fourier inversion on coker1(F,T ). One has
to keep track here of the redundancy from the sum γ→ δ , given by the set of G(F)-
conjugacy classes in the G(AF)-conjugacy class of δ (regarded as a representative
in G(F) of the class in ∆ell,reg(G)). It can be seen (with an appeal to the Hasse
principle for G = Gsc) that this is bijective with the finite abelian group

ker1(F,T ) = ker(H1(F,T )→
⊕

v
H1(Fv,T )).

It then follows that

Iell,reg( f ) = ∑
δ∈∆ell,reg(G)

ι(T )vol(δ ) ∑
κ∈T̂Γ

Orbκ(δ , f ), (111)

where T = Gδ is the centralizer of (some fixed representative of) δ , ι(T ) equals the
product of (T̂Γ )−1 with |ker1(F,T )|, and

Orbκ(γ, f ) = ∑
{γA∈Γ (G(AF )) :γA∼δ}

Orb(γA, f )κ(γA).

The last sum is over the G(AF)-conjugacy classes γA in the stable class of δ in
G(AF). For any such γA, its local component γv is G(Fv)-conjugate to δv for almost
all v, from which it follows that γA maps to an element tA in the direct sum of the
groups H1(Fv,T ). This in turn maps to a point in the cokernel (110), and hence to a
character in (T̂Γ )∗. The coefficient κ(γA) is the value of this character at κ .
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The expression (111) is a step closer to the desired stabilization of Iell,reg( f ). In
particular, it contains the origins of the endoscopic data G′ in (110). For suppose
that T and κ are as in (111). One chooses an admissible18 embedding T̂ ⊂ Ĝ of its
dual group, taking then s′ ∈ Ĝ to be the resulting image of κ ∈ T̂ , and Ĝ′ = Ĝs′ the
connected centralizer of s′. It is known that there is also an L-embedding

LT = T̂ ⋊WF → LG = Ĝ⋊WF ,

of the L-group of T into that of G, which restricts to the given embedding of T̂ into
Ĝ. (This is a little more subtle and entails some choices to which the embedding is
sensitive. See [165, (2.6)].) In any case, for a fixed such embedding, the product

G ′ = LT · Ĝ′

is an L-subgroup of LG, which commutes with s′, and provides a split extension

1→ Ĝ′→ G ′→WF → 1

of WF by Ĝ′. In particular, it determines an action of WF on Ĝ′ by outer automor-
phisms, which factors through a finite quotient of ΓF . We take G′ to be a quasisplit
group over F for which Ĝ′, with the given action of ΓF , is a dual group. Finally,
if we let ξ ′ be the identity L-embedding of G ′ into LG, the 4-tuple (G′,s′,G ′,ξ ′)
becomes an endoscopic datum for G. We have thus obtained a correspondence

(T,κ)→ (G′,s′,G ′,ξ ′),

from the pairs (T,κ) taken from (111), to the endoscopic data derived from them as
above.

There is another ingredient to the last correspondence. Given the pair (T,κ), we
can choose a maximal torus T ′ ⊂ G′ over F , together with an isomorphism from T ′

to T over F that is admissible, in the sense that the associated isomorphism T̂ ′→ T̂
of dual groups is the composition of an admissible embedding T̂ ′ ⊂ Ĝ′ (as in the
footnote 18) with an inner automorphism of Ĝ′ that takes T̂ ′ to T̂ . Let δ ′ ∈ T ′(F) be
the associated preimage of the original point δ . The tori T and T ′ are the centralizers
in G and G′ of δ and δ ′, so we can regard δ and δ ′ as the primary objects. They
become part of a larger correspondence

(δ ,κ)→ (G′,δ ′) = ((G′,G ′,s′,ξ ′),δ ′). (112)

Elements δ ′ obtained in this way are called images from G [165, (1.3)].

18 This means that it is the mapping assigned to a choice of some pair (B̂, T̂ ) in Ĝ, and some Borel
subgroup B of G containing T .
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Now suppose that G is arbitrary. The general form of the expansion (111) is
derived the same way, and takes an almost identical form

Ireg,ell( f ) = ∑
δ∈∆ell,reg(G)

ι(T,G)vol(δ ) ∑
κ∈K (T/K)

Orbκ(δ , f ),

where
ι(T,G) = |ker(E (T/F)→

⊕
v

E (T,Fv))||κ(T/F)|−1

and Orbκ(δ , f ) is defined as in (111). The correspondence (112) remains in place,
and is easily seen to have an inverse, which in general extends to a bijection

{(G′,δ ′)} ∼−→ {(δ ,κ)}. (113)

The domain is the set of equivalence classes of pairs (G′,δ ′), where G′ is an elliptic
endoscopic datum for G, δ ′ is a strongly G-regular, elliptic element in G′(F) that
is an image from G, and equivalence is defined by isomorphisms of endoscopic
data. The range is the set of equivalence classes of pairs (δ ,κ), where δ belongs
to ∆ell,reg(G), κ lies in K (Gδ/F), and equivalence is defined by conjugation by
elements in G(F). (See [150] and [121, Lemma 9.7].) Given (G′,δ ′), we set

f ′(δ ′) = f κ
G(δ ), (114)

where to emphasize the bijection, and to keep us mindful of its essential simplicity,
we have written f κ

G(δ ) in place of Orbκ(δ , f ). In other words

f κ
G(δ ) = ∑

{γA∈Γ (G(A)) :γA∼δ}
fG(γA)κ(γA), (115)

with
fG(γA) = Orb(γA, f ).

We can then write

Iell,reg( f ) = ∑
G′∈Eell(G)

|OutG(G′)|−1
∑

δ ′∈∆ell,G-reg

vol(δ ′)ι(Gδ ,G) f ′(δ ′)

for the finite group
OutG(G′) = AutG(G′)/Int(G′)

of outer automorphisms of G′ as an endoscopic datum, and with the understanding
that f ′(δ ′) = 0 if δ ′ is not an image from G. Langlands showed that for any pair
(G′,δ ′), the number

ι(G,G′) = (ι(Gδ ,G)ι(G′
δ ′ ,G

′)−1)|OutG(G′)|−1

is independent of δ ′ and δ . (Kottwitz later expressed the product in the brackets on
the right as a quotient τ(G)τ(G′)−1 of Tamagawa numbers [119, Theorem 8.3.1].)



The work of Robert Langlands 175

Set
Ŝ′ell,G-reg( f ′) = ∑

δ ′∈∆ell,G-reg

vol(δ ′)ι(G′
δ ′ ,G

′) f ′(δ ′). (116)

It then follows that

Iell,reg( f ) = ∑
G′∈Eell(G)

ι(G,G′)Ŝ′ell,G-reg( f ′), (117)

since

vol(δ ) = vol(Gδ (F)\Gδ (AF)
1) = vol(G′

δ ′(F)\G′
δ ′(AF)

1) = vol(δ ′).

We have sketched how Langlands derived a version (117) of the desired formula
(110). However, the term f ′(δ ′) in (116) is defined in (114) only as a function on the
rational classes ∆ell,G−reg(G′). As we have said earlier, one wants it to be the adelic
stable orbital integral of a function in C∞

c (G
′(AF)). But to this point, we do not yet

have a well defined candidate for its local orbital integrals. The sum in (115) is over
adelic products γA = ∏v γv, in which γv is a conjugacy class in G(Fv) that lies in the
stable class of the image δv of δ in G(Fv). It follows that if f = ∏v fv, then

f ′(δ ′) = f κ
G(δ ) = ∏

v
f κ
v (δv)

where
f κ
v (δv) = ∏

γv∼δv

fv,G(γv)κ(γv). (118)

But this is not quite the local definition we are looking for. The problem is that we
have been treating δ as both a stable class in ∆ell,reg(G) and a representative in G(F)
of that class. The distinction has not mattered up until now, since f ′(δ ′) = f κ

G(δ )
depends only on the class of δ . However, the coefficients κ(γv) in the local functions
(118) are defined in terms of the “relative position” of γv and δv, a notion that comes
from the original pairing between H1(Fv,T ) and π0(T̂Γv), and is sensitive to how γv
and δv are situated within their local conjugacy classes.

The solution for Langlands and Shelstad was to replace κ(γv) with a function
∆G(δ

′
v,γv) that they called a transfer factor. This is the deepest part of the theory,

and it is the content of the papers [165] and [166]. The function is defined as a
product of κ(γv) with some subtle factors that depend on δ ′v and δv, but not on γv. The
product ∆G(δ

′
v,γv) then turns out to be independent of the choice of δv, and depends

therefore only on the local stable class of δ ′v in G′(Fv) and the local conjugacy class
of γv in G(Fv). Moreover, if δ ′v is the local image of δ ′ ∈ ∆ell,G-reg(G′) for each v, the
product over v of the corresponding local transfer factors is equal to the coefficient
κ(γA) in (115).

Transfer factors play the role of a kernel in the local transfer of functions. Af-
ter first introducing them, Langlands and Shelstad defined the transfer to G′v of a
function fv ∈C∞

c (Gv) on Gv as an “integral transform”
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f ′v(δ
′
v) = ∑

γv∈Γreg(Gv)

∆G(δ
′
v,γv) fv,G(γv), δ

′
v ∈ ∆G-reg(G′v), (119)

where
fv,G(γv) = |D(γv)|

1
2 Orb(γv, fv), γv ∈ ΓG-reg(Gv), (120)

is now a normalized19 orbital integral, and f ′v(δ
′
v) = f G′

v (δ ′v) is the analogue for G′v
of the normalized stable orbital integral

f G
v (δv) = |D(δv)|

1
2 SOrb(δv, fv), δv ∈ ∆G-reg(Gv), (121)

for Gv. The normalizing factor is the absolute value of the Weyl discriminant

D(γv) = DG(γv) = det(1−Ad(γv))gv/tv ,

for the Lie algebras gv and tv of Gv and Tv = Gγv . It was only then that they could
pose their local transfer conjecture. It became part of the global conjecture (together
with the fundamental lemma for the nonarchimedean unit function), which we recall
was established later.

Thus, the function f ′(δ ′) in (116) really is the stable orbital integral at δ ′ of a
function h′ in C∞

c (G
′(A)). It is at this point that one can treat the left-hand side

of (116) as the pairing of a stable distribution S′ell,G-reg, defined by the inductive
procedure20 from (117) outlined earlier, with the function in C∞

c (G
′(A)), rather than

just the sum over rational points δ ′ on the right-hand side of (116).
There are still a couple of technical points that we should at least mention. The

Langlands–Shelstad transfer factor depends on a choice of L-embedding of LG′ into
LG. If Gder equals Gsc, such embeddings exist, and to fix one, it suffices to choose
an L-isomorphism from G ′ to LG′. If not, G ′ might not be L-isomorphic to LG′. (It
is a question whether a certain 2-cocycle with values in Z(Ĝ) splits.) In this case,
minor adjustments have to be made, which entail choosing a central extension

1→ C̃′→ G̃′→ G′→ 1,

and taking f ′ to be a function on G̃′(A) with a certain central character on
C̃′(F) \ G̃′(A). (See [165, (4.4)], which involves also taking a central extension G̃

19 This is not in conflict with the global notation in (114), thanks to the product formula

|D(γ)|= ∏
v
|D(γv)v|= 1, γ ∈ G(F).

Langlands and Shelstad put the quotient |DG(γv)|
1
2 |DG′ (δ

′
v)|−

1
2 into their transfer factor as term

∆IV(δ
′
v,γv) in [165, §3.6]. However, it is instructive to use it to normalize the orbital orbitals, as we

will observe later in the section, even as we continue to use the notation of [165] for the transfer
factor in (119)
20 One does not actually need the general inductive definition in the simple case here of the
G-regular elliptic terms. One obtains the stable distribution SG

ell,G-reg (G being quasisplit) directly
as a line combination of stable, adelic orbital integrals from the construction of Langlands we have
just described.
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of G, or [22, p. 202], which is based on the adjustment made in [125] for twisted
transfer factors.)

Another point is the subscript “G-reg” in the summands on the right-hand side
of (117). This is a minor logical violation of our general inductive definitions in the
case of the stable linear form SG

ell,reg on G(A), since the stable distributions S′ in
(117) are supposed to depend only on G′ (and not G). We have already remarked
in the footnote 20 that we do not need the general inductive definitions in this con-
crete case. Still, to be consistent, why don’t we just replace the subscripts “G-reg”
by “reg”, and replace the equality sign in (117) by the “heuristic approximation”
symbol ∼ we have already used in (106). This in any case is philosophically sound
since the complement of ∆G-reg(G′) in ∆reg(G′) is sparse.

The stabilization of the strongly regular, elliptic part of the trace formula becomes

Iell,reg( f )∼ ∑
G′∈Eell(G)

ι(G,G′)Ŝ′ell,reg( f ′). (122)

We could combine this with (106), and the elementary induction arguments that
precede (108) and (109). We would then obtain a stabilization

I2( f )∼ ∑
G′∈Eell(G)

ι(G,G′)Ŝ′2( f ′) (123)

of the L2-discrete part of the trace formula. These arguments all apply to “approxi-
mate” identities, which means that (123) is something we expect to be true. Lang-
lands reviewed such arguments, and would then have used (123) to guess at some
of the spectral implications of the theory of endoscopy [150]. These include most
notably versions of his conjectural classification of representations into local and
global L-packets.

We have concluded our discussion of the explicit stabilization (122) of the regular
elliptic part (103) of the invariant trace formula. It must seem rather murky to a
nonspecialist. It is helpful to think of the bijection (113) as the centre of the process.
We can illustrate the transition schematically as follows.

Iell,reg( f ) (103)

{(G′,δ ′)} (113)

∑
G′

ι(G,G′)Ŝ′ell,reg( f ′) (122)

Galois cohomology

transfer factors

Before going on, we recall that there are a number of further topics we promised
to take up in this section. We may not be able to give them all the attention they
deserve, but there is one critical paper that would in any case be the next step in
this discussion. It is Langlands’ classification of the representations of real groups



178 James G. Arthur

[151], which together with subsequent work of Shelstad, represents an essential
link21 between the earlier work of Harish-Chandra on representation theory and the
emerging theory of endoscopy. We shall take this opportunity for a short digression
on the work of Harish-Chandra, in which we assume that G is a reductive algebraic
group over R.

We have alluded to the construction by Harish-Chandra of the discrete series
[86], [88], those representations of a real group that occur discretely22 in L2(G(R)),
but we have not described it. It was a climax in his long and comprehensive study
of the harmonic analysis on a general (semisimple) real group G(R).

Harish-Chandra’s harmonic analysis also represents an interplay between the ge-
ometric objects and the spectral objects on G(R). These are the orbital integrals
and the irreducible characters, whose global versions became the heart of the trace
formula. They were both introduced by Harish-Chandra in the early stages of his
career. Both are fundamental and deep. It was of course the theory of characters that
became a foundation for the discrete series.

Recall that an irreducible unitary representation π of G(R) is infinite-dimensional
(unless it is 1-dimensional or attached to a representation of compact factor on
G(R)). It was not initially clear how it could have a character, since the trace of
an infinite-dimensional unitary matrix π(x) is not defined. Harish-Chandra’s idea
was to make systematic use of the general theory of distributions that had just been
introduced by Laurent Schwartz [203], [204]. For any irreducible π , Harish-Chandra
proved that the operator

π( f ) =
∫

G(R)
f (x)π(x)dx

attached to a function f ∈C∞
c (G(R)) was of trace class, and that the linear form

f →Θ(π, f ) = tr(π( f ))

was a distribution (which is to say, continuous for the usual topology on C∞
c (G(R))).

This is what he called the character of π . The proof was not particularly difficult
as these things go. Much deeper was a second theorem on characters, his so-called
regularity theorem. It asserts that any (irreducible) character Θ(π) is a locally inte-
grable function x→Θ(π,x) on G(R), which is to say that

Θ(π, f ) =
∫

G(R)
Θ(π,x) f (x)dx, f ∈C∞

c (G(R)). (124)

21 As it could also be argued that Langlands’ manuscript on Eisenstein series represents a link
between Harish-Chandra’s investigations into the Plancherel formula and a future trace formula,
even though Langlands’ monumental volume stands on its own, and in fact also influenced the
subsequent course of Harish-Chandra’s work.
22 We have been using the term relative discrete series (or square integrable representations) to de-
scribe the representations that occur discretely modulo the centre Z(R) of G(R). These are slightly
more general. They are the representations of Levi subgroups used in the parabolic induction pro-
cess that yields all the tempered representations, the ones that occur in the full spectral decompo-
sition of L2(G(R)).
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The regularity theorem is really about the differential equations

zΘ = χ(Θ ,z)Θ , z ∈ZG, (125)

satisfied by any invariant eigendistribution Θ of the centre ZG of the universal en-
veloping algebra UG of the complex Lie algebra of G(R). This is a property that
holds for any character Θ = Θ(π), by an infinite-dimensional version of Schur’s
lemma previously established by Harish-Chandra. In this case, the homomorphism

χ(Θ) : z→ χ(Θ ,z), z ∈ZG,

from ZG to C∗ is called the infinitesimal character of π . Like many results in
this area, Harish-Chandra’s argument yields not only the existence of the function
Θ(π,x), but frequently also an interesting, explicit formula that it satisfies. The first
(and easier) half of the proof uses the elliptic regularity theorem for differential
equations to prove that the restriction of Θ(π,x) to the open, dense subset Greg(R)
of (strongly) regular elements in G(R) is a (real) analytic function of x. The second
half classifies the singularities of the normalized character

Φ(π,x) = |D(x)|
1
2 Θ(π,x), x ∈ Greg(R), (126)

by the Weyl discriminant D(x), at the hypersurfaces in the complement of Greg(R)
in G(R). It establishes that any left invariant derivative of Φ(π,x) remains bounded
as x approaches a singular hypersurface, and for many π , also gives an explicit
formula for the “jump” of the function as it crosses the hypersurface. This yields an
interesting boundary value problem satisfied by Φ(π,x) on the closures of the open
connected components of Greg(R). Its solution is what provides the explicit formula
for Φ(π,x).

Since characters are invariant distributions, their functions Θ(π,x) are conjugacy
invariant in x. This can be combined with the Weyl integration formula∫

G(R)
h(x)dx = ∑

{T}
|W (G(R),T (R)|−1

∫
Treg(R)

(
|D(t)|

∫
T (R)\G(R)

h(x−1tx)dx
)

dt

for the change of variables used to express the integral of a function h ∈Cc(G(R))
as an integral of its averages over conjugacy classes. Here {T} is the set of G(R)-
conjugacy classes of maximal tori in G(R), W (G(R),T (R)) is the normalizer of
T (R) in G(R) modulo its centralizer T (R), Treg = T ∩Greg, and

D(t) = det((1−Ad(t))g/t)

is again the Weyl discriminant. It then follows from (124) that

Θ(π, f ) = ∑
{T}
|W (G(R),T (R)|−1

∫
Treg

Φ(π, t) fG(t)dt, (127)
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for the normalized character Φ(π, t) from (126) and the normalized orbital integrals
fG(t) from (120). Harish-Chandra used this formula repeatedly in his development
of the discrete series.

Here in general terms is what he proved. First of all, a (connected) reductive
group G over R has a discrete series of representations π if and only if it has a
maximal torus T over R that is anisotropic, which means that T (R) is compact. We
should recall that for any maximal torus T ⊂ G in G over R, we have a chain of
three Weyl groups

W (G(R),T (R))⊂WR(G,T )⊂W (G,T ),

in which W (G,T ) is the full (complex) Weyl group and WR(G,T ) is the subgroup
of elements that stabilize T (R), while W (G(R),T (R)) is as in (127), the subgroup
of elements in WR(G,T ) induced from G(R). In the case here that T (R) is com-
pact, W (G,T ) equals WR(G,T ), but W (G(R),T (R)) is generally a proper subgroup
of WR(G,T ). This last circumstance is responsible for some of the complexity of
discrete series representations. The second main property he established is that π is
completely determined by the restriction Θ(π, t) of its character to the anisotropic
torus T (R). Harish-Chandra in fact showed that this restriction Θ(π, t) satisfies an
explicit formula that is more complicated than, but nevertheless reminiscent of, the
Weyl character formula.

We recall that the Weyl character formula applies to the special case that G
is anisotropic, which means that G(R) itself is compact. The discrete series ac-
counts for all of the irreducible representations in this case, and they are all finite-
dimensional. According to Weyl’s classification, they are parametrized by orbits
{χ} of characters χ on T (R) under the Weyl group W (G,T ). To state the Weyl
character formula for any such representation, we have to choose an order on the
roots {α} of (G,T ). This gives a corresponding set {α > 0} of positive roots as
well as the associated linear form

ρ = 1
2 ∑

α>0
α (128)

on the Lie algebra t(R) of T (R), and from each W (G,R)-orbit {χ}, a unique char-
acter χ whose differential dχ lies in the closure of the associated positive chamber in
the dual space t∗(R). The Weyl character formula for the representation πχ attached
to the W (G,T )-orbit of χ is then

Θ(πχ , t) = ∑
w∈W (G(R),T (R))

(
ε(w)χ(w · expH)eρ(wH−H)

∆(expH)

)
,

for any point
t = expH

in Treg(R), and for
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∆(expH) = ∏
α>0

(
1− e−α(H)

)
.

It is a simple matter to check that the right-hand side of the formula remains the same
if either H or χ is replaced by a Weyl translate wH or wχ , for any w∈W (G,T ). The
former property is needed for the function Θ(πχ , ·) on G(R) to be invariant under
conjugation, the latter for it to depend only of the W (G,T )-orbit of χ .

Harish-Chandra’s discrete series had of course to generalize this. The obvious
structural difference is that it is the subgroup W (G(R),T (R)) of

W (G,T ) =WR(G,T ),

acting on the anisotropic torus T , that ought to reflect the G(R)-invariance of char-
acters. The similarity is that they would still turn out to be determined by their
values on T (R). The natural guess, in retrospect at least, would be that the discrete
series are parametrized by suitably defined W (G(R),T (R))-orbits. This is precisely
what Harish-Chandra established, but only after years of concentrated study of the
underlying harmonic analysis. All that we need to specify his classification is his
formula [86, Theorem 3] and [88, Theorem 18] for their characters on Treg(R). We
shall state the version of it formulated by Langlands on p. 134 of [151], which is
closer to the Weyl character formula, and is also compatible with Langlands’ ideas
on the broader classification of representations.

Given the group G with anisotropic maximal torus T , we can choose characters
χ on T (R) and an order on the roots {α}, as in the special case of anisotropic G
above. Langlands represents the order by the corresponding linear form ρ in (128),
and therefore considers pairs (χ,ρ) in which χ lies in the closure of the positive
chamber in t∗ attached to ρ . Harish-Chandra’s classification of discrete series is
then given by a bijection

(χ,ρ)→ πχ,ρ

from the W (G(R),T (R))-orbits of such pairs onto the equivalence classes of dis-
crete series representations such that

Θ(πχ,ρ , t) = (−1)qG ∑
w∈W (G(R),T (R))

(
ε(w)χ(w · expH)eρ(wH−H)

∆(expH)

)
, (129)

for any point t = expH in Treg(R), where qG = 1
2 dim(G(R)/KR) is one-half of the

dimension of the symmetric space attached to G(R).
We note in passing that the values of Θ(πχ,ρ , t1) on a general maximal torus

T1 ⊂ G can be reduced according to the theory developed by Harish-Chandra to
its values (129) on T (R). This is because the singularities of the normalized char-
acter Φ(πχ,ρ , t1), expressed in Harish-Chandra’s jump conditions at a singular hy-
persurface T01, are given in terms of the limits at points t01 ∈ T01(R) of its values
Φ(πχ,ρ , t0) on a maximal torus23 T0 that shares the hypersurface T01 with T1, but
whose anisotropic part is of one dimension greater than that of T1. Increasing the

23 One says that T1 is a Cayley transform of T0.
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anisotropic dimension da(T1) of a maximal torus T1 makes the corresponding char-
acter values simpler. For this reason, the solution of the boundary value problem
for Φ(πχ ,ρ , t1) follows by decreasing induction on da(T1), using the differential
equations (125), the jump conditions, the basic explicit formula (129) on T (R), and
the fact that Φ(πχ,ρ , t1) is bounded on T1(R), a consequence in turn of Harish-
Chandra’s proof that the characters Θ(πχ ,ρ) of discrete series are tempered distri-
butions. (See the formulas of Harish-Chandra [86] and their simplifications in [95].)
We recall from Section 8 that such formulas arose later in the invariant trace formula
[15], [17], and were then used by Morel [183] for the geometric boundary terms in
the Lefschetz trace formula for the Shimura varieties attached to GSp(2n).

Langlands arrived at his version (129) of Harish-Chandra’s formula in the pro-
cess of relating the irreducible representations of G(R) to his ideas for parameteriz-
ing the local components of automorphic representations. The obvious lesson to be
taken from Harish-Chandra’s discrete series is that these representations occur nat-
urally in finite sets. Each such set corresponds to an irreducible finite-dimensional
representation of the complex group G(C), or equivalently, the representation πχ of
the compact real form of G(C) with highest weight dχ in the Weyl classification.
It consists of representations with the same infinitesimal character, and can be pa-
rameterized by the cosets in W (G(R),T (R)) \W (G,T ). These finite sets became
known as L-packets, a term we have used regularly throughout the report without
actually defining it.

To see its meaning, we note that the first two sections of Langlands’ paper [151]
were devoted to something quite different. For any group G over R, Langlands con-
sidered local L-homomorphisms

φ : WR→ LG

from the Weil group to the L-group, with the property24 that if the image of φ is
contained in some parabolic subgroup LP of LG, the corresponding parabolic sub-
group P of G is defined over R. He wrote Φ(G) for the set of Ĝ-conjugacy classes
of such parameters φ , as we have noted earlier, and Φ2(G) for the subset of such
classes such that the image of φ lies in no proper parabolic subgroup LP of LG.
For the local field R, these are reasonably elementary objects. Langlands calculated
them directly in terms of simple data within LG. He then observed that for the group
G with anisotropic torus T , the set Φ2(G) was naturally bijective with the L-packets
of discrete series. On the other hand, for any representation

r : LG→ GL(n,C),

24 This condition is often called relevance. The reason we have not encountered it before is that
we have usually been working with quasisplit groups, where the condition is automatic. We are
also using the more streamlined notation of [119, §1] rather than the original formulation in §1–2
of [151]. As a matter of fact, these days one often formulates matters in terms of Vogan’s pure
inner forms [243], in which different inner forms are treated as components of the same object,
and where the condition of relevance is only implicit.



The work of Robert Langlands 183

one can attach L-functions L(s,r ◦ φ) and ε-factors ε(s,r ◦ φ ,ψ) to parameters
φ ∈ Φ2(G), according to the prescription described in [237, (3.1) and (3.3.1)]. The
representations π in the corresponding L-packets Πφ then have the property that
their L-functions L(s,π,r) and ε-factors ε(s,π,r,ψ) for any r match those of φ .
This has been proven in cases where the representation theoretic functions have an
independent meaning. In cases where they do not, it can be taken simply as their
definition.

The Langlands classification was of course for all irreducible representations of a
group G(R), not just the discrete series. Langlands first extended his parametrization
of L-packets of discrete series by parameters φ ∈ Φ2(G) to L-packets of square
integrable representations (relative discrete series), the case that G has a maximal
torus that is anisotropic modulo the centre of G, at the bottom of p. 134 of [151].
This condition holds by definition for the Levi component of any cuspidal parabolic
subgroup P = NPM of G. He then observed that a general parameter φ could be
represented as the image in Φ(G) of a parameter φM ∈Φ2(M) under the embedding
LM ⊂ LG attached to some cuspidal parabolic subgroup P = NPM of G. One can
refine this embedding to a two stage embedding

φM → φL→ φ , φM ∈Φ2(M),

for parabolic subgroups P = NPM ⊂ Q = NQL defined as follows. One first writes
φM uniquely as a twist

φM = φM,temp,λ ,

where φM,temp ∈Φ2(M) has bounded image in M̂, λ ∈ a∗M is a uniquely determined,
real-valued linear form on the real vector space aM , and φM,temp,λ is the parameter
whose L-packet is the set of representations

πM,λ (m) = πM(m)eλ (HM(m)), m ∈M(R),

such that πM lies in the L-packet of φM,temp. One then chooses P such that λ lies
in the closure of the corresponding chamber (a∗P)

+, and Q⊃ P so that λ lies in the
open chamber (a∗Q)

+, regarded as a convex cone in the closure of (a∗Q)
+. The set

Φ(G) can then be identified with the set of Ĝ-orbits of triplets (φM,P,Q) of this
form.

Langlands’ goal in [151] was to define an explicit partition of Π(G) into a dis-
joint union over φ ∈ Φ(G) of finite L-packets Πφ . In particular, the L-packets for
G would also be indexed by Ĝ-orbits of triplets. His answer, which is not hard to
describe, is an elegant reformulation of some of Harish-Chandra’s fundamental re-
sults.

Given a triplet (φM,P,Q), we can define the L-packet ΠφM ⊂ Π2(M) by Lang-
lands’ parametrization of Harish-Chandra’s relative discrete series. For the next step,
we form the parabolic subgroup R = L∩P of L with Levi component M. For each
πM ∈ ΠφM , we then take I L

R (πM), a representation of L(R) parabolically induced
from the representation πM in the relative discrete series of M(R) that is unitary
modulo the centre of L(R). Let ΠφL,πM be its set of irreducible constituents, a fi-
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nite set of representations of L(R) that are tempered modulo the centre. (The in-
duced representation is generically irreducible, but when is it not, its irreducible
constituents are of considerable interest.) Langlands defined the L-packet of φL in
Π(L) to be the set

ΠφL =
⋃
πM

ΠφL,πM , πM ∈ΠφM ,

a union that was known to be disjoint. Finally, for any representation πL in ΠφL ,
one can take the induced representation I G

Q (πL). This is a nontempered induced
representation of G(R), which in general is reducible. However, Langlands proved
that it has a unique irreducible quotient π(πL). He then defined the L-packet of φ to
be the set

Πφ = {π = π(πL) : πL ∈ΠφL}

of all these Langlands quotients, establishing at the same time that these represen-
tations were all disjoint.

This is the Langlands classification for real groups. When he introduced it in
1973, the irreducible constituents of the (essentially) tempered induced representa-
tions I L

R (πR) were not completely understood. However, they were classified soon
afterwards by Knapp and Zuckerman [114], [115], thus providing in particular an
explicit classification

Πtemp(G) =
∏

φ∈Φtemp(G)

Πφ

of the irreducible tempered representations of G(R) in terms of L-packets param-
eterized by the bounded Langlands parameters Φtemp(G). This is the special case
of the general classification in which the groups Q in the triplets (φM,P,Q) are all
equal to G.

It was observed later in the 1970s that the Langlands classification would apply
in principle also to p-adic groups. In this case, there is still no explicit classification
of the relative discrete series Π2(M), or of the irreducible constituents of the in-
duced tempered representations I L

R (πM) (although much is known, especially about
this second question). However, the general classification, including the properties
Langlands established for the quotients that bear his name, remains in force.

Langlands’ classification established his conjecture of Local Functoriality for
F = R, as stated in Question 4 or 6 of [138], or as Local Functoriality stated in
Section 5 here. In fact, it gives affirmative answers to all the questions in [138],
insofar as they apply to the local field F = R. As we noted in the special case of
discrete series above, it assigns local L-functions and ε-factors to representations
π ∈Π(G) by setting

L(s,π,r) = L(s,r ◦φ), π ∈Πφ ,

and
ε(s,π,r,ψ) = ε(s,r ◦φ ,ψ), π ∈Πφ ,
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for any φ ∈ Φ(G) and r : LG→ GL(n,C), and again for the functions on the right
defined as in [237]. Moreover, the functorial correspondence π ′→ π of local repre-
sentations is defined explicitly in terms of their L-packets by the transfer of param-
eters

π
′ : Πφ ′ → π ∈Πφ , φ = ρ

′ ◦φ
′, φ
′ ∈Φ(G′),

for ρ ′ : LG′→ LG as in the statement of Local Functoriality. This answers the local
version of the original questions we posed at the beginning of this section, in the
case that Fv = R.

The Langlands classification for real groups suggests a spectral analogy with
the theory of local endoscopy we have described. The Langlands parameters
φ ∈ Φtemp(G) ought to be analogues of (strongly) regular stable conjugacy classes
∆reg(G) over R. Moreover the packets themselves ought to be analogues of the set
of conjugacy classes γ ∈Γreg(G) in a stable class δ . However, there is more structure
than this on the geometric side. The elements in a “geometric packet” are bijective
with the explicit set D(T ), where T is the centralizer of a chosen base point δ in
the stable class. We do have their dual analysis in terms of Tate–Nakayama dual-
ity, with its ties to endoscopic groups. But there is also the more refined structure
given by the Langlands–Shelstad transfer factors, together with the associated trans-
fer conjecture and its ultimate proof. Were there spectral analogues of any of these
things?

The question was answered for real groups by Shelstad. We must not forget that
she had first to introduce the archimedean transfer factors that became the inspira-
tion for [165], and establish the associated transfer of functions. These remain basic
links to the general theory, but they also have foundations in the work of Harish-
Chandra. We should discuss them briefly before we describe their spectral conse-
quences. In so doing, we need to step back in history, say to the year 1975. What
was available then were the basic ideas of Langlands on stable conjugacy and endo-
scopic groups, his new preprint on the classification for real groups, and of course,
the work of Harish-Chandra.

Shelstad’s transfer factors are closely related to some curious factors in a refined
normalization of orbital integrals that had been forced on Harish-Chandra. He de-
fined a real group G to be acceptable if the linear form (128) on the Lie algebra of
any maximal torus T over R lifts to a quasicharacter ξρ on T (C). This condition is
independent of the underlying system of positive roots on T , and holds whenever
Gder is simply connected. Harish-Chandra often worked with this assumption, with
the understanding that adjustments for the general case were easy to add separately.
(See for example [90, §8].) Under this condition, he normalized the orbital integrals
on Treg(R) by setting

Ff (t) = εR(t)ξρ(t)∆(t)Orb(t, f ), (130)

for ∆(t) as in (129) and εR(t) ∈ {±1} the locally constant sign function

sign
(

∏
α∈PR

(1−ξα(t−1))
)
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on Treg(R) (with PR being the set of positive real roots on T ) [87, §22], [200, p. 5].
Since

|εR(t)ξρ(t)∆(t)|= |D(t)|
1
2 ,

this does represent a refinement of our normalization fG(t) from (120). It was cho-
sen by Harish-Chandra to have the property that if T (R) is compact, and f is a ma-
trix coefficient of a discrete series representation, a function in his Schwartz space
C (G(R)) on G(R) defined in [88], then Ff (t) extends from Treg(R) to a smooth
function on T (R).

Before commenting on Shelstad’s transfer factors, we should first include a cou-
ple of remarks that further illustrate the dual nature of orbital integrals and irre-
ducible characters. Orbital integrals satisfy differential equations

Fz f (t) = γ(z)Ff (t), t ∈ Treg(R), z ∈ZG, (131)

where z→ γ(z) is the Harish-Chandra homomorphism from ZG to the algebra of
invariant differential operators on T (R). Also, any left-invariant derivative of Ff (t)
remains bounded on Treg(R) as t approaches a singular hypersurface [87, Theo-
rem 3], and has an explicit formula for the jump as this function crosses the hy-
persurface [90, Theorem 1]. These are dual to the properties we have described for
irreducible characters (which are actually simpler when stated with the normaliza-
tion (126) replaced by the analogue of Harish-Chandra’s refined normalization). In
particular, they lead to a boundary value problem for each function Ff (t) on the clo-
sure of a connected component of Treg(R). The only difference with what happens
for irreducible characters is that the torus that shares the singular hypersurface with
T has anisotropic dimension one less than that of T . In other words, it is a Cayley
transform of T , rather than other way around. It is consequently a decrease in the
anisotropic dimension da(T ) that makes the associated orbital integrals simpler.

Shelstad’s transfer factors for the real group G serve as a bridge to the general
Langlands–Shelstad transfer factors in [165]. These were defined in §3 of [165] as
products

∆G(δ
′,γ) = ∆I(δ

′,γ)∆II(δ
′,γ)∆III(δ

′,γ)∆IV (δ
′,γ), (132)

in which the third term comes with a further decomposition

∆III(δ
′,γ) = ∆III1(δ

′,γ)∆III2(δ
′,γ) = ∆1(δ

′,γ)∆2(δ
′,γ).

The Langlands–Shelstad transfer factors are complex and subtle, but they can be
illuminated in their specialization to real groups, and the relations the latter bear to
the quotients of Harish-Chandra’s normalizing factors for G and G′. In commenting
briefly on this, we might as well assume that Gder is simply connected.

The term ∆IV in (132) is the quotient of our original normalizing factor
|D(γ)| 12 = |DG(γ)|

1
2 by |DG′(δ

′)| 12 , as we agreed in the footnote 19. The term
∆1 = ∆III1 is essentially the local form of the character κ(γ) with which we be-
gan the original construction. The term ∆2 = ∆III2 deals with the contribution
ξρ(γ)ξρ ′(δ

′)−1 of the function ξρ(γ) in (130). It normalizes the choice of the L-
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isomorphism from LG′ to G ′ that makes ξ ′ an L-embedding of LG′ into LG. The
term ∆II in (132) addresses the contribution of the function εR(γ)∆(γ) in (130), or
rather the contribution to ∆(δ ′,γ) of its quotient by the factor |D(γ)| 12 that was put
into ∆IV . Finally the term ∆I is a sign, which is independent of γ , and compensates
for various other noncanonical choices that had to go into the previous terms.

This is a necessarily superficial description of transfer factors. Shelstad actually
worked with Harish-Chandra’s later normalization ′Ff (γ) [90, §17] of orbital inte-
grals, which makes sense for any G, and gives a more complete motivation for her
work, but which is also a little more complicated to describe. From now on, let us
just assume without comment that every endoscopic datum G′ attached to a given
G (over a local or global field F) is such that the group G ′ is L-isomorphic to the
L-group LG′. As we have noted above, this condition always holds if Gder is simply
connected [147, Proposition 1].

Having introduced the transfer factors ∆(δ ′,γ) = ∆G(δ
′,γ) for the real group G

with endoscopic datum (G′,G ′,s′,ξ ′), Shelstad defined the transform

f ′(δ ′) = ∑
γ∈Γreg(G)

∆G(δ
′,γ) fG(γ), f ∈C∞

c (G(R)), δ
′ ∈ ∆reg(G′),

that became the archimedean precursor of the general local transfer mapping (119).
She then applied the harmonic analysis of Harish-Chandra systematically to its
study, making use of the adjoint relation (127) between characters and orbital in-
tegrals, the differential equations (125) satisfied by characters and their analogues
(131) for orbital integrals, and the accompanying boundary conditions in each case.
She used these techniques first to establish the real form of what became the gen-
eral Langlands–Shelstad transfer conjecture. She then applied them to the spectral
question raised above. Her results, which of course depend also on the Langlands
classification for real groups, are as follows

We assume first that G is quasisplit over R. For every tempered Langlands pa-
rameter φ ∈Φtemp(G), set

f G(φ) = ∑
π∈Πφ

fG(π), f ∈C∞
c (G(R)), (133)

for
fG(π) =Θ(π, f ) = tr(π( f )).

The first (spectral) result of Shelstad is that the linear form f → f G(φ) is a stable
distribution. It is called the stable character of π , and is clearly the spectral analogue
of a stable orbital integral. Given the validity of the transfer conjecture for G and
G′ (for any G), this proves that the pairing f ′(φ ′) is well defined for any tempered
parameter φ ′ ∈Φtemp(G′) for the quasisplit group G′.

The second spectral result applies to any group G over R. It is an expansion

f ′(φ ′) = ∑
π∈Πφ

∆G(φ
′,π) fG(π), (134)
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for complex coefficients ∆G(φ
′,π) supported on the subset of π ∈Πφ in Πtemp(G),

in which φ = ξ ′ ◦ φ ′ is the image of φ ′ in Πtemp(G). These coefficients are spec-
tral analogues of Shelstad’s (geometric) transfer factors, and can be called spectral
transfer factors.

Shelstad’s third spectral result makes these coefficients explicit, in a sense that
depends on a chosen base point π1 in the packet Πφ . Following Labesse and Lang-
lands [127], [218], and similar definitions we have seen in our earlier sections, she
defined Sφ = Cent(φ(WF), Ĝ), the centralizer in Ĝ of the image of a parameter
φ ∈ Πtemp(G), and Sφ = Sφ/S0

φ
Z(Ĝ)Γ , the group of connected components in Sφ

modulo the Galois invariants in the centre of Ĝ. To state the result, we use the spec-
tral analogue of the bijection (113), or rather the local spectral analogue of (113) for
F = R. Its inverse is a bijection

(G′,φ ′) ∼−→ (φ ,s), (135)

from the isomorphism classes of pairs (G′,φ ′), in which G′ is an endoscopic datum
for G and φ ′ lies in Πtemp(G), onto isomorphism classes of pairs (φ ,s), where φ is a
parameter in Πtemp(G) and s is a semisimple element in Sφ . Shelstad’s third spectral
result asserts that for any (φ ,s), and for π1 ∈ Πφ fixed and π ∈ Πφ arbitrary, the
quotient of ∆(φ ′,π) by ∆(φ ′,π1) depends only on the image x of s in Sφ , and that
the resulting mapping

x→ ⟨x,π|π1⟩= ∆(φ ′,π)∆(φ ′,π1)
−1 (136)

is an injection from Πφ to the group of characters on the abelian 2-group Sφ . This is
parallel to what happens for the geometric transfer factors, where (x,π,π1) would
be replaced by (κ,γ,γ1).

We have completed our brief review of Shelstad’s work. Her results first appeared
in the papers [219], [217], [220], [221], but they were expanded into a somewhat
more expository treatment in the papers [222], [224], [223].

Suppose now that G is a group over any local field F of characteristic 0, which
we take to be quasisplit. We have alluded to the conjectural local Langlands corre-
spondence for Πtemp(G) in past sections. It seems to have evolved with Langlands’
ideas in the early 1970s, based on his experience with GL(2), and then the group
G = SL(2). Its conjectural premises are close to the results of Shelstad for F = R,
but there is one significant difference. As we have noted earlier, the Weil group WF
has to be replaced by the local Langlands group LF . It thus remains equal to WF if F
is archimedean, but is taken to be the product WF ×SU(2) if F is nonarchimedean.
This is to account for the Steinberg representation of G(F), and more generally, the
representations in Π2(G) whose matrix coefficients do not have compact support
modulo Z(G). Moreover, despite the fact that the conjectural assertions are other-
wise similar to those of Shelstad for F = R, any general proof seems unlikely to be
the same. What is missing is Harish-Chandra’s explicit classification of the discrete
series. Without it, we do not know in general how to attach L-packets to parame-
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ters φ ∈ Φ(G) and hence how to construct candidates f G(φ) for the basic stable
distributions.

Although perhaps already clear to the reader, it does not hurt to emphasize the
two-fold nature of the final classification for real groups. There is the Langlands
classification, based on Harish-Chandra’s discrete series, and then there is Shelstad’s
endoscopic extension based on this and other work of Harish-Chandra. Given the
apparent difficulty of an independent classification of general supercuspidal repre-
sentations, we would hope to establish the local Langlands correspondence without
having an explicit construction of the representations in the packets Πφ .

If G = GL(n), the local Langlands correspondence was proved by Harris and
Taylor [92], Henniart [94] and Scholze [202]. It was established by global means,
taken from the theory of Shimura varieties. Since stable conjugacy is the same as
conjugacy in this case, there is no endoscopy. The local correspondence becomes a
canonical bijection φ → πφ from Φtemp(G) to Πtemp(G) (or between the larger sets
Φ(G) and Π(G)). It is characterized by the requirement that the two kinds of local
Rankin–Selberg L-functions and ε-factors attached to the representations

r : GL(n1,C)×GL(n2,C)→ GL(n1n2,C)

coincide for parameters (φ1,φ2) and representations (π1,π2).
The local Langlands correspondence was established for a quasisplit symplectic

or special orthogonal group over the nonarchimedian local field F in Chapter 6 of
[23]. The methods are again global, but here they come from the stabilization of
the trace formula. For there is considerable endoscopy to contend with in this case.
However, there is also a natural way to construct the basic stable distributions f G(φ)
attached to parameters φ ∈Πtemp(G). They are twisted transfers from corresponding
twisted invariant distributions on a general linear group GL(N), relative to the stan-
dard outer automorphism x→ tx−1. This is because G is a twisted endoscopic group
for GL(N), where N = 2n+1 if G = Sp(2n) and 2n if G equals either SO(2n+1) or
SO(2n). The assertions are similar to those of Shelstad for real groups, but there is
no need to state them at this point, since we will soon describe their generalizations
that accompany the global classification. We note that similar methods were used
by Mok [181] to establish the local Langlands correspondence for quasisplit unitary
groups G.

The global endoscopic classification is deeper. There were hints of what form it
should take in Langlands’ paper [127] with Labesse. However, it goes beyond the
global Question 7 of [138], whose local version Question 6 was a foundation for the
local Langlands correspondence. This is because the global Weil group was known
even for GL(2) to provide only a sparse set of cuspidal automorphic representations.
(The same might be said of the local Weil group WF in Question 6 for a nonarchime-
dian field F . But its extension was easily accommodated, either as the Weil–Deligne
group [237], or equivalently, as the local Langlands group LF = WF × SU(2) we
have taken here.) For a conjectural global classification, one would need to replace
the global Weil group by the hypothetical global Langlands group LF discussed in
the last section.
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There is another ingredient that has also to be included in any global classifi-
cation. It consists of the conjectures introduced in [18], [13], and discussed in the
treatment of Shimura varieties in Section 8, for describing those automorphic rep-
resentations in the discrete spectrum L2

disc that are not locally tempered. These rep-
resent the counterexamples to what would be the natural extension of Ramanujan’s
conjecture. For a quasisplit group G over a global field F , the global parameters are
the L-homomorphisms

ψ : LF ×SL(2,C)→ LG (137)

whose restriction to LF has bounded image in Ĝ, taken as usual up to Ĝ-conjugacy.
As the essential global objects, these parameters force us to account also for their
local analogues

ψv : LFv ×SL(2,C)→ LGv.

For if one is to obtain a global classification of automorphic representations for
G, as they occur in the discrete spectrum L2

disc, one would at the same time have
to establish a generalization of the local Langlands correspondence for these local
parameters.

We assume now that G is a quasisplit symplectic or special orthogonal group, this
time over a global field F . This is the group for which the endoscopic classification
of automorphic representations was established in [23]. The results, which take up
the entire monograph, rest on the stabilization of the trace formula for G, as well
as the twisted trace formula for GL(N), and at some points even the twisted trace
formula for SO(2N). The stabilization of the ordinary (invariant) trace formula com-
pleted in [21], is of course a special case of the stabilization of the general twisted
trace formula in the monographs [179], [180]. These in turn depend on other things,
including the general Langlands–Shelstad transfer conjecture, its twisted analogue
by Kottwitz and Shelstad [125], the fundamental lemma and its twisted analogue,
and finally, a weighted fundamental lemma and its twisted analogue [247], [46],
[47] required for terms in the complement of Iell,reg( f ) in Igeom( f ). These results
have now all been established, except possibly for the twisted, weighted fundamen-
tal lemma, which presumably would follow from the methods of [45] and [46].

In [23], an ad hoc substitute Lψ for the hypothetical Langlands group LF was
introduced in §1.4, as well as an ad hoc set of L-homomorphisms

ψ : Lψ ×SL(2,C)→ LG,

in order to be able to formulate the global classification unconditionally. The global
results were then stated in §1.5. The local results were stated in §2.3 and established
in Chapter 7. Their proof depends on a special case, the actual local Langlands
correspondence, established in Chapter 6 and described briefly above. It also relies
on some properties of the intertwining operators between induced representations
formulated in §2.3–2.4. These were established also in §7, apart from two references
[A25] and [A26] from [23] that have still to be written, but which I expect will be
completed soon.
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As endoscopic identities for the localizations ψv of global parameters, the local
results are similar to the local Langlands correspondence for parameters φv. In par-
ticular, they resemble our summary of Shelstad’s results for real groups. However,
there are also a couple of differences.

One is that spectral transfer factors here can be normalized in terms of the Whit-
taker models inherited from GL(N). This is actually a simplification. It allows us
to take the analogue of the factor ∆(φ ′,π1) in (136) to be 1. The analogue of (136)
becomes an injection

xv→ ⟨xv,πv⟩= ∆(ψv,πv), πv ∈Πψv , (138)

from a packet of representations Πψv to the group of characters on the abelian
2-group Sψv = Sψv/S0

ψvZ(Ĝ)Γv . Another difference is a complication. This occurs
in the construction of the packets Πψv . For a general local parameter ψv ∈Ψ(Gv),
the packet becomes a finite set of reducible representations

πv = π
1
v ⊕·· ·⊕π

k
v , π

i
v ∈Π(Gv),

of G(Fv). Moreover, while some of the irreducible constituents π i
v of these finite

sums are tempered, others are not. However, they are all unitary. A second com-
plication, minor but nonetheless interesting, concerns the coefficients ⟨xv,πv⟩ =
∆(ψ ′v,πv) that ought to occur in the sum (134). What actually occurs are coeffi-

cients ⟨sψv xv,π⟩, in which sψv is the image in Sψv of the element sψ = ψ

(
−1 0
0 −1

)
.

The analogues for ψv of (133) and (134) then become

f Gv
v (ψv) = ∑

πv∈Πψv

⟨sψv ,πv⟩ fGv(πv) (139)

and
f ′v(ψ

′
v) = ∑

πv∈Πψv

⟨sψvxv,πv⟩ fGv(πv). (140)

The local parameters ψv ∈Ψ(Gv) with trivial restrictions to the factor SL(2,C)
are the usual Langlands parameters φv ∈Ψtemp(Gv). The corresponding analogues
of (139), (140) and (138) describe the local (endoscopic) Langlands correspondence
for the group Gv. In this case, the representations πv in a packet Πφv are irreducible
and expected to be tempered, while the element sψv in (139) and (140) equals 1. This
is clearly close to Shelstad’s endoscopic classification for real groups. However, as
we have noted, a more complicated global proof is required because of the lack of
any p-adic analogue of the Harish-Chandra classification of discrete series. We refer
the reader also to the earlier, clearly written volume [1] by Adams, Barbasch and
Vogan for archimedean parameters ψv, in which the conjectures were established
for any real group, but without our defining property by twisted transfer to GL(N)
that was needed for the global (and p-adic) theory.



192 James G. Arthur

Having stated the analogues of the Langlands correspondence for the localiza-
tions ψv of the global parameters25 ψ ∈Ψ(G), we can describe the global endo-
scopic classification for G. We write Ψ2(G) for the subset of global parameters
ψ ∈Ψ(G) such that S0

ψ = {1}, which is to say that the image of ψ does not lie
in any proper parabolic subgroup of LG. For any such ψ , we can then form the
global packet

Πψ = {π =
⊗

v
πv : πv ∈Πψv , ⟨·,πv⟩= 1 for v ̸∈ S}

of representations of G(A) that are unramified at almost every place v of F . (The
local construction is such that if the function ⟨xv,πv⟩ equals 1, the representation πv
is irreducible and unramified.) For any π ∈Πψ , the function

⟨x,π⟩= ∏
v
⟨xv,πv⟩

is then defined. The main global result is Theorem 1.5.2 of [23]. It asserts that

L2
disc(G(F)\G(A))∼=

⊕
ψ∈Ψ2(G)

( ⊕
π∈Πψ (εψ )

mψ π

)
. (141)

Here mψ equals 1 or 2, and
εψ : Sψ →{±1}

is a linear character defined explicitly in terms of global symplectic ε-factors, while
Πψ(εψ) is the subset of representations in the global packet Πψ such that the char-
acter ⟨·,π⟩ on Sψ equals εψ .

This completes our very brief summary of the endoscopic classification of rep-
resentations of the quasisplit symplectic or special orthogonal group G. For more
information, a reader could begin with the introduction in [23], and then go to Chap-
ter 1 and perhaps the first few sections of Chapter 2 and Chapter 4. Similar results
have been established for quasisplit unitary groups by Mok [181]. We recall also
that some of the geometric implications of these matters were discussed in the last
two sections.

I should say that the description I have given here is not quite correct as stated.
There are technical adjustments required for the case that G equals the group
SO(2n). Suppose for example that G is split over a completion Fv, and that

φ
1
v ,φ

2
v : WFv → SO(2n,C) = Ĝ

is a pair of distinct, irreducible, special orthogonal representations of WFv that are
conjugate under the action of O(2n,C). The local results above imply that {φ 1

v ,φ
2
v }

corresponds to a pair {π1,π2} of irreducible representations in Π2(Gv). What they

25 Bear in mind that ψ represents one of our ad hoc parameters on a product Lψ×SL(2,C). But the
group Lψ was constructed in [23, 1.4] to contain the local Langlands group LFv , so its restriction
to ψv is a homomorphism from LFv ×SL(2,C) to LGv.
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do not give is the actual bijection (from the two possible choices) between these
two sets of order 2 implicit in the local Langlands correspondence. Such ambiguity
has to be built into the assertions of [23]. (Their global manifestations are closely
related to the multiplicity mψ ∈ {1,2} in (141).) I have omitted them deliberately in
my summary above, in the hopes of better conveying the essence of what is going
on. A reader can easily restore them from the definitions of Chapter 1 of [23]. In
any case, this section has gone on long enough!

11 Beyond Endoscopy

The theory of endoscopy we have just discussed has the potential to establish
interesting cases of functoriality. They arise from the elliptic endoscopic data
(G′,s′,G ′,ξ ′) attached to a quasisplit group G, and the L-embedding

ρ
′ : LG′→ LG

obtained from ξ ′ and the choice of an L-isomorphism from LG′ to the group G ′.
For example, suppose that G is a quasisplit classical group, and that G′ is a prod-

uct of two quasisplit classical groups G1×G2 for which the canonical direct product
LG1× LG2 is a maximal L-subgroup of LG. Functoriality for this case follows from
the results of [23] and [181]. The proof depends on the stabilization of the trace
formula of G [21], which among other things yields the stable trace formula for G.
It also depends on the twisted stabilization of GL(N), with respect to the standard
outer automorphism. We have not discussed twisted endoscopy very much, but the
formal definitions are similar to those of ordinary endoscopy. The twisted stabiliza-
tion of the ordinary (twisted) trace formula was established in complete general-
ity in the two volumes [179], [180], apart from the provisio mentioned earlier on
the twisted, weighted fundamental lemma. The classical groups G are themselves
twisted endoscopic groups for general linear groups. A consequence of this, functo-
riality for the natural embedding of LG into GL(N,C), was also a part of the results
in [23] and [181]. We have discussed these matters already, at the end of the last
section.

There are certainly other interesting cases of functoriality that come from en-
doscopy, but most of these are presently out of reach. And at any rate, the examples
of functoriality attached in one way or another to endoscopy are pretty sparse com-
pared to the general case.

Beyond Endoscopy is a strategy proposed by Langlands around 2000 for attack-
ing the general Principle of Functoriality. The ideas represent a departure from any-
thing that has gone before. They do involve a comparison of trace formulas, stable
trace formulas in fact. However, they entail something else as well, the automorphic
L-functions

L(s,π,r), π ∈Π2(G), r : LG→ GL(n,C),
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attached to G. Langlands’ proposal was to refine the stable trace formula for G by
inserting a supplementary factor into the stable multiplicity of π on the spectral
side, namely the order of the pole of L(s,π,r) at s = 1. For fixed r, this would vary
with π , or rather the global packet of π , and according to what is expected about
functoriality, would give information on the “functorial lineage” of π . We refer the
reader to Section 1 of [155] for a basic introduction to the ideas, together with a
number of critical examples.

To my view, this strategy of Langlands is fundamental, and of the greatest signifi-
cance. It is also deep and difficult, much more so even than the theory of endoscopy.
Despite the fact that Langlands’ proposal is now twenty years old, its study is still
in the very early stages.

We shall generally assume for the rest of the section that G is the general lin-
ear group GL(n+ 1) over the field F = Q. The stable trace formula for G is then
the same as the invariant trace formula (102). The fundamental problem is to un-
derstand how the representations π ∈ Π2(G) in the discrete spectrum are related to
functoriality, or more precisely, how they might arise as functorial images of triplets
(G′,π ′,ρ ′), for L-homomorphisms

ρ
′ : LG′→ LG = GL(n+1,C).

It is best to discard the nontempered representations π , which one might in any case
expect to be able to treat by induction. We therefore restrict our consideration to
the subset Π1(G) = Πcusp,2(G) of cuspidal automorphic representations in Π2(G).
Langlands noted that the functorial preimages (G′,π ′,ρ ′) of π ∈ Π1(G) should be
closely related to the poles at s = 1 of the L-functions L(s,π,r) attached to r. This
of course presupposes the meromorphic continuation of L(s,π,r) to a half space
Re (s)> 1− ε, ε > 0, something that is not known in general.

Let us assume for a moment that functoriality holds, say for all general linear
groups G = GL(n+1) and G′ = GL(m+1). This implies the meromorphic contin-
uation of the L-functions L(s,π,r), and allows us to set

mπ(r) =−ords=1L(s,π,r) = ress=1

(
− d

ds
logL(s,π,r)

)
,

the order of the pole of L(s,π,r) at s = 1. For any r, we are then free to define

Ir
cusp( f ) = ∑

π∈Π1(G)

mπ(r) ·mult(π) ·Θ(π, f ), (142)

the contribution of the representations π ∈ Π1(G) to the primary spectral part of
(106), but weighted by these integers. For example, if r equals the trivial represen-
tation 1G of LG, L(s,π,r) is just the completed Riemann zeta function

L(s,1) = π
−s/2

Γ (s/2)ζ (s), π = 3.1416...,
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for each representation π , which has a simple pole at s = 1. In this case Ir
cusp( f ) is

itself just the cuspidal part

Icusp( f ) = ∑
π∈Π1(G)

mult(π)Θ(π, f ) (143)

of (106). Langlands suggested the possibility of finding a geometric expansion for
Ir
cusp( f ) for any r, thereby giving a refinement of the invariant trace formula (102).

The idea was thus to try to find a trace formula whose spectral side is the modified
cuspidal expansion (142). To see how this might be possible, we note that mπ(r) is
the residue at s = 1 of

− d
ds

(log(LS(s,π,r)))

=− d
ds

(log(∏
p̸∈S

det(1− r(c(πp))p−s)−1))

= ∑
p̸∈S

d
ds

(log(det(1− r(c(πp)))p−s))

= ∑
p̸∈S

∞

∑
k=1

log(p) tr(r(c(πp))
k)p−ks.

We can discard the terms with k ≥ 2 in this last sum, since the function they define
would be holomorphic at s = 1. It follows that

mπ(r) = ress=1

(
∑
p̸∈S

log(p) tr(r(c(πp)))p−s

)
.

A familiar application of the Wiener–Ikehara theorem26 would then give a formula

mπ(r) = lim
N→∞

(
|SN |−1

∑
p̸∈SN

log(p) tr(r(c(πp)))

)
,

where
SN = {p ̸∈ S : p≤ N}.

(See [208, p. I-29].)
To exploit this last formula, one can write the test function f ∈ C∞

c (G(A)) as a
product fS ·1S, for fS ∈C∞

c (G(FS)) and 1S the characteristic function of the compact
open subgroup G(ẐS) = ∏p̸∈S G(Zp) in G(AS). One can then enrich this function
by adding a factor at any p ̸∈ S. We set

26 We need to assume here that π is locally tempered, and hence that the generalized Ramanujan
conjecture holds for G. This implies that the L-series L(s,π,r) converges absolutely for Re (s)> 1,
and therefore satisfies conditions (a) and (b) of the theorem stated in [208]. This is really part of
functoriality, on which we are basing the present motivational argument. (The assumption should
really have been explicit in the discussion of these matters in [24, §2]).



196 James G. Arthur

f r
p(x) = f (x) ·hr

p(xp), x ∈ G(A),

where xp is the component of x in G(Qp), and hr
p is the function in the unrami-

fied Hecke algebra H (G(Zp)\G(Qp)/G(Zp)) on G(Qp) whose Satake transform
equals

ĥr
p(cp) = tr(r(cp)),

for any semisimple conjugacy class cp in Ĝ = GL(n+1,C), which is to say that

tr(πp(hr
p)) = tr(r(c(πp))),

for any unramified representation πp of G(Qp). Then

Θ(π, f r
p) = tr(π( f )) tr(πp(hr

p)) =Θ(π, f ) tr(r(c(πp))),

for any π ∈Π1(G) such that πp is unramified. Combining this with the last formula
for mπ(r) and the definition (142) of Ir

cusp( f ), one sees that Ir
cusp( f ) would equal

∑
π∈Π1(G)

(
lim

N→∞
|SN |−1

∑
p̸∈SN

log(p) tr(πp(hr
p))
)
mult(π)Θ(π, f )

= lim
N→∞

(|SN |−1
∑

p̸∈SN

log(p)
(

∑
π∈Π1(G)

mult(π)Θ(π, f n
p)
)
.

In other words,

Ir
cusp( f ) = lim

N→∞

(
|SN |−1

∑
p̸∈SN

log(p)Icusp( f r
p)
)
. (144)

On the other hand, we can formally rewrite the invariant trace formula (102) as

Igeom,temp( f ) = Icusp( f ), (145)

where
Igeom,temp( f ) = Igeom( f )− (Ispec( f )− Icusp( f )). (146)

The subscript temp indicates that the distribution should be locally tempered. This is
because the representations in Π1(G) would satisfy the analogue of the Ramanujan
conjecture, according to our assumption and the argument of Langlands sketched at
the end of [138], as we observed in footnote 26. The Dirichlet series for L(s,π,r)
would then converge absolutely for Re s > 1, an implicit condition for the Wiener–
Ikehara theorem we applied above. The result would then be an r-trace formula

Ir
geom,temp( f ) = Ir

cusp( f ), (147)

for any r, where

Ir
geom,temp( f ) = lim

N→∞

(
|SN |−1

∑
p̸∈SN

log(p)Igeom,temp( f r
p)
)
. (148)
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This would provide a large family of refined trace formulas from which one might
try to deduce functoriality.

However, this was all under the assumption of meromorphic continuation for the
L-function L(s,π,r). The way to establish this, according to Langlands’ conjectures,
is to apply functoriality to the homomorphisms

ρ
′ = r : Ĝ = GL(n+1,C)→ GL(N,C).

We cannot very well assume functoriality when it is what we ultimately want to
prove. Langlands’ idea was to use the spectral expression (142) initially only to
motivate the proposed limit (148). For it does tell us that the limit (148) ought to
exist. Langlands’ hope is that it will eventually be possible to prove independently
that the limit does exist, and to express it in terms of a reasonably explicit geometric
expansion. One could then work on trying to establish a spectral expansion for the
limit akin to (142).

It is clearly an enormous problem. The first major step would be the formidable
task of finding a geometric expansion for the difference Igeom,temp( f ) in (146). To
see what this might entail, we shall consider the formal approximation (106) of the
full trace formula (102) given by

Iell,reg( f ) = ∑
γ∈Γell,reg(G)

vol(γ)Orb(γ, f )

∼ I2( f ) = ∑
π∈Π2(G)

mult(π)Θ(π, f ).

Its analogue for the cuspidal trace formula (145) is the approximation

Iell,reg,temp( f )∼ Icusp( f ), (149)

where
Iell,reg,temp( f ) = Iell,reg( f )− ∑

π ̸∈Π1(G)

mult(π)Θ(π, f ), (150)

the sum being over the complement of Π1(G) in Π2(G). We are retaining the sub-
script temp in the distribution Iell,reg,temp( f ) to emphasize that it is supposed to be
an approximation of Igeom,temp( f ). The difference between the two distributions is
the sum of the supplementary geometric terms in the full trace formula (102) minus
the sum of the supplementary spectral terms. We have generally avoided discussing
these auxiliary terms (except for GL(2) in Sections 6 and 7), but if G is not equal to
GL(2), there are some locally nontempered distributions IM(π, f ) among the sup-
plementary spectral terms. The distribution Iell,reg,temp( f ) therefore cannot be locally
tempered. It is to be regarded as we have said, simply as a formal approximation of
the distribution Igeom,temp( f ) we do expect to be tempered.

The point to be made is that the regular elliptic part Iell,reg( f ) of the trace for-
mulas conceals some secrets. It is very familiar, having been known (if not always
in adelic form) since Selberg first introduced his trace formula for compact quo-
tient. But despite the fact that the individual orbital integrals in its summands are
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locally tempered (a fact proved by Harish-Chandra for real groups in 1966 [88], and
for p-adic groups somewhat later), their sum is not. The main obstruction is simple
enough, the sum over π in (150), but this is its spectral form. We are thus asking for
an explicit, and we hope reasonably simple, geometric expansion for the difference
(150). As far as I know, this natural question was never considered (except perhaps
for G = GL(2)) before 2000. It is the essential part of what we called the first major
step above. It will demand much effort, supported no doubt by experience gained
from experiments in special cases.

Langlands discussed these and other ideas, with various examples, in Part I of his
foundational article [155]. In Part II he examined various terms in the trace formula
for GL(2). Part III of [155] is devoted to actual experiments, using computer calcu-
lations to estimate some of the quantities from Part II. Part IV contains among other
things a few remarks on general groups. A significant part of the article is devoted to
a topic that will have to be understood after the initial questions have been answered.
It is the supplementary geometric part of the trace formula for GL(2), represented
by the noninvariant terms (iv) and (v) on p. 516–517 of [103]. The contributions
of these terms will be locally tempered for GL(2), as will the noninvariant contri-
butions of the spectral terms (vi), (vii) and (viii) from [103]. It is a simple enough
example for one to be able to ask what influence all of these terms might have on
the limit (148) in the case of GL(2). Langlands studied them in some detail [155,
§2.4, §4.3 and Appendix C], and found some interesting cancellations among their
contributions to the limit.

Langlands’ initial article on Beyond Endoscopy was actually the unpublished
precursor [154] of [155]. This paper contains some of his first ideas on the new pro-
gram, with some comparisons to the developing theory of endoscopy. It represents
an informal introduction to the main article [155]. The successor to [155] was the
report [156], in which Langlands reviewed some of the constructions and calcula-
tions from [155]. He then described how they could be formulated in the case of
function fields, that is, global fields of positive characteristic.

The next paper was Langlands’ 2010 article [74] with Frenkel and Ngô. It con-
tains three critical suggestions for the analysis of Iell,reg,temp( f ). The paper encom-
passes both number fields and function fields, opening the possibility of extending to
number fields techniques that had been exploited by Ngô in his recently completed
proof of the fundamental lemma for Lie algebras of positive characteristic. One of
these became the first of the three suggestions. It was to parameterize the classes
γ ∈ Γell,reg(G) that index the summands in Iell,reg( f ) by points in what the authors
called the base of the Steinberg–Hitchin fibration. For the case of G = GL(n+ 1)
here, this amounts to a parameterization of the semisimple classes γ by their char-
acteristic polynomials. It represents a significant change of perspective despite its
simplicity.

The base of the Steinberg–Hitchin fibration for G = GL(n+1) is the product

A (n) = B(n)×Gm
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of affine n-space B(n) with the multiplicative group Gm = GL(1). The characteris-
tic polynomial

det(λ I− γ) = λ
n+1−a1λ

n + · · ·+(−1)nanλ +(−1)n+1an+1 = pa(λ )

of a class γ ∈ Γell,reg(G) has rational coefficients. It gives a bijection γ → a from
Γell,reg(G) onto the subset Airred(n,Q) of elements

a = (a1, . . . ,an,an+1)

in A (n,Q) such that pa(λ ) is irreducible over Q. The suggestion was thus to rewrite
the sum over γ ∈ Γell,reg(G) in Ireg,ell(G) as a sum over elements

a = (b,an+1), b ∈Qn, an+1 ∈Q∗,

in Airred(n,Q).
The second suggestion from [74] was to try to apply the Poisson summation

formula to the sum over b ∈ Qn. This is certainly not immediately possible, for a
variety of reasons. The problem would be to modify the resulting expression for
Iell,reg( f ) in such a way that Poisson summation could be applied to the rearranged
sum over b in Qn (regarded of course as a lattice in An). The third suggestion was to
try then to account for the nontempered representations π in (150) directly in terms
of the summands attached to the dual variables ξ ∈Qn. The authors conjectured in
particular that the contribution of the trivial one-dimensional representation π1 of
G(An) was contained in the dual summand with ξ = 0.

With these ideas, the hidden structure in Iell,reg( f ) becomes more compelling. The
summands on the right-hand side of (150) are parameterized by, among other things,
unipotent conjugacy classes in Ĝ. The suggestions in [74] are that their contributions
to Iell,reg( f ) might have an unexpectedly explicit form. (See [26] for a conjectural
description in the case of general linear groups.) The proposed phenomena become
all the more intriguing for groups G other than GL(n+ 1). The authors discussed
their suggestions in general terms in the first three sections of [74]. In the remaining
sections, they offered some evidence.

They devoted some time to describing how best to normalize the invariant mea-
sures on the various spaces in play, the most important being the additive adelic
space B(n,A) ∼= An that would be the domain of the Fourier transform from Pois-
son summation. The next step was essentially to construct a function on this space
from the local orbital integrals of f , for which the global orbital integrals in Iell,reg( f )
represent the values on the lattice B(n,Q) = Qn. The original function itself was
quite unsuitable. However, the authors used an idea of J. Getz in §4 of [74] to trun-
cate it in a certain way so as to make it amenable to Poisson summation. They then
showed that in the resulting sum of Fourier transforms over ξ in the dual lattice, the
contribution of the 1-dimensional representations, the most highly nontempered rep-
resentations from the right-hand side of (150), is indeed contained in the summand
with ξ = 0. The sum over these Fourier transforms with ξ ̸= 0 therefore removes
these representations from the difference (150). The authors in fact showed that it
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is asymptotically smaller in a natural sense than the sum of the 1-dimensional rep-
resentations. Estimates of this sort are exactly what are being sought, even if in this
case the results are too weak to apply. However, they constitute striking evidence for
the general proposals in [74], especially since they apply to any (quasisplit) group
G.

The heart of Beyond Endoscopy would be a general comparison of trace formu-
las. However, this is really something for the future. For in general it could come
only after the three suggestions from [74] have been successfully carried out, and
indeed, only after the stable generalizations

Sr
geom,temp( f ) = lim

N→∞

(
|SN |−1

∑
p̸∈SN

log(p)Sgeom,temp( f r
p)
)

and
Sr

geom,temp( f ) = Sr
cusp( f ) (151)

of the limit (148) and the r-trace formula (147) have been established for any G.
The right-hand side of (151) would have to be defined as the general analogue

Sr
cusp( f ) = lim

N→∞

(
|SN |−1

∑
p̸∈SN

log(p)Scusp( f r
p)
)

of (144), whose existence would be a consequence of the existence of the limit
Sr

geom,temp( f ). (The stable analogue Scusp( f ) of Icusp( f ) in this limit would be a sum
as in (143), but over global L-packets all of whose constituents are cuspidal, or
equivalently, all of whose constituents are expected to be locally tempered.) The
goal of the comparison would be to provide information about the stable distribu-
tions Sr

cusp( f ) akin to the stable analogue of the right-hand side of (142). We reiterate
that a priori, we would know nothing about the right-hand side of (142). The role of
this formula was only to motivate the limit (144) with which the heart of the argu-
ment would begin. Once one has versions of the formulas (142) for various r, and
comparisons of them with analogues for other groups G′, one could finally begin
what would presumably be the last stage of the argument, the search for confirma-
tion of functoriality.

Our experience with endoscopy can inform what might be the new comparison.
The “Beyond Endoscopic” comparison suggested by Langlands in [155] will have
some features in common with endoscopic comparison (better known as stabiliza-
tion), and some features that are quite different. In general, we could imagine a
“Beyond Endoscopic datum” attached to a quasisplit group G over a number field F
simply as a pair (G′,ρ ′), for a reductive group G′ over F , and an L-homomorphism

ρ
′ : LG′→ LG

whose restriction to Ĝ′ is an embedding. As stated, this is much broader than an
endoscopic datum, to the extent that Ĝ′ is not required to be the connected central-
izer in Ĝ of a semisimple element s′ ∈ Ĝ. It is also incomplete, in the sense that
(G′,ρ ′) should at least be replaced by a triplet (G′,G ′,ξ ′) that satisfies the same
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conditions as an endoscopic datum (G′,s′,G ′,ξ ′) (without the point s′), while ρ ′

could represent the choice of an L-isomorphism from G ′ to G′. Langlands proposed
a transfer

f = ∏
v

fv→∏
v

f ′v = f ′, f ∈C∞
c (G(A)),

of functions from C∞
c (G(A)) to functions in C∞

c (G
′(A)), to be known as stable trans-

fer since it should depend only on the stable orbital integrals of both f and f ′. This
would be quite different from endoscopic transfer.

If we assume the local Langlands correspondence for both G and G′ at the places
v of F , something that could well be available before this stage of development of
Beyond Endoscopy, stable transfer would be easy to define. For any function fv ∈
C∞

c (Gv), it would be enough to specify the value f ′v(φ
′
v) = f G′

v (φ ′v) of any tempered
local Langlands parameter φ ′v ∈Φ(G′v). We would do so by setting

f ′v(φ
′
v) = f G

v (ρ ′v ◦φ
′
v), (152)

for the localization ρ ′v of ρ ′. The global transfer f ′ at a function ∏v fv in C∞
c (G(AF))

would then simply be defined as the product ∏v f ′v of local transfers. With this def-
inition, the real problem would then be to determine the orbital integrals of f ′v in
terms of those of fv. In other words, one would like to determine the value f ′(a′v) at
an Fv-valued point a′v ∈A (G′v,Fv) of the Steinberg–Hitchin base for G′v in terms of
the values f G

v (av) of fv at Fv-valued points av ∈A (Gv,Fv) of the Steinberg–Hitchin
base for Gv. According to some version of the Schwartz kernel theorem, we would
expect to be able to write

f ′v(a
′
v) =

∫
A (G,Fv)

∆(a′v,av) f G
v (av)dav,

for some integral kernel ∆(a′v,av). The integral is to be understood as the pairing
of the “Schwartz function” f G

v (·) on A (Gv,Fv) with the “tempered distribution”
∆(a′v, ·), notions that would have to be suitably interpreted. The qualitative differ-
ence between this and the Langlands–Shelstad transfer factor ∆(δ ′v,γv) is manifest.

With a theory of Beyond Endoscopic transfer, one could then finally consider
comparing stable trace formulas. There are many possibilities, and it is hard to know
in advance which of these might be best. For example, one might try to compare the
r-trace formula of G with the stable trace formula of G′, or more likely, a linear
combination over Beyond Endoscopic data G′ of stable trace formulas of G′. One
proposed model for such a comparison, founded on the structure of Langlands’ au-
tomorphic Galois group LF proposed in Section 9, was described in [24, §2] and
[25, §4], where it was called the primitization of the r-trace formula. However, what
is needed now is more understanding of the many fundamental questions that would
have to be answered first, if not in general then at least for natural examples.

This last discussion is intended as background for [158], the article on singular-
ities and transfer Langlands wrote as a continuation of his fundamental paper with
Frenkel and Ngô. Our remarks on stable transfer and comparison of trace formulas
are taken largely from the early pages of [158]. However, the ostensible purpose of
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the paper was to explore them in detail for the group G = SL(2), and the dihedral
groups G′ of elements of norm 1 in quadratic extensions E of F , together with the
degenerate case of G′ = GL(1). Langlands proved the existence of stable transfer
fv → f ′v in each of these cases, for localizations Fv of F with qv ̸= 2. To do so, he
relied on general properties of stable characters for SL(2) in [127], and explicit for-
mulas for irreducible characters on SL(2,Fv), by Harish-Chandra for archimedean
v and by Sally and Shalika [197]27 for nonarchimedean v. The proof was given in
Section 1 of [158], the first half of the paper, by answering Questions A and B from
Section 1.1. We note that there is a recent extension to SL(n) by Daniel Johnstone
[109], using some interesting new methods.

In the second half of the paper, Langlands studied two functions

θ f (a) =

(
∏
v∈S

f G
v (av)

)
1S(aS)

and

φ f (a′) =

(
∏
v∈S

f ′v(a
′
v)

)
1S((a′)S),

for regular adelic variables a,a′ ∈ AF in A (G), and a large (variable) finite set S of
places. The second function is really a composite of the transfers from G to all of the
dihedral groups G′, with their local Steinberg–Hitchin bases A (G′v) embedded in
A (Gv). The regular set in A (Gv) becomes a disjoint union of (the regular points in)
their domains, and f ′v(a

′
v) is then the value of the transfer mapping for the group G′v

attached to the domain that contains a′v. Langlands was interested in the singularities
of these functions. For archimedean v, these were obtained from special cases of the
general results of Harish-Chandra, mentioned for GL(2) as Harish-Chandra families
in Section 7 of this article, and reviewed briefly for general groups in the last sec-
tion. For nonarchimedean v, the singularities are more complex for general groups.
However, their qualitative behavior is well understood in terms of the Shalika germs
introduced in [216].

Langlands’ interest was in the specialization to G = SL(2) of the results estab-
lished for general (simply connected) G in the second half of [74]. These consist
of the truncated form of Poisson summation, and its application to the contribu-
tion of the trivial automorphic representation of G to the geometric side of the trace
formula. Combining various arguments, Langlands was able to establish a more
tractable form of Poisson summation for both of the functions θ f and φ f . The sin-
gularities of the local components f G

v (av) and f ′v(a
′
v) were of course an important

part of this. Once Poisson summation was in place, the singularities could then be
used to analyze the asymptotic behavior of the Fourier transforms

27 As Langlands remarks, the proofs for this announcement are not published. They were originally
circulated as a long preprint by Sally and Shalika, part of which was later published as the funda-
mental article [216] on Shalika germs. However, it was the complementary part that contained the
p-adic characters, and that was unfortunately never published.
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θ̂ f (a), φ̂ f (a), a ∈ A.

With the comparison of trace formulas for G and {G′} in mind, Langlands then
considered the difference

Sreg,ell( f )−∑
G′

S′reg,ell( f ′)∼ ∑
b∈A (G,F)

θ f (b)−φ f (b), (153)

a linear form in f that becomes

∑
b∈A (G,F)

(
θ̂ f (b)− φ̂ f (b)

)
after the application of Poisson summation [158, (5.5) and (5.12)]. In the rest of
the paper, he added some remarks on possible next steps, which would include the
removal of the contribution θ̂ f (0) of the trivial automorphic representation of SL(2)
from (153). His main concern would be to gain information about the proposed
limits (148) and their variants.

My discussion of the paper [158] has been superficial, as is no doubt clear from
my use of the symbol ∼ in (153). In particular, I have said nothing of the trun-
cated Poisson summation formula from [74]. However, it does seem that (153) is
a natural identity, with important implications for the general Beyond Endoscopic
comparison of stable trace formulas.

A different approach to Poisson summation was introduced by Ali Altuğ in his
2003 thesis, written under the supervision of Langlands and Peter Sarnak. It was
published later, with applications, in the three papers [3], [4], [5]. It will be instruc-
tive for us to discuss each of these papers.

In contrast to [74], where Poisson summation was established for a general class
of test functions f on a general group G, Altuğ’s methods apply to a restricted class
of functions f on the particular group G = GL(2). However, they lead to much
sharper estimates. Moreover, they would seem in principle to be applicable to more
general groups, even if the technical problems in extending them will be formidable.
We shall describe the first paper [3], which is devoted to Poisson summation, in
some detail.

Following [3], we take G to be the group GL(2), F =Q, and

f = f∞ · f ∞ = f∞ · f ∞,p · f k
p , p prime, k ∈ Z≥0,

to be a test function in the space

C∞
c (Z+ \G(A)), Z+ = AG(R)0 =

{(
u 0
0 u

)
: u > 0

}
,

as follows. The archimedean component f∞ is any function in C∞
c (Z+ \G(R)), while

f ∞,p is the characteristic function of the standard open, maximal compact subgroup
K∞,p of G(A∞,p), and f k

p is the product of p−k/2 with the characteristic function of
the open compact subset
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{X ∈M2×2(Zp) : |detX |p = p−k}

of G(Qp). This is of course a very special case, but it was well suited to illustrating
Altuğ’s techniques.

For the general regular elliptic part Iell,reg( f ) of the trace formula at f , we are
interested in the value of the normalized orbital integral fG(γ) of f at a point γ ∈
Γell,reg(Q). It is a product

fG(a) = f∞,G(a) · |D(γ)|−
1
2 Orb(γ, f ∞),

where
|D(γ)|= |D(γ)|∞ = (|D(γ)|∞)−1

while
a = (b,a2), b ∈Q, a2 ∈Q∗,

is the bijective image of γ in Airred(1,Q), and f∞,G(a) = f∞,G(γ). One sees from the
properties of the unramified orbital integral

Orb(γ, f ∞) = Orb(γ, f k
p)Orb(γ, f ∞,p),

and the definition of the function f k
p , that fG(a) vanishes unless the irreducible

monic, quadratic polynomial pa(λ ) has integral coefficients, with constant term a2
equal to ±pk. It then follows that Iell,reg( f ) is equal to the expression

∑
ε∈{±1}

∑
b∈Zε

irred

f ε
∞,G(b) · |D(γ)|−

1
2 vol(γ)Orb(γ, f ∞), (154)

where we have written Zε
irred = Bε

irred(1,Z) for the set of integers b ∈ Z such that
the pair a = (b,ε pk) lies in Airred(1,Z), and

f ε
∞,G(b) = f∞,G(b,ε pk) = f∞,G(a).

We are following the discussion in §3 of the paper [3]. As was noted there, the
expansion (154) of Iell,reg( f ) is where any discussion of Poisson summation would
begin. The inner sum is of course over a set of integers b ∈ Z. Is there a natural
extension of the values of the summands to a Schwartz function on R to which
Poisson summation could be applied? The answer is clearly negative. For a start, we
must not forget that Poisson summation applies to the sum of the values of a suitable
function on R over the lattice Z, not a linear combination.

There are in fact a number of obstacles. The most immediately daunting is per-
haps the volume factor vol(γ) in (154). It depends very much on b as an integer, and
in particular, on the splitting field Ea over Q of the quadratic polynomial

pa(λ ) = pε
b(λ ), a = (b,ε pk),
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over Z. The same goes for the factor Orb(γ, f ∞). It is a product of q-adic orbital
integrals of the global spherical function(

∏
q̸=p

fq

)
f k
p

at γ . It too depends on the splitting field of pε
b(λ ). The archimedean factor f ε

∞,G(b) is
more amenable. It does extend to the natural function of b ∈R given by the normal-
ized archimedean orbital integrals of f∞. This should in principle be the function to
which one would try to apply Poisson summation. However, it comes with its own
problems as a function of R, namely the singularities given by Harish-Chandra’s
jump conditions. These occur at points b ∈ R at which the characteristic polyno-
mials pε

b(λ ) have repeated factors over R, which is to say that the corresponding
discriminants vanish. And finally, there is the problem that the sum over b is not
over the full lattice Z in R, but the subset Zε

irred of Z. Altuğ dealt with all of these
problems.

For the volume coefficient vol(γ) in (154), the first step was to apply the Dirichlet
class number formula for the quadratic extension Eγ = Ea of Q. Since the volume is
essentially the regulator of Eγ/Q, the formula can be written

vol(γ) = |Dγ |
1
2 L
(

1,
(Dγ

·

))
,

where Dγ is the discriminant of the quadratic extension Eγ ,
(

Dγ

·

)
is the Kronecker

symbol, and L(·,
(

Dγ

·

)
) is the Dirichlet L-function of Eγ/Q [3, §2.2.2]. At first

glance, this seems to replace one problematic coefficient with two new ones!
However, as the discriminant of the field Eγ , Dγ is closely related to the discrim-

inant D(γ) of the irreducible quadratic polynomial

pγ(λ ) = pa(λ ) = pε
b(λ ).

This occurs in its own right as the factor |D(γ)|− 1
2 in (154). Their joint contribution

equals
|D(γ)|−

1
2 |Dγ |

1
2 = |s2

γ |−
1
2 = s−1

γ ,

for a positive integer sγ . This last integer is in turn closely related to the product
Orb(γ, f ∞) of q-adic orbital integrals in (154). Langlands had already computed the
product in his initial paper on the subject [155, Lemma 1 and §2.5] as

Orb(γ, f ∞) = p−
k
2 ∏

f |sγ

f ·
(
∏
q| f

(
1−
(Dγ

q

)
q−1
))

. (155)

Its product with s−1
γ and the other factor L(1,

(
Dγ

·

)
) above equals
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p−
k
2 ∑

f |sγ

( f/sγ)
(
∏
q| f

(
1−
(Dγ

q

)))
L
(

1,
(Dγ

·

))
,

which becomes

p−
k
2 ∑

f |sγ

(1/ f )L
(

1,
(D(γ)/ f 2

·

))
with a change of variable in the sum over f , and the definition

L
(

1,
(D(γ)/ f 2

·

))
= ∏

q| f

(
Lq

(
1,
(Dγ

q

))−1)
·L
(

1,
(Dγ

·

))
of the Dirichlet L-function for the discriminant D(γ)/ f 2. The expression (154) for
Ireg,ell( f ) then becomes

p−
k
2 ∑

ε

∑
b

f ε
∞,G(b)

(
∑
f |sγ

(1/ f )L
(

1,
(D(γ)/ f 2

·

)))
. (156)

(See [3, (2) and (3)].)
Altuğ was then able to treat the Dirichlet L-values at 1 with what is known as the

approximate functional equation. To this end, he attached the more general Dirichlet
series

L(s,δ ) = ∑
′

f 2|δ

1
f 2s−1 L

(
s,
(

δ/ f 2

·

))
to any discriminant δ . Thus, δ is an integer congruent to 0 or 1 modulo 4, while(

δ/ f 2

·

)
is the Kronecker symbol again, and ∑

′
f 2|δ stands for the sum over the

integers f such that δ/ f 2 is also congruent to 0 or 1 modulo 4 [3, §3.1]. Its value
at δ = D(γ) and s = 1 equals the expression in (156) in brackets. In particular, it
is constructed as a product of the Dirichlet L-value L

(
1,
(

Dγ

·

))
with the values

of finitely many q-adic orbital integrals (with k = 0). This enhanced L-function was
introduced by Zagier in 1977 [255], who established a functional equation linking its
values at s and 1− s. He would probably not have been aware of its interpretation in
terms of q-adic orbital integrals on GL(2,Qq). However, it is interesting to think that
these objects were implicit in his quite different setting not long after they had also
become a part of Langlands’ study of base change for GL(2), with its implications
for the Artin conjecture and ultimately Fermat’s Last Theorem.

The approximate functional equation applies to any reasonable Dirichlet series
with functional equation [99, §10.6]. Altuğ used it to express the sum L(1,D(γ))
in the brackets of (156) by an ungainly but more tractable expression. The process
takes the value L(s,δ ) of the general L-function above back to a Dirichlet series, but
one whose summands over n are weighted so as to converge absolutely, in which
the original coefficients are averaged against a well behaved test function F . There
is a second term, a contour integral that would give trouble on its own. However,
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a change of contour, together with an application of the actual functional equation
for L(s,δ ) transforms the troublesome integral to a weighted Dirichlet series for
L(1− s,δ ), in which the original coefficients are averaged over a second well be-
haved function H. (See the discussion of [3], and in particular, Proposition 3.4 and
Corollary 3.5). With this, the seemingly insurmountable problem of the arithmetic
dependence on γ of the original coefficients vol(γ) in (154) can be controlled.

We note in passing that that the product ζ (s)L(s,δ ) is called the Dedekind zeta
function of the (monogenic) order

Rδ = Z[λ ]/(pδ (λ ))

in the quadratic field
Eδ =Q[λ ]/(pδ (λ )),

where pδ (λ ) is the irreducible characteristic polynomial attached to δ . (We are as-
suming here that δ = D(γ) as above.) Its analogue for GL(n+ 1) over a number
field F is the topic of the paper [254] of Z. Yun. He established its functional equa-
tion and class number formula as Theorem 1 of the paper. To do so, he defined the
local factors as functions of s that satisfy their own functional equations [254, The-
orem 2.5]. Yun then expressed the values at s = 1 of these local factors in terms of
local orbital integrals at γ [254, Corollary 4.6]. This paper is likely to be important
in any attempt to generalize the methods of Altuğ. However, it does not provide an
analogue for GL(n+1) of the explicit formula (155) of Langlands for the orbital in-
tegrals on GL(2). Something of the sort appears to be essential for higher rank, but
there are some qualitative differences even between the cases of GL(2) and GL(3).
(See [117].) I have been told that the perverse sheaves attached to unramified orbital
integrals by Ngô acquire singularities in generalizing from GL(2) to GL(3).

Returning to the regular elliptic expansion (154) for GL(2), we recall the other
two obstacles mentioned above. The first concerned the singularities of the function
f ε
∞,G(b) = f∞,G(a) at the zero set of the discriminant D(γ) = D(a). To deal with it,

Altuğ observed that for any Schwartz function Φ in R and any α > 0, the product

Φ(|D(a)|−α) f ε
∞,G(b), b ∈ R,

is also a Schwartz function of R ([3, Proposition 4.1]). Altuğ built this into the
Schwartz functions F and H he obtained from the approximate functional equation.
He had taken care to include a supplementary parameter in each of the arguments
in [3, (4′)] (A−1 for F and A for H), which he then simply set equal to |D(γ)|α , for
any number α with 0 < α < 1. The resulting expression in the brackets of (156) was
then sufficient to make the complementary factor f ε

∞,G(b) in (156) the restriction to
Zε

irred of a well defined Schwartz function on R.
The second and last obstruction was that the sum over b in (156) was only over

the subset Zε
irred of the lattice Z of R (corresponding to irreducible characteristic

polynomials). Altuğ simply added the complementary set of orbital integrals f ε
∞,G(b)

to the sum in (156). The trace formula actually calls for weighted orbital integrals
(the term (iv) on page 516 of [103]) to be taken here, but we have been dealing
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with approximations ever since we identified Ireg,ell( f ) with the geometric side of
the trace formula. We write Ireg,ell( f ) for the expression (156) with b summed over
Z rather than the subset Zε

irred.
For the record, we write out the expression for (156) obtained by Altuğ for

Ireg,ell( f ) (with the extra summands for b ∈ Z), even though our discussion is still
lacking some of the finer details. It is

p−
k
2 ∑

ε

∑
b∈Z

f ε
G(b) ∑

f 2|Dε (b)

1
f

∞

∑
ℓ=1

1
ℓ

(
Dε(b)/ f 2

ℓ

)
·

[
F
(

ℓ f 2

|Dε(b)|α

)
+ ℓ f 2|Dε(b)|−

1
2 H
(

ℓ f 2

|Dε(b)|1−α

)]
.

(This is essentially the first expression given in the proof of Theorem 4.2 from [3].)
Since everything converges absolutely, the sum over b ∈ Z can be taken inside the
sum over f and ℓ. It is still not yet quite possible to apply Poisson summation to
the sum over b. For while the last expression in the square brackets extends to a
Schwartz function of b ∈ R, there are also the coefficients

(
Dε (b)/ f 2

ℓ

)
that depend

arithmetically on b ∈ Z. Altuğ’s solution was to break this sum over b into a double
sum over the finite subset

C(ℓ, f ) = {b(mod 4ℓ f 2) : Dε(b)≡ 0(mod f 2), Dε(b)/ f ≡ 0,1(mod 4)}

of congruence classes modulo 4ℓ f 2, and the infinite affine lattice

{m ∈ Z : m≡ b(mod 4ℓ f 2)}.

Since (
Dε(b+m)/ f 2

ℓ

)
=

(
Dε(b)/ f 2

ℓ

)
,

the coefficients could then be taken outside the sum over m, allowing him then to
apply Poisson summation to the sum.

The final result is then

Iell,reg( f ) = ∑
ξ∈Z

Îell,reg(ξ , f ), (157)

where Îell,reg(ξ , f ) equals an expression

∑
ε

∞

∑
f=1

1
f 3 ∑

ℓ=1

1
ℓ2 f̂ ε

G,ℓ, f (ξ )Kℓ, f (ξ ,ε pk),

for a Fourier transform
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f̂ ε
G,ℓ, f (ξ ) =

∫
R

( f ε
G(x)φ

F,H
ℓ, f (x)exp

(
−xξ

2ℓ f 2 p−
k
2

)
dx,

with the function

φ
F,H
ℓ, f (x) = F(ℓ f 2|Dε(x)|−α)+(ℓ f 2)|Dε(x)|−

1
2 H(ℓ f 2|Dε(x)|α−1),

and for a finite exponential, Kloosterman-like sum

Klℓ, f (ξ ,ε pk) = ∑
b∈C(ℓ, f )

(
Dε(b)/ f 2

ℓ

)
exp
(

bξ

4ℓ f 2

)
.

This is Theorem 4.2 of [3], one of the two main results of the paper.
The second main result of Altuğ’s paper [3] is Theorem 6.1. It is a reworking

of the formula for the constant term Îell,reg(0,ξ ) in the expansion (157), obtained
from the functional equations for the L-functions L(s,δ ), some elementary but quite
elaborate identities established in §5 of [3] (Lemmas 5.1–5.3, Corollary 5.4), and
various changes in the contour integral over x in the original formula. (Altuğ writes
the formula for Î(0, f ), and the integral over x that it contains, as the expression
(13)ξ=0 displayed prior to the statement of Theorem 6.1.)

The formula in the assertion of Altuğ’s Theorem 6.1, which we will not quote,
seems to make his formula Theorem 4.2 (distilled in (157) above) look simple by
comparison! However, it has a compelling logic. It expresses Îell,reg(0, f ) as a sum
of two simple integrals over x ∈ R, together with a third complicated integral over
x. In his last result [3, Lemma 6.2], Altuğ identifies the two simple integrals as the
character tr(1( f )) of the trivial one-dimensional representation of G(A) at f , and
the supplementary term28 on the spectral side given by (vi) on p. 647 of [103]. The
hope is that the contribution of the third integral vanishes in the putative limits (148)
attached to (irreducible) representations r ̸= 1 of GL(2,C). Altuğ puts Theorem 4.2
and Theorem 6.1 together as a complex formula for Ireg,ell( f ), which he states as
Theorem 1.128 in the introduction to [3].

This completes our discussion of (157), Altuğ’s version of Poisson summation
for GL(2). It is surprisingly complex, even as it applies only to a special case within
GL(2). We have emphasised it in our discussion because such detail seems to be
a necessary prelude for the kind of estimates that will ultimately be needed. The
role of the more elementary version of Poisson summation in [74] and [158], which
applies to any group G, is different. It was offered simply as evidence for the basic
idea, that of using some form of Poisson summation on the Steinberg–Hitching base
to recognize the ultimate contribution of the noncuspidal discrete spectrum to the
geometric side of the trace formula.

28 What I have stated here is not strictly correct. The second simple integral in Theorem 6.1 actu-
ally equals twice the supplementary term (vi). However, the excess really belongs naturally in the
complicated third integral, as Altuğ observes in a restatement of Theorem 1.1 for his subsequent
paper. (See Theorem 4.1 in [4].)
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In his second paper [4], Altuğ wrote f p for the function f = f∞ · f ∞,p · f k
p from

[3] with k = 1. He then showed that its value at the third (complicated) integral in
the formula for Î(0, f p) from Theorem 6.1 of [3] (adjusted28 as in the statement of
Theorem 4.1 of [4]) is bounded in p [4, formula (00) from Corollary 4.3]. This was
actually relatively simple. Much deeper were his estimates of the terms Îell,reg(ξ , f )
with ξ ̸= 0 in (157). In Theorem 4.4, he established an estimate

|∑
ξ ̸=0

Î(ξ , f p)| ≤ c∞ p
1
4 ,

where c∞ is a constant that depends only on f∞, but not p. This was a consequence
of analytic results on asymptotic properties of Fourier transforms in Appendix A [4,
Theorems A.14 and A.15, and Corollary 11.16], as well as arithmetic properties of
the character sums Klℓ, f (ξ ,±p) in Appendix B [4, Corollary B.8]. Combined with a
straightforward analysis in §3 in [4] of the remaining terms in the full trace formula
for tr(Rcusp( f p)), he arrived at his main result, the estimate

tr(Rcusp( f p)) = O(p
1
4 ) (158)

of [4, Theorem 1.1].
The estimate (158) represents a partial bound towards the Ramanujan conjec-

ture for Hecke eigenvalues of Maass forms. It is the same estimate that had been
established in 1980 by Kuznetsov [126] by what is now regarded as a special case
of the relative trace formula. As Altuğ remarks, the importance of (158) is in its
method of proof by the Arthur–Selberg trace formula, which has more structure,
and has been established for general groups. The full Ramanujan conjecture would
be a consequence of functoriality, but is still far from known. It would amount to a
bound

tr(Rcusp( f p)) = O(pε)

for every ε > 0. The estimate (158) is thus intermediate between the full Ramanujan
conjecture and the elementary bound

tr(Rcusp( f p)) = O(p
1
2 )

represented by the 1-dimensional representation of GL(2,A). We recall from our
discussion of the Langlands–Shahidi method that in establishing functoriality for the
irreducible 4- and 5-dimensional representations of Ĝ = GL(2,C), Shahidi and Kim
obtained bounds that are sharper than (158). However the full Ramanujan conjecture
(for Hecke operators of Maass forms) would require functoriality for all irreducible
representations of Ĝ.

The third paper [5] of Altuğ established an r-trace formula (147) in the special
case of G = GL(2) and F = Q at hand. For this, he restricted the basic function
f = f∞ f ∞ further, by taking f ∞ to be the characteristic function of the standard
maximal compact subgroup K∞ of G(A), and f∞ to be a cuspidal function on G(R),
with tempered characters supported on the discrete series representation parame-
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terized by a fixed integer k ≥ 3. With these data, Altuğ considered the proposed
limit (148) when r is the standard, two-dimensional representation of Ĝ=GL(2,C).
Combining the intricate analytic results of [4], he established that the limit exists,
and equals 0. In other words, the r-trace formula in this case is

Ir
cusp( f ) = 0,

according to the definition (147). This is what is expected. For the only cuspidal au-
tomorphic representations π of G = GL(2) that are proper functorial images (which
is to say, not primitive in the language of §9), should be of “CM” or “Galois type”,
attached to two-dimensional representations of the Weil group WQ. This implies that
π( f ) actually vanishes,29 given the choice of f ∞ and the fact that the class number
of Q is 1. Therefore π should contribute nothing to Ir

cusp( f ). It is a general fact
that a primitive representation π would also contribute nothing to Ir

cusp( f ), for any
irreducible nontrivial representation r.

We should include a historical remark at this point before concluding our dis-
cussion of Altuğ’s work. When Langlands first introduced his ideas in the precursor
[154] of his published article [155], Sarnak had reservations about the form of the
proposed limit (148) obtained from the order of poles at s = 1 of the L-functions
L(s,π,r). He was concerned that proving and calculating a limit (148), difficult
under any circumstances, might be even more intractable with the form of the right-
hand side. He suggested in the letter [199] to Langlands replacing the sum over
p on the right-hand side of (148) by a sum over n ∈ N. This amounts essentially
to a change of the weighting coefficient mπ(r) in (142), the order of the pole of
L(s,π,r) at s = 1, to another coefficient nπ(r), the residue of L(s,π,r) at s = 1.
It would then open the possibility of applying Poisson summation again, this time
to the new sum over n. The Tauberian theorem we quoted from [208] would also
hold in this context, applied to the Dirichlet series for L(s,π,r) rather than its log-
arithmic derivative. Langlands himself appears to have been ambivalent about this
suggestion. For the new coefficients would no longer be additive in r, complicating
the anticipated spectral (primitive) Beyond Endoscopic decomposition of what we
are calling the r-trace formula.

The suggestion was first taken up by A. Venkatesh, a student of Sarnak at the
time. He actually worked with the Kuznetsov formula for GL(2), a special case of
Jacquet’s proposed “relative trace formula”, rather than the trace formula itself. The
technical difficulties simplify in this setting. Using the Poisson summation formula
proposed by Sarnak, Venkatesh considered the more complex case of the three-
dimensional, symmetric square representation r2 of GL(2). In his 2002 thesis [241]

29 This property should remain valid if r is replaced by an (m+1)-dimensional symmetric power
rm, for m > 1. We would therefore again expect that Irm

cusp( f ) = 0, even though this would be much
more difficult to prove. On the other hand, if f ∞ is a more general function, or Q is replaced by a
more general field F , we would not expect Irm

cusp( f ) to vanish. For a table of multiplicities

−mπ (rm) = [1LG : rm ◦φ ],

where π corresponds to a 2-dimensional Galois representation φ of ΓQ, see page 6 of [154].
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and a subsequent paper [242], he was able to separate the contribution of the relevant
forms of CM-type, which is to say the automorphic representations π of GL(2)
attached to two-dimensional representations of the Weil group WF , by using the
residues at s = 1 of the L-functions L(s,π,r2). His results were also more general
in that they applied to many number fields F in place of Q, and automorphic forms
that were ramified, which is to say of level greater than 1. The work of Venkatesh
was a breakthrough. It would be very interesting to make a careful comparison of
his techniques with those of Altuğ. In this report, we will settle for a few general
remarks at the end on the possible future roles on the two kinds of “trace” formulas.

Altuğ took up Sarnak’s suggestion in his third paper [5]. The Tauberian theorem
for the new weighting coefficient attached to any G, π and r would take the general
form

nπ(r) = lim
X→∞
|X |−1

∑
n<X

tr(T (n,π,r))

where30

T (n,π,r) = π
S(hr

n), S = {∞},

is the (unramified) Hecke operator for πS, r and n such that

L∞(s,π,r) = LS(s,π,r) =
∞

∑
n=0

tr(T (n,π,r))n−s.

Altuğ again confined himself to the case that r = r1 is the standard two-dimensional
representation of the group LG = Ĝ = GL(2,C). It is likely that his methods could
be extended to r = r2, and to the more general fields F and functions f treated
by Venkatesh, but he did not attempt to deal with the increased complexity that
would arise from the classical trace formula for GL(2) in this paper. In fact, as we
noted earlier, he restricted f = f∞ f ∞ further so as to be supported on the unramified
automorphic representations π = π∞π∞ such that π∞ corresponds to an automorphic
form in the space Sk of (holomorphic) cusp forms of weight k (and level 1), for fixed
k ≥ 1. Then

30 Motivated by notation from the beginning of the section, we have written

hr
n =

⊗
p

hr
n,p, n = ∏

p̸∈S
pnp ,

here for the function in the unramified Hecke algebra

Cc(KS \G(AS)/KS) =
⊗̃
p̸∈S

Cc(1p \G(Qp)/1p)

whose Satake transform ĥr
n at a family of semisimple classes c = {cp : p ̸∈ S} in LG equals the

product
ĥr

n(c
s) = ∏

p
ĥn,p(cp) = ∏

p
tr(
(
Snp r)(cp)

)
of characters of symmetric powers Snp r of r at the points of cp. (See [44].)
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Tk(n) =
⊕

π

T (n,π,r)

is the nth Hecke operator acting on the (finite-dimensional) complex vector space
Sk.

Altuğ’s main result, Theorem 1.1 of [5], is an estimate

∑
n<X

tr(Tk(n)) = Ok,ε(X
31
32+ε),

for any ε > 0. In particular, for any such π , the function

|X |−1
∑

n<X
tr(T (n,π,r))

converges strongly to 0 as X approaches ∞. In Corollary 1.2 of [5], Altuğ specialized
this to an estimate for the Ramanujan ∆ -function (of weight 12 and level 1), or rather
a property of the corresponding L-function L(s,∆). In the remarks following the
statement of the corollary [5, p. 3–5], he discussed other interesting consequences,
including the original r-trace formula.

The rest of Altuğ’s third paper [5] is devoted to the proof of Theorem 1.1. As
he observed prior to the statement of the theorem, it puts together all of the work
of his previous two papers. In Section 2 he gave a broad outline of the proof of the
theorem, and the proof of its Corollary 1.2. In Section 3, he dealt with the supple-
mentary (nonelliptic, noncuspidal) terms in the trace formula for GL(2). Section 4
concerns the elliptic terms, which remain the basic objects. It is the heart of the
paper. Section 4.1 is a short review and further analysis of the results of [3], no-
tably the Poisson summation formula (157) for the sums over m introduced prior
to its statement. Section 4.2.1 begins with a heuristic discussion of estimates pro-
vided by subsequent Theorems 4.9, 4.11 and 4.13, and then proceeds with their
proof. Section 4.2.2 contains the final estimates given by the last Theorem 4.15 and
its Corollary 4.16. It is in their proof that the critical second application of Pois-
son summation comes, the one for the sum over n. (The character sum Klℓ, f (ξ ,n)
is observed here to be periodic in n modulo 4ℓ f 2, allowing among other things, a
change from the sum over n > 0 to other sums over n ̸= 0.) The final Section 5
contains further real and p-adic analysis. This was used in the proofs of estimates
(Proposition 5.2 and Corollary 5.9) postponed from Section 4.

This completes our discussion of the work of Altuğ. As a last word, it might be
worthwhile to recapitulate each of his three papers in a sentence or two. The first
one [3] establishes Poisson summation, and shows how the nontempered, trivial
representation occurs naturally in the Fourier transform term with ξ = 0. The second
paper [4] is an estimate that asserts that the complementary part of the ξ = 0 term
as well as the remaining ξ ̸= 0 terms are exponentially smaller than the trivial (one-
dimensional) character. However, the error bound is still exponentially larger than
the tempered singular term ((vi) in [103]) that was also removed from the summand
with ξ = 0. The first two papers apply to a single formula, for a function f p that
depends on p and k = np. The third paper [5] applies to a weighted average of such
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formulas, parameterized by positive integers n = ∏p pnp . The averaging process
decreases the error term considerably further, to more than what it would be for any
isolated tempered automorphic representation on the spectral side, and in particular,
for the singular tempered representations from term (vi) of [103] that were removed
from the original summand with ξ = 0.

The amount of space we have devoted to Altuğ’s work might appear surprising.
However, it is likely to serve as a concrete foundation for the future study of Beyond
Endoscopy, at least as it follows Langlands’ ideas for using the (stable) trace for-
mula. Our discussion has also given us opportunities to illustrate aspects of the basic
strategy, as it might apply in practice. To be sure, Altuğ’s papers are rather imposing,
particularly when one begins with the statement of the main result [3, Theorem 1.1]
of his first paper, and its refinement [4, Theorem 4.1] for the second. But despite
their complexity, the terms in the stated formulas are elementary. Their derivation
and later application depend more than anything on basic analysis, despite the fact
that they are leading to new techniques. There is also a suggestive unity to the three
papers. Each one solves a specific problem in the simplest of cases, using only the
methods of the trace formula. Taken in succession, they match sequential steps laid
out by Langlands in his general strategy for Beyond Endoscopy.

An interesting problem would be to relate Altuğ’s work with the second half of
Langlands’ paper [158]. In general, one might eventually want to establish a primi-
tive (stable) trace formula, whose spectral side contains only the cuspidal, tempered
representations that are not proper functorial images. One could imagine an induc-
tive definition for any G obtained by subtracting from its stable trace formula the
primitive trace formulas attached to all proper beyond endoscopic data.31

For G=GL(2) and G′ a proper beyond endoscopic datum, the derived group G′der
would then be the trivial group 1G, so (G′,G ′,ξ ′) would therefore correspond to an
irreducible two-dimensional representation of the Weil group. As we have noted,
every such object ramifies over Q, and therefore contributes nothing. To carry out
the proposal, one would therefore want to extend Altuğ’s results to more general
functions f = f∞ f ∞, or more general number fields F , or ideally, both. From the
resulting sum over ξ ̸= 0, one could then subtract the expression obtained by Lang-
lands by Poisson summation on the sum of the two-dimensional characters on WF
(informed perhaps by the more transparent formula described on p. 1 of [109]).
Langlands’ expression does not actually include characters on WF with finite im-
age, those given by the irreducible characters of dihedral, tetrahedral, octahedral
and icosahedral type on the Galois group ΓF . This might be the real point. Is it too
much to hope that we might recognize something of the sum of these characters in
the more concrete difference of the original two sums over ξ ? We are now talking
about the deepest aspect of Beyond Endoscopy, the one that Langlands regarded as
the true essence of the problem.

31 I have yet to think carefully about this. As suggested in the discussion of stable transfer ear-
lier in the section, it would presumably follow the proposed construction of LF from Section 9.
In particular, the beyond endoscopic groups G′ should perhaps have G′der simply connected and
dimG′der < dimGder.
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A part of Langlands’ later paper [157] is pertinent to this last point. (The paper
is described as a prologue, but the article on Functoriality and Reciprocity to which
it refers has not been written.) First of all, Section 4 contains his reflections on
the letter of Sarnak [199], and in particular, on the relative merits of working with
the residues of either the L-functions L(s,π,ρ) themselves or of their logarithmic
derivatives. Altuğ’s proof of an r-trace formula for GL(2), described in the remarks
in §1.1 of [5], is encouraging. It suggests that we might be able to have the best of
both worlds.

It is the larger Section 5 of [157] that concerns Langlands’ thoughts on complex
Galois representations. He describes it as the arithmetic side of Beyond Endoscopy,
as opposed perhaps to the analytic side later studied by Altuğ. Langlands discusses
in some detail a paper [57] of Dedekind on quaternionic extensions F of Q, the ex-
tensions with Galois group the quaternionic group Q8 of order 8 that the reader will
recall (with K/L in place of F/Q) from the diagram at the end of §7. His thoughts on
this might be described as “hard arithmetic”, as opposed to “hard analysis”. They
can be taken as a reflection of Langlands’ view, expressed in several places, that
functoriality for complex Galois representations will be at the heart of Beyond En-
doscopy. They are where the subject began, as the attempt by Langlands to extend
the Artin reciprocity law, and thereby create a nonabelian class field theory. The
Principle of Functoriality was of course his answer. However, the precepts of Be-
yond Endoscopy do not so far include arithmetic techniques with the power to make
further progress on Artin’s conjecture.

Another part of the paper [157] is devoted to an entirely different topic. It rep-
resents the beginnings of what Langlands called the geometric theory, as distinct
from what is often referred to as the geometric Langlands program. Very roughly
speaking, if the original (arithmetic) Langlands program concerns finite extensions
of a global field F , a number field or the field of rational functions on a nonsingular
projective curve over a finite field, these geometric programs are over the complex
numbers. They concern the finite extensions of the field F of meromorphic func-
tions on a compact nonsingular Riemann surface X . Their starting point is the set
BunX (G) of (equivalence classes of) holomorphic principal G-bundles on X , for a
complex reductive group G. For any x ∈ X , Fx is used to denote the field of formal
complex Laurent series at x, and Ox is the subring of formal power series at x. There
is then a natural bijection

BunX (G)∼= G(F)\G(AF)/KF , (159)

where

G(AF) =
∼

∏
x∈X

G(Fx)

and
KF = ∏

x∈X
G(Ox).
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It is clear from this that the theory should bear at least some formal resemblance
to automorphic representation theory, even as its content ought to be primarily geo-
metric.

The original geometric Langlands program was not initiated by Langlands. It
is founded on notions from abstract algebraic geometry, accompanied by various
sophisticated techniques from category theory. In particular, BunX (G) is treated as
an algebraic stack, while the analogue of an automorphic representation takes the
form of a perverse sheaf on the stack. Rather than try to comment further on these
notions, let me refer the reader to the clearly written Bourbaki lecture [76] by Gaits-
gory, who credits ideas of Beilinson, Deligne, Drinfeld and Laumon for the origins
of the subject, and who is himself responsible for more recent progress. We note also
that “Geometric Langlands” has had a significant influence in string theory. (See the
Bourbaki lecture of Frenkel [73], and references there.)

Langlands wanted to understand the geometric theory in more concrete terms. In
particular, he wanted to apply the methods of differential geometry and harmonic
analysis in place of abstract algebraic geometry. His goal was to attach explicit (un-
ramified) Hecke operators to the moduli space (159), together with corresponding
explicit Hecke eigenvalues. This was not done in the prologue [157]. Langlands
worked six additional years, at length posting the long paper [160] with his results
in Russian, intending it especially for the Russian-American mathematicians in the
field. He then worked further to convert it to the paper [162] in English, which he
posted finally in 2020. I have read only the short note [161] describing his aims and
results in quite general terms, but I shall look forward to reading the long paper.

The background for the paper is interesting. Langlands was motivated by the
early paper [28] of Atiyah, written before his much better known work on the index
and fixed point theorems. In it, Atiyah presented a concrete classification of the set
of complex principal bundles of dimension n over a complex torus, which is to say,
the set (159) with G = GL(n) and X an elliptic curve [28, Theorem 7]. This would
be an exact fundamental domain for the space (159), rather than an approximate
fundamental domain of the kind attached to a Siegel set in the arithmetic theory.
Informed by this paper (which I am told is hard going), Langlands turned next to
Atiyah’s widely read paper [29] with Bott. He then set about studying the space of
complex plane bundles over an elliptic curve, the special case of Atiyah’s classifica-
tion with n = 2. Langlands has reported that the desired Hecke operators and their
eigenvalues appeared, in what seems to have been rather dramatic fashion, only at
the very end.

In his note [161], Langlands has proposed a number of ways to attempt to extend
these results. The first step might be to establish them for GL(n)-bundles over X ,
the setting of Atiyah’s classification. One could then attempt to replace GL(n) by an
arbitrary complex group G, and X by an arbitrary (compact, nonsingular) Riemann
surface.32 Langlands suggests that these last extensions will be much more difficult,
since they would require, among other things, major extensions of Atiyah’s classi-

32 The case that X is the Riemann sphere is presumably easy. As Atiyah noted at the beginning of
his article, Grothendieck has shown that any vector bundle over a rational curve is a direct sum of
line bundles.
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fication. One would of course also have to be armed with a firm command of the
Langlands paper [162], a serious prerequisite to be sure. Assuming all of this could
be established, it would then be interesting to compare the results with the geometric
Langlands program based on abstract algebraic geometry. Finally, one could con-
sider “ramification”, or rather what would be ramification in the arithmetic theory.
That is, one would consider G-bundles with extra structure, just as one takes elliptic
curves with level structure in the classical theory of modular forms. It would en-
tail replacing the group KF by a (normal) subgroup of finite co-dimension, defined
by the analogue of congruence conditions ([157, p. 55]). A solution would have
particular interest, since the question was initially not widely investigated through
abstract algebraic geometry. (See however [8] for remarkable recent progress in this
subject.)

Langlands suggests that each of these extensions will be difficult (if not as diffi-
cult as the many arithmetic problems in Beyond Endoscopy). However, they would
probably have wide appeal. They seem to be revealing a new hidden structure in the
objects commonly studied by differential geometers and topologists, which in turn
is suggestive of the arithmetic structure in the original Langlands program.

We return to the discussion of Beyond Endoscopy with some final comments on
the different possible approaches to functoriality. I have not mentioned the results
of Braverman and Kazhdan [39], and the subsequent contributions of Ngô and oth-
ers [187], [48], [38]. The idea is to try to establish the analytic continuation and
functional equation for various automorphic L-functions L(s,π,r) directly, and then
perhaps use converse theorems to establish functoriality. This has direct roots in
the work of Hecke and his original converse theorem, which we discussed in Sec-
tion 6 in our review of Jacquet–Langlands [103]. It is the opposite of Langlands’
fundamental idea of using functoriality to establish the general analytic continua-
tion and functional equation from the basic case of principal L-functions for GL(n).
I have not read these papers, and can make no further comment, even though I have
enjoyed lectures on the subject. Braverman and Kazhdan’s results also motivated
L. Lafforgue. He has conjectured a nonlinear Poisson summation formula, which
would be a consequence of functoriality, but which conversely would imply functo-
riality [128], [129].

We shall finish the report with some speculative remarks on the strategic differ-
ences between the (Arthur–Selberg) trace formula and the (Jacquet) relative “trace”
formula.33 Langlands’ strategy applied to the former, while the work of Venkatesh
for GL(2) on the latter faced fewer technical difficulties. (See also [194], [195],
[196].) We are of course a long way from realizing any of the general goals of Be-
yond Endoscopy, but it is reasonable to try to plan how best to move forward. I

33 This is not really a trace formula. In general, it would actually be a formula for periods of
automorphic forms, rather than for characters of automorphic representations. Let me take the
liberty of calling it (and any one of its variants) the period formula in what follows. We should
note that the periods here differ from the Grothendieck periods attached to motives discussed in
§9. They are defined as integrals of automorphic forms on G against cycles defined by subgroups H
of G, which can sometimes represent parings between cohomology classes and homology classes.
However, they make sense also for automorphic forms that are not motivic. We can call them
automorphic periods, as opposed to the motivic periods from §9.
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believe strongly in the trace formula (perhaps not surprisingly), and I will try to
express some of my reasons for this. However, I have limited experience with the
period formula, so the reader should keep an open mind. Besides, there is a different
point of view that I will express at the very end.

The trace formula is more highly developed. It has a clear general structure, and
each of its terms has a natural, well defined source. It is reasonable to think that each
of the terms will also have well defined role in Beyond Endoscopy. It is actually the
stable trace formula that would be applied to groups other than GLn. This is more
sophisticated, but it is completely general, and has an equally rigid structure.

The period formula, at least in the Kuznetsov formula that was applied by
Venkatesh to GL(2), depends on the fact that a cuspidal automorphic representation
of GL(2) has a Whittaker model. For a quasisplit classical group, it is now known
that every tempered, cuspidal L-packet contains a representation with a Whittaker
model [23, §8.3]. To exploit this, however, one would want to work with local and
global L-packets, which leads us back to the stable trace formula. For exceptional
groups, the property is not known, even though it is widely expected. However, a
proof would seem to require a theory of endoscopy for general groups. It may be
that general endoscopy would have to be a consequence of Beyond Endoscopy but
this is speculative. Keep in mind, however, that one really would want a full theory
of Beyond Endoscopy for all groups, including exceptional groups. For it would be
needed just to be able to classify the automorphic representations of, say, general
linear groups, in terms of functorial images of primitive representations of smaller
groups. This is closely related to the question of an explicit construction of the au-
tomorphic Galois group LF as described in Section 9.

For some more serious speculation (!), consider the following. Beyond En-
doscopy is a proposal for attacking the Principle of Functoriality. What about its
companion, Langlands’ Reciprocity Conjecture? Is it possible that some extension
of Beyond Endoscopy might have to be used to establish the two conjectures to-
gether? Langlands suggests something of the sort in his interesting and suggestive
article [159]. It seems quite plausible to me. If so, the theory of general Shimura
varieties would assume a central role beyond what it already holds. As a highly de-
veloped and mature theory, ultimately based on the arithmetic theory of reductive
groups, it would presumably become a foundation for Reciprocity rather than just a
source of interesting examples, much as the theory of Shimura varieties attached to
GL(2) is a foundation of the STW-conjecture for elliptic curves over Q. Of course
it would also demand fundamental new techniques, of which Wiles’ proof, and the
more recent work of Taylor and collaborators, would represent a beginning.

Take for example the role of automorphic representations that are finite.34 These
are the automorphic representations that ought to give nonabelian class field theory,
surely the ultimate motivation. As we have already observed, they are to be con-
sidered the objects at the heart of Beyond Endoscopy, and for which the proof of

34 By this I mean the analogue for any G over F of classical modular forms of weight 0 or 1,
sometimes called modular forms of type A00. In general, they correspond to homomorphisms of
the global Weil group WF to the L-group LGF that factor through the quotient ΓF , or equivalently,
whose image in Ĝ is finite.
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Functoriality would presumably be the deepest. But they also represent Artin mo-
tives, the most basic of motives. The Reciprocity Conjecture in this case becomes
the corresponding case of Functoriality. Since Beyond Endoscopy is supposed to
lead to a general proof of Functoriality, it would be surprising if it did not have
some major role in the proof of Reciprocity.

It is not hard to think of other analogies between Functoriality and Reciprocity
that might be hinting at a common proof. My point is simply this. If the intuition
we are taking is valid, we would be well advised to formulate arguments in terms
of the stable trace formula. For we would have to come to the problems with a deep
understanding of the automorphic properties of general Shimura varieties. As we
have seen, these are almost as closely tied to the stable trace formula as are the
automorphic representations themselves.

As a final thought, let me consider a different way of viewing the original ques-
tion. It is a philosophical query, related to the duality between automorphic forms
and automorphic representations. Automorphic forms go back to the end of the
nineteenth century with Poincaré, followed by the successive generalizations of
Hilbert, Siegel and Harish-Chandra. The notion of an automorphic representation
came much later, after the adelic language had become common. As we have noted,
the term itself seems to have first appeared in Borel’s 1976 Bourbaki lecture. But
it was Langlands who emphasized the dichotomy between the two notions. As we
have seen, this is expressed in the Corvallis papers [35], [145]. The two formulas
we are considering reflect this dichotomy. Their parallel origins are clearly viewed
in the following simple diagram

automorphic representations automorphic forms

automorphic characters automorphic periods

trace formula period formula

Do the two formulas (or classes of formulas) play dual roles? Or is the diagram
a red herring? Do they give information that is sometimes complementary, or will
they ultimately reduce to the same identities, whatever the circumstances? The two
formulas are in any event sufficiently different that they could both be applied sep-
arately to Beyond Endoscopy, and then compared. It would not matter if the results
overlap. In fact, it would be very useful to have a clear understanding of their com-
mon properties. This would give us a broader perspective for when we run into
difficult problems that demand new ideas, as we most surely will!
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Bourbaki (1974/1975: Exposés Nos. 453–470), Exp. No. 466, pages 183–222. Lecture Notes
in Math., Vol. 514. 1976.

33. A. Borel. Automorphic L-functions. In Automorphic forms, representations and L-functions
(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos.
Pure Math., XXXIII, pages 27–61. Amer. Math. Soc., Providence, R.I., 1979.

34. A. Borel and W. Casselman. L2-cohomology of locally symmetric manifolds of finite vol-
ume. Duke Math. J., 50(3):625–647, 1983.

35. A. Borel and H. Jacquet. Automorphic forms and automorphic representations. In Automor-
phic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ.,
Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 189–207. Amer.
Math. Soc., Providence, R.I., 1979. With a supplement “On the notion of an automorphic
representation” by R. P. Langlands.

36. A. Borel and N. R. Wallach. Continuous cohomology, discrete subgroups, and representa-
tions of reductive groups, volume 94 of Annals of Mathematics Studies. Princeton University
Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980.

37. M. V. Borovoı̆. Langlands’ conjecture concerning conjugation of connected Shimura vari-
eties. Selecta Math. Soviet., 3(1):3–39, 1983/84. Selected translations.
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203. L. Schwartz. Théorie des distributions. Tome I. Actualités Sci. Ind., no. 1091 = Publ. Inst.

Math. Univ. Strasbourg 9. Hermann & Cie., Paris, 1950.
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The Norwegian Academy of Science and Letters has decided to award the Abel
Prize for 2019 to Karen Keskulla Uhlenbeck, University of Texas at Austin,

“for her pioneering achievements in geometric partial differential equations, gauge theory
and integrable systems, and for the fundamental impact of her work on analysis, geometry
and mathematical physics.”

Karen Keskulla Uhlenbeck is a founder of modern Geometric Analysis. Her per-
spective has permeated the field and led to some of the most dramatic advances in
mathematics in the last 40 years.

Geometric analysis is a field of mathematics where techniques of analysis and
differential equations are weaved with the study of geometrical and topological
problems. Specifically, one studies objects such as curves, surfaces, connections and
fields which are critical points of functionals representing geometric quantities such
as energy and volume. For example, minimal surfaces are critical points of the area
and harmonic maps are critical points of the Dirichlet energy. Uhlenbeck’s major
contributions include foundational results on minimal surfaces and harmonic maps,
Yang–Mills theory, and integrable systems.

Minimal surfaces and bubbling analysis
An important tool in global analysis, preceding the work of Uhlenbeck, is the

Palais–Smale compactness condition. This condition, inspired by earlier work of
Morse, guarantees the existence of minimisers of geometric functionals and is suc-
cessful in the case of 1-dimensional domains, such as closed geodesics.

Uhlenbeck realised that the condition of Palais–Smale fails in the case of surfaces
due to topological reasons. The papers of Uhlenbeck, co-authored with Sacks, on
the energy functional for maps of surfaces into a Riemannian manifold, have been
extremely influential and describe in detail what happens when the Palais–Smale
condition is violated. A minimising sequence of mappings converges outside a finite
set of singular points and by using rescaling arguments, they describe the behaviour
near the singularities as bubbles or instantons, which are the standard solutions of
the minimising map from the 2-sphere to the target manifold.
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In higher dimensions, Uhlenbeck in collaboration with Schoen wrote two foun-
dational papers on minimising harmonic maps. They gave a profound understanding
of singularities of solutions of non-linear elliptic partial differential equations. The
singular set, which in the case of surfaces consists only of isolated points, is in
higher dimensions replaced by a set of codimension 3.

The methods used in these revolutionary papers are now in the standard tool-
box of every geometer and analyst. They have been applied with great success in
many other partial differential equations and geometric contexts. In particular, the
bubbling phenomenon appears in many works in partial differential equations, in
the study of the Yamabe problem, in Gromov’s work on pseudoholomorphic curves,
and also in physical applications of instantons, especially in string theory.

Gauge theory and Yang–Mills equations
After hearing a talk by Atiyah in Chicago, Uhlenbeck became interested in gauge

theory. She pioneered the study of Yang–Mills equations from a rigorous analytical
point of view. Her work formed a base of all subsequent research in the area of
gauge theory.

Gauge theory involves an auxiliary vector bundle over a Riemannian mani-
fold. The basic objects of study are connections on this vector bundle. After a
choice of a trivialisation (gauge), a connection can be described by a matrix-valued
1-form. Yang–Mills connections are critical points of gauge-invariant functionals.
Uhlenbeck addressed and solved the fundamental question of expressing Yang–
Mills equations as an elliptic system, using the so-called Coulomb gauge. This was
the starting point for both Uhlenbeck’s celebrated compactness theorem for con-
nections with curvature bounded in Lp, and for her later results on removable sin-
gularities for Yang–Mills equations defined on punctured 4-dimensional balls. The
removable singularity theory for Yang–Mills equations in higher dimensions was
carried out much later by Gang Tian and Terence Tao. Uhlenbeck’s compactness
theorem was crucial in Non-Abelian Hodge Theory and, in particular, in the proof
of the properness of Hitchin’s map and Corlette’s important result on the existence
of equivariant harmonic mappings.

Another major result of Uhlenbeck is her joint work with Yau on the existence
of Hermitian Yang–Mills connections on stable holomorphic vector bundles over
complex n-manifolds, generalising an earlier result of Donaldson on complex sur-
faces. This result of Donaldson–Uhlenbeck–Yau links developments in differential
geometry and algebraic geometry, and is a foundational result for applications of
heterotic strings to particle physics.

Uhlenbeck’s ideas laid the analytic foundations for the application of gauge the-
ory to geometry and topology, to the important work of Taubes on the gluing of
self-dual 4manifolds, to the ground-breaking work of Donaldson on gauge theory
and 4-dimensional topology, and many other works in this area. The book written
by Uhlenbeck and Dan Freed on “Instantons and 4-Manifold Topology” instructed
and inspired a generation of differential geometers. She continued to work in this
area, and in particular had an important result with Lesley Sibner and Robert Sibner
on non self-dual solutions to the Yang–Mills equations.
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Integrable systems and harmonic mappings
The study of integrable systems has its roots in 19th century classical mechan-

ics. Using the language of gauge theory, Uhlenbeck and Hitchin realised that har-
monic mappings from surfaces to homogeneous spaces come in 1-dimensional
parametrised families. Based on this observation, Uhlenbeck described algebraically
harmonic mappings from spheres into Grassmannians relating them to an infinite-
dimensional integrable system and Virasoro actions. This seminal work led to a
series of further foundational papers by Uhlenbeck and Chuu-Lian Terng on the
subject and the creation of an active and fruitful school.

The impact of Uhlenbeck’s pivotal work goes beyond geometric analysis. A
highly influential early article was devoted to the study of regularity theory of a
system of non-linear elliptic equations, relevant to the study of the critical map of
higher order energy functionals between Riemannian manifolds. This work extends
previous results by Nash, De Giorgi and Moser on regularity of solutions of single
non-linear equations to solutions of systems.

Karen Uhlenbeck’s pioneering results have had fundamental impact on contem-
porary analysis, geometry and mathematical physics, and her ideas and leadership
have transformed the mathematical landscape as a whole.



Mathematical Meanderings

Karen Keskulla Uhlenbeck

Childhood and Education

I was born during World War II as the first of four children of an artist mother and an
engineer father. My parents had come of age during the depression, which shaped
their lives and my early years. My father worked for the Aluminum Company of
America, and my parents moved from New Jersey to Ohio during the war at least in
part because the aircraft industry was relocated to the midwest.

Fig. 1: The Keskulla family in 1944 (left) and 1946 (right). (Photo: private)

I was not an exceptional child, although I remember telling an adult acquaintance
very seriously that I was not allowed to learn to read before I entered school because
of “the Dewey decimal system.” I had confused the theories of the educator John
Dewey with the numbering of books in the library due to Melvin Dewey. One of my
vivid memories is of getting my library card at the age of eight, and starting on a
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career lasting me well into adulthood of reading everything I could get my hands on.
I read every book in the house at least three times. I particularly recall the Modern
Library editions of Freud and of the plays by Ibsen. I believe Swann’s Way defeated
me at the time.

Some of my even earlier memories are of playing seriously with blocks; I still re-
member their coloring and shapes. I was lucky to have a brother two years younger,
so our house was equipped with tinker toys, erector sets and Lincoln logs. He did
not play much with them, but I spent hours designing elaborate structures. I also
absolutely loved jigsaw puzzles: I remember still the shapes of pieces from those
puzzles of my early years. It seems in line with these memories that I played elabo-
rate games of double solitaire throughout my childhood. This absorption with books,
blocks, jigsaw puzzles, maps and cards was the despair of my mother, who thought
I should be doing something constructive.

My childhood was a rich one, full of music, art, plays, gardening, camping, ca-
noeing and hiking. I must have been a very good student, as I was valedictorian
of my high school class, but if I had ambition, it was the ambition to learn rather
than to be something. My intelligence was more an embarrassment than an asset
in high school. However, my father borrowed books from the library which started
me reading popular science at home; I recall particularly the popular books by the
British astronomer Fred Hoyle. My first mathematical achievement was to follow
the argument that there were several different kinds of infinity, which is in George
Gamow’s book “One, Two, Three – Infinity”. Mathematics to me was logic puzzles
like the Prisoner’s Dilemma, which did not interest me, then or now. I recall signing
up for advanced Latin instead of honors mathematics which was taught at the same
time. I was fascinated by the physics and cosmology I had discovered at home and
started college at the University of Michigan as a physics major.

Fig. 2: Karen in 1952 (left) and 1958 (right). (Photo: private)
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My love affair with mathematics started a couple weeks into my first term in
honors calculus. The existence of this honors class and many of the other programs
I attended as a student was due to the US response to Sputnik (1957). The need
for scientists was deemed so great that women and minorities were explicitly wel-
comed. The TA for the course stole a march on the professor by showing us in the
evening help session how to rigorously define a derivative by taking limits. I recall
turning to a fellow students and saying with great excitement “Are you allowed to
do that?” Some months later we got to the Heine–Borel theorem and I still remem-
ber the technique of little boxes, if not the theorem. A fortuitous circumstance put
my studies into high gear. I lived in New Jersey and did not go home for vacations,
which I dutifully spent according to my upbringing checking out things like the lo-
cal art museum. That first year I made the acquaintance of a mathematics professor
Dan Hughes in front of a large canvas in the small campus museum. Suddenly I was
grading linear algebra (without taking it), sitting in graduate classes as a sophomore,
as well as babysitting for several professors as a result of this encounter. It helped
to acquire a boyfriend who was a graduate student in mathematics.

I like to tell a story about my first graduate class, which was in algebra. As
I recall, the high point of the course was a proof of the Wedderburn Theorems.
As I had not a very good grasp of the canonical forms for real matrices, I did not
understand it very well. Either out of kindness or actual achievement, I got a B for
the semester. The experience did not discourage me a bit as I had enjoyed the course.
Three years later when I came to take prelim exams in graduate school, what I had
heard as a sophomore made perfect sense and I was able to pass the algebra prelim
without taking another algebra course. Learning is not linear.

As a complement to the already excellent education I was receiving at the Uni-
versity of Michigan, I enrolled in a junior year abroad program through Wayne State
University and spent my junior year in Munich. The formal lectures at the university
were an eye opening contrast to the small mathematics classes I had had in Michi-
gan, but I also gained confidence in discovering that the education I was getting at
Michigan was as good or better than that of the other students, who came from all
over the US. A true child of my parents, I also fell in love with opera, appreciated
classical German drama, checked out the art museums in Italy at spring break, and
learned to ski.

Back in the US, I took several graduate classes and decided what to do next. I
still had no idea of what I wanted to be, but seven years after Sputnik, money and
opportunity were readily available for graduate study. My parents had some idea
that I would be able to teach with this background and were agreeable. Besides, my
(male) friends were all going to graduate school. One of the other women students
had applied to Princeton, which did not accept women at that time, but I was not
interested in challenging the status quo. Of course she was not admitted. I picked
NYU, which I knew had a solid record in turning out women PhDs. Living in New
York for a year was a wonderful experience, and I felt very much at home in the
department. One of the best experiences was second semester complex variables
with Cathleen Morawetz. This is the only full length mathematics course I have sat
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in throughout my life which was taught by a woman, although I continued to audit
mathematics courses through my years as a post doc and faculty member.

At the end of my first year at NYU I married my boyfriend Olke Uhlenbeck
(who was a graduate student at Harvard in biophysics) and transferred to Brandeis.
This was the best thing that could have happened to me. I had an NSF graduate
fellowship and most likely would have been accepted at MIT or Harvard, but I did
not even apply. The last thing I wanted to do was to be on the front lines of the
second wave of feminism. The very thought was distasteful. When I did meet that
difficulty in Berkeley as a post doc, I was at least better prepared mathematically.

Right away I was drawn to the course on the calculus of variations taught by
Richard Palais, who became my thesis advisor. I had wandered around liking one
subject after another, but the subject of global analysis, where they all fit together,
caught me. At the time, global analysis was new and different, the fashionable sub-
ject. Many of the familiar theorems from calculus and finite dimensional topology
carry over into infinite dimensions and it was believed were on their way to be-
coming a powerful tool. The Atiyah–Singer index theorem connecting the index
of a system of partial differential equations with the topology of the symbol dates
from 1963, as does the ground breaking paper of Eells and Sampson on harmonic
maps into manifolds of non-positive curvature. Smale’s infinite-dimensional ver-
sion of Sard’s theorem gave a whole new meaning to the word generic, and the
Palais–Smale condition gave directly a route to Morse theory for multiple integrals
in the calculus of variations. There was a weekly (Monday evening as I recall) joint
Harvard–MIT–Brandeis global analysis seminar which I faithfully attended along
with many of the established mathematicians. Mathematics was exciting!

Dick was a wonderful thesis advisor, who organized and polished his thoughts
and funneled many basic papers in PDEs through to me. I had a bent for the technical
analysis, and started a career of understanding, writing down and loving inequali-
ties. Dick’s approach to proving the existence of a minimum was to write down a
continuous non-negative function on a compact connected set, and to show it was
never zero and appeal to a theorem. Mine was to find the lower bound. The contrast
of approaches served us very well. I still remember going into his office and ask-
ing him about the heat equation, and getting a beautiful synopsis which served me
well for years. My thesis was hardly earth shattering. I showed that some function-
als (like the p-harmonic or the biharmonic functional) on maps between manifolds
satisfied the Palais–Smale condition, put some basic metric structures on manifolds
between maps, and proved some regularity theorems.

I finished my PhD in 1968 after three years at Brandeis, and the question of
what to do next came up. My husband had not yet finished his PhD, and no one
(including me) thought I should sit around and do nothing, so Dick looked for a
temporary teaching position for me. I was about to take one at Boston College, when
MIT came through and, somewhat as an afterthought, offered me an instructorship,
which I promptly accepted. I had already met Tony Tromba, Ulrich Koschorke and
Mike Shub my last year at Brandeis, and now my peer group grew to include Nancy
Kopell, John Franks and the rest of the Moore Instructors at the time. I think I
audited a course taught by Victor Guillemin, but am a bit hazy on this. I spent the
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year writing up my thesis for publication and trying to start up a research program
of my own.

In order to write this autobiography, I took a look at my early papers. They grew
directly out of my graduate studies, give a good picture of the mathematics I learned
from my advisor, and appeared in print over the next few years. I had almost for-
gotten them. I had been frustrated by the paper of Eells and Sampson, as I saw no
reason why the (to me) cumbersome technique of solving the heat equation should
be necessary to find the harmonic maps found by Eells and Sampson. In “Harmonic
Maps, a Direct Method in the Calculus of Variations” (1970), as Sacks and I did
again later, I introduced a perturbation and considered∫

M
(|ds|2 + ε|ds|p)dµ

for s : M→ N and let ε → 0. For positive ε and p > dimM, this integral does sat-
isfy the Palais–Smale condition. If the image manifold has non-negative curvature,
estimates are available, and a limit harmonic map can be found this way. This paper
(really a note) received a positive review by Eells, but got no other attention. Since
the integrals I had dealt with in my thesis were on Banach manifolds, not Hilbert
manifolds, “Morse Theory on Banach Manifolds” (1972) defined a non-degenerate
critical point of finite index and showed that a handle-body decomposition of a Ba-
nach manifold could be done in the absence of the Morse lemma (which cannot be
true except in a Hilbert manifold). The paper “The Morse Index Theorem in Hilbert
Space” (1973) grew out of a paper of Smale’s (reviewed by my advisor Palais) on
the Morse Index theorem, showing that for an integral over a manifold with bound-
ary, the index of a critical map could be computed using the zeros of the second
variation restricted to a sweep out. I was always slow to publish and agonized over
writing, although I never had any difficulty in thinking up projects or getting papers
accepted for publication.

Midcareer

The question of what to do when my husband finished his PhD was more serious.
Olke was offered a Miller fellowship at Berkeley, which he accepted enthusiasti-
cally. I was not sure what I would do, but again through the influence of my thesis
advisor, several weeks after he accepted the position, I was offered a lectureship,
which I promptly accepted. The move to Berkeley in 1969 proved indeed exciting.
This was the period of the Vietnam war protests, campus disruption, volatile politi-
cal discussion and issues surrounding the changing position of women. Despite (or
because of) all this, my mathematics flourished. I came under the influence of Abe
Taub, who had a distinguished career in a number of different areas (relativity, fluid
mechanics and shock waves, the large Univac computer) and was now lecturing on
quantum mechanics and quantum field theory. I also attended, and as I recall was
asked to organize, the analysis seminar. It was my good fortune to listen to Steve
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Smale in his magnificent course on celestial mechanics. I loved it and was well pre-
pared. I recall showing the notetakers for the course how to compute the second
variation of a constrained variational problem. I later regretted not taking part in the
differential geometry centered around S.S. Chern. S.T. Yau, who was at Berkeley at
the same time I was, remembers me, but sadly I do not remember him. Of my peer
group, which included Blaine Lawson and Alan Weinstein, I had the most contact
with Jerry Marsden and to a lesser extent Arthur Fisher.

Fig. 3: Karen in 1969. (Photo: private)

I started two mathematics projects during this time. This first began with a fasci-
nation with eigenvalues and eigenfunctions and originated with the course on ODEs
I taught at MIT. The eigenfunctions of a sphere seemed magical, and I tried to under-
stand some of the group theory behind their structure. Since I did not have the sense
to ask anybody about it, I did not get very far. I knew that Sturm–Liouville theory
was one-dimensional, and found the page in Courant–Hilbert about nodal domains
in higher dimension. This led me to think about generic properties, and I was able
to prove some nice results about generic behavior of eigenvalues and eigenfunctions
with a simple application of the Sard–Smale theorem. I really wanted to understand
how to codify the fact that the eigenfunctions got bumpier and more complex as
the eigenvalue grew; I talked enthusiastically at length about the problem to any-
body who would listen. Recently I found out that at that time exactly these types of
questions were being addressed by applied mathematicians, but the chasm between
applied and pure mathematics was wide at that time.

My second project came out of the course given by Ray Sacks on general relativ-
ity that I audited as a lecturer at Berkeley. I confess that I learned basic differential
geometry for the first time in this course. But in thinking about how light waves
bend about the sun, I invented a way to count their images using Morse theory. To
do this project I spent a great deal of time reading the textbooks and basic papers of
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Hawking, Ellis and Penrose. I thought of turning my knowledge of PDEs to general
relativity. When I discovered that, in addition to the Einstein equations one had to
incorporate fluid flow equations, I gave it up as simply too difficult.

When it came time for the serious business of applying for tenure track jobs,
things got complicated. I am glad I do not know what went on in faculty meetings
when I was hired as a post doc or considered as an assistant professor; I would guess
that very little of it had to do with my merits as a mathematician. My husband was
interested in staying in Berkeley, and his department was enthusiastic, but when I
asked the mathematics department about possibilities for me, the answer was “Well,
there is always an epsilon possibility.” So we applied elsewhere. My husband re-
ceived many offers, but at least one mathematics department told me I should apply
for a suitable position at a women’s college. So we took jobs at the one place that
offered me a job – the University of Illinois. In the end, Berkeley did offer me an
assistant professorship, and spent the next few years listing me as a faculty member
after I turned them down (with great pleasure). I found the next few years of trying
to be a married woman professor difficult enough anyway, and it would have been
impossible in the political climate at Berkeley.

There was a second difficulty in my job search. Global analysis had been the fad
in the sixties, and many young mathematicians had enthusiastically written theses
in the subject. At that time the dynamics group and the functional analysis group
were linked, and in both cases, tensions arose between the more classical fields
of partial and ordinary differential equations and the new approaches. Skepticism
arose doubting the claims of global analysis, and this was reflected in how and
where the younger mathematicians could get jobs. Remnants of this tension still
exist in dynamics, and S.T. Yau, when he burst on the scene, renamed global analysis
geometric analysis, to distinguished it from this “soft” predecessor. Despite being
trained by a differential topologist, I always had a bent for hard analysis, so I came
out of this in the end rather well.

At first my mathematical progress was better than my personal one. In my first
years at Champaign-Urbana, I finally solved the regularity problem for p-harmonic
maps that I had been working on steadily since graduate school. Harmonic maps be-
tween manifolds are critical points of an integral of the norm squared of the deriva-
tive of a map. This satisfies the Palais–Smale condition only in dimension 1. How-
ever, the critical points of the integral of the derivative raised to the p-th power, do
satisfy the Palais–Smale condition for p greater than the dimension of the domain
manifold. Unfortunately, these maps are in Sobolev spaces and not very smooth. To
be any good for geometry, they should have at least continuous derivatives. This is
a problem in analysis that has little to do with the geometry. It was a theorem of
De Giorgi–Nash–Moser for one-dimensional images. I was able to show the criti-
cal maps were Lipschitz in my thesis. I finally published the proof of smoothness
in the case of maps between Euclidean spaces, and others including Martin Fuchs
published the full result in the next few years.

I was able to do this only because at some point, maybe at the end of my graduate
career, I met Jurgen Moser. He sat down with me, talked over what we now call the
Moser iteration scheme, and sent me reprints of his papers (which I carefully read).
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Later, when I succeeded in finding a complete set of integrals for the classical Neu-
mann problem in looking at the dimensional reduced equation for minimal spheres,
I was embarrassed at how much he praised me in seminars. I still feel grateful to
him.

Before I move on mathematically, I should mention a couple of other important
people in my career. My father-in-law George Uhlenbeck was a famous physicist
who with Goudsmit had discovered spin in the lab (1925). He and his wife Else
were courtly Europeans, charming and encouraging without being critical or pushy.
From him I heard all about the inner workings of academia, the difficulties of getting
students jobs and the opinions physicists had of mathematicians. I also remember
still his advice on teaching “At the end of every lecture, tell them what you are going
to do in the next lecture, at the beginning of every lecture, tell what you did in the
previous lecture, and in the middle give the lecture.” As a student, I had found that
redundant, but coming from George Uhlenbeck, I put it into practice.

I also met Lesley Sibner at a conference in Trieste. Later I learned she had been
studying to be an actress when she took a required calculus course and fell in love
with mathematics. Her poise, her charm, her enthusiasm, her encouragement and
her mathematical abilities were something special to many people, particularly to
a younger woman trying to carve out a place in the mathematics community. We
became fast friends mathematically and personally. I visited her and her husband
Bob (also a mathematician) in New York often. Her influence can be seen in the
Acta paper where I wrote up the regularity theorem for p-harmonic maps. We did
later write a paper together on gauge theory. She was the first mathematician I truly
wanted to emulate.

The next event in my mathematical life came when Jonathan Sacks came as a post
doc to the University of Illinois. He had just received his PhD from the University
of California, Berkeley under the direction of Blaine Lawson, and made a point to
seek me out. Since I had not talked much to the geometers at Berkeley, we started
with little in common, but he brought to my attention the questions about minimal
surfaces in the air. He was enthusiastic and convincing and I certainly owe my foray
into minimal surfaces to him. I was intrigued by the ordinary differential equation
for equivariant spheres, which happens to be the classical Neumann problem. The
paper by Neumann is the one and only mathematics paper I have ever seen in Latin!
Looking back, I now sense a relationship between the endless solitaire I played as a
child and the manipulations which led me to find the integrals for the problem. More
importantly Jonathan and I realized how close the n = 2 dimension for harmonic
maps was to the Palais–Smale condition. If only the dimension were 2− ε or the
power were 2+ ε . Not being physicists, we took the second route and considered
the integral ∫

M
(1+ |ds|2)α dµ

for s : M → N and tracked the behavior as α = (1 + ε/2)→ 1 from above. We
realized right away that the limit could easily be a map to a point in N, but by looking
at the points where the energy concentrated, we obtained a map s : S2 =R2∪∞→N.
This map is a conformally parameterized minimal sphere. Of course, at first we had
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no idea that this phenomenon is universal for scale invariant problems. Neither can
we recall exactly who used the term “bubbling” but I began to get invitations to give
colloquia and was always trying hard to give colloquial explanations.

The next step in my trajectory was four talks given by Michael Atiyah at the Uni-
versity of Chicago on gauge theory. I no longer remember whether this was before
or after I moved to Chicago, but they made a deep impression on me. The impor-
tance and origin in physics was emphasized. I understood very little of what he said,
and struggled through his little book “The Geometry of Yang–Mills Fields” with-
out being much the wiser. At the time, there were two textbooks on the geometry
of fibre bundles (now called gauge theory); volumes by Steenrod and Husemöller.
They were very hard going (pity the poor physicists). It was not hard to see what
was missing, as the linear model for these equations is the cohomology theory given
by Hodge theory. The curvature was roughly the exterior derivative of the connec-
tion one form and needed to be paired with the equation making the connection
co-closed to form an elliptic system. This was basically the way to choose a good
representative for the connection. How to do this? The difficulties were well known
in physics as the Gribov ambiguity. Examples showed there could be many coor-
dinate systems (gauges) in which the connection one form was co-closed. There is
a variational problem, which unfortunately looks like the harmonic map variational
problem for which the critical dimension is 2, considerably less than 4 where we
needed it. I mulled over this for over a year. I recall the sudden moment of “Eu-
reka.” The space of connections in a ball with a small enough norm on curvature is
connected, open and closed. Very little geometry, topology or fancy techniques in
PDEs. Just some nice estimates. It was the same continuity method used by S.T. Yau
at about the same time in his solution of the Calabi conjecture which rocketed him
into well-deserved fame.

It is worth mentioning the developing relationship between theoretical physics
and geometry. Mathematicians had never given up trying to understand quantum
mechanics and general relativity, but I recall very definitely from my graduate school
days a mathematician saying to his physicist colleague “Let me tell you what is re-
ally going on (in your physics).” I knew that this was not useful interaction. Things
changed, partly as a result of the physicists’ discovery of group theory, partly as the
physics models became more geometric, partly for many other reasons documented
by many other people. When I learned about black holes in the 60s, they seemed
to be a mathematical fabrication rather than one of the basic concepts in cosmol-
ogy. With the change, physicists wanted to use if not understand the mathematics,
but their physical insights gave new insight into the mathematics. Most of my ex-
perience has been with the fruitful interactions of subjects within mathematics with
each other, but I never forget that the mathematicians could have written down the
Yang–Mills equations. They just didn’t. I hung around the fringes of physics for
many years, along with a lot of mathematicians, but I never got any insight as to
their thought processes. It is a good deal easier for a theoretical physicist to learn
techniques from mathematicians than it is for a mathematician to gain physical in-
tuition.
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This stage of my career culminated with Simon Donaldson’s application of gauge
theory to the topology of 4 manifolds. I had made one of the necessary contributions
to his theorem by applying the idea of bubbling to the Yang–Mills equations, which
are scale invariant in dimension four, and at this point I became very well known for
this contribution.

Let me catch up on my personal life. My marriage had not survived being a fac-
ulty wife in Champaign-Urbana, and I moved to Chicago to be with my present
husband, Bob Williams, also a mathematician. Primarily due to the efforts of Su-
san Friedlander, I got a tenured offer from the University of Illinois in Chicago,
where I was delighted to have other women colleagues: Vera Pless, Louise Hay,
Bhama Srinivasan and of course Susan. I was lucky enough to have the office next to
Howie Masur, and through him continued the interest in Teichmüller theory and Bill
Thurston’s reformulation of it that I started with Bill Abikoff in Urbana-Champaign.
(Did I mention that Bill Thurston had been the head TA in the calculus course in
Berkeley I was in charge of?)

Fig. 4: Karen in 1979. (Photo: private)

The academic year 1979–80 was spent at the Institute for Advanced Study in
Princeton. The year organized by S.T. Yau was an exciting one. Up until that time,
I had more or less been on the fringes of the mathematics community, but here I
met Rick Schoen, Leon Simon, Peter Li, Jean-Pierre Bourguignon and Chuu-Lian
Terng. I have a vivid memory of trying to geometrically understand the fibration of
hyperbolic 3-manifolds with Chuu-Lian Terng, when Robert Langlands came and
slammed the door to my office because we were so loud. At the end of the year, Rick
Schoen and I began a project to look at minimal harmonic maps from manifolds of
dimension greater than 2. This dimension is above the critical dimension, and we
found a new kind of bubbling that occurred along more complicated sets than the
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points that occurred at the critical dimension. This grew to three papers, although
my interest flagged a bit after we understood the basic phenomenon.

At this point I arrived, despite the fact that I never knew where I was going. I be-
gan to have graduate students, and accepted an offer from the University of Chicago
because I hoped to have more. Everything seemed to happen at once; the offer from
Chicago, a MacArthur Fellowship and election to the National Academy. Moreover,
S.T. Yau, who had become one of my staunchest supporters, enlisted me on a project
to prove the existence of Hermitian Yang–Mills fields on a compact Kaehler mani-
fold. I still think it a very nice theorem about a non-linear system of PDEs, although
the write up makes it look much harder than it really is. The algebraic geometers
much prefer the proof of Simon Donaldson with a much more algebraic approach.
In the wake of my name appearing on these theorems in gauge theory, the younger
theoretical physicists now recognized the name Uhlenbeck as belonging to me, not
my former father-in-law. I found this rather sad, but his name has reappeared in the
Ornstein–Uhlenbeck process so important in financial mathematics. While this is
a magnificent illustration of how mathematics developed to describe physical phe-
nomena becomes basic in applications far from physics, I am not sure what George
Uhlenbeck would have thought.

This era ended with a visit to the University of California, San Diego in the winter
of 1986. Mike Freedman had been there some years, S.T. Yau had moved there,
Richard Hamilton and Rick Schoen had joined him, and Leon Simon was willing to
come. I took surfing lessons and very much enjoyed meeting the younger post docs
and students surrounding the group. We (my husband and I) became enthusiastic.
In the end, the project of forming a geometric analysis group around S.T. Yau fell
through, and we all went elsewhere. But the idea of moving had come up, and the
following year Bob and I accepted jobs at the University of Texas. My graduate
students were horrified.

Texas and Beyond

My move to Texas was not greeted with cheers by my professional colleagues, who
were skeptical of the (they thought typically Texan) strategy for improving the rank-
ing of the department. Peter O’Donnell had endowed money for special chairs in
physics, chemistry, computer science and mathematics, which came with a very
good salary and funds which could be spent on professional activities with very few
strings attached. I was attracted by the presence of Steven Weinberg in theoretical
physics, and Bob by the knot theorist Cameron Gordon in mathematics and the ex-
perimental physicist Harry Swinney in physics. Bob also had family in Texas. We
moved in 1987, we bought a house in the hill country outside Austin and a pickup
truck, and I started attending courses and seminars in the physics department. Four
students came with me from Chicago, and all four and the later students I had in
Austin have done well professionally. I had too few postdocs, but all but one have
done very well.
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Two years later John Tate and Dan Freed joined the department. Both had pro-
found influences on me. John was the elder statesman I sought to emulate and I have
written about that elsewhere. Dan arrived, full of energy and enthusiasm, and essen-
tially pressuring me into countless projects: first of all writing a book, then building
a geometry group modeled on physics groups, founding the Park City Mathematics
Institute, establishing Saturday Morning Math and much more. Bob and I camped
in Big Bend or took bicycling trips in the winter, camped on the beach at Matagorda
Island in the spring and went out West to the Aspen Center for Physics, the Park
City Mathematics Institute and later to Montana State University in Bozeman in the
summer.

Fig. 5: Big Bend national park. (Photo: private)

Professional life in Texas suited me. The position of women was different here.
This was the Texas of Ma Ferguson, Ann Richards, Lady Bird Johnson, Liz Carpen-
ter, Molly Ivens and Barbara Jordan. Cécile DeWitt in the physics department helped
as well. The entire staff of the math department became my cheerleaders. During my
tenure in Austin, I met wonderful colleagues in many departments through lunches
with women faculty in the College of Natural Sciences and Engineering. Later on, at
the suggestion of one of Dan Freed’s graduate students Orit Davidovitch, we started
the Distinguished Women Lecture series, and a good number of the senior women
in mathematics in the country visited. I was able to support these efforts and many
male and female students and post docs on the Chair funds which came with my
position.

A description of this part of my life would be incomplete without a mention of
my trips with MacArthur Fellows. I had received the MacArthur “genius” award in
1983, and while I was at first quite intimidated by the other fellows, I had always
wanted to be a member of an intellectual elite. I had read everything I could about
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Fig. 6: Montana. (Photo: private)

Bloomsbury (with particular attention to Virginia Woolf). So I dove in. This is prob-
ably the only time in my life I regretted being a mathematician, since I did not have
the confidence to explain mathematical concepts to even physicists. I have a won-
derful memory of John Schwarz talking about string theory to a dozen MacArthur
Fellows stretched out in deck chairs under the stars in Hawaii. Groups of MacArthur
Fellows went on trips to experience and learn about the work of other fellows. We
paid for ourselves, but we did have grant money from the MacArthur foundation to
spend as we liked. An incomplete list of the places we went includes Hawaii, Ap-
palachia, Santa Fe, the Galapagos, the Brasilian rain forest, a Montana dinosaur dig,
and Madagascar. Bob went to a satellite launch. Mathematicians rarely attended, but
the three women mathematicians, Nancy Kopell, Ingrid Daubechies and myself with
our spouses went to every event we could. I made many friends in many disciplines
during this period.

In 1990 I became the second woman to give a plenary lecture at the Interna-
tional Congress of Mathematicians. The first had been Emmy Noether (one of my
heroes) in 1932. This still seems the most unreal moment of my career. After all, by
comparison the Abel Prize has been around less than twenty years. Under the influ-
ence of the MacArthur Fellows and a growing awareness of the difficulties younger
women were having, I became involved in activities that were not strictly mathe-
matics, but I continued searching for problems in mathematics. Despite my hanging
around physicists for years, I never acquired any intuition. Through reading the pa-
pers of Louise Dolan, I discovered that the classical Bäcklund transformations were
manifestations of the action of Birkhoff factorization on scattering data, but never
understood how either the physicists or the applied mathematicians had found them.
This project led me to join forces with Chuu-Lian Terng, a classical differential ge-
ometer who was also a student of Palais and had worked under Chern. Together
over the next decades we wrote a series of papers on integrable systems, founded
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Fig. 7: Karen, Nancy Kopell and Ingrid Daubechies in Amazonia 1996. (Photo:
private)

the Women and Math Program at the Institute for Advanced Study and became life-
long friends. I remain grateful to IAS for their support of the program for women
before it became fashionable, and I remain close friends with Nancy Hingston and
Antonella Grassi who worked with Chuu-Lian and myself in this program for many
years. This program benefitted many women, but in allowing me to mix friendship
with mentoring and mathematics, I may have benefitted the most.

Fig. 8: Karen in 1992. (Photo: private)

When I was asked to lead a special year at the Institute for Advanced Study in
1997–98, I immediately chose to pursue these interests in integrable systems fur-
ther. I had been learning the basics of non-linear wave and non-linear Schroedinger
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equations. I felt there must be some connection between the algebraic approach
from integrable systems and all the lovely inequalities involved in the Wick rotated
counterparts to Yang–Mills and harmonic maps. The year was a success because
of the quality of the post docs who attended. But my project has so far never led
anywhere. Many of the post docs arrived with their own agenda, more connected to
my previous work than my present interests. A few did switch gears. I subsequently
wrote a few papers in dispersive systems, but in the end I found that the subject,
despite its attractive collection of inequalities, was not something I could contribute
much to. At present, the probabilistic approach started by Bourgain seems to catch
at least some of the essence of the behavior of solutions to the equations. I am still
talking to one of my collaborators, Andrea Nahmod, who is part of a group studying
the Gross–Pitaevsky hierarchy. This is clearly integrable. The problem is to figure
out exactly what this means. It is hard to tease the geometry out of the algebra and
analysis. The subject of integrable systems has remained fractured and confusing
without ever catching the fancy of the mathematics community the way other sub-
jects have done. I am still hoping for bridges between the PDEs, the algebra and the
physics. KdV and non-linear Schroedinger appear over and over again. Is this be-
cause there are underlying connections, or just that the human mind can grasp only
a limited number of patterns?

Fig. 9: Karen, age 5, by Carolyn Keskulla (her mother).

The latter part of my career is not as interesting as the earlier part. I never did
come to feel comfortable in the wider professional circles of mathematics. Until
I came to write this autobiography, I had regrets about not forming an influential
group of mathematicians around me, not carrying my weight in professional or-
ganizations, not supporting my students far enough into their careers, not carrying
through on the problems I had started, and giving up on the questions I still had. I
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never learned geometric measure theory, what the Ornstein–Uhlenbeck process was,
or why integrable systems appear in conformal field theory. In the last decade I de-
veloped health problems which made it difficult for me to have new ideas, although
I still appreciated mathematics. Allergies forced my move from Texas. I am grateful
to the Institute for Advanced Study for providing a new home for me.

The Abel prize comes at a good time for me to look back over my career. Many
thanks to the Abel Committee and the Norwegian government. Some of the mone-
tary award has gone into EDGE and IAS programs for underrepresented minorities.
I have changed my medication, and have been able to do mathematics again. When-
ever a query comes my way as to what my greatest difficulty has been, I answer
“ill health.” My two present collaborators, Penny Smith and George Daskalopoulos
have enabled me to prove theorems again. I am as excited as I have ever been about
the project with George to connect the topological structures of Thurston and his
school with ∞ harmonic and least gradient maps. My talents and abilities fit well
into the development of mathematics in the last fifty years, and I still get the plea-
sure from doing mathematics that I got as a child playing with blocks. What more
can one ask?
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1 Introduction

In this article we discuss some of Karen Uhlenbeck’s most prominent mathematical
results. Uhlenbeck’s publications range across many mathematical areas, including
differential geometry and geometric analysis, elliptic and hyperbolic partial differ-
ential equations and integrable systems. In this article we only attempt to describe
some part of this range. The main omissions are that we say nothing about her work
on wave and Schroedinger maps, and very little about integrable systems. The core
of the article is contained in Sections 3, 4, 5 and 6, which give an account of some
highlights of Uhlenbeck’s work on the analysis of harmonic maps and Yang–Mills
connections. In each case we begin with the theory for the “critical dimension”—in
Sections 3 and 5—before going on to higher dimensions (in Sections 4 and 6). This
body of work has been absolutely fundamental in the developments of geometric
analysis over the past 40 years and with an impact that extends to many fields, from
symplectic geometry and low-dimensional topology to Quantum Field Theory and
the mathematics of liquid crystals. At the beginning and end of the article we discuss
two other contributions of Uhlenbeck which take somewhat different directions to
that in the core; each very influential and highly-cited. The first (in Section 2) is a
paper on nonlinear elliptic PDE theory and the other (in Section 7) is on integrable
systems aspects of harmonic maps from surfaces to Lie groups.

The author has written another review [15] of some of Karen Uhlenbeck’s math-
ematical work, which focused on variational methods. While there is overlap with
the current article we have made the focus here different and sought to avoid du-
plication. At some points in this article we refer to [15] for further discussion of
literature and background.

2 Nonlinear systems and p-harmonic functions

2.1 A regularity theorem

We begin our tour by discussing the 1977 Acta Mathematica paper [57] of
Uhlenbeck which was one of her first papers with a focus on “hard” PDE theory.
To set the scene for this, recall that the Laplace operator ∆ on functions on Rn is
the Euler–Lagrange operator associated to the Dirichlet energy, the integral of |du|2.
The solution of the boundary value problem for a harmonic function on a domain
with prescribed boundary values minimises the Dirichlet energy over the set of all
functions with those boundary values. A generalisation is to take any p > 1 and the
functional defined by the integral of |du|p. The associated Euler–Lagrange equation
is the nonlinear p-Laplace equation

d∗(|du|p−2 du) = 0. (1)
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The existence of weak solutions to this equation, lying in the Sobolev space Lp
1 and

with prescribed boundary values, is relatively straightforward but the question of
the regularity of these weak solutions is very subtle. The equation (1) is a degener-
ate elliptic equation at points where the derivative of u vanishes. We can write the
equation as

∆u+(p−2)∑νiν j
∂ 2u

∂xi∂x j
= 0,

where ν is the unit vector field

ν =
1
|du|

du,

and ν will usually be discontinuous at zeros of du. This means that one cannot
expect solutions of the p-Laplace equation to be smooth at such zeros. For example
the function u(x) = |x|β with β = (p−n)/(p−1) is a solution.

Uhlenbeck’s Acta paper established a central result on this regularity question,
as a particular case of a more general theory, showing that the derivative of a
p-harmonic function satisfies a C,α Hölder estimate for some α depending on p,n.
This particular result had been obtained before by Ural’ceva, appearing in Russian
[65]. But the theory developed in Uhlenbeck’s paper covers much more than this
model case, as we will now explain.

Let M be a smooth manifold, with its complex of differential forms

Ω
0 d→Ω

1 d→Ω
2 . . .

If M is compact and Riemannian then in Hodge theory the harmonic representa-
tive ω of a k-dimensional de Rham cohomology class is characterised as the min-
imiser of the L2 norm over all representatives of that class. It satisfies the equations
dω = 0,d∗ω = 0. In the spirit of the discussion above, it is natural to consider the
generalisation of this where one takes a positive function g on R and minimises∫

M
g(|ω|).

For example we could take g(|ω|) = |ω|p. For a small variation ω +dα in the fixed
cohomology class

g(|ω +dα|) = g(|ω|)+(dα,ρ(|ω|)ω)+O(α2)

where ρ is the function ρ(t) = g′(t)/t. So a minimiser satisfies the Euler–Lagrange
equation

d∗(ρ(|ω|)ω) = 0, (2)

in addition to the closed condition dω = 0.
This nonlinear generalisation of Hodge Theory was studied by the Sibners [46]

who established that for a large class of functions g there is indeed a unique min-
imiser, giving a weak solution of the equation (2). When k = 1 the closed 1-form ω
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can be written locally as the derivative of a function u and, when g(|ω|) = |ω|p, we
get back to the p-harmonic equation. The equations derived from other functions g
arise in the theory of gas dynamics, as explained in [46].

Uhlenbeck’s main theorem in [57] asserts that, for a large class of functions g,
these weak solutions are Hölder continuous. In fact her result is formulated for more
general elliptic complexes, such as the ∂ -complex. The conditions imposed on the
function g are, roughly speaking, that it should have the character of (|ω|2 + c)p/2

for some c ≥ 0. In the case when c = 0 the equation becomes degenerate at the
zeros of ω , just as we saw for the p-harmonic equation. But even in the easier case
when c > 0 the result was new. The force of the result in that case is that it applies
to systems of PDEs rather than to an equation for a single function. Problems 19
and 20 in Hilbert’s 1900 problem list asked about the existence and regularity of
solutions to variational problems. In the 1950s, De Giorgi and Nash obtained very
general results on the regularity of weak solutions to elliptic variational problems
for a single function, but examples show that these results do not extend to systems:
we refer to the discussion in [20], Chapter II. Such regularity questions form a theme
running through much of Uhlenbeck’s work discussed in this article.

In the remainder of this section we sketch some of the main parts of Uhlenbeck’s
arguments in [57]. To simplify our presentation we will consider only the case of the
de Rham complex and the function g(|ω|) = |ω|p. (Uhlenbeck’s results are stated
for domains in Rn but the proofs should extend to general Riemannian manifolds.)
The theorem we are discussing then is:

Theorem 2.1. Let ω be a k-form on the domain U ⊂Rn with coefficients in Lp which
is a weak solution of the equations

dω = 0 d∗(|ω|p−2
ω) = 0. (3)

Then ω is Hölder continuous on compact subsets of U.

2.2 A differential inequality

The foundation of Uhlenbeck’s proof is an idea which we will meet many other
times below: artful use of differential inequalities for functions can produce impor-
tant information about solutions of complicated systems of PDEs. To set things up,
given an exterior k-form ν with |ν |= 1 define a symmetric matrix (ai j) by the inner
products

ai j = (dxi∧ν ,dx j ∧ν) (4)

This is clearly a positive symmetric matrix (ai j) ≥ 0 and we also have an upper
bound (ai j)≤ (δi j). Indeed if we define (bi j) by

bi j = (Iiν , I jν),
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where Ii is the operation of contraction with ∂

∂xi
then (bi j)≥ 0 and it is a basic fact

of exterior algebra that ai j +bi j = δi j. Now, given a k-form ω on U ⊂ Rn we apply
this at each point where ω ̸= 0, taking ν = ω/|ω|, so we get functions ai j, defined
away from these zeros. Let Λ be the linear differential operator, depending on ω ,

Λ( f ) = ∑
i j

∂

∂xi

(
ai j

∂ f
∂x j

)
,

and define an operator L by

L = ∆ +
p−2
p−1

Λ .

(In this article we use the “analysts” sign convention for the Lapacian: ∆ = ∑
∂ 2

∂ 2x2
i
.)

Proposition 2.1. Let ω be an Lp
loc solution of the equations (3) and define H = |ω|p

and θ = |ω|(p−2)/2ω . Then, with the operator L as defined above,

L(H)≥ cp|∇θ |2,

where cp = 4p/(p−1)(p+2).

(In what follows we calculate as though all derivatives are defined in the elemen-
tary sense. Of course one has to make precise the meaning of the formula when ω

is a priori only in Lp, but we will ignore such technicalities here.)

To establish the inequality we begin with the formula

∇i|ω|p = p|ω|p−2(∇iω,ω).

Replacing p by (p−2) we get

∇i
(
|ω|p−2

ω
)
= |ω|p−2

∇iω +(p−2)|ω|p−4(∇iω,ω)ω,

so
( ω,∇i(|ω|p−2

ω) ) = (p−1)|ω|p−2(ω,∇iω) =
p−1

p
∇i|ω|p.

Thus
∆ |ω|p = ∑∇i∇i|ω|p ==

p
p−1 ∑∇i

(
ω,∇i(|ω|p−2

ω)
)
. (5)

Now recall the basic fact of Hodge theory, that the Laplacian on k-forms on Rn has
two expressions ∆ = −(d∗ d+ dd∗) = ∑∇i∇i. (This is the same as the statement
that ai j +bi j = δi j in the preceding discussion.) From (5) we get

∆ |ω|p = p
p−1

(P+Q) (6)

where
P = (ω,∆(|ω|p−2

ω))
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and
Q = (∇iω,∇i(|ω|p−2

ω)).

To understand the term P it is convenient to consider a compactly supported test
function f and the L2 inner product ⟨P, f ⟩L2 . This is

⟨ f ω,∆ |ω|p−2
ω⟩L2 .

Since d∗(ω|p−2ω) = 0 we can write this as

⟨d( f ω),d(|ω|p−2
ω⟩L2 ,

and since dω = 0 this becomes

⟨d f ∧ω,d(|ω|p−2)∧ω⟩L2 .

Now
d|ω|p−2 =

p−2
p
|ω|−2 d|ω|p = p−2

p
dH

so we can write this as

⟨P, f ⟩L2 =
p−2

p
⟨d f ∧ ω

|ω|
,dH ∧ ω

|ω|
⟩L2 .

By the definition of the (ai j) this equation is

⟨P, f ⟩L2 =
∫

∑ai j∇i f ∇ jH.

Since this is true for all f we have

P =− p−2
p ∑∇i(ai j∇ jH) =

p−2
p

Λ(H).

Now (6) becomes L(H) = Q. Turning attention to the term Q, we have

Q = |ω|p−2

(
|∇ω|2 +(p−2)∑

i
(

ω

|ω|
,∇iω)2

)
.

While, for θ = |ω|p/2−1ω ,

|∇θ |2 = |ω|p−2

(
|∇ω|2 +((p−2)+

(
p−2

2

)2

)∑
i
(

ω

|ω|
,∇iω)2

)
,

and, comparing the two, we see that Q ≥ 4
p+2 |∇θ |2, completing the verification of

Proposition 2.1.
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The significance of this Proposition 2.1 is that the divergence-form operator L
is uniformly elliptic with bounded measurable coefficients (we assume that (ai j) is
defined almost everywhere). That is, the eigenvalues of the coefficient matrix δi j +
p−2
p−1 ai j of L are bounded between 1−|(p− 2)/(p− 1)| and 1+ |(p− 2)/(p− 1)|.
This opens the way to apply the deep theory from the 1950s of elliptic operators
with measurable coefficients, which were the foundation for the results of di Giorgi
and Nash mentioned above.

2.3 Outline of proof of Theorem 2.1

One first issue is to show that the form ω in Theorem 2.1 is bounded on compact
subsets of the domain U , but we will pass over this to focus on Uhlenbeck’s proof
of Hölder continuity. (Her proof of boundedness uses related arguments.)

For background, we review some relatively elementary results for the standard
Laplace operator. Let B′⊂B be balls in Rn, for example the unit ball and the concen-
tric ball of half the radius. Let h be a positive function on B with ∆h≥ 0. Let M,M′

be the suprema of h on the balls B,B′ respectively. Then by the definition M ≥M′

and the maximum principle implies that M = M′ if and only if h is a constant, in
which case ∆h = 0. The next proposition gives two quantitative versions of this.

Proposition 2.2. There are constants C1,C2 such that if ∆h≥ ρ ≥ 0 on B then

(1) ∫
B′

ρ ≤C1(M−M′);

(2) ∫
B′
(M′−h)≤C2(M−M′).

We give a proof of the first item of Proposition 2.2. Let f be the solution of
∆ f =−ρ in B with f = 0 on the boundary of B and let g = h+ f . Then ∆g≥ 0 and
so the maximum principle implies that the supremum of g on B′ is at most that on
∂B, which is M. For x ∈ B′ we have

f (x) =
∫

B
G(x,y)ρ(y)dy,

where G is the Green’s function, which is positive in the interior of B. So there is an
ε > 0 such that for x,y ∈ B′ we have G(x,y)≥ ε , which implies that

f (x)≥ ε

∫
B′

ρ.

So for x ∈ B′

h(x) = g(x)− f (x)≤M− ε

∫
B′

ρ,
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so
M′ ≤M− ε

∫
B′

ρ,

which is the desired inequality with C1 = ε−1.
It is also easy to deduce the first item from the second, with a slightly different

choice of balls. Let χ be a cut-off function supported in B′, equal to 1 on some
smaller ball B′′ ⊂ B′. Then∫

B′′
ρ ≤

∫
B′

χ∆(h−M′) =
∫

B′
(∆ χ)(h−M′)≤ c

∫
B′
(M′−h)

where c = max|∆ χ|.

Now suppose that ω is a k-form on the ball B satisfying the equation (3) in
Theorem 2.1 and set H = |ω|p,θ = |ω|(p−2)/2ω as above. So Proposition 2.1 gives
L(H) ≥ ρ with ρ = cp|∇θ |2. Let M,M′ be the suprema of H on B,B′. Uhlenbeck
shows that an inequality of the same nature as the first item in Proposition 2.2 holds
in this situation, so that, for a suitable constant C,∫

B′
|∇θ |2 ≤C(M−M′). (7)

The proof uses results of Moser—part of the theory of operators with bounded
coefficients mentioned above—and many substantial additional arguments. In fact
Moser’s result gives the analogue of the first item in Proposition 2.2 for the opera-
tor L and Uhlenbeck obtains the analogue of the first item in the manner indicated
above, but additional arguments are required to carry this through because L depends
on ω . So we do not have the same control of |L(χ)| for the cut-off function χ . Of
course, in all this the techniques required to treat the operator L are quite different
from the elementary techniques which suffice for the Laplace operator.

The conclusion is that, in going from the ball B to the smaller ball B′, either the
supremum of H decreases substantially or θ is approximately constant on B′, in the
sense that the L2 norm of ∇θ is small.

The other main component in Uhlenbeck’s proof is a “perturbation theorem”
for solutions which are close to a constant. We state this over a fixed pair of balls
B′′ ⊂ B′.

Proposition 2.3. There are ε,κ > 0 such that if ω0 is a constant form with norm 1
and ω is a solution of (3) over B′ with M′ ≤ 2 such that∫

B′
|ω−ω0|2 ≤ ε, (8)

then ω satisfies a Hölder estimate

|ω(x)−ω(y)| ≤ κ|x− y|1/2

for x,y ∈ B′′.
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This is of the same flavour as “small energy” results which we will encounter
throughout this article. In fact one can go on from this, with a sufficiently small
ε , to obtain estimates on all derivatives of ω over B′′. The general idea is that the
constraint (8) keeps the solution in the regime where the nonlinear equation is well
approximated by its linearisation.

We now outline how Uhlenbeck puts these components together to prove Theo-
rem 2.1. Notice that our equations (3) are preserved by translations and dilations of
Rn and also by multiplying the solution ω by a non-zero constant. So the statements
above for fixed pairs of balls and—in Proposition 2.3— for ω0 of unit norm, scale
to corresponding result on balls of arbitrary size and for any non-zero constant form
ω0.

Suppose again that ω is a solution over B and normalise so that M = 1. Suppose
that M′ is close to M, so that the L2 norm of ∇θ is small by (7). Let θ0 be the average
of θ over B′. The Poincaré inequality implies that the L2 norm of θ − θ0 is small
and it also follows from the hypotheses of M,M′ that |θ0| will be close to 1. This is
not immediately what is needed to apply Proposition 2.3, because that needs control
of the L2 norm of |ω−ω0| for a constant form ω0. But, with additional arguments,
Uhlenbeck achieves this control, for ω0 = |θ0|2/p−1θ0.

The conclusion is that there is some fixed small λ > 0 such that if M′ > (1−λ )M
then ω satisfies the hypotheses of the perturbation theorem (after rescaling) over
B′ and hence a 1

2 -Hölder estimate over the interior ball B′′. This number λ will
determine the Hölder exponent achieved in Theorem 2.1. (Uhlenbeck remarks on
page 238 of [57] “it looks like λ will be rather small !”)

To prove Theorem 2.1 we suppose that the domain U contains the unit ball B =
B1. It suffices to estimate |ω(x)−ω(0)| for small x, say |x| ≤ 1

4 . (Strictly, ω is a
priori only defined almost everywhere, so some extra words are needed to make
sense of pointwise values, but we are ignoring such technicalities here.) Let M j be
the supremum of H on the 2− j ball centred at the origin. If M1 ≥ (1−λ )M0 we get
a Hölder estimate on ω over the 1

4 -ball B 1
4

and we are done. If not, we have some
definite decrease in the supremum: M1 ≤ (1− λ )M0. Now we consider the same
alternative for M1 and M2. If M2 ≥ (1−λ )M1 we have our Hölder estimate over B 1

8
and in addition we know that for x in B 1

4

|ω(0)−ω(x)| ≤ 2M1/p
2 ≤ 2(1−λ )2/pM1/p

0 ,

where we have used the facts that M2 is the supremum of |ω|p over the 1
4 -ball

and |ω(0)−ω(x)| ≤ |ω(0)|+ |ω(x)|. Continue in the same way: either M j+1 ≤
(1− λ )M j for all j or there is some k such that M j+1 ≤ (1− λ )M j for all j < k
but Mk+1 ≥ (1− λ )Mk. In either case we get an estimate on |ω(x)−ω(0)| in the
manner above and a little bookkeeping shows that this yields the desired Hölder
estimate. For example, consider the first situation when M j ≤ (1− λ ) jM0 for
all j. Then we must have ω(0) = 0 and for x with 2−k−1 ≤ |x| ≤ 2−k we have
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|ω(x)| ≤M1/p
0 (1−λ )k/p. This gives

|ω(x)| ≤ K|x|α ,

with α =−p−1 log2(1−λ ) and K = M1/p
0 2α .

There is an enormous literature in this area, especially on the p-harmonic equa-
tion. (At the time of writing, the Acta paper of Uhlenbeck has 316 citations on
MathSciNet.) One subtle question is the optimal Hölder exponent. For example, in
the case of p-harmonic functions in dimension n = 2, Iwaniec and Manfredi show
in [26] that the optimal exponent (for p ̸= 2) is

1
6

(
p

p−1
+

√
1+

14
p−1

+
1

(p−1)2

)
.

There are also many papers on the limiting cases p = 1,∞. One recent paper of
Daskalopoulos and Uhlenbeck [12] makes connections between ∞-harmonic func-
tions and Thurston’s theory of homeomorphisms between hyperbolic surfaces min-
imising the Lipschitz constant.

3 Harmonic maps of surfaces

3.1 Background

Let (M,g) and (N,h) be Riemannian manifolds. The harmonic mapping equation for
a map f : M→N is the Euler–Lagrange equation associated to the energy functional

E( f ) =
∫

M
|d f |2,

where the norm |d f | is the standard one defined by g,h. Familiar cases are when M
is 1-dimensional, where we get geodesics in N, and when N is 1-dimensional where
we get harmonic functions on M. Written explicitly in local coordinates xi on M and
yα on N the equations are

∆Myα +Γ
α

βγ
yβ

,i y
γ

, jg
i j,

where Γ α

βγ
are the Christoffel symbols on N. For analysis, it is often convenient to

take N to be isometrically embedded in some large Euclidean space V , which is
possible by Nash’s embedding theorem. This is never essential but we will use that
set-up in this article. Thus f can be thought of as a vector-valued function on M,
constrained to lie in N ⊂V . The harmonic mapping condition is that the projection
of ∆M f to the tangent bundle of N in V is zero. At each point y of N we have a
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second fundamental form By which is a symmetric bilinear map T Ny×T Ny→ νy,
where ν is the normal bundle. The harmonic mapping equation can be written as

∆M f +A f (d f ,d f ) = 0, (9)

where A f is the symmetric bilinear map, at a point x ∈M,

A f : Hom(T Mx,T N f (x))×Hom(T Mx,T N f (x))→V,

obtained from B f (x), the metric on T Mx and the inclusion ν ⊂V . It will sometimes
be convenient to extend A f , using orthogonal projection from V to T N, to a bilinear
map Hom(T Mx,V )×Hom(T Mx,V )→V , depending on x ∈M and f (x) ∈ N.

The dimension of M plays a crucial role in the theory of harmonic maps. In the
words of Eells and Lemaire in the Introduction to [17]“we imagine M made of rub-
ber and N made of marble. . . the map is harmonic if it constrains M to lie on N in a
position of elastic equilibrium”. In that picture we could say that higher-dimensional
rubber is weaker and is inclined to tear when searching for an equilibrium position.
When M is the 1-dimensional circle there is a geodesic in each homotopy class (a
rubber band) minimising energy, but the analogue is not true in higher dimensions.
For example it is easy to show that if M is a sphere of dimension 3 or more then the
infimum of energy in any homotopy class of maps from M to N is zero. The critical
dimension in the theory is dim M = 2. This is bound up with Sobolev inequalities.
Regarding N as isometrically embedded in the Euclidean space V , the energy func-
tional is just the square of the usual L2 norm of the derivative of a map f : M→V ,
but restricted to maps with image in N. If dim M = 1 the Sobolev inequalities state
that maps with derivative in L2 are continuous, in fact Hölder continuous with expo-
nent 1

2 . A sequence of maps convergent in the Sobolev space L2
1 converges pointwise

and the constraint that the map takes values in N is preserved in the limit. In higher
dimensions this is not true: dimension 2 is the borderline where a map with deriva-
tive in L2 is in Lp for all p but not necessarily continuous: evaluation at a point is
not well-defined for such a map—it is only defined up to sets of measure zero. The
critical nature of dimension two is related to conformal invariance of the energy. In
a general dimension dimM = n, if we multiply the metric g by a conformal factor
λ we change |d f |2 by λ−1 and the volume element by λ n/2, so when n = 2 these
factors cancel.

The main topic of this Section 3 is the paper [39] of Sacks, which opened up the
theory of harmonic maps in the critical dimension 2.

3.2 Bubbling

We begin with an illuminating example of maps from a flat 2-torus M to the standard
round 2-sphere S2, both oriented. Consider the homotopy class of maps of degree 1
from M to S2. There is a simple lower bound on the energy of such maps. We can
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consider M and S2 as Riemann surfaces with area forms ωM,ωS2 . Then we have at
each point of M:

f ∗(ωS2)≤ 1
2 |d f |2ωM (10)

with equality if and only if d f is complex linear. This is a simple calculation with
2× 2 matrices. If f has degree 1 then the integral of f ∗(ωS2) is the area of S2. So
we get the lower bound

E( f )≥ 2 Area(S2).

This lower bound is not achieved, because if it were the map would be holomorphic
and by elementary Riemann surface theory there is no degree 1 holomorphic map
from a torus to the Riemann sphere. On the other hand we can construct maps with
energy arbitrarily close to this lower bound. Let Dr be a small disc of radius r in
M centred at a point x0 and identify it isometrically with the standard r-disc in C.
Now take a very large disc DR ⊂ C and consider it as a subset of S2 via the usual
description S2 = C∪{∞}. So the complement of DR in S2 is a small disc centred at
the point at infinity. Let F : S2→ S2 be a map which is the identity on most of DR
but which collapses the boundary of DR to the point at infinity. It is clear that when
R is large we can do this in such a way that the energy of F is as close as we please
to that of the identity map, which is 2Area(S2). Finally, define a map f : M→ S2

which sends the complement M \Dr of Dr to the point ∞ ∈ S2 and on Dr is the
composite F ◦λ where λ : Dr→ DR is multiplication by λ = R/r.

The energy of this map f is exactly the same as that of F . This follows im-
mediately from the fact that the energy is a conformal invariant for 2-dimensional
domains, it only depends on the conformal class of the metric. Thus we get a “min-
imising sequence” fi of degree-1 maps from M to S2 whose energy tends to the
infimum 2Area S2 by making the construction above with a sequence Ri→ ∞. For
large i the image of a small disc in M covers most of S2 and away from x0 the maps
approach the constant harmonic map.

What Sacks and Uhlenbeck established is, roughly speaking, that this is the only
way that things can go wrong when trying to apply variational arguments to the
energy functional on surfaces. More precisely, they consider a 1-parameter family
of deformations of the functional, with parameter α ≥ 1:

Eα( f ) =
∫

M
(1+ |d f |2)α .

(Some formulae would be neater if one used the integral of |d f |2α but this would
lead to a degenerate equation and extra difficulties of the kind discussed in Section
2.) When α = 1 the functional Eα is equal to E( f ), up to a constant. For α > 1
the functional controls the L2α norm of the derivative and one has the favourable
Sobolev embedding L2α

1 →C0. This means that there is a complete “Palais–Smale”
variational theory, something which was worked out in the earlier paper [56] of
Uhlenbeck. So the functional Eα attains its minimum in each homotopy class and
more generally there must be sufficient critical points to account for the topology
of the mapping space, by minimax and Morse theory arguments. The Sacks and
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Uhlenbeck strategy is to seek critical points of E1 as limits of critical points of the
Eα as α → 1. The advantage of this approach, compared with studying minimising
or minimax sequences for E directly, is that the critical points of Eα satisfy an
elliptic equation and this improves the convergence properties, as we will see. Even
if a minimiser for E1 exists there will always be minimising sequences which only
converge in a weak sense, not in C∞.

We can now state more precisely one of the main results of Sacks and Uhlenbeck
for maps between compact manifolds M,N with dim M = 2.

Theorem 3.1. Let αi ≥ 1 with αi → 1 as i → ∞ and let fi : M → N be critical
points of Eαi with Eαi( fi) ≤ Emax for some fixed Emax. Then, after perhaps passing
to a subsequence {i′}, there is a finite set S = {q1, . . .qd} ⊂M and a harmonic map
f : M→N such that fi′ converge to f in C∞ on compact subsets of M\S. In addition
there are harmonic maps F1, . . . ,Fd : S2 → N such that for each j ∈ {1, . . . ,d} a
suitable sequence of rescalings of fi′ near q j converge on compact subsets of C =
S2 \{∞} to Fj.

To explain the last statement; we mean that there are points pi′ j converging to q j
and scale factors λi′ j tending to ∞ with i′ so that if we identify a small disc centred at
pi j with a small disc in C and compose with a scaling map λ i j of the kind discussed
above the resulting maps converge to Fj. One says that the sequence of maps fi′ is
“bubbling” at the points q j.

The statement of our Theorem 3.1 here does not capture all that Sacks and Uh-
lenbeck established. For example, they show that the homotopy classes of fi and
f in [M,N] differ by a class in [S2,N]. But the statement of Theorem 3.1 gives the
general idea. A complete discussion involves the notion of a “bubble tree” of maps,
which was worked out later; see for example [34].

This theorem of Sacks and Uhlenbeck implies the existence of harmonic maps
in many specific situations. For example, if it is known that there is no harmonic
map from S2 to N then for any surface M there is a minimising harmonic map in
any homotopy class [M,N]. One early and famous application came in the proof
by Siu and Yau of the Frankel conjecture [48]. The conjecture was that projective
spaces are the only compact complex manifolds admitting Kähler metric with pos-
itive biholomorphic sectional curvature. The result of Sacks and Uhlenbeck shows
that there is a nonconstant minimising harmonic map from S2 to such a manifold.
Siu and Yau proved, by studying the second variation formula and using the curva-
ture condition, that this map is holomorphic and then the geometry of the resulting
family of holomorphic curves shows that the manifold is a projective space. An-
other important application of the Sacks–Uhlenbeck result, this time in Riemannian
geometry, was the “sphere theorem” of Micallef and Moore [30], discussed in [15].

By far the greatest impact of the phenomena uncovered by Sacks and Uhlenbeck
came in the special case of the holomorphic maps introduced as a tool in symplectic
topology by Gromov in 1987. Here we consider a symplectic manifold (N,ω) with
a compatible almost-complex structure J and resulting Riemannian metric |ξ |2 =
ω(ξ ,Jξ ). For any oriented Riemannian surface f : M→ N there is an inequality
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2
∫

M
f ∗(ω)≤ E( f ),

with equality if and only if f is holomorphic (i.e. the derivative at each point is
complex linear with respect to the Riemann surface structure on M and the almost-
complex structure J). This is a generalisation of (10), in the case when N is a surface.
This inequality implies that a holomorphic map minimises energy in its homotopy
class, so in particular is harmonic. Theorem 3.1, with all αi = 1, describes the con-
vergence behaviour of sequences of these holomorphic maps and becomes the foun-
dation for all of the applications to symplectic topology such as Gromov–Witten
invariants, Lagrangian Floer homology, Fukaya categories. . . . There are many ex-
positions of the theory in this restricted context of holomorphic maps, for example
[29], [69].

3.3 Small energy

For simplicity we just discuss the proof of Theorem 3.1 in the case when all αi are
1: the general case does not involve major extra difficulties. The proof has two main
components. The first is a “small energy” estimate.

Theorem 3.2. Let N be a compact Riemannian manifold and D be the unit disc in
C. There are ε,C such that if f : D→ N is harmonic with E( f )≤ ε then

|d f (0)|2 ≤CE( f ).

More generally, we can choose ε so that if E( f ) ≤ ε then E( f ) controls all deriva-
tives of f on a fixed interior disc, say the 1

2 -sized disc. The conformal invariance of
the energy implies that these estimates apply with the same small energy threshold
to discs of any size: if f has energy less than ε on the disc Dr we get

|∇k f | ≤ ckr−k
√

E( f )

on Dr/2.
The second component is the removability of point singularities.

Theorem 3.3. If f : D\{0} → N is a harmonic map with E( f )< ∞ then f extends
smoothly to D.

Given these local statements the proof of Theorem 3.1 is relatively straightfor-
ward, using arguments of a kind which we will see several other times in this article.
We have fi : M→N harmonic with energy less than a fixed number H. After passing
to a subsequence we can suppose that the energy densities |d fi|2 converge as Radon
measures: that is, for any continuous function φ on M the integrals of φ |d fi|2 over
M have a limit as i→ ∞. Fix a non-increasing cut-off function σ on [0,∞), equal to
1 on [0,1] and supported in [0,2]. For x ∈M and r > 0, let χr,x be the function on M
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χr,x(y) = σ(r−1d(x,y)),

where d( , ) is the Riemannian distance. So χr,x is a smoothing of the characteristic
function of the r-disc Dr,x about x. Define µ(x,r) by

µ(x,r) = limi→∞

∫
M

χr,x |d fi|2.

Then µ(x,r) is an increasing function of r and has a limit µ(x) as r→ 0. By con-
struction ∫

Dx,r

|d fi|2 ≤
∫

χr,x|d fi|2 ≤
∫

Dx,2r

|d fi|2. (11)

Let S be the set of points x in M where µ(x)> ε/2. The right-hand inequality in (11)
implies that there are at most 2Emax/ε points x in S (by taking 2r less than half the
distance between the points, so that the 2r discs with these centres are disjoint). On
the other hand, taking ε as in Theorem 3.2, if µ(x)< ε/2 then for some sufficiently
small r = r(x)> 0 and all large enough i the left-hand inequality in (11) gives∫

Dx,r

|d fi|2 ≤ ε/2,

and the small energy theorem gives estimates on all derivatives of the fi in Dx,r/2.
From these arguments we get a finite set S = {q1, . . .qd} in M such that all deriva-

tives of the fi are bounded on compact subsets of the complement M \ S. Taking a
subsequence we can assume that the maps converge on the complement to a har-
monic map on the punctured manifold with energy at most C, and the removal of
singularities theorem implies that this extends to a smooth harmonic map f from M
to N, as stated in the first part of Theorem 3.1.

The second part of Theorem 3.1 involves the rescaling construction. Fix a point
q j. For all large i there must be points near q j where the derivative of fi is large. Let
pi j be a point near q j where |d fi| is maximal. Define λi j to be these local maximal
values. Then after rescaling by these factors with centre pi j we get a sequence of
harmonic maps Fi j defined on a sequence of large discs in C which exhaust C as
i→ ∞. These maps have bounded derivative and energy so by the same arguments,
perhaps passing to a suitable subsequence, they converge to a harmonic map from S2

to N. That is, we first get a harmonic map from C to N and then apply the removal of
singularities theorem at the point at infinity in S2. The limiting map is not constant
since by construction the derivative of the map Fi j at the origin has size 1.

We proceed to discuss the proof of the small energy result Theorem 3.2, leaving
that of Theorem 3.3 to the next subsection. To recap, we have a V -valued function
f on the disc D which satisfies the PDE ∆ f = A f (d f ,d f ) and takes values in the
compact submanifold N. The discussion below applies to any PDE of this shape, for
a smooth map A from D×V to symmetric bilinear maps Hom(T,V )×Hom(T,V )→
V , where T denotes the tangent space of the disc. (In the case at hand we could
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always extend A in some way to fit into this framework. The fact that, in the case at
hand, f maps into the submanifold N is only used in that it gives a bound on | f |.)

A basic fact of elliptic PDE theory is that for any q > 1 there is a constant Kq
such that for all compactly supported functions φ on D we have

∥φ∥Lq
2
≤ Kq∥∆φ∥Lq . (12)

(Here, and throughout this article we write Lq
k for the Sobolev space based on the

Lq norm of all derivatives of order ≤ k. We write the norm as ∥ ∥Lq
k

or sometimes
∥ ∥q,k to improve readability.)

Before going on to the proof of Theorem 3.2 we consider a different situation
where we suppose given a solution of the equation with bound on the L2α norm
of d f for some α with α > 1. Then we can do a straightforward “bootstrapping”
argument. (Here, and in various other parts of this article, we use the convention
that c is a constant that can change from line to line.)

By choice of the origin in V we may suppose that the integral of f over the disc
is 0. Let χ be a compactly supported function on the disc, equal to 1 on an interior
disc D′. Then we have

∆(χ f ) = χ∆ f +2dχ ·d f +∆ χ f ,

and
χA(d f ,d f ) = A(χ d f ,d f )−A(dχ⊗ f ,d f ).

Thus we have a pointwise bound

|∆(χ f )| ≤ c(|d(χ f )| |d f |+ | f |+ |d f |+ | f | |d f |) , (13)

where c depends only on χ and the given map A. From this we readily obtain,
applying the Cauchy–Schwarz inequality,

∥∆(χ f )∥α ≤ c
(
∥ f∥2

2α,1 +∥ f∥2α,1 ∥ f∥2α +∥ f∥α

)
.

Since the disc has finite area the L2α norm of f controls the Lα norm and the fact
that the integral of f vanishes means that the L2α norm of d f controls that of f . So
we get an inequality

∥∆(χ f )∥α ≤ c
(
∥ f∥2

2α,1 +∥ f∥2α,1
)
,

and hence by the elliptic inequality (12),

∥χ f∥α,2 ≤ c
(
∥ f∥2

2α,1 +∥ f∥2α,1
)
.

If α < 2 we have a Sobolev embedding Lα
2 → Lr

1 with r = 2α/(2−α). Thus
the inequality above gives an Lr bound on d(χ f ) and so an Lr bound on d f over
the interior disc D′. Since r > 2α this is an improvement on the L2α bound that we
started with. If α > 2 we have a Sobolev embedding Lα

2 →C1,µ for µ = 1− 2/α .
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Starting with our L2α bound on d f , for any α > 1 we can iterate such arguments,
working on a decreasing sequence of discs, to get interior bounds on all derivatives
of f in terms of the L2α norm of d f over D. In the same fashion we get a regularity
statement: if we only know at the outset that f is in L2α

1 we show that in fact it is
smooth in the interior of the disc.

Now we go on to the proof of Theorem 3.2. In the situation above any bound
on ∥d f∥L2α gives bounds on higher derivatives in the interior. The difference in
Theorem 3.2 is that we only get such a bound when ∥d f∥L2 is small. Taking α ∈
(1,2) and r = 2α/(2−α) we observe that 1/α = 1/r + 1/2. Thus we can apply
Hölder’s inequality to (13) to get

∥∆(χ f )∥α ≤ c1∥d(χ f )∥r∥d f∥2 + c2 (∥d f∥2∥ f∥r +∥ f∥α) .

By the elliptic inequality and the Sobolev embedding, ∥∆(χ f )∥Lα controls
∥d(χ f )∥Lr and the assumption that f has integral zero means that ∥d f∥L2 controls
both ∥ f∥Lα and ∥ f∥Lr . So we have

∥d(χ f )∥r ≤ c3∥d f∥2∥d(χ f )∥r + c4(∥d f∥2 +∥d f∥2
2).

Take
√

ε = 1/(2c3). Then if ∥d f∥L2 ≤
√

ε we re-arrange to get

∥d(χ f )∥r ≤ 2c4(∥d f∥2 +∥d f∥2
2).

We have r > 2 so, replacing D by the smaller disc D′, we are in the position consid-
ered before and we can go on to estimate all higher derivatives in the interior.

Arguments with the same structure as this will appear often in this article so we
give them a name: “critical quadratic re-arrangement”. The crux is that we get the
same exponent in Hölder’s inequality L2×Lr → Lα and in the Sobolev embedding
Lα

1 → Lr. This is not a coincidence: it can be traced back to the scaling behaviour of
the norms. The small-energy threshold ε produced by this argument is computable.
That number might be rather small but it follows from the further development of
the theory, as in the proof of Theorem 3.1 above, that in Theorem 3.2 ε can be taken
to be any number less than the least energy of a harmonic map from S2 to N.

3.4 The stress energy tensor and removal of point singularities

Before beginning the proof of Theorem 3.3 we make a digression to review some
background which will be used in the proof and also later in this article.

Suppose that we have some functional F which depends on a Riemannian metric
g on a manifold M and other “fields” (in the case at hand the fields are maps from M
to the fixed Riemannian manifold N and the functional is the energy). The variation
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of F with respect to the fields, holding the metric g fixed, produces Euler–Lagrange
equations like the harmonic map equation. But we can also consider variations of
the metric g, holding the fields fixed. By general principles the first variation of F
can be written as

δgF =
∫

M
(T,δg).

where the tensor T is a section of s2T ∗M called the stress-energy tensor, which
depends on the fields and the metric. Any natural functional arising in differential
geometry will be diffeomorphism invariant. It follows that if the fields satisfy the
Euler–Lagrange equations generated by F then if δg is defined by an infinitesimal
diffeomorphism—i.e. δg is the Lie derivative Lvg of g along a vector field v on the
manifold—then δgF = 0. This is the identity div T = 0 or in index notation

T i j
; j = 0. (14)

When the functional F is conformally invariant the tensor T is trace-free. If v is a
conformal Killing field on the manifold (M,g) (that is, Lvg = µg for some function
µ on M) then the contraction of T by v is a co-closed 1-form. In index notation

(T i jvi); j = T i j
; j vi +T i jvi; j.

The first term on the right-hand side vanishes by (14) and the second vanishes be-
cause T i j is symmetric and trace-free and the Lie derivative Lvg is the symmetrisa-
tion vi; j + v j;i.

In this section we will apply this discussion in the case of the harmonic maps
energy with 2-dimensional oriented domain M, which can also be viewed as a Rie-
mann surface. Taking the real part gives an isomorphism between the tensor square
of T ∗M, regarded as a complex line bundle, and the trace-free symmetric tensors. So
we have a quadratic differential τ with T = Reτ . The equation (14) goes over to the
condition that τ be a holomorphic quadratic differential; this is the Hopf differential
defined by a harmonic map from a Riemann surface. In a local complex coordinate
z = x+ iy

τ = (( fx, fx)− ( fy, fy)+2i( fx, fy))dz2.

Here we are writing fx =
∂ f
∂x etc. Similarly, a conformal Killing field v can be viewed

as a holomorphic vector field v and the contraction of v with τ is a holomorphic—
hence closed and co-closed—1-form. This completes our digression.

The Sacks and Uhlenbeck proof of the removal of singularities theorem goes
through a differential inequality for the energy on small discs. Let

E(r) =
∫

Dr

|d f |2,

so clearly E(r) is an increasing function of r and tends to zero as r→ 0. We may
suppose that E( 3

2 ) is less than the small energy value ε of Theorem 3.2. Applying
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that result to the disc of radius |z|/2, say, centred at a point z we get,

|d f (z)|2 ≤CE(3|z|/2) |z|−2, (15)

so |d f | is o(|z|−1). The removal of singularities theorem is proved by showing that
|d f | is O(|z|δ−1) for some δ > 0. If we know this then d f is in L2α for some α > 1
and we can apply the regularity theory discussed in the previous section to see that
f is smooth across the origin.

Using (15), we see then that it suffices to show that E(r) is O(rκ) for some κ > 0.
The differential inequality to be established is that

κE(r)≤ r
d
dr

E(r). (16)

If we know this then it follows by a simple comparison argument that

E(r)≤ rκ E(1),

as required.
It is convenient to exploit the conformal invariance of the problem and to work

on the cylinder (−∞,0]×S1 with coordinates (s,θ). So r = e−s and we now write

E(S) =
∫

s≤S

∫
f 2
s + f 2

θ dθ ds,

where subscripts denote partial derivatives and we are writing f 2
s for ( fs, fs). We

know that f is bounded and that the derivatives fs, fθ tend to zero as s→−∞. We
want to show that for some κ > 0

κE ≤ dE
dS

.

By translation invariance it suffices to prove this when S = 0, that is:

κ

∫
s≤0

∫
f 2
s + f 2

θ dθ ds≤
∫

s=0
f 2
2 + f 2

θ dθ . (17)

By the general theory reviewed above, the contraction of the Hopf differential
with the Killing field ∂

∂ s gives the closed 1-form ( f 2
s − f 2

θ
)dθ . It follows that the

integral ∫ 2π

0
f 2
s − f 2

θ dθ

is independent of s and since the integrand tends to zero as s→ −∞ the integral
vanishes. In other words, for each fixed s,∫

f 2
s dθ =

∫
f 2
θ dθ . (18)
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For purposes of exposition, let us consider for a moment the case when A = 0,
so f is an ordinary harmonic function: ∆ f = 0. Then we have the usual integration-
by-parts formula over a finite cylinder:∫

S0≤s≤0

∫
f 2
s + f 2

θ dθ ds =
∫

s=0
( f , fs)dθ −

∫
s=S0

( f , fs)dθ .

Since fs tends to 0 as s→−∞ and f is bounded the boundary term at s = S0 tends
to zero as S0→−∞ and we get∫

s≤0

∫
f 2
s + f 2

θ dθ ds =
∫

s=0
( f , fs) dθ . (19)

The left-hand side of this formula is unchanged if we add a constant to f , so we
can suppose that the integral of f over the boundary {s = 0} vanishes. Now for any
function g on the circle of integral zero we have an inequality∫

g2 dθ ≤
∫

g2
θ dθ . (20)

This is clear from the Fourier series. Thus, combining with Cauchy–Schwarz,(∫
s=0

( f , fs)dθ

)2

≤
∫

s=0
f 2
s dθ

∫
s=0

f 2
θ dθ . (21)

Combining (19) and (21) we have∫
s≤0

∫
f 2
s + f 2

θ dθ ds≤ 1
2

∫
s=0

f 2
s + f 2

θ dθ ,

which is the required inequality with κ = 2. This gives the growth rate E(r)=O(r2),
which is indeed what will occur for smooth maps.

The idea now is to modify this discussion to take account of the nonlinear term
A(d f ,d f ) at the cost of changing the constant κ . So suppose again that f is our
harmonic map with ∆ f = A(d f ,d f ). Taking the inner product of this equation with
f and integrating over the cylinder we get an extra term∫

s≤0

∫
( f ,A(d f ,d f ))dθ ds

which is bounded in modulus by the integral of c1| f | |d f |2 for some c1. If we knew
that, over the cylinder, we have | f | ≤ σc−1

1 for some σ < 1 this would give the
desired inequality with κ = 2/(1−σ). The problem is that at this stage we know
that f is bounded on the cylinder but we do not know how to make this bound
arbitrarily small. To overcome this, take the average values

F(S) =
1

2π

∫
s=S

f (s,θ)dθ ,
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and write g(S,θ) = f (S,θ)−F(S,θ). Then we have∫
s≤0

∫
(g,∆ f )dθ ds =

∫
s≤0

∫
(dg,d f )dθ ds+

∫
s=0

(g, fs)dθ , (22)

since one sees as before that the other boundary term for a finite cylinder tends to 0.
Exactly the same argument as before gives∫

s=0
(g, fs)≤ (1/2)

∫
s=0

f 2
s + f 2

θ dθ

We have (dg,d f ) = |d f |2− ( fs,Fs) so we get∫
s≤0

∫
f 2
s + f 2

θ dθ ds≤ (1/2)
∫

s=0
f 2
s + f 2

θ dθ + I + II,

where
I =

∫
s≤0

∫
(g,∆ f )dθ ds,

and
II =

∫
s≤0

∫
( fs,Fs)dθ ds.

The integrand in I is bounded by c1|g||d f |2. For each fixed s the integral of g is
zero and there is an inequality in the same vein as (20)

|g|2 ≤ c2

∫
g2

θ dθ = c2

∫
f 2
θ dθ .

(This is the Sobolev embedding L2
1→C0 in dimension 1.) So we can suppose that

|g| is as small as we please; say |g| ≤ σc−1
1 for σ < 1

2 . Then the term I is bounded
by σ times the energy.

Turning to the term II: consider the integral over θ for fixed s = S. This is

(2π)−1
∣∣∣∣∫s=S

fs dθ

∣∣∣∣2 ,
which is bounded by ∫

s=S
f 2
s dθ = (1/2)

∫
s=S

f 2
s + f 2

θ dθ ,

using (20) again. Putting things together we get

( 1
2 −σ)

∫
s≤0

∫
f 2
s + f 2

θ dθ ds≤ (1/2)
∫

s=0
f 2
s + f 2

θ dθ ,

which is the desired inequality with κ = 1−2σ .
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In the case of pseudoholomorphic curves the proof of the differential inequality
is simpler, using the fact that the energy is twice the integral of f ∗(ω), where ω is
the symplectic form. If one can write ω = dα for a 1-form α over a neighbourhood
of the image of f then Stokes’ theorem expresses the energy as a boundary integral.
(We will use an argument like this in the proof of Theorem 6.2 below.)

4 Harmonic maps in higher dimensions

4.1 Monotonicity of normalised energy

The main topic of this Section 4 is Uhlenbeck’s work with Schoen in the paper [41],
on weak solutions to the harmonic map equation, but we begin in this subsection
with some background and results for smooth maps.

Consider again the variational theory on an n-dimensional manifold M of a func-
tional F (g,Φ) given by the integral of an n-form F(g,Φ). Suppose that this func-
tional has a non-zero scaling weight w under conformal change of the metric in
that

F(λg,Φ) = λ
wF(g,Φ).

It follows that the trace of the energy momentum tensor is wL(g,Φ)volg. Let v be a
conformal vector field, so vi; j + v j;i = 2µ gi j for some function µ . Then we have

(viT i j) j = (vi; jTi j) = wµF(g,Φ).

So we can write
wµF(g,Φ) = dη ,

where η is the (n− 1)-form ∗(viT i j). Thus if U is a domain in M with compact
closure and smooth boundary we have

w
∫

U
µ F(g,Φ) =

∫
∂U

η . (23)

Apply this discussion to the harmonic maps energy functional on a manifold M
of dimension n > 2, so the field Φ is f : M→ N and F(g, f ) = |d f |2volg which has
a conformal weight w = n/2− 1. Suppose that M = Rn, so we have a conformal
vector field r ∂

∂ r as before and the function µ is the constant 1. The stress-energy
tensor is

Ti j = (∇i f ,∇ j f )− 1
2 |d f |2δi j

One sees then that the restriction of the (n−1)-form η to the unit sphere is

η |Sn−1 =
(

1
2 |d f |2−|∇r f |2

)
dvolSn−1 ,

where ∇r is the radial derivative. So the identity (23) is
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(n−2)
∫

B
|d f |2 =

∫
∂B
|d f |2−2|∇r f |2, (24)

(which agrees with (18) in the case n = 2). Thus

(n−2)
∫

B
|d f |2 ≤

∫
∂B
|d f |2

with equality if and only if ∇r f = 0 on ∂B. If we apply the same argument to the
ball Br of radius r we get

(n−2)
∫

Br

|d f |2 ≤ r
∫

∂B
|d f |2.

Let Ê(r) be the normalised energy

Ê(r) =
1

rn−2

∫
Br

|d f |2.

The inequality above is equivalent to the monotonicity condition dÊ/dr ≥ 0 and in
fact for r1 < r2

Ê(r1) = Ê(r2)−2
∫

r1<r<r2

r2|∇r f |2.

A good way to think about the normalised energy is through rescaling. Map the
unit ball B to the ball Br by x 7→ rx and compose with the restriction of f to Br to
get f̃ : B→ N. Then the normalised energy of f on Br is the energy of f̃ on the
unit ball B. The monotonicity condition says that the map f “looks better”—in the
sense of having smaller energy—if we look at it on smaller and smaller scales in this
manner. Another useful observation is that if f is the composite of a map f from R2

to N with an orthogonal projection from Rn to R2 then the normalised energy for f
agrees with the ordinary energy for f , up to a factor.

One important consequence of the monotonicity property is a small energy result.
The statement is essentially the same as in the 2-dimensional case of the previous
section. A difference is that the equations now depend essentially on the Riemannian
metric on M so we formulate the statement a bit differently.

Proposition 4.1. Let M,N be compact Riemannian manifolds. There are ε,r0,C > 0
such that if Bx,r is a metric r-ball in M with r≤ r0 and the normalised energy Ê(Br)
of f on Br is less than ε then on the half-sized ball Bx,r/2 we have

|d f |2 ≤Cr−2E(Br).

As before, once we have the L∞ bound on d f we can go on to get estimates on all
higher derivatives. This small energy statement can be proved in a manner similar to
the proof above of Theorem 3.2 but using Morrey spaces (which we will encounter
in subsection 6.3 below) in place of Lp spaces. We will discuss here the proof of
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Schoen in [40], using a “worst point” argument, which could also be used in the
2-dimensional case of Theorem 3.2.

For simplicity we suppose that M is locally Euclidean, so the discussion above
applies to give a monotonicity formula for balls of sufficiently small size. For a
general Riemannian manifold M we do not have exact formulae for the normalised
energy but the equations hold with extra error terms which can be made as small as
we please, since the geometry is close to Euclidean on small scales, and the same
arguments work with minor modifications. By scale invariance and adjustment of
constants we can suppose that the ball Bx,r is the unit ball B in Rn and that f has
normalised energy at most E ≤ ε on any interior ball.

For a point x∈ B let D(x) be the distance to the boundary of B, i.e. D(x) = 1−|x|.
The idea is to consider the quantity

M = maxx∈BD(x)|d f (x)|.

Since the function D vanishes on the boundary, the maximum is achieved at some
interior point x0. For ρ ≤ 1, rescale the ball of radius ρD(x0)/2 with centre x0 to
unit size to get a map f̃ρ on the unit ball B with the properties

•
∫

B |d f̃ρ |2 ≤ E;
• |d f̃ρ | ≤ 4Mρ on B;
• |d f̃ρ(0)|= 2Mρ;

where the first item uses the small energy property of f on the interior ball. Now we
have

|∆ f̃ρ | ≤ c|d f̃ρ |2.

Elliptic theory gives an inequality

|d f̃ρ(0)| ≤ c
(
∥∆ f̃ρ∥L∞ +∥d f̃ρ∥L2

)
,

so we get
|d f̃ρ(0)| ≤ c1ρ

2M2 + c2
√

E,

and
ρM ≤ c3ρ

2M2 + c4
√

ε.

If we choose ε small enough the equation

y = c3y2 + c4
√

E

will have two solutions: a small solution y0, approximately c2
√

E, and a large so-
lution y1, approximately c−1

1 . Fix such an ε . Then the inequality implies that either
ρM ≤ y0 or ρM ≥ y1. For very small ρ the first alternative must hold and by con-
tinuity it must continue to hold for all ρ ≤ 1. So we conclude that M ≤ const.

√
E,

which establishes the Proposition.
Another result about smooth harmonic maps that can be proved using a similar

approach is:
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Proposition 4.2. There is a constant M0 such that if the harmonic map f satisfies a
Hölder bound on the unit ball B:

| f (x)− f (y)| ≤ |x− y|α

then |d f (x)| ≤M0D(x)−1, where D(x) is the distance to the boundary, as above.

As usual, we can go on to get estimates on all derivatives of f in the interior
depending only on the Hölder bound. To prove this proposition we define M and x0
as above. If M ≤ 2 we can take M0 = 2. If M ≥ 2 rescale the ball of radius M−1

centered at x0 to unit size to get a harmonic map f̃ on the unit ball B with

(1) | f̃ (x)− f̃ (y)| ≤M−α |x− y|α ;
(2) |d f̃ | ≤ 2 on B;
(3) |d f̃ (0)|= 1.

The harmonic map equation and item (2) give a bound on |∆ f̃ | over B, which gives
a C,α bound on d f̃ in the half-sized ball. It then follows from item (3) that for
some computable number κ we can choose a ray {tν} through the origin such that
| f̃ (tν)− f̃ (0)| ≥ t/2 for t ≤ κ . Then item (1) implies that M ≤ 2α κ1−1/α .

The small energy result gives a partial compactness property, extending what we
have seen for surfaces in Section 3. Let M and N be compact and let fi : M → N
be a sequence of harmonic maps with energy bounded by a fixed constant Emax.
As in Section 2 we can suppose that the energy densities |d fi|2 converge as Radon
measures. Now we define

µi(x,r) = r2−n
∫

χx,r|d fi|2,

and µ(x,r) = limi→∞ µi(x,r). We assume that the µi(x,r) are increasing functions
of r. If M is locally Euclidean this follows from the monotonicity property and in
general it will be true up to an unimportant error term. Then µ(x,r) is increasing and
has a limit µ(x) as r tends to 0. As before, we define the set S ⊂M to be the set of
points where µ(x) ≥ ε/2, for the constant ε in the small energy result, Proposition
4.1. Just as before we get, after passing to a subsequence, a limiting harmonic map
f : M \ S→ N and the fi converge to f in C∞ on compact subsets of M \ S. Given
a small δ > 0, choose a maximal collection of disjoint δ/2 balls {Bα} centred at
points xα of S. Let A be the number of balls. Then the δ -balls with the same centres
cover S and ∫

Bα

|d fi|2 ≥ (δ/4)n−2
µi(xα ,δ/4).

Since the Bα are disjoint we have

Emax ≥∑
α

(δ/4)n−2
µi(xα ,δ/4),

and taking the limit we can replace µi(xα,δ/4) by µ(xα,δ/4). But µ(xα ,δ/4) ≥
µ(xα)≥ ε/2 so we get a bound on the number A of balls Bα
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A≤Cδ
2−n

with C = 22n−3ε−1Emax. So the set S is covered by at most C′δ 2−n balls of radius
δ . This implies that S has Hausdorff dimension at most (n− 2) and the (n− 2)-
dimensional Hausdorff measure is bounded by C. (In fact we get a stronger state-
ment, that the (n− 2)-dimensional “Minkowski content” is finite. This is because
the balls in our cover have the same radius δ : in the definition of Hausdorff measure
one is allowed to cover by balls of varying radii.)

In sum we have:

Proposition 4.3. For M,N compact a sequence of harmonic maps from M to N with
a fixed energy bound has a subsequence which converges off a set of Hausdorff
codimension at least 2.

4.2 Minimising maps

In the previous subsection we have considered smooth harmonic maps. The thrust of
the Schoen and Uhlenbeck paper [41] is different because they consider the much
more formidable case of a class of weak solutions in L2

1. These can have singu-
larities, and the great achievement of Schoen and Uhlenbeck was to make these
singularities somewhat tractable.

More precisely, for N embedded in the Euclidean space V , let L2
1(M,N) be the

set of maps f : M→V which are in L2
1 in the usual sense and which map almost all

points of M to N. (Of course, for dim M > 1, such a map f is only defined almost
everywhere.) The energy functional is defined on these maps and f is called a weak
solution if the first variation of the energy vanishes, which is equivalent to f being
a weak solution of the equation (9). This notion makes sense because the nonlinear
term A f (d f ,d f ) is in L1. These weak solutions can be bizarre: there are examples
which are not continuous at any point of M [38]. Schoen and Uhlenbeck showed
that if one restricts to the class of energy minimising maps the situation is much
better. For our discussion, we could take the definition of energy minimising to be
that there is some ρ > 0 such that for all balls Bρ ⊂M if g ∈ L2

1(M,N) is equal to
f outside Bρ then E(g) ≥ E( f ). (Any smooth harmonic map is energy-minimising
in this sense.) In fact, in [41] Schoen and Uhlenbeck consider a more general class
of equations, adding a perturbation term to the energy, and in [42] they extend the
theory to the Dirichlet problem on a manifold M with boundary.

The foundation of the Schoen–Uhlenbeck work is to establish versions of mono-
tonicity and the small energy property for energy-minimising harmonic maps. In the
end the statements are essentially the same as for the smooth case but the proofs are
different because many of the constructions discussed above do not make sense in
this wider class.
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For our discussion we assume that M is locally Euclidean, so by scaling we may
regard f as being defined on the unit ball B in Rn and we can assume that any varia-
tion supported in B increases energy. The Schoen–Uhlenbeck proof of monotonicity
proceeds as follows. Suppose that the restriction of f to the unit sphere Sn−1 = ∂B
is also in L2

1 and define a map g to be equal to f outside B and by g(x) = f ( x
|x| )

for |x| ≤ 1. Of course g is not defined at the origin but when n > 2 it is an L2
1 map.

Simple calculus gives∫
B
|dg|2 =

∫
Sn−1
|dSn−1g|2

∫ 1

0
rn−3 dr = (n−2)−1

∫
Sn−1
|dSn−1g|2.

Here the notation dSn−1 refers to the derivative of the restriction of the map to the
sphere. The energy-minimising property gives

(n−2)
∫

B
|d f |2 ≤

∫
Sn−1
|d f |2−

∫
Sn−1
|∇r f |2.

(Notice that the term involving the radial derivative enters with a different factor
compared with (24), but this will not matter.) Let E(r) be the energy of f on the
ball Br. Then E(r) is an increasing function of r and so differentiable at almost all
r. Similarly for almost all r the restriction of |d f |2 to the boundary of the ball Br is
in L2 and at such values of r

E ′(r) =
∫

∂Br

|d f |2.

For such r we can apply the preceding discussion for the unit ball, after rescaling,
and we obtain the inequality

(n−2)E(r)≤ rE ′(r).

As before, this is the monotonicity statement that the normalised energy Ê(r) =
r2−nE(r) is increasing. Moreover we have, for r1 < r2,

Ê(r1)≤ Ê(r2)−
∫

r1<r<r2

r2|∇r f |2 (25)

The work of Schoen and Uhlenbeck develops an important analogy between
the theories of harmonic maps and of minimal submanifolds, and more general
volume-minimising sets. The analogue of the argument above in the latter case, for a
d-dimensional volume-minimising set X ⊂Rm and a point x in X , is to consider, for
small r, the intersection Yr of X with the sphere of radius r centred at x. Let CYr be
the cone over Yr with vertex at x and let X̃r be the set obtained by removing the in-
tersection X ∩Bx,r from X and replacing it with the cone CYr. Comparing X̃r with X ,
the volume-minimising property shows that Vol(X ∩Bx,r) ≤ Vol CYr and this leads
to the monotonicity of the normalised volumes r−dVol(Bx,r ∩X) with respect to r,
for fixed x.
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The Schoen–Uhlenbeck proof of the small energy result for energy-minimising
maps is more involved and we will outline it in subsection 4.3 below. But before
that we discuss the general structural results and overall picture which Schoen and
Uhlenbeck obtained. The first consequence is that a minimising map f is smooth
outside a closed singular set Σ with dim Σ < n− 2. For example when n = 2 this
says that Σ is empty, which is immediate from the small energy result. For n > 2 it is
proved by a covering argument similar to the one we described above for Proposition
4.3. A refined result is

Theorem 4.1.

(1) dim Σ ≤ n−3.
(2) Suppose that for some k ≥ 2 and for all ν with 2 ≤ ν ≤ k there is no smooth

minimising harmonic map from the sphere Sν to N. Then dim Σ ≤ n− k−2.

In the second item here, if k = n− 1 then the statement is that Σ is empty, so the
map is smooth.

The proofs of these refined results depend on the important notion of a “tangent
map”, introduced by Schoen and Uhlenbeck. This is analogous to the notion of a
tangent cone in submanifold geometry. Suppose for simplicity that the domain M of
the minimising map f is the unit ball in Rn and for λ > 1 let f λ be the composite
of f with the scaling map; so f λ : λB→ N. Take any sequence λi→ ∞, so for any
compact set K ⊂Rn the map f λi is defined over K for large enough i. Monotonicity
implies that the energies of the f λi are bounded on compact sets so, possibly passing
to a subsequence, there is a weak L2

1,loc limit f∞. The inequality (25) implies that f∞

is radially homogeneous in that ∇r f∞ = 0 almost everywhere. Such a map is called
a tangent map to f at 0.

Uniqueness of the tangent map, i.e. that one gets the same limit for any sequence
of scalings, is a major question in general—there are examples [68] where it is not
unique— but is not directly relevant to the discussion here. The main difficulties are
that the convergence obtained is only in the weak topology and that it is not clear
that the limit will again be minimising. Much of the work in the paper of Schoen
and Uhlenbeck goes into overcoming these difficulties. They show that the conver-
gence can be improved to L2

1,loc and that, at least in certain restricted situations, the
limit is minimising. Glossing over many details, we illustrate the argument for the
case when n = 3. Then the statement (1) of Theorem 4.1 can be improved to the
statement that Σ is a discrete set. To see this, let p be a singular point and consider
a tangent map at p. By radial homogeneity, this is equivalent to a map g : S2→ N.
Schoen and Uhlenbeck show that g is minimising, so the singular set is empty by
the previous discussion in dimension n = 2. Thus the tangent map f∞ has an isolated
singularity at the origin and this implies that the singularity p of f is isolated. For
another illustration of the argument, consider the case when there are no minimising
harmonic maps Sν → N for 2 ≤ ν ≤ n− 1. Suppose there were a singular point p
of f . From the tangent map we get a map g : Sn−1→ N. Assume for simplicity that
this is minimising. The hypothesis implies that g cannot be smooth, so we can go to
a singular point of g in Sn−1 and take a second tangent map there. This gives a map
from Sn−2 to N and the hypothesis implies that this cannot be smooth, so we can
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find a tangent map at a singular point. Continuing in this way, with these iterated
tangent maps, we get a contradiction to the existence of p, so the original map is
smooth.

4.3 Small energy

In this subsection we outline the Schoen and Uhlenbeck proof of the small energy
result.

First, it was established before that a Hölder continuous weak harmonic map is
smooth [24]. (This is similar to Proposition 4.2 in that a posteriori the estimate in
that proposition holds, but of course the proof is much harder.) Next, it suffices to
get a bound for the growth of the normalised energy function. Morrey’s Lemma
states that if a function g on Rn with weak derivative in L1 satisfies an estimate:

r−n
∫

Bx,r

|dg| ≤Cr−β ,

for all balls Bx,r then g is in C,1−β . For our map f(∫
Bx,r

|d f |
)2

≤
∫

Br,x

|d f |2 Vol Bx,r,

so if the normalised energy on all Bx,r is less than Crα then f is in C,α/2.
The essential statement in Schoen and Uhlenbeck’s proof of the small energy

result is then:

Theorem 4.2. There is an ε0 > 0 and θ0 ∈ (0,1) such that if f : B→ N is an energy
minimising map with normalised energy less than ε0 on all interior balls then

Ê(θ0)≤ 1
2 Ê(1) = 1

2 E.

(The factor 1
2 here could be replaced by any fixed number in (0,1).) Given this, it

follows from an elementary argument (similar to that in subsection 2.3 above) that
Ê(r)≤Crα for a suitable α , depending on θ .

The proof by Schoen and Uhlenbeck of Theorem 6 involves the choice of four
parameters θ0,θ ,τ,h. Here θ0 will be as in the statement of the Theorem, and we
will choose θ0 < 1

8 say. The parameter θ will be chosen in the interval [θ0,2θ0]. The
parameter τ will be much smaller than θ0. Given θ ,τ we write A for the annulus
A = {x : θ ≤ |x| ≤ θ + τ}. The idea is to construct a comparison map f̃ : B→ N
such that f̃ (x) = f (x) for |x| ≥ θ + τ . Then the minimising property of f gives∫

Bθ

|d f |2 ≤ I + II (26)

where
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I =
∫

Bθ

|d f̃ |2 , II =
∫

A
|d f̃ |2.

and the task will be to bound these terms I and II.
We write E for the energy of f on the unit ball B, so E ≤ ε0. and we use the

convention that c is a constant which changes from line to line. We also fix a tubular
neighbourhood Ω ⊂V of N in V and let π : Ω → N be the standard projection.

The construction of f̃ goes through three other maps f1, f2, f3 and depends on
the parameter h > 0, which is a small smoothing parameter.

The map f1

The map f1 : B→ V is the smooth map obtained as a standard mollification of f
by convolution with a function supported in the ball of radius h. (More precisely, f1
will be defined on a slightly smaller ball than B1 but this does not matter.) Thus if φ

is positive function on V with integral 1 and supported in the unit ball:

f1(x) = h−n
∫

φ(h−1(x− y)) f (y)dy =
∫

φ(z) f (x−hz)dz,

where the two formulae are related by the change of variable y = x−hz.

The map f2

The map f1 does not map into N and the distance between f1(x) and f (x) need not
be small a priori. But we will see that we can arrange, by choosing ε0 small, that f1
maps into the tubular neighbourhood Ω . Then we define f2 = π ◦ f1 : B→ N.

The map f3

We modify the smoothing construction of f1 to make a new map f3 : B→ V equal
to f outside Bθ+τ and to f2 in Bθ . Let η be a function on B equal to the constant h
on Bθ and to 0 outside Bθ+τ and set

f3(x) =
∫

φ(z) f (x−η(x)z)dz.

We will arrange that f3 maps into the neighbourhood Ω and we define f̃ = π ◦ f3.
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Bounds on the convolution

The first business is to arrange that f1 and f3 map into the tubular neighbourhood Ω

of N. This is a crucial insight in the Schoen and Uhlenbeck proof and depends on
the following lemma.

Lemma 4.3. For φ as above there is a constant C such that all functions g on the
unit ball B with ∫

B
φ(y)g(y) = 0

satisfy ∥g∥L2 ≤C∥dg∥L2 .

If φ were replaced by a constant this becomes the Poincaré Lemma. The proof of the
generalisation is straightforward. An immediate consequence is that for any function
g on B

∥g−g∗∥L2 ≤C∥dg∥L2

where g∗ is the constant function equal to

g∗ =
∫

B
φ(y)g(y)dy.

In particular there is some y in B such that

|g(y)−g∗| ≤
C√
VolB

∥dg∥L2 .

Now consider x0 ∈ B and apply this to g(y) = f (x0−hy) so g∗ = f1(x0). We have

∥dg∥2
L2 = h2−n

∫
|x−x0|≤h

|d f |2 ≤ ε0.

We deduce that there is some x with |x− x0| ≤ h such that | f (x)− f1(x0)| ≤ c ε
1/2
0 .

So f1 maps into the c ε
1/2
0 neighbourhood of N. This argument also applies to the

map f3, because x0 is fixed.
The standard convolution formula shows that ∥d f1∥2

L2 ≤ ∥d f∥2
L2 = E. We also

have a pointwise bound
|d f1| ≤ cε

1/2
0 h−1, (27)

which follows easily from the bound on the normalised energy.

The term I

By construction

I =
∫

Bθ

|d f2|2.
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Composition with the projection π can increase the norm of the derivative by
at most a small factor so it suffices to bound the integral of |d f1|2 over Bθ . We
need a better bound than that given by (27). To achieve this, Schoen and Uhlenbeck
consider the harmonic function v on the ball B 1

2
with the same boundary values as

f1. Then v minimises the Dirichlet energy over all functions with these boundary
values so ∫

B 1
2

|dv|2 ≤
∫

B 1
2

|d f1|2 ≤ E.

Standard theory promotes this to a pointwise bound on the interior ball Bθ ⊂ B 1
4
⊂

B 1
2

so ∫
Bθ

|dv|2 ≤ cE Vol Bθ = cE θ
n. (28)

Now write w = f1− v, so ∆w = ∆ f1. Recall that f1 is the convolution φh ∗ f of f
with a function φh of L1 norm 1. The Laplace operator ∆ on Rn commutes with
convolution so

∆ f1 = φh ∗ (∆ f ) = φh ∗ (A(d f ,d f )),

and hence
∥∆ f1∥L1 ≤ ∥φh∥L1∥A(d f ,d f )∥L1 = ∥A(d f ,d f )∥L1 .

Clearly ∥A(d f ,d f )∥L1 ≤ cE so we get

∥∆w∥L1 ≤ cE.

Hence ∫
B 1

2

|dw|2 =
∫

B 1
2

(w,∆w)≤ cE supB1/2
|w|.

The bound (27) and maximum principle considerations imply that |w| ≤ cε
1/2
0 h−1

on B 1
2
. So we conclude that

∫
Bθ

|dw|2 ≤
∫

B 1
2

|dw|2 ≤ c ε0h−1E.

Combined with (28) this gives a bound on the L2 norm of d f1 and hence of f̃ over
Bθ :

I =
∫

Bθ

|d f̃ |2 ≤ c(ε0h−1 +θ
n)E. (29)

The term II

As before, it suffices to work with f3. Recall that A is the annulus θ ≤ |x| ≤ θ + τ .
Let A+ be the h neighbourhood of A, so the maps f3 and f̃ on A are determined by
the restriction of f to A+.
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Lemma 4.4. Suppose that the derivative of η is bounded by |dη | ≤ k. Then∫
A
|d f3|2 ≤ c(1+ k)2

∫
A+

|d f |2.

We have
f3(x) =

∫
φ(y) f (x−η(x)y)dy.

When we differentiate with respect to x we get a term from the derivative of η ,
which is bounded by k. This gives

|d f3(x)| ≤ (1+ k)
∫

φ(y) |d f |(x−η(x)y)dy.

A quick route from here is to use the theory of the maximal function. For points x
where η(x)> 0

|d f3(x)| ≤ (1+ k)
∫
|y|≤1
|d f |(x−η(x)y)dy

≤ (1+ k)η(x)−n
∫

Bx,η(x)

|d f | ≤ (1+ k)M(|d f |),

where M(|d f |) is the maximal function of |d f |. Then

∥d f3∥L2 ≤ c(1+ k)∥M(d f )∥L2 ≤ c(1+ k)∥d f∥L2 ,

and the lemma follows. (Schoen and Uhlenbeck give a direct calculus proof of this
lemma.)

As before, the projection π only changes the energy by small amount, so Lemma
4.4 implies that, if we choose η so that |dη | ≤ 1, we have

II =
∫

A
|d f̃ |2 ≤ c

∫
A+
|d f |2.

The right-hand side here is bounded by cE but this does not suffice since the constant
c could be large. To overcome this Schoen and Uhlenbeck bring in another idea: the
choice of θ . The condition that |dη | ≤ 1 implies that h cannot be more than the
annulus thickness τ . Let us now fix h = τ/2 say. So A+ is an annulus of thickness
5τ . Recall that τ is to be much smaller than θ0. There are approximately Q = θ0/5τ

disjoint annuli of the form A+ for different values of θ in [θ0,2θ0]. So we can make
a choice of one of these such that∫

A+

|d f |2 ≤ E/Q≤ cEτ/θ0.
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Making this choice, combining with the bound (29) for the term I and setting
h = τ/2 we get

I + II ≤ c(ε0/τ +θ
n
0 + τ/θ0)E.

(By adjusting constants it does not matter if we write θ or θ0 here since θ0 < θ <
2θ0.) Then (26) gives a bound on the normalised energy

Ê(θ)≤ c
(
ε0/(τθ

n−2
0 )+θ

2
0 + τ/θ

n−1
0
)

E.

By making θ0 small, then τ , then ε0, we get a θ ∈ [θ0,2θ0] with Ê(θ)≤ 1
2 E and

by monotonicity Ê(θ0)≤ 1
2 E.

4.4 Some further developments

The influence of the work of Schoen and Uhlenbeck has been immense and extends
in many directions (the paper [41] has 303 citations on MathSciNet at the time of
writing). Singularities of the kind which came to the fore in their paper arise in
various models in Mathematical Physics, for point singularities in R3. They also
appear in complex algebraic geometry as meromorphic maps (related to the work
of Uhlenbeck and Yau that we discuss in subsection 6.1 below). In Hardt’s survey
[21] of developments on singularities of harmonic maps in the decade following the
Schoen and Uhlenbeck paper he writes “the paper [of Schoen and Uhlenbeck] has
many ideas and techniques that have proved to have wide influence in geometric
analysis.”

Stationary maps form another important subclass of weak harmonic maps. Such
a map is called stationary if the first variation of the energy vanishes for variations
induced by 1-parameter families of compactly supported diffeomorphisms of the
domain. This includes the minimising maps considered by Schoen and Uhlenbeck
but forms a larger class. Many of Schoen and Uhlenbeck’s results were later ex-
tended to stationary maps. An important paper [4] on maps with point singularities
in R3 includes examples of tangent maps which are not stationary or mininimising.
If f : R3 \ {0} is the radial extension of a degree 1 holomorphic (hence harmonic)
map φ from S2 to S2 then f is stationary if and only if φ is a rotation; otherwise
the first variation of the energy under motion of the singularity (with fixed boundary
values) does not vanish.

The paper [31] of Naber and Valtorta is one notable more recent development
in the study of singularities of harmonic maps. A tangent map from Rn to N is
called k-symmetric if it factors through an orthogonal projection Rn→Rn−k. Given
a minimising weakly harmonic map f let Σk ⊂ M be the set of points in x such
that no tangent map is (k+ 1)-symmetric. Thus Σ0 ⊂ Σ1 ⊂ ·· · ⊂ Σ where Σ is the
singular set of f : the Σk give a stratification of the singular set. Schoen and Uh-
lenbeck’s work, in the proof of Theorem 4.1 above, shows that Σk has Hausdorff
dimension at most k. Naber and Valtorta prove the stronger statement that Σk is
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k-rectifiable (in fact they show this for stationary maps f ). They also prove a weak
L3 result for minimising maps f :

Vol {x ∈M : |d f | ≥ ε
−1} ≤Cε

3.

The ideas and techniques in the analysis of harmonic maps which we have dis-
cussed in Section 3 and this Section 4 have been important in other branches of
differential geometry and PDE theory. For the latter we just mention the large body
of work, for example [5], on bubbling phenomena in critical exponent problems. As
we have mentioned, there are close analogues between harmonic maps and minimal
submanifold theory. The next two sections of this article will describe analogues in
gauge theory. Another area is Riemannian geometry. In the case of 4-dimensional
manifolds the L2 norm of the Riemann curvature serves as an energy functional
which has analogous properties to the harmonic maps energy in dimension 2. Par-
tial compactness results for solutions of the Einstein equations on 4-manifolds sat-
isfying suitable bounds on the volume, diameter and this L2 norm were obtained
by Anderson [1] and Nakajima [33]. These results follow a similar pattern to the
Sacks–Uhlenbeck theory, with “bubbling” at a finite set of points. The results were
extended to metrics on 4-manifolds satisfying various other equations such as ex-
tremal Kähler metrics, assuming a bound on the Sobolev constant, by Tian and
Viaclovsky [55].

The L2-norm of the Riemann curvature is much less effective in higher dimen-
sions. But for limits of manifolds satisfying Ricci curvature bounds a theory anal-
ogous to that of Schoen and Uhlenbeck was developed by Cheeger and Colding
[7]. Here the volume ratio of metric balls plays a role analogous to the normalised
energy.

5 Gauge Theory

5.1 Background

In the mid-1970s “gauge theory’ or “Yang–Mills theory” entered mathematics as
a new subject, propelled by interactions with physics, and this subject became the
scene for many of Uhlenbeck’s most prominent achievements.

We begin by reviewing the basic differential geometry. To simplify notation
slightly, we will nearly always consider connections on vector bundles, say com-
plex vector bundles, usually with Hermitian metrics on the fibres. For such a bundle
E → M a connection A can be identified with a covariant derivative, a differential
operator

∇A : Ω
0(E)→Ω

1(E),
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and we will often not distinguish between A and ∇A. In a local trivialisation of
E and local coordinates xi on M the connection is represented by a matrix-valued
1-form A = ∑Ai dxi and the covariant derivative, thought of as acting on vector-
valued functions via the trivialisation, has components

∇
A
i =

∂

∂xi
+Ai.

If the trivialisation is unitary then the Ai take values in the skew-adjoint matrices (i.e.
in the Lie algebra of the unitary group). The curvature of the connection is a bundle
valued 2-form FA ∈ Ω 2(EndE) and if the connection is unitary it lies in Ω 2(adE),
where adE is the bundle of skew-adjoint endomorphisms. In a local trivialisation, as
above, the curvature is the operator given by the commutator

[∇A
i ,∇

A
j ] =

∂A j

∂xi
− ∂Ai

∂x j
+[Ai,A j].

Written as a matrix-valued 2-form

F = dA+A∧A. (30)

A change in local trivialisation is given by a map g to the structure group U(r). This
acts on the covariant derivative by conjugation and changes ∇A to

g∇
Ag−1 =

∂

∂xi
+gAig

−1− (dg)g−1. (31)

For any bundle-valued 1-form a ∈ Ω 1(End(E)) the operator ∇A + a is again a
covariant derivative. We regard the space of connections A as an affine space and we
just write the new connection as A+a. A slight variant of the preceding discussion
is to consider an automorphism g of the bundle E→M covering the identity on M.
This acts on covariant derivatives by conjugation and we can write

g(A) = A− (dAg)g−1. (32)

In the same vein the global version of the formula (30) is

F(A+a) = F(A)+dAa+a∧a. (33)

In (32) and (33) dA denotes the coupled exterior derivative defined by the con-
nection (so on bundle-valued 0-forms we could write this also as ∇A).

The Yang–Mills equations (for the structure group U(r)) arise from the func-
tional on the space of unitary connections over a Riemannian or pseudo-Riemannian
manifold M

E (A) =
∫

M
|F(A)|2.
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Here |F |2 is computed using the standard norm on skew-adjoint matrices and the
quadratic form on 2-forms induced by the Riemannian or pseudo-Riemannian struc-
ture. The Yang–Mills equations are the Euler–Lagrange equations associated to this
functional which have the form

d∗AFA = 0 (34)

where d∗A is the formal adjoint of dA. This follows from (33) since

⟨F(A+a),F(A+a)⟩= ⟨F(A),F(A)⟩+2⟨dAa,F(A)⟩+O(a2),

which is
⟨F(A),F(A)⟩+2⟨a,d∗AF(A)⟩+O(a2).

In the case of a rank 1 bundle, with structure group the circle U(1), the Yang–Mills
equations are linear. When M is space-time, with the Lorentzian metric, we get
Maxwell’s equations for the electromagnetic field, but henceforth in this article we
will consider only Riemannian base manifolds.

In the Riemannian case the functional E is a positive “energy” functional. Just as
the harmonic maps functional can be thought of loosely as measuring the deviation
of a map from a constant so, at least over a simply connected manifold M, the
Yang–Mills functional can be thought of as measuring the deviation from a product
connection. The analogy with harmonic maps has been an important guiding theme
in the development of Yang–Mills theory, and one emphasised in Uhlenbeck’s work,
as we will see below. The critical dimension for the base manifold M in the Yang–
Mills case is 4, analogous to the critical domain dimension 2 for harmonic map
theory. The Yang–Mills functional is conformally invariant in dimension 4. Said in
another way, working over a ρ-ball Bρ in M = Rn, if we rescale the ball to unit size
the energy changes by a factor ρ4−n.

Another connection between Yang–Mills theory and harmonic maps comes in
the question of “gauge fixing”. The local representation A of a connection over
an open set Ω ⊂ M depends on a choice of bundle trivialisation. By changing the
trivialisation we can make A as “bad” as we like; conversely we would like to choose
a good representation for a given connection. A natural way to do this is to seek a
“Coulomb gauge” in which d∗A = 0. This is traditional in electromagnetic theory.
Staying in positive signature, we view a magnetic field B on R3 as the curvature
of a connection on a Hermitian complex line bundle. Transferring to vector-field
notation, A becomes the magnetic potential A with curl A = B and the Coulomb
gauge condition is div A = 0. Then ∆A is the current J = curl B and A = G∗J for
the Newton potential G. Differentiating, this gives the Biot–Savart formula for the
magnetic field generated by a current.

Going back to the general situation, if we start with some arbitrary representation
A0 for the connection over Ω ⊂M a representation in Coulomb gauge corresponds
to a solution of the equation

d∗(gA0g−1−dgg−1) = 0, (35)
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for a map g : Ω → U(r). This is the Euler–Lagrange equation associated to the
functional

∥gA0g−1−dgg−1∥2
L2 .

When A0 = 0 this is the harmonic maps energy for the map g : M0→U(r) and the
equation (35) is the harmonic map equation. For general A0 we have a deformation
of that equation.

5.2 The 1982 papers in Commun. Math. Phys.

The title of this subsection refers to the two papers of Uhlenbeck [58], [59]. Along
with work of Taubes from around the same time, such as [51], these papers initiated
the study of the analytic and PDE aspects of Yang–Mills theory, to set alongside the
developments of that period of a more differential-geometric and algebro-geometric
nature.

The paper [59] bears on the gauge-fixing problem indicated at the end of the pre-
vious subsection. While the overall aim is to obtain global results, the main work
takes place locally, for connections over a ball. There is a simple way to fix a gauge
(the “exponential gauge”) for a connection over a ball using parallel transport along
rays through the origin. In other words, in polar coordinates the connection form A
is determined (up to an overall conjugation) by the condition that it contains no dr
component. This is convenient for many purposes but is not well-suited to elliptic
analysis. The curvature depends on one derivative of the connection so we would
hope, roughly speaking, that we can choose a gauge in which A gains one deriva-
tive compared with the curvature. But, for example, an L∞ bound on the curvature
gives only an L∞ bound on the connection form in an exponential gauge, it does
not control the derivatives. Similarly, the Yang–Mills equations for A are not elliptic
in exponential gauge. On the other hand, if the Coulomb gauge condition d∗A = 0
is satisfied then, in Sobolev spaces, the leading term dA in the curvature does con-
trol roughly speaking one more derivative of A and the Yang–Mills equations are
elliptic. There is a parallel discussion in Riemannian geometry, with the traditional
geodesic coordinates compared with harmonic coordinates. In the latter the Einstein
equations for the metric tensor are elliptic.

The central result of [59] is a “small energy” theorem.

Theorem 5.1. For p > 1 there are ε,C > 0 such that if A is a connection over Bn

with ∥F∥Ln/2 ≤ ε then there is local trivialisation in which the connection form A
has the following properties:

(1) d∗A = 0,
(2) On the boundary, the contraction of A by the normal vector vanishes,
(3)

∥A∥p,1 ≤C∥F∥Lp .

Thus the curvature does control one more derivative of the connection form in
this Lp sense. Uhlenbeck proves a stronger statement, for connections which are
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only in Lp
1 (for p ≥ n/2) but in our discussion we work with smooth connections,

which makes things a bit simpler. Also, to simplify notation we write the proof for
the case n = 4.

Uhlenbeck uses a continuity argument to establish this result. The estimates are
another instance of what we are calling “critical quadratic rearrangement”, as in the
proof of Theorem 3.2 for harmonic maps. For ρ ∈ [0,1] let Aρ be the connection over
the unit ball obtained by pulling back the restriction of A to the ρ ball by the dilation
map. Then the scaling behaviour of the L2 norm on 2-forms in dimension 4 shows
that ∥F(Aρ)∥L2 ≤∥F(A)∥L2 , so we have a path of connections joining A to the trivial
connection, all with ∥F∥L2 ≤ ε . The strategy is to construct a corresponding path Aρ

satisfying the conditions in the statement. To set this up we consider a variant of the
third condition in Theorem 5.1 (for p = 2), depending on a small number η to be
chosen below. The variant is

∥A∥2,1 < η , (3′)

which is an open condition.
Suppose that for some ρ we have an Aρ satisfying (1), (2) of Theorem 5.1 and

(3′), and just write Aρ = A. The boundary condition is elliptic for the operator d∗⊕d
and if a is a 1-form satisfying the boundary condition in (2) of Theorem 5.1 and
d∗a = da = 0 then a = 0. (For we can write a = d f and then f satisfies the Laplace
equation with Neumann boundary conditions and hence is constant, so a = 0.) Then
elliptic theory gives estimates

∥A∥p,1 ≤ Kp∥dA∥Lp . (36)

For p < 4 the Sobolev embedding Lp
1 → Lq with q = 4p/(4− p) combined with (36)

tells us that
∥A∥Lq ≤ K′p∥dA∥Lp .

Now the formula dA = F−A∧A leads to

∥A∥p,1 ≤ c1∥F∥Lp + c2∥A∥p,1∥A∥2,1, (37)

where we have used Hölder’s inequality, exploiting the fact that 1/p = 1/q+2.
Now for the crucial step take p = 2. Then (37) gives

∥A∥L2
1
≤ c3∥F∥L2 + c4∥A∥2

L2
1
.

Thus if η is chosen so that c4η < 1
2 , say, we get ∥A∥L2

1
≤C∥F∥L2 with C = 2c3.

In other words (1), (2) and (3′) imply (3). Now choose ε < η/2C so that condition
(3) implies (3′). Going back to (37) and applying the same rearrangement argument
for the quadratic term we get Lp

1 bounds on A for all p < 4 (provided ε is chosen
suitably small). A similar argument works for p≥ 4. Note that we are not supposing
that the curvature is small in Lp for p > 2, so A could be large in Lp

1 , but we have
some bound. Similarly, if we want to stay in the smooth category, we can estimate
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higher derivatives. Then it is straightforward to show that the set of ρ ∈ [0,1] for
which a solution exists is closed. The point is that the open condition (3′) cannot be
violated in taking a limit because it is implied by the closed condition (3). (In this
case of dimension n = 4 it is not essential to invoke Lp theory for p ̸= 2 to prove the
main result; the proof can be done in Sobolev spaces L2

k , as in [16].)
The openness part of the continuity proof uses, as usual, the implicit function

theorem. Condition (3′) is open by its nature so we just have to deform the solution
to the equations (1), (2). This requires some technical work to set up due to the
boundary condition. At a solution A=Aρ the linearised equation for a matrix-valued
function ψ is

d∗(dψ +[A,ψ]) = σ ,

with Neumann boundary condition and where the integral of the given σ is zero.
The operator on the left-hand side can be written as ∆ψ + {A,dψ}, where { , }
combines the inner product on 1-forms with the matrix bracket. This is treated as a
deformation of the ordinary Poisson equation with Neumann boundary conditions.
Sobolev estimates similar to those used above show that the linearised equation is
soluble and the implicit function theorem can be applied.

The global result in Uhlenbeck’s paper [59] concerns the “subcritical” case, with
an Lp bound on the curvature for p > n/2.

Theorem 5.2. Let Ai be a sequence of unitary connections on a bundle E over a
compact Riemannian n-manifold M satisfying a bound ∥F(Ai)∥Lp ≤ C for some
p > n/2. There is a subsequence {i′} and bundle automorphisms gi′ such that the
transformed connections gi′(Ai′) converge weakly in Lp

1 to an Lp
1 limit A∞.

This is a relatively elementary consequence of Theorem 5.1. First, the scaling
behaviour of the Lp norm means that there is an r0 such that if the restriction of Ai
to any r0-ball in M is pulled back to the unit ball B ⊂ Rn via geodesic coordinates
then the pulled back connection satisfies the small-curvature hypothesis of Theorem
5.1. Cover the manifold M by a finite collection of such small balls. Then after
passing to a subsequence and applying a sequence of gauge transformations over
each ball we can suppose that the connections converge weakly in Lp

1 over the ball.
The problem is to convert this local convergence to the global result.

It is convenient to take a different point of view here and consider a bundle-with-
connection over a manifold M presented by the data

• an open cover M =
⋃

Uα ;
• on each overlap Uα ∩Uβ a transition function gαβ , taking values in the unitary

group, such that gαγ = gαβ gβγ on Uα ∩Uβ ∩Uγ ;
• on each Uα a connection form Aα , such that

dgαβ = gαβ Aα −Aβ gαβ (38)

on Uα ∩Uβ .
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(Note that (38) is equivalent to (32).)
Now suppose that we have a sequence of such data (for a fixed cover) gαβ

i , Aα
i

and that the Aα
i converge over Uα to Aα

∞. For the moment let us suppose that this is
C∞ convergence. Since the unitary group is compact the formula (38) implies that
the derivatives dgαβ

i are bounded, so there is a subsequence {i′} such that the gαβ

i′

converge in C0 on compact subsets of Uα ∩Uβ . Differentiating (38) shows that this
convergence is in C∞ on compact subsets. We can slightly shrink the Uα so, without
loss of generality, we can suppose that the gαβ

i converge in C∞ on Uα ∩Uβ to a limit

gαβ
∞ . This system of data (gαβ

∞ ,Aα
∞) satisfies all the conditions to define a bundle-

with-connection. Let Ei be the bundle defined by the transition functions gαβ

i , for i
finite or infinite, and Ai the connection on Ei. What we want to show is that for large
enough i there is a bundle isomorphism hi : E∞→ Ei such that the pull-backs h∗i (Ai)
converge to A∞. This boils down to the problem of choosing U(r)-valued functions
hα

i on possibly slightly smaller sets U ′α (which still cover) such that

hα
i gαβ

i = gαβ
∞ hβ

i (39)

on the intersections, and with hαi → 1 as i→ ∞.
By an induction argument it suffices to treat the case when the cover is by two

open sets M =Uα ∪Uβ . We choose hβ = 1 so the condition to solve is

hi = g∞g−1
i ,

where we write h = hα ,gi = gαβ

i ,g∞ = gαβ
∞ . Now gi→ g∞ in C0 so for i large g∞g−1

i
takes values in a small neighbourhood of the identity in U(r) and we can write

g∞g−1
i = exp(Li),

for a matrix-values function Li on Uα ∩Uβ . We take a suitable shrunken cover
U ′α ∪U ′

β
and a cut-off function χ so that χLi is equal to Li on U ′α ∩U ′

β
and χLi can

be extended smoothly by 0 over U ′α . Then we can take hi = exp(χLi) and clearly
hi→ 1 as i→ ∞.

In the setting of Theorem 5.2 we do not have C∞ convergence of the connection
forms Aα

i but only weak Lp
1 convergence. However this implies weak Lp

2 conver-
gence of the gαβ

i (after taking a subsequence) which implies C0 convergence, since
evaluation at a point is bounded on Lp

2 when p > n/2. Then the whole argument
goes through unchanged. This is the crucial point where the condition p > n/2 is
required.

We now turn to the other Commun. Math. Phys. paper [58]. The main result is
the removability of point singularities:

Theorem 5.3. A Yang–Mills connection over the punctured ball B4 \ {0} with cur-
vature in L2 extends to a smooth Yang–Mills connection over B4.
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More precisely, if A is a finite-energy Yang–Mills connection on a bundle E →
B4 \ {0} then there is a bundle Ẽ → B4 and an isomorphism ι : Ẽ|B4\{0}→ E such
that ι∗(A) extends smoothly over the origin.

This is the analogue of Sack’s and Uhlenbeck’s Theorem 3.3 for harmonic maps
of the punctured disc and Uhlenbeck’s strategy of proof is similar. For r ≤ 1 let

E (r) =
∫
|x|≤r
|F |2.

The strategy is to derive differential inequalities relating E and dE
dr .

This paper [58] introduced a number of important techniques and results, on the
way to the proof of Theorem 5.3. One was the use of exponential gauges discussed
above. Another was a small energy result:

Theorem 5.4. There are ε,C > 0 such if A is a Yang–Mills connection over the unit
ball B⊂ R4 with energy E less than ε then |F |2 ≤C E on B 1

2
.

Again, this is the analogue of what we discussed for harmonic maps. It can be proved
using Theorem 5.1 above to find a Coulomb gauge and then applying elliptic esti-
mates, very much like the argument for Theorem 3.2. But the proof in [58] is dif-
ferent. It does not require gauge fixing and introduces another important technique.
Recall that the Yang–Mills equations are d∗AF = 0. The curvature of any connection
satisfies the Bianchi identity dAF = 0, so ∆AF = 0 where ∆A is the coupled “Hodge”
Laplace operator

∆A =−(dA d∗A +d∗A dA).

There is another Laplace-type operator −∇∗A∇A acting on the bundle-valued forms.
In a local trivialisation this is

∑

(
∇

A
i

)2
.

The two are related by a Weitzenbock formula which, over a flat base manifold, is

∆Aφ = ∇
∗
A∇Aφ +{F,φ},

where the pointwise bilinear operation { , } combines the bracket on bundle endo-
morphisms with the map Λ 2⊗Λ k→Λ k furnished by the derivative of the action of
the orthogonal group on k-forms.

The upshot of this differential geometry is that the curvature of a Yang–Mills
connection (over a flat base manifold) satisfies the equation

∇
∗
A∇AF = {F,F}. (40)

One computes that |{F,F}| ≤ 4|F |2 and then (40) leads to a differential inequality
for |F |:

∆ |F | ≥ 4|F |2. (41)
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(The function |F | may not be smooth at zeros of F but this difficulty can be got
around in standard ways. The exact constant 4 in (41) will not be important and
depends on conventions for defining the norm |F |.)

One can then apply the Nash–Moser iteration technique to derive interior esti-
mates on f = |F | from (41). At the first step, let χ be a fixed cut-off function, equal
to 1 on the ball of radius 3

4 say. Then multiplying by χ2 f and integrating by parts:∫
B4
(∇(χ2 f ),∇ f )≤ 4

∫
χ

2 f 3.

We have
(∇(χ2 f ),∇ f ) = |∇(χ f )|2−|∇χ|2 f 2,

so we get ∫
|∇(χ f )|2 ≤ 4

∫
(χ f )2 f +

∫
|∇χ|2 f 2.

Invoking the Sobolev embedding L2
1→ L4 in dimension four and Hölder’s inequal-

ity, we see that if the L2 norm of f is sufficiently small we can apply quadratic
rearrangement to get an L4 bound on χ f , hence an L4 bound on f in the 3

4 -ball. The
relevant manipulation is, again, similar to that in the proof of Theorem 3.2. Repeat-
ing the process, with a suitable sequence of concentric balls and cut-off functions
and keeping track of the constants, leads to an L∞ bound on f in the 1

2 -ball. If one
only needs to work with Yang–Mills solutions then it is usually possible to avoid the
use of the sharp Coulomb gauge-fixing result of [59], using this alternative approach
from [58].

Returning to the removal of singularities problem, Uhlenbeck explains in [58],
for a connection over Bn \ {0}, the critical nature of the curvature decay condition
|F | ≤C|x|−2. If we take a non-trivial Yang–Mills connection over Sn−1 (for example
the Levi-Civita connection on the tangent bundle) and pull it back by radial projec-
tion we get a Yang–Mills connection over the punctured ball whose curvature is
exactly O(|x|−2). In dimension n > 4 this curvature is in L2 but when n = 4 it is in
Lp for any p < 2 but not in L2. For n = 4 the small energy result, applied to a ball of
radius |x|/2 centred at a point x, leads to a bound

|F(x)|= o(|x|−2) (42)

so we get a little above the critical O(|x|−2) threshold but, as in the case of Theorem
3.3 for harmonic maps, more is needed. A differential inequality

(1−δ ) E ≤ 1
4r

dE

dr

implies that E = O(r4−4δ ), which gives |F | = O(r−2δ ) and then F is in Lp for
p < 2/δ . Uhlenbeck establishes a more complicated inequality
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1−ω E (2r)

1
2

)
E (r)≤ 1

4r
dE

dr
, (43)

for a constant ω , from which she is able to deduce that |F | is bounded. Then an
exponential gauge produces a bounded connection form, which can be adjusted to
satisfy the Coulomb condition, and elliptic regularity shows that the connection ex-
tends smoothly over the origin. (See the further discussion in subsection 6.3 below.)

We will not go much further into the details of Uhlenbeck’s proof in [58], partly
because we will discuss another proof, of Uhlenbeck and Smith, in subsection 6.3
below. One important idea in the proof of [58] is that on any small annulus the
connection is close to flat, in the sense that when the annulus is scaled to standard
size the curvature is small, by (42) above. This means that the nonlinear equation
can be approximated by its linearisation, provided a suitable gauge is used over the
annulus. The construction of these gauges takes up much of the work in the paper.
In the case of the Abelian gauge group U(1) we have F = dA and the Yang–Mills
equation is d∗A = 0. Then over a domain Ω :∫

Ω

|F |2 =
∫

∂Ω

A∧∗F.

In the general non-Abelian case there is a similar formula with lower order terms,
and by estimating these Uhlenbeck obtains the differential inequality (43). The cru-
cial constant 4 in (43) appears as the first eigenvalue of the Laplacian on co-closed
1-forms on S3.

5.3 Applications

Much of the original motivation for the removal of singularities theorem was to
answer a question raised by physicists. A finite-energy Yang–Mills U(r) connection
over R4 extends smoothly to S4, in particular it has a topological invariant Chern
number. In a later paper [60] Uhlenbeck showed that for any finite energy connection
the Chern number, defined by integrating the Chern–Weil form, is an integer. This
used the full force of Theorem 5.1, in fact extended to L2

1 connections.
The results of these two papers of Uhlenbeck were foundational in the develop-

ment of Yang–Mills theory over Riemannian manifolds of dimension at most 4. In
one direction they opened the way to the use of variational methods. In the subcriti-
cal case, over manifolds of dimension 2 and 3, the analysis is relatively straightfor-
ward. In particular any bundle admits a connection which minimises the Yang–Mills
functional. This is an easy consequence of Theorem 5.2 which implies that there is
a minimising sequence which converges in L2

1 and in these dimensions the bundle
theory works in a straightforward way with L2

1 connections and L2
2 gauge transfor-

mations because L2
2 maps are continuous. The existence of minimisers is not the

end of the story: one would like to go on to the relate the Yang–Mills connections
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to the topology of the space of connections modulo gauge equivalence. There has
been a lot of work on this in the case of bundles over surfaces, following Atiyah
and Bott, including a paper of Daskalopoulus and Uhlenbeck [11]. Rade (who, like
Daskalopoulos, was a PhD student of Uhlenbeck) obtained complete results about
the Yang–Mills gradient flow in these dimensions [37].

The variational theory in dimension 4 is much harder. One early and clear cut
result was obtained by Sedlacek (another PhD student of Uhlenbeck) [43]. Let G be
a compact Lie group. A principal G-bundle P over a compact oriented 4-manifold
is determined by two characteristic classes κ(P),w(P) where κ(P) ∈ H4(X ,π3(G))
and w(P) ∈ H2(X ,π1(G)). For example if G = SU(m) then κ is the second Chern
class and w is trivial, since SU(m) is simply connected, while if G = SO(m) for
m = 3 or m ≥ 5 then κ is a multiple of the first Pontrayagin class and w is the
second Stiefel–Whitney class in H2(X ;Z/2). Now let X have a Riemannian metric,
so the Yang–Mills equations are defined. Sedlacek’s result is that for any P there
is a Yang–Mills connection on a G-bundle P′ → X with w(P) = w(P′). It might
happen that P′ is isomorphic to P but the result allows the possibility that they are
different. (This is the Yang–Mills analogue of the fact that for any homotopy class
of maps from a surface there is a harmonic map inducing the same homomorphism
on fundamental groups, but possibly in a different homotopy class.)

To prove this result, Sedlacek considers a minimising sequence Ai for the Yang–
Mills functional on P. A covering argument just like that for Theorem 3.1 shows that
after passing to a subsequence i′, there is a finite subset S⊂ X (possibly empty) such
that each point in X \ S is the centre of a ball on which the connections Ai′ satisfy
the small energy condition for the Coulomb gauge fixing result, Theorem 5.1. Then
we arrive at a situation like that we considered in the proof of Theorem 5.2, with a
subsequence i′, a cover Bα of X \ S and connection 1-forms Aα

i′ in Coulomb gauge
and with L2

1 limits Aα
∞ and L2

2 limits gαβ
∞ of the transition functions gαβ

i . Sedlacek
shows that these limits Aα

∞ are weak solutions of the Yang–Mills equations and then,
using ellipticity in Coulomb gauge, that they are in fact smooth.

The equation (38), and the cocycle conditions, are preserved in the limit so the
smoothness of the Aα

∞ implies that of the gαβ
∞ . Thus the limiting data defines a

smooth connection A∞ on a bundle P∞ over X \ S. This is a finite-energy Yang–
Mills connection so the removal of singularities theorem shows that the bundle and
connection extend smoothly over the finite set S to a connection on a bundle P′.
The remaining step is to show that the characteristic classes w(P),w(P′) are equal.
The point here is that P′ may not be isomorphic to P over X . Even over X \ S the
L2

2 convergence of the transition functions does not give the C0 convergence, so the
last part of the proof of Theorem 5.2 does not extend to this situation (although, by
algebraic topology, it does turn out in the end that the bundles are isomorphic over
X \S).

Consider for example the case when X = CP2, with its standard metric and ori-
entation, and the gauge group G = SU(2). If P is the bundle with c2(P) = 1 there
is no minimiser of the Yang–Mills functional: a minimising sequence will converge
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to the flat connection away from a point in CP2, displaying the same kind of bub-
bling behaviour that we described for harmonic maps from T 2 to S2 in Section 3. If
c2(P) =−1 on the other hand then minimisers can be constructed (they are instan-
tons, see below). But there is a non-compact moduli space of these minimisers and
we could choose a “bad” minimising sequence exhibiting bubbling over a point.

The variational theory was developed much further in a sequence of papers by
Taubes such as [52, 53], relating the solutions to the topology of the space of con-
nections modulo equivalence. We refer to the article [15] for a discussions of those
developments.

Perhaps the largest impact of Uhlenbeck’s papers [58, 59] came in the study
of the “instanton” solutions to the Yang–Mills equations in 4 dimensions. Instan-
tons, over an oriented, Riemannian 4-manifold X are connections whose curvature
is self-dual or anti-self-dual (the two being interchanged by switching orientation).
In the analogy between 4-dimensional Yang–Mills theory and harmonic maps of
surfaces, these correspond to holomorphic maps to a Kähler (or just almost-Kähler)
manifold. The instantons have consequences in 4-manifold topology, analogous to
those of the mapping theory in symplectic topology. The analogue of Theorem 3.1
for sequences of instantons leads to the “Uhlenbeck compactifications” of instanton
moduli spaces. These are made up of pairs ([A],D) where [A] is the gauge equiva-
lence class of an instanton and D is a formal sum of points q j of X with multiplicities
κ j. A sequence of instantons converges to ([A],D) if the connections converge on
the complement of the points q j and exhibit “bubbling” over the q j with κ j units of
energy (suitably normalised) concentrating at q j. We refer to the books [16, 19] for
detailed accounts of these developments.

6 The Yang–Mills equations in higher dimensions

6.1 Hermitian Yang–Mills connections on stable bundles

Much of the work involving Yang–Mills theory over manifolds of dimension greater
than four focuses on manifolds with some extra structure, as opposed to general Rie-
mannian manifolds. One of the most important such developments came in work of
Uhlenbeck and Yau [64], establishing the “Kobayashi–Hitchin conjecture” in com-
plex differential geometry.

Let X be a compact Kähler manifold of complex dimension m with Kähler form
ω . The forms on X decompose into bi-type and the metric defines a contraction
operator Λ : Ω 1,1 → Ω 0. This is just the trace with respect to the metric ω . We
recall three identities:

(1) For a function f : ∆ f =−2iΛ∂∂ f .
(2) For a (0,1) form α: iΛ(α ∧α) =−|α|2.
(3) For a (1,1) form θ : θ ∧ωn−1 = (Λθ) ωm/m = (m−1)!(Λθ) vol.
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Now consider a unitary connection on a complex vector bundle E → X . The
curvature decomposes into F = F0,2 +F1,1 +F2,0 and we define F̂ = iΛF1,1. So
F̂ is a section of the bundle of self-adjoint endomorphisms of E. The connection is
called a Hermitian-Yang–Mills connection if F0,2 and F2,0 vanish and

F̂ = µ1E , (44)

for a constant µ . The constant µ is determined by topology. By the third item above

(m−1)!
(

Tr F̂
)

vol = iTrF ∧ω
m−1,

and by Chern–Weil theory the 2-form (i/2π)Tr F represents the first Chern class
c1(E). So if a solution to (44) exists, we have

µ =
2π

(m−1)!Vol (X)

deg(E)
rankE

,

where the degree deg(E) is defined to be the pairing (c1(E)∪ωm−1)[X ], which is
a topological invariant of the bundle E → X and the Kähler class [ω]. The ratio
deg (E)/rank E is called the slope of the bundle E. Hermitian-Yang–Mills con-
nections are Yang–Mills connections: in fact they are absolute minimisers of the
Yang–Mills functional on the given bundle. If E is the tangent bundle of X and
the connection is the Levi-Civita connection then F̂ is the Ricci tensor, so (44) is
related to the Einstein equations and solutions are often called Hermitian–Einstein
connections in the literature.

The significance of the condition that the curvature F has type (1,1) is that this
implies that the connection is compatible with a holomorphic structure on the bundle
E. For any connection ∇ we can write

∇ = ∂∇⊕∂ ∇ : Ω
0(E)→Ω

1,0(E)⊕Ω
0,1(E).

The sheaf of local solutions of the equation ∂ ∇s = 0 is a sheaf of modules over the
structure sheaf of the complex manifold X : the local holomorphic functions. But
when dimCX > 1 the equation ∂ ∇s = 0 is overdetermined and for a general con-
nection the only solution will be s = 0. The condition F0,2 = 0 is the integrability
condition for this equation, which implies the existence of solutions generating the
bundle E, thus defining a holomorphic structure on the bundle. For a unitary con-
nection the component F2,0 is −(F0,2)∗ so the vanishing of one implies the same
for the other.

We have then the existence question: given a holomorphic bundle E does it admit
a compatible Hermitian-Yang–Mills connection? The Kobayashi–Hitchin conjec-
ture, formulated independently by Kobayashi and Hitchin around 1980, is that such
a connection exists if and only if E is a direct sum of stable holomorphic bundles of
equal slope. The notion of stability here was introduced before by algebraic geome-
ters in the context of moduli problems. A holomorphic bundle of V is defined to be
stable if every non-trivial coherent subsheaf S of rank less than rankV satisfies the
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condition
slope (S )< slope (V ). (45)

(By general theory, such a subsheaf is given by a proper subbundle of V outside
a singular set of complex codimension 2 or more, so the first Chern class of S is
defined in H2(X).)

Part of the evidence for this conjecture came from results of Narasimhan and Se-
shadri from the 1960s which covers the case when X is a complex curve. The fact
that the existence of a Hermitian-Yang–Mills connection implies that the bundle is
a sum of stable bundles is relatively straightforward and was proved by Kobayashi
[27]. In this subsection we discuss Uhlenbeck and Yau’s proof of the existence re-
sult, for general Kahler manifolds (X ,ω). The essential statement can be put in the
form:

Theorem 6.1. If a holomorphic bundle E does not admit a Hermitian-Yang–Mills
connection then there is a subsheaf S , as above, with slope S ≥ slope (V ).

There are two ways of setting up differential geometry on holomorphic vec-
tor bundles. In one—which is the traditional point of view in complex differential
geometry—one has a fixed holomorphic bundle and varies the Hermitian metric.
A metric defines a unique compatible connection (often called the “Chern connec-
tion”). In the other, we fix the metric ( , ) on a C∞ bundle E and vary the connection.
Let ∇0 be some unitary reference connection and write ∇0 = ∂0 +∂ 0. If g is any au-
tomorphism of E, not necessarily unitary, we define a new covariant derivative by

∇
g = (g∗)−1 ◦∂0 ◦g∗+g◦∂ 0 ◦g−1.

That is, we conjugate ∂ 0 by g and define the (1,0) part in the unique way to make
a unitary connection ∇g. If g is unitary then g = (g∗)−1 and we have the ordi-
nary gauge transformation, so ∇g geometrically equivalent to ∇0. In general, the ∂ -
operators of ∇g,∇0 are equivalent, in the sense that they define isomorphic holomor-
phic structures on the bundle, but the connections are essentially different. Working
modulo the unitary gauge transformations, we can restrict attention to self-adjoint
automorphisms, which we write as h. Then

∇
h = h◦∂ 0 ◦h−1 +h−1 ◦∂0 ◦h.

To match up with the first point of view, it is equivalent to fix the holomorphic
structure with ∂ -operator ∂ 0 and vary the metric to (hs,hs) = (s,h2s). We will use
this second point of view, which means that some formulae will look different from
those in [64].

The curvature of the connection ∇h is

F(∇h) =F0+∂ 0(h−1
∂0h)−∂0(∂ 0h h−1)−

(
h−1

∂0h ∂ 0hh−1 +∂ 0h h2 ∂0h
)
, (46)

where F0 is the curvature of ∇0.
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Write h = eu, so u is a section of the bundle of self-adjoint endomorphisms of E.
To gain understanding of the nature of the Hermitian-Yang–Mills equation we can
consider the linearisation about u = 0. Using the connection between the ∂ and ∂

operators and the Laplacian one sees that this is

F̂(eu) = F̂0 + iΛ(∂ 0∂0−∂0∂ 0)u+O(u2) = F̂0 +∇
∗
0∇0u+O(u2). (47)

So the linearisation is the coupled Laplacian. The Hermitian-Yang–Mills equation
has many similarities with the harmonic equation for a map into the space of hermi-
tian matrices: the nonlinear term is quadratic in the first derivatives of h.

The proof by Uhlenbeck and Yau of Theorem 6.1 uses a continuity method, with
the family of equations, for t ≥ 0:

F̂(eu) =−tu. (48)

To set things up they prove:

Proposition 6.1. (1) The equation (48) has a solution for large t.
(2) The set of t ∈ [0,∞) for which a solution to (48) exists is open.
(3) If there is a smooth family of solutions ut to (48) for t in an interval (t0, t1)

satisfying a bound ∥ut∥L∞ ≤ C then the solution extends to the closed interval
[t0, t1].

Item (1) is proved by Uhlenbeck and Yau with an auxiliary continuity argument.
It can also be established using the implicit function theorem, writing u = εF̂0 +w
with ε = t−1. When ε = 0 there is a trivial solution w = 0 and this can be deformed
to a solution for small ε .

The proof of item (2) also uses the implicit function theorem, in a standard way
once one knows the invertibility of the linearised operator. This involves slightly
complicated calculations, extending the formula (47), which we pass over here.

Uhlenbeck and Yau use an interesting technique to prove item (3), based on an
interpolation inequality. For large p:

∥v∥2
L2p

1
≤ c∥v∥Lp

2
∥v∥L∞ . (49)

Let u̇, ḣ be the t-derivatives of u and h= eu on the interval (t0, t1). Thus u̇ satisfies the
linear equation obtained by differentiating (48). Applying the maximum principle
to this equation they show that ∥u̇∥L∞ satisfies a fixed bound (this step is related
to the invertibility of the linearised operator for item (2)). The formula (46) for the
curvature leads to an expression for ∇∗0∇0ḣ in terms of h, F̂(h) and the derivatives
of h. The hypothesis means that F̂(h) is bounded and one gets

|∇∗0∇ḣ| ≤ c
(
1+ |∇0h||∇0ḣ|+ |∇0h|2|ḣ|

)
.

The L∞ bound on u̇ gives one on ḣ and we get

∥ḣ∥p,2 ≤ c
(
1+∥h∥2p,1∥ḣ∥2p,1 +∥h∥2

2p,1
)
.
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Let M(t) = ∥ht∥p,2, so | dM
dt | ≤ ∥ḣ∥p,2. The interpolation inequality (49), applied to

h and to ḣ, gives ∣∣∣∣dM
dt

∣∣∣∣≤ c

(
1+M+

√
M
∣∣∣∣dM

dt

∣∣∣∣
)
,

which implies that ∣∣∣∣dM
dt

∣∣∣∣≤ c(1+M).

This gives a bound on ∥ht∥Lp
2

over the finite interval (t1, t2). Then it is straight-
forward to obtain bounds on all higher derivatives, which implies that the solution
extends to the end points.

Uhlenbeck and Yau show that a solution to (48) for t > 0 satisfies an a priori L∞

bound
∥ut∥L∞ ≤ ct−1, (50)

(see item (1) of Proposition 6.2 below). Then Proposition 6.1 implies that solutions
exist for all t > 0. If there is a C such that ∥ut∥L∞ ≤ C for all small t > 0 then
Proposition 6.1 implies that the solution exists for t = 0; so we have a Hermitian-
Yang–Mills connection. The plan of the proof of Theorem 6.1 is to show that if there
is no such C—so there is a sequence ti→ 0 such that ∥uti∥L∞ → ∞—then there is a
subsheaf S with slope S ≥ slope (V ).

Uhlenbeck and Yau establish the following a priori estimates for a solution u= ut

of (48), writing (for convenience below) f = 2−
1
2 |u|.

Proposition 6.2. (1) ∥ f∥L∞ ≤ ct−1;
(2) ∥ f∥L∞ ≤ c∥ f∥L1 ;
(3) ∥∇ f∥2

L2 ≤ c∥ f∥L∞ ;
(4) ∥∇0u∥2

L2 ≤ c(1+∥ f∥2
L∞).

For simplicity, we will discuss the proofs in the case of a rank 2 bundle E with
trivial determinant. Then we can suppose that the trace of F̂0 is zero and we restrict
to trace-free u. We recall the differential geometric theory for a bundle E decom-
posed as an orthogonal direct sum EI⊕EII . A unitary connection on E is defined by
connections on Ei and a second fundamental form B, which is a 1-form with values
in Hom(EII ,EI). In matrix notation we can write our connection as(

∇I B
−B∗ ∇II

)
. (51)

The curvature is (
FI−BB∗ dI,IIB
−dI,IIB∗ FII−B∗B

)
(52)

where dI,II is the coupled exterior derivative defined by ∇I and ∇II . Over a complex
manifold we can write the ∂ -operator on the direct sum as
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∂ I β

γ ∂ II

)
where β ,γ are bundle-valued (0,1)-forms. Then B = β−γ∗. For a connection defin-
ing a holomorphic structure on E the component β vanishes if and only if EII is a
holomorphic subbundle and similarly for γ and EI . The (1,1) parts of the quadratic
terms in (52) are

(BB∗)1,1 = ββ
∗+ γ

∗
γ , (B∗B)1,1 = γγ

∗+β
∗
β .

The crucial point for us is that the constituents have a definite sign. Using the second
of the three formulae stated at the beginning of this subsection we get

|β |2 =−Tr(iΛ(ββ
∗)) = Tr(iΛβ

∗
β ) , |γ|2 = Tr (iΛ(γγ

∗))|=−Tr (iΛ(γ∗γ)).

When EI is a holomorphic subbundle, so γ = 0, this is an aspect of the principle
that “curvature decreases in holomorphic subbundles and increases in holomorphic
quotients”.

To apply this in our situation, work initially over the open set Ω in X where
u ̸= 0. Then u has eigenvalues − f , f and the bundle E is decomposed into a sum of
eigenspace line bundles EI ,EII . Thus

h =

(
e− f 0
0 e f

)
.

We find that

∂
h
=

(
∂ I e−2 f β

e2 f γ ∂ II

)
,

and

F̂(u) = F̂0−
(

P Q
−Q∗ −P

)
,

where
P =−∆ f +(e4 f −1)|γ|2 +(1− e−4 f )|β |2.

So we have

−∆ f +(e4 f −1)|γ|2 +(1− e−4 f )|β |2 + t f = p(F̂0), (53)

where p(F̂0) is the component of F̂0 in EndEI .
The maximum principle applied to this equation (53) implies the first item in

Proposition 6.2. We have |p(F̂0)| ≤ C for some C depending only on ∇0 and we
get max f ≤ Ct−1. Now we can feed this back into (53) to get the the differential
inequality

−∆ f +(e4 f −1)|γ|2 +(1− e−4 f )|β |2 ≤ 2C. (54)

In particular we have −∆ f ≤ 2C and while we have derived this over the open set
where u ̸= 0 it is straightforward to see that the inequality holds in a weak sense over
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the whole manifold. If f attains its maximum at a point p ∈ X then, by considering
a comparison function and applying the maximum principle, we see that it is close
to the maximum over a ball of fixed size about p, so the L1 norm of f is comparable
to the L∞ norm, which gives the second item of Proposition 6.2. Next, taking the L2

inner product of (54) with f we have∫
|∇ f |2 ≤ c

∫
f ≤ c∥ f∥L∞ ,

which is the third item.
Over Ω we have

∇0u =

(
−∇ f f (β − γ∗)

f (β ∗− γ) ∇ f

)
,

so
|∇0u|2 = 2

(
|∇ f |2 + f 2(|β |2 + |γ|2)

)
.

This formula holds over the whole of X , since f vanishes at the points where β ,γ are
undefined. Similarly for the inequality (54). Write N = ∥ f∥L∞ . Then it is elementary
that for a suitable κ

f 2 ≤ κ(1+N)2(e4 f −1) , f 2 ≤ κ(1+N)2(1− e−4 f ),

so
|∇0u|2 ≤ 2|∇ f |2 +2κ(1+N)2((e4 f −1)|γ|2 +(1− e−4 f )|β |2).

Comparing with (54) and integrating over X (so the term ∆ f in (54) integrates to
zero) we get ∫

|∇0u|2 ≤ 2
∫
|∇ f |2 +2Cκ(1+N2)Vol X ,

which gives item (4) of Proposition 6.2.
Define vt = N(t)−1ut , where N(t) = ∥ ft∥L∞ = 2−1/2∥u∥L∞ , as above. So the vt

are bounded in L∞ and their L1 norm has a strictly positive lower bound by item (2)
of Proposition 6.2. By item (4) of Proposition 6.2 the vt are bounded in L2

1. Suppose
that there is a sequence ti such that N(ti)→ ∞. Passing to a subsequence, we can
suppose that the vti have a weak L2

1 limit v∞. This is not zero because of the lower
bound on the L1 norms. By item (3) of Proposition 6.2 the derivatives of |vi| tend
to zero in L2 and it follows that the derivative of |v∞| is zero and |v∞| is a non-zero
constant, ρ say. (Most likely ρ =

√
2, by our normalisation.) It follows then that the

L2
1 bundle endomorphism π defined by π = 2

√
2ρ−1v0− 1 is a rank 1 orthogonal

projection with π∗ = π and π2 = π .
The image of π is the limit, in a suitable sense, of the small-eigenvalue eigen-

spaces of the uti . To visualise what is going on here, recall that the space H of
positive self-adjoint 2× 2 matrices with determinant 1 is a model for hyperbolic
3-space and has a natural compactification to a closed 3-ball, with a 2-sphere at
infinity. More intrinsically, if H consists of Hermitian forms on a 2-dimensional
complex vector space V then the sphere at infinity is P(V ). A sequence Hi ∈H
tends to a point [z] ∈ P(V ) if Hi(z,z)→ 0. In our situation we are considering sec-
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tions ht of a bundle HE over X with fibre H which is compactified by adjoining
P(E). The conclusion above is that if the ht do not have a finite limit, as a section of
HE—which would give a Hermitian-Yang–Mills connection—they have a limit “at
infinity” which is a section of P(E), i.e. a subbundle of E.

Suppose that L⊂ E is a holomorphic subbundle. Orthogonal projection onto L is
a smooth self-adjoint section ϖ of End E with

ϖ
2 = ϖ and (1−ϖ)∂ 0ϖ = 0.

From another point of view, the section ϖ is equivalent to a section of the projec-
tivised bundle P(E) and the equation (1−ϖ)∂ 0ϖ = 0 is equivalent to the Cauchy–
Riemann equation for this section. More generally, if S is a rank-1 subsheaf of
E we get a meromorphic section of P(E). The basic example, in local coordinates
z1,z2 on a complex surface X and a local holomorphic trivialisation of the bundle E,
is the sheaf S which is defined by the image of the bundle map s : O→O⊕O with
s(z1,z2) = (z1,z2). Then the meromorphic section is given by the standard rational
map (z1,z2) 7→ [z1,z2] from C2 to P1, undefined at the origin.

For the L2
1 projection π constructed above, (1−π)∂ 0π is defined in L2. The proof

of Uhlenbeck and Yau is completed by showing three things.

(1) π satisfies the equation (1−π)∂ 0π = 0.
(2) This defines a meromorphic section of P(E) and a coherent subsheaf of E.
(3) The degree of this subsheaf is ≥ 0.

To see the idea of the proof we consider the simple situation when the ut do not
vanish anywhere and the vt converge in C∞ to v0. In that case we have a smooth πt
defined by projection onto the small eigenspace EI of ut and πt is the C∞ limit of the
πt . Then

|(1−πt)∂ 0πt |= |γt |

while ∫
|γt |2(e4 ft −1)≤ 2CVolM.

Our simplifying assumptions imply that minX ft → ∞ as t → 0, so clearly
(1−πt)∂ 0πt tends to 0 in L2. In this simple situation item (2) is trivial so we turn to
item (3). By the Chern–Weil formula the degree of EI is

(2π)−1
∫

M
p(F̂0)+ |γt |2−|βt |2,

while
p(F̂0)+(e4 ft −1)|γt |2 +(1− e−4 ft )|βt |2 = t f .

So the degree of EI is

(2π)−1
∫

M
t ft + e4 ft |γt |2− e−4 ft |βt |2 ≥ (2π)−1

(∫
M

t ft −
∫

M
e−4 ft |βt |2

)
.
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Under our simplifying assumptions the last term tends to zero as t → 0 and we see
that degEI ≥ 0.

The proofs of items (1) and (3) in the general case requires some more care-
ful analysis but no fundamental difficulties. Item (2) is of a different order. Uhlen-
beck and Yau write about their whole proof: The technical part of the proof is quite
straightforward except for one point. We obtain the [subbundles] as “holomorphic”
in a very weak sense...obtaining enough regularity to describe them as sheaves is
more difficult.

Uhlenbeck and Yau gave two largely independent treatments of this crucial diffi-
culty. One uses complex analysis techniques. It is equivalent to show that an L2

1 map
into a complex Grassmannian which is a weak solution of the Cauchy–Riemann
equations is meromorphic. Thus it fits into the same general realm of the regularity
of weak harmonic maps we discussed in Section 4. The other uses gauge theory
techniques, which we will postpone to subsection 6.2 below.

The circle of ideas around this correspondence between the existence of solu-
tions to the Hermitian-Yang–Mills equations and the algebro-geometric notion of
stability has been extremely fruitful and influential in developments in complex dif-
ferential geometry over the past four decades and we only mention a few aspects
of this. In the case of a complex projective manifold, with integral Kähler class,
the author gave alternative proofs in [13, 14] exploiting a variational point of view.
Soon after, Simpson gave another proof which combined the variational point of
view with the Uhlenbeck–Yau techniques [47]. Simpson considered a more general
problem, involving a holomorphic bundle and additional fields, and there have been
huge developments in that direction, one pioneer being Uhlenbeck’s student Brad-
low [3]. Li and Yau extended the correspondence to the case of a general Hermi-
tian base manifold in [28]. In place of the Uhlenbeck–Yau continuity method, most
subsequent work has involved the natural nonlinear heat equation—the Yang–Mills
flow—associated to the existence question. (As Uhlenbeck and Yau state in [64],
the two methods are closely related.) Very complete results have been obtained, by
Sibley and Wentworth [45] and other authors, on the limiting behaviour of this flow
and connections with the algebro-geometric Harder–Narasimhan filtrations.

In a different direction the questions of existence of Kähler–Einstein metrics (in
the Fano case) and more generally of “extremal” metrics turn out to fit into the same
conceptual picture as the Hermitian-Yang–Mills theory and this has been the scene
for much activity. Meanwhile, on the algebraic geometry side, there have been vast
extensions of the notion of stability, starting with the work of Bridgeland, and there
is also much activity relating these developments to other equations in complex
differential geometry.
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6.2 Connections with small normalised energy

We first discuss higher-dimensional generalisations of the small energy results of
Theorem 5.4—the gauge theory analogue of part of subsection 4.1. Then we go
back to explain their relevance to the Uhlenbeck–Yau proof of Theorem 6.1.

The basic small-energy result for Yang–Mills connections in any dimension is
just the same as in dimension 4. For a Yang–Mills connection over the unit ball
with sufficiently small energy that energy controls all derivative of the connection,
in a suitable gauge, over an interior ball. For the application to the Hermitian-Yang–
Mills problem we want to consider a more general situation.

Theorem 6.2. Let B⊂Cm be the unit ball and B′an interior ball and let q be an ex-
ponent with m < q < 2m. There are ε,η ,C > 0 such that if A is a unitary connection
over B with curvature of type (1,1) and such that

∥F(A)∥2
L2 ≤ ε , ∥F̂∥Lq ≤ η (55)

then there is an Lq bound on the curvature over B′

∥F∥Lq(B′) ≤C(∥ f∥L2(B)+∥F̂∥Lq(B)).

Given this, we can apply Uhlenbeck’s gauge fixing Theorem 5.1, once F is suffi-
ciently small in L2 and F̂ in Lq, to get a connection form A over B′ with a bound on
∥A∥Lq

1(B
′).

Uhlenbeck’s proof of such a result was written in the unpublished manuscript
[63]. A description of the proof, and generalisations, can be found in the recent
paper [9]. For Yang–Mills connections (including the case of Hermitian-Yang–Mills
connections, where F̂ is a constant multiple of the identity) a proof was given by
Nakajma [32], following the same lines as Schoen’s proof of the corresponding
result for harmonic maps (Proposition 4.1 above). It uses a monotonicity formula
going back to Price [36] for the normalised Yang–Mills energy in real dimension n

Ê = r4−n
∫

Br

|F |2.

The proof of monotonicity, for smooth Yang–Mills connections, goes exactly as in
subsection 4.1. (In this section the reader should keep in mind that we are working
in complex dimension m so the real dimension is n = 2m, to fit in with our previous
notations.) We give a proof of Theorem 6.2 on the same lines as Nakajima’s proof
here.

The first thing is to obtain a monotonicity-type property for the normalised en-
ergy of connections with curvature of type (1,1) and with an Lq bound on F̂ . For a
connection with curvature of type (1,1) we have an identity

|F |2 vol =
1

(m−2)!
Tr(F2)∧ω

m−2 +
1
m
|F̂ |2 vol. (56)
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Write the flat Kähler metric on the unit ball as ω = dλ , where the 1-form λ is
half the contraction of ω with the radial vector field r∂r. Then we have∫

B
Tr(F2)∧ω

m−2 =
∫

∂B
Tr(F2)∧λ ∧ω

m−3.

Calculation shows that there is a pointwise bound on ∂B:

2
(m−3)!

Tr(F2)∧λ ∧ω
m−3 ≤ |F |2vol∂B.

So we get

2(m−2)
∫

B
|F |2 ≤

∫
∂B
|F |2 + 2(m−2)

m

∫
B
|F̂ |2.

Applying the same argument to balls of radius r < 1 we get the inequality for the
derivative of normalised energy

dÊ

dr
≥−2(m−2)

m
r3−2m

∫
Br

|F̂ |2.

This gives
dÊ

dr
≥−cr3−4m/q

(∫
Br

|F̂ |q
)2/q

,

for a suitable constant c. Since q > m we have 3−4m/q >−1 and we can integrate
to get, for all r ≤ 1,

Ê (r)≤ Ê (1)+ c∥F̂∥2
Lq .

It follows from this that, in the setting of Theorem 6.2, we can suppose that the
normalised energy on all interior balls is as small as we please, by making ε and η

suitably small.

Lemma 6.3. There are θ ,c > 0 such that if A is a connection form over the unit ball
B⊂Cm with curvature of type (1,1), satisfying d∗A = 0 and the boundary condition
of Theorem 5.1, and with ∥A∥Lm

1
≤ θ , then the restriction of A to the ball B 3

4
satisfies

∥A∥Lq
1(B 3

4
) ≤ c

(
∥F∥L2(B)+∥F̂∥Lq(B)

)
. (57)

The proof is similar to part of the proof of Theorem 5.1. Just as in there we have
an estimate (once A is small in Lm

1 ):

∥A∥L2
1
≤ c∥F∥L2 ,

and the Sobolev embedding maps L2
1 to Lν , with ν = 2m/(m−1), so

∥A∥Lν ≤ c∥F∥L2 .
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For a real 2-form Ω let π(Ω) = (Ω 0,2,Ω̂). So the conditions on A give

|πdA| ≤ |F̂ |+ |A∧A|.

and we also have d∗A = 0. The point now is that the operator D = d∗ ⊕ π d on
1-forms is (overdetermined) elliptic. In fact it can be identified with

∂
∗⊕∂ : Ω

0,1→Ω
0,2⊕Ω

0.

Let χ be a cut-off function equal to 1 on B 3
4
. We have

|D(χA)| ≤ |∇χ||A|+ |(χA)∧A|+ |F̂ |.

Elliptic theory gives
∥χA∥ν1 ≤ c∥D(χA)∥Lν .

So
∥χA∥ν ,1 ≤ c

(
∥χA∧A∥Lν +∥F̂∥Lν +∥A∥Lν

)
.

Then we can employ critical quadratic rearrangement, once A is sufficiently small in
Lm

1 (which implies that it is small in L2m). Assuming that m≥ 3 we have ν ≤m < q
and the Lν norm of F̂ is dominated by a multiple of the Lq norm. Using also the
bound we have on the Lν norm of A we get

∥χA∥ν ,1 ≤ c
(
∥F∥L2 +∥F̂∥Lq

)
.

Over the ball where χ = 1 this is an improvement on the L2
1 bound we had before,

since ν > 2. Now we can repeat this process with another cut-off function, supported
on the region where χ = 1 and equal to 1 on B 3

4
. After a finite number of such steps

we get a bound on the Lq
1 norm of A over the 3

4 ball.

Note that the difference in this proof, compared with that in Theorem 5.1, is that
the boundary condition does not combine well with the elliptic operator D, which is
why we have to introduce cut-off functions and we only get an interior estimate.

Combining this lemma with Uhlenbeck’s Theorem 5.1 we have a small constant
θ ′ such that any connection over B with curvature of type (1,1) and ∥F∥Lm ≤ θ ′ has
a connection form satisfying (57).

To prove Theorem 6.2, for x in the unit ball B let D(x) be the distance to the
boundary, as before. Given a connection A with curvature F of type (1,1) over
B ⊂ Cm, define r(x) to be the supremum of the r < D(x) such that the Lm norm of
F over the r-ball Bx,r is less than or equal to θ ′. Define

M(A) = maxx∈B
D(x)
r(x)

.
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If we have a bound M(A)≤M0 for any fixed M0 we can apply Lemma 6.3 to get
estimates on the Lq norm of F over any interior ball, thus proving Theorem 6.2. We
will show that if ∥F̂∥Lq ≤ η and the normalised energy of A over any interior ball is
≤ ε̂ , for sufficiently small ε̂ and η we have M(A)≤ 3.

Suppose, arguing for a contradiction, that M = M(A) > 3 and let x0 be a point
where the maximum is attained, so D(x0) > 3r(x0). Write r = r(x0) and let x1 be
any point on the boundary of Bx0,r. From the definition, r(x1) ≥ 2

3 r. By the scale
invariance of the Lm norm on 2-forms in dimension 2m we can apply Lemma 6.3
to the restriction of A to the ball Bx0r. That is, if A′ is the rescaled connection over
the unit ball, Lemma 6.3 gives an Lq bound on the curvature of A′ over the 3

4 -ball.
Since q > m this implies an Lm, and by scale invariance this is an Lm bound on the
curvature of A over Bx0,3r/4. This can be made as small as we please by choosing
ε̂,η small. In just the same way we get an Lm bound on the curvature over Bx1,r/2.
Now take a finite number of such boundary points like x1, whose union covers the
annulus Bx0,5r/4 \Bx0,3r/4. Then by making ε̂ and η small we can arrange that the
Lm norm of F over Bx0,5r/4 is less than θ ′, which is a contradiction to the definition
of r = r(x0).

Theorem 6.2 leads to a global consequence for a sequence Ai of unitary con-
nections with curvature of type (1,1) on a fixed bundle E over a compact Kähler
manifold X , with a bound on ∥F̂∥Lq (for some q > m). After possibly passing to a
subsequence i′ there is a closed set S⊂ X of finite (2m−4)-dimensional Hausdorff
measure such that Ai′ converge in Lq

1,loc over the complement M \S. To see this we
first go back to equation (56). By Chern–Weil theory, the integral of Tr (F2)∧ωm−2

is a topological invariant of the bundle, so an L2 bound on F̂ is equivalent to one on
F . So since q > 2 we have an L2 bound on the curvatures of the Ai. Then the proof
is just as for the harmonic maps case discussed in subsection 4.1 above, with gauge
transformations constructed as in subsection 5.2. The only additional point is the
constraint ∥F̂∥Lq ≤ η in Theorem 6.2, for the connection over the unit ball. But this
will be true for connections obtained by rescaling Ai over sufficiently small balls in
X , since q > m.

We return now to the Uhlenbeck–Yau proof of Theorem 6.1. Item (1) of Propo-
sition 6.2 shows that on the continuity path (48) the F̂ satisfies a uniform L∞ bound,
so also an Lq bound. So for our sequence ti → 0 the discussion above applies to
the connections Ai = ∇eui . Thus without loss of generality there is a weak Lq

1,loc
limit convergence outside a codimension-4 set S. The limiting connection is in Lq

1
and has curvature of type (1,1). The usual integrability theorem extends to such
connections, so the connection defines a holomorphic bundle E∞ over X \ S. We
now regard the connections Ai over V \ S as a convergent sequence of connections
on the bundle E∞ and the hi as holomorphic bundle maps from (E,∂ A) to (E∞,∂ Ai).
Standard arguments show that, after suitable scalings, these maps converge to a non-
trivial holomorphic bundle map from (E,∂ A) to (E∞,∂ A∞

). The kernel of this map
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is a coherent subsheaf of E over X \S and one sees that this is the same as the weak
L2

1 subbundle Imπ discussed before.

To sum up, Uhlenbeck and Yau use this gauge theory argument to show that the
weak subbundle is a coherent sheaf at least outside a set of real codimension 4,
and the proof of the regularity theorem for the weak L2

1 solution π with this extra
information is much simpler.

6.3 Removal of codimension 4 singularities

In his paper [54], Tian developed a theory for Yang–Mills connections analogous to
that of Schoen and Uhlenbeck for harmonic maps. This included the notion of tan-
gent cones at singular points. An analogue of the Schoen–Uhlenbeck small energy
result in the singular case was proved by Tao and Tian in [50]. Let B be the unit
ball in Rn and B′ an interior ball. A smooth finite energy Yang–Mills connection
A defined on the complement B \Σ of a closed set Σ of finite (n− 4) dimensional
Hausdorff measure is called admissible. Just as for harmonic maps, the connection
is called stationary if for any vector field v with compact support in the interior of
B generating a 1-parameter group of diffeomorphisms Φt we have

d
dt

E (Φ∗t (A))|t=0 = 0.

The monotonicity of normalised energy holds for stationary Yang–Mills connec-
tions. Tao and Tian’s result is

Theorem 6.4. There is an ε > 0 such that any stationary, admissible connection A
over B with energy less than ε extends smoothly over B′.

When n = 4 this is equivalent to Uhlenbeck’s Theorem 5.2 on the removal of
point singularities. In the 2018 paper [49], Smith and Uhlenbeck give a different
proof of Theorem 6.4 which is in many ways simpler than Tao and Tian’s. In fact,
Smith and Uhlenbeck prove a more general result for solutions of Yang–Mills–
Higgs equations, with additional fields. In this subsection 6.3 we will discuss the
Smith and Uhlenbeck proof of Theorem 6.4.

A consequence of Theorem 6.4 is that the singular set of a finite energy station-
ary Yang–Mills connection has dimension strictly less than (n− 4). Such singular
sets do arise in interesting examples. In particular, an extension by Bando and Siu
of the Uhlenbeck–Yau theorem gives the existence of Hermitian-Yang–Mills con-
nections on stable reflexive sheaves over a Kähler manifold [2]. Such sheaves are
vector bundles outside a singular set of complex codimension at least three and the
Hermitian-Yang–Mills connection has singularities at this set. Recent work of Chen



322 Simon Donaldson

and Sun [8] gives an algebro-geometric description of the tangent cone, in Tian’s
sense, of the Hermitian-Yang–Mills connection at a singular point.

A key component in Smith and Uhlenbeck’s proof is a refinement of the dif-
ferential inequality (41) for |F |, where F is the curvature of a Yang–Mills con-
nection. The derivation of this used what is sometimes called the Kato inequality:
|∇A|F || ≤ |∇AF |. Similar to the calculations in subsection 2.2 one has

|F |∆ |F |= (∇∗A∇AF,F)+ |∇AF |2−|∇|F | |2,

and the Kato inequality gives (41). This can be improved via a “refined Kato in-
equality”, which we now review. (See also the survey [6].)

In general, suppose that V is a Euclidean vector bundle of rank greater than 1
over a Riemannian manifold M with a compatible covariant derivative ∇ and that
s is a section of V which does not vanish at a point p ∈ M. Then |∇|s|| = |∇s| at
p if and only if the image of ∇s, regarded as a linear map from T Mp to Vp, lies in
the 1-dimensional subspace spanned by s(p). In other words ∇s = θ ⊗ s for some
θ ∈ T ∗Mp. Let D : Γ (V )→ Γ (W ) be a first-order linear differential operator which
is the composite of the covariant derivative with a bundle map σ : T ∗M⊗V →W ,
so σ is the symbol of D. Alternatively, for each θ ∈ T ∗M we have a σθ : V →W .
Suppose that D is overdetermined elliptic in the sense that σθ is injective for all non-
zero θ . Then if s is a non-trivial solution of the linear equation Ds = 0 we cannot
have ∇s = θ ⊗ s, since this would imply that s lies in the kernel of σθ . It follows
then from general considerations that there is some k < 1 such that solutions of the
equation Ds = 0 satisfy the refined inequality

|∇|s|| ≤ k|∇s| (58)

for some k < 1. In the case at hand, V is the bundle Λ 2⊗ adE , the operator D is

dA⊕d∗A : Ω
2(ad)→Ω

3(ad)⊕Ω
1(ad)

and s is the curvature F = FA. Uhlenbeck and Smith show the constant k is√
(n−1)/n. It follows then that away from the zeros of F we have an improve-

ment of the differential inequality (41) which it is convenient to write for f = |F |/4
as

∆ f ≥ α f−1|∇ f |2− f 2, (59)

with α = 1/(n−1). We can also write this as

∆ f 1−α ≥ (α−1) f 2−α .

Setting f = f 1−α , this is
∆ f ≥ (α−1) f f . (60)
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As in our previous discussion in subsection 6.3, these inequalities hold in a weak
sense over the zeros of F . The value of α is not of fundamental importance, but the
proof will be simplified a bit by knowing that α < 1

2 .
To outline the Smith and Uhlenbeck proof we begin with the 4-dimensional case,

so we suppose that A is a smooth Yang–Mills connection over the punctured ball B4\
{0} with small energy ∥F∥2

L2 ≤ ε . Our goal is to show that F is in Lp for all p > 0.
As in subsection 6.3 (and below), once we have this it is relatively straightforward to
show that the connection extends smoothly over the origin. We divide the argument
into four main steps.

Step 1

We claim that the function f is a weak solution of the inequality (60) over the
4-ball. In other words, if σ is a smooth positive test function of compact support in
B4 then ∫

B4
∆σ f +(1−α) f f σ ≥ 0· (61)

If χδ is a standard cut-off function, with χδ (x) = 1 for |x| > 2δ and vanishing for
|x|< δ , then multiplying the inequality by χδ and integration by parts gives∫

B4
∆(χδ σ) f +(1−α) f f χδ σ ≥ 0.

The kth derivatives of χδ are O(δ−k), so we have

|∆(χδ σ)−χδ ∆σ | ≤ Kσ δ
−2,

for some Kσ depending on σ . Thus we get∫
B4

χδ

(
∆σ f +(1−α) f f σ

)
≥−Kσ δ

−2
∫

B2δ

f . (62)

We know that f is in L2 so f is in L2/(1−α) and this implies that the integral of f over
the ball B2δ is O(δ 2+2α). So the right-hand side of (62) tends to 0 with δ , which
establishes the claim. (Note that this step also works with α = 0.)

Step 2

Consider the linear operator

Tf (u) =−∆u− (1−α) f u.

We consider this as an operator on Lp
2 for p < 2. Sobolev embedding gives Lp

2 →
Lr for r = 2/(2− p). This is the same exponent as that given by Hölder’s inequality
for the multiplication

L2×Lr→ Lp,
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so, since f ∈ L2, the operator Tf is bounded from Lp
2 to Lp. Furthermore if f is suffi-

ciently small in L2, which we can suppose, the operator Tf is a small perturbation of
−∆ . Linear elliptic theory then shows that we can solve the Dirichlet problem. That
is, for ρ ∈ Lp of compact support in B4 there is a unique solution of the equation
Tf (u) = ρ vanishing on the boundary, and ∥u∥Lp

2
≤C∥ρ∥Lp .

Step 3

Take a cut-off function ζ of compact support in the unit ball and equal to 1 on
the half-sized ball. (This could be χ 1

2
but for the later discussion we prefer to use a

different symbol.) Set

ρ = ∆(ζ f )−ζ ∆ f = 2∇ζ .∇ f +(∆ζ ) f . (63)

This is supported in an annulus on which the connection A is smooth, so certainly
ρ is in Lp. In fact the standard estimates we discussed in subsection 5.2 show that
∥ρ∥Lp ≤C

√
ε . Applying the linear theory, we find a function g such that Tf (g) = ρ

with ∥g∥Lp
2
≤C
√

ε . By construction and the inequality (60)

Tf (ζ f −g)≤ 0

in the weak sense.

Step 4

Write h = ζ f −g, so Tf h≤ 0. In a case where we had Tf h = 0 we would deduce
from the uniqueness of the solution to the Dirichlet problem that ζ f = g, so f is in
Lp

2 on the 1
2 -ball and Sobolev embedding gives f ∈ Lr. Here r can be made as large

as we please by taking p close to 2. Then f would also be in Lr for all r, which was
what we set out to prove.

The final, and critical, step is a result of maximum principle type for the operator
Tf , to handle the situation where we have the inequality Tf h≤ 0.

Lemma 6.5. If f is sufficiently small in L2 then for any function h such that h ∈ L2q

for some q > 1, with h smooth on B4 \ {0}, vanishing on the boundary of B4 and
satisfying Tf (h)≤ 0 we have h≤ 0.

This gives the desired conclusion because it implies that f ≤ g over B 1
2

and since

f is positive we get f ∈ Lr.
A first step in proving Lemma 6.5 is to reduce to the case when h ≥ 0, and then

show that in fact h = 0. This can be done by replacing h by max(h,0) and showing
that the same differential inequality holds. This is not hard to establish if 0 is a
regular value of h, so the zero-set is a submanifold. In any case there are arbitrarily
small positive regular values τ: replace h by max(h,τ)−τ and take a limit as τ→ 0.
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For later convenience, write q = 4β and q/2 = 2β = (1−α)−1 = 1+ γ . So h is
L4β . Let χ = χδ be the cut-off function as before. The idea is to control the integral
of |∇(χhβ )|2.

There is an identity:

|∇(χhβ )|2 + β 2

γ
χ

2hγ
∆h = d∗J+Vδ h2β

where:

• the 1-form J is a linear combination

J = a1h2β
χ dχ +a2h2β−1

χ
2 dh;

• the function Vδ is a linear combination

Vδ = a3|dχ|2 +a4χ ∆ χ

for suitable constants ai. (This is the crucial point in the proof where the fact that
α > 0 is used. If we took α = 0 then γ = 0 and the identity breaks down because γ

appears in the denominator.)

Integrating over B4, the term from d∗J vanishes and substituting the differential
inequality −∆h≤ (1−α) f h gives∫

|∇(χhβ )|2 ≤ (1−α)β 2

γ

∫
f (χhβ )2 +

∫
Vδ h2β .

In dimension 4 we have a Sobolev embedding L2
1→ L4 so (using the fact that h

vanishes on the boundary of B4) we get

∥χhβ∥2
L4 ≤C1∥ f∥L2∥χhβ∥2

L4 +C2

∫
Vδ h2β .

If ∥ f∥L2 ≤ (2C1)
−1 we have

∥χhβ∥2
L4 ≤ 2C2

∫
Vδ h2β .

The same kind of estimates as in Step 1 show that the right-hand side tends to 0 as
δ → 0. This uses the fact that h ∈ L4β .

We conclude that h = 0, as desired. Hence proving Lemma 6.5.

Now we have shown F ∈ Lr for all r and this completes our discussion of the
case n = 4.
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In dimensions bigger than four, Smith and Uhlenbeck follow the same scheme
but using Morrey spaces in place of Sobolev spaces. For a function ψ on Rn, define
the Morrey norm ∥ ∥M p by

∥ψ∥p
M p = supx,r r4−n

∫
Bn

x,r

|ψ|p.

(The notation here is not standard. Smith and Uhlenbeck write ∥ ∥Xk for our
∥ ∥M p , with k = 4/p.)

Thus a bound on the M 2 Morrey norm of the curvature of a connection is the
same as a bound on the normalised energy over all balls. Similar to the normalised
energy, we have two properties of these norms:

(1) For functions pulled back from R4 by orthogonal projection Rn−4×R4 → R4

the M p norm agrees with the Lp norm on R4, up to a factor.
(2) For q = np/4, Hölder’s inequality shows that the Lq norm controls the M p

norm,

In the vein of (1), in the case when Σ = Rn−4∩Bn and the connection is pulled back
from a connection over B4 \ {0} by orthogonal projection the n-dimensional proof
essentially reduces to that in four dimensions above. In the vein of item (2), the
Morrey norm M p can be viewed for many purposes as a slightly weakened version
of the Lnp/4 norm. There is an elliptic theory so that, for example, for compactly
supported functions on Rn,

∥∇2
ψ∥M p ≤C∥∆ψ∥M p

and also analogues of the Sobolev embeddings so that, for p < 2,

∥ψ∥M r ≤C∥∆ψ∥M p (64)

for r = 2p/(2− p). For p > 2

∥ψ∥C,µ ≤C∥ ≤C∥∆ψ∥M p , (65)

where the Hölder exponent µ = 2−4/p.
The foundation of the Smith and Uhlenbeck argument is the fact, derived from

monotonicity, that we can suppose the curvature F is small in M 2-norm. In Steps
(1), (4) we need a suitable family of cut-off functions χδ , equal to 1 outside the 2δ -
neighbourhood of the singular set Σ , vanishing in the δ -neighbourhood and with
|∇kχδ | ≤ cδ−k. We need to know that the volumes of these tubular neighbourhoods
are O(δ 4). This follows from the assumption of the dimension of Σ . (In fact it
appears to the author that what is required here is the assumption that Σ has finite
(n− 4)-dimensional “Minkowski content”, see the remark preceding Proposition
4.3 in subsection 4.2 above.) With these cut-off functions in hand Step 1 works in a
similar way so f is a weak solution of the inequality (60).
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For Step 2, Smith and Uhlenbeck consider the operator, for p < 2,

Tf : M p
2 →M p

where M p
2 can be defined as the space of functions ψ on the ball, vanishing on

the boundary, with ∆ψ ∈M p. More precisely, Smith and Uhlenbeck work over
cubes rather than balls, which means that the boundary condition can be handled
by reflection, but we will ignore this technicality. We have a Sobolev embedding
M p

2 →M r with r = 2p/(2− p) and multiplication is defined

M r×M 2→M p.

The upshot is that, when f is small in M 2, the operator Tf can be regarded as a small
perturbation of the Laplacian and is invertible on these spaces. So for any ρ ∈M p

there is a solution g ∈M p
2 of the equation −∆g+(α−1) f g = ρ , vanishing on the

boundary.
One new feature occurs in Step 3. With our cut-off function ζ we have Tf (ζ f )≤

ρ where
ρ = ∆ζ f +2∇ζ .∇ f .

But now the singular set Σ can intersect the annulus on which ∇ζ is supported, so
it is not obvious that ρ is in M p. That requires an estimate on the M p norm of ∇ f .
Because of this the proof goes by iteration on p. For the first iteration we take p = 4

3 ,
so 2p/(2− p) = 4. We begin knowing that |F | ∈M 2 (and is small in that norm) and

after following through Steps 1-4 we get |F |1−α ∈M
4
3

2 ⊂M 4 so |F | ∈M 4(1−α)

(and is small in that norm). Since α < 1
2 this is an improvement. Repeating the

process sufficiently many times gives |F | ∈M p for all p, or equivalently F is in Lp

for all p.

We now return to the problem of estimating ρ for the first iteration, where we
want to bound ∥∇ f∥

M
4
3

. For this, Smith and Uhlenbeck go back to the inequality
(58):

−∆ f +α
|∇ f |2

f
≤ f 2.

Let ζ̃ be another cut off function supported in an interior r-ball Br,x and equal to 1
on the half-sized ball. Multiplying the inequality by ζ and integrating gives

α

∫
Br,x

ζ̃
|∇ f |2

f
≤
∫

Br,x

(∆ζ̃ ) f + ζ̃ f 2.

Knowing that f ∈M 2 the right-hand side is easily shown to be O(rn−4), so we get
an M 2 bound on f−

1
2 |∇ f |. Now write

|∇ f |= |∇ f 1−α |= (1−α) f
1
2−α

(
|∇ f |
f

1
2

)
.
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The M 2 bound on f gives an M 4/(1−2α) bound on f
1
2−α . Then the multiplication:

M 4/(1−2α)×M 2→M 4/(3−2α)

gives a bound on ∇ f in M 4/(3−2α) and therefore in M
4
3 .

For the crucial step 4, Smith and Uhlenbeck establish an analogue of Lemma 6.5
in Morrey spaces but we will pass over that and move on to outline their argument
for the removal of singularities, given a bound on the Lp norm of the curvature for
large p.

Let x0 be a point in the complement of the singular set Σ . Define the shadow of Σ

to be the set of x such that for some t ∈ (0,1] the point tx+(1− t)x0 lies in Σ . Then
for a connection defined on the complement of Σ the exponential gauge construction
that we discussed in subsection 5.2, using rays emanating from x0, defines a connec-
tion form A over the complement of the shadow. The fact that Σ has codimension
at least 4 implies that the shadow has codimension at least 3. Uhlenbeck and Smith
show that A and dA are in Lp for all p, where the latter is interpreted as a distribution.
By working over a small ball centred at x0 and rescaling one can assume that the Lp

norms are small. Then the implicit function theorem can be applied to choose a new
gauge in which the Coulomb condition is satisfied, and in this gauge elliptic regu-
larity shows that connection is smooth over the small ball. The fact that dA is in Lp,
as a distribution, uses crucially the codimension condition. By contrast suppose we
had a singular set of codimension 2, so we can have a non-trivial flat connection on
the complement. Then the shadow would have codimension 1, the connection form
A would have a discontinuity across the shadow and the distribution dA would have
a singular component supported on the shadow. Thus the same argument would not
work in that case, in agreement with the fact that the singularity is not removable.

7 Harmonic maps to Lie groups

7.1 Harmonic maps, flat connections and loop groups

In this section we discuss harmonic maps from surfaces to unitary groups (many
of the constructions extend to other compact Lie groups). The main topic is an im-
portant paper of Uhlenbeck [61] which, among other things, gives semi-explicit
constructions for the general solution in terms of geometric data when the surface
is the Riemann sphere. There are many connections with gauge theory, related to
the Coulomb gauge condition. The results fit into many large circles of ideas. The
fundamental observation of the zero-curvature interpretation of the harmonic map
equations is attributed by Uhlenbeck to Pohlmeyer [35], within the integrable sys-
tems literature. The equations are, as we explain below in this subsection 7.1 and
in subsection 7.2, related to Hitchin’s equations on Riemann surfaces and to the
Yang–Mills instanton equations in four dimensions. Thence the integrable nature of
the harmonic map equations can be related to “twistor” constructions. We will only
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touch on a small fraction of all these ideas here and there are important parts of
Uhlenbeck’s paper that we do not discuss. In subsection 7.3 we go back to analysis
and results of Hélein on regularity questions, which use somewhat related ideas.

For any simply connected manifold M the harmonic map equations for a map
from M to the group U(r) can be formulated as a system of three equations for a
pair (A,ψ) where A is a U(r) connection on a bundle E over M (in fact the trivial
bundle) and ψ ∈Ω 1(adE). These equations are

d∗Aψ = 0 dAψ = 0 F(A)+ψ ∧ψ = 0. (66)

Given a solution (A,ψ) to (66) the last two equations state that F(A±ψ) = 0, so
A1 = A+ψ and A−1 = A−ψ are flat connections and hence gauge equivalent, since
M is simply connected. We always have d∗A+ψ

ψ = d∗Aψ and so the first equation
states that d∗A1

ψ = 0. Choose a trivialisation in which A1 is the product connections:
i.e. the connection 1-form A1 is zero. If A−1 is the connection 1-form of A−1 in this
trivialisation, the first equation states that d∗A−1 = 0. The fact that A−1 is flat means
that A−1 = −dgg−1 for some g : M→U(r) and then f satisfies the harmonic map
equation d∗(dgg−1) = 0. Conversely, given such a harmonic map g, let A be the
connection on the trivial bundle defined by the connection 1-form − 1

2 dgg−1 and let
ψ = 1

2 dgg−1. Then A±ψ are flat connections and we get a solution of the equations
(66).

If we change the sign in the third equation in (66) to F(A)−a∧a = 0 we have a
similar discussion, with flat GL(n,C)-connections A± iψ and we get a correspon-
dence with harmonic maps to the dual symmetric space GL(r,C)/U(r).

In the case when M is a Riemann surface there is an additional symmetry between
the first two equations in (66). Recall that adE is the real subbbundle of End E
consisting of the skew adjoint endomorphisms. Over a Riemann surface M we can
write ψ = Φ −Φ∗ where Φ is a (1,0) form with values in EndE. Written in terms
of Φ , the equations (66) are

∂ AΦ = 0 , F(A)− (Φ ∧Φ
∗+Φ

∗∧Φ) = 0, (67)

where ∂ A is the coupled ∂ -operator, which is complex linear. Clearly if (A,Φ) is a
solution to (67) and λ is a complex number of modulus 1 then (A,λ−1Φ) is also
a solution. The equations with the opposite sign of the quadratic term in Φ are
Hitchin’s equations [25]. In the Riemann surface case, one solution of the equations
(66) gives a circle of solutions corresponding to λ−1Φ where λ is a complex number
with |λ | = 1; so we have we a flat connection Aλ . More generally, for any λ ∈ C∗
we can define a flat GL(r,C) connection

Aλ = A+λ
−1

Φ−λΦ
∗.

Fix a trivialisation of the bundle in which A1 is the product connection. For each
λ ∈ C∗ we have a map Gλ : M→ GL(n,C) such that Aλ = −dGλ G−1

λ
. If we fix a

basepoint p ∈M then Gλ is determined uniquely by the condition that Gλ (p) = 1.
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Define antiholomorphic involutions of C and GL(r,C) by

σ(λ ) = λ
−1

, σ(g) = (g∗)−1 .

Then the family Gλ has the equivariance property

Gσλ = σ(Gλ )

and in particular Gλ maps into U(r) when |λ | = 1. The map G−1 is the harmonic
map g which we associated to the solution of the equations (66).

We can also regard this family as a single map G : M×C∗→ GL(n,C). So any
harmonic map g : M→U(r) defines an “extended map” G.

Uhlenbeck’s first result is a characterisation of these extended maps.

Proposition 7.1. For a simply connected Riemann surface M there is a (1-1) corre-
spondence between harmonic maps g : M→U(r) and families Gλ : M→GL(r,C),
for λ ∈ C∗ such that

• Gλ is holomorphic in λ

• Gσλ = σ(Gλ ),
•

1
1−λ−1 G−1

λ
∂Gλ

is independent of λ .

Given such a family Gλ , we define the matrix-valued (1,0) form on M by
Φ =−(1−λ−1)−1G−1

λ
∂Gλ and a connection on the trivial bundle with connection

1-form Φ∗−Φ to get back to a solution of (67).

Let ΩU(r) be the based loop group of smooth maps γ : S1→U(r) with γ(1) = 1
and let ε : ΩU(r)→U(r) be evaluation at −1. The restriction of the family Gλ to
the unit circle can be regarded as a map G̃ : M→ΩU(n) so we have a canonical lift
of a harmonic map g over the evaluation map ε:

M G̃→ΩU(r) ε→U(r). (68)

In [44] Segal gives an interpretation of the extended map conditions in Proposi-
tion 7.1 in terms of the geometry of the loop group ΩU(r). This loop space has an
infinite-dimensional Kähler structure, preserved by left multiplication of the group.
So the complex structure is determined by a complex structure on the tangent space
T at the identity. This tangent space T consists of maps ξ from the circle |λ |= 1 to
skew adjoint matrices with ξ (1) = 0. Such a map has a Fourier series

ξ (λ ) =
∞

∑
k=−∞

akλ
k

(for matrix-valued coefficients ak) with ∑ak = 0 and ak = −a∗−k. Thus the vector
space T is identified with the set of rapidly-decreasing sequences (a−1,a−2, . . .)
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of complex matrices ak. The complex structure on T is the obvious one defined
by the usual complex structure on these matrix coefficients. (At the group level, this
corresponds to the identification of ΩU(r) with the quotient of the loops in GL(r,C)
by the subgroup of loops which extend holomorphically over the disc, which has a
visible complex structure.)

Let V be the subspace of T , of complex dimension r2, corresponding to se-
quences (a−1,0,0 . . .). Extend this by left translation to a subbundle V of the tangent
space of ΩU(r), Segal’s formulation of Uhlenbeck’s correspondence is

Theorem 7.1. For a simply connected Riemann surface M there is a (1-1) cor-
respondence between harmonic maps from M to U(r) and holomorphic maps
G̃ : M → ΩU(r) whose derivative at each point maps into V . The harmonic map
corresponding to G̃ is ε ◦ G̃.

Given G̃ : M → ΩU(r), write Gλ : M →U(r) for the corresponding family of
maps, with λ ∈ S1. The condition that G̃ is holomorphic is equivalent to saying that,
at each point in M, the (0,1) form G−1

λ
∂Gλ extends holomorphically over the unit

disc, say
G−1

λ
∂Gλ = ∑

k≥0
bkλ

k.

Similarly, the condition that the derivative maps into V is equivalent to saying that

G−1
λ

∂Gλ = α(1−λ
−1)+Z(λ )

for some constant matrix α and Z(λ ) holomorphic over the disc with Z(0) = 0. The
condition that the Gλ map into U(r) implies that

G−1
λ

∂Gλ =−(G−1
λ

∂Gλ )
∗ = ∑

k≥0
b∗kλ

−k.

So Z is zero and G−1
λ

∂Gλ = α(λ−1−1). Thus (λ−1−1)−1G−1
λ

∂Gλ is independent
of λ and we can reconstruct (A,Φ) just as before. (This also shows that the family
Gλ extends to λ ∈ C∗.)

The preceding discussion is essentially local in the Riemann surface M, and we
now focus on the case when M is the Riemann sphere. In that case Uhlenbeck proves
an important finiteness result, that the extended maps Gλ have a finite Laurent series.
Here it become convenient to drop the normalisation of the extended map G using
a base point p ∈M (but keeping the other conditions in Proposition 7.1). Then the
extended map can be chosen of the form

Gλ =
n

∑
k=0

Tkλ
k, (69)

where the Tk are matrix-valued functions on M. Uhlenbeck calls the least possible
number n the uniton number. (If n = 0 the map is a constant.) One of the most im-
portant ideas in [61] is a construction called “uniton addition”—a form of Bäcklund



332 Simon Donaldson

transformation, taking one solution to another—which we will describe in the next
subsection. Uhlenbeck showed that all solutions can be obtained by iterating this
construction, and one of her main results is:

Theorem 7.2. Let g : S2→U(r) be a harmonic map.

• The uniton number n of g is strictly less than r.
• There is a unique harmonic map g : S2→U(r) of uniton number n−1 such that

g is obtained from g by the operation of uniton addition.

In other words any harmonic map from S2 to U(r) is constructed in a canonical way
by repeating the uniton addition construction at most (r−1) times. The maps with
uniton number 1 are the holomorphic maps from S2 to the Grassmann manifolds
Grk(Cr) of k-dimensional subspaces of Cr (and, of course, translates by left and
right multiplication in U(r)). These Grassmann manifolds are isometrically em-
bedded in U(r) by the map which takes a subspace W ⊂ Cr to the unitary map
RW = π−π⊥, where π is projection to W and π⊥ to the orthogonal complement.

This theorem puts the problem of describing the holomorphic maps into the realm
of geometry and Uhlenbeck (and subsequent authors) obtained a variety of specific
results. These include a derivation of the description by Eells and Wood in [18] of all
harmonic maps from S2 to complex projective space CPn. These maps have uniton
number 2. In Segal’s treatment [44] he shows that when M = S2 the holomorphic
maps G̃ map into explicit finite-dimensional complex submanifolds—generalised
flag manifolds—of the loop group. The problem then comes down to understanding
the horizontality condition for these complex curves.

7.2 Uniton addition and instantons on R2,2

Uniton addition can be defined over any Riemann surface M. It changes a harmonic
map g : M→U(r) to a new one of the form g′ = gρ , defined using the group struc-
ture on U(r), where ρ : M→U(r) maps into the space of reflections. That is, we
have a map W : M→ Grk(Cr) for some k and ρ(z) = RW (z) in the notation of the
previous subsection. The remarkable thing is that finding the maps W for which gρ

is harmonic essentially involves solving only linear PDE. Clearly if we perform the
construction again, starting with g′ and using the map −ρ , we recover g.

We go back to the data (A,Φ) where A is a connection on a bundle E and Φ ∈
Ω 1,0(EndE), satisfying equation (67). Using the flat trivialisation for the connection
A1 = A+Φ−Φ∗ we can regard a map W : M→ Grk(Cr) as a subbundle EI ⊂ E.

Lemma 7.3. If EI is a holomorphic subbundle of E with respect to the holomorphic
structure defined by ∂ A which is preserved by Φ in that ΦEI ⊂ Ω 1,0(EI) then the
corresponding map gρ is harmonic.
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The equation ∂ AΦ = 0 is the integrability condition for being able to find such a
subbundle locally. The lemma can be proved by direct calculation but we will take a
more roundabout route which puts the construction in a wider context. However we
postpone that and first discuss an interesting point of view from the work of Valli
[66], involving the harmonic maps energy.

The homotopy group π2(U(r)) vanishes so there is no obvious topological in-
variant of a harmonic map from S2 to U(r). However π2(ΩU(r)) = π3(U(r)) = Z
so there is an integer degree of the map G̃ : S2→ΩU(r). As Segal shows in [44], the
energy of the harmonic map is equal to twice the degree. In fact this is true locally,
in that the energy density of g is equal to twice the pull-back by G̃ of a standard
closed 2-form on ΩU(r) representing the generator of H2(ΩU(r)). Valli obtained
a related formula in [66]. Suppose that g′ is obtained from g by uniton addition as
above, with a subbundle EI . Then Valli showed that

E(g′) = E(g)−2deg (EI),

where the degree deg EI is the first Chern class, regarded as an integer. So if
deg (EI) > 0 then the energy of g′ is strictly smaller. As Valli explained, the ex-
istence of a Φ-invariant subbundle EI of positive degree is a simple consequence
of the algebro-geometric classification of holomorphic vector bundles over the Rie-
mann sphere. Applying this repeatedly gives a proof of a slightly weaker form of
Uhlenbeck’s Theorem 7.2, since we can keep on performing these uniton additions
until the energy is 0 and we have a constant map.

There is a intriguing connection here with notions of stability, like those we en-
countered for the Uhlenbeck–Yau theorem in subsection 6.1. Recall that Hitchin’s
equations for (A,φ) are obtained by changing the sign in (67). A pair (E,φ) con-
sisting of a holomorphic bundle E (with c1(E) = 0) over any compact Riemann
surface M and a holomorphic φ ∈ Ω 1,0(EndV ) is called stable if any φ -invariant
holomorphic subbundle has strictly negative degree. Hitchin showed that if (E,φ)
is stable there is a corresponding solution of his equations. This is analogous to the
Uhlenbeck–Yau Theorem 6.1 and involves solving a similar PDE for a metric on the
bundle E. When M = S2, a solution to Hitchin’s equations would give a harmonic
map to the noncompact symmetric space GL(n,C)/U(n) and it is easy to see that
these are all constant, so there are no stable pairs. If we start with an arbitrary metric
and solve a natural gradient flow equation or use a variant of the Uhlenbeck–Yau
continuity path the solutions will diverge in the manner we discussed in subsection
6.1 corresponding to a subbundle of E and in fact this will be a φ -invariant holo-
morphic subbundle of strictly positive degree. So attempting to solve the equations
with the reversed sign tells us how to build the general solution of (67) by repeated
uniton addition.

Before returning to the proof of Lemma 7.3 we make a further digression to
discuss an aspect of the equations (67) which were explored in another paper [62]
of Uhlenbeck. In subsection 5.3 we mentioned the Yang–Mills instanton equation in
four dimensions. These are F+(A) = 0, where F+ denotes the self-dual part of the
curvature. Consider connections A over R4 which are translation-invariant in two
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directions. In terms of coordinates (u1,u2,v1,v2) we can write such a connection as

A = A+Φ1 dv1 +Φ2 dv2,

where A is a connection on a bundle E over R2 (with coordinates u1,u2), lifted to R4

by projection, and Φ1,Φ2 are sections of adE over R2. Then the instanton equation
for A becomes Hitchin’s equations for (A,Φ) where Φ = (Φ1 + iΦ2)(du1 + idu2).
Now, as explained in [62], change the signature of the metric in four dimensions to
get R2,2 with metric du2

1 + du2
2− dv2

1− dv2
2. The notion of anti-self-duality makes

sense and the instanton equation for translation-invariant solutions become (67).
From this point of view, uniton addition is a special case of a more general con-
struction for solutions of the instanton equation over R2,2 (related to the PhD the-
sis of Uhlenbeck’s student Crane [10]). It is easiest to explain this first in a com-
plexified setting, with the coordinates (x1,x2,ξ1,ξ2) on C4 and the quadratic form
dx1 dξ1 +dx2 dξ2. The anti-self-duality equations for a 2-form

F = Fx1x2 dx1 dx2 +Fξ1ξ2
dξ1 dξ2 +∑Fxiξ j dxi dξ j

are
Fx1x2 = 0 , Fξ1ξ2

= 0 , Fx1ξ1
+Fx2ξ2

= 0. (70)

Let L,R be holomorphic 1-forms on C4 of the shape

L = Lξ1
dξ1 +Lξ2

dξ2 , R = Rx1 dx1 +Rx2 dx2. (71)

Define
L̃ =−Lξ2

dx1 +Lξ1
dx2 R̃ = Rx2 dξ1−Rx1 dξ2.

Then L∧R and L̃∧ R̃ have the same self-dual component

(L∧R)+ =
(
L̃∧ R̃

)+
=

1
2
(
Lξ1

Rx2 +Lξ2
Rx1

)
(dξ1 dx1 +dξ2 dx2). (72)

Write d+ for the self-dual part of the exterior derivative. The equation d+L = 0 has
two components

Lξ1,x1
+Lξ2,x2

= 0 , Lξ1,ξ2
−Lξ2,ξ1

,

where commas denote partial derivatives. This is the same as the equation d+L̃ = 0
and similarly for R, R̃.

Now consider a holomorphic connection ∇ on a holomorphic bundle V over a
domain in C4 with V =VI⊕VII . So the connection is given by connections on VI ,VII
and second fundamental forms L,R which are holomorphic 1-forms with values in
Hom(VI ,VII),Hom(VII ,VI) respectively. In the notation we used in subsection 6.1

∇ =

(
∇I R
L ∇II

)
, (73)

and the curvature is
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FI +R∧L dI,IIR

dI,IIL FII +L∧R

)
. (74)

The anti-self duality equation for the connection on V has four components

F+
I +(R∧L)+ = 0 , d+I,IIL = 0 , d+I,IIR = 0 , F+

II +(L∧R)+ = 0.

Define L̃, R̃ by the same formulae as above, extended to bundle-valued forms, and
use L̃, R̃ as second fundamental forms defining a new connection ∇̃ on V , with the
same connections on VI ,VII . That is:

∇̃ =

(
∇I R̃
L̃ ∇II

)
. (75)

The formulae above—extended to bundle valued forms in an obvious way—show
that ∇̃ is an anti-self-dual connection if and only if ∇ is.

Now we look at the real forms of this construction, dealing with unitary connec-
tions. We would like an anti-linear involution σ of C4 such that restricted to the
fixed points of σ the forms satisfy R = −L∗, R̃ = −L̃∗. Change notation to write
x1 = z, ξ1 = z, x2 = w,ξ2 = −w and let σ be defined by complex conjugation as
indicated, so the fixed points of σ are the set where z+ z, w+w are real. On this
set z,w become complex coordinates and the metric is dzdz− dwdw. So the met-
ric has signature (2,2) and matches up with our previous discussion when we take
z = u1 + iu2,w = v1 + iv2. In the complex coordinates z,w we have

L = Lz dz+Lw dw , R = Rz dz+Rw dw,

and
L̃ = Rw dz+Rz dw , R̃ = Rw dz+Rz dw.

Thus R=−L∗ if and only if R̃=−L̃∗. The upshot is the following. Suppose that ∇ is
a unitary anti-self-dual connection on a bundle V over a domain Ω in R2,2 and iden-
tify R2,2 with C2 as above. Then ∇ defines a holomorphic structure on V . Suppose
that VI is a holomorphic subbundle of V → Ω . The construction above produces a
new unitary anti-self-dual connection ∇̃ on V , but now the orthogonal complement
V⊥I is a holomorphic subbundle, with respect to the holomorphic structure defined
by ∇̃.

When restricted to translation-invariant connections this becomes Uhlenbeck’s
uniton-addition construction. In that case the second fundamental form of a subbun-
dle EI over R2 has a component β ∈ Ω 0,1(Hom(EII ,EI)) and Φ has a component
ΦI,II ∈ Ω 1,0(Hom(EII ,EI)). The construction takes Φ∗I,II ∈ Ω 0,1(Hom(EI ,EII)) to
build the new second fundamental form and takes β ∗ ∈Ω 1,0(Hom(EI ,EII)) to build
the new Φ-field.

There is also a “twistor” description of this construction. The Ward correspon-
dence relates instantons on a domain U ⊂ R2,2 to holomorphic bundles on a three-
dimensional twistor space Z. The choice of a compatible complex structure on R2,2

gives a complex surface D ⊂ Z and the opposite structure another D′ ⊂ Z. In com-
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plex geometry there is a general construction, sometimes called the Hecke trans-
form. Let E be a holomorphic bundle over a complex manifold Z and D be a
hypersurface in Z . Suppose given a holomorphic subbundle F of the restriction
E |D . Then we define a new holomorphic bundle E ′ → Z whose local holomor-
phic sections correspond to sections of E which lie in F when restricted to D . The
twistor description of the construction is to apply this transform to the bundle over
the twistor space Z, using subbundles over D,D′.

7.3 Weak solutions to the harmonic map equation on surfaces

A question left open in our discussion of the regularity theory for harmonic maps
in Sections 3 and 4 is whether a weakly harmonic map from a surface—without
additional minimising or stationary hypotheses—is smooth. In the case when the
target space N has a large isometry group this smoothness was established by Hélein
in [22]. The proof was later extended to general target spaces [23] but here we just
consider the case of a unitary group, where the proof is particularly simple. The
proof depends on the particular structure of the equations, in a similar vein to the
preceding discussion in this section.

Proposition 7.2. Let g : D→U(r) be a weak solution to the harmonic map equa-
tions on the unit disc D in C with derivative in L2. Then g is continuous.

Once the continuity is established smoothness follows from general theory as in
[24].

The proof of Proposition 7.2 depends on the following result of H. Wente [67].

Proposition 7.3. Suppose that u1, . . . ,uk,v1, . . . ,vk are functions on the disc D ⊂ C
with derivatives in L2. If φ satisfies ∆φ = ∗∑(dui∧dvi) then φ is continuous.

Of course ∗∑(dui ∧ dvi) is in L1, but in dimension 2 it is not the case that any
function φ with ∆φ in L1 is continuous. That is the point of the result. This is the
borderline situation; if ∆φ is in Lp for some p > 1 then φ is continuous.

Let us now see how Wente’s result implies Proposition 7.2. The harmonic map
equation is d∗(dgg−1) = 0. So d∗ (dgg−1) = 0 and we can write ∗dgg−1 = dλ for a
matrix-valued function λ . Now go back to the equation d∗(dgg−1) = 0, which is

2

∑
i=1

∂

∂xi

(
∂g
∂xi

g−1
)
= 0.

Expanding out and multiplying on the right by g we get

∆g =
2

∑
i=1

∂g
∂xi

g−1 ∂g
∂xi

g =
∂λ

∂x2

∂g
∂x1
− ∂λ

∂x1

∂g
∂x2

.



A journey through the mathematical world of Karen Uhlenbeck 337

In other words
∆g = ∗(dλ ∧dg).

Thus each matrix entry gab of g satisfies

∆gab = ∑
c

dλac∧dgcb.

Since g takes values in the unitary group the operation of multiplication by g pre-
serves the standard norm on matrices. So the matrix-valued 1-forms dλ and dg are
in L2 and hence the same for each entry. So we are in the situation considered in
Proposition 7.3 and the gab are continuous.

The proof of Wente’s result, Proposition 7.3, has some common features with
the Sacks–Uhlenbeck proof of removal of singularities in Section 3. Recall that the
Green’s function on R2 is (2π)−1 logr. It suffices to prove that there is a constant C
such that ∣∣∣∣∫D

logr ∗ (du∧dv)
∣∣∣∣≤C∥du∥L2∥dv∥L2 (76)

for all smooth compactly supported functions u,v on D. Transfer to the cylindrical
picture with coordinates (s,θ) where r = es. So u,v are now defined on the half-
cylinder (−∞,0]× S1, vanishing on {0}× S1, and the left-hand side of (76) is the
modulus of

I =
∫
(−∞,0]×S1

s du∧dv.

The L2 norms of du and dv are the same computed in the disc or the cylinder. The fact
that u,v are smooth on the disc implies that they are bounded and their derivatives
decay exponentially as s→−∞, measured in the cylinder metric. We have

s du∧dv = d(s u dv)−u ds∧dv

and the exponential decay means that it is valid to apply Stokes’ Theorem, so that

I =−
∫
[−∞,0]×S1

u vθ dθ ds.

Let U(s) be the average value of u over the circle, for fixed s. Then for each fixed s∫
u vθ dθ =

∫
(u−U) vθ dθ ,

and ∫
(u−U)2 dθ ≤

∫
u2

θ dθ .

So ∣∣∣∣∫ u vθ dθ

∣∣∣∣2 ≤ ∫ u2
θ dθ

∫
v2

θ dθ .
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Now, applying the Cauchy–Schwarz inequality to the s integral, we get

|I| ≤ ∥du∥L2∥dv∥L2 ,

which is (76), with C = 1.
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Part III
2020 Hillel Furstenberg
and Grigoriy Margulis

“for pioneering the use of methods from probability and dynamics in
group theory, number theory and combinatorics”





Citation

The Norwegian Academy of Science and Letters has decided to award the Abel
Prize for 2020 to Hillel Furstenberg, Hebrew University of Jerusalem, Israel, and
Gregory Margulis, Yale University, New Haven, Connecticut, USA

“for pioneering the use of methods from probability and dynamics in group theory, number
theory and combinatorics.”

A central branch of probability theory is the study of random walks, such as
the route taken by a tourist exploring an unknown city by flipping a coin to de-
cide between turning left or right at every junction. Hillel Furstenberg and Gregory
Margulis invented similar random walk techniques to investigate the structure of
linear groups, which are for instance sets of matrices closed under inverse and prod-
uct. By taking products of randomly chosen matrices, one seeks to describe how the
result grows and what this growth says about the structure of the group.

Furstenberg and Margulis introduced visionary and powerful concepts, solved
formidable problems and discovered surprising and fruitful connections between
group theory, probability theory, number theory, combinatorics and graph theory.
Their work created a school of thought which has had a deep impact on many areas
of mathematics and applications.

Starting from the study of random products of matrices, in 1963, Hillel Fursten-
berg introduced and classified a notion of fundamental importance, now called the
Furstenberg boundary. Using this, he gave a Poisson type formula expressing har-
monic functions on a general group in terms of their boundary values. In his works
on random walks at the beginning of the ’60s, some in collaboration with Harry
Kesten, he also obtained an important criterion for the positivity of the largest
Lyapunov exponent.

Motivated by Diophantine approximation, in 1967, Furstenberg introduced the
notion of disjointness of ergodic systems, a notion akin to that of being coprime
for integers. This natural notion turned out to be extremely deep and have applica-
tions to a wide range of areas including signal processing and filtering questions in
electrical engineering, the geometry of fractal sets, homogeneous flows and number
theory. His “× 2× 3 conjecture” is a beautifully simple example which has led to
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many further developments. He considered the two maps taking squares and cubes
on the complex unit circle, and proved that the only closed sets invariant under both
these maps are either finite or the whole circle. His conjecture states that the only
invariant measures are either finite or rotationally invariant. In spite of efforts by
many mathematicians, this measure classification question remains open. Classifi-
cation of measures invariant by groups has blossomed into a vast field of research
influencing quantum arithmetic ergodicity, translation surfaces, Margulis’s version
of Littlewood’s conjecture and the spectacular works of Marina Ratner. Considering
invariant measures in a geometric setting, Furstenberg proved in 1972 the unique
ergodicity of the horocycle flow for hyperbolic surfaces, a result with many descen-
dants.

Using ergodic theory and his multiple recurrence theorem, in 1977, Furstenberg
gave a stunning new proof of Szemerédi’s theorem about the existence of large arith-
metic progressions in subsets of integers with positive density. In subsequent works
with Yitzhak Kaztnelson, Benjamin Weiss and others, he found higher dimensional
and far-reaching generalisations of Szemerédi’s theorem and other applications of
topological dynamics and ergodic theory to Ramsey theory and additive combina-
torics. This work has influenced many later developments including the works of
Ben Green, Terence Tao and Tamar Ziegler on the Hardy–Littlewood conjecture
and arithmetic progressions of prime numbers.

Gregory Margulis revolutionised the study of lattices of semi-simple groups. A
lattice in a group is a discrete subgroup such that the quotient has a finite volume.
For semi-simple groups, Margulis classified these lattices in his “superrigidity” and
“arithmeticity” theorems in the mid-1970s. Armand Borel and Harish-Chandra con-
structed lattices in semi-simple groups using arithmetic constructions, essentially as
the group of integer-valued matrices in a large matrix group. Margulis proved that
all lattices in rank 2 or higher arise from this arithmetic construction, as conjectured
by Atle Selberg. In 1978, Margulis unveiled the structure of these lattices in his
“normal subgroup theorem”. Central to his techniques is the amazing and surprising
use of probabilistic methods (random walks, Oseledets’ theorem, amenability, the
Furstenberg boundary) as well as Kazhdan’s property (T).

In his 1970 dissertation, Margulis constructed the so-called “Bowen–Margulis
measure” of a compact Riemannian manifold of strictly negative variable curvature.
Using the mixing property of geodesic flows with respect to this measure, he proved
an analogue of the prime number theorem, an asymptotic formula for the number
of closed geodesics shorter than a given length. Before this, the only such counting
result was via the Selberg trace formula, which works only for locally symmetric
spaces. Since then, numerous counting and equidistribution problems have been
studied using Margulis’ mixing approach.

Another spectacular application of his methods is the proof in 1984 of the
decades-old Oppenheim conjecture in number theory: a non-degenerate quadratic
form with 3 or more variables either takes a dense set of values on the integers or is
a multiple of a form with rational coefficients.
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In graph theory, Margulis’s creativity resulted in his construction in 1973 of the
first known explicit family of expanders, using Kazhdan’s property (T). An ex-
pander is a graph with high connectivity. This notion, introduced by Mark Pinsker,
comes from the study of networks in communications systems. Expander graphs
are now a fundamental tool in computer science and error-correcting codes. In 1988
Margulis constructed optimal expanders, now known as Ramanujan graphs, which
were discovered independently by Alex Lubotzky, Peter Sarnak and Ralph Phillips.
The influence of Furstenberg and Margulis extends way beyond their results and
original fields. They are recognised as pioneers by a wide community of mathemati-
cians, from Lie theory, discrete groups and random matrices to computer science
and graph theory. They have demonstrated the ubiquity of probabilistic methods and
the effectiveness of crossing boundaries between separate mathematical disciplines,
such as the traditional dichotomy between pure and applied mathematics.

Citation



Autobiography

Hillel Furstenberg

I was born in Berlin in 1935 shortly after the rise of Nazism in Germany. My parents
were both born in Germany, their parents having emigrated from Poland and Russia
respectively. My father, largely self-taught, served as an advocate’s assistant prior
to his marriage, and afterwards he was manager of a furniture store. One of my
few memories of Germany was the morning after Kristallnacht in November 1938,
when the synagogue adjacent to our basement apartment was vandalized, and our
own apartment seriously damaged. As Jews without longstanding ties to Germany,
we were given expulsion orders. After unsuccessfully applying to various countries
for refuge, we were admitted for temporary residence in England, with plans to
continue on to the U.S. My father was particularly eager to immigrate to the U.S.
where he hoped to join my mother’s brother who owned a poultry farm in New
Jersey. Concerned that immigration authorities in the U.S. would not allow him
entry on account of an ailment he had contracted, he underwent surgery in a London
hospital which unfortunately did not succeed. The surgery brought about his death,
and he was buried in a London cemetery, leaving my mother to manage with two
children, myself and an older sister. We were fortunate that my uncle in New Jersey
was able to arrange for our immigration to the U.S. where we arrived in 1940, and
our first year in the new country was spent on my uncle’s farm.

My earliest school experience was at a small local school near the farm, where
kindergarten, first and second grades, were housed in one classroom. As a result my
kindergarten year was richer educationally than it is for most children. In addition I
had the advantage of tutelage at the hands of my sister, older than myself by three
years. So in the later grades, when my classmates were learning addition, I was
learning multiplication, and while they were making progress in arithmetic, I was
learning algebra. Having a head start in elementary school can build up the self-
confidence which is an essential ingredient for further advancement in mathematics.

H. Furstenberg
The Hebrew University of Jerusalem, Edmond J. Safra Campus, Einstein Institute of Mathematics,
Givat Ram. Jerusalem, 9190401, Israel, e-mail: Hillel.Fursten@mail.huji.ac.il
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Fig. 1: With my mother and sister.

After our relatively short stay in New Jersey we moved to Washington Heights
in New York. In Washington Heights I went to schools maintaining a double pro-
gram — religious Jewish studies together with the standard secular studies. My
interest in mathematics became more pronounced as a high school student learning
algebra and euclidean geometry. I enjoyed the challenge of the geometry exercises,
and was fascinated by — and was somewhat skeptical about — the introduction of
imaginary numbers. I filled notebook after notebook with calculations, expecting to
discover an inconsistency. Naturally I failed, but the exercise itself was instructive,
and failing to reach my desired conclusion was also a useful experience. There was
a particular geometry problem which turned out to be of significance for my career.
The problem was showing that a triangle with two angle bisectors of equal length is
isosceles. Shlomo Sternberg, a lifelong friend, ultimately a member of the Harvard
mathematics department, was in my high school class, and the two of us took up
the challenge of this problem. With some effort we both came up with solutions,
giving two different proofs. The high school we were attending, now called Yeshiva
University High School, was housed together with Yeshiva College, and the head of
the mathematics department was Professor Jekuthiel Ginsburg, a leading historian
of mathematics, who edited a journal called Scripta Mathematica. Proud at having
solved this problem, Shlomo and I felt this was worthy of the attention of Professor
Ginsburg, and we made our way to his office. Professor Ginsburg was duly im-
pressed, and while Sternberg had his own mathematics mentor, Professor Ginsburg
took it upon himself to help promote my own mathematical skills. Circumstances at
home made it necessary for me to earn money, and so that this should not deter my
mathematical pursuit, Professor Ginsburg arranged for me to receive a salary work-
ing for his journal, doing translations of papers sent in French and German, and
drawing diagrams that were to appear in Scripta Mathematica. He also arranged
for me to receive a monthly stipend from one of the wealthy supporters of Yeshiva
University. The journal, devoted primarily to the history and philosophy of mathe-
matics, also treated “recreational” aspects of mathematics, and my exposure to this
helped develop my taste for problem solving.
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After high school it was natural for me to continue studies at Yeshiva College,
where, in addition to financial assistance, Professor Ginsburg’s support enabled me
to sidestep some of the usual college requirements, enabling me to focus on math-
ematics. Although at that time Yeshiva University didn’t have a graduate program,
it was my additional good fortune that during those years, Professor Ginsburg had
decided to bring graduate mathematics to Yeshiva University by inviting mathemati-
cians of note from other institutions to give advanced courses. Among the lecturers
were Samuel Eilenberg from Columbia, Jesse Douglas from City College and Abra-
ham Gelbart from Syracuse University. Professor Gelbart’s lectures on functional
analysis and Hilbert space made a particularly strong impression on me. In addition
to the novelty of the subject matter, Professor Gelbart’s enthusiasm for Hilbert’s
profound insight of doing analysis by way of infinite-dimensional spaces was infec-
tious and inspiring. At this stage much of my knowledge came from books as well,
and I should mention the two treatises most prominent among these: Whittaker and
Watson’s “Modern Analysis” and Riesz and Sz.-Nagy’s “Leçons d’Analyse Fonc-
tionelle.” I also made the acquaintance at this time of an older mathematics student,
Seymour Haber, who studied at Syracuse University, but lived in New York, and
shared with me many insights. In particular I first learned from him about the theory
of almost periodic functions, a chapter from harmonic analysis that would be in the
background of much of my later work.

As I indicated earlier, the Yeshiva College curriculum included religious Jewish
studies, and these were intended to prepare students for careers as rabbis, serving as
religious ministers in Jewish communities. I actually began my studies at Yeshiva
College with this goal in mind, and with mathematics taking second place. This
had changed by the time of my graduation, and I made the decision to pursue a ca-
reer in mathematics. The mathematics department at Princeton appealed to me, and
with some encouragement from Professor Salomon Bochner from that department,
I chose Princeton for my graduate degree.

Fig. 2: Pondering the next step of a calculation.
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I had met Professor Bochner when I was interviewed for admission to the de-
partment, and I learned that he had also come from an orthodox Jewish background.
His father was a recognized Judaica scholar, a good part of whose library had in fact
made its way to Bochner’s office. Perhaps memories of his father whom he much ad-
mired drew his attention to me, and he encouraged me to come to Princeton, where
he also served as my advisor. This was most natural, his specialty being harmonic
analysis. In fact one of his interests was the theory of almost periodic functions,
to which he had made important contributions. As to my doctoral work, which we
will describe later, he let me follow my own inclinations, but his insights and intu-
ition have surely impacted on my own leanings and attitudes. While Bochner was
encouraging for the most part, he actually chided me once for publishing an early
paper entitled “On the inverse operation in groups,” which uses the binary relation
(a,b)→ ab−1 as a model for a novel structure along the lines of a semigroup and
also generalizing that of a group. Bochner disdained artificial abstractions, and today
I find myself also drawing a line between the natural and the artificial in mathemat-
ics.

My interest in harmonic analysis led me to study probability theory, in which the
Fourier transform of the distribution function of a random variable plays an impor-
tant role. I attended the lectures of Professor Willy Feller and became acquainted
with the theory of stochastic processes, and in particular, that of Markov processes.
It was at this time that Feller was developing his “boundary” theory for Markov
chains, and although this wasn’t the subject matter of his lectures, the idea of study-
ing the behavior of random walks as time tends to infinity filtered down to me. This
was in the background of my later work on Poisson boundaries for groups.

Although Bochner was a devotee of “hands-on” harmonic analysis, a book that
came out at this time and had a strong impact on my later work was that of
L.H. Loomis, “Abstract Harmonic Analysis.” Together with a small group of fel-
low students, we organized a “baby” seminar — as they were called — with the
aim of studying Loomis’ book. Here I learned of Gelfand’s theory of C∗-algebras
which was to serve as a basic tool in my subsequent work. Particularly striking was
the algebraization of Wiener’s Tauberian theorem and its proof. The representation
of an algebra of functions on one space as functions on a compact space was to be
of significance in my dissertation, and also in the establishment of an “ergodic cor-
respondence principle,” as well as in the construction of the Poisson boundary of a
group some years later.

The title of my doctoral dissertation was “Stationary Processes and Prediction
Theory.” Norbert Wiener had inaugurated the mathematical treatment of prediction
for a known stationary process, from a given past to the future, showing the connec-
tion to harmonic analysis. In the general (non-deterministic) case, what is sought is
a function of “the past” representing the expectation of a future variable. This turns
out to be defined “almost everywhere” in terms of the past. The problem I set my-
self was to find situations where this expectation is well defined for a specific past
and without knowledge of the underlying stationary process. A simple example of
such a situation is when the time series in question is an almost periodic function of
time, where the past has a unique extension to the future as an almost periodic func-
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tion. A first step in dealing with this problem is to identify the stationary process
in question, and here an “ergodic correspondence principle” appears which was to
have repercussions in my later work. The dissertation eventually appeared as Vol-
ume 44 in the Princeton Annals series. As far as prediction is concerned, the book
had little impact. But some of the topics treated had some ramifications, particularly
for topological dynamics.

While at Princeton I benefited from the presence of Leon Ehrenpreis, who was
visiting the Institute for Advanced Study. Ehrenpreis was a harmonic analyst in the
spirit of Laurent Schwartz, and he served as a mathematical “big brother” for me. He
was willing to think about any topic and give feedback, and since the direction my
work was taking was somewhat offbeat for Princeton at that time, his companionship
was encouraging.

After receiving my doctoral degree in 1958, I spent one more year at Princeton
with a teaching position, after which I spent two years at MIT as a Moore Instructor.
During my stay at Princeton, Harry Kesten visited from Cornell. He shared with
me a problem he had heard of from Mark Kac, namely, establishing laws of large
numbers for random products of matrices. Our collaboration on this led to a paper
in the Annals of Mathematical Statistics, which, because of interest to physicists, is
probably my most cited paper. At MIT I took advantage of the presence of Norbert
Wiener, who was still giving lectures. His course was always entitled “Lectures on
the Fourier Integral,” but he spoke on whatever struck his fancy at the moment.
This was always interesting, and more than appreciating his mathematical prowess,
I was impressed by his inquisitive, broad ranging mind, and I saw in him more of a
scientist at large than a mathematician.

By this time I was married, having met my wife, Rochelle, during my last year as
a graduate student. Rochelle grew up in Chicago, and spent that year in New York.
She had studied philosophy, and while we were in the Boston area, she received her
M.A. degree in philosophy from Boston University. Eventually her interests turned
to literary criticism, which she was to pursue later when we settled in Israel. We
moved to Israel seven years after our marriage, fulfilling a dream of my wife, who
had spent a pleasurable year in Israel after finishing high school.

For my penultimate position, we moved from Boston to Minneapolis, where I
joined the mathematics department of the University of Minnesota. My colleagues
in this department put me in touch with developments in topological dynamics; in
particular, with the foundational work of Gottschalk and Hedlund, and Robert Ellis.
I learned of the notion of “distality” for dynamical systems, and succeeded in es-
tablishing a general structure theorem for minimal systems with this property. This
turned out to be of significance for my later work on the phenomenon of recurrence
in ergodic theory, where a related structure theorem played a crucial role. The dis-
tal structure theorem came about by generalizing a particular example of a distal
transformation on the 2-torus: (x,y)→ (x+a,y+ f (x)), easily seen to be distal, to a
tower of arbitrary height of “isometric extensions.” It turns out that, interpreted cor-
rectly, this is the most general minimal distal system. At Minnesota I also returned
to the study of noncommuting random products; this time focusing on the quali-
tative rather than the quantitative behavior. The motivation actually came from the
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Fig. 3: With my wife and five children.

dynamical questions I had been studying. The foregoing distal transformation is an
example of a “skew product transformation”: T (x,y) = (S(x),R(x)(y)), where S is a
fixed transformation, and R(x) is a transformation on the y-coordinate depending on
x. When we iterate this transformation we are led to product transformations of the
form R(Sn−1x) · · ·R(S2x)R(Sx)R(x). Assuming the transformations R(x) come from
a given group of transformations, we can hope to analyze this product in terms of
properties of the group. The complexity of the expression leads one to consider the
case where the successive Rn(x) are independent random variables. By this some-
what circuitous route, we came to study random walks on groups, and the associated
“Poisson boundaries.”

At the University of Minnesota there was a strong probability group which en-
couraged addressing problems of a probabilistic nature. Monroe Donsker was one
of the probabilists in the department, and he suggested to me finding an applica-
tion of probability theory to algebra. This was in the context of a volume being put
out by his acquaintance, Peter Ney, on applications of probability theory to other
areas of mathematics. I took up the proposal with the idea of giving an application
to group theory. The application was in the form of a “rigidity theorem” regarding
lattices in a Lie group. Intuitively one can expect that the boundary occurring for
random walks on a lattice would be closely related to that occurring for the ambient
group. This led to a result which was a very special case of Margulis’ strong rigidity
theorem, It also served as a tool in Margulis’ “normal subgroup theorem.”

After my tenure at the University of Minnesota, we moved to Israel, and I took a
position at the Hebrew University in Jerusalem. There were several more institutions
in the U.S. which I visited regularly before and after moving to Israel, enabling me to
stay abreast of contemporary activity in my areas of interest. One of these was Yale
University. At Yale I met Benoit Mandelbrot, who had coined the term “fractal,”
and had essentially launched a new area in geometry to which I became attracted.
Yale was also a center of attraction for mathematicians in the northeast U.S., and a
number of ergodic theorists would visit, notably Michael Keane who, with his broad
range of interests, was a source of fresh problems and ideas. Another institution
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Fig. 4: Visiting Grisha Margulis at Yale University.

which I visited on a regular basis was the University of Maryland. The mathematics
department at the University of Maryland was a center for the study of dynamics
in general, with topological dynamics as part of its repertory. Joseph Auslander, a
student of Gottschalk, was one of the mathematicians responsible for developing
this field at Maryland, and among other things, I learned from him to appreciate the
algebraic approach to topological dynamics pioneered by Robert Ellis. One aspect
of this was availing oneself of the theory of compact semigroups, a subject which
would also appear afterwards in linking dynamics to combinatorics.

Fig. 5: With Joe Auslander and his wife, Barbara Meekers at the University of Mary-
land in 2014.

It was after moving to Israel that I would travel to the U.S. to spend summers
at Stanford University. It had become a tradition for ergodic theorists to come to
Stanford during the summer to join students and colleagues of Don Ornstein fur-
thering the development of the “new” ergodic theory, that is, ergodic theory beyond
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ergodic theorems. These sessions were very productive, and also served as a breed-
ing ground for a generation of ergodic theorists.

In fall of 1965 we moved to Israel with our two children. I took a full time po-
sition at the Hebrew University in Jerusalem, and a part time position at Bar-Ilan
University, where the department of mathematics was still at a formative stage. The
department at the Hebrew University was small but possessing a distinguished tra-
dition, with Edmund Landau and Abraham Fraenkel among the faculty in its early
years. In 1965 the mathematics faculty included students of the “founding fathers”:
Aryeh Dvoretzky, who was a student of the analyst M. Fekete, Shimshon Amitsur, a
student of the algebraist J. Levitski, Azriel Levy, student of Fraenkel and Robinson
in set theory. Two more analysts in the department were Shmuel Agmon and Yitzhak
Katznelson, who had studied under Sz. Mandelbrojt in Paris. In mathematical logic
there was Michael Rabin whom I had met in Princeton where we overlapped as
graduate students, and who later did foundational work in computer science. Rabin
was chairman of the department when we came to Israel, and he was instrumental
both in my joining the department, and in ensuring that my wife and I were com-
fortably settled in our new home. At that time, to encourage new immigrant faculty,
the Hebrew University would purchase apartments in Jerusalem, requesting a very
nominal rent from the new faculty member. Rabin took it upon himself to help us
find comfortable living quarters to our liking, even when the cost exceeded the usual
allotment prescribed by the university.

At the time of my arrival in Jerusalem, the mathematician whose interests came
closest to my own was Yitzhak Katznelson, who specialized in harmonic analysis.
Some years later he moved to Stanford, still remaining close to activity in Jerusalem.
Katznelson and I worked on many problems together; perhaps the best known of
which is the proof of a “density” version of the Hales–Jewett theorem. Two years
after my arrival, Benjamin Weiss also came to Israel and joined our department. He
and I had much in common; we both were undergraduates at Yeshiva College and
did our graduate work at Princeton, and our mathematical interests ran together. In
addition to authoring several papers together with me, Benjy — as he was known
to everyone — became a mainstay of essentially all my subsequent mathematical
work. The area of mathematics in which the three of us, Katznelson, Weiss and
myself, were interested in, was ergodic theory, and with Benjy’s arrival, this subject
gained momentum in our department, which resulted in attracting ergodic theorists
from around the world to visit Jerusalem.

This came to the fore in 1975 when the Israeli Institute for Advanced Studies
was established at the Hebrew University. This institute had no permanent mem-
bers, but served as the venue for semester-long, or year-long, programs of intensive
international activity in a specialized area. Each year there were to be two programs,
one in the sciences and one in the humanities. For the first year of the institute, we
proposed organizing a program in ergodic theory. This was accepted together with
another program in Jewish mysticism and Talmud, and we could arrange for an im-
pressive line-up of ergodic theorists to spend the year, or part of it, in Jerusalem.
This included Donald Ornstein, Daniel Rudolph and Jack Feldman from the U.S.,
Jean-Paul Thouvenot from France, Mike Keane from Holland, and others. A good
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part of the activity within our group concerned various notions of equivalence of
ergodic systems patterned after Ornstein’s isomorphism theory. My own involve-
ment in the program came about due to the serendipitous visit of Konrad Jacobs
from Erlangen to Jerusalem. Jacobs had many interests, and while having authored
one of the earliest texts in ergodic theory, when he came to Israel he was more
interested in combinatorial theory. He was invited to lecture and he chose for his
topic the recent resolution by E. Szemerédi of the Erdős–Turan conjecture on arith-
metic progressions in sets of integers with positive density. I hadn’t been aware of
the Erdős–Turan conjecture or Szemerédi’s work, but hearing of it at Jacob’s talk
brought to mind the “ergodic correspondence principle” first made use of in the con-
text of prediction theory. This principle gives a precise rendering of the heuristics
whereby the integers are seen as a measure space, density of a set representing its
measure and the shift operation, x→ x+ 1, a measure-preserving transformation.
The existence of an arithmetic progression {a+ id, i = 0,1, . . . ,k} in a set of posi-
tive density takes on the meaning of a point in a set of positive measure recurring
in the set after a power of the measure-preserving transformation is applied k+ 1
times in succession. Made precise, the realisation was that Szemerédi’s theorem is
equivalent to a “multiple recurrence” phenomenon for measure-preserving transfor-
mations, extending the “simple” recurrence phenomenon of Poincaré. This became
what is now called the ergodic Szemerédi theorem, and its ergodic-theoretic proof
was one of the outcomes of the “ergodic theory year” at the Institute for Advanced
Study. To achieve the proof, one makes use of a structure theorem valid for arbitrary
ergodic systems, and patterned partially after the structure theorem for distal sys-
tems, with a version of “isometric extensions” again serving as the basic constituent
of the structure. The proof of this structure theorem was a collaborative effort, in-
volving Benjy Weiss and Izzy Katznelson as well as myself. A number of variations
on this multiple recurrence theme were to follow, in which Weiss and Katznelson
were again involved.

The academic year ’71–’72 was the year of our first sabbatical, and we spent the
year at the University of California in Berkeley. At Berkeley I met Joseph Wolf,
differential geometer and Lie group theorist, and also Calvin Moore, who, together
with Roger Howe, had obtained some of the basic results in ergodic theory for ho-
mogeneous flows. During the year I was asked to speak at the weekly colloquium.
I knew that an open problem in homogeneous dynamics was to determine whether
the horocycle flow on a compact surface of constant negative curvature, proved by
Hedlund to be minimal, and by the theorem of Howe–Moore, to be ergodic, was
uniquely ergodic. I decided to think about this question and thinking I had a proof,
I gave as the title for my talk, “The unique ergodicity of the horocycle flow.” The
proof I had in mind had a gap, and somewhat under pressure I did find a proof based
on harmonic function theory. This result was later subsumed under the far more
general results of Marina Ratner on unipotent flows.

In my 1967 paper on “disjointess” of dynamical systems, I had taken note of
another phenomenon in the particular case of endomorphisms of the 1-torus, R/Z;
namely if multiplication by p and multiplication by q are two of these, where p
and q are multiplicatively independent, then a closed set invariant under both trans-
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formations is either finite or everything. This led to a notion of “transversality of
actions,” reflecting an incommensurability of the two actions, which should be re-
flected in the transversality of sets respectively invariant under the two actions, this
making sense wherever a notion of set dimension is defined. I formulated a conjec-
ture in this regard in a lecture I gave at a symposium honoring Professor Bochner in
1969, the conjecture having just recently been proved independently by M. Wu and
P. Schmerkin. In my own unsuccessful attempt to prove the conjecture, I found that
ergodic-theoretic ideas could be used in studying issues involving the Hausdorff di-
mension of fractals. The beginnings of such a theory appears in the paper based on
the Bochner symposium lecture, and some of these ideas play a role in Wu’s proof of
my conjecture. In 2011, I was invited to Kent State University to deliver the CBMS
series of lectures, and I chose as my topic “Ergodic Theory and Fractal Geometry.”
This rounds out the use of ergodic theory in number theory and combinatorics to
include geometry.

Fig. 6: Celebrating the Israel Prize in 1993.

Fig. 7: Receiving the Emet Prize in 2004.
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I was officially retired from both the Hebrew University and Bar-Ilan University
in 2003, having reached the university retirement age of 68. I continued to teach at
the Hebrew University, giving advanced courses, mostly related to my work, and this
too ended in 2018. Although most of my doctoral students were from the Hebrew
University, I didn’t regret having taught at Bar-Ilan, where several of the students I
had taught also received doctorates. Notable among these was Alex Lubotzky, who
began his teaching career at Bar-Ilan, later joining the mathematics department at
the Hebrew University, where he became one of the mainstays of the activity in
group theory in the department.

Fig. 8: Students and colleagues at my retirement conference in 2003.

Fig. 9: Joined by Jack Feldman and Anatole Katok at my retirement conference in
2003.
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Fig. 10: Vitaly Bergelson and Alex Lubotzky, two of my students, at my retirement
conference in 2003.

Fig. 11: My wife and I are dining with Ilya Piatetski-Shapiro at Yale University,
joined by Steven Miller and Louis Rowen with his daughter (circa 2008).

In a Talmudic passage one rabbi describes how he came to acquire his knowl-
edge: “I have learned something from each of my teachers, more from my col-
leagues, but most of all from my students.” Without making comparisons, I have
learned from my teachers, from my colleagues and, of course, from my students. A
striking example of learning from one’s students involved my student Vitaly Bergel-
son, who coined the term Ergodic Ramsey Theory, and served over the years as a
leading practitioner in the field. At one point he had suggested that it should be
possible to go beyond arithmetic progressions, and prove Szemerédi type results for
“polynomial” patterns. I firmly discouraged him, claiming that this was a goal for
the distant future. Not heeding my warning, Bergelson worked on the problem and
indeed did show that it was tractable, thus broadening the scope of ergodic Ramsey
theory. Another past student to whom I’m directly indebted is Shmuel (Eli) Glas-
ner. Eli and I joined forces in elaborating the theory of “stationary dynamical sys-
tems.” This is an extension of measure-preserving dynamics, enabling, among other
things, extending ergodic Ramsey theory to non-amenable groups. Other students



Autobiography 367

from whom I’ve learnt have followed their own inclinations, going into fields dis-
joint from my own, achieving prominence in these fields. Altogether I find myself
privileged in all of the three categories: teachers, colleagues and students.

Fig. 12: Matching wits at a game of chess with my granddaughter.
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Grigoriy Margulis

I was born on February 24, 1946, in Moscow, an only child. This was shortly after
the end of World War II, and the living conditions, in general, were not so good. But
my family was relatively well off, and my parents protected me from all troubles
which were around. I lived in Moscow until August of 1991 when I moved to the
USA. Since then I have lived in New Haven, Connecticut.

I was interested in mathematics from an early age. My father, who was a math-
ematician, actually encouraged me to do mathematics. He probably realized that I
had some mathematical talent. When I was 7 or 8, I was able to multiply two-digit
numbers in my head. My parents also encouraged me to play chess. I combined my
interests in mathematics and chess until I became a student in Moscow State Uni-
versity, but after that, I realized that it would be very difficult for me to continue to
do so. So I concentrated on mathematics and played chess only occasionally.

Fig. 1: With my parents at the age of 9. Photo: Private.

Department of Mathematics, Yale University, e-mail: margulis@math.yale.edu
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As I mentioned, my father was a mathematician. But he was mostly interested
in mathematical education. He wrote his candidate dissertation (roughly equivalent
to a PhD thesis) under the direction of Alexander Khintchin, who was a famous
probabilist. The title of his dissertation was “Infinity and its symbolics in the course
of school mathematics” (“Beskonechnost i ejo simvolika v kurse shkolnoj matem-
atikie” in Russian). My father was born in 1913 and in 1940 he became a can-
didate of pedagogical sciences (“kandidat pedagogicheskih nauk” in Russian). For
many years he worked at pedagogical institutes. He also wrote multiple papers about
teaching mathematics in high school (“v srednei shkole” in Russian), mostly pub-
lished in the journal “Mathematics in school” (“Matematika v shkole” in Russian).
Since 1961 my father served for many years as the deputy chair of the high school
section (“sektsii srednei shkoly” in Russian) of the Moscow Mathematical Society.

Starting in the 7th grade, when I was approximately 12 years old, I participated
in mathematical circles. It was quite informal. I don’t remember many details, but
it was run by students, sometimes by graduate students, from Moscow University.
There was also supervision by more senior mathematicians. We discussed various
problems, and we were encouraged to solve them. At that time mathematical cir-
cles in Moscow University were connected to the Moscow mathematical olympiads.
From the 7th to 10th grade I participated in those olympiads, and every year I
was one of the winners. I remember that the prizes in the Moscow mathematical
olympiads consisted of collections of mathematical books, which by the way, were
extremely cheap during Soviet times. In 1962 I was also a winner of the olympiad
in physics and mathematics which took place at the Moscow Institute for Physics
and Technology. Also in 1962 I won one of two first prizes in the Republican math-
ematical olympiad, and because of that I was included in the Soviet team for partici-
pation in the International mathematical olympiad. There I won one of twelve silver
medals.

During my school years I also regularly met with some senior mathematicians.
Among them I should mention Vadim Efremovich. He was a well-known geome-
ter/topologist. His main mathematical interest was equimorphisms. An equimor-
phism is a one-to-one map f : X → Y between two metric spaces X and Y such that
both f and f−1 are uniformly continuous. In the case of Riemannian manifolds be-
ing an equimorphism is a slightly stronger condition than being a pseudo-isometry.
Among other things, Efremovich proved that if X and Y are hyperbolic spaces then
any equimorphism between X and Y can be extended by continuity to a homeo-
morphism between the boundaries of X and Y in their standard compactifications.
The proof is based on the Morse Lemma, which says that any quasigeodesic in the
hyperbolic space is at bounded distance from a geodesic. (Efremovich didn’t know
about the Morse Lemma, and he reproved it.) Later Dan Mostow, not knowing about
Efremovich’s result or about the Morse Lemma, proved that the homeomorphism
between the boundaries of X and Y is a quasiconformal map, and he used this fact
in the proof of his famous strong rigidity theorem. I interacted with Efremovich un-
til the early 1970s. He was a very good teacher and mentor. One of my principles
in approaching mathematical and especially geometric problems was “look at infin-
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ity”. I believe that one of the first motivations for this principle came to me during
a discussion with Efremovich in 1961–62.

Now I can confess that, during my high school and undergraduate years, I spent a
lot of time trying to solve great unsolved problems, including the standard collection
of Fermat’s Last Theorem, the Four Color Problem, etc. Of course, I was unsuccess-
ful. In my case this experience probably had some positive effects, improving my
ability to concentrate on difficult problems. But I certainly would not recommend to
any young mathematician to do the same.

In 1962 I became an undergraduate student in Moscow State University, which
is subdivided into so-called faculties (“fakultets” in Russian). I was a student in the
division of mathematics of the faculty of mechanics and mathematics (“mehaniko-
matematicheskii fakultet” or shortly “mehmat” in Russian). There was an enormous
number of seminars during that time, and starting in the first year I attended quite a
few of them, maybe too many.

Fig. 2: Moscow University, Kronrod seminar, during the academic year 1960–61.
From left to right, first row: G. Margulis, L. Makar-Limanov, D. Kazhdan, A. Libin,
M. Khanchachan and A. Katok; second row: S. Gelfand, V. Fishman, B. Pranov and
A.S. Kronrod. Photo: Private.

It was not unusual for undergraduate students in Moscow University to do re-
search. During the academic year 1964–65, when I was a third year undergraduate
student, I attended Dynkin’s seminar on Martin boundaries. At some point Dynkin
conjectured that, under some mild conditions, all positive harmonic functions on
nilpotent groups are invariant under translations by the commutator subgroup. I was
able to prove this conjecture and wrote my first paper “Positive harmonic functions
on nilpotent groups”. It was submitted for publication in May of 1965 and published
in 1966. The paper seems to have some influence even now.

Starting at the end of my third undergraduate year Sinai became my adviser. His
influence on my formation as a mathematician is hard to overestimate. My second
paper was about the exponential growth of the fundamental group of a compact 3-
dimensional manifold admitting Anosov flows. It was published as an appendix to
a survey paper by Anosov and Sinai. The title of my candidate dissertation is “On
some aspects of theory of Anosov systems”. It was written in 1970 and published
only in 2003. The dissertation, among other things, contains the asymptotic formula
for the number of closed geodesics on compact manifolds of negative curvature.
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Fig. 3: Me aged 17. Photo: Private.

Dima (now David) Kazhdan was my classmate. At the end of our undergraduate
studies in May–June of 1967, he and I proved the existence of unipotent elements
in non-uniform lattices in semisimple Lie groups. This was a conjecture by Selberg.
More precisely, we proved the following. Let G be a linear semisimple Lie group
without compact factors. Then any non-uniform lattice in G contains a non-trivial
unipotent element. We also proved the existence of a neighborhood W of the identity
element e in the group G such that for any discrete subgroup Γ of G there exists an
element g of the group G such that gΓ g−1∩W = {e}. As a corollary we deduce the
existence of a positive lower bound for the covolume of Γ in G which depends only
on G and does not depend on a discrete subgroup Γ of G.

The work with Kazhdan was published as a paper in 1968. The paper became
quite well known. In particular, Armand Borel gave a talk about it at a Bourbaki
seminar. Also after this paper I became very much involved in the theory of discrete
subgroups of Lie groups. In particular I started to work on the problem of arith-
meticity of non-uniform lattices. Eventually I proved arithmeticity of a higher rank
irreducible non-uniform lattice Γ but it took several years. Though I didn’t realize
it at the time, I followed the general strategy introduced by Selberg and Piatetski-
Shapiro. This strategy is based on the study of unipotent elements in the lattice Γ

and the subgroups of Γ associated with them. A more detailed account will be given
in Appendix 1.
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Around 1970 I realized that there are analogs in Riemannian geometry of some
statements from the paper with Kazhdan. I told Misha Gromov about it, and he later
called these observations the Margulis Lemma.

In the late sixties I learned about Mostow’s fundamental work on strong rigid-
ity. Thinking about it, I at some point realized that it would be possible to prove
arithmeticity of higher rank irreducible lattices if one could prove a statement that
is now called superrigidity. I believe that superrigidity was a new phenomenon that
had not been discovered before my work. The first proof of superrigidity was based
on a combination of methods from ergodic theory and algebraic group theory, and
one of the ingredients was Oseledec’s multiplicative ergodic theorem. A more de-
tailed account will be provided in Appendix 1. Here I want to emphasize that the
arithmeticity statement is formulated in arithmetic and algebraic terms but its proof
involved ergodic theory. Apparently it was a big surprise for most mathematicians.
My work on arithmeticity took about seven years, approximately from 1967–74.

It seems strange now, but when I worked on superrigidity I was not influenced
by Furstenberg’s work, because I was essentially not familiar with it. It is indeed
strange because many ideas and methods introduced by Furstenberg are very similar
in style to what I used. I learned about Furstenberg’s work only around 1974, and his
boundary theory influenced me very much. In particular, one of the basic statements
in this theory played a very important role in my proof of the so-called normal
subgroup theorem.

The normal subgroup theorem says that if G is a connected semisimple Lie group
of R-rank at least 2 without compact factors and with finite center, and if Γ is an
irreducible lattice in G, then any normal subgroup N of Γ either belongs to the center
of Γ or has finite index in Γ . A special case is, for example, the group G = SL(3,R)
of real 3× 3 matrices with determinant 1. Take a discrete subgroup Γ of G which
has finite covolume. Then any non-trivial normal subgroup of Γ has finite index in
Γ .

My proof of the normal subgroup theorem consists of two parts. First consider
the case when Γ /N is an amenable group. This case can be treated using representa-
tion theory arguments, in particular Kazhdan’s property (T ). Then consider the case
when Γ /N is a non-amenable group. Somehow I realized that one can use algebras
of measurable sets. A crucial tool was one of the initial lemmas from Furstenberg’s
paper on boundary theory. Another crucial tool was a generalization of the density
point theorem from measure theory. I cannot explain how I came upon the idea be-
hind the second part of the proof — it was some sort of intuition. Also, the idea of
subdividing the proof into the case when Γ /N is amenable and the case when Γ /N
is non-amenable was quite new. For all these reasons I consider my proof of the
normal subgroup theorem to be the best proof I have done.

The statement of the normal subgroup theorem was known to be true in certain
cases, for example for SL(n,Z), n≥ 3. The proofs were based on algebraic methods.
Maybe it was natural to assume that the statement was true in general. However
the proof in the uniform case was obtained partially by using measure theory, as I
alluded to above. So even though the theorem is stated in purely algebraic terms, the
proof in the general case is mostly non-algebraic.
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I was an undergraduate student at Moscow University from 1962–67 (undergrad-
uate education in the Soviet Union lasted five years). From 1967–70 I was a gradu-
ate student, also at Moscow University. My dissertation adviser (scientific director;
“nauchnyi rukovoditel” in Russian) was Sinai. In 1970 I finished my dissertation
and became a candidate of science. After that and formally several months before,
I began to work at the Institute for Problems in Information Transmission (“Institut
Problem Peredachi Informatsii” or “IPPI” in Russian).

I didn’t get a position at Moscow University or the Steklov Institute, but IPPI
was one of the institutes of the Soviet Academy of Sciences. By Soviet standards at
that time, IPPI was relatively small, only two hundred researchers, but by Western
standards it would probably be considered a huge institution. My immediate boss
was Roland Dobrushin, who was a famous probabilist and mathematical physicist.
There was also another group there, which was headed by Mark Pinsker. He was
famous for his work in information theory. In a sense, I was lucky to be there, be-
cause my most well known and widely cited paper on expander graphs, published in
1973, was written under Pinsker’s influence. Expander graphs, which incidentally
have many applications in computer science, were first defined by Pinsker. Their
existence was first proved by Pinsker in the early 1970s. My paper gave the first ex-
plicit construction of an infinite family of expander graphs. In that paper the proof
was based on the theory of discrete subgroups of Lie groups. In particular I used ar-
guments related to Kazhdan’s work on property (T ). This was probably unexpected
for people working in computer science.

Later on, I constructed an infinite family of graphs using quaternions. This was
in 1984 and at that time I was mostly interested in studying the girth of these graphs
and, in particular, finding estimates for the girth size. This interest was partially mo-
tivated by applications to algebraic coding theory and, in particular, the construction
of low density codes. In graph theory, the girth of a graph is the length of the short-
est cycle contained in the graph. There was a probabilistic construction due to Erdős
and Sachs that gave an upper asymptotic estimate 2 logp n for the girth of a (p+1)-
regular graph with n vertices (this is simple), while the asymptotic lower estimate
was logp n. Quite surprisingly, my explicit construction gave, in the case where p is
a prime, an asymptotic lower estimate 4/3logp n. I believe that up until now there
hasn’t been any probabilistic construction that goes beyond logp n.

At the same time as I studied these explicitly constructed graphs I realized, based
on some deep work by Deligne, that they were also expander graphs which are in
a certain sense better than the previous constructions. Slightly later and completely
independently, Lubotzky, Phillips and Sarnak gave basically the same construction,
but with some variations. They also used the work of Deligne, and they called the
graphs which come from this construction Ramanujan graphs because it is related
to a work by Ramanujan.

As I mentioned earlier, my immediate boss at IPPI was Dobrushin. At some
point he suggested to me to look at probabilistic characteristics of graphs with large
connectivity. In 1974 I obtained the following result. Let G be a connected non-
oriented finite graph. The connectivity ν(G) of the graph G is defined as the smallest
number of edges which should be deleted for the graph G to become non-connected.
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Fig. 4: Wedding photo (August 30, 1972). Photo: Private.

Let fG(p) denote the probability that the graph G becomes non-connected if each
edge is deleted with probability p. It is clear that fG(p) is a differentiable non-
decreasing function, fG(0) = 0 and fG(1) = 1. For every 0 < ε < 1 let

t1(ε) = inf{p : fp ≥ ε}, t2(ε) = sup{p : fG(p)≤ 1− ε}, t(ε) = t2(ε)− t1(ε).

I proved that for every ε > 0 and δ > 0 one can find n such that if ν(G) > n then
t(ε) < δ . In other words, if the connectivity ν(G) is “sufficiently large” then the
function fG(p) jumps “almost immediately” from being “almost 0” to becoming
“almost 1”.

When I came to IPPI, it was essentially divided into three parts: (A) the-
oretical/mathematical; (B) engineering, mostly related to communications, com-
puter vision, speech recognition, etc; (C) applications of computers to biology and
medicine. Part (A) consisted of two groups headed by Dobrushin and Pinsker. The
emphasis in this part was on information theory, coding theory, and what is now
called theoretical computer science. My work on expanders and probabilistic char-
acteristics of graphs was closely related to these subjects, and in some sense it was
done under pressure to do research related to the main direction of part (A). But I
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had the opportunity of spending most of my time on my own research. I had more
time to do research than an average professor in the US does.

Fig. 5: With my wife and son in 1975. Photo: Private.

In 1978 I was awarded a Fields Medal. Of course it was very encouraging. Un-
fortunately I was not allowed to attend the ICM in Helsinki to receive the award,
mostly due to the opposition of an influential part of the top Soviet mathematical
establishment at that time. (More details will be provided in Appendix 3.) But ap-
parently because I could not come to the Helsinki Congress, I was allowed in 1979
to come to the West for the first time. It was a three-month visit to Bonn from the
beginning of July until the beginning of October, arranged by Hirzebruch. During
that visit Jacques Tits came to Bonn and at a small ceremony presented the award.

In September of 1979 during my visit to Bonn I met Gopal Prasad, who told
me about Raghunathan’s remarkable observation relating the Oppenheim conjec-
ture and the theory of unipotent flows. After that I started to work on the conjecture
and eventually proved it. The short version of the proof was published in January of
1987, and more detailed versions were published later. But I remember that I gave
some kind of oral presentations already in 1984. Later for many years I continued to
work on various generalizations of the Oppenheim conjecture, mostly in collabora-
tion with other mathematicians. A rather detailed account of this work will be given
in Appendix 2.

In May or June of 1980 I was at a conference in Poland. There I met Rindler,
an Austrian mathematician, who mentioned the problem of Banach and Ruziewicz
on the uniqueness of SO(n)-invariant means for the algebra of all Lebesgue mea-
surable subsets of the unit sphere in Rn and a reformulation of this problem due
to Rosenblatt, who explained that it would follow from the statement about small
almost invariant sets. I almost immediately realized that for n ≥ 5 this statement
can be deduced from property (T ) for certain subgroups of SO(n). I used subgroups
which can be considered as S-arithmetic lattices in the product of SO(n) and the
group of p-adic points of SOn. Independently and around the same time, Dennis
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Sullivan gave a similar proof using slightly different subgroups, but also using work
by Rosenblatt.

The Banach–Ruziewich problem was for n ≥ 3 (for n = 2 the corresponding
statement is not true). In 1982 I settled an analog of the Banach–Ruziewich prob-
lem for Rn for all n≥ 3. In this analog SO(n)-invariant means are replaced by means
invariant under the group of isometries of Rn. Instead of property (T ), I used a gen-
eralization of property (T ) which I called relative property (T ). For n= 3 and n= 4,
the group SO(n) doesn’t contain subgroups having property (T ). In 1984 Drinfeld
settled the Banach–Ruziewich problem for these remaining two cases, using very
deep results of Deligne.

According to a classical theorem of Bieberbach, if Γ is a discrete subgroup of
the group of isometries of Rn such that Rn/Γ is compact then the subgroup Γ con-
tains a subgroup of finite index consisting of parallel translations and therefore is
virtually abelian. Let A(n) denote the group of affine transformations of Rn, and let
Γ be a discrete subgroup of A(n) acting properly discontinuously on Rn. In 1964
L. Auslander conjectured that if Rn/Γ is compact then Γ is virtually solvable. This
statement can be considered as an analog for A(n) of the Bieberbach theorem. In
1977 J. Milnor asked if Γ should be virtually solvable without the assumption that
Rn/Γ is compact. This is obviously true for n = 1 and is not difficult to prove for
n = 2. In 1983 I showed that for n = 3 the answer to Milnor’s question is nega-
tive by constructing a free (non-commutative) discrete subgroup of A(3) which acts
properly discontinuously on R3. Actually this example came as a surprise to me
and not only to me. For many years I continued and still continue to work on vari-
ous questions related to properly discontinuous actions of discrete groups of affine
transformations, mostly in collaboration with H. Abels and G. Soifer.

Around 1981–82 Jacques Tits suggested to Joachim Heinze, who was in charge
of mathematics at Springer Verlag, that I should write a book on the subject of dis-
crete subgroups of Lie groups. Heinze passed this suggestion to me, and eventually
I agreed. Approximately at the beginning of 1984 I started to write the book “Dis-
crete Subgroups of Semisimple Lie Groups”. At that time I thought that by making
relatively small changes to my doctoral dissertation I would be able to finish writ-
ing the book in a few months. I was completely wrong. The book was almost three
times bigger than the dissertation, and it took more than two years to write it. I
wrote the book in Russian and it was translated into English by Valery Mishkun.
Many constructive remarks were made by Alan Huckleberry and Gopal Prasad. My
book was published in 1991. I believe that it became a standard reference in the
subject together with the earlier books “Discrete Subgroups of Lie Groups” by M.S.
Raghunathan, published in 1972, and “Ergodic Theory and Semisimple Groups” by
Robert Zimmer, published in 1984.

With only one exception, the above-mentioned three-month visit to Bonn in
1979, I was not allowed to travel outside of the so-called “socialist camp” (“sot-
sialisticheskii lager” in Russian) until 1987. But it was much easier to get permis-
sion to visit countries inside the “socialist camp”. Starting in 1976 I traveled several
times to Hungary, twice to Poland, and one time to Bulgaria. These visits were quite
fruitful. I met many foreign mathematicians. In 1984 at conferences in Bulgaria and
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Hungary I gave oral presentations about my proof of the Oppenheim conjecture, and
during my visit to Poland in 1986 I wrote a short version of this proof.

Starting in 1987 it became much easier for me (and not only for me) to get per-
mission to travel abroad. In July of 1987 I came to Oslo, Norway, to participate in
the symposium “Number Theory, Trace Formulas and Discrete Groups” in honor
of A. Selberg. The title of my talk at the symposium was “Discrete Subgroups and
Ergodic Theory”. In spite of the quite general title, I essentially talked only about
my proof of the Oppenheim conjecture. Most participants of the symposium were
number theorists. For them it was a big surprise that a long standing conjecture from
number theory could be proved using dynamical methods.

In 1988 I came to Bonn again. This time it was a four-month visit to Max Planck
Institute which started approximately at the beginning of March. With the help of
G. Harder I arranged for S.G. Dani to visit there for a month. During his visit we
started our fruitful collaboration on various generalizations and stronger versions of
the Oppenheim conjecture and on related problems in the theory of unipotent flows.
The collaboration continued for several years. In the winter of 1988–89 S.G. Dani
came to Moscow for a month, and in March of 1989 I came to India, also for a
month. These two visits were a part of the Indo-Soviet exchange program between
the Department of Science and Technology of the Government of India on the Indian
side and the USSR Academy of Sciences on the Soviet side. In the summer of 1991
we worked together for a month at the University of Göttingen. And finally, S.G.
Dani came to Yale in 1992 for two weeks.

In Spring of 1989 I came to the USA for the first time. The visit was rather short
(a couple of weeks). It started with my participation in a CBMS conference called
“Discrete Groups, Expanding Graphs, and Invariant Measures” that was organized
by Andy Magid with Alex Lubotzky as the main speaker. It took place in Norman at
the University of Oklahoma May 29 through June 2, 1989. My talk at the conference
was the first talk I had given at a US university. If I remember correctly, after the
conference I visited Stanford, Harvard, and Yale (each university for 2–3 days), and,
before returning to Moscow, stayed shortly with a friend in New York.

In the winter of 1989–90 I came to France for three months. It was a combination
of a two-month visit to IHES in November-December of 1989 and a one-month visit
to College de France in January of 1990, where I gave a series of lectures. It was the
first lecture series in my life. During my stay in France there were dramatic political
changes in Europe. The Eastern Block was disintegrating, the Berlin wall fell, etc.
It was unexpected. For example when I was in Germany in March-June of 1988, I
never met anyone who envisioned this sequence of events in the near future.

In April-May of 1990 I came to Israel for a couple of weeks. I presented the
Schur lectures at Tel Aviv University and was at the ceremony where de Giorgi and
Piatetski-Shapiro were awarded the Wolf Prize. I also met many old friends.

In September of 1990 I came to the USA for a very long visit. First I was at
Harvard for a semester from September 1990 until January 1991 and then I stayed
at IAS for four months in February–May of 1991. During that visit I received offers
from Harvard, Princeton, the University of Chicago, and Yale. I chose Yale. Many
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people were surprised by this choice. But in retrospect it is clear to me now that
from a professional point of view it was the right decision.

After my stay at IAS I came to Germany for two months, and at the end of July I
went to Moscow to prepare to move with my family (wife and son) to the USA. We
were scheduled to fly to New York on August 24. On August 19 there was a coup
in Moscow which eventually failed on August 21. We left Moscow on August 24 as
planned, but I remember how frightened I was during the period August 19–24 and
especially the period August 19–21.

In the second half of 1991 I became a professor at Yale. This was the start of a
new period in my mathematical and non-mathematical life. The style of my work
changed. When I was in Moscow I was the single author of most of my papers
(certainly more than 75 or 80 percent). One notable exception was the joint paper
with Kazhdan. Actually for me it was quite challenging to write up papers, so it
took a lot of time. But after I moved to Yale in 1991 almost all of my papers were
joint ones. It was a completely different environment. I started to work with many
mathematicians, mostly younger than me.

In Moscow I didn’t have graduate students (I was the dissertation adviser for
G. Soifer but he was not my graduate student). But at Yale I had more than twenty
graduate students. I also had several postdocs (often their official position was Gibbs
Instructor or Gibbs Assistant Professor). Working with graduate students and post-
docs became a very important and rewarding part of my life.

Dima (or officially Dmitry) Kleinbock was my first PhD student at Yale. He
graduated in 1996. Dima and I wrote a paper, “Flows on homogeneous spaces and
Diophantine approximation on manifolds”, which was published in 1998 in the An-
nals of Mathematics. The paper was highly praised by many mathematicians. In
that paper we proved long-standing conjectures of Baker and Sprindzuk, which are
more often called Sprindzuk’s conjectures, from the metric theory of Diophantine
approximation. To prove the conjectures, we introduced a new approach which was
based on using methods from homogeneous dynamics (more details are provided in
Appendix 2).

There is an interesting story related to the just-mentioned paper with Kleinbock.
S.G. Dani established the correspondence between Diophantine properties of vec-
tors in Rn and the asymptotic behavior of translations by diagonal subgroups of cer-
tain points in SL(n+1,R)/SL(n+1,Z). Dima was working on some applications
of this correspondence. Once I was walking in the library of the Yale mathematics
department and I noticed the book “Metric Theory of Diophantine Approximation”
by V. Sprindzuk. I asked Dima to look at the book. Rather soon we realized that the
methods from homogeneous dynamics can be applied to study problems described
in Sprindzuk’s book. And this eventually led to the proof of Sprindzuk’s conjectures.

Approximately from 1993 until 2012 I visited the University of Bielefeld in Ger-
many almost every year, usually for two months in June and July. The visits were
first arranged by Herbert Abels and later also by Friedrich Götze. In Bielefeld, be-
sides collaboration with Abels and Götze, I also worked and had mathematical dis-
cussions with many other visitors. In particular, a significant part of the joint work
with A. Eskin and S. Mozes on the quantitative Oppenheim conjecture was done
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there. I should also mention the collaboration during my Bielefeld visits with V.
Beresnevich, V. Bernik, and D. Kleinbock on various aspects of the metric theory
of Diophantine approximation and with G. Soifer on discrete groups of affine trans-
formations.

Fig. 6: With Sinai in 2006. Photo: Private.

After I moved to Yale, my research was mostly focused on applications of homo-
geneous dynamics to number theory and Diophantine approximation. I already men-
tioned the joint paper with Kleinbock on Sprindzuk’s conjectures. It was followed by
several other joint papers, including the following: “Khintchine-type theorems: the
convergence case for standard and multiplicative versions” (jointly with V. Bernik
and D. Kleinbock), “Metric Diophantine approximation: the Khintchin–Groshev
theorem for nondegenerate manifolds” (jointly with V. Beresnevich, V. Bernik, and
D. Kleibock). “Non-planarity and metric Diophantine approximation for systems of
linear forms” (jointly with V. Beresnevich and D. Kleinbock). Another topic was
the distribution of values of indefinite quadratic forms at integral points (it is also
often called the quantitative Oppenheim conjecture or the quantitative version of the
Oppenheim conjecture). The following joint papers are related to this topic: “Limit
distribution of orbits of unipotent flows and values of quadratic forms” (jointly with
S.G. Dani), “Upper bounds and asymptotics in a quantitative version of the Oppen-
heim conjecture” (jointly with A. Eskin and S. Mozes), “Quadratic forms of signa-
ture (2,2) and eigenvalue spacing on rectangular 2-torus” (jointly with A. Eskin and
S. Mozes), “Quantitative version of the Oppenheim conjecture for inhomogeneous
quadratic forms” (jointly with A. Mohammadi), “Distribution of values of quadratic
forms at integral points” (jointly with P. Buterus, F. Götze, and T. Hille). (A more
detailed account of the work mentioned in this paragraph will be given in Appendix
2.)
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Fig. 7: My son Boris (1973–2021) in the summer of 2021. Photo: Private

There are two types of results from homogeneous dynamics which are used in
applications to number theory and Diophantine approximation. The first type is,
roughly speaking, related to the behavior at infinity of certain curves, while the sec-
ond type involves methods from topological dynamics and ergodic theory. Because
of that the results of the first type can be made in a certain sense effective rather
easily, but for the results of the second type it is very difficult. For many years I
was involved in the project to make the results of the second type effective. This led
to effective estimates in corresponding number-theoretic problems. In this project I
collaborated with M. Einsiedler, E. Lindenstrauss, A. Mohammadi, N. Shah and A.
Venkatesh.

I also continued to work on problems related to my earlier work on arithmetic-
ity and superrigidity. First I want to mention the series of three joint papers with
D. Fisher “Local rigidity for cocycles”, “Almost isometric actions, property (T ),
and local rigidity”, and “Local rigidity of affine actions of higher rank groups and
lattices” of combined length more than 150 pages. In another direction, A. Mo-
hammadi and I proved in a 2019 paper that a 3-dimensional compact hyperbolic
manifold containing infinitely many closed 2-dimensional geodesic subspaces is
arithmetic. (More details are given in Appendix 2.)

I collaborated with some of my students while they were still in graduate school.
I already mentioned D. Kleinbock (work on Sprindzuk’s conjectures), A. Moham-
madi (the work on inhomogeneous quadratic forms), and T. Hille, who is one of
the coauthors of the paper by P. Buterus, F. Götze, T. Hille, and G. Margulis. I also
collaborated with A. Karlsson on the paper “A multiplicative ergodic theorem and
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nonpositively curved spaces” and Han Li on the paper “Effective estimates on in-
teger quadratic forms: Masser’s conjecture, generators of orthogonal groups, and
bounds in reduction theory”.

I want to finish the main part of this autobiography with some general remarks.
I was asked quite a few times (e.g., in the Abel interview) where to place my math-
ematics. I received the Wolf Prize mostly for my contributions to algebra. My NSF
grants were in the analysis program, and the Abel Prize focused on probability and
dynamics. I mostly consider myself to be a geometer. I once talked to Jacques Tits,
and he said “I am a geometer and you are a geometer”. There are many types of
geometers. I am a geometer in the sense that my mathematical thinking is mostly
based on (geometric) imagination and intuition.

I was influenced by many mathematicians. I should especially mention (in al-
phabetical order) Kazhdan, Piatetski-Shapiro, Sinai, and Vinberg during my early
career and Furstenberg, Mostow, M.S. Raghunathan, and Tits in later years.

I had a long career in mathematics. My first paper was published in 1966, more
than 55 years ago, and I am still active in mathematical research. I always tried to
work on difficult problems, sometimes unsuccessfully and sometimes successfully.
Success was achieved in some cases by more or less straightforward approaches and
in other cases by discovering new connections between various fields of mathemat-
ics.

Fig. 8: With my granddaughter Maya at the Abel banquet on May 24, 2022. Photo:
Private
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Appendix 1. Arithmeticity and superrigidity

A discrete subgroup Λ of a Lie group F is called a lattice if the volume of F/Λ

with respect to the Haar measure is finite. The lattice Λ is called uniform if F/Λ

is compact and non-uniform otherwise. A lattice ∆ in a connected semisimple Lie
group H is called reducible if there exist connected infinite normal subgroups H1 and
H2 such that H1∩H2 ⊂ Z(H) where Z(H) denotes the center of H, H1 ·H2 = H, and
(H1∩∆) · (H2∩∆ has finite index in ∆ ; otherwise the lattice ∆ is called irreducible.

Let H be a linear algebraic group defined over R. The group H(R) of R-points
of H can be considered as an algebraic subgroup of SL(m,R) for some m. If H is
defined over Q (i.e., H is the set of zeros of polynomials with rational coefficients)
then the subgroup H(Z) consisting of all matrices in H(R) with integer coefficients
is discrete. According to a theorem of A. Borel and Harish-Chandra, if H is semi-
simple then H(Z) is a lattice in H(R). This lattice is uniform if and only if it does
not contain unipotent elements.

Let G be a connected semi-simple linear algebraic group defined over R, and let
G denote the connected component G(R)0 of the identity in the group G(R). Let us
assume that G has no non-trivial R-anisotropic factors or, equivalently, that the con-
nected semi-simple Lie group G has no compact factors. Let Ad denote the adjoint
representation of the group G. A lattice Λ in the group G is called arithmetic if there
exist a connected semi-simple Q-group H and an epimorphism ϕ : H→ AdG de-
fined over R such that the group (Ker ϕ)(R) is compact and the subgroups ϕ(H(Z))
and Ad Λ are commensurable. (Recall that two subgroups are called commensurable
if their intersection has a finite index in each of them.) This definition is originally
due to Piatetski-Shapiro. It is rather complicated. But for irreducible non-uniform
lattices the definition can be simplified. For such lattices we can assume that the
kernel of ϕ is finite (after a suitable choice of H and ϕ). Also, in the case where the
center of G is trivial, we can assume that ϕ is an isomorphism or, equivalently, a
non-uniform irreducible lattice ∆ in G is arithmetic if and only if there exists a Q-
form of G such that the subgroups G(Z) and ∆ are commensurable. The statement
about the existence of a Q-form is also true when G is simply connected in the sense
of algebraic group theory.

The R-rank of G is defined as the dimension of a maximal diagonalizable over R
subgroup of G or, equivalently, as the dimension (in the sense of algebraic geometry)
of a maximal R-split torus in G. The R-rank of G is denoted by rankR G. If the R-
rank of G is greater than 1 then any lattice in G is called a higher rank lattice. The
following theorem is my main arithmeticity result.

Arithmeticity theorem for higher rank lattices. If rankR G > 1 and Γ is an irre-
ducible lattice in G then the lattice Γ is arithmetic.

This theorem proves the conjecture by Selberg and Piatetski-Shapiro. Selberg
stated the conjecture only for non-uniform lattices. For uniform lattices the conjec-
ture is due to Piatetski-Shapiro who, as was mentioned above, gave the definition of
an arithmetic uniform lattice. The proofs in the case of non-uniform lattices and in
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the case of uniform lattices are very different. For non-uniform lattices the proof is
essentially algebraic, and for uniform lattices the proof is mostly non-algebraic.

Arithmeticity of non-uniform lattices

Selberg and Piatetski-Shapiro developed a strategy to prove arithmeticity in the case
where Γ is non-uniform. This strategy is based on the study of unipotent elements
in Γ and subgroups of Γ associated with them. The proof consists of several steps.
Step 1 was done in the above-mentioned joint 1968 paper with Kazhdan, where
we proved the existence of non-trivial unipotent elements in Γ (for some special
cases it had been known before). Step 2 is to prove that if U is a maximal unipotent
subgroup of Γ then the Zariski closure of U in G is a horospherical subgroup of G.
Recall that an algebraic subgroup of G is called horospherical if it coincides with
the unipotent radical Ru(P) of a parabolic subgroup P of G.

In Steps 1 and 2 the condition rankR G > 1 is not used. It is used in the next
steps. The following statement is Step 3. There exist proper opposite parabolic R-
subgroups P1 and P2 of G such that, for both i = 1 and i = 2, we have:

(A) the subgroup Ui ∩ Γ is Zariski dense in Ui or, equivalently, the quotient
Ui(R)/(Ui∩Γ ) is compact, where Ui denotes the unipotent radical of Pi;

(B) the subgroup Ui ∩Γ has an infinite index in Pi ∩Γ or, equivalently, dimMi >
dimUi, where Mi denotes the connected component of the identity of the
Zariski closure of Pi∩Γ ;

(C) Mi contains all unipotent elements from Pi(R);
(D) if γ ∈ Γ is such that the intersection γP3−iγ

−1 ∩Pi is a Levy subgroup in Pi
then (1) γM3−iγ

−1 ∩Mi is a Levy subgroup in Mi and (2) the intersection
γM3−iγ

−1∩Mi∩Γ is a lattice in the subgroup (γM3−iγ
−1∩Mi)(R).

Let us define two classes Φ and Ψ of algebraic R-subgroups of G. The class Φ

consists of subgroups γMiγ
−1 where γ ∈ Γ and i is either 1 or 2, and the class

Ψ consists of subgroups γ1M1γ
−1
1 ∩ γ2M2γ

−1
2 where γ1,γ2 ∈ Γ are such that the

intersection of two parabolic subgroups γ1P1γ
−1
1 and γ2P2γ

−1
2 is a Levy subgroup

in each of them. Assume that the center of G is trivial. It is proved in Step 4 that if
D is a subgroup from one of these two classes then there exists a unique Q-structure
on D such that the subgroups D(R)∩Γ and D(Z) are commensurable. In addition,
if H is a subgroup from the class Φ and F is a subgroup from the class Ψ such that
F is a Levy subgroup in H then F is a Q-subgroup in H and the Q-structure on F is
induced from the Q-structure on H. We also have that this system of Q-structures
is invariant under conjugation by elements γ ∈ Γ . Using the properties (A)–(D), the
properties of the system of Q-structures on the subgroups from the classes Φ and
Ψ , and an algebraic construction from representation theory, I was able to prove the
following theorem.
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Rationality theorem. Assume that the center of G is trivial. Then there exists a
Q-structure on G such that the following conditions are satisfied: (1) Γ ⊂ G(Q);
(2) G is Q-simple of Q-rank ≥ 1; (3) if P is a proper parabolic Q-subgroup of G
then the subgroups P(Z) and P∩Γ are commensurable.

Remark. The construction from representation theory mentioned before the formu-
lation of the rationality theorem was used first by Hee Oh in the 1990s and later by
Yves Benoist and others in the study of the Zariski dense discrete subgroups Λ of G
(not necessarily lattices) such that Λ ∩U is Zariski dense in U for some non-trivial
horospherical subgroup U of G.

An important ingredient in my proof of the rationality theorem is the statement
(ND) below about the non-divergence of orbits of unipotent flows. The importance
of this statement in some approaches to the proof of arithmeticity of non-uniform
lattices was first realized by Piatetski-Shapiro.

Statement (ND). Let {u(t)} be a one-parameter group of unipotent linear trans-
formations of Rn, and let Λ be a unimodular lattice in Rn. Then there exists an
ε > 0 such that the set

{t > 0: ∥u(t)v∥> ε for every non-zero v ∈Λ}

is not bounded or, equivalently, the orbit {u(t)Λ} does not diverge to infinity in the
space Ωn of unimodular lattices in Rn.

The statement (ND) was conjectured (or, more precisely, stated as a theorem
without a proof) in 1966 by Piatetski-Shapiro and slightly later by Garland and
Raghunathan. I announced the proof of (ND) and of the rationality theorem in 1969.
The proof of (ND) was given in a paper published in 1971. Using (ND), I gave a
complete proof of the rationality theorem in a very long paper submitted for publi-
cation in 1971 and published only in 1975. (A shorter proof was given in my other
paper which was published in 1974.) A couple of years later I completed the proof
of arithmeticity of (irreducible higher rank) non-uniform lattices using results about
subgroups generated by unipotent elements in arithmetic groups. I should mention
that M.S. Raghunathan gave a proof of the rationality theorem without using the
statement (ND) in a long paper submitted for publication in 1973 and published in
1975.

The statement (ND) looks quite technical. But it and especially its proof became
quite influential. M.S. Raghunathan wrote me that analysis of my proof of (ND)
was one of the inspirations for stating his conjecture about the closures of orbits of
unipotent flows on homogeneous spaces. More details about various generalizations
of the statement (ND) are given in Appendix 2.
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Arithmeticity of uniform lattices

As I mentioned before, the strategies for proving the non-uniform case and the uni-
form case are very different. For the non-uniform case there are non-trivial unipo-
tent elements in Γ , and there are some ‘building blocks’ which allow us to build
the structure of an arithmetic subgroup on Γ . For uniform lattices there are no such
building blocks. For non-uniform lattices the method of proof is of an algebraic and
geometric nature, but for uniform lattices transcendental methods are used. Let me
quote A. Borel: “the text of an invited address” was “sent by Margulis to the 1974
ICM in Vancouver (which he was not allowed to attend), where he sketched a proof
of arithmeticity in the cocompact case using entirely new ideas. [. . . ] The work of
Margulis was based on a new principle soon christened “superrigidity” by Mostow
(who presented Margulis’s paper orally at the Vancouver Congress).”

Superrigidity theorem. Assume that G and Γ satisfy the same assumptions as in
the formulation of the arithmeticity theorem for higher rank lattices. Let k be a lo-
cally compact field of characteristic zero, and let T : Γ → SL(n,k) be a homomor-
phism. Assume that the Zariski closure H of T (Γ ) is connected, absolutely simple,
and has trivial center.

(i) If k is a finite extension of Qp then T (Γ ) is bounded in the k-topology.
(ii) If k is R or C and T (Γ ) is not bounded in the k-topology then T extends to a

continuous homomorphism of G to SL(n,k).

The statement (i) (resp. (ii)) is called non-Archimedean superrigidity (resp.
Archimedean superrigidity.) We can assume that Γ ⊂ SL(n,K) where K is a finitely
generated extension of Q. Every embedding σ of K into a locally compact field k
induces a homomorphism Tσ : Γ → SL(n,k). Roughly speaking, the arithmeticity
of Γ is proved by applying the superrigidity theorem to such homomorphisms Tσ .

The proof of the superrigidity theorem is based on the study of a certain type of
equivariant measurable maps. First we need some definitions. Let V be an algebraic
R-variety, D a subset of V(R), µ a measure on D, k a locally compact field, and M
an algebraic k-variety. A map f : D→M(k) is called rational if either 1) k is C or
R and f is a restriction to D of a rational map of the Zariski closure of D to M, or 2)
k is a finite extension of Qp and f is a map to a point. A measurable (with respect to
µ) map f ′ : D→M(k) is called µ-rational if it coincides almost everywhere (with
respect to µ) with a rational map.

A k-rational action of an algebraic k-group F on an algebraic k-variety X is called
strongly k-effective if F acts effectively on every orbit Fx,x ∈ X(k), or, in other
words, for every x ∈ X(k) one can find h ∈ F such that hx ̸= x. If F is (absolutely)
simple then this condition is equivalent to the condition that no point in X(k) is fixed
by F.

Let P be a minimal parabolic R-subgroup of G, and let P denote the connected
component P(R)0 of the identity in the group P(R). Then G/P is a real algebraic va-
riety. Fix a G-quasiinvariant measure µ on G/P. Let the k-group H act k-rationally
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on a k-variety X. We say that a µ-measurable map ϕ : G/P → X(k) is (Γ ,T )-
equivariant if

ϕ(γy) = T (γ)ϕ(y)

for all γ ∈ Γ and almost all (with respect to the measure µ) y ∈ G/P.
The superrigidity theorem rather easily follows from the following two state-

ments: (EM) (existence of equivariant measurable maps) and (RM) (rationality of
equivariant measurable maps).

(EM) If T (Γ ) is not bounded in k-topology then there exist a strongly k-effective
k-rational action of the k-group H on an algebraic k-variety M and a (Γ ,T ))-
equivariant µ-measurable map ϕ : G/P→M(k).

(RM) If we are given a k-rational action of the k-group H on a k-variety M then
any (Γ ,T )-equivariant µ-measurable map ϕ : G/P→M(k) is µ-rational.

The assumption that rankR G > 1 is used only to prove (RM) but is not used to prove
(EM). My first proof of (EM) was for the uniform case and it was mostly based on
using Oseledec’s multiplicative ergodic theorem and certain integrability estimates
for cocycles. My argument could be extended to the non-uniform case. Actually,
for that case, I had to use arithmeticity, or at least the rationality theorem to obtain
these estimates. One or two years later Furstenberg gave a different proof of (EM)
— both in the uniform and non-uniform cases — using his boundary theory. The
superrigidity theorem can be generalized, after certain modifications, to the case
where the Zariski closure H of T (Γ ) is not semisimple. It should be noted that in
this case the approach based on the multiplicative ergodic theorem can be applied
to prove (EM) but the approach based on the boundary theory cannot be applied to
do that.

For groups G of R-rank 1, the lattice Γ is not necessarily arithmetic. There are
three infinite series of groups G of R-rank 1 and one exceptional group. They corre-
spond to: (i) real hyperbolic spaces of dimension n; (ii) complex hyperbolic spaces
of complex dimension n; (iii) quaternionic hyperbolic spaces of quaternionic di-
mension n; (iv) the octonian hyperbolic space. In the case (i), around 1965 Makarov
and Vinberg gave examples of non-arithmetic lattices in dimensions 3, 4, and 5.
Their examples are groups generated by reflections. In 1988 Gromov and Piatetski-
Shapiro gave examples of non-arithmetic lattices for all n using the so-called hybrid
construction. In case (ii), there are examples of non-arithmetic lattices in complex
dimensions 2 and 3. In 1980 Mostow gave examples of non-arithmetic lattices for
n = 2 using groups generated by complex reflections. Using monodromies of hy-
pergeometric functions, Deligne and Mostow constructed in 1986 examples of non-
arithmetic lattices for n = 2 and n = 3. In the cases (iii) and (iv), K. Corlette proved
Archimedean superrigidity using harmonic maps. Shortly after that, Gromov and
Schoen proved non-Archimedean superrigidity using a similar approach. Thus in
cases (iii) and (iv) all lattices are arithmetic.
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Let
CommG(Γ ) = {g ∈ G : gΓ g−1 and Γ are commensurable}

denote the commensurator of Γ in G. If F is a connected algebraic Q-group then
the closure of F(Q) in R contains F(R)0. It easily implies that if the lattice Γ is
arithmetic then CommG(Γ ) is dense in G. The converse is also true. I proved this
at the same time as I proved the arithmeticity of Γ for the case rankR G > 1. The
arithmeticity again is deduced from some version of superrigidity, and the proof of
superrigidity follows the same strategy as in the case of rankR G > 1. Using har-
monic maps, A. Karlsson, T. Gelander and I gave in 2006 a relatively short proof of
superrigidity in the case when CommG(Γ ) is dense in G.

At the beginning of 2019, answering a question of A. Reid and C. McMullen, A.
Mohammadi and I proved the following theorem:

Theorem. Let M = H3/Γ be a closed hyperbolic 3-manifold. If M contains in-
finitely many totally geodesic surfaces, then M is arithmetic (that is Γ is arithmetic).

Our proof uses, among other things, the multiplicative ergodic theorem and the
martingale convergence theorem. Shortly after we proved the above theorem, Bader,
Fisher, Miller and Stover proved that if a finite volume hyperbolic manifold Hn/Γ

contains infinitely many maximal totally geodesic subspaces of dimension at least
two, then Γ is arithmetic. Their proof and ours both use superrigidity to prove arith-
meticity, but their proof of superrigidity and ours are quite different.

At the end of this Appendix I want to make the following remark. My work
on superrigidity had a quite big impact on the work of other mathematicians. In
particular I should mention the work of R. Zimmer on cocycle superrigidity and his
program of non-linear superrigidity. But in the early seventies my goal was to prove
arithmeticity in the uniform case, and I considered superrigidity only as a tool.

Appendix 2. Homogeneous dynamics and number
theory/diophantine approximation

This Appendix consists of two parts. The first part is mostly about the Oppenheim
conjecture and its quantitative versions, and the second is mostly about Baker–
Sprindzuk conjectures.

Distribution of values of indefinite quadratic forms at integral
points

We say that a real quadratic form is rational if it is a multiple of a form with rational
coefficients and irrational otherwise. Let Q be a real quadratic form in n variables.
In 1929 A. Oppenheim conjectured that if Q is irrational and n ≥ 3 then for every
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ε > 0 one can find a non-zero vector x ∈ Zn such that |Q(x)| < ε . Oppenheim was
motivated by Meyer’s theorem that if Q is rational and n≥ 5 then Q represents zero
over Z non-trivially. Because of that he originally stated the conjecture only for n≥
5. I proved the Oppenheim conjecture in the mid-eighties. The short version of my
proof was written at the end of 1986 and was published in 1987, and more detailed
versions were published later. But, as I mentioned before, I remember that I gave
some kind of oral presentations already in 1984. Before the Oppenheim conjecture
was proved it was extensively studied mostly using analytic number theory methods.
In particular it was proved in 1946–59 in a series of papers by H. Davenport and his
coauthors for diagonal forms where n ≥ 5 and for general quadratic forms where
n≥ 21.

In the mid-seventies M.S. Raghunathan made a remarkable observation relating
the Oppenheim conjecture and the theory of unipotent flows. He also stated a con-
jecture about the closures of orbits of unipotent subgroups or, more generally, of
subgroups generated by unipotent elements. Let G be a connected Lie group, Γ a
lattice in G, and H a closed connected subgroup of G. Raghunathan conjectured that
if H is generated by unipotent elements then the closure of any orbit Hx, x ∈ G/Γ ,
is an orbit Fx of a closed subgroup F of G. I proved the Oppenheim conjecture by
proving a very special case of the Raghunathan conjecture. This is the statement (∗)
below, which is actually equivalent to the statement of the Oppenheim conjecture.

(∗):Let Ω3 ∼= SL(3,R)/SL(3,Z) denote the space of unimodular lattices in R3, and
H = SO(2,1)0 the connected component of the identity of the orthogonal group
SO(2,1). If x ∈ Ω3 and the orbit Hx is bounded in the space Ω3 then Hx is
closed in Ω3.

The proof of (∗) is based on the technique which involves finding orbits of larger
subgroups inside closed sets invariant under unipotent subgroups by studying the
minimal invariant sets, and the limits of orbits of sequences of points tending to a
minimal invariant set. Further developing this technique, S.G. Dani and I proved in
one of our joint papers that, in the notation of (∗), every orbit Hx is either closed
or dense in Ω3. In another paper we proved the Raghunathan conjecture in the case
when G = SL(3,R) and H = {u(t)} is a one-parameter unipotent subgroup of G
such that u(t)− 1 has the rank 2 for all t ̸= 0. Though this is only a very special
case, the proof given in the just mentioned paper suggests an approach for proving
the Raghunathan conjecture in general.

In the general case Raghunathan’s conjecture and its quantitative analogs were
proved by M. Ratner in a fundamental series of four papers published in 1990–91.
In the first three papers Ratner proves the measure classification theorem, which
says that if U is a closed connected unipotent subgroup of G then any U-ergodic
U-invariant probability measure µ on G/Γ is algebraic in the sense that µ is the
Haar measure on a closed orbit Fx, x ∈ G/Γ , of a closed subgroup F ⊃ U of G.
(The total length of Ratner’s proof is more than 150 pages; a much shorter and rather
different proof was later given by Tomanov and myself.) Using the measure classi-
fication theorem and a quantitative version of the statement (ND) from Appendix 1,
Ratner proved the uniform distribution theorem for unipotent flows, which says that
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if U = {u(t)} is a one-parameter unipotent subgroup of G and x ∈ G/Γ then there
exists an algebraic measure µx on G/Γ such that

lim
T→∞

1
T

∫ T

0
f (u(t)x)dt =

∫
G/Γ

f dµx

for every bounded continuous function f on G/Γ .
A rather simple argument shows how to prove the Raghunathan conjecture using

the uniform distribution theorem.
Let ν be a positive continuous function on the unit sphere in Rn, and let Ω =

{v ∈Rn : ∥v∥< ν(v/∥v∥)}. Let us denote by NQ,Ω (a,b,T ) the cardinality of the set

{x ∈ Zn : x ∈ T Ω and a < Q(x)< b}

and by VQ,Ω (a,b,T ) the volume of the set

{x ∈ Rn : x ∈ T Ω and a < Q(x)< b}.

It is easy to verify that if n≥ 3 then asymptotically, as T → ∞,

VQ,Ω (a,b,T )∼ λQ,Ω (b−a)T n−2,

where
λQ,Ω =

∫
L∩Ω

dA
∥∇Q∥

,

L is the light cone Q = 0 and dA is the area element on L.
Let O(p,q) denote the space of indefinite quadratic forms in n ≥ 3 variables

of signature (p,q) and discriminant ±1. We note that p+ q = n and assume that
p≥ q > 0. Let (a,b) be an interval. Using the uniform distribution theorem, a quan-
titative version of the statement (ND) from Appendix 1, and the so-called lineariza-
tion technique, S.G. Dani and I proved in 1992 a refined version of Ratner’s uniform
distribution theorem and using that obtained the following asymptotically precise
lower bounds for NQ,Ω (a,b,T ) when Q is irrational:

liminf
T→∞

NQ,Ω (a,b,T )
VQ,Ω (a,b,T )

≥ 1.

Moreover, this bound is uniform over compact sets of forms: if K is a compact subset
of O(p,q) which consists of irrational forms, then

liminf
T→∞

inf
Q∈K

NQ,Ω (a,b,T )
VQ,Ω (a,b,T )

≥ 1.

The situation with the asymptotics and upper bounds for NQ,Ω (a,b,T ) is more del-
icate. Rather surprisingly here the answer depends on the signature of Q. In a paper
published in 1998, A. Eskin, S. Mozes and I proved that if p ≥ 3, q ≥ 1 then, as
T → ∞,
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NQ,Ω (a,b,T )∼ λQ,Ω (b−a)T n−2

for any irrational form Q ∈ O(p,q), where n = p+ q and λQ,Ω is the same as in
the asymptotic formula for Vq,Ω (a,b,T ). This asymptotic formula is not true for
an arbitrary irrational form Q of signature (2,1) or (2,2). But in another joint pa-
per by Eskin, Mozes and myself, published in 2005, we showed that in the (2,2)
case the set of exceptions is “extremely small”. It consists of so-called extremely
well approximable by split rational forms (EWAS) forms, and the set of (EWAS)
forms has Hausdorff dimension 0 in the space O(2,2). In a paper published in 2011,
A. Mohammadi and I extended the results of the joint papers by Eskin, Mozes and
myself in the setting of inhomogeneous quadratic forms. It is probably true that
in the (2,1) case the set of exceptions is also “extremely small”. Regarding upper
bounds for an arbitrary irrational quadratic form Q of the signature (2,1) or (2,2),
one has to add the additional logT factor, and this essentially cannot be improved.

My paper on the Oppenheim conjecture and the subsequent joint papers with
S.G. Dani on the topological approach to Raghunathan’s conjecture use the notion
of a minimal set. Because of that the proofs of results obtained in those papers
are not “effective”. The proof of Ratner’s uniform distribution theorem is even “less
effective” because it uses various ergodic theorems. The desired effective statements
should look like the following. Assume that the form Q satisfies certain diophantine
conditions. Then (a) there exists a positive integer m = m(Q) such that for every
ε < 1/2 one can find a non-zero vector x ∈ Zn such that |Q(x)|< ε and ∥x∥< ε−m;
(b) for the domain Ω with the smooth boundary and for some positive α =α(Q,Ω),
the error term

|NQ,Ω (a,b,T )−λQ,Ω (b−a)T n−2|

should be of the order T n−2−α . At the moment it is not clear how to achieve (a) and
(b) using dynamical/ergodic methods. (The best result in the direction of (a) is due
to E. Lindenstrauss and me where, in the estimate for ∥x∥, ε−m is replaced by the
exponent of ε−m.) But for n≥ 5 a completely different approach allows us to achieve
(a) and (b). This approach is based on Götze’s method which F. Götze developed,
partially in collaboration with V. Bentkus, in his earlier work and on arguments
analogous to some arguments used in my joint papers with Eskin and Mozes. The
related paper by P. Buterus, F. Götze, T. Hille, and myself was published in 2022
but a preliminary version was written approximately twenty years before that.

Diophantine approximation on manifolds

We need a lot of notation and terminology in this part of Appendix 2. For x,y ∈ Rn

we let

x ·y =
n

∑
i=1

xiyi, ∥x∥= max
1≤i≤n

|xi|,
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Π(x) =
n

∏
i=1
|xi| and |Π+(x) =

n

∏
i=1
|xi|+,

where |x|+ stands for max(|x|,1). A vector y ∈Rn is called very well approximable,
to be abbreviated as VWA, if the following two equivalent conditions are satisfied:

(i): for some ε > 0 there are infinitely many q ∈ Zn such that

|q ·y+ p| · ∥q∥n ≤ ∥q−nε

for some p ∈ Z;
(ii): for some ε > 0 there are infinitely many q ∈ Z such that

∥qy+p∥ ≤ |q|−ε

for some p ∈ Zn.

In 1932 K. Mahler conjectured that all points in the curve

F = {(x,x2, . . . ,xn) : x ∈ R}

are not VWA. V. Sprindzuk proved Mahler’s conjecture in 1964. He also suggested
the following terminology. A submanifold M ⊂ Rn is called extremal if almost all
points in M are not VWA. The following conjecture was made by Sprindzuk in
1980:

Conjecture A. Let f1, . . . , fn be real analytic functions in x ∈ U,U a domain in
Rd , which together with 1 are linearly independent over R. Then the manifold M =
{f(x) : x ∈U} is extremal.

Sprindzuk’s result can be reformulated as the statement that the curve F is ex-
tremal. However, there exists a stronger version of Conjecture A which Sprindzuk
did not prove even for the curve F . Namely, a vector y ∈ Rn is called very well
multiplicatively approximable, to be abbreviated as VWMA, if the following two
equivalent conditions are satisfied:

(i): for some ε > 0 there are infinitely many q ∈ Zn such that

|q ·y+ p| ·Π+(q)≤Π+(q)−ε

for some p ∈ Z;
(ii): for some ε > 0 there are infinitely many q ∈ Z such that

Π(qy+p) · |q| ≤ |q|−ε

for some p ∈ Zn.

A manifold M is said to be strongly extremal if almost all points all y∈M are not
VWMA. In his book published in 1975, A. Baker raised the question if the curve F
from the Mahler conjecture is strongly extremal. Later in 1980 Sprindzuk stated
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Conjecture B. Any manifold M ⊂Rn satisfying the assumptions of Conjecture A is
strongly extremal.

In a paper published in 1998, D. Kleinbock and I proved Sprindzuk’s conjectures,
even in the more general setting of smooth manifolds. Let f = ( f1, . . . , fn) be an
n-tuple of Ck functions on an open subset V of Rd . We say that the map f : V → Rn

is l-nondegenerate, l ≤ k, at x ∈ V if the space Rn is spanned by partial derivatives
of f at x of order up to l. The n-tuple f is nondegenerate at x if it is l-nondegenerate
at x for some l. We say that f : V → Rn is nondegenerate if it is nondegenerate at
almost every point of V . Note that if the functions f!, . . . , fn are analytic and the set
V is connected, the nondegeneracy of f is equivalent to the linear independence of
1, f1, . . . , fn over R.

Theorem S. Let f : V → Rn be a nondegenerate Ck map of an open subset V of Rd

into Rn. Then f(x) is not VWMA (hence not VWA either) for almost every point x of
V .

Our proof of Theorem S was based on the correspondence, first established by
S.G. Dani, between diophantine properties of vectors y = (y1, . . . ,yn) ∈ Rn and the
behavior of certain orbits in the space of unimodular lattices in Rn+1. More pre-
cisely, let

Uy =


1 y1 y2 . . . yn
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 ∈ SL(n+1,R).

Thus Uy is a unipotent matrix with all rows, except the first one, the same as in the
identity matrix. We also have to introduce some diagonal matrices. Let

gs =


ens 0 . . . 0
0 e−s . . . 0
...

...
. . .

...
0 0 . . . e−s

 ∈ SL(n+1,R); s≥ 0

and

gt =


et 0 . . . 0
0 e−t1 . . . 0
...

...
. . .

...
0 0 . . . e−tn

 ∈ SL(n+1,R); t = (t1, . . . , tn), ti ≥ 0, t =
n

∑
i=1

ti.

As before, let Ωm ∼= SL(m,R)/SL(m,Z) denote the space of unimodular lattices
in Rm. Define a function δ on Ωm by

δ (Λ) = inf
v∈Λ\{0}

∥v∥; Λ ∈Ωm.
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It is not difficult to prove that for any very well multiplicatively approximable vector
y ∈ Rn there exists γ > 0 and infinitely many t ∈ Zn

+ such that

δ (gtUyZn+1)≤ e−γt .

Because of that and in view of Borel–Cantelli, to prove Theorem S it is enough to
show that if f is nondegenerate at x0 ∈V then there exists a neighborhood B of x0 in
V such that, for every γ > 0,

∑
t∈Zn

+

|Et,γ |< ∞,

where |A| denotes the Lebesgue measure of a set A⊂ Rd , and

Et,γ = {x ∈ B : δ (gtUf(x)Zn+1)≤ e−γt}.

But this easily follows from the following:

Proposition. Let f : V → Rn be a Ck map of an open subset V of Rd into Rn, and
let x0 ∈V be such that Rn is spanned by partial derivatives of f at x0 of order up to
k. There exist a ball B⊂V centered at x0 and positive constants D and ρ such that

|{x ∈ B : δ (gtUf(x)Zn+1)≤ ε}| ≤ D
(

ε

ρ

)1/dk

|B|.

The proof of this proposition is based on a modification of the technique used in
proofs of earlier results on the nondivergence of unipotent flows in the space Ωm.
Strengthening the statement (ND) from the Appendix 1, S.G. Dani proved that for
any c> 0 and any Λ ∈Ωm there exists an ε > 0 such that for any unipotent subgroup
{u(t)} of SL(m,R) one has

|{t ∈ [0,T ] : δ (u(t)Λ),ε}| ≤ cT.

In the proposition the orbit {u(t)Λ}, parametrized by t ∈ R, is replaced by the set
gtUf(x)Zn+1, parametrized by x ∈V .

Appendix 3. Fields Medal

In 1978 I was awarded a Fields Medal. For me it was not completely unexpected.
Starting in the early Fall of 1977 I heard rumors that there was a possibility that
I would receive the award. Also already in 1974, after I proved arithmeticity of
higher rank lattices in the uniform case, Piatetski-Shapiro mentioned to me that, in
his opinion, I deserved a Fields Medal.

In early March 1978 I received a letter, dated February 28, 1978, from the Pres-
ident of the International Mathematical Union, Dean Montgomery, which informed
me that I had “been chosen to receive a Fields Medal at the International Congress
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of Mathematicians to be held in Helsinki in August 1978”. He also wrote: “I hope
you will accept the award and that you will be able to be present at Helsinki to re-
ceive it”. According to the rules in the Soviet Union at the time, to accept the award I
needed to get the permission from the Soviet Academy of Sciences. This permission
was granted, and on March 28 I wrote to Montgomery that “I am extremely grateful
. . . for the high honor shown me by the award of a Fields Medal which I accept with
great appreciation”. I also wrote that “I shall write you again as soon as I am in-
formed of my participation in the Helsinki Congress.” On March 30 I wrote a letter
to the head of the section of mathematics of the Academy of Sciences N.N. Bogol-
ubov asking for his advice on what to write Montgomery about my participation in
the Helsinki Congress. Later Bogolubov wrote a letter in support of the inclusion of
me and also of Dobrushin and Sinai in the Soviet delegation to the Congress. (Do-
brushin and Sinai were invited as plenary speakers.) On the other hand, the chair
of the National committee of Soviet mathematicians I.M. Vinogradov wrote a letter
in opposition to the inclusion of Dobrushin, Margulis and Sinai in the Soviet del-
egation. Both letters were sent to the so-called department of external interactions
(“upravlenie vneshnich snoshenij” in Russian) of the Academy. The head of the
delegation was L.S. Pontriagin, and the decision whom to include in the delegation
was made by the National Committee of Soviet Mathematicians. On July 24 a letter
was sent to D. Montgomery from the Presidium of the Soviet Academy of Sciences.
In the letter, one of the members of the Presidium thanked Montgomery and the In-
ternational Mathematical Union for awarding a Fields Medal to G.A. Margulis and
also wrote that, unfortunately, G.A. Margulis would not be able to come to Helsinki
to participate in the International Mathematical Congress. Finally, on July 31 I wrote
to Montgomery: “I confirm the acceptance of a Fields Medal. Unfortunately, I shall
not be apparently able to attend the Helsinki Congress”. (A similar letter I also wrote
to the Chair of the Organizing committee of the Helsinki Congress Olli Lehto.)

As I wrote in the main part of this autobiography, I was not allowed to attend
the ICM in Helsinki mostly due to the opposition of an influential part of the top
Soviet mathematical establishment. The clear evidence of that is presented in the
previous paragraph. Actually, the President of the Soviet Academy of Sciences and
other higher ups in the Academy were quite unhappy about what happened. They
got a scandal that they did not want and did not need.

I could not go to the ICM in Helsinki on my own, because in the Soviet Union
traveling abroad was considered to be a privilege and not a right. Let me describe
my own experience based on attempts to get authorization to visit mathematical in-
stitutions in the West. As an example I take an invitation to IHES. First, the visit
to IHES had to be included in the plan of the international scientific cooperation of
the Academy of Sciences. After that I had to get so-called characteristics (“harak-
teristika” in Russian). This was some kind of description of my character, and its
main purpose was to guarantee my loyalty and to explain that I would not cause any
trouble while abroad. It was usually ended with the words “politically literate and
morally stable”. The “harakteristika” had to be signed at my institute IPPI by the
director of IPPI, the secretary of the party committee of IPPI, and the chair of the
IPPI branch of the professional union, and it had to be approved by the district com-
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mittee of the Communist Party. After that the “harakteristika” together with several
supporting documents was sent to the Academy of Sciences. There my case was
considered by several people and, if the decision was positive, it was sent for final
approval to the apparatus of the Central Committee of the Communist Party. Thus it
was a multi-step process that could be stopped at every step. Until 1987, this process
worked for me only once. This was regarding my visit to Bonn in 1979 mentioned
in the main part of this autobiography. But in 1981 I did not get permission to visit
France because of “the extremely negative opinion of the National Committee of
Soviet Mathematicians on this issue”.

When I received a Fields Medal, it was met with frustration (and even outrage)
by a significant part of the Soviet mathematical establishment (see, for example, the
report on page 205 of the book “Mathematics without borders” by Olli Lehto about
remarks made by L.S. Pontriagin during the meeting of the Executive Committee
of IMU in May 1978). I do not want to discuss the various reasons which caused
this frustration, but just want to mention the following episode. I was told that a
mathematician from the Institute of Mathematics in Novosibirsk said something
like: “What is going on? A candidate of science gets a Fields Medal”.

Appendix 4. Dissertations

There were two scientific degrees in the Soviet Union: candidate of science and doc-
tor of science. This is still true in Russia. The candidate of science degree roughly
corresponds to PhD in USA. But the doctor of science degree is much higher, and I
do not think that there is a suitable equivalent for this degree in the West. Doctors
of science usually held higher positions than candidates of science did. There was
also one important additional difference. To become a graduate student advisor, a
candidate of science had to get special permission in each individual case.

To get a scientific degree, you had to submit a dissertation (together with some
supporting documents) to a scientific council affiliated with a research or educa-
tional institution. In each field, there were such scientific councils, several for doc-
toral degrees and many for candidate degrees. After the submission of the disserta-
tion the scientific council appointed so-called official opponents, two for candidate
degrees and three for doctoral degrees. These official opponents had to write reports
about the dissertation. The scientific council also sent the dissertation for referee-
ing to a so-called leading organization (“veduschee predprijatie” in Russian). A
month before the dissertation defense the scientific council sent approximately fifty
copies of so-called “avtoreferat” to experts in the field, libraries, and other scientific
councils. This “avtoreferat” contained a short description of the dissertation, written
by you, and also some additional information such as the date of the dissertation
defense, the names of the official opponents, the leading organization, etc.

The dissertation defense was a very serious event in the Soviet Union. You had
to give a talk in which you described the main results in the dissertation. The official
opponents read their reports. Then the report from the leading organization was read.
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After that, there was a general discussion open to everyone who came. In the end
there was a secret ballot by the members of the scientific council with the possible
vote yes, abstain, and no. The dissertation was approved if at least 2/3 of all votes
were “yes”. If the vote was positive, the dissertation was sent for final approval to
the High Attestation Committee (“Visshaya Attestatsionaya Kommisiya” or VAK in
Russian) at the Department of Education.

Now let me go to my personal story. I was a graduate student in “mehmat”,
which stands for the faculty of mechanics and mathematics at Moscow State Uni-
versity. I submitted my candidate dissertation “On some aspects of the theory of
Anosov systems” to the scientific council in mathematics at “mehmat”. The official
opponents were D.V. Anosov and V.M. Alexeev, and the leading organization was
Leningrad State University. Anosov wrote a report but he was out of town at the
time of the dissertation defense. Because of that, according to the rules, there was
an additional official opponent. It was V.I. Arnold. The result of the vote was: “no”
0, “abstain” 2, all other “yes”. This vote was more than enough for the approval. I
became a candidate of science in June or July of 1970. The two “abstain” votes were
not personal. In that scientific council at the time, it was quite common for there to
be some non-yes votes for the dissertation (even for the candidate dissertation) of a
Jewish mathematician.

With the doctoral dissertation, it was much more complicated. During the 1970s
and several years after that, there was significant discrimination against Jewish
mathematicians in the scientific council at “mehmat”. I know about two cases (Grig-
oriy Eskin and Boris Vainberg) when, during the dissertation defense, the number of
“yes” votes to approve the doctoral dissertation of a Jewish mathematician was less
than the necessary two thirds of all votes. In general, there was some kind of under-
standing that during that period the doctoral dissertation of a Jewish mathematician
cannot be approved by the scientific council at “mehmat”. But being awarded a
Fields Medal, I thought that there would be no opposition in my case. So I submit-
ted my doctoral dissertation “Discrete subgroups of semisimple algebraic groups”
at the end of 1979, shortly after my return from Bonn. The dissertation consisted of
three chapters: (1) superrigidity; (2) the normal subgroup theorem; (3) arithmeticity.
The process of moving to the dissertation defense procedure started but quite soon
it was stopped. They used various excuses, but the main reason was the opposition
of a significant number of members of the scientific council. For example, I was
told that an influential member of the scientific council said to a group of people:
“they overestimated him and we will underestimate him”. Here “they overestimated
him” meant that they awarded me a Fields Medal and “ we will underestimate him”
meant that we will not approve my doctoral dissertation. After more than two years
I decided to withdraw my dissertation from the scientific council at “mehmat” and
submitted it to the scientific council at the Institute of Mathematics in Minsk, where
V.P. Platonov was the director of the Institute and the chair of the scientific coun-
cil. The dissertation defense there was in March 1983. The official opponents were
S.P. Novikov, A.A. Kirillov, and V.E. Voskresenskii, and the leading organization
was the Leningrad branch of the Institute of Mathematics of the Soviet Academy
of Sciences. All 12 votes were “yes”. The dissertation was finally approved in VAK
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after several months, and I became a doctor of science in October 1983. Thus the
entire process from the initial submission to the final approval took almost four
years.
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Introduction

In the following article we have attempted to give some account of the extraordinary
work of Hillel Furstenberg and its impact on modern mathematics. His influence
goes far beyond his published papers. He shared his ideas freely and many of them
appear in papers written by others. No attempt has been made to be exhaustive,
but we have tried to mention his major works. The first two sections are due to Eli
Glasner who was one of Hillel’s first doctoral students. The third section is due to
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Benjamin Weiss who has been a colleague of Hillel since 1967, and the last section
is due to Vitaly Bergelson who was also a doctoral student of Hillel. As the reader
will see no attempt has been made to give a unified style to the various parts.

1 Topological dynamics

During his time at Princeton as a graduate student Furstenberg was attracted to anal-
ysis and harmonic analysis, with measure theory as a focal point. He was also influ-
enced by a probability course he took with William Feller. His Ph.D. thesis, super-
vised by Salomon Bochner, dealt with stochastic processes and prediction theory.
Also as an instructor at Princeton, a year after his Ph.D. (1958), he collaborated
with Harry Kesten in writing a seminal work on random products of matrices [57].

As a graduate student Furstenberg spent a summer at the University of Chicago
where Littlewood was visiting and there was an emphasis on analysis. Some math-
ematicians there were trying to prove a Fatou theorem for harmonic functions for
so-called Cartan domains which can be realized as bounded open sets in euclidean
space (like the disc), and having a natural topological boundary. The issue was
to show that for a bounded harmonic function, as one approaches the boundary,
the function converges to a boundary value. They were not successful. Eventually
this led Furstenberg to create his pioneering Poisson–Furstenberg boundary theory.
Thanks to this theory we now know that this representation of the domain is decep-
tive when it comes to boundary theory. The euclidean boundary is a factor of the
universal one – unlike the classical situation where the universal boundary G/P is
the circle bounding the euclidean disc. The group-theoretic approach gives the right
boundary, and Fatou’s theorem is valid.

In 1961 Furstenberg joined the strong probability group at the University of Min-
nesota. At the suggestion of one of his colleagues, Monroe Donsker, he contributed
to a volume on applications of probability theory to other fields, a chapter on appli-
cations to group theory. Specifically he showed how boundary theory could be used
for the “rigidity theory” of lattices in a Lie group. While the theorem he proved
was subsumed under the general strong rigidity theorem of Margulis [80], it also
served as a tool in Margulis’ “normal subgroup theorem”. These are just a few ex-
amples from the beginning of his career, but in fact, one can say that harmonic anal-
ysis, probability theory, and probabilistic intuition are behind most of Furstenberg’s
works.

However, from the very beginning of his research (starting perhaps with his very
early famous work [31]) one can see a certain ‘twist’ which intertwines this intuition
with tools from topology and functional analysis.

To see this ‘twist’ more clearly we remark (see Furstenberg’s autobiography)1

that Loomis’ 1953 book ‘Introduction to abstract harmonic analysis’ [78], which
was a new book at that time, had a great influence on him as a graduate student

1 Appearing in this volume.
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(although, perhaps this was not looked upon so favourably by his adviser Salomon
Bochner, who preferred a “hands on” approach in his researches in harmonic anal-
ysis). The following quote from the preface to Loomis’ book is instructive:

This book is an outcome of a course given at Harvard first by G. W. Mackey and later by
the author. The original course was modelled on Weil’s book [48] and covered essentially
the material of that book with modifications. As Gelfand’s theory of Banach algebras and
its applicability to harmonic analysis on groups became better known, the methods and
content of the course inevitably shifted in this direction, and the present volume concerns
itself almost exclusively with this point of view. Thus our development of the subject centers
around Chapters IV and V, in which the elementary theory of Banach algebras is worked
out, and groups are relegated to the supporting role of being the principal application.

Next let’s go to Furstenberg’s Ph.D. thesis [32], which was later published as
a Princeton Annals of Mathematics Studies [33]. In the introduction to his thesis
Furstenberg describes two procedures for defining canonical probability distribu-
tions on future values of a given time series, that of simple predictability and that
of statistical predictability. He then says: “Our major problem will then be to show
that various classes of sequences will be predictable in one sense or the other”. In
the next quote from this introduction we can already discern his future approach to
many problems in probability and ergodic theory, as well as an early form of his,
now famous, correspondence principle.

Our principal tool is the theory of commutative C∗-algebras which provides us with a con-
venient means for summing up the algebraic and topological properties of the sequence
under consideration.

And another quote from the introduction of [33]:

Although our problem is formulated for individual time series it is not independent of the
theory of stochastic processes. In fact, the class of sequences to which our analysis will
be applicable will be such that to each sequence there corresponds a stationary stochastic
process for which the given sequence is a “typical” sample sequence.

...

Our first chapter will therefore be concerned with the question of determining when a se-
quence can be thought of as occurring from observations on a stationary mechanism, or its
abstract counterpart, a stationary process. A sequence of this kind will be said to be “reg-
ular” and it determines a “generic” point of the associated process. To make these notions
precise we shall have to develop systematically the relevant theory of stationary stochastic
processes. We remark that a useful tool in this part of the exposition will be the theory of
commutative C∗-algebras; a stationary process will be described in an “invariant” manner
as a C∗-algebra with certain special properties.

So, with this very original and innovative approach, Furstenberg, who at that time
was not aware of the fundamental monograph of Gottschalk and Hedlund “Topo-
logical dynamics” [68], recreated the topic of abstract topological dynamics and
started an interplay between this new theory and ergodic theory. In fact, the notions
of topological ergodicity, generic points, skew-product transformations, and many
other basic notions of topological dynamics can already be found in Furstenberg’s
thesis.
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We recall that a topological dynamical system is a triple (X ,G,ρ), where X is a
compact space, G a topological group, and ρ : G→Homeo(X) is a continuous group
homomorphism from G into the group of self-homeomorphisms of X equipped with
the compact open topology. We usually omit the homomorphism ρ from our nota-
tion (even when ρ is not one-to-one) and for g ∈ G and x ∈ X , we write gx instead
of ρ(g)(x). The orbit of the point x ∈ X is the set Gx = {gx : g ∈G} and the system
is minimal when Gx = X for every x ∈ X . It is point transitive if there is some dense
orbit, and a point whose orbit is dense is called a transitive point.

A homomorphism between two systems is a continuous map π : X→Y that inter-
twines the actions: gπ(x) = π(gx), for every g ∈ G and x ∈ X . When π is surjective
one then says that (Y,G) is a factor of (X ,G), or that (X ,G) is an extension of (Y,G).
Inverse limits in this category are defined as usual.

When the acting group is G = Z — the group of integers — the system is called
a cascade and we usually denote it as (X ,T ), where T is the transformation ρ(1).

A pair of points (x,x′) is said to be proximal if there is a net gi ∈ G and a point
z ∈ X such that limgix = limgix′ = z. The system (X ,G) is said to be distal when it
has no nontrivial proximal pairs; i.e. when P = ∆ . Here P ⊂ X ×X is the proximal
relation comprising the proximal pairs, and ∆ = {(x,x) : x∈ X} is the diagonal rela-
tion. The system (X ,G) is equicontinuous when the G-action is equicontinuous; i.e.
when for every neighborhood V of ∆ in X×X there is another such neighborhood U
and gU ⊂V for each g ∈G. This is the case iff the closure of π(G) in Homeo(X) is
a compact group. (Also, when the system is metric; i.e. the phase space X is metriz-
able, the system is equicontinuous iff there is a compatible G-invariant metric on
X .) Thus it follows that equicontinuity implies distality.

If x0 ∈ X is a transitive point then the map

jx0 : C(X)→ BRUC(G), ( jx0F)(g) = F(gx0)

from the C∗-algebra C(X) into the algebra BRUC(G) of bounded right uniformly
continuous complex-valued functions on G, is an isometric isomorphism, and the
Gelfand theory can be used to translate statements about point transitive dynamical
systems to the language of actions of G as a group of automorphisms of the corre-
sponding C∗-algebra. This is of course the meaning of the references to commutative
C∗-algebras in the above quotations.

In general a dynamical system may not admit any G-invariant probability mea-
sure. However, when the group G is amenable such a measure always exist. A sys-
tem is called uniquely ergodic if it admits a unique G-invariant probability measure.

The paper [34] titled ‘Strict ergodicity and transformation of the torus’ contin-
ues this research direction and proves many, by now classical, results regarding
the notions of minimality and strict ergodicity in a class of systems called today
“Furstenberg systems”.

As an example of an important result of this paper consider the following (special
case) of [34, Theorem 2.3].
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Theorem 1.1. Let K denote the circle group {ζ ∈ C : |ζ | = 1}, and let X = K×K
be the two-torus. Let T : X → X be given by

T (ω,ζ ) = (ω0ω,g(ω)ζ ),

with ω0 ∈ K not a root of unity and g : K → K a continuous map. Assume further
that g is an essential map and satisfies a Lipschitz condition

|g(ω)−g(ω ′)|< M|ω−ω
′|.

Then the dynamical system (X ,T ) is minimal and uniquely ergodic.

Another outstanding and much cited result of this work is the construction of a
minimal distal transformation on the 2-torus which is not uniquely ergodic.

At about the same time, Robert Ellis, who completed his Ph.D. thesis in 1958,
under the supervision of Walter Gottschalk at the University of Pennsylvania, had
raised the following question.

Question 1.2. Is it true that every minimal distal system is equicontinuous ?

In [22] he had shown that this is the case when X is zero-dimensional. In the
same work he proved the following key results concerning distal systems: (i) Every
distal system (X ,G) is semisimple; i.e. X is the union of its minimal subsystems.
(ii) (X ,G) is distal iff the product system (X×X ,G) is semisimple. In the following
few years his efforts to answer that question led him to develop a beautiful algebraic
theory of dynamical systems whose main tool was the functor that associates to
every dynamical system (X ,G) its enveloping semigroup (also often called the Ellis
semigroup) E(X ,G) (see [22, 23, 27] and [24]). The enveloping semigroup, which
by Ellis’ result is actually a group when (X ,G) is distal, is a crucial tool in the proof
of Furstenberg’s structure theorem (Theorem 1.4 below).

Definition 1.3. Let (X ,G,π) be a dynamical system. Its enveloping semigroup
E(X ,G) is the closure of the collection {π(g) : g ∈ G} in the compact space XX .

The set E = E(X ,T ) is in fact a compact right topological semigroup; i.e. a
semigroup where for each p∈ E right multiplication by p, Rp : E→ E, q 7→ qp (q∈
E), is a continuous map (the multiplication here is of course the composition of
functions). It was shown in [22] (although the term ‘enveloping semigroup’ was
formulated in the later work [23]) that a system (X ,G) is distal iff E(X ,G) is a
group.

Furstenberg learned about these new developments from his colleagues at Min-
nesota and Maryland and in 1963 came out with his astounding paper ‘The structure
of distal flows’ [36]. This pioneering paper created a ‘new topological dynamics’
and, as we shall see, has since had a tremendous impact on the future of both topo-
logical dynamics and ergodic theory.
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The main result of [36] is as follows:

An extension π(X ,G)→ (Y,G) is called an isometric extension if there exists a
continuous function d : Rπ →R such that for every y∈Y the function d restricted to
π−1(y)×π−1(y) is a metric and for every pair (x,x′) ∈ Rπ , and g ∈ G,d(gx,gx′) =
d(x,x′). We say that a (metrizable) minimal system (X ,G) is quasi-isometric if there
is a (countable) ordinal η and a family of systems {(Xθ ,G)}θ≤η such that (i) X0 is
the trivial system, (ii) for every θ < η there exists an isometric homomorphism
φθ : Xθ+1 → Xθ , (iii) for a limit ordinal λ ≤ η the system Xλ is the inverse limit
of the systems {Xθ}θ<λ , (Xλ ,G) = lim

←
(Xθ ,G), and (iv) (Xη ,G) = (X ,G). We call

such a directed set of systems an I-tower.

Theorem 1.4 (Furstenberg’s distal structure theorem). A minimal metric system
is distal iff it is quasi-isometric. Moreover, when (X ,G) is minimal and distal it
always admits a canonical I-tower where each extension is maximal.

The distal rank of a system (X ,G) is the ordinal η associated to the canonical
I-tower. (In [7] Beleznay and Foreman show that, at least for Z-systems, for every
countable ordinal η there in fact exists a minimal distal system (X ,T ) whose distal
rank is exactly η .)

Note that the system (X1,G) is, by definition, equicontinuous and must be non-
trivial when (X ,G) is nontrivial. Thus, as a corollary we see that every nontrivial
metric minimal and distal system admits a nontrivial equicontinuous factor.

In the introduction to his paper Furstenberg presents a simple example (originally
studied by Anzai in his paper [2], which was unknown to Furstenberg at that time)
of a minimal distal system which is not equicontinuous, thus providing a negative
answer to Ellis’ problem:

On X = T2, let T (x,y) = (x+α,y+ x) for an irrational α . The system (X ,T )
is minimal distal but not equicontinuous. The map π(x,y) = x defines a factor map
onto the maximal equicontinuous factor of (X ,T ) which is a circle (hence an iso-
metric) extension. [The distality follows easily by considering first pairs of points
of the form ((x,y),(x,y′)) and then pairs of the form ((x,y),(x′,y′)) with x ̸= x′.
For minimality one shows that if M is a proper minimal subset of X × X then
H = {β ∈T : Rβ M∩M ̸=∅} is the finite subgroup H = {0,1/n,2/n, . . . ,(n−1)/n}
for some positive integer n, where Rβ (x,y) = (x,y + β ). It follows that the set
{(x,ny) : (x,y) ∈M} is a graph of a continuous function f : T→ T; then one uses
the invariance of M to get f (x+α)− f (x) = nx, which is impossible for n ≥ 1.
Finally for non-equicontinuity, one shows that for a suitable sequence ni→ ∞ with
T ni((0,0))→ (0,0), we have T ni((0,0),(1/(2ni),0))→ ((0,0),(0,1/2)).]

In the same year other counterexamples, in the class of minimal nil-systems of
rank > 1, were shown in [3] to be minimal distal flows which are not equicontinuous.
(Among the Furstenberg systems, studied in [34], there are also counterexamples to
Ellis’ problem, but this aspect was not addressed there.)
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When eventually Robert Ellis learned about these counterexamples he said, half
jokingly, that he does not want to believe them, as the search for a positive answer
to his question was at the basis of many of his previous achievements.

Another important corollary of the structure theorem is the following:

Theorem 1.5. Every metric distal G-system (for an arbitrary group G) admits a
G-invariant probability measure. If in addition the system is minimal there is a
canonically defined such measure.

As was shown in [34] this measure need not always be ergodic.

Finally, towards the end of the paper Furstenberg provides an alternative proof
— á la von Neumann, using the existence of the invariant measure and applying a
Hilbert–Schmidt kernel operator — of the fact that, at least for an abelian acting
group G, a minimal distal system possesses a non-constant continuous eigenfunc-
tion. This idea was later used by Keynes and Robertson [75] in their proof of the
following result, motivated by the more famous analogous result in ergodic theory.

Theorem 1.6. A minimal metric system (X ,G) with abelian G is not topologically
weakly mixing iff the system (X ,G) possesses a non-constant continuous eigenfunc-
tion.

In [49] this method was developed further, building a theory of bundles of Hilbert
spaces and Hilbert Schmidt operators, a tool which was then used to give an alter-
native full proof of the structure theorem.

In 1963-4 Furstenberg was again in Princeton, just in time to communicate his
new ideas on topological dynamics to William Veech, another Ph.D. student of
Bochner. Bochner suggested to Veech to study the subject of almost automorphic
functions. After struggling for some time with this subject, using traditional tools
of harmonic analysis, Veech indeed applied the approach suggested by Furstenberg
and was able to achieve in this way a beautiful and complete analysis of this topic
[95] by showing that these functions are exactly those which arise from almost au-
tomorphic cascades, that is, those minimal cascades which are almost one-to-one
extensions of their maximal equicontinuous factor.

In 1970 Veech published his work on the structure of point distal systems [96]
(complemented by Ellis in [25]) which generalized Furstenberg’s theorem. A min-
imal system (X ,G) is called point distal if there is a point x ∈ X such that the only
point y ∈ X proximal to x is x itself (P[x] = {x}). Every almost automorphic system
is point distal.

The ultimate structure theorem for minimal dynamical systems was then devel-
oped by stages in a series of works: [26], [97], [81] and [66].

In his work on Szemerédi’s theorem [44], the main tool used in the ergodic proof
of this theorem is a structure theorem for ergodic measure-preserving dynamical
systems. The latter was, without doubt inspired by the structure theorem for distal
systems. Independently of Furstenberg this structure theorem for ergodic measure-
preserving systems was obtained by Robert Zimmer [100], [101].
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In the topological part of his 1967 work ‘Disjointness in ergodic theory, minimal
sets, and a problem in Diophantine approximation’ [38], Furstenberg extends his
new ideas in topological dynamics beyond the class of minimal systems. This semi-
nal work has a wealth of innovative concepts, surprising new results, as well as new
examples and counterexamples. Joinings, disjointness, recurrence sets which form
‘Furstenberg families’ (see e.g. [1]), and many more new concepts, help the author
to create a broad picture of topological dynamics and a road map for the study of
topologically transitive dynamical systems.

Furstenberg’s famous (still open) question, whether Lebesgue’s measure is the
only continuous probability measure on the unit circle R/Z that is invariant under
multiplication by both 2 and 3, can be found in this work, following a proof, based
on a disjointness argument, that the semigroup generated by the multiplications by
2 and 3 acts almost minimally on the circle, in the sense that every orbit is either
finite or dense.

We end this brief review of Furstenberg’s contribution to topological dynamics
with a short list of some of Furstenberg’s more prominent papers, written on this
subject after the disjointness paper [38].

In [58] the authors construct the first example of a prime minimal cascade. The
work [43] establishes the unique ergodicity of the horocycle flow. In the very influ-
ential work [60] Furstenberg and Weiss prove several new theorems in topological
dynamics and derive from them results in combinatorial number theory. These in-
clude van der Waerden’s theorem, Rado’s theorem on regular systems of equations,
Hindman’s finite sums theorem and more. Again the main tool here is the construc-
tion of the topological dynamical system generated by a bounded sequence.

In [62] the authors show that a broad class of extensions of measure-preserving
systems, in the context of ergodic theory, can be realized by topological models for
which the extension is “almost one-to-one”. In particular they construct a minimal
almost automorphic action of the free group that has no invariant measure, thus
answering an old question of Veech.

2 Stationary dynamical systems and the Poisson–Furstenberg
boundary

In this most fruitful year 1963, Furstenberg published another path-breaking paper:
‘A Poisson formula for semi-simple Lie groups’, [35]. In his autobiography Fursten-
berg describes the “circuitous route” that led him to this work.

At Minnesota I also returned to the study of noncommuting random products; this time fo-
cusing on the qualitative rather than the quantitative behavior. The motivation actually came
from the dynamical questions I had been studying. The foregoing distal transformation is an
example of a “skew product transformation”: T (x,y) = (S(x),R(x)(y)), where S is a fixed
transformation, and R(x) is a transformation on the y-coordinate depending on x. When we
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iterate this transformation we are led to product transformations of the form

R(Sn−1x) · · ·R(S2x)R(Sx)R(x).

Assuming the transformations R(x) come from a given group of transformations, we can
hope to analyse this product in terms of properties of the group. The complexity of the
expression leads one to consider the case where the successive R(Snx) are independent
random variables. By this somewhat circuitous route, we came to study random walks on
groups, and the associated “Poisson boundaries”.

In order to describe the main results of this seminal work we need to introduce
some background and basic definitions as follows.

The notion of a distal action was considered by Hilbert (see [102]) in an attempt
to give a topological characterization of the concept of a rigid group of motions.
(The names ‘distal’ and ‘proximal’ were introduced by Gottschalk in his 1956 pa-
per [67] and are also mentioned in [68].) At the other, chaotic side of the landscape
of dynamical systems we find notions like weak mixing and proximality. Weak mix-
ing is prevalent in actions of non-compact groups, but a minimal proximal cascade
(Z system) must be a point. More generally, the class of strongly amenable groups
comprises those groups for which every minimal proximal system is necessarily
trivial (see [64]; this class includes all the nilpotent groups and, for countable dis-
crete groups, was recently characterized as the class of groups with only trivial ICC
quotients, [30]). A topological group G is amenable iff every G-dynamical sys-
tem admits at least one G-invariant probability measure, iff every minimal strongly
proximal G-system is necessarily trivial. See [35] and [63], where the term ‘strong
proximality’ was coined and systematically studied.

Definition 2.1. A dynamical system (X ,G) is said to be a boundary if it is minimal
and strongly proximal, i.e. for every probability measure ν on X, there is a net
gi ∈ G, such that limgiν is a point mass.

It is not hard to see that every topological group G has a uniquely defined uni-
versal boundary B(G); i.e. the system (B(G),G) is a boundary and if (X ,G) is a
boundary then there is a unique factor map π : (B(G),G)→ (X ,G).

A dynamical system (Q,G) is called affine when the compact set Q is a closed
and convex subset of a locally convex linear topological space and G acts on Q by
affine homeomorphisms. With every system (X ,G) there always is associated the
affine system on the space P(X) of probability measures on X . We say that the affine
system (Q,G) is irreducible if it contains no proper closed, convex and invariant
subset. Furstenberg shows that an affine system (Q,G) is irreducible iff X = extQ,
the closure of the set of extreme points, is a boundary. It then follows that the affine
system P(M(G)) is the universal irreducible affine flow (see e.g. [64]).

Invariant measures, when they exist, are very useful tools when one studies dy-
namical properties of a dynamical system. However, it turns out that there are similar
objects, called G-stationary measures, that are always available in every dynamical
system, and which can for many purposes replace the invariant measures.
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Let G be an arbitrary topological group and let (X ,G) be a dynamical system.
Let µ be a fixed probability measure on G. A measure ν on X such that

µ ∗ν =
∫

g∗ν dµ(g) = ν

is called a µ-stationary measure. Here g∗ν is the push-forward of the measure ν

under the homeomorphism of X that is given by g ∈ G. The convolutional powers
of µ are defined by

µ
n = µ ∗µ ∗ · · · ∗µ (n times).

To justify the assertion that every system admits a µ-stationary measure, given an
arbitrary (metric) G-system (X ,G) and a point x ∈ X , we form the sequence

νn =
1
N

N

∑
n=1

µ
n ∗δx

and then observe that any limit point ν of this sequence is µ-stationary.

Let now G be a connected semisimple Lie group with finite center. Let G =
KAN be an Iwasawa decomposition of G; so that K is a maximal compact subgroup
of G, A closed and abelian, N closed and nilpotent, and the map K × A×N →
G, (k,a,n) 7→ kan is a surjective analytic diffeomorphism. Let P be the normalizer
of N in G, and let M be the centralizer of A in K. It then follows that P=MAN so that
G/P∼=K/M. The group P and its conjugates are the minimal parabolic subgroups of
G. Let B = G/P. The action of G on the homogeneous space B is strongly proximal,
so that (B,G) is a boundary. As we shall see (Theorem 2.2 below) B = G/P is in fact
the universal boundary for G. Moreover, all the G-boundaries arise as G/Q where
Q ranges over the parabolic subgroups of G.

For the group G = SL(n,R) it is easy to check that B = G/P is isomorphic to the
flag manifold:

Fn = {(V1,V2, . . . ,Vn−1) :V1⊂V2⊂ ·· ·⊂Vn−1 are subspaces of Rn and dimVi = i}.

Let D = G/K be the symmetric space of G. The compact group K acts transi-
tively on B and so there is a unique probability measure m on B invariant under K.
Furstenberg shows that the only elements of G preserving m are those of K, so that
the correspondence gK 7→ gm defines a one-one map from D onto Gm. This rep-
resentation yields a compactification of D by imbedding Gm in the compact space
of probability measures on B. Let us denote by D the closure of D regarded as a
set of measures. The significance of B being a boundary, in the usual sense of the
word, lies in the fact that the closure of D includes the point measures of B. Thus B
itself may be imbedded into D as a portion of the boundary. When this is done, the
Poisson formula obtained for harmonic functions on D in terms of functions on B
may be interpreted as the solution to a boundary value problem, the space B being
seen as part of the boundary of D.
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Let G be any locally compact, second countable, unimodular topological group
with Haar measure λ (e.g. a non-commutative free group, or a non-compact semi-
simple Lie group), and suppose that µ is an absolutely continuous probability mea-
sure on G. A bounded measurable function f ∈ L∞(G,λ ) is said to be µ-harmonic
when it satisfies the functional equation

( f ∗µ)(g) = f (g) =
∫

f (gg′) dµ(g′).

For G a semisimple group with finite center, we say that a bounded, real-valued,
measurable function f on G is harmonic when it is µ-harmonic for some absolutely
continuous, K-invariant probability measure µ on G. It turns out that this definition
does not depend on the particular choice of µ . A function f (p) on D is harmonic if
the function f̃ (g) = f (gK) is a harmonic function on G.

We can now state two of the main results obtained in [35] (see also [82] and
[83]).

Theorem 2.2. The universal boundary (B(G),G) is isomorphic to the homogenous
system (B,G) = (G/P,G). Moreover, for a closed subgroup H of G, the homoge-
neous space G/H is a boundary iff H contains a conjugate of P.

Theorem 2.3. Let m denote the unique K invariant probability measure on the max-
imal boundary B(G) of G. If f (g) is a bounded harmonic function on G, then there
exists a bounded function f̂ on B(G) with

f (g) =
∫

B(G)
f̂ (gω) dm(ω) =

∫
B(G)

f̂ (ω)
dgm(ω)

dm(ω)
dm(ω). (1)

Furthermore, if f̂ (ω) is any bounded measurable function on B(G), (1) defines a
harmonic function on G.

The classical Poisson integral formula for a harmonic function h on the unit disc
D, with boundary the unit circle T,

h(reiθ ) =
1

2π

∫ 2π

0
ĥ(eiφ )

1− r2

1−2r cos(θ −φ)+ r2 dφ ,

is of course the special case where G= SL(2,R), D∼=D is the unit disk, and m= dφ

is Lebesgue measure on the circle T∼= B(G).

In the last chapter (Chapter V) of [35], Furstenberg shows how to construct a
‘Poisson boundary’ Πµ for an arbitrary absolutely continuous probability measure
µ on a semisimple Lie group G. The way Πµ is defined is by considering the Ba-
nach space H of bounded left uniformly continuous µ-harmonic functions on G and
defining, by means of the µ random walk on G, a natural multiplication on H which
makes it a commutative C∗-algebra. Then, the space Πµ is defined as the Gelfand
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space of this C∗-algebra. This construction is very general and may be applied for
any locally compact group.

In several subsequent works, like [40, 41, 42], Furstenberg develops this general
theory of Poisson spaces and obtains a variety of applications to random walks,
harmonic functions on general groups and much more. Another characterization,
more probabilistic and very useful, of these Poisson boundaries was introduced by
Kaimanovich and Vershik in [77].

Again, the paper [35] was very influential. Many important works followed,
and were based on ideas and techniques that were developed in it. Notably, let us
mention the works of Rosenblatt [88], Kaimanovich–Vershik [77], Nevo–Zimmer
[84, 85], Bader–Shalom [4] and Eskin–Mirzakhani [28]. Recently, new surpris-
ing connections were found between Furstenberg boundaries and the theory of
C∗-algebras. For example, in [74] the authors show that a discrete group G is C∗-
simple if and only if the G-action on the Furstenberg boundary is topologically free.

Furstenberg returned to the theory of stationary dynamics in his paper [46]
titled ‘Stiffness of group actions’. In it he introduced the notion of stiffness. If ν

is a probability measure on a group G then an action of G on a space X is ν-stiff
if every ν-stationary measure on X is invariant. Furstenberg showed that for care-
fully chosen ν on SL(d,Z), namely probability measures ν so that the correspond-
ing stationary measure on the boundary of SL(d,Z) is absolutely continuous with
respect to Lebesgue, the action of SL(d,Z) on Td is ν-stiff. He conjectured that
this should be true for any measure whose support generates SL(d,Z). This intu-
ition was more than confirmed about ten years later in [19, 20], and further greatly
generalized in [18]. In [50] Furstenberg and Glasner embark on a general study of
stationary dynamical systems. They develop a general theory of factors, extensions
and conditional measures. They then prove a structure theorem and use it to estab-
lish a theorem of Szemerédi type for the group SL(2,R). In a further paper [51]
they use the structure theorem to prove a version of multiple recurrence for sets
of positive measure in a general stationary dynamical system. In [52] the authors
study affinely prime dynamical systems and show that, when the group in question
is G = PSL(2,R), there is a unique – up to equivalence – irreducible affine repre-
sentation for G which is realized in the regular representation of G on L∞(G), where
in fact the irreducible closed convex subspaces are in one-one correspondence with
bounded harmonic functions on the upper half-plane.

3 Probability, ergodic theory and fractal geometry

I shall begin with a brief description of Hillel’s first major work, which was an
expanded version of his thesis, published in 1960 in the Princeton Annals of Math-
ematical Studies under the title “Stationary processes and prediction theory”.
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In classical prediction theory we are given a stationary stochastic process {Xn}
on a probability space (Ω ,B,P), and the best prediction of X0 given the past
{Xn |n < 0} is taken to be the conditional expectation of X0 with respect to this
“past” σ -algebra. By its very nature this is a function which is defined only up to a
set of probability zero. This means that for a specific sequence of past observations
there is no well-defined prediction. Hillel’s goal was to develop a theory of predic-
tion for individual time series. Of course this can only make sense if the individual
time series has some statistical regularity. Now the pointwise ergodic theorem of
Birkhoff implies that for a stationary process almost every sample sequence pos-
sesses just this kind of regularity. However in order for the process to be “contin-
uously predictable” or more generally “statistically predictable” further restrictions
are necessary, and the class of processes for which his theory is developed is re-
stricted, although it does contain m-state Markov processes and finite functions of
them.

The focus on individual sample paths led to a host of new ideas which Hillel
elaborated on in his later work. Because of his interest in individual points uniquely
ergodic systems come to the fore. A topological dynamical system (X ,T ) consists
of a homeomorphism T of a compact space X . It is a classical theorem that there
always exists at least one T -invariant probability measure. This follows easily from
the weak* compactness of the space of probability measures by taking some limit
point of a set {νn}∞

n=1

νn =
1
n

n

∑
i=1

T i
ν ,

where ν is any probability measure on X .
If there is a unique invariant measure µ then it must be ergodic and furthermore

for all continuous functions f and all points x ∈ X we have

1
n

n

∑
i=1

f (T nx)→
∫

f (x)dµ(x).

In fact the convergence is even uniform. This means that the pointwise ergodic the-
orem is valid everywhere for all continuous functions. The basic example of such
uniquely ergodic systems are irrational rotations of the circle. Hillel gave in his
thesis a criterion, which can be verified in many cases, for when a compact group
extension of a uniquely ergodic system is uniquely ergodic. A further paper [34]
studied these skew products on tori in great detail and included examples of mini-
mal systems that are distal but not uniquely ergodic.

A very basic contribution of Hillel to modern probability theory was [57] (joint
with Harry Kesten) which analyzed the limiting behavior of the products of a se-
quence of independent, identically distributed random matrices. A law of large num-
bers was established in this non-commutative setting. This paper laid the founda-
tions for the modern study of products of random matrices which has turned out to
have many applications in mathematics, physics and computer science. One of the
main results here was the following:
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If the expectation of log+∥Xi∥ is finite, then

lim
n→∞
∥X1X2 · · ·Xn∥1/n

exists with probability one. If the variables {Xi} are independent with common dis-
tribution µ , the limit is a constant depending only on µ , say β (µ). In a later joint
paper with Yuri Kifer [59] he returned to this theme and expressed β (µ) in terms of
µ and some auxiliary measures on the (m− 1)-dimensional projective space. With
these auxiliary measures they were also able to study the asymptotic behavior of the
vector norms ∥X1X2 · · ·Xnv∥ for v ∈ Rm.

Fifty years ago probability theory was on the sidelines in what was considered
to be the central mathematical theories. Hillel was one of the pioneers in apply-
ing probabilistic methods to classical topics in group theory. In 1971 he published
“Random walks and discrete subgroups of Lie groups” [40], in which he gave a
new application of probability theory to group theory. A discrete subgroup Γ of a
non-compact connected Lie group G is called a lattice if the quotient space G/Γ

has finite measure. This means that, there is a subset D⊂G with finite left-invariant
Haar measure and the translates Dγ , γ ∈ Γ , cover G. Hillel’s main result was that
a lattice subgroup of SL(d,R) with d ≥ 3 cannot be isomorphic to a subgroup of
SL(2,R) (discrete or not). His proof goes via the study of the maximal boundaries
and the Poisson boundaries. He constructs a random walk on a lattice subgroup
Γ of SL(d,R) whose Poisson boundary coincides with the maximal boundary of
SL(d,R). This work is related to the well-known Mostow rigidity and the methods
of Hillel influenced the work of G. Margulis especially in his proof of the Normal
Subgroup Theorem.

Turning to ergodic theory, one of Hillel’s major contributions was his great paper
titled “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine
approximation” [38]. We can do no better in describing the impact of this work than
by quoting from the review by Bill Parry (who was at that time one of the leading
figures in ergodic theory and topological dynamics):

The approach to ergodic theory in this remarkable paper is complementary to the one de-
veloped, mainly by the Russian school, associated with numerical and group invariants.
In fact, the relationship investigated here between two measure-preserving transformations
(processes) and between two continuous maps (flows) is disjointness, an extreme form of
non-isomorphism. The concept seems rich enough to warrant quite a few papers, and these
papers will no doubt be largely stimulated by the present one. An interesting aspect of the
paper, apart from the new results it contains, is the entirely novel demonstration of a number
of established theorems.

Needless to say his prediction has been more than fulfilled. In this paper Hillel
inaugurated the study of joinings of measure-preserving systems. A joining of two
systems (X ,B,µ,T ),(Y,C,ν ,S) is a measure λ on the product space X ×Y which
projects onto µ and ν and is invariant under T ×S. At least one such joining always
exists, namely the product measure µ×ν . If this is the only joining then we say that
the systems are disjoint. Hillel used this concept to prove results in filtering noisy
signals, and unify the structural theory of various classes of measure-preserving sys-
tems. Here are some examples of his results. The class of weakly mixing systems
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W and ergodic pure point spectrum systems, called Kronecker systems, C are mu-
tually disjoint. The same mutual disjointness holds for the classes of Kolmogorov
automorphisms K and zero entropy systems Z. This notion of joinings was widely
used, for example Dan Rudolph gave an ingenious new joining proof in [90] of
Bourgain’s return time theorem. This was a surprising theorem which showed that
the return times of a typical point to a set of positive measure was a good sequence
for the Birkhoff theorem to be valid for all measure-preserving systems. Eli Glasner
developed much of ergodic theory using this concept in his influential book [65].

In another part of this paper he also introduces disjointness in topological dy-
namics, with a similar definition. He used this in a remarkable application of these
new ideas to Diophantine approximation which I will now describe. Among the
equidistribution theorems that H. Weyl proved in his famous 1916 paper [98] is the
result that for any increasing sequence of integers an the fractional parts of anx are
equidistributed for a.e. real number x. For an = n the only exceptions are rational
numbers. However if an is a lacunary sequence, i.e. the ratios an+1/an are bounded
away from one, then there are uncountably many exceptions. While the semigroup
pn is lacunary, the semi-group generated by co-prime integers p,q, i.e. {pnqm} is
easily seen to be non-lacunary. Hillel showed that for any non-lacunary semi-group
Σ of integers and every irrational θ the fractional parts of {σθ : σ ∈ Σ} are dense
in [0,1]. Another way to formulate this is that the only closed invariant sets for
the action of Σ on the unit circle S = {z ∈ C : |z| = 1} by z→ zσ are finite sets
of roots of unity and S itself. In contrast, for the action on S which is generated
by a single integer p, representing a lacunary semigroup, there is a host of distinct
invariant closed sets. These invariant sets can have arbitrary Hausdorff dimension
between zero and one. This was the first “rigidity result” that exhibited the dramatic
difference between the action of a single transformation and an action by several
commuting transformations.

In the setting of ergodic theory Hillel suggested that an analogous result should
be true. Namely that the only purely non-atomic measure on S invariant under such a
semigroup Σ is Lebesgue measure. This stubborn problem remains open until today.
The best partial results were obtained more than 30 years ago in works by R. Lyons
[79], D. Rudolph [89] and A. Johnson [73]. Without entering into the detailed story,
the final result they achieved was that if the semigroup leaves a measure µ invariant,
and µ has positive entropy under the action of some element of the semigroup then
µ equals Lebesgue measure.

In most of the more recent works on rigidity of higher rank actions of algebraic
origin there is a similar important role played by the entropy. It is these results
in homogeneous dynamics that have had many applications to number theory and
Diophantine approximation not to mention quantum unique ergodicity.

Hillel realized that the Diophantine result suggests some sort of transversality
between the actions of multiplication by p and multiplication by q. He explored this
in a lecture in 1969 at a symposium honoring his mentor S. Bochner [39] where
he again developed some new ideas and formulated several conjectures which have
stimulated many further developments. The study of the Hausdorff dimension of
sets of the type that Hillel was considering in this paper was quite a narrow field
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50 years ago. The work of B. Mandelbrot on fractals popularized the field and was
one of the stimuli to many attempts to settle these conjectures. Quite recently one
of these conjectures was established independently by P. Shmerkin [92] and M. Wu
[99] and I shall describe this in some detail as a nice illustration of the depth of
Hillel’s insights.

Let dim denote the Hausdorff dimension function for subsets of (X ,d), a compact
metric space. Two closed subsets A,B of X are defined by Hillel to be transverse if

dim(A∩B) = max{0,dimA+dimB−dimX}.

Two continuous mappings T,S from X to X are said to be transverse if for all
closed sets A and B that are T and S invariant, respectively the sets A,B are trans-
verse.

The conjecture in question is:

Conjecture: (1970) Two positive integers a,b are said to be multiplicatively
independent, if the ratio of their logarithms is irrational. For an integer m denote
by Tm the map of the unit interval to itself defined by Tm(x) = mx (mod 1). The
mappings Ta,Tb are transverse for all pairs of multiplicatively independent integers
a,b.

The two proofs of this conjecture by Shmerkin and Wu are quite different. Wu’s
proof makes use of one of the novel tools developed by Hillel in [39] to obtain some
partial results towards his conjecture. Hillel introduced there spaces of measures on
trees and Markov processes on these spaces. These ideas were later elaborated and
given a geometric form as “CP-processes”. Rather than giving a detailed definition
of these processes I will quote Hillel’s abstract to his 2008 paper titled “Ergodic
fractal measures and dimension conservation” [47]:

A linear map from one Euclidean space to another may map a compact set bijectively to
a set of smaller Hausdorff dimension. For ‘homogeneous’ fractals (to be defined), there is
a phenomenon of ‘dimension conservation’. In proving this we shall introduce dynamical
systems whose states represent compactly supported measures in which progression in time
corresponds to progressively increasing magnification. Application of the ergodic theorem
will show that, generically, dimension conservation is valid. This ‘almost everywhere’ result
implies a non-probabilistic statement for homogeneous fractals.

Hillel gave a wonderful series of lectures at Kent State University on his ideas
in fractal geometry which appeared in [48]. In it he develops a theory of mini-sets
and micro-sets of a closed subset A of Rd . A mini-set of A is just the intersection
of A with a small square that is re-scaled to be of unit size, while the micro-sets of
A are the limits in the Hausdorff metric of mini-sets of A. There is a new notion
of dimension called the star-dimension and ergodic theory is used to show that the
star-dimension of a set A is the maximal Hausdorff dimension of a micro-set of A.
There are further results connected to preservation of dimension for homogeneous
fractals and connections with ergodic theory.



The work of Hillel Furstenberg and its impact on modern mathematics 415

Another fundamental result of Hillel in ergodic theory was developed in his
ergodic-theoretic proof of Szemerédi’s theorem on arithmetic progressions [44].
At the end of 1975 Konrad Jacobs gave a colloquium talk in Jerusalem on this
newly proved theorem. Following this talk Hillel realized that his theorem asserting
that weak mixing implies multiple weak mixing proves an ergodic theoretic version
of Szemerédi’s theorem for weakly mixing systems, while for the disjoint class of
Kronecker systems the theorem is quite easy. In order to combine these two cases
he developed a basic structure theorem for all ergodic systems. The first part is
a measure-theoretic analogue of distality. A measure distal system is one which
can be represented as a tower of isometric extensions beginning with a Kronecker
system. This is modelled on his structure theorem for distal transformations in the
setting of topological dynamics. Next he formulated a relativized version of weakly
mixing. A measure-preserving system (X ,B,µ,T ) is an extension of a measure-
preserving system (Y,C,ν ,S) if there is a measurable mapping π : X → Y mapping
µ to ν and satisfying πT = Sπ . The extension is relatively weakly mixing if the
relative product of X with itself over Y is ergodic. The exact definition of relative
product is somewhat technical and I will omit it. Hillel’s2 structure theorem can then
be formulated as follows.

Theorem 3.1. An arbitrary ergodic system is a relatively weakly mixing extension
of a measure distal system.

In 1978 Hillel delivered the first of the Porter Lectures at Rice University. Based
on these lectures he wrote a monograph “Recurrence in Ergodic Theory and Com-
binatorial Number Theory” [45], which is a masterpiece of exposition and remains,
until today, the best introduction to the field. The published work of Hillel resembles
the tip of an iceberg in the following sense. Generations of students and colleagues
have benefited from his ideas spanning a range of mathematics going far beyond
what I have touched on in the above. I will illustrate this with an example coming
from the study of topological Markov chains. Bill Parry published the first result
on finite equivalence of topological Markov chains having the same entropy [86].
As he says at the end of his introduction: “Furstenberg’s Lemma 2 is crucial to the
proof of our main theorem.” This lemma is simple enough to state:

Lemma. If A and A′ are irreducible non-negative integral matrices with the same
maximum eigenvalue λ then UA = A′U for some strictly positive integral matrix U.

I should repeat that this is but one example drawn from a multitude of others.
Finally I will end on a personal note of thanks to Hillel for all that I have learned
from him over the years, beginning with his course on probability theory (1963–64)
which I attended as a graduate student in Princeton. It was in this course that Hillel
first introduced his notion of disjointness, under the name absolute independence,
and used it to obtain a new result in the theory of filtering of noisy signals.

2 A similar result was obtained independently at the same time by R. Zimmer [101].
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4 Multiple recurrence and applications to combinatorics and
number theory

The classical van der Waerden’s theorem [94] states that for any finite partition of the
integers, N=

⋃r
i=1 Ci, one of the sets Ci contains arithmetic progression of arbitrary

length. Given a set E ⊂ N, define its upper density d̄(A) by

d̄(E) = limsup
n→∞

|E ∩{1,2, . . . ,N}|
N

.

Having positive upper density is a natural notion of largeness and it is natural to ask
(as P. Erdős and P. Turán did in [29]) whether this notion of largeness is responsible
for the validity of van der Waerden’s theorem. In 1975 Szemerédi [91] showed that
this is indeed so: any set E ⊂ N with d̄(E) > 0 contains arbitrarily long arithmetic
progressions.

In his groundbreaking paper [44], Furstenberg introduced a startling ergodic ap-
proach to Szemerédi’s theorem. Here is the formulation of Furstenberg’s “ergodic
Szemerédi theorem” (EST), a far-reaching extension of the classical Poincaré recur-
rence theorem (which corresponds to the case k = 1).

Theorem 4.1 ([44, Theorem 1.4]). Let (X ,B,µ,T ) be a measure-preserving system
and B ∈B with µ(B)> 0. For any k ≥ 1 there exists an n ̸= 0 such that

µ(B∩T−nB∩·· ·∩T−knB)> 0.

It is not hard to see that Szemerédi’s theorem can be formulated in the following
equivalent (but ostensibly stronger) form.

Theorem 4.2. If E ⊂ N and d̄(E) > 0, then for every n ≥ 1 there is an n ̸= 0 such
that

d̄(E ∩ (E−n)∩·· ·∩ (E− kn))> 0. (2)

While d̄ is certainly not a measure on the power set P(N), it has the transla-
tion invariance property: for any n ∈ Z, d̄(E−n) = d̄(E). It is tempting to interpret
formula (2) as a multiple recurrence theorem for the make-believe “combinatorial
measure-preserving system” (N,P(N), d̄,x 7→ x+1). Furstenberg’s correspondence
principle, with the help of which he derived Szemerédi’s theorem from EST (Theo-
rem 4.1 above), gives a justification for this kind of intuition.

Theorem 4.3 (Furstenberg’s correspondence principle). Let E ⊂ Z be such that
for some sequence of intervals (IN) with increasing length,

d̄(IN)(E) := limsup
N→∞

|E ∩ IN |
|IN |

> 0.
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Then there is an invertible measure-preserving system (X ,B,µ,T ) and a set A ∈B

with µ(A) = d̄(IN), such that for every k ∈ N and any n1,n2, . . . ,nk ∈ Z one has

d̄(IN)(E ∩ (E−n)∩·· ·∩ (E−nk))≥ µ(A∩T−n1 A∩·· ·∩T−nk A).

Furstenberg’s correspondence principle has a variety of useful variants. For ex-
ample, if one replaces d̄(IN) by

d∗(E) := limsup
N−M→∞

|E ∩{M, . . . ,N−1}|
N−M

,

the measure-preserving system (X ,B,µ,T ) which appears in Theorem 4.3 can be
guaranteed to be ergodic, a fact which leads to interesting applications (see for ex-
ample, [10], [6], and [9]).

Furstenberg’s correspondence principle was not born with his ergodic-theoretic
proof of Szemerédi’s theorem. Indeed, a form of it appears already in his thesis [32],
where it was used as a tool to reconstruct a stationary process from its past. More
concretely, the seminal idea utilised in [32] was to replace the approximate system
(Z,P(Z), d̄,x 7→ x+ 1) by a genuine measure-preserving system, namely the orbit
closure of the sequence (1E(n))n∈Z in {0,1}Z, where 1E corresponds to the given
time series.

The versatility of Furstenberg’s correspondence principle and its algebraic nature
can be best perceived via Gelfand’s representation theorem. We recall that the role
of commutative C∗-algebras as a useful tool was stressed in [32]; the possibility of
utilizing Gelfand’s representation theorem was explicitly mentioned in [44].

By Gelfand’s theorem any commutative, unital, countably generated C∗-algebra
A is topologically and algebraically isomorphic to the algebra of continuous complex-
valued functions C(X), where X is a compact metric space. In our situation such
a C∗-algebra is a subalgebra of ℓ∞(Z) which is naturally generated by the family
(1E−n)n∈Z, where E satisfies d(IN)(E) := limN→∞

|E∩IN |
|IN | for some sequence of in-

tervals (IN) with |IN | → ∞. Let us denote this C∗-algebra by AE . Let BE be the
boolean algebra generated by the family (E − n)n∈Z. Refining, if needed, the se-
quence of intervals (IN), we get a subsequence (INi) with the property that for any

F ∈BE , d(INi )
(F) is well defined (meaning that limi→∞

|E∩INi |
|INi |

exists).

The shift-invariant density d(INi )
(·), defined on BE , induces a shift-invariant mean

on AE , i.e. a positive functional L : AE→C, such that L(1) = 1 and for any F ∈BE ,
L(1F) = d(INi )

(F). Now, by Gelfand representation theorem, there is a compact met-
ric space X such that our C∗-algebra AE is algebraically and topologically isomor-
phic to C(X). Let L̃ : C(X)→ C be the positive linear functional induced by L on
C(X). By the Riesz representation theorem, the functional L̃ is given by a Borel
probability measure µ on X . Let r : AE →C(X) denote the Gelfand isomorphism.
Then, for all φ ∈AE we have
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L(φ) = L̃(r(φ)) =
∫

X
r(φ) dµ.

Since r is, in particular, an algebraic isomorphism, and since 12
E = 1E , the image

r(1E) ∈ C(X) is an idempotent, and hence of the form 1A for some clopen subset
A⊂ X . We have

µ(A) = L̃(1A) = L̃(r(1E)) = d(IN)(E).

Now, the L-invariant shift operator φ(n) 7→ φ(n+1), φ ∈AE , is a C∗-isomorphism
of AE that induces a C∗-isomorphism of C(X), which, in turn, by a theorem due to
Banach ([5, Chapter XI]), is induced by a µ-preserving homeomorphism T : X→ X .

So we have

d(IN)(E ∩ (E−n1)∩·· ·∩ (E−nk))≥ d(INi )
(E ∩ (E−n1)∩·· ·∩ (E−nk))

= L(1E∩(E−n1)∩···∩(E−nk)) = µ(A∩ (A−n1)∩·· ·∩ (A−nk)),

which completes the proof of Theorem 4.3.
We now turn our discussion to a crucial ingredient of the proof of EST, namely,

Furstenberg’s structure theorem for measure-preserving systems. This structure the-
orem can be seen as a sophisticated analogue of Furstenberg’s distal structure theo-
rem (Theorem 1.4 above) which was established in [36]. To formulate the structure
theorem from [44] we need to introduce first some definitions and terminology.
Given two measure-preserving systems X = (X ,B,µ,T ) and Y = (Y,D,ν ,S), a
measurable and measure-preserving map π : X → Y is called a homomorphism if
for a.e. x ∈ X , Sπ(x) = π(T x). The system Y is called a factor of X and X is an
extension of Y.

A measure-preserving system is called Kronecker if it has the form (Z,D,m,Rα),
where Z is a compact abelian group, D = Borel sets, m = Haar measure and Rα is
defined by z 7→ z+α , where α ∈ Z generates a dense cyclic subgroup.

A measure-preserving system (X ,B,µ,T ) is called weakly mixing if it has no
nontrivial eigenfunctions, i.e. functions satisfying f (T x) = λ f (x), where λ ∈ C,
|λ | = 1 and f ∈ L2(X), f ̸= 1. It is not hard to show that if an ergodic system
(X ,B,µ,T ) admits a nontrivial eigenfunction then it has a nontrivial Kronecker
factor. Moreover, a classical result going back to [76] states that an ergodic system
is weakly mixing if and only if its Kronecker factor is trivial.

A natural starting point for proving EST is to verify that it holds for Kronecker
systems and for weakly mixing systems. The following theorem in [44] takes care
of the weakly mixing case.

Theorem 4.4 ([44, Corollary 2.4]). If (X ,B,µ,T ) is a weakly mixing system, then
for any k ∈ N and A ∈B, one has

lim
N−M→∞

1
N−M

N−1

∑
n=M

∣∣∣µ(A∩T−nA∩·· ·∩T−nkA)−µ(A)k+1
∣∣∣= 0.
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The proof of EST for Kronecker systems can be done in a variety of ways. The
following argument has the advantage of being adaptable for “measure distal sys-
tems” which appear in Furstenberg’s structure theorem.

Assume that (X ,B,µ,T ) is Kronecker, let A ∈B with µ(A)> 0, and let f = 1A.
It is not hard to see that under our assumptions the orbit closure {T n f ,n ∈ Z} in
L2(X ,B.µ) is norm compact. Let ε > 0 and let {T n1 f , . . . ,T nk f} be an ε

k -separated
set (i.e. ∥T ni f−T n j f∥≥ ε

k for i ̸= j) which has maximal cardinality. Then, for any n,
the set {T n+n1 f , . . . ,T n+nk f} is again ε

k -separated and has the same cardinality. This
implies that, for some i ∈ {1, . . . ,k}, ∥T n+ni f − f∥ < ε

k and hence ∥T n f − f∥ < ε

k
for a set of n with bounded gaps. This implies

liminf
N−M→∞

1
N−M

N−1

∑
n=M

µ(A∩T−nA∩·· ·∩T−nkA) =

liminf
N−M→∞

1
N−M

N−1

∑
n=M

∫
f ·T n f · · ·T kn f dµ > 0.

The structure theorem established in [44] allows us to, so to speak, interpolate be-
tween the Kronecker and the weakly mixing cases.

For a compact metric space M, let Iso(M) denote the compact group of isome-
tries of M. A system X = (X ,B,µ,T ) is an isometric extension of a factor Y =
(Y,D,ν ,S) if it can be represented, up to isomorphism, as X = Y ×M for a com-
pact metric space M, with µ = ν ×mM , where mM is a probability Borel mea-
sure on M which is invariant under isometries, and T (y,u) = (Sy,ρ(y)u), where
ρ : Y → Iso(M) is measurable. Note that when Y is a trivial system and X is an
ergodic isometric extension, then X is Kronecker.

A system X is measure distal if it has a sequence of factors indexed by ordinals
Xη , η ≤ η0, with X = Xη0 , X0 = trivial system on one point, and such that for
ξ < η ≤ η0, Xξ is a factor of Xη , with Xη+1 being an isometric extension of Xη ,
and finally Xξ = lim←{Xθ : θ < ξ} for ξ a limit ordinal (see [44, Definition 8.3]).

Given a factor Y of a system X one has a disintegration of the measure µ with
respect to ν given by µ =

∫
µy dν(y), so that for almost all y ∈ Y , µSy = Sµy.

Given two extensions X1 = (X1,B1,µ1,T1) and X2 = (X2,B2,µ2,T2) of a system
Y = (Y,D,ν ,S), let us denote by µ1×

ν
µ2 the measure on X1×X2 defined by

µ1×
ν

µ2(A) =
∫

µ1.y×µ2,y(A) dν(y), A ∈B1×B2,

where for i = 1,2, µi =
∫

µi,y dν(y) is the disintegration of the measures µi over ν .
The measure space X1×

Y
X2 = (X1×X2,B1×B2,µ1×

ν
µ2) is called the relative

product of X1 and X2 with respect to Y. A system X is a weakly mixing extension of
a factor Y if the system X1×

Y
X2 is ergodic. Here is now the structure theorem that

was proved in [44].

Theorem 4.5. Every ergodic system X has a maximal distal factor XD. Moreover,
X is a weakly mixing extension of XD.
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One can briefly describe the proof of Furstenberg’s EST as follows. For starters,
in view of the ergodic decomposition we can assume that the system X=(X ,B,µ,T )
is ergodic. Call a system MR (for multiple recurrence) if Theorem 4.1 holds for all
sets A ∈ B with µ(A) > 0 and all k. By Theorem 4.4 any weakly mixing system is
MR. One can also show that, more generally, if X is a weakly mixing extension of
an MR system then X is MR.

In view of Theorem 4.5 this reduces the proof of EST to distal systems. Now the
case of general distal systems can be reduced to distal systems of finite rank (a distal
system X is of rank n if it has a succession of factors X = X1→ ···→Xn→ 1 point,
where each extension is isometric), and for these the property MR can be established
via an intricate argument which may be viewed as a “relativization” of the proof for
Kronecker systems described above.

Van der Waerden’s theorem has a natural multidimensional version which was
proved in the 1930s by Tibor Grünwald (who later changed his name to Gallai).

Theorem 4.6 (Multidimensional van der Waerden’s theorem [87, page 123]).
For any finite partition of Zd = ∪N

i=1Ci, one of Ci, i = 1, . . . ,r, contains an affine
image of any finite set F ⊂ Zd . In other words, there exists an i, 1≤ i≤ r, such that
for any finite set F ⊂ Zd there exist u ∈ Zd and a ∈ N such that u+F = {u+ ax :
x ∈ F} ⊂ Ci.

For a fuller perspective we will formulate a topological version of Gallai’s theo-
rem which was proved in [60] and served as a motivation for the multidimensional
extension of EST that was established in [53] and will be discussed below.

Theorem 4.7 ([60]). Let T1,T2, . . . ,Tk be commuting homeomorphisms of a compact
metric space X to itself. Assume that the dynamical system (X ,G), where G is the
group generated by T1,T2, . . . ,Tk, is minimal. Then for any nonempty open set U ⊂X
there exists an n ∈ N, such that

U ∩T n
1 U ∩·· ·∩T n

k U ̸=∅.

For a set S⊂ Zd , its upper Banach density is defined by the formula

d∗(S) = limsup
Ni−Mi→∞, 1≤i≤d

|S∩∏
d
i=1{Mi,Mi +1, . . . ,Ni−1}|

∏
d
i=1(Ni−Mi)

.

The natural question now is whether it is true that any set S⊂ Zd with d∗(S)> 0
contains an affine image of any finite set F ⊂ Zd . In [53], Furstenberg and Katznel-
son answered this question affirmatively by deducing the answer from the following
version of Furstenberg’s EST.

Theorem 4.8 ([53]). Let (X ,B,µ) be a measure space with µ(X) < ∞, let T1, T2,
. . . , Tk be commuting measure-preserving transformations of X and let A ∈ B with
µ(A)> 0. Then
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liminf
N→∞

1
N

N−1

∑
n=0

µ(A∩T−n
1 ∩T−n

2 A∩·· ·∩T−n
k A)> 0.

Corollary 4.9 ([53, Theorem B]). Let S ⊂ Zk be a subset with d∗(S) > 0, and let
F ⊂ Zk be a finite configuration. Then there exists a positive integer n and a vector
u ∈ Zk such that u+F ⊂ S.

The proof of Theorem 4.8, while following the general lines and ideas of the
proof of EST in [44], had two novel features. First, notice that while Theorem 4.1 is
about the joint behaviour of k commuting transformations of a special form, namely
T,T 2, . . . ,T k, in Theorem 4.8 one has to deal with k commuting transformations
which are, so to say, in general position. This complicates the underlying structure
theory, which has to be adjusted to reflect the more complicated situation when
different operators in the group generated by T1, . . . ,Tk have different dynamical
properties. Accordingly, a new kind of extensions was introduced in [53]. These ex-
tensions, which the authors call primitive, use the splitting of the group generated by
T1, . . . ,Tk into direct sum of two subgroups, one of which is responsible for “relative
weak mixing”, and the other represents the phenomenon of “relative compactness”.
The following two results play a crucial role in the proof of Theorem 4.8.

Theorem 4.10. If X=(X ,B,µ,(Tg)g∈Zk) is an extension of Y=(Y,D,ν ,(Sg)g∈Zk),
then there is an intermediate factor Z such that Z is a primitive extension of Y.

Theorem 4.11. If X = (X ,B,µ,(Tg)g∈Zk) is a primitive extension of Y =
(Y,D,ν ,(Sg)g∈Zk) and Y has the MR property then X has the MR property.

The second important novelty in [53] was the utilization (in the proof of Theorem
4.11) of a partition result, namely the multidimensional van der Waerden’s theorem
(see Theorem 4.6).

It is important to emphasize that partition results such as Theorem 4.6 and a
more general result, the Hales–Jewett theorem (to be described bellow), play a fun-
damental role in the theory of multiple recurrence. On the one hand, partition results
motivate the quest for density results. On the other hand, they prove useful in estab-
lishing multiple recurrence theorems.

One more instance of mutually enhancing interaction between Ramsey theory
and ergodic theory is provided by the theory of IP-recurrence which was developed
in [60], [45] and [54]. An important role in this theory is played by the following
result due to Neil Hindman.

Theorem 4.12 (). [72] For any finite partition N =
⋃N

i=1 Ci, one of Ci contains an
IP-set, that is a set of the form

{ni1 +ni2 + · · ·+nik : i1 < i2 < · · ·< ik, k ∈ N}.

The notion of IP systems and their importance for recurrence issues arose in the
course of joint work with Benjamin Weiss [60], during the 1975–1976 special er-
godic theory program at the newly established Institute for Advanced Studies at the
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Hebrew University. The initials IP refer to idempotence, which is a closely related
notion. For example, a proof of Hindman’s theorem given in [60] utilizes the idem-
potents in Ellis’s enveloping semigroup. Also, Hindman’s theorem is, essentially, a
Poincaré recurrence theorem for idempotent ultrafilters (see, for example, [8, Theo-
rem 3.4]).

An F-sequence in an arbitrary space Y is a sequence (yα)α∈F indexed by the
collection F of the finite sets of N. If Y is a (multiplicative) semigroup, one says
that an F-sequence defines an IP-system if for any α = {i1, i2, . . . , ik} ∈ F, one has
yα = yi1yi2 · · ·yik . IP-systems should be viewed as generalized semigroups. Indeed,
yα∪β = yα yβ whenever α ∩β =∅.

Here is an IP version of Theorem 4.7.

Theorem 4.13 (IP van der Waerden [60, Theorem 3.2]). . Let X be a compact
metric space and G a commutative group of its homeomorphisms such that the dy-
namical system (X ,G) is minimal. For any nonempty open set U ⊂X, any k∈N, any
IP-systems (T (1)

α )α∈F, . . . ,(T
(k)

α )α∈F in G and any α0 ∈ F, there exists an α ∈ F,
minα > maxα0, such that

U ∩T (1)
α U ∩·· ·∩T (k)

α U ̸=∅.

Clearly Theorem 4.7 is a special case of Theorem 4.13. But IP van der Waerden
has many other important corollaries. For example, it follows from Theorem 4.13
that for any finite partition N =

⋃N
i=1 Ci and for any ℓ ∈ N, one of the Ci has the

property that the set of differences of length ℓ arithmetical progressions contained in
Ci is rather large, namely it has a nontrivial intersection with any IP set. Sets with this
property are called IP∗ sets. It is not hard to see that any IP∗ set has bounded gaps.
Moreover, one can show with the help of Hindman’s theorem that if S1,S2, . . . ,Sm
are IP∗ sets, then S1∩S2∩·· ·∩Sm also is an IP∗ set.

The theory of IP-recurrence found an interesting application in [61] where
Furstenberg and Weiss established the following result of a diophantine nature (see
also [11, Theorem A] and [14, section 0.34]).

Theorem 4.14 ([61, Thorem 15]). Let ε > 0 and for each k = 1, . . . ,n, let fk be a
real polynomial of k unknowns, vanishing at zero. Then the system

| f1(x)− y1|< ε

| f2(x,y1)− y2|< ε

| f3(x,y1,y2)− y3|< ε

· · ·
| fn(x,y1,y2, . . . ,yn−1)− yn|< ε

has a non-trivial integer solution. Indeed, the set of x ∈ Z for which there is some
solution (x,y1, . . . ,yn) is IP∗.
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In [54], Furstenberg and Katznelson established the following fundamental IP
Szemerédi theorem, which may be viewed as the analogue of Theorem 4.13 for
measure-preserving systems.

Theorem 4.15 ([54, Theorem A]). Let (X ,B,µ) be a probability space and G an
abelian group of measure-preserving transformations of X. For any k ∈ N, any
IP-systems (T (1)

α )α∈F, . . . ,(T
(k)

α )α∈F in G and any A∈B with µ(A)> 0, there exists
an α ∈ F such that

µ(A∩T (1)
α A∩·· ·∩T (k)

α A)> 0.

The proof of the IP-Szemerédi theorem is achieved via a sophisticated structure
theory which can be viewed as an IP variation on the theme of primitive extensions
discussed above. Curiously, it is not the IP van der Waerden but the more powerful
Hales–Jewett theorem which has to be used when dealing with the IP version of
compact extensions.

In the words of the authors of [69], the Hales–Jewett theorem “strips van der
Waerden’s theorem of its unessential elements and reveals the heart of Ramsey the-
ory. It provides a focal point from which many results can be derived and acts as a
cornerstone for much of the more advanced work”. To formulate the Hales–Jewett
theorem we introduce some definitions.

Let A be a finite alphabet, A = {a1,a2, . . . ,ak}. It is convenient to identify the
elements of the nth Cartesian power An with the set of words of length n over
the alphabet A, which, in turn, can be viewed as an abstract n-dimensional vec-
tor space (over A). Let Wn(A, t) be that set of words of length n from the alpha-
bet A ∪ {t}, where t is a letter not belonging to A, which will serve as a vari-
able. If w ∈Wn(A, t) is a word in which the variable t actually occurs, then the
set {w(t)}t∈A = {w(a1),w(a2), . . . ,w(ak)} is called a combinatorial line.

Theorem 4.16 (Hales–Jewett theorem [71]). Let r,k,m ∈ N. There exists a c =
c(r,k,m) such that if n ≥ c, then for any r-coloring of the set Wn(A) of words of
length n over the k-letters alphabet A = {a1,a2, . . . ,ak}, there is a monochromatic
combinatorial line.

Taking A = {a1,a2, . . . ,aℓ} and interpreting Wn(A) as integers in base ℓ, having
at most n digits in their base ℓ expansion, we see that, in this situation, the elements
of a combinatorial line form an arithmetic progression of length ℓ (with difference
of the form d = ∑

k−1
i=1 εiℓ

i, where εi = 0 or 1). Thus van der Waerden’s theorem is a
corollary of Theorem 4.16.

One of the signs of the fundamental nature of the Hales–Jewett theorem is
that one can easily derive from it its multidimensional version. Let t1, t2, . . . , tm
be m variables and let w(t1, t2, . . . , tm) be a word of length n over the alphabet
A∪ {t1, t2, . . . , tm}. If for some n, w(t1, t2, . . . , tm) is a word of length n in which
all the variables t1, t2, . . . , tm occur, the result of the substitution

{w(t1, t2, . . . , tm)}(t1,t2,...,tm)∈Am = {(w(ai1 ,ai2 , . . . ,aim) : ai j ∈ A, j = 1,2, . . . ,m}

is called a combinatorial m-space.
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Observe now that if we replace the original alphabet A by Am, then a combina-
torial line in Wn(Am) can be interpreted as an m-space in Wnm(A). Thus we have the
following ostensibly stronger theorem as a corollary of Theorem 4.16.

Theorem 4.17. Let r,k,m ∈ N. There exists a c = c(r,k,m) such that if n ≥ c, then
for any r-coloring of the set Wn(A) of words of length n over the k-letter alphabet A,
there is a monochromatic m-space.

It is not hard to see that Theorem 4.17 implies the multidimensional van der
Waerden theorem (Theorem 4.6) It also obviously implies the following result of a
geometric nature.

Theorem 4.18. Let F be a finite field. For any r,m ∈ N, there exists a c = c(r,m)
such that if V is a vector space over F having dimension at least c, then for any
r-coloring V = ∪r

r=1Ci, one of the Ci contains an m-dimensional affine space.

One is naturally led to the question of whether a density version of the Hales–
Jewett theorem holds (see for instance Conjecture, [69], page 53). The positive an-
swer was obtained in the masterly paper [56]. Here is one of the few equivalent
formulations of dHJ, the density version of Hales–Jewett theorem.

Theorem 4.19 ([56, Theorem E]). There is a function R(ε,k), defined for all ε > 0
and k ∈ N, so that if A is a set with k elements, WN(A) consists of words in A with
length N, and if N ≥ R(ε,k), then any subset S ⊂WN(A) with |S| ≥ εkN contains a
combinatorial line.

In order to formulate the ergodic counterpart of Theorem 4.19 which was proved
in [56], we shall need the following definition.

Definition 4.20. Let W (k) denote the free semigroup over the k-element alpha-
bet {1,2, . . . ,k}. Given k sequences (T (1)

n )∞
n=1,(T

(2)
n )∞

n=1, . . . ,(T
(k)

n )∞
n=1 of invert-

ible measure-preserving transformations of a probability space (X ,B,µ), define,
for each w = (w(1),w(2), . . . ,w(k)) ∈W (k),

T (w) = T w(1)
1 T w(2)

2 · · ·T w(k)
k .

The family {T (w),w ∈W (k)} is called a W (k)-system.

Here is now the ergodic formulation of dHJ.

Theorem 4.21 ([56, Proposition 2.7]). . Let {T (w),w ∈W (k)} be a W (k)-system
of invertible measure-preserving transformations of a probability space (X ,B,µ).
For any A ∈ B with µ(A) > 0, there exists a combinatorial line (ℓ(t))t∈{1,2,...,,k} in
W (k) such that

µ(T (ℓ(1))−1A∩T (ℓ(2))−1A∩·· ·∩T (ℓ(k))−1A)> 0.
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The proof of Theorem 4.21, while following the general scheme of other proofs
discussed above, is significantly more involved, mainly due to the fact that the trans-
formations forming the W (k) system need not commute.

As a matter of fact, in the case when the W (k) system is comprised of commuting
transformations, the situation is reduced to the IP Szemerédi theorem. Yet, despite
the absence of commutativity, the proof of Theorem 4.21 has a strong IP-flavor.
Also this proof has an important novel feature. Namely, the authors use an infinitary
combinatorial result which they obtained in [55] and which is a simultaneous exten-
sion of the Hindman and the Hales–Jewett theorems. (This result was also obtained
in [21].)

We will briefly discuss now polynomial generalizations of some of the results
mentioned above. We start with the polynomial Szemerédi theorem, which was
obtained in [12] and can be viewed as a polynomial extension of Furstenberg–
Katznelson’s theorem.

Theorem 4.22 ([12, Theorem A]). Let (X ,B,µ) be a probability space, T1,T2, . . . ,Tt
be commuting measure-preserving invertible transformations of X, let

p1,1(n), . . . , p1,t(n), p2,1(n), . . . , p2,t(n), . . . , pk,1(n), . . . , pk,t(n)

be polynomials with rational coefficients taking integer values on the integers and
satisfying pi, j(0) = 0, i = 1, . . . ,k, j = 1, . . . , t, and let A ∈B with µ(A)> 0. Then

liminf
n→∞

1
N

N−1

∑
n=0

µ

(
t

∏
j=1

T
p1, j(n)
j A∩

t

∏
j=1

T
p2, j(n)
j A∩·· ·∩

t

∏
j=1

T
pk, j(n)
j A

)
> 0.

Here is a combinatorial corollary of Theorem 4.22.

Theorem 4.23 ([12, Theorem B’]). Let P : Zr→Zℓ, r, ℓ∈N, be a polynomial map-
ping satisfying P(0) = 0, let F ⊂ Zr be a finite set and let S⊂ Zℓ be a set of positive
upper Banach density. Then for some n ∈ N and u ∈ Zℓ one has u+P(nF)⊂ S.

Similarly to the fact that in the proof of Theorem 4.8 the multidimensional van
der Waerden theorem was used, an instrumental role in the proof of Theorem 4.22
is played by a polynomial version of Theorem 4.6, which we will formulate in a dy-
namical form, thereby stressing the connection with Furstenberg–Weiss’ Theorem
4.13.

Theorem 4.24 ([12, Theorem C]). Let (X ,d) be a compact metric space, T1, . . . ,Tt
commuting homeomorphisms of X and

p1,1(n), . . . , p1,t(n), p2,1(n), . . . , p2,t(n), . . . , pk,1(n), . . . , pk,t(n)

be polynomials with rational coefficients taking integer values on the integers and
satisfying pi, j(0) = 0, i = 1, . . . ,k, j = 1, . . . , t. Then, for any positive ε , there exist
x ∈ X and n ∈ N such that
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d(T
pi,1(n)

1 T
pi,2(n)

2 · · ·T pi,t (n)
t x,x)< ε, for all i = 1, . . . ,k

simultaneously. Moreover, the integer n can be chosen from any IP-set. If the sys-
tem (X ,T1, . . . ,Tt) is minimal, then for any nonempty open set U ⊂ X, the set S =

{n : g−1
i (n)U ∩U ̸=∅} is an IP ∗-set, where gi(n) = T

pi,1(n)...pi,t (n)
1 , i = 1,2, . . . ,k.

It is worth mentioning that so far Theorem 4.23 does not have a combinatorial
(non-ergodic) proof.3

Here is a brief summary of some additional results of a polynomial nature which
were motivated by Theorem 4.23.

(i) In [16] a general IP-Szemerédi theorem was proved. This result forms a natu-
ral IP analogue of Theorem 4.23 for measure-preserving systems.

(ii) In [16] a general form of Theorem 4.23 for countable modules over integral
domains was obtained. The main result in [16] shows that the structure theory of
measure-preserving group actions extends to polynomial actions which leads to a
Furstenberg-style polynomial multiple recurrence theorem. Among the combinato-
rial corollaries of this result is a polynomial Szemerédi theorem for finite fields.

(iii) In [13] a polynomial Hales–Jewett theorem was proved. This result naturally
leads to the conjecture that a density polynomial Hales–Jewett theorem is also true
(see [8, pp. 56–57]). A density polynomial Hales–Jewett theorem would form a nat-
ural generalization of the “linear” Furstenberg–Katznelson’s density Hales–Jewett
theorem.

For additional results of a polynomial nature, see [15], [103].

The fundamental work of Furstenberg and his coauthors has served and keeps
serving as a powerful impetus for many impressive developments. As an illustration,
we will describe in conclusion some of the remarkable results pertaining to patterns
in primes.

A long standing conjecture of Erdős states that if a set A ⊂ N has the property
∑n∈A

1
n =∞, then A contains arbitrarily long arithmetic progressions. Clearly, if true,

this conjecture leads to a strong refinement of Szemerédi’s theorem on arithmetic
progressions. In the special case where A is the set of primes, this conjecture was
confirmed by Green and Tao in their spectacular paper [70]. Some of the crucial
features of the proof were inspired by Furstenberg’s correspondence principle and
Furstenberg’s structure theorem which were discussed above.

In [93] Tao and Ziegler obtained an “upgrade” of the Green–Tao theorem to
polynomial configurations. More precisely, Tao and Ziegler show that for any
integer-valued polynomials P1, . . . ,Pk ∈ Z[m], with P1(0) = · · · = Pk(0) = 0, and
any ε > 0, there are infinitely many integers x,m with 1 ≤ m ≤ xε , such that
x+P1(m), . . . ,x+Pk(m) are simultaneously prime. Furstenberg’s correspondence
principle and the polynomial Szemerédi theorem (Theorem 4.23) play a crucial role
in this paper.

3 Recently Hillel reminded me that when I had first raised the possibility of such results he told me
not to waste my time because “mathematics wasn’t ready for such complex considerations”.
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Hillel Furstenberg’s ideas permeated and influenced vast areas of mathematics.
Ergodic Ramsey theory, which started with the publication of the groundbreaking
paper [44], serves as an excellent example of Furstenberg’s impact. I was fortunate
to be Hillel’s student at the time of inception and early development of this beautiful
field. It is both my duty and pleasure to acknowledge Hillel’s stimulating influence
on my mathematics and to express gratitude to him for being an outstanding role
model.
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1 General introduction

The work of Margulis is unusual not just for its importance and depth, but for span-
ning numerous areas of mathematics. In addition, Margulis has a somewhat singular
style of solving problems by bringing together ideas from relatively unrelated areas.
He frequently revolutionized areas he choose to study. This include the structure of
discrete subgroups of Lie groups, where his arithmeticity, superrigidity and normal
subgroup theorems brought a wide array of new dynamical ideas to a field that had
previously been dominated by algebra and geometry, see Sections 2 and 3. To the
area of theoretical computer science he introduced powerful tools from the repre-
sentation theory of Lie groups, see Section 4. And perhaps most consistently, he
developed deep connections between homogeneous dynamics and number theory,
see Sections 7–8 and 10–12. While it is clear that Margulis sees himself more as
solving problems than as building theories, each of these remarkable insights and



The work of G. A. Margulis 435

connections has laid the groundwork for new theories and even subfields of mathe-
matics.

This is far from a complete survey; the results covered were selected according
to the personal tastes of the authors. A much more detailed account of Margulis’s
work up to 2008 is given in [53]. See also the surveys [85] and [86] on particular
topics written by Margulis himself. The recent book [44], besides giving a taste of
the enormous impact of Margulis on the field he essentially created, also covers
much more of Margulis’s output than we do here. The reader should view this text
as a “survey of surveys”, as we try to present a glimmer of the work and then refer
the reader to more detailed surveys as appropriate.

2 Arithmeticity and superrigidity

In this section G will be a connected semisimple real algebraic group without non-
trivial R-anisotropic factors; we will write G = G(R)0, the connected component
of the identity in G(R); then G is a connected semisimple Lie group without com-
pact factors. One can more generally consider semisimple algebraic groups over a
local field k, in which case we will denote G =G(k). It is also possible to consider
products of these groups defined over different fields, as in [84, Introduction]. We
will let Γ ⊂ G be a lattice (this means that Γ is a discrete subgroup of G, and the
quotient G/Γ has finite Haar measure), and assume Γ is irreducible, that is, for any
proper non-trivial connected normal subgroup H of G the product HΓ is dense in
G. A lattice Γ is said to be uniform if G/Γ is compact, and non-uniform otherwise.

We now give the definition of arithmeticity.

Definition 2.1. A group Γ ⊂ G is arithmetic if there exists a semisimple algebraic
Q-group G′ and an epimorphism π : G′(R)→ G such that

1. ker(π) is a compact group and
2. π

(
G′(Z)

)
is commensurable to Γ .

This definition is due to Selberg for Γ being irreducible and non-uniform, and to
Piatetski-Shapiro in general. In a series of papers in the 1970s Margulis proved:

Theorem 2.2. Let G be as above with rankR(G) ≥ 2, and let Γ be an irreducible
lattice in G; then Γ is arithmetic.

Theorem 2.2 settled a conjecture due to Selberg [99] and Piatetski-Shapiro [92].
Margulis first proved the non-uniform case [74] using a study of unipotent elements,
specifically his work on non-divergence of unipotent orbits. (See Section 7 for a de-
tailed discussion of non-divergence results.) In particular, this result depends on the
existence of unipotent elements in non-uniform lattices, a fact established earlier in a
landmark paper of Kazhdan and Margulis [55]. At the time this approach was known
to other mathematicians, including Selberg, Piatetski-Shapiro and Raghunathan, and
the latter even completed a proof of Theorem 2.2 for non-uniform lattices at roughly
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the same time, modulo the result on non-divergence of unipotent orbits (Theorem
7.1 below), which he was unable to establish, see [93].

In a remarkable development a few years later, Margulis also proved Theorem 2.2
by an entirely different approach via what became known as his superrigidity theo-
rem. While the superrigidity theorem and its proof are, in a loose sense, inspired by
Mostow’s strong rigidity theorem [89], it was not expected at the time. The name
“superrigidity” was coined by Mostow. In Margulis’ first proof of superrigidity, the
lattice was assumed cocompact, an assumption used to apply Oseledec’s multiplica-
tive ergodic theorem to a certain cocycle. This limitation was soon overcome in the
work of Margulis, Furstenberg and Zimmer. The latter then generalized the super-
rigidity theorem to apply in a more general context of cocycles over group actions,
further extending and developing the reach of this profound result.

We state this result in a couple of different ways to emphasize different forms
and to allow us to discuss the proof. Let us start with a definition.

Definition 2.3. Let Γ ⊂G be a lattice and let ρ : Γ →H be a homomorphism, where
H is a topological group. We say that ρ almost extends to G if there is a continuous
homomorphism π : G→ H and another homomorphism πc : Γ → H, such that

1. πc(Γ ) =C ⊂ H is compact,
2. C and π(G) commute,
3. ρ(γ) = π(γ)πc(γ) for every γ in Γ .

We will call a semisimple Lie group higher rank if its real rank is at least 2. One can
then state Margulis’ superrigidity theorem as:

Theorem 2.4 (Superrigidity I). Let G be a higher rank semisimple Lie group with
finite center, and let Γ ⊂ G be an irreducible lattice; then any linear representation
of Γ over any local field almost extends to G.

Margulis’ proof of this result actually gives much more information on the represen-
tation πc and completely classifies linear representations of Γ modulo finite image
representations. Much of the difficulty in the proof of Theorem 2.4 already occurs
in the proof of this special case:

Theorem 2.5 (Superrigidity II). Let G and Γ be as in Theorem 2.4 and let H be a
simple algebraic group with trivial center over a local field k. Assume ρ : Γ →H =
H(k) is a homomorphism with Zariski dense, unbounded image; then ρ extends to
G.

The proof of Theorem 2.4 uses Theorem 2.5. For the proof of Theorem 2.2, Theo-
rem 2.5 suffices. Margulis announced all these results and gave detailed indications
of the proofs in [76]. Fuller proofs first appeared in Russian in an appendix to the
Russian translation of Raghunathan’s book; there the argument did not follow pre-
cisely the same outline as in the ICM address and, in particular, covered the case
of non-uniform as well as uniform lattices for Theorem 2.5 and Theorem 2.2. This
account eventually appeared in English in [78].
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In addition in [76], Margulis gave a form of both superrigidity and arithmeticity
for lattices with dense commensurator without any assumption on the rank of G.
Margulis gave a complete account of his theorems in full generality in his book
[84]. Somewhat earlier an account of many of these results of Margulis appeared in
a book of Zimmer [105]. We now discuss briefly the results on rigidity of groups
with dense commensurator.

Given a discrete group Γ ⊂ G we define the commensurator of Γ in G as:

Comm(Γ ) := {g ∈ G : [(gΓ g−1∩Γ ) : Γ ]< ∞ and [(gΓ g−1∩Γ ) : gΓ g−1]< ∞}.

It is easy to verify that if g ∈ Comm(Γ ), then there is a finite cover X of K\G/Γ ,
where g acts as an isometry of X . For this reason elements of the commensurator
are often viewed as hidden symmetries of K\G/Γ or Γ . In the same paper [76],
Margulis proved

Theorem 2.6. Let G be a simple Lie group and Γ ⊂ G a lattice. If
[Γ : Comm(Γ )] = ∞, then Γ is arithmetic.

The proof of Theorem 2.6 follows the same general outline as the proof of Theo-
rem 2.2. Namely it depends on a superrigidity theorem which is an analogue of The-
orem 2.5 but only for representations of Γ that are assumed to extend to Comm(Γ ).
This is sufficient since the representations of Γ one studies to prove arithmeticity
from superrigidity are defined in such a way that it is easy to see they extend to
Comm(Γ ). In this context, Margulis also proved an analogue of Theorem 2.4 for
representations of Γ that extend to Comm(Γ ).

We briefly discuss the original philosophy of the proof of superrigidity. It is usu-
ally viewed as breaking into two parts. In the first part, one constructs an equivariant
measurable map between a homogeneous variety for G and a homogeneous variety
for H. By now this can be done by a variety of methods. In Margulis’ original proof,
he constructed the map using the Oseledec multiplicative ergodic theorem. This
method will apply as soon as one knows the lattice is integrable. This is a defect of
the proof, as it is impossible to verify integrability without knowing some structure
of the lattice, though it is straightforward to verify integrability of arithmetic lattices
of higher rank. In all known proofs of Theorem 2.4, one actually needs to first prove
Theorem 2.2 using Theorem 2.5 exactly to verify that the lattice is integrable. There
are cases of Theorem 2.4 where one can only construct the equivariant measurable
map using the Oseledec theorem. By now there are several other approaches to con-
structing equivariant measurable maps that suffice for the proof of Theorems 2.5 and
2.2, including the one due to Margulis [43, 78, 105]. The second part of the proof is
where higher rank is used and involves showing that the measurable equivariant map
is in fact rational. From there it is relatively easy to verify the map is G-equivariant.
Unlike the proof of the first step, where multiple variations of proofs appeared quite
quickly, Margulis’ original proof of rationality was revisited and refined quite re-
cently by Bader and Furman [7].
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We mention here that the most general version of Margulis’ superrigidity theorem
and also the most general version of Zimmer’s cocycle superrigidity theorem, at
least in characteristic zero, appear in joint work of the second-named author with
Margulis [45]. In particular, one need not assume that G has finite center, which is
quite an unnatural assumption in the case where G is a Lie group.

There is however, in [84], a significantly different approach to superrigidity in
terms of studying spaces of measurable equivariant sections of certain vector bun-
dles over G/Γ . The next section of this paper is devoted to a sketch of this proof.

Before moving on to that, we mention the second-named author’s survey [42]
for a discussion of some of the many further results inspired by Margulis’ work on
arithmeticity and superrigidity.

We will now outline some key ideas both in a proof of superrigidity and in the
proof that superrigidity implies arithmeticity.

2.1 Proof of superrigidity

We sketch here the proof of Margulis’ superrigidity theorem that is contained in
[84]. The first step is to view a linear representation ρ : Γ → SLn(k) as giving
rise to a G-action on a vector bundle E over G/Γ . The vector bundle and the G-
action are defined by letting V = kn, taking the (G×Γ )-action on G×V given by
g′(g,v)γ = (g′gγ−1,ρ(γ)v) and dividing by the Γ -action to obtain (G×V )/Γ . The
proof involves the study of spaces of sections of this bundle under the action of
various subgroups of G. We state the main ingredients here as two lemmas.

Lemma 2.7. Let A be a Cartan subgroup of G, and let a ∈ A. Then there exist two
A-invariant subbundles V ′,V ′′ ⊂V such that V =V ′⊕V ′′.

The subbundles V ′,V ′′ are produced using the Oseledec theorem once one knows
that the Lyapunov splitting of the a-action on G/Γ is non-trivial. This step can be
done in different ways depending on the Zariski closure of ρ(Γ ) in SLn(k). For
the proof of Theorem 2.5, Margulis originally used the spectral gap of the G-action
on G/Γ to prove this non-triviality when the Zariski closure is simple and non-
compact, and ρ(Γ ) is unbounded. We do not discuss the other cases here.

We now want to convert these invariant subbundles into an a-invariant section of
some other vector bundle. This is easily done by taking the projection along V ′′ to
V ′ in the bundle End(V ). The proof is completed by using the structure of G along
with an iterated application of the following lemma:

Lemma 2.8. Let A,B ⊂ G be two unbounded closed subgroups that commute. For
any vector bundle F over G/Γ and any finite-dimensional space W of A-invariant
sections of F, the space

Span{b ·w : b ∈ B,w ∈W}

is also finite-dimensional.
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Unboundedness of A and B is used only to verify ergodicity of the A- and B-actions
on G/Γ . Margulis in fact proves a more general version of the lemma for actions on
vector bundles over ergodic group actions.

The remainder of the proof is fairly simple. First one finds a normal form for any
element of G of the form bkbk−1 · · ·b1a, where a is as in Lemma 2.7 and each bi lies
in a group Bi with the properties that

1. B1 commutes with a;
2. Bi commutes with Bi−1;
3. each Bi is unbounded.

Then an iterated application of Lemma 2.8 gives a finite-dimensional space of
sections of F that are G-invariant. It is relatively easy to verify that this representa-
tion extends the original representation of Γ to one of G.

2.2 Proof of arithmeticity

The proof of arithmeticity from superrigidity follows by studying a sequence of nat-
ural representations of Γ obtained by simple algebraic modifications of the defining
representation ρ0 : Γ ⊂ G. Here we think of G = G(R) as the real points of a real
algebraic group which we assume for simplicity is simple and center-free. We also
assume that Γ is finitely generated, which is elementary in the case when Γ is co-
compact and follows in general from the fact that Γ has property (T ) of Kazhdan.
We now consider the subfield k ⊂ R generated by matrix entries of elements of
ρ0(Γ ). It follows from the work of Vinberg that, up to conjugacy, one can assume
that k is the adjoint trace field of G.

The first step is to show that k ⊂ Q. For a contradiction assume the contrary,
that is, there exists an element γ of Γ with transcendental trace of the adjoint. Since
Aut(C) is transitive on transcendentals, letting ρi = ρ0 ◦σi for some sequence of
elements σi ∈ Aut(C), we can see that the trace of ρi(γ) is unbounded. But each ρi
is forced by superrigidity to either extend to G or have precompact image, and it is
easy to check that in either case the adjoint trace of each ρi(γ) is bounded. A careful
reader will note here that ρi is considered as a representation into G(C), and that we
use the fact that ρ0 is C-Zariski dense in G(C) and therefore so are all the ρi.

The second step is to construct the group G′ in Definition 2.3. Here we apply
restriction of scalars to the group G(k) to obtain a Q-group

G′ = Resk/Q(G),

and all that needs to be shown is that G′(R) is a compact extension of G. This is once
again an application of superrigidity, this time to the image of Γ in G′(Q)⊂G′(R).
We first note that Γ is Zariski dense because Γ is Zariski dense in G by the Borel
density theorem and restriction of scalars preserves Zariski density. If there were
another non-compact factor F of G′(R), then the map of Γ into F would extend to
G; this is easily seen to contradict the Zariski density of Γ , since Γ ⊂ Diag(G)×
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F ′ ⊂ G×F×F ′, where F ′ is the collection of other simple factors of G′′(R). Note
that here we are in fact using quite strongly that we are considering Lie groups, so
that representations with bounded image are contained in compact Lie subgroups
which are automatically algebraic subgroups. It is not too difficult to modify this
step in the other cases where Margulis’ theorem holds.

In the final step, one wants to show that a finite index subgroup of Γ lies not just
in G′(Q) but in G′(Z). To see this one assumes the contrary; hence there exists a
prime p that occurs. One then considers the representation into G′(Qp) and verifies
that the hypotheses imply that there is a continuous extension from Γ to G of the
representation into some simple factor of G′(Qp). But this is impossible, because G
is connected and Qp is totally disconnected.

On several occasions Margulis has remarked to the second-named author that he
was unsure at the time whether this proof that superrigidity implies arithmeticity
was really new. After consulting other experts, it became quite clear that it was. Per-
haps in part because no one expected superrigidity to hold at this level of generality,
even though there were roughly contemporaneous proofs of very special cases [12].
Margulis has also been quite insistent that his intention was to prove arithmeticity
and that superrigidity was a byproduct. By now it is clear that the byproduct, par-
ticularly in the form of the cocycle superrigidity theorems originally developed by
Zimmer, greatly increased the importance of the proof of arithmeticity. One can see
an instance of this in Margulis’ own work in Section 5 below.

3 Normal subgroup theorem

While arithmeticity had been conjectured, Margulis’ next breakthrough in the theory
of lattices in semisimple Lie groups was not as expected.

Theorem 3.1. Let G be a semisimple center-free Lie group with real rank at least 2,
and let Γ ⊂G be an irreducible lattice. Then any non-trivial normal subgroup of Γ

has finite index in Γ .

The assumption of trivial center is only necessary to avoid the presence of non-
trivial central normal subgroups in Γ , i.e. to have a particularly simple statement.
The basic idea of the proof of this theorem is quite striking: to prove Γ /N is finite
one proves that it is both amenable and has property (T ). It is easy to check that
any countable group with those two properties is finite. For many Γ , for instance
whenever G is simple, property (T ) holds for Γ and all its quotients by the work
of Kazhdan or Wang. In this case one only needs to prove amenability. The proof
of this is also striking: from non-amenability of Γ one produces relatively easily a
non-trivial measurable Γ -quotient G/P→ X , where the Γ -action on X is via Γ /N.
Margulis then proves that all measurable Γ -quotients of G/P are of the form G/Q,
a contradiction since the Γ -action on G/Q is faithful. This rigidity of measurable
quotients has also had a broad and diverse mathematical impact, playing a role in
the study of general ergodic G-actions [91] and uniformly thin subgroups [48], and,
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slightly more indirectly, in the proof of Zimmer’s conjecture [19, 8]. For a somewhat
different approach to the existence of projective factors than Margulis’ original one
that is closer in spirit to its use in the proof of Zimmer’s conjecture, see [18]. In
Margulis’ original proof of the factor theorem, the proof is cast in the language of
understanding invariant subalgebras of the algebra of measurable functions on G/P.
In [18], the authors recast the proof in terms of studying invariant measures instead.
In addition to being related to the work in [19], this also connects the proof of the
factor theorem to Margulis’ work on rigidity of invariant measures in homogeneous
dynamics.

4 Expanders, relative property (T ) and lattices

In this section we mention an important innovation of Margulis in theoretical com-
puter science in terms of expander graphs.

We consider here only finite regular graphs, which we denote by
X = X(V,E), with a set V of n vertices each of degree k and a set E of kn

2 edges.
Given a subset A of V , we define the boundary of A to be ∂A= {y∈V : d(A,y) = 1},
where d(·, ·) is the standard graph distance obtained by making each edge length
one.

Definition 4.1. We say X as above is an (n,k,c)-expander if for every A ⊂ V we
have

|∂A| ≥ c
(

1− |A|
n

)
|A|.

An infinite sequence Xi of graphs is a called an expander family if each Xi is a
(|Vi|,k,c)-expander for fixed k and c.

We can also define expander graphs in terms of the graph Laplacian ∆ . This is the
standard operator that averages functions on L2(V ) over nearest neighbors. There is
a well-known relationship between expansion as defined above and having a lower
bound on the first non-trivial eigenvalue of ∆ on L2(V ).

Prior to Margulis’ work, the only known constructions of expander families were
random and did not give explicit examples. Margulis constructed the first explicit
families of expanders by using variants of Kazhdan’s property (T ) and group theory.
The study of expanders and of group-theoretic constructions of expanders remains
a broad and vibrant field, see [16, 51].

Definition 4.2. Let G be a locally compact topological group. G has property (T ) of
Kazhdan if there is an ε > 0 and a compact set K ⊂G such that for every continuous
unitary representation π of G on a Hilbert space H without invariant vectors and
every v ∈H there is a k ∈ K such that ∥π(k)v− v∥> ε∥v∥.

It is perhaps easier to understand the contrapositive of this definition. To make this
clear say that π almost has invariant vectors if for every ε > 0 there exists a vector
v∈H such that ∥π(k)v−v∥< ε∥v∥ for every k in K. Then the definition says that G
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has property (T ) if and only if whenever π almost has invariant vectors, it actually
has non-trivial invariant vectors.

An early observation of Margulis is the following. Fix a discrete group Γ with
property (T ), for example SLn(Z) for n ≥ 3, and a finite generating set S of Γ . In
addition fix a family of finite index subgroups Ni of Γ , for instance the kernels of
reduction mod primes in SLn(Z). The the family of Cayley graphs for Γ /Ni with
respect to the fixed generating set S is an expander family. This can be verified in
either definition of expander family mentioned above.

In fact, Margulis constructed an even more explicit family of expanders using a
notion he introduced called relative property (T ). The point of this family was not
only to have an explicit construction but a very concrete one.

Definition 4.3. Let G be a locally compact topological group and H ⊂ G a closed
subgroup. We say the pair (G,H) has relative property (T ) if there exist ε > 0 and a
compact set K ⊂ G such that for every continuous unitary representation π of G on
a Hilbert space H without non-trivial H-invariant vectors and every v ∈H there is
a k ∈ K such that ∥π(k)v− v∥> ε∥v∥.

This is strictly weaker than property (T ) unless G=H. It says that if a representation
π of G on H almost has invariant vectors, then it has a vector invariant under the
subgroup H.

Margulis proved that SL2(Z)⋉Z2 has relative property (T ) with respect to the
subgroup Z2 and used this to produce a very explicit graph on the vertex set (Z/nZ)2

[75]. Explicitly, the vertex (x,y) is joined by an edge to the following 8 vertices

(x±2y,y),
(
x± (2y+1),y

)
,(x,y±2x),

(
x,y± (2x+1)

)
.

These particular graphs were later studied in more detail by Gabber and Galil and
are often termed Margulis–Gabber–Galil expanders [49].

Somewhat later Margulis gave a construction of optimal expanders which are
now called Ramanujan graphs and which were discovered independently by
Lubotzky, Phillips and Sarnak [72, 80].

5 Local rigidity of group actions

This section concerns work of the second-named author with Margulis on rigidity
of group actions on compact manifolds, and in particular local rigidity of actions
of higher rank semisimple groups and their lattices. This general area of research,
largely initiated by Zimmer, was inspired by certain kinds of generalizations of Mar-
gulis’ superrigidity theorem. The easier one to describe is simply to think of extend-
ing superrigidity to targets that are diffeomorphism groups of compact manifolds; in
other words, to attempt to classify homomorphisms ρ : Γ → Diff(M), where M is a
compact manifold, G is a simple Lie group of higher rank and Γ ⊂ G is a lattice. In
general this question is quite difficult and perhaps even intractable, but in particular
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cases striking results can be obtained. The work of Fisher and Margulis concentrates
on the particular question of local rigidity.

Definition 5.1. Let D be a topological group, Γ a discrete group and ρ : Γ → D a
homomorphism. Then ρ is locally rigid if any homomorphism ρ ′ that is close to ρ

in the compact open topology is conjugate to ρ by a small element of D.

The point is that for any ρ , there are trivially nearby ρ ′ defined by conjugating ρ

by small elements of D to obtain ρ ′. Local rigidity says that the only nearby rep-
resentations are those that occur for this trivial reason. Local rigidity in the context
of homomorphisms into Lie groups has a long history and was first studied by Sel-
berg, Weil, Calabi, Raghunathan and others in the 1960s. The main impetus for the
study of local rigidity of the defining inclusion of a lattice in a Lie group was that it
implied the lattice could be conjugated to have matrix entries in a number field; this
was observed by Selberg in [99]. This result of Selberg was a major motivation for
the conjecture that become Margulis’ arithmeticity theorem.

In a series of three papers, the second-named author and Margulis proved some
very broad theorems on local rigidity of group actions in the context of the Zimmer
program. The first is very general and simple to state [46].

Theorem 5.2. Let Γ be a discrete group with property (T ), and let M be a compact
manifold. Then any homomorphism ρ : Γ → Isom(M,g) is locally rigid when viewed
as a homomorphism into Diff(M).

The theorem both applies and is non-trivial even when ρ is trivial. There are also
many non-trivial isometric actions of groups with property (T ) on compact mani-
folds. Earlier work of Zimmer and Benveniste had provided partial results towards
Theorem 5.2.

The more general results obtained by Margulis and the second-named author in
[47] require an additional definition. Let M = H/Λ be a homogeneous manifold. A
diffeomorphism f of M is called affine if it can be written as a composition Lh ◦A,
where A is an automorphism of H preserving Λ and Lh is left translation by an
element h in H. An action ρ : D→Diff(H/Λ) is called affine if each ρ(d) is affine.

Theorem 5.3. Let H be a Lie group and Λ ⊂H a cocompact lattice, so that H/Λ =
M is a compact manifold. Let G be a semisimple Lie group with no compact factors
and all simple factors of higher rank, let Γ ⊂ G be a lattice, and let D = G or Γ .
Then any affine action ρ : D→ Diff(H/Λ) is locally rigid.

In [45], the second-named author and Margulis classify the affine actions of D as in
Theorem 5.3 on manifolds of the form H/Λ . This is a somewhat involved algebraic
computation based on Margulis’ superrigidity theorem. Examples constructed by
Katok–Lewis and Benveniste show that the assumption that the initial action is affine
is in some sense necessary: there are modifications of affine actions using blow up
constructions that are not locally rigid [54, 5].
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The proof of Theorem 5.3 is quite long and complicated and spans three pa-
pers. The first paper [45] proves the correct general version of Zimmer’s cocycle
superrigidity theorem and then shows that perturbations of constant cocycles have
a particularly nice form. The second paper [46] proves both Theorem 5.2 as well
as a much more difficult foliated version of it. This paper also makes several gen-
eralizations of property (T ) that have had a large impact on later research, both by
considering Banach spaces that are not Hilbertian and by considering actions that
are not isometric or even not globally defined. Finally, the paper [47] combines the
ingredients from the first two papers along with several new ideas to prove Theorem
5.3. An additional key ingredient comes from the work of Hirsch, Pugh and Shub
on stability of partially hyperbolic actions [52].

The key difference between Theorem 5.3 and prior work is that it makes no
assumptions on hyperbolicity of the group action. The proof does involve factoring
the action in a certain sense into hyperbolic and isometric parts, but the fact that
such a factorization exists in the perturbed action is highly non-trivial and must be
established. These papers have had a profound influence on further progress in the
Zimmer program, including a quite direct impact of ideas in [46] on the work of
Brown, Fisher and Hurtado on Zimmer’s Conjecture [8].

6 Dynamical systems on homogeneous spaces: an introduction

In the remaining part of this survey we present an exposition of the contributions
of Margulis in the area of homogeneous dynamics, that is, dynamical and ergodic
properties of actions on homogeneous spaces of Lie groups. The reader is referred
to [67] for a detailed survey of the field. Given a Lie group G and a closed subgroup
Γ ⊂ G, one can consider the left action of any subgroup F ⊂ G on G/Γ :

x 7→ gx, x ∈ G/Γ , g ∈ F.

When F is a one-parameter subgroup, the action thus obtained is called a homo-
geneous (one-parameter) flow. Classical examples are given by geodesic and horo-
cycle flows on surfaces of constant negative curvature, extensively studied in the
1930s–50s using geometric and representation-theoretic methods.

We remark that geodesic flows on surfaces of constant negative curvature are
prototypical examples of Anosov flows, and orbits of horocycle flows are stable and
unstable leaves relative to the geodesic actions.

Margulis’ famous PhD Thesis “On some properties of Anosov flows” (or rather
of U-systems, as they were called by Anosov back then), written in 1969 and pub-
lished in 2004 [87], made a foundational contribution to the theory. However, we
will not be covering it here as we are limiting the scope to homogenous dynamics.

The space of lattices in Rn. Here we describe a family of homogeneous spaces
particularly important for number-theoretic applications. Let G = SLn(R), and let
Ln denote the space of unimodular lattices in Rn. (By definition, a lattice ∆ is
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unimodular iff the volume of Rn/∆ is equal to 1.) G acts on Ln as follows: if
g ∈ G and ∆ ∈ Ln is the Z-span of the vectors v1, . . .vn, then gv is the Z-span of
gv1, . . . ,gvn. This action is clearly transitive. The stabilizer of the standard lattice Zn

is Γ = SLn(Z). This gives an identification of Ln with G/Γ .
One can consider a Haar measure on G (both left and right invariant) and the

corresponding left-invariant measure on Ln, which, as is well known, happens to be
finite; that is, Γ is a lattice in G. An important feature of the quotient topology on
G/Γ is that Ln is not compact (in other words, Γ is non-uniform). More precisely,
Mahler’s Compactness Criterion says that a subset Q of Ln is bounded if and only
if there exists an ε > 0 such that for any Λ ∈Q one has infx∈Λ∖{0} ∥x∥ ≥ ε . In other
words, for ε > 0 let Ln(ε)⊂Ln denote the set of lattices whose shortest non-zero
vector has length at least ε . Then for any ε > 0 the set Ln(ε) is compact.

Unipotent, quasi-unipotent and partially hyperbolic flows. Recall that a square
matrix is called unipotent (resp. quasi-unipotent) if all its eigenvalues are equal to
1 (resp. of absolute value 1). In a general Lie group an element is unipotent/quasi-
unipotent if so is its adjoint (acting on the Lie algebra). We will say that a sub-
group is unipotent/quasi-unipotent if all its elements are. Examples of unipotent
one-parameter subgroups: {(

1 t
0 1

)
: t ∈ R

}
⊂ SL2(R) (1)

(the action of this subgroup on SL2(R)/Γ induces the horocycle flow on the unit
tangent bundle to the quotient of the hyperbolic plane by Γ ), and

1 t t2/2
0 1 t
0 0 1

 : t ∈ R

⊂ SL3(R).

As was mentioned in Section 2, unipotent flows entered the research of Margulis
in the beginning of the 1970s, when their non-divergence property became an im-
portant ingredient in the proof of arithmeticity of non-uniform lattices. Then in the
mid 1970s Raghunathan, Dani and Margulis made a series of conjectures describing
rigidity properties of actions of unipotent one-parameter subgroups, as well as those
generated by unipotent elements, eventually proved in full generality by Ratner.

We note that quasi-unipotent flows are not far from the unipotent ones in terms
of their dynamical properties (see [102] or [67, §4.2]). Let us say that an element
(or a subgroup) of G is partially hyperbolic it is not quasi-unipotent. The dichotomy
“quasi-unipotent vs. partially hyperbolic” can also be characterized in terms of the
speed of mixing (at most polynomial vs. exponential) or entropy (zero vs. positive).
Thus it is not surprising that the properties of partially hyperbolic flows are drasti-
cally different from those of unipotent flows. In the next few sections we describe the
contributions of Margulis and his co-authors to both unipotent and partially hyper-
bolic dynamics on homogeneous spaces, as well as plentiful connections between
dynamics and number theory.
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7 Quantitative non-divergence

Let U = {ut}t∈R be a unipotent one-parameter subgroup of G. Consider the left
action of U of SLn(R) on Ln. When n = 2, every unipotent subgroup is conjugate
to (1), and it is easy to show, see §7.1, that every orbit spends relatively little time
outside L2(ε). In [73, 77] Margulis proved the following result:

Theorem 7.1. For any one-parameter subgroup {ut} of SLn(R), the orbit of every
lattice in Ln under the semi-group {ut : t ≥ 0} does not diverge to infinity.

This was used by Margulis to prove arithmeticity of higher rank lattice subgroups
of semisimple Lie groups. Several years later Dani [21] obtained a quantitative
strengthening of the initial nondivergence result by showing that such orbits return
into a suitably chosen compact set with positive frequency. To be more precise, Dani
proved that for any Λ ∈Ln there are 0 < ε,c < 1 such that for any T > 0 one has∣∣{t ∈ [0,T ] : utΛ ̸∈Ln(ε)

}∣∣< cT . (2)

(Here and hereafter for a set E ⊂R, |E| denotes the Lebesgue measure of E.) These
ideas were developed during later work on the Oppenheim conjecture and related
topics, see [22, 23, 25, 27, 28, 30, 31]. In this section we only present the result of
[61] which gives an explicit dependence of c on ε in (2) and includes the earlier
results on quantitative non-divergence as special cases. A more detailed account is
given in [58, 11].

7.1 An elementary non-divergence result

Even though it does not capture much of the difficulty of the problem, we start with
the SL2(R) case as a motivation.

Lemma 7.2. Suppose T > 0, Λ ∈L2 and 0 < ρ < 1/
√

2 are such that

∀v ∈Λ ∖{0} sup
t∈[0,T ]

∥utv∥ ≥ ρ. (3)

Then for any ε < ρ ,

|{t ∈ [0,T ] : utΛ /∈L2(ε)}| ≤ 2
(

ε

ρ

)
T. (4)

This can be interpreted as follows. Suppose ρ is the length of the shortest vector in
Λ . Then (3) holds. Thus for any ε < ρ the lemma gives the quantitative statement
(4), which says that the trajectory {utΛ}, where t ranges from 0 to T , spends little
time outside of L2(ε).
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Proof. Recall that a vector v ∈Λ is said to be primitive in Λ if Rv∩Λ is generated
by v as a Z-module. Now for r > 0 and a primitive v ∈Λ consider

Bv(r)
def
= {t ∈ B : ∥utv∥< r},

where ∥ · ∥ is the supremum norm. Let v =

(
a
b

)
∈ P(Λ) be such that Bv(ε) ̸= ∅.

Then, since utv=
(

a+bt
b

)
, it follows that |b|< ε , and (3) implies that b is nonzero.

Therefore, if we define f (t) = a+bt, we have

Bv(ε) = {t ∈ [0,T ] : | f (t)|< ε} and Bv(ρ) = {x ∈ [0,T ] : | f (t)|< ρ} .

Clearly the ratio of lengths of intervals Bv(ε) and Bv(ρ) is bounded from above by
2ε/ρ (by looking at the worst case when Bv(ε) is close to one of the endpoints of
B). Since

a unimodular lattice in R2 cannot contain
two linearly independent vectors each of length < ρ,

(5)

the sets Bv(ρ) are disjoint for different primitive v ∈ Λ . Also it is clear that utΛ /∈
L2(ε) whenever t ∈ Bv(ρ)∖Bv(ε) for some primitive v∈Λ . Thus we conclude that

|{x ∈ [0,T ] : uxΛ /∈L2(ε)}| ≤∑
v
|Bv(ε)

∣∣
≤ 2

ε

ρ
∑
v

∣∣Bv(ρ)
)∣∣≤ 2

ε

ρ
T. □

7.2 The general case

In this section, we present a generalization of Lemma 7.2, which is in particular
valid for any dimension.

First, we note that the group structure of U = {ut : t ∈R} is not used in the proof
of Lemma 7.2. In fact it was already observed in [73] that the feature important for
the proof is the polynomial nature of the map t 7→ ut . More generally, the third-
named author and Margulis introduced the following definition:

Definition 7.3. If C and α are positive numbers and B is a subset of Rd , let us say
that a function f : B 7→ R is (C,α)-good on B if for any open ball J ⊂ B and any
ε > 0 one has

|{x ∈ J : | f (x)|< ε}| ≤C
(

ε

supx∈J | f (x)|

)α

|J| . (6)

This definition captures the property of unipotent orbits used in the proof of
Lemma 7.2.
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Lemma 7.4. (a) f is (C,α)-good on B⇔ so is | f | ⇒ so is c f ∀c ∈ R;
(b) fi, i = 1, . . . ,k, are (C,α)-good on B⇒ so is supi | fi|;
(c) If f is (C,α)-good on B and c1≤

∣∣ f (x)
g(x)

∣∣≤ c2 for all x∈B, then g is
(
C(c2/c1)

α ,α)-
good on B;

The notion of (C,α)-good functions was introduced in [61] in 1998, but the
importance of (6) for measure estimates on the space of lattices was observed earlier.
For instance, the next proposition can be traced to [31, Lemma 4.1].

Proposition 7.5. For any k ∈ N, any polynomial of degree not greater than k is(
k(k+1)1/k,1/k

)
-good on R.

As a corollary, we have:

Corollary 7.1. For any n ∈ N there exist (explicitly computable) C = C(n), α =
α(n) such that for any one-parameter unipotent subgroup {ut} of SLn(R), any Λ ∈
Ln and any subgroup ∆ of Λ , the function t 7→ ∥ut∆∥ is (C,α)-good.

The following is the main non-divergence result of the third-named author and
Margulis. In particular, it is a generalization of Lemma 7.2 to the case of arbitrary
n.

Theorem 7.6 ([61]). Suppose d,n∈N, a lattice Λ ⊂Rn, a ball B = B(x0,r0)⊂Rd ,
C,α > 0, 0 < ρ < 1/n and a continuous map h : B̃→ SLn(R) are given, where
B̃ = B(x0,3nr0). Assume that for any primitive subgroup ∆ ⊂Λ ,

(i) the function x 7→ ∥h(x)∆∥ is (C,α)-good on B̃, and
(ii) supx∈B̃ ∥h(x)∆∥ ≥ ρ .

Then for any ε < ρ ,

|{x ∈ B : h(x)Λ /∈Ln(ε)}| ≤Cc(n,d)
(

ε

ρ

)α

|B|

where c(n,d) is an explicit constant.

Here is one of the key ideas used in the proof of Theorem 7.6.

Lattices, subspaces and flags. Let Λ be a lattice in bRn. We say that a subspace
L of bRn is Λ -rational if L∩Λ is a lattice in L. For any Λ -rational subspace L, we
denote by dΛ (L) or simply by d(L) the volume of L/(L∩Λ). Let us note that d(L)
is equal to the norm of e1∧·· ·∧ eℓ in the exterior power

∧ℓ(bRn), where ℓ= dimL
and (e1, . . . ,eℓ) is a basis over Z of L∩Λ . If L = {0} we write d(L) = 1.

Recall that a flag is an ascending chain of subspaces V1 ⊂ ·· · ⊂Vk of Rn. We say
that a flag is Λ -rational if all of its subspaces are.

We now present the substitute for (5) needed to work with n > 2. The following
definition is taken from [59] but it is implicit in [61] and also in [73, 77].
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Definition 7.7. Suppose Λ ⊂ Rn is a lattice, 0 < ε < η are constants, and F is a
Λ -rational flag. We say that Λ is marked by (F,ε,η) if the following hold:

(M1) For any subspace V ∈ F , dΛ (V )≤ ρ .
(M2) For any subspace V ∈ F , dΛ (V )≥ ε .
(M3) F is maximal among all the Λ -rational flags satisfying (M1).

The higher-dimensional analogue of (5) is the following:

Proposition 7.8. Suppose Λ is a lattice, 0 < ε < η < 1, and suppose there exists a
Λ -rational flag F such that Λ is marked by (F,ε,η). Then Λ ∈Ln(ε).

Proof. Write F = (V1, . . . ,Vm). Then, by (M1) and (M2), for 1≤ i≤ m,

ε ≤ dΛ (Vi)≤ η < 1.

Suppose Λ ̸∈ Ln(ε), then there exists a v ∈ Λ such that ∥v∥ < ε . Let i be such
that v ∈ Vi, v ̸∈ Vi+1, and let V = Vi +Rv. Then V is a Λ -rational subspace. Let
v1, . . . ,vk−1 be a basis for Vi ∩Λ , and let vk be such that v1, . . . ,vk is a basis for
V ∩Λ . Then,

dΛ (V ) = ∥v1∧·· ·∧ vk∥ ≤ ∥v1∧·· ·∧ vk−1∥∥vk∥.

Thus, one has
dΛ (V )≤ dΛ (Vi)∥v∥< ε.

In particular, dΛ (V ) < ρ , and thus by (M3), V = Vi+1. Then dΛ (Vi+1) < ε , contra-
dicting (M1). □

Proof of Theorem 7.6. The proof is a complicated inductive argument based on the
idea of the proof of Lemma 7.2 and on Proposition 7.8. We refer the reader to [61],
[59] or [58] for details. □

7.3 Applications to Diophantine approximation on
manifolds

In this section we list some of the applications of Theorem 7.6 to metric Diophantine
approximation. A much more detailed and comprehensive survey is given in [11].

Mahler’s conjecture, proved by Sprindžuk in 1964 [101], is the following state-
ment: for any n ∈ N, any ε > 0 and for almost any real number x, the inequality

|p+q1x+q2x2 + · · ·+qnxn|< ∥q∥−n(1+ε) (7)

has only finitely many solutions (p,q) ∈ Z×Zn, where q = (q1, . . . ,qn) and ∥q∥=
max1≤i≤n |qi|.
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After Sprindžuk’s result, several conjectural improvements were proposed. Baker
[3] proposed replacing ∥q∥n in (7) by Π+(q)−(1+ε), where Π+(q)=∏

n
i=1 max(1, |qi|).

(This is indeed an improvement of (7) since Π+(q) ≤ ∥q∥n.) Sprindžuk proposed
replacing the powers of x in (7) by arbitrary analytic functions, which together with
1 are linearly independent over R. In [61], the third-named author and Margulis
prove a combination of both of these conjectures. In fact, their result applies to a
more general class of functions which need not be real analytic. We thus make the
following:

Definition 7.9. Let f = ( f1, . . . , fn) : U →Rn be a map defined on an open subset U
of Rd . Given a point x0 ∈U , we say that f is ℓ-non-degenerate at x0 if f is ℓ times con-
tinuously differentiable on some sufficiently small ball centered at x0 and the partial
derivatives of f at x0 of orders up to ℓ span Rn. The map f is called non-degenerate
at x0 if it is ℓ-non-degenerate at x0 for some ℓ ∈ N; f is called non-degenerate
almost everywhere (in U) if it is non-degenerate at almost every x0 ∈ U with re-
spect to Lebesgue measure. The non-degeneracy of differentiable submanifolds of
Rn is defined via their parameterisation(s).

Note that a real analytic map f defined on a connected open set is non-degenerate
almost everywhere if and only if 1, f1, . . . fn are linearly independent over R.

We are now ready to state the main result of [61], which solves the Baker and
Sprinžuk conjectures in full generality, and also applies to non-degenerate maps.

Theorem 7.10 ([61, Theorem A]). Let f= ( f1, . . . , fn) be a map defined on an open
subset U of Rd which is non-degenerate almost everywhere. Then for any ε > 0, for
almost every x ∈U, the inequality

|p+q1 f1(x)+ · · ·+qn fn(x)|< Π+(q)−1−ε (8)

has only finitely many solutions (p,q) ∈ Z×Zn.

Strategy of proof of Theorem 7.10. Define

uf(x) =

(
1 f(x)
0 In

)
∈ SLn+1(R),

where In is the n×n identity matrix. Also for t = (t1, . . . , tn) ∈ Zn
≥0, define

gt =


et

e−t1

. . .
e−tn

 ,where t = t1 + · · ·+ tn.

Given a solution (p,q) to (8), define ti ∈ Zn
≥0 be the smallest integers such that

e−ti max(1, |qi|)≤Π+(q)−ε/(n+1).
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Then, an elementary computation using (8) shows that

et |p+q1 f1(x)+ · · ·+qn fn(x)|< en(1+γ)e−γt , (9)

where γ = ε/(n+1+nε).
For Λ ∈Ln+1, let δ (Λ) denote the length of the shortest non-zero vector in Λ .

(Thus, Λ ∈Ln+1(ε) if and only if δ (Λ)≥ ε .) Therefore, it follows from (9) that if
(p,q) is a solution to (8) and t, t are as above, then

δ (gtuf(x)Zn+1)< en(1+γ)e−γt . (10)

Thus it is enough to prove that for any sufficiently small ball B centered at any point
x0 on which f is non-degenerate,

∑
t
|{x ∈ B : δ (gtuf(x)Zn+1)< en(1+γ)e−γt}|< ∞. (11)

Indeed, if (11) holds, then the Borel–Cantelli Lemma ensures that for almost all x ∈
B, (10) holds only for finitely many t. Equation (11) is proved in [61] by verifying
the conditions of Theorem 7.6.

Khintchine–Groshev type results. The following generalization of Theorem 7.10
is proved in [14] by Bernik, the third-named author and Margulis:

Theorem 7.11. Let f = ( f1, . . . , fn) be a map defined on an open subset U of Rd

which is non-degenerate almost everywhere. Let Ψ : Zn→R+ be any function such
that

Ψ(q1, . . . ,qi, . . . ,qn)≤Ψ(q1, . . . ,q′i, . . . ,qn) if |qi|> |q′i| and qiq′i > 0.

Suppose that
∑

q∈Zn
Ψ(q)< ∞.

Then for almost every x ∈U, the inequality

|p+q1 f1(x)+ · · ·+qn fn(x)|<Ψ(q)

has only finitely many solutions (p,q) ∈ Zn+1.

Results of this type for almost all vectors in Rn (without restricting to subman-
ifolds) are due to Khintchine and Groshev; hence the name “Khintchine–Groshev
Theorems” reserved for such statements (see also Section 10.2 below). Note that
Ψ(q) = Π+(q)−1−ε for ε > 0 satisfies the conditions of Theorem 7.11, and thus
Theorem 7.11 is indeed a generalization of Theorem 7.10. We note the following
corollaries:
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Corollary 7.12. Let f be as in Theorem 7.11 and suppose ψ : R+ → R+ is any
monotonic function satisfying

∞

∑
k=1

ψ(k)< ∞.

Let s = (s1, . . . ,sn) ∈ Rn
>0 be such that s1 + · · ·+ sn = 1. For q ∈ Zn, write ∥q∥s =

max1≤i≤n |qi|1/si . Then, for almost every x ∈U, the equation

|p+q1 f1(x)+ · · ·+qn fn(x)|< ψ(∥q∥s)

has only finitely many solutions (p,q) ∈ Zn+1.

Note that if s = (1/n, . . . ,1/n) then ∥q∥s = ∥q∥n. In this case Corollary 7.12 was
proved previously by Beresnevich in [6] by a different method which does not in-
volve quantitative non-divergence. However, without new ideas, it does not seem to
be possible to extend this approach to in order to prove the full version of Corol-
lary 7.12 or Corollary 7.13 below.

Corollary 7.13. Let f be as in Theorem 7.11 and suppose ψ : R+ → R+ is any
monotonic function satisfying

∞

∑
k=1

(logk)n−1
ψ(k)< ∞.

Then, for almost every x ∈U, the equation

|p+q1 f1(x)+ · · ·+qn fn(x)|< ψ
(
Π+(q)

)
has only finitely many solutions (p,q) ∈ Zn+1.

Strategy of Proof of Theorem 7.11. The idea is to break up into two cases,
depending on the size of the gradient ∇(q · f). If ∥∇(q · f)∥ is large, a direct argument
is used. If it is small, the problem can be reduced to Theorem 7.6 by choosing an
appropriate function h.

We note that the estimates from [14] were used in a follow-up paper [4] of
Margulis with Beresnevich, Bernik and the third-named author to establish the di-
vergence case of the Khintchine–Groshev Theorem for non-degenerate manifolds.
Some partial results towards a matrix analogue of Theorem 7.10 can be found in the
work of Margulis with Beresnevich, Wang and the third-named author [66, 15]; this
task was later accomplished by Aka, Breuillard, Rozenzweig and de Saxce in [1].
See [11] for a plethora of more recent applications of quantitative non-divergence
estimates to Diophantine approximation.
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8 Conjectures of Oppenheim and Raghunathan

In the 1970s unipotent flows made a dramatic appearance with regards to another,
seemingly unrelated, problem rooted in number theory. Let

Q(x1, . . . ,xn) = ∑
1≤i≤ j≤n

ai jxix j

be an indefinite quadratic form in n variables. It is clear that if Q is a multiple of a
form with rational coefficients, then the set of values Q(Zn) is a discrete subset of
R. Much deeper is the following conjecture:

Conjecture 8.1 (Oppenheim, 1931). Suppose Q is not proportional to a rational
form and n≥ 5. Then for every ε > 0 there exists an x∈Zn∖{0} such that |Q(x)|<
ε .

This conjecture was later extended by Davenport to n≥ 3. Note that it is easy to
construct counterexamples when n = 2; see e.g. [40, Proposition 1.3].

In the mid 1970s Raghunathan observed a remarkable connection between the
Oppenheim Conjecture and flows on the space of lattices Ln = G/Γ , where G =
SLn(R) and Γ = SLn(Z). (Implicitly this observation was made several decades
earlier by Cassels and Swinnerton-Dyer, see [20].) It can be summarized as follows:

Observation 8.2 (Raghunathan). Let Q be an indefinite quadratic form, and let
H = SO(Q) denote its orthogonal group. Consider the orbit of the standard lattice
Zn ∈Ln under H. Then the following are equivalent:

(a) The orbit HZn is not relatively compact in Ln.
(b) For all ε > 0 there exists x ∈ Zn ∖{0} such that |Q(x)|< ε .

Proof. Suppose (a) holds, so some sequence hkZn leaves all compact sets. Then
in view of the Mahler compactness criterion there exist vk ∈ hkZn ∖ {0} such that
∥vk∥ → 0. Then, also by continuity, Q(vk)→ 0. But then h−1

k vk ∈ Zn ∖ {0}, and
Q(h−1

k vk) = Q(vk)→ 0. Thus (b) holds.
On the other hand, assuming (b) we get a sequence of nonzero integer vectors

xk such that Q(xk)→ 0 as k→ ∞; then, using the transitivity of the H-action on the
level sets of Q one find hk ∈ H such that hkxk→ 0 as k→ ∞, proving (a). □

Raghunathan also explained why the case n = 2 is different: in that case H =
SO(Q) has no unipotent elements. On the other hand, H is generated by its unipotent
one-parameter subgroups when n > 2. The aforementioned reduction of the Oppen-
heim conjecture to a problem in homogeneous dynamics motivated Raghunathan to
make a far-reaching conjecture on the behavior of unipotent flows on homogeneous
spaces:
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Theorem 8.3 (Raghunathan’s topological conjecture). Let G be a Lie group, Γ ⊂
G a lattice, and U ⊂ G a one-parameter unipotent subgroup. Suppose x ∈ G/Γ .
Then there exists a subgroup F of G (generated by unipotents) such that the closure
Ux of the orbit Ux is Fx.

The above theorem in this generality is due to Ratner, but we will first describe
earlier developments in which significant special cases were proven by Margulis
and Dani–Margulis. In the literature this conjecture was first stated in the paper
[22] and in a more general form in [81] (when the subgroup U is not necessarily
unipotent but generated by unipotent elements). Margulis’s proof of the Oppenheim
conjecture, given in [79, 81, 82], uses Raghunathan’s observation and proceeds by
showing that any relatively compact orbit of SO(2,1) in L3 is compact; this implies
the Oppenheim Conjecture and can be easily derived from Theorem 8.3. For an
account which stays reasonably close to Margulis’s original proof see [13, Chapter
6].

Dani and Margulis were able to establish Theorem 8.3 in the special case when
G = SL3(R) and U = {ut} is a “generic” one-parameter unipotent subgroup of G;
that is, such that ut− I has rank 2 for all t ̸= 0. The work done in [28], together with
the methods developed in [79, 81, 82, 27], suggested an approach for proving the
Raghunathan conjecture in general by studying minimal invariant sets and limits of
orbits of points tending to a minimal invariant set.

This strategy can be outlined as follows: Let x be a point in G/Γ , and U a con-
nected unipotent subgroup of G. Denote by X the closure of Ux and consider a min-
imal closed U-invariant subset Y of X . Suppose that Ux is not closed (equivalently,
X is not equal to Ux). Then X should contain “many” translations of Y by elements
from the normalizer N(U) of U not belonging to U . After that one can try to prove
that X contains orbits of bigger and bigger unipotent subgroups until one reaches
horospherical subgroups. The basic tool in this strategy is the following fact. Let y
be a point in X , and let gn be a sequence of elements in G such that gn converges
to 1, gn does not belong to N(U), and yn = gny belongs to X . Then X contains AY
where A is a nontrivial connected subset in N(U) containing 1 and “transversal” to
U . To prove this one has to observe that the orbits Uyn and Uy are “almost parallel”
in the direction of N(U) most of the time in “the intermediate range”.

In fact the set AU as a subset of N(U)/U is the image of a nontrivial rational map
from U into N(U)/U . Moreover this rational map sends 1 to 1 and also comes from
a polynomial map from U into the closure of G/U in the affine space V containing
G/U . This affine space V is the space of the rational representation of G such that
V contains a vector the stabilizer of which is U (the Chevalley theorem). Some
elements of this proof are key to the current program of Lindenstrauss, Mohammadi,
Margulis and Shah [71] of giving a fully effective version of Ratner’s theorems.

Raghunathan’s conjecture was eventually proved in full generality by Ratner, see
[95]. It is worth pointing out that Ratner derived Theorem 8.3 from her measure
classification theorem, conjectured earlier by Dani. Loosely speaking, it says that
all U-invariant ergodic measures are very nice.
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Theorem 8.4 (Ratner’s measure classification theorem [94]). Let G be a Lie
group, Γ ⊂ G a lattice. Let U be a one-parameter unipotent subgroup of G. Then
any ergodic U-invariant measure is algebraic; namely, there exists x ∈ G/Γ and a
subgroup F of G such that Fx is closed, and µ is the F-invariant probability mea-
sure supported on Fx. (Also the group F is generated by unipotent elements and
contains U).

We note that following the publication of Ratner’s papers, Margulis and Tomanov
[88] gave a different proof of the measure classification theorem which in particular
made use of entropy considerations. This proof turned out to be extremely influential
for further developments in the area.

9 Linearization

In this section, we give a partial description of the “linearization” technique intro-
duced in [31] and used for the proof of the lower bounds in the quantitative version
of the Oppenheim conjecture. This technique, and in particular Theorem 9.3 below,
is used in a multitude of applications of the theory of unipotent flows.

9.1 Non-ergodic measures invariant under a unipotent

The collection H . Let G be a Lie group, Γ a discrete subgroup of G, and π : G→
G/Γ the natural quotient map. Let H be the collection of all closed subgroups
F of G such that F ∩Γ is a lattice in F and the subgroup generated by unipotent
one-parameter subgroups of G contained in F acts ergodically on π(F)∼=F/(F∩Γ )
with respect to the F-invariant probability measure. This collection is countable (see
[94, Theorem 1.1] or [31, Proposition 2.1] for different proofs of this result). Note
that up to conjugation, H is the collection of groups which appear in the definition
of algebraic measure in the statement of Theorem 8.4.

Let U be a unipotent one-parameter subgroup of G and let F ∈H . Define

N(F,U) = {g ∈ G : U ⊂ gFg−1}
S(F,U) =

⋃
{N(F ′,U) : F ′ ∈H , F ′ ⊂ F, dimF ′ < dimF}.

It is clear that if g ∈ N(F,U) and F ∈H , then the orbit Uπ(g) is contained
in the closed subset π(gF). More precisely, it is possible to prove the following
(cf. [90, Lemma 2.4]):

Lemma 9.1. Let g ∈ G and F ∈H . Then g ∈ N(F,U)∖ S(F,U) if and only if the
group gFg−1 is the smallest closed subgroup of G which contains U and whose orbit
through π(g) is closed in G/Γ . Moreover in this case the action of U on gπ(F) is
ergodic with respect to a finite gFg−1-invariant measure.



456 Alex Eskin, David Fisher and Dmitry Kleinbock

As a consequence of this lemma, one has

π
(
N(F,U)∖S(F,U)

)
= π

(
N(F,U)

)
∖π
(
S(F,U)

)
∀F ∈H .

Theorem 8.4 states that given any U-ergodic invariant probability measure on
G/Γ , there exists F ∈H and g∈G such that µ is g−1Fg-invariant and µ

(
π(F)g

)
=

1. Now decomposing any finite invariant measure into its ergodic component and
using Lemma 9.1, one obtains the following description for any U-invariant proba-
bility measure on G/Γ (see [90, Theorem 2.2]).

Theorem 9.2 (Ratner). Let U be a unipotent one-parameter subgroup of G and
let µ be a finite U-invariant measure on G/Γ . For every F ∈H , let µF denote
the restriction of µ to π

(
N(F,U)∖ S(F,U)

)
. Then µF is U-invariant, and any U-

ergodic component of µF is a gFg−1-invariant measure on the closed orbit gπ(F)
for some g ∈ N(F,U)∖S(F,U).

In particular, for all Borel measurable subsets A of G/Γ ,

µ(A) = ∑
F∈H ∗

µF(A),

where H ∗ ⊂H is a countable set consisting of one representative from each Γ -
conjugacy class of elements in H .

Remark. One often uses Theorem 9.2 in the following form: suppose µ is any
U-invariant measure on G/Γ which is not G-invariant. Then there exists an F ∈H
such that µ gives positive measure to some compact subset of N(F,U)∖S(F,U).

9.2 The theorem of Dani–Margulis on uniform convergence

The “linearization” technique of Dani and Margulis was devised to understand
which measures give positive weight to compact subsets subsets of N(F,U)∖
S(F,U). Using this technique Dani and Margulis proved the following theorem,
which is important for many applications.

Theorem 9.3 ([31, Theorem 3]). Let G be a connected Lie group and let Γ be a
lattice in G. Let µ be the G-invariant probability measure on G/Γ . Let U = {ut}
be an Ad-unipotent one-parameter subgroup of G and let f be a bounded continu-
ous function on G/Γ . Let D be a compact subset of G/Γ and let ε > 0 be given.
Then there exist finitely many proper closed subgroups F1 = F1( f ,D ,ε), . . . ,Fk =
Fk( f ,D ,ε) such that Fi ∩Γ is a lattice in Fi for all i, and compact subsets C1 =
C1( f ,D ,ε), . . . ,Ck = Ck( f ,D ,ε) of N(F1,U), . . . ,N(Fk,U) respectively, for which
the following holds: For any compact subset K of D ∖

⋃
1≤i≤k π(Ci) there exists a

T0 ≥ 0 such that for all x ∈K and T > T0∣∣∣ 1
T

∫ T

0
f (utx)dt−

∫
G/Γ

f dµ

∣∣∣< ε. (12)



The work of G. A. Margulis 457

This theorem can be informally stated as follows: Fix f and ε > 0. Then (12)
holds uniformly in the base point x, as long as x is restricted to compact sets away
from a finite union of “tubes” N(F,U); the latter are associated with orbits which do
not become equidistributed in G/Γ , because their closure is strictly smaller.)

Note that only finitely many Fk are needed in Theorem 9.3. This has the remark-
able implication that if F ∈H ∖{F1, . . . ,Fk}, then (12) holds for x ∈ N(F,U) even
though Ux is not dense in G/Γ (the closure of Ux is Fx). Informally, this means
that the non-dense orbits of U are themselves becoming equidistributed as they get
longer.

In the rest of this subsection, we present some of the ideas developed for the
proof of Theorem 9.3.

Linearization of neighborhoods of singular subsets. Let F ∈H . Let g denote
the Lie algebra of G and let g denote its Lie subalgebra associated to F . For d =
dimg, put VF = ∧dg, and consider the linear G-action on VF via the representation
∧d Ad, the d-th exterior power of the Adjoint representation of G on g. Fix pF ∈
∧df∖{0}, and let ηF : G→VF be the map defined by ηF(g)= g · pF =(∧d Adg) · pF
for all g ∈ G. Note that

η
−1
F (pF) = {g ∈ NG(F) : det(Adg|f) = 1}.

The idea of Dani and Margulis is to work in the representation space VF (or more
precisely V̄F , which is the quotient of VF by the involution v→−v) instead of G/Γ .
In fact, for most of the argument one works only with the orbit G · pF ⊂ VF . The
advantage is that F is collapsed to a point (since it stabilizes pF ). The difficulty
is that the map ηF : G→ V̄F is not Γ -equivariant, and so becomes multivalued if
considered as a map from G/Γ to VF . Dani and Margulis showed that the orbit
Γ · pF is discrete in VF [31, Theorem 3.4], and that

η
−1
F (AF) = N(F,U) (13)

[31, Prop. 3.2], where AF be the linear span of ηF
(
N(F,U)

)
in VF .

Let NG(F) denote the normalizer in G of F . Put ΓF = NG(F)∩Γ . Then for any
γ ∈ ΓF , we have γπ(F) = π(F), and hence γ preserves the volume of π(F). There-
fore |det(Adγ|f)|= 1, and thus γ · pF =±pF . Now define

V̄F =

{
VF/{Id,− Id} if ΓF · pF = {pF ,−pF}
VF if ΓF · pF = pF .

The action of G factors through the quotient map of VF onto V̄F . Let p̄F denote the
image of pF in V̄F , and define η̄F : G→ V̄F as η̄F(g) = g · p̄F for all g ∈ G. Then
ΓF = η̄

−1
F ( p̄F)∩Γ . Let ĀF denote the image of AF in V̄F . Note that the inverse

image of ĀF in VF is AF .
For every x ∈ G/Γ , define the set of representatives of x in V̄F to be

Rep(x) = η̄F
(
π
−1(x)

)
= η̄F(xΓ )⊂ V̄F .



458 Alex Eskin, David Fisher and Dmitry Kleinbock

The following lemma allows us to understand the map Rep in a special case:

Lemma 9.4. If x = π(g) and g ∈ N(F,U)∖S(F,U)

Rep(x)∩ ĀF = {g · pF}.

Thus x has a single representative in ĀF ⊂VF .

Proof. Indeed, using (13),

Rep
(
π(g)

)
∩ ĀF =

(
gΓ ∩N(F,U)

)
· p̄F .

Now suppose γ ∈ Γ is such that gγ ∈ N(F,U). Then g belongs to N(γFγ−1,U) as
well as to N(F,U). Since g ̸∈ S(F,U), we must have γFγ−1 = F , so γ ∈ ΓF . Then
γ p̄F = p̄F , so

(
gΓ ∩N(F,U)

)
· p̄F = {g · p̄F} as required. □

We extend this observation in the following result (cf. [100, Prop. 6.5]).

Proposition 9.5 ([31, Corollary 3.5]). Let D be a compact subset of ĀF . Then for
any compact set K ⊂G/Γ ∖π

(
S(F,U)

)
there exists a neighborhood Φ of D in V̄F

such that any x ∈K has at most one representative in Φ .

Using this proposition, one can uniquely represent in Φ the parts of the unipo-
tent trajectories in G/Γ lying in K . Then one also has a “polynomial divergence”
estimate similar to the ones used in §7:

Proposition 9.6 ([31, Proposition 4.2]). Let a compact set C⊂ ĀF and an ε > 0 be
given. Then there exists a (larger) compact set D⊂ ĀF with the following property:
For any neighborhood Φ of D in V̄F there exists a neighborhood Ψ of C in V̄F with
Ψ ⊂ Φ such that the following holds: For any unipotent one parameter subgroup
{ut} of G, an element w ∈ V̄H and an interval I ⊂ R, if u(t0)w ̸∈ Φ for some t0 ∈ I
then,

|{t ∈ I : utw ∈Ψ}| ≤ ε · |{t ∈ I : utw ∈Φ}|.

As a consequence, Dani and Margulis derive the following result of independent
interest:

Theorem 9.7 ([31, Theorem 1]). Let G be a connected Lie group and let Γ be
a discrete subgroup of G. Let U be any closed connected subgroup of G which is
generated by the Ad-unipotent elements contained in it. Let K be a compact subset
of G/Γ ∖

⋃
F∈H N(F,U). Then for any ε > 0 there exists a neighbourhood Ω of⋃

F∈H N(F,U) such that for any Ad-unipotent one-parameter subgroup {ut} of G,
any x ∈K and any T ≥ 0,

|{t ∈ [0,T ] : utx ∈Ω}|< εT.

Proof of Theorem 9.3. The proof relies on Ratner’s measure classification theo-
rem (Theorem 8.4) as well as on a refined version of Theorem 9.7, which carefully
handles trajectories of points in some N(F,U). □
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10 Partially hyperbolic flows and
Diophantine approximation

Let us start this section by describing a particular important example of a partially
hyperbolic homogeneous flow. Take G = SLm+n(R), and consider a subgroup {gt}
of G, where

gt = diag(et/m, . . . ,et/m︸ ︷︷ ︸
m times

,e−t/n, . . . ,e−t/n︸ ︷︷ ︸
n times

) . (14)

A connection between the behavior of gt -trajectories on Ln and Diophantine ap-
proximation was implicitly observed by Davenport and Schmidt [32] in the late
1960s, and explicitly spelled out by Dani in 1985 [24]. Later this connection, in a
more general form, was called “Dani Correspondence” by the third-named author
and Margulis [62].

10.1 Exceptional trajectories

Let us state one of Dani’s observation from [24]: for an m×n matrix A define

UA :=
(

Im A
0 In

)
∈ G; (15)

then the trajectory {gtUAZm+n : t ≥ 0}, with gt as in (14), is bounded in Ln if and
only if A is badly approximable, that is, there exists a c > 0 such that

∥Aq+p∥m∥q∥n ≥ c ∀p ∈ Zm, q ∈ Zn ∖{0}.

Badly approximable systems of linear forms constitute a classical object of study
by number theorists. In particular, it was proved by Schmidt [96, 98] that they form
a set of full Hausdorff dimension. This, and the fact that {UA} is the expanding
horospherical subgroup of G relative to g1, enabled Dani to conclude that the set
of points in the space of lattices with bounded gt -trajectories has full Hausdorff di-
mension. In a follow-up paper [26] Dani used a modification of Schmidt’s argument
to prove a similar statement for homogeneous spaces of Lie groups of real rank 1.
Such conclusions are in sharp contrast with the behavior of unipotent trajectories:
indeed, it can be shown using the methods described in the previous section that for
a unipotent subgroup U of G the set of points with non-dense U-orbits is contained
in a countable union of proper submanifolds of G/Γ . In particular, its Hausdorff
dimension is strictly smaller than the dimension of G.

Fast forward to 1990, when Margulis gave a plenary talk at the ICM in
Kyoto titled “Dynamical and ergodic properties of subgroup actions on homoge-
neous spaces with applications to number theory”. There, in addition to discussing
Raghunathan’s conjectures and their generalizations, he stated two conjectures high-
lighting the chaotic behavior of partially hyperbolic actions. Let us state them here:
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Conjecture (A). Let G be a Lie group, Γ a lattice in G, and {gt} a partially hyper-
bolic subgroup of G. Then for any non-empty open subset Ω of G/Γ , the set

{x ∈Ω : the {gt}-orbit of x is bounded}

has Hausdorff dimension equal to the dimension of G.

Conjecture (B). Let G, Γ and {gt} be as in Conjecture (A), and let Y be a finite
subset of G/Γ . Then for any non-empty open subset Ω of G/Γ , the setx ∈Ω

∣∣∣∣∣∣∣
the {gt}-orbit of x is bounded, the closure of this orbit

is of Hausdorff dimension less than dim(G),

and the intersection of this closure with Y is empty


has Hausdorff dimension equal to the dimension of G.

Conjecture (A) was proved shortly thereafter by Margulis and the third-named
author [60]. In fact its statement had to be adjusted to account for a possibility to
have a product of two flows, one being unipotent and another partially hyperbolic.
To state a theorem to which the general case of this conjecture can be easily reduced,
let us denote by G+ the expanding horospherical subgroup of G relative to g1.

Theorem 10.1. Let G be a connected semisimple Lie group without compact fac-
tors, Γ an irreducible lattice in G, and {gt} a partially hyperbolic one-parameter
subgroup of G. Then for any x ∈ G/Γ there exist a sequence of neighborhoods
Vi of identity in G+ and a sequence of compact subsets Ki of G/Γ such that
diam(Vi)→ 0 as i→ ∞ and

dim
({

h ∈Vs | {gthx : t ≥ 0} ⊂Cs
})
→ dimG+ as i→ ∞ .

The proof of the above theorem comes from equidistribution of gt -translates of
G+-orbits in G/Γ , which is known to be a consequence of mixing of the flow by the
argument essentially going back to the Ph.D. Thesis of Margulis [87]. More specif-
ically, one considers natural “rectangular” partitions of G+ (called tessellations in
[60]) and studies their behavior under the automorphism h 7→ gthg−t of G+ for some
large value of t > 0. Equidistribution of translates is used to show than one can cover
the set of “bad” points (those getting out of a large compact subset of G/Γ ) by a
relatively small number of rectangles. Then those rectangles are being thrown out
to create a Cantor set consisting of points with trajectories staying within a compact
subset of G/Γ .

Note that the case when gt has a nontrivial unipotent part in its Jordan decompo-
sition poses an additional difficulty, namely one has to deal with polynomial expan-
sion in the neutral foliation; this was done in [60] by making use of the exponential
mixing of the flow, which was shown to imply the exponentially fast equidistribu-
tion of gt -translates of unstable leaves. See Section 10.3 for further developments
along these lines.
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We remark that Conjecture (B) was later proved by the third-named author and
Weiss [65] by a completely different method, namely by a modification of the notion
of Schmidt games developed in [96, 98].

10.2 Cusp excursions

Dani’s correspondence between badly approximable systems of linear forms and
bounded trajectories was generalized in [62] to describe arbitrary rates of ap-
proximation. For a function ψ : N → R+, let us say that an m× n matrix A is
ψ-approximable if there are infinitely many q ∈ Zn such that

∥Aq+p∥m ≤ ψ(∥q∥n) for some p ∈ Zm . (16)

Clearly A is badly approximable if it is not cψ1-approximable for some c >
0, where ψ1(x) := 1

x . To state a theorem generalizing Dani’s correspondence to
ψ-approximable matrices, one needs a “change of variables” lemma:

Lemma 10.2 ([62, Lemma 8.3]). Fix m,nl ∈ N and x0 > 0, and let ψ : [x0,∞) 7→
(0,∞) be a non-increasing continuous function. Then for some t0 ∈ R there exists a
unique continuous function ε : [t0,∞) 7→ (0,∞) such that

the function t 7→ et
ε(t)n is strictly increasing and unbounded , (17)

the function t 7→ e−t
ε(t)m is nonincreasing , (18)

and
ψ
(
et

ε(t)n)= e−t
ε(t)m ∀ t ≥ t0 . (19)

Conversely, given t0 ∈R and a continuous function ε : [t0,∞) 7→ (0,∞) such that (17)
and (18) hold, there exists a unique continuous non-increasing function
ψ : [x0,∞) 7→ (0,∞) satisfying (19).

In many cases one can explicitly solve (19) to express ε(·) knowing ψ(·) and
vice versa. For example the choice ψ = cψ1(x) corresponds to ε ≡ const, as in the
original Dani correspondence. The choice ψ(x) = 1

xv , where v > 1, corresponds to
very well approximable matrices; those appear in the work of Margulis and the
third-named author on Diophantine approximation on manifolds, see Section 7.3.
Here is a generalized form of the Dani correspondence:

Theorem 10.3 ([62, Theorem 8.5]). An m× n matrix A is ψ-approximable if and
only if there exist arbitrarily large positive t such that

δ (gtUAZm+n)< ε(t),

where {gt} is as in (14), UA as in (15), and ε(·) is the function corresponding to ψ

as in the previous lemma.
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Loosely speaking, good rational approximations for A correspond to far excur-
sions of the gt -trajectory of ΛA =UAZm+n into the “cusp neighborhoods” Ωm+n(ε).
In [62] such cusp excursions were studied in the generality of arbitrary partially
hyperbolic actions on finite volume homogeneous spaces. More generally, the fol-
lowing was proved there:

Theorem 10.4. Let G be a connected semisimple Lie group without compact fac-
tors, Γ an irreducible lattice in G, X = G/Γ , µ the G-invariant probability measure
on X, g ∈ G a partially hyperbolic element. Also let {Bn} be a “sufficiently regu-
lar” sequence of subsets of X (sufficient regularity here means that the sets can be
uniformly approximated by smooth functions from above and below only losing a
fraction of their measure). Then

µ ({x ∈ X : gnx ∈ Bn for infinitely many n ∈ N})

=

{
0 if ∑

∞
n=1 µ(Bn)< ∞,

1 if ∑
∞
n=1 µ(Bn) = ∞.

The proof is based on the exponential rate of mixing for smooth functions on
X . Among other things, Theorem 10.4 generalized Sullivan’s logarithm law for
geodesics in finite volume hyperbolic manifolds [104] and, through the use of
Theorem 10.3, provided an alternative proof of the Khintchine–Groshev Theorem:
Lebesgue almost every A is (resp., is not) ψ-approximable if and only if the series
∑k ψ(k) diverges (resp., converges).

10.3 Effective equidistribution

An interesting direction in simultaneous Diophantine approximation is a modifica-
tion of the standard set-up as in (16) by assigning weights to the individual variables
and linear forms. We have seen one example of this in Corollary 7.12. More gen-
erally, one can choose r = (r1, . . . ,rm) ∈ Rm

>0 and s = (s1, . . . ,sn) ∈ Rn
>0 such that

r1 + · · ·+ rm = s1 + · · ·+ sn = 1 and, with the notation ∥x∥r = max1≤i≤m |xi|1/ri and
∥y∥r = max1≤ j≤n |y j|1/s j , study the solvability (in integers p, q) of the inequality

∥Aq+p∥r ≤ ψ(∥q∥s)

instead of (16). This, as shown in [56], can be understood through the action of the
weighted diagonal one-parameter subgroup

gr,s
t := diag(er1t , . . . ,ermt ,e−s1t , . . . ,e−tsn)

of G = SLm+n(R). However, for the use of dynamics in the unweighted case (14) it
was important that the group

H := {UA}
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was precisely the expanding horospherical subgroup relative to g1. This way, for ex-
ample, one could use mixing to deduce equidistribution of gt -translates of unstable
leaves, in particular deriving the fact that the trajectory {gtΛA : t ≥ 0} is dense in
X for almost every A. However, when some weights are different, the group H be-
comes a proper subgroup of the expanding horospherical subgroup relative to gr,s

1 ,
and studying translates of its orbits poses additional difficulties.

In the process of investigating the problem of improving Dirichlet’s theorem in
the weighted setting, the third-named author and Weiss proved the equidistribution
of gr,s

t -translates of H-orbits in the space of lattices. The proof was based on Rather’s
Theorem and used the linearization method described in Section 9. Shortly there-
after Margulis came up with an idea that made it possible to establish the effective
version of the aforementioned equidistribution result. The following is a special case
of the main result of [63]:

Theorem 10.5. Let G, H and gr,s
t be as above, let ν be a Haar measure on H, and

let µ be the G-invariant probability measure on X =Lm+n. Then there exists a γ > 0
such that for any f ∈C∞

comp(H), ψ ∈C∞
comp(X), for any compact L ⊂ X and for all

z ∈ L and t ≥ 0 one has∣∣∣∣∫H
f (h)ψ(gr,s

t hz)dν(h)−
∫

H
f dν

∫
X

ψ dµ

∣∣∣∣≪ f ,ψ,L e−γt .

The implicit constant in the above inequality can be estimated in terms of deriva-
tives of f and ψ and the injectivity radius of L. This was later done explicitly in [64]
and used for estimating the Hausdorff dimension of the set of matrices A such that
the trajectories {gr,s

t ΛA} miss a given open set, with an application to Diophantine
approximation with weights.

The proof of Theorem 10.5 happens to be perhaps even more important than the
result itself. The main trick is to write gr,s

t as a product of two elements of G:

gr,s
t = gt ′g

′′,

where gt ′ is as defined in (14). Then one uses exponentially fast equidistribution
of gt ′ -translates, available since H is expanding horospherical with respect to g1,
together with quantitative non-divergence of g′′-translates. This idea was later ex-
ploited in [68, 10] where multiple effective equidistribution of such translates was
established in much bigger generality. See also [69] for an applications to proving a
Khintchine-type theorem for improvement of weighted Dirichlet theorem in simul-
taneous Diophantine approximation.

11 A quantitative version of the Oppenheim Conjecture

We now return to the set-up of the Oppenheim conjecture stated in §8, and describe
some ideas involved in the proof of its quantitative version.
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Fix an indefinite quadratic form Q. Let ν be a continuous positive function on
the sphere {v ∈ Rn : ∥v∥= 1}, and let

Ω := {v ∈ Rn : ∥v∥< ν(v/∥v∥)}.

We denote by T Ω the dilate of Ω by T ∈ R+. Define the following set:

V(a,b)(R) := {x ∈ Rn : a < Q(x)< b}.

Also let V(a,b)(Z) := {x ∈ Zn : a < Q(x)< b}. The set T Ω ∩Zn consists of O(T n)
points, and the set of values Q(T Ω ∩Zn) is contained in an interval of the form
[−µT 2,µT 2], where µ > 0 is a constant depending on Q and Ω . Thus one might
expect that for any interval (a,b), as T → ∞,

|V(a,b)(Z)∩T Ω | ∼ cQ,Ω (b−a)T n−2, (20)

where cQ,Ω is a constant depending on Q and Ω . This may be interpreted as “uni-
form distribution” of sets Q(Zn∩T Ω) in the real line. The main result of this section
is that (20) holds if Q is not proportional to a rational form, and has signature (p,q)
with p≥ 3, q≥ 1. We also determine the constant cQ,Ω .

If Q is an indefinite quadratic form in n variables, Ω is as above and (a,b) is an
interval, it can be shown that there exists a constant λ = λQ,Ω so that as T → ∞,

Vol(V(a,b)(R)∩T Ω)∼ λQ,Ω (b−a)T n−2 (21)

One of the main results of the paper [34] by the first-named author, Margulis and
Mozes is the following:

Theorem 11.1. Let Q be an indefinite quadratic form of signature (p,q), with p≥ 3
and q ≥ 1. Suppose that Q is not proportional to a rational form. Then for any
interval (a,b), as T → ∞,

|V(a,b)(Z)∩T Ω | ∼ λQ,Ω (b−a)T n−2, (22)

where n = p+q, and λQ,Ω is as in (21).

The asymptotically exact lower bound was proved in [31] with the help of the lin-
earization method described in the previous section.

11.1 Passage to the space of lattices

Here we relate the counting problem of Theorem 11.1 to a certain integral involving
the orthogonal group of the quadratic form and the space Ln. Roughly this is done
as follows. Let f be a bounded function on Rn ∖ {0} vanishing outside a compact
subset. For a lattice Λ ∈Ln let
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f̃ (Λ) = ∑
v∈Λ∖{0}

f (v) (23)

(the function f̃ is called the Siegel transform of f ). The proof is based on the identity
of the form ∫

K
f̃ (atkΛ)dk = ∑

v∈Λ∖{0}

∫
K

f (atkv) dk (24)

obtained by integrating (23). In (24) {at} is a certain diagonal subgroup of the or-
thogonal group of Q, and K is a maximal compact subgroup of the orthogonal group
of Q. Then for an appropriate function f , the right-hand side is related to the number
of lattice points v∈ [et/2,et ]∂Ω with a<Q(v)< b. The asymptotics of the left-hand
side is then established using the ergodic theory of unipotent flows and some other
techniques. Namely it is shown in [34] that Theorem 11.1 can be reduced to the
following theorem:

Theorem 11.2. Suppose p≥ 3, q≥ 1. Let Λ ∈Ln be a unimodular lattice such that
HΛ is not closed. Let ν be any continuous function on K. Then

lim
t→+∞

∫
K

f̃ (atkΛ)ν(k)dm(k) =
∫

K
ν dm

∫
Ln

f̃ (∆)dµ(∆). (25)

Note that if we replace f̃ by a bounded continuous function φ , then (25) fol-
lows easily from Theorem 9.3. (This was the original motivation for Theorem 9.3.)
The fact that Theorem 9.3 deals with unipotents and Theorem 11.2 deals with large
spheres is not a serious obstacle, since large spheres can be approximated by unipo-
tents. In fact, the integral in (25) can be rewritten as∫

B

(
1

T (x)

∫ T (x)

0
φ(utx) dm(k)

)
dx,

where B is a suitable subset of G and U is a suitable unipotent. Now by Theorem 9.3,
the inner integral tends to

∫
G/Γ

φ uniformly as long as x is in a compact set away
from an explicitly described set E, where E is a finite union of neighborhoods of
sets of the form π(C) where C is a compact subset of some N(F,U). By direct
calculation one can show that only a small part of B is near E, hence (25) holds.

However, for a non-negative bounded continuous function f on Rn, the function
f̃ defined in (23) is unbounded (it is in Ls(Ln) for 1≤ s < n). As was done in [31],
it is possible to obtain asymptotically exact lower bounds by considering bounded
continuous functions φ ≤ f̃ . But to prove the upper bounds in the theorems stated
above one needs to examine carefully the situation at the “cusp” of G/Γ , i.e. outside
of compact sets.

The functions αi and α . Let Λ be a lattice in Rn. Recall that the notion of a
Λ -rational subspace and the function dΛ was defined in §7 (following the statement
of Theorem 7.6). Let us introduce the following notation:
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αi(Λ) = sup
{ 1

dΛ (L)

∣∣∣ L is a Λ -rational subspace of dimension i
}
, 0≤ i≤ n,

α(Λ) = max
0≤i≤n

αi(Λ). (26)

By [97, Lemma 2], for any bounded compactly supported function f on bRn

there exists a positive constant c = c( f ) such that f̃ (Λ) < cα(Λ) for any Λ ∈Ln.
The upper bound in Theorem 11.1 is proved by combining the above observation
with the following integrability estimate:

Theorem 11.3 ([34]). If p≥ 3, q≥ 1 and 0< s< 2, or if p= 2, q≥ 1 and 0< s< 1,
then for any Λ ∈Ln

sup
t>0

∫
K

α(atkΛ)s dm(k)< ∞.

The upper bound is uniform as Λ varies over compact subsets of Ln.

This result can be interpreted as follows. For Λ ∈Ln and h ∈H, let f (h) = α(hΛ).
Since α is left-K̂ invariant, f is a function on the symmetric space X = K\H. The-
orem 11.3 is the statement that if p≥ 3, then the averages of f s, 0 < s < 2, over the
sets KatK in X remain bounded as t → ∞, and the bound is uniform as one varies
the base point Λ over compact sets.

11.2 Margulis functions

We now present some ideas from the proof of Theorem 11.3 and Theorem 11.10.
We recall the notation from §8 and §11.1: G = SLn(R), Γ = SLn(Z), K̂ ∼= SO(n)
is a maximal compact subgroup of G, H ∼= SO(p,q) ⊂ G, and K = H ∩ K̂ =
SO(p)×SO(q) is a maximal compact subgroup of H. Let m(·) denote the normal-
ized Haar measure on K. Let {at : t ∈ bR} be a self-adjoint one-parameter subgroup
of SO(2,1), where SO(2,1) is embedded into SO(p,q), so that at is conjugate to
the diagonal matrix with entries (et ,1, . . . ,1,e−t).

The strategy of the proof is to construct what we now call a Margulis function.
This idea has been extremely influential, see for example the survey [41].

Let Y be a space on which H acts. (In our case, Y = Ln). For t > 0, let At be the
averaging operator taking a function φ : Y →R to the function Atφ : Y →R defined
by

(Atφ)(x) =
∫

K
φ(atkx) dm(k). (27)

Definition 11.4. A K-invariant function f : Y → [1,∞] is called a Margulis function
(for the averages At ) if it satisfies the following properties:

(a) There exists aσ > 1 such that for all 0≤ t ≤ 1 and all x ∈ Y ,

σ
−1 f (x)≤ f (atx)≤ σ f (x). (28)

(This holds if log f is uniformly continuous along the H-orbits.)
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(b) For every c0 > 0 there exist τ > 0 and b0 > 0 such that for all x ∈ Y ,

Aτ f (x)≤ c0 f (x)+b0. (29)

(c) f is bounded on compact subsets of Y . For any ℓ > 0, the set {x : f (x)≤ ℓ} is a
compact subset of Y .

We have the following abstract lemma:

Lemma 11.5. Suppose f is a Margulis function on Y . Then, for all c < 1 there exists
t0 > 0 (depending on σ and c) and b > 0 (depending only on b0, c0 and σ ) such that
for all t > t0 and all x ∈ Y ,

(At f )(x)≤ c f (x)+b. (30)

A more general version of this lemma is proved in [34, §5.3]. The reader may also
refer to a simplified proof in [41, §3], specialized to the case H = SL2(R).

From the proof of Lemma 11.5, one can deduce the following variant:

Lemma 11.6. For every σ > 1 there exists a c0 > 0 such that the following holds.
Suppose f : Y → [1,∞) is a K-invariant function satisfying (a) and (c) of Defini-
tion 11.4, and let At be as in (27). Suppose also that there exists τ > 0 and b0 > 0
such that (29) holds. Then f is a Margulis function for the averages At .

For a wider perspective on Margulis functions and many related results, see the
survey [41].

Strategy of the proof of Theorem 11.3. Suppose 0 < s < 2. If the function αs

were a Margulis function on G/Γ , then Theorem 11.3 would follow immediately
from (30). Even though this is not true, the idea is to construct a Margulis function
f on G/Γ which is within a bounded multiple of αs.

If p≥ 3 and 0 < s < 2, or if (p,q) = (2,1) or (2,2) and 0 < s < 1, it is shown in
[34, §5.3] that for any c > 0 there exist t > 0 such that the functions αs

i satisfy the
following system of integral inequalities:

Atα
s
i ≤ ciα

s
i + e2t max

0< j≤min(n−i,i)

√
αs

i+ jα
s
i− j, (31)

where At is the averaging operator (At f )(∆) =
∫

K f (atkΛ) and ci ≤ c. If (p,q) =
(2,1) or (2,2) and s = 1, then (31) also holds (for suitably modified functions αi),
but some of the constants ci cannot be made smaller than 1.

In §11.4 we will show that if (31) holds, then for any ε > 0, the function f =
fε,s = ∑0≤i≤n ε i(n−i)αs

i is the desired Margulis function, and it follows from (26)
that the ratio of αs and f is uniformly bounded between two positive constants.

We now outline the proof of (31).
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11.3 A system of inequalities

By a direct calculation one can prove the following:

Proposition 11.7. Let {at | t ∈ bR} be a self-adjoint one-parameter subgroup of
SO(2,1). Let p,q ∈ N and let 0 < i < p+q = n. Let

F(i) = {x1∧·· ·∧ xi | x1, . . . ,xi ∈ bRn} ⊂
∧i(bRn).

Then, if p≥ 3, or if p = 2, q = 2 and i ̸= 2, for any 0 < s < 2 one has

lim
t→∞

sup
v∈F(i), ∥v∥=1

∫
K

dm(k)
∥atkv∥s = 0. (32)

where K = SO(p)×SO(q) and SO(2,1) is embedded into SO(p,q). If p = 2 and
q = 1, or if p = 2, q = 2 and i = 2, then (32) holds for any 0 < s < 1.

Lemma 11.8. Let {at}, p, q and n be as in Proposition 11.7. Denote SO(p)×SO(q)
by K. Suppose p≥ 3, q≥ 1 and 0 < i < n, or p = 2, q = 2 and i = 1 or 3. Then for
any 0 < s < 2, and any c > 0 there exist t > 0 such that for any Λ ∈Ln,∫

K
αi(atkΛ)s dm(k)<

c
2

αi(Λ)s + e2t max
0< j≤min{n−i,i}

(√
αi+ j(Λ)αi− j(Λ)

)s
. (33)

If p = 2, q = 1 and i = 1,2, or if p = 2, q = 2 and i = 2, then for any 0 < s < 1 and
any c > 0 there exist t > 0 such that (33) holds.

Proof. Fix c > 0. In view of Proposition 11.7 one can find t > 0 such that∫
K

dm(k)
∥atkv∥s <

c
2
· 1
∥v∥s (34)

for any v∈ F(i)∖{0}. Let Λ ∈Ln. There exists a Λ -rational subspace Li of dimen-
sion i such that

1
dΛ (Li)

= αi(Λ). (35)

Inequality (34) therefore implies∫
K

dm(k)
dat kΛ (atkLi)s <

c
2
· 1

dΛ (Li)s . (36)

Observe that

e−t ≤ ∥atv∥
∥v∥

≤ et ∀0 < j < n and ∀v ∈ F( j)∖{0}. (37)

Let us denote by Ψi the set of Λ -rational subspaces L of dimension i with dΛ (L) <
e2tdΛ (Li). We get from (37) that for a Λ -rational i-dimensional subspace L /∈Ψi
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dat kΛ (atkL)> dat kΛ (atkLi), k ∈ K. (38)

It follows from (36), (38) and the definition of αi that∫
K

αi(atkΛ)s dm(k)<
c
2

αi(Λ)s if Ψi = {Li}. (39)

Assume now that Ψi ̸= {Li}, and let M ∈Ψi ∖ {Li}. Then dim(M +Li) is equal to
i+ j where j > 0. Now using (35), (37) and the fact that

dΛ (L)dΛ (M)≥ dΛ (L∩M)dΛ (L+M)

(see [34, Lemma 5.6]), we get that for any k ∈ K

αi(atkΛ)< et
αi(Λ) =

et

dΛ (Li)
<

e2t√
dΛ (Li)dΛ (M)

≤ e2t√
dΛ (Li∩M)dΛ (Li +M)

≤ e2t
√

αi+ j(Λ)αi− j(Λ) .

Hence if Ψi ̸= {Li}∫
K

αi(atkΛ)s dm(k)≤ e2t max
0< j≤min{n−i,i}

(√
αi+ j(Λ)αi− j(Λ)

)s
. (40)

Combining (39) and (40), we obtain (33). □

11.4 Averages over large spheres

In this subsection we complete the proof of Theorem 11.3.

Proof of Theorem 11.3. It is easy to see that each of the functions αs
i is K-

invariant and has properties (a) and (c) of Definition 11.4. In particular, there exists
a σ > 1 such that for all 1 ≤ i ≤ n, equation (28) holds for αs

i . Let c0 be such that
Lemma 11.6 holds for this σ .

Applying Lemma 11.8, we see that there exists a τ > 0 such that for any 0< i< n

Aτ α
s
i <

c0

2
α

s
i + e2τ max

0< j≤min{n−i,i}

√
αs

i+ jα
s
i− j. (41)

Let us define q(i) = i(n− i). Then by a direct computation

2q(i)−q(i+ j)−q(i− j) = 2 j2.

Therefore we get from (41) that for any 0 < i < n, and any 0 < ε < 1,
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Aτ(ε
q(i)

α
s
i )

<
c0

2
ε

q(i)
α

s
i + e2τ max

0< j≤min{n−i,i}
ε

q(i)− q(i+ j)+q(i− j)
2

√
εq(i+ j)αs

i+ jε
q(i− j)αs

i− j

≤ c0

2
ε

q(i)
α

s
i + εe2τ max

0< j≤min{n−i,i}

√
εq(i+ j)αs

i+ jε
q(i− j)αs

i− j.

(42)

Consider the linear combination

fε ,s = ∑
0≤i≤n

ε
q(i)

α
s
i .

The function fε,s then also has properties (a) and (c) of Definition 11.4. Since
εq(i)αs

i < fε ,s,α0 = 1 and αn = 1, inequalities (42) imply the following inequality:

Aτ fε ,s < 2+
c0

2
fε ,s +nεe2τ fε ,s.

Taking ε = c0
2n e−2τ , we see that there exists a τ > 0 such that

Aτ fε ,s < c0 fε,s +2.

Then, by Lemma 11.6, fε,s is a Margulis function on G/Γ . Since

α
s
i ≤ ε

−q(i) fε ,s,

Lemma 11.5 implies that there exists a constant B > 0 so that for each i and all t > 0,∫
K

αi(atkΛ)s dm(k)< B,

and that the bound is uniform as Λ varies over compact subsets of G/Γ . From this
the theorem follows. ⊓⊔

11.5 Signatures (2,1) and (2,2)

If the signature of Q is (2,1) or (2,2), then no universal formula like (20) holds. In
fact, the following can be shown:

Theorem 11.9. Let Ω0 be the unit ball, and let q = 1 or 2. Then for every ε > 0 and
every interval (a,b) there exists a quadratic form Q of signature (2,q) not propor-
tional to a rational form, and a constant c > 0 such that for an infinite sequence
Tj→ ∞,

|V(a,b)(Z)∩T Ω0|> cT q
j (logTj)

1−ε .
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The case q = 1, b ≤ 0 of Theorem 11.9 was noticed by Sarnak and worked out
in detail in [17]. The quadratic forms constructed are of the form x2

1 + x2
2−αx2

3, or
x2

1+x2
2−α(x2

3+x2
4), where α is extremely well approximated by squares of rational

numbers.
As was observed in [34], the crucial difference between the cases max(p,q)> 2

and max(p,q) = 2 is that in the latter case Theorem 11.3 does not hold even for
s = 1. The following result is a replacement:

Theorem 11.10 ([34]). If max(p,q) = 2, then for any Λ ∈Ln

sup
t>1

1
t

∫
K

α(atkΛ)dm(k)< ∞,

with a uniform upper bound i as Λ varies over compact subsets of Ln.

This produces an upper bound for |V(a,b)(Z) ∩ T Ω | of the form
c(b−a)T n−2 logT , where c is a positive constant depending on Q.

In the follow-up paper [35] the first-named author, Margulis and Mozes studied
the case (p,q) = (2,2) in detail. Recall that a subspace of Rn is called isotropic if
the restriction of the quadratic form to the subspace is identically zero. Observe also
that whenever a form of signature (2,2) has a rational isotropic subspace L, then
the number of integer points in L∩T Ω is of the order of T 2 integral points x for
which Q(x) = 0, hence |V(ε,ε)(Z)∩ T Ω | ≥ cT 2 independently of the choice of ε .
Thus to obtain an asymptotic formula similar to (22) in the signature (2,2) case,
one must exclude the contribution of rational isotropic subspaces. We remark that
an irrational quadratic form of signature (2,2) may have at most 4 rational isotropic
subspaces (see [35, Lemma 10.3]).

The space of quadratic forms in 4 variables is a linear space of dimension 10. Fix
a norm ∥ · ∥ on this space.

Definition 11.11. (EWAS) A quadratic form Q is called extremely well approx-
imable by split forms (EWAS) if for any N > 0 there exists a split integral form Q′

and 2≤ k ∈ R such that ∥∥∥∥Q− 1
k

Q′
∥∥∥∥≤ 1

kN .

The main result of [35] is:

Theorem 11.12. Suppose Ω is as above. Let Q be an indefinite quadratic form of
signature (2,2) which is not EWAS. Then for any interval (a,b), as T → ∞,

|Ṽ(a,b)(Z)∩T Ω | ∼ λQ,Ω (b−a)T 2,

where the constant λQ,Ω is as in (21), and Ṽ(a,b)(Z) consists of points not contained
in isotropic subspaces.

As was extensively discussed in [35], Theorem 11.12 has implications for eigen-
value spacings on flat 2-dimensional tori.
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12 Effective estimates

In this section, we present some work of Margulis and his co-authors regarding
effective equidistribution and effective estimates for the number of solutions of cer-
tain Diophantine inequalities. This is far from a comprehensive account; we choose
to focus on just a few results. A much more detailed and comprehensive survey is
given in [33].

12.1 Periodic orbits of semisimple groups

Let G be a real Lie group, let Γ be a lattice in G, and let H be a connected subgroup
of G generated by unipotent elements. Using Ratner’s theorem together with the
linearization technique (§9) and results on nondivergence of unipotent orbits (§7),
Mozes and Shah [90] proved that the nonzero weak-∗ limits of H-invariant ergodic
probability measures on G/Γ are again ergodic, hence are Haar measures on closed
orbits of closed subgroups S⊃H. In [37], Einsiedler, Margulis and Venkatesh quan-
tify the aforementioned approximation procedure with a polynomial rate in the case
when H is semisimple. Here is one of the main results of that paper:

Theorem 12.1. Let G be a connected component of the identity of the group of real
points of a connected semisimple algebraic Q-group, let Γ be a congruence lattice
in G, and let H ⊂ G be a semisimple subgroup without any compact factors, gener-
ated by unipotent elements and with a finite centralizer in G. Then there exist δ > 0
and ℓ ∈ N depending only on G,H and T0 > 0 depending only on G,Γ ,H with the
following property: for any periodic H-orbit Hx in X = G/Γ and any T ≥ T0 there
exists an intermediate subgroup H ⊂ S ⊂ G for which Sx is a closed S-orbit with
volume ≤ T and such that the Haar measure µHx on Hx is (T,δ )-close to the Haar
measure µSx on Hx. The latter means that for any f ∈C∞

comp(X) one has∣∣∣∣∫ f dµHx−
∫

f dµHx

∣∣∣∣≪G,Γ ,H ∥ f∥W ℓT−δ ,

where ∥ f∥W ℓ stands for the L2-Sobolev norm of degree ℓ.

The general strategy of the proof of the above theorem consists of effectively
acquiring certain “almost invariance” properties for the measure µHx. In qualita-
tive form this strategy was used by Margulis and Dani–Margulis in their proof of
various versions of the Oppenheim conjecture [81, 27]. A crucial ingredient in the
proof of Theorem 12.1, which is responsible for the polynomial rate of approxi-
mation, is a uniform spectral gap for congruence quotients of semisimple algebraic
groups. These methods were further advanced in [2] as well as in the recent work of
Margulis with Einsiedler, Mohammadi and Venkatesh [36]. For another recent de-
velopment, namely a polynomially effective version of the linearization results and
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techniques that we surveyed in §9, see the new preprint by Margulis with Linden-
strauss, Mohammadi and Shah [71].

12.2 Effective solution of the Oppenheim Conjecture

The following was proven by Dani and Margulis in [27]:

Theorem 12.2. Let Q be an indefinite ternary quadratic form which is not propor-
tional to an integral form. Then the set

{Q(v) : v ∈ Z3, v primitive}

is dense in R.

In the following, we implicitly assume all integral quadratic forms we consider are
primitive in the sense that they are not a nontrivial integer multiple of another inte-
gral quadratic form.

The main result of the paper [70] is the following quantification of Theorem 12.2.

Theorem 12.3. Let Q1 be an indefinite, ternary quadratic form with
detQ1 = 1, and suppose ε > 0. Then for any T ≥ T0(ε)∥Q1∥K1 at least one of the
following holds:

(i) There is an integral quadratic form Q2 with |det(Q2)| < T and
∥Q1−λQ2∥≪ ∥Q1∥T−1, where λ = |det(Q2)|−1/3.

(ii) For any ξ ∈ [−(logT )κ2,(logT )κ2] there is a primitive integer vector v ∈ Z3

with 0 < ∥v∥< T K3 satisfying

|Q1(v)−ξ | ≪ (logT )−κ2

(with K1, κ2, K3, and the implicit constants absolute).

Though there are significant differences, the strategy which is used in the paper has
many similarities with the strategy which was used by Margulis in [79, 81] and sub-
sequent papers by Dani and Margulis [27, 28, 29, 30]. The main ingredient in these
strategies is to prove that an orbit closure contains orbits of additional subgroups.
In the original approach, this is achieved using minimal sets for appropriately cho-
sen subactions, while in [70] the beginning point of the orbit of the new subgroup
is moving. To make this approach work, the authors need to control how this base
point changes so it remains sufficiently generic in an appropriate quantitative sense.

12.3 Power law estimates in dimension at least 5

Note that in the above result the dependence on the parameter T is logarithmic. If
the number of variables d is greater than or equal to 5, power estimates are possible.
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We now present the main result of [10], which is based in part on earlier work of
Götze and Margulis.

To state the result we use the following notation. Denote by Q the symmetric
matrix in GLd(R) associated with the form Q(x) := ⟨x,Qx⟩, where ⟨·, ·⟩ is the stan-
dard Euclidean scalar product on Rd . Let Q+ denote the unique positive symmetric
matrix such that Q2

+ = Q2 and let Q+(x) = ⟨x,Q+x⟩ denote the associated positive
form with eigenvalues being the eigenvalues of Q in absolute value. Let q, resp.
q0, denote the largest, resp. smallest, of the absolute value of the eigenvalues of Q
and assume q0 ≥ 1. In the Oppenheim conjecture, we are concerned with the in-
equality |Q(m)|< ε; we can replace the form Q by Q/ε and consider the inequality
|Q(m)|< 1. The following effective estimate is proved in [10]:

Theorem 12.4. For all indefinite and non-degenerate quadratic forms Q of dimen-
sion d ≥ 5 and signature (r,s) there exists for any δ > 0 a non-trivial integral solu-
tion m ∈ Zd ∖{0} to the Diophantine inequality |Q(m)|< 1 satisfying

∥Q1/2
+ m∥≪δ ,d (q/q0)

d+1
d−2 q1/2+max{ρd+2,d+1}/(d−4)+δ ,

where the dependency on the signature (r,s) is given by

ρ := ρ(r,s) =


1
2

r
s for r ≥ s+3

1
2

s+2
s−1 for r = s+2 or r = s+1

1
2

s+1
s−2 for r = s

In particular, for indefinite non-degenerate forms in d ≥ 5 variables of signature
(r,s) and eigenvalues in absolute value contained in a compact set [1,C], i.e. 1 ≤
q0 ≤ q≤C, Theorem 12.4 yields non-trivial solutions m ∈ Zd of |Q(m)|< ε of size
bounded by

∥m∥≪C,δ ε
−max{ρd+2,d+1}/(d−4)−δ .

The proof of Theorem 12.4 relies on Götze’s analytic approach [50] via Theta
series, translating the lattice point counting problem into averages of certain func-
tions on the space of lattices, for which the authors modify the method of integral
inequalities introduced by the first-named author with Margulis and Mozes in [34]
and described in detail in §11.
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The Norwegian Academy of Science and Letters has decided to award the Abel
Prize for 2021 to László Lovász of Eötvös Loránd University in Budapest, Hungary
and Avi Wigderson of the Institute for Advanced Study, Princeton, USA,

“for their foundational contributions to theoretical computer science and discrete mathe-
matics, and their leading role in shaping them into central fields of modern mathematics.”

Theoretical Computer Science (TCS) is the study of the power and limitations
of computing. Its roots go back to the foundational works of Kurt Gödel, Alonzo
Church, Alan Turing, and John von Neumann, leading to the development of real
physical computers. TCS contains two complementary sub-disciplines: algorithm
design, which develops efficient methods for a multitude of computational prob-
lems; and computational complexity, which shows inherent limitations on the effi-
ciency of algorithms. The notion of polynomial-time algorithms put forward in the
1960s by Alan Cobham, Jack Edmonds, and others, and the famous P ̸= NP conjec-
ture of Stephen Cook, Leonid Levin, and Richard Karp had a strong impact on the
field and on the work of Lovász and Wigderson.

Apart from its tremendous impact on broader computer science and practice,
TCS provides the foundations of cryptography, and is now having a growing in-
fluence on several other sciences leading to new insights therein by “employing a
computational lens”. Discrete structures such as graphs, strings, permutations are
central to TCS, and naturally discrete mathematics and TCS have been closely al-
lied fields. While both these fields have benefited immensely from more traditional
areas of mathematics, there has been a growing influence in the reverse direction as
well. Applications, concepts, and techniques from TCS have motivated new chal-
lenges, opened new directions of research, and solved important open problems in
pure and applied mathematics.

László Lovász and Avi Wigderson have been leading forces in these develop-
ments over the last decades. Their work interlaces in many ways, and, in particular,
they have both made fundamental contributions to understanding randomness in
computation and in exploring the boundaries of efficient computation.
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Along with Arjen Lenstra and Hendrik Lenstra, László Lovász developed the
LLL lattice reduction algorithm. Given a high-dimensional integer lattice (grid),
this algorithm finds a nice, nearly orthogonal basis for it. In addition to several
applications such as an algorithm to factorize rational polynomials, the LLL al-
gorithm is a favorite tool of cryptanalysts, successfully breaking several proposed
crypto- systems. Surprisingly, the analysis of the LLL algorithm is also used to de-
sign and guarantee the security of newer, lattice-based crypto-systems that seem to
withstand attacks even by quantum computers. For some exotic cryptographic prim-
itives, such as homomorphic encryption, the only constructions known are via these
lattice-based crypto-systems.

The LLL algorithm is only one among many of Lovász’s visionary contributions.
He proved the Local Lemma, a unique tool to show the existence of combinatorial
objects whose existence is rare, as opposed to the standard probabilistic method used
when objects exist in abundance. Along with Martin Grötschel and Lex Schrijver,
he showed how to efficiently solve semidefinite programs, leading to a revolution in
algorithm design. He contributed to the theory of random walks with applications to
Euclidean isoperimetric problems and approximate volume computations of high-
dimensional bodies. His paper with Uriel Feige, Shafi Goldwasser, Shmuel Safra,
and Mario Szegedy on probabilistically checkable proofs gave an early version of
the PCP Theorem, an immensely influential result showing that the correctness of
mathematical proofs can be verified probabilistically, with high confidence, by read-
ing only a small number of symbols! In addition, he also solved long-standing prob-
lems such as the perfect graph conjecture, the Kneser conjecture, determining the
Shannon capacity of the pentagon graph, and in recent years, developed the theory
of graph limits (in joint work with Christian Borgs, Jennifer Chayes, Lex Schri-
jver, Vera Sós, Balázs Szegedy, and Katalin Vesztergombi). This work ties together
elements of extremal graph theory, probability theory, and statistical physics.

Avi Wigderson has made broad and profound contributions to all aspects of com-
putational complexity, especially the role of randomness in computation. A random-
ized algorithm is one that flips coins to compute a solution that is correct with high
probability. Over decades, researchers discovered deterministic algorithms for many
problems for which only a randomized algorithm was known before. The determin-
istic algorithm for primality testing, by Agrawal, Kayal and Saxena is a striking ex-
ample of such a derandomized algorithm. These derandomization results raise the
question of whether randomness is ever really essential. In works with László Babai,
Lance Fortnow, Noam Nisan and Russell Impagliazzo, Wigderson demonstrated that
the answer is likely to be in the negative. Formally, they showed that a computational
conjecture, similar in spirit to the P ̸= NP conjecture, implies P = BPP. This means
that every randomized algorithm can be derandomized and turned into a determin-
istic one with comparable efficiency; moreover the derandomization is generic and
universal, without depending on the internal details of the randomized algorithm.

Another way to look at this work is as a trade-off between hardness versus ran-
domness: if there exists a hard enough problem, then randomness can be simulated
by efficient deterministic algorithms. Wigderson’s subsequent work with Impagli-
azzo and Valentine Kabanets proves a converse: efficient deterministic algorithms
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even for specific problems with known randomized algorithms would imply that
there must exist such a hard problem.

This work is intimately tied with constructions of pseudorandom (random look-
ing) objects. Wigderson’s works have constructed pseudorandom generators that
turn a few truly random bits into many pseudorandom bits, extractors that extract
nearly perfect random bits from an imperfect source of randomness, and Ramsey
graphs and expander graphs that are sparse and still have high connectivity. With
Omer Reingold and Salil Vadhan, he introduced the zig-zag graph product, giving an
elementary method to build expander graphs, and inspiring the combinatorial proof
of the PCP Theorem by Irit Dinur and a memory efficient algorithm for the graph
connectivity problem by Reingold. The latter gives a method to navigate through a
large maze while remembering the identity of only a constant number of intersection
points in the maze!

Wigderson’s other contributions include zero-knowledge proofs that provide
proofs for claims without revealing any extra information besides the claims’ va-
lidity, and lower bounds on the efficiency of communication protocols, circuits, and
formal proof systems.

Thanks to the leadership of Lovász and Wigderson, discrete mathematics and the
relatively young field of theoretical computer science are now established as central
areas of modern mathematics.
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László Lovász

Meeting with mathematics

I was born in Budapest in 1948. This was the year when the Stalinist regime seized
total power. From my early childhood, I remember my parents’ fear of the secret
police, and then in particular the uprising in 1956, the street fight that went on under
our windows.

Nevertheless, my younger brother and I had a happy childhood. My father was
a surgeon, who provided for us well. He worked very hard in the hospital, and at
evenings he wrote scientific papers, earning eventually a degree equivalent to a PhD.
I learned a lot of work ethics from him. My mother stayed at home, and we got a
tough but loving education from her.

My first eight school years were unremarkable and boring, but in the 8th grade
I attended the math club of the school, and met interesting, sometimes challenging
math problems, which I loved. When high school applications were due, the teacher
of the club visited my parents, and told them about a special class in mathematics
in the high school Fazekas, which would start for the first time that September.
He recommended to enroll me in this class, and also to subscribe to Középiskolai
Matematikai Lapok, a math monthly for high school students.

These two recommendations changed my life from boring to exciting. I still re-
member the enormous pleasure of reading the articles and problem sets in the peri-
odical. In one of the first issues I saw there was a paper by Paul Erdős on combina-
torial geometry—what a treat!

But it was really the high school that changed my life. I found myself among
other youngsters who were as interested in math as I was, and we had endless dis-
cussions about mathematics. Many of my classmates became leading mathemati-
cians and math educators. There is no space here to list them, but one of them I
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Alfréd Rényi Institute of Mathematics, Reáltanoda street 13-15, H-1053, Budapest, Hungary,
e-mail: lovasz@renyi.hu

509
 

H. Holden, R. Piene (eds.), The Abel Prize 2018-2022, The Abel Prize,  

https://doi.org/10.1007/978-3-031-33973-8_17

 

 

    

© The Editor(s) (if applicable) and The Author(s), under exclusive license  

to Springer Nature Switzerland AG 2024 

mailto:lovasz@renyi.hu
https://doi.org/10.1007/978-3-031-33973-8_17
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33973-8_17&domain=pdf


510 László Lovász

Fig. 1: My parents, younger brother and I in 1953.

have to name: Kati Vesztergombi. We started to date when we were 15, we got mar-
ried when we were 21, and we have four children and seven grandchildren. Our
mathematical interest has been close enough to have a number of joint papers and a
couple of joint textbooks, and we have helped each other by listening to (sometimes
criticizing) new ideas of each other, proofreading papers and books of each other,
discussing issues of teaching, science politics and much more.

Fig. 2: High school classmates (from left to right): Lajos Posa, Miklos Laczkovich,
Lászlo Lovász and Istvan Berkes.

Getting back to the high schools year, it was a very special place in many re-
spects. We had 10 classes of math each week. We had excellent teachers—not only
in math, but in the sciences and humanities as well. Politically, the school was rather
liberal; this did not mean much by today’s standards, but in those days it was quite
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Fig. 3: Left: Kati and I in 1966. Right: Our wedding ceremony in 1969.

unusual to have a teacher who, for example, told us about religion and the life of
Jesus.

The special class was the first of its kind, and attracted much attention of the
math professors of the Eötvös University, who often came to teach a class or a math
club.

Not surprisingly, most memorable were the visits of Paul Erdős. Much has been
written about his life and his mathematics, so I restrict myself to a single memory.
He stated a lot of unsolved problems about graph theory and other topics in discrete
mathematics, some of which were understandable even for high schools students.
This is how he got together with my classmate and friend Lajos Pósa, and they wrote
several joint papers when Pósa was in elementary school or in the first years of high
school. One day Lajos challenged me with one of the results in a joint manuscript
of Erdős, Goodman and Pósa, and in a couple of days I could find a proof. Erdős
put a footnote in the final version of the paper asserting that I also proved this,
independently. The “independence” is disputable (I knew that the theorem was true,
which helped a lot), but this is an example of how important Erdős felt it was to
promote the careers of his young colleagues.

Moving around in Hungary and in the world

From these high school years on, I feel my life followed a straight line—even though
we moved around in the world quite a lot. I attended the Eötvös University for
five years, and got a diploma and a doctorate at the same time in 1971. I got a
research position at the Eötvös University, and during this, I spent a year in the US,
at Vanderbilt University as a postdoc. In Nashville I met Mike Plummer, and he and



512 László Lovász

his wife Sara were helpful in helping us live in that nice, but for us rather alien place.
Mike and I started working together on matchings in graphs. Later he visited me in
Hungary for a year, and we wrote a monograph on matching theory.

I obtained the Chair of Geometry at the University of Szeged in 1975. My years
in Szeged were some of the most productive years of my life. Szeged was a pleasant
town, and its university was a quiet place which, nevertheless, put a lot of emphasis
on scientific excellence.

In 1982 I moved back to the Eötvös University in Budapest. These last years
of the communist regime were turbulent, both politically and economically, and I
escaped regularly to the West, as a visiting professor in Bonn, Chicago, Ithaca and
Berkeley. In 1987 I accepted a part time position in Princeton, where I spent 1/3–
1/2 of my time. In 1993, I got a full time professorship at Yale, and then in 1999,
I was offered a job at Microsoft Research in the Theory Group. This was another
great time of my life for research, working with outstanding mathematicians, but
eventually, in 2006, our hearts drew us back to Budapest. I was teaching at the
Eötvös University for the next 8 years.

Fig. 4: Left: Our daughter Anna helping me in 1980 (Márta watching). Right: Laci2
helping me in 1990. Technology changes but the baby clothes stay!

We have four children: Katalin (born 1972), Márta (1974), Anna (1980) and
László Miklós (1990). Following Hungarian tradition, two of them received the first
names of their parents. Not the most logical choice (although it is a good source of
jokes and puns). To distinguish between them, we call them Kati2 and Laci2.

Moving around so much was clearly difficult for our children. On the plus side,
they learned perfect English, and became familiar with other cultures. On the minus
side, they had to part friends several times, adjust to different school systems, and
more. Mathematics was of course always present in the family (frightening away
some potential boyfriends, I am afraid), and all our children like it, even Kati2, who
has a PhD in literature, but is teaching folk stitching now, which she says is quite
mathematical. Márta is an actuary, Anna has a PhD in economics, and Laci2 has
a PhD in math. I am very proud of them, not only because they have done well in
their studies and careers, but also because they are good and honest people, and they
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Fig. 5: Left: My daughters Kati2, Anna and Márta singing a Christmas song in 2000.
Right: Kati and I with our children (Kati2 with the baby, Márta with two toddlers,
Anna behind her and Laci2 on the left), with sons-in-law and some grandchildren in
2008.

maintain strong ties with us and with each other (even though three of them live in
the US, and travel restrictions due to Covid have been tough on all of us).

My wife always accuses me that I cannot say no, and perhaps she is right that
I should have saved more of my time and energy for research from administration
(she accepts teaching). From 2007 to 2010, I served as President of the Interna-
tional Mathematical Union, and I was elected President of the Hungarian Academy
of Sciences in 2014, to serve two 3-year terms. This last period was not fruitful as
mathematical research goes, as to fulfill my duties became more and more difficult
politically, with the last half a year overshadowed by the Covid pandemic in addi-
tion. Now I am back to research at the Alfréd Rényi Institute of Mathematics, and
in spite of all the restrictions imposed by the pandemic, I enjoy doing math research
again.

Tarski’s problem and graph limits

I was always interested in bridges between various branches of mathematics. In-
deed, mathematical ideas have a way of zig-zagging through different branches of
mathematics, and I have experienced this with some of my own ideas. In the rest of
this autobiography I will sketch three examples of this.

In the early 1960s, graph theory was not highly regarded at all, and during the
Summer of 1964, I started to think about how to develop graph theory in a di-
rection more similar to algebra. Can we do operations on a graphs like addition
and multiplication? Disjoint union is a good candidate for the sum, and after some
thinking I came up with a notion of the product of two graphs. (As it turned out,
this operation was introduced before under the name of “strong product”.) Several
expected properties (commutativity, associativity, distributivity) were easy to ver-
ify, but the cancelation law for the product was a hard nut. (This means that if A, B
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and C are three graphs and A×C ∼= B×C, then A ∼= B.) In a month or two I was
able to prove this, and in a few more months, I could simplify the proof consid-
erably. The idea was to encode every graph G as an infinite sequence of numbers
hom(F,G), where hom(F,G) denotes the number of homomorphisms (adjacency-
preserving maps) from F to G, and F ranges through all finite graphs. This code of
a product of two graphs is just the element-wise product of their codes, and so the
cancelation law for graphs reduces to the cancelation law for numbers.

The method extended to other types of products, including products of finite
algebraic and relational structures, under mild assumptions about the factor to be
canceled. As it turned out, this answered an open problem raised a decade earlier by
Alfred Tarski and Bjarni Jonsson. This fact had great benefits for me: Tarski invited
me to a couple of Oberwolfach conferences he organized, and (after I got my PhD),
Jonsson offered me a postdoc position at Vanderbilt University, which I mentioned
above.

Later, in 1979, Paul Erdős, Joel Spencer and I used this encoding of graphs (with
a suitable normalization) to study questions in extremal graph theory. Many ex-
tremal graph questions concerning a graph G can be phrased as linear inequalities
between different entries hom(F,G) of the code, which lead us to consider the clo-
sure of the set of all codes, truncated to graphs F with at most k nodes. We managed
to determine the dimension of the closure, but a full characterization of the closure
seemed unaccessible at that time.

This characterization came in the early 2000s in a joint paper with Mike Freed-
man and Lex Schrijver, and it led to the theory of graph limits. I was a researcher
at Microsoft Research, and various growing graph sequences, modeling the inter-
net and other very large networks, were a hot topic. With Christian Borgs, Jennifer
Chayes, Vera T. Sós, Balázs Szegedy and Kati Vesztergombi we were trying to find
the answer to the question: just as there is a Central Limit Theorem for sequences
of random variables, is there a similar description of the limiting behavior of a se-
quence of graphs? The (normalized) code mentioned above offered a definition: A
sequence of larger and larger finite graphs (Gn) is convergent if the density of any
fixed finite graph in Gn has a limit as n→ ∞. This notion is trivial unless we talk
about dense graphs (where a positive fraction of pairs are connected by edges). In-
dependently (a little earlier) Benjamini and Schramm had developed a limit theory
of bounded degree graphs (as it happens, a few doors down the hall at Microsoft
Research). The two theories are different, but analogies in their basic goals have
been mutually very useful.

This notion of graph limits turned out to be quite lucky, and an elegant, well ap-
plicable theory could be built on it. I published a monograph on this subject in 2012,
but research has gone on in various directions ever since then. I am still working on
the problem of extending the theory to graphs with “intermediate” densities.
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Perfect graphs and combinatorial optimization

During my university years my mentor was Tibor Gallai, who told me about the
Perfect Graph Conjecture of Claude Berge. A graph is perfect if its chromatic num-
ber is equal to the size of its largest clique, and the same holds for every induced
subgraph of it. The conjecture had a “weak” and a “strong” version; the former had
a very simple formulation: the complement of a perfect graph is also perfect. In
1972, I could prove the weak version (the strong version was proved in 2006 by
Chudnovsky, Robertson, Seymour and Thomas). The proof could be thought of as
an extension of the Duality Theorem in linear programming to integer variables (of
course, under strong assumptions), and in the following years I was trying to find
more general results along these lines.

This was perhaps the first time I got interested in applications of mathematics,
in particular in combinatorial optimization. The P-NP theory was well established
by then, and it gave an excellent framework to understand the complexity of various
problems and of the algorithms solving them. If a problem is NP-hard, then there is
no hope to find an efficient (polynomial time) algorithm to solve it exactly; in such
cases, finding approximate solutions is a next natural goal.

However, a theory of approximation algorithms was a big open problem at that
time (around 1980): few good approximation algorithms were known, and almost
no negative results (impossibility of finding even a decent approximate solution)
were known. Such a theory came only more than a decade later, and I am happy to
have played a minor part in both the positive and negative direction. In the negative
direction, I was a co-author of an early paper on the subject, where research lead to
the celebrated PCP Theorem (I have watched this development with pleasure, but
not taking active part). The positive developments on approximation algorithms are
connected with another interesting zig-zag of ideas, so let me say a few sentences
on this.

One problem in combinatorial optimization, coming from information theory,
was the Shannon capacity problem. This called for determining the maximum num-
ber of independent nodes in the product of many copies of a graph. The first un-
solved case was the pentagon, an annoyingly simple graph, for which Shannon
stated an exact conjecture. In 1978 I could prove the conjecture, using a method
of representing the graph in a high-dimensional space. These orthogonal represen-
tations have branched off in different directions, from semidefinite optimization
to quantum physics. Many of the successful approximation algorithms depend on
semidefinite optimization.

This connects back to perfect graphs in an unexpected way. Even after the weak
perfect graph conjecture was proved, a basic algorithmic question remained. Find-
ing the chromatic number of a general graph is NP-hard, but can we compute the
chromatic number of a perfect graph in polynomial time? The breakthrough of 1979
that led to such an algorithm was Khachiyan’s polynomial time algorithm for lin-
ear programming, called the “Ellipsoid Method”. Several teams noticed that this
method is flexible enough to be applied beyond explicitly given linear programs,
and with Martin Grötschel and Lex Schrijver we could combine it with orthogonal
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representations to obtain a polynomial time algorithm for computing the chromatic
number of a perfect graph.

Fig. 6: Left: Lecturing in Hanoi 2009. Right: Three of us in Oberwolfach (Laci2,
Kati and myself).

Algorithmic geometry and cryptography

Martin, Lex and I went on to find many other applications of the Ellipsoid Method
in graph theory and combinatorial optimization, eventually writing a monograph
on this subject. We developed a general duality principle: in a high-dimensional
space, optimizing a linear function over a convex body is equivalent (with respect
to polynomial time algorithms) to deciding whether a point belongs to the body.

This work had an unexpected side branch. Trying to extend our results from full-
dimensional bodies to bodies lying in unknown lower-dimensional subspaces, we
ran into the problem of simultaneous diophantine approximation. The existence of
an approximation of a finite number of real numbers by rationals with a common
denominator was proved by Dirichlet, but finding these rational numbers efficiently
was open. I found a polynomial-time algorithm for this, which used some ideas
of Hendrik Lenstra, so I wrote to him about it. He answered that with his brother
Arjen, they can use this to factor polynomials with rational coefficients into irre-
ducible factors in polynomial time. This was quite surprising since one would ex-
pect that factoring polynomials was more difficult than factoring integers, which is
still an unsolved problem. We wrote a joint paper about this. A couple of years later
Lagarias and Odlyzko applied this algorithm to break one of the proposed public key
crypto-systems, the knapsack code, and since then the algorithm became a standard
tool to test crypto-systems for security.

Our work with Lex and Martin provided efficient algorithms for many algorith-
mic problems for convex bodies, but it left a basic question open: How to com-
pute their volume? Our work on the Ellipsoid Method gave an approximation algo-
rithm for the volume of an n-dimensional convex body, with a multiplicative error
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of nn; this looked ridiculously high. I suggested this problem to my PhD student
György Elekes, and soon he found an elegant proof that for any polynomial time al-
gorithm that computes an approximation of the volume, there is a convex body in the
n-dimensional space for which the result is off by a factor of at least 2n/2. The lower
bound on the error was improved by Bárány and Füredi to nΘ(n), which is best pos-
sible up the constant in the exponent.

So it seemed that computing the volume is hopelessly difficult, until Dyer, Frieze
and Kannan came up with a randomized algorithm that computed it in polynomial
time, with an arbitrarily small relative error in 1989. This did not contradict Elekes’s
result, which concerned deterministic algorithms. In the years that followed I was
involved in improving this algorithm, working with Miki Simonovits, Ravi Kannan
and Santosh Vempala. The original algorithm had a complexity of something like
n26, way out of the range of practicality. Bringing the exponent down took a lot of
work by us and others, where each step involved new ideas from geometry, proba-
bility, statistics, and even from the theory of the heat equation. With contributions
of several researchers, the bound is now down to n3+o(1) (this follows by combining
more recent results of Vempala–Cousins and Chen).

This story illustrates the power of the notion of polynomial time: a polynomial
bound of n26 is very far from being practical, but it means a structural insight to the
problem—and more practical algorithms can be obtained based on its fundamental
idea.

Some periods of mathematics are particularly exciting, when it develops so
closely together with another science that it is difficult to distinguish which results
or even which scientists belong to math or to this area of its application. Think of
the development of mathematics and physics in the 18th century: were Newton or
Euler physicists or mathematicians? The development of the theory of computing
in the second half of the 20th century has a similar feeling. Most of us working on
algorithms and their complexity were mathematicians and computer scientists (even
operations research was closely involved). I feel that I am very lucky to have had
the opportunity to live and work through such a great period for mathematics.
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Avi Wigderson

It is customary for Abel prize winners to write a brief biography in these volumes,
and I have done the same below. Writing it, the shortcomings of such an account
quickly became apparent. Condensing a person, result, event, experience, or a lesson
learned (and there are quite a few of these below) into a sentence or two, leaves so
much to be desired and feels like doing an injustice to their meaning for me. But, it
had to be done, so here goes.

I was born in 1956 in Haifa, Israel. My parents, Pinchas Wigderson and Shoshana
Klagsbrun, were both Holocaust survivors, and most of their families were mur-
dered by the Nazis. They met in Israel, and got married in 1953. My mother worked
part-time as a nurse, and my father was an electrical engineer working in the navy
shipyards. As is the case with most Holocaust survivors, they rarely talked about
this around us, their children. I am the oldest of three brothers. Meir was born a year
after me, and Oded, six years later.

We grew up in a tiny apartment in a blue-collar neighborhood called “Ein
Hayam” (eye of the sea), a far more pastoral and picturesque name than it is in re-
ality, but for children it was heavenly. Situated a 5 minutes walk from the Mediter-
ranean shore, we could spend plenty of time there, and have a sunset view of the
sea every evening from our balcony. I have numerous memories of swimming and
snorkeling, something you could do almost all year round, and playing soccer es-
sentially every day. My brother Meir and I also spent hours every day listening to
the radio, and every other free minute I spent reading, basically everything I could
lay my hands on, from adventure stories to encyclopedias. Our neighborhood was
an amazing mix of cultures. Both Arabs and Jews lived there, with almost all Jews
being recent immigrants to the new state of Israel. In the eight apartments of our
building alone lived families from Egypt, Bulgaria, Morocco, Poland, Greece and
Russia! A favorite culinary memory of that mix are the sweets our neighbor from
Egypt made, which I consumed in great quantities.

A. Wigderson
School of Mathematics, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA,
e-mail: avi@math.ias.edu
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Fig. 1: My parents (left) and siblings (right). (Private)

My father was definitely a central influence on my love of mathematics (or, what
I knew then as puzzles). From a very early age he asked me riddles, and exposed
me to a set of puzzle books in Russian he had (mainly on logic and geometry),
teaching me enough vocabulary to figure out the riddles myself. Another exposure
was the way he described the challenges he faced at work, which had mainly to do
with figuring out the reasons for malfunctioning ship engines, and how to fix them,
which were always described as giant riddles (these engines were literally huge,
and I guess diagnostic tools at the time were very limited). The sense of joy and
satisfaction he felt when he figured out a tough one is readily familiar to anyone
doing mathematical research when figuring out how to solve a tough problem.

Elementary school was quite easy and boring, but I was a nerd, and enjoyed
every type of learning, and even solving boring homework problems. I continued
reading a lot of everything, quickly exhausting our neighborhood public library. For
high school I was sent to the Re’ali school, one of the best in Israel, that had some
excellent teachers and was far more interesting for me. This was my first exposure
to kids from a much higher socio-economic class. I made some really good friends
there, and started playing chess seriously. It was also the place I was first exposed
to math at a higher level. In 11th and 12th grade we had a math teacher, Ya’akov
Kaplan, a recent immigrant from Ukraine (who had to learn Hebrew while teaching
us), who had a great influence on me. An author of many textbooks, and a teacher in
a special math school in Kiev, he taught us math as it is done in college, with axioms
and rigorous proofs. He further gave “extra credit” classes that were challenging and
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fun — by then I knew for sure what I loved best. This class was also when I first
met my long-time friend and colleague, Noga Alon, who already then, as now, could
solve any problem much faster than anyone else. A special treat was doing a “senior
project” under Kaplan’s advising; I needed to read some papers, and write a short
thesis on “Famous Inequalities”, which was my first, very modest, introduction to
mathematical research.

Next came the army service, a three-year obligatory part of life for every Israeli.
Actually, I was accepted to the coveted “pilot’s course”, which required a commit-
ment of a seven-year minimum service for anyone graduating from those two years
of training. It still amazes me how easy it was for me at the time to sign up for this
commitment, and how lucky I was to flunk the course after less than a year, which
released me from it. The remaining two years of service were spent at a useful and
reasonably interesting office job. Different Israelis have different experiences in the
army, which of course depend in part on what they do, and in part on their tolerance
of a hierarchical organization with plenty of unreasonable rules. In hindsight, I find
that while serving in the army at the ages 18–21 (years which could be spent in
much more productive and fun ways) is certainly a waste of time, there are things I
(and others) got there which are probably not accessible elsewhere at this age. For
instance, I learned that I can run much further than I thought (with full gear on my
back), that I can be awake for several nights straight and function afterwards, and
that I can tolerate arbitrary orders. I also gained some responsibility, tolerance, ma-
turity and I met many people from different parts of Israeli society. So, given that
I had no choice about it, I contributed what I could, gained what I could, and was
very happy to be released after three years.

As I was applying to college at the end of my service, I told my parents I would
like to study mathematics. Their advice (they never really insisted on anything) was,
roughly, that it is not clear what can be done with math once I graduate. How about
learning (the relatively new) computer science, where I will anyway be exposed to
enough math, but where I will also graduate with a real profession I can use to earn
a living. I took their advice, which I still believe was an extremely fortunate deci-
sion. This was one of the first years that CS was offered as a major. I learned to
program, and for a full year found the wonders of different programming languages
(PL1, APL) miraculous (despite having to type the instructions on punch cards). We
also programmed on a PDP-8; a microprocessor into which each instruction of a
given program was manually fed by setting twelve binary switches and pressing a
button, and memory allocation had to be programmed as well. Programming that
very low-memory machine was extremely challenging, and I vividly remember one
task whose only solution required overwriting part of the program for extra space. In
brief, efficient use of computational resources, a topic I spent my life studying, was
instilled in me inadvertently by the technology of the time. I learned the usual prac-
tical CS courses (again, relevant to that period), which I rather enjoyed. And I took
the required calculus and linear algebra courses, which I found amazing and loved
every bit, but the CS major requirements crammed into a three-year program meant
that I had hardly any time to take more advanced math courses. Most of all, I loved
the CS theory courses, automata theory and algorithms. The dominant figure of in-
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fluence for me during college was Shimon Even (who taught two of these courses);
he was an excellent teacher, and had an infectious love of algorithmic problems,
which certainly infected me. Besides Shimon, I had an amazing set of classmates,
including Oded Goldreich, Hanoch Levy and David Peleg, whose presence in and
outside classes was inspiring.

So, while it became completely clear to me what I loved doing best, I still had
no clear idea that there is a profession which allows doing this for a living. Luckily,
most of the top students in my class applied to graduate school in the US, so I
followed suit. I got full scholarship offers from the computer science departments at
Princeton and Yale. When I consulted Shimon Even on where should I go, he said
that professionally, in theory of CS, they were roughly equal, but that the Princeton
campus is much prettier, so I chose Princeton.

During that last year in college I met Edna, a math major, at a fun “puzzle-
solving” class. This was Edna’s last college course, and for the last meeting of the
class she baked a fantastic chocolate cake (I have already mentioned my sweet tooth
above), decorated with a solution to the famous “eight queens” puzzle . We fell in
love, and after a brief dating period decided to get married. Our first decision was
where we should go: Edna had also applied for graduate school in the US before we
met, was accepted and planned to go for a PhD at UC Santa Barbara. Edna gave up
her plan for mine! When we got to Princeton, she instead applied and got into the
MSc program at Rutgers math. We got married in May 1980, just before leaving for
the US.

Fig. 2: My wife Edna and I. (Private)

Our way to Princeton was also our honeymoon. We flew to LA (where my uncle
lived at the time), bought a used station wagon there, and spent the whole summer
of 1980 exploring the US, first the many national parks on the West Coast, and then
inland, through many more parks in Utah, Arizona and Colorado, making our way
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eventually to Princeton. During this period we had our few belongings tied to the
car roof, so we could use the back of the car as our bedroom every night. This was
a great period to for us to discover lots of things about each other, to learn about the
art of car maintenance that we were clueless about and thus were repeatedly taken
advantage of, to spend most of the little money we had brought with us, and to see
some absolutely amazing sights.

Finally, I was about to learn what research was all about. One way in which one
can gauge the maturity of a field is how well-versed in research beginning gradu-
ate students are. Today (indeed, in the past quarter-century), it is rare to find in top
schools graduate students who did not do some research as undergrads; of course,
many start with a handful of published papers under their belts, but most have at
least done something equivalent to a senior project in college. At the time, neither I
nor my classmates came with any notion of what research was. Who I wanted as an
advisor was clear to me — Dick Lipton, who moved to Princeton from Yale just a
year before I had arrived, and agreed to take me on as a student. This again I consider
extremely lucky, as Dick is the person from whom I learned what research is, and
how he does it. His style was “global”. He was interested in everything computa-
tional! Before I met him he already had major papers on Petri nets, synchronization,
program testing, proof verification, graph algorithms, complexity, and much more.
And during my three years at Princeton, I saw him change research interests al-
most as often as people change socks. Dick was generous with his time and ideas.
I spent numerous hours with him, and learned about many of these topics — their
motivations, state of the art and cool open problems. These 2–3 hour sessions with
Dick were so dense that I often went straight to the library to summarize all I had
learned lest I forget anything. To learn more, I started chatting with my classmates
about their research projects. This led to some joint papers — with Hana Galperin
on complexity, with Doug Long on cryptography and with Gopalakrishnan Vijayan
on graph algorithms. I got hooked on collaborations, and found that this social style
of doing research suited me perfectly. I probably have only a couple of papers which
are singly authored — all others are joint.

Another thing I learned from Dick was the value of extensive mathematical
knowledge, and how he put this power to use! To date one of the best examples
I have of this value is his elegant solution (with Zeke Zalcstein) to the complexity
of the word problem in the free group. It is of course an easy problem, with a simple
polynomial time algorithm. But can you do it in logarithmic space? Think about it!
Again, being in a CS department, there were a bunch of CS courses to take for the
qualifying exams, and so the only math courses I took at Princeton were two basic
algebra classes (from the legendary Goro Shimura) and a combinatorics course from
Doug West. Besides, I browsed many journals, and tried solving as many problems
as I could in Laci Lovász’ exceptional (in many ways) book of combinatorial exer-
cises. But all in all, I wish I had taken more math courses as a student. While it is
possible, and indeed I found necessary, to learn various parts of different areas of
mathematics in order to tackle computational complexity problems I was working
on, I find that learning “for a purpose” has many shortcomings. The experience of
learning complete courses, indeed even sequences of courses, especially when you
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are a student and have much more time, gives far more intuition and a deeper un-
derstanding than what you get from searching for a theorem that would suit your
needs. On the other hand, as the theory of computation expands it seems to demand
(and influence) ever more diverse parts of mathematics, and so no matter what your
school math background, you’ll probably need to learn a lot more.

A completely different aspect of research life, which was central to my enjoy-
ing it over the years, was revealed to me already early on in graduate school. This
was the nature of my research community. During my first year in Princeton I went
to my first FOCS conference, and this was a formative experience. I believe that
nothing like these FOCS and STOC conferences existed in math in those days, and
are still rare now. Semi-refereed by a committee, accepted papers were presented
in a way that allowed for fast dissemination of fresh results. Talks in all areas of
algorithms and complexity were presented to an audience which was equally varied
and for decades would consist of a major portion of this research community. I feel
that these venues allowed for superb interaction between subareas, revealing the
intricate web of (often surprising) connections between them, propelling the field
faster. I attended every talk, and since then, over the decades, attempted to attend
as many of these conferences as I could. Even more exciting was the social atmo-
sphere. Everyone was talking to everyone between lectures, and I found there was
no distance whatsoever between junior and senior people. I was introduced to Dick
Karp, perhaps the most eminent theoretical computer scientist of the era. He took
time to ask me about my work (by that time I had only proved one NP-completeness
result — these were almost, but not completely, passé by then). This friendly, infor-
mal, collaborative atmosphere, clearly created by the leaders of the field at the time,
persists to this day (though the field itself, and these conferences in particular, have
grown far larger and can’t quite accommodate the same intimacy and the possibil-
ity of attending all talks). Finally, I found that these venues were great not only for
collaborations, but for starting new friendships, which still continue. In short, for
me this community became at once an academic and a social home, and I cannot
imagine a better one.

Everything I learned about research during graduate school pales in comparison
to another learning experience of that period. In December of 1981, a year and a half
into our time in Princeton, our son Eyal was born, and with him we started learning
how to be parents. This is hardly the proper place to describe the meaning of such
an experience. Let me just say that we found it amazing, and also discovered that
all other aspects of life could be made compatible with it. Timing was perfect, and
Edna returned to her studies after the holiday break. She had classes twice a week
at Rutgers, and as she was nursing Eyal, all three of us drove to New Brunswick,
and she would nurse him between classes. Despite the usual initial period of sleep-
deprived nights, I found that I could think and be productive. At the age of 8 months
we sent Eyal to a part time daycare, but most of the time he was with us.

Both Edna and I graduated in the summer of 1983. We started another cross-
country trip, now with Eyal, a very patient 18-month-old old baby who tolerated
well many hours in the car. Three weeks later we made it to Berkeley, our new
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home, where I started a postdoc with Dick Karp, and Edna started transitioning
from math to programming, which became her profession since then.

Fig. 3: My mentors: Shimon Even (left), Dick Lipton (middle), and Dick Karp
(right).

We loved everything about Berkeley: the geographical setting, the culture, the
food, the coffee — quite a contrast to Princeton (and we do like Princeton, as is
evident from our having spent more time there than anywhere else on Earth)! We
stayed for three years in the Bay area, two in Berkeley itself and one at IBM San
Jose. The number of people I started collaborating with and the number of research
areas I was exposed to during these postdoctoral years was amazing. In particular,
working with and observing Dick Karp during this period was a wonderful learning
experience for me. Besides research, I was inspired by his meticulous preparation of
classes he taught, and more generally with the sense of commitment and dedication
he had for every task he undertook.

As I’ll start mentioning some research topics and researchers, let me apologize
in advance and note that this biography, which is not a technical survey, cannot be
complete or precise in content and credits, and therefore many will be omitted. How-
ever, for anyone interested, even without background in the theory of computing, let
me recommend consulting my book “Mathematics and Computation”, which was
published by Princeton University Press and is available for free online on my web-
site at https://www.math.ias.edu/avi/book. There the reader will find
plenty of background, motivation, history of ideas and references to many of the
topics I will mention.

Among many topics, extremely significant for me were two very related ones,
which computational complexity has transformed into their modern forms mainly
in Berkeley in the early 1980s, resting both on computational hardness assumptions.
The first was cryptography; I was drawn into it by Oded Goldreich and Silvio Mi-
cali, and our works on zero-knowledge proofs and cryptographic protocol design are
among my favorites. The second was pseudorandomness. Here, work with Miklós

https://www.math.ias.edu/avi/book
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Ajtai was the start of my life-long interest in the power of randomness in com-
putation. Dramatic computational hardness results which were proved during that
period, specifically exponential lower bounds on restricted models like monotone
circuits and constant-depth circuits, deeply inspired me to attempt proving some
non-trivial but unrestricted hardness results (a first step on the presumably very
long journey towards P ̸= NP). This quest, in which I invested much time and effort
during the decades which followed, repeatedly ended in failure. Still, these failed
attempts (and what I have learned from them) have been almost as much fun as
successful ones in other areas. Great consolation prizes were other restricted lower
bounds for different models and the uncovering of the deep connections between
hardness and randomness. One more research area on which I spent a lot of time
during that postdoc period was parallel computation, or “which problems are inher-
ently sequential?”. I worked mainly with Dick Karp and Eli Upfal on algorithms,
and with Faith Fich, Friedhelm Meyer auf der Heide and Prabhakar Ragde on lower
bounds. Again, the large web of interconnections within algorithms and complexity
was unraveling before my eyes. To mention one aspect, sometimes it was possible
to remove randomization from probabilistic algorithms without any computational
hardness assumptions. Unconditional derandomization results of this type became
another passion of mine!

And again, in the middle of this three-year period, in December of 1984, our
daughter Einat was born. Now both Edna and I worked full-time at IBM San Jose.
At the time, IBM did not give any maternity leave (in the words of their HR person to
Edna, “research scientists don’t have babies”), and so after a month of the holidays
and using sick-leave, Edna went back to work, and Einat joined a full time daycare.
Luckily, she was an extremely easy baby, and was perfectly fine with nursing before
and after work, as well as during Edna’s 48-minute lunch break which she used to
drive to Einat’s daycare and back, nurse her and bite a sandwich while doing it. This
was not as easy for Edna as for Einat. We discovered the wonders and challenges of
two kids at home, and their interactions, which again are beyond the scope of this
essay.

Without much hesitation, convinced that Israel is the place for kids to grow up
(just as we did), we applied for jobs in Israel. Both of us got positions at the Hebrew
University in Jerusalem, Edna at the computing center, and I in the computer sci-
ence department. We both grew up in Haifa, and Jerusalem was a completely new
experience for us, as it is different from, really, any place on Earth. Its remarkable
history makes it one of the most interesting places to visit, and in some ways, often
quite difficult to live in. So many empires have conquered it, so many cultures de-
veloped there, so many religions consider it their holiest place and so much blood
has been shed in these numerous disputes that tensions between various groups are
always present, and inevitably every so often flare up. We found a nice apartment
in a pretty neighborhood few minutes’ walk from campus, so that at least most of
the time, our little bubble of life was mostly secluded from the city’s influence.
We spent a total of about 15 years in Jerusalem, during which we discovered many
things about life. We found that indeed social life for kids in Israel was great, but
that on the other hand schools were not great at all, which was one trade-off. We
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discovered that we all love traveling, and have traveled all over the world with the
kids at all ages. We also realized that our income in Israel did not quite match our
way of life, and that it was good to supplement it abroad — this combined with my
professional interests and collaborations in several sabbatical years, all in Prince-
ton, in 1990–1992 at the university, and in 1995 at the Institute for Advanced Study.
These many disruptions of life, especially for our kids, having to switch schools,
languages, and mostly make new friends, proved both challenging and rewarding in
a variety of ways, and with many years of hindsight, I guess all of us view them as
positive. Edna’s programming skills proved very portable, and during all these trips
she found jobs nearby.

In December of 1994 our third child Yuval was born (yes, we seem to have a bias
towards December kids. . . ). His brother and sister were 13 and 10 (respectively) by
then, so he got the love and attention of the equivalent of two sets of parents. Indeed,
Einat, a very determined child, had decided she’d attend Yuval’s birth, and prevailed
over our doubts and worries of what such an experience may be for a ten-year-old.
It ended up a beautiful, unforgettable event, in which she helped the midwife with
various chores, and cut the umbilical cord herself! Starting international travel with
Yuval even earlier than his siblings, we took him to Berkeley when he was six weeks
old. The best sleeping arrangement we found for him in our rental apartment there
was our suitcase, where he fit perfectly. This amply prepared him for a year of
sleeping in a closet during our 1995 sabbatical, where his crib fit perfectly. I am not
sure if these were particularly creative solutions to space problems, but he doesn’t
seem to have any scars from them. Of the numerous activities and experiences,
mundane and exciting, of our family life during these years in Jerusalem I will
mention just one more. Our oldest son Eyal discovered a life-long passion. This was
climbing. At the age of 14 he joined a group of kids climbing a natural rocky cliff
in Jerusalem, got better and better under the guidance of some top climbers and
by the age of 18 had already done much rock-climbing in Jordan, Egypt and then
Yosemite. Our worries regarding this activity grew with his progress, and little did
we know it was just a beginning. After his army service Eyal started climbing ice,
a far more dangerous activity which he still persists in, though not as high now as
when he was in his 20s, when he scaled peaks in the Himalayas, Pamir and Alaska.
For Edna and me this was perhaps the hardest test of a parental principle meeting
reality — to what extent should one support a child’s passion and talent? This sport
looked so benign when he started, but after he was hooked, obviously loving it and
excelling at it, it was too late to stop. We learned to silently bite our nails during
his expeditions, and celebrate his achievements when he returned safely from them.
Einat and Yuval were far kinder to us, and took to much tamer hobbies.

Professionally, these 15 years in Jerusalem meant yet another learning experi-
ence for me in several dimensions. This is obvious, as it was my first faculty posi-
tion. Some aspects of it were to be expected with a short learning curve and mainly
requiring time during which one prefers doing other things, but some activities must
be done — these include different departmental chores, like committees and respon-
sibilities (e.g. chairing the department — something I did for 2.5 years). Another
major new time investment naturally went into teaching. I discovered that I love
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Fig. 4: My children. (Private)

teaching, both undergraduate and graduate courses. It helped of course that most
students at the Hebrew university were really good, and so, fun to teach. The most
challenging novelty for me (and I guess for many new faculty members) was be-
coming a graduate student advisor. Somehow, there is no standard training for this
“job”, or even much discussion of it, and indeed, different people view and exer-
cise it differently. This position carries with it responsibilities of a different nature,
which I didn’t realize as a graduate student. As I have learned, an advisor needs
not only to introduce a student to the mysterious activity of research by suggesting
research problems and ideas for solving them, but also to help him or her find what
topics and methods they like best and are good at (these two are obviously very cor-
related). And on the emotional side, you need to provide support through the many
tough periods that research provides but they are not used to yet — long periods of
no progress, set-backs when a proof they have found fails during rigorous write-ups,
or is found to be known, tough decisions like when to quit trying after hitting one
wall after another for so long, and move to a different problem, and the ultimate
worries about how good they are, absolutely and compared to others. All of these
evolve in an intimate relationship which lasts several years, and is of course indi-
vidual, depending on personality, talents, learning curve and so many other aspects.
Needless to say, some students don’t need or want such close personal contact, and
are happy and successful with problem suggestions and other professional guidance
(like how to write papers, how to give good lectures, etc.)

Again I was extremely lucky, leaning this art together with my first graduate stu-
dents at the Hebrew University. As I arrived, quite a few students asked to work with
me, and not having a clear idea what it meant besides opportunities to collaborate
with more people on the many problems I had been thinking about, I said yes to
all of them. I am very grateful to that initial batch of MSc and PhD students, Ron
Ben Natan, Aviad Cohen, Yossi Gil, Rafi Heiman, Shlomo Hoory, Mauricio Karch-
mer, Michal Parnas, Yuri Rabinovich, Ran Raz, and Moti Reif, who in a period of
five years taught me almost everything I needed to know about graduate advising.
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Needless to say, topping all complex aspects of advising I discussed above, was ac-
tually doing research with them. It is a unique collaborative experience in which
(unlike collaborations with more senior colleagues) there is a long term commit-
ment of several years to a person and a project. I also learned, from these and many
graduate students who I advised in later years at the university, that sometime it is
them who supply the topics and questions they want to pursue, with which I was
not necessarily very familiar, and so I often learned with them and from them. And
so I worked with Mauricio Karchmer and Ran Raz on Boolean circuit complexity,
with Eli Ben Sasson on proof complexity, with Yuri Rabinovich on dynamical sys-
tems, with Ronen Shaltiel and Noam Nisan (then a visiting student from Berkeley
for a semester) on pseudorandomness, with Amir Shpilka on arithmetic complex-
ity, with Dorit Aharonov on quantum computation and more. I have continued to
pursue many of these research areas for years or decades, sometimes with the same
people! And beyond research, many of these relationships developed into life-long
friendships.

I have enjoyed many other aspects of research life in Israel and the Hebrew Uni-
versity. First and foremost, Israel is a phenomenal theory hub — it always was, and
of course it is growing and getting stronger all the time. Many wonder at the reason
for this. A clear one is that in Israel, CS grew mainly out of math departments, some-
thing which ensured a high regard for theory from both mathematicians and practical
CS researchers from day one (this is in contrast to the US, where CS grew mostly
from electrical engineering departments, and where theory was, and in many places
still is, not as highly regarded). At the Hebrew University both the computer sci-
ence department and the math department are excellent, and having been for many
years one and the same school, with people like Michael Rabin, Eli Shamir and
Nati Linial having positions in both, created a great collaborative atmosphere which
was ready for me to enjoy. Almost all theory courses were cross-listed, and indeed
some of my graduate students came from math. The math department had, and still
has, a great tradition of top-notch quality teaching standards, and theory students
had excellent math backgrounds. Also, Israel is a small country, and it was easy to
meet, have seminars, and work with people from all other academic institutions, so
some grad courses I taught were attended by students from Tel Aviv and the Weiz-
mann Institute. Finally, there were plenty of international visitors, including many
Israelis stopping by for short and long visits. I had fantastic new collaborations and
felt extremely productive there. Among my favorite works at the Hebrew university
let me mention four. The connection Mauricio Karchmer and I discovered between
Boolean circuit depth and communication complexity, which became a major tool in
circuit and proof complexity. The pseudo-random generator I developed with Noam
Nisan, which became a central tool of conditional derandomization tightening up
the relation between hardness and randomness. This culminated, after a series of
works, in my paper with Impagliazzo giving a widely believable hardness assump-
tion, which renders efficient deterministic algorithms which are essentially as pow-
erful as probabilistic ones. The general information-theoretic protocol for oblivious
computation developed with Michael Ben-Or and Shafi Goldwasser, (providing a
parallel to the above-mentioned cryptographic ones we constructed with Goldreich
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and Micali), and techniques feeding back to crypto (for homomorphic encryption).
And finally, with Ben-Or, Goldwasser and Joe Kilian, the introduction of a multi-
prover interactive proof model (MIP), which had so many important consequences
we could not imagine and were obtained by others, including to the PCP theorem,
hardness of approximation, and the recent breakthrough MIP∗ = RE on the quantum
variant of this model that had surprising applications in pure math.

We were all mostly happy and content in Jerusalem, when a phone call from
Phillip Griffiths, then the director of the Institute for Advanced Study, came in early
1999. In a great show of style, after making me the offer to become a faculty member
in the school of math, he asked me to pass the phone to Edna, and made her an
offer to join the IAS computing group. Perhaps to the mathematical reader of this
I should say that it was far from an obvious professional choice to make. There
was no computer science at IAS, and indeed to this day I am the only permanent
computer scientist. Of course, I had already been there on sabbatical in 1995, and
for a couple of semesters after that, and knew of the keen interest of the school to
expand into TCS and discrete math. I was also very familiar with the excellent CS
department and theory group at Princeton University, where I had many friends and
colleagues, but it was clear to me that at the IAS I would need to build from scratch
a research environment of the type I liked, to replace the perfect one I really loved
in Jerusalem.

But these professional considerations were minor compared to the personal ones.
Indeed, it was to be the most complex decision, with the most wide-ranging conse-
quences on our future family life. Of course, going to Princeton meant separating
from our extended family, numerous friends, jobs we liked and our home country.
But it was much more complicated than that. Eyal was 17, and made clear to us what
we knew anyway, namely that he would stay in Israel (which meant being alone for
12th grade and then his army service). Being extremely independent and trustwor-
thy, we did not really worry about his well-being — he could stay in our apartment,
use our car and our credit card — conditions which caused envy among his friends
and worry among many of ours. Yuval was 4, so we did not worry about him either
— it was clear he would come with us. We asked Einat, who was 14 at the time,
about what she thought of such an adventure. Having very fond memories from 3
years in previous sabbaticals at Princeton, with friends who went to school with her,
she was ready to try moving there for two years (for her 9th and 10th grades), if we
agreed we’d let her return then if she didn’t like it. So, as it seemed like an exciting
new adventure we wanted to embark on, we agreed to give it a try for these two
years. Cutting to the end of this drama, Einat discovered after a few weeks that it
was a big mistake, as socially it turned out to be far worse than she had imagined.
Still, she persevered! Edna and I on the other hand liked it greatly, and decided we
would stay. The following two years, Einat’s last in high school, we spent mostly in
Jerusalem, and then she stayed with Eyal in Jerusalem while we returned with Yuval
to Princeton. To this day, Eyal and Einat live in Israel, Yuval and we in the US, with
everyone shuttling continuously across the Atlantic to see each other.
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The School of Mathematics at the IAS is quite a unique environment. Eight (or
fewer) professors, no students at all, and about 70 visitors every year, most of them
postdocs in all areas of math, who have no responsibilities at all and are free to
concentrate on research. It has a beautiful housing complex for all on campus, with
a daycare center for young kids. IAS is placed in the secluded part of Princeton,
amidst the Institute woods with their many trails, providing plenty of isolation for
reflection if you want that. When you want interaction, there is plenty going on
in the School, and if you want more, you are only a ten-minute bike ride away
from the University where there are plenty more people to talk to and seminars to
attend. Most visitors (or, as we call them, members) indeed find it an ideal place
to concentrate on research. So, it seemed like a perfect place to start a postdoc
program in TCS and discrete math in the school, which extremely quickly got an
excellent reputation and attracted, like all other areas of math, the best graduating
students. It has now been running for over 20 years, and has seen over a hundred
postdocs pass through it. I was also fortunate to attract fantastic senior people to
spend several consecutive years in half- or full-time positions in this program and
assist in mentoring the postdocs: Noga Alon, Russell Impagliazzo, Toniann Pitassi,
Ran Raz and Sasha Razborov.

I have found that working with postdocs is quite different than with graduate stu-
dents, for obvious reasons. First, they spend a much shorter time here, a year or two,
and so often the relationships with many cannot be as developed as with graduate
students who spend 4–5 years with you. Postdocs arrive with significant research
experience from graduate school, and often with a clear research agenda. They typi-
cally have already some established collaborations which continue while at IAS. So,
in many ways, they don’t face many of the issues that graduate students do, and the
responsibilities of a postdoc advisor are far lighter. While true, one should also re-
member that the postdoc period can be one of high pressure to many. In some cases,
this is the period during which they must both discover and prove independence
from their graduate advisor. And for all, this is when they seek their first permanent
faculty positions, plan interview trips and lectures, and wait for answers on their
applications. In short, there is plenty of personal interaction and responsibility even
with postdocs. But most of the interaction revolves around research, and this has
been pure pleasure. From my own postdoc years I grew to believe that this period is
best spent on expanding horizons, learning new topics and developing new collabo-
rations, and have attempted to create an environment fostering this at IAS. Besides
the usual seminars with external speakers, we have internal ones, in which each
member teaches all others their specialty in detailed, long lectures. I have learned
an enormous amount from these. Needless to say, it is impossible to work with all
members, but research interactions with a substantial fraction has taught me much
more, and led to many more works I am really happy with. It is impossible to list
even a fraction of these, but let me mention a couple of my favorites. With my post-
docs Omer Reingold and Salil Vadhan we developed the “zigzag product” of graphs,
and with it, a new, combinatorial construction of expander graphs, a pseudo-random
object important in numerous areas of math and CS, for which essentially all previ-
ous constructions were algebraic in nature. In particular, the construction and proof
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inspired two spectacular results: the logspace algorithm for graph connectivity of
Omer Reingold, and a new proof of the PCP theorem by Irit Dinur. Another is the
study of randomness extractors, another important pseudo-random object. Among
many facets and related objects, let me mention the introduction of the sum-product
theorem in finite fields into the study and explicit construction of extractors and
Ramsey graphs, with Russell Impagliazzo, Ronen Shaltiel and my postdocs Boaz
Barak and Anup Rao. Curiously (but as often happens), this powerful method was
bypassed by stronger ones of a different nature, which provide much better construc-
tions. A very long and broad project is still raging on, with (at the time) postdocs
Zeyuan Allen-Zhu, Pavel Hrubes, Visu Makam and Amir Yehudayoff, and Princeton
university students Ankit Garg, Rafael Oliveira and continues with them and collab-
orators Peter Buergisser, Cole Franks and Michael Walter. Very broadly speaking,
it has to do with using symmetries of problems to generate efficient algorithms for
them, which generalize convex optimization from Euclidean to other geodesically-
convex settings. This has been quite unique for me in many ways. While motivated
in arithmetic complexity, we discovered that it is closely related to fundamental
problems in a a surprising variety of areas of math, physics and optimization. It has
demanded that I dive quite deeply into areas I knew nothing about, mainly invariant
theory, and some aspects of representation theory and Riemannian geometry. And
while all results so far have been algorithmic in nature, I still hope this approach
may give a way to prove some unconditional hardness results! Lastly, meaningful
for an obvious reason, is recent work with my son Yuval, now a math graduate stu-
dent, on uncertainty principles (joint work with my two other kids would have been
far harder, as Eyal became a neurobiologist and a wine maker, and Einat became a
psychologist).

Fig. 5: My wife and I (left) and my children (right). (Private)

With all this in the past already, I feel I have been extremely fortunate to have
the blessed life I had, with a loving family, many friends, and an occupation which
is my main passion (and also allows me to see the world). I have been in excellent
academic institutions, and had great mentors, students, postdocs and collaborators
who have taught me so much, and with whom I keep enjoying beating our heads
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Fig. 6: With my granddaughters, Tamar (left) and Nuri (right). (Private)

against math problems and discussing anything else. Of all which may be called
“achievements” above, there is nothing compared (for both Edna and me) to having
watched our children grow and become wonderful, happy people. I hope I’ll be able
to keep enjoying this kind of life for much longer!
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1 Introduction

László Lovász was born in 1948 in Budapest. Laci, as he is called by his friends, at-
tended the Fazekas Mihály Gimnázium in Budapest, a special school for mathemat-
ically gifted students and a fertile ground of world-class mathematicians. Katalin
Vesztergombi, his wife since 1969, was one of his classmates. Laci’s outstanding
talent became visible at very young age. He won, for example, several mathemat-
ics competitions in Hungary and also won three gold medals in the International
Mathematical Olympiad.

Lovász studied mathematics at Eötvös Loránd University (ELTE). He received
– with Tibor Gallai as his mentor – his first doctorate (Dr. Rer. Nat.) degree from
ELTE in 1971, the Candidate of Sciences (C. Sc.) degree in 1970 and his second
doctorate (Dr. Math. Sci.) degree in 1977 from the Hungarian Academy of Sciences.
Of great influence for his scientific growth was the outstanding Hungarian combina-
torial school (e.g., T. Gallai, A. Hajnal, A. Rényi, M. Simonovits, V. T. Sós, P. Turán,
and foremost P. Erdős).

In 1971 Lovász started his professional career as a research associate at ELTE.
From 1975 to 1982 he was Docent, later Professor and Chair of Geometry at József
Attila University, Szeged; 1983–1993 Chair of Computer Science at ELTE; 1993–
1999 Professor of Computer Science at Yale University; and 1999–2006 Senior Re-
searcher, Microsoft Research, Redmond. In 2006 Lovász returned to his hometown
Budapest as a Professor and Director of the Mathematical Institute at ELTE from
which he retired in 2018. In 2020 he joined the Alfréd Rényi Institute of Mathemat-
ics. Lovász served the International Mathematical Union as its President from 2007
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to 2010 and the Hungarian Academy of Sciences as its President from 2014 to 2020
during demanding times.

Among the institutions Lovász visited for extended periods of time are Vanderbilt
University, University of Waterloo, Universität Bonn, University of Chicago, Cor-
nell University, Mathematical Sciences Research Institute in Berkeley, Princeton
University, Princeton Institute for Advanced Study, and ETH Zürich. Five univer-
sities bestowed special professorships upon him, he received six honorary degrees
and countless high-ranking honors and distinctions, including the Kyoto Prize 2010,
see Fig. 2.

Like every scientific discipline, mathematics has become a field with a large num-
ber of specializations. The Mathematics Subject Classification (MSC 2020) with its
63 first-level areas and 6,006 specific research areas is a witness of this develop-
ment. Today, no mathematician has a full understanding of all the mathematical
branches. But there are still a few people with broad mathematical knowledge, deep
command of their fields of special interest, and the ability to build bridges by trans-
ferring results and techniques between fields to expand the mathematical toolboxes
and open up new research areas. One of these rare persons is László Lovász. In fact,
quite fittingly, two volumes published in his honor at special occasions were entitled
Building Bridges, see [65] and [12].

Laci’s mathematical roots are in combinatorics. But he vastly expanded his reach
by employing combinatorial methods in other mathematical fields and bringing, in
return, tools from geometry, topology, algebra, analysis, probability theory, informa-
tion theory, optimization, and even ideas from physics into combinatorics. His deep
interest in algorithms led to major advances in modern complexity theory. In his
work, Lovász established profound connections between discrete mathematics and
computer science. This is reflected in the statement that the Norwegian Academy of

Fig. 1: Lovász and Erdős at dinner in 1977 (Photo: Private)
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Fig. 2: In a Tokyo subway station on the way to the Kyoto Prize ceremony: Laci,
Kati, and son Laci M. Lovász, András Frank in the back (Photo: Private)

Science and Letters issued in its announcement of the award of the Abel Prize 2021
to him and Avi Wigderson

for their foundational contributions to theoretical computer science and discrete mathemat-
ics, and their leading role in shaping them into central fields of modern mathematics.

At the end of the 1960s and the beginning of the 1970s, graph theory, discrete math-
ematics, combinatorics, and theoretical computer science were considered periph-
eral fields of mathematics. This changed completely during Lovász’s lifetime. They
became central parts of modern mathematics for many reasons. The tremendous de-
velopment of computer technologies is the most obvious one. Essential factors were
also the high quality of the research and the results in these areas and their wide
applicability. The solutions of many problems arising in industry, society, other sci-
ences, even in other fields within mathematics critically depend on theories and
algorithms invented in discrete mathematics. Many mathematicians and computer
scientists contributed to this. László Lovász undoubtedly was and still is one of the
key players in this development.

There are other aspects that make László Lovász special. Mathematicians are
often divided into “problem solvers” and “theory builders”. Graph theory is, in par-
ticular, a field to which problem solvers are drawn. Theory builders often see deep
and unusual connections, but often leave the difficult exploration of details to oth-
ers. As we will demonstrate, Lovász is a member of this rare breed of people who
possess both talents. Moreover, he brought his talents to bear not only in one field of
mathematics, he has also fertilized and inspired significant developments in a wide
range of other areas. If asked to formulate the essence of his contributions in few
words, we could use the following three:
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Depth: Lovász solves many important and widely known problems in a competitive
environment. He isolates seemingly special topics and develops them into broad
and important calculi.

Elegance: His solutions are often surprisingly (and sometimes seemingly) simple.
At the same time, they often are mathematically beautiful and suggest funda-
mentally new ways to address a problem.

Inspiration: Many of his solutions are the basis of further active research and even
the foundations of whole new areas.

László Lovász has published eleven books and more than 300 articles. There is no
way to survey his contributions in an article like this. We have chosen to sketch
some of the publications and topics that we consider highlights, are not too difficult
to explain, had significant impact, moved the frontier of knowledge in the interface
of mathematics and computer science substantially, and are of lasting value.

2 Logic and Universal Algebra – Homomorphisms and Tarski’s
Problem

L. Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica 18:321–328, 1967.

L. Lovász. On the cancellation law among finite relational structures. Periodica
Mathematica Hungarica 1:145–156, 1971.

M. Freedman, L. Lovász, L. Schrijver. Reflection positivity, rank connectivity, and
homomorphisms of graphs. Journal of American Mathematical Society 20(1):37–51,
2007.

Up to the 1960s graph theory was mainly concerned with graphs as objects. Graph
parameters were introduced and the structural properties of graphs having these
properties were investigated. László Lovász made, as we will outline, very signif-
icant contributions to this kind of research, but he left his first fundamental mark,
when he was 19 years old, in the more general context of universal algebra.

Intending to step out of the object orientation of graph theory, Lovász got inter-
ested in operations with graphs and their algebraic properties. We all know that, for
nonzero real numbers a, b, and c, the equation ac = bc implies a = b. Suppose we
have three graphs A, B, and C, and suppose we have defined a product “×” for which
A×C = B×C holds, can we infer that A = B? Such a question only makes sense if
equality “=” is replaced by “isomorphic” and the concrete issue to be addressed is:
Under what conditions does such a “cancellation law” hold?

Questions of this type were asked by Alfred Tarski, in the context of finite rela-
tional structures, to students in Berkeley in the 1960s. Lovász points this out in the
following quote, extracted from his article [97], where he states the question and
announces his solution:
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Fig. 3: Quote from [97]

Reference [1] in the quote above is the paper [25] of Chang, Jónsson, and Tarski
of 1964, see also [130].

A finite graph G with vertex set V (G) and edge set E(G) is such a relational
structure where V (G) is the ground set and the edges uv define the (binary) relations
between vertices u and v. A standard product in graph theory is the direct (also
named categorial or tensor) product G1×G2 of two graphs G1 and G2. Its vertex set
is V (G1)×V (G2) = {(u,v) | u ∈ V (G1),v ∈ V (G2)} and its edge set E(G1×G2)
is defined to be the set of all pairs of vertices (u1,u2),(v1,v2) ∈ V (G1)×V (G2)
with u1v1 ∈ E(G1) and u2v2 ∈ E(G2). The question to be addressed is: Given two
graphs G and H and a third graph F , can one conclude that G and H are isomorphic
if the direct product F ×G is isomorphic to F ×H? This particular question and
most of the related problems for finite relational structures were unsolved, despite
considerable effort. The earlier solution approaches taken were usually elementary,
trying to reduce the problem to known invariants.

Lovász devoted to these problems three of his early papers written in 1967, 1971,
1972. His approach was radically different: He invented a new invariant which
solved these problems for the direct product in full generality. His results completely
changed this area.

The Lovász argument is easy and can be given here in full. Interestingly, young
Lovász formulates his results very generally for finite relational structures, i.e., ob-
jects of the form AAA = (XAAA,(RAAA;R ∈ L)) where RA is a subset of X a(R) (a(R) is the
arity of the relational symbol R; L is the fixed set of symbols usually called lan-
guage). Shortly, we speak about L-structures.

A homomorphism f : AAA → BBB = (XBBB,(RBBB;RRR ∈ L)) is a mapping f : XAAA → XBBB
such that for every R ∈ L, (x1, . . . ,xa(R)) ∈ RAAA⇒ ( f (x1), . . . , f xa(R) ∈ RBBB holds. The
product AAA×BBB is defined as XAAA×BBB = XAAA ×XBBB where RRRAAA×BBB is the set of all tuples
((x1,y1), . . . ,(xa(R),ya(R))) where (x1, . . .xa(R)) ∈ RAAA and (y1, . . . ,ya(R)) ∈ RBBB.

Note that the projections πAAA : XAAA×BBB → XAAA and πBBB : XAAA×BBB → XBBB are homomor-
phisms. Up to an isomorphism, projections uniquely determine the above product.
(The whole theory may be restated in categorical terms as worked out in papers by
Lovász [102] and Pultr [139].)

Denote by hom(AAA,BBB) the number of homomorphisms from AAA to BBB. The key of
Lovász’s argument is the following statement:

Theorem. Finite L-structures AAA and BBB are isomorphic if and only if for every other
finite structure CCC the following holds: hom(CCC,AAA) = hom(CCC,BBB).
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In other words (and in today’s setting), if we take a fixed enumeration F1, F2, . . .,
Fn, . . . of all non-isomorphic finite graphs then the vector L(AAA) = (hom(Fi,AAA); i =
1, . . .) is the isomorphism invariant, expressed equivalently: AAA ∼= BBB if and only if
L(AAA) = L(BBB).

Hell and Nešetřil [76] (and others) call this invariant L(AAA) the Lovász vector.
This setting is very suitable for the Tarski problem. For example, one immedi-

ately obtains that for finite structures AAAk ∼= BBBk holds if and only if AAA ∼= BBB. This
follows readily from hom(CCC,AAAk) = (hom(CCC,AAA))k.

For brevity we mention another consequence for the special case of graphs. IfCCC is
a nonbipartite graph then AAA×CCC∼=BBB×CCC if and only if AAA∼=BBB. (Note that for bipartite
graphs CCC, cancelation need not hold as already for circuits we have 2CCC3 ×K2 ∼=
CCC6×K2.)

The above theorem is very general and yet the proof is easy. In the nontrivial
direction we prove by induction on the cardinality |XCCC| of the ground set XCCC that,
if hom(CCC,AAA) = hom(CCC,BBB), then also the number of injective homomorphisms coin-
cides, i.e., inj(CCC,AAA) = inj(CCC,BBB).

In the inductive step we have hom(CCC,AAA) = ∑θ inj(CCC/θ ,AAA) where θ is an equiva-
lence on XCCC. Thus by induction assumption we have 0 = hom(CCC,AAA)−hom(CCC,BBB) =
inj(AAA,AAA) − inj(AAA,BBB) = inj(BBB,BBB) − inj(BBB,AAA). But obviously inj(AAA,AAA) > 0 and
inj(BBB,BBB) > 0, and thus, we have that there are injective homomorphisms from AAA
to BBB and also from BBB to AAA. Now as AAA and BBB are finite structures we have that AAA∼=BBB.

Lovász recognized in the Tarski problem a magnificent pearl. His theorem turned
out to be very useful. It found many applications and inspired further research. This
continues until today, see the articles by Lovász and Schrijver [118], Dvořák [38]
and Dawar et al. [34], for example.

The papers [97] and [99] of Lovász belong to the first occurrences of homomor-
phisms in graph theory. Their successful utilization led to a rich calculus (see, e.g.,
the books by Hell and Nešetřil [76] and Lovász [112] and the article by Borgs et
al. [21]). We outline important parts of this approach.

Lovász already defined in [97] exponential structures AAABBB (and exponential
graphs GH ). These played very recently a decisive role in the disproof of the
Hedetniemi conjecture which claimed that χ(G×H) = min(χ(G),χ(H)), see Shi-
tov [147], Wrochna [159], Tardif [156], and Zhu [161].

Another application of homomorphism counting was provided by Lovász in [103],
which deals with the following problem: When can one recognize a given finite
structure from the collection of all its proper substructures? The special case for
undirected graphs is a classical conjecture of Ulam, see [157], which may be formu-
lated in our setting as follows:

Do the homomorphism numbers hom(F,G) for all graphs F with fewer edges than G
determine the graph G?

This conjecture is known to be true for special classes of graphs (such as trees and
maximal planar graphs), and the proofs usually consist of a complicated case anal-
ysis. In [103] Lovász gave the first general result: The conjecture is true for graphs
that have more edges than their complement (i.e., more than half of all edges).
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The proof, although not directly linked to the above theorem proceeds again by
clever homomorphism counting. Shortly after, this proof was extended by Müller
in [132] (again by homomorphism counting) to graphs with n logn edges. This is
still the best result.

Counting of homomorphisms and the investigation of their structure are corner-
stones of further areas of mathematics and theoretical computer science. We just
indicate three examples, where they play important roles: Tutte polynomials and
their variants, see [46]; constraint satisfaction problems (which can alternatively be
viewed as existence theorems for general relational structures), see [52]; and parti-
tion functions in statistical physics, see [24, 112, 23].

Let us finally elaborate on partition functions, the last item mentioned above. The
concept of graph homomorphisms can be extended to graphs with loops and weights
assigned to vertices ∝v (G) and edges βuv(G). For unlabeled graphs F and labeled
graphs G, one can define naturally the weight of a mapping ϕ : V (F)→ V (G) and
then the total weight of hom(F,G). Allowing weights on the vertices and edges
greatly extends the expressive power of (weighted) homomorphisms. For example,
the number hom(F,G) can express the number of colorings (leading to chromatic
and Tutte polynomials), the counting of stable sets (corresponding to the so-called
hard core model in statistical physics) and also the counting of nowhere zero flows
and B-flows (i.e., flows attaining values from a given set B only). All these are
parameters of the form hom(−,H). Freedman, Lovász, and Schrijver [54] provided
a structural characterization for all such parameters as follows:

Theorem. Let f be a (real) graph parameter defined on multigraphs without loops.
Then f is equal to hom(−,H) for some weighted graph H on q vertices if and only
if f (K0) = 1, the f connection matrix M( f ,k) is reflection positive, and its rank
satisfies r(M( f ,k))≤ qk for all k ≥ 0.

(Briefly: Above, Kk is the complete graph on k vertices; the connection matrix
M( f ,k) is defined by values of the parameter f for amalgams of k-multilabeled
multigraphs; reflection positivity means that, for all k, such matrices are positive
semidefinite.)

This theorem led to many similar results for other classes of graphs and for other
types of homomorphism numbers (e.g., in a dual setting with hom(F,−) instead of
hom(−,H), see [119]). In terms of statistical physics, this theorem can be viewed
as a characterization of partition functions of vertex coloring models.

Lovász wrote extensively on this topic and devoted – ten years ago – a mono-
graph [112] to this subject, where the topics indicated here are treated in depth.
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3 Coloring Graphs Constructively (on a Way to Expanders)

L. Lovász. On chromatic number of finite set-systems. Acta Mathematica Academiae
Scientiarum Hungaricae, 19:59–67, 1968.

The chromatic number χ(G) of a graph G is the minimum number of colors which
suffice to color all vertices of G such that no two adjacent vertices get the same
colour. Alternatively, using the notion of the preceding section, χ(G) is smallest k
for which hom(G,Kk)> 0.

The chromatic number belongs to the most frequently studied combinatorial pa-
rameters. The reasons for such attention are that the question of how to color the
countries on a map can be easily explained to everyone and that the mathematical
modelling of this question can be employed as an appealing introduction to graph
theory. The “colorful story of the 4-color conjecture” can be used to shed some light
on the rich history of mathematics and the difficulty of finding proofs for problems
that appear to be easy. Coloring the vertices of a graph captures the substance and
the difficulty of many problems. In a multiple sense, the chromatic number is a
difficult concept.

Just consider the easiest question: Are there graphs with large chromatic number?
Of course, complete graphs Kn satisfy χ (Kn) = n. But are there any other essentially
different graphs?

The answer is yes and a classical result, rediscovered several times, states that,
for every k ≥ 1, there are graphs Gk for which χ(Gk) = k and Gk does not contain
K3 (i.e., the triangle) as a subgraph. This result and its many ramifications, for in-
stance in extremal graph theory, are still in the current focus of coloring research.
In fact, any new constructive proof of the existence of such graphs Gk is interesting
and attracts great attention. Here is perhaps the simplest proof of this fact: Let us
define, for any integer n≥ 4, the graph G = (V,E) where V is the set of integer pairs
{i j},1≤ i < j ≤ n, and {i j,kl} ∈ E if i < j = k < l. Such a graph G is called a shift
graph. G has no triangles, and it can be shown that χ(G) = [logn].

But this is not the end of the story. Graphs may have high chromatic number and
very low edge density. P. Erdős showed in [47] that there exist graphs which have
arbitrarily large chromatic number and which are locally trees and forests.

Theorem. For every k, l there exists a graph Gk,l such that χ(Gk,l) ≥ k and Gk,l
does not contain circuits of length ≤ l. (So the shift graph above is a graph of
type Gk,3.)

Erdős’ proof was a landmark. It constitutes one of the key applications of the
probabilistic method in graph theory, see, e.g., [6]. The proof shows that the prob-
ability of the existence of such graphs Gk,l is positive, but does not give any hint
how to construct concrete examples of graphs of type Gk,l . The construction of such
graphs has been a longstanding problem with very slow progress (for the historic
development and related issues, see, e.g., the Nešetřil article [133]).
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The first constructive proof of the theorem above was found by Lovász in one
of his early papers [98]. It was one of the highlights of the 1969 conference in
Calgary; and through his proof, Lovász again changed the setting of the problem
as he constructed the graphs Gk,l as special cases of a more general theorem about
hypergraphs. His complicated construction was later simplified, the Nešetřil–Rödl
construction is perhaps the simplest [135].

But various problems remained.
One of them is the question whether one can provide a construction that uses

only graphs. The answer is positive. I. Křı́ž [90] and more recently N. Alon et al. [3]
came up with such constructions, and Ramanujan graphs have to be mentioned here
as well.

The existence of graphs Gk,l with a large chromatic number and no short circuit
is a phenomenon of finite (and of countable) graphs. For graphs with an uncountable
number of vertices and uncountable chromatic number, an analogous result does not
hold. This was shown by Erdős and Hajnal [48]:

If the chromatic number of a graph is uncountable then it contains every bipartite
graph.

A consequence of this result is that such a graph contains every circuit of even
length, for example the circuit CCC4 of length four.

Graphs Gk,l are what can be called difficult examples. They also play an im-
portant role in Ramsey theory, extremal combinatorics, topological dynamics, and
model theory, to name just a few. In all these areas they are used as examples of
complex yet locally simple structures; they are prototypes of local-global phenom-
ena.

It took some time to understand why the construction of graphs Gk,l matters, why
it is important to know such graphs explicitly. This led to an explosion of theoretical
developments combining group theory, number theory, geometry, algebraic graph
theory, and, of course, combinatorics. The key notions are now familiar to every
student of theoretical computer science: expanders, Ramanujan graphs and sparsifi-
cation, see Margulis [127], Lubotzky, Phillips, and Sarnak [125], and Spielman and
Teng [153].

An expander graph, for instance, is a finite, undirected multigraph (parallel edges
are allowed) in which every subset of the vertices that is not “too large” has a “large
boundary”. There are various formalizations of these notions. Each of them gives
rise to a different notion of expanders, e.g., edge expanders, vertex expanders, and
spectral expanders. Expander graphs have found applications in the design of algo-
rithms, error correcting codes, pseudorandom generators, sorting networks, robust
computer networks and hash functions in cryptography. They also played a role in
proofs of important results in computational complexity theory, such as the PCP
theorem.

The construction and structure of graphs similar to Gk,l continues to be one of the
key problems of finite combinatorics and has a character of a saga (see, e.g., Hoory
et al. [78] and Nešetřil [133]).
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Coloring of graphs and hypergraphs has been a permanent theme of Lovász,
and thus, it is mentioned in most sections of our survey. For example, one of the
motivations of the next section was the study of 3-chromatic linear hypergraphs, i.e.,
hypergraphs in which edges meet in at most one vertex, or equivalently, hypergraphs
without cycles of length 2.

4 The Lovász Local Lemma

P. Erdős, L. Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. In Infinite and Finite Sets. Coll. Math. Soc. J. Bolyai, North Holland:
609–627, 1975.

A hypergraph is a collection of sets. The sets are called edges, the elements of the
edges are vertices. The degree of a vertex is the number of edges containing it. A
hypergraph is called r-uniform if every edge has r vertices. The chromatic number
of a hypergraph is the least number k such that the vertices can be k-colored so that
no edge is monochromatic.

Graphs with chromatic number at least 3 are simple to characterize: they must
contain an odd circuit. But for hypergraphs, even the characterization of 3-chromatic
3-uniform hypergraphs is difficult (it is an NP-complete problem). Lovász and
Woodall had independently shown that every 3-chromatic r-uniform hypergraph
contains a vertex of degree at least r. Erdős and Lovász [49] aimed at generalizing
this result in various ways. One of the key results of their article is the following:

Theorem. A (k + 1)-chromatic r-uniform hypergraph contains an edge which is
intersected by at least kr−1/4 other edges. Thus, the degree of at least one vertex is
larger than kr−1/(4r).

To prove this theorem, the authors employed probability theory. As pointed out
by Erdős, Lovász contributed to the proof a substantial new result of elementary
probability. This was later called the Lovász Local Lemma.

The motivation for this lemma comes from a well-known observation of elemen-
tary probability:

If X1, . . . ,Xn are random events which are pairwise independent and if the proba-
bility of each event Xi is smaller than 1, then the probability that none of the events
Xi occurs is positive. The Lovász Local Lemma is a quantitative refinement of this
observation for variables which are dependent.

Fig. 4 shows the formulation of the Lovász Local Lemma as stated and proved in
the original article [49]. Indeed, it is “just a lemma”.

Crystal clear: Not only when the events are independent, but if the dependence
graph G has a small degree (≤ d) then also none of the events occurs with positive
probability. The adjective local in the name of the lemma refers to the situation that
each event is dependent only on a small number d of others.
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Fig. 4: Extracted from [49]

It is hard to overestimate the general importance of this result that just turned up
as a “supporting observation” for a proof in the chromatic theory of hypergraphs.
It appears again and again in multiple applications, ramifications, and forms. It is
not possible to cover here all the applications in Ramsey theory (see Spencer [152]),
extremal combinatorics (see Alon and Spencer [6]), number theory, and elsewhere
(see, e.g., Ambainis et al. [7], He et al. [75], and Szegedy [154]). It was also discov-
ered, see [145], that the Lovász Local Lemma closely relates to important results
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of Dobrushin in statistical physics [37]. In fact, the proper setting of the Dobrushin
results is in the context of graph limits, see [112], which we discuss in Section 17.

One of the motivations for [49] is the following number-theoretic problem which
goes back to Ernst Straus (who was an assistant of Albert Einstein): Is there a func-
tion f (k) such that, if S is any set of integers with |S| = f (k), then the integers can
be k-colored so that each color meets every translated copy of S (i.e., every set of
the form S+ a = {x+ a | x ∈ S})? Lovász and Erdős, already in their paper [49],
made use of the Lovász Local Lemma to prove the following more geometric gen-
eralization of the question asked by Straus:

For every k, there exists a function f (k), such that f (k) ≤ k logk and for every
set S of lattice points in the n-dimensional space En with |S| > f (k) there exists a
k-coloring of all lattice points such that each translated copy of S contains points of
all k colors.

A side remark: There are many variants of coloring problems, and some of them
are surprisingly difficult. For example, during a conference in Boulder in 1972 Paul
Erdős, Vance Faber, and László Lovász asked whether the vertices of any n-uniform
linear hypergraph with n edges can be colored by n colors such that the vertices of
any edge get all n colors. This question has many reformulations and turned out to
be more difficult than originally thought (even by the authors as Erdős originally of-
fered $50 for a solution and eventually increased the prize to $500). About 50 years
later the Erdős–Faber–Lovász conjecture was shown to be true for large values of n
by D. Y. Kang, T. Kelly, D. Kühn, A. Methuku, and D. Osthus [84].

Nowadays, the Lovász Local Lemma is a “standard trick” which is often taught
in basic courses. And it is a very effective trick, as Joel Spencer once remarked:
“Using the Local Lemma one can prove the existence of a needle in a haystack.”

But the Lovász Local Lemma delivers only existence. The above proof does not
yield a method how to find that needle. We only know that certain things exist with
positive probability. Only much later a constructive proof was found by Marcus and
Tardos [126]. (Remark: A constructive proof for the above Straus’ problem is in
Alon et al. [4]; see also J. Beck [14].) Recently, Harvey and Vondrák [72] found
another constructive approach to the Lovász Local Lemma.

Investigations of infinite versions (Borel and measurable) of the Lovász Local
Lemma started also very recently by A. Bershteyn, G. Kun, O. Pikhurko, and others,
see, e.g., [18].)

The Lovász Local Lemma became what one can truly call a combinatorial prin-
ciple. This is László Lovász at its best: Maybe no other Lovász-contribution is so
profoundly simple and yet useful and elegant.
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5 Coloring Graphs via Topology

L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of
Combinatorial Theory A 25:319–324, 1978.

Combinatorial questions are often easy to formulate; some also have an elementary
solution. But in many cases, the elementary nature of combinatorial problems is
just the top of an iceberg, and the hidden complexity must be discovered and tamed
before a solution can be found.

A beautiful example of this is the following elementary problem posed in 1955
by Martin Kneser [89], who was working on quadratic forms. In today’s language:

Let X be a set with n elements, n ≥ 2k > 0. Denote by
(

X
k

)
the set of all k-element

subsets of X. Then, for every coloring of the sets in
(

X
k

)
by fewer than n− 2k+ 2

colors, there are two disjoint sets of the same color.

This problem can be reformulated as a graph theory question as follows. Let
KG(n,k) denote the graph (called the Kneser graph) whose vertices are all k-
element subsets of the set X = {1,2, . . . ,n}, and in which two vertices are joined by
an edge if the corresponding k-element subsets are disjoint. For example, KG(n,1)
is the complete graph Kn and KG(5,2) is the famous Petersen graph (the “universal”
counterexample to many conjectures in graph theory) shown in Fig. 5.

{1,2}

{4,5}

{1,3}{2,5}

{3,4}
{3,5}

{2,3}

{2,4}{1,4}

{1,5}

Fig. 5: KG(5.2) = The Petersen graph

Kneser’s question reads now: Does the Kneser graph KG(n,k) have chromatic
number n−2k+2?

It is easy to see that χ(KG(n,k))≤ n−2k+2. However, to find the fitting lower
bound for the chromatic number proved to be much harder.
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Lovász [98] solved this problem in a surprising way using methods of algebraic
topology. The general idea is the following. Lovász associates with any graph G a
topological space and establishes a connection between a topological invariant of
this space with the chromatic number of G. He then infers properties of the chro-
matic number of G from properties of the topological invariant of the associated
topological space. That this is possible and that topology can yield solutions of dif-
ficult graph theory questions was completely unexpected. Lovász’s success with this
approach was the starting point of a new field: topological combinatorics. We briefly
sketch the main steps of Lovász’s solution of Kneser’s problem here.

Lovász proceeds as follows: Given a graph G = (V,E), the neighborhood of a
vertex v is composed of all vertices adjacent to v in G. The neighborhood com-
plex N(G) of G consist of all the vertices V of the graph G; the simplices of N(G)
are sets of vertices with a common neighbor in the graph. Homomorphisms between
graphs lead to continuous mappings of neighborhood complexes. From the topolog-
ical connectivity of N(KG(n,k)) it is possible to construct an antipodal continuous
mapping between spheres (N(Km+2) is an m-dimensional sphere) and one can then
apply the Borsuk–Ulam theorem. Thus, Lovász obtained:

Theorem. If the neighborhood complex N(G) of a graph G is (topologically)
k-connected then χ(G)≥ k+3.

(Topologically k-connected means that there are no holes of dimension ≤ k. For
(simply) connected complexes this is equivalent to the fact that all i-homological
groups vanish for i = 0,1, . . . ,k.)

Lovász finally proves a theorem on the connectivity of neighborhood complexes
of graphs from which he can infer that the neighborhood complex of a Kneser
graph N(KG(n,k)) is topologically (n− 2k− 1)-connected. This establishes that
the Kneser graph KG(n,k) has chromatic number n−2k+2.

This connection (and the whole proof) immediately led to intensive research.
Other proofs of this theorem were found (among them “book proofs” of Barany [10]
and Green [63]), but all lower bounds for the chromatic number of Kneser graphs
use or at least imitate Lovász’s topological proof. Matoušek’s book [128] surveys
in detail various implications and modifications of the proof techniques. For exam-
ple, it has been shown in [71] that the k-times generalized Mycielski construction
has chromatic number k+ 2, and again, topological arguments are the basis of the
only known proof of this fact. The paper [71] contains the following interesting
construction of graphs Gk.

Put [k] = {1,2, . . . ,k}. The vertices of Gk are all pairs (i,A) where i /∈ A and
A is a nonempty subset of [k]. (i,A) and ( j,B) form an edge in Gk if i ∈ B, j ∈ A
and A and B are disjoint. This “Kneser-like” graph Gk has remarkable properties:
Its chromatic number is k, it is critical (i.e., every proper subgraph has a smaller
chromatic number) and every strongly k-colorable graph has a homomorphism into
it; it is the unique graph with this property. (A strong coloring of a graphs is a
coloring where the neighborhood of any color class forms a stable set. Such a graph
obviously has no triangles.)
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Fig. 6: The beginning of the article [105] starting topological combinatorics

The only known proof of these properties is an adaptation of Lovász’s topological
proof.

These examples of graphs were instrumental in the recent disproof of the Hedet-
niemi conjecture (that intended to establish a connection between the direct product
of two graphs and their chromatic number, which we mentioned in Section 2; see
also [150]) and also in the study of gap problems for constraint satisfaction prob-
lems. Related questions in this area are called promised problems. A typical question
here is: How difficult is it to 5-color graphs or hypergraphs under the assumption
that we know they are 3-colourable, see [35, 13], and [160].

Lovász’s paper opened a whole area whose fruits are still continuing to appear.
Matoušek in the preface to [128] rightly wrote that Lovász’s proof of the Kneser
conjecture is a masterpiece of imagination.

Yet, in typical Lovász style, it was published just as a note (see Fig. 6).
Lovász’s solution of the Kneser problem did not exhaust his topological imagi-

nation nor the potential of topological methods in combinatorics. He returned to this
approach frequently during his career, often in collaboration with Lex Schrijver. We
mention just one of the highlights of their cooperation.

Motivated by estimating the maximum multiplicity of the second eigenvalue of
Schrödinger operators, Colin de Verdière introduced a new invariant for graphs G,
denoted µ(G), based on spectral properties of matrices associated with G. He proved
that µ(G)≤ 1 if and only if G is a disjoint union of paths, that µ(G)≤ 2 if and only
if G is outerplanar, and that µ(G)≤ 3 if and only if G is planar.

Robertson, Seymour, and Thomas showed that a graph G is linklessly embed-
dable if and only if G does not have any of the seven graphs in the Petersen family
as a minor. Their combinatorial result implies that µ(G) ≤ 4 if G is linklessly em-
beddable, and they conjectured that µ(G) ≤ 4 if and only if G is linklessly embed-
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dable. Lovász and Schrijver, see [117], proved the only if part of this topological
characterization. The key ingredient of their proof is a new Borsuk-type theorem
on the existence of antipodal links, which is an extension of a polyhedral version of
Borsuk’s theorem due to Bajmóczy and Bárány. The combination of all these results
provides a fascinating characterization of graphs G satisfying µ(G) ≤ 4 by means
of spectral, combinatorial, and topological properties. Topological methods seem to
keep on flourishing in combinatorics and graph theory.

6 Geometric Graphs and Exterior Algebra

L. Lovász. Flats in matroids and geometric graphs. In Combinatorial Surveys. Proc. 6
British Comb. Conf. Academic Press, pages 45–86, 1977.

Many of Lovász’s proofs deal with graphs (and hypergraphs) and make use of some
additional structures. The Shannon Capacity paper, see Section 8, involved a geo-
metric structure which was added (orthogonal representation) so that the problem
could be solved. To solve the Kneser problem, discussed in Section 5, Lovász em-
ployed results from topology. To recognize that methodology from other mathemat-
ical fields can be utilized needs, of course, mathematical maturity, skill, and imag-
ination. We want to highlight that this is a different strategy than merely studying
embeddings of graphs (e.g., graphs on surfaces): the special embeddings are being
incorporated in proofs as tools in order to solve a (different) problem.

A very special example of this is the Lovász-article [104], which is a remarkable
paper for multiple reasons.

The paper was published as an invited lecture in the proceedings of 6th British
Combinatorial conference. These proceedings volumes usually contain surveys of
recent developments. In contrast, the Lovász paper – full of new ideas – solved an
important problem and unleashed research in two different areas: First, it started
research in graphs where the vertices form a matroid; Lovász uses here the term
geometric (or pregeometric) graphs, and this generalization is essential for solving
the problem. Secondly, the paper started the application of exterior algebra in com-
binatorics. Particularly, Lovász defined exterior calculus in matroids and Grassman
graded matroids.

Why is Lovász introducing this general machinery? Well, he is explicit about that
in the introduction:

This paper was intended to deal with the covering problems in graphs. It has turned out,
however, that their study becomes much simpler if a more general structure, which we shall
call geometric graph, is considered.

Lovász later on used the term geometric graph in a broader sense, and he recently
wrote the book [113] treating the whole area in detail.

What were the “covering problems” of [104]?
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The starting point was an old problem due to Tibor Gallai related to τ-critical
graphs: The covering number of graph G = (V,E), usually denoted by τ(G), is the
minimum cardinality of a set A⊆V such that every edge of G meets A. (Such a set A
is also called hitting set.)

τ(G) is a “hard” combinatorial parameter (ultimately related to the stability num-
ber α(G) and the chromatic number χ(G)).

One approach to gain information about the covering number is to consider
graphs that are critical with respect to this parameter. A graph G = (V,E) is
τ-critical if τ(G)> τ(G−e) for every edge e ∈ E. Gallai proved in 1961 that every
τ-critical graph G satisfies |V | ≤ 2τ(G). So given τ there are only finitely many
τ-critical graphs and this implies a “finite basis theorem”.

However, a much stronger statement holds. Let us denote the gap in the above
inequality by δ (G) := 2τ(G)−|V (G)|. Then one can observe that, given a τ-critical
graph G, the graph G′ obtained from G by subdividing an edge of G by an even
number of vertices is also τ-critical, and obviously δ (G) = δ (G′). Gallai conjec-
tured that this is the only operation that does not destroy τ-criticality and that the
number of τ-critical graphs with a given value δ is (essentially) finite. And this was
the motivation of Lovász for his paper [104] in which he proved this conjecture.

Theorem. The number of connected τ-critical graphs G with gap δ (G) = 2τ(G)−
|V (G)|= δ and all vertex degrees ≥ 3 is at most 25δ

2
.

The proof of this result is complex. In fact, Lovász develops several new tools.
The whole paper makes effective use of geometric graphs (where the vertices form
a matroid). This allows Lovász to carry on a subtle refinement of induction proce-
dures. He makes magnificent use of his vast experience with matchings and gener-
alized factors (this was the subject of his doctoral thesis supervised by T. Gallai)
which found its way into his early book on matching theory [115] with M. Plum-
mer. The proof also implicitly contains the “skew Bollobás theorem” (in a matroid
setting) about an extremal problem for set intersections of pairs of sets and many
other inspiring ideas, in particular, the surprising utilization of exterior algebra. This
aspect of the paper [104] also generated a whole new theory.

We shall illustrate the use of exterior algebra by the simpler example of the
(Prague) dimension of graphs (treated in another Lovász paper [114]).

It is easy to prove that every graph is an (induced) subgraph of the direct product
of complete graphs (the product we introduced in Section 2). The smallest number
of such a set of complete graphs is called the dimension dim(G) of the graph G.

Thus, dim(Kn) = 1 and dim(Kn×Kn×·· ·×Kn) ≤ t (direct product of t copies
of Kn).

It is very nice that we have equality here. The proof in [114] is one of the first
applications of exterior algebra in combinatorics, which was initiated in [104].

Theorem. dim(Kt
n) = t for every t ≥ 1, n≥ 2.

K2
2 is isomorphic to K2 + K2 and Kt

2 is isomorphic to a perfect matching
(i.e., disjoint edges) of size 2t−1.
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It suffices to prove dim(Kt
2) ≥ t. Given a representation f : Kt

2 → Kd
N , we put

explicitly:
f (i) = ai = (a1

i , . . . ,a
d
i ) and f (i′) = bi = (b1

i , . . . ,b
d
i ) (we think of matchings

having edges {i, i′} i = 1, . . . ,2t−1). Clearly all these 2t vectors are distinct.
The condition that f is an embedding can be then captured by ∏

d
k=1 (a

k
i −bk

j) ̸= 0
if and only if i = j,∏d

k=1 (a
k
i −ak

j) = 0, and ∏
d
k=1 (b

k
i −bk

j) = 0 for all i, j.
But these expressions can be written even more concisely by means of scalar

products of vectors in the exterior algebra, i.e., the same technique which we men-
tioned above in connection with τ-critical graphs. Towards this end, for a vector
x = (x1, . . . ,xd), we define 2d-dimensional vectors

x∗ =
(
x∗(K) | K ⊆ {1, . . . ,d}

)
, x# =

(
x#(K) | K ⊆ {1, . . . ,d}

)
by x∗(K) = ∏

iεK
xi and x#(K) = ∏

i/∈K
−xi.

The above expressions can then be written as

d

∏
k=1

(ak
i −bk

j) = ∑

(
∏
k∈K

ak
i ·∏

k/∈K
−bk

j
∣∣K ⊆ {1, . . . ,d})= ∑

K
a∗i (K) ·b#

j(K) = a∗i ·b#
j .

Thus a∗i · b#
j ̸= 0 iff i = j. Similarly we have b∗i · a#

j ̸= 0 iff i = j while a∗i · a#
j =

b∗i ·b#
j = 0 for all i, j.

It follows then that the set of 2t vectors a∗i ,b
∗
j , 1≤ i, j ≤ 2t , is linearly indepen-

dent in the vector space of dimension 2d and thus t ≤ d.
Again, no other (say combinatorial) proof is known.

7 Perfect Graphs and Computational Complexity

L. Lovász. A characterization of perfect graphs. J. Comb. Theory 13:95–98, 1972.

L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Math.
2:253–267, 1972.

This section addresses a particular class of graphs that is tightly connected with four
important parameters. For a graph G = (V,E) with vertex set V and edge set E, a
stable set (also called independent set) is a set of vertices such that no two vertices
are adjacent. The largest size of a stable set of vertices is denoted by α(G) and
called the stability number. Similarly, the largest size of a clique (mutually adjacent
vertices) is denoted by ω(G) and called the clique number, the chromatic number
χ(G) is the smallest number of stable sets (each stable set is a color class) covering
all vertices of G, and the clique covering number χ̄(G) is the smallest number of
cliques covering all vertices of G.
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If the vertices of a graph are colored so that no two adjacent vertices have the
same color then, obviously, the smallest number χ(G) of colors of such a coloring
must be at least as large as the largest number ω(G) of mutually adjacent vertices,
i.e., ω(G) ≤ χ(G). And similarly, the stability number α(G) cannot be larger than
the smallest number χ̄(G) of cliques covering all vertices of a graph G, i.e., α(G)≤
χ̄(G).

In the beginning of the 1960s Claude Berge, see [15, 16], called a graph G perfect
if ω(H) = χ(H) holds for all induced subgraphs H of G. In the complement Ḡ of
G, two vertices are connected by an edge if and only if they are not connected in G,
and thus, α(G) = ω(Ḡ) and χ(G) = χ̄(Ḡ). Berge conjectured:

A graph G is perfect if and only if its complement Ḡ is perfect.

This conjecture (called the weak perfect graph conjecture) started a massive
search for classes of perfect graphs. Examples are, for instance, bipartite graphs and
their line graphs, interval graphs, parity graphs, and comparability graphs; Schri-
jver [144] describes many of these graphs in detail in Chapter 66, Hougardy [80]
gives a survey of these graphs and provides a list of 120 classes. More importantly,
intensive attempts to solve the conjecture began. Fulkerson introduced pluperfect
graphs in [56] and, developing in [57] the antiblocking theory for this purpose, he
came very close to its solution – as he outlines in [58]. Just a lemma (later called the
replication lemma) was missing. Lovász [100] solved the conjecture by proving the
replication lemma, pointing out, though, that the more difficult step was done first
by Fulkerson. In a subsequent paper, Lovász [101] provided a new characterization
of perfect graphs as follows:

Theorem. A graph G = (V,E) is perfect if the following holds: ω(H)α(H) ≥
|V (H)| for all induced subgraphs H = (V (H),E(H)) of G.

This theorem immediately implies the weak perfect graph conjecture since the
condition given in it is invariant under taking graph complementation. The perfect
graph theorem is also a generalization of the well-known theorems of König on
bipartite matching and Dilworth on partially ordered sets. It generated particular
interest in the characterization of conditions under which the Duality Theorem of
linear programming holds in integer variables and initiated related investigations in
polyhedral combinatorics.

Due to its importance and elegance, the Lovász’s article [100] was reprinted
in the collection Classic Papers in Combinatorics [60], edited by I. Gessel and
G. C. Rota.

The beginning of the 1970s was a particularly productive time period for László
Lovász. He was solving one open problem after the other. These years firmly es-
tablished his international position as the world foremost researcher in graph theory
and combinatorics.

As in many other cases, Lovász was not just looking for a proof of the weak per-
fect graph conjecture, he looked for a more general mathematical setting for which
it is possible to prove farther reaching results that imply the conjecture. In [101]
Lovász considered a hypergraph approach. We sketch the construction.



The Mathematics of László Lovász 555

Recall that a hypergraph H is a non-empty finite collection of finite sets called
edges; the elements of the edges are the vertices of H. The chromatic index of a
hypergraph H is the least number of colors with which the edges can be colored so
that edges with the same color are disjoint. The number of edges containing a given
vertex is called the degree of the vertex. The largest degree of a vertex of H is called
the degree of H.

Clearly, the degree of H is a lower bound on the chromatic index of H. Lovász
called a hypergraph H normal if the degree and the chromatic index are the same
for every partial hypergraph of H. Let us call a set T of vertices a transversal (or
hitting set) if T meets every edge of H and denote its minimum cardinality by τ(H).
(We just point out that τ(H) is the hypergraph generalization of τ(G) for graphs
discussed in Section 6.) If we denote by ν(H) the maximum number of edges of
H that are pairwise disjoint, then we obviously have ν(H)≤ τ(H). Lovász called a
hypergraph H τ-normal if this inequality holds with equality for all partial hyper-
graphs of H. He also introduced procedures to associate with every hypergraph H
its edge graph G(H) and with every graph G a hypergraph H(G) and proved the
following:

Theorem. A hypergraph H is normal if and only if its edge graph G(H) is perfect;
G is perfect if and only if H(G) is normal; H is τ-normal if and only if Ḡ(H̄) is
perfect; Ḡ is perfect if and only if H(G) is τ-normal.

Corollary. A hypergraph is normal if and only if it is τ-normal.

This hypergraph generalization immediately implies the weak perfect graph con-
jecture.

A side remark: In Section 4 we mentioned the Erdős–Faber–Lovász conjecture.
This appears in this context in the following two equivalent forms: (1) The chro-
matic index of hypergraphs consisting of n edges such that each edge contains n
vertices and any two edges have exactly one vertex in common is n. (2) For graphs
G consisting of n cliques of size n so that two of these cliques have one vertex in
common, ω(G) equals χ(G). As indicated before the conjecture is true for large n,
see [84].

Berge [16] also conjectured – later called the strong perfect graph conjecture –
that a graph is perfect if and only if it does neither contain an odd cycle nor the
complement of an odd cycle as an induced subgraph. After a long sequence of con-
tributions of many researchers, this conjecture was finally solved in 2006 by Chud-
novsky, Robertson, Seymour, and Thomas [26].

During the early 1970s computational complexity theory took off, see Wigder-
son’s book [158] for an up-to-date survey. The classes of decision problems that
can be solved in polynomial time, denoted by P, and those solvable in nonde-
terministic polynomial time, denoted by NP, were introduced. S. Cook [29] and
L. A. Levin [96] independently showed the existence of NP-complete problems,
which are decision problems in NP with the property that, if they can be solved
with a polynomial time algorithm, then P = NP. Whether P is equal to NP is one
of the great open problems in mathematics and computer science.
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Optimization problems can be phrased as decision problems by asking whether,
for a given value t, there exists a feasible solution with value at least (or at most) t.
If the decision problem associated this way to an optimization problem is NP-
complete, the optimization problem is called NP-hard. For example, if a graph
G = (V,E) with rational weights wv, for every vertex v ∈V , is given and one wants
to find a stable set S in V such that the sum of the weights of the vertices in S is as
large as possible, we have a typical combinatorial optimization problem. The asso-
ciated decision problem asks if there is a stable set whose value is at least t. If this
decision problem can be solved in polynomial time, the stable set problem can also
be solved in polynomial time by binary search. And vice versa, a polynomial time
algorithm for the (weighted) stable set problem would prove that P=NP.

Karp [86] showed that many graph-theoretical problems, such as computing the
value of the four parameters α(G), ω(G), χ(G), and χ̄(G), introduced above, are
NP-hard for general graphs G. The immediate question came up: Is this also true
for perfect graphs, or can their special structure be exploited to design polynomial
time algorithms? This challenge triggered significant developments that we outline
later.

Another side remark: Lovász was one of many contributors to one of the most
astonishing results in complexity theory, the PCP Theorem. This theorem is the
highlight of a long sequence of research on interactive proofs and probabilistically
checkable proofs. It states that every decision problem in NP has probabilistically
checkable proofs of constant query complexity using only a logarithmic number of
random bits. Nine persons (including Lovász) received the Gödel Prize 2002 “for the
PCP theorem and its applications to hardness of approximation”. A consequence of
the PCP Theorem is, for instance, that many well-known optimization problems,
including the stable set problem mentioned above and the shortest vector problem
for lattices to be introduced subsequently, cannot be approximated efficiently unless
P=NP.

8 The Shannon Capacity of a Graph and Orthogonal
Representations

L. Lovász. On the Shannon capacity of graphs. IEEE Trans. Inform. Theory 25:1–7,
1979.

L. Lovász. Graphs and geometry. Amer. Math. Soc. 2019.

Suppose the vertices of a graph G represent letters of an alphabet and the edges uv
of G indicate that the two letters of the alphabet represented by u and v can be
confused, e.g., when transmitted over a noisy communication channel. It is obvious
that the largest number of one-letter messages that can be sent without danger of
confusion is the largest number of vertices mutually not adjacent, i.e., the stability
number α(G). Two k-letter words are confusable if their i-th letters, 1 ≤ i ≤ k, are
confusable or equal.
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Fig. 7: Orthonormal representation of the 5-cycle in R3

Let Gk denote the k-th Cartesian product of G. Words with k-letters can be trans-
mitted without danger of confusion if they are unequal and inconfusable in at least
one letter. This implies that α(Gk) is the maximum number of inconfusable k-letter
words. Forming k-letter words from a stable set of size α(G), one can easily con-
struct α(G)k inconfusable words. This proves that α(G)k ≤ α(Gk).

Shannon [146] introduced the number

Θ(G) = sup
k

k
√

α(Gk) = lim
k→∞

k
√

α(Gk),

where the second equation follows from α(Gk+l) ≥ α(Gk)α(Gl). Θ(G), today
called the Shannon capacity of G, is a measure of the information that can be trans-
mitted across a noisy communication channel. Shannon proved that Θ(G) = α(G)
for graphs which can be covered by α(G) cliques. Perfect graphs have this property
and thus belong to this class. How can one determine Θ(G) in other cases? Lovász,
see [106], invented an ingenious upper bound on the Shannon capacity as follows:

Let G = (V,E) be a graph. An orthonormal representation of G is a sequence
(ui | i ∈ V ) of |V | vectors ui ∈ RN , where N is some positive integer, such that
∥ui∥= 1 for all i∈V and uT

i u j = 0 for all pairs i, j of nonadjacent vertices. Trivially,
every graph has an orthonormal representation (just take all the vectors ui mutually
orthogonal in RV ). Figure 7 shows a less trivial orthonormal representation of the
pentagon C5 in R3. It is constructed as follows. Consider an umbrella with five
ribs of unit length (representing the nodes of C5) and open it in such a way that
nonadjacent ribs are orthogonal. Clearly, this can be achieved in R3 and gives an
orthonormal representation of the pentagon. The central handle (of unit length) is
also shown.

Where (ui | i ∈V ),ui ∈RN , ranges over all orthonormal representations of G and
c ∈ RN over all vectors of unit length, let

ϑ(G,w) := min
{c,(ui)}

max
i∈V

wi

(cT ui)2 .
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The quotient has to be interpreted as follows. If wi = 0 then we take wi/(cT ui)
2 = 0

even if cT ui = 0. If wi > 0 but cT ui = 0 then we take wi/(cT ui)
2 =+∞.

Lovász proved that, if the vertex weights wi above are all equal to 1 and G is the
pentagon graph C5, i.e., the 5-cycle, then the value of ϑ(G,w) is

√
5 and equal to

the Shannon capacity Θ(C5) of C5.
This looks like a tiny achievement, but at present, this is the only known Shannon

capacity of a non-perfect graph. In fact, the complexity of determining the Shan-
non capacity of a general graph is today still open. Much more important, Lovász
provided several different characterizations of the function ϑ (called the Lovász
ϑ -function) that became, as we show later, important ingredients for proving that
the four graph parameters α(G), ω(G), χ(G), and χ̄(G) can be computed in poly-
nomial time for perfect graphs G.

In his recent book [113], Lovász investigated the representation of graphs as ge-
ometric objects in great depth. His main message is that such representations are not
merely a way to visualize graphs, but important mathematical tools. The range of
applications is wide. We mention three examples: rigidity of frameworks and mo-
bility of mechanisms in engineering, learning theory in computer science, the Ising
and Fortuin–Kasteleyn model, and conformal invariance in statistical physics. Or-
thogonal representations of graphs are treated in Chapters 10 to 12. Lovász shows
that orthogonal representations are, in addition to the stability and chromatic num-
ber, related to several fundamental properties of graphs such as connectivity and
tree-width. Among many other aspects, he also discusses a quantum version of the
Shannon capacity problem, as well as two further interesting applications of or-
thogonal representations to the theory of hidden variables and in the construction
of strangely entangled states. These are exciting topics in quantum physics that we
cannot cover here.

9 The Ellipsoid Method

P. Gács, L. Lovász. Khachiyan’s algorithm for linear programming. Math. Prog. Study
14:61–68, 1981.

One of the major open complexity problems in the 1970s was the question whether
linear programs (LPs) can be solved in polynomial time. The simplex algorithm did
(and still does) work well in practice, but for all known variants of this algorithm,
there exist sequences of LP-instances for which the running time is exponential.
In 1979 Khachiyan indicated in [87] how the ellipsoid method, an algorithm de-
vised for nonlinear nondifferentiable optimization based on work of Shor and Yudin
and Nemirovskiı̆, can be modified to check the feasibility of a system of linear in-
equalities in polynomial time. Employing binary search or a sliding objective func-
tion technique, this implies that linear programs are solvable in polynomial time.
Linear programs arise almost everywhere in industry, and their fast solution is of
economic importance. Thus, Khachiyan’s achievement received significant atten-
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tion in the nonscientific media; it even made it to the front page of the New York
Times on November 7, 1979. Most of these statements, though, were exaggerations
or misinterpretations.

We sketch the method. Let P be a polyhedron defined by a system of linear
inequalities Ax≤ b. We assume that P is full-dimensional or empty; and to simplify
the exposition, we also assume that P is bounded, i.e., a polytope. The ellipsoid
method utilizes the following facts. Given Ax ≤ b with rational coefficients, then
numbers r and R can be computed in time polynomial in the encoding length of A
and b with the following properties. If P is nonempty, the ball B of radius R around
the origin contains P, and P contains a ball S of radius r.

Fig. 8: The first step of the ellipsoid method

The basic ellipsoid method begins with the ball B and center a0 = 0 as initial
ellipsoid E0. In a general step it checks whether the center ak of the current el-
lipsoid Ek, 0 ≤ k, is contained in P. If this is the case, a point in P is found and
Ax ≤ b is feasible. If not, there must be an inequality in the system Ax ≤ b that is
violated by ak. Using this inequality, a new ellipsoid Ek+1 is computed that contains
P and has a volume that is – by a constant shrinking rate – smaller than the vol-
ume of the previous ellipsoid Ek (cf. Fig. 8). This way a sequence of points ak and
shrinking ellipsoids Ek is created. Using variants of the formulas for determining the
Löwner–John-ellipsoid of a convex body, one can prove that the volume shrinking
rate satisfies vol(Ek+1)/vol(Ek)< e−1/(2n) < 1 and that the ellipsoid method either
discovers a point in P or, after a number N of steps that is polynomial in the encod-
ing length of A and b, the ellipsoid EN has a volume that is smaller than that of the
small ball S. This can only happen if P is empty. All computations carried out can
be made with rational numbers of polynomial size in such a way that nonemptiness
of P is certified by a finding a feasible solution or the emptiness of P is guaranteed
by the mentioned volume argument, see [69] for details.

This method was a total surprise for the linear programming community. A poly-
nomial time termination proof employing shrinking volumes, the combination of ge-
ometric and number-theoretic “tricks” (e.g., making a low-dimensional polyhedron
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full-dimensional, reduction to the bounded case, careful rounding of the real num-
bers that appear in the update-formulas, and various necessary estimation processes)
puzzled the LP-specialists. The brief article by Khachiyan (four pages), written in
Russian, needed interpretation. One of the first papers explaining the approach and
adding missing details was a preprint by Gács and Lovász [59]. It appeared in the
fall of 1979 (and was published in 1981). This paper made Khachiyan’s important
contribution accessible to a wide audience and had a significant bearing on the boom
of follow-up research on the ellipsoid method.

The ellipsoid method, though provably a polynomial time algorithm, performs
poorly in practice. Its appearance, however, sparked successful research efforts that
led to new LP-algorithms, based on various ideas from nonlinear programming, of-
ten also influenced by differential and other types of geometry, that are theoretically
and practically fast. They run under the names interior point or barrier methods.
New implementations of the simplex algorithm improved its performance signifi-
cantly as well. The ellipsoid method, on the other hand, turned out to have funda-
mental theoretical power as an elegant and versatile tool to prove the polynomial
time solvability of many geometric and combinatorial optimization problems. The
next chapter has details.

10 Oracle-Polynomial Time Algorithms and Convex Bodies

M. Grötschel, L. Lovász, A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica 1:169–197, 1981.

M. Grötschel, L. Lovász, A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, Springer, 1988.

In a general step of the ellipsoid method, one has to verify that the center of the
current ellipsoid is in the polyhedron P = {x∈Rn | Ax≤ b}. This is usually done by
substituting the center into the given inequality system Ax ≤ b. A reasonable idea
is to replace this substitution by an algorithm that checks feasibility and provides
a violated inequality in case the center is not in P. Two cases, relevant in real-
world applications, where this generalization might be helpful come immediately
into mind.

The first is the traditional transformation of combinatorial optimization problems
into linear programs. The idea is, for a given combinatorial optimization problem,
to define the convex hull of all incidence vectors of feasible solutions and to try to
find a linear system describing this polytope, at least partially. The number of facets
of such polytopes is often exponentially large in the encoding length of the com-
binatorial problem. This holds for NP-hard problems and even for some problems
solvable in polynomial time. One such instance is the matching problem. This is
implied by the result of Rothvoss [142] that the matching problem has “exponential
extension complexity”. Substituting the ellipsoid center into a linear system of ex-
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ponential size makes the running time of ellipsoid algorithm exponential. Can one
replace the substitution by a polynomial time algorithm?

The second is convex sets, which is even more demanding. Convex sets are inter-
sections of potentially infinitely many halfspaces. Can one optimize over exponen-
tially many linear inequalities in polynomial time?

The roots of this research program were laid by Grötschel, Lovász, and Schrijver
in [66] and were fully worked out in [69]. The results were the starting point of what
Gritzmann and Klee [64] called an algorithmic theory of convex bodies, or briefly,
computational convexity. We outline important steps of this approach.

Suppose now that we have some convex set K ⊆ Rn and we want to obtain in-
formation about properties of K. Let us formulate three questions that are typical in
this context:

The Strong Optimization Problem (SOPT). Given a vector c ∈ Rn, find a vector
y ∈ K that maximizes cT x on K, or assert that K is empty.

The Strong Separation Problem (SSEP). Given a vector y ∈ Rn, decide whether
y ∈ K, and if not, find a hyperplane that separates y from K; more exactly, find a
vector c ∈ Rn such that cT y > max{cT x | x ∈ K}.

Fig. 9: A. Schrijver, L. Lovász, M. Grötschel at the International Symposium
on Mathematical Programming in Amsterdam, 1991 (Photo: Nationaal Foto-
Persbureau B. V.)
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The Strong Membership Problem (SMEM). Given a vector y ∈ Rn, decide
whether y ∈ K.

It is clear that the strong membership problem can be solved if either the strong
optimization or the strong separation problem can be solved. What about the other
way around? And what do we have to assume about K, what is the input length of K,
and how do we estimate running times? Before addressing these issues, we observe
that, if we allow arbitrary convex sets K, the unique solution of an optimization
problem over K may have irrational coordinates. To deal with such issues we have to
allow margins and to accept approximate solutions. Let us define, for the Euclidean
norm and a rational number ε > 0,

S(K,ε) :=
{

x∈Rn | ∥x−y∥≤ ε for some y∈K
}
, S(K,−ε) :=

{
x∈K | S(x,ε)⊆K

}
.

Points in S(K,ε) can be viewed as “almost in K”, while points in S(K,−ε) as “deep
in K”. The exactness requirements of the strong problems above can be softened as
follows:

The Weak Optimization Problem (WOPT). Given a vector c∈Qn and a rational
number ε > 0, either

(i) find a vector y∈Qn such that y∈ S(K,ε) and cT x≤ cT y+ε for all x∈ S(K,−ε)
(i.e., y is almost in K and almost maximizes cT x over the points deep in K), or

(ii) assert that S(K,−ε) is empty.

The Weak Separation Problem (WSEP). Given a vector y ∈ Qn and a rational
number δ > 0, either

(i) assert that y ∈ S(K,δ ), or
(ii) find a vector c ∈ Qn with ∥c∥∞ = 1 such that cT x ≤ cT y + δ for every x ∈

S(K,−δ ) (i.e., find an almost separating hyperplane).

The Weak Membership Problem (WMEM). Given a vector y ∈ Qn and a ratio-
nal number δ > 0, either

(ii) assert that y ∈ S(K,δ ), or
(ii) assert that y /∈ S(K,−δ ).

We are interested in the algorithmic relations between these problems. To do this
we make use of the oracle algorithm concept. An oracle is a device that solves a
certain problem for us. Its typical use is as follows. We feed some input string to
the oracle, and the oracle returns another string specifying the solution (which we
hope will help to solve our original problem). We make no assumption on the way
the oracle finds its solution. An oracle algorithm is an algorithm in the usual sense
whose power is enlarged by allowing an oracle to be queried and using the oracle’s
answer to determine its next computational steps.

If a query to and an answer of the oracle are counted as one step each, we can
determine the running time of an oracle algorithm in the usual way. The output of
the oracle may, however, be huge so that reading it may take exponential time. Since
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our aim is to design polynomial time algorithms, we require that for every oracle we
have a polynomial q, such that for every query of encoding length at most l, the
answer of the oracle has length at most q(l). Under this assumption we say that an
oracle algorithm has oracle-polynomial running time if its usual running time plus
the running time of the interaction with the oracle is bounded by a polynomial in
the input length of the original problem. A consequence of this set-up is that, if
an oracle can be realized by a polynomial time algorithm on a real computational
device, an oracle-polynomial algorithm is in fact a polynomial time algorithm in the
usual sense.

For ease of exposition, we restrict ourselves to considering convex bodies K only.
A convex set K ⊆ Rn that is compact and has dimension n is called a convex body.
To perform computations, we have to assume that the convex body K is given by a
mathematical description. Let us briefly call it Name(K). Then the encoding length
of K is defined as the dimension n plus the encoding length of Name(K). To de-
termine the algorithmic relations between the problems above, we assume that a
convex body is given by an oracle for the solution of one of the problems and we
investigate whether any of the other problems can be solved employing the oracle.
The running times are measured as usual in the size of the input. This is, in the cases
described here, the encoding length of K (as defined above) to which we have to
add, if they appear in the problem statement, the following: the encoding lengths
of the parameters ε and δ , the encoding lengths of the objective function c and the
vector y, and moreover the encoding lengths of the additional data (the radii r and
R, and the center a0 of a ball) appearing in the statements of the theorems. The
following was proved in [69]:

Theorem. (a) There exists an-oracle polynomial time algorithm that solves the
weak membership problem for every convex body K in Rn given by a weak
optimization or a weak separation oracle.

(b) There exists an oracle-polynomial time algorithm that solves the weak sepa-
ration problem for every convex body K in Rn given by a weak optimization
oracle.

(c) There exists an oracle-polynomial time algorithm that solves the weak opti-
mization problem for every convex body K in Rn given by a weak separation
algorithm, provided a radius R > 0 of a ball around the origin containing K is
given as well.

(d) There exists an oracle-polynomial time algorithm that solves the weak opti-
mization problem for every convex body K in Rn given by a weak membership
algorithm, provided the following data are given as well: a vector a0 and a
radius r > 0 such that S(a0,r)⊆ K, and a radius R > 0 with K ⊆ S(0,R).

This theorem establishes the oracle-polynomial time equivalence of WOPT,
WSEP, and WMEM under mild additional assumptions. Moreover, the oracle-
polynomial time equivalence of the strong versions SOPT, SSEP, and SMEM of
these problems can be derived from the results above (assuming, of course, that K
is given such that exact answers are possible). One can prove on the other hand that,
if we drop one of the additional requirements in the theorem such as the knowledge
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of radii r or R or the vector a0, it is impossible to derive oracle-polynomial time
algorithms.

A consequence of the last result, see [66] and [69], is the polynomial time solv-
ability of convex function minimization – in the following weak sense:

Theorem. There exists an oracle-polynomial time algorithm that solves the follow-
ing problem:
Input: A convex body K given by a weak membership oracle, a rational number
ε > 0, radii r, R > 0, a vector a0 such that S(a0,r) ⊆ K ⊆ S(0,R), and a convex
function f : Rn→ R given by an oracle that, for every x ∈Qn and δ > 0, returns a
rational number t such that | f (x)− t|< δ .
Output: A vector y ∈ S(K,ε) such that f (y)< f (x)+ ε for all x ∈ S(K,−ε).

This is the first polynomial time solvability result for convex minimization.

11 Polyhedra, Low Dimensionality, and the LLL Algorithm

M. Grötschel, L. Lovász, A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1:169–197, 1981.

A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring Polynomials with rational
coefficients. Mathematische Annalen 261(4):515–534, 1982.

The Abel prize citation states (correctly, of course): “The LLL algorithm is only
one among many of Lovász’s visionary contributions”. It may be surprising to learn
that its invention was triggered by a technical problem arising in the analysis of the
ellipsoid method. We explain its origin and usefulness in this context.

Since square roots appear in the update formulas defining the ellipsoid method,
computing with irrational numbers is unavoidable. Careful rounding is necessary to
reach the desired approximation of an optimal value or solution. In various appli-
cations exact solutions can in fact be obtained by appropriate rounding. In integer
programming, e.g., the solution vectors are required to have integral entries, and if
the objective function is integral, the optimal value v∗ is integral as well. If one can
tune the ellipsoid method so that it guarantees to find an approximation v of the
optimal value v∗ such that |v− v∗| < 1/2, then one can simply round v to the next
integer to find the true optimum value. Such considerations are the key to pass from
“weak solutions” to “strong solutions”, i.e., derive exact from approximate results.
This straightforward rounding unfortunately is often not sufficient.

We sketch the case of optimizing a linear objective function over a polytope
P⊆ Rn. We say that P has facet-complexity at most ϕ if there exists a system of
inequalities with rational coefficients that has solution set P and such that the en-
coding length of each inequality of the system is at most ϕ . No assumption about
the number of inequalities is made. Let us define the encoding length of P to be
n+ϕ , call such a polyhedron well-described, and denote it by (P; n,ϕ). One can
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prove that the encoding length of each vertex of (P; n,ϕ) is at most 4n2ϕ and that,
if P is full-dimensional, P contains a ball BP with radius 2−7n3ϕ .

To illustrate the annoying “technical problem” that triggered the invention of
the LLL algorithm, let us consider a well-described polytope P⊆Rn that is not full-
dimensional; for ease of exposition, say P has dimension n−1. The ellipsoid method
would not work in this case. To get around this problem, one needs to carefully
blow P up to a polytope P′ that contains P and is full-dimensional such that running
the ellipsoid method on P′ approximately delivers the desired result for P. This can
be done but is technically tedious and requires ugly pre- and post-processing.

Let us instead make a bold step and run the ellipsoid method on P directly. We
suppose P is given by a separation oracle. Since P is low-dimensional it is highly un-
likely that the ellipsoid method finds a feasible solution in one of its iterations. After
a number N of iterations that is polynomial in n+ϕ , the N-th ellipsoid EN contains P
and has a volume that is smaller than the volume of BP, the ball P would contain if P
were full-dimensional. This is contradictory. The basic ellipsoid method, assuming
a full-dimensional polytope P is given, would conclude now that P is empty. But EN
contains information that one may be able to employ.

Let H = {x ∈Rn | aT x = α} be the unique hyperplane containing P. Then aT x =
α is the (up to scaling) unique equation defining H. The last ellipsoid EN , having
such a small volume, must obviously be very “flat” in the direction perpendicular
to H. In other words, the symmetry hyperplane F belonging to the shortest axis
of EN must be very close to H. Is it possible to find aT x = α by rounding the
coefficients of the linear equation defining this symmetry hyperplane F? A positive
answer would be an elegant way to avoid the blow-up mentioned and the numerical
problems associated with it.

The authors of [66] and [69] were at this point in the fall of 1981 and realized
that such a rounding can be done – in principle – using the following classical the-
orem of Dirichlet [36] on the existence of a solution of a simultaneous Diophantine
approximation problem.

Theorem. Given any real numbers α1, . . . ,αn and 0 < ε < 1, there exist integers
p1, . . . , pn, and q such that 1 < q < ε−n and |αi− pi/q|< ε/q for i = 1, . . . ,n.

No polynomial algorithm is known to compute such integers. And at the end of
their writing session, no progress was achieved. About three months later a letter
from L. Lovász arrived (Fig. 10).

Lovász approached the approximation problem via the consideration of (integral)
lattices. If {b1, . . . ,bn} is a basis of Rn, then the set L = L(b1, . . . ,bn) that is gen-
erated by taking all integral linear combinations of the vectors bi is called a lattice
with basis {b1, . . . ,bn}. Integral lattices have been studied in number theory for a
very long time (with contributors such as Gauss, Minkowski, Landau, and many
others). Clearly, a lattice may have different bases, and it may be interesting to find
a “minimal basis” {a1, . . . ,an} of L, i.e., a basis such that the product of the norms of
the ai is as small as possible. However, this problem is NP-hard. Lovász introduced
the quite technical notion of a reduced basis, which we do not explain here, that is
a weak form of a minimal basis and proved:
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Fig. 10: Beginning of a letter from L. Lovász

Theorem. There is a polynomial time algorithm that, for any given linearly inde-
pendent vectors {b1, . . . ,bn} in Qn, finds a reduced basis of the lattice L(b1, . . . ,bn).

To achieve this, the algorithm, called the LLL algorithm, starts with the Gram–
Schmidt orthogonalization and then performs carefully designed exchange opera-
tions. Proving polynomiality requires not only controlling the number of steps, but
in particular, the estimation of the encoding lengths of all numbers appearing in the
course of the algorithm. A consequence of this algorithm is the following weak form
of Dirichlet’s theorem.

Theorem. There exists a polynomial time algorithm that, given rational numbers
α1, . . . ,αn and 0 < ε < 1, computes integers p1, . . . , pn, and q such that and 1≤ q≤
2n(n+1)/4ε−n and |αiq− pi|< ε for i = 1, . . . ,n.

This algorithm, based on computing a reduced basis, made it possible to compute
via simultaneous Diophantine approximation the coefficients of the equation aT x =
α defining the hyperplane H containing the well-described polytope (P; n,ϕ) as
indicated above. By iterating this process, the affine hull of any lower-dimensional
polytope can be determined in oracle-polynomial time.

For well-described polyhedra (P; n,ϕ), the restriction to the bounded case can
also be dropped, and one can show the following:

Theorem. Any of the following three problems:

– strong separation
– strong violation
– strong optimization

can be solved in oracle-polynomial time for any well-described polyhedron (P; n,ϕ)
given by an oracle for any of the other two problems.

For a linear program given by a system of rational linear inequalities, the strong
separation problem can be trivially solved by substituting a given rational vector y
into the inequalities, i.e., linear programs can be solved in polynomial time.
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Employing the LLL algorithm and results of András Frank and Éva Tardos [53]
one can, in fact, derive a general result about optimization problems for polyhedra
and their dual problems in strongly polynomial time. Strongly polynomial means
that the number of elementary arithmetic operations to solve an optimization prob-
lem over a well-described polyhedron and to solve its dual problem does not depend
on the encoding length of the objective function. More precisely, the following can
be shown:

Theorem. There exist algorithms that, for any well-described polyhedron (P; n,ϕ)
specified by a strong separation oracle, and for any given vector c ∈Qn,

(a) solve the strong optimization problem max{cT x | x ∈ P}, and
(b) find an optimum vertex solution of max{cT x | x ∈ P} if one exists, and
(c) find a basic optimum standard dual solution if one exists.

The number of calls on the separation oracle, and the number of elementary arith-
metic operations executed by the algorithms are bounded by a polynomial in ϕ . All
arithmetic operations are performed on numbers whose encoding length is bounded
by a polynomial in ϕ and the encoding length of the objective function vector c.

An important application of this theorem is that one can turn many polynomial
time combinatorial optimization algorithms into strongly polynomial algorithms.

Summarizing: The search for an elegant proof that avoids tedious numerical es-
timates was the driving force for the invention of the LLL algorithm.

12 The LLL Algorithm and its Consequences

A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4):515–534, 1982.

The basis reduction algorithm by L. Lovász to solve a problem that initially looked
like a technicality had a significant impact on the book [69] as outlined in Section
11. Its deep impact on other fields was unexpected, even for Lovász himself, as can
be inferred from his letter, see Fig. 11.

We consider this as one of the occasional miracles in mathematics where a result
that was prompted by the desire to find an elegant solution for a technical detail has
consequences that are simply beyond imagination.

Lovász informed not only the coauthors Grötschel and Schrijver of his book [69]
about his achievement, but also Hendrik Lenstra. Employing tools from the geome-
try of numbers, Hendrik had (briefly before) made the substantial discovery that in-
teger programs (IPs) can be solved in polynomial time when the dimension is fixed.
Concerning this, he was in discussion with Lovász, who pointed out that some of
the steps of Hendrik’s IP-algorithm could be improved, see [95].
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Fig. 11: Cutout from a Lovász letter

Hendrik got excited about the news because his brother Arjen was (together with
two fellow students) about to implement a method to factor univariate polynomi-
als over algebraic number fields. Zassenhaus had suggested to use the Berlekamp–
Hensel approach for this, which, however, could be “very, very much exponential”
according to Arjen. A few days after Lovász’s letter had arrived, Hendrik became
convinced that the basis reduction algorithm implies that there is a polynomial time
algorithm for factorization in the ring Q[X ] of univariate polynomials over the ra-
tional numbers. At that time this looked inconceivable as one did not (and still does
not) know a polynomial time algorithm for finding the factors of an integer. After
working out the details, Hendrik’s observation turned out to be true. The two Lenstra
brothers and Lovász combined their contributions and wrote the joint paper [94].
Believing that polynomial time factoring of polynomials over the rational numbers
(an unexpected result) is the most important contribution of their work, they agreed
to mention only this aspect in the paper title. The full story of this cooperation is
nicely described in the article of I. Smeets [151].

It turned out that basis reduction has applications that reach much further than
linear programming or polynomial factorization. It is beyond the scope of this article
to highlight here the wide range of applications of the basis reduction algorithm,
which – in contrast to the ellipsoid method – is usable in practice. We mention two
concrete examples.

Odlyzko and te Riele [137] used the basis reduction algorithm to disprove the
Mertens conjecture, a conjecture standing in number theory since 1897, which – if
true – would have implied the Riemann hypothesis. This disproof was surprising as
there was extensive computational evidence that the Mertens conjecture is true.

Lagarias and Odlyzko [92] employed the lattice basis reduction algorithm to
launch a polynomial time attack on knapsack-based public-key cryptosystems which
made these cryptosystems unsafe.

The LLL algorithm, in fact, created a revolution in cryptography. It is known that
the widely used public-key schemes such as the RSA or elliptic-curve cryptosystems
can be defeated if Shor’s quantum polynomial time factoring algorithm can be im-
plemented on a quantum computer. Many cryptographers are convinced that certain
lattice problems cannot be solved efficiently. Based on this, some lattice-based con-
structions appear to be resistant to attack by both classical and quantum computers.
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For surveys, see Regev [141] or Micciancio and Goldwasser [131]. The National
Institute of Standards and Technology (NIST) and other institutions are currently
preparing cryptography standards for the post-quantum era. The first Quantum-
Resistant Cryptographic Algorithms were announced by NIST in July 2022. Lat-
tices play a major role here, and lattice basis reduction algorithms have become
standard tools to test the security of cryptosystems.

Instead of attempting to comprehensively document the impact of Lovász’s work
on basis reduction, we point to the book by Nguyen and Vallée [136] entitled The
LLL Algorithm: Survey and Applications, which consists of a collection of broad
overviews of fields where the LLL algorithm is employed. Chapters, written by
specialists in the respective fields, cover, for instance, applications in number the-
ory, Diophantine approximation, integer programming, cryptography, geometry of
provable security, inapproximability, and improvements of the LLL algorithm. A
reviewer of this book wrote:

The LLL algorithm embodies the power of lattice reduction on a wide range of problems
in pure and applied fields [. . .] [and] the success of LLL attests to the triumph of theory in
computer science.

Finally, the algorithm Lovász designed to find a reduced lattice basis is usually
called the LLL algorithm, because it appeared in a paper written by three authors
whose last names all start with L. Of course, the Lenstra brothers do not claim that
it is their invention, they also attribute it to L. Lovász. But “LLL algorithm” has
become the usually employed name of the algorithm.

13 Cutting Planes and the Solution of Practical Applications

M. Grötschel, L. Lovász, A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer, Berlin, 1988.

László Lovász has, in addition to inventing a beautiful theory, designed many algo-
rithms, concentrating particularly on polynomial time algorithms. The theory and
the algorithms Lovász developed had significant impact on computational practice.
Chapter 8 of [69] “Combinatorial Optimization: A Tour d’Horizon” is a highly con-
densed overview of the applicational potential that arises from combinations of the
many insights provided by the ellipsoid method, the LLL algorithm, and further
ideas. These have contributed to the astonishing computational success stories that
evolved in the last thirty to forty years in combinatorial optimization. We sketch
some of these aspects.

In combinatorial optimization, a typical approach is, as indicated before, to at-
tack a problem by transforming it into a linear programming problem with integer
variables.

Take the traveling salesman problem, for instance. Given a complete graph G =
(V,E) on n vertices and a distance ce for every edge e ∈ E, we look for a Hamil-
tonian cycle (briefly: tour) of minimum length. If H is a tour, let xH ∈ RE be its
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incidence vector, i.e., the e-th component xH
e of xH is equal to 1 if e ∈ H, otherwise

it is 0. The traveling salesman polytope TSP(G) of G is the convex hull of all inci-
dence vectors of tours in G. TSP(G) is a polytope in Rn(n−1)/2. To apply the linear
programming approach, we now have to find a linear inequality system, so that the
integral solutions of the linear program are exactly the incidence vectors of tours.
Such linear programs are called LP-relaxations. Let δ (W ) denote the set of edges
in E with one endvertex of e in W and the other in V \W , and let x(δ (W )) denote the
sum over all variables xe with e ∈ δ (W ). It is well known that the following linear
program:

0≤ xe ≤ 1 for all e ∈ E

x
(
δ ({w})

)
= 2 for all w ∈V

x
(
δ (W )

)
≥ 2 for all W ⊆V with 2≤ |W | ≤ |V |−2

is an LP-relaxation of the TSP. An inequality of the third type is called a subtour
elimination constraint.

Let us call the polytope defined by the linear system above TSPLP(G). All ver-
tices of the traveling salesman polytope TSP(G) are vertices of TSPLP(G). But
TSPLP(G) has many nonintegral vertices as well. About 2n inequalities define
TSPLP(G). This renders the straightforward LP-solution approach hopeless. The
facet complexity ϕ of TSPLP(G), however, is small since the entries of every in-
equality or equation are only 0 or 1 and the right-hand sides are 0, 1, or 2. Thus the
facet complexity of TSPLP(G) is linear in the number of variables |E|= n(n−1)/2.
Due to the oracle-polynomial time equivalence of strong separation and strong op-
timization, linear programs over TSGLP(G) can be solved in polynomial time –
provided, given a vector y ∈ QE , one can find a fast separation algorithm for the
subtour elimination constraints.

This can in fact be done, as was observed by Hong [77]. One assigns the value ye
to every edge e ∈ E as a capacity and computes (this can be done quickly) a mini-
mum nonempty cut δ (W ∗) in this capacitated graph G = (V,E). If y(δ (W ∗))< 2, a
violated inequality is found, otherwise y satisfies all subtour elimination constraints.
This is an example of a linear program appearing in many practical applications
with an exponential number of inequalities that, nevertheless, can be solved in poly-
nomial time. An optimal solution of a linear program over TSPLP(G) is usually
nonintegral but provides a very good lower bound on the optimum TSP-value in
practice. Finding a provably optimal solution needs additional effort, though.

In 1954 Dantzig, Fulkerson, and Johnson [33] proposed in a seminal paper to
solve combinatorial optimization problems such as the traveling salesman problem
by starting with some LP-relaxation, checking whether the optimum solution y is the
incidence vector of a tour (in this case the problem is solved), and if not searching
for inequalities valid for TSP(G) that are violated by y, adding these to the current
LP as cutting planes, and to continue. This was one of the first proposals to solve
linear and integer programs using cutting planes in an iterative process. The cutting
plane search in this case was done manually, the LPs were solved by the simplex
method. Four years later Gomory [61] invented an automatic cutting plane genera-
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tion scheme (called Gomory cuts) for which he could prove finite termination. This
looked like a promising approach to solve integer programs.

However, the computer implementations of this and related approaches in the
1960s and 1970s were not successful in practice. Moreover, theoretical results of
Chvátal [27] and others revealed a series of examples for which the number of cut-
ting plane additions cannot be effectively bounded. Hoping for the unimportance
of these negative aspects in real-world applications, the idea came up in the 1970s
to study combinatorial optimization problems of practical relevance and to look for
cutting planes that define facets of the investigated polytopes. These are cuts that cut
as deep as possible. The first implementations employing a combination of manual
and heuristic searches for facet defining cutting planes at the end of the 1970s in-
dicated practical success. Soon after, the ellipsoid method theory with the principle
of polynomial time equivalence of optimization and separation was developed and
demonstrated that this approach is a viable idea, and that linear optimization over
exponentially large systems of linear inequalities is possible in polynomial time – at
least theoretically.

Despite serious attempts, no implementation of the ellipsoid method has shown
satisfactory numerical performance in computational practice. By replacing it with
new implementations of the dual simplex algorithm, the theoretical polynomial time
termination is lost, but astonishing computational results were achieved by many re-
searchers in combinatorial optimization. Of course, lots of additional features (such
as presolve techniques, heuristic primal and dual searches, branch and bound, ro-
bust numerics, etc.) were implemented as well. The new insights gave a significant
push to the theoretical and applied part of combinatorial optimization. Problems
with many industrial applications such as linear ordering; set partitioning and pack-
ing; knapsack; clustering; various types of matching; connectivity; path, flow and
other network problems; max cut; unconstrained Boolean quadratic programming;
stable sets; several variations of coloring; and vehicle and passenger routing could
be solved for instances of practically relevant sizes. The discovery of new classes
of facets and fast separation procedures (exact and heuristic) has been an important
ingredient of this solution methodology. To indicate at least one example of practi-
cally useful separation algorithms we mention the paper [138] of Padberg and Rao
that describes sophisticated and fast separation algorithms for various ramifications
of the matching polytope. A large number of separation algorithms are, of course,
described in the book [69].

This research activity goes on and brings application relevant instances of many
NP-hard combinatorial optimization problems to the realm of practical solvabil-
ity. For the traveling salesman problem, for example, the “solvability world record”
was 42 cities in 1954, it went to 120 in 1977, 2392 in 1987, and in 2017 a TSP with
109,399 cities could be solved to optimality, see the Webpage of Bill Cook [31], his
book [30], and the book [8] by Applegate, Bixby, Chvátal, and Cook for compre-
hensive information. The solution process includes linear programming technology
(its theory and implementation) that is able to prove, for example, that a vector in di-
mension 1010 satisfies more than 2100,000 constraints and is optimal for this system.
This is really breathtaking.
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Fig. 12: MIP-code performance 1990–2019 (courtesy Robert E. Bixby)

The success stories indicated above, and the theoretical and practical lessons
learned from these began to be harvested and improved by the developers of com-
mercial optimization software in the 1990s. One reason for this is that many mixed-
integer optimization problems (MIPs) occurring in industry contain subproblems
that are combinatorial optimization problems for which large classes of facet-
defining inequalities have been discovered. Efficient separation algorithms for these
inequalities were successfully added to the existing MIP-codes. The graphic in
Fig. 12, presented with the permission of Bob Bixby, shows the development of the
commercial mixed integer programming codes CPLEX and Gurobi in the 30 years
from 1990 to 2019. The large bar (pointed at by “Mining Theoretical Backlog”)
shows an almost tenfold speedup that is obtained from one version of the code to
the next in which cutting plane technology (including a fresh implementation of
Gomory cuts) was introduced together with various supporting features. The overall
message is that the MIP technology in 2019 runs 3.5 million times faster than the
codes of 1990. That speedup is due to mathematical and implementation improve-
ments and is independent of the hardware speedup during this period. This is real
progress indeed. Cutting plane technology contributed to it significantly.
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14 Computing Optimal Stable Sets and Colorings in Perfect
Graphs

M. Grötschel, L. Lovász, A. Schrijver. Polynomial algorithms for perfect graphs. Annals
of Discrete Math. 21:325–256, 1984.

M. Grötschel, L. Lovász, A. Schrijver. Relaxations of vertex packing. J. Combin.
Theory B 40:330–343, 1986.

The extension of the ellipsoid method to convex bodies outlined in Section 10 was
driven by the hope that one could solve the stable set and the coloring problem
in perfect graphs in polynomial time with this methodology, see Section 7. The
successful attempt is presented in the articles [66, 67], and [68]. We describe the
stable set case.

For a graph G = (V,E) and a stable set S ⊆ V , one can define the incidence
vector xS in RV as follows: the i-th component xS

i of xS is equal to 1 if the vertex
i ∈ V is an element of S, and it is 0 otherwise. The stable set polytope of G is the
convex hull of all incidence vectors of stable sets S of G, i.e.,

STAB(G) := conv
{

xS ∈ RV | S⊆V stable set
}
.

Let w : V → Q be any weighting of the vertices of G (we may assume that all
weights are positive) and denote the largest weight of a stable set in G by α(G,w).
Then α(G,w) is the maximum value of the linear function wT x for x∈ STAB(G), in
other words, α(G,w) can be computed by solving a linear program over STAB(G).
For this observation to be of any use, we have to find inequalities defining STAB(G).
Consider the polytope defined by

QSTAB(G) :=
{

x ∈ RV |xi ≥ 0 ∀i ∈V, xi + x j ≤ 1 ∀i j ∈ E,

x(Q)≤ 1 ∀Q⊆V clique
}
,

where x(Q) denotes the sum of all xi, i ∈ Q. The corresponding inequality is called
a clique constraint. Since the intersection of a clique and a stable set contains at
most one vertex, all clique constraints are satisfied by all incidence vectors of stable
sets. This implies STAB(G) ⊆ QSTAB(G) and optimizing over QSTAB(G) is an
LP-relaxation of the stable set problem.

The stable set problem is NP-hard. Therefore, solving linear programs over
STAB(G) is NP-hard as well. For some combinatorial optimization problems, their
natural LP-relaxation is solvable in polynomial time. A sobering observation is that,
for general graphs, solving linear programs over QSTAB(G) is also NP-hard. So, in
general, nothing is gained algorithmically. For perfect graphs, though, this approach
combined with a tighter relaxation delivers the desired result.

Lovász’s Shannon capacity article [106] suggests studying a different relaxation
of the stable set problem.
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Let (ui | i ∈V ),ui ∈ RN , be any orthonormal representation of G and let c ∈ RN

with ∥c∥ = 1. Then for any stable set S ⊆ V , the vectors ui, i ∈ S, are mutually
orthogonal and hence,

∑
i∈S

(cT ui)
2 ≤ 1.

Since ∑i∈V (cT ui)
2xS

i = ∑i∈S(cT ui)
2, we see that the inequality

∑
i∈V

(cT ui)
2xi ≤ 1 (ORC)

holds for the incidence vector xS ∈ RV of any stable S set of nodes of G. Thus,
(ORC) is a valid inequality for STAB(G) for any orthonormal representation (ui |
i ∈ V ) of G, where ui ∈ RN , and any unit vector c ∈ RN . We shall call (ORC) the
orthonormal representation constraints for STAB(G).

Utilizing these inequalities, the following set was introduced in [68]. For any
graph G = (V,E) let

TH(G) :=
{

x ∈ RV | xi ≥ 0 ∀i ∈V,

and x satisfies all orthonormal representation constraints
}
.

TH(G) is the solution set of infinitely many linear inequalities and thus a convex
set. Since for every clique Q, its clique constraint appears as an orthonormal rep-
resentation constraint (given a clique Q ⊆ V , let {ui | i ∈ V \Q}∪{c} be mutually
orthogonal unit vectors and set u j = c for j ∈ Q) and every incidence vector of a
stable set satisfies all such inequalities, we obtain:

STAB(G)⊆ TH(G)⊆ QSTAB(G).

An important fact is that the Lovász theta function ϑ(G,w) introduced in Section 8
can also be characterized as follows:

ϑ(G,w) = max
{

wT x | x ∈ TH(G)
}
.

TH(G) is contained in the unit ball, and it is easy to find the center of a ball contained
in the interior of TH(G). Thus, TH(G) is a convex body satisfying the assumptions
required for the oracle-polynomial time equivalence of weak optimization, separa-
tion, and membership. The desired result is, of course, the following:

Theorem. The weak optimization problem for TH(G) is solvable in polynomial
time for any graph G = (V,E).

Lovász, see [106], established several characterizations for his ϑ -function. They
can be used in various ways to prove this theorem. One proof, worked out in detail
in [66] and [69], is based on the following characterization:

ϑ(G,w) = max{w̄T Bw̄ | B ∈K},
where K := {B ∈ RV×V | B ∈D∩M and tr(B) = 1}.
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Above, D is the set of positive semidefinite matrices,M the set of symmetric ma-
trices B that satisfy bi j = 0 whenever i j is an edge in G, and w̄ denotes the vector
whose entries are the square roots of the values wi, i ∈ V . The main part of the
proof consists in showing that the weak membership problem for K can be solved
in polynomial time, and the core of this proof is established by showing whether a
symmetric matrix is positive definite.

A by-product of the proof is the first polynomial time algorithm for optimization
problems containing positive semidefinite constraints, a major result that led to con-
siderable follow-up research such as the design of polynomial time interior point
(and other) algorithms for semidefinite programming.

Another way to establish the above theorem is by utilizing the following fact:

ϑ(G,w) = min
{

Λ(A+W ) | A ∈M⊥},
where Λ denotes the largest eigenvalue,M⊥ the orthogonal complement ofM, and
W the symmetric V×V -matrix whose entries are the square roots of wiw j. Λ(A+W )
is a convex function that ranges over a linear space, and thus, we can obtain ϑ(G,w)
via an unconstrained convex function optimization problem in polynomial time.

A third way to prove the theorem was demonstrated in [116], and this approach
turned out to be one of the starting points for a generalization of this technique.
Lovász and Schrijver developed in this article a general lift-and-project method that
constructs higher-dimensional polyhedra (or, in some cases, convex sets) whose pro-
jection approximates the convex hull of 0-1 valued solutions of a system of linear
inequalities. An important feature of these approximations is that one can optimize
any linear objective function over them in polynomial time. Lift-and-project meth-
ods have been extended in many directions and are still an area of intensive research.
The recent (not even exhaustive) survey by Fawzi, Gouveia, Parrilo, Saunderson,
and Thomas [51] discusses the contributions of almost one hundred articles and il-
lustrates the richness of this topic by presenting examples from many different areas
of mathematics and its applications.

We refrain from describing the technically challenging details of this lift-and-
project technique and return to stable sets in perfect graphs.

A combination results of Fulkerson [57] and Chvátal [28] yields:

Theorem. STAB(G) = QSTAG(G) if and only if G is perfect.

And since we already know that STAB(G) ⊆ TH(G) ⊆ QSTAB(G) holds, we
obtain:

Corollary. STAB(G) = TH(G) = QSTAG(G) if and only if G is perfect.

Since the weak optimization problem for TH(G) can be solved in polynomial
time and since, in case G is perfect, TH(G) is a well-described polyhedron, the
strong optimization problem for TH(G) can be solved in polynomial time. This
yields the desired result:

Theorem. The stable set problem can be solved in polynomial time for perfect
graphs.
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We can now employ the fact that, if a linear program can be solved in polynomial
time, the dual linear program can also be solved in polynomial time, see Section 11.
By proving that, in this case, an optimum basic solution of the dual program can be
transformed in polynomial time into an integral optimum basic solution one can find
an optimum solution of the weighted clique covering problem. Since the cliques of
a graph G are the stable sets of the complementary graph Ḡ of G and the colorings
of G are the clique covering of Ḡ, we can conclude:

Theorem. For perfect graphs, the stable set, the clique, the coloring, and the clique
covering problem can be solved in polynomial time. This also holds for the weighted
versions of these problems.

15 Submodular Functions

L. Lovász. Submodular functions and convexity. In Mathematical Programming: The
State of the Art (eds. A. Bachem, M. Grötschel, B. Korte), Springer, pages 235–257,
1983.

Let E be a finite set. A function f : 2E → R is called submodular on 2E (the power
set of E) if

f (S∩T )+ f (S∪T )≤ f (S)+ f (T ) for all S,T ⊆ E.

Submodular functions play an important role in lattice theory, geometry, graph the-
ory, and particularly, in matroid theory and matroidal optimization problems. The
rank function of a matroid, for example, is submodular as well as the capacity func-
tion of the cuts in directed and undirected graphs.

Two polyhedra can be associated with a submodular function f : 2E → R in a
natural way

Pf :=
{

x ∈ RE | x(F)≤ f (F) for all F ⊆ E, x≥ 0
}
,

EPf :=
{

x ∈ RE | x(F)≤ f (F) for all F ⊆ E
}
.

Pf is called the polymatroid associated with the submodular function f , EPf the
extended polymatroid associated with f . A deep theorem of Edmonds [43] states that
if f and g are two integer-valued submodular functions then all vertices of Pf ∩Pg as
well as all vertices of EPf ∩EPg are integral. This theorem contains a large number
of integrality results in polyhedral combinatorics; in particular, it generalizes the
matroid intersection theorem.

To address algorithmic questions concerning the structures introduced above, we
assume that a submodular function f is given by an oracle that returns the value f (S)
for every query S ⊆ E. We also assume that we know an upper bound β on the
encoding length of the output of the oracle. With these assumptions we define the
encoding length of the submodular function as |E|+β .
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It is well-known that, for any nonnegative linear objective function, the greedy
algorithm finds an optimum vertex of EPf in oracle-polynomial time, and that this
vertex is integral provided the submodular function f is integer-valued. Optimizing
over polymatroids or the intersections of two polymatroids or the intersections of
two extended polymatroids and finding integral optima is more complicated and
needs careful analysis. The most important algorithmic problem in this context is:

Submodular Function Minimization. Given a submodular function f : 2E → Q,
find a set S⊆ E minimizing f .

Lovász has built in [110] a bridge between submodularity and convexity by
showing that submodular functions are discrete analogues of convex functions and
has thus provided the key to the algorithmic solution of the submodular function
minimization problem. The link is established as follows.

Let f : 2E→R be any set function. For every subset T ⊆E, let xT be its incidence
vector and set

f̂ (xT ) := f (T ).

This way f̂ is defined on all 0/1-vectors. Note that every nonzero nonnegative vec-
tor y ∈ RE can be expressed uniquely as

y = λ1xT1 +λ2xT2 + . . .+λkxTk ,

such that λi > 0, i = 1, . . . ,k and ∅ ̸= T1 ⊂ T2 ⊂ . . .⊂ Tk ⊆ E.

Then
f̂ (y) := λ1 f (T1)+λ2 f (T2)+ . . .+λk f (Tk)

is a well-defined extension of the set function f (called the Lovász extension of f )
to the nonnegative orthant. Lovász proved in [110]:

Theorem. Let f : 2E → R be any set function and f̂ its extension to nonnegative
vectors. Then f̂ is convex if and only if f is submodular.

Lemma. Let f : 2E → R be set function with f (∅) = 0. Then

min
{

f (S) | S⊆ E
}
= min

{
f̂ (x) | x ∈ [0,1]E

}
.

Thus, instead of minimizing a set function f over E, it suffices to minimize its
Lovász extension f̂ over the unit hypercube. We observe that f̂ (x) can be evaluated
in oracle-polynomial time using the oracle defining f and that, if f is submodular,
then f̂ is convex. We know already from Section 10 that convex functions can be
minimized in oracle-polynomial time. (The assumption f (∅) = 0 is irrelevant, if
necessary, we can replace f by the function f − f (∅).) This yields:

Theorem. Let f : 2E →Q be a submodular function. Then a subset S of E minimiz-
ing f can be found in oracle polynomial time.
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This theorem implies the polynomial time solvability of many combinatorial op-
timization problems, including the computation of a minimum capacity cut in a
graph. It has various ramifications such as solvability in strongly polynomial time,
as outlined in [110] and [69].

The running time of the polynomial time algorithm sketched above makes it,
however, infeasible for practical use. New and better polynomial time algorithms,
not employing the ellipsoid method, have been devised by Schrijver [143] and Iwata,
Fleischer, and Fujishige [81].

16 Volume Computation

L. Lovász. How to compute the volume? Jber. d. Dt. Math.-Vereinigung,
Jubiläumstagung 1990, B. G. Teubner, Stuttgart, pages 138–151, 1992.

Since the convergence of all versions of the ellipsoid method depends on sequen-
tially shrinking the volume of an ellipsoid containing the given convex body K, it is
tempting to ask whether the algorithm can be tuned to provide a reasonable estimate
of the volume of K. The key idea in this context is, of course, to come up with an
algorithmic version of the Löwner–John theorem, which states that, for a convex
body K in Rn, there exists a unique ellipsoid E of minimal volume containing K;
moreover, K contains the ellipsoid obtained from E by shrinking it from its center
by a factor of n. In formulas, let E(A,a) := {x ∈ Rn | (x− a)T A−1(x− a) ≤ 1} de-
note the ellipsoid defined by a positive definite matrix A with center a ∈ Rn, then
the Löwner–John theorem states

E(n−2A,a)⊆ K ⊆ E(A,a),

if E(A,a) is the Löwner–John ellipsoid E of K. Algorithmically, the following could
be achieved in the Grötschel–Lovász–Schrijver book [69].

Theorem. There exists an oracle-polynomial time algorithm that finds, for any con-
vex body K given by the space dimension n, a weak separation oracle and two real
numbers r and R with the property that K is contained in the ball of radius R around
the origin and contains a ball of radius r, an ellipsoid E(A,a) such that

E
( 1

n(n+1)2 A,a
)
⊆ K ⊆ E(A,a).

With more effort and making additional assumptions such as central symmetry or
requiring that a system of defining linear inequalities is explicitly given (in the poly-
topal case), the factor 1/(n(n+ 1)2) in front of the matrix A above can be slightly
improved, but not fundamentally. If one declares the volume of the interior ellipsoid
as an approximation of the volume of K, the relative error turns out to be 2nn3n/2,
which appears to be outrageously bad.
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Surprisingly, the error is not as bad as it looks since subsequently Elekes [45] and
others proved that no oracle-polynomial time algorithm can compute, for a convex
body K as given above, the volume of K with a much better relative error. We quote
a result of Bárány and Füredi [11].

Theorem. Consider a polynomial time algorithm which assigns to every convex
body K given by a membership oracle an upper bound w(K) on its volume vol(K).
Then there is a constant c > 0 such that in every dimension n there exists a convex
body K for which w(K)> ncn vol(K).

Following up, various authors proved more negative results on the deterministic
approximation of the volume, width, diameter and other convexity parameters.

These negative results fueled the investigation of stochastic approaches to esti-
mate the volume of a convex body. Instead of giving a deterministic guarantee, one
could try to calculate a number that is close to the true value of the volume with
high probability employing a randomized algorithm.

A side remark: Khachiyan [88] and Lawrence [93] proved that, for every dimen-
sion n, one can construct systems of rational inequalities defining polytopes P so
that the encoding length of the rational number p/q representing the true volume
of P requires a number of digits that is exponential in the encoding length of the
inequality system. Hence, exact volumes of convex bodies cannot be computed in
polynomial time since specifying the exact volume requires exponential space.

A fundamental breakthrough was achieved by Dyer, Frieze, and Kannan [40],
who provided a randomized polynomial time approximation scheme for the vol-
ume approximation problem where K is given by a membership oracle. The in-
gredients of their algorithm are a multiphase Monte-Carlo algorithm (using the so-
called product estimator) to reduce volume computation to sampling, the utilization
of Markov chain techniques for sampling, and the use of the conductance bound
on the mixing time, due to Jerrum and Sinclair [82]. The running time of the al-
gorithm is roughly O(n23), which is truly prohibitive. The exponent 23 of n was
subsequently reduced considerably by adding further techniques and improved es-
timates to the toolbox of randomized algorithms, including rapid mixing, harmonic
functions, connection to the heat kernel, isoperimetric inequalities, discrete forms
of the Cheeger inequality, and many more.

Lovász played an important role in the exponent shrinking race. For example, the
exponent went down to 16 (Lovász and Simonovits [120]), to 10 (Lovász [111]), to 8
(Dyer and Frieze [39]), to 7 (Lovász and Simonovits [121]), to 5 (Kannan, Lovász,
and Simonovits [85]), and to 4 (Lovász and Vempala [124]). A nice survey of the
many tricky issues in designing randomized algorithms for volume computation and
their analysis is the article by Simonovits [149].

The race for better algorithms has not stopped. On September 3, 2022, the new
record was published on arXiv by Jia, Laddha, Lee, and Vempala [83]. The authors
show that the volume of a convex body in Rn defined by a membership oracle can
be computed to within relative error ε using Õ(n3ψ2+n3/ε2) oracle queries, where
ψ is the KLS constant. With the current bound of ψ = Õ(1), this gives an Õ(n3/ε2)
algorithm, improving on the Lovász–Vempala Õ(n4/ε2) algorithm.
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17 Analysis, Algebra, and Graph Limits

L. Lovász, Large Networks and Graph Limits. American Mathematical Society, 2012.

We have already indicated that many of the results mentioned in our article seem to
be of permanent importance and are used again and again: the Lovász Local Lemma,
algorithmic consequences of the ellipsoid method, topological combinatorics, and
the LLL algorithm, to name just few. Very recently Lovász’s mathematics culmi-
nated in a topic that somehow combines this into an all-in-one subject: like a late
symphony of a grand composer displaying the experience of the master and an echo
of his/her life. We believe that this happened with the subject of graph limits founded
and developed by Lovász with co-authors and students in the last 15 years. Here is
a brief sketch of this fascinating development.

We have seen in Section 2 that the homomorphism function hom(F,G) and the
Lovász vector L(G) determine every graph G up to an isomorphism. With a proper
scaling this leads to the notion of homomorphism density t(F,G), which is the prob-
ability that a random mapping between sets of vertices of F and G is a homomor-
phism: t(F,G) = hom(F,G)

v(G)v(F) , where v(G) denotes the number of vertices of graph G.
This definition is close to the sampling density and one motivation for intro-

ducing it. One can observe that homomorphism densities do not determine a graph
up to an isomorphism but up to a “blowing up of vertices”. (This is a procedure
by which vertices are replaced by a certain number of twin copies.) It is perhaps
more important that one can then define convergence of a sequence of finite graphs
G1,G2, . . . ,Gn, . . . as the convergence of homomorphism densities t(F,Gn) for every
graph F . This convergence concept (and various other notions of convergence) were
introduced and investigated in the article [22] of C. Borgs, J. T. Chayes, L. Lovász,
V. T. Sós, and K. Vesztergombi.

Hence, a sequence of graphs converges if, for every F , all homomorphism den-
sities (or F-sampling densities) converge. Does this convergence have a real (geo-
metrical) meaning? Are there limit graphs or, perhaps, other limit objects?

Fig. 13: Lovász’s Graph Limits book
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It appears that these questions have non-trivial yet positive answers and these
were the starting point of a very rich and interesting area. In fact, they generated a
whole new theory. Here is a sample of some of the results.

Ch. Borgs, J. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi proved the fol-
lowing in [22]:

Theorem. A sequence of graphs (with unbounded size) is convergent if and only if
it converges to a symmetric measurable function W : [0,1]2 → [0,1]. Moreover, up
to a measurable bijection, such a function W is uniquely determined.

Explicitly, this means that for every graph F = (V,E) the homomorphism densi-
ties t(F,Gn) are converging to:

t(F,W ) =
∫

[0,1]V
∏
i j∈E

W (xi,x j)∏
i∈V

dxi.

Such functions W are called graphons. Graphon is a very intuitive notion and
the convergence of a graph sequence to a graphon looks like a movie. It leads to
“pixel” pictures like those in the samples shown in Figure 14 (taken from Lovász‘s
book [112]).

1.5. HOW TO APPROXIMATE THEM? 17

identically 1/2 function (have a look at the two squares on the left of Figure 1.5).
Figure 1.7 illustrates that the sequence of half-graphs (discussed in Section 1.5.2)
converges to a limit (the function W (x, y) = (y ≥ x + 1/2 or x ≥ y + 1/2). It
has been observed and used before (see e.g. Sidorenko [1991]) that such functions
can be used as generalizations of graphs, and this gives certain arguments a greater
analytic flexibility.

Figure 1.7. A half-graph, its pixel picture, and the limit function

Let us describe another example here (more to follow in Section 11.4.2). The
picture on the left side of Figure 1.8 is the adjacency matrix of a graph G with 100
nodes, where the 1’s are represented by black squares and the 0’s, by white squares.
The graph itself is constructed by a simple randomized growing rule: Starting with
a single node, we create a new node, and connect every pair of nonadjacent nodes
with probability 1/n, where n is the current number of nodes. (This construction
will be discussed in detail in Section 11.4.2.)

Figure 1.8. A randomly grown uniform attachment graph with
100 nodes, and a (continuous) function approximating it

The picture on the right side is a grayscale image of the function U(x, y) =
1 − max(x, y). (Recall that the origin is in the upper left corner!) The similarity
with the picture on the left is apparent, and suggests that the limit of the graph
sequence on the left is this function. This turns out to be the case in a well defined
sense. It follows that to approximately compute various parameters of the graph
on the left side, we can compute related parameters of the function on the right
side. For example, the triangle density of the graph on the left tends (as n → ∞)
to the integral

(1.3)

∫

[0,1]3

U(x, y)U(y, z)U(z, x) dx dy dz
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Let us describe another example here (more to follow in Section 11.4.2). The
picture on the left side of Figure 1.8 is the adjacency matrix of a graph G with 100
nodes, where the 1’s are represented by black squares and the 0’s, by white squares.
The graph itself is constructed by a simple randomized growing rule: Starting with
a single node, we create a new node, and connect every pair of nonadjacent nodes
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will be discussed in detail in Section 11.4.2.)

Figure 1.8. A randomly grown uniform attachment graph with
100 nodes, and a (continuous) function approximating it

14 1. VERY LARGE NETWORKS

Figure 1.4. A half-graph and its pixel picture

a graph that is close to the random graph. But rearranging the rows and columns
so that odd indexed columns come first, we get the 2 × 2 chessboard on the right!
So wee see that both the middle and the right side pictures represent a complete
bipartite graph. The pixel picture of a graph depends on the ordering of the nodes.
We can be reassured, however, that a random graph remains random, no matter
how we order the nodes, and so the picture on the left remains uniformly grey, no
matter how the nodes are ordered.

Figure 1.5. A random graph with 100 nodes and edge density
1/2, a random graph with very many nodes and edge density 1/2,
a chessboard, and the pixel picture obtained by rearranging the
rows and columns.

Remark 1.3. Using pixel pictures to represent graphs, in particular random
graphs, goes in a sense in the opposite direction to what was studied in the psy-
chology of vision. Of course, processing images given by pixel pictures has been

Fig. 14: Samples of graphons



582 Martin Grötschel and Jaroslav Nešetřil

The first row of Fig. 14 shows on the left a randomly grown uniform attachment
graph with 100 nodes, and on the right a (continuous) function approximating it. The
picture on the right is a grayscale image of the function U(x,y) = 1−max(x,y). The
second row of Fig. 14 indicates the construction of the graphon for the “halfgraph”
(the graph on the left). The bottom part indicates the influence of ordering and the
regularity lemma in its simplest form. Note that the sequence of random graphs is
converging to a graphon W that is a constant function. It is important that the same
is true for “quasirandom graphs”.

Graphon is not just an intuitive notion, it has mathematical relevance. This setting
extends work of Aldous [2] and Hoover [79] in probability theory on exchangeable
random graphs (see, e.g., [9]). Graphons are also not just a generalization. They
present a convenient and useful way to study extremal problems for graphs (such as
to find maximum number of edges of a graph satisfying given local properties).

These problems then often take the form of linear inequalities. Lovász introduced
graph algebras (of “quantum graphs”) with nice “pictorial” proofs, see [112]), and
independently Alexander Razborov developed “flag algebras” [140], which proved
to be a very efficient tool in various extremal problems, see, e.g., [73] and [70].

The graph algebra of Lovász and Razborov was motivated by early examples
provided by the Caccetta–Häggkvist conjecture, see [20], the Sidorenko conjec-
ture [148], and the early paper [50] of Erdős, Lovász, and Spencer on topological
properties of the graphcopy function.

A typical extremal problem may be expressed as the fact that a certain linear in-
equality built from homomorphism densities of graphs is nonnegative. This in turn
led Lovász to the question whether any such inequality can be deduced from a sum
of squares of “quantum graphs”. A related question, formulated by Razborov [140],
asks whether the validity of any such inequality can be solved by “Cauchy–Schwarz
Calculus”. Hamed Hatami and Serguei Norin [74] showed that both these questions
have a negative answer in general as the related problems are algorithmically unde-
cidable. So, extremal problems may be more difficult than originally thought. This
was further supported by the universality results of Cooper, Grzesik, Král, Martins,
and L. M. Lovász, see [32] and [70], claiming in particular that every graphon may
be extended to a “finitely forcible” graphon.

This approach also provides an understanding of the celebrated Szemerédi reg-
ularity lemma. The Szemerédi regularity lemma in this interpretation means an ap-
proximation of every graph (and every graphon) by means of a “small” pixel image
where almost all entries are constant (but may be different for different pixels).

The key of the approach of [22] is to characterize convergence using the cut
metric d□(G,H) (based on the cut norm introduced by R. Frieze and R. Kannan
in [55]). If the homomorphism density is defined by scaled subgraph density, then
the cut metric is, somewhat dually, characterized by means of a scaled density of
partitions.

The cut metric d□(G,H) for finite graphs G,H on the same vertex set V is defined
as

max
S,T⊆V

|eG(S,T )|− |eH(S,T )|
|V ×V |



The Mathematics of László Lovász 583

i.e., as the scaled difference of the-sizes of cuts in G and H; above eG(S,T ) is
the number of edges of G between sets S and T . (This definition can be extended
to graphs on different vertex sets. This is technical and it takes three full pages
in [112]). Interestingly, the cut distance for a graphon W is more easily defined than
in the finite case: it is induced by the norm:

∥W∥= sup
S,T⊆[0,1]

∫
S×T

W (x,y)dxdy.

The cut norm is also very natural and fitting from an algorithmic point of view; and
it is bounded by the Grothendieck norm up to a multiplicative constant (as shown
by Alon and Naor [5]).

As a culmination of several auxiliary results, one obtains that the convergence
is indeed induced by a distance. This is the key fact in many applications and was
proved by Lovász and Szegedy in [122]:

Theorem. If (Gn) is a sequence of graphs of unbounded size, then (Gn) is a con-
verging sequence if and only if (Gn) is a Cauchy sequence with respect to cut dis-
tance d□(Gi,G j).

The following result was proved by Lovász and Szegedy in [123]. Lovász con-
siders it as one of the basic results treated in his book [112].

Theorem. The space of all graphons W with cut distance is compact.

This compactness theorem may be viewed as the roof result for the Szemerédi
regularity Lemma and its various extensions. It also displays the usefulness of the
limit language and of the much more general setting. This area was studied exten-
sively, for instance by Borgs, Chayes, Elek, Lovász, Sós, Szegedy, Vesztergombi,
and Tao in [23, 44, 123, 155].

The mathematical richness of this area is best illustrated by Appendix A of [112],
which contains the following sections: Möbius functions; the Tutte polynomial;
some background in probability and measure theory; moments and the moment
problem; ultraproduct and ultralimit; Vapnik–Chervonenkis dimension; nonnega-
tive polynomials; categories. Obviously, it is impossible to present here more than a
glimpse of what the book [112] covers.

Note that the above results are interesting for dense graphs. For sparse graphs
(for example for graphs with constant degrees) one has to devise a different ap-
proach. Limit objects are now called graphings and modelings. For them, results
similar to above three theorems are not known. This is treated, e.g., by Benjamini
and Schramm [17] and by Nešetřil and Ossona de Mendez [134]; see again [112].

It is amazing that the area of graphs and their limits can be traced back to
Lovász’s very early algebraic results (mentioned in Section 2). Some forty years
later it blossomed in the inspiring climate of the Microsoft Research Theory Group
at Redmond in an atmosphere of concentrated research and quality, with persons
such as Michael Freedman, Oded Schramm and many other great visitors and with
László Lovász as a driving force.
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18 Final Remarks

Let us finish the fireworks of beautiful theorems ranging over many parts of mathe-
matics and theoretical computer science by adding a few general remarks.

It happens very rarely that a well-known and long-standing open problem is
solved by a novel technique that immediately influences not just that area, but other
parts of mathematics as well. Lovász not only accomplished this once. It is unbeliev-
able that Lovász repeatedly offered to the world community exactly such solutions.
Some of these proofs are really elegant and were included in the collections of other
beautiful “book proofs”, see [1] and [129].

In this article we concentrated on Lovász-results which had general influence,
led to intensive research by many others, and sometimes spawned the emergence of
whole new theories. Work in areas such as combinatorial optimization, applications
of the ellipsoid method, algebraic graph theory, graph homomorphisms, topological
graph theory, and graph limits is very difficult to imagine without the pioneering
accomplishments of László Lovász.

In our Introduction we indicated that Lovász is both a “problem solver” and a
“theory builder”, and pointed out that the trio depth, elegance, and inspiration is a
particular signature of his work that makes his achievements unique. We do hope

Fig. 15: Several Lovász-books on a poster (by A. Goodall and J. N.) of the Charles
University in Prague (Photo: Private)
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that the glimpse into his oeuvre and the scientific influence of his results that we
have offered here provides at least a partial proof of our conviction.

To keep this article at a reasonable length we had to omit many topics on which
Lovász left his marks. In particular, it was impossible to give adequate attention to
the books he has written, see Fig. 15, and the influence they had and still have. To
mend this omission, albeit very incompletely, we elucidate the contents and impact
of four of his books – extremely briefly, though.

Lovász’s third book Combinatorial Problems and Exercises [107] became –
without any exaggeration – a bible for combinatorialists worldwide. This is a book
organized in an unusual way. It has three parts: The first part consists of mostly
easily formulated questions and problems, the second part contains hints for the so-
lutions, and the third part thorough proofs with discussions. This of course, makes
up the largest part.

Lovász convincingly claims in this book that discrete mathematics, at the time
of publication, has grown out of an area with simple questions that are relatively
easy to solve without much mathematical knowledge into a structured field with
various branches consisting of central concepts and theorems forming a hierarchy
and possessing a rich bouquet of proof techniques. Instead of presenting the theories
analytically and deductively, Lovász designed his book with the purpose of helping
interested readers to learn many of the existing techniques in combinatorics. And as
he wrote in the introduction:

The most effective (but admittedly very-time consuming) way of learning such techniques is
to solve (appropriately chosen) exercises and problems.

We believe that this book significantly changed the level on which combinatorics
(and graph theory in particular) was treated. It caught worldwide attention from
the very start (see, e.g., the book review by Bollobás [19]) by combinatorialists,
computer scientists, and mathematicians in general. It is remarkable that after more
than 40 years of its existence the book, which mirrors the vast experience of the
author, is still in print and in use.

A side remark: Combinatorics meetings usually have an open problems session
where participants explain questions they are working on and have not solved yet.
Lovász, with his wide knowledge of proof techniques, has always been outstanding
in being able to solve many of the open problems on the spot.

Matching problems have played a considerable role in the development of graph
theory. Well-known and important early results are, e.g., König’s Matching Theo-
rems, the Marriage Theorem, and Tutte’s f -factor theorem. Matchings, b-matchings,
T -joins, etc. have a rich structure theory. The Edmonds–Gallai decomposition is one
such example. Various matching problems and their ramifications appear in a large
variety of applications of combinatorial optimization (e.g., the Chinese Postman
Problem). Many of these are solvable with (highly nontrivial) polynomial time al-
gorithms, for which the pioneering work of J. Edmonds, see [41], laid the basis.
Edmonds [42] also achieved a breakthrough in polyhedral combinatorics by provid-
ing a linear description of the matching polytope that does not simply follow from
total unimodularity. Lovász [108] came up with a new and elegant proof of this re-
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sult that was later often mimicked for the characterization of other polytopes arising
in combinatorial optimization.

The book [115] Matching Theory, written by László Lovász and Mike Plummer,
provides a broad view of this subject and covers the roughly 40 articles that Lovász
has contributed to this field. We just want to highlight Chapters 10 and 11 of this
book. Chapter 10 is devoted to the f -factor problem, which asks, for a given graph
G = (V,E) and integers f (v) for every vertex v ∈ V , whether there is a spanning
subgraph H of G such that the degree of v in H is equal to f (v). In a series of
four papers that appeared in 1970–1972, Lovász developed a generalization of the
Edmonds–Gallai Structure Theorem to the f -factor problem, providing an elegant
answer to the f -factor problem. Chapter 11 introduces further generalizations such
as the matroid and polymatroid matching problem, which are interesting (and dif-
ficult) combinations of topics in graph and matroid theory. We refer to this chapter
of [115] and the article [109] for some of the results that can be shown in this con-
text. Finally, this book contains in the preface a wonderful brief, yet in-depth survey
of the historical development of matching theory.

Lovász’s book Large networks and graph limits [112] aims in a different direc-
tion. It is the result of a stay of Lovász at the IAS in Princeton. We have dealt with
parts of this book in Section 17. Graph limits became a very active field with con-
tributions ranging from model theory, probability, functional analysis to theoretical
computer science, network science and, of course, combinatorics. This theory fits
very well with advanced combinatorics; for example, the role of Szemerédi’s regu-
larity lemma is highlighted and explained properly in this context. The basic theory
of convergent graph sequences is derived in several settings; and multiple applica-
tions to parameter and property testing, extremal theory, and other applications are
given. The book starts with an informal introduction into large graphs in a network
science context, specifying the abundance of real applications, and questions to ask
about them. This is followed by a lengthy chapter on the algebra of graph homomor-
phisms. This chapter can be read independently and is also of independent interest.
But one of the main features of this book is to show how this algebra is connected
to limit structures and limit distributions. It is amazing how much material was de-
veloped in this context in less than a decade. In the very nice preface, Lovász lists
the branches of mathematics that come into play in his book and writes:

These connections with very different parts of mathematics made it quite difficult to write
this book in a readable form [. . .] [continuing that he found that] the most exciting feature
of this theory [. . .] [is] its rich connections with other parts of mathematics (classical and
non-classical) [. . .] [so that he] decided to explain as many of these connections [. . .] [as he]
could fit in the book.

Summarizing, this book is a real tour de force.
The American Mathematical Society Colloquium Publications were established

in 1905. So far 66 books were published in this AMS flagship book series “offering
the finest in scholarly mathematical publishing”. Vol. 60 is the book [112] Large
Networks and Graph Limits discussed above, Vol. 65 is the book Graphs and Ge-
ometry [113], so far the last book written by Lovász.
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Vol. 60 pictures the emergence and maturation of a new theory while Vol. 65
presents a wide spectrum of geometry related techniques (and tricks) to study
graphs. In twenty chapters (and three appendices) Lovász surveys many connec-
tions between graph theory and geometry, concentrating on those which lie deeper.
These are among others: rubber band representations, coin representations, orthog-
onal representation, and discrete analytic functions. Interestingly, this book is only
about geometry, and thus topology is outside its scope. Nevertheless, the book con-
tains some of the key discoveries of Lovász in a new context.

The Leitmotiv of the whole book [113] is described in the preface:

Graphs are usually represented as geometric objects drawn in the plane, consisting of ver-
tices and curves connecting them. The main message of this book is that such a represen-
tation is not merely a way to visualize the graph, but an important mathematical tool. It
is obvious that this geometry is crucial in engineering if you want to understand rigid-
ity of frameworks and mobility of mechanisms. But even if there is no geometry directly
connected to the graph-theoretic problem, a well-chosen geometric embedding has math-
ematical meaning and applications in proofs and algorithms. This thought emerged in the
1970s, and I found it quite fruitful.

Lovász has been developing these thoughts for about forty years, observing:

Many new results and new applications of the topic have also been emerging, even out-
side mathematics, like in statistical and quantum physics and computer science (learning
theory). At some point I had to decide to round things up and publish this book.

This finishes his preface. But he returns to these considerations in Chapter 20, “Con-
cluding Thoughts”, on page 390 as follows:

I am certain that many new results of this nature will be obtained in the future (or are
already in the literature, sometimes in a quite different disguise). Whether these will be
collected and combined in another monograph, or integrated into science through some
other platform provided by the fast changing technology of communication, I cannot predict.
But the beauty of nontrivial connections between combinatorics, geometry, algebra and
physics will remain here to inspire research.

When reviewing the book [112] in the Bulletin of the American Mathematical So-
ciety, one of us quoted Michel Mendès France, who once told him that envy is the
right feeling when reading beautiful mathematics. Yes, this is the feeling one may
have when reading Lovász’s books such as [112] and [113].

Lovász’s exceptional research capabilities and his broad knowledge of mathe-
matics are mirrored in his public presentations and survey articles. He has the abil-
ity to explain difficult results in understandable language and, in particular, to dis-
play and illustrate connections between seemingly unrelated topics. Examples of
that can, e.g., be found in the articles he contributed to the Handbook of Combina-
torics [62], see also [91]. The titles of some of his survey and motivating articles
contain phrases such as One mathematics or Discrete and Continuous: Two sides
of the same. This reflects his philosophy that science is not a collection of inde-
pendent topics but a tightly connected network to be discovered and understood. He
contributed to this conviction also administratively by serving the scientific commu-
nity in leading positions of the International Mathematical Union and the Hungarian
Academy of Sciences.
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The unity of mathematics and the role of mathematics in the world have been
addressed again and again by László Lovász through many of his activities. Given
the outstanding excellence in his own research and the huge experience as a pro-
fessional in combination with admirable modesty the mathematical community can
hardly think of a better representative.
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Lovász. Springer, 2019.
13. L. Barto, M. Kozik. Combinatorial gap theorem and reductions between promise CSPs. In

Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA):
1204–1220, 2022.

14. J. Beck. An algorithmic approach to the Lovász Local Lemma I. Random Str. and Algorithms
3(4):343–365, 1991.
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Discrete Math. 165–166:71–80, 1997.

21. Ch. Borgs, J. Chayes, L. Lovász, V. T. Sós, K. Vesztergombi. Counting graph homomor-
phisms. In Topics in Discrete Mathematics, edited by M. Klazar, J. Kratochvı́l, M. Loebl, J.
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90. I. Křı́ž. A hypergraph – free construction of highly chromatic graphs without short cycles.

Combinatorica 9(2):227–229, 1989.
91. M. Laczkovich. Random walk in and around mathematics – Interview with László Lovász.
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1 Introduction

In a career that has spanned more than 40 years, Wigderson has resolved long-
standing open problems, made definitions that shaped entire fields, built unexpected
bridges between different areas, and introduced ideas and techniques that inspired
generations of researchers. A recurring theme in Wigderson’s work has been uncov-
ering the deep connections between computer science and mathematics. His papers
have both demonstrated unexpected applications of diverse mathematical areas to
questions in computer science, and shown how to use theoretical computer science
insights to solve problems in pure mathematics. Many of these beautiful connections
are surveyed in Wigderson’s own book [284].

In writing this chapter, we were faced with a daunting task. Wigderson’s body of
work is so broad and deep that it is impossible to do it justice in a single chapter, or
even in a single book. Thus, we chose to focus on a few subfields and, within those,
describe only some of Wigderson’s central contributions to these fields.
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In Section 2 we discuss Wigderson’s contribution to cryptography. As we de-
scribe there, during the second half of the 20th century, cryptography underwent
multiple revolutions. Cryptography transformed from a practical art focused on “se-
cret writing” to a science that protects not only communication but also computa-
tion, and provides the underpinning for our digital society. Wigderson’s works have
been crucial to this revolution, vastly extending its reach through constructions of
objects such as zero-knowledge proofs and multi-party secure computation.

In Section 3, we discuss Wigderson’s contribution to the field of pseudorandom-
ness. One of the great intellectual achievements of computer science and mathemat-
ics alike has been the realization that many deterministic processes can still behave
in “random-like” or pseudorandom manner. Wigderson has led the field in under-
standing and pursuing the deep implications of pseudorandomness for problems in
computational complexity, such as the power of randomized algorithms and circuit
lower bounds, and in developing the theory and explicit constructions of “pseu-
dorandom objects” like expander graphs and randomness extractors. Wigderson’s
work in this field used mathematical tools from combinatorics, number theory, alge-
bra, and information theory to answer computer science questions, and has applied
computer science abstractions and intuitions to obtain new results in mathematics,
such as explicit constructions of Ramsey graphs.

Section 4 covers Wigderson’s contribution to the great challenge of theoretical
computer science: proving lower bounds on the computational resources needed
to achieve computational tasks. Algorithms to solve computational problems have
transformed the world and our lives, but for the vast majority of interesting computa-
tional tasks, we do not know whether our current algorithms are optimal or whether
they can be dramatically improved. To demonstrate optimality, one needs to prove
such lower bounds, and this task has turned out to be exceedingly difficult, with the
famous P vs. NP question being but one example. While the task is difficult, there
has been some progress in it, specifically in proving lower bounds for restricted
(but still very useful and interesting) computational models. Wigderson has been a
central contributor to this enterprise.

Section 5 covers a line of work by Wigderson and his co-authors on developing
and analyzing continuous optimization algorithms for various problems in compu-
tational complexity theory, mathematics, and physics. Continuous optimization is
a cornerstone of science and engineering. There is a very successful theory and
practice of convex optimization. However, progress in the area of nonconvex opti-
mization has been hard and sparse, despite a plethora of nonconvex optimization
problems in the area of machine learning. Wigderson and his co-authors, in their
attempt to analyze some nonconvex optimization problems important in complex-
ity theory, realized that these are no ordinary nonconvex problems – nonconvexity
arises because the objective function is invariant under certain group actions. This
insight led them to synthesize tools from invariant theory, representation theory,
and optimization to develop a quantitative theory of optimization over Riemannian
manifolds that arise from continuous symmetries of noncommutative matrix groups.
Moreover, this pursuit revealed connections with and applications to a host of dis-
parate problems in mathematics and physics.
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All of us are grateful for having this opportunity to revisit and celebrate Wigder-
son’s work. More than anything, we feel lucky to have had the joy and privilege of
knowing Avi as a mentor, colleague, collaborator, and friend.

2 Cryptography

Cryptography has been used for thousands of years, going back to ancient Egypt,
Sumeria, and Greece. However, throughout the vast majority of that time, it had two
major limitations. First, there was no formal analysis of cryptographic schemes,
leading to a “cat and mouse” game in which ciphers are continuously designed and
then broken, leading Edgar Allan Poe to say in 1847 that “Human ingenuity can-
not concoct a cipher which human ingenuity cannot resolve.” Second, cryptography
was synonymous with “secret writing”: the design of schemes that enable two par-
ties that share some secret information (i.e., secret key) to communicate by using
encryption and decryption.

In the second half of the 20th century, cryptography broke out of these two limi-
tations. First, starting with the work of Shannon [250], cryptography was placed on
solid mathematical foundations. Second, with their invention of public key cryptog-
raphy, Diffie and Hellman [78] ushered in a new era where cryptography extended
far beyond secret writing. However, neither Shannon nor Diffie and Hellman could
imagine how far cryptography would grow. First, in almost all settings, analyzing
cryptographic schemes required going beyond the information-theoretic methods
of Shannon, and to use computational complexity as a basis. Second, in the 1980s,
cryptography was extended to protect not only communication but also computation,
with a crowning achievement being “secure multiparty computation” protocols that
allow any number of parties to compute arbitrary functions on their secret inputs,
controlling precisely what information would be revealed and to whom.

Avi Wigderson played a key role in these developments. He was instrumental in
mapping out the computational assumptions required for many cryptography tools
and proving the central feasibility result for secure multiparty computation.

In this section, we survey some of Wigderson’s contributions to cryptography,
focusing on two central themes.

1. Building cryptographic schemes that are secure under computational assump-
tions (which can be viewed as stronger variants of the famous P ̸= NP conjec-
ture). This line of works is covered in Section 2.1.

2. Building cryptographic schemes that are proven to be secure unconditionally,
without relying on any computational assumptions, but rather on certain environ-
mental conditions such as a trusted majority of parties. This field is sometimes
known as information-theoretically secure cryptography, and some of Wigder-
son’s contributions to it are covered in Section 2.2.
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Two objects play a central role in both fields: zero-knowledge proofs, and multi-
party secure computation. These are the foundational tools for extending cryptog-
raphy from only securing communication to securing computation. Wigderson has
made seminal contributions to constructing these objects in both the computational
and information-theoretic regimes, enabling many follow-up works that used these
tools to achieve a vast range of cryptographic applications. The description below
is informal in parts, and many proofs are omitted. However they can be found in
Goldreich’s excellent textbook [108, 109, ]. See also the recent text [272] for more
on information-theoretic cryptography.

2.1 Cryptography under computational assumptions

Cryptography is intimately connected to computational complexity. Indeed, achiev-
ing most cryptographic goals requires the existence of functions that are computa-
tionally hard to compute. The necessity of computational hardness for encryption
was realized early on by Shannon [250]. However, in the early 1980s, researchers
realized that computational hardness is sufficient for achieving applications that ex-
tend far beyond encryption. Avi Wigderson played a key role in this revolution that
vastly expanded the domain of cryptography beyond its classical goals of protecting
the confidentiality and authenticity of communications.

2.1.1 Zero knowledge proofs for all languages in NP

Zero-knowledge proofs achieve the seemingly paradoxical notion of convincing a
party (known as the “verifier”) that a particular statement X is true, without giving
any information to the verifier as to why that statement is true. For example, a prover
that knows the factorization of the number N = 1,013,883,390,263,903 as N =
32,722,259× 30,984,517 can easily prove the statement “N is composite and has
a factor with least-significant digit 7” by providing the factorization, but a zero-
knowledge proof allows them to prove this fact without revealing the prime factors.1

In 1982, Goldwasser, Micali and Rackoff [116] defined the notion of zero knowl-
edge proofs, and gave such proofs for particular examples of languages, such as
quadratic residuosity, for which no efficient algorithm is known. To do this, [116]
needed to extend the notion of proofs to include interaction— the prover and veri-
fier exchange messages rather than just a static piece of text— and randomization—
the verifier’s algorithm is randomized, and it is only convinced of the proof validity
with high probability.

1 Simply proving that a number N is composite can be done easily, since the verifier can use an
efficient primality testing algorithm [2], and so even an empty proof suffices. Also, current classical
(i.e., non-quantum) algorithms can be used to efficiently factor numbers with up to a few hundred
digits [177, 49].
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We now formally define interactive proofs in general and zero-knowledge proofs
in particular. We restrict our attention to proof systems for languages in NP, which
is the case of most practical relevance in cryptography. Recall that the class NP
consists of all languages for which membership can be efficiently verified. Formally,
we define an NP-relation to be a relation R ⊆ {0,1}∗×{0,1}∗ such that there is a
polynomial-time algorithm to check whether a pair (x,y) is in R and such that there
is a polynomial p such that for every pair (x,y) ∈ R, |y| ≤ p(|x|). For a relation R,
we define the lanaguage corresponding to R to be LR = {x|(x,y)∈ R}. The class NP
is the set of all languages L such that L = LR for some NP-relation R. Given a string
x, one can prove that x is in L by providing the string y such that (x,y) ∈ R. By the
definition of a relation NP, the string y will be of length at most polynomial in |x|
and the membership of (x,y) in R can be verified efficiently.

An interactive algorithm is a (potentially randomized) algorithm that, given a
current state si and the message received mi, outputs the updated state si+1 and the
message it sends mi+1. An interaction between two interactive algorithms A and B
given inputs a,b, respectively, proceeds in the natural way: the initial states of A and
B are a,b, respectively. Then we iterate between each algorithm, computing its new
state and message sent based on the previous state and message received from the
other party. (For concreteness, we assume that A sends the first message, and thus
gets the empty message and its initial state as input to compute it.) We say that an
interactive algorithm A is polynomial time if there are some polynomials p,q such
that, letting n be the length of A’s input: (1) the total number of rounds A will interact
with before halting, as well as the length of each message it sends and its internal
state, is at most p(n); (2) A computes every message and updated state using at most
q(n) operations.

Definition 2.1 (Interactive proofs for NP languages). Let R be an NP relation and
L = LR the corresponding NP language. An (efficient) interactive proof system for R
is a pair of interactive randomized polynomial-time algorithms P,V that satisfy the
following properties:

Completeness: For every (x,y) ∈ R, if P gets x,y as input and V gets x as input, then
at the end of the interaction, V will output 1 with probability 1.

Soundness: For every interactive algorithm P∗ (even inefficient one) and every x ̸∈ L,
if V gets x as input and interacts with P∗, then the probability that V outputs 1
at the end of the interaction is at most 1

2 .2

The formal definition of Zero-Knowledge proofs uses the notion of a simulator.
The idea is that to demonstrate that a verifier V did not learn anything from an
interaction with a prover P, we show that V could have simulated the interaction by
itself.

2 The probability 1/2 of error can be reduced to 2−k by the standard trick of repeating the protocol
k times sequentially.
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Definition 2.2 (Zero-knowledge proofs). Let R be an NP relation and (P,V ) be an
efficient interactive proof system for R. We say that (P,V ) is zero knowledge if the
following holds. For every polynomial-time interactive algorithm V ∗ there exists
a (non-interactive) randomized polynomial-time algorithm S∗ such that: for every
(x,y) ∈ R, if we let s∗ be the random variable corresponding to V ∗’s state, then s∗ is
computationally indistinguishable from the random variable S∗(x).

Let {Xα}α∈I and {Yα}I be two parameterized collections of random variables,
with I ⊆ {0,1}∗, and Xα ,Yα supported on strings of length at most polynomial in
|α|. We say that {Xα} and {Yα} are computationally indistinguishable, denoted
by {Xα} ≈c {Yα}, if there exists some function µ : N→ (0,1] such that µ(n) =
n−ω(1) (i.e., limn→∞

log µ(n)
logn = −∞) and such that for every Boolean circuit Cα of

size at most 1/µ(|α|), |Pr[Cα(Xα) = 1]−Pr[Cα(Yα) = 1]|< µ(|α|). We often omit
the subscript α when it is clear from context and so use the notation Xα ≈c Yα or
simply X ≈c Y . For example, the condition of Definition 2.2 is that there is some
function µ : N→ [0,1] such that µ(n) = n−ω(1) and such that for every Boolean
circuit C of size ≤ 1/µ(|x|), |Pr[C(s∗) = 1]−Pr[C(S∗(x)) = 1]|< µ(|x|).

At the time of Goldwasser et al’s result, it was not clear that zero-knowledge
proofs are not a mere “curiosity” restricted to very specific examples. (Indeed, the
[116] paper famously took three years before it was accepted for publication.) In
Wigderson’s work with Goldreich and Micali [112] they showed that this is decid-
edly not the case. Rather, they showed that (under standard cryptographic assump-
tions) every language in NP has a zero-knowledge proof.

One way to define NP is that it consists of languages L such that the membership
of a string x in L can be proven by an efficient mathematical proof (i.e., a piece of text
at most polynomially long in |x|, which can be verified in polynomial time). Hence
[112]’s result can be thought of as saying that if a statement x has an efficient proof
at all, then it also has an efficient proof in which the verifier learns nothing except
that the statement is true.3 The way that [112] proved their theorem was ingenious.
They used the celebrated Cook–Levin Theorem, which is typically considered as a
negative or impossibility result, to show a positive result.

We now describe their protocol. The Cook–Levin Theorem says that there are
concrete problems that are NP-complete in the sense that any other problem in NP
reduces to them. One example of an NP-complete language is three coloring or
3COL, which is defined as follows. For a graph G = (V,E), G ∈ 3COL if and only if
there exists χ : V →{1,2,3} such that for every {u,v} ∈ E, χ(u) ̸= χ(v). A classical
result is the following:

3 This way of phrasing it is a bit of a cheat, since the first instance of “proof” corresponds to a
standard mathematical proof— a static deterministically-verifiable piece of text— while the second
one corresponds to the extended notion of [116], which includes interaction and randomness. A
follow-up work [37] extended this by showing that everything that can be proven by a randomized
interactive proof also has such a proof which is zero knowledge.
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Theorem 2.3 (Cook–Levin–Karp [73, 178, 158]). 3COL is NP-complete. That is,
for every L ∈NP there exists a polynomial-time reduction r : {0,1}∗→{0,1}∗ such
that for every x ∈ {0,1}∗,

x ∈ L⇔ r(x) ∈ 3COL .

Moreover, if R is the NP-relation corresponding to L, there exists polynomial-time
algorithms r′,r′′ such that

1. For every (x,y) ∈ R, r′(x,y) is a valid 3-coloring for the graph r(x).
2. For every x ∈ {0,1}∗ and G = r(X), if χ is a valid 3-coloring for G then

(x,r′′(G,χ)) ∈ R.

The “moreover” part of Theorem 2.3 was already implicit in the classical works
of [73, 178, 158], and was explicitly discussed by Levin (which is why a triple
(r,r′,r′′) as above is sometimes known as a “Levin reduction”). Wigderson and his
coauthors used this insight to show that in order to give a zero-knowledge proof
system for all L ∈ NP, it suffices to give a zero-knowledge proof system for 3COL.
Specifically, for every NP language L, let r′L,r

′′
L be the reductions from L to 3COL

as in Theorem 2.3. Given a zero-knowledge protocol (P3COL,V3COL) for 3COL we
can obtain a protocol (PL,VL) as follows:

• Verifier and prover get x as input, and the prover gets in addition y such that
(x,y) ∈ RL
• Verifier and prover compute G = r(x) and prover computes χ = r′(x,y).
• Verifier and prover run the protocol (P3COL,V3COL) with inputs (G,χ) and G re-

spectively.

2.1.2 Computationally secure multiparty computation

Obtaining a zero-knowledge proof system for every problem in NP is an intellectu-
ally satisfying result on its own merits. But does it have further applications? In
another work of Wigderson with Goldreich and Micali [113], they showed that
the answer is a resounding yes. They introduced a general technique to use zero-
knowledge proofs as a way to compile protocols that achieve a very weak form of
security into ones that achieve a very strong one. Using their technique, [113] proved
what is arguably “The Fundamental Theorem of Cryptography”— a protocol for se-
cure multiparty computation.

Secure multiparty computation (MPC) is a vast generalization of many tasks in
cryptography, including encryption, electronic voting, voting, privacy-preserving
data mining, and more. Full proofs and even the precise definition of MPC with
all its variants is beyond the scope of this section. Lindell’s survey [183] gives an
excellent introduction, while the books [109, 74] go into more detail.
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The setup is that there are n parties holding private inputs x1 ∈X1, . . . ,xn ∈Xn,
and they wish to compute a (potentially probabilistic) map

F : X1×·· ·×Xn→ Y1×·· ·×Yn

such that (roughly speaking) the following properties hold:

Completeness: Every party i will learn the value yi where (y1, . . . ,yn)=F(y1, . . . ,yn).
Privacy: A party i will not learn anything else apart from yi about the private inputs

of the other parties. More generally, every adversary that controls some set A⊆
[n] of parties will not learn more about the private inputs {xi}i̸∈A of the other
parties beyond what could be derived from the outputs {yi}i∈A.

Soundness: An adversary that controls A as above cannot modify the outputs yi of
i ̸∈ A beyond its choice of the inputs {xi}i∈A.4

Up to considerations of computational efficiency, as well as allowing for interac-
tive communication between parties, we can cast almost any cryptography problem
as an instance of MPC. For example, the encryption task can be thought of as com-
puting the function F(x,∅) = (∅,x) where ∅ is the “empty” input/output. That is,
computing F corresponds to ensuring that the second party learns x and that no
one learns anything else. Conducting an auction could correspond to computing the
function F(x1, . . . ,xn) = (y1, . . . ,yn) where yi = 1i=argmax{xi}. (That is, each party
only learns whether or not they were the highest bidder.)

Yao [290] gave a version of MPC that was restricted in two ways. First, Yao’s
protocol was only for two parties. Second, and more importantly, Yao’s protocol
assumed a very restricted (and unrealistic) adversary: one that follows precisely the
protocol’s instructions but tries to extract information from the communication it
is involved in. Such adversaries are known in cryptographic parlance as passive or
honest-but-curious. Since in general, we have no reason to expect attackers to obey
our protocol’s instructions, honest-but-curious is not a realistic model for security.

Wigderson’s work [113] solved both issues. First, they gave a general MPC
protocol for n parties in the hones-but-curious model. Second, they used zero-
knowledge proofs to provide a general transformation or “compiler” from protocols
that are only secure against honest-but-curious adversaries into ones that are secure
against general (also known as malicious) adversaries. Since their work, the general
paradigm of using zero-knowledge proofs to “boost” security from passive to active
adversaries has found numerous uses in theory and practice.

The details of [113]’s protocol are complex, and we omit them here. However,
some of the techniques are illustrated in Section 2.2, which describes a different
multiparty secure computation protocol of Wigderson in the information-theoretic
setting. In both cases, the general idea is that (1) we can describe a general function
F as a Boolean circuit, which is a composition of simple gates, and (2) once we
do so, we can achieve a secure computation protocol by performing a gate-by-gate

4 The adversary might also be able to abort the protocol; we ignore this issue of aborts in this
section, but it is discussed extensively in the literature.
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computation of intermediate values that are “encrypted” in the sense that no party
(or strict subset of parties) can recover them on its own.

Arguably, it is [113]’s honest-but-curious to malicious compiler which had had
the most significant impact. The idea behind this compiler is simple yet ingenious:
Every party in the protocol will use zero-knowledge proofs to prove that it has fol-
lowed the protocol’s instructions. For example, suppose that at a given step in the
protocol, the party i has private input xi, and has received messages m1, . . . ,mt . Sup-
pose that according to the protocol’s instructions, the party should compute its next
message as

mt+1 = Πi(xi,m1, . . . ,mt) (1)

where Πi is some known polynomial-time function that is specified by the protocol.
A simple way for i to convince the other parties that it computed mt+1 correctly is
to reveal all the inputs used in the computation, including the private input xi. But
that would, of course, violate i’s privacy. However, the statement “there exists xi that
satisfies (1)” is an NP statement. Hence, it can be proved in zero knowledge, and so
in a way that does not reveal xi.

While this is the general idea, implementing it involved additional complications,
including ensuring consistency (that the same private input xi is used in all mes-
sages), dealing with randomized protocols (that are inherent to cryptography), and
more. Using tools such as commitment schemes and coin-tossing protocols, [113]
overcame those obstacles and proved that (under standard cryptographic assump-
tions), there exists a secure multiparty computation protocol for every polynomial
time (potentially probabilistic) map F : X1×·· ·×Xn→ Y1×·· ·×Yn. This is one
of the most fundamental theorems in all of cryptography and shows that if we are
willing to allow for (polynomial-time) computation and communication overhead,
every protocol problem can be solved. Although the road from such a theoretical
proof of existence to practical constructions is long and arduous, the results of [113],
as well as the techniques they introduced, served as guiding lights for theorists and
practitioners alike.

2.2 Information-Theoretic Cryptography

In the previous section we showed how to construct zero-knowledge interactive
proofs for all of NP, and how to use them to construct secure multi-party computa-
tion protocols. These works [112, 113] rely on cryptographic assumptions (such as
the existence of a one-way function) and assume that the malicious parties are com-
putationally bounded and cannot break the underlying cryptographic assumption.
In particular, these protocols do not offer everlasting security. Namely, even if dur-
ing the execution of the protocol the parties did not learn any information (beyond
the validity of the statement or the output of the computation), if many years later
the computers become stronger and manage to break the underlying cryptographic
assumption, then at that point information can be leaked.
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This motivates the question of whether we can obtain everlasting security. In
other words, can we construct a zero-knowledge interactive proof and a secure MPC
protocol that do not rely on cryptographic assumptions and provide security against
all-powerful adversaries? Wigderson, together with Ostrovsky [214], proved that the
answer is no for zero-knowledge interactive proofs. Namely, they showed that one-
way functions are necessary for constructing zero-knowledge interactive proofs for
all of NP (assuming NP ̸= BPP). Similarly, Wigderson, together with Ben-Or and
Goldwasser [39], showed that cryptographic assumptions are necessary for secure
MPC (with the security guarantees as presented in Section 2.1).

For Wigderson and his coauthors, these lower bounds were nothing but an invita-
tion to surpass them. In the case of zero-knowledge they managed to do so by chang-
ing the model in a clever and interesting way. Specifically, to obtain information-
theoretic zero knowledge, Wigderson, together with Ben-Or, Goldwasser and Kil-
ian [38], considered a new proof model: Rather than considering a verifier that
is interacting with a single prover, they considered a verifier that is interacting
with two non-communicating provers. They constructed information-theoretic zero-
knowledge 2-prover interactive proofs. We elaborate on this construction and on the
immense impact of the 2-prover model in Section 2.2.1. For the case of secure MPC,
Wigderson, together with Ben-Or, Goldwasser [39] managed to get an information-
theoretic security by restricting the fraction of parties the adversary is allowed to
corrupt to be less than 1/2 in the honest-but-curious setting and less than 1/3 in
the general malicious setting. They constructed an ingenious MPC protocol that is
information-theoretic secure assuming the adversary is restricted as above, and as-
suming that each pair of parties is connected via a secure channel. This result is a
true breakthrough and has served as a foundation for numerous subsequent works.
We elaborate on it in Section 2.3.1.

2.2.1 Multi-Prover Zero-Knowledge Interactive Proofs

In the multi-prover interactive proof model, there are multiple provers who can co-
operate and communicate between them to decide on a common optimal strategy
before the interaction with the verifier starts. But, once they start to interact with
the verifier, they can no longer interact nor can they see the messages exchanged
between the verifier and the other provers.

Definition 2.4 (2-prover interactive proof). A 2-prover interactive proof for a lan-
guage L ∈ NP consists of two provers (P1,P2) and a probabilistic polynomial time
verifier V such that the verifier takes as input an instance x and each prover takes
as input both x and a corresponding witness w. The verifier samples two queries
(q1,q2) and sends qi to prover Pi. Each prover Pi computes an answer ai =Pi(x,w,qi)
and sends ai to the verifier V , who then outputs a verdict bit b = V (x,q1,q2,a1,a2)
indicating accept or reject.
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The following two properties are required to hold:

• Completeness. For every x ∈ L and any corresponding witness w s.t. (x,w) ∈
RL, the verifier V (x), who generates queries q1 and q2, accepts the answers a1 =
P1(x,w,q1) and a2 = P2(x,w,q2), with probability 1.
• Soundness. For every x /∈ L and any two (computationally unbounded) cheating

provers P∗1 and P∗2 , the probability that the verifier V (x), who generates queries q1
and q2, accepts the answers a1 = P∗1 (x,q1) and a2 = P∗2 (x,q2), is at most 1/2.

Theorem 2.5. Every language L ∈NP has a two-prover perfect zero-knowledge in-
teractive proof-system.

Proof idea. Recall that in Section 2.1.1 we showed how to construct a computational
zero-knowledge interactive proof. The computational aspect follows from the use of
a commitment scheme, whose hiding property is only computational.

The main new ingredient in the 2-prover zero-knowledge proof is an information-
theoretic commitment. Recall that in the zero-knowledge proof presented in Sec-
tion 2.1.1, in the first step the prover sends a commitment (in the case 3-coloring,
this is a commitment to a legal coloring). To achieve zero-knowledge we need this
commitment scheme to be hiding and for soundness this commitment must be bind-
ing. It is known that any commitment scheme that is statistically binding can only
be computationally hiding, and this is precisely where the cryptographic hardness
assumption comes in.

Wigderson et. al. [38] get around this barrier by constructing a commitment
scheme that is both statistically binding and statistically hiding in a model where
there are two committers, who are assumed to be non-communicating. In what fol-
lows, we present a slightly simplified version of their commitment scheme. We show
how to commit to a single bit, and one can commit to arbitrarily many bits by repe-
tition.

2.2.2 Bit commitment scheme in the 2-prover setting

In what follows we show how two provers P1 and P2 commit to a bit b ∈ {0,1}.
First, before the protocol begins, they share a random string w ← {0,1}n and a
single random bit d ← {0,1} which are hidden from the verifier V . n controls the
binding failure; taking n = 1 will guarantee binding with probability 1/2 whereas
taking a general n will guarantee binding with probability 2−n.

Commitment phase:

1. The verifier V chooses a random string r← {0,1}n, and sends r to P1. He
sends nothing to P2.

2. Prover P1 sends x = (d · r)⊕w and the prover P2 sends z = b⊕d.
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Opening phase:

1. Prover P2 sends to the verifier the committed bit b along with w.
2. The verifier V accepts if and only if x = ((b⊕ z) · r)⊕w.

Analysis. In what follows we argue that this commitment scheme is information-
theoretic hiding and is also information-theoretical binding (assuming the two
provers do not interact).

Hiding: Note that (x,z) ≡Un+1 where Un+1 denotes the uniform distribution over
n+1 bits:

(x,z) = ((d · r)⊕w,b⊕d)≡ (Un,b⊕d)≡Un+1.

Binding: We show that any pair of cheating provers can break the binding property
with probability at most 2−n. To this end, consider any pair of cheating provers
P∗1 and P∗2 that send (x,z) to V , and that later P2 can open successfully to both 0
using w0 and to 1 using w1. This means that

(z · r)⊕w0 = (1⊕ z) · r⊕w1

which in turn implies that
w0⊕w1 = r,

and thus P∗2 can predict r, which should happen with probability 2−n.

Information theoretic 2-prover zero-knowledge proof. Equipped with this infor-
mation-theoretic commitment scheme, the 2-prover zero-knowledge construction is
essentially the same as that presented in Section 2.1.1 while replacing the computa-
tional commitment scheme with the information-theoretic one presented above.

2.3 The Importance of the Multi-Prover Interactive Proof Model

As mention above, the original motivation of [38] for considering the model of
multi-prover interactive proofs was for constructing statistical zero-knowledge
proofs, a goal that they achieved with utter success. However, already in their orig-
inal paper, [38] realized the potential power of such a proof model, and they posed
the following open problem: “It is interesting to consider what is the power of this
new model solely with respect to language recognition.” Their intuition for why
this model is powerful stems from the fact that “the verifier can check the provers
against each other.” In particular, the example they give is that of suspects that try
to cover up a crime. It seems hard to cheat in a consistent manner.

Indeed, Babai et. al. [24] showed that this proof model is extremely power-
ful. In particular, they showed that the correctness of any (deterministic or non-
deterministic) time-T computation can be verified in a 2-prover interactive proof
model, where the communication complexity is only polylog(T ) and where the run-
ning time of the verifier is only polylog(T ) plus quasi-linear in the input length.
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In particular, a polynomial time verifier can verify the correctness of exponentially
long (deterministic or non-deterministic) computations.

The power of this proof model had groundbreaking consequences, leading to the
notable PCP theorem [94, 23, 20, 19]. In particular, Fortnow et. al. [95] realized that
if in the proof for a time-T computation the messages from the verifier to the provers
are of size O(logT ) (which they indeed in the construction of [24]) then each prover
can generate a list consisting of its answers to all possible verifier messages, and this
list will be of size poly(T ). The lists of the two provers can be thought of as a list of
size poly(T ) that can be verified by reading only two blocks of size polylog(T ).

This simple observation is spectacular. In the context of non-deterministic com-
putations, it means that one can take any proof, and convert it into a new proof
which is polynomially longer, but which can be verified by randomly reading only
poly-logarithmically many bits of the proof. Indeed this observation created an im-
mense splash in the theory community, leading to the PCP theorem, which says that
for any NP language L, with a corresponding NP relation R, it holds that there is
an efficient transformation that given any (x,w) ∈ R generates a probabilistically
checkable proof (PCP) π of size polynomial in the size of (x,w), such that if x /∈ L
then after (randomly) reading only 3 bits of π the verifier will reject the proof with
probability 7/8, and if (x,w) ∈ L and the proof π was honestly generated then it is
accepted by the probabilistic verifier with probability 1.

The 2-prover interactive proof model and the PCP theorem had numerous appli-
cations to the theory of computation and beyond. They form the foundation for all
known hardness of approximation results, and are at the heart of all known succinct
computationally sound proof system (also known as argument systems). Succinct
arguments have played an important role in cryptography over the last 15 years.
This significance is underscored by the hundreds of papers that have been pub-
lished, the dozens of systems that have been built, and their deployment by numer-
ous blockchain corporations, including prominent ones like Ethereum.

2.3.1 Information-Theoretic Secure Multi-Party Computation

Recall that in 2.1.2 we elaborated on the work of [113], which showed how a set of
n parties can compute any function of their (secret) inputs securely, where the secu-
rity guarantees computational, i.e., security holds against computationally bounded
adversaries. The focus of this section is on obtaining information-theoretic security
(also known as perfect security), where security holds even against all powerful ad-
versaries. Indeed, Wigderson, together with Ben-Or and Goldwasser [39], showed
that any function can be computed with perfect security assuming each pair of par-
ties is connected with a private channel, as long as the malicious adversary controls
less than 1/3 of the parties. If the adversary is restricted to be semi-honest then
security is guaranteed as long as the adversary controls a minority of the parties.
Moreover, they showed that such a corruption rate is tight, both in the malicious
setting and the semi-honest setting.
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This result is truly remarkable. Indeed, it is a cornerstone in the field of secure
multi-party computation, and has paved the way for a lot of subsequent work, mak-
ing it a highly influential and a groundbreaking contribution. As is often the case in
the literature, we refer to this protocol as the BGW protocol.

High-level overview of the BGW protocol. Suppose a set of n parties wish to se-
curely compute a function f from n inputs to n outputs. Let C be an arithmetic
circuit computing f . On a high level, the BGW protocol securely emulates the com-
putation of C in a gate-by-gate manner, starting from the input gates all the way up
to the output gates. More specifically, it proceeds with the following steps:

1. Secret sharing of the inputs. The protocol begins with the parties sharing their
inputs with each other using a secure secret-sharing scheme [249]. If the adver-
sary is assumed to be semi-honest, and thus is assumed to corrupt less than n/2
parties, then the parties share each bit of their secret input using the Shamir t-
out-of-n secret-sharing scheme [249] with t = ⌈n/2⌉−1. Such a scheme ensures
that if at most t shares are revealed then no information about the secret is re-
vealed, whereas t +1 shares can be efficiently combined to reveal the secret. We
elaborate on Shamir’s secret-sharing scheme below.
If the adversary is malicious then one needs to use a verifiable secret-sharing
(VSS) scheme. The first information-theoretically secure VSS scheme was con-
structed in the work of [39], and we elaborate on it towards the end of this section.

2. Gate-by-gate emulation. The parties then emulate the computation of each gate
of the circuit, computing secret shares of the gate’s output from the secret shares
of the gate’s inputs. As we shall see, the Shamir secret-sharing scheme, as well as
the VSS scheme of [39], have the property that computing shares corresponding
to addition gates can be done locally, without any interaction. Thus, the parties
only interact in order to emulate the computation of multiplication gates. This
step is the most involved part of the protocol, and we elaborate on it below.

3. Output reconstruction. Finally, the parties reconstruct the value of each output
wire from the shares of the that wire. Namely, if an output wire belongs to party
Pi then all the parties send party Pi their shares corresponding to the wire and Pi
uses all these shares to reconstruct the output.

We next describe the BGW protocol in more detail. We first focus on the semi-
honest setting, and only towards the end of the section we discuss the malicious
setting. We start by recalling Shamir’s secret-sharing scheme.

Shamir Secret Sharing Scheme. Suppose a party (often referred to as the dealer)
wishes to share a secret input among n parties, with the guarantee that any t + 1
of the parties can use their shares to efficiently reconstruct the secret and yet any t
shares do not reveal any information about the secret. In what follows we assume
for simplicity, and without loss of generality, that the secret is a single bit (and thus
can be embedded in any finite field).

Let F be a finite field of size greater than n, let α1, . . . ,αn arbitrary distinct non-
zero elements in F. In order to share a secret s ∈ F a random degree t polynomial
p(x) ∈ F[x] is chosen such that p(0) = s. The share of party Pi is set to be p(αi). By
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interpolation, given any t+1 points it is possible to reconstruct the polynomial p and
compute the secret s = p(0). Furthermore, since p is random subject to p(0) = s,
and thus has t random coefficients, its values at any t or less of the αi’s give no
information about the secret s.

Gate-by-Gate Emulation. We next show how to use the structure of Shamir’s
secret-sharing scheme to do the gate-by-gate emulation. The first observation is that
addition gates can be computed locally. That is, given shares p(αi) and q(αi) of the
two input wires corresponding to an addition gate, it holds that r(αi)= p(αi)+q(αi)
is a valid sharing of the output wire. This is due to the fact that the polynomial r(x)=
p(x)+q(x) has the same degree as both p(x) and q(x), and r(0) = p(0)+q(0).

Remark 2.6. Note that if the function f is linear, and thus can be computed using
a circuit that has only addition gates, then the gate-by-gate emulation step is com-
pletely non-interactive.

Regarding multiplication gates, a natural attempt is to compute the product of the
shares, namely, party Pi computes r(αi) = p(αi) ·q(αi). Indeed, the constant term is
r(0) = p(0) ·q(0), as desired. However, the degree of r(x) becomes 2t, as opposed
to t. This is a problem since the reconstruction algorithm works as long as the poly-
nomial used for the sharing is of degree at most t. We therefore need to reduce the
degree of r down to t. To solve this, Wigderson and his coauthors devised a beautiful
and elegant degree reduction protocol. This protocol also ensures that the new de-
gree t polynomial is a random degree t polynomial with free coefficient p(0) ·q(0).
This is crucial for security, since if the polynomial is not random then t shares may
reveal undesired information.

Specifically, the degree reduction protocol first randomizes the degree-2t poly-
nomial r = p ·q so that it is uniformly distributed, and then it reduces its degree to t
while maintaining its uniformity. Specifically, a multiplication gate is computed via
the following protocol:

1. Local multiplication. Each party locally multiplies its input shares. Namely,
party Pi computes r(αi) = p(αi) ·q(αi).

2. Randomizing the polynomial r. Each party Pi generates a random degree 2t
polynomial zi such that zi(0) = 0, and sends to each party Pj the share zi(α j).
Then, each party Pi adds all the shares it received and the original share it com-
puted to obtain

n

∑
j=1

z j(αi)+ r(αi).

The resulting shares define a random degree 2t polynomial R such that R(0) =
p(0) ·q(0).

3. Degree reduction. The parties run a private protocol where each party Pi con-
verts its share R(αi) into the share Rtrunc(αi), where Rtrunc is simply a truncation
of the polynomial R to a degree t polynomial. Namely, if R(x) = ∑

2t
j=0 aixi then

Rtrunc(x) = ∑
t
j=0 aixi.
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A priori it is not clear how a party Pi can compute Rtrunc(αi) from R(αi). Indeed,
Pi cannot do this on its own, and needs the help of all other parties Pj, who have
shares R(α j). Note that this computation needs to be done in a private manner,
which is the problem we are trying to solve in the first place, and thus it seems
that we are back to square one! However, the magical observation of [39] is that
this truncation function, which converts shares of R to shares of Rtrunc, is linear.
As mentioned in Remark 2.6, linear functions we already know how to compute
securely since they do not require any multiplication gates! Thus, it remains to
argue the linearly of this function, which is argued in the claim below.

Claim. There exists a fixed (public) matrix A ∈ Fn×n such that for every degree
2t polynomial R : F→ F and for every distinct non-zero elements α1, . . . ,αn ∈ F,

A · (R(α1), . . . ,R(αn))
T = (Rtrunc(α1), . . . ,Rtrunc(αn))

T ,

where Rtrunc is defined as above.

Proof. Let R = (R0,R1, . . . ,R2t ,0, . . . ,0) ∈ Fn denote the vector of coefficients
of the polynomial R. Let Vα be the Vondermonde matrix corresponding to α =

(α1, . . . ,αn). Namely, for every i, j ∈ [n], Vα(i, j) = α
j−1

i . Note that

Vα ·RT = (R(α1), . . . ,R(αn))
T

It is well known that the Vondermonde matrix Vα is invertible if α1, . . . ,αn ∈ F
are all distinct and non-zero. Therefore,

RT =V−1
α · (R(α1), . . . ,R(αn))

T . (2)

Let P be the linear projection function that takes as input a vector (a1, . . . ,an) ∈
Fn and outputs (a1, . . . ,at+1,0 . . . ,0) ∈ Fn. Namely, in matrix representation,
P(i, j) = 1 if i = j and both are in {1, . . . , t +1}, and P(i, j) = 0 otherwise. Thus,
denoting by Rtrunc the t + 1 coefficients of the degree t polynomial Rtrunc fol-
lowed by zeros, i.e., Rtrunc = (R0,R1 . . . ,Rt ,0, . . . ,0), by the definition of Pt and
by Equation (2)

RT
trunc = P ·V−1

α · (R(α1), . . . ,R(αn))
T .

This, together with the definition of Vα , implies that

(Rtrunc(α1), . . . ,Rtrunc(αn))
T =Vα ·P ·V−1

α · (R(α1), . . . ,R(αn))
T .

We thus conclude the proof of this claim by setting A =Vα ·P ·V−1
α .

This concludes the description of the BGW protocol in the honest-but-curious
setting, where the adversary is assumed to follow the protocol. We next show how
Wigderson and his co-authors modify this protocol to obtain security against a mali-
cious adversary who controls less than 1/3 of the parties and may deviate arbitrarily
from the protocol. The main new tool is a verifiable secret-sharing scheme.
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2.3.2 Verifiable Secret Sharing

A verifiable secret-sharing (VSS) scheme, originally defined by Chor et al. [68], is a
secret-sharing scheme that is secure even in the presence of malicious adversaries.
Recall that a secret-sharing scheme (with threshold t) is made up of two stages: A
sharing stage and a reconstruction stage. In the sharing stage, the dealer shares a
secret among the n parties so that any t + 1 parties can efficiently reconstruct the
secret from their shares, while any subset of t or fewer shares reveal no information
about the secret. In the reconstruction stage, a set of t+1 or more parties reconstruct
the secret. If we consider Shamir’s secret-sharing scheme, much can go wrong if
the dealer or some of the parties are malicious. Recall, that to share a secret s, the
dealer is supposed to choose a random polynomial q of degree t with q(0) = s and
then hand each party Pi its share q(αi). However, a malicious dealer can choose a
polynomial of higher degree, and as a result different subsets of t + 1 parties may
reconstruct different values. Thus, the shared value is not well defined. In addition,
in the reconstruction phase a corrupted party can provide an arbitrary malicious
value instead of the prescribed value q(αi), thus effectively changing the value of
the reconstructed secret.

A verifiable secret-sharing scheme is aimed at solving precisely these issues.
Chor et al. [68] constructed a VSS scheme with computational security, i.e., assum-
ing the malicious parties are computationally bounded (and assuming the hardness
of some computational problem). Wigerson with his coauthors [39] constructed an
information-theoretically secure VSS scheme, which ensures security against all
powerful adversaries, assuming that at most t < n/3 of the parties are corrupted.
More specifically, the security guarantee is that the shares received by the honest
parties are guaranteed to be q(αi) for a well-defined degree-t polynomial q, even
if the dealer is corrupted. To achieve this guarantee, the secret-sharing stage is fol-
lowed by a verification stage which is an interactive stage where the parties “cor-
rect” their shares if needed. This correction protocol, which we elaborate on below,
is extremely beautiful!

Given this security guarantee it is possible to use techniques from the field of
error-correcting codes in order to reconstruct q (and thus q(0) = s) as long as n− t
correct shares are provided and t < n/3. This is due to the fact that Shamir’s secret-
sharing scheme when looked at in this context is exactly a Reed–Solomon code.

VSS via bivariate polynomials.
The VSS protocol of [39] consists of three stages.

1. Secret sharing stage. Loosely speaking, in this stage the dealer embeds the
Shamir secret-sharing polynomial in a bivariate polynomial S(x,y). Specifically,
to share a secret s ∈ {0,1} the dealer chooses a random bivariate polynomial
S(x,y) of degree t in each variable, such that S(0,0) = s. Note that q(z) = S(0,z)
is a polynomial corresponding to the Shamir secret-sharing scheme and the
values q(α1), ...,q(αn) are the Shamir shares embedded into S(x,y). Similarly,
p(z)= S(z,0) is a polynomial corresponding to the Shamir secret-sharing scheme
and the values p(α1), ..., p(αn) are the Shamir shares embedded into S(x,y). The
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dealer sends each party Pi two univariate polynomials as shares; these polyno-
mials are fi(x) = S(x,αi) and gi(y) = S(αi,y). The Shamir-share of party Pi is
fi(0) = S(0,αi), and the polynomials fi and gi are given only for the sake of
verification.

2. Verification stage. At this point the parties engage in an interactive verification
protocol. First, each party Pi sends each party Pj the value si, j = fi(α j). Note that
if the dealer is honest, then the elements s1, j, . . . ,sn, j sent to party Pj should be
the value of the polynomial g j on α1, . . . ,αn, respectively. Each party Pj checks
that indeed for every i ∈ [n], si, j = g j(αi). If this is not the case, it broadcasts a
request for the dealer to reveal si, j. If Pj has more than t requests then the dealer
is clearly malicious, in which case Pj broadcasts a “complaint” thereby asking
the dealer to reveal his private shares fi and gi. Finally, after the dealer broadcasts
all the information requested, each party Pi checks that all the public and private
information he received from the dealer are consistent. If Pi finds any inconsis-
tencies he broadcasts a complaint thereby asking the dealer to reveal his private
shares. If at this point more than t parties have asked to make their shares public,
the dealer is clearly malicious and all the parties pick the default zero polynomial
as the dealer’s polynomial. Likewise, if the dealer did not answer all the broad-
casted requests he is declared malicious. On the other hand, if t or less parties
have complained then there are at least t+1 honest parties who are satisfied (this
follows from the fact that t < n/3). The shares of these parties uniquely define
a polynomial S(x,y) and this polynomial conforms with all the information that
was made public (otherwise one of these honest parties would have complained).
In this case the complaining parties take the public information as their share.

3. Reconstruction stage. At this point each party sends its updated share fi(0), and
the secret s is reconstructed by running the Reed–Solomon decoding algorithm.

Note that if the dealer is honest then no information about the shares of any
honest party is revealed during the verification process. If however the dealer is
malicious, we do not need to protect the privacy of his information, and the verifi-
cation procedure ensures that all the honest parties values lie on some polynomial
of degree t.

Gate-by-Gate Emulation in the Malicious Setting
As was done in the honest-but-curious setting, addition gates are computed lo-

cally by adding the corresponding shares, whereas computing multiplication gates
is significantly more involved. Recall that in the honest-but-curious setting the mul-
tiplication step was done by multiplying the shares locally, thus obtaining shares
of a degree-2t polynomial. Then the parties rerandomized this polynomial and then
truncated it. In the malicious setting, the rerandomization step needs to be made se-
cure against malicious adversaries. In addition, to apply the degree reduction step,
we need to argue that the truncation is a linear function, but for this we must make
sure that the all the parties use as input to this function their correct point on the
product polynomial h(x) = f (x)g(x). To guarantee that this is indeed the case, error
correcting codes are used yet again.
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3 Pseudorandomness

A major theme in Wigderson’s work is to understand the power of randomness in
efficient computation, addressing questions such as:

• Can randomized algorithms solve problems much more efficiently than determin-
istic algorithms, or can every randomized algorithm be converted into a determin-
istic algorithm with only a small loss in efficiency?
• Can we give explicit, deterministic constructions of combinatorial objects whose

existence is proven via the Probabilistic Method?
• Can we convert weak random sources, which may have biases and correlations,

into high-quality random bits that can be used for running randomized algorithms
or protocols?

In this section, we will survey the answers that Wigderson’s work has given to these
fundamental questions, and the close connections between the questions that he has
helped uncover and exploit. For more details, we recommend the broader surveys
of pseudorandomness [110, 276, 131].5

3.1 Hardness vs. Randomness

3.1.1 Motivation

In the 1970s and 1980s, randomization was discovered to be an extremely pow-
erful tool in theoretical computer science. By allowing algorithms to “toss coins,”
we could potentially solve problems much more efficiently than before. In partic-
ular, polynomial-time randomized algorithms were found for a number of prob-
lems that were only known to have exponential-time deterministic algorithms, such
as POLYNOMIAL FACTORIZATION (over finite fields) [42], PRIMALITY TEST-
ING [257, 199, 219], POLYNOMIAL IDENTITY TESTING [76, 245, 292], and AP-
PROXIMATELY COUNTING MATCHINGS in graphs [147]. However, it was unclear
whether this apparent exponential savings provided by randomization was real, or
just a reflection of our ignorance: could there be polynomial-time deterministic al-
gorithms for these problems that we just hadn’t discovered or proven correct yet?
For example, already Miller [199] gave a deterministic polynomial-time algorithm
for PRIMALITY TESTING based on the Extended Riemann Hypothesis, and three
decades later, Agrawal, Kayal, and Saxena [2] gave an unconditional deterministic
polynomial-time algorithm. Thus, the following problem remained open:

Open Problem 3.1. Are there problems that can be solved by randomized algo-
rithms in polynomial time that cannot be solved by deterministic algorithms in poly-
nomial time?

5 Some of our text is taken verbatim from [276], with permission.
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We now formalize this question using complexity classes that capture the power
of efficient deterministic and randomized algorithms. As is common in complexity
theory, these classes are defined in terms of decision problems, where instances are
given by binary strings x ∈ {0,1}∗ def

=
⋃

∞
n=0 {0,1}

n and the set of instances where
the answer should be “yes” is specified by a language L⊆ {0,1}∗, or equivalently a
boolean function f : {0,1}∗→{0,1}. However, the definitions generalize in natural
ways to other types of computational problems, such as computing functions or
solving search problems.

Recall that we say a deterministic algorithm A runs in time t : N→ N if A takes
at most t(|x|) steps on every input x (where |x| is the length of x in bits), and it runs
in polynomial time if it runs time t(n) = O(nc) for a constant c. Polynomial time
is a theoretical approximation to feasible computation, with the advantage that it is
robust to reasonable changes in the model of computation and representation of the
inputs.

Definition 3.2. P is the class of languages L for which there exists a deterministic
polynomial-time algorithm A such that for all instances x,

• x ∈ L⇒ A(x) accepts, and
• x /∈ L⇒ A(x) rejects.

Definition 3.3. BPP is the class of languages L for which there exists a probabilistic
polynomial-time algorithm A such that for all instances x,

• x ∈ L⇒ Pr[A(x) accepts]≥ 2/3, and
• x ̸∈ L⇒ Pr[A(x) accepts]≤ 1/3,

where the probabilities are taken over the random coin tosses of the algorithm A.

The choice of the thresholds ℓ= 1/3 and u= 2/3 is arbitrary, and any two distinct
constants ℓ < u yields an equivalent definition, since the error probability of a ran-
domized algorithm can be made arbitrarily small by running the algorithm several
times and accepting if at least an (ℓ+u)/2 fraction of the executions accept.

The cumbersome notation BPP stands for “bounded-error probabilistic polyno-
mial-time,” due to the unfortunate fact that PP (“probabilistic polynomial-time”)
refers to the definition where the inputs in L are accepted with probability greater
than 1/2 and inputs not in L are accepted with probability at most 1/2. Despite its
name, PP is not a reasonable model for randomized algorithms, as it takes exponen-
tially many repetitions to reduce the error probability. BPP is considered the stan-
dard complexity class associated with probabilistic polynomial-time algorithms, and
thus a driving question of Wigderson’s work surveyed in this section is the following
formalization of Open Problem 3.1 (negated).

Open Problem 3.4. Does BPP= P?

More generally, we are interested in quantifying how much savings randomiza-
tion provides. One way of doing this is to find the smallest possible upper bound on
the deterministic time complexity of languages in BPP. For example, we would like
to know which of the following complexity classes contain BPP:
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Definition 3.5 (Deterministic Time Classes).

DTIME(t(n)) = {L : L can be decided deterministically in time O(t(n))}
P = ∪cDTIME(nc) (“polynomial time”)
P̃ = ∪cDTIME(2(logn)c

) (“quasipolynomial time”)
SUBEXP = ∩εDTIME(2nε

) (“subexponential time”)
EXP = ∪cDTIME(2nc

) (“exponential time”),

where the unions and intersections are taken over all c,ε ∈ (0,∞)

As a baseline, we can always remove randomization with at most an exponential
slowdown:

Proposition 3.6. BPP⊆ EXP.

Proof. If L is in BPP, then there is a probabilistic polynomial-time algorithm A for
L running in time t(n) for some polynomial t. Let m(n) ≤ t(n) be an upper bound
on the number of random bits used by A on inputs of length n. Thus we can view
A as a deterministic algorithm on two inputs — its regular input x ∈ {0,1}n and its
coin tosses r ∈ {0,1}m(n). Writing A(x;r) for A’s output on input x ∈ {0,1}n and
coin tosses r ∈ {0,1}m(n), we have

Pr
r
[A(x;r) accepts] =

1
2m(n) ∑

r∈{0,1}m(n)

A(x;r).

We can compute the right-hand side of the above expression in deterministic time
2m(n) · t(n). □

We see that the enumeration method is general in that it applies to all BPP algo-
rithms, but it is infeasible (taking exponential time). However, if the algorithm uses
only a small number of random bits, it becomes feasible:

Proposition 3.7. If L has a probabilistic polynomial-time algorithm that runs in
time t(n) and uses m(n) random bits, then L ∈DTIME(t(n) ·2m(n)). In particular, if
t(n) = poly(n) and m(n) = O(logn), then L ∈ P.

Thus an approach to proving BPP = P is to show that the number of random
bits used by any BPP algorithm can be reduced to O(logn). This is the angle of
attack pursued in Wigderson’s work, as surveyed in the next section. However, to
date, Proposition 3.6 remains the best unconditional upper-bound we have on the
deterministic time-complexity of BPP.

Open Problem 3.8. Is BPP “closer” to P or EXP? Is BPP ⊆ P̃? Is BPP ⊆
SUBEXP?
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3.1.2 Wigderson’s Contributions

Derandomization from Circuit Lower Bounds

In the early 1980s, the answer to Open Problem 3.4 seemed very likely to be no,
that BPP ̸= P, since there were many examples of problems where randomization
provided an exponential speedup over the best deterministic algorithms known at
the time. The first evidence that randomization might not be so powerful came from
Yao [289], who showed that if there exist “cryptographically secure” pseudorandom
generators, as defined by Blum and Micali [45], then BPP ⊆ SUBEXP. In a series
of works, Wigderson and his collaborators obtained much stronger derandomization
results, convincing the theoretical computer science community that indeed BPP=
P.

Theorem 3.9 ([211, 25, 141]).

1. If EXP has a function of circuit complexity nω(1), then BPP⊆ SUBEXP.
2. If E def

=DTIME(2O(n)) has a function of circuit complexity 2Ω(n), then BPP= P.

To define the “circuit complexity” referred to in the theorem, we associate a lan-
guage L⊆ {0,1}∗ in EXP or E with its characteristic function f : {0,1}∗→ {0,1}.
For each n, we consider the restriction fn : {0,1}n → {0,1} of f to instances of
length n, and ask how many boolean operations (AND, OR, NOT) are needed to
compute fn, i.e. what is the size of the smallest boolean circuit computing fn,
as a function of n. (See Section 4.1 for a more formal definition.) An algorithm
running in time t(n) can be simulated by boolean circuits of size Õ(t(n)) def

= t(n) ·
polylog(t(n)), but the converse is not true, since circuits are a nonuniform model of
computation, essentially allowing a different program for each input length (rather
than a single set of instructions that can solve problems of arbitrary size). Thus
Theorem 3.9 can be interpreted as saying “if nonuniformity cannot speed up all
(exponential-time) algorithms too much, then randomization never provides too
much of a speed up.” Or, in more of a “win-win” formulation, “either we can speed
up all (exponential-time) algorithms with nonuniformity, or we can efficiently de-
randomize all probabilistic algorithms.”

The two items in Theorem 3.9 are special cases of a more general quantitative
result that relates circuit complexity to derandomization. At the “low end,” Item 1
says that if there are problems solvable in exponential time that have superpoly-
nomial circuit complexity, then we get a subexponential-time derandomization of
BPP. This is the same as Yao’s aforementioned result [289] but with a much weaker
hypothesis than the existence of cryptographically secure pseudorandom generators.
At the “high end,” Item 2 says that if instead we have problems with exponential
circuit complexity, then in fact we get polynomial-time derandomization. (We also
need to make the relatively minor switch from EXP to E. If we used EXP instead,
the conclusion would be BPP⊆ P̃.)
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These circuit complexity hypotheses are very plausible. The NP-complete prob-
lems are promising candidates; they can be solved in exponential time and are con-
jectured to require superpolynomial and even exponential circuit complexity, though
we are very far from proving it. (Such a result would resolve the famous P vs. NP
question.) See Chapter 4 for a survey of Wigderson’s fundamental contributions to
circuit lower bounds.

Sections 3.1.3–3.1.5 give an overview of the proof of Theorem 3.9.

Circuit Lower Bounds from Derandomization

Theorem 3.9 of Wigderson et al. establishes a unidirectional implication between
two major projects in theoretical computer science: if we can prove circuit lower
bounds, then we can provably derandomize BPP. Since proving circuit lower
bounds is so difficult, it is natural to wonder whether derandomization could be
easier. With Impagliazzo and Kabanets [138], Wigderson proved that if we “add
nondeterminism” to the complexity classes, then in fact circuit lower bounds are
equivalent to derandomization.

Theorem 3.10 ([138]). MA (a randomized analogue of NP) has a nontrivial deran-
domization (namely, MA ̸=NEXP, where NEXP is an exponential-time analogue of
NP) if and only if NEXP does not have polynomial-sized circuits.

It follows from Theorem 3.10 that derandomization of ordinary randomized polyno-
mial-time algorithms (without nondeterminism) also implies circuit lower bounds.
Specifically, it turns out that if we can derandomize the generalization of BPP to
“promise problems” (i.e. partial boolean functions, where we don’t define or care
about the output on certain inputs), then we can also derandomize MA and hence de-
duce from Theorem 3.10 that NEXP does not have polynomial-sized circuits. (This
implication of Theorem 3.10 also follows from the earlier work of [57].) Building
on Theorem 3.10, Kabanets and Impagliazzo [150] proved that even if the specific
problem of POLYNOMIAL IDENTITY TESTING (which is in BPP) has a nontriv-
ial derandomization, then NEXP does not have polynomial-sized boolean circuits
or the PERMANENT does not have polynomial-sized arithmetic circuits, either of
which would be breakthroughs in complexity theory. (See Section 4.9 for Wigder-
son’s work on arithmetic circuit lower bounds and Section 5.2.3 for Wigderson’s
work on variants of POLYNOMIAL IDENTITY TESTING.)

A more positive interpretation of Theorem 3.10 is that we might be able to prove
new circuit lower bounds by coming up with new methods for derandomizing algo-
rithms. This possibility was realized in Williams’ program of proving circuit lower
bounds by designing faster SAT algorithms [286] and his breakthrough result that
NEXP does not have polynomial-sized ACC circuits [287], both of which built on
the results and techniques of [138].
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Optimizing the Hardness vs. Randomness Tradeoff

As mentioned above, there is a full spectrum of “hardness vs. randomness” impli-
cations between the “low end” and “high end” derandomizations stated in Theo-
rem 3.9. With Impagliazzo and Shaltiel [140], Wigderson pointed out that in the
intermediate regime, the proof of Theorem 3.9 yielded results that were suboptimal
in a sense that can be made formal, and initiated a line of work that culminated in op-
timal hardness vs. randomness tradeoffs achieved by Shaltiel and Umans [247, 274].
More recently, researchers have turned to more finely quantifying how much slow-
down is needed to derandomize algorithms. Under suitably strong complexity as-
sumptions, recent works [81, 64] give evidence that every randomized algorithm
running in time T (n) can be converted to a deterministic algorithm running in time
n1+ε ·T (n) for an arbitrarily small constant ε > 0. Thus, it seems that randomization
saves at most an almost-linear factor in runtime!

Derandomization from Uniform Assumptions

Theorem 3.10 and the results discussed after it show that some derandomizations of
BPP require novel circuit lower bounds, at least for NEXP. Nevertheless, in a re-
markable paper with Impagliazzo [142], Wigderson showed that a nontrivial deran-
domization of BPP is possible under the uniform assumption EXP ̸= BPP. Specifi-
cally, for every language L in BPP, they obtain a deterministic subexponential-time
algorithm that correctly decides L on all but a 1/poly(n) fraction of inputs of length
n, for infinitely many values of n. Moreover, this holds not just for the uniform dis-
tribution on instances of length n, but simultaneously for every efficiently samplable
distribution on instances.

An intriguing feature of the Impagliazzo–Wigderson uniform derandomization
is that it is (necessarily [271]) a “non-black-box” construction. That is, the con-
struction and proof actually make use of the code of the programs that compute
the assumed hard function f ∈ E and that decide the language L ∈ BPP that is be-
ing derandomized. In contrast, Theorem 3.9, like most results in complexity theory,
treats these algorithms as “black boxes,” only using the fact that they can be solved
by efficient programs to deduce that other programs using them as subroutines are
efficient.

The Impagliazzo–Wigderson uniform derandomization of BPP is a “low-end”
result; assuming only a superpolynomial lower bound for EXP, we get (only) a
subexponential-time derandomization of BPP. It remains an open problem to have
a high-end (or nearly high-end) analogue of their result, for example to get a
polynomial-time (or quasipolynomial-time) average-case derandomization of BPP
under the assumption that E⊈BPTIME(2o(n)) (or EXP⊈BPSUBEXP). In [271], a
uniform analogue of the high-end worst-case-to-average-case hardness for E (The-
orem 3.22) was given.



620 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan and Nisheeth K. Vishnoi

Subsequent works have given uniform average-case derandomizations of ran-
domized algorithms with one-sided error (RP) [149] and constant-round interac-
tive proofs (a.k.a. Arthur–Merlin games, AM) [189, 138, 126, 248]. Recent work
has identified “almost-everywhere” uniform hardness assumptions (e.g. computa-
tional problems where every uniform probabilistic polynomial-time algorithm fails
to solve the problem on all but finitely many inputs) that are equivalent to worst-case
derandomization of BPP (generalized to “promise problems”) [111, 65, 186].

3.1.3 Pseudorandom Generators

The approach to derandomizing algorithms suggested by Yao [289] and pursued by
Wigderson is by constructing pseudorandom generators. These are defined in terms
of computational indistinguishability, which was introduced in Section 2 and will
be convenient to reformulate here in a non-asymptotic form:

Definition 3.11 (computational indistinguishability [115]). Random variables X
and Y taking values in {0,1}m are (s,ε) indistinguishable if for every boolean circuit
T : {0,1}m→{0,1} of size at most s, we have

|Pr[T (X) = 1]−Pr[T (Y ) = 1]| ≤ ε.

The left-hand side above is called also the advantage of T in distinguishing X and
Y .

If we set s = ∞ (or even s = 2m), then we allow all 22m
boolean functions T as statis-

tical tests, and (s,ε)-indistinguishability is equivalent to requiring that X and Y have
total variation distance at most ε . (See Definition 3.33.) However, by restricting to
computationally efficient tests, e.g., with s = poly(m), then we obtain a significantly
relaxed definition, where even random variables X and Y with disjoint supports can
be indistinguishable. At the same time, for all efficient purposes (i.e. tasks that can
be done by a boolean circuit of size s), X and Y are interchangeable.

A pseudorandom generator is a procedure that stretches a short seed if truly ran-
dom bits into a long string that is computationally indistinguishable from uniform.

Definition 3.12 (pseudorandom generator [45, 289]). A deterministic function
G : {0,1}d →{0,1}m is an (s,ε) pseudorandom generator (PRG) if

1. d < m, and
2. G(Ud) and Um are (s,ε) indistinguishable, where Uk denotes a random variable

uniformly distributed over {0,1}k.

If a test T : {0,1}m→{0,1} has advantage at most ε in distinguishing G(Ud) from
Um, we say that G ε-fools T .

People attempted to construct pseudorandom generators long before this defi-
nition was formulated. Their generators were tested against a battery of statistical
tests (e.g. the number of 1’s and 0’s are approximately the same, the longest run is
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of length O(logm), etc.), but these fixed set of tests provided no guarantee that the
generators would perform well in an arbitrary application. Indeed, most classical
constructions (e.g. linear congruential generators, as implemented in the standard C
library) are known to fail in some applications.

Intuitively, the above definition guarantees that the pseudorandom bits produced
by the generator are as good as truly random bits for all efficient purposes (where
efficient means computable by a circuit of size at most s). In particular, we can use
such a generator to reduce the number of random bits used by any algorithm from m
to d(m) provided that the algorithm runs in time at most t = s/polylog(s), because
the behavior of any such algorithm on any input x can be simulated by a boolean
circuit of size s. For the resulting algorithm to be efficient, we will also need the
generator to be efficiently computable.

Definition 3.13. We say a sequence of generators {Gm : {0,1}d(m) → {0,1}m} is
computable in time t(m) if there is a uniform and deterministic algorithm M such
that for every m∈N and x ∈ {0,1}d(m), we have M(m,x) = Gm(x) and M(m,x) runs
in time at most t(m).

Note that even when we define the pseudorandomness property of the gener-
ator with respect to nonuniform boolean circuit, the efficiency requirement refers
to uniform algorithms. For readability, we will usually refer to a single generator
G : {0,1}d(m)→ {0,1}m, with it being implicit that we are really discussing a fam-
ily {Gm}.

Theorem 3.14. Suppose that for all m there exists an (m,1/8) pseudorandom gen-
erator G : {0,1}d(m)→{0,1}m computable in time t(m). Then

BPP⊆
⋃
c
DTIME(2d(nc) · (nc + t(nc))).

Proof. Let L be any language in BPP. Then there is a constant c such that L is
decided by a bounded-error randomized algorithm in time t(n) = O(nc−1) on inputs
of length n.

The idea is to replace the random bits used by A with pseudorandom bits gener-
ated by G, use the pseudorandomness property to show that the algorithm will still
be correct with high probability, and finally enumerate over all possible seeds to
obtain a deterministic algorithm.

Claim. For all sufficiently large n and every x ∈ {0,1}n, A(x;G(Ud(nc))) errs with
probability smaller than 1/2.

Proof of claim: Suppose that there exists some x ∈ {0,1}n on which A(x;G(Ud(nc))) errs
with probability at least 1/2. Then, T (·) = A(x, ·) distinguishes G(Ud(nc)) from Unc with
advantage at least 1/2−1/3 > 1/8. Since algorithms running in time t(n) can be simulated
by boolean circuits of size at most Õ(t(n)), T (·) can be computed by a boolean circuit of
size at most nc, for sufficiently large n. This contradicts the pseudorandomness property of
G. ✷
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Now, enumerate over all seeds of length d(nc) and take a majority vote. There
are 2d(nc) of them, and for each we have to run both G and A. □

In the definition of a cryptographic pseudorandom generator used by Yao [289],
the requirement was that G is computable in time polynomial in its input length, i.e.
t(m) ≤ poly(d(m)). This implies that d(m) ≥ t(m)δ ≥ mδ for a constant δ > 0, so
the running time of the derandomization in Theorem 3.14 is at least 2d(nc) ≥ 2nδc

,
and we can at best conclude BPP⊆ SUBEXP.

Thus a key to Theorem 3.9 was the realization by Nisan and Wigderson [211]
that, for derandomization, we can relax the efficiency requirements of a crypto-
graphic generator in two ways. First, we can afford for the generator to be com-
putable in time exponential in its seed length, since anyway we enumerate over all
seeds when derandomizing. Second (and relatedly), we can afford for the genera-
tor to run in more time than the algorithms it fools. Indeed, in Theorem 3.14, we
only need to fool circuits of size m, but we are happy for a generator computable
in time poly(m). In contrast, a cryptographic generator actually requires fooling cir-
cuits of size mω(1), ones that are superpolynomially larger than the output length
and the running time of the generator. Thus, they proposed the following efficiency
requirement:

Definition 3.15 ([211]). A generator G : {0,1}d(m)→{0,1}m is quick (a.k.a. mildly
explicit) if it is computable in time poly(m,2d(m)).

They demonstrated the benefits of these relaxed requirements with the beautiful
pseudorandom generator construction described in the next section (which is a key
component of the proof of Theorem 3.9).

3.1.4 The Nisan–Wigderson Generator

The Nisan–Wigderson generator constructs a quick pseudorandom generator from
any function in E that is sufficiently hard on average:

Definition 3.16. For s ∈ N and α > 0, a function f : {0,1}ℓ → {0,1} is (s,α)
average-case hard if for every boolean circuit A of size at most s, we have

Pr[A(Uℓ) ̸= f (Uℓ)]> α.

Note that, in contrast to the definition of BPP, here the probabilities are taken over
the input to the algorithm A, rather than its random coin tosses. When α = 0, Def-
inition 3.16 simply says that f has circuit complexity greater than s, but when α is
nonzero it is a significantly stronger hardness requirement on f . Note that α = 1/2 is
impossible, since a constant function (of size s = 1) can always compute f correctly
on at least half of the inputs.

We now state the Nisan–Wigderson theorem, restricted to the “high-end” regime,
where hardness is against circuits of exponential size.



On the works of Avi Wigderson 623

Theorem 3.17 ([211]). Suppose that there is a constant δ > 0 and a function
f ∈ E such that for every input length ℓ ∈ N, fℓ is (2δℓ,1/2−1/2δℓ) average-case
hard. Then for every m ∈ N, there is a quick (m,1/m) pseudorandom generator
G : {0,1}d(m)→{0,1}m with seed length d(m) = O(logm). In particular, BPP=P.

Similar to Theorem 3.9, this is a specific instance of a quantitative tradeoff between
hardness and derandomization. In particular, if we replace both occurrences of the
exponential bound 2δℓ with a superpolynomial bound ℓω(1), we obtain the “low-
end” conclusion that BPP ⊆ SUBEXP. However, the hypothesis in Theorem 3.17
is significantly stronger in that it assumes average-case hardness rather than worst-
case hardness, and very strong average-case hardness at that: no small circuit can
compute f with probability much better than random guessing. In the next section,
we will discuss how Wigderson and collaborators relaxed the average-case hardness
assumption to a worst-case one in order to obtain Theorem 3.9.

The starting point for Theorem 3.17 is the realization, implicit in Yao [289],
that if f is (s,1/2− ε) average-case hard, then G(x) = (x, f (x)) is an (s−O(1),ε)
pseudorandom generator. That is, by applying f once on a uniformly random input,
we obtain one pseudorandom bit (beyond the d = ℓ truly random bits in the seed).
So, to obtain may pseudorandom bits, we can try applying f many times. For this
to provide a generator with large stretch (i.e. with output length superlinear in the
input length), we cannot evaluate f on independent random inputs, but rather need
to generate many correlated inputs, but ensure that the correlations don’t destroy the
pseudorandomness.

The idea, building on Nisan [207], is to use inputs to f that share very few bits.
Specifically, the sets of seed bits used for each input to f will be given by a design:

Definition 3.18. S1, · · · ,Sm ⊆ [d] is an (ℓ,a)-design if

1. ∀i, |Si|= ℓ
2. ∀i ̸= j, |Si∩S j| ≤ a

It turns out that there exist designs with lots of sets having small intersections over
a small universe:

Lemma 3.19. For every every ℓ,m∈N, there exists an (ℓ,a)-design S1, · · · ,Sm ⊆ [d]

with d = O
(
ℓ2

a

)
and a = log2 m. Such a design can be constructed deterministically

in time poly(m,d).

The important points are that intersection sizes are only logarithmic in the number
of sets, and the universe size d is linear in ℓ in case we take m = 2Ω(ℓ).

Construction 3.20 (Nisan–Wigderson Generator). Given a function f : {0,1}ℓ→
{0,1} and an (ℓ,a)-design S1, · · · ,Sm ⊆ [d], define the Nisan–Wigderson generator
G : {0,1}d →{0,1}m as

G(x) = f (x|S1) f (x|S2) · · · f (x|Sm)

where if x is a string in {0,1}d and S ⊆ [d], then x|S is the string of length |S|
obtained from x by selecting the bits indexed by S.
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This elegant construction is analyzed as follows.

Theorem 3.21. Let G : {0,1}d →{0,1}m be the Nisan–Wigderson generator based
on a function f : {0,1}ℓ → {0,1} and some (ℓ,a) design. If f is (s,1/2− ε/m)
average-case hard, then G is a (s′,ε) pseudorandom generator, for s′ = s−m ·2a.

Theorem 3.17 follows from Theorem 3.21 by setting ε = 1/m, a = log2 m, and
s = 2δℓ, and observing that for ℓ= (1/δ ) · log2(2m2) = O(logm), we have

s′ = s−m ·2a = 2m2−m2 ≥ m,

and ε/m≤ 1/2δℓ, so we have an (m,1/m) pseudorandom generator. The seed length
is d = O(ℓ2/ logm) = O(logm).

Proof. Suppose for contradiction that G is not an (s′,ε) pseudorandom generator.
By the equivalence of pseudorandomness and next-bit unpredictability [289], there
is a size s′ circuit P such that

Pr[P( f (X |S1) f (X |S2) · · · f (X |Si−1)) = f (X |Si)]>
1
2
+

ε

m
, (3)

for some i ∈ [m] and a uniformly random X ← {0,1}d . From P, we will construct
a small circuit A that computes f on a uniformly random input with probability
greater than 1/2+ ε/m.

Let Y =X |Si . By averaging, we can fix all bits of X |Si
= z (where Si is the comple-

ment of S) such that the prediction probability remains greater than 1/2+ ε/m over
Y . Define f j(y) = f (x|S j) for j ∈ {1, · · · , i−1}. (That is, f j(y) forms x by placing y
in the positions in Si and z in the others, and then applies f to x|S j ). Then

Pr
Y
[P( f1(Y ) · · · fi−1(Y )) = f (Y )]>

1
2
+

ε

m
.

Note that f j(y) depends on only |Si ∩ S j| ≤ a bits of y. Thus, we can compute
each f j with a look-up table hardwired into our circuit. Indeed, every function on a
bits can be computed by a boolean circuit of size at most 2a. (In fact, size at most
O(2a/a) suffices.)

Then, by considering A(y) = P( f1(y) · · · fi−1(y)), we deduce that f can be com-
puted with error probability smaller than 1/2− ε/m by a boolean circuit of size at
most s′+(i−1) ·2a < s′+m ·2a = s. This contradicts the hardness of f . Thus, we
conclude G is an (m,ε) pseudorandom generator. □

3.1.5 Pseudorandom Generators from Worst-Case Lower Bounds

As we saw in the previous section, the Nisan–Wigderson construction gives us pseu-
dorandom generators from boolean functions that are very hard on average, where
every boolean circuit of size 2δℓ must err with probability greater than 1/2−1/2δℓ
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on a random input. In works with Babai, Fortnow, and Nisan [25] and Impagli-
azzo [141], Wigderson showed how to relax the assumption to worst-case hardness,
yielding Theorem 3.9. This was done by showing how to convert worst-case hard
functions into average-case hard functions, which again we state only in the high-
end regime of parameters:

Theorem 3.22 (worst-case to average-case hardness for E [141]). Suppose that
for a constant δ > 0, there is a function in E that has circuit complexity at least 2δℓ

on inputs of length ℓ. Then there is a constant δ ′ > 0 and a function in E that is
(2δ ′ℓ,1/2−1/2δ ′ℓ) average-case hard.

Combining Theorem 3.22 and Theorem 3.17 yields the high-end part of Theo-
rem 3.9.

Beyond the application to pseudorandomness and derandomization, the relation-
ship between worst-case complexity and average-case complexity is a central ques-
tion in complexity theory. (See the survey [47].) In particular, whether a similar
result is true for NP (rather than E) remains a major open problem.

3.2 Expanders, Extractors, and Ramsey Graphs

Another area in which randomness has proved very useful is in the Probabilistic
Method [13], whereby mathematical objects with interesting properties are proven
to exist by showing that a randomly chosen object has the desired property with
high (or at least nonzero) probability. A famous example is Erdős’ existence proof
for Ramsey graphs — graphs with no large clique or independent set [91].

In such cases, the problem of derandomization becomes one of finding explicit
constructions of objects with the desired properties. The search for explicit con-
structions is of pure mathematical interest, as a way of developing and testing our
understanding of the mathematical properties at hand. They are also important for
many computer science applications, where we need efficient algorithms to describe
and work with the objects.

In this section, we survey Wigderson’s contributions to explicit constructions,
in particular to the constructions of expander graphs, randomness extractors, and
Ramsey graphs, as well as identifying and exploiting the connections between these.

3.2.1 Expander Graphs

Expander graphs are graphs that are “sparse” yet very “well-connected.” They
are ubiquitous in theoretical computer science, with applications including com-
munication and routing networks [216, 215], derandomizing algorithms [4, 235],
error-correcting codes [121], lower bounds on circuit complexity [277] and proof
complexity [40], integrality gaps for optimization problems [184, 22], data struc-
tures [58], fault-tolerant storage [275] and more. A rich mathematical theory has
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developed around constructing expanders and understanding their properties; we
refer to Wigderson’s survey with Hoory and Linial [135] as well as [276, 270, 172]
for many aspects that we will not be able to cover here.

We will typically interpret the properties of expander graphs in an asymptotic
sense. That is, there will be an infinite family of graphs Gi, with a growing number
of vertices Ni. By “sparse,” we mean that the (maximum or average) degree Di of Gi
should be very slowly growing as a function of Ni. The “well-connectedness” prop-
erty has a variety of different interpretations, which we will discuss below. Typically,
we will drop the subscripts of i and the fact that we are talking about an infinite fam-
ily of graphs will be implicit in our theorems. We will state many of our definitions
for directed multigraphs (which we’ll call digraphs for short), though in the end we
will mostly study undirected multigraphs.

The most intuitive definition of expansion is the following.

Definition 3.23. A digraph G is a (K,A) vertex expander if for all sets S of at most K

vertices, the (out-)neighborhood N(S) def
= {u|∃v ∈ S s.t. (u,v) ∈ E} is of size at least

A · |S|.

Ideally, we would like graphs with degree D = O(1), and (K,A) vertex expansion
with K = Ω(N) where N is the number of vertices, and A as close to D as possible.

It is often useful to work instead with a linear-algebraic measure of expansion.
For simplicity, we restrict attention to regular graphs in presenting the definition.

Definition 3.24. Let G be an N-vertex D-regular digraph with random-walk matrix
M (so Mi j equals the number of edges from i to j divided by D). Let σ2(G) ∈
[0,1] denote the second-largest singular value of M. The spectral expansion of G is
γ(G) = 1−σ2(G).6

Ideally, we would like an infinite family of graphs with degree D = O(1) and
γ(G) = Ω(1). Alon [9] proved that this linear-algebraic measure of expansion is
equivalent to the combinatorial measure of vertex expansion for common parame-
ters of interest.

Theorem 3.25 ([9]). Let G be an infinite family of D-regular multigraphs, for a
constant D ∈ N. Then the following two conditions are equivalent:

• There is a constant δ > 0 such that every G∈G is an (N/2,1+δ ) vertex expander.
• There is a constant γ > 0 such that every G ∈ G has spectral expansion at least γ .

When people informally use the term “expander,” they often mean a family of reg-
ular graphs of constant degree D satisfying one of the two equivalent conditions
above. However, we note that the quantitative relationship between vertex expansion
and spectral expansion is lossy, so optimizing one of these measures of expansion
need not yield optimality with respect to the other.

6 In some other sources, the term spectral expansion refers to σ2(G) rather than γ(G). Here we use
γ(G), because it has the more natural feature that larger values of γ correspond to the graph being
“more expanding”.
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We can get more intuition for spectral expansion by considering some equiv-
alent formulations of it. Since G is regular, the uniform distribution, written as a
row vector u = (1/N, . . . ,1/N), is an eigenvector of the random-walk matrix M of
eigenvalue 1, i.e. uM = u. By the Perron–Frobenius Theorem, the largest singular
value of M equals 1, and thus we have the following variational characterization of
spectral expansion.

Lemma 3.26. 1− γ(G) = σ2(G) = maxx⊥u
∥xM∥
∥x∥ = maxπ

∥πM−u∥
∥π−u∥ , where the first

maximum is over all nonzero row vectors x ∈ RN that are orthogonal to u, and the
second maximum is over all probability distributions π ∈ [0,1]N (also written as row
vectors).

That is, if we start at any probability distribution π on the vertices of G and take one
step of the random walk to end up at probability distribution πM, the ℓ2 distance
to uniform will shrink by at least a factor of 1− γ(G). So if γ(G) is bounded away
from 0, then random walks on G will converge quickly to the uniform distribution.

Another useful characterization of γ(G) is as follows.

Lemma 3.27. γ(G) ≥ γ iff we can write M = γJ +(1− γ)E, where J is the matrix
with every entry 1/N and ∥E∥ ≤ 1, where ∥E∥ is the spectral norm of E.

Notice that J is the random-walk matrix for the complete graph on N vertices with
self-loops, which is intuitively the most expanding possible graph (albeit not sparse).
Thus, Lemma 3.27 says that an expander can be viewed as a sparse approximation
of the complete graph.

It can be shown that a random D-regular undirected graph on N vertices is an
excellent expander with high probability, for D = O(1) and N→ ∞. For example, it
achieves spectral expansion γ(G) = 1− 2

√
D−1/D+ o(1) [99], which is optimal

up to the o(1) [205], and achieves (αA,D− 1− ε) vertex expansion for any ε > 0
and α = α(D,ε) [216, 34]. For some applications of expanders, however, we can-
not afford to choose the graph at random, because it may be too costly in memory,
communication, or randomness. Indeed, some applications even require exponen-
tially large expander graphs, in which case a random graph would be completely
infeasible to manipulate. Thus, we seek explicit constructions of expanders.

Definition 3.28. Let G = {Gi} be an infinite family of digraphs where Gi has Ni
vertices and is Di-regular. We say that G is (fully) explicit if given Ni, u ∈ [Ni], and
j ∈ [Di], the j’th neighbor of u in Gi can be computed deterministically in time
poly(logNi).

That is, we require a very efficient local description of the graph, where computing
neighbors can be done in time polynomial in the bitlength of vertices, rather than in
time polynomial in the number of vertices.

Thus, starting with Margulis [195], there is a long and beautiful line of work
on explicit constructions of constant-degree expanders, with one highlight being
the optimal spectral expanders of Lubotzky, Phillips, and Sarnak [191] and Mar-
gulis [196], known as Ramanujan graphs. Many of these constructions were based
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on deep results from algebra and number theory, and it was of interest to have more
combinatorial approaches to constructing expanders.

With Reingold and Vadhan [238], Wigderson gave a combinatorial construction
of expanders based on a new graph operation, called the zig-zag product. Although
these expanders did not match the spectral expansion of Ramanujan graphs, the ad-
ditional flexibility offered by the construction found numerous applications, which
we will survey below.

Specifically, their approach to constructing expanders is to start with a constant-
sized expander of appropriate parameters and repeatedly apply graph operations to
build larger and larger graphs while preserving the degree and spectral expansion.

Two standard operations on an N-vertex D-regular graph G with random-walk
matrix M are the following:

Squaring: G2 is the graph on N vertices whose random-walk matrix is M2. That
is, edges in G2 are walks of length 2 in G. If G has spectral expansion at least
γ = 1−σ , then G2 has spectral expansion at least 1−σ2 = 2γ− γ2

Tensoring: G⊗G is the graph on N2 vertices whose random-walk matrix is M⊗M
(the Kronecker product). That is, random walks in G⊗G correspond to two
independent random walks in G. If G has spectral expansion at least γ , then
G⊗G also has spectral expansion at least γ .

Squaring has the benefit of improving expansion and tensoring has the benefit of
creating larger graphs, but both have the downside of increasing the degree D to D2.
Thus, we need an operation that decreases the degree, without hurting the expansion
too much. This is what the zig-zag product achieves.

The Zig-Zag Product

Let G be a D1-regular digraph on N1 vertices and H be a regular digraph on D1
vertices. The zig-zag product of G and H, denoted G⃝z H, is defined as follows.
The nodes of G⃝z H are the pairs (u, i) where u ∈ V (G) and i ∈ V (H). We think
of this each vertex u of G with a copy of V (H), which we refer to as a cloud, and
associate each vertex of H with one of the edges incident to u. The edges in G⃝z H
then correspond to taking an H-step within a cloud, using a G-step to move between
clouds, and an H-step in the resulting cloud. See Figure 1 for an illustration.

Definition 3.29 (Zig-zag Product). Let G be an D1-regular digraph on N1 vertices,
and H a D2-regular digraph on D1 vertices. Then G⃝z H is the following D2

2-regular
graph on N1D1 vertices. The vertices are pairs (u, i)∈ [N1]× [D1], and for a,b∈ [D2],
the (a,b)’th neighbor of a vertex (u, i) is the vertex (v, j) computed as follows:

1. Let i′ be the a’th neighbor of i in H. (That is, take an H-step to move from (u, i)
to (u, i′).)

2. Let v be the i′’th neighbor of u in G, so e = (u,v) is the i′’th edge leaving u. Let
j′ be such that e is the j′’th edge entering v in G. (That is, take a G-step to move
from (u, i′) to (v, j′).)
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(a) Initial D1-regular graph G1 and graph G2
on D1 vertices. (b) First we construct a cloud with the same

shape as G2 for each vertex u ∈ G1.

(c) Three steps connecting (u, i) and (v, j)
following Definition 3.29

(d) We construct an edge between (u, i) and
(v, j) and similarly for other edges.

Fig. 1: Illustration of the edge construction in the Zig-Zag product G1⃝z G2.

3. Let j be the b’th neighbor of j′ in H. (That is, take an H-step to move from (v, j′)
to (v, j).)

Note that the graph G⃝z H depends on how the edges leaving and entering each
vertex of G are numbered. Thus it is best thought of as an operation on labelled
graphs. Nevertheless, the following lower bound on its expansion holds regardless
of the labelling:

Theorem 3.30 ([238]). If G has spectral expansion at least γ1 and H has spectral
expansion at least γ2, then G⃝z H has spectral expansion at least γ1γ2

2

G should be thought of as a big graph and H as a small graph, where D1 is a large
constant and D2 is a small constant. Observe that when D1 > D2

2 the degree is re-
duced by the zig-zag product.

Before giving intuition for Theorem 3.30, let’s see how it can be used to construct
an infinite family of constant-degree expanders.

Construction 3.31 (Zig-Zag Based Expanders). Let H be a fixed D-regular graph
on D4 vertices with spectral expanion at least 7/8.7 Define

G1 = H2

Gt = G2
t−1⃝z H for t > 1

7 Since the number of vertices is polynomially related to the degree, such graphs are much eas-
ier to construct than constant-degree expanders, and there are a number of simple constructions.
Alternatively, since we think of D as a constant, H can be found by exhaustive search.
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A straightforward induction, using Theorem 3.30 and the properties of squaring,
shows that this is an infinite family of expanders:

Proposition 3.32. For all t, Gt is a D2-regular graph on D4t vertices with spectral
expansion at least 1/2.

Although simple to describe, Construction 3.31 does not quite meet our defini-
tion of explicitness (Definition 3.28), since the natural recursive way to compute
neighbors in Gt (by doing two neighbor computations in Gt−1) appears to take time
exponential in t, which is polynomial in Nt = D4t , rather than polylogarithmic. This
can be remedied by tensoring in addition to squaring, so that the number of vertices
grows much more quickly than the depth of the recursion.

There are two different intuitions underlying the expansion of the zig-zag prod-
uct:

1. Given an initial distribution (U, I) on the vertices of G1⃝z G2 that is far from uni-
form, there are two extreme cases. (Here we use capital letters to denote random
variables corresponding to the lower-case values in Definition 3.29.) Either

a. All the (conditional) distributions I|U=u within the clouds are far from uni-
form, or

b. All the (conditional) distributions I|U=u within the clouds of size D1 are uni-
form (in which case the marginal distribution U on the clouds must be far
from uniform).

In Case 3.2.1, the first H-step (U, I) 7→ (U, I′) already brings us closer to the
uniform distribution, and the other two steps cannot hurt (as they are steps on
regular graphs). In Case 3.2.1, the first H-step has no effect, but the G-step
(U, I′) 7→ (V,J′) has the effect of making the marginal distribution on clouds
closer to uniform, i.e. V is closer to uniform than U . But note that the joint distri-
bution (V,J′) isn’t actually any closer to the uniform distribution on the vertices
of G1⃝z G2 because the G-step is a permutation. Still, if the marginal distribu-
tion V on clouds is closer to uniform, then the conditional distributions within
the clouds J′|V=v must have become further from uniform, and thus the second
H-step (V,J′) 7→ (V,J) brings us closer to uniform.
This intuition can be turned into a formal proof, and with a careful analysis
(which can be found in [238]) yields slightly better expansion bounds than stated
in Theorem 3.30.

2. A second intuition, which follows [240, 236], leads to a very short of Theo-
rem 3.30. Here we think of the expander H as behaving similarly to the complete
graph on D1 vertices, via Lemma 3.27. In the case that H equals the complete
graph, then it is easy to see that G⃝z H = G⊗H, whose spectral expansion is
equal to γ(G) (since the complete graph has spectral expansion 1). For general
H, we use Lemma 3.27 to decompose the random-walk matrix for H into a con-
vex combination of the random-walk matrix for the complete graph and an error
matrix of spectral norm at most 1, with the coefficient on the complete graph be-
ing γ(H). Doing this for both steps on H in the zig-zag product leads to a spectral
expansion lower bound of γ(H)2 · γ(G).
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As mentioned earlier, Construction 3.31 does not achieve an optimal relationship
between spectral expansion and degree (which is γ(G) = 1−Θ(1/

√
D), achieved

by random graphs [99] or explicit Ramanujan graphs [191, 196]). However, in
subsequent work with Capalbo, Reingold, and Vadhan [62], Wigderson used a vari-
ant of the zig-zag product to construct near-optimal directed or bipartite vertex ex-
panders, namely constant-degree graphs where sets of size up to K = Ω(N) expand
by a factor of A = (1− ε) ·D. (Viewed as bipartite graphs, the expansion is from
the left side of the graph to the right side of the graph, corresponding the use of
out-neighborhoods in Definition 3.23.) This variant of the zig-zag product comes
from viewing expanders as forms of randomness extractors (as discussed in the next
section), and builds on the first intuition for the zig-zag product given above. This
was the first explicit construction of constant-degree graphs with expansion factor
A > D/2, which has a qualitative implication that is important in a number of appli-
cations: they are also unique-neighbor expanders, where every left-set S of size at
most K has at least one neighbor (in fact, at least (1−2ε)D neighbors) on the right
that is incident to exactly one vertex in S.

A different variant of the zig-zag product was introduced by Ben-Aroya and
Ta-Shma [36] and used to give a combinatorial construction of “almost-Ramanujan”
expanders (namely with γ(G) = 1− 1/D1/2−o(1), where the o(1)→ 0 as D→ ∞).
This same variant was then used by Ta-Shma [265] in his breakthrough construction
of linear error-correcting codes (aka small-biased sets) that nearly meet the Gilbert–
Varshamov bound.

With Alon and Lubotzky [12], Wigderson gave an intriguing algebraic interpreta-
tion of the zig-zag product: Under certain conditions, if G and H are Cayley graphs,
then G⃝z H is a Cayley graph for the semi-direct product of the underlying groups.
Using this connection, they answered a question of Lubotzky and Weiss [192]
and proved that expansion of Cayley graphs is not a group property: a group can
have two constant-sized sets of generators, such that the Cayley graph defined by
one is expanding and the other is not. With Meshulam [198] and Rozenman and
Shalev [239], Wigderson further used this group-theoretic zig-zag to obtain iterative
constructions of expanding Cayley graphs.

Perhaps the most striking application of the zig-zag product is Reingold’s
algorithm for UNDIRECTED S-T CONNECTIVITY [234], which we will see in Sec-
tion 3.3, which in turn inspired Dinur’s celebrated combinatorial proof of the PCP
Theorem [79]. (See Section 2.3 for discussion of the PCP Theorem.)

Wigderson has also formulated and initiated the study of many other variants
of expansion, such as expanding hypergraphs [100], monotone expanders [85], and
notions of expansion for collections of linear maps [180].

3.2.2 Randomness Extractors

Randomness extractors are functions that extract almost-uniform bits from sources
of biased and correlated bits. The original motivation for extractors was to simulate
randomized algorithms with weak random sources as might arise in nature. This
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motivation is still compelling, but extractors have taken on a much wider signifi-
cance in the years since they were introduced. They have found numerous appli-
cations in theoretical computer science beyond this initial motivating one, in areas
from cryptography to distributed algorithms to hardness of approximation. (See the
surveys [210, 276, 246].) In this section, we will survey Wigderson’s numerous
contributions to the theory of extractors, their constructions, and their applications.
Many of these contributions involve developing and exploiting the close connection
between randomness extractors and expander graphs.

We begin with some probability definitions that are needed to introduce random-
ness extractors.

Definition 3.33. For random variables X and Y taking values in U , their statistical
difference (also known as total variation distance) is

∆(X ,Y ) = max
T⊆U

|Pr[X ∈ T ]−Pr[Y ∈ T ]|.

We say that X and Y are ε-close if ∆(X ,Y )≤ ε .

Recall that random variables being ε-close is equivalent to them being (∞,ε)-
indistinguishable (Definition 3.11).

Definition 3.34 (entropy measures). Let X be a discrete random variable. Then

• the Shannon entropy of X is:

HSh(X) = E
x R←X

[
log

1
Pr [X = x]

]
.

• the Rényi entropy of X is:

H2(X) = log

(
1

E
x R←X

[Pr [X = x]]

)
and

• the min-entropy of X is:

H∞(X) = min
x

{
log

1
Pr [X = x]

}
,

where all logs are base 2.

Fact 3.35. 1. For every random variable X,

H∞(X)≤ H2(X)≤ HSh(X),

with equality iff X is uniform on its support.
2. For every random variable X, H2(X) ≤ 2H∞(X), and for every ε > 0, there is a

random variable X ′, such that H2(X ′)≤ H∞(X)+ log(1/ε).
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To illustrate the differences between the three notions, consider a source X such
that X = 0n with probability 0.99 and X =Un with probability 0.01. Then HSh(X)≥
0.01n (contribution from the uniform distribution), H2(X) ≤ log(1/.992) < 1 and
H∞(X)≤ log(1/.99)< 1 (contribution from 0n). Note that even though X has Shan-
non entropy linear in n, we cannot expect to extract bits that are close to uniform
or carry out any useful randomized computations with one sample from X , because
it gives us nothing useful 99% of the time. Thus, we should use the stronger mea-
sures of entropy given by H2 or H∞. These entropy measures were introduced into
the randomness extraction literature by Cohen and Wigderson [70] and Chor and
Goldreich [67], respectively.

We will consider the task of extracting randomness from sources where all we
know is a lower bound on the min-entropy (which is equivalent to a lower bound on
Rényi entropy by Fact 3.35):

Definition 3.36. A random variable X is a k-source if H∞(X)≥ k, i.e., if Pr [X = x]≤
2−k for all x.

A typical setting of parameters is k = δn for some fixed δ , e.g., δ = 1/10. We
call δ the min-entropy rate. Some different ranges that are commonly studied (and
are useful for different applications): k = polylog(n), k = nγ for a constant γ ∈ (0,1),
k = δn for a constant δ ∈ (0,1), and k = n−O(1). The middle two (k = nγ and k =
δn) are the most natural for simulating randomized algorithms with weak random
sources.

An ideal goal for a randomness extractor is to take one sample from an unknown
k-source as input and output almost-uniformly distributed bits. Unfortunately, this
is impossible to achieve:

Proposition 3.37. For any Ext : {0,1}n→{0,1} there exists an (n−1)-source X so
that Ext(X) is constant.

Proof. There exists a b∈ {0,1} so that |Ext−1(b)| ≥ 2n/2 = 2n−1. Then let X be the
uniform distribution on Ext−1(b). □

Thus, instead researchers turned to the problem of simulating randomized algo-
rithms with a weak random source. That is, suppose we have a language L ∈ BPP.
The BPP algorithm for L assumes a source of truly uniform and independent bits.
Can we decide membership in L in polynomial time if we are instead given one
sample from a k-source X with large enough min-entropy k? Of course, the answer
is yes if BPP = P, but here we want unconditional results, not assuming circuit
lower bounds like Theorem 3.9. With Cohen [70], Wigderson gave the first positive
answer to this question for sources of constant entropy rate, namely δ = k/n > 3/4.
This was then improved to any constant entropy rate δ > 0 by Zuckerman [293],
and then these approaches were abstracted by Nisan and Zuckerman [213] into the
following elegant definition of a randomness extractor:

Definition 3.38 (seeded extractors [213]). A function Ext : {0,1}n × {0,1}d →
{0,1}m is a (k,ε)-extractor if for every k-source X on {0,1}n, Ext(X ,Ud) is ε-close
to Um.
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That is, an extractor extracts almost-uniform bits given one sample from a k-
source and a seed consisting of d truly random bits. The point is that if d is small
enough, such as d = O(logn), we can eliminate the seed entirely by trying all 2d

possibilities rather than choosing it at random, similarly to Proposition 3.7.8

Indeed, using the Probabilistic Method, it can be shown that seed length d =
O(logn) is possible:

Theorem 3.39 ([255, 294]). For every n ∈ N, k ∈ [0,n] and ε > 0, there exists a
(k,ε)-extractor Ext : {0,1}n×{0,1}d→{0,1}m with m= k+d−2log(1/ε)−O(1)
and d = log(n− k)+ 2log(1/ε)+O(1). Indeed, a randomly chosen function Ext
with these parameters is a (k,ε)-extractor with high probability.

Both the lower bound on the output length m and upper bound on the seed length
d can be shown to be optimal up to additive constants for almost all settings of
parameters [220]. A small constant ε , say ε = 1/8, can be shown to be sufficient
for simulating randomized algorithms with a weak random source. In this case, the
seed length is d = log(n− k)+O(1) and we extract all but O(1) of the k+d bits of
entropy that is fed is into the extractor as input.

However, like with expanders, for applications of extractors, we typically need
explicit constructions, ones where Ext is computable in polynomial time. There
was a long line of work giving increasingly improved constructions of extractors,
and a milestone was achieved by Wigderson, together with Lu, Reingold, and Vad-
han [190], who gave explicit extractors that are optimal up to constant factors.

Theorem 3.40 ([190]). For all constants ε,α > 0, and all n,k ∈ N, there is an
explicit (k,ε)-extractor Ext : {0,1}n × {0,1}d → {0,1}m with d = O(logn) and
m = (1−α) · k.

In fact, the error parameter ε in Theorem 3.40 can be made subconstant, even al-
most polynomially small. Constructions with no constraint on ε were later given by
Guruswami, Umans, and Vadhan [122] and by Dvir and Wigderson [86], the latter
being based on Dvir’s resolution of the Kakeya problem in finite fields [82]. For tak-
ing the entropy loss rate α parameter to be subconstant, the first construction was
given earlier than Theorem 3.40 by Wigderson and Zuckerman [285], but had seed
length d = polylog(n) rather than d = O(logn). Subsequent to Theorem 3.40, Dvir,
Kopparty, Saraf, and Sudan [83] achieved d = O(logn) with α = 1/polylog(n).

8 The similarity of this approach to derandomization via pseudorandom generators is not a coin-
cidence. Trevisan [269] showed that Wigderson et al.’s conditional construction of pseudorandom
generators from circuit lower bounds (Theorem 3.9) can also be interpreted as an unconditional
construction of randomness extractors! Indeed, the same holds for any construction of pseudoran-
dom generators from a “black-box” hard function f , and thus Wigderson’s two lines of work on
pseudorandom generators and extractors were unified.
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Extractors vs. Expanders

The works of Wigderson with Cohen [70] and with Friedman [100] showed that
explicit constructions of certain kinds of imbalanced bipartite expanders suffice for
simulating randomized algorithms with weak sources of randomness. Building on
this connection, the Nisan–Zuckerman definition of seeded extractors [213] can
be interpreted graph-theoretically as follows. Given any function Ext : {0,1}n ×
{0,1}d −→ {0,1}m, we can view Ext as a bipartite graph G with N = 2n vertices
on the left, M = 2m vertices on the right, and left-degree D = 2d , where the y’th
neighbor of x ∈ {0,1}n is Ext(x,y).

Suppose Ext is a (k,ε)-extractor. Then given any set S ⊆ {0,1}n of size K = 2k,
the uniform distribution on S, which we’ll denote US, is a k-source. The extractor
property tells us that Ext(US,U[D]) is ε-close to uniform on [M]. That is, a random
neighbor of a random element of S is ε-close to uniform on the right-hand vertices
of G. In particular, |N(S)| ≥ (1− ε)M. This property is just like vertex expansion,
except that it ensures a large neighborhood for sets of size exactly K (rather than all
sets of size at most K). Indeed, this variant of vertex expansion was introduced in
graph-theoretic form in [217, 242, 255], and is equivalent to the following relaxation
of extractors.

Definition 3.41 (dispersers). A function Disp : {0,1}n × {0,1}d → {0,1}m is a
(k,ε)-disperser if for every k-source X on {0,1}n, Disp(X ,Ud) has a support of
size at least (1− ε) ·2m.

Despite this connection, the parameters most commonly studied for extrac-
tors/dispersers and expanders are quite different. Extractors and dispersers typically
have polylogarithmic degree (e.g. D = polylog(N), corresponding to seed length
d = O(logn)), are very imbalanced (e.g. M = Nδ for a constant δ ∈ (0,1)), and of-
ten do not actually ‘expand’ (i.e. |N(S)|< |S|, since we are generally satisfied with
retaining entropy, not necessarily increasing it). Nevertheless, in the “high min-
entropy regime” k = (1− o(1))n, extractors and expanders become more closely
related, and indeed Goldreich and Wigderson [114] showed that by taking a power
of a constant-degree spectral expander, we obtain the following “high min-entropy
extractors”:

Theorem 3.42 ([114]). For every n,k ∈ N and ε > 0, there is an explicit (k,ε)-
extractor Ext : {0,1}n×{0,1}d −→ {0,1}n with d = O(n− k+ log(1/ε)).

Note that the seed length of this extractor is linear rather than logarithmic, but
importantly it is linear in n− k rather than just n. So when k = n− o(logn), the
seed length is shorter than that of Theorem 3.40. The origin of Wigderson’s zig-
zag product described in Section 3.2.1 was in the context of extractors, to compose
extractors such as given in Theorem 3.40 and in Theorem 3.42 to obtain a “best of
both” seed length of O(log(n− k)) [237].
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Wigderson’s constant-degree expanders with expansion (1−ε)D [62] came from
considering a common generalization of expanders and extractors. In applying an
extractor, any distribution X that has large enough (min-)entropy gets transformed
into one that is close to uniform. In contrast, a random step on expander transforms
any distribution X that does not have too much entropy into one with higher en-
tropy. Formally, a spectral expander can be interpreted as one that increases Rényi
entropy (noting that the expression E

x R←X
[Pr [X = x]] that appears in the definition

of Rényi entropy equals the squared ℓ2 norm of the probability mass function of X).
To bridge the two, we can ask for a function Con : {0,1}n×{0,1}d →{0,1}m such
that for every random variable X of min-entropy k≤ kmax , it holds that Con(X ,Ud)
is ε-close to having min-entropy at least k+ a. Such a function is a necessarily a
(Kmax ,(1− ε)A) vertex expander (where Kmax = 2kmax and A = 2a), and in fact
if a = d, the converse holds as well [266]. A general abstraction of randomness
conductors that encompasses all of these notions was given in [62], and a zig-zag
product for conductors was developed and used to obtain constant-degree bipartite
expanders with expansion (1− ε) ·D.

The ℓ2-to-ℓ1 switch from requiring that Rényi entropy increases to only requir-
ing that the output distribution is ε-close in total variation distance to having higher
entropy is crucial for enabling these results. Indeed, it is impossible to derive expan-
sion greater than D/2 from spectral expansion alone [152]. Already in Wigderson’s
earlier work with Zuckerman [285], randomness extractors were used to construct
balanced bipartite vertex expanders of non-constant degree that are impossible to
derive from spectral expansion.

3.2.3 Multi-source Extractors and Ramsey Graphs

In the previous section, we argued that seeded extractors (Definition 3.38) suffice for
simulating randomized algorithms with a single sample from a weak random source
because we can enumerate over all possible seeds in polynomial time. However,
this trick does not work for a number of other applications of randomness, such
as in cryptography, distributed computing, and Monte Carlo simulation, where it is
not clear how to combine the results from enumeration. Thus, it is natural to ask
whether we can extract almost-uniform bits given only access to weak sources of
randomness, i.e. with no uniformly random seed.

For example, we could consider extracting randomness from a small number of
independent k-sources, a problem first studied by Chor and Goldreich [67]. That is
we want a function Ext : ({0,1}n)c→{0,1}m such that for all independent random
variables X1,X2, . . . ,Xc where each Xi is a k-source, Ext(X1,X2, . . . ,Xc) is ε-close
to Um. Or we could weaken the requirement to that of a disperser, where we only
require that the output has support size at least (1− ε) ·2m.

In addition to their motivation for obtaining high-quality randomness, extractors
for c = 2 independent sources are of interest because of connections to communica-
tion complexity and to Ramsey theory. In particular, a disperser for 2 independent
k-sources of length n with output length m = 1 is equivalent to a bipartite Ram-
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sey graph — a bipartite graph with N vertices on each side that contains no K×K
bipartite clique or K×K bipartite independent set (for N = 2n and K = 2k): con-
nect left vertex x and right vertex y iff Disp(x,y) = 1. Giving explicit constructions
of Ramsey graphs that approach K = O(logN) bound given by the Probabilistic
Method [91] is a long-standing open problem posed by Erdős [92].

Chor and Goldreich [67] gave extractors for 2 independent sources of min-
entropy rate δ (i.e. k-sources on {0,1}n with k = δn) when δ > 1/2, and there
was no improvement in this bound for nearly 2 decades. Substantial progress be-
gan again in Wigderson’s work with Barak and Impagliazzo [30], who used new
results in arithmetic combinatorics to construct extractors for a constant number of
independent sources of min-entropy rate δ for an arbitrarily small constant δ > 0.
Specifically, they used the Sum–Product Theorem over finite fields of Bourgain,
Katz, and Tao [50]; this theorem says that for p prime and every subset A ⊆ Fp
whose size is not too close to p, either the set A+A of pairwise sums or the set A ·A
of pairwise products is of size significantly larger than |A|. Using this theorem and
other results in additive number theory, Barak, Impagliazzo, and Wigderson show
that if A, B, C are random variables distributed in Fp with min-entropy rate δ < .9,
then A ·B+C is ε-close to having min-entropy rate (1+α) · δ for a universal con-
stant α > 0. Recursively applying this result reduces the task of extracting from
poly(1/δ ) sources of min-entropy δn to extracting from 2 sources of min-entropy
rate larger than 1/2, which allows for applying the Chor–Goldreich extractor [67].

In subsequent works, Wigderson obtained even better multi-source extractors and
dispersers. With Barak, Kindler, Shaltiel, and Sudakov [31], Wigderson constructed
explicit extractors for 3 sources of min-entropy k = δn [31]. With Barak, Rao,
and Shaltiel [32], Wigderson constructed dispersers for 2 sources of min-entropy
k = no(1) [32], or equivalently bipartite Ramsey graphs that avoid K×K cliques and
independent sets of size K = 2(logN)o(1)

. This latter result was a major improvement
over the previous best explicit construction of Ramsey graphs by Frankl and Wil-
son [97], which had K = 2

√
n and only applied to the nonbipartite case. A long line

of subsequent work has continued to improve the parameters of 2-source extrac-
tors and dispersers, and very recently Li [179] has achieved 2-source extractors for
min-entropy k = O(logn), which is optimal up to a constant factor, and thus bipar-
tite Ramsey graphs for K = polylog(N), which is optimal up to the constant in the
exponent.

3.3 Unconditional derandomization

Theorem 3.9 of Wigderson and collaborators gives strong evidence that random-
ness does not provide a substantial gain in the efficiency of algorithms, but it as-
sumes circuit lower bounds that we are very far from proving. Thus, together with
Ajtai [5], Wigderson asked whether there are large classes of algorithms that we
can unconditionally derandomize, namely without making any unproven complex-
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ity assumptions.9 They showed that this is indeed possible, giving an unconditional
subexponential-time derandomization of probabilistic constant-depth circuits. After
that, unconditional derandomization became a huge area of research, which is still
flourishing. We refer the reader to the survey by Hatami and Hoza [131] for recent
developments in the area.

3.3.1 Undirected S-T Connectivity

One subclass of BPP that has proved amenable to unconditional derandomization is
BPL, where we restrict the algorithms to use a logarithmic amount of space. (When
we measure the space complexity of an algorithm, we only count the read-write
working memory, and do not count the space needed for the read-only input and
write-only output.)

Definition 3.43. A language L is in BPL if there exists a randomized algorithm A
that always halts, uses space at most O(logn) on inputs of length n, and satisfies the
following for all inputs x:

• x ∈ L⇒ Pr[A(x) accepts]≥ 2/3.
• x ̸∈ L⇒ Pr[A(x) accepts]≤ 1/3.

The standard model of a randomized space-bounded machine is one that has
access to a coin-tossing box (rather than an infinite tape of random bits), and thus
must explicitly store in its workspace any random bits it needs to remember. The
requirement that A always halts ensures that its running time is at most 2O(logn) =
poly(n), because otherwise there would be a loop in its configuration space. Thus
BPL⊆ BPP.

Similarly to the time case (Definition 3.5), we can ask what is the smallest deter-
ministic space bound needed to simulate BPL:

Definition 3.44 (Deterministic Space Classes).

DSPACE(s(n)) = {L : L can be decided deterministically in space O(s(n))}
L = DSPACE(logn)
Lc = DSPACE(logc n)

Classic results in complexity theory [48, 148] tell us that BPL ⊆ L2; however, this
is not really a result about randomized algorithms, since it applies even for the
unbounded-error version of BPL (where inputs in L are accepted with probability
greater than 1/2 and inputs not in L with probability at most 1/2). Thus the inter-
esting question is whether we can show BPL = L (randomization provides only a
constant-factor savings in memory), or at least BPL⊆ Lc for a constant c < 2.

9 The work of Ajtai and Wigderson [5] actually preceded Theorem 3.9, but was instead motivated
by Yao’s proof [289] that BPP⊆ SUBEXP under the assumption that cryptographic pseudorandom
generators exist.
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The potential power of randomization for logspace algorithms was first demon-
strated in the late 1970s for the following basic problem:

Computational Problem 3.45. UNDIRECTED S-T CONNECTIVITY: Given an undi-
rected graph G and two vertices s and t, is there a path from s to t in G?

Basic algorithms like breadth-first or depth-first search solve UNDIRECTED S-T
CONNECTIVITY in linear time, but also take linear space. With randomization we
can solve the problem in only logarithmic space:

Theorem 3.46 ([6]). UNDIRECTED S-T CONNECTIVITY is in BPL.

Proof (sketch). The algorithm simply does a polynomial-length random walk start-
ing at s:

Algorithm 3.47 (UNDIRECTED S-T CONNECTIVITY via Random Walks).
Input: (G,s, t), where G = (V,E) has n vertices.

1. Let v = s.
2. Repeat poly(n) times:

a. If v = t, halt and accept.
b. Else randomly select v R←{w : (v,w) ∈ E}.

3. Reject (if we haven’t visited t yet).

Notice that this algorithm only requires space O(logn), in order to maintain the
current vertex v as well as a counter for the number of steps taken. Clearly, it never
accepts when there isn’t a path from s to t. It can be shown that in any connected
undirected graph, a random walk of length poly(n) from one vertex will hit any
other vertex with high probability. Applying this to the connected component con-
taining s, it follows that the algorithm accepts with high probability when s and t
are connected. □

Using Nisan’s pseudorandom generator for space-bounded computation [208],
Wigderson, together with Nisan and Szemerédi [209], proved that UNDIRECTED
S-T CONNECTIVITY is in L3/2. Inspired by that result, Saks and Zhou [241] then
proved that BPL⊆ L3/2, which remains essentially the best derandomization of BPL
to date.10 Then Wigderson, together with Armoni, Ta-Shma, and Zhou [18], proved
that UNDIRECTED S-T CONNECTIVITY is in L4/3. In 2005, Reingold [234] finally
resolved the space complexity of UNDIRECTED S-T CONNECTIVITY:

Theorem 3.48 ([234]). UNDIRECTED S-T CONNECTIVITYis in L.

10 Recently, Hoza [136] gave a slight improvement, showing that BPL ⊆
DSPACE(log3/2 n/

√
log logn).
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Reingold’s Theorem is based on the following two ideas:

• UNDIRECTED S-T CONNECTIVITY can be solved in logspace on constant-
degree expander graphs. More precisely, it is easy on constant-degree graphs
where every connected component is promised to be an expander (i.e. has spectral
expansion bounded away from 0): we can try all paths of length O(logN) from s
in logarithmic space; this works because expanders have logarithmic diameter.
• The same operations that Reingold, Vadhan, and Wigderson [238] used to con-

struct an infinite expander family (described Section 3.2.1) can also be used to
turn any graph into an expander (in logarithmic space). There, we started with
a constant-sized expander and used various operations to build larger and larger
expanders. The goal was to increase the size of the graph (which was accom-
plished by zig-zag and/or tensoring), while preserving the degree and the expan-
sion (which was accomplished by zig-zag and squaring). Here, we want to im-
prove the expansion (which is accomplished by squaring), while preserving the
degree (as is handled by zig-zag) and ensuring the graph remains of polynomial
size (so tensoring is counterproductive and not used).

3.3.2 General Space-Bounded Computation

Like in the time-bounded case, one of the main approaches to derandomizing BPL
is to construct pseudorandom generators G : {0,1}d→{0,1}n such that no random-
ized (logn)-space algorithm can distinguish G(Ud) from Un. In order to get deran-
domizations that are correct on every input x, we require pseudorandom generators
that fool nonuniform space-bounded algorithms. Since randomized space-bounded
algorithms get their random bits as a stream of coin tosses, we only need to fool
space-bounded distinguishers that read each of their input bits once, in order. Thus,
instead of boolean circuits, we want pseudorandom generators for the following
class of distinguishers:

Definition 3.49. An ordered branching program B of width w and length n is given
by a start state s0 ∈ [w], m transition functions B1, . . . ,Bn : [w]×{0,1} → [w], and
a set A ⊆ [w] of accept states. On an input x ∈ {0,1}n, B computes by updating its
state via the rule si = Bi(si−1,xi) for i = 1, . . . ,n and accepting iff sn ∈ A.

The width w of a branching program corresponds to a space bound of logw bits.
Similarly to Theorem 3.14, a family of generators Gn : {0,1}d(n)→ {0,1}n that is
computable in space O(d(n)) and such that Gn(Ud(n)) cannot be distinguished from
Un by ordered branching of width w = n implies that BPL ⊆

⋃
cDSPACE(c logn+

d(nc)). (Enumerating all seeds of length d(m) only requires an additive space in-
crease of d(m).) In particular, a pseudorandom generator with seed length d(n) =
O(logc n) immediately implies BPL⊆ Lc.

Unfortunately, the best known pseudorandom generator for general space-bounded
computation is Nisan’s generator [208], whose seed length of O(log2 n) does not im-
prove on the bound BPL ⊆ L2. Nevertheless, Saks and Zhou [241] used Nisan’s
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generator as part of a more sophisticated algorithm to obtain their result that
BPL⊆ L3/2.

Together with Impagliazzo and Nisan [139], Wigderson gave an appealing alter-
native to Nisan’s generator that has been the subject of much subsequent research
and improved analyses for restricted models of ordered branching programs:

Definition 3.50. Given a sequence of regular digraphs H = (H1, . . . ,Hℓ) where
deg(Hi) = di and |V (Hi)| = 2∏

i−1
j=1 d j, the INW generator constructed with H ,

denoted INWH or INWℓ when the family is clear, is the function defined recur-
sively where for x ∈ {0,1} we have INW0(x) = x and for x ∈V (Hi) and y ∈ [di], we
have

INWi(x,y) = (INWi−1(x), INWi−1(Hi[x,y])), (4)

where Hi[x,y] denotes the y’th neighbor of vertex x in the graph Hi. INWi thus
generates an output of length 2i using a seed of length

⌈
log
(
2∏

ℓ
i=1 di

)⌉
.

That is, INWi correlates the seeds of INWi−1 used to generate the first 2i−1 bits
and the second 2i−1 bits as neighbors in the graph Hi. Impagliazzo, Nisan, and
Wigderson [139] proved that an instantiation of this generator fools logspace algo-
rithms with a seed length of O(log2 m). They did this by analyzing the construction
when the graphs Hi are good spectral expanders:

Theorem 3.51 ([139]). If every graph Hi has spectral expansion at least 1−σ , then
INWℓ ε-fools ordered branching programs of with w and length n = 2ℓ with error
at most ε = σ ·nw.

To achieve spectral expansion 1−σ , we can use explicit expanders Hi with degree
di = poly(1/σ), and hence get seed length⌈

log

(
2

ℓ

∏
i=1

di

)⌉
= O

(
logn · log

(
1
σ

))
.

To achieve error ε by Theorem 3.51, we should set σ = ε/nw, and thus we get seed
length O(logn · log(nw/ε)), exactly matching Nisan [206] and giving seed length
O(log2 n) when w = n and ε = 1/8 as needed for derandomizing BPL.

To get intuition for Theorem 3.51, notice that if took the graph Hi to be complete
graphs with self-loops, then in Expression (4) for INWi we would be using inde-
pendent seeds for the left half and right half, so the error (distinguishing advantage)
of INWi should be at most twice the error of INWi−1 (since we are using it twice).
Furthermore, since an expander with spectral expansion at least 1−σ approximates
the complete graph to within spectral norm at most σ , we incur an additional error
of at most σw in the i’th level of recursion, where we pay a factor of w by summing
the error over the w possible states of the branching program at the halfway point.
Thus the error εi for INWi can be bounded by the recurrence εi ≤ 2εi−1+σw, which
solves to εℓ ≤ (2ℓ−1) ·σw < σ ·nw.
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Impagliazzo, Nisan, and Wigderson [139] actually proved that the INW gen-
erator fools a wider class of algorithms than ordered branching programs, called
network algorithms. Subsequent developments, however, have focused on obtain-
ing improved analyses for more restricted classes of ordered branching programs,
namely regular and permutation branching programs. An ordered branching pro-
gram B is a permutation program if for every i and bit xi ∈ {0,1}, the transition
function Bi(·,xi) : [w]→ [w] is a permutation on the state set. That is, the transi-
tions are reversible (for any fixed input x). A regular branching program is more
general and just requires that for every state si ∈ [w], there are exactly two pairs
(si−1,xi) ∈ [w]× {0,1} such that Bi(si−1,xi) = si. A more intuitive formulation
of regularity comes from thinking of each transition function Bi of the branch-
ing program as a bipartite graph with w vertices on each side, where left-vertex
si−1 is connected to right-vertices Bi(si−1,0) and Bi(si−1,1); in this viewpoint, a
branching program is regular iff all of its associated bipartite graphs are regular.
(They are always 2-leftregular; the additional requirement here is that they are also
2-rightregular.) One motivation for studying pseudorandomness for regular branch-
ing programs is that a general ordered branching program of width w and length n
can be simulated by an ordered regular branching program of width wn [236, 46,
176].

The UNDIRECTED S-T CONNECTIVITY problem can be reduced to estimating
the acceptance probability of an ordered permutation branching program, and it
was shown by [240] that an instantiation of the INW generator with seed length
O(logn) can be used to derandomize Algorithm 3.47 on the corresponding graphs
and thus give a simpler proof of Reingold’s Theorem (Theorem 3.48). Next, it
was shown in [55] showed that the INW generator fools ordered regular branch-
ing programs with seed length O(logn · log logn + logn · log(w/ε)). Note that
this seed length is nearly linear rather than quadratic in logn. In [166, 75, 260]
it was shown that the INW generator fools ordered permutation branching pro-
grams with seed length O(poly(w) · logn · log(1/ε)), which is O(logn) for con-
stant w and ε . Finally, in [137], it was shown that the INW generator fools or-
dered permutation branching programs that have a single accept state with seed
length O(logn · log logn+ logn · log(1/ε)), with no dependence on the width w.
In [218, 46, 63], the INW generator, with these improved analyses, was also used
to construct relaxations of pseudorandom generators (hitting-set generators and
weighted pseudorandom generators) for ordered regular and/or permutation branch-
ing programs that have an even better dependence on the error parameter ε .

The key to these improved analyses is to show that the error of the INW gener-
ator accumulates more slowly for these models of branching programs than given
by Theorem 3.51, for example achieving ε = O(σ · logn) yields the result of [137].
The error analysis of [137] builds on [240] in viewing the composition of the INW
generator with an ordered branching program as the result of an iterated graph op-
eration. Note that if B is an ordered permutation branching program of length n and
G : {0,1}d → {0,1}n is any generator, then composing B and G can be viewed as
defining a 2d-regular bipartite multigraph B◦G with w vertices on each side, where
we connect left-vertex s ∈ [w] to the final state reached when we run B on each of
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the outputs of G from start state s. The recursive operation (4) defining the INW
generator amounts to taking a “product” of the two bipartite graphs BL ◦ INWi−1
and BR ◦ INWi−1, where BL and BR are the first and second halves of a program
B of length 2i. If the graph Hi is the complete graph with self-loops, then this is a
standard graph product operation, where the edges are obtained by first following
an edge in BL ◦ INWi−1 and then following an independent edge in BR ◦ INWi−1. (If
the left half and right half are identical, this is simply graph squaring.) When Hi is a
sparse expander, then this is a “derandomized product” operation that has a similar
spirit to the zig-zag product of Wigderson and collaborators [238]. Analyzing this
repeated derandomized product using notions of approximation from spectral graph
theory [3] yields an improved analysis of the INW generator.

3.3.3 Constant-depth Circuits and Iterated Restrictions

The first computational model that was studied for unconditional derandomization,
in the seminal paper of Ajtai and Wigderson [5], was constant-depth polynomial-
size boolean circuits with unbounded fan-in AND and OR gates, also known as AC0.
They gave an unconditional construction of a pseudorandom generator with seed
length O(nε) fooling AC0, for any constant ε > 0. This was improved by Nisan [207]
to seed length polylog(n), using a construction that inspired the Nisan–Wigderson
generator described in Section 3.1.4. (Indeed, Nisan’s generator is the special case of
the Nisan–Wigderson generator where the hard function f is the parity function.) Aj-
tai and Wigderson [5] pointed out a compelling algorithmic application of pseudo-
random generators for AC0, namely to derandomize the Karp–Luby BPP algorithm
for approximately counting the number of satisfying assignments to a DNF formula
(i.e. a depth 2 AC0 circuit that is an OR of ANDs of literals) [159]. There are now
nearly polynomial-time deterministic algorithms for this problem, all of which use
pseudorandom generators along with other algorithmic techniques [211, 194, 193].

Although Nisan [207] dramatically improved upon the seed length of the Ajtai–
Wigderson generator, the approach taken by Ajtai and Wigderson—iterated pseu-
dorandom restrictions—has undergone a revival over the past decade. The idea of
iterated pseudorandom restrictions is to not try to generate all n pseudorandom bits
at once, but to use a short seed to select and assign values to a smaller fraction of the
bits. If we use a seed of length d0 to assign a p fraction of the bits, then by iterating,
we can use a seed of length O(d0 · (logn)/p) to assign all the bits. The benefit of
this approach is that when analyzing the pseudorandomness of the pn bits gener-
ated in each iteration, we can think of the remaining (1− p)n bits as being chosen
uniformly at random. Thus, fooling a test T : {0,1}n → {0,1} reduces to fooling
a random restriction ρ of T where we select (1− p)n coordinates to restrict pseu-
dorandomly but assign their values uniformly at random. For many computational
models (in particular constant-depth circuits), random restrictions cause substantial
simplification, making the restricted function T |ρ easier to fool.
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Over the past decade, iterated pseudorandom restrictions and variants have been
used to obtain improved pseudorandom generators for a variety of computational
models. One example is the model of combinatorial rectangles, which test member-
ship in a set of the form R1×R2×·· ·×Rn ⊆ [m]n, which can be viewed as a special
case of both ordered branching programs and AC0 formulas. For this model, Wigder-
son and collaborators gave the first pseudorandom generator whose seed length is
logarithmic in m and n for a subconstant error parameter ε [17]. The iterated restric-
tion approach of Ajtai and Wigderson was used in [118] to achieve a seed length that
is nearly logarithmic in all the parameters, i.e. Õ(log(mn/ε)). Since then, variants of
the iterated restrictions approach have been used to obtain improved generators for
constant-depth circuits, arbitrary-order read-once branching programs, De Morgan
formulas, and various restricted versions of these models. The number of works is
too large to list here, so we refer the reader to the excellent survey of Hatami and
Hoza [131].

4 Computational Complexity Lower Bounds

Proving lower bounds for the resources needed to perform computational tasks, in
different computational models, is among the most challenging and most important
topics in theoretical computer science. Let us start by quoting the starting paragraph
of Wigderson’s recently-published monumental book, Mathematics and Computa-
tion: A Theory Revolutionizing Technology and Science [284]:

Here is just one tip of the iceberg we’ll explore in this book: How much time does it take to
find the prime factors of a 1,000-digit integer? The facts are that (1) we can’t even roughly
estimate the answer: it could be less than a second or more than a million years, and (2)
practically all electronic commerce and Internet security systems in existence today rest on
the belief that it takes more than a million years!

This paragraph says it all. While computers have revolutionized our world, the
resources required to perform computational tasks are poorly understood. Develop-
ing a mathematical theory of computation is crucial in our information age, where
computers are involved in essentially every part of our life.

Computational complexity, the study of the amount of resources needed to per-
form computational tasks, is essential for understanding the power of computation
and for developing a theory of computation. It is also essential in designing efficient
communication protocols, secure cryptographic protocols and in understanding hu-
man and machine learning.

We present here some of Wigderson’s works on computational complexity the-
ory, focusing on computational complexity lower bounds. We will see that often
these works introduced powerful techniques that had substantial impact and many
followup works.
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4.1 Boolean Circuit Complexity

Boolean circuits are the standard computational model for computing Boolean func-
tions f : {0,1}n → {0,1}. Given a Boolean function f : {0,1}n → {0,1}, we ask
how many Boolean operations are needed to compute f . As the set of allowed
Boolean operations, we consider here the set of Boolean logical gates {∧,∨,¬}
(also known as De Morgan basis).

Given n input variables x1, . . . ,xn ∈ {0,1}, a Boolean circuit is a directed acyclic
graph as follows: All nodes are of in-degree 0 or 2. A node of in-degree 0 (that is,
a leaf) is labelled with either an input variable xi or its negation ¬xi. A node of in-
degree 2 is labelled with either ∧ or ∨ (in the first case the node is an AND gate and
in the second case an OR gate). A node of out-degree 0 is called an output node.
The circuit is called a formula if the underlying graph is a (directed) tree.

Each node in the circuit (and in particular each output node) computes a Boolean
function from {0,1}n to {0,1} as follows. A leaf just computes the value of the
input variable or negation of input variable that labels it. For every non-leaf node v,
if v is an AND gate it computes the AND of the functions computed by its two
children, and if v is an OR gate it computes the OR of the functions computed by its
two children. If the circuit has only one output node, the function computed by the
circuit is the function computed by the output node.

A Boolean circuit is monotone if it doesn’t use negation gates. Each node in a
monotone Boolean circuit (and in particular each output node) computes a mono-
tone Boolean function from {0,1}n to {0,1}.

The size of a circuit is defined to be the number of nodes in it and the depth of a
circuit is defined to be the length of the longest directed path from a leaf to an output
node in the circuit. For a circuit C, we denote its size by S(C) and its depth by D(C).
For a Boolean function f , we denote by S( f ) the size of the smallest Boolean circuit
for f , usually referred to as the circuit size of f , and by D( f ) the smallest depth of
a Boolean circuit for f , usually referred to as the circuit depth of f . For a monotone
Boolean function f , we refer to the size of the smallest monotone Boolean circuit
for f , as the monotone circuit size of f , and to the smallest depth of a monotone
Boolean circuit for f , as the monotone circuit depth of f .

We note that often the unbounded-fanin case is also considered, where the in-
degree of a node is not limited to be 0 or 2. For example, this is convenient when
studying constant-depth circuits. In these cases, the size of the circuit is usually
defined as the number of edges in it, rather than the number of nodes.

Proving lower bounds for the size and depth of Boolean circuits has been a major
challenge for many years. In particular, the biggest challenge is to prove super-
polynomial lower bounds for the size of Boolean circuits and formulas, for some
explicit function. Such bounds would imply lower bounds for essentially all other
models of computation. For example, super-polynomial (in n) lower bounds on the
size of (a family of) circuits that compute a family of functions { fn : {0,1}n →
{0,1}}n∈N would imply that that family of functions is not in the complexity class P
(polynomial time). If in addition the family of functions is in NP (non-deterministic
polynomial time), such a result would imply that P ̸= NP.



646 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan and Nisheeth K. Vishnoi

However, progress on this type of questions has been very limited. The best
known lower bounds for the size of Boolean circuits, for an explicit function, are
only linear in n [171, 145], and the best known lower bounds for the depth of
Boolean circuits, for an explicit function, are only logarithmic in n.

4.2 Communication Complexity

Communication complexity, first introduced by Yao [288], is a central model in
complexity theory that studies the amount of communication needed to solve a prob-
lem, when the input to the problem is distributed between two (or more) parties.

In the two-player deterministic model, each of two players gets an input, where
the two inputs x,y are chosen from some set of possibilities (known to both players).
The players’ goal is to solve a communication task that depends on both inputs, such
as computing a function f (x,y), where f : {0,1}n×{0,1}n → {0,1} is known to
both players and x,y are inputs of length n bits.

The players communicate in rounds, where in each round one of the players
sends a message to the other player. At the end of the protocol, in the example given
above, both players need to know the value of f (x,y).

The communication complexity of a protocol is the maximal number of bits com-
municated by the players in the protocol, where the maximum is taken over all pos-
sibilities for the inputs. The communication complexity of a communication task
is the minimal communication complexity of a protocol that solves that task. For a
communication protocol P, we denote its communication complexity by CC(P). For
a communication task G, we denote by CC(G) the smallest communication com-
plexity of a (deterministic) protocol that solves G. The probabilistic case, where the
players are allowed to use a public random string and are allowed to err with some
fixed small probability smaller than 1

2 is often studied as well. For a communication
task G, we denote by CCε(G) the smallest communication complexity of a (prob-
abilistic) protocol that solves G correctly with probability at least 1− ε on every
input.

As an example, we give the problem of Set-Intersection, or Set-Disjointness, a
central problem in communication complexity. In this problem, each of two players
gets a vector in {0,1}n and their goal is to determine whether there exists a coordi-
nate i∈ [n] where they both have 1. This simple problem inspired a lot of progress in
communication complexity. It has been known for a long time that the probabilistic
communication complexity of Set-Intersection is Ω(n) [155, 231, 29, 54, 53]. The
lower bound is trivially tight, up to the multiplicative constant.
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4.3 Karchmer–Wigderson Games

Karchmer and Wigderson gave a striking connection between the depth of Boolean
circuits and communication complexity. They showed that for every Boolean func-
tion f : {0,1}n→ {0,1}, there is a simple and intuitive communication complexity
game G f such that the smallest depth of a Boolean circuit for f is exactly equal
to the deterministic communication complexity of G f . Moreover, if f is monotone,
there is also a communication complexity game M f such that the smallest depth of
a monotone Boolean circuit for f (that is, a Boolean circuit for f that doesn’t use
negations) is exactly equal to the deterministic communication complexity of M f .
In particular, this reduces the problem of proving lower bounds for the depth of
Boolean circuits, a problem that seems hard to understand or analyze, to a problem
in communication complexity that seems much more intuitive and easier to work
with [157].

Definition 4.1. [157] (KW Games, G fG fG f ): For every function f : {0,1}n → {0,1},
define the communication game G f as follows: Player 1 gets x ∈ {0,1}n such that
f (x) = 1. Player 2 gets y ∈ {0,1}n such that f (y) = 0. The goal of the two players
is to find a coordinate i ∈ [n] such that xi ̸= yi (note that there is at least one such i
since f (x) ̸= f (y)).

Definition 4.2. [157] (KW Games, M fM fM f ): For every monotone function f : {0,1}n→
{0,1}, define the communication game M f as follows: Player 1 gets x∈ {0,1}n such
that f (x) = 1. Player 2 gets y∈ {0,1}n such that f (y) = 0. The goal of the two play-
ers is to find a coordinate i∈ [n] such that xi = 1 and yi = 0 (note that there is at least
one such i since f (x)> f (y), and hence since f is monotone, x ̸≤ y).

Recall that we denote deterministic communication complexity by CC and circuit
depth by D. In particular, for a function f : {0,1}n→{0,1}, we denote by D( f ) the
smallest depth of a Boolean circuit for f . We denote by CC(G f ) the deterministic
communication complexity of the game G f , and if f is monotone, we denote by
CC(M f ) the deterministic communication complexity of the game M f .

Theorem 4.3 ([157]). For every f : {0,1}n→{0,1}, CC(G f ) = D( f ).

Proof. Let z1, . . . ,zn ∈ {0,1} be the n input variables for f and recall that we denote
by x,y the inputs for the game G f .

Proving CC(G f )≤ D( f )CC(G f )≤ D( f )CC(G f )≤ D( f ): Let C be any Boolean circuit for f . We will construct
a communication protocol for the game G f , with communication complexity D(C).
The construction is by induction on D(C).

Base case: D(C) = 0. In this case, f (z1, . . . ,zn) is simply the function zi or ¬zi,
for some i. Therefore, there is no need for communication, since i is a coordinate in
which x and y always differ. That is, the two players can give the answer i, for any
input pair (x,y). This is a protocol for G f , with communication complexity 0.



648 Boaz Barak, Yael Kalai, Ran Raz, Salil Vadhan and Nisheeth K. Vishnoi

Induction step: Consider the top gate of C. Assume first that the top gate is an
AND gate and hence C =C1∧C2, where C1,C2 are the two sub-circuits representing
the two children of the top gate of C. Thus, D(C1),D(C2)≤D(C)−1. Denote by f1
and f2 the functions computed by C1 and C2 respectively. Thus f = f1∧ f2. By the
inductive hypothesis, CC(G f1),CC(G f2) ≤ D(C)− 1. We know that f (x) = 1 and
f (y) = 0. Therefore, we know that f1(x), f2(x) are both equal to 1 and at least one
of f1(y) or f2(y) is equal to 0. Let us present the protocol for G f . In the first step of
the protocol, Player 2 sends a value in {1,2}, indicating which of the functions f1 or
f2 is equal to 0 on y (or an arbitrary value in {1,2} if both are equal to 0). Assume
that Player 2 sends 1. In this case, we have f1(x) = 1 and f1(y) = 0. Hence, to solve
the game G f , the players can apply a protocol for G f1 . By the inductive hypothesis,
there is such a protocol with communication complexity CC(G f1)≤D(C)−1. In the
same way, if Player 2 sends 2 the players can use the protocol for G f2 . The players
used only one additional bit of communication. Hence, we can conclude that

CC(G f )≤ 1+max{CC(G f1),CC(G f2)} ≤ 1+(D(C)−1) = D(C).

We assumed that C = C1 ∧C2. The other case, C = C1 ∨C2, is proved in the same
way, except that Player 1 is the one who sends the first bit, indicating whether
f1(x) = 1 or f2(x) = 1.

Since the construction is valid for every circuit C for f , and in particular for the
one with smallest depth, we can conclude that CC(G f )≤ D( f ).

Proving CC(G f )≥ D( f )CC(G f )≥ D( f )CC(G f )≥ D( f ): For this proof, we define a more general communica-
tion game. For any two disjoint sets: A,B ⊆ {0,1}n, denote by GA,B the following
game: Player 1 gets x ∈ A. Player 2 gets y ∈ B. The goal of the two players is to find
a coordinate i such that xi ̸= yi. Note that G f is the same as G f−1(1), f−1(0).

We will prove the following claim: If CC(GA,B) = d then there is a function
g : {0,1}n→ {0,1} such that: g(x) = 1, for every x ∈ A; g(y) = 0, for every y ∈ B;
and D(g) ≤ d. That is, the function g separates A from B, and D(g) ≤ d. Note that
for the game G f =G f−1(1), f−1(0), the function g must be the function f itself. Hence,
we obtain that D( f )≤ CC(G f ), as required. The proof of the claim is by induction
on d = CC(GA,B).

Base case: d = 0. That is, the two players know the answer without any commu-
nication. Hence, there is a coordinate i such that, for every x∈ A and every y∈ B, we
have xi ̸= yi. Thus, either the function g(z) = zi or the function g(z) = ¬zi satisfies
the requirements of the claim (depending on whether for every x∈ A we have xi = 1,
or, for every x ∈ A we have xi = 0).

Induction step: We have a protocol of communication complexity d for the
game GA,B. Assume first that Player 1 sends the first bit in the protocol. That bit
partitions the set A into two disjoint sets A = A0 ∪A1 (where A0 is the set of all
inputs x where Player 1 sends 0 and A1 is the set of all inputs x where Player 1
sends 1). If the first bit sent by Player 1 is 0, the rest of the protocol is a protocol for
the game GA0,B. If the first bit sent by Player 1 is 1, the rest of the protocol is a proto-
col for the game GA1,B. Hence, for both games, GA0,B and GA1,B, we have protocols
with communication complexity at most d−1. By the inductive hypothesis, we have
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two functions g0 and g1 that satisfy: g0(x) = 1, for every x ∈ A0; g1(x) = 1, for ev-
ery x ∈ A1; g0(y) = g1(y) = 0, for every y ∈ B; and D(g0),D(g1)≤ d−1. We define
g = g0 ∨ g1. Thus: For every x ∈ A, we have g(x) = g0(x)∨ g1(x) = 1; For every
y ∈ B, we have g(y) = g0(y)∨g1(y) = 0; and D(g) ≤ 1+max{D(g0),D(g1)} ≤ d.
That is, g satisfies the requirements.

If Player 2 sends the first bit, B is partitioned into two disjoint sets, B = B0 ∪
B1, and as before, the rest of the protocol is a protocol for the games GA,B0 and
GA,B1 (depending on the bit that was sent). By the inductive hypothesis, we have
two functions, g0,g1, corresponding to the two games GA,B0 and GA,B1 , such that:
g0(x) = g1(x) = 1, for every x ∈ A; g0(y) = 0, for every y ∈ B0; g1(y) = 0, for
every y ∈ B1. We define g = g0∧g1. Thus: For every x ∈ A, we have g(x) = g0(x)∧
g1(x) = 1; For every y ∈ B, we have g(y) = g0(y)∧ g1(y) = 0; and D(g) ≤ 1+
max{D(g0),D(g1)} ≤ d. □

For a monotone Boolean function f : {0,1}n → {0,1}, denote by MD( f ) the
smallest depth of a monotone Boolean circuit for f .

Theorem 4.4 ([157]). For every monotone f : {0,1}n→{0,1}, CC(M f ) =MD( f ).

Proof. Similar to the proof of Theorem 4.3. □

Example (kkk-Clique): Take the Boolean function f to be the (n/2)-Clique function
in simple graphs with n vertices. That is, the input for f is a simple graph with
n vertices and the output is 1 if and only if the graph contains a clique of size
at least n/2. The games G f and M f are defined as follows: In both games, Player 1
gets a graph x (with n vertices) that contains a clique of size at least n/2 and Player 2
gets a graph y (with n vertices) that doesn’t contain a clique of size at least n/2. The
goal of the two players in the game M f is to find an edge in the graph x that is not
an edge in the graph y. The goal of the two players in the game G f is to find an edge
in the graph x that is not an edge in the graph y or an edge in the graph y that is not
an edge in the graph x.
Theorem 4.3 shows that the communication complexity of the game G f is exactly
equal to the circuit depth of the (n/2)-Clique function. In particular, one can try to
prove a lower bound for the circuit depth of the (n/2)-Clique function, by proving a
lower bound for the communication complexity of the game G f . Note that no lower
bound better than Ω(logn) has ever been proved for the circuit depth of an explicit
Boolean function and such a bound would be a major breakthrough.
Theorem 4.4 shows that the communication complexity of the game M f is ex-
actly equal to the monotone circuit depth of the (n/2)-Clique function. Moreover,
it turned out that one can use this connection to prove a lower bound for the mono-
tone circuit depth of the (n/2)-Clique function, by proving a lower bound for the
communication complexity of the game M f [227].

We will now present an alternative equivalent way to define the game M f , in
terms of the minterms and maxterms of the monotone Boolean function f . Every
monotone Boolean function can be characterized by the set of its minterms and the
set of its maxterms.
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Definition 4.5. (Minterm, Maxterm): Let f : {0,1}n → {0,1} be a monotone
Boolean function. A minterm of f is an input x ∈ {0,1}n such that f (x) = 1 and
for every input x′ < x, we have f (x′) = 0. A maxterm of f is an input y ∈ {0,1}n

such that f (y) = 0 and for every input y′ > y, we have f (y′) = 1.

Definition 4.6. [157] (KW Games, M fM fM f ): For every monotone function f : {0,1}n→
{0,1}, define the communication game M f as follows: Player 1 gets x∈ {0,1}n such
that x is a minterm of f . Player 2 gets y ∈ {0,1}n such that y is a maxterm of f . The
goal of the two players is to find a coordinate i∈ [n] such that xi = 1 and yi = 0 (note
that there is at least one such i since f (x) > f (y), and hence since f is monotone,
x ̸≤ y).

We have defined the game M f in two different ways, once in Definition 4.2 and
once in Definition 4.6. While the two definitions do not give the exact same game,
the two games are equivalent, so we denote both of them by M f . To see the equiv-
alence, let M

′
f be the game from Definition 4.2 and let M

′′
f be the game from Defi-

nition 4.6. First, note that M
′′
f is a restriction of the game M

′
f to a subset of inputs,

so any protocol for M
′
f is also a protocol for M

′′
f . On the other hand, the players can

use a protocol for M
′′
f to solve M

′
f as follows: Given an input x such that f (x) = 1,

Player 1 can find a minterm x′ of f such that x′ ≤ x. In the same way, given an input
y such that f (y) = 0, Player 2 can find a maxterm y′ of f such that y′ ≥ y. The play-
ers can now apply the protocol for M

′′
f on inputs x′,y′ to find a coordinate i such that

x′i = 1 and y′i = 0. Since xi ≥ x′i and yi ≤ y′i, we also have xi = 1 and yi = 0.

Example (sss-ttt-Connectivity): Take the Boolean function f to be the s-t-Connectivity
function in simple graphs with n vertices. That is, the input for f is a simple graph
with n vertices, two of which are labeled as s and t, and the output is 1 if and only if
the graph contains a path connecting s and t. Obviously, f is a monotone function,
since adding edges cannot disconnect an existing path from s to t.
A minterm of f is a graph that contains a path from s to t, and no additional edges.
That is, a minterm is just a path from s to t (that does not intersect itself). A maxterm
of f is a graph G such that the set of vertices of G can be partitioned into two disjoint
sets S and T , with s ∈ S and t ∈ T and such that G contains all edges inside S and
inside T , but no edge between S and T . We think of a maxterm as a partition of the
set of vertices into two sets (S and T ), or as a two-coloring of the vertices by the
colors 0 and 1 (where S is colored 0 and T is colored 1).
The game M f is defined as follows: Given n vertices, two of which are labeled by s
and t, Player 1 gets a path from s to t and Player 2 gets a coloring of the n vertices
by the colors {0,1} such that s is colored 0 and t is colored 1. The goal of the two
players is to find an edge (u,v) on the path such that u is colored 0 and v is colored 1
(or vice versa).
Theorem 4.4 shows that the communication complexity of the game M f is exactly
equal to the monotone circuit depth of the s-t-Connectivity function. Moreover, it
turned out that one can use this connection to prove a lower bound for the monotone
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circuit depth of the s-t-Connectivity function, by proving a lower bound for the
communication complexity of the game M f [157].

Unlike the case of general Boolean circuits, where progress in proving lower
bounds for explicit Boolean functions has been very limited, there has been a long
and very successful line of works that establish strong lower bounds for the mono-
tone circuit size and for the monotone circuit depth of many explicit functions,
starting from Razborov’s celebrated super-polynomial lower bounds for the size of
monotone Boolean circuits [229, 230].

Since their introduction, KW games have had a huge impact on the study of
monotone circuit depth and beyond, and have been further studied in numerous
works. Already in their original paper, Karchmer and Wigderson used KW games
to prove a tight lower bound of Ω(log2 n) for the monotone circuit depth of the sss-ttt-
Connectivity function in graphs with n vertices [157]. In particular, this result gave
the first super-polynomial separation between monotone circuit size and monotone
formula size and separated the monotone versions of the complexity classes NC1

and NC2. We present this result in Section 4.4.
Raz and Wigderson used KW games to prove tight lower bounds of Ω(n) for

the monotone circuit depth of the clique and matching functions in graphs with n
vertices [227]. We present this result in Section 4.5.

Karchmer, Raz and Wigderson used KW games to outline an approach for prov-
ing super-logarithmic lower bounds for the depth of general Boolean circuits [156].
We present this result in Section 4.6.

Raz and McKenzie used KW games to separate the monotone versions of the
complexity classes NC and P, as well as NCi and NCi+1 for every i [224]. That
paper also introduced a general technique for proving lower bounds for communi-
cation complexity, a technique that was later on named by Göös, Pitassi and Watson,
the lifting method. Göös, Pitassi and Watson initiated the study of the lifting method
as a general technique for proving separation results in communication complex-
ity [117], followed by a long line of recent works.

For a long time, KW games have been used mainly to study circuit depth, rather
than circuit size. Nevertheless, a recent paper by Garg, Göös, Kamath and Sokolov
shows how to use (an extension of) KW games to prove lower bounds for monotone
circuit size [101], using Razborov’s DAG-like communication protocols [232].

4.4 Lower Bounds for the Monotone Depth of ST-Connectivity

We will now present Karchmer and Wigderson’s proof that any monotone circuit for
the s-t-Connectivity function in graphs with n vertices is of depth Ω(log2 n) [157].
We deviate from Karchmer and Wigderson’s original presentation in various places.

Recall that the game M f for the s-t-Connectivity function is defined as follows:
Given n vertices, two of which are labeled by s and t, Player 1 gets a path from s
to t and Player 2 gets a coloring of the n vertices by the colors {0,1} such that s is
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colored 0 and t is colored 1. The goal of the two players is to find an edge (u,v) on
the path such that u is colored 0 and v is colored 1 (or vice versa). By Theorem 4.4,
the communication complexity of this game is exactly equal to the monotone circuit
depth of the s-t-Connectivity function.

It is helpful to first see an upper bound for the communication complexity of
the game. A simple protocol for this game is as follows: In the first round, Player 1
sends the name (number) of the middle vertex in the path and Player 2 replies with its
color. If the color of the middle vertex is 0 then the players continue with the second
half of the path, and if the color is 1 then the players continue with the first half of the
path. The players continue to perform a binary search, until they are left with a path
of length 1. This path will be an edge (u,v) such that u is colored 0 and v is colored
1. In each round of the protocol, the players communicate O(logn) bits (the number
of the vertex and its color). Since in each step the path is shortened by a factor of 2,
the number of rounds will be O(logn). Altogether, the communication complexity
of the protocol is O(log2 n). Hence, by Theorem 4.4, the monotone circuit depth of
s-t-Connectivity is O(log2 n). Next, we present the lower bound.

Theorem 4.7 ([157]). The monotone circuit depth of s-t-Connectivity is Ω(log2 n).

Proof. For the proof of the lower bound, we will modify the communication game
M f for the s-t-Connectivity function, and present a variant of the game that we
refer to as STCON(ℓ,n). In this game, there are two parameters, n and ℓ ≤ n0.1.
We assume without loss of generality that ℓ is a power of 2. We have ℓ · n vertices
arranged in ℓ layers with n vertices in each layer, and two additional vertices s and t.
We assume that the layers are numbered (1, . . . , ℓ) and the vertices in each layer
are numbered (1, . . . ,n). Player 1 gets a path of length ℓ+1 from s to t that passes
through each of the ℓ layers exactly once, in their order. That is, the path starts
at s, goes to a vertex in the first layer then a vertex in the second layer and so on,
and finally goes from the last layer to the vertex t. Such a path can be presented
as x ∈ [n]ℓ, specifying the number of the vertex that the path reaches in each layer.
Player 2 gets a coloring of the ℓ · n+ 2 vertices by the colors {0,1} such that s
is colored 0 and t is colored 1. Such a coloring can be presented as y ∈ {0,1}ℓ·n,
specifying the color of each vertex in each layer. The goal of the two players is to
find an edge (u,v) on the path such that u is colored 0 and v is colored 1 (or vice
versa).

We will show a lower bound of Ω(logℓ · logn) for the communication complexity
of STCON(ℓ,n). Since STCON(ℓ,n) is a restriction to a subset of inputs of the game
M f (for the s-t-Connectivity function with ℓ · n+ 2 vertices), such a bound implies
a lower bound of Ω(log2 n) for the monotone circuit depth of the s-t-Connectivity
function in graphs with n vertices. Next, we give the proof for

CC(STCON(ℓ,n)) = Ω(logℓ · logn).
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Let X = [n]ℓ and Y = {0,1}ℓ·n. For a subset A ⊆ X , we define its density as
α = |A|

|X | and for a subset B ⊆ Y , we define its density as β = |B|
|Y | . Recall that in

the game STCON(ℓ,n), the input for Player 1 is viewed as x ∈ X and the input for
Player 2 is viewed as y ∈ Y .

We will consider restrictions of the game STCON(ℓ,n) to subsets of inputs A⊆X
and B ⊆ Y and define the game STCON(ℓ,n,A,B) to be the same as STCON(ℓ,n),
except that the input for Player 1 is x ∈ A and the input for Player 2 is y ∈ B.
We denote by C(ℓ,n,α,β ) the minimal communication complexity of a game
STCON(ℓ,n,A,B) with a set A⊆ X of density α and a set B⊆ Y of density β .

Fixing n to be a (sufficiently large) integer, and fixing t def
= 1

2n0.1 , we will show
that for every ℓ≤ n0.1, every α ≥ t and β ≥ 0,

C(ℓ,n,α,β )≥ c · logℓ · logn+ log(α)+ log(β ),

where c > 0 is a (sufficiently small universal) constant and the logarithm is base 2.
Hence, CC(STCON(ℓ,n)) = C(ℓ,n,1,1) = Ω(logℓ · logn).

The proof for C(ℓ,n,α,β ) ≥ c · logℓ · logn+ log(α) + log(β ) is by induction
over ℓ,α,β , in this order (and note that since n is fixed there is a finite number
of possibilities for ℓ,α,β , so the induction is sound). We will consider two cases:
α ≥ 2t and 2t > α ≥ t.

Case I: α ≥ 2tα ≥ 2tα ≥ 2t: Let A ⊆ X be a subset of density α and B ⊆ Y be a subset of
density β . Consider any protocol P for the game STCON(ℓ,n,A,B) and let d be the
communication complexity of the protocol. Since α ≥ 2t, none of the edges of the
path x is fixed and hence d > 0. We will prove that

d ≥ c · logℓ · logn+ log(α)+ log(β ).

Assume first that Player 1 sends the first bit in the protocol P. That bit parti-
tions the set A into two disjoint sets A = A0 ∪ A1 (where A0 is the set of all in-
puts x where Player 1 sends 0 and A1 is the set of all inputs x where Player 1
sends 1). If the first bit sent by Player 1 is 0, the rest of the protocol is a pro-
tocol for the game STCON(ℓ,n,A0,B). If the first bit sent by Player 1 is 1, the
rest of the protocol is a protocol for the game STCON(ℓ,n,A1,B). Hence, for both
games, STCON(ℓ,n,A0,B) and STCON(ℓ,n,A1,B), we have protocols with com-
munication complexity at most d− 1. Let α0 be the density of A0 and α1 be the
density of A1. Note that α0 + α1 = α and hence at least one of α0,α1 is larger
than or equal to α/2. Hence C(ℓ,n,α/2,β ) ≤ d− 1. By the inductive hypothesis,
d−1≥ c · logℓ · logn+ log(α/2)+ log(β ), that is

d ≥ c · logℓ · logn+ log(α)+ log(β ).

The case where Player 2 sends the first bit in the protocol P is similar.
Case II: 2t > α ≥ t2t > α ≥ t2t > α ≥ t: Let A⊆ X be a subset of density α and B⊆ Y be a subset

of density β . Consider any protocol P for the game STCON(ℓ,n,A,B) and let d be
the communication complexity of the protocol. We will prove that
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d ≥ c · logℓ · logn+ log(α)+ log(β ).

Note that we can assume without loss of generality that log(β )≥− log2 n, as other-
wise the right hand side of the inequality is smaller than 0 (if c < 1).

Every path x ∈ A can be written as x = (xL,xR), where xL ∈ [n]ℓ/2 is the left-hand
half of the path x (the first ℓ/2 coordinates of x) and xR ∈ [n]ℓ/2 is the right-hand half
of the path x (the last ℓ/2 coordinates of x). We say that xL ∈ [n]ℓ/2 is significant if
there exist at least α

4 · n
ℓ/2 extensions xR ∈ [n]ℓ/2 such that (xL,xR) ∈ A. Let AL ⊆

[n]ℓ/2 be the set of significant paths xL. We say that xR ∈ [n]ℓ/2 is significant if there
exist at least α

4 ·n
ℓ/2 extensions xL ∈ [n]ℓ/2 such that (xL,xR) ∈ A. Let AR ⊆ [n]ℓ/2 be

the set of significant paths xR. Let αL be the density of AL in [n]ℓ/2, that is, αL =
|AL|
nℓ/2 .

Let αR be the density of AR in [n]ℓ/2, that is, αR = |AR|
nℓ/2 . Since for every (xL,xR) ∈ A,

either xL is not significant or xR is not significant or both are significant, we have

α ·nℓ = |A| ≤ nℓ/2 · α

4 ·n
ℓ/2 + α

4 ·n
ℓ/2 ·nℓ/2 +αL ·nℓ/2 ·αR ·nℓ/2,

that is
α

2 ≤ αL ·αR.

Thus, αL ≥
√

α

2 or αR ≥
√

α

2 . Without loss of generality

αL ≥
√

α

2 .

Every coloring y ∈ B can be written as y = (yL,yR), where yL ∈ {0,1}(ℓ/2)·n is
the left-hand half of the coloring y (the first (ℓ/2) · n coordinates of y) and yR ∈
{0,1}(ℓ/2)·n is the right-hand half of the coloring y (the last (ℓ/2) · n coordinates
of y). We say that yL ∈ {0,1}(ℓ/2)·n is significant if there exist at least β

2 · 2
ℓ·n/2

extensions yR ∈ {0,1}(ℓ/2)·n such that (yL,yR) ∈ B. Let BL ⊆ {0,1}(ℓ/2)·n be the
set of significant colorings yL. Let βL be the density of BL in {0,1}(ℓ/2)·n, that is,
βL =

|BL|
2ℓ·n/2 . Since for every (yL,yR)∈ B, either yL is not significant or significant, we

have
β ·2ℓ·n = |B| ≤ 2ℓ·n/2 · β

2 ·2
ℓ·n/2 +βL ·2ℓ·n/2 ·2ℓ·n/2,

that is,
βL ≥ β

2 .

Let T be a subset of vertices (to be determined later) in the last ℓ/2 layers, that
is, layers ℓ

2 +1, . . . , ℓ. Given T , we define the set A′L ⊆ AL to be the set of all xL ∈ AL

such that there exists an extension xR ∈ [n]ℓ/2 such that (xL,xR) ∈ A and all vertices
of the path xR are in T . Given T , we define the set B′L ⊆BL to be the set of all yL ∈BL
such that there exists an extension yR ∈ {0,1}(ℓ/2)·n such that (yL,yR) ∈ B and all
vertices of T are colored 1 by the coloring yR.

We claim that the protocol P can be used to solve the communication game
STCON(ℓ/2,n,A′L,B

′
L) and hence CC(STCON(ℓ/2,n,A′L,B

′
L)) ≤ d. This can be

done as follows. Given T and an input xL ∈A′L, Player 1 finds an extension xR ∈ [n]ℓ/2
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such that (xL,xR) ∈ A and all vertices of the path xR are in T . Given T and an input
yL ∈ B′L, Player 2 finds an extension yR ∈ {0,1}(ℓ/2)·n such that (yL,yR) ∈ B and all
vertices of T are colored 1 by the coloring yR. The players run the protocol P on in-
puts x = (xL,xR), y = (yL,yR). Since all vertices of the path xR are in T , they are all
colored 1 by the coloring yR. Hence, the edge (u,v) returned by the communication
protocol P must satisfy u = s or u is in the first ℓ/2 layers, that is, layers 1, . . . , ℓ2 .
Thus, it is a valid answer for the game STCON(ℓ/2,n) on inputs xL,yL.

It remains to show that there exists a subset of vertices T , as above, such that
A′L,B

′
L are large, say |A′L| ≥ |AL|/2 and |B′L| ≥ |BL|/2. Assume first that there exists

such a set T . Then, since αL ≥
√

α

2 and βL ≥ β

2 , we get

C
(
ℓ
2 ,n,

√
α

4 , β

4

)
≤ CC

(
STCON(ℓ/2,n,A′L,B

′
L)
)
≤ d.

Hence, by the inductive hypothesis,

d ≥ c · log
(
ℓ
2

)
· logn+ log

(√
α

4

)
+ log

(
β

4

)
= c · logℓ · logn− c · logn+ 1

2 · log(α)+ log(β )−4

= c · logℓ · logn+ log(α)+ log(β )− c · logn− 1
2 · log(α)−4

≥ c · logℓ · logn+ log(α)+ log(β ) ,

where the last inequality is because −c · logn− 1
2 · log(α)−4≥ 0, which is true for

a sufficiently small constant c, since α < 2t = 1
n0.1 (by the premise of Case II) and

since n is sufficiently large.
Thus, it remains to argue that there exists a subset of vertices T , as above, such

that |A′L| ≥ |AL|/2 and |B′L| ≥ |BL|/2. Recall that T is a subset of vertices in the last
ℓ/2 layers, that is, layers ℓ

2 +1, . . . , ℓ. We will choose T randomly as follows. Take
n0.2 random paths xR ∈ [n]ℓ/2 (viewed as paths on the last ℓ/2 layers) and let T be
the union of the sets of vertices on all these paths. Equivalently, the restriction of T
to each layer (from the last ℓ/2 layers), is generated by taking n0.2 random vertices
(with repetitions). Note also that T can be extended to a set T ′ ⊃ T of size, say,
2n0.2 ·(ℓ/2), such that the distribution of T ′ is exponentially close to the distribution
of a random set of size 2n0.2 · (ℓ/2) of vertices in the last ℓ/2 layers.

Recall that the set A′L ⊆ AL is the set of all xL ∈ AL such that there exists an ex-
tension xR ∈ [n]ℓ/2 such that (xL,xR) ∈ A and all vertices of the path xR are in T .
Recall that for every xL ∈ AL there exist at least α

4 ·n
ℓ/2 extensions xR ∈ [n]ℓ/2 such

that (xL,xR) ∈ A. Therefore, since α

4 ≥
1

8n0.1 , for each xL ∈ AL with probability ex-
ponentially close to 1, one of these extensions was chosen among the n0.2 random
paths that were chosen to generate T . Thus, with probability very close to 1 almost
every xL ∈ AL is also in A′L and in particular |A′L| ≥ |AL|/2.

Recall that the set B′L ⊆ BL is the set of all yL ∈ BL such that there exists an ex-
tension yR ∈ {0,1}(ℓ/2)·n such that (yL,yR) ∈ B and all vertices of T are colored 1
by the coloring yR. Recall that for every yL ∈ BL there exist at least β

2 · 2
ℓ·n/2 ex-

tensions yR ∈ {0,1}(ℓ/2)·n such that (yL,yR) ∈ B, and recall that we assumed (with-
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out loss of generality) that β ≥ 2− log2 n. For each extension yR, we consider the
set TyR of all vertices (in the last ℓ/2 layers) that yR colors 1. For every yL ∈ BL,
we consider the family of sets FyL = {TyR}yR:(yL,yR)∈B. Thus, for every yL ∈ BL, we

have that |FyL | ≥ 2− log2 n−1 ·2ℓ·n/2. By the Kruskal–Katona theorem [167, 160, 188]
(or alternatively by information-theoretic arguments), such a large family of sets is
guaranteed to contain, with probability close to 1, a set TyR that contains the random
set T ′ (where the probability is over the choice of T ′). Note that if TyR contains T ′,
the coloring yR colors all vertices in T ′ (and hence all vertices in T ) by 1. Thus,
with probability close to 1 almost every yL ∈ BL is also in B′L and in particular
|B′L| ≥ |BL|/2. □

4.5 Lower Bounds for the Monotone Depth of Clique and
Matching

Next, we present Raz and Wigderson’s lower bound of Ω(n) for the monotone cir-
cuit depth of the clique and matching functions in graphs with n vertices [227].
The proof establishes a lower bound of Ω(n) for the communication complexity
of the corresponding KW games, by a direct reduction to known lower bounds in
communication complexity, namely the lower bound of Ω(n) for the probabilistic
communication complexity of Set-Disjointness [155, 231, 29, 54, 53]. This, in turn,
further demonstrates the power of KW games, as well as the power of reductions
from Set-Disjointness as a major tool for proving lower bounds in communication
complexity and other computational models.

Recall that in the problem of Set-Intersection, or Set-Disjointness, each of two
players gets a vector in {0,1}n and their goal is to determine whether there exists
a coordinate i ∈ [n] where they both have 1. Recall that for a communication task
G, we denote by CCε(G) the smallest communication complexity of a probabilistic
protocol that solves G correctly with probability at least 1− ε on every input.

Theorem 4.8 ([155]). For any constant ε > 0, CCε(Dis jointness)≥Ω(n).

We will consider the following communication game, denoted M1:

Definition 4.9. (Communication game M1): Let n = 3k and let V be a set of n
vertices. Player 1 gets a k-matching x on (a subset of) the set of vertices V , that is, k
edges (with vertices in V ) that don’t touch each other. Player 2 gets a set y of k−1
vertices in V . The goal of the two players is to find an edge in x that does not touch
any of the vertices in y. (By the pigeonhole principle there must be at least one such
edge).

We will prove that the deterministic communication complexity of M1 is Ω(n),

CC(M1)≥Ω(n).

This bound implies lower bounds for the monotone circuit depth of several func-
tions. We give a few examples:
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Theorem 4.10 ([227]). Let n = 3k. Let Match be the (monotone) Boolean function
that gets as an input a graph with n vertices and outputs 1 if and only if the graph
contains a k-matching (and outputs 0 otherwise). The monotone circuit depth of
Match is Ω(n).

Proof. Consider an input (x,y) for the game M1. The k-matching x is a minterm
of the function Match. The set y of k− 1 vertices can be viewed as a maxterm of
the function Match, by considering a graph that contains all possible edges with at
least one vertex in y. Any protocol P for the monotone KW game of the function
Match can be applied on (x,y) to get an edge in x that doesn’t touch y. That is, any
protocol P for the monotone KW game of the function Match can be applied also
as a protocol for M1. Since CC(M1) ≥ Ω(n), the communication complexity of P
is Ω(n). Hence, by Theorem 4.4, the monotone circuit depth of Match is Ω(n). □

Theorem 4.11 ([227]). Let PM be the (monotone) Boolean function that gets as an
input a graph with n vertices and outputs 1 if and only if the graph contains a perfect
matching (and outputs 0 otherwise). The monotone circuit depth of PM is Ω(n).

Proof. Follows by a standard reduction from Match to PM: Given an input graph
Z for the function Match, where the number of vertices in Z is n = 3k, construct a
graph Z′ by adding k vertices to Z and connecting them to all other vertices. Then,
there exists a perfect matching in Z′ if and only if there exists a matching of size k
in Z. □

Theorem 4.12 ([227]). Let n = 3k. Let Clique be the (monotone) Boolean function
that gets as an input a graph with n vertices and outputs 1 if and only if the graph
contains a clique of size 2k + 1 (and outputs 0 otherwise). The monotone circuit
depth of Clique is Ω(n).

Proof. Consider an input (x,y) for the game M1. Given the set y of k− 1 vertices,
consider the graph y′ that contains all edges that do not touch y (that is, a clique in
the complement of y). Since y′ is a clique of size 2k+1, the function Clique outputs
1 on y′. Given the k-matching x, let the graph x′ be the complement of x, that is,
the graph that contains all edges except the matching x. The function Clique outputs
0 on x′. Any protocol P for the monotone KW game of the function Clique can
be applied on (y′,x′) to get an edge in y′ that is not an edge in x′, that is an edge
of x that doesn’t touch y. Thus, any protocol P for the monotone KW game of the
function Clique can be applied also as a protocol for M1. Since CC(M1) ≥ Ω(n),
the communication complexity of P is Ω(n). Hence, by Theorem 4.4, the monotone
circuit depth of Clique is Ω(n). □

Using similar arguments, one can establish lower bounds for the monotone depth
of several other functions, such as, matching and perfect matching in bipartite graphs
and clique functions with different sizes of cliques.

It remains to prove the lower bound for the deterministic communication com-
plexity of M1.

Theorem 4.13 ([227]). CC(M1)≥Ω(n).
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Proof. Let n = 3k and let V be a set of n vertices. Consider the following commu-
nication game, denoted M2: Player 1 gets a k-matching x on (a subset of) the set of
vertices V . Player 2 gets a set y of k vertices in V . The goal of the two players is
to output 1 if there is an edge in x that does not touch any of the vertices in y, and
output 0 otherwise, that is, if every edge in x touches a vertex in y.

We will first prove that for any constant ε > 0,

CC(M1)≥Ω(CCε(M2)). (5)

Assume that we have a deterministic communication protocol P1 for the com-
munication game M1. We will use P1 to construct a probabilistic communication
protocol P2 for the communication game M2, with the same communication com-
plexity as P1 (up to an additive constant).

First note that, using a common random string, we can assume that the protocol
P1 is a zero-error probabilistic protocol such that for every input (x,y) for the game
M1, the protocol P1 outputs each correct answer with the exact same probability (that
is, if for the input (x,y) there are several correct answers the protocol outputs each
of them with the same probability). This can be assumed, since, using the common
random string, the players can randomly permute the vertices in V before applying
the protocol P1.

Let (x,y) be an input for the game M2. Player 2 gets the set y of k vertices, and
will randomly choose a vertex v ∈ y and remove it. Now, Player 2 is left with a
set y′ of k− 1 vertices. The two players can now apply the protocol P1 (for M1) on
the input (x,y′) and obtain as an output an edge e ∈ x that doesn’t touch any of the
vertices in y′. The players now check if the removed vertex v is on the edge e. If the
vertex v is not on the edge e, the protocol P2 (for M2) will outputs 1 (as e is an edge
that doesn’t touch any vertex in y). If the vertex v is on the edge e, the protocol P2
will output 0 (that is, P2 assumes that there is no edge in x that doesn’t touch y, as
such an edge was not found by P1).

Note that if P2 outputs 1 there can be no error (as e does not touch v or any
other vertex in y, since the protocol P1 is always correct). On the other hand, if P2
outputs 0, an error is possible, as there might be a different edge e′ in x that doesn’t
touch any of the vertices in y, and yet the protocol P1 outputs the edge e that does
touch v. However, since the edges do not touch each other, there is at most one edge
e ∈ x that touches v. Since we assume that the protocol P1 outputs each possible
correct answer with the exact same probability, and since an error occurs only if e
was the output of P1 (and not any of the possible edges e′), the probability for an
error is at most 1/2 (for any input (x,y)). (The probability of error may be smaller
if there are several edges e′ that do not touch any vertex in y).

To further reduce the probability of error to any constant ε , one can repeat the
protocol P2 a constant number of times. This concludes the proof for Equation (5).

□
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Next, we consider the following communication complexity game, denoted 3Dist
(3-Distinctness): Let n= 3k. Player 1 and Player 2 get inputs x,y∈{a,b,c}k, respec-
tively. That is, each player gets a string of k = n/3 letters from {a,b,c}. The goal is
to decide whether there is a coordinate i such that xi = yi.

We will prove that for any constant ε > 0,

CCε(M2)≥ CCε(3Dist). (6)

Assume that we have a probabilistic communication protocol P2 for the com-
munication game M2. We will use P2 to construct a probabilistic communication
protocol P3 for the communication game 3Dist, with the same communication com-
plexity and the same error as P2.

Let (x,y) be an input for the game 3Dist. Thus x,y ∈ {a,b,c}k. For each coordi-
nate in {1, . . . ,k}, we construct a triangle (with different vertices for each triangle)
and label its 3 vertices by a,b,c. We label each edge of each triangle by the letter
that labels the vertex that it does not touch (that is, the vertex opposite to it).

The players convert their inputs to inputs for the game M2 in the following way:
Player 1 interprets her k coordinates as the corresponding k edges in the k triangles
(one edge for each coordinate). That is, each xi is interpreted as the corresponding
edge in the ith triangle. Denote the set of these edges by x′. Player 2 interprets her
k coordinates as the corresponding k vertices in the k triangles. That is, each yi is
interpreted as the corresponding vertex in the ith triangle. Denote the set of these
vertices by y′. Obviously, there is an edge in x′ that doesn’t touch y′ if and only if
there is a coordinate i such that xi = yi. Thus, the players can use the protocol P2
on input (x′,y′) and declare the answer. This gives a probabilistic communication
protocol P3 for 3Dist with the same communication complexity and the same error
as P2. This concludes the proof for Equation (6).

Finally, we will prove that for any constant ε > 0,

CCε(3Dist)≥Ω(n). (7)

This will follow by a reduction from the Set-Disjointness problem and by the lower
bound for the probabilistic communication complexity of Set-Disjointness (Theo-
rem 4.8).

Assume that we have a probabilistic communication protocol P3 for 3Dist. We
will show how to use this protocol to solve the Set-Disjointness problem. Given an
input pair (x,y) for the Set Disjointness problem, such that x,y ∈ {0,1}k, the two
players will generate inputs x′,y′ for 3Dist as follows. To generate x′, Player 1 starts
from x and translates 0 to b and 1 to a. That is, for every i, if xi = 0 then x′i = b and
if xi = 1 then x′i = a. To generate y′, Player 2 starts from y and translates 0 to c and
1 to a. That is, for every i, if yi = 0 then y′i = c and if yi = 1 then y′i = a. Obviously,
xi = yi = 1 if and only if x′i = y′i. Hence, the two players can apply the protocol P3 on
(x′,y′) and declare the answer. This gives a probabilistic communication protocol
for Set-Disjointness, with the same communication complexity and the same error
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as P3. By Theorem 4.8, the communication complexity of the protocol is Ω(n). This
concludes the proof for Equation (7).

By Equation (5), Equation (6) and Equation (7), we get CC(M1)≥Ω(n). □

4.6 The KRW Conjecture

Karchmer, Raz and Wigderson suggested an approach for proving super-logarithmic
lower bounds for general Boolean circuit depth [156]. We will briefly outline this
approach here.

Let n be an integer and assume for simplicity that log logn is also an integer
(where the logarithm is base 2). Let k = logn. Let f : {0,1}k→{0,1} be a random
Boolean function. Since it’s not hard to prove (by a standard counting argument)
that a random Boolean function has large circuit depth (with high probability), we
can assume that, say, D( f )≥ k

2 (where D denotes circuit depth).
For two Boolean functions, h : {0,1}r → {0,1} and g : {0,1}m→ {0,1}, define

their composition h◦g : {0,1}rm→{0,1} by

h◦g(x1, . . . ,xr) = h(g(x1), . . . ,g(xr)),

where x1, . . . ,xr ∈ {0,1}m. Define f (d) to be the composition of f with itself d times.
KRW conjectured that for a random function f : {0,1}k → {0,1} and any func-

tion g : {0,1}m→{0,1},

D( f ◦g)≥ ε ·D( f )+D(g)

(with high probability over the choice of f ), for some constant ε > 0. There are also
various variants of this conjecture.

Assuming that the conjecture holds, we get

D( f (d))≥ ε ·D( f )≥ ε

2 ·d · k,

(with high probability over the choice of f ). Taking d = k/ logk, we get a function
f (d) : {0,1}n→{0,1} of super-logarithmic depth. The function f (d) is not explicit,
as f is a random function, but since f depends on only k = logn input variables,
its truth table of size n can be given as n additional input variables, so that f (d) is
explicitly given.

To prove the conjecture, KRW suggested to use Karchmer–Wigderson games.
Given f : {0,1}k→{0,1} and g : {0,1}m→{0,1}, the KW game corresponding to
f ◦g is as follows:
Player 1 gets x1, . . . ,xk ∈ {0,1}m such that

f (g(x1), . . . ,g(xk)) = 1.
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Player 2 gets y1, . . . ,yk ∈ {0,1}m such that

f (g(y1), . . . ,g(yk)) = 0.

The goal of the two players is to find (i, j) such that xij ̸= yij.
To see the intuition behind the conjecture, assume that the inputs (x1, . . . ,xk)

for Player 1 and (y1, . . . ,yk) for Player 2 satisfy that for every i ∈ {1, . . . ,k}, if
g(xi) = g(yi) then xi = yi. Then, an answer (i, j) for the KW game correspond-
ing to f ◦ g gives an answer i for the KW game corresponding to f (with input
((g(x1), . . . ,g(xk)),(g(y1), . . . ,g(yk)))) and an answer j for an instance of the KW
game corresponding to g (namely, the KW game corresponding to the ith coordinate,
that is, the game played with input (xi,yi)).

Finally, we note that while the conjecture is still wide open and seems hard to
prove, some steps towards proving the conjecture have been taken in several pa-
pers, including the works by Edmonds, Impagliazzo, Rudich and Sgall [89], Håstad
and Wigderson [129], Gavinsky, Meir, Weinstein and Wigderson [106], Dinur and
Meir [80], Meir [197] (to name a few).

4.7 Communication Complexity of Set-Disjointness

The Set-Disjointness problem that was already mentioned before is a central prob-
lem in communication complexity, with numerous applications. We have already
seen how strong lower bounds for the monotone depth of Boolean functions (The-
orem 4.10, Theorem 4.11 and Theorem 4.12) follow from known lower bounds for
the probabilistic communication complexity of Set-Disjointness (Theorem 4.8). The
Set-Disjointness problem can be described as follows (equivalently to our previous
description). Each of two players gets a subset of [n] and their goal is to determine
whether the two subsets intersect.

Since the Set-Disjointness problem is so central, and because of the many ap-
plications, it is very interesting to also study variants of this problem. Håstad and
Wigderson [130] studied the perhaps most natural variant of the problem, the Set-
Disjointness problem with sets of a fixed size k. That is, given n and k ≤ n/2,
Player 1 gets a subset x ⊂ [n] of size k, Player 2 gets a subset y ⊂ [n] of size k,
and their goal is to determine whether the two subsets x,y intersect. We denote this
communication game by Dn

k . In the deterministic case, it is not hard to prove that
for every k ≤ n/2, CC(Dn

k) =Θ(log
(n

k

)
) [130].

Håstad and Wigderson proved that in the probabilistic case, the communication
complexity of Dn

k is in fact O(k). (This bound is tight when k < cn for any constant
c < 1/2).

Theorem 4.14 ([130]). For any n and k≤ n/2 and constant ε > 0, CCε(Dn
k) =O(k).
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Proof. (Sketch) Player 1 gets a subset x ⊂ [n] of size k and Player 2 gets a subset
y⊂ [n] of size k. The players run a communication protocol that, assuming that x,y
are disjoint, has communication complexity O(k) and at the end of the protocol both
players know (with high probability) two disjoint subsets S,T ⊂ [n] such that x⊆ S
and y⊆ T . The sets S,T can be viewed as a proof for the disjointness of x,y. If after
ck bits of communication (when c is a sufficiently large constant), the protocol fails,
it follows that (with high probability) x,y are not disjoint.

The protocol works in O(logk) steps. First define,

N0 = [n], S0 =∅, T0 =∅, x0 = x, y0 = y.

After each Step i, the players will have subsets Ni,Si,Ti,xi,yi⊆ [n], where Ni∪Si∪Ti
is a partition of [n] and

x∩Ti =∅, y∩Si =∅, xi = x∩Ni, yi = y∩Ni.

Moreover,
Si−1 ⊆ Si, Ti−1 ⊆ Ti.

Intuitively, after each Step i, the players have already restricted the possible inter-
section of x and y to the set Ni and it remains to check if xi and yi intersect.

Each Step i is done as follows. Assume without loss of generality that |xi−1| ≤
|yi−1|. (Otherwise we switch the rolls of the players in Step i). Let ki−1 = |xi−1|.
The players interpret the public random string as a sequence of random subsets
Z1,Z2, . . . ⊆ Ni−1. Player 1 examines the first 2cki−1 sets in this sequence (where c
is a sufficiently large constant) and sends the index j of the first set Z j such that
xi−1 ⊆ Z j (if such a set exists). Since c is sufficiently large, such a set Z j exists with
high probability, as the probability that a random set Z j satisfies xi−1 ⊆ Z j is 2−ki−1 .
Since the random string is public, both players now know Z j and update

Ni = Z j, Si = Si−1, Ti = Ti−1∪Ni−1 \Z j, xi = xi−1, yi = yi−1∩Z j.

Note that all the required properties from the sets Ni,Si,Ti,xi,yi are satisfied. That
is, Ni∪Si∪Ti is a partition of [n] and

x∩Ti =∅, y∩Si =∅, xi = x∩Ni, yi = y∩Ni, Si−1 ⊆ Si, Ti−1 ⊆ Ti.

Note also that if x,y are disjoint then |yi| is equal to |yi−1|/2 in expectation and
as long as |yi−1| is sufficiently large (say, larger than a sufficiently large constant),
|yi| ≤ 0.6 · |yi−1| with high probability and hence |yi|+ |xi| ≤ 0.8 · (|yi−1|+ |xi−1|)
with high probability (where high probability here means 1 minus probability expo-
nentially small in |yi−1|+ |xi−1|).

If x,y are disjoint then, after repeating this protocol for O(logk) steps, we get
that with high probability the final xi,yi are both empty. This is because the sum of
their sizes keeps decreasing by a constant factor until it is smaller than a (sufficiently
large) constant and then it keeps decreasing by at least 1, with a constant probability
in each step. When xi,yi are both empty, the protocol stops, and we have two dis-
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joint subsets S,T ⊂ [n] such that x ⊆ S and y ⊆ T (where S,T are the final Si,Ti).
The communication complexity is O(k), since in each step the communication com-
plexity is O(|yi−1|+ |xi−1|) and thus converges to O(k), as O(|yi−1|+ |xi−1|) keeps
decreasing by a constant factor until it is constant. □

The protocol in the proof of Theorem 4.14 uses an exponential amount of
randomness. Nevertheless, the amount of randomness can always be reduced to
O(logn) by a general theorem of Newman [204].

4.8 Quantum versus Classical Communication Complexity

Buhrman, Cleve and Wigderson were the first to study communication complex-
ity advantages of quantum communication protocols over classical ones [56]. A
quantum communication protocol is a protocol where the players can send quantum
states, rather than just classical bits, and the communication complexity of the pro-
tocol is defined to be the total number of qubits sent by the protocol, that is, the sum
of the lengths (in qubits) of all the quantum states that are sent by the protocol [291].

Buhrman, Cleve and Wigderson proved a general theorem that shows that any
quantum algorithm with small query complexity implies quantum communication
protocols for related problems, with small communication complexity. Given a (total
or partial) function f : {0,1}n→{0,1}, one can define the following two communi-
cation complexity problems: Given two inputs, x,y ∈ {0,1}n, where Player 1 gets x
and Player 2 gets y, the goal of the two players is to compute f (x∧ y), or f (x⊕ y)
(where x∧ y and x⊕ y denote a coordinate by coordinate application of ∧ and ⊕).
Buhrman, Cleve and Wigderson proved that if there is a quantum algorithm for com-
puting the function f (z), with k quantum queries to the input z = (z1, . . . ,zn), then
there are quantum communication complexity protocols for computing f (x∧y) and
f (x⊕ y), with communication complexity O(k · logn) [56].

This general theorem gives a method for translating quantum query complexity
upper bounds into quantum communication complexity upper bounds, as well as
translating quantum communication complexity lower bounds into quantum query
complexity lower bounds. Using this general theorem, Buhrman, Cleve and Wigder-
son obtained interesting consequences in both directions. They used known lower
bounds for quantum communication complexity to obtain new lower bounds for
quantum query complexity. They also used the general theorem to establish an ex-
ponential separation between zero-error quantum communication complexity, and
classical deterministic communication complexity, that is, they gave a communi-
cation task that can be solved by a zero-error quantum communication complexity
protocol with small communication complexity, and such that any classical deter-
ministic communication complexity protocol for that task, requires exponentially
larger communication complexity.

Perhaps the most striking consequence of Buhrman, Cleve and Wigderson’s gen-
eral theorem is that it proves that the Set-Disjointness problem can be solved by a
quantum protocol with communication complexity O(

√
n · logn) [56].
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Theorem 4.15 ([56]). The quantum communication complexity of Set-Disjointness
is O(

√
n · logn).

The proof of Theorem 4.15 follows from the general theorem by using Grover’s
algorithm for computing the OR of n input variables, using only O(

√
n) quantum

queries to the input [119].
Theorem 4.15 stands in contrast to Theorem 4.8 that states that the classical prob-

abilistic communication complexity of Set-Disjointness is Ω(n). Theorem 4.15 es-
tablished a quadratic gap between quantum and classical probabilistic communi-
cation complexity and was followed by a long line of works that further studied
the relative power of quantum and classical communication protocols. We note that
this quadratic separation remained essentially the largest known gap between quan-
tum and classical probabilistic communication complexity of total functions, for
almost two decades. A line of recent works improved that gap to an almost cu-
bic gap [1, 16, 267, 26, 251]. Proving a super-polynomial gap between quantum
and classical probabilistic communication complexity of total functions remains
a fascinating and long-standing open problem in communication complexity. For
partial functions (promise problems), exponential gaps between quantum and clas-
sical probabilistic communication complexity were established by a long line of
works [221, 28, 105, 164, 104, 107]. Finally, we note that Theorem 4.15 was proved
to be essentially tight by Razborov [233].

4.9 Partial Derivatives in Arithmetic Circuit Complexity

Arithmetic circuits are the standard computational model for arithmetic computa-
tions, such as computing the determinant or the permanent of a matrix or the product
of two matrices. Given a field F and an n-variate polynomial P(x1, . . . ,xn) over F,
we ask how many +,× operations over F are needed to compute P.

An arithmetic circuit over F, with input variables x1, . . . ,xn ∈ F, is a directed
acyclic graph as follows: Every node of in-degree 0 (that is, a leaf) is labelled with
either an input variable or a field element or a product of an input variable and a
field element. Every node of in-degree larger than 0 is labelled with either + or ×
(in the first case the node is a sum gate and in the second case a product gate). A
node of out-degree 0 is called an output node. The circuit is called a formula if the
underlying graph is a (directed) tree.

Each node in the circuit (and in particular each output node) computes a poly-
nomial in the ring of polynomials F[x1, . . . ,xn] as follows. A leaf just computes the
value of the input variable, or field element, or product of input variable and field
element, that labels it. For every non-leaf node v, if v is a sum gate it computes
the sum of the polynomials computed by its children, and if v is a product gate it
computes the product of the polynomials computed by its children. If the circuit
has only one output node, the polynomial computed by the circuit is the polynomial
computed by the output node.
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The size of a circuit is defined to be the number of wires (edges) in it and the
depth of a circuit is defined to be the length of the longest directed path from a leaf
to an output node in the circuit.

Proving lower bounds for the size of arithmetic circuits has been a major chal-
lenge for many years. Super-linear lower bounds for the size of general arith-
metic circuits were proven in the seminal works of Strassen [261] and Baur and
Strassen [35]. Their method, however, only gives lower bounds of up to Ω(n logd),
where n is the number of input variables and d is the degree of the computed polyno-
mial. In particular, if the degree d = d(n) is polynomial in n this gives lower bounds
of at most Ω(n logn). Lower bounds for various restricted classes of arithmetic cir-
cuits have also been studied in many works.

In 1997, Nisan and Wigderson suggested a general approach for obtaining lower
bounds for restricted classes of arithmetic circuits [212]. The approache is based on
measuring the dimension of the vector space spanned by all partial derivatives of
the polynomials computed at the nodes of the circuit. (Partial derivatives were pre-
viously used to obtain lower bounds for arithmetic circuits in the works of Smolen-
sky [256] and Nisan [206]).

For an n-variate polynomial f (x1, . . . ,xn), let D( f ) denote the set of all partial
derivatives, of all orders, of f (including f itself as the partial derivative of order 0),
and let Dim( f ) denote the dimension of the vector space spanned by D( f ). The
main idea is to bound the growth of Dim( f ) from the leaves to the outputs of the
circuit and hence show that for an output of the circuit, Dim( f ) is bounded. Thus,
the circuit cannot compute a polynomial P(x1, . . . ,xn) with a larger Dim(P). The
following simple formulas are easily proved and are useful for bounding the growth
of Dim( f ),

Dim(h+g)≤ Dim(h)+Dim(g),

Dim(h×g)≤ Dim(h) ·Dim(g).

Nisan and Wigderson used this approach to prove several lower bounds, includ-
ing exponential lower bounds for the size of depth-3 homogeneous circuits (where
an homogeneous circuit is a circuit where all nodes in the circuit compute homo-
geneous polynomials), and exponential lower bounds for the size of constant-depth
set-multilinear circuits (where a set-multilinear circuit is a circuit where the set of
variables {x1, . . . ,xn} is partitioned into d subsets X1, . . . ,Xd such that, for every
node v in the circuit, each monomial in the polynomial computed by the node v
contains at most one variable from each subset Xi) [212].

The partial-derivatives method of Nisan and Wigderson has been very influential
on later works. Many subsequent works used this approach as a starting point and
further built on these ideas to obtain lower bounds for additional classes of arith-
metic circuits. In particular, these ideas have been very important in the study of
multilinear circuits (for example, [225, 223, 222, 228, 226, 84, 66, 11]), constant-
depth homogeneous circuits (for example, [169, 162, 170]) and bounded-depth
arithmetic circuits (for example, [252, 161, 120, 96, 182, 14]).
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4.10 Resolution Made Simple

Resolution is a proof system (technically, refutation system) for refuting unsatisfi-
able CNF formulas, that is, unsatisfiable Boolean formulas in conjunctive normal
forms.

Given Boolean variables x1, . . . ,xn ∈ {0,1}, a literal is either a variable, xi, or a
negation of a variable, ¬xi. A clause in these variables is an OR of literals, that is,∨k

i=1 zi, for some k, where each zi is a literal. The Resolution rule says that if C and
D are two clauses and xi is a variable then any assignment that satisfies both clauses,
C∨ xi and D∨¬xi, also satisfies the clause C∨D. Thus, from C∨ xi and D∨¬xi,
one can deduce C∨D.

A Resolution refutation for a set of clauses F (equivalently, for a CNF formula F)
proves that the clauses in F are not simultaneously satisfiable. For a set of clauses F ,
a Resolution refutation is a sequence of clauses C1,C2, . . . ,Cs such that: (1) Each
clause C j is either a clause in F or obtained by the Resolution rule from two previous
clauses in the sequence; and (2) The last clause, Cs, is the empty clause (and is hence
unsatisfiable). The size, or length, of a Resolution refutation is the number of clauses
in it.

It is well known that Resolution is a sound and complete propositional proof
system, that is, a CNF formula F is unsatisfiable if and only if there exists a Resolu-
tion refutation for F . We think of a refutation for an unsatisfiable formula F also as a
proof for the tautology ¬F . Hence, Resolution refutations are also called Resolution
proofs.

Resolution is one of the most widely studied propositional proof systems. Lower
bounds for the size of Resolution proofs for many propositional tautologies have
been proved, starting from Haken’s celebrated exponential lower bounds for the
propositional pigeonhole principle [127].

Ben-Sasson and Wigderson suggested a general approach for proving lower
bounds for the size of Resolution proofs, an approach that generalized, unified and
simplified essentially all previously known lower bounds for Resolution, was used
to obtain many additional lower bounds, and ultimately gave a deeper understanding
of Resolution as a proof system [40].

The approach focuses on the width of a resolution proof. The width of a resolu-
tion proof is defined to be the number of literals in the largest clause of the proof.
Ben-Sasson and Wigderson argued that Resolution is best studied when the focus
is on the width. Their key theorem relates the smallest length of a Resolution proof
to the smallest width of a Resolution proof. Informally, the theorem states that if
a set of clauses F has a short Resolution refutation then it also has a Resolution
refutation with small width. The proof is based on a proof by Clegg, Edmonds and
Imagliazzo, who gave similar relations (between size of a proof and degree of a
proof) for algebraic proof systems [69].
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Theorem 4.16 ([40]). Let F be a an unsatisfiable CNF formula. Let w0 be the size
of the largest clause in F. Let w be the minimal width of a Resolution refutation
for F. Let s be the minimal size of a Resolution refutation for F. Then,

w≤ w0 +O
(√

n logs
)
.

In particular, Theorem 4.16 shows that one can obtain lower bounds for the size
of Resolution proofs by proving lower bounds for the width of Resolution proofs
(which, in many cases, is easier to analyze).

The size of the clauses of a Resolution proof was implicit in previous works and
played a major role in previous lower bounds. Previous lower bounds for the size
of Resolution proofs were usually proved in two steps as follows. In the first step,
the entire proof was hit by a random restriction of the variables (that is, some of
the variables were randomly set to 0, some were randomly set to 1 and some were
left untouched), in order to hit and eliminate all large clauses of the proof (assum-
ing for a contradiction that the proof is short). The second step proved that large
clauses must exist in any Resolution refutation for the restriction of the unsatisfi-
able formula under the random restriction from the first step (and hence the proof
must be long). The approach of Ben-Sasson and Wigderson simplified essentially all
previous proofs, as the random restriction was no longer needed and one could fo-
cus on proving lower bounds on the width of Resolution refutations for the original
unsatisfiable formula, rather than for a random restriction of it.

5 Complexity, Optimization, and Symmetries

This section presents an overview of work by Wigderson and his co-authors on
optimization methods to come up with efficient algorithms for various algorith-
mic problems in computational complexity theory, mathematics, and physics [185,
102, 103, 8, 7, 61, 59, 60]. A common theme in all these works is the realization
that the relevant algorithmic tasks can be formulated as optimization problems over
algebraic groups that also have an analytic structure. A representative optimization
problem is to find a minimum norm vector in the orbit of a given GLn(C) action
on a vector space. This viewpoint led Wigderson and his co-authors to deploy tools
from invariant theory, representation theory, and optimization to develop a quanti-
tative theory of optimization over Riemannian manifolds that arise from continuous
symmetries of noncommutative groups.

The starting point is the work [185] that analyzes the convergence of a matrix
scaling algorithm to compute an approximation to the permanent (Section 5.1). This
corresponds to the commutative setting where the symmetries corresponded to di-
agonal subgroups (tori) of a matrix group. The role of symmetries in the analysis of
the algorithm, however, was not quite explicit.
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In [123], Gurvits extended the results of [185] to the noncommutative setting of
“operators”. In particular, he studied Edmonds’ singularity problem [88] and, mo-
tivated by [185], he presented a (deterministic) “operator scaling” algorithm for it.
However, he fell short of presenting convergence bounds for this algorithm. Section
5.2 presents the work [102] that gives convergence bounds for Gurvits’ operator
scaling algorithm. This paper makes the first contact of scaling algorithms to invari-
ant theory. It also demonstrates the applicability of computational problems over
group orbits and scaling techniques far beyond complexity theory: to mathemat-
ics and physics. Section 5.2.3 presents a result from [102] that gives a deterministic
polynomial time algorithm for the noncommutative version of Edmonds’ singularity
problem. Section 5.2.4 gives an outline of a result from [103] that shows how oper-
ator scaling can be used to efficiently compute Brascamp–Lieb constants important
in mathematics.

Section 5.3 visits the paper [7] which starts with the realization that the problem
of finding a minimum-norm vector over an orbit is a geodesically convex optimiza-
tion problem over a Riemannian manifold. Subsequently, [7] extend the theory of
second-order methods in convex optimization to the setting of geodesically convex
optimization and give an algorithm whose running time depends logarithmically on
the error in the approximation. The focus here is on introducing geodesic convex-
ity and showing how the capacity of an operator can be captured by a geodesically
convex optimization problem.

Finally, Section 5.4, presents results from [60]. Here, the general norm minimiza-
tion problem is introduced and various variants of it studied by [60] are presented.
These problems unify and generalize prior works in this line. Of particular impor-
tance is the connection to noncommutative duality in invariant theory which extends
linear programming duality and allows one to give conditions on when an optimiza-
tion problem is feasible. This gives rise to other connections such as moment maps
(analog of Euclidean gradients) and a precise notion of geodesic convexity. This
paper culminates with the definition and convergence bounds for first-order and
second-order algorithms for various optimization problems over noncommutative
matrix groups. The convergence bounds are based on novel parameters related to
the group action via a synthesis of algebra and analysis. This paper also gives a host
of new analytic algorithms for various problems important in invariant theory and
complexity theory.

5.1 Permanent and matrix scaling

Let A ∈Rn×n be a square matrix with entries Ai, j for 1≤ i, j ≤ n. The permanent of
A is defined as:

Per(A) := ∑
σ∈Sn

n

∏
i=1

Ai,σ(i),



On the works of Avi Wigderson 669

where Sn is the set of all permutations over n symbols, i.e., the set of bijections
σ : {1,2, . . . ,n} → {1,2, . . . ,n}. The permanent makes its appearance in various
branches of science and mathematics and algorithms to compute it are sought after.
For instance, permanents of 0,1-valued matrices are intimately connected to perfect
matchings in bipartite graphs. Consider a bipartite graph G = (L,R,E) where L,R
is the bipartition of the vertex set of G and E is the set of edges of G. Assume |L|=
|R|= n and define an n×n matrix A (adjacency matrix of G) whose (i, j)th entry is
1 is an edge between the ith vertex of L and the jth vertex of R. It follows from the
definition that the permanent of A is equal to the number of perfect matchings in G.

The computational complexity of the permanent has been extensively studied in
theoretical computer science. Valiant [278] proved that it is unlikely that there is
an efficient algorithm that computes the permanent of a nonnegative matrix – even
when the matrix has only 0,1 entries (the problem is #P−complete). This result,
under standard assumptions in complexity theory, rules out an efficient algorithm to
compute the permanent of a nonnegative matrix and raises the question of finding
approximations to it. Checking if Per(A) of a nonnegative matrix is zero or not,
however, is in P since it reduces to checking if the associated bipartite graph has a
perfect matching or not.

5.1.1 Doubly stochastic matrices and their permanents

A special class of nonnegative matrices is doubly-stochastic matrices whose row
sums and column sums are all equal to one.

Definition 5.1. (Doubly stochastic matrix) An n×n matrix A is said to be doubly
stochastic if it is nonnegative and its rows and columns sum up to one: For each i,
∑

n
j=1 Ai, j = 1 and for each j, ∑

n
i=1 Ai, j = 1.

If a nonnegative matrix A is an adjacency matrix of a graph G each of whose vertices
has degree d ≥ 1, then the matrix 1

d A is doubly stochastic. The set of all doubly
stochastic matrices is convex and, in fact, a polytope – the Birkhoff polytope [44].
The well-known Birkhoff-von Neumann theorem states that the Birkhoff polytope
is a convex hull of n×n permutation matrices.

The matrix with all entries 1
n is doubly stochastic. Its permanent is n!

nn . van der
Waerden conjectured that the permanent of any n×n doubly-stochastic matrix must
be at least n!

nn . Interestingly, this lower bound does not depend on the entries of A
as long as it is doubly stochastic. Egorychev [90] and Falikman [93] proved the van
der Waerden conjecture.

Theorem 5.2. (Permanent of doubly-stochastic matrices [90, 93]) For any n×n
doubly-stochastic matrix A, Per(A)≥ n!

nn .

On the other hand, just for a row-stochastic matrix A, it trivially holds that

Per(A)≤
n

∏
i=1

n

∑
j=1

Ai, j = 1.
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Since n!
nn ≥ e−n, for a doubly-stochastic matrix, the permanent is between e−n and 1.

Hence, if A is doubly stochastic, then we can output 1 and this is an en approximation
to its permanent.

5.1.2 Matrix scaling

The starting point of the work Linial, Samorodnitsky, and Wigderson [185] (see
also the journal version of this paper [185]) is the observation that the permanent
(of any matrix) has certain symmetries: For positive vectors x,y ∈ R>0, if we define
B := XAY where X and Y are diagonal matrices corresponding to vectors x and y
respectively, then we can write down the permanent of B exactly:

Per(B) =

(
n

∏
i=1

xi

)
Per(A)

(
n

∏
j=1

y j

)
. (8)

This operation of left and right multiplying A with diagonal matrices is referred to
as (matrix) scaling. Thus, in the case A is not doubly stochastic (something that can
be efficiently checked), one can try to find a scaling (x,y) of A such that B is doubly
stochastic. If so, one can output

1

(∏n
i=1 xi)

(
∏

n
j=1 y j

)
as an approximation for Per(A). From the discussion in the previous section, such
an algorithm would be an en approximation to the permanent.

An approach to finding such a scaling is to do the following iteratively: Find
a vector x that ensures that all the rows of the scaled A sum up to one, and then
pick a y that ensures the same for the columns. This matrix scaling algorithm was
suggested by Sinkhorn [254]. Franklin and Lorenz [98] analyzed the convergence
rate of Sinkhorn’s scaling algorithm. They showed that, when a doubly-stochastic
scaling of A exists, Sinkhorn’s algorithm outputs a matrix B that is ε away (in ℓ∞-
distance) from being doubly stochastic and, to do so, it takes a polynomial number of
iterations in the number of bits needed to represent the input matrix A and 1

ε
. Kalan-

tari and Khachiyan [153] gave a convex-optimization-based algorithm to check if A
can be scaled to a doubly-stochastic matrix and, if it can be, then to find an ε ap-
proximation to it. The running time of their algorithm is polynomial in the number
of bits needed to represent the input matrix A and log 1

ε
; thus, giving a deterministic

polynomial time algorithm that approximates the permanent of a nonnegative A to
within a multiplicative factor of en.

The question that [185] studied is if the number of iterations can be made in-
dependent of the number of bits needed to represent A. Such an algorithm, whose
number of iterations does not depend on the entries of A, is referred to as a strongly
polynomial time algorithm. At its core, this turns out to be related to the following
mathematical question: If Per(A)> 0, then how small can it get as a function of the
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entries of A? Theorem 5.2 [90, 93] implies that, if A is doubly stochastic, then this
cannot get below e−n.

Preprocessing step. The idea in [185] is to augment Sinkhorn’s scaling algorithm
with a preprocessing step that, in the beginning, scales the columns of A to ensure
that the permanent of the new matrix is lower bounded by n−n. They do so by first
efficiently finding a permutation σ ∈ Sn that maximizes ∏

n
i=1 Ai,σ(i). They then show

that there is a positive diagonal matrix Y such that B = AY and, for all 1≤ i, j ≤ n,
Bi,σ(i) ≥ Bi, j. This ensures that if we normalize the rows of B such that each of them
sums up to one, the permanent of the resulting matrix is at least 1

nn .

Potential function and measuring progress. To analyze the progress in Sinkhorn’s
scaling algorithm, [185] consider the permanent itself as the potential function. If
At is the matrix at the beginning of the tth iteration of Sinkhorn’s scaling algorithm,
they show that, as long as At is far from being doubly stochastic,

Per(At+1)≳

(
1+

1
n

)
Per(At). (9)

They use the following potential function that measures the distance of a matrix B
from being doubly stochastic:

ds(B) := ∥R(B)− I∥2
F +∥C(B)− I∥2

F . (10)

Here R(B),C(B) are diagonal matrices whose (i, i)th entries are the sum of the ith
row and ith column respectively.

To gain some intuition why (9) is true, first note that if we have positive numbers
c1, . . . ,cn that sum up to 1 and are more than δ distance from the all one vector
(∥1− c∥2

2 ≈ δ ) then ∏
n
i=1 ci ≲ 1− δ

2 . Hence, if we have a matrix B that is row
stochastic and we scale its columns to 1, i.e., consider BC−1, where C is the diagonal
matrix corresponding to the column sums of B, then

Per(BC−1) =
Per(B)
∏

n
i=1 ci

≳ Per(B) · (1+δ ).

Thus, as long as δ ≥ 1
n , the permanent increases by a multiplicative factor of 1+ 1

n .

Termination condition. If after t iterations, ds(At)≥ 1
n , then

Per(At+1)≳

(
1+

1
n

)t

Per(A1).

Since the permanent of a row-stochastic matrix is upper bounded by 1, and Per(A1)≥
1
nn due to the preprocessing step, the above cannot continue for more than about
n2 iterations. Thus, after roughly n2 iterations, ds(At) <

1
n , and At is close to a

doubly stochastic matrix. Finally, [185] prove an approximate version of Theo-
rem 5.2 and lower bound the permanent of approximately doubly-stochastic ma-
trices. Roughly speaking, they show that if B is row stochastic and ds(B)< 1

n , then
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Per(B) > 1
en(1+o(1)) . Thus, we can output the matrix produced after about n2 itera-

tions. This completes the sketch of the proof of the following theorem.

Theorem 5.3. (Approximating permanent via matrix scaling [185]) There is an
algorithm that, given an n×n nonnegative matrix A, computes a number Z such that
Per(A)≤ Z ≤ en(1+o(1)) ·Per(A) using Õ(n5) elementary operations.

Subsequent to the work of [185], Jerrum, Sinclair, and Vigoda [146], building upon
a long line of work, showed that the Markov Chain Monte Carlo framework can
be deployed to obtain a randomized algorithm to estimate the permanent of any
nonnegative matrix to within a factor of 1+ ε in time that is polynomial in the bit-
lengths of A and 1

ε
. As for deterministic algorithms, in a follow-up work, Gurvits

and Samorodnitsky [125] show how scalings can be viewed as solutions to certain
convex programs – leading to convex programming relaxations for the permanent
and better deterministic approximations; see Section 5.2.5 and [262] for a discus-
sion. This line of work on deterministic approximation algorithms has recently been
generalized to a class of general counting and optimization problems; see [263, 15].

5.2 Noncommutative singularity testing and operator scaling

Edmonds [88] considered the following generalization of checking whether the per-
manent of a nonnegative matrix is zero or not: Given an m-tuple of n× n complex
matrices A1, . . . ,Am, is there a singular matrix in their linear space (over C) or not?
This singularity problem is equivalent to deciding if the polynomial

pA1,...,Am(x1, . . . ,xm) := det(x1A1 + · · ·+ xmAm)

is identically zero or not. pA1,...,Am is a homogeneous polynomial of degree n and
can be efficiently evaluated at any given point. To see how deciding if a bipartite
graph has a perfect matching is a special case of Edmonds’ singularity problem, we
let Ai be the matrix which has a 1 only at the entry corresponding to the ith edge in
the associated graph and 0 elsewhere; see [187].

There is a simple and efficient randomized algorithm to test this: Pick in-
dependent and random values for each of the variables x1, . . . ,xm from the set
{1,2, . . . ,2n} and output the value of pA1,...,Am for this input. It can be shown that
if pA1,...,Am is not identically zero then, with probability at least 1

2 , this algorithm
outputs a nonzero value. By repeating an appropriate number of times, this proba-
bility can be amplified to any number less than 1. This problem is an instance of the
Polynomial Identity Testing (PIT) problem where one is given a polynomial and the
goal is to check if it is identically zero or not. The randomized algorithm mentioned
above works for PIT as well. While for some special cases of PIT deterministic al-
gorithms are known (e.g., the deterministic primality testing algorithm of Agrawal,
Kayal, and Saxena [2]), the problem of coming up with an efficient deterministic
algorithm for PIT remains open. We mention that Edmonds’ singularity problem is
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almost the same as the fully general PIT problem due to a result of Valiant [278] that
establishes the “universality” of the determinant. [151] proved that derandomizing
PIT implies arithmetic circuit lower bounds for the complexity class NEXP; tying
the goal of derandomizing PIT to one of the central goals of theoretical computer
science: that of proving circuit lower bounds.

Gurvits [123] considered a version of Edmonds’ singularity problem and refor-
mulated it in terms of completely positive operators that take positive definite ma-
trices to positive definite matrices. Subsequently, he generalized the matrix scaling
algorithm of Linial, Samorodnitsky, and Wigderson [185] to operator scaling for
this problem. He introduced a potential function – capacity – that can track the
progress of the operator scaling algorithm and used it to give deterministic poly-
nomial time algorithms for Edmonds’ singularity problem for various special cases
(Section 5.2.1). However, he could not prove a bound on the number of iterations
of his operator scaling in general. The main result of the paper by Garg, Gurvits,
Oliviera, and Wigderson [102] is a bound on the number of iterations of Gurvits’
operator scaling algorithm. The key ingredient in their analysis is a lower bound
on the capacity of a completely positive operator (Section 5.2.2). This implies that
Gurvits’ operator scaling algorithm can also approximate the capacity of a com-
pletely positive operator to any accuracy in polynomial time. Moreover, [102] show
that this algorithm implies a deterministic polynomial time algorithm for testing a
noncommutative version of Edmonds’ problem (Section 5.2.3). Here, prior to the
work of [102], the best algorithms (whether randomized or deterministic) required
an exponential time algorithm [143]. In a companion paper Garg, Gurvits, Oliviera,
and Wigderson [103] show the application of this operator scaling machinery to the
various computational problems involving the Brascamp–Lieb inequalities (Section
5.2.4).

5.2.1 Completely positive operator and its capacity

Let Mn(C) denote the set of n×n matrices with complex entries. Let GLn(C) denote
the degree n general linear group of n× n invertible matrices over C. Let SLn(C)
denote the degree n special linear group of n× n matrices over C with determi-
nant 1. Both of the above are groups with respect to ordinary matrix multiplication.
Let Hn(C) denote the set n× n Hermitian matrices. Let Sn

+ denote the set of n× n
complex positive semi-definite (PSD) matrices and let Sn

++ denote the set of n× n
complex positive definite (PD) matrices. For two matrices X ,Y their tensor product
is denoted by X⊗Y .

Definition 5.4. (Completely positive operator) For positive integers n1 ≥ n2, an
operator T : Mn1(C)→Mn2(C) is said to be completely positive if there are n2×n1

complex matrices A1, . . . ,Am such that, for X ∈ Sn1
++, T (X) = ∑

m
i=1 AiXA†

i . The dual
of T is denoted by T ∗ and is such that T ∗(Y ) = ∑

m
i=1 A†

i YAi for Y ∈ Sn2
++.

If n1 = n2 = n, we say that T is a square operator.
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Definition 5.5. (Doubly-stochastic completely positive operator) A completely
positive operator T : Mn1(C)→Mn2(C) is said to be doubly stochastic if T

(
n2
n1

In1

)
=

In2 and T ∗ (In2) = In1 .

[123] introduced the following notion of capacity for completely positive operators.

Definition 5.6. (Capacity of a completely positive operator [123]) For a com-
pletely positive operator T : Mn1(C)→Mn2(C), its capacity is defined as

Cap(T ) := inf

det
(

n2
n1

T (X)
)

det(X)
n2
n1

: X ≻ 0

 .

We focus on the square case and return to the rectangular (nonsquare) case in Sec-
tion 5.2.4. In the square case (n1 = n2 = n),

Cap(T ) := inf{det(T (X)) : X ≻ 0, det(X) = 1}.

A square operator is said to be rank decreasing if there is an X ⪰ 0 such that
rank(T (X)) < rank(X). Operators that are not rank decreasing are referred to as
rank nondecreasing. The analog of this property in the matrix case (for a nonneg-
ative matrix A) is as follows: For every nonnegative vector x, the number of coor-
dinates of the vector Ax that are positive is at least the number of coordinates of x
that are positive. This is just Hall’s condition and implies that the permanent of A
is positive. [123] proved that, for a completely positive operator, Cap(T )> 0 if and
only if T is rank nondecreasing. [102] give other conditions that are equivalent for
a completely positive operator to be rank nondecreasing. One such condition that is
relevant to proving a lower bound on the capacity is that there exist d×d matrices
F1, . . . ,Fm for some d such that the polynomial

det(F1⊗A1 + · · ·+Fm⊗Am) ̸= 0. (11)

Similar to the notion of distance to a matrix to being doubly stochastic in Definition
5.1, consider the following distance of a completely positive operator from being
doubly stochastic:

dsO(T ) := Tr((T (I)− I)2)+Tr((T ∗(I)− I)2). (12)

An analog of Equation (8) that captures the symmetries of the operator setting is as
follows: Let T be a completely positive square operator defined by A1, . . . ,Am and
B,C∈GLn(C). Then, if we define TB,C to be the operator defined by BA1C, . . . ,BAmC,
then

Cap(TB,C) = |det(B)|2 ·Cap(T ) · |det(C)|2. (13)

If B,C ∈ SLn(C), then Cap(TB,C) = Cap(T ). This is true because the capacity is de-
fined in terms of determinants and, hence, the symmetries of the determinant arise.
It is worth noting that the polynomials in (the l.h.s. of) Equation (11) are invariant
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when B,C have determinant 1. In fact, these polynomials linearly span the space of
all such invariant polynomials.

Moreover, suppose T is a completely positive operator specified by A1, . . . ,Am
and either ∑

m
i=1 AiA

†
i = I (row-stochastic) or ∑

m
i=1 A†

i Ai = I (column-stochastic) then
it follows from the AM-GM inequality that

Cap(T )≤ det(T (I))≤
(

Tr(T (I))
n

)n

= 1. (14)

5.2.2 Operator scaling

We present a sketch of the operator scaling algorithm and its analysis. Suppose T is
a completely positive operator specified by m n×n matrices A1, . . . ,Am, where each
entry of each matrix is an integer bounded in absolute value by M. Our goal is to
decide if Cap(T )> 0 or not. Or equivalently, to decide if T is rank nondecreasing.

An operator scaling of T is given by positive matrices B,C such that the operator
TB,C defined by B

1
2 A1C

1
2 , . . . ,B

1
2 AmC

1
2 is doubly stochastic. The left normalization

(or scaling) of T , denoted by TL, is defined as

TL(X) := T (I)−
1
2 T (X)T (I)−

1
2

and the right normalization (or scaling) of T is defined as

TR(X) := T (T ∗(I)−
1
2 XT ∗(I)−

1
2 ).

It follows that TL(I) = I and T ∗R (I) = I.
Gurvits’ operator scaling algorithm [123] follows the same outline as the ma-

trix scaling algorithm analyzed in [185]. It first checks if both T (I) and T ∗(I) are
nonsingular. If not, then T is rank decreasing and the algorithm stops. Else, it keeps
performing left and right normalizations on T until the distance to double stochastic-
ity is below 1

n . If the operator T is rank decreasing, then one can argue that the left
and right normalizations cannot make it rank nondecreasing. Thus, the algorithm
will always output rank decreasing in this case.

[102] prove that if T is rank nondecreasing, then after a small-enough number of
iterations t, the operator Tt is such that dsO(Tt)<

1
n . This is analogous to the matrix

case: They show that every iteration such where dsO(Tt)>
1
n ,

Cap(Tt+1)≳

(
1+

1
n

)
Cap(Tt).

Since there is an upper bound of 1 on the capacity of a row-stochastic operator, it
remains to lower bound Cap(T1) when Cap(T )> 0. We note that for the matrix case,
we used permanent as a measure, but could have also used an appropriate notion of
capacity as defined in Section 5.2.5.
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The main technical contribution of [102] is a lower bound on the capacity of
a right-normalized completely positive operator. Let TA be a completely positive
operator specified by integer-valued matrices A1, . . . ,Am each of whose entries is
bounded in absolute value by M. Let T be the right normalization of TA. Then, it
follows that

Cap(T ) =
Cap(TA)

det(T ∗(I))
.

Thus, to lower bound Cap(T ), it is sufficient to lower bound Cap(TA) and upper
bound det(T ∗A (I)). The latter follows from an upper bound on

Tr(T ∗A (I)) =
m

∑
i=1

Tr
(

A†
i Ai

)
≤M2mn2.

Thus, by the AM-GM inequality

det(T ∗(I))≤
(

Tr(T ∗A (I))
n

)n

≤ (Mmn)n. (15)

The original proof of a lower bound on the capacity of a nondecreasing completely
positive operator TA relied on degree bounds in invariant theory; we return to it in
the next section. Here we mention their proof based on Alon’s Combinatorial Null-
stellensatz [10]; see also [279]. Alon’s result states that if p(z1, . . . ,zℓ) is a nonzero
polynomial (over C) with the degree of zi is di, then there are nonnegative integers
(a1, . . . ,aℓ) such that ∑

ℓ
i=1 ai ≤ d and ai ≤ di such that p(a1, . . . ,aℓ) ̸= 0.

From Equation (11), we know that if T is rank nondecreasing, then there
exist d×d matrices F1, . . . ,Fm for some d such that the polynomial

det(F1⊗A1 + · · ·+Fm⊗Am) ̸= 0.

Thus, the (ordinary) polynomial det(X1⊗A1 + · · ·+Xm⊗Am) (in the variables cor-
responding to entries of matrices X1, . . . ,Xm) is nonzero. Thus, Alon’s result implies
that there exist integer-valued matrices D1, . . . ,Dm such that

det(D1⊗A1 + · · ·+Dm⊗Am) ̸= 0

and, importantly, the sum of the square of all the entries of all the matrices is
bounded by n2d.

Let X ≻ 0 and define Ci := TA(X)−
1
2 AiX

1
2 . Thus, ∑

m
i=1 CiC

†
i = I and, hence

Tr
(

∑
m
i=1 CiC

†
i

)
= n. Now, let Y := D1⊗C1+ · · ·+Dm⊗Cm. Then, on the one hand,

by the AM-GM inequality,

det(YY †)≤
(

Tr(YY †)

nd

)nd

≤
(

n3d
nd

)nd

= n2dn,
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where one uses the bound on the sum of the square of entries of Dis. On the other
hand,

det(YY †) = |det(Y )|2 ≥ |det(D1⊗A1 + · · ·+Dm⊗Am)|2 det(X)d ·det(TA(X))−d .

Since all entries of D1 ⊗ A1 + · · ·+ Dm ⊗ Am are integers and its determinant is
nonzero, |det(D1⊗A1 + · · ·+Dm⊗Am)| ≥ 1, implying

det(TA(X))≥ (det(YY †))−
1
d ≥ n−

2dn
d =

1
n2n . (16)

Thus, combining Equations (15) and (16), we obtain the following theorem.

Theorem 5.7. (Lower bound on the capacity of a rank nondecreasing operator
[102]) Let T be the right-normalized version of a rank nondecreasing and com-
pletely positive operator given by A1, . . . ,Am, where each Ai is an n × n integer
matrix with each entry bounded in absolute value by M. Then, Cap(T )≥ 1

(Mmn3)n .

As discussed above, this implies the following theorem to check if a completely
positive operator is rank nondecreasing or, equivalently, if its capacity is positive.

Theorem 5.8. (Checking if a completely positive operator is rank nondecreas-
ing [102]) There is an algorithm that, given a completely positive operator T given
by A1, . . . ,Am, where each Ai is an n ×n integer matrix with each entry bounded in
absolute value by M, decides if T is rank nondecreasing or not in time polynomial
in n,m, and logM.

While we did bound the number of iterations needed by Gurvits’ operator scaling
algorithm for the above theorem, we omitted a discussion on ensuring that the bit
complexity of the numbers that arise in the execution of the algorithm remain poly-
nomially bounded in the input bit length; see [102] for details.

[102] also show how an adaptation of Gurvits’ operator scaling algorithm can be
used to obtain an approximation of the operator capacity. We omit the algorithm and
the proof.

Theorem 5.9. (Approximating the capacity of an operator [102]) There is an al-
gorithm that, given a completely positive operator T on dimension n, and described
by b bits, outputs a 1+ε multiplicative approximation to Cap(T ) in time polynomial
in n,b, 1

ε
.

In a subsequent work, Bürgisser, Garg, Oliveira, Walter, and Wigderson [61] present
a generalization of operator scaling to tensor scaling; we omit the details. We note
that, unlike the matrix and operator scaling case, to test scalability, it is not sufficient
to take ε which is polynomially small. Currently, there is no known polynomial time
algorithm for testing the scalability of tensors.

In another follow-up work, Bürgisser, Franks, Garg, Oliveira, Walter, and Wigder-
son [59] study the nonuniform version of scaling where one is given prescribed
marginals and an input matrix/operator/tensor, and the goal is to decide if we can
scale the input to have the prescribed marginals. For instance, instead of scaling a
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nonnegative matrix so that the row sums and column sums are all one, one may ask
to find a scaling to a specified row sum vector r and a column sum vector c. In the
matrix scaling case, the theory of nonuniform scaling is not much different from the
theory of uniform scaling. However in the operator and tensor scaling settings, the
nonuniformity presents additional challenges; see [59].

5.2.3 Noncommutative singularity and identity testing

Let A1, . . . ,Am ∈ Mn(C) and consider x1, . . . ,xm to be noncommutative variables.
The algorithmic problem, which is a noncommutative version of Edmonds’ sin-
gularity problem, is to check if L := ∑

m
i=1 xiAi is invertible (nonsingular) over the

skew-field (also known as division ring or field of fractions) of x1, . . . ,xn. This no-
tion of nonsingularity is nontrivial to define and there are several equivalent ways
to do it. Perhaps the simplest is if there is a way of “plugging in” a matrix for each
xi to get an invertible matrix, i.e., do there exist d×d matrices B1, . . . ,Bm (for some
d) s.t. ∑

m
i=1 Bi⊗Ai is invertible.

The connection between the noncommutative singularity problem and the capac-
ity of a completely positive operator is as follows: Consider the completely positive
operator L(X) := ∑

m
i=1 AiXA†

i defined by the matrices A1, . . . ,Am input to the non-
commutative singularity problem. Then, ∑

m
i=1 xiAi is singular over the skew-field if

and only if there is an X ≻ 0 such that rank(L(X)) < rank(X), i.e., the completely
positive operator L is rank decreasing. Thus, from Theorem 5.8, it immediately fol-
lows that the problem of checking noncommutative singularity is in P.

Theorem 5.10. (Noncommutative singularity testing [102]) There is a determin-
istic algorithm that, given m n×n matrices A1, . . . ,Am whose entries need at most b
bits to represent, decides in time poly(n,m,b) if the matrix L=∑

m
i=1 xiAi is invertible

over the free skew field.

Polynomial identity testing, in the commutative setting, captures the polynomial and
rational function identity test for formulas [278]. The same is not true in the non-
commutative setting. However, Cohn [72] proved that there is an efficient algorithm
that converts every arithmetic formula φ(x) in noncommuting variables of size s to
a symbolic matrix Lφ of size poly(s), such that the rational expression computed by
φ is identically zero if and only if Lφ is singular. Theorem 5.10 implies that there
is a deterministic algorithm that, for any noncommutative formula over Q of size s
and bit complexity b, determines in poly(s,b) steps if it is identically zero. Thus,
the noncommutative rational identity testing problem is in P; see also the works of
[144, 128] for different proofs of this result. Note that Theorem 5.10 requires ac-
cess to the matrices A1, . . . ,Am. The problem of proving an analogous result when
we have only black-box access to ∑

m
i=1 xiAi remains open. We note that, in the non-

commutative setting, inversions are nontrivial to handle, while in the commutative
setting we can push them out and eliminate them. Indeed, an efficient deterministic
algorithm to check if a noncommutative formula without inversions is identically
zero is known; see Raz and Shpilka [225].
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5.2.4 Brascamp–Lieb constants

Let n, m, and (n j) j∈[m] be positive integers and p := (p j) j∈[m] be nonnegative real
numbers. Let B := (B j) j∈[m] be an m-tuple of linear transformations where B j is
a surjective linear transformation from Rn to Rn j . The corresponding Brascamp–
Lieb datum is denoted by (B, p). The Brascamp–Lieb inequality states that for each
Brascamp–Lieb datum (B, p) there exists a constant C(B, p) (not necessarily finite)
such that for any selection of real-valued, nonnegative, Lebesgue measurable func-
tions f j where f j : Rn j → R,

∫
x∈Rn

(
∏
j∈[m]

f j(B jx)p j

)
dx≤C(B, p) ∏

j∈[m]

(∫
x∈Rn j

f j(x)dx
)p j

. (17)

The smallest constant that satisfies (17) for any choice of f := ( f j) j∈[m] satisfying
the properties mentioned above is called the Brascamp–Lieb constant and we denote
it by BL(B, p). Brascamp–Lieb inequalities generalize many inequalities used in
analysis and all of mathematics, such as the Hölder inequality and the Loomis–
Whitney inequality; see the paper by Brascamp and Lieb [52].

A Brascamp–Lieb datum (B, p) is called feasible if BL(B, p) is finite, otherwise,
it is called infeasible. Bennett, Carbery, Christ, and Tao [41] proved that the constant
BL(B, p) is nonzero whenever p belongs to the set PB ⊆ Rm defined as follows:

PB :=
{

p ∈ Rm
≥0 : ∑

m
j=1 p j dim(B jU)≥ dim(U), for every lin. subspace U ⊆ Rn

}
.

Note that the above definition has infinitely many linear constraints on p as V varies
over different subspaces of Rn. However, there are only finitely many different linear
restrictions as dim(B jV ) can only take integer values from [n j]. Consequently, PB is
a convex set and, in particular, a polytope. Examples of Brascamp–Lieb polytopes
include matroid basis polytopes and linear matroid intersection polytopes; see [103].

A Brascamp–Lieb inequality is nontrivial only when (B, p) is a feasible Brascamp–
Lieb datum. Therefore, it is of interest to characterize feasible Brascamp–Lieb data
and compute the corresponding Brascamp–Lieb constant. Towards this, Lieb [181]
showed that one needs to consider only Gaussian functions as inputs for (17). This
result suggests the following characterization of the Brascamp–Lieb constant as an
optimization problem.

Theorem 5.11. (Gaussian maximizers [181]) Let (B, p) be a Brascamp–Lieb da-
tum with B j ∈ Rn j×n for each j ∈ [m]. Then,

1
BL(B, p)2 = inf

det
(

∑
m
j=1 p jB⊤j YjB j

)
∏

m
j=1 det(Yj)

p j
: Yj ∈ Rn j×n j ,Yj ≻ 0, j = 1,2, . . . ,m

 .

(18)
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One of the computational questions concerning the Brascamp–Lieb inequality is:
Given a Brascamp–Lieb datum (B, p), can we compute BL(B, p) in time that is
polynomial in the number of bits required to represent the datum? Since computing
BL(B, p) exactly may not be possible due to the fact that this number may not be
rational even if the datum (B, p) is, one seeks an arbitrarily good approximation.
Formally, given the entries of B and p in binary, and an ε > 0, compute a number Z
such that

BL(B, p)≤ Z ≤ (1+ ε) BL(B, p)

in time that is polynomial in the combined bit lengths of B and p and log 1
ε
.

There are a few obstacles to this problem: (a) Checking if a given Brascamp–Lieb
datum is feasible is not known to be in P. (b) The formulation of the Brascamp–Lieb
constant by Lieb [181] as in (18) is neither concave nor logconcave in the usual
sense. Thus, techniques developed in the context of linear and convex optimization
do not seem to be directly applicable.

Garg, Gurvits, Oliviera, and Wigderson [103] gave an algorithm to compute the
Brascamp–Lieb constant in polynomial time when the vector p is rational and given
in unary. More precisely, the running time of their algorithm to compute BL(B, p) up
to multiplicative error 1+ε has a polynomial dependency to ε−1 and the magnitude
of the denominators in the components of p rather than the number of bits required
to represent them. They also presented algorithms with similar running times for
checking if a Brascamp–Lieb datum is feasible, or if a given point is approximately
in the Brascamp–Lieb polytope. The key idea in [103] is to use Lieb’s characteriza-
tion (Theorem 5.11) to reduce the problem of computing BL(B, p) to the problem of
computing the capacity of a completely positive operator. We note that the special
case when the matrices are of rank 1; i.e., B j ∈ R1×n for every j = 1,2, . . . ,m was
studied in [264]. By interpreting Brascamp–Lieb constants in the rank-1 regime as
solutions to certain entropy-maximization problems, [253, 264] showed that they
can be computed, up to a multiplicative precision ε > 0, in time polynomial in m
and log 1

ε
.

The reduction. Let p j =
c j
c for integers (c j) j∈[m] and c. [103] construct a completely

positive operator TB,p such that Cap(TB,p)=
1

BL(B,p)2 . Let m′ :=∑
m
j=1 c j and consider

a mapping σ : [m′]→ [m] which maps all those i to j that satisfy

∑
k< j

ck < i≤ ∑
k≤ j

ck.

Let Mi j be an nσ(i)× n matrix that is zero if σ(i) ̸= j and Bγ(i) if γ(i) = j. Now,
for ℓ ∈ [m′] define Aℓ to be the block matrix whose rows are Miℓ for i ∈ [m′]. TB,p is
now a rectangular completely positive operator from Mnc(C)→Mn(C) that maps a
positive definite X to ∑i∈[m′] A

†
i XAi.

Recall the capacity of a nonsquare completely positive operator (Definition 5.6):

Cap(TB,p) := inf
{(

det(TB,p(X))

c

)
: X ≻ 0, det(X)

1
c = 1

}
.
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Given the block form of each Ai, it follows that

TB,p(X) =
m′

∑
i=1

B†
σ(i)XiBσ(i),

where Xi is an appropriate submatrix of X . Thus, it follows from the basic properties
of the determinant that we can write

Cap(TB,p) = inf

det

∑
m′
i=1 B†

σ(i)XiBσ(i)

c

 : Xi ≻ 0,
m′

∏
i=1

det(Xi) = 1

 .

Replace ∑i:σ(i)= j Xi by c jYj to obtain

Cap(TB,p) = inf

{
det

(
∑

m
j=1 c jB

†
jYjB j

c

)
: Yj ≻ 0,

m

∏
j=1

det(Yj)
c j = 1

}
=

1
BL(B, p)2

via Theorem 5.11. To ensure we can use the algorithm developed for capacity, we
also need to also prove that TB,p is rank nondecreasing. Towards this, first, we need
to extend the notion of rank nondecreasing to nonsquare operators and then show
that it satisfies this property; see [103] for the details.

Note that this construction does not lead to an optimization problem whose di-
mension is polynomial in the input bit length as the size of the constructed operator
in the operator scaling problem depends exponentially on the bit lengths of the en-
tries of p. From the geodesic convexity of capacity (discussed in Section 5.3), it
follows that the Brascamp–Lieb constant is also a solution to a geodesically convex
optimization problem. A succinct geodesically convex formulation was provided in
[259].

5.2.5 Polynomial capacity

A basic version of the capacity of polynomials was considered in a paper by Gurvits
and Samorodnitsky [125] and then generalized to operators (Definition 5.6) by
[124]. Subsequently, Gurvits defined a notion of capacity for hyperbolic polyno-
mials in [124] and used it to prove a generalization of van der Waerden conjecture
by Bapat [27] for mixed discriminants. In this section, we present this notion of
polynomial capacity just for the setting of the permanent. For an n×n nonnegative
matrix A, consider the polynomial

fA(x1, . . . ,xn) :=
n

∏
i=1

n

∑
j=1

Ai, jx j.

[124] considered the following notion of capacity:
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Cap( fA) := inf

{
fA(x1, . . . ,xn) : xi > 0,

n

∏
i=1

xi = 1

}
. (19)

It is easily checked that if A is stochastic then 0≤ Cap( fA)≤ 1, and Cap( fA) = 1 if
and only if A is doubly stochastic. The main result of [124] when specialized for the
above polynomial implied that

Per(A)≥
(

n!
nn

)
Cap( fA),

giving an alternate proof of the van der Waerden conjecture (Theorem 5.2). Thus,
Cap( fA) is an e−n approximation to Per(A). One can also replace the permanent
potential function with the capacity in the proof of [185] presented in Section 5.1.
Moreover, after introducing new variables yi = logxi and replacing the objective
with log fA(x1, . . . ,xn), one obtains a convex program that can be solved efficiently;
see [124, 253, 262, 264]. This gives an alternate proof of Theorem 5.3. As discussed
in previous sections, [124] arrived at this notion of capacity while trying to extend
the work of Linial, Samorodnitsky, and Wigderson [185] to Edmonds’ singularity
problem. The proof technique in [124] relied on the location of the roots of the poly-
nomial under consideration ( fA in the case of permanent). This viewpoint itself has
had far-reaching consequences in theoretical computer science and mathematics;
see [280].

5.3 Capacity and geodesic convex optimization

In the most general setting, an optimization problem takes the form

inf
x∈K

f (x),

for some set K and some function f : K → R.11 When K ⊆ Rd , we can talk about
the convexity of K and f . K is said to be convex if any “straight line” joining two
points in K is entirely contained in K, and f is said to be convex if, on any such
straight line, the average value of f at the endpoints is at least the value of f at the
mid-point of the line. When f is “smooth” enough, there are equivalent definitions
of convexity in terms of the standard differential structure in Rd : the gradient or
the Hessian of f . Thus, convexity can also be viewed as a property arising from
the interaction of the function and how we differentiate in Rn; e.g., the Hessian
of f at every point in K should be positive semi-definite. When both K and f are
convex, the optimization problem is called a convex optimization problem. The fact
that the convexity of f implies that any local minimum of f in K is also a global
minimum, along with the fact that computing gradients and Hessians is typically

11 Part of this section draws from [281].



On the works of Avi Wigderson 683

easy in Euclidean spaces, makes it well-suited for developing first-order algorithms
such as gradient descent and second-order algorithms such as interior point methods.
Analyzing the convergence of these methods boils down to understanding how well-
behaved derivatives of the function are, and there is a well-developed theory of
algorithms for convex optimization; see [51, 203, 282].

Several optimization problems, however, are nonconvex. An important example
is that of the capacity of a completely positive operator (Definition 5.6)

Cap(T ) := inf{det(T (X)) : X ≻ 0, det(X) = 1}= inf
{

det(T (X))

det(X)
: X ≻ 0

}
, (20)

which is nonconvex as the objective function is nonconvex. However, [102] ob-
served a curious property of the capacity: Consider the following Lagrangian of this
optimization problem:

f (X ,λ ) := logdet(T (X))+λ · logdetX ,

where λ is the multiplier for the constraint. Then, any X for which ∇X f (X ,λ ) =
0 is an optimal solution to Equation (20). Bürgisser, Garg, Oliveira, Walter, and
Wigderson [61] mention that the capacity optimization problem, while nonconvex,
is geodesically convex. While the domain of positive definite matrices is convex
in the ordinary sense, the key to showing that capacity optimization is geodesically
convex is to view this space as a manifold and redefine what it means to be a straight
line by introducing a metric.

This redefinition of a straight line entails the introduction of a different differen-
tial structure. Roughly speaking, a manifold is a topological space that locally looks
like Euclidean space. “Differentiable manifolds” are a special class of manifolds
that come with a differential structure that allows one to do calculus over them.
Straight lines on differential manifolds are called “geodesics”, and a set that has
the property that a geodesic joining any two points in it is entirely contained in the
set is called geodesically convex (with respect to the given differential structure). A
function that has this property that its average value at the end points of a geodesic
is at least the value of f at the mid-point of the geodesic is called geodesically con-
vex (with respect to the given differential structure). And, when K and f are both
geodesically convex, the optimization problem is called a geodesically convex op-
timization problem. Geodesically convex functions also have key properties similar
to convex functions such as the fact that a local minimum is also a global minimum.

Allen-Zhu, Garg, Li, Oliveira, and Wigderson [7] develop first-order and second-
order methods for a class of geodesically convex optimization problems that include
capacity. In this section, we first introduce the basics of geodesic convexity (Section
5.3.1), show that the capacity optimization problem in Equation (20) is geodesically
convex (Section 5.3.2), and give a high-level view of the algorithms in [7] (Section
5.3.3). We do not develop a theory of geodesic convexity here but give the minimal
details to ensure that we can argue that the capacity function in (20) is geodesically
convex; see [273, 281] for a thorough treatment on geodesic convexity.
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5.3.1 The Riemannian geometry of positive definite matrices and geodesic
convexity

For simplicity, here we consider the case of real symmetric matrices and symmet-
ric positive definite matrices. Let Sn denote the space of all n× n real symmetric
matrices and let Sn

++ denote the space of all n× n symmetric positive definite ma-

trices. Sn
++ is a smooth manifold and the tangent space at P ∈ Sn

++ is R
n(n+1)

2 which
is homeomorphic to Sn for each P ∈ Sn

++. We consider the metric induced by the
Hessian of the function: − logdet(P) for a positive definite matrix P. This function
is convex and the metric is

gP(U,W ) := Tr[P−1UP−1W ]

for P ∈ Sn
++ and U,W ∈ Sn. gP is clearly symmetric, bilinear, and positive definite.

It is also nondegenerate as Tr[P−1UP−1W ] = 0 for every W implies

Tr[P−1UP−1U ] = Tr[P−
1
2 UP−

1
2 P−

1
2 UP−

1
2 ] = 0

or equivalently P−
1
2 UP−

1
2 = 0. Since P is a nonsingular matrix, P−

1
2 UP−

1
2 = 0 is

equivalent to U = 0. Next, we observe that Sn
++ with g is a Riemannian manifold.

This follows from the observation that gP varies smoothly with P.
Since the metric tensor allows us to measure distances on a Riemannian mani-

fold, there is an alternative, and sometimes useful, way of defining geodesics on it:
as length-minimizing curves. Before we can define a geodesic in this manner, we
need to define the length of a curve on a Riemannian manifold. This gives rise to a
notion of distance between two points as the minimum length of a curve that joins
these points. Using the metric tensor we can measure the instantaneous length of a
given curve. Integrating along the vector field induced by its derivative, we can mea-
sure the length of the curve. And, we can then define the shortest curve – geodesic
– that connects two points.

It is well-known that the geodesic with respect to the Hessian of the log-
determinant metric that joins P to Q on Sn

++ can be parameterized as follows (see
[43]):

ρ(t) := P
1
2 (P−

1
2 QP−

1
2 )tP

1
2 . (21)

Thus, ρ(0) = P and ρ(1) = Q.
In general, let (M,g) be a Riemannian manifold. A set K ⊆ M is said to be

geodesically convex with respect to g if, for any p,q ∈ K, any geodesic ρpq that
joins p to q lies entirely in K. It follows from Equation (21) that Sn

++ is a geodesi-
cally convex set with respect to the metric defined above.

Definition 5.12 (Geodesically convex function). Let (M,g) be a Riemannian mani-
fold and K ⊆M be a geodesically convex set with respect to g. A function f : K→R
is said to be a geodesically convex function with respect to g if for any p,q ∈ K, and
for any geodesic ρ pq : [0,1]→ K that joins p to q,
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∀t ∈ [0,1] f (γpq(t))≤ (1− t) f (p)+ t f (q).

logdet(X) is geodesically both convex and concave on Sn
++ with respect to the met-

ric gX (U,V ) := Tr[X−1UX−1V ]. To see this, let X ,Y ∈ Sn
++ and t ∈ [0,1]. Then, the

geodesic joining X to Y is

ρ(t) = X
1
2 (X−

1
2 Y X−

1
2 )tX

1
2 .

Thus,

logdet(ρ(t)) = logdet(X
1
2 (X−

1
2 Y X−

1
2 )tX

1
2 ) = (1− t) logdet(X)+ t logdet(Y ).

Therefore, logdet(X) is a geodesically linear function over the positive definite cone
with respect to the metric g.

5.3.2 Geodesic convexity of capacity

We now show that the capacity of a completely positive operator T is a geodesically
convex optimization problem. First, we show that T (X) is “geodesically convex”.
In other words, for any geodesic, ρ : [0,1]→ Sn

++,

∀t ∈ [0,1], T (ρ(t))⪯ (1− t)T (ρ(0))+ tT (ρ(1)). (22)

Write T (X) := ∑
m
i=1 AiXA⊤i for some n× n matrices Ai. Consider the geodesic

ρ(t) := P
1
2 exp(tQ)P

1
2 for P ∈ Sn

++ and Q ∈ Sn. The second derivative of T along ρ

is
d2T (ρ(t))

dt2 =
m

∑
i=1

AiP
1
2 Qexp(tQ)QP

1
2 A⊤i = T (P

1
2 Qexp(tQ)QP

1
2 ).

Since P
1
2 Qexp(tQ)QP

1
2 is positive definite for any t ∈ [0,1], T (P

1
2 Qexp(tQ)QP

1
2 )

is also positive definite as T is a strictly positive operator. Consequently, d2

dt2 T (ρ(t))
is positive definite, and (22) holds.

Now, we argue that logdet(T (X)) is also geodesically convex. We need to show
that the Hessian of logdet(T (X)) is positive semi-definite along any geodesic. Let
us consider the geodesic ρ(t) := P

1
2 exp(tQ)P

1
2 for P ∈ Sn

++ and Q ∈ S, and let
h(t) := logdet(T (ρ(t))). The second derivative of logdet(T (X)) along ρ is:

d2h(t)
dt2 =Tr

[
−T (ρ(t))−1 d

dt
T (ρ(t))T (ρ(t))−1 d

dt
T (ρ(t))+T (ρ(t))−1 d2

dt2 T (ρ(t))
]
.

Thus, we need to verify that d2h(t)
dt2

∣∣∣
t=0
≥ 0. In other words, we need to show that

Tr
[
T (P)−1

(
T (P

1
2 Q2P

1
2 )−T (P

1
2 QP

1
2 )T (P)−1T (P

1
2 QP

1
2 )
)]
≥ 0.
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In particular, if we show that

T (P
1
2 Q2P

1
2 )⪰ T (P

1
2 QP

1
2 )T (P)−1T (P

1
2 QP

1
2 ),

then we are done. Let us define another strictly positive linear operator

T ′(X) := T (P)−
1
2 T (P

1
2 XP

1
2 )T (P)−

1
2 .

If T ′(X2) ⪰ T ′(X)2, then by picking X = Q we arrive at the conclusion. This in-
equality is an instance of Kadison’s inequality, see [43] for more details. There-
fore, logdet(X) is a geodesically convex function. We can now conclude that
logdetT (X)− logdetX is geodesically convex as logdetX is geodesically linear.

Theorem 5.13. (Geodesic convexity of capacity [168, 258]) Let T (X) be a com-
pletely positive linear operator. Then, det(T (X)

det(X) is geodesically convex on Sn
++ with

respect to the metric gX (U,W ) := Tr[X−1UX−1W ].

5.3.3 Computing the capacity via geodesically convex optimization

As discussed in Section 5.2.5, for polynomial capacity, one can make an appropriate
change of variables and make the polynomial capacity optimization problem convex
with respect to the Euclidean metric. This allows for the deployment of standard
convex optimization techniques to obtain algorithms that run in time polynomial
in n, logM, log 1

ε
); see [154, 71, 8, 264]. The main result of Allen-Zhu, Garg, Li,

Oliviera, and Wigderson [7] is an algorithm which ε-approximates capacity and runs
in time polynomial in n,m, logM and log 1

ε
, where M denotes the largest magnitude

of an entry of Ai. Thus, it improves upon the result of [102] presented in Section
5.2 which runs in time polynomial in n,m, logM, 1

ε
. The algorithm of [7] finds an

Xε ≻ 0 such that

logdet(T (Xε))− logdet(Xε)≤ logCap(T )+ ε.

Their algorithm is a geodesic generalization of the “box-constrained” Newton’s
method introduced in [71, 8]. In each iteration, their algorithm expands the objec-
tive into its second-order Taylor expansion and then solves it via Euclidean convex
optimization; see [51, 203, 282] for Newton’s method in Euclidean space. Their al-
gorithm is a general second-order method and applies to any geodesically convex
problem (over the space of positive definite matrices) that satisfies a particular “ro-
bustness” property. This robustness property asserts that the function behaves like
a quadratic function in every “small” neighborhood with respect to the metric, it
is weaker than self-concordance, and it was introduced in the Euclidean space in
[71, 8].
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Roughly speaking, their algorithm starts with an X0 = I and computes Xt+1 from
Xt by solving a constrained Euclidean convex quadratic minimization problem as

follows: For a symmetric matrix H, let f t(H) := F(X
1
2

t eHX
1
2

t ). Let qt be the second-
order Taylor approximation of f t around H = 0. Since F is geodesically convex, qt

is convex in the ordinary sense. Thus, one can optimize qt(H) under the constraint
∥H∥2 ≤ 1

2 (this is the box constraint). If Ht is the optimizer to this constrained op-

timization problem, Xt+1 := X
1
2

t eHt X
1
2

t . [7] show that after about R log 1
ε

iterations,
this algorithms produces an ε-approximate minimizer to F . Here R is a bound on
the distance of each iterate to the optimal solution.

For the operator scaling problem, the function F(X) := logdet
(
∑

m
i=1 AiXA⊤i

)
−

logdet(X) which is geodesically convex over the Riemannian manifold of positive
definite matrices. They show how to modify this function slightly and provide a
bound for R (or rather an alternative to it).

As an application, [7] present a polynomial time algorithm for an equivalence
problem for the left-right group action underlying the operator scaling problem. This
yields a deterministic polynomial-time algorithm for (commutative) PIT problems;
we omit the details, see [7].

5.4 The null-cone problem, invariant theory, and noncommutative
optimization

We present a summary of the paper by Bürgisser, Franks, Garg, Oliveira, Walter,
and Wigderson [59, 60] that generalizes and unifies many prior works and initi-
ates a systematic development of a theory of noncommutative optimization under
symmetries. We start by presenting some basics in Section 5.4.1. In Section 5.4.2,
we introduce the general definition of capacity and that of the null cone. In Sec-
tion 5.4.3, we introduce the notion of a moment map that leads to connections with
geodesic convexity and noncommutative duality. Finally, in Section 5.4.4, we men-
tion the computational problems and the algorithmic results from [60].

5.4.1 Groups, orbits, and invariants

We consider a vector space V ∼= Cm for some m. Given a group G, the action of G
on V is a function φ : G×V → V for which we write φ(g,v) as just g · v. A group
action must further satisfy the properties that g · (h ·v) = (gh) ·v and e ·v = v, where
e is the identity element in G. An orbit of v ∈V under a given action of G is the set

Ov := {w ∈V : w = g · v for some g ∈ G}.

The closure of an orbit Ov is denoted by Ov.
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A group representation π is a map from an element g ∈ G to an invertible linear
transformation π(g) of the vector space V (or GL(V )). Enforcing π to be a group
homomorphism (i.e., for any g1,g2 ∈G we have π(g1g2) = π(g1)π(g2)) implies the
action g · v := π(g)v is a group action.

Invariant polynomials are polynomial functions on V that are invariant by the
action of G. The ring of invariant of polynomials is denoted by C[V ]G and is finitely
generated due to a theorem of Hilbert [132, 133]. It is known that for two vectors
v1,v2 ∈ V , their orbit-closures intersect if and only if p(v1) = p(v2) for all p ∈
C[V ]G; see [201].

As an example, operator scaling can be viewed as a special case of the left-right
action of G = SLn(C)×SLn(C) on V = (Cn×n)m:

π(C,D) · (A1, . . . ,Am) := (CA1D†, . . . ,CAmD†).

Here, the invariants for the left-right action are generated by polynomials of the
form det(∑m

i=1 Ei ⊗ Ai), where Ei are complex d × d matrices for some d. Der-
sken and Makam [77] prove that d ≤ n5 suffices. This implies that, to check if the
orbit-closures for two (A1, . . . ,Am) and (B1, . . . ,Bm) under the left-right action of
SLn(C)×SLn(C), it suffices to check if det(∑m

i=1 Yi⊗Ai) = det(∑m
i=1 Yi⊗Bi) for all

d×d matrices Yis on disjoint sets of variables for d ≤ n5. This is an instance of the
ordinary PIT problem and a deterministic algorithm for this problem is provided by
the algorithm in [7] discussed in Section 5.3.3.

5.4.2 Capacity and the null cone

[60] generalize operator scaling and the algorithmic results for it to the case when
π is any representation of G = GLn(C). To do so, one needs to assume that V is
equipped with an inner product ⟨·, ·⟩ which defines a norm ∥v∥ :=

√
⟨v,v⟩. For a

representation π , [60] define the capacity of an element v ∈V as

Cap(v) := inf
g∈G
∥π(g)v∥. (23)

In the commutative (torus) case, this is precisely the notion of polynomial capacity
introduced by Gurvits [124] (Section 5.2.5). In the left-right action case, the notion
of operator capacity (Definition 5.6) and the one in Equation (23) can also be seen
to coincide.

A natural question is: For what v is Cap(v) = 0? This brings us to the notion of
the null cone of V , which is defined as follows:

N := {v ∈V : Cap(v) = 0}.

Thus, the null cone is the set of all vectors v ∈V whose orbit closure contains 0.
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5.4.3 Geodesic convexity, moment map, and noncommutative duality

For a representation π of GLn(C), a vector v ∈ V , and an H ∈ H (n), consider
log∥π(etH)v∥ as a function of t. Here, etH is the matrix exponential and is a geodesic
in GLn(C) starting at the identity element in the direction H. This function can be
proved to be convex in t, making a connection to geodesic convexity; see [60] for
details. The derivative of this function at time t = 0 gives rise to the moment map
µ(v) for v ∈V as follows: For an H ∈H (n),

⟨µ(v),H⟩ :=
∂ log∥π(etH)v∥

∂ t
(0).

Thus, a moment map can be viewed as a noncommutative version of the gradient
in a suitably defined Riemannian manifold that arises from the symmetries of non-
commutative groups [60]. Hence, as ∥π(g)v∥ tends to Cap(v) with g, µ(v) tends to
zero.

For H ∈H(n), let spec(H) := (λ1, . . . ,λn), where λ1 ≥ ·· · ≥ λn are the eigenval-
ues of H. The moment polytope of v, denoted by ∆(v), is the closure of the set of
eigenvalues of µ(w) as w varies in the orbit of v:

∆(v) := {spec(µ(w) : w ∈ Ov}.

It is a nontrivial result that ∆(v) is a convex polytope [165, 21, 202].
It was proved by Kempf and Ness [163] that v is not in the null-cone N if

and only if µ(w) = 0 for some w in the orbit closure of v, or 0 ∈ ∆(v). This is an
important result and can be viewed as a noncommutative analog of Farkas’ Lemma
in the commutative world. Thus, we can draw an analogy to convex optimization: If
we view the moment map as the gradient of the action of π at the identity element,
then the ∥w∥ is minimized when the gradient is zero. v is in the null cone if and only
if Cap(v) = 0.

One of the key structural results in [60] is a quantitative version of the Kempf–
Ness theorem.

Theorem 5.14. (Noncommutative duality [60]) For a unit vector v in V ,

1− ∥µ(v)∥
γ(π)

≤ Cap2(v)≤ 1− ∥µ(v)∥
2

4N(π)
.

Here, the weight norm N(π) is defined to be the maximum Euclidean norm of a
weight that occurs in π . A weight vector λ ∈ Zn occurs in π if one of its irreducible
subspaces is of type λ . And, the weight margin γ(π) is the minimum Euclidean
distance between the origin and the convex hull of any subset of the weights of
π that does not contain the origin. The weights arise in the study of irreducible
representations of π and we direct the reader to [60] for a discussion on them.
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For matrix scaling (the left-right action by special torus group), it can be shown
that γ(π)≥ 1

poly(n) . For operator scaling too (with the left-right action by SLn(C)×
SLn(C)), it can be shown that γ(π)≥ 1

poly(n) .

5.4.4 Noncommutative optimization under symmetries

[60] study a variety of general and related problems related to orbits of group ac-
tions.

1. Null cone membership problem: Given (π,v), check if v ∈N .
2. Moment polytope membership problem: Given (π,v, p), check if p ∈ ∆(v).
3. Norm-minimization problem: Given (π,v,ε) such that Cap(v) > 0, output a

g ∈ G such that log∥π(g) · v∥− logCap(v)≤ ε .
4. Scaling problem: Given (π,v, p,ε) such that p ∈ ∆(v), output an element g ∈G

such that ∥spec(µ(π(g)v))− p∥ ≤ ε .

[60] discuss how these problems capture a diverse set of problems in different areas
of computer science, mathematics, and physics. We already discussed the appli-
cation to approximating the permanent (Section 5.1), noncommutative singularity
testing (Section 5.2.3), and computing Brascamp–Lieb constants (Section 5.2.4).
Other applications include the Horn problem: Do there exist three Hermitian matri-
ces A,B,C with prescribed eigenvalues such that A+B =C?, the quantum marginal
problem: Given density matrices describing local quantum states, is there a global
pure state consistent with the local states? Moreover, these problems also connect
to geometric complexity theory (GCT) [200] that formulates a variant of VP vs.
VNP question as checking if the (padded) permanent lies in the orbit-closure of the
determinant (of an appropriate size), under the action of the general linear group on
polynomials induced by its natural linear action on the variables.

[60] also show how, sometimes, these abovementioned problems may reduce
to each other and discuss multiple ways in which the input may be specified. For
instance, in the operator scaling problem π is fixed (and not part of the input) while,
in general, one could be given an oracle to π(g)v for a g ∈ G and an input vector v.
p and ε are assumed to be given in binary and they present algorithms that run in
time both a polynomial in 1

ε
and in log 1

ε
. [60] note that techniques from [253, 264]

can be used to design polynomial time algorithms for commutative null cone and
moment polytope membership in the oracle setting.

Prior works for these problems, including the ones discussed in Section 5.1 and
5.2, the underlying groups need to be products of at least two copies of rather spe-
cific linear groups (SL(n)s or tori), to support the algorithms and analysis. More
importantly, these actions were linear in each of the copies. In [60], arbitrary group
actions of GLn that can be described by a representation, are handled. They de-
velop two general methods, a first-order and a second-order method, which require
information about the gradient and the Hessian of the function to be optimized.
Their algorithms rely on the connection of the moment map to geodesic convexity
and the running time bounds depend on the quantitative parameters – weight norm
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and weight margin – arising in their quantitative version of noncommutative duality
(Theorem 5.14). The main technical work goes into showing how these parameters
control convergence to the optimum in each of these methods.

The first-order method of [60] is a natural analog of gradient descent. For the
problem of computing Cap(v), it starts with an element g0 = I (the identity element
in G) and repeats for τ iterations and a suitable “step-size” η > 0 the following:

gt+1 := e−ηµ(π(gt )v)gt .

They show that there is a choice of η such that this method, when Cap(v)> 0, finds

a g such that ∥µ(π(g)v)∥ ≤ ε for τ =
(

N(π)2

ε2 | logCap(v)|
)
. This approximately

solves the scaling problem for p = 0. The generalization to p ̸= 0 is also presented.
Their second-order method, at a high-level, repeatedly optimizes quadratic Tay-

lor expansions of the objective in a small neighborhood (similar to Newton’s method
in convex optimization). It is an extension of their method for computing operator
capacity mentioned in Section 5.3.3. The number of iterations it takes for the above-
mentioned scaling problem is Õ

(
N(π)

√
n

γ(π)

(
| logCap(v)|+ log n

ε

))
.

The work of [60] has also led to a host of new challenges in noncommutative
optimization. An important one is to design analogs of the “cutting plane” or the
“interior point methods” in the noncommutative setting. Such algorithms would
likely yield true polynomial time algorithms for Problems 1–4 mentioned above;
see [134] for some progress towards the latter goal. Finally, there are several other
works where the lens of symmetry has been helpful in the design of nonconvex op-
timization and sampling algorithms, see [33, 243, 283, 87, 244, 175, 174, 173] and
the references therein.
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macii, 24(1):51–60, 1988.

197. O. Meir. Toward better depth lower bounds: A KRW-like theorem for strong composition.
Electron. Colloquium Comput. Complex., TR23-078, 2023.

198. R. Meshulam and A. Wigderson. Expanders in group algebras. Combinatorica, 24(4):659–
680, 2004.

199. G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300–317, Dec. 1976.

200. K. D. Mulmuley and M. Sohoni. Geometric complexity theory I: An approach to the P vs.
NP and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.

201. D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory. Ergebnisse der Math-
ematik und Ihrer Grenzgebiete, 3 Folge/A Series of Modern Surveys in Mathematics Series.
Springer Berlin Heidelberg, 1994.

202. L. Ness and D. Mumford. A stratification of the null cone via the moment map. American
journal of mathematics, 106(6):1281–1329, 1984.

203. Y. Nesterov. Introductory lectures on convex optimization, volume 87. Springer Science &
Business Media, 2004.

204. I. Newman. Private vs. common random bits in communication complexity. Inf. Process.
Lett., 39(2):67–71, 1991.

205. A. Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207–210, 1991.
206. N. Nisan. Lower bounds for non-commutative computation (extended abstract). In C. Kout-

sougeras and J. S. Vitter, editors, Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 410–418. ACM, 1991.

207. N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70, 1991.
208. N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,

12(4):449–461, 1992.
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[4] Über die starke Multiplikation von geordneten Graphen. Acta Math. Acad. Sci.

Hungar., 18:235–241 (in German).
[5] On connected sets of points. Ann. Univ. Sci. Budapest. Eötvös Sect. Math.,
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balls, and walls: analysis of a combinatorial game. Amer. Math. Monthly,
96(6):481–493.

[164] (with K. Vesztergombi). Extremal problems for discrepancy. In Irregularities
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Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pages 353–397.
János Bolyai Math. Soc., Budapest.

[227] (with U. Feige, S. Goldwasser, S. Safra and M. Szegedy). Interactive proofs
and the hardness of approximating cliques. J. ACM, 43(2):268–292.

[228] (with A. Kotlov). The rank and size of graphs. J. Graph Theory, 23(2):185–
189.

[229] Information and complexity (how to measure them?). In The emergence
of complexity in mathematics, physics, chemistry and biology (Vatican City,
1992), volume 89 of Pontif. Acad. Sci. Scr. Varia, pages 65–80. Pontif. Acad.
Sci., Vatican City.

1997

[230] The membership problem in jump systems. J. Combin. Theory Ser. B, 70(1):
45–66.

[231] (with J. Pach and M. Szegedy). On Conway’s thrackle conjecture. Discrete
Comput. Geom., 18(4):369–376.

[232] (with D. Aldous and P. Winkler). Mixing times for uniformly ergodic Markov
chains. Stochastic Process. Appl., 71(2):165–185.

[233] (with R. Kannan and M. Simonovits). Random walks and an O∗(n5) volume
algorithm for convex bodies. Random Structures Algorithms, 11(1):1–50.

[234] (with A. Kotlov and S. Vempala). The Colin de Verdière number and sphere
representations of a graph. Combinatorica, 17(4):483–521.



722 List of Publications for László Lovász
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[277] (with S. Vempala). Simulated annealing in convex bodies and an O∗(n4) vol-
ume algorithm. J. Comput. System Sci., 72(2):392–417.

[278] (with N.J.A. Harvey, R.E. Ladner and T. Tamir). Semi-matchings for bipartite
graphs and load balancing. J. Algorithms, 59(1):53–78.

[279] (with M. Saks). A localization inequality for set functions. J. Combin. Theory
Ser. A, 113(4):726–735.

[280] The rank of connection matrices and the dimension of graph algebras. Euro-
pean J. Combin., 27(6):962–970.

[281] (with R. Kannan and R. Montenegro). Blocking conductance and mixing in
random walks. Combin. Probab. Comput., 15(4):541–570.

[282] (with I. Benjamini, G. Kozma, D. Romik and G. Tardos). Waiting for a bat to
fly by (in polynomial time). Combin. Probab. Comput., 15(5):673–683.

[283] (with C. Borgs, J. Chayes, V.T. Sós and K. Vesztergombi). Counting graph
homomorphisms. In Topics in discrete mathematics, volume 26 of Algorithms
Combin., pages 315–371. Springer, Berlin.

[284] (with B. Szegedy). Limits of dense graph sequences. J. Combin. Theory Ser.
B, 96(6):933–957.

[285] (with C. Borgs, J. Chayes, V.T. Sós, B. Szegedy and K. Vesztergombi). Graph
limits and parameter testing. In STOC’06: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, pages 261–270. ACM, New York.

[286] (with S. Arora, B. Bollobás and I. Tourlakis). Proving integrality gaps without
knowing the linear program. Theory Comput., 2:19–51.

[287] (with S. Arora, I. Newman, Y. Rabani, Y. Rabinovich and S. Vempala). Local
versus global properties of metric spaces (extended abstract). In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 41–50. ACM, New York.
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Galois planes. Adv. Geom., 7(1):39–53.
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[297] (with A. Gács and T. Szőnyi). Directions in AG(2, p2). Innov. Incidence
Geom., 6/7:189–201.

[298] (with V.T. Sós). Generalized quasirandom graphs. J. Combin. Theory Ser. B,
98(1):146–163.

[299] (with A. Schrijver). Graph parameters and semigroup functions. European J.
Combin., 29(4):987–1002.

[300] (with C. Borgs, J.T. Chayes, V.T. Sós and K. Vesztergombi). Convergent se-
quences of dense graphs. I. Subgraph frequencies, metric properties and test-
ing. Adv. Math., 219(6):1801–1851.
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graphs and superpolynomial lower bounds for monotone span programs. In
Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of
Computing (Philadelphia, PA, 1996), pages 603–611. ACM, New York.

[102] (with A. Gál). Boolean complexity classes vs. their arithmetic analogs. In
Proceedings of the Seventh International Conference on Random Structures
and Algorithms (Atlanta, GA, 1995), volume 9, pages 99–111.

[103] (with J. Gil and F. Meyer auf der Heide). The tree model for hashing: lower
and upper bounds. SIAM J. Comput., 25(5):936–955.

[104] (with N. Nisan). Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complexity, 6(3):217–234. Also available in 36th Annual Sympo-
sium on Foundations of Computer Science (Milwaukee, WI, 1995), pages 16–
25. IEEE Comput. Soc. Press, Los Alamitos, CA.

[105] (with R. Sharan). A new NC algorithm for perfect matching in bipartite
cubic graphs. In Israel Symposium on Theory of Computing and Systems
(Jerusalem, 1996), pages 202–207. IEEE Comput. Soc. Press, Los Alami-
tos, CA. Also available in Proc. of ISTCS 96, 56–65.

1997

[106] (with O. Goldreich). Tiny families of functions with random properties: a
quality-size trade-off for hashing. In Proceedings of the Workshop on Ran-
domized Algorithms and Computation (Berkeley, CA, 1995), volume 11,
pages 315–343. Also available in Proceedings of the 26th annual ACM sym-
posium on theory of computing, STOC ’94, Montreal, Canada, May 23–25,
1994. New York, NY: Association for Computing Machinery (ACM). 574–
584.



List of Publications for Avi Wigderson 739

1998

[107] (with H. Buhrman and R. Cleve). Quantum vs. classical communication and
computation. In STOC ’98. Proceedings of the 30th annual ACM symposium
on theory of computing (Dallas, TX, 1998), pages 63–68. ACM, New York.

[108] (with A. Condon, L. Hellerstein and S. Pottle). On the power of finite au-
tomata with both nondeterministic and probabilistic states. SIAM J. Comput.,
27(3):739–762. Also available in Proceedings of the 26th annual ACM sym-
posium on theory of computing, STOC ’94, Montreal, Canada, May 23–25,
1994. New York, NY: Association for Computing Machinery (ACM). 676–
685.

[109] (with N. Linial and A. Samorodnitsky). A deteministic strongly polynomial
algorithm for matrix scaling and approximate permanents. In STOC ’98. Pro-
ceedings of the 30th annual ACM symposium on theory of computing (Dallas,
TX, 1998), pages 644–652. ACM, New York.

[110] (with P.B. Miltersen, N. Nisan and Shmuel Safra). On data structures and
asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49.
Also available in Proceedings of the 27th annual ACM symposium on the
theory of computing. STOC ’95. Las Vegas, NV, USA, May 29 – June 1,
1995. New York, NY: ACM. 103–111.

1999

[111] De-randomizing BPP: the state of the art. Proceedings of the Annual IEEE
Conference on Computational Complexity, 76–77.

[112] Probabilistic and deterministic approximations of the permanent. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 1671.

[113] (with R. Armoni, A. Ta-Shma and S. Zhou). SL ⊆ L4/3. In STOC ’97 (El
Paso, TX), pages 230–239. ACM, New York.

[114] (with L. Babai and A. Gál). Superpolynomial lower bounds for monotone
span programs. Combinatorica, 19(3):301–319.

[115] (with Z. Bar-Yossef and O. Goldreich) Deterministic amplification of space-
bounded probabilistic algorithms. Proceedings of the Annual IEEE Confer-
ence on Computational Complexity, 188–198.

[116] (with E. Ben-Sasson). Short proofs are narrow—resolution made simple. In
Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), pages
517–526. ACM, New York. Also available in Proceedings of the Annual
IEEE Conference on Computational Complexity, 2.

[117] (with O. Goldreich). Improved derandomization of BPP using a hitting set
generator. In Randomization, approximation, and combinatorial optimization
(Berkeley, CA, 1999), volume 1671 of Lecture Notes in Comput. Sci., pages
131–137. Springer, Berlin.

[118] (with R. Impagliazzo). P = BPP if E requires exponential circuits: derandom-
izing the XOR lemma. In STOC ’97 (El Paso, TX), pages 220–229. ACM,
New York.



740 List of Publications for Avi Wigderson

[119] (with R. Impagliazzo and R. Shaltiel). Near-optimal conversion of hardness
into pseudo-randomness. In 40th Annual Symposium on Foundations of Com-
puter Science (New York, 1999), pages 181–190. IEEE Computer Soc., Los
Alamitos, CA.

[120] (with I. Parnafes and R. Raz). Direct product results and the GCD problem,
in old and new communication models. In STOC ’97 (El Paso, TX), pages
363–372. ACM, New York.

[121] (with Y. Rabinovich). Techniques for bounding the convergence rate of ge-
netic algorithms. Random Structures Algorithms, 14(2):111–138.

[122] (with A. Razborov and A. Yao). Read-once branching programs, rectangular
proofs of the pigeonhole principle and the transversal calculus. In STOC ’97
(El Paso, TX), pages 739–748. ACM, New York.

[123] (with A. Shpilka). Depth-3 arithmetic formulae over fields of characteristic
zero. In Fourteenth Annual IEEE Conference on Computational Complexity
(Atlanta, GA, 1999), pages 87–96. IEEE Computer Soc., Los Alamitos, CA.

[124] (with D. Zuckerman). Expanders that beat the eigenvalue bound: explicit con-
struction and applications. Combinatorica, 19(1):125–138. Also available in
Proceedings of the 25th annual ACM symposium on theory of computing.
STOC ’93. San Diego, CA, USA, May 16–18, 1993. New York, NY: Associ-
ation for Computing Machinery (ACM). 245–251.

2000

[125] (with M. Alekhnovich, E. Ben-Sasson and A.A. Razborov). Pseudorandom
generators in propositional proof complexity. In 41st Annual Symposium on
Foundations of Computer Science (Redondo Beach, CA, 2000), pages 43–53.
IEEE Comput. Soc. Press, Los Alamitos, CA.

[126] (with M. Alekhnovich, E. Ben-Sasson, A.A. Razborov). Space complexity
in propositional calculus. In Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pages 358–367. ACM, New York.

[127] (with R. Armoni, A. Ta-Shma and S. Zhou). An O(log(n)4/3) space algorithm
for (s, t) connectivity in undirected graphs. J. ACM, 47(2):294–311.

[128] (with O. Goldreich). On Pseudorandomness with respect to Deterministic
Observers. Proceedings of the satellite workshops of the 27th ICALP, Car-
leton Scientific (Proc in Informatics 8), 77–84.

[129] (with R. Impagliazzo and R. Shaltiel). Extractors and pseudo-random gener-
ators with optimal seed length. In Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, pages 1–10. ACM, New York.

[130] (with N. Linial, A. Samorodnitsky). A deterministic strongly polynomial
algorithm for matrix scaling and approximate permanents. Combinatorica,
20(4):545–568.

[131] (with O. Reingold and R. Shaltiel). Extracting randomness via repeated con-
densing. In 41st Annual Symposium on Foundations of Computer Science
(Redondo Beach, CA, 2000), pages 22–31. IEEE Comput. Soc. Press, Los
Alamitos, CA.



List of Publications for Avi Wigderson 741

[132] (with O. Reingold and S. Vadhan). Entropy waves, the zig-zag graph prod-
uct, and new constant-degree expanders and extractors (extended abstract).
In 41st Annual Symposium on Foundations of Computer Science (Redondo
Beach, CA, 2000), pages 3–13. IEEE Comput. Soc. Press, Los Alamitos, CA.

2001

[133] (with N. Alon and A. Lubotzky). Semi-direct product in groups and zig-
zag product in graphs: connections and applications (extended abstract). In
42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV,
2001), pages 630–637. IEEE Computer Soc., Los Alamitos, CA.

[134] (with E. Ben-Sasson). Short proofs are narrow—resolution made simple.
J. ACM, 48(2):149–169.

[135] (with O. Goldreich and S. Vadhan). On interactive proofs with a laconic
prover. In Automata, languages and programming, volume 2076 of Lecture
Notes in Comput. Sci., pages 334–345. Springer, Berlin.

[136] (with R. Impagliazzo). Randomness vs time: derandomization under a uni-
form assumption. J. Comput. Syst. Sci., 63(4):672–688. Also available in
Annual Symposium on Foundations of Computer Science - Proceedings, 734–
743.

[137] (with A. Shpilka). Depth-3 arithmetic circuits over fields of characteristic
zero. Comput. Complexity, 10(1):1–27.

2002

[138] (with M. Alekhnovich, E. Ben-Sasson and A.A. Razborov). Space complex-
ity in propositional calculus. SIAM J. Comput., 31(4):1184–1211.

[139] (with M. Capalbo, O. Reingold and S. Vadhan). Randomness conductors
and constant-degree lossless expanders. In Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory of Computing, pages 659–668. ACM,
New York. Also available in Proceedings of the Annual IEEE Conference on
Computational Complexity, 15.

[140] (with E. Friedgut and J. Kahn). Computing graph properties of random-
ized subcube partitions. In Randomization and approximation techniques in
computer science, volume 2483 of Lecture Notes in Comput. Sci., 105–113.
Springer, Berlin.

[141] (with O. Goldreich). Derandomization that is rarely wrong from short advice
that is typically good. In Randomization and approximation techniques in
computer science, volume 2483 of Lecture Notes in Comput. Sci., pages 209–
223. Springer, Berlin.

[142] (with O. Goldreich and S. Vadhan). On interactive proofs with a laconic
prover. Comput. Complexity, 11(1-2):1–53. Also available in Proc. of the 28th
ICALP, 334–345.

[143] (with R. Impagliazzo and V. Kabanets). In search of an easy witness: expo-
nential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):
672–694. Also available in Conference on Computational Complexity, 2–12,
2001.



742 List of Publications for Avi Wigderson

[144] (with R. Meshulam). Expanders from symmetric codes. In Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages 669–
677. ACM, New York. Also available in Proceedings of the Annual IEEE
Conference on Computational Complexity, 16.

[145] (with A. Razborov and A. Yao). Read-once branching programs, rectangular
proofs of the pigeonhole principle and the transversal calculus. Combinator-
ica, 22(4):555–574.

[146] (with O. Reingold and S. Vadhan). Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Ann. of Math. (2), 155(1):157–187.

2003

[147] On the work of Madhu Sudan. Notices Amer. Math. Soc., 50(1):45–50. Also
available in Mitt. Dtsch. Math.-Ver., (1):64–69, 2003.

[148] Zigzag products, expander constructions, connections, and applications. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), 2914:443.

[149] (with A. Ambainis, L.J. Schulman, A. Ta-Shma and U. Vazirani). The quan-
tum communication complexity of sampling. SIAM J. Comput., 32(6):1570–
1585. Also available in Annual Symposium on Foundations of Computer Sci-
ence - Proceedings, 342–351.

[150] (with B. Barak and R. Shaltiel). Computational analogues of entropy. In Ap-
proximation, randomization, and combinatorial optimization, volume 2764
of Lecture Notes in Comput. Sci., pages 200–215. Springer, Berlin.

[151] (with E. Ben-Sasson, M. Sudan and S. Vadhan). Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 612–
621. ACM, New York.
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[220] (with P. Hrubeš and A. Yehudayoff). An asymptotic bound on the com-
position number of integer sums of squares formulas. Canad. Math. Bull.,
56(1):70–79.

[221] (with G.N. Rothblum and S. Vadhan). Interactive proofs of proximity: dele-
gating computation in sublinear time. In STOC’13—Proceedings of the 2013
ACM Symposium on Theory of Computing, pages 793–802. ACM, New York.

2014

[222] Quantum computing since Democritus. Notices Amer. Math. Soc., 61(10):
1218–1220.

[223] Randomness—a computational complexity perspective. In XVIIth Interna-
tional Congress on Mathematical Physics, pages 254–263. World Sci. Publ.,
Hackensack, NJ. Also available in Computer Science — theory and applica-
tions, volume 5010 of Lecture Notes in Comput. Sci., pages 1–2. Springer,
Berlin.

[224] (with A. Ai, Z. Dvir and S. Saraf). Sylvester-Gallai type theorems for approx-
imate collinearity. Forum Math. Sigma, 2:Paper No. e3, 23 pp.



748 List of Publications for Avi Wigderson

[225] (with Z. Dvir and S. Saraf). Breaking the quadratic barrier for 3-LCC’s over
the reals. In Proceedings of the 46th annual ACM symposium on theory of
computing, pages 784–793. ACM, New York.

[226] (with Z. Dvir and S. Saraf). Improved rank bounds for design matrices and a
new proof of Kelly’s theorem. Forum Math. Sigma, 2:Paper No. e4, 24 pp.

[227] (with D. Gavinsky, O. Meir and O. Weinstein). Toward better formula lower
bounds: an information complexity approach to the KRW composition con-
jecture. In STOC’14—Proceedings of the 2014 ACM Symposium on Theory
of Computing, pages 213–222. ACM, New York.

[228] (with O. Goldreich). On derandomizing algorithms that err extremely rarely.
In STOC’14—Proceedings of the 2014 ACM Symposium on Theory of Com-
puting, pages 109–118. ACM, New York.
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“for his groundbreaking contributions to topology in its broadest sense,
and in particular its algebraic, geometric and dynamical aspects”
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The Norwegian Academy of Science and Letters has decided to award the Abel
Prize for 2022 to Dennis Parnell Sullivan, of Stony Brook University, USA, and
the Graduate School and University Center of the City University of New York,
USA

“for his groundbreaking contributions to topology in its broadest sense, and in particular
its algebraic, geometric and dynamical aspects.”

Topology was born in the late 19th century, as a new, qualitative approach to geom-
etry. In topology a circle and a square are the same, but the surface of the earth and
that of a donut are different. Developing a precise language and quantitative tools for
measuring the properties of objects that do not change when they are deformed has
been invaluable throughout mathematics and beyond, with significant applications
in fields ranging from physics to economics to data science.

Dennis Sullivan has repeatedly changed the landscape of topology by introducing
new concepts, proving landmark theorems, answering old conjectures and formulat-
ing new problems that have driven the field forwards. He has moved from area to
area, seemingly effortlessly, using algebraic, analytic and geometric ideas like a true
virtuoso.

His early work was on the classification of manifolds — spaces which cannot be
distinguished from Euclidean flat space in the small, but which globally are different
(for example, the surface of a sphere is, in the small, roughly a plane). Building on
the work of William Browder and Sergei Novikov, he developed an algebraic topo-
logical perspective on this problem and invented some brilliant techniques to solve
the problems that arise. This included the ideas of “localisation of a space at a prime”
and “completion of a space at a prime”. These are ideas exported from pure algebra
that provide a new language for expressing geometric phenomena, which have be-
come tools for resolving multitudes of other problems. Nowadays it is commonplace
to work at one prime at a time, using different methods for different primes.
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Another of Sullivan’s breakthroughs was the study of what is left when all the
primes are ignored — known as rational homotopy theory. He and Daniel Quillen
gave two different complete algebraic descriptions of what is left from a space in this
setting. Sullivan’s model is based on differential forms — a concept of multivariable
calculus, enabling direct connection to geometry and analysis. This made a major
part of algebraic topology suitable for calculation, and has proven revolutionary.
The use of differential forms made it especially relevant to algebraic geometry in
combination with Hodge theory, as is shown in Sullivan’s work with Pierre Deligne,
Phillip Griffiths and John Morgan.

To understand smooth manifolds, the completions were necessary, and one of the
high points of his work here was his proof of the Adams conjecture, independently
of Quillen. Sullivan has also drawn attention to the idea of a homotopy fixed set,
formulating a central conjecture in homotopy and introducing a widely used tool.
The original “Sullivan conjecture” was solved many years later by Haynes Miller.

Sullivan went on to tackle a host of topological, dynamical and analytic prob-
lems, always with the idea of a geometric structure on a space playing a central
role.

He showed that the topological structure of a manifold of dimension five or more
can always be promoted to a Lipschitz structure, allowing analytic methods to be
brought to bear. His argument uses arithmetic groups to replace Kirby’s torus with
a hyperbolic manifold immersed in Euclidean space. With Simon Donaldson, he
proved such structures need not exist in dimension four.

In dynamics, Sullivan introduced a dictionary between Kleinian groups and it-
erated rational maps, pivoting on the theory of measurable complex structures. He
proved that rational maps have no wandering domains, solving a 60-year-old con-
jecture by Fatou, and brilliantly drawing a parallel with Ahlfors’ finiteness theorem.
He went on to use similar methods to provide a conceptual proof of Feigenbaum’s
universality for cascades of period doublings, recasting these results as the unique-
ness of a smooth structure on a strange attractor. Sullivan’s dictionary, his rigidity
theorem for Kleinian groups, and his a priori bounds for renormalisation are now
fundamental principles in conformal dynamics.

In a subsequent return to the development of algebraic structures of manifolds,
with Moira Chas, he astonished the field by finding a new invariant of manifolds.
With its links to topological field theory, “string topology” has grown quickly into a
field of its own.

Dennis Sullivan’s insistent probing for fundamental understanding, and his ca-
pacity to see analogues between diverse areas of mathematics and build bridges
between them, has forever changed the field.



Encounters with Geometry — an Autobiography
of Concepts

Dennis Sullivan

When we first learned long division at age eight I had fun working out examples
where the problem was put at the top of the page and the long division algorithm
computation ran diagonally down the page to finish exactly in the tiny vicinity of
the lower right hand corner. I wanted to make the biggest problem that fit on one
page. This was a curious metaphor of one’s serious practical limitations today in
simulating 3D fluid motion on computers.

The family photo below taken in 1950 shows me (age 9) with my brother Michael
Sullivan (1942–1957) and my single parent mother Rita Sullivan. My mother al-
ways said if asked about schooling that she had “graduated from the school of hard
knocks”, meaning at most high school. However she made a serious success in ad-
vertising, becoming a top account executive in the boom TV/advertising industry of
the 50s and 60s. My younger brother died of a brain tumor after a 30 month struggle,
4 days after a fun 15th birthday party. This seems to have had the effect that I later
needed to believe in something like mathematics and to never give up.

When I asked Sister Benedict in the tenth grade at Marian High School after
her geometry demonstration, “why do those two ninety degree rotations around two
perpendicular axes in space not commute?” She answered “That’s the way God
made it.” I wanted to know more about this structure.

When the first year physics Professor at Rice University made some perturba-
tion calculations regarding the stability or not of rotations about symmetry axes of
solid bodies, we listened studiously. These calculations showed stability about the
smallest and largest angular momentum axes and showed instability about the inter-
mediate angular momentum axis. But when he took up a book with a rubber band
wrapped tightly around the intermediate axis and tossed it many times into the air
showing perfectly the results of the math calculations, one was deeply impressed by
the connection possible between abstract computations and physical reality.

Dennis Sullivan
Math CUNY Grad Center & Prof Math, SUNY, Stony Brook
e-mail: sullivan0212@gmail.com
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Fig. 1: My brother Michael (1942–1957) with a broken arm, my mother Rita
(1922–2014), and me. The photo is from 1950. (Credit: Private)

When as a sophomore chemical engineering student at Rice taking the required
second year calculus course (real and complex, with definitions and proofs), the
Professor one day drew a kidney shaped domain in the plane and explained, with-
out proof, the domain can be moved and distorted by a z-differentiable f (z) to the
round domain, thus at each point rotating and possibly distorting around that point
with a scaling and all of this with an essentially unique f (z), I radically changed
my view of mathematics to one of greater admiration and deeper respect going be-
yond that earned by the interesting calculations and formulae experienced up to that
point. This Riemann mapping statement was unexpected, general and deep. It was a
different kind of understanding.

On another day the Professor explained, without proof, that any harmonic func-
tion on any such domain, like the real part or imaginary part of that f (z), could
be calculated at any point in the domain by averaging the values at the boundary
of that harmonic function with the probability density of a random path, starting at
the point, landing at each boundary point of the domain. I thought “One can ac-
tually define in mathematics the notion of a random path and then discuss hitting
probabilities? Wow.”

In the third year at Rice University, the physical chemistry Professor connected
thermodynamics with the statistics of zillions of particles interacting incredibly
leaving only two or three numerical quantities to characterize the final state. I was
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Fig. 2: Coming from the library at IHES, late 70s. (Credit: IHES)

torn between physical chemistry and mathematics. Mathematics, especially alge-
bra, was difficult for me to do or to understand. Whereas physical chemistry was
intuitive, though somewhat ill defined.

In the final fourth year at Rice when the Professor gave a homework problem
to the advanced topology math class filled with math majors and PhD students at
Rice, “Show that any continuous function from the long line to the real numbers is
eventually constant,” no one including me could do it before the Friday due date.
It was a strange problem and it was an intriguing problem. I continued working
on it for two weeks, an incredibly long time in the demanding atmosphere at Rice
University in those days. I finally understood enough about the long line to see why
a continuous function was eventually constant. This was a first hint to me personally
about the nature of studying mathematics. It takes time to understand, it’s not really
speed and cleverness in contests that count but rather enough diligence over time
motivated by being interested that really counts.

Fig. 3: Einstein chair seminar at CUNY. (Credit: Bora Ferlengez)
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This lesson was enhanced during the three hour final exam of that same year long
topology course which had ended with two weeks of formal algebraic topology. We
all assumed this would not really appear much on the exam. We were wrong. Al-
gebraic topology was about half of the final exam centered around one question.
The rest of the exam was easy and people started leaving during the first hour and
I was finished also with what I understood, besides having memorized the defini-
tions of the last two weeks of the course. After one hour I was alone in the room.
Should I leave too, or why not give it a try given that experience with the “long line
problem?” I had two hours. The question was “Show a bounded region in Euclidean
space divided into generalized triangles has no homology in the top dimension.”
There were memorized paraphrases of the definitions “first look for cycles and then
do something more to get the homology.” This could be studied in the special case of
two-dimensional space, i.e. the flat plane. Then, by recalling the memorized defini-
tion, a cycle is a linear combination of filled in oriented ordinary triangles so that all
the boundary edges with their coefficients and orientations taken into account cancel
giving a sum of zero. OK, what does this definition of cycle mean geometrically?
After some time, one example of cancellation occurred, glue two triangles together
along two respective edges and those two edges cancel in the total sum of the six
oriented edges of the two triangles. Finally, sitting there much longer pondering this,
a picture emerged that is still fresh in memory. One was trying to fit the triangles
together so that no exposed edges are left. As one tried to fit the triangles together
mentally, a moving image appeared spontaneously, this of triangles rising up out of
the plane first to form a kind of bowl and then continuing to close up into a spherical
shape. This was the picture of a cycle in dimension two. So, if the triangles were
forced to stay in a bounded region of the flat plane there would always be exposed
edges. Conclusion, there were no cycles and there was a fortiori no top homology
of a bounded region in flat space of any dimension. And one had a picture of a cycle
in any dimension, like a closed object that is the higher dimensional analogue of a
closed surface.

Finally, there is one more memorable moment with a more significant interpreta-
tion in the middle of the third semester of math grad school at Princeton University.
This, just before the oral qualifying exam allowing one to begin work on a thesis.
The exam was on the set of notes by John Milnor on the theory of closed manifolds
(like those abstract cycles in the previous story in any dimension but without any
singularities) and now only considered up to cobounding a manifold of one higher
dimension (like being connected by a homology of one higher dimension but again
with no singularities). This celebrated work was due to René Thom (1954) and was
beautifully exposed by Milnor using carefully presented definitions and proofs about
transversality and homotopy groups with several theorems, about a dozen substan-
tial proof steps, all in a few dozen pages. While walking to the exam after extensive
studying — any specific question could be answered, from the undergraduate per-
spective it was a done deal — still maybe it was a good idea to have one more
look. When that last look was made one of these mental images appeared at one
step of the main proof. This was the transversality picture: an image of a long pos-
sibly knotted stretched out circular tubular slinky in three-space being compressed
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Fig. 4: My home library. (Credit: Clara Sullivan)

down onto a two disk in some external two-sphere. This image was combined with
the logical fact related to homotopy that the pictured partially defined mapping of
space to the two-sphere extended to the complement outside the tube of the slinky
by mapping the complement to the complement of the two-disk in the sphere —
and this was actually possible in an essentially unique way, up to deformation, be-
cause the complement of that two disk in the sphere was contractible to a point.
This slinky transversality picture plus that logical point about the extension was the
central key point that was obvious once noticed but after that notice the entire set of
notes just fell into simple evident steps ... one could forget everything but that key
pair: the picture and the logical point, and easily reproduce logically the entire set
of notes describing René Thom’s theory. I thought to myself, “This is what it means
to understand a piece of mathematics. I want to experience this feeling again.”
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Before going into Dennis Sullivan’s work on dynamics, we would like to share
some of our reminiscences on the remarkable way in which he influenced a huge
number of mathematicians, including the two of us. Both while at IHES and at
CUNY, Dennis had an office which came with an anteroom. Our impression is that
he would spend most of his time in this anteroom, talking about mathematics with
whoever he had invited or whoever was around. Quite often while listening to some-
body, he would end up giving a new spin or a new interpretation to what they had
been saying. Similarly, he would explain what he was working on, trying out new
ideas, and also often explaining results of others. Spending time with him was al-
ways an incredible experience.

In this spirit, Dennis explained much of his work on renormalisation to Welington
de Melo. In turn, Welington would then try to explain what he had heard and learned
to SvS. When he could not convince SvS of some argument, Welington would go
back to Dennis and this process would repeat again, sometimes many times. This
is how the final chapter of the book One-Dimensional Dynamics of SvS with Wel-
ington de Melo came into being, see [30]. This chapter contains a full exposition of
Dennis’ remarkable renormalisation theory, arguably the only place in which it was
published with full details.

At the Graduate Center of CUNY, Dennis coordinated the Einstein Chair Semi-
nar, more informally known as the Sullivan seminar, bringing in speakers from all
over the world. The seminar ran once a week with talks in the afternoon, but the
invited speakers usually came in the morning, and intense mathematical discussions
ensued through lunch, and oftentimes even after the speaker’s talk, following a short
break for tea. During the talks, Dennis often asked questions not necessarily to know
the answer himself, but because he knew that somebody else in the audience would
find the answer helpful. In this way, Dennis took on the role of introducing two
people to each other. His presence in the audience would usually make a talk much
more accessible and interesting. His questions would often clarify connections that
would have remained implicit otherwise.

When Dennis invented or learned about a new mathematical idea, he would push
this idea to the limit. For him it was very important to understand what this idea
would give, and equally important to find out what the limitations of this idea might
be. Moreover, whenever possible, he liked to associate names to arguments such
as the dollar argument, smallest interval argument or the non-coiling argument in
order to synthesise a complex proof into its core ideas.

Often he mentioned that to understand a proof properly, you should treat it like a
three-dimensional object. You should not only look at it from one side, but from all
sides. So in this sense, in his view, a proof was about mathematical understanding
rather than about ‘killing’ a theorem.

Indeed, Dennis’ interest in a result might not necessarily be in the power of the
statement per se, but in the tools that are used in the proof of this result. Once he
understands the tools and ideas, then he probably can recover the statement of the
results by himself.
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So let us turn to the field of dynamical systems. Dennis Sullivan always had a
keen interest in the field of dynamical systems, and already in the 1970s published
several high impact papers in this area, many of them remarkably short. Let us first
highlight a few of his papers on smooth dynamical systems, and then his ground-
breaking papers on Kleinian groups and holomorphic dynamics.

1 Smooth dynamics

Although his early papers on dynamics treat a diverse range of problems, they all
have an overarching theme: what smoothness (or other) structures are compatible
with a particular dynamical setting.

1.1 From topology to dynamics

In the mid-seventies, Dennis started to become more and more interested in dy-
namics, transitioning from the pure study of structures on manifolds to the study of
dynamical objects such as flows and, more generally, foliations on manifolds. One
of his first striking results in this direction is the following.

Theorem 1.1 (Counterexample to the periodic orbit conjecture, see [100], [98]).
There exists a flow on a compact five-dimensional manifold all of whose orbits are
periodic, and yet the lengths of such orbits are not bounded.

This theorem1 was announced in [100], and a more detailed argument given in
[98]. Dennis’ topological-geometric construction in the latter paper yields a flow
on a smooth 5-dimensional manifold M which is Lipschitz, but he states that he
sees no reason why the example could not be made smooth. In an addendum at
the end of the paper, Dennis briefly explains an idea due to Kuiper that results in
an example in which the flow is C∞. He also explains a beautiful construction due
to Thurston which yields a real-analytic flow with the desired properties on the
manifold M = R5/(Γ ×Z×Z), where Γ is the group

Γ =


1 x y

0 1 z
0 0 1

 : x,y,z ∈ Z

 .

In other words, Γ is the so-called discrete Heisenberg group.

1 This theorem is also discussed in McMullen’s beautiful talk on Dennis’ work at MSRI in the
spring of 2022, see https://vimeo.com/702914316?embedded=true&source=vim
eo_logo&owner=106107493

https://vimeo.com/702914316?embedded=true&source=vimeo_logo&owner=106107493
https://vimeo.com/702914316?embedded=true&source=vimeo_logo&owner=106107493
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1.2 Rigidity in smooth dynamics

The following paper, joint with Shub, dates back to 1985.

Theorem 1.2 (Expanding maps of the circle, see [94]). Two Cr, r ≥ 2, expanding
maps of the circle which are absolutely continuously conjugate are Cr conjugate.

The proof of this result is short and starts by invoking well-known results to
reduce the problem to the setting where both maps preserve the Lebesgue mea-
sure. Using the assumption that the maps are C2 and expanding makes it possible
to consider an iterate of the maps taking a small interval to big scale with bounded
distortion. This then implies that the assumption that the conjugacy h is absolutely
continuous gives that h is, in fact, Lipschitz. Going on from there, one obtains that
h is Cr.

In some broader sense the main idea of this paper was the starting point for
quite a lot of later research. Indeed, the pullback argument that Dennis introduced
in the field of holomorphic dynamics is somewhat similar in spirit. Quite a few other
papers followed on from this work. For example,

• if the multipliers of corresponding periodic points of two topologically conjugate
unimodal interval are equal, then the conjugacy is smooth, see [75, 64] (there are
corresponding results in higher dimensions);
• if a conjugacy between two interval maps is smooth at some point, then it is

smooth everywhere, see [2];
• there are quite a few very interesting related results for group actions of circle

maps, see for example [31];
• when studying the smoothness of a conjugacy between two maps defined on Can-

tor sets, Sullivan introduced the notion of a scaling function on a Cantor set, see
[107] and also [89].

Another paper, joint with Norton, on rigidity in dynamics is concerned with Den-
joy examples of C1 torus diffeomorphisms T 2→ T 2 which are isotopic to the iden-
tity. These are maps f which are topologically semi-conjugate to a minimal trans-
lation on the torus, i.e., h f = Rh, where h is a continuous map of T 2 onto itself,
homotopic to the identity, such that the set of x ∈ T 2 for which the cardinality of
h−1(x) is greater than 1 is nonempty and countable. Then the interior of any h−1(x),
if nonempty, is a wandering domain for f .

Theorem 1.3 (Smoothness and wandering domains for torus maps, see [86]).
Let f be a torus map of Denjoy type, and let Γ ̸= T 2 be its minimal set. Then (i) if
f preserves a measurable, essentially bounded conformal structure on Γ , then the
maps f n, restricted to the prime end boundaries of the wandering domains, cannot
be uniformly quasiconformal; and (ii) if f preserves a C2 conformal structure on Γ ,
then f cannot be C3.
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One consequence of this theorem is that one cannot have a C3 Denjoy diffeomor-
phism so that the iterates of some disc are all disjoint. Of course this theorem is a
partial higher-dimensional analogue of Denjoy’s famous theorem showing that a C2

diffeomorphism of the circle without periodic orbits cannot have wandering inter-
vals, and therefore must be topologically conjugate to an irrational rotation. Again
quite a few papers followed on from this work, for example:

• it is not possible to have C1 toral diffeomorphism with wandering round discs,
see [82];
• very recently it was shown that there exist smooth and even real analytic diffeo-

morphisms of Denjoy type on the torus with a wandering topological disc, see
[82, 115]; see also [4].
• wandering topological discs were also established for smooth two-dimensional

diffeomorphisms, see [56], and even for polynomial maps in higher dimensions
[3, 12].

Another theorem Dennis proved, jointly with Gambaudo and Tresser, is the fol-
lowing (informally stated).

Theorem 1.4 (Smoothness and linking number of periodic orbits for diffeomor-
phism of the disc, see [41]). Let f be a C1 diffeomorphism of the disc with periodic
orbits pn, n≥ 0, so that for each n≥ 0 the periodic orbit pn+1 ‘cycles as a satellite’
around pn. Then the average linking number between pn+1 and pn must converge
as n→ ∞.

One of the inspirations for this paper was a question by Smale, who asked
whether it was possible to construct a smooth diffeomorphism on the disc with in-
finitely many hyperbolic periodic saddles, but without periodic sinks or sources (or
neutral points). In [10, 40] such examples were constructed in the C1 respectively
C2 category. It was subsequently shown that one can construct smooth and even real
analytic diffeomorphisms with these properties, see [42] and also [22, 67], namely
with a Feigenbaum–Coullet–Tresser Cantor attractor. The constructions in those pa-
pers build on the renormalisation theory developed for interval maps. The braid type
of the periodic orbits is quite different from those in [10, 40], and as far as we know
it is not yet known whether there are smooth diffeomorphisms which are topolog-
ically conjugate to the ones constructed in those papers (in which it is conjectured
that one cannot construct C3 diffeomorphisms topologically conjugate to their ex-
amples).

What the theorems discussed in this section have in common is that they are
about invariant structures, and that the full theory in this direction has not yet been
completed. For this reason having the additional conformal structure was quite ap-
pealing to Dennis. Another reason to start working on holomorphic dynamics in the
1980s was of course that he saw a compelling analogue with the theory on Kleinian
groups that he had been working on previously – see Section 2 below.
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1.3 Further results

Another research direction we would like to explicitly mention is Dennis’ work on
currents, see [99, 92]. In his beautiful survey talk at the Abel Prize lectures at the
University of Oslo on Dennis’ work, Étienne Ghys singles out this work (this talk is
available on YouTube).2

2 Dynamics and ergodic theory of Kleinian groups

Dennis’s interest in the geometric, dynamical and ergodic properties of discrete
groups of hyperbolic isometries dates back to the mid to late 1970s. His work in
this area was motivated in part by Mostow’s rigidity theorem from two decades ear-
lier, and in part by the work of Ahlfors on Kleinian groups, especially his famous
finiteness theorem from 1965. Dennis was also greatly influenced by Thurston’s
work on geometric structures over 3-manifolds. It was Lipman Bers who first told
Dennis about the so-called Ahlfors conjecture, according to which the limit set of
a Kleinian group acting in hyperbolic 3-space either has zero Lebesgue measure in
the sphere at infinity, or else it is equal to the entire sphere. This is now a theorem,
thanks to the work of several mathematicians – see for instance [72] and references
therein.

Let us present a brief account of the contributions of Dennis to this beautiful
subject. Before we do that, we need to recall a few preliminary notions. For general
background on the geometry of discrete groups and hyperbolic geometry, especially
in dimension 3, we recommend [8], [77] and [72]. For a systematic exposition of the
work of Dennis (and Patterson) on the ergodic theory of discrete groups, see [85].

The Moebius group

Consider the one-point compactification R̂n = Rn∪{∞} of Euclidean n-space. The
Moebius group in dimension n is the group MG(Rn) consisting of all transforma-
tions T : R̂n → R̂n which arise as all possible compositions of (linear) conformal
transformations of the form x 7→ Ax+ b, where A is a scalar multiple of an orthog-
onal matrix and b ∈ Rn, with the inversion J : R̂n → R̂n given by J(x) = x/|x|2
for x ̸= 0, J(0) = ∞ and J(∞) = 0. The elements of MG(Rn) are called Moebius
transformations.

2 See https://www.youtube.com/watch?v=reC5-XUeH_4.

https://www.youtube.com/watch?v=reC5-XUeH_4
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Hyperbolic space

Let us denote by Hn hyperbolic n-space, which we view as the open unit ball Bn =
{x : |x|< 1}⊂Rn endowed with the hyperbolic metric (also called Poincaré metric)
given by

ds =
2|dx|

1−|x|2
.

The ideal boundary or sphere at infinity of hyperbolic n-space is by definition the
sphere Sn−1 = ∂Bn, endowed with the standard conformal structure inherited from
Rn. It is customary to denote the sphere at infinity by S∞. The group Isom+(Hn)
of orientation-preserving isometries of this metric consists precisely of all Moe-
bius transformations that preserve the unit ball, i.e., those T ∈ MG(Rn) such that
T (Bn) = Bn. Every T ∈ Isom+(Hn) acts on the sphere at infinity as a conformal
automorphism. The elements of Isom+(Hn) are classified according to their action
on S∞ as follows. If T ∈ Isom+(Hn) has exactly one fixed point in S∞, then T is said
to be a parabolic transformation. If it has exactly two fixed points in S∞, then it is
called a loxodromic transformation. All other elements of Isom+(Hn) are said to be
elliptic.

Kleinian groups

A (generalized) Kleinian group is a discrete subgroup Γ ⊂ Isom+(Hn). Discreteness
means in particular that the orbit Γ (x) = {γx : γ ∈ Γ } of any point x ∈ Bn can only
accumulate on the sphere at infinity. The set Λ(Γ ) ⊆ S∞ of all such accumulation
points is the limit set of Γ (see figure 1). Its complement Ω(Γ ) = S∞ \Λ(Γ ) is
the domain of discontinuity or ordinary set of Γ . Clearly, both Λ(Γ ) and Ω(Γ ) are
completely invariant under the action of Γ . When n = 3, the ordinary set Ω(Γ ) is
precisely the domain of normality of Γ , that is to say, the set of all points z∈ S∞ ≡ Ĉ
having a neighborhood Vz ⊂ Ĉ such that {γ|Vz : γ ∈ Γ } is a normal family in the
sense of Montel (thus, Ω(Γ ) is the analogue of the Fatou set for a rational map, and
the limit set Λ(Γ ) is the analogue of the Julia set – see §4). A Kleinian group is said
to be non-elementary if its limit set consists of more than two points.

There are various ways under which the Γ -orbit of a point x∈ Bn can accumulate
on a point of Λ(Γ ) in the sphere at infinity. The two most important are a conical
approach and a horospherical approach. Let us be more precise.

Definition 2.1. Let Γ ⊂ Isom+(Hn) be a Kleinian group and let ξ ∈Λ(Γ ).

(i) We say that ξ is a conical limit point of Γ if for each x ∈ Bn there exists a
sequence {γn} ⊂ Γ such that the ratio

|ξ − γn(x)|
1−|γn(x)|

remains bounded as n→ ∞.
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Fig. 1: The limit set of a Kleinian group sitting in the sphere at infinity is oftentimes
a fractal object. [Credit: This picture was generated using C. McMullen’s program
“lim”, available at https://people.math.harvard.edu/˜ctm/progr
ams/.]

https://people.math.harvard.edu/~ctm/programs/
https://people.math.harvard.edu/~ctm/programs/
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(ii) We say that ξ is a horospherical limit point of Γ if for each x ∈ Bn there exists
a sequence {γn} ⊂ Γ such that the ratio

|ξ − γn(x)|2

1−|γn(x)|

goes to zero as n→ ∞.

It is an exercise to show that if ξ is the fixed point of a loxodromic element of Γ ,
then ξ is a conical limit point of Γ . The set of all conical limit points of Γ is called
the conical limit set, and it is denoted Λc(Γ ). The set of all horospherical limit points
of Γ is called the horospherical limit set, and it is denoted Λh(Γ ). Clearly, these are
both Γ -invariant.

An important class of Kleinian groups is the class consisting of so-called convex
co-compact groups. Given a (non-elementary) Kleinian group Γ , let Λ = Λ(Γ ) be
its limit set, and consider the convex hull C(Λ) of Λ inside hyperbolic space. Then
C(Λ) is invariant under Γ , and we say that Γ is convex co-compact if the quotient
C(Λ)/Γ is compact. It is not difficult to see that if Γ is convex co-compact, then
every element of Λ is a conical limit point – in other words, Λc(Γ ) = Λ(Γ ) in this
case.

Hyperbolic manifolds

The quotient space MΓ =Hn/Γ of hyperbolic n-space by a Kleinian group Γ is what
one calls an orbifold (after Thurston). Such a quotient is always a manifold when
n = 2,3, but it may fail to be one when n > 3. However, if Γ acts freely and properly
discontinuously on Hn, then MΓ is indeed a manifold. Such manifolds are called
hyperbolic. The natural quotient projection Hn→MΓ is a proper covering map, and
therefore the hyperbolic metric of Hn descends to MΓ . Thus, Hn is the universal
covering space of MΓ , and the fundamental group π1(MΓ ) is (isomorphic to) Γ . It
is not difficult to see that if two Kleinian groups Γ1,Γ2 are conjugate subgroups of
Isom+(Hn), i.e., if there exists a γ ∈ Isom+(Hn) such that Γ1 = γ−1Γ2γ , then the
corresponding orbifolds MΓi , i = 1,2, are isometric, and conversely.

Quasi-conformal homeomorphisms

A quasiconformal homeomorphism h : S∞→ S∞ is a homeomorphism which is dif-
ferentiable Lebesgue almost-everywhere, and whose derivative at each point of dif-
ferentiability maps round spheres onto ellipsoids whose ratios between the largest
axis and the smallest axis yield a measurable function on the sphere that is essen-
tially bounded. The essential norm of this function is called the quasi-conformal dis-
tortion of h, denoted Kh. It turns out that if Kh = 1 then h is in fact conformal. Every
quasi-conformal homeomorphism determines a measurable field of ellipsoids, also
known as a measurable conformal structure on S∞. In dimension two, such mea-
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surable conformal structures can be integrated to recover h up to post-composition
by a conformal map – a famous result known as the measurable Riemann mapping
theorem – but no such theorem exists in higher dimensions.

2.1 Sullivan’s rigidity theorem

It is a truly remarkable theorem due to G. Mostow [84] that complete finite-volume
hyperbolic n-manifolds are determined up to isometry by their fundamental groups
when n ≥ 3. This is the famous Mostow rigidity theorem, which can be formally
stated as follows.

Theorem 2.2 (Mostow Rigidity). Let M and N be two complete, finite-volume hy-
perbolic n-manifolds with n≥ 3, and let θ : π1(M)→ π1(N) be an isomorphism be-
tween their fundamental groups. Then there exists an isometry f : M→ N between
both manifolds such that the induced isomorphism f∗ : π1(M)→ π1(N) agrees with
θ .

In fact, this theorem was proved by Mostow for closed manifolds, i.e., compact
manifolds without boundary. It was then extended to finite volume manifolds by
Marden [71] in dimension n = 3, and by Prasad [90] in all dimensions n≥ 3.

The way Mostow proved his theorem was by first showing that the manifolds
M,N are pseudo-isometric in the following sense. A continuous, surjective map
φ : M→ N between two hyperbolic manifolds is a pseudo-isometry if (a) it induces
an isomorphism between the fundamental groups of both manifolds and moreover
(b) there exist constants K > 1 and δ > 0 such that

1
K
≤ dN(φ(x),φ(y))

dM(x,y)
≤ K

for each pair of points x,y∈M such that dM(x,y)≥ δ . Here dM,dN denote the hyper-
bolic distances in M and N, respectively. Condition (b) says that a pseudo-isometry
distorts hyperbolic distances between points by a bounded amount, provided these
points are sufficiently far apart.

If one lifts a given pseudo-isometry between M and N to their universal covering
space, one gets a pseudo-isometry of hyperbolic n-space. Mostow proved in [84]
that every pseudo-isometry of Hn extends continuously to the sphere at infinity as a
quasiconformal homeomorphism h : S∞→ S∞. The key step in the proof is to show
by means of an ergodic argument that if Γ is a finite-volume Kleinian group then
there is only one measurable conformal structure on S∞ which is Γ -invariant. This
implies that the quasiconformal homeomorphism h is actually conformal, which in
turn means that the two associated Kleinian groups ΓM ≃ π1(M),ΓN ≃ π1(N) are
conjugate subgroups of Isom+(Hn), and therefore the hyperbolic manifolds M and
N must be isometric.
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Here is another way of stating Mostow’s theorem. Following [102], we say that
a hyperbolic manifold M is Mostow-rigid if any pseudo-isometry between M and
another hyperbolic manifold N is homotopic to an isometry. Recast in this lan-
guage, Mostow’s theorem states that every complete, finite-volume hyperbolic M
is Mostow-rigid.

Dennis proved in [102], in his own words, a maximal extension of Mostow’s
theorem. In order to state his theorem, let us introduce some notation. Given a hy-
perbolic manifold M, a point p ∈ M and r > 0, let VM(p,r) denote the hyperbolic
volume of the set {x ∈ M : dM(p,x) < r}. For example, for the hyperbolic ball of
radius r in hyperbolic n-space, we have

VHn(0,r) = ωn

∫ tanh(r/2)

0

2n|x|n−1 d|x|
(1−|x|2)n = ωn

∫ r

0
sinhn−1 t dt ∼ const · e(n−1)r .

Here, ωn denotes the euclidean area of S∞ = Sn−1.

Lemma 2.3. Let M =Hn/Γ be a hyperbolic n-manifold. Then the following asser-
tions are equivalent.

(i) The ratio VM(p,r)/VHn(0,r) goes to zero as r→ ∞.
(ii) The Kleinian group Γ acts conservatively on S∞.

(iii) The horospherical limit set of Γ has full Lebesgue measure on S∞.

A fourth assertion equivalent to the above three is that the fundamental domain of
Γ in Hn has zero Lebesgue measure on S∞. We now have all the necessary elements
to state the Sullivan rigidity theorem.

Theorem 2.4 (Sullivan Rigidity). Let M be a complete hyperbolic n-manifold, and
suppose that M satisfies any of the equivalent conditions of Lemma 2.3. Then M is
Mostow rigid.

Dennis deduces this theorem from the following result, also due to him.

Theorem 2.5. Let Γ ⊂ Isom+(Hn) be a Kleinian group, and consider its action on
the sphere at infinity. Suppose ν is a measurable conformal structure i.e., a mea-
surable field of ellipsoids) which is Lebesgue almost everywhere invariant under Γ .
Then ν agrees a.e. with the standard conformal structure of S∞ on the limit set ΛΓ .

In the case of hyperbolic 3-manifolds, i.e., when n = 3, a major consequence of
this theorem is obtained by combining it with the Ahlfors finiteness theorem. Recall
that a Riemann surface X is said to be of finite type if X is obtained from a compact
Riemann surface by removing from it a finite set of points.

Theorem 2.6 (Ahlfors Finiteness Theorem). Let Γ ⊂ PSL(2,C) be a finitely gen-
erated Kleinian group. Then Ω(Γ )/Γ is a finite union of Riemann surfaces of finite
type.

In particular, the Teichmüller space Teich(Ω(Γ )/Γ ) is finite-dimensional. Hence
we have the following result.
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Corollary 2.7. Let Γ ⊂ PSL(2,C) be a finitely generated Kleinian group. Then the
space of quasi-conformal deformations of Γ is parametrized by Teich(Ω(Γ )/Γ ),
and is therefore finite-dimensional.

In particular, if Γ has a dense orbit on the sphere S2, then the space of quasi-
conformal deformations of Γ reduces to a point, i.e., Γ is quasi-conformally rigid.

2.2 Conformal densities and Patterson–Sullivan measures

Let Γ be a non-elementary Kleinian group acting on Hn ∪ S∞, and as before let
Λ(Γ ) ⊆ S∞ be its limit set. Also as before, let Λc(Γ ) ⊆ Λ(Γ ) be its conical limit
set. Generalizing work of Patterson for Fuchsian groups [88], Dennis was able to
construct, in [101], an invariant measure for the geodesic flow on the unit tangent
bundle of the hyperbolic manifold Hn/Γ . This measure comes from a conformal
density µ on the sphere at infinity, and the geodesic flow is either ergodic or dissi-
pative, depending on whether µ assigns positive or zero measure to Λc(Γ ), respec-
tively. We proceed to a brief description of the construction. Details can be found
either in the original paper by Dennis, or in the book by Nicholls [85].

Conformal densities

Let us start by clarifying what is meant by conformal density. Let M be a smooth
manifold, let R be a non-empty collection of Riemannian metrics on M, and let
α > 0. Following [101, p. 421], we define a conformal density of dimension α , or
α-conformal density, on M (relative to R) to be a function that assigns to each
element g ∈R a positive, finite Borel measure µg on M in such a way that, when-
ever g1 and g2 are in the same conformal class (i.e., whenever g1 = ϕg2 for some
positive function ϕ), then µg1 and µg2 are in the same measure class, and the Radon–
Nikodym derivative dµg1/dµg2 satisfies

dµg1

dµg2

=

(
g1

g2

)α

.

We are not interested in conformal densities in such vast generality, but rather in
the following specific context. We take M = S∞, and let R = {gx : x ∈ Bn}, where
g0 is the standard (euclidian) Riemannian metric on the sphere S∞, and for each
x ∈ Bn the Riemannian metric gx is obtained by transporting g0 via any hyperbolic
isometry mapping 0 to x. These metrics are all conformally equivalent. Thus, in the
present context, we can think of an α-conformal density on the sphere at infinity as
an assignment x 7→ µx from points on hyperbolic space to positive measures on S∞,
all in the same measure class. Shortening the notation to µx = µgx , we deduce after
a simple calculation that
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dµx1

dµx2

(ξ ) =

(
P(x1,ξ )

P(x2,ξ )

)α

, (1)

for each pair of points x1,x2 ∈ Bn and all ξ ∈ Sn−1 ≡ S∞, where

P(x,ξ ) =
1−|x|2

|x−ξ |2

is the well-known Poisson kernel.
Given a non-elementary Kleinian group Γ , we are interested in conformal den-

sities of the type just described that are entirely supported in the limit set of Γ

and that are Γ -invariant. More precisely, we want to know whether there exists an
α-conformal density µ = {µx : x ∈ Bn} such that

(1) For each x, the measure µx has support in the limit set Λ(Γ ).
(2) For each pair of points x1,x2 ∈Bn, the measures µx1 ,µx2 are mutually absolutely

continuous, and the Radon–Nikodym derivative dµx1/dµx2 satisfies (1).
(3) For all x ∈ Bn and each γ ∈ Γ , we have γ∗µx = µγx.

Given a Γ -invariant conformal density of dimension α in the sense just de-
scribed, each of its associated measures µx is an α-conformal measure in the sense
that

µx(γ(E)) =
∫

E
|γ ′x(ξ )|α dµx(ξ )

for each Borel set E ⊂ S∞ and each γ ∈Γ (cf. the discussion on conformal measures
for rational maps in §3.2). The question as to whether such Patterson–Sullivan mea-
sures exist is examined below.

Patterson–Sullivan measures: construction

The Poincaré series of the (non-elementary) Kleinian group Γ is defined as

gs(x,y) = ∑
γ∈Γ

e−sd(x,γy) , (2)

where x,y ∈ Hn, d is the hyperbolic metric on Hn, and s > 0 is a real parameter.
Whether the series (2) converges or not for a given value of s is independent of
which points x,y one chooses. In order to state this more precisely, define the critical
exponent of Γ to be the number

δ (Γ ) = inf{s > 0 : gs(0,0)< ∞},

which turns out to be strictly positive when Γ is non-elementary3. Then it is a fact
that the series (2) converges for all s > δ (Γ ), and diverges for all 0 < s < δ (Γ ).

3 This was first proved by Beardon [7].
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It is also not difficult to prove that δ (Γ ) ≤ n− 1. What happens when s = δ (Γ )?
Obviously, only one of two things:

(i) if gδ (Γ )(0,0)< ∞, we say that Γ is a group of convergence type;
(ii) if gδ (Γ )(0,0) = ∞, we say that Γ is a group of divergence type.

For the construction to follow, let us fix a point y ∈ Bn once and for all (for
example, we could take y = 0). For each x ∈ Bn and each s > δ (Γ ), one constructs
a positive Borel measure µx,s on the closure of Bn as follows. The rough idea is to
place a Dirac mass at each point of the Γ -orbit of y, with weights that depend on the
hyperbolic distance between each such point and x in a suitable way. Let us be more
precise.

When the group Γ is of divergence type, one simply defines4

µx,s =
1

gs(y,y)
∑

γ∈Γ

e−sd(x,γy)
δγx.

With this definition, one can consider the weak limits of such measures when
s↘ δ (Γ ). Since gs(y,y)→ ∞ as s→ δ (Γ ), the point masses are swept off to the
sphere at infinity, and any weak limit will be a measure supported on the sphere
(actually on the limit set). The existence of limits is guaranteed by a classical result
in real analysis (namely, Helly’s theorem).

However, when the group is of convergence type, the above will not work, be-
cause gs(y,y) remains bounded as s→ δ (Γ ), and whatever limiting measure we
get will still have an atom at each point in the Γ -orbit of y (recall that the goal is
to obtain measures supported on the limit set of Γ ). To circumvent this problem,
Dennis borrows an idea due to Patterson [88] (in the Fuchsian case, n = 2) and in-
troduces a mollifier, called, not surprisingly, the Patterson auxiliary function. This is
a continuous non-decreasing function h : R+→R+ having the following properties:

(1) For each ε > 0 there exists an r0 > 0 such that h(tr)≤ tε h(r) for all r > r0 and
all t > 1.

(2) The series
∑

γ∈Γ

e−sd(x,γy)h(ed(x,γy))

converges for s > δ (Γ ) and diverges for s≤ δ (Γ ).

Using this function, one defines the modified Poincaré series

g∗s (x,y) = ∑
γ∈Γ

e−sd(x,γy)h(ed(x,γy))

This now diverges when s↘ δ (Γ ). Thus, for each x ∈ Bn and each s > δ (Γ ) we
may now consider the positive Borel measure µx,s defined by

µx,s =
1

g∗s (y,y)
∑

γ∈Γ

e−sd(x,γy)h(ed(x,γy))δγx.

4 We denote by δz the Dirac probability measure concentrated at z ∈ Bn.
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As before, the resulting weak limits as s↘ δ (Γ ) are positive Borel measures on the
sphere at infinity, and their supports are contained in the limit set Λ(Γ ).

In either case, we have for each x ∈ Bn a non-empty closed subset Mx(Γ ) ⊂
M+(S∞) of the space of all positive Borel measures on the sphere at infinity (en-
dowed with the topology of weak convergence of measures). It is possible to prove
that the Mx(Γ )’s are all homeomorphic (see for instance [85, Th. 3.4.1]).

We are now ready to summarize some of the main results obtained by Dennis in
[101]. That paper is very rich, and we can hardly do any justice to it in such a short
exposition.

The first theorem generalizes results obtained by Patterson and Bowen in the
Fuchsian case.

Theorem 2.8. (Patterson–Sullivan Measures and Hausdorff Dimension), see
[101]) Let Γ ⊂ Isom+(Hn) be a non-elementary Kleinian group, and let δ = δ (Γ )
be its critical exponent.

(i) There exists a δ -conformal density µ = {µx : x ∈ Bn} on the sphere at infinity
which is Γ -invariant and satisfies µx ∈Mx(Γ ) for each x.

(ii) We have dimH(Λc(Γ ))≤ δ , i.e., the conical limit set of Γ has Hausdorff dimen-
sion less than or equal to its critical exponent.

(iii) If Γ is convex co-compact, then the δ -conformal density in (i) is unique up
to a scalar multiple, and for each euclidian ball B(ξ ,r) centered at a point
ξ ∈ Λc(Γ ), and each x ∈ Bn, we have µx(B(ξ ,r)∩Λc(Γ )) ≍ rδ . In particular,
dimH(Λc(Γ )) = δ , i.e., the Hausdorff dimension of the conical limit set is equal
to δ in this case.

The last item in the above statement is a very elegant result which generalizes an
equally elegant result for Fuchsian groups due to Bowen [9].

Another striking result obtained by Dennis in [101] states that the total-mass
function of a Γ -invariant conformal density in dimension δ (Γ ) is an eigenfunction
of the hyperbolic Laplacian. Let us state this result a bit more precisely, explain-
ing the meaning of these terms. The hyperbolic Laplacian in Hn ≡ Bn (written in
generalized polar coordinates) is the second-order differential operator

∆h =
(1− r2)2

4

[
∆ +

2(n−2)r
1− r2

∂

∂ r

]
,

where ∆ is the standard (euclidian) Laplacian – see for instance [1, p. 56]. If µ =
{µx : x ∈ Bn} is a Γ -invariant conformal density in dimension δ (Γ ), its total-mass
function is the function ϕ : Hn→ R given by

ϕ(x) =
∫

∂Bn
dµx(ξ ) =

∫
S∞

dµx(ξ ).
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Theorem 2.9. The total-mass function ϕ is an eigenfunction of the hyperbolic
Laplacian, i.e., it satisfies

∆hϕ = λ (Γ )ϕ,

with eigenvalue λ (Γ ) = δ (Γ )(1+δ (Γ )−n).

This statement is perhaps made more plausible if one takes into account that, for
each α , we have

∆h (P(x,ξ )α) = α(α−n+1)P(x,ξ )α ,

a fact that can easily be checked by direct calculation.
Finally, as Dennis explains in [101], a Γ -invariant conformal density µ gives

rise to a measure m on the unit tangent bundle of the quotient hyperbolic manifold
Hn/Γ which is invariant under the geodesic flow. In addition, the normalized prob-
ability measures ϕ(x)−1µx can be used to generate a Markovian stochastic process
on Hn/Γ akin to Brownian motion. The beautiful synthesis obtained by Dennis in
[101] relates the recurrent properties of this Markovian process with the ergodic
properties of the geodesic flow on the quotient manifold, and can be informally
stated as follows.

Theorem 2.10 (Ergodic Measures for the Geodesic Flow, see [101]). Let Γ ⊂
Isom+(Hn) be a non-elementary Kleinian group, and let δ = δ (Γ ) be its critical
exponent. Also, let µ be a Γ -invariant δ -conformal density. Consider the following
assertions:

(1) The conical limit set Λc(Γ ) has positive µ-measure.
(2) The action of Γ on S∞×S∞ minus the diagonal is ergodic with respect to µ×µ .
(3) The geodesic flow on the unit tangent bundle to Hn/Γ is ergodic with respect to

mµ .
(4) The group Γ is of divergence type.
(5) The Markov process on Hn/Γ is recurrent.

Then (1), (2) and (3) are equivalent, and they imply (4). If in addition 2δ >
n− 1, then (4) implies (5), and (5) implies all the others (i.e., all five assertions
are equivalent in this case).

2.3 Further results

Dennis has written a number of other very interesting papers on the geometry and
dynamics of Kleinian groups. For example, in [105] he extended some of the above
results from the convex co-compact case to the case of geometrically finite groups
– one of the main consequences being the fact that the Hausdorff dimension of the
limit set of a geometrically finite group is equal to the critical exponent of the group.
In [103], he investigated the excursion of geodesics on hyperbolic surfaces, relating
their behaviour near cusps with classical results in Diophantine approximations.
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3 Holomorphic dynamics

3.1 The reemergence of holomorphic dynamics in Paris in the
1980s

Right from the start the city of Paris has played a key role in the study of holomor-
phic dynamical systems. In the 1920s Julia and Fatou developed many results on the
theory of iterations of rational maps f : C̄→ C̄. They introduced what is now called
the Fatou set, the set of points in C̄ which have a neighbourhood N on which the
iterates f n|N, n ∈ N, form a normal family, i.e., are equicontinuous. Similarly, the
Julia set J( f ) is defined as the complement of F( f ). At the time the main tool Julia
and Fatou had at their disposal was the Montel theorem, which states that a family
of maps f n|N, n ∈ N, defined on an open set N ⊂ C̄ is normal if it has the property
that there are three points in C̄ which are omitted in ∪n f n(N). Among the many
results they showed is that the Julia set is the closure of the set of repelling periodic
points. They also developed a theory on the local dynamics near periodic points.

In the early 1980s there was a huge revival of this theory in Paris, the main drivers
being Dennis Sullivan, Adrien Douady, Hamal Hubbard and Michael Herman. One
of the main reasons for this resurgence was that it became increasingly clear that
there were new powerful tools available, namely the Measurable Riemann Mapping
Theorem (MRMT) and the notion of quasiconformal maps. These would make it
possible to complete and go much beyond the theory initiated by Julia and Fatou in
the 1920s.

There are quite a few equivalent definitions of the notion of a quasiconformal
map, and all reflect that such maps are generalisations of conformal maps. One of
these definitions is that h : U → V is a quasiconformal map if it is an orientation
preserving homeomorphism between two domains U,V on C so that the Beltrami
equation

∂h
∂ z̄

= µ(z)
∂h
∂ z

makes sense and so that µ is Lebesgue measurable essentially bounded, i.e., satisfies
∥µ∥∞ < 1. This means that at each point z ∈ U at which h is differentiable, the
derivative Dh(z) maps circles to ellipses with uniformly bounded eccentricity.

The MRMT implies that each such µ is associated to a quasiconformal map hµ

and, crucially, that hµ depends analytically on µ .
Dennis was amongst the first to realise the power of the MRMT in the field of

holomorphic dynamics, partly because he had previously used it very successfully in
the study of Kleinian groups. Parallel to Douady and Hubbard’s seminal Orsay notes
[32, 33, 34, 35], which are a tour de force through the entire subject of holomorphic
dynamics, Dennis proved the following remarkable theorem:

Theorem 3.1 (No-wandering-domains Theorem, see [106]). Let f be a rational
map on the Riemann sphere. Then each component of the Fatou set is eventually
periodic.
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More precisely, for each component U of F( f ) there exists an m ≥ 0 such that
V = f m(U) is periodic, i.e., there exists a p ≥ 1 such that f p(V ) = V . Moreover,
each periodic component V of F( f ) can be classified. Indeed, it contains one of the
following:

1. a periodic point of eigenvalue λ = 0 (called superattractive),
2. a periodic point of eigenvalue 0 < |λ |< 1 (called attractive), or
3. ∂V contains a periodic point whose multiplier is a root of unity (rational indif-

ferent),
4. f p is analytically conjugate to an irrational rotation on V and either

a. V is a simply-connected Siegel disc or
b. a doubly-connected Herman ring.

To prove the first part of the statement one needs to show that if f is a rational
map, then no component of its Fatou set is a wandering domain, i.e., a domain so that
all its iterates are pairwise disjoint. In a nutshell Dennis’ proof of this theorem goes
as follows: suppose by contradiction that f has a wandering domain W . Then this
makes it possible to construct an infinite-dimensional space of deformations of f ,
contradicting that the space of rational maps of a given degree is finite-dimensional.

That the space of rational maps is finite-dimensional is crucial: shortly after the
preprint version of [106] appeared, Baker constructed entire functions f : C→ C
which do have wandering domains. Sullivan’s no wandering theorem has also been
extended to the setting of entire maps (and similar spaces) with a finite number
of singular values, see for example [37] and [43]. A very elegant proof of the no
wandering domains theorem due to McMullen – which circumvents the use of the
MRMT and uses an infinitesimal deformations argument more in line with Ahlfors’
original proof of his finiteness theorem – can be found in [78, p. 90].

Unfortunately, as there is no corresponding MRMT in the real one-dimensional
case, the analogous theory in the real one-dimensional case requires a careful com-
binatorial analysis together with an understanding of the non-linearity of the map.
For circle diffeomorphisms this goes back to Denjoy in the 1930s and from this
paper Dennis learned the smallest interval argument: Assume that W is a maximal
wandering interval, i.e., that W is not contained in a larger wandering interval. Then
for each n ≥ 3 consider the smallest, say f i(W ), amongst the collection of disjoint
intervals W, . . . , f n(W ). Then f i(W ) has neighbours on each side which are larger
(or empty space in the case of an interval map). So f i(W ) is well-inside the convex
hull W ′i of the two neighbours. Using the way W ′i is chosen, the interval W ′i can be
pulled back to an interval W ′0 ⊃W so that the pullbacks W ′0, . . . ,W

′
i are essentially

disjoint. This disjointness and the fact that f is a C2 diffeomorphism implies that
W is δ -well-inside W ′0 where δ does not depend on n. Using the maximality of W
this gives a contradiction. That f i(W ) is well-inside the convex hull W ′i is often
called Koebe space and is a property that is often used both in real and holomorphic
dynamics.

The terminology Koebe space comes from the Koebe Lemma in complex analy-
sis, which states that for each δ > 0 there exists a K > 0 such that when U0 ⊂U are
topological discs and φ : U → C is a univalent map and the modulus of U \U0 is at
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least δ then
|Dφ(z)|
|Dφ(z′)|

≤ K for all z,z′ ∈U0.

The power of this lemma is that K does not depend on φ . It turns out that in the real
case there is an analogous result: for each δ > 0 there exists a K > 0 such that when
I0 ⊂ I are intervals and g : I→ R is a diffeomorphism such that Sg≥ 0 then

|Dg(z)|
|Dg(z′)|

≤ K for all z,z′ ∈ I0.

In applications, g is usually the inverse of a diffeomorphic branch of an interval map
f n where f is assumed to have negative Schwarzian S f < 0. The reason why this is
useful is that the Schwarzian property has the property that S f < 0 implies S f n < 0
and that S f n < 0 implies S f−n > 0 (on diffeomorphic branches). Furthermore, if f
is a real polynomial with only real critical points then S f < 0. This observation that
the negative Schwarzian could be used to bound the number of periodic attractors
of an interval map was first made by Singer, see [95], but also appeared at around
the same time in for example Herman’s work [48]. A version of the Koebe Lemma
in this setting was proved for the first time in [114]. That the Schwarzian deriva-
tive is related the distortion of cross-ratio was already known by E. Cartan in the
1930s, see the discussion in [30, Sections IV.1 and IV.2]. As the use of the above
distortion estimate is so widespread, one often refers to the Koebe Principle and the
assumption on the domains U0 ⊂U (resp. I0 ⊂ I) as Koebe space.

For interval maps and critical circle maps, the presence of critical points implies
that one cannot control the non-linearity of the map and its iterates. Instead, it turns
out that it is enough (i) to consider the cross-ratio distortion of a triple of adjacent
intervals under iterates, (ii) assume that the map has some local symmetry around
the critical points (e.g. the maps are non-flat at the critical points) and (iii) a more
elaborate combinatorial analysis of orbits of wandering intervals. This was done
by Guckenheimer, Yoccoz, Lyubich, Block, de Melo, van Strien, Martens in various
generalities. For a history and a full analogue of Theorem 3.1, see [76, 30]. Probably
the most elegant way of proving absence of wandering intervals in this setting can
be found in [113]. Interestingly, it was Dennis who emphasised and insisted that
the right smoothness class for (i) is C1+Zygmund , whereas the earlier results required
that the map was C3 and even assumed that the map has negative Schwarzian. See
[108], [109] or [30] for the definition of the classes C1+Zygmund and C1+zygmund . The
analogue of Sullivan’s no-wandering Theorem 3.1 is:

Theorem 3.2 (See [76, 30]). Assume that f is an interval map which is C1+Zygmund

and has non-flat critical points. Then f has no wandering interval. Moreover, if f
is a C2+zygmund map with non-flat critical points, then there exist κ > 1 and n0 ∈ N
such that

|D f n(p)|> κ

for every periodic point p of f of period n≥ n0.



788 Edson de Faria and Sebastian van Strien

Interestingly, it is not clear to what extent local symmetry around a critical point
is crucial. Indeed, consider a map of the form

f (x) =
{

xα + c for x > 0
xβ + c for x < 0

with α ̸= β ,α,β > 1 and c real. It is not known whether such a map can have
wandering intervals. For α = β the answer is no, due to the previous theorem. For
the case that α ̸= β very little is known, except for the case that α = 1 < β and f
has Feigenbaum–Coullet–Tresser dynamics, see [61] (and the proof of absence of
wandering intervals in that case follows a rather curious approach).

The real bounds that go into the proof of the absence of wandering intervals for
real maps, certainly inspired Dennis’ proofs of complex bounds which are crucial
in his renormalisation theory.

As mentioned, a crucial ingredient in the proof of real bounds is Schwarzian
derivative, or more generally the notion of cross-ratio. A special cross-ratio in-
equality was used by Yoccoz to show that smooth circle homeomorphisms with
a unique non-flat critical point cannot have wandering intervals, see [118]. More
general cross-ratio inequalities were then used in [29] for the interval case and sub-
sequently in [112] for circle endomorphisms, see [30, Sections IV.1 and IV.2] for a
discussion of the connection between cross-ratio and Schwarzian derivative. In par-
ticular, the cross-ratio distortion arguments (i) suggest the relevance of the Poincaré
metric on (C \R)∪ J, which is the complex analogue of the cross-ratio on a real
interval J. Indeed, let Dr(J) be the set of points consisting of the set of points with
distance to J of at most r with respect to the Poincaré metric on (C \R)∪ J. This
set is often called a Poincaré disc, and is bounded by two arcs of the circles through
a,b. Using the Schwartz inclusion lemma, it then follows that if f is (for example) a
real polynomial so that f : J′→ J is a diffeomorphism and so that all critical values
of f lie in R \ J, then the component of f−1(Dr(J)) intersecting J′ is contained in
Dr(J′). This turned out to be a key ingredient to the proof of his theorem on complex
bounds for renormalisable maps, see Theorem 3.16.

Naturally, Dennis did ask himself whether there are analogues of his no wan-
dering domain theorem in the higher-dimensional case in the smooth category. A
partial answer to this question is given by Theorem 1.3 for toral diffeomorphisms of
Denjoy type.

3.2 Conformal measures for rational maps

Soon after developing his no wandering theorem, Dennis introduced the notion of
conformal δ -measure for a rational map f . This is a Borel probability measure m so
that

m( f A) =
∫

A
|D f |δ dm,
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for every Borel measurable set A⊂ C̄ and where it is assumed that δ ≥ 0, see [104].
Dennis then showed that one can also construct conformal measures on the Julia set
analogous to what he had done before in the setting of Kleinian groups, extending
earlier work by Patterson:

Theorem 3.3 (Existence of conformal measures for rational maps, see [104]).
For every rational map there exists a conformal measure. In the hyperbolic case,
the exponent δ is positive and is equal to the Hausdorff dimension of the Julia set of
the rational map.

The paper [104] is also shows that for Dennis the theory of dynamical systems
is unified: topological, smooth and ergodic aspects are all connected. Moreover, in
his view the theory of real and complex one-dimensional systems together with the
theory of Kleinian groups all should be viewed as highly interwoven.

3.3 The λ -Lemma

One of Dennis’ most used and cited papers on holomorphic dynamics is one in
which he, and his coauthors Mañé and Sad, proved that most maps are stable. The
main technical tool in that paper is the celebrated:

Theorem 3.4 (λ -Lemma, see [70]). Let A be a subset of C, D the open unit disc
and iλ : A→ C a family of maps so that

1. for each z ∈ A, D ∋ λ 7→ iλ (z) is analytic;
2. A ∋ z 7→ iλ (z) is injective for each λ ∈ D;
3. i0 = id.

Then every iλ : A→C has a quasiconformal extension to a continuous map iλ : A→
C, which for fixed λ is a topological embedding, and so that D ∋ λ 7→ iλ (z) is
analytic for each fixed z ∈ A.

The proof of the λ -Lemma is surprisingly simple, and is based on the Schwarz
lemma which states that any analytic map ξ : D→ C̄\{0,1,∞} is contracting w.r.t.
the Poincaré metric on these sets. Now consider the cross-ratio distortion of any
distinct four points in A. Using that the cross-ratio distortion omits the values 0,1,∞
and this version of the Schwarz lemma, one obtains the above λ -Lemma.

In addition to the MRMT and the theory of quasiconformal homeomorphisms,
the λ -Lemma has become one of the most widely used tools in the field of holomor-
phic dynamical systems.5

Later, jointly with Thurston, Dennis improved this λ -Lemma to show that one
can extend iλ : A→ C to a qc map iλ : C→ C, provided we restrict λ to a suitable
disc D0 ⋐ D (here the choice of D0 is universal), see [111].

5 Independently, Lyubich proved an analogous result, see [69].
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3.4 Density of stable maps

The initial motivation for the λ -Lemma, and the main purpose of the paper [70],
was to prove that stable maps are dense (within the space of rational maps). As
a first step towards proving this, the class of J-stable maps is considered. Here f
is called J-stable if for each g near f there exists a homeomorphism h of J( f ) to
J(g) so that h◦ f = g◦h on J( f ) and so that J(g) depends continuously on g in the
sense of Hausdorff distance between closed sets. f is called structurally stable if the
conjugacy holds on C̄.

Consider a family fw(z) or rational maps depending on w ∈W , where W is a
connected complex submanifold of C2d+1, and so that (w,z)→ fw(z) is analytic in
w,z. Let H( f ) ⊂W be the set of w ∈W for which there exists a neighbourhood V
with w ∈V ⊂W so that each periodic point pw of fw depends analytically on w ∈V
and so that their multiplier satisfies either λ (w) ̸= 1 for all w∈V or λ (w)≡ constant
for all w ∈V .

Theorem 3.5 (J-stability, see [70]). H( f ) is open and dense in W. Moreover, fw is
J-stable if and only if w ∈W and the conjugating homeomorphism hw can be taken
to be analytic in w and quasiconformal in z.

Analogous to the set H( f ), the authors introduce the set C( f )⊂W of points w for
which there is a neighbourhood V with w ∈V ⊂W so that each critical point ci(w)
of fw depends analytically on w ∈ V and so that any critical relation f n

w(ci(w)) =
f m
w (c j(w))) holds either for all w in V or for none.

Theorem 3.6 (Structurally stable maps are dense, see [70]). C( f ) is an open and
dense subset of H( f ). Moreover, if w ∈C( f ) then f is structurally stable.

In the late 1960s Smale suggested that a similar result should hold for general
smooth dynamical systems, but this turned out to be false (due to examples by New-
house and others).

3.5 Towards the Fatou conjecture: absence of line fields

A map f is said to be Axiom A (or hyperbolic) if there exist ρ > 1 and C > 0 such
that |( f k)′(z)|>Cρk for all k ≥ 0 and z ∈ J( f ). It is not hard to see that f is Axiom
A if and only if the periodic components of F( f ) are superattractive or attractive
and if the orbit of every critical point of f is eventually contained in one of these
components.

Fatou already stated the following:

Conjecture 3.7 (Fatou Conjecture). Each rational map can be approximated by
an Axiom A rational map of the same degree.
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No doubt Dennis tried to prove this conjecture but to this day nobody has suc-
ceeded in doing so. One of the main appealing properties of Axiom A maps is that
they are stable, provided they satisfy some mild additional conditions, and that their
dynamics is very well-understood. For example, for such a map Lebesque almost
every initial point converges under iterates to a periodic attractor.

Amongst many other results in [81], Dennis, together with McMullen, shows that
the above conjecture can be reduced to proving the absence of measurable invariant
line fields supported on Julia sets. Here a measurable line field on a forward invariant
subset K ⊂ J( f ) of positive Lebesgue measure is a measurable function z 7→ µ(z)
on K. Here one can think of µ(z) as a line through z, and invariance means that
µ( f (z)) = D fzµ(z).

Theorem 3.8 (A conditional proof of the Fatou conjecture, see [81]). Assume that
any rational map which supports a measurable invariant line field on its Julia set is
a Lattès map. Then the above Fatou Conjecture holds.

3.6 Monotonicity of entropy and the pullback argument

Another problem which was extensively studied in the early 1980s was whether the
topological entropy of the family fa : [0,1]→ [0,1], a ∈ [0,4], defined by fa(x) =
ax(1− x) is a monotone function in a. This problem was solved by several people
independently and using different methods. For a history of this problem, see [62].
Dennis’ approach was particularly important because it became a key ingredient in
the proof of density of hyperbolicity within interval maps, see Theorem 3.17 below.

Monotonicity follows immediately from the following:

Theorem 3.9 (Monotonicity of entropy). Consider the family fa : [0,1]→ [0,1],
a ∈ [0,4], defined by fa(x) = ax(1− x). Then no periodic orbit disappears as a
increases.

If fa, fa′ are two such maps which are topologically conjugate and whose critical
points are eventually periodic, then a = a′.

This theorem is non-trivial. Indeed, it is not known whether within the family
x 7→ xd +c with d > 1 fixed but not necessarily an integer, bifurcations are monotone
in c. Partial results, and monotonicity for other non-trivial families of intervals maps,
are given in [62]. One also has monotonicity within families of real polynomials of
higher degree, namely each set of parameter for which the topological entropy is
constant is connected. For the case of real cubic critical polynomials, see [83] and
for the general case of real polynomials with all critical points real, see [11] and also
[57].

The rigidity statement in the second part of Theorem 3.9 follows immediately
from Thurston’s famous theorem, see [36]. The approach proposed by Dennis uses
the pullback argument. This argument is formalised in the following theorem and
also applies to the setting of polynomial-like maps discussed below. Let P( f ) be the
closure of the forward iterates of critical points of f .
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Theorem 3.10 (Pullback argument). Let h0 be a quasiconformal homeomorphism
such that

1. h0(P( fa)) = P( fa′),
2. there exists a qc map h1 for which fa′ ◦ h1 = h0 ◦ fa such that h1 = h0 on P( fa)

and which is homotopic to h0 rel. P( fa) and
3. h0 is a conformal conjugacy between fa and fa′ near ∞ (and near their periodic

attractor if they exist).

Then there exists a qc homeomorphism h such that fa′ ◦h = h◦ fa. If h is conformal
near all periodic attractors (if they exist) and if fa does not carry an invariant line
field on J( fa) then h is conformal.

Proof. By the Homotopy Lifting Theorem, there exists a sequence of homeomor-
phisms hn such that fa′ ◦hn+1 = hn ◦ fa which are homotopic to h0 rel. P( fa). Since
fa and fa′ are conformal, hn+1 will have the same qc dilatation as hn. Moreover,
hn+1 agrees with hn on a set Fn such that Fn+1 ⊃ Fn so that ∪Fn is dense in C̄. Since
the space of qc maps is compact, hn converges to a qc map h. If the Julia set of fa
has zero Lebesgue measure (or, even more generally, does not carry invariant line
fields) then h is conformal.

One can deduce Theorem 3.9 quite easily from the pullback argument, using
the open-closed argument. Indeed, assume by contradiction that the conclusion of
Theorem 3.9 is wrong. Then there exists two topologically conjugate post-critically
finite real quadratic maps fa and fa′ with a ̸= a′. Choose [a,a′] ‘maximal’ i.e., such
that there exists no real a′′ /∈ [a,a′] for which fa′′ is a real quadratic map which again
is topologically conjugate to fa. The pullback argument implies that fa and fa′ are
in fact quasiconformally conjugate. Let h be a qc-conjugacy such that fa′ ◦h = h◦ fa
and let µ be its Beltrami coefficient. Then the MRMT gives a (normalised) family of
qc maps ht whose Beltrami coefficient is tµ for |t| ≤ 1+ε , provided ε > 0 is small.
A simple calculation then shows that each of the maps gt := ht ◦ fa ◦ h−1

t is again
conformal. This is because ht sends the ellipse field determined by tµ to a field of
circles, and the invariance of the Beltrami coefficient implies that this ellipse field is
preserved by D f . Moreover, gt depends analytically on t. That gt is in fact quadratic
follows from the degree of the map (and a suitable normalisation of ht ). It follows
that there exists an ε > 0 such that for s∈ (a−ε,a′+ε) each fs is quasiconformally
conjugate to fa. But this contradicts the maximality of the choice of [a,a′].

This proof is very interesting because it makes it possible to reduce density of
hyperbolicity with real quadratic maps to quasisymmetric rigidity in the unicritical
setting, see Section 3.11. In fact, even if in the context of maps with several critical
points, quasisymmetric rigidity can be used to derive density of hyperbolicity, see
[60, 58, 91].

Another reason that makes Dennis’ proof of Theorem 3.9 so interesting is that it
also applies to the following setting, introduced by Douady and Hubbard [34].
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Definition 3.11. Assume that U and V are simply connected domains in C. Then a
holomorphic map F : U→V is called quadratic-like if the closure of U is contained
in V and if there exists a unique critical point c of F such that F restricted to U \{c}
is a covering map of degree two onto V \{F(c)}. The subset

K(F) = {z ∈U : Fn(z) ∈U for all n≥ 0}

is called the filled Julia set of F .

Any quadratic map is quadratic-like (just take U to be some very large disc).
Moreover, by the so-called Straightening Theorem, see [34], any quadratic-like map
is quasiconformally conjugate to a quadratic map.

One step in the renormalisation theory developed by Dennis (and also in subse-
quent developments) is to show that certain iterates of a given map have quadratic-
like restrictions f n : Un → Vn with the additional property that the modulus
mod(Vn \Un) is bounded from below uniformly in n. Such bounds are called a-
priori bounds or complex bounds.

3.7 Renormalisation theory for interval maps

Consider the family fa(x) = ax(1− x). A simple computer simulation shows that
this family of maps undergoes a period doubling bifurcation from period 2n to pe-
riod 2n+1 at some parameter an. That these parameters an are in fact unique (and
increasing) can be deduced from a result similar to Theorem 3.9.

One of the reasons why iterations of interval maps attracted so much attention
from the late 1970s was the observation by Feigenbaum and independently by Coul-
let and Tresser of metric universality within a wide class of such families. Namely,
it turns out that the parameters an converge to some limit value a∞ at a particular
rate δ > 1:

an−1−an−2

an−an−1
→ δ = 4.669201...

Remarkably, if one takes some other family such as fa(x) = asin(πx) then the cor-
responding rate is the same! Moreover, the map fa∞

has an invariant Cantor set and
the scaling structure of this Cantor set also displays metric universality.

Feigenbaum, Coullet and Tresser already suggested a mechanism which would
be responsible for this universality. The key idea is renormalisation. Indeed, there
exists a (real) parameter interval [u1,v1] ∋ a∞ such that for each a ∈ [u1,v1] there
exists an interval J1

a ∋ 1/2 such that f 2
a (J

1
a ) ⊂ J1

a and such that fa(J1
a ) and J1

a
have disjoint interiors. Such maps are called 2-renormalisable. Note that 1/2 is
the critical point of fa. It turns out that there exists an interval [u2,v2] ⊂ [u1,v1]
such that for each a ∈ [u2,v2] the map f 2

a |J1
a (rescaled) is again 2-renormalisable. In

other words, there exists an interval J2
a with 1/2 ∈ J2

a ⊂ J1
a such that f 4

a (J
2
a ) ⊂ J2

a
and such that J2

a , . . . , f 3
a (J

2
a ) have disjoint interiors. Moreover, J2

a , f 2
a (J

2
a ) ⊂ J1

a and
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f (J2
a ), f 3

a (J
2
a ) ⊂ f (J1

a ). So these maps are twice 2-renormalisable. Continuing like
this, for each k there exists an interval [uk,vk] such that for each a ∈ [uk,vk] the map
fa is 2k-renormalisable. For a∞ ∈ ∩[uk,vk] the set

Λa∞
:=
⋂
k≥0

(
J j

a ∪·· ·∪ f 2k−1
a (Jk

a)
)

is a Cantor set.
To formalise this one can define, near the limit map fa∞

, the renormalisation
operator

R( f ) = f 2|J rescaled,

where J is the maximal interval of renormalisation of period two, i.e., the maximal
interval such that f 2(J) ⊂ J and such that f (J) and J have disjoint interiors. This
operator is well-defined for all maps which are at least once 2-renormalisable.

More generally one has the following

Definition 3.12. An interval map f is renormalisable if there exist p > 0 and an
interval J around a critical point of f such that J, . . . , f p−1(J) have disjoint interi-
ors and such that f p(J) ⊂ J. The operator R( f ) = f p|J rescaled is then called the
renormalisation operator. See Figure 2.

x

f

f

f

f

Λ
−1
f

R( f ) = Λ
−1
f ◦ f p|J ◦Λ f

Fig. 2: Renormalising a unimodal map. Here, J is the red interval, p = 4, and R( f )
is simply R( f ) rescaled by the affine map that takes the blue interval onto the red
interval.
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If f is unimodal, then f p|J is again a unimodal map and it makes sense to require
that p is minimal and J is maximal with the above properties. If R( f ) is again renor-
malisable, then we say that f is twice renormalisable. Similarly, f is called infinitely
renormalisable if this process can be repeated infinitely often. If the corresponding
integers p1, p2, . . . are all bounded by some number P < ∞ then f is called infinitely
renormalisable of bounded type.

It turns out that the renormalisation conjectures of Feigenbaum and Coullet &
Tresser of metric universality follow from (i) the existence of a fixed point ψ of the
operator R, (ii) that the spectrum of the operator DRψ lies off the unit circle and
(iii) that DRψ has a unique expanding eigenvalue. The universal parameter scaling
constant δ is equal to this expanding eigenvalue. The universal dynamical scaling
structure of Λa∞

follows from the largest contracting eigenvalue of DR.
The universality from the Feigenbaum–Coullet–Tresser conjectures then follows

from the fact that for any family which crosses the stable manifold of R transver-
sally, the parameter scalings δ and the dynamical scaling can be obtained from the
spectrum of DR(ψ).

The existence of the fixed point ψ and an analysis of the spectrum of the linear
map DR were established by Lanford before Dennis started working on the renor-
malisation conjectures. This was done in part using careful rigorous computer esti-
mates. However, there were three limitations to Lanford’s results.

Firstly, Lanford’s proof did not establish which maps are contained in the stable
manifold of R. In other words, it remained unclear whether any 2∞-infinitely renor-
malisable unimodal maps (with a quadratic critical point) would be in the stable
manifold of the period doubling operator. Secondly, Lanford’s proof did not estab-
lish a conceptual proof of why this result was true. Finally, Lanford’s proof also did
not cover the more general situation of maps which are infinitely renormalisable of
bounded type, but only of constant type p1 = p2 = · · · .

The huge result which Dennis managed to obtain is the following:

Theorem 3.13 (Renormalisation for unimodal interval maps, see [109] and also
[30]). There exists a Cantor set Kp of infinitely renormalisable maps of bounded
type ≤ p, of real analytic unimodal maps, which form an invariant subset for the
corresponding renormalisation operator. The renormalisation operator acts on Kp
as a full shift on finitely many symbols. Each real analytic unimodal map with a
quadratic critical point which is infinitely renormalisable map and of bounded type
is in the stable manifold of the corresponding renormalisation operator.

After this, other proofs of the renormalisation conjectures appeared. McMullen
[79, 80] and Avila and Lyubich [5] gave easier proofs that the stable manifold of
the renormalisation operator contains all the relevant infinitely renormalisable maps
using ‘towers’ respectively based on a Schwarz Lemma. These proofs additionally
give that under renormalisation infinitely renormalisable maps of bounded type con-
verge with an exponential rate to the above Cantor set of infinitely renormalisable
maps of bounded type. Moreover, Lyubich [66] gave a conceptual proof showing
that the renormalisation operator has a unique expanding eigenvalue.
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The above proofs require that the maps are real analytic. In the Cr context, these
theorems also go through, see [27]. An alternative approach to extend the renormal-
isation theory for real analytic maps to smooth maps is via asymptotically holomor-
phic maps, see [17].

In the multimodal setting, the renormalisation picture is not complete yet. In this
setting, the conjecture could be

1. Topologically conjugate mappings converge exponentially quickly under renor-
malisation.

2. The stable manifolds of renormalisation are smooth.
3. The transverse directions to the stable manifolds are exponentially expanded by

renormalisation.

Part 2 of this conjecture has been proved in [20]. For the case of bounded combina-
torics, see [97].

3.8 Real and complex bounds

The first step towards proving Theorem 3.13 is to show that the space of renormal-
isable maps is compact. To do this, Dennis established a priori bounds, first in the
real and then in the complex setting:

Theorem 3.14 (Real Bounds). Let f be a real analytic map which is infinitely
renormalisable and of bounded type. Then the C2 norm of the maps Rn f is uni-
formly bounded.

The first part of this theorem shows that Rn f is a composition of a quadratic
map and a map g whose non-linearity is bounded from above. The main ingredient
he used for this is the (real) Koebe Principle and the smallest interval argument
discussed above. Indeed, let J be the first renormalisation interval such that f p(J)⊂
J with p≥ 1 minimal. Then the intervals J, . . . , f p−1(J) are disjoint and one among
them, let us say f i(J), is the smallest. This means that, unless f i(J) is one of the
two extreme intervals in this collection, the interval f i(J) is contained in an interval
T = [ f l(J), f r(J)] which has the property that both components of T \ f i(J) are
not small compared to f i(J). This simple idea can be used to obtain Koebe space,
namely that the map f p−1 : f (J)→ f p(J) ⊂ J extends to a diffeomorphism with
range T ′ ⊃ J so that J is well-inside J. Using the real Koebe Principle the map
f p−1 : f (J)→ f p(J) then has bounded non-linearity.

Extending this argument, and using the pullback argument from above, one then
obtains one of the key steps:

Theorem 3.15 (Quasisymmetric Rigidity in the Renormalisable Case). Let f ,g
be two infinitely renormalisable real-analytic maps of bounded type and with
quadratic critical points. Then if f ,g are topologically conjugate they are in fact
quasisymmetrically conjugate.
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To obtain Theorem 3.13 Dennis needed to extend the real maps f p : J → J to
quadratic-like maps and to obtain compactness with the space of such maps:

Theorem 3.16 (Complex Bounds). Let f be an infinitely renormalisable real-
analytic unimodal map of bounded type pi ≤ p for all i ≥ 0 and with quadratic
critical points. Then, for every n sufficiently large, Rn f extends to a quadratic-like
map F : U → V such that the modulus of V \U is bounded by some number ρ > 0
which does not depend on f but only the upper bound p.

Moreover, any limit of Rn f has a complex analytic extension which is in the
so-called Epstein class.

Real bounds were proved in a much more general context, see (in increasing
generality) [74, 93, 113]. Complex bounds for real unicritical maps were proved in
[63, 68] and for multicritical maps (in increasing generality) in [96, 21]. Complex
bounds do not hold for general (non-real) quadratic maps: there are examples of
infinitely renormalisable quadratic maps for which no modulus bounds as in the
above theorem hold. On the other hand, for non-renormalisable polynomials maps
(with only hyperbolic periodic points) one does have complex bounds, see [60] and
[18]. An important ingredient in the latter developments is the quasi-additive lemma
by Kahn and Lyubich [54]. This lemma was also used to treat some maps which
are infinitely renormalisable, see [52, 53]. It is not known how to extend complex
bounds to the case of general rational maps, as in general it is not clear how to
construct an initial puzzle partition.

3.9 Riemann surface laminations and the non-coiling lemma

To complete the proof of Theorem 3.13, Dennis introduced a new tool, namely his
non-coiling principle and his almost geodesic principle. To explain this, consider
a qc conjugacy H between F0 and F1. Its Beltrami coefficient µH = ∂̄H/∂H is in-
variant under F0. It follows that the family of qc maps Ht associated to µt = tµH
(coming from the MRMT) defines a family of quadratic like maps Ft =Ht ◦F0 ◦H−1

t
connecting F0 to F1. This is called a Beltrami path between F0 and F1. Dennis’ al-
most geodesic principle shows that the Beltrami path corresponding to an almost
extremal vector does not coil: if the tangent Beltrami vector is almost extremal then
the Beltrami path remains almost a geodesic for a long (but a priori fixed) time.

To show that the renormalisation operator is (weakly) contracting he then argued
as follows. From the complex bounds discussed in the previous subsection, he ob-
tained that there exists a compact space K such that, if we take an arc connecting
two conjugate maps which are infinitely renormalisable and of bounded type, then
after n renormalisations, this arc is mapped in K . Here n depends on the choice of
the chosen maps, but K does not. Now take an almost geodesic path between two
maps F0,F1. Extend this path to a geodesic path between two maps F̃0, F̃1 which are
extremely far apart. Now apply renormalisation. For n sufficiently large, the renor-
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malisations Rn(F̃0),Rn(F̃1) are in K and so not far apart. But then, by the almost
geodesic principle, the renormalisations Rn(F0),Rn(F1) are extremely close.

To make all this work, Dennis had to consider germs of quadratic-like maps.
For this reason he considered inverse limits of the quadratic-like maps Fi : Ui→ Vi
which led to the study of Riemann surface laminations. This is not the place to go
into a full description of the beautiful theory of such objects, but let us at least say a
word or two. Roughly speaking, a Riemann surface lamination (RSL) is a space akin
to a foliated space in which the chart domains are homeomorphic to D×T , where
D⊂ C is a disk and the transversal T ⊂ R is typically a Cantor set (or an interval),
and the chart transitions are holomorphic along the horizontal leaves. In the present
context, the main example is the following. Let F : U →V be a quadratic-like map,
let K(F)⊆ C be its filled-in Julia set, which we assume to contain the critical point
of F (so that it is connected), set W =V \K(F), and consider the inverse system of
holomorphic covering maps:

· · · → F−n−1W → F−nW → ··· → F−1W →W.

The inverse limit space L (F) of this system is a fibration over W , the fiber above
each x ∈W being a Cantor set (the binary Cantor set at the end of the tree giving
the full backward orbit of x). From this it follows that L (F) is an RSL in a natural
way.

The inverse limit map F∞ : L (F)→L (F) is invertible and acts properly discon-
tinuously on L (F), and the quotient XF = L (F)/F∞ is a compact RSL. In [109],
Dennis defined a deformation space or Teichmüller space of XF (and more general
RSLs) in such a way that every Beltrami path between two quadratic-like maps F0
and F1 as above can be lifted to a Beltrami path between the corresponding lami-
nations XF0 and XF1 , and all deformations are encoded in this fashion. What makes
this possible is the fact that the Julia set of an infinitely renormalisable quadratic-
like map with complex bounds does not carry any non-trivial quasi-conformal de-
formations. Dennis then proved the non-coiling principle and the almost-geodesic
principle at the level of laminations, transporting the resulting contraction of the
Teichmüller distance downstairs, at the level of maps.

We will not go further into Dennis’ proof of this tour de force (a full description
can be found in [30, Chapter VI], in addition to the papers [109] and [110]). After
all, as mentioned, this last step was improved in subsequent proofs which show
that the invariant Cantor set of R attracts other maps with an exponential rate, see
McMullen [79, 80] and Avila and Lyubich [5]. Still, the reader who wants to learn
more about RSLs should consult the elegant survey written by Ghys in [15].
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3.10 Renormalisation theory for circle maps

While working on the renormalisation problem for unimodal maps, Dennis was
well aware that similar experimental discoveries to those made by Feigenbaum and
Coullet–Tresser had been made by physicists concerning circle homeomorphisms
having a single non-flat critical point (of power-law type). The topological classifi-
cation of such maps had been accomplished by Yoccoz in [118].

Dennis also knew that, in the circle context, Lanford had formulated a renor-
malisation conjecture akin to the one for unimodal maps, using the language of
commuting pairs. Dennis then suggested to EdF, as a thesis problem, to adapt his
holomorphic ideas to the case of such critical circle maps. The key step was to find
an analogue of quadratic-like maps in the context of critical circle maps. This was
accomplished in [23] (see also [24]) with the notion of holomorphic commuting pair
(inspired in part by a computer picture drawn by H. Epstein), alongside a proof of
complex bounds (as well as a pull-back argument) for such objects, assuming the ro-
tation number of the underlying critical circle map to be of bounded type, and also
that the circle maps belonged to a special class of maps known as Epstein class.
The necessary real bounds had already been established by Herman (unpublished
manuscript, but see [49]) and Swiatek [112]. The bounded type assumption was
removed by Yampolsky [116], still assuming the Epstein property. The latter was
finally removed by EdF and Welington de Melo in [26].

For unicritical circle maps, the fact that, under suitable full-measure conditions
on the rotation number, exponential convergence of renormalisations leads to C1+α

rigidity was established in [25] (counterexamples to this ansatz for rotation numbers
in a special zero-measure class were constructed in the same paper). The analogous
conditional statement obtained replacing C1+α by C1 holds under no restriction on
the rotation number (other than being irrational), as shown by [55]. The exponen-
tial convergence of renormalisations for real-analytic unicritical circle maps with
bounded type rotation number was proved in [26]. Using the concept of parabolic
renormalisation, Yampolsky [117] was able to remove the bounded type hypothesis,
and in fact proved that the renormalisation operator attractor is globally hyperbolic
in the analytic context. In the larger space of C3 unicritical circle maps, exponential
convergence towards the attractor was first proved by Guarino in his thesis under de
Melo – see [46] – assuming rotation numbers of bounded type only. The bounded
type hypothesis was later removed in [47], at the cost of assuming the maps to be
C4.

In recent years, considerable work has been done to extend these rigidity, univer-
sality and renormalisation convergence results to multicritical circle maps – see for
instance [39] and references therein. An important step towards this goal is to first
establish the quasisymmetric rigidity of such maps – this was accomplished in [38]
for multicritical circle maps with critical points having arbitrary (real) power-law
criticalities. For this and much more about multicritical circle maps, see [28].
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3.11 The Fatou conjecture in the real setting

As mentioned, Fatou conjectured that each rational map can be approximated by an
Axiom A rational map of the same degree. This question is still wide open, even in
the quadratic case. However, in the setting of real maps the corresponding result has
been answered completely:

Theorem 3.17 (The Real Fatou Conjecture). Each real polynomial can be ap-
proximated by a real Axiom A polynomial of the same degree.

In the setting of real quadratic polynomials, the real Fatou conjecture was proved
independently by Lyubich [65] and Graczyk & Swiátek [44, 45]. The setting of real
polynomials of higher degree d > 2 was solved (using entirely different tools) by
Kozloski, Shen and van Strien, see [59] and [58]. In the non-real non-renormalisable
case see also [60] and [18]. An important ingredient in the latter developments is the
quasi-additive lemma by Kahn and Lyubich [54]. This lemma was also used to treat
some maps which are infinitely renormalisable, see [52, 53].

Although the proofs of these results are not due to Dennis, he played an important
role in them. Indeed, his work suggested that to prove density of hyperbolicity that
it would be enough to prove the following

Theorem 3.18 (Quasisymmetric Rigidity in one-dimensions). If f ,g are topolog-
ically conjugate real polynomials with only real critical points, and all their critical
points are quadratic, then these maps are quasisymmetrically conjugate.

Dennis’ renormalisation theory for infinitely renormalisable unimodal (unicrit-
ical) maps of bounded type, relied on this result (in this setting). In the quadratic
case, the above theorem is due to [65] and Graczyk & Swiátek [44, 45]. Their proof
relied on the property that, in this setting, the moduli of certain annuli tends to in-
finity. This growth of moduli is a deep and subtle result, but this does not hold for
unimodal maps with a degenerate critical point nor for multimodal maps with non-
degenerate critical points. So for the general case a different approach is needed. The
approach by Kozlosvki, Shen and van Strien in [59] uses the enhanced nest, which is
a particular choice of a sequence of puzzle pieces that turn out to have Koebe space.
An introductory survey on this technique can be found in [18]. The most general
quasisymmetric result is contained in joint work of Clark and van Strien, see [19].

3.12 Sullivan’s quasisymmetry rigidity programme

Even though there is no analogue of the MRMT in the real setting, one of Dennis’
insights was that quasisymmetric rigidity should still be a very powerful tool in
addressing questions about the topological structure of conjugacy classes of interval
maps. For example, whether such a conjugacy class is a connected manifold. This
insight turned out to be justified. Indeed, let A ν be the space of real analytic maps
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Kleinian Groups Iterated Analytic Maps

Kleinian group Γ Holomorphic map f

Γ finitely generated f rational map

Γ is Fuchsian f is a Blaschke product

Domain of discontinuity Ω(Γ ) Fatou set F ( f )

Limit set Λ(Γ ) Julia set J( f )
Λ(Γ ) ̸= Ø J( f ) ̸= Ø

Ω(Γ ) has either 0,1,2 or F ( f ) has either 0,1,2 or
infinitely many components infinitely many components

Either Λ(Γ ) = Ĉ Either J( f ) = Ĉ
or Λ(Γ ) has empty interior or J( f ) has empty interior

Ahlfors finiteness theorem Sullivan’s no-wandering-domains theorem

Bers area theorem Shishikura’s bound on the number
of non-repelling periodic cycles

Mostow’s rigidity theorem Thurston’s uniqueness theorem on
post-critically finite rational maps

Patterson–Sullivan measures on Λ(Γ ) Sullivan’s conformal measures on J( f )

The quotient manifold H/Γ Lyubich–Minsky lamination

Geometrically finite groups Are hyperbolic rational
with no cusps are dense maps dense?

Table 1: Some entries in Sullivan’s dictionary
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with precisely ν real critical points c1 < · · ·< cν of order ℓ1, . . . , ℓν . The following
theorem was shown by Clark and van Strien [20].

Theorem 3.19. Let f ∈A ν . Then the space T f of real analytic maps in A ν which
are topologically conjugate to f forms an analytic manifold. This manifold is con-
nected and simply connected.

This theorem extends results of Avila–Lyubich–de Melo [6] for the quasi-quad-
ratic unimodal case and of Clark [16] for the more general unimodal case. Their
methods fail in the case where there are several critical points. For this reason, the
notion of pruned Julia set is introduced in [20]. This set is a version of the Julia
set (pruned) but depends on where one ‘prunes’. A pruned Julia set can be defined
for each real analytic map f . The real analytic map f , together with its pruned Ju-
lia set, define a real analytic external map of the circle with discontinuities. Using
this external map, one can construct a a pruned polynomial-like complex extension
of the real analytic map. Finally, from all this one is able to show that topological
conjugacy classes are connected (something which was not even known in the gen-
eral unimodal setting). Even more, this space is contractible and forms an analytic
manifold.

4 Sullivan’s dictionary

Dennis’ wide-range view of Mathematics allows him to draw fruitful analogies be-
tween different theories, leading to several conjectures on either side. A case in point
is what is now known as the Sullivan dictionary between the theory of Kleinian
groups (in dimension n = 3) on one side and the theory of iterated holomorphic
maps on the other side. A sample of entries in this dictionary is shown in Table 1.
Note that the last entry in the table has a question mark: that is none other than the
famous Fatou Conjecture, widely regarded as the main classical open problem about
the dynamics of rational maps.

Not all meaningful analogies, however, deserve to be in the dictionary. For in-
stance, a famous conjecture by Ahlfors in the 1960s stated that the limit set of
a finitely generated Kleinian group is either the entire sphere or else has zero
Lebesgue measure. As we mentioned in the beginning of Section 2, this is now a
theorem, thanks to the combined efforts of several mathematicians. The final piece
of the puzzle was laid down by Canary [14], building primarily on previous works
by Thurston and Bonahon – see for instance [72] for a description of the whole
story, and references therein. The corresponding statement for iterated holomorphic
maps – to wit, that the Julia set of a rational map is either the entire sphere or else
has zero Lebesgue measure – was thought for a long time to be true, until X. Buff
and A. Chéritat [13] found an example of a quadratic polynomial whose Julia set
has positive measure.
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As Dennis himself has explained to us, he never put the Ahlfors conjecture in the
dictionary because – after working on the problem for about 13 months in the late
seventies and exhausting all available ergodic arguments that would have solved it –
he came to the conclusion that no one would be able to prove it using what was cur-
rently known about finitely generated Kleinian groups. After proving his finiteness
theorem, what Ahlfors really wanted to know was under which conditions the limit
set of a Kleinian group could support non-trivial quasiconformal deformations. He
asked the question about the Lebesgue measure of the limit set in the finitely gen-
erated case because, if the measure indeed turned out to be zero in that case, there
would be no such deformations. Thus, Dennis realized that the real question was
not the measure zero question, but rather to describe, if any, the quasiconformal de-
formations on the limit set. He was able to prove a very general result that states
that, given a Kleinian group Γ and any Γ -invariant subset E ⊂ ΛΓ of its limit set,
there are quasiconformal deformations of Γ supported in E if and only if there are
positive measure wandering sets inside E, and when this happens, the space of such
nontrivial deformations is infinite-dimensional. In particular, since for finitely gen-
erated groups the space of deformations is a-priori known to be finite-dimensional,
there are no quasiconformal deformations supported on ΛΓ when Γ is finitely gen-
erated. This holds even if the limit set happens to be the whole sphere. This absence
of invariant line fields supported in the limit set is stated in Dennis’ Theorem 2.5.
After more than 40 years, the corresponding statement for rational maps6 remains
an open problem. And it is a fundamental problem: indeed it is possible to prove that
if the statement for rational maps is true, then so is the Fatou conjecture. Thus, the
question of absence of invariant line fields certainly deserves its place as an entry in
the Sullivan dictionary (albeit being conspicuously absent from Table 1).

Over the years, the Sullivan dictionary has continued to inspire new results. A
recent example is provided by the work of Hee Oh. Working on the Kleinian side of
the dictionary, in collaboration with Margulis and Mohammadi [73], she examined
closed geodesics and holonomies for hyperbolic 3-manifolds. She was then asked
by Dennis himself about an analogue of her results for rational maps. This resulted
in her paper [87] in collaboration with Winter, in which they establish estimates on
the number of primitive periodic orbits of a hyperbolic rational map.

5 Final words

Dennis Sullivan’s major contributions to the field of Dynamical Systems, some of
which we attempted to describe here, constitute but one facet of his extraordinary
work as a mathematician. There are several other facets. Thus, for his fundamen-
tal work in Topology, especially regarding the study of geometric and/or algebraic
structures on manifolds, see the article by Shmuel Weinberger in the present vol-
ume. In more recent years, Dennis has essentially founded, in collaboration with

6 To wit, that a rational map is either a Lattès example or else carries no invariant line fields in its
Julia set.
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M. Chas, the sub-field of Topology now known as String Topology. We have heard
it said elsewhere that Dennis Sullivan is a mathematician who has re-invented him-
self several times, and that seems to us a very accurate statement.

We have not included anything about Dennis’ recent work on fluid dynamics.
Nor have we mentioned any work on dynamics that Dennis co-wrote with some of
his students and/or post-docs, such as the work with Jiang and Morita [51], his work
with Hu [50] or his work with Pinto [89], nor with many other collaborators from
the dynamical systems community.

In closing, it is important to add that Dennis has always been extremely gen-
erous when sharing his ideas with other researchers, as well as in guiding young
mathematicians. According to the Math Genealogy Project, he has had so far 40
students, and a total of 155 descendants. But many more mathematicians, young
and old, although not formally his students, have been directly influenced by him.
Through his insightful lectures, and his inquisitive quest not merely for results, but
for understanding Mathematics, Dennis has inspired and will continue to inspire us
all. Among his students, those who have written a thesis in dynamics under his su-
pervision include Andre de Carvalho, Adam Epstein, Jun Hu, Yunping Jiang, Curt
McMullen, Waldemar Paluba, Guiai Peng, Meiyu Su, as well as one of us (EdF).

Acknowledgements We would like to thank Curt McMullen, Leon Staresinic, Edson Vargas for
their useful comments, and especially Dennis Sullivan for explaining to us the origins of his dic-
tionary.
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Dennis Sullivan’s early work, despite being strongly motivated by geometric
problems, had a strong algebraic nature, certainly much more so than his later work
on foliations, Kleinian groups, and dynamics where geometry and analysis play cen-
tral roles. The aim of this essay is to try to explain to the non-expert some of this
early work and indicate some of its impact to the current moment.

Having made my aim to try, I shall succeed. After several attempts, I realized
I cannot genuinely explain his work in any detail, nor its implications (the former,
because of its difficulty, especially for the non-topologist, and the latter because of
its magnitude). Instead, I’ve decided to shoot for explaining some of the context,
the audacity and beauty of the ideas, and then hint about some of the mathematical
areas that these ideas opened up.

S. Weinberger
Department of Mathematics,
University of Chicago,
5734 S. University Avenue Chicago, IL 60637-1514,
e-mail: shmuel@math.uchicago.edu

Partially supported by an NSF grant.

811
 

H. Holden, R. Piene (eds.), The Abel Prize 2018-2022, The Abel Prize,  

https://doi.org/10.1007/978-3-031-33973-8_27

 

 

    

© The Editor(s) (if applicable) and The Author(s), under exclusive license  

to Springer Nature Switzerland AG 2024 

mailto:shmuel@math.uchicago.edu
https://doi.org/10.1007/978-3-031-33973-8_27
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33973-8_27&domain=pdf


812 Shmuel Weinberger

I apologize to all (i.e., to frustrated readers and to Dennis) for omissions, obscu-
rities, and inaccuracies.

1 Surgery and its classifying spaces

Dennis Sullivan’s thesis and early work was on the subject of surgery theory, which
we define to be the problem of classifying manifolds in dimension greater than 4.
(That everything is different in dimension 4 was discovered in 1981–82 through the
amazing work of Freedman and Donaldson, but that is another story.)

The possibility of a classification of manifolds, and that higher dimensions would
be more effaceable than low, was demonstrated by Smale [97], with the proof of the
high-dimensional Poincaré conjecture.1 He showed that any smooth manifold of
dimension at least 5 that is homotopy equivalent to the sphere is homeomorphic to
it (and, indeed the homeomorphism could be taken to be simplicial in a suitable
triangulation). On the other hand, Milnor first showed by example that there is a
smooth manifold homeomorphic to S7 that is not diffeomorphic to it, and then with
Kervaire classified such manifolds, i.e., determined the differentiable structures on
the sphere (in dimension at least 5) — or at least showed that the number is finite,
and gave an almost complete reduction to homotopy theory. We will return to the
work of Kervaire and Milnor later, but see [95] for a very useful and much more
thorough discussion.

Browder and Novikov independently took the next critical step: extending these
techniques beyond the sphere, to all simply connected manifolds. Here is one of
their theorems:

Theorem. There are infinitely many closed smooth manifolds homotopy equivalent
to a given closed compact smooth simply connected manifold Mn (n> 4) iff for some
0 < 4i < n, H4i(M;Q) ̸= 0.

Indeed, there is a map from the set of such manifolds to ⊕H4i(M;Q), defined
using Pontrjagin classes2, which is finite to one, and whose image is “pretty dense.”
(In a suitable parametrization, the image, while not a subgroup, contains a lattice,
and is contained in one.) In the case of M = Sn, this contains the finiteness of the set
of the differential structures that is the “main theorem” of [59].

Sullivan’s early work, viewed narrowly, is about making this more computable.
The following “Sullivan–Wall surgery exact sequence” is a reorganization of this
methodology.

1 The key theorem here is the h-cobordism theorem, that gives a condition for a compact simply
connected manifold with boundary to be a product M× [0,1]. The nonsimply connected version of
this (due to Barden–Mazur–Stallings) is likewise fundamental, and is one of the first deep connec-
tions between manifold topology and algebraic-K-theory.
2 Pontrjagin classes are cohomology classes in H4i(M;Q) that are measures of the nontriviality of
the tangent bundle of M (see [76]).
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· · · −→ Ln+1(π)−→ S(M)−→ [M : G/Cat]−→ Ln(π).

Now for some definitions. Cat is a category of manifolds, either smooth or PL at
first, but later extended to Top, the category of topological manifolds.

SCat is the main object of study. It is the {(W, f ) |W is a Cat manifold, and
f : W → M is a simple homotopy equivalence}/Cat isomorphism and homotopy.
In other words, (W, f ) and (W ′, f ′) represent the same element of SCat if there is a
homeomorphism F : W →W ′ so that the composite F f ′ is homotopic to f .

G/Cat is a space that Sullivan introduced, and as usual in algebraic topology,
[M : G/Cat] denotes the homotopy classes of maps from M to G/Cat. Ln(π) are
abelian groups that only depend on the dimension n of M (mod 4) and its fundamen-
tal group π , and on which loops in π1, M is orientable (we suppress this last piece
of data from the notation). For the trivial group, the calculation (due to Kervaire–
Milnor, although the definition came later, in the work of Browder and Novikov, as
we’ve seen) is

Ln(e) = Z,0,Z2,0 for n∼= 0,1,2,3 mod 4, respectively.

The L-groups were defined in [110], and the map [M : G/Cat]→ Ln(π) is called
the surgery obstruction map. Understanding L-groups and this map have become
the core of surgery theory. We will return to this at the end of this section.

Exactness is a bit unusual in this setting, as, aside from L, all the objects involved
are sets and not groups.

These sets all have distinguished elements, for S the identity element, and for
[M : G/Cat] the constant map. Ln+1(π)→ S(M) is actually an action of the group
on the set, and exactness at that point in the sequence means that the isotropy of an
element α is the image of [M× [0,1] : G/Cat], where the boundary conditions are
that the restriction of the function to the boundary be the image of α in [M : G/Cat].

This is a bit complicated, but it gets better when Cat = PL (and even better when
Cat = Top [61]). The upshot will be that one can put abelian group structures on
everything in sight, and that they become a sequence of groups and homomorphisms
in the conventional sense, but this realization came a bit later from work of Quinn,
Ranicki, and Siebenmann. What Sullivan showed was that the space G/PL was
completely understandable. More precisely, [M : G/PL] is an abelian group, and
that one can understand this abelian group via its localizations.

More precisely, with Z(2) denoting rational numbers with odd denominators,
Z[1/2] denoting the ones with denominators a power of 2, and KO the Grothendieck
group of real vector bundles (we will return to K-theory in Section 2), we have

[M : G/PL]⊗Z[1/2]∼= KO0(M)⊗Z[1/2]

[M : G/PL]⊗Z(2)
∼= [M : T ]⊕

⊕
i>0

H4i+2(M;Z/2Z)⊕H4i+4(M;Z(2))

and [M : T ] fits into an exact sequence

0−→ H4(M;Z(2))−→ [M : T ]−→ H2(M;Z/2Z)−→ H5(M;Z(2))−→ ·· ·



814 Shmuel Weinberger

where the map H2(M;Z/2Z) −→ H5(M;Z(2)) is given by the Bockstein of cup-
squaring (which is a homomorphism mod 2), i.e., βSq2.

In the topological category, the answer, according to [61] is even simpler,

[M : G/Top]⊗Z[1/2]∼= KO0(M)⊗Z[1/2]

[M : G/Top]⊗Z(2)
∼=
⊕
i>0

H4i+2(M;Z/2Z)⊕H4i+4(M;Z(2)).

An immediate consequence of these calculations is that, for example
SPL(S2×S6) = Z/2Z×Z/2Z, or indeed a formula for SPL(M) for any simply con-
nected manifold M (of dimension at least 5). But, there’s much more included in
this work, as I’d like to now explain.

1. Sullivan’s actual result describes the structure of F/PL in terms of localiza-
tions. These tensorings of abelian groups by subrings of the rational numbers are
actually localizations in the sense of algebra. Already, Serre had introduced and
brilliantly used the idea of doing homotopical calculations when inverting some
or all primes [94]. Sullivan here gave an example of an important space, whose de-
scription requires such acrobatics. At 2, it is (aside from a low-dimensional blemish,
repaired in the topological category) a product of Eilenberg–MacLane spaces, and
away from 2 (i.e., at odd primes) it is BO, the infinite-dimensional real Grassman-
nian.

2. The method for proving these results is also important. (It is worth reading his
autobiographical essay in the reprint [101] of the original MIT notes, for the lines
of thought leading in this direction. Many beautiful ideas entered into the attempt to
understand this space — especially revolving around singular spaces – which were
distilled out in the final version where things locked into place, yet recur in other
later works.)

In more modern terms, we would say that he was exploiting the fact that F/PL
is a module over MSO, the spectrum that represents smooth bordism, i.e., the ho-
mology theory whose cycles are oriented manifolds. The structure of unoriented
bordism was analyzed by René Thom in the work that earned him the Fields medal;
the oriented case was much more intricate and was analyzed by Averbukh, Milnor,
Novikov and Wall. In any case, in both cases the spectrum is quite simple at the
prime 2 and more complicated at odd primes (although there is no odd torsion in the
bordism groups). This difference is reflected in the difference between the behavior
of G/PL at 2 and at odd primes.

Sullivan himself phrased this in terms of considering the interaction between the
geometric interpretation of [M : G/PL] and bordism, understanding how obstruc-
tions to completing surgery are affected by crossing with a smooth manifold.

3. He discovered that PL (block) bundles have KO[1/2] orientations. (This means
that oriented PL manifolds have some kind of Poincaré duality for real K-theory,
ignoring issues at the prime 2.) These are new refined characteristic classes for the
PL setting. The work of Kirby–Siebenmann shows that they are topological invari-
ants, as well (the rational version of this is Novikov’s Fields medal winning theorem
on the topological invariance of rational Pontrjagin classes [80]). Sullivan already
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knew that in the case of smooth manifolds, these are the symbol of the signature
operator on the manifold (for any Riemannian metric) (see [54]).

4. He also gave an a priori geometric way of thinking about maps into G/PL,
using what he called the “characteristic variety.” A map of M into G/PL is exactly
equivalent to a series of elements of Z/2, Z/n or Z associated to each element of
this characteristic variety.

This is a residue of the geometric thinking that I mentioned before. Two aspects
of this, though, are of lasting significance. The first is the use of Z/nZ manifolds and
their cobordism for probing torsion issues. More generally, this suggests a philoso-
phy of varying problems from manifold settings to different kinds of singular ones
to be able to identify more subtle issues – which either crystalize there, or become
more less subtle.

The other is that it suggests a way of adding the elements of [M : F/PL] — by
adding the invariants assigned to the characteristic variety, associated to each of
the elements. These numbers are signatures (and Kervaire–Arf invariants), and the
Hirzebruch signature formula, relating signatures3 to the usual characteristic classes
of bundles, is highly nonlinear [49], so this is a brand new “addition.” It turns out
that with this addition, the surgery map becomes a group homomorphism.4

1.1 Further developments

I’d like to discuss (very selectively) some of the ramifications of these ideas. Need-
less to say, having a directly computable version of the homotopical part of surgery
theory has been foundational for many further directions. For example, the classi-
fication of free PL (or topological) group actions of cyclic groups on the sphere in
[110] and completed in [65] would have been impossible without this work.5

3 If W is a closed oriented manifold of dimension 4k, a multiple of 4, then sign(M) is by definition
the signature of the symmetric bilinear form on H2k(W ;Q) given by cup product.
4 I do not know the history of this fact — whether Sullivan knew this, or whether it is due to John
Morgan (who told some friends of mine); it was also essentially in the final paper by Siebenmann
in [61], which is based on ideas of Casson and Quinn, that accomplishes more, namely that the
whole sequence can be turned into a sequence of groups and homomorphisms, and is, of course,
written in the topological setting.
5 Unpublished work of Rothenberg managed to deal with the case of free circle actions, and Brow-
der and Livesay gave an approach to Z/2Z actions (explained beautifully in [31]) that did not rely
on Sullivan’s work. Their results, in retrospect, use the PL Poincaré conjecture directly in their
work, while for Sullivan that enters in the calculation of the homotopy groups of G/PL (which is
a part of the work involved in unraveling its structure).
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Localization

Firstly, localization of spaces. The basic idea of taking different spaces at different
primes and combining them6 to produce “monsters” arose in the work of Hilton
and Roitberg (together with Mislin, they wrote a very useful tract on localization
[53]); the technique is generally called Zabrodsky mixing. Adams [3] described their
work memorably as, “It is somewhat reminiscent of the descriptions of monsters in
medieval bestiaries; you put the head of a lion on the body of a horse. A more
subtle technique is to take parts from the same animal and put them back together
a different way round; this is as if you take your lion, cut his head off and then
stick the same head back on, but facing to the rear.” Their application was to give
the first examples of finite-dimensional H-spaces (spaces that admit a continuous
multiplication (with identity), that are not homotopy equivalent to Lie groups. For
Sullivan, on the other hand, the mixing was not done to create monsters — it was an
inevitability necessary to tame them.

This had significant ramification in the theory of group actions. (Here are some
typical references [7].) Mixing ideas can be used to establish that the essential prob-
lem of understanding group actions for a finite group G, are often concentrated at the
primes dividing the order of G. For example, to show that some simply connected
mod 2 homology sphere S2k+1 has a free involution, one should mix RP2k+1 with
the localization of that manifold away from 2. (One can’t do this in even dimen-
sions because RP2k is not a rational homology sphere; but then one can construct
orientation preserving actions with 2 fixed points.) That at least does the homotopy
theory. Getting this space to be a manifold whose 2-fold cover is the original one
is a problem for nonsimply connected surgery (see [17] for this specific result, and
[30] for general group free group actions on homology spheres). We will return to
the theory of group actions in the next section in the context of completions.

Bordism and classifying spaces

The method of analysis of G/PL has also been very influential. Sullivan used the
cobordism invariance of surgery obstructions, and how obstructions behave under
products, giving homomorphisms

Ωn(G/PL)−→ Ln(e),

which factor through, away from 2, a map

Ωn(G/PL)⊗Ω Z[1/2]→ Ln(e)⊗Z[1/2],

where Ω denotes bordism (in the next section, it will denote loop space; please don’t
get confused) and Ωn(X) can be viewed as a Z/4 graded module over smooth bor-

6 Assuming this is possible. To combine two local spaces (which are local with respect to comple-
mentary sets of primes) into an integral one needs them to be rationally compatible.
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dism, where an oriented manifold W of dimension 4k is identified with the integer
sign(W ). The first gives rise to characteristic classes in G/PL at the prime 2 (see
[102, 92, 78]). The second gives the map to KO theory, using an analogue of the
connection between bordism and K-theory discovered by Conner and Floyd [28].

Given the ubiquity of bordism invariants in topology, many spaces can be an-
alyzed by this method. Wall [111] gave a formula for surgery obstruction by
directly adapting Sullivan’s argument. Other classifying spaces arising in group ac-
tions or classifying spaces for nonlocally flat neighborhoods are also analyzed by
this method (see [26, 25]).

Intersection homology7 [18, 41] is another venue where one has a class of spaces
that have a signature (the whole point of IH is its self-duality for, at least, spaces
with even codimensional strata). His method leads to half of the beautiful theorem
of P. Siegel that Witt spaces (i.e., the polyhedra for which IH is a self dual sheaf)
form a cycle theory for KO[1/2]. The class defined by the identity map X → X is
Sullivan’s KO[1/2] class, when X is a PL manifold. (See [39] for variants.)

KO[1/2] orientation

The KO[1/2] orientation of PL bundles, actually definable for topological microbun-
dles (thanks to Kirby–Siebenamann; formally the point is that Top/PL only has
homotopy at the prime 28), is, as mentioned above, the symbol of the signature op-
erator for smooth manifolds.9 This has equivariant generalizations (see [67, 68, 91])
which play a role in the next subsection. It is also the first hint of a deep system-
atic connection between surgery theory and the index theory of elliptic operators, a
major direction in subsequent decades (see e.g. [49, 50, 51, 52, 113]) especially in
light of analytic approaches to the Novikov conjecture.

We will return to this in the final subsection.

Hauptvermutung and triangulation (and beyond)

Sullivan himself applied his theory to the Hauptvermutung. The Hauptvermutung is
the question about the uniqueness of the triangulation of any polyhedron.

This question goes back to Poincaré, who seemed to be interested in this for
showing the topological invariance of homology. Of course, homotopy invariance is
not so hard to show for homology, so the problem perhaps lost some of its urgency
during the decades that it was open. Its solution in various setting is of immense
significance.

7 Sullivan played an important bit role in the development of intersection homology: he conjectured
that theories invented by Cheeger and by Goresky–MacPherson were isomorphic, proved in [42].
8 Indeed it has only one nonzero homotopy group π3(Top/PL) = Z/2Z.
9 See [107] for how to define signature operators on PL manifolds, and [106] for Lipschitz Rie-
mannian manifolds, and their connection to Pontrjagin classes.
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Milnor [74], using work of Mazur and earlier work of J. H. C. Whitehead,
had disproved this for general polyhedra: if one takes homotopy equivalent non-
diffeomorphic 3-dimensional lens spaces,10 say L5(1,1) and L5(2,3) then L5(1,1)×
D4∪c(L5(1,1)×S3) and L5(2,3)×D4∪c(L5(2,3)×S3) (cX here denotes the cone
on X) are homeomorphic, but are not combinatorially isomorphic, i.e., have no com-
binatorially isomorphic subdivisions. All homeomorphisms require some “infinite
construction.”

After this, the question of the Hauptvermutung for manifolds became a central
problem. It is tied up with the question of the existence of PL triangulations for
manifolds, as well — and of course, the topological invariance (and definability) of
combinatorial invariants.

In 1966, Novikov proved that the Pontrjagin classes pi(M) ∈ H4i(M;Q) were
topological invariants. Let me remind you about why this is so remarkable: These
invariants are actually invariants of the tangent bundle of a smooth manifold, and by
definition they are Chern classes of the complexified tangent bundle pi = c2i(τ⊗C).
Complexification is a very “vector space” linear notion, so it would seem that no part
of the definition makes any sense in a topological setting — and so why would these
be topological invariants? (Moreover, they are not smooth invariants in H4i(M;Z),
although that is where this definition places them.)

His proof actually works to show that the L-classes (the combinations of the
Pontrjagin classes entering Hirzebruch’s signature theorem) are well defined. Those
have denominators, and that is the source of the rationality that arises. He shows
that when one approximates a homeomorphism by a smooth map, the signatures
of transverse inverse images of certain submanifolds are the same as that of the
submanifold. (For a diffeomorphism this is a tautology!)

This work led him to conjecture that certain submanifolds associated to group co-
homology of the fundamental group (so for example for manifolds with free abelian
fundamental group, these would be the submanifolds whose transverse inverse im-
ages of subtori under any smooth map to a torus inducing an isomorphism on π1)
have signatures that are homotopy invariants of the manifold. This is called the
“Novikov conjecture” and it, and its cousins the Borel conjecture, the Farrell–Jones
conjecture, and the Baum–Connes conjecture have been central in topology, differ-
ential geometry, and index theory for fifty years.

Noting that the invariants associated to a homotopy equivalence of simply con-
nected manifolds in [M : F/PL] are signatures (and Kervaire invariants) of trans-
verse inverse images of Z/n submanifolds of M, Sullivan readily deduced that for
simply connected manifolds of dimension at least 5 with no 2-torsion in H4(M;Z)
any homeomorphism could be homotoped to a PL homeomorphism: a Hauptvermu-
tung.

10 Lens spaces are quotients of the sphere by free linear actions of cyclic groups: in the example
here, one uses representations of Z/5Z, which are all automatically complex — and the eigenvalues
are exp(2πi/5) with multiplicity 2 in the first example and exp(4πi/5) and exp(6πi/5) in the
second. de Rham, using the theory of Reidemeister torsion, gave the diffeomorphic (= PL, in this
case) classification of these manifolds in what is, in retrospect, one of the earliest applications of
algebraic K-theory to topology. The book [27] is an excellent introduction to this work.
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Around the same time, Lashof and Rothenberg had proven the same for
4-connected manifolds. However, all of this work was completely superseded by
the work of Kirby and Siebenmann that completely elucidated the matter:

1. They showed that there was a good triangulation theory for topological manifolds
of dimension > 4, so that a triangulation of M exists iff the topological tangent
“bundle” of M→ BTop lifts to BPL.

2. BPL → BTop is an isomorphism of homotopy groups except in dimension
4; consequently the obstruction to the existence of a PL triangulation lies in
H4(M;Z/2Z) and to the uniqueness (Hauptvermutung) in H3(M;Z/2Z).

3. G/Top is the same as G/PL away from 2; at 2 it differs in being even nicer:
[M : G/Top]∼=

⊕
i≥0 H4i+2(M;Z/2Z)⊕H4i+4(M;Z(2)).

4. Topological manifolds have handlebody structures (the basic structure Smale
discovered using Morse theory for smooth manifolds, that he used for the
h-cobordism theorem), and have transversality.

At the end of their magnificent work, topological manifolds were geometrically as
understandable as smooth ones, and algebraically much better.

Around this time, Sullivan made an important observation about the proof of
Novikov’s theorem. Homeomorphism was used in a very weak way. What was rel-
evant about a map h : M → N to guarantee that h∗ pulls back rational Pontrjagin
classes was that h is a hereditary homotopy equivalence, i.e., for every open subset
U of N, the map from h−1(U)→U is a proper homotopy equivalence. This con-
dition on a map is also referred to as cell-like (abbreviated CE), it boils down to
the condition that the inverse image of every point of N is nullhomotopic in every
neighborhood of itself. This property for a map is basic to “Bing topology” that
was responsible for many beautiful examples in topology (like spaces which have
no manifold points, which when crossed with R are manifolds) and was key to the
proof of the four-dimensional Poincaré conjecture by Freedman [39].

In response to this observation, Siebenmann [96] proved the following using the
crucial torus trick of Kirby [60] that ultimately underlay all of their work above:

Theorem. If f : M→ N is a CE map between manifolds of dimension n > 4, then
f is a uniform limit of homeomorphisms.

Subsequently, Chapman and Ferry [24] gave the metric condition which tells
when a map is close to a homeomorphism. The following consequence,11 due to
Ferry [37], conjectured by Siebenmann, is the following:

Theorem. For every compact closed manifold M (with a metric), there is an ε >
0 such that, if f : M → N is a map to another connected manifold of (at most)
dimM such that diam( f−1(n))< ε for every point n of N, then f is homotopic to a
homeomorphism.

11 Ferry proved it in dim > 4, but it turns out to be true in all dimensions because of the work of
[39] and [81].
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The significance of these developments cannot be overestimated. Ultimately, they
paved the way for the re-entrance of geometry into high-dimensional topology.

In a completely different direction, Edwards proved the following astounding
extension of Siebenmann’s theorem:

Theorem. Suppose that X is finite-dimensional, and dimX > 4. Suppose that a map
from a closed manifold M→ X is CE, then the map is a uniform limit of homeomor-
phisms iff X has the disjoint disk property (DDP).

DDP means this: If ϕ,ψ are maps of D2 → X then ϕ,ψ can be approximated
arbitrarily closely by disjoint embeddings. General position gives this for manifolds
of dimension > 4. According to a theorem of Quinn [86, 87] a connected finite-
dimensional ANR homology manifold12 of dim > 4 is a cell-like image of a mani-
fold if, for example, it has an open subset which is. As a result, if P is any integral
homology sphere, the suspension of the suspension of P is a manifold (and therefore
the sphere). The link of a singular point in this polyhedron is the suspension of P,
which is not a manifold (it has 2 singular points with nonsimply connected deleted
neighborhoods), so this gives a non-PL triangulation of the sphere Sn, when n > 4.
(This phenomenon was discovered by Cannon and Edwards before Edwards proved
the above theorem.)

3-dimensional homology spheres play a special role in the above theory. The
Z/2Z Kirby-Siebenmann obstruction is due to the fact that there is a Z/2Z obstruc-
tion (Rochlin’s theorem) to them bounding signature = 0 manifolds. The possibility
that twice every such homology sphere bounded an acyclic manifold raised the pos-
sibility that all manifolds of dim > 4 have (non PL) triangulations, but Manolescu
[71] showed that this is not the case using Seiberg–Witten Floer homology, and that
there are nontriangulable manifolds in all dimensions > 3.13

Remark. The Hauptvermutung for polyhedra in the sense of deciding when poly-
hedra are homeomorphic involves, besides the work on manifolds already men-
tioned, “controlled topology” — that is redoing all of geometric topology with at-
tention paid to the sizes of the objects being constructed. (The theorems of Ferry
and Chapman–Ferry mentioned above are great examples; the theorem of Quinn on
making homology manifolds CE images is a landmark application.)

Besides the Kirby–Siebenmann obstruction, there are obstructions related to the
algebraic K-theory groups Ki(Zπ) of the fundamental groups of links of strata for
i≤ 1 as well as a contribution from L-theory to understand the manifold issues (see
[6]). (The Milnor example with point singularities relates to K1 — via the work of
de Rham; if one were to consider the 4th suspensions of these lens spaces, although
the manifold points are the same as in the Milnor example, these two polyhedra are
not homeomorphic.)

12 A space X is a d-dimensional homology manifold, if for all x, the relative homology groups for
X , H i(X ,X− x) are the same as those for Rd .
13 Dimension 4 was a consequence of the work of Freedman and either Taubes, or Casson (see
[4]). It now can be deduced from the 3-dimensional Poincaré conjecture.
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This “Hauptvermutung” is closely related to another problem to which Sullivan
contributed in unpublished work, the nonlinear similarity problem.

We mentioned the work of de Rham earlier on when lens spaces are diffeomor-
phic. The work of Kirby–Siebenmann (or Chapman [23]) shows that de Rham’s
obstructions remain valid in the topological category. In other words, two represen-
tations of Z/nZ that are free (as actions on the unit sphere) are conjugate (as group
actions on the sphere) iff they are conjugate as linear representations.

The nonlinear similarity question is whether this is true for all representations of
finite (or compact) groups? Rothenberg [90] showed that one can modify de Rham’s
argument to show that a PL conjugacy always gives rise to a linear conjugacy, so
this is a Hauptvermutung type question. Sullivan and Schultz [93] independently
used the Sullivan–Kirby–Siebenmann analysis of G/Top[1/2] to prove that nonlin-
ear similarity implies linear similarity for odd p-groups.

In the early 80s, the general picture was worked out in a way that, I think,
is a tribute to Sullivan’s instinct. Cappell and Shaneson [19] gave counterexam-
ples for Z/4k, k > 1, but Hsiang and Pardon [56] and Madsen and Rothenberg
[67, 68] showed that for odd order groups nonlinear and linear similarity are the
same. Aside from torsion phenomena (later analyzed by Hambleton and Pederson
[48, 47]) the story is this: the equivariant signature operator is a topological invari-
ant (see [91, 89]) — it is an orientation in KOG, generally, when G is odd order,
and the equivariant signature operator is a strong enough invariant to distinguish
the representations (based on the same number theory as arose in the work of de
Rham, but for reasons closer to the work of Atiyah–Bott [9]). When V and W are
indistinguishable in this way, a multiple of V and of W are topologically conjugate.

See [112] for a general theory of surgery on stratified spaces that gives a uni-
fication of the considerations that arose in this example, embedding theory, the
comments about Witt spaces, and more, together with the perspective of the next
subsection.

Surgery revisited

I mentioned earlier that with “characteristic variety addition” the surgery obstruction
map [M;F/Top]→ Ln(π) is a homomorphism.

There is another formal issue that can bother one. The L-groups are covariantly
functorial in π (and therefore M), but [M;F/Top] is contravariantly functorial in M.

A way around this is suggested by Sullivan’s work, as well. If M is an oriented PL
(topological) manifold, then M is orientable for the cohomology theory [ ;F/Top],
at 2 using the orientation of M, and away from 2 using the Sullivan KO[1/2] ori-
entation. If one perturbs the orientation by lower order terms properly [78], one
gets an orientation for this theory. This means we can view (in the oriented case)
[M : F/Top] and Hm(M;F/Top).
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The next point is that G/Top looks very much like its fourth loopspace14

Ω 4(G/Top) — it is the identity component of that disconnected space. The fol-
lowing result is a correction by [79] of a result of Siebenmann15 (which had ignored
the role of components):

Theorem. If M is a connected manifold of dimension at least 5, there is an injec-
tion S(M)→ S(M×D4 rel∂ ) whose image is a subgroup; the cokernel injects into
L0(e) = Z.

S(M×D4 rel∂ ) is made of manifolds with boundary with maps of pairs into
M×D4 which we assume to be a homeomorphism on the boundary ∂ (M×D4).
This is an abelian group, where addition is given by “stacking” (like the definition
of higher homotopy groups). The map to L0(e) =Z is given by taking the transverse
inverse image of D4, filling in the boundary S3 with a disk and taking the signature
(divided by 8).

Now all the terms of the surgery exact sequence are groups, and all the maps
turn into homomorphisms. Even more is true, due to Quinn and Ranicki [88]. It is
functorial! This grows out of the definition of spectra [84] Ln(π), which are their
own 4-fold loopspaces by crossing with CP2 (a simply connected with signature 1).
And that there is a map F/Top→ L0(e) which is a homotopy equivalence to the
0-component.

In the setting of homology manifolds, the results are best [15].16 If we mod-
ify S(M) to be the homology manifolds (simple) homotopy equivalent to M, up to
s-cobordism, then the periodicity map is actually an isomorphism, and the surgery
exact sequence is a 4-periodic functorial sequence of abelian groups and homomor-
phisms.

Included in this is that one can now define a sequence of abelian groups Sk(X) for
any X , that have a geometric interpretation when X is a manifold (and k = dimX).
Of critical importance is the case of X = K(π,1), for then we have factorization of
the surgery obstruction map [M : F/Top]→ Ln(π) through (Poincaré duality and
functoriality) a map Hn(K(π,1);L(e))→ Ln(π). This map is called the assembly
map.17

This immediately explains that essentially the only possible characteristic classes
that are homotopy invariant, in the nonsimply connected case, are those identified by
Novikov; indeed the Novikov conjecture can be interpreted in terms of the injectivity
of the assembly map — explaining more will take us far afield, but there are several
books about this topic.

14 This is a form of Bott periodicity; in the real case it is an 8 fold periodicity, but already after the
4th loopspace the periodicity is an isomorphism away from 2.
15 The periodicity map is given a geometric interpretation in [16].
16 This paper has a glitch. It is correct as written in dimension = 6, but in general applies to
Poincaré complexes that have normal invariants, in particular it describes the homology manifolds
that are homotopy equivalent to manifolds.
17 The reason for this is that it has an interpretation in terms of producing global objects by gluing
together local pieces (and this was the way it was first introduced) [85]. In other settings, it is a
forgetful map (in “controlled topology”) or an index map (in the setting of elliptic operators, see
e.g. [58] or [29]).
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2 The Adams Conjecture

Arguably the largest impact of the ideas of Quillen and Sullivan within algebraic
topology was taking seriously the idea of treating spaces algebraically. Localizations
and completions were a first step — those being basic operations on commutative
rings. In both of their work, étale cohomology and considerations of Galois symme-
try were a second key idea. Nowadays, the whole subject is fractured by the primes
– and indeed the chromatic view of the stable category has infinitely many primes
(for each ordinary prime). Categorical methods, homotopy limits, and in particular,
homotopy fixed points, now play a central role. Algebraic topology from the 1980s
is largely a continuation of this deep thrust achieved in the late 60s and 70s.

I highly recommend the books [38] and [11] for much more about the étale ideas
in the proof and the localization/completion theory that grows directly from this
work.

2.1 Background

The work I will explain in this section is deeply connected to smooth manifolds, and
to homotopy theory, so to explain this, I need to give some background going back
to classical work of Pontrjagin (for which the best reference is the lovely text [75]).

Suppose that one has a map f : SN → Sm. One can approximate it by a smooth
map (which we will still call f ). According to Sard’s theorem, almost every point p
in Sm is a regular value, which means that the differential D f at every inverse image
of p is surjective. The implicit function theorem then gives that f−1(p) is a smooth
submanifold of SN (of dimension N−m).

There’s a bit more data, called a framing, which is an ordered m-tuple of nor-
mal vector fields to this submanifold: at each point of the submanifold, consider
D f−1(v1, . . . ,vm) for a positively oriented basis for the tangent space T Sm at p.

On the reverse, given a framed submanifold, using the tubular neighborhood, it is
not hard give a map SN → Sm producing this submanifold as the transverse inverse
image of, say, the south pole.

Smooth homotopies give rise to (and are induced by) framed cobordisms. The
cobordisms between submanifolds of SN take place in SN × [0,1] and are codimen-
sion N −m framed submanifolds of the cylinder that restrict to the given framed
manifolds on the boundary.

This pair of constructions18 gives an isomorphism between the homotopy group
πN(Sm) and the framed cobordism classes of framed submanifolds of SN . The Whit-
ney embedding theorem that says that (abstractly) d-dimensional submanifolds of
S2d+1 are exactly the same thing as d-dimensional submanifolds of any dimensional

18 One of René Thom’s achievements was replacing the target sphere by a more complicated space,
so that the relevant manifolds that arise in a natural variant of this construction are arbitrary smooth
manifolds.
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sphere should at least make the Freudenthal suspension theorem that Sn+d → Sn is
independent of n, once n > d +1. These are the stable homotopy groups of spheres
πs

d .
In this context it is natural to ask which elements are represented by the standard

sphere Sd (sitting equatorially in Sn+d)? The ambiguity is in the framing. There’s a
framing that comes from it being the equator of the equator of the equator n times,
and any other framing differs from that one by a map Sd→O(n). This map is called
the J-homomorphism

J : πdO(n)−→ π
s
d ,

where we might as well let n go to infinity. A truly amazing theorem of Bott, at the
foundation of K-theory and the index theorem,19 says that πd(O) is 8-periodic in d,
with the groups being given by Z/2, Z/2, 0, Z, 0, 0, 0, Z, starting with d = 0.

This gives a wonderful source of potentially nontrivial elements of homotopy
groups of spheres. Adams worked out (aside from a factor of 2) what Im(J) is; the
remaining ambiguity being settled by the solution of Adams conjecture, which I will
return to. Kervaire and Milnor [59] related Cok(J) to the differentiable structures on
Sd , as I now explain.

Let Θd denote the group of oriented homotopy spheres, d > 4. (According to
Smale’s theorem, these manifolds are all homeomorphic to Sd .) It is a group under
connected sum. There is a map Θd → πs

d/Im(J) because (this is not obvious, and
relies on Bott periodicity) every homotopy sphere has a framing. (One mods out by
Im(J) because of the existence of many possible framings.)

Kervaire–Milnor constructed the map πs
d → Ld(e) whose kernel (modulo Im(J))

is the image of Θd . What is left is to understand the homotopy spheres which rep-
resent 0 in stable homotopy. These are interpreted in terms of the Arf invariant
problem (see [98]) and the question of what are the possible signatures of manifolds
that are parallelizable outside of a point.

Of course Θd is just another name for SDiff(Sd), so the rewriting of surgery theory
is then

πd+1(G/O)−→ Ld+1(e)−→Θd −→ πd(F/O)−→ Ld(e),

which we can relate to the discussion by Kervaire and Milnor when one realizes that
there is an exact sequence

· · · −→ πd(O)−→ π
s
d −→Θd −→ πd(G/O)−→ πd−1(O)−→ π

s
d−1 −→ ·· ·

whose source comes from another interpretation of the stable homotopy groups of
spheres.

To explain this, we must review a bit more — in this case, about the classifying
spaces of compact Lie groups, or, equivalently the spaces that classify principal
K-bundles for a Lie group K. The basic story is that associated to K there is a space
BK, so that principal K-bundles over X correspond to homotopy classes of maps
[X : BK]. (There is a “universal K-bundle” over BK, and given a map, one pulls

19 And related to the periodicity of G/PL, G/Top and surgery theory generally discussed in the
last section.
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back the universal bundle using the map to get a principal K-bundle over X .) If X
is a suspension = ΣY , then, since any principal bundle over a contractible space is
trivial, one can see that the principal bundles over X are [Y : K] — at each point of
the central Y , one compares the two trivializations of the K-bundles over the two
cones.

Algebraic topologically, this means that ΩBK is homotopy equivalent to K, and
that the homotopy groups of BK are those of K, with a shift by 1.

Now, if H is a subgroup of K, then every H bundle is (or, more correctly, induces)
a K-bundle, which gives a map BH→ BK. The homotopy fiber of this map is K/H.

The exact sequence above is associated to a map BO→ BF , where BO is the
classifying space of the limit of the O(n)’s, i.e., the classifying space of linear sphere
bundles (= vector bundles), and BG is the classifying space of something more
homotopy-theoretic — a homotopy-theoretic analogue of a vector bundle, called a
spherical fibration. F/O is just defined as the fiber of the map BO→ BG, so it is the
classifying space of sphere bundles that are trivialized as spherical fibrations, and
indeed this is the way it arises in surgery theory.

A d-dimensional spherical fibration over X is a map p : E→ X whose homotopy
fiber is a sphere Sd−1. Two of these are equivalent if there is a homotopy equivalence
between the total spaces that makes the obvious diagram commute up to homotopy.

Spherical fibrations can be pulled back, and glued together from spherical fi-
brations on subspaces that agree on their overlap, and they can be classified by a
classifying space BGd . There’s an obvious suspension construction (the union of
two copies of the mapping cylinder of p along p); BG is the limit. By thinking about
spherical fibrations over spheres, it is not hard to see that their homotopy groups are
the stable homotopy groups of spheres.

If one is trying to understand the relation between geometry and homotopy type
these classifying spaces are of critical importance, because Atiyah [8] showed that
any homotopy equivalence between manifolds gives an equivalence between the
stable normal bundles20 of the manifolds as spherical fibrations. If one wants to
understand smooth topology one therefore must understand the map BO→ BG, or
what is equivalent, “When is a stable vector bundle trivial as a spherical fibration?’

The Adams conjecture answers this question.

2.2 The Statement of the Adams conjecture

Let us introduce a bit of notation. KO(X) is the Grothendieck group of real vector
bundles on a space X ; K(X) is the Grothendieck group of complex vector bun-
dles. As mentioned above KO(X) ∼= [X : Z× BO]. More generally KO−n(X) ∼=
[X × (Dn relSn−1) : BO]. Using Bott periodicity (e.g. [14]), namely that there is an

20 The stable normal bundle of a manifold is its normal bundle in a high-dimensional Euclidean
space. By Whitney’s embedding theorem, this is independent of all choices if the dimension of the
ambient Euclidean space is sufficiently high.
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isomorphism Ω 8BO∼= Z×BO, i.e., in the above terminology KOn+8 ∼= KOn. (Sim-
ilar statements are true for K, except that BO is replaced by BU , and the 8 by a
2.)

K (and KO) are rings with addition being the Whitney sum of vector bundles
and multiplication induced by the tensor product. These actually form cohomol-
ogy theories — one pulls back vector bundles, and, for example, Mayer–Vietoris is
geometrically almost obvious.

Characteristic classes (see [76]) relate K-theory to cohomology. For example
rationally, K-theory (and KO) are

⊕
H2i(X ;Q) (

⊕
H4i(X ;Q)) as Z2 (Z8) graded

rings. However, integrally K-theory is quite different. More importantly for our
story than the ring structure is the algebra of operations. And, for simplicity, we
will restrict our attention to K-theory.

In algebraic topology, every time an algebraic invariant is refined, it becomes
more powerful. Cohomology is more powerful than homology, although they both
rest on the same foundations, because of its algebra structure. Mod 2 cohomology
(or mod p cohomology) is richer than rational cohomology because of the presence
of Steenrod operations [100], i.e., its structure as module over the Steenrod algebra.
(On the other hand, in the next section, we will revel in the simplifications possible
rationally because there are no nontrivial operations.) K-theory has a rich algebra
of operations that come from natural constructions on vector spaces, such as those
coming from an exterior algebra.

The Adams conjecture can be motivated by a combination of three ideas: local-
ization, the splitting principle, and optimism.

The first ingredient is localization. To show that two spherical fibrations are
equivalent, it suffices to show that they are isomorphic when localized at every
prime separately. Why? To be equivalent at p means that there is a fiberwise map
f : ξ → ξ ′ whose degree is prime to p on each fiber. One can add maps, which will
add degrees, provided that ξ is a fiberwise suspension — which can be arranged by
stabilizing once. (Remember, we are dealing with stable spherical fibrations here,
so we can add trivial bundles at will.)

So one works locally.
The next question is: what is a source of local equivalences? One obvious source

comes from complex line bundles. If ξ is a complex line bundle — thought of as a
principal S1-bundle — we can consider ξ/Zk the quotient of ξ by multiplication by
kth roots of unity. ξ → ξ/Zk is an isomorphism for any prime that does not divide
k.

The line bundle associated to ξ/Zk is ξ⊗k, the kth tensor power of ξ . Note that
for a sum of line bundles, we would get an isomorphism at p between ξ ⊕η and
ξ⊗k ⊕η⊗k. We would like an operation that on a sum of line bundles is the sum
of the kth tensor powers of the constituent line bundles. This is possible, and this is
what the Adams operation Ψ k does.

The precise definition is where the splitting principle comes in.
Although it is not true that every complex vector bundle is a sum of line bundles,

and even when it is, such a decomposition need not be unique, one can frequently
pretend that it’s true, when one has a formula that is symmetric in the line bundles.
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For a cohomological example, the nth Chern class of a complex vector bundle is the
nth symmetric function of the 1st Chern classes of the n formal line bundles that it
would be a sum of, if it were a sum of line bundles. (These formal line bundles, or
better their 1st Chern classes, are sometimes called the Chern roots of the bundle.)
This Einsatz can be made rigorous, at least for verifying formulae, in a number of
ways — one way is to pass to a frame bundle, where the pullback is a sum of line
bundles, and check that this pullback map is injective in cohomology. Once one
knows this formula for cn one can take any symmetric function of the line bundles,
rewrite this as a function of the symmetric polynomials, and therefore obtain a com-
bination of Chern classes. (The Chern roots of a bundle are then the formal roots of
a polynomial whose coefficients are the Chern classes of that bundle.)

The role of the Chern classes in K-theory is taken by the λ n, the nth exterior
powers, of the vector bundle. Once one uses this, then Ψ k will be the kth Newton
polynomial that expresses the sum of the kth powers of the roots of a polynomial in
terms of its coefficients (or equivalently, in terms of symmetric powers). Note nega-
tive coefficients cause no trouble because we are working (stably) in a Grothendieck
group. The Adams operations have a number of useful properties which we list:

• The Ψ k are algebra homomorphisms.
• Ψ kΨ l =Ψ kl .
• Ψ k(ξ ) = ξ⊗k for ξ a line bundle.

To make these operations stable, one needs to invert k. (Because on the Bott
element Ψ k is multiplication by k.)

The Adams conjecture is the statement that for any bundle Ψ k(ξ )−ξ is trivial as
a spherical fibration, localized at p, and that furthermore, as one varies k to be prime
to p, these give all of the isomorphisms among spherical fibrations.21 For example
on π4n(BU) = Z (by Bott periodicity), Ψ k is multiplication by k2n, so one should
have that the kernel of the map π4n−1(U)→ πs

4n−1, localized at p, should be the
ideal generated by ((k2n−1) ; p does not divide k). Classical number theory shows
that at least the odd part of Im(J) would then be the denominator of Bn/n where Bn
is the nth Bernoulli number.

Adams [1] was able to verify his conjecture for the case of spheres (although for
real K-theory, his work missed a factor of 2 that later work did catch), which was
strong enough to determine Im(J) in πs

i .
In any case, the Adams conjecture is true, and was affirmed by Quillen [83]

and Sullivan [103], both using ideas of étale cohomology, and later by Becker and
Gottlieb [10], by a very clever argument that essentially reduces vector bundles with
structure group U(n) to those whose structure group is Tn⋊Σn, the normalizer of its
maximal torus, where it follows from Adams’ original proof. This then enables one
to give a great deal of information about G/O, and indirectly BPL and BTop.

21 Here one must restrict to real vector bundles; complex vector bundles have “complex conjugates”
which are equivalent as real vector bundles. (Stably, including real vector bundles in the complex
ones (only) loses 2-torsion.) Adams defined an analogue of Stiefel–Whitney classes to prove that
the part not coming from the (Ψ k−1)s is homotopy invariant.
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2.3 Comments on Sullivan’s proof

The title of Sullivan’s paper “The genetics of homotopy theory and the Adams con-
jecture” indicates one of the key themes in his approach: the idea of fracturing alge-
braic topology via completions — that are much less tame than the localizations that
already arise implicitly in the work of Serre, and explicitly (at least) in his own work
on the structure of F/PL. Sullivan’s proof of the Adams conjecture is based on in-
terpreting the Adams operations via a surprising Galois symmetry in the (profinitely
completed) homotopy types of BU and BO.

This fracturing of homotopy theory is an analogue of the use of adèles in arith-
metic (and indeed Sullivan remarks that the impulse to do this is strongly suggested
by the Hasse–Minkowski theorem about quadratic forms). While Quillen’s proof
used characteristic p ideas and related Adams operations to the Frobenius automor-
phism of the algebraic closed field of characteristic p, Sullivan instead used Galois
automorphisms in the universal Gal(Q) (i.e., the Galois group of the algebraic num-
bers) that induce the kth power on pth roots of unity, but is the identity on kth roots
of unity.

There is a powerful impulse in this work to geometrize abstract algebraic con-
structions, and then extract stronger geometric statements from this. This tendency
has only become more prominent in the intervening decades — with the connections
between abstract algebraic geometry and homotopy theory becoming only more pro-
found. No longer can one joke, as Adams did in the Weyl lectures on infinite loop
spaces, “The apparatus of definitions, theorems and proofs needed to carry out this
programme in detail demands a capital investment of intellectual work which may
seem daunting to those not directly concerned; many readers may be able to remem-
ber feeling the same way about spectral sequences, sheaf theory or whatever is now
their favorite tool; let us be glad we don’t work in algebraic geometry” [2].

One beautiful aspect of Sullivan’s geometrization of the Adams conjecture is that
he was able to prove it unstably. Completing at p, and letting k be any integer not
divisible by p, he showed that it was possible to define Ψ k on the unstable BU(n).
(As it’s an algebraic variety, i.e., a Grassmannian, there is a natural discontinuous
action of the Galois group; the magic of étale homotopy theory gives an action
on the completed homotopy type.) These are actually homotopy equivalences at p.
An induction on n, and some geometry about p-complete spherical fibrations show
that the underlying spherical fibration of a vector bundle doesn’t change under the
operation Ψ k, i.e., that Ψ k− I = 0 in the p-complete theory.

2.4 Some of its aftermath

Nowadays much of algebraic topology is done in the complete setting. This much
almost goes without saying.

Sullivan’s paper itself contained other beautiful nuggets: The Galois symmetry
on CP∞, completed at p, produced topological group structures on S2n−1

p whenever n
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divides p−1, i.e., there is a theory of principal bundles for these completed spheres.
An unstable Adams operation on the cohomology of BSU(2) gives a self map of
this classifying space whose “degree” (i.e., induced map on H4) is an arbitrary odd
square.22

Very natural for Sullivan, given his focus on Galois symmetry, was to consider
Gal(C;R) = Z/2 acting on the étale homotopy of a variety. The thoroughgoing use
of categories here led him to speculate that the real points of a variety V would, com-
pleted at 2, be determinable from the equivariant homotopy type of the 2-completion
of V and its Galois action, and indeed the formula should be

V (R)∧2 ∼= MapZ/2(S
∞ : V (C)∧2 )∧2 .

Here S∞ = EZ/2 is the universal space with free Z/2 action — it is the infinite-
dimensional sphere with the free involution on it. He then conjectured a similar
formula for all p-groups acting on all finite complexes. This “Sullivan conjecture”
was a major topic in 1980s algebraic topology (proved by H. Miller for spaces with
trivial action, and then in general by Carlsson, Lannes, and Miller [20, 63, 73]).

This point of view of comparing fixed point sets to homotopy fixed point sets
for quite different classes of groups is now commonplace throughout mathematics
in problems ranging from number theory, arithmetic geometry and K-theory to ge-
ometric topology, index theory and differential geometry. It is beyond the scope of
this article to adumbrate the many places where this idea arises and try to estimate
its import. (Moreover it has surely been discovered and rediscovered many times.)23

Within homotopy theory there were a number of immediate applications. One
extremely elegant one was the following:

Theorem ([72]). If X is a noncontractible finite simply connected complex, then for
infinitely many n, πn(X) has p-torsion.

This had been conjectured by Serre, who for p = 2, showed that for infinitely
many n, the localization at 2 was nontrivial.

Another important direction that grew out of the Sullivan conjecture was a deep
analysis of the maps between classifying spaces of compact Lie groups, of which
we will mention one influential paper.

Theorem ([34]). If π is a p-group and G is a connected Lie group, then

Hom(π : G)/∼ (i.e., homomorphisms from π into G up to conjugacy)→ [Bπ : BG]

is a bijection.

22 Bernstein showed that the degree was a square and that it must be odd (if nonzero) was shown
by G. Cooke.
23 And can certainly be traced implicitly to sources earlier than Sullivan, as well. However, my
point is that the Sullivan conjecture and its centrality in topology made this point explicit at least
to the community of topologists.
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We note that Sullivan’s paper already gave one new result on maps between clas-
sifying spaces where the maps do not come from homomorphisms of Lie groups,
namely the result on “degrees” of self maps of BSU(2).

Finally, we should mention that Sullivan’s theory has immediate implications for
surgery theory. In the smooth category, it tells us that, completed at odd primes,
F/O is a product of two spaces, BSO and Cok(J), where Cok(J) is the part of BF
not in the image of the J-homomorphism. Indeed it is a factor of BF (the other factor
being a space homotopy equivalent to the fiber of Ψ k− I, for k a generator of the
multiplicative group Z/p2, which is where the J-homomorphism lands). BPL has
a similar description: it is the product of BSO×BCok(J). The first isomorphism
enables (in principle) a study of surgery on smooth manifolds — although one is
stymied by the fact that the surgery obstruction map is not a homomorphism, and
the second enables (with more hard work) an analysis of PL bordism (see e.g. [66]).

Epilogue: A return to geometry

A consequence of étale homotopy theory is the following result of Deligne and
Sullivan:

Theorem. Every hyperbolic n-manifold has a finite sheeted cover that is paralleliz-
able (i.e., whose tangent bundle is trivial) in the complement of a point.

Such manifolds can be immersed into Rn by Smale–Hirsch immersion theory.
Sullivan [105] (see also [108] for a more detailed treatment) made use of this to
give a hyperbolic manifold variation on Kirby’s torus trick that was critical to the
development of the Kirby–Siebenmann theory we discussed before, enabling the
following beautiful result:

Theorem. Every topological manifold of dimension larger than 4 has a unique
Lipschitz structure.

A Lipschitz structure is like a smooth manifold, defined using charts in Euclidean
space, except that one now requires that the overlap maps are bi-Lipschitz. (In di-
mension < 4, one can even find smooth structures.) In dimension 4, Donaldson and
Sullivan showed that some 4-manifolds do not have Lipschitz structures [33].

3 Rational homotopy theory

In his paper “Infinitesimal computations in topology,” Sullivan [104] created a link
between the mathematics related to calculus and that of algebraic topology. Of
course, de Rham’s theorem already does this, and one can even see earlier prece-
dents in the Cauchy integral theorem and even Gauss’ definition of linking number



Sullivan’s Juvenilia: Surgery and Algebraic Topology 831

between space curves. But, Sullivan’s work shows that these ideas can be developed
to the point where the algebra of differential forms gives a faithful description of ra-
tional homotopy theory (which is homotopy theory where one localizes by inverting
all primes).

One should note that a little earlier, Quillen [82] gave a different, dual, alge-
braization of rational homotopy theory by a rather indirect string of equivalences
of categories. These are of course equivalent to each other (see e.g. [43] for a de-
scription of the connection). In some sense, Quillen’s approach is “cellular,” while
Sullivan’s is based on Postnikov systems (see below). Our focus will be on sketching
Sullivan’s theory and a few of its applications.

There are now a number of excellent references for rational homotopy theory and
some of its applications; we note [35, 43].

3.1 Sullivan’s model

Already Serre’s thesis [94] made it clear that homotopy theory over the rationals
is fairly comprehensible. The test cases: spaces chosen for the simplest homology
or for the simplest homotopy, i.e., the sphere Sn and the Eilenberg–MacLane space
K(Z,n), have comprehensible homotopy and cohomology (respectively).

πi(Sn)⊗Q= 0 unless i = n or n is even and i = 2n−1, in which case it is Q,

H i(K(Z,n);Q) = 0 unless i = n or n is even and i is a multiple of n,
in which case it is Q.

In the latter case; the cohomology algebra is a polynomial algebra on one
n-dimensional generator. Recalling that cohomology is a graded algebra so that
the square of any odd-dimensional class must vanish, we can express both cases
as saying the rational cohomology of K(Z,n) is a free graded algebra on one n-
dimensional generator. (And if V is a finite-dimensional graded vector space, then
with the self-evident notation, one quickly sees using the Kunneth formula, that
H∗(K(V ))∼= Λ(V ∗), where Λ denotes the free graded commutative algebra (gener-
ated by V ∗).24)

There is more to homotopy theory than is visible in the cohomology algebra. For
example the famous Hopf map f : S3→ S2 is trivial in cohomology, but is nontrivial.
This can be seen from many points of view, but the point of view most relevant to
us is the following. Let ω be a volume form on S2. Since H2(S3) = 0, f ∗ω is 0
as a cohomology class, i.e., there is a 1-form ν so that dν = f ∗ω . Consider the

24 There is a dual statement in homotopy that is the analogous starting point for Quillen’s version
of rational homotopy. Homotopy groups form a graded Lie algebra under the “Whitehead product,”
and the homotopy groups of spheres are free graded Lie algebras. The analogue of the cohomology
of Eilenberg–MacLane space is the calculation of the homotopy of wedges of spheres, Hilton’s
theorem (see e.g. Milnor’s paper in [2]).
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3-form ν ∧ f ∗ω . As H1 = 0, it is well defined as a cohomology class. The integral∫
(ν ∧ f ∗ω) is an analytic expression for the well-known Hopf invariant.

This suggests that there’s more to be mined from the cochain level. The first
major result of the theory is the following:

Theorem. The homotopy theory of simply connected commutative differential
graded algebras over Q, with finitely generated cohomology groups, is equivalent
to the rational homotopy category of simply connected finite complexes.

Let’s unpack this a little. We are looking at graded algebras with differential, so
that they are naturally cochain complexes. The standard example would be the de
Rham complex.

The simplicial cochain complex is not quite an example — the usual formula for
cup product does not give the desired commutativity relations. As is well known
(and it is the source of the famous Steenrod algebra!) there is no way to define
directly on the ordinary cochain complex (over Z) a genuinely graded commutative
algebra structure.

However, it is desirable (indeed necessary) to work over Q rather than R. Sul-
livan’s patch for this problem is to work with simplicial complexes, and then use
polynomial differential forms with Q coefficients (i.e., a cochain complex which
is defined simplicially in this way). It is not hard to prove the relevant Poincaré
lemma and de Rham theorem for these, to see that one does get a model for rational
cohomology that now has genuine graded commutativity.

So there is a commutative differential graded algebra (CDGA) associated to a
space. And maps between spaces given well-defined chain homotopy classes of
maps between these (that preserve the algebra structure and the differentials). This
algebraic shadow of the space actually capture rationally — according to Sullivan
— the whole rational homotopy theory of the space.

Sullivan observed that in this setting, there is a “best” model for a space – a model
of each homotopy class of CDGA – that is well defined up to (non-canonical) iso-
morphism. As is traditional, we will call this M , and it has the following two prop-
erties: (i) M is free as a CGA (i.e., like the cohomology of a product of Eilenberg–
MacLane spaces, it is a tensor of polynomial and exterior algebras), and (ii) above
dimension 0, the image of d is decomposable, i.e., lies in M+⊗M+ where M+

denotes the positive-dimensional part of M .

Theorem. Every homotopy class of CDGAs has a unique, up to isomorphism, min-
imal model as above.

The homotopy groups of X are dual to the indecomposable part of M .
Let’s do some examples. These are good motivations as well as illustrations of

the theory. And they indicate that this is a very computable theory.

Example 3.1. Sn, n odd. In dimension n we must have Q⟨xn⟩, but we don’t need any-
thing more to get the cohomology right: Obviously there must be a map from Q⟨xn⟩
to any CDGA for Sn, and it will be a chain equivalence (based on cohomology). (We
haven’t recorded that dx = 0, since it’s lying in a 0 group.) So that’s it.



Sullivan’s Juvenilia: Surgery and Algebraic Topology 833

Example 3.2. Sn, n even. It starts the same Q[xn]. However we need something to
kill the cohomology class x2

n, so we add a generator [y2n−1] with dy = x2. At this
point, one realizes that the reasoning from Example 3.1 applies, and discovers that
this must be the minimal model for Sn (n even). And one has “recovered” the result
of Serre about the rational homotopy groups of spheres.25

Example 3.3. We will begin the calculation for S3∨S3. We start with Q⟨a3,b3⟩. Of
course, for parity reasons, a2

3 = b2
3 = 0, but a3b3 won’t be 0, which necessitates an

element c5 with dc5 = a3b3. We are not done yet. If we had no more generators for
the indecomposable, we’d have two 8-dimensional classes a3c5 and b3c5 (as you
can readily see these are cocycles). This necessitates two more 7-dimensional gen-
erators, say e7 and f7 with de7 = a3c5 and d f7 = b3c5 and so on . . . One clearly
can continue this process formally (at the moment, this merely means mechani-
cally with no additional thought). These elements that we’ve produced give that
π5(S3∨S3)⊗Q=Q and π7(S3∨S3)⊗Q=Q2. It would not be hard to express the
homomorphisms from these homotopy groups to R via integrals of suitable differ-
ential forms entirely analogously to the way we expressed the Hopf invariant.

(Incidentally, the names of these generators, in terms of Whitehead products of
the two generators of π3(S3∨S3) are [a,b], [a, [a,b]] and [b, [a,b]].)

Example 3.4. Suppose we consider building a CW complex with 3 skeleton S3∨S3

but attaching one more cell. If it’s a 6-cell, then the attaching map determines what
cup product of the duals to homology classes are. (And, rationally, the only issue is
whether you’ve used a nontrivial multiple of [a,b] or not.) More interesting is attach-
ing an 8-cell. The resulting complex always has the same cohomology algebra (all
products have no choice but to be 0) but they can have different rational homotopy
types. The minimal model of such complexes will look like (in its early 8 stage),
for example, Q⟨a3,b3,c5,e7, f7,g8 | dc5 = a3b3, de7 = a3c5,d f5 = b3c5 . . .⟩ versus
Q⟨a3,b3,c5,e7 | dc5 = a3b3 and de7 = a3c5⟩.

There are many more examples that one can give. Examples 3.1-3.3 were some-
how simpler than Example 3.4. In these examples, the cohomology algebra itself
determined the minimal model. In Example 3.4, there are different possible spaces
(minimal models) with the same cohomology algebra. There is always a simplest
DGA with a given cohomology: namely the cohomology algebra itself (with dif-
ferential d set = 0). In particular, any rational DGA comes from a space (that can
be algorithmically constructed from the algebra — in short, the minimal model de-
scribes a Postnikov system that describes such a space),26 and there’s a simplest one
— namely the one which is homotopy equivalent to that DGA. Thus for the coho-
mology algebra of S3 ∨ S3 ∨ S8 the first minimal algebra we wrote down is the one
which is simplest.

25 Of course, this is an almost completely circular argument. The proof of this equivalence of cate-
gories, etc., depends critically on the Serre spectral sequence and the calculation of the cohomology
of Eilenberg–MacLane spaces, the same ingredients Serre had used.
26 For other fields, this is not true. For example, the algebra F2[x3]/(x3

3 = 0) does not arise for any
space (using the Adem relation Sq3 = Sq1Sq2).
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These simplest homotopy types are called formal.

Definition. A space is called formal if its minimal model is homotopy equivalent
to its cohomology algebra (viewed as CDGA with 0 differential).

Many spaces arising in mathematics are formal.

Example. If G is a Lie group, or more generally a symmetric space G/H, then one
can find harmonic representatives for each cohomology class and the wedge of two
harmonic forms is harmonic. Therefore these spaces are formal.27 (On the other
hand, not all homogenous spaces are formal.)

Theorem ([32]). All Kähler manifolds are formal.

This, too, is a consequence of Hodge theory. Similarly holomorphic maps be-
tween Kähler manifolds are “formal consequences” of their induced maps on coho-
mology.

The marriage of Hodge theory and Sullivan’s rational homotopy theory is indeed
a happy one. Morgan [77] (and Hain [46]) have shown that there is a natural mixed
Hodge structure on homotopy groups of smooth varieties. Morgan used this to show
that there are finitely presented groups that are not homotopy groups of smooth va-
rieties (although, Kapovich and Kollàr [57] have shown that every finitely presented
group is the fundamental group of singular affine 3-fold).

Remarkably both the rational and the p-adic parts of Sullivan’s theory thus have
beautiful and deep connections to algebraic geometry.

In general, cohomology determines much less than homotopy type. A little
thought shows that for the automorphisms of a simply connected X , the eigenvalues
in homotopy are the same as those in cohomology (although there might be dif-
ferences that are nilpotent). Another structural result that follows from Sullivan’s
work (although done independently by a different method by Wilkerson [114]) is
the following:

Theorem. For any finite simply connected complex X, the group of self homotopy
equivalences has a quotient by a finite normal subgroup which is an arithmetic
group.

(See [62] for an example where one needs to take this finite quotient, and one
cannot merely assert commensurability.)

Note that this theorem is about X , not about the rationalization of X , X0. The
automorphisms of that space is the Lie group over Q that Aut(X) is almost a lattice
in.

27 We are eliding the prima facie difference between rationally formal versus formal over R.
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3.2 A few words on the proof

Sullivan’s theorem is extremely natural, and the proof is also conceptually very sim-
ple. Finite simply connected complexes have finitely generated homotopy groups,
and rationalization just tensors these with Q. To set up the equivalence of categories,
one inducts on the number of nontrivial homotopy groups.

We’ve already understood what happens with one homotopy group: the DGA is
exactly the free algebra on the dual of that group.

For any space X , one can consider Xk = lim(Z |Z⊇X a k-equivalence). This limit
is a space which includes X , and for which the inclusion is a k-equivalence. All the
homotopy above dimension k vanishes. There are obvious maps Xk+1→ Xk whose
fibers are Eilenberg–MacLane spaces. Most importantly, these maps are classified
by maps to Eilenberg–MacLane spaces.

Let’s do an example, Example 3.2 above.
Sn

n = K(Z,n). The fiber of (the rationalization of) Sn
2n−1 → Sn

n is K(Q,2n− 1).
There is a fibration (the so-called “path fibration” of Serre) K(Q,2n− 1)→ ∗ →
K(Q,2n), and the fibration Sn

2n−1 → Sn
n that we are interested in is the pullback of

the path fibration under a suitable map Sn
n→ K(Q,2n).

What is this map? Maps to Eilenberg–MacLane spaces are cohomology classes,
so we are looking for a cohomology class in H2n(Sn

n;Q) = H2n(K(Q,n);Q), and we
take the cup square of the n-dimensional class.

Note the obvious connection between the minimal model and this description
of the homotopy theory. These spaces, and the cohomology classes that describe
how the homotopy groups of X inductively relate to X’s homotopy type — elements
that are called the k-invariants of X — are exactly the elements of the classical
description of a homotopy type, called the Postnikov system of X (see e.g. [99]).
The k-invariants are definable in both the setting of spaces and DGAs and set up the
equivalence of categories by an inductive argument.

This proof also leads directly to statements relating the homotopy theory of X
to its rational homotopy theory. By going to rationalizations, one has finite fibers
[Y,X ]→ [Y(0),X(0)], although the image is harder to characterize: one needs to see
how compatible the rational map is with the lattices inside πi⊗Q. In any case, these
ideas explain where the Sullivan–Wilkerson theorem mentioned in the previous sec-
tion comes from.

3.3 A few more applications

In this subsection, we will mention a few of the applications of rational homotopy
theory. The first two we will discuss are consequences of the fact that it makes
calculations feasible. Consequently structure that might never have been imagined
can come to light. The last application is a direction that is very much work in
progress.
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3.3.1 Free loop spaces

The application of rational homotopy theory to the free loop space ΛX =
Map(S1 : X), the space of maps from a circle to X , due to Vigue-Poirier and Sul-
livan [109] is one of the earliest. Besides the beauty of this paper, it showed how
directly one can compute minimal models for natural constructions — this can be
modified to describe other function spaces, and spaces of sections. It remains im-
portant, as ΛX continually recurs in different contexts. Cohomology and equivariant
cohomology of loop spaces are related to cyclic homology, which are receptacles of
invariants from algebraic K-theory. The motivation for the paper [109] is the ques-
tion:

Problem. Does every closed Riemannian manifold have infinitely many closed
geodesics?

We still don’t know. A related question was answered by Serre:

Theorem ([94]). If M is a closed Riemannian manifold and p and q are points, then
there are infinitely many geodesics that connect p to q.

If π1M is infinite, then this is obvious: the homotopy classes of arcs connecting
p to q are in a 1-1 correspondence with this group, and each such class has length
minimizing representative. If π1M is finite, then we might as well work in the uni-
versal cover, and assume it’s trivial. One can see that if there were only finitely
many geodesics, then ΩM would have the homotopy type of a finite complex, but
by Hopf’s theorem [55] the rational cohomology of ΩM would then be that of a
product of odd spheres — which would make the cohomology of M itself infinite-
dimensional (by a spectral sequence argument).

For closed geodesics the situation is much more complicated. If π1M is infinite,
then we don’t automatically win: the components of ΛM are in a 1-1 correspon-
dence with the conjugacy classes of elements of the group — and it’s still unknown
whether this must be infinite for all infinite finitely presented groups.

But even for the simply connected case, the relation between closed geodesics
(i.e., the critical points of the Energy function on ΛM) and the (co)homology of
ΛM is not so straightforward. One can rotate closed geodesics (so one might be
led to consider ΛM equivariantly), and much more seriously, go through the same
geodesic k times — which means that each critical point gives rise to infinitely
many others that are geometrically the “same.” An important result does connect
the Morse theory of ΛM to its homology:

Theorem (Gromoll–Meyer [44]). If for some field the Betti numbers of ΛM are
unbounded, then M has infinitely many closed (geometrically distinct) geodesics for
any Riemannian metric on M.

So one wonders when the conclusion of the Gromoll–Meyer theorem holds;
[109] answers this by first describing the model for ΛM from the minimal model
of M. (The homotopy of ΛM is simple enough to describe: πi(ΛM) = πi(M)×
πi+1(M).)
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Theorem. Let M = ⟨x1,x2, . . . ,xd⟩ be a minimal model for M. Then a model for
ΛM is given by A = ⟨x1,x2, . . . ,y1,y2, . . . ,yd′⟩, where the degree of yi equals the
degree of xi−1 and ’. is defined so that d′xi = dxi and d′yi = −ixi, where i is the
unique degree −1 derivation from M →A with d′i+ id′ = 0.

In practice the impact on cohomology is not that transparent. For example for
ΛS2k the cohomology algebra is nilpotent (in strong contrast to the situation of
ΩS2k, which has a polynomial generator in dimension 4k−2).

This they then apply to show:

Theorem. The Betti numbers of the free loop space of a simply connected manifold
M, ΛM, with Q coefficients are bounded iff H∗(M;Q) is generated by 1 element.
Consequently if H∗(M;Q) requires two or more generators, then for any Rieman-
nian metric on M, M has infinitely many geometrically distinct closed geodesics.

Let me close this subsection by mentioning some work that is definitely not
“juvenilia.” In [40], Bill Goldman, motivated by work of Wolpert in Teichmüller
theory, was led to define a Lie algebra structure on the free abelian group gener-
ated by free homotopy classes of oriented curves on an oriented surface. Chas and
Sullivan showed that this can be extended to the homology of the free loop space
(thinking of a cycle there as a cycle of simple closed curves in M and considering
the parametrized family of intersections).

Theorem ([25]). H∗(ΛM) has a product of degree −n (where n = dimM).

This gives an intricate structure on the homology of ΛM (a Batalin–Vilkovisky
algebra) and a Lie algebra structure on the equivariant homology of ΛM (with
respect to the circle action that rotates closed curves). Later this was given a
homotopy-theoretic description by Cohen and Jones. [36] give an explicit model
of the loop product (rationally) in terms of the minimal model.

Remarkably,28 this structure arises in symplectic geometry. The book [64] con-
tains a number of articles that explain the connection, Viterbo’s theorem (see
Abouzaid’s paper in that volume), between homology of free loop spaces and the
symplectic cohomology of the cotangent bundle of a closed manifold T ∗M — which
is an isomorphism of BV algebras. We will not explore this direction, leaving the
reference to [64] as a good starting point.

3.3.2 The Elliptic/Hyperbolic dichotomy

The amazing computability of the minimal model theory allows for the deep ex-
ploration of the homotopy category that is not (yet) possible at a finite prime. The
following is one such remarkable example:

Theorem. If X is a finite simply connected complex of dimension k, then either
πi(X)⊗Q = 0 for i ≥ 2k, or the average size of πi(X)⊗Q grows exponentially.
Moreover, it is nontrivial along a sequence of i’s of index at most k.

28 This is probably not that remarkable to someone with a broad enough perspective.
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The latter statement means that the rank of πi×·· ·×πi+k−1 is always nontrivial
(unless X is rationally contractible). If X is in the first class, it is called elliptic; in
the second, it is called hyperbolic. Elliptic spaces have very special properties, so
that the generic situation is the hyperbolic one:

Theorem (see [35]). Elliptic spaces satisfy Poincaré duality.
Let χπ(X) = Σ(−1)ι dimπi(X)⊗Q, then both χπ(X)≤ 0 and χ(X)≥ 0 and exactly
one of these is an equality. Moreover, the sum of the ranks of the odd homotopy
groups is ≤ 2dim(X)−1 and the sum of the even ranks is ≤ dim(X). The Poincaré
series of X, ∑bi(X)t i is term by term ≤ (1+ t)dim(X), so the total homology ≤
2dim(X).

Elliptic spaces are rare, but they do occur. Of course spheres and their products
are elliptic. All simply connected homogeneous spaces G/H are elliptic. A conjec-
ture attributed to Bott asserts that all manifolds of nonnegative sectional curvature
are.

An easy argument shows that if a torus T k acts locally freely (i.e., with finite
isotropy groups) on such an X , then k ≤ −χπ(X). In particular, this recovers the
theorem of Alday–Halperin [5] that for X = G/K a quotient of simply connected
compact Lie groups, T k can only act locally freely if k ≤ rank(G)− rank(K).

Remark. There is a nice application of rational homotopy theory to noncompact
manifolds with nonnegative curvature. According to the Soul Theorem of Cheeger
and Gromoll, every such manifold is diffeomorphic to a vector bundle over a com-
pact nonpositively curved manifold. In [11], it is shown that the converse does not
hold: there are bundles over nonnegatively curved manifolds that do not have non-
negatively curved metrics. (Interestingly, the examples are not simply connected.)

3.3.3 Quantitative Homotopy Theory

Soon after Sullivan’s paper appeared, Gromov wrote a short paper [45] pointing out
that, because of rational homotopy theory, one can bound “homotopy theory” using
Lipschitz constants. The following is one of the results in the paper:

Theorem. If Y is a finite simply connected complex and X is a finite complex, then
the number of homotopy classes of maps represented by continuous functions with
Lipschitz constant at most L grows like O(Lk) for some k.

(The proof in [45] is complete when X is a sphere; see [70] for a general discus-
sion.) This is in strong contrast with the nonsimply connected situation where there
do not seem to be any nontrivial estimates: there the number is O(exp(Ldim(X))).

Surgery theory, immersion theory, cobordism theory, etc., tend to reduce geo-
metric topological problems to ones of algebraic topology. In order to understand
what the solutions actually looks like, one wants to know “how large the Lipschitz
constant of a homotopy” has to be when one has homotopic Lipschitz maps.
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Using minimal models, one can give examples where this grows faster than lin-
early [22], but it is always polynomial (in the simply connected case) [69]. The
papers [21] and [22] use minimal models to guide the construction of fairly efficient
homotopies for some important Y s.

These results are not quite strong enough to prove the even-dimensional case of
the following theorem of [13]:

Theorem. There is a constant C(m,n) such that any two L-Lipschitz maps f ,g : Sm→
Sn that are homotopic are C(m,n)L homotopic.

Fascinatingly, they show that, except for a very special class of spaces (the “scal-
able spaces,” which for manifolds are the ones which are formal and have cohomol-
ogy algebra injecting into the cohomology of a torus of the same dimension [12]),
the minimal model theory doesn’t give the optimal answer. The following is surely
only the first step in a new deep more geometric refinement of rational homotopy
theory.

Theorem ([12]). If Mm is a formal simply connected m-manifold, then there are
self maps with Lipschitz constant L and degree O(Lm) if and only if M is scalable.
In the nonscalable case, the best degree is smaller by a power of log(L).

(For nonformal simply connected manifolds, the maximum degree, if it grows at
all, grows like a lower power of L.)

3.3.4 Finite primes and Z

We close by mentioning that, motivated by rational homotopy theory, models of
homotopy theory at finite primes and integrally have been constructed. Because of
the existence of operations, DGAs are not enough; all of this work depends on the
notion of E∞-algebras and explaining this would take us far afield. We will settle
for referring to Mandell [69] for a model of p-complete simply connected finite
complexes, and Yuan [115] for an integral theory.
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nulle. C. R. Acad. Sci. Paris Sér. A-B, 281(1):Aii, A17–A18.
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[109] (with J. Heinonen). On the locally branched Euclidean metric gauge. Duke
Math. J., 114(1):15–41.

2003

[110] (with G. Cui and Y. Jiang). On geometrically finite branched coverings. I.
Locally combinatorial attracting. In Complex dynamics and related topics:
lectures from the Morningside Center of Mathematics, volume 5 of New Stud.
Adv. Math., pages 1–14. Int. Press, Somerville, MA.

[111] (with G. Cui and Y. Jiang). On geometrically finite branched coverings. II.
Realization of rational maps. In Complex dynamics and related topics: lec-
tures from the Morningside Center of Mathematics, volume 5 of New Stud.
Adv. Math., pages 15–29. Int. Press, Somerville, MA.

https://www.math.stonybrook.edu/~dennis/publications/PDF/DS-pub-0106.pdf
https://www.math.stonybrook.edu/~dennis/publications/PDF/DS-pub-0106.pdf


List of Publications for Dennis P. Sullivan 853

2004
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and higher string algebra. In The legacy of Niels Henrik Abel, pages 771–784.
Springer, Berlin.

[114] Open and closed string field theory interpreted in classical algebraic topol-
ogy. In Topology, geometry and quantum field theory, volume 308 of London
Math. Soc. Lecture Note Ser., pages 344–357. Cambridge Univ. Press, Cam-
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Birkhäuser/Springer, Basel.

2014

[131] 3D incompressible fluids: combinatorial models, eigenspace models, and a
conjecture about well-posedness of the 3D zero viscosity limit. J. Differential
Geom., 97(1):141–148.

[132] (with R. Lawrence). A formula for topology/deformations and its signifi-
cance. Fund. Math., 225(1):229–242.

[133] Solenoidal manifolds. J. Singul., 9:203–205.
[134] (with N. Ranade). The cumulant bijection and differential forms. Preprint,

arXiv:1407.0422v2.

2015

[135] (with S. Basu, J. McGibbon and M. Sullivan). Transverse string topology and
the cord algebra. J. Symplectic Geom., 13(1):1–16.

2016

[136] A discourse on the measurable Riemann mapping theorem & incompressible
fluid motion. In The legacy of Bernhard Riemann after one hundred and fifty
years. Vol. II, volume 35 of Adv. Lect. Math. (ALM), pages 691–702. Int.
Press, Somerville, MA.



List of Publications for Dennis P. Sullivan 855

2017

[137] Simplicity is the point. In Simplicity: ideals of practice in mathematics and
the arts, Math. Cult. Arts, pages 269–274. Springer, Cham.

[138] (with C. LeBrun, G. Besson, M. Gromov, J. Simons, J. Cheeger, J.-P. Bour-
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Professor, IHÉS, 1974–1997
Albert Einstein Chair in Science, City University of New York, 1981–
Professor, Stony Brook University, 1996–

857
 

H. Holden, R. Piene (eds.), The Abel Prize 2018-2022, The Abel Prize,  

https://doi.org/10.1007/978-3-031-33973-8_29

 

 

    

© The Editor(s) (if applicable) and The Author(s), under exclusive license  

to Springer Nature Switzerland AG 2024 

https://doi.org/10.1007/978-3-031-33973-8_29
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33973-8_29&domain=pdf


858 Curriculum Vitae for Dennis Parnell Sullivan

Visiting positions: Visiting Scholar, Institute for Advanced Study, 1967–1968, 1968–1970 and
1975
Stanislaw Ulam Visiting Professor of Mathematics, University of Colorado,
1981–82
Visiting Silver Chair, University of Texas at Austin, 1986

Memberships: National Academy of Sciences, 1983
New York Academy of Sciences, 1983
Brazilian National Academy of Sciences, 1984
London Mathematical Society, Honorary Member, 2012
Irish Royal Society, 2011
Norwegian Academy of Science and Letters, 2022

Awards and prizes: Speaker at the International Congress of Mathematicians, 1970, 1974
(plenary), 1986
Oswald Veblen Prize in Geometry, 1971
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Robert Langlands discussing mathematics with young students at NTNU. Chair of
the Abel Board Kristian Ranestad in the back. (Photo: NTNU)

The award ceremony in 2019 in the Aula of the University of Oslo. (Photo: Abel
Prize)
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The Abel Lectures at the University of Oslo in 2019. (Photo: Ola Gamst Sæther/Abel
Prize)

Karen Uhlenbeck with young pupils in 2019 in Bergen. (Photo: Jens Helleland
Ådnanes/University of Bergen)
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The award ceremony for Hillel Furstenberg in 2021 in the Norwegian Embassy in
Tel Aviv. The Ambassador Kåre R. Aas to the right. (Photo: Abel Prize)
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The finalists of the Niels Henrik Abel competitions for high-school students in 2022
outside the main building of the NTNU — Norwegian University of Science and
Technology, Trondheim. (Photo: Glen Musk)

The award ceremony of Avi Wigderson and Gregory Margulis at the Norwegian
Embassay in Washington DC in 2022. The Deputy Chief of Mission Torleiv Opland
in the middle. (Photo: Abel Prize)



866 Photos

The Abel Laureates (left to right) Hillel Furstenberg, László Lovász, Dennis Sulli-
van, Endre Szemerédi, and Gregory Margulis in front of the Abel Monument in the
garden of the Royal Palace in 2022. (Photo: Natalia Demina)

Dennis Sullivan discussing with young students. DNVA Secretary General Gunn
Elisabeth Birkelund to the left. (Photo: Ola Gamst Sæther/Abel Prize)
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Hillel Furstenberg in front of the portraits of the Abel Laureates in the Norwegian
Academy of Sciences and Letters in 2022. (Photo: Eirik Furu Baardesen/DNVA)



The Abel Committee

2018
John Rognes (University of Oslo, Norway), chair
Sun-Yung Alice Chang (Princeton University, USA)
Irene Fonseca (Carnegie Mellon University, USA)
Ben J. Green (University of Oxford, UK)
Marie-France Vignéras (Institut de Mathématiques de Jussieu, Paris, France)

2019
Hans Munthe-Kaas (University of Bergen, Norway), chair
Sun-Yung Alice Chang (Princeton University, USA)
Irene Fonseca (Carnegie Mellon University, USA)
Gil Kalai (Hebrew University of Jerusalem, Israel)
François Labourie (Université de Nice, France)

2020
Hans Munthe-Kaas (University of Bergen, Norway), chair
Gil Kalai (Hebrew University of Jerusalem, Israel)
François Labourie (Université de Nice, France)
Sylvia Serfaty (New York University, USA)
Claire Voisin (Collège de France, France)

2021
Hans Munthe-Kaas (University of Bergen, Norway), chair
Alexander Lubotzky (Hebrew University, Israel)
Subhash Khot (New York University, USA)
Sylvia Serfaty (New York University, USA)
Claire Voisin (Collège de France, France)
[Vaughan F.R. Jones † (Vanderbilt University, USA)]

2022
Hans Munthe-Kaas (University of Bergen, Norway), chair
Alexander Lubotzky (Hebrew University, Israel)
Subhash Khot (New York University, USA)
Raman Parimala (Emory University, USA)
Ulrike Tillmann (University of Oxford, UK)
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The Niels Henrik Abel Board

2018
Kristian Ranestad (chair)
Anne Borg
Hans Munthe-Kaas
Einar Rønquist
Anne Carine Tanum
Øystein Hov (observer)

2019
John Grue (chair)
Einar Rønquist
Hilde Christiane Bjørnland
Aslak Bakke Buan
Sissel Rogne
Øystein Hov (observer)

2020
John Grue (chair)
Einar Rønquist
Hilde Christiane Bjørnland
Aslak Bakke Buan
Sissel Rogne
Øystein Hov (observer)

2021
John Grue (chair)
Einar Rønquist
Hilde Christiane Bjørnland
Aslak Bakke Buan
Sissel Rogne
Gunn Elisabeth Birkelund (observer)

2022
John Grue (chair)
Einar Rønquist
Hilde Christiane Bjørnland
Aslak Bakke Buan
Sissel Rogne
Gunn Elisabeth Birkelund (observer)
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The Abel Lectures

2018
Robert P. Langlands (Institute for Advanced Study, Princeton): On the geometric
theory
James Arthur (University of Toronto): The Langlands program: arithmetic, geome-
try and analysis
Edward Frenkel (University of California at Berkeley): Langlands program and uni-
fication

2019
Karen K. Uhlenbeck (University of Texas at Austin): Some thoughts on the calculus
of variations
Chuu-Lian Terng (University of California at Irvine): Solitons in geometry
Robert Bryant (Duke University): Limits, bubbles, and singularities: An introduc-
tion to the fundamental ideas of Karen Uhlenbeck
Matt Parker (UK): [Popular lecture] An attempt to visualise minimal surfaces and
maximum dimensions

2020 [video lectures given in 2021]
Hillel Furstenberg (Hebrew University, Jerusalem): Boundary of groups
Gregory Margulis (Yale University, New Haven, Connecticut): Arithmeticity of dis-
crete subgroups and related topics

2021 [video lectures]
László Lovász (Eötvös Loránd University, Budapest): Continuous limits of finite
structures
Avi Wigderson (Institute for Advanced Study, Princeton): The value of errors in
proofs

2022
Dennis P. Sullivan (Stony Brook University, New York): Gathering chestnuts of
math related to fluid motion
Michael J. Hopkins (Harvard University): The great wild manifold rodeo: Dennis
Sullivan in algebraic topology
Etienne Ghys (ENS Lyon): Dynamics à la Dennis Sullivan
Jim Simons (The Simons Foundation, New York): A discussion with Nils A. Baas
and Nicolai Tangen
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The Abel Laureate Presenters

In March each year when the President of the Norwegian Academy of Science and
Letters announces the Abel Laureate and the Chair of the Abel Committee states the
reasons for the selection, a scientist presents the work of the Laureate. Below we list
the presenters for the period 2018–22:

2018 (Robert P. Langlands) Alexander Bellos, London

2019 (Karen K. Uhlenbeck) Jim Al-Khalili, Surrey

2020 (Hillel Furstenberg and Gregory Margulis) Alexander Bellos, London

2021 (László Lovász and Avi Wigderson) Alexander Bellos, London

2022 (Dennis P. Sullivan) Alexander Bellos, London
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The Interviews with the Abel Laureates

Transcripts of parts of the interviews that Bjørn I. Dundas, University of Bergen,
and Christian Skau, Norwegian University of Science and Technology, made with
each laureate in connection with the Prize ceremonies, can be found in the following
publications:

2018 Robert P. Langlands
EMS Newsletter, issue 109 (Sep. 2018) 19–27,
AMS Notices, 66 (2019) 494–503.

2019 Karen K. Uhlenbeck
EMS Newsletter, issue 113 (Sep. 2019) 21–29,
AMS Notices, 67 (2020) 393–403.

2020 Hillel Furstenberg and Gregory Margulis
EMS Newsletter, issue 118 (Dec. 2020) 45–56,
AMS Notices, 68 (2021) 992–997 (Margulis),
AMS Notices, 68 (2021) 1189–1196 (Furstenberg).

2021 László Lovász and Avi Wigderson
EMS Magazine, issue 122 (Dec. 2021) 16–31,
AMS Notices, 69 (2022) 828–843.

2022 Dennis P. Sullivan
EMS Magazine, issue 125 (2022) 20–30,
AMS Notices, 70 (2023) 623–642.
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The Abel Banquet 2003–2022

In the evening on the day of the Abel Prize Award Ceremony, the Norwegian Gov-
ernment hosts a banquet at the Akershus Castle in Oslo, normally attended by the
King of Norway, Harald V. Below is the list of people who gave a speech at the
banquet:

2003 John M. Ball (IMU President & member of Abel Committee)

2004 Sir John Kingman (EMS President)

2005 James Arthur (AMS President)

2006 Jacob Palis (former IMU President & former member of Abel Committee)

2007 László Lovász (IMU President & former member of Abel Committee)

2008 Ari Laptev (EMS President)

2009 Ingrid Daubechies (former member of Abel Committee)

2010 Sir Michael Atiyah (Abel Laureate 2004)

2011 Marta Sanz-Solé (EMS President)

2012 Ivar Ekeland (foreign member of the Norwegian Academy of Science and Let-
ters)

2013 Hendrik W. Lenstra (former member of the Abel Committee)

2014 Jean-Pierre Bourguignon (ERC President)

2015 Shigefumi Mori (IMU President)

2016 Pearl Dykstra (member of European Commission’s High Level Group of Sci-
entific Advisors)

2017 Robbert Dijkgraaf (Director of the Institute for Advanced Study)

2018 Caroline Series (LMS President)

2019 Carlos E. Kenig (IMU President)

2020 no banquet

2021 no banquet

2022 Kristin Clemet (former Minister of Education and Research)
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2003 Jean-Pierre Serre

Publications:

2017

[305] Appeared in Lie Groups, Geometry, and Representation Theory. Progr. Math.,
vol. 326, Birkhäuser/Springer, Cham, 2018, pp. 527–540.

2019

[307] Souvenirs sur Jean-Marc Fontaine. Gaz. Math. No. 162, 12–13.
[308] Distribution asymptotique des Valeurs Propres des Endomorphismes de Frobe-

nius [d’après Abel, Chebyshev, Robinson,. . . ]. Astérisque No. 414, Séminaire
Bourbaki. Vol. 2017/2018. Exposés 1136–1150, Exp. No. 1146, 379–426.

2020

[309] Rational points on curves over finite fields. With contributions by E. Howe,
J. Oesterlé, and C. Ritzenthaler. Edited by A. Bassa, E. Lorenzo Garcı́a,
C. Ritzenthaler and R. Schoof. Documents Mathématiques 18, x+187 pp.

[310] La vie et l’oeuvre de John Tate. C. R. Math. Acad. Sci. Paris. 358, no. 11-12,
1129–133.

[311] The life and work of John Tate. Resonance 25, no. 2, 169–175.
[312] La vie et l’oeuvre de Jean-Marc Fontaine. C. R. Math. Acad. Sci. Paris 358,

no. 9-10, 1045–1046.

2021

[313] (with E. Bayer-Fluckiger). Lines on cubic surfaces, Witt invariants and
Stiefel–Whitney classes. Indag. Math. (N.S.) 32, no. 5, 920–938.

2022

[314] Groupes de Coxeter finis: involutions et cubes. Enseign. Math. 68, no. 1-2,
99–133.

Addendum CV:
Speaker at the International Congress of Mathematicians, 1954, 1962 (plenary)

1 H. Holden, R. Piene (eds.): The Abel Prize 2003–2007. The First Five Years (Springer, Berlin,
2010), The Abel Prize 2008–2012 (Springer, Berlin, 2014), and The Abel Prize 2013–2017
(Springer, Berlin, 2019).
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2004 Sir Michael Atiyah and Isadore M. Singer

Sir Michael Atiyah passed away on 11 January 2019.
Isadore M. Singer passed away on 11 February 2021.

Publications by M. Atiyah:

2016

[275] Appeared in Internat. J. Modern Phys. A 33(24) 1830022, 16 pp.

2019

[286] (with Yin Yue Sha) The sharp radius of the neutron, proton, electron, critical
photon and the atomic nucleus. Engineering Technology Open Access 3, no 1
ETOAJ.MS.ID.555608.

[287] (with Joseph Kouneiher) Todd function as weak analytic function. Int. J.
Geom. Methods Mod. Phys. 16, no. 6, 1950091, 11 pp.

[288] A problem in Euclidean geometry. In: Representation Theory, Automorphic
Forms & Complex Geometry, Int. Press, Somerville, MA, pp. 1–2.

[289] Professor S.-T. Yau at 70. ICCM Not. 7, no. 1, 2.

2021

[290] (with M. Marcolli) Anyon networks from geometric models of matter. Q. J.
Math., 72(1-2), 717–733.

See also Bull. Amer. Math. Soc. 58, no 4 (2021) for a special “Atiyah-issue”.

Addendum CV:
M. Atiyah:
Speaker at the International Congress of Mathematicians, 1962, 1966 (plenary),
1970, 1978, 2018 (plenary)

I. Singer:
Speaker at the International Congress of Mathematicians, 1974 (plenary)

2005 Peter D. Lax

Publications:

2018

[238] was published in 2017.
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Addendum CV:
Speaker at the International Congress of Mathematicians, 1966, 1970, 1983
(plenary)

2006 Lennart Carleson

Addendum CV:
Speaker at the International Congress of Mathematicians, 1962, 1966 (plenary),
1990

2007 S. R. Srinivasa Varadhan

Publications:

2018

[156] Appeared as: Identification of the polaron measure I: Fixed coupling regime
and the central limit theorem for large times. Comm. Pure Appl. Math. 73
(2020), no. 2, 350–383. Corrigendum and addendum: loc. sit. 75 (2022), no.
7, 1642–1653.

[157] Appeared as: Identification of the polaron measure in strong coupling and the
Pekar variational formula. Ann. Probab. 48 (2020), no. 5, 2119–2144.

[158] The role of topology in large deviations. Expo. Math. 36, no. 3-4, 362–368.

2020

[159] (with C. Mukherjee) The Polaron measure. Applied probability and stochas-
tic processes, Infosys Sci. Found. Ser. Math. Sci., Springer, Singapore,
pp. 415–419.

[160] (with D. Blasius, T. Digernes, R. Fioresi, R. Gangolli, M. Rapoport) Recol-
lections of V. S. Varadarajan. Notices Amer. Math. Soc. 67, no. 9, 1365–1373.

2021

[161] The Polaron problem. In: A Tribute to the Legend of Professor C. R. Rao—the
Centenary Volume, Springer, Singapore, pp. 25–30.

2022

[162] (with C. Mukherjee) The Polaron problem. In: The Physics and Mathematics
of Elliott Lieb–The 90th Anniversary. Vol. II, EMS Press, Berlin, pp. 73–77.

[163] Harmonic Analysis. Courant Lecture Notes in Mathematics, vol. 31. Ameri-
can Mathematical Society, Providence, RI, vii+101 pp.
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Addendum CV:
Speaker at the International Congress of Mathematicians, 1978, 1994 (plenary),
2010 (plenary)

2008 John G. Thompson and Jacques Tits

Jacques Tits passed away on 5 December 2021.

Addendum CV:
J.G. Thompson:
Speaker at the International Congress of Mathematicians, 1962, 1966 (plenary)
J. Tits:
Speaker at the International Congress of Mathematicians, 1962 (plenary), 1970,
1974 (plenary)

2009 Mikhail Gromov

Publications:

2016

[137a] (with N.V. Shabaldina) Construction of a cascade parallel composition of
times automata using BALM-II. (Russian) Model. Anal. Inf. Sist. 23, no. 6,
715–728.

2017

[141a] (with A.S. Tvardovskiı̆, K. Èl’-Faki, N.V. Evtushenko) Design of tests with
guaranteed completeness for nondeterministic timed automata. (Russian)
Model. Anal. Inf. Sist. 24, no. 4, 496–507.

2019

[146] Mean curvature in the light of scalar curvature. Ann. Inst. Fourier (Grenoble)
69, no. 7, 3169–3194.

2020

[147] In memory of Gennadi Henkin. J. Geom. Anal. 30, no. 3, 2292.
[148] (with M. Braverman, V.M. Buchstaber, et al.) Mikhail Aleksandrovich

Shubin (obituary). Russian Math. Surveys 75, no. 6, 1143–1152.
[149] Morse spectra, homology measures, spaces of cycles and parametric pack-

ing problems. In: What’s Next?—the Mathematical Legacy of William P.
Thurston, Ann. of Math. Stud., vol. 205, Princeton Univ. Press, pp. 141–205.
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[150] (with J.-P. Bourguignon, E. Calabi, J. Eells, O. Garcia-Prada) Where does
geometry go? A research and education perspective. In: Eugenio Calabi—
Collected Works, Springer, Berlin, pp. 803–818.

2022

[151] Pinching constants for hyperbolic manifolds. In: Collected works of William
P. Thurston with Commentary. Vol. I—Foliations, Surfaces and Differential
Geometry, Amer. Math. Soc., Providence, pp. 655–666.

[152] (with Herbert Blaine Lawson Jr. and William Thurston) Hyperbolic
4-manifolds and conformally flat 3-manifolds. Collected works of William
P. Thurston with commentary. Vol. I. Foliations, surfaces and differential ge-
ometry, pp. 667–685, Amer. Math. Soc., Providence, RI.

Addendum CV:
Speaker at the International Congress of Mathematicians, 1970, 1978, 1983, 1986
(plenary)

2010 John T. Tate

John T. Tate passed away on 16 October 2019.

Addendum CV:
Speaker at the International Congress of Mathematicians, 1962, 1970 (plenary)

2011 John W. Milnor

Publications:

2018

[156] was published in Bulletin Amer. Math. Soc. (2020) 57, no. 2, 171–267.
[157] (with A. Bonifant, X. Buff) Antipode preserving cubic maps: the fjord theo-

rem. Proc. Lond. Math. Soc. (3) 116, no. 3, 670–728.

2021

[158] (with A. Bonifant, S. Sutherland) The W. Thurston algorithm applied to real
polynomial maps. Conform. Geom. Dyn. 25, 179–199.

2022

[159] (with W. Thurston) Characteristic numbers of 3-manifolds. In: Collected
Works of William P. Thurston with Commentary. Vol. I—Foliations, Surfaces
and Differential Geometry, Amer. Math. Soc., Providence, pp. 619–624.
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[160] (with W. Thurston) On iterated maps of the interval. In: Collected Works of
William P. Thurston with Commentary. Vol. III—Dynamics, Computer Sci-
ence and General Interest, Amer. Math. Soc., Providence, pp. 7–105.

[161] (with W. Thurston) Chapter 7 in: The Geometry and Topology of Three-
Manifolds. Vol. IV, American Mathematical Society, Providence.

See also Bull. Amer. Math. Soc. 52(4) 2015.

Addendum CV:
Speaker at the International Congress of Mathematicians, 1958, 1962 (plenary),
2014 (plenary)

2012 Endre Szemerédi

Publications:

2018

[192] (with P. Hajnal) Two geometrical applications of the semi-random method.
In: New Trends in Intuitive Geometry, Bolyai Soc. Math. Stud., 27, János
Bolyai Math. Soc., Budapest, pp. 189–199.

[193] Additive combinatorics and graph theory. In: European Congress of Mathe-
matics, Eur. Math. Soc., Zürich, pp. 685–716.

2019

[194] (with C. Reiher, V. Rödl, A. Ruciński, M. Schacht) Minimum vertex degree
condition for tight Hamiltonian cycles in 3-uniform hypergraphs. Proc. Lond.
Math. Soc. (3) 119 (2019), no. 2, 409–439.

[195] (with M. Simonovits) Embedding graphs into larger graphs: results, methods,
and problems. In: Building Bridges II—Mathematics of László Lovász, Bolyai
Soc. Math. Stud., 28, Springer, Berlin, pp. 445–592.

2021

[196] (with I. Ruzsa, G. Shakan, J. Solymosi) On distinct consecutive differences.
In: Combinatorial and Additive Number Theory IV, Springer Proc. Math.
Stat., pp. 425–434.

Addendum CV:
Speaker at the International Congress of Mathematicians, 1974
Order of Saint Stephen of Hungary, 2020
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2013 Pierre Deligne

Publications:

2020

[122] (with N. Amend, G. Röhrle) On the K(π,1)-problem for restrictions of com-
plex reflection arrangements. Compos. Math. 156, no. 3, 526–532.

2021

[123] Le critère d’Abel pour la résolubilité par radicaux d’une équation irréductible
de degré premier. C. R. Math. Acad. Sci. Paris 359, 919–921.

Further unpublished documents can be found on Deligne’s website of Institute for
Advanced Study, Princeton.

Addendum CV:
Speaker at the International Congress of Mathematicians, 1970, 1974 (plenary)

2014 Yakov Sinai

Publications:

2010

[264] Reprinted in 2019.

2018

[292] (with I. Vinogradov) Eigenfunctions of Laplacians in some two-dimensional
domains. In: Dynamical Systems, Ergodic Theory, and Probability: in Mem-
ory of Kolya Chernov, Contemp. Math., 698, Amer. Math. Soc., Providence,
pp. 195–199.

2020

[293] (with S. Gusein-Zade, Y. Ilyashenko, K. Khanin, S. Shlosman, M. Tsfas-
man) Roland Lvovich Dobrushin (July 20, 1929–November 12, 1995). Mosc.
Math. J. 20, no. 4, 641–644.

[294] (with M.E.H. Bahri) Statistical mechanics of freely fluctuating two-dimensio-
nal elastic crystals. J. Stat. Phys. 180, no. 1-6, 739–748.

[295] (with C. Boldrighini, S. Frigio, P. Maponi, A. Pellegrinotti) An antisymmetric
solution of the 3D incompressible Navier–Stokes equations with “tornado-
like” behavior. J. Exp. Theor. Phys. 131, 356–360.
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2021

[296] (with K. Khanin, M. Lyubich, E.D. Siggia) Mitchell Feigenbaum. Notices
Amer. Math. Soc. 68, no. 5, 757–767.

Addendum CV:
Speaker at the International Congress of Mathematicians, 1962, 1970, 1978, 1990
(plenary)

2015 John Nash Jr. and Louis Nirenberg

John Nash Jr. passed away on 23 May 2015.
Louis Nirenberg passed away on 26 January 2020.

See Bull. Amer. Math. Soc. 54, no 2 (2017) for a special “Nash-issue”.

Publications by L. Nirenberg:

2018

[166] Lectures on Differential Equations and Differential Geometry. CTM. Classi-
cal Topics in Mathematics, 7. Higher Education Press, Beijing, ix+174 pp.

The Abel Lectures by T. Rivière and F. Morgan were published as
Rivière: Exploring the unknown: The work of Louis Nirenberg on partial differen-
tial equations, Notices, AMS, 63, no 2 (2016), pp. 120–125, and EMS Surv. Math.
Sci., 9, no 1 (2022), pp. 1–29.
Morgan: Soap bubbles and mathematics, Eur. Math. Soc. Newsl., 97 (2015), pp. 32–
36.

See also N. Dencker: Nirenberg’s contributions to linear partial differential equa-
tions: Pseudo-differential operators and solvability, Bull. AMS, 60, no 2 (2023), pp.
159–166.

Addendum CV:
L. Nirenberg:
Speaker at the International Congress of Mathematicians, 1962 (plenary), 1974
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2016 Sir Andrew J. Wiles

Addendum CV:
Speaker at the International Congress of Mathematicians, 1994 (plenary)
Common Wealth Award of Distinguished Service, 1996

2017 Yves Meyer

Publications:

2018

[207] Histoire des idées et culture mathématiques: transmettre. Matapli No. 117,
59–64.

2019

[208] Three problems on trigonometric sums. Acta Math. Sin. (Engl. Ser.) 35, no.
6, 721–727.

2020

[209] Trigonometric series with a given spectrum. Tunis. J. Math. 2, no. 4, 881–906.

2021

[210] Iraneo Peral and the rebirth of mathematics in Spain. Gac. R. Soc. Mat. Esp.
24, no. 3, 475–479.

[211] Restriction algebras of Fourier–Stieltjes transforms of Radon measures. J.
Geom. Anal. 31, no. 9, 9131–9142.

[212] A letter by Eli Stein. J. Geom. Anal. 31, no. 7, 7297–7303.
[213] From Salomon Bochner to Dan Shechtman. Transactions of the Royal Nor-

wegian Society of Sciences and Letters, no 1, 22 pp.
[214] Crystalline measures and mean-periodic functions. Transactions of the Royal

Norwegian Society of Sciences and Letters, no 2, 26 pp.

2023

[215] (with A. Fan) Trigonometric multiplicative chaos and applications to random
distributions. Sci. China Math. 66, no. 1, 3–36.

[216] Crystalline measures in two dimensions. Publ. Mat. 67, no. 1, 469–480.

Addendum CV:
Speaker at the International Congress of Mathematicians, 1970, 1983, 1990
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The Abel Lecture at the International Congress of Mathematicians:

2022 (virtual) Avi Wigderson: “Symmetries, Computation and Math (or, can
P ̸= NP be proved via gradient descent?)”

The Abel Lecture at the European Congress of Mathematics:

2020 (Portoroz, Slovenia) Lázsló Lovász: “Graph limits and Markov spaces”

In The Abel Prize 2013–2017 on p. 737 the artist’s name should read Erika Klagge
(not Erika Kappel).
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