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Abstract. The aim of this paper is to present a construction of smooth ra-

tional surfaces in projective fourspace with degree 12 and sectional genus 13.
In particular, we establish the existences of five different families of smooth

rational surfaces in projective fourspace with the prescribed invariants.

1. Introduction

Hartshone conjectured that only finitely many components of the Hilbert scheme
of surfaces in P4 contain smooth rational surfaces. In 1989, this conjecture was
positively solved by Ellingsrud and Peskine [8]. The exact bound for the degree is,
however, still open, and hence the question concerning the exact bound motivates
a search for smooth rational surfaces in P4. The goal of this paper is to construct
five different families of smooth rational surfaces in P4 with degree 12 and sectional
genus 13. The rational surfaces in P4 were previously known up to degree 11. In
this paper, we will prove the following theorem:

Theorem 1.1. There exist five distinct families of smooth rational surfaces in P4

over C with d = 12 and π = 13. These surfaces are all isomorphic to P2 blown up
in 21 points, but their embedding linear system are of the following five different
kinds:

(i)
∣∣∣12L−

∑2
i=1 4Ei −

∑11
j=3 3Ej −

∑14
k=12 2Ek −

∑21
l=15 El

∣∣∣,
(ii)

∣∣∣12L−
∑3

i=1 4Ei −
∑9

j=4 3Ej −
∑15

k=10 2Ek −
∑21

l=16 El

∣∣∣,
(iii)

∣∣∣12L−
∑4

i=1 4Ei −
∑7

j=5 3Ej −
∑16

k=8 2Ek −
∑21

l=17 El

∣∣∣,
(iv)

∣∣∣12L−
∑5

i=1 4Ei −
∑17

j=6 2Ej −
∑21

k=18 Ek

∣∣∣
(v)

∣∣∣12L− 4E1 −
∑13

i 3Ei −
∑21

j=13 Ej

∣∣∣,
where L is the pullback from P2 of a line, while the Ei are the exceptional curves
of the blowup.

Family (i) was found by Schreyer and the first author in [3]. The surfaces were
found by the construction of a Beilinson monad for their ideal sheaf. Let V be
a finite-dimensional vector space over a field K and let W be its dual space. A
Beilinson monad represents a given coherent sheaf on P(W ) as a homology of a finite
complex whose objects are direct sums of bundles of differentials. The differentials
in the monad are given by homogeneous matrices over an exterior algebra E =

∧
V .

To construct a Beilinson monad for a given coherent sheaf, we typically need to
determine the type of the Beilinson monad, that is, determine each object, and
then find the differentials in the monad.
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Let X be a smooth rational surface in P4 = P(W ) with degree 12 and sectional
genus 13. The type of a Beilinson monad for the (suitably twisted) ideal sheaf of X
can be derived from the knowledge of its cohomology groups. Such information is
partially determined from general results such as the Riemann-Roch formula and
Kodaira vanishing theorem. It is, however, hard to determine the dimensions of all
cohomology groups needed to determine the type of the Beilinson monad. For this
reason, we assume that the ideal sheaf of X has so-called ”minimal cohomology” in
some range of twists. From this assumption, the Beilinson monad for the twisted
ideal sheaf IX(4) of X has the following form:

4Ω3(3) A→ 2Ω2(2)⊕ 2Ω1(1) B→ 3O.(1.1)

The most difficult part is to find the differentials in (1.1). In [3], Schreyer and
the first author provided a computational approach to find such differentials A and
B. This approach is based on exterior algebra methods presented by Eisenbud,
Fløystad and Schreyer [7], and finite field searches developed by Schreyer [11]

The construction we will present in this paper stems from the following obser-
vation on Family (i). Let A1 and B1 be the linear parts of the differentials A and
B in (1.1) respectively. In the example, the locus CA in P(V ) , where A1 is not
surjective, is a rational normal curve, while the locus SB in P(V ), where B1 is not
injective, is a rational cubic surface scroll in P(V ). Furthermore, the curve CA does
not intersect the surface SB . From A1 and B1 in the example, one can reconstruct a
smooth rational surface in P4 with the same invariants. Indeed, the condition that
the composite of B and A is zero gives rise to the homogeneous system of 120 linear
equations with 140 unknowns. In this case, the solution space has dimension 26.
Thus, we can choose 26 variables freely to determine A and B. A random choice of
values for 26 parameters gives the Beilinson monad of type (1.1), and the homology
of this monad is the twisted ideal sheaf of a smooth surface of the desired type. Our
approach generalizes this procedure. Let F be the family of rational normal curves
in P(V ). For a fixed rational cubic surface scroll, and for each 20 ≤ N ≤ 26, we find
a subfamily F(N) of rational normal curves such that the associated homogeneous
system of linear equations has the N -dimensional solution space. The subfamily
F(N) is of codimension N − 20 in F and consists of curves such that N − 20 of
its trisecant planes intersect the cubic surface along a conic section. Performing a
random search we can expect to find a point p in F(N)(Fq) from F(Fq) at a rate of(
1 : qN−20

)
. As in the case above we find examples of surfaces over Fq. Finally, a

lifting argument introduced by Schreyer (cf. [11]) is applied to show the existence of
a smooth rational surface in P4 over C with the desired invariants are established,
when N = 22, 23, 24, 25 and 26.

The calculations were done with the computer algebra system MACAULAY2 devel-
oped by Grayson and Stillman [9]. All the MACAULAY2 scripts needed to construct
surfaces are available at [1].

2. Preliminaries

Our main goal is to construct families of smooth rational surfaces X in P4 with
degree d = 12, sectional genus π = 13. The construction discussed in this paper
takes the following three steps:

(1) Find a smooth surface X with the prescribed invariants over a finite field
of a small characteristic.
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(2) Determine the type of the linear system, which embeds X into P4 to justify
that the surface X found in the previous step is rational.

(3) Establish the existence of a lift to characteristic 0.
In this section, we recall some basic facts needed for the construction.

2.1. Beilinson monads. Let V be a (n+1)-dimensional vector space over a field K

with let W be its dual space. We write E for the exterior algebra
⊕n+1

i=0

∧i
V . Step

(1) uses the technique of “Beilinson monad”. A Beilinson monad represents a given
coherent sheaf in terms of a direct sum of (suitably twisted) bundles of differentials
and a homomorphism between these bundles, which are given by homogeneous
matrices over the exterior algebra E.

Theorem 2.1 ([2]). For any coherent sheaf F on P(W ), there is a complex K· with

Ki '
⊕

j

Hj(F(i− j))⊗ Ωj−i(j − i)

such that

Hi(K·) =
{
F i = 0
0 i 6= 0.

Proof. See [2] for the proof. �

Remark 2.2 ([7]). (i) The differentials of the complex K· are given by using the
isomorphisms

Hom(Ωi(i),Ωj(j) '
∧

V i−j ' HomE(E(i), E(j)).

(ii) Let us write

d
(r)
ij ∈ Hom(Hj(F(i− j))⊗ Ωj−i(j − i),Hj−r+1(F(i− j + r))⊗ Ωj−i−r(j − i− r)

'
r∧

V ⊗Hom(HjF(i− j),Hj−r+1F(i− j + r))

' Hom

(
r∧

W ⊗Hom(HjF(i− j),Hi−j+rF(i− j + r)

)
for the degree r maps actually occurring in K·. Then the constant maps d

(0)
ij in K·

are zero. The linear maps d
(1)
ij in K· correspond to the multiplication maps

W ⊗HjF(i− j) → HjF(i− j + 1).

So the linear maps induces maps from the set of hyperplanes to the set of linear
transformations from HjF(i− j) to HjF(i− j + 1).

2.2. Adjunction theory. In this subsection, we explain how to spot the surface
found in Step (1) within the Enriques-Kodaira classification and determine the
type of the linear system that embeds X into P4. First of all, we recall a result of
Sommese and Van de Ven for a surface over C:

Theorem 2.3 ([10]). Let X be a smooth surface in Pn over C with degree d,
sectional genus π, geometric genus pg and irregularity q, let H be its hyperplane
class, let K be its canonical divisor and let N = π − 1 + pg − 1. Then the adjoint
linear system |H + K| defines a birational morphism

Φ = Φ|H+K| : X → PN−1
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onto a smooth surface X1, which blows down precisely all (−1)-curves on X, unless

(i) X is a plane, or Veronese surface of degree 4, or X is ruled by lines;
(ii) X is a Del Pezzo surface or a conic bundle;
(iii) X belongs to one of the following four families:

(a) X = P2(p1, . . . , p7) embedded by H ≡ 6L−
∑7

i=0 2Ei;
(b) X = P2(p1, . . . , p8) embedded by H ≡ 6L−

∑7
i=0 2Ei − E8;

(c) X = P2(p1, . . . , p8) embedded by H ≡ 9L−
∑8

i=0 3Ei;
(d) X = P(E), where E is an indecomposable rank 2 bundle over an elliptic

curve and H ≡ B, where B is a section B2 = 1 on X.

Proof. See [10] for the proof. �

Setting X = X1 and performing the same operation repeatedly, we obtain a se-
quence

X → X1 → X2 → · · · → Xk.

This process will be terminated if N − 1 ≤ 0. For a surface with nonnegative
Kodaira dimension, one obtains the minimal model at the end of the adjunction
process. If the Kodaira dimension equals −∞, we end up with a ruled surface, a
conic bundle, a Del Pezzo surface, P2, or one of the few exceptions of Sommese and
Van de Ven.

It is not known whether the adjunction theory holds over a finite field. However,
we have the following proposition:

Proposition 2.4 ([6]). Let X be a smooth surface over a field of arbitrary char-
acteristic. Suppose that the adjoint linear system |H + K| is base point free. If
the image X1 in PN under the adjunction map Φ|H+K| is a surface of the expected
degree (H + K)2, the expected sectional genus 1

2 (H + K)(H + 2K) + 1 and with
χ(OX) = χ(OX1), then X1 is smooth and Φ : X → X1 is a simultaneous blow down
of the K2

1 −K2 many exceptional lines on X.

Proof. See Proposition 8.3 in [6] for a proof. �

Remark 2.5. The exceptional divisors contracted in each step are defined over the
base field.

Remark 2.6. In [4] and [6], it is described how to compute the adjunction process
for a smooth surface given by explicit equations. See, for example, [6] for the
computational details.

3. Construction over a small field

Let K be a field, let W be a five-dimensional vector space over K with basis
{xi}0≤i≤4, and let V be its dual space with dual basis {ei}0≤i≤4. Let X be a
smooth surface in P4 = P(W ) with the invariants given above. The first step is to
determine the type of the Beilinson monad for the twisted ideal sheaf of X, which
is derived from the partial knowledge of its cohomology groups. Such information
can be determined from general results such as the Riemann-Roch formula and
Kodaira vanishing theorem (see [4] for more detail). Here we assume that X has
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minimal cohomology in the range 0 ≤ j ≤ 4 of twists:

//
j

OO
i

4 2

2 3

hiIX(j)

0 1 2 3 4

0

1

2

3

4

Here a zero is represented by the empty box. From Beilinson’s Theorem, it follows,
therefore, that the corresponding Beilinson monad for IX(4) is of the following
type:

0 → 4Ω3(3) A→ 2Ω2(2)⊕ 2Ω1(1) B→ 3O → 0.(3.1)

The next step is to describe what maps A and B could be the differentials of the
monad (3.1). Let E be the exterior algebra

∧
V on V . Then the identifications

Hom(Ωi(i),Ωj(j)) ' HomE(E(i), E(j)) '
i−j∧

V

allow us to think of the maps A and B as homomorphisms between E-free modules.
Since the composite of B and A is zero, each column of A can be written as an
E-linear combination of columns of Syz (B). In fact, a reasonable assumption when
(3.1) is the Beilinson monad for an ideal sheaf, is that the first graded betti numbers
of the minimal free resolution of Coker(B) are:

0 3 2 . .
-1 . 2 4 a2

-2 . . a1 ∗
(3.2)

This assumption is aposteriori is supported in examples. Assume that there exists
such a map B. Then this B uniquely determines AB : 4E(3) → 2E(2) ⊕ 2E(1),
which could be the first map in (3.1), up to automorphism of 4E(3). The pair
(AB , B) defines a complex

4Ω3(3) AB→ 2Ω2(2)⊕ 2Ω1(1) B→ 3O.

Thus we can compute the homology ker(B)/ im(AB) and check that this homology
corresponds to the twisted ideal sheaf IX(4) of X. So the key step is to find a B
satisfying Condition (3.2). Our approach to finding such a B takes the following
four steps (1), (2), (3) and (4):

(1) Let B1 be the linear part of B. Suppose that B1 is the general member of
HomE(2E(1), 3E). To ease our calculation, we define B1 by the matrix

B1 =

 e0 e1

e1 e2

e3 e4

 .

From Remark 2.2 it follows that the hyperplane classes, for which the corresponding
linear transformation is not injective, form a rational cubic surface scroll SB in
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P(V ). Let A1 be an element of HomE(4E(3), 2E(2)) and let CA be the locus of
points, where A1 is not surjective. Now, for a fixed B1, we find an A1 such that

(c1) CA is smooth and
(c2) CA does not intersect SB .

Note that if CA is smooth, then CA is a rational quartic normal curve.

(2) Suppose that there are an A2 ∈ Hom(4Ω3(3), 2Ω2(2)) and a B2 ∈
Hom(2Ω2(2), 3O) such that the corresponding sequence

4Ω3(3) A→ 2Ω2(2)⊕ 2Ω1(1) B→ 3O(3.3)

is a monad for IX(4), where A = t(A1, A2) and B = (B2, B1). Since the se-
quence (3.3) should be a complex, A2 and B2 must satisfy the following matrix
equation:

B2 ◦A1 + B1 ◦A2 = 0.(3.4)

Let A2 be the 2× 4 matrix whose (k, l) entry is
∑

i<j akl
ijei ∧ ej and let B2 be the

3× 2 matrix whose (k, l) entry is
∑

i<j bkl
ijei ∧ ej . Given the fixed matrix B1 and a

linear matrix A1, condition (3.4) gives rise to a homogeneous system of 120 linear
equations in the 140 coefficients of the entries in A2 and B2. The rank N of this
linear system depends on A1, and the solution space has dimension 140−N .

(3) Solving those equations for bkl
ij ’s, we obtain 60− (140−N) = N − 80 relations

among bkl
ij ’s, and hence 140−N variables in bkl

ij ’s can be chosen freely to determine
B2. Then check that B1 and the B2 given by the random choices of values for
140−N parameters define a homomorphism from 2E(2)⊕ 2E(1) to 3E satisfying
condition (3.2).

(4) If B1 and B2 satisfy condition (3.2), then B = (B2, B1) determines a homo-
morphism AB : 4E(3) → 2E(2) ⊕ 2E(1) uniquely up to automorphisms of 4E(3)
and the pair (AB , B) defines a complex. Compute the homology ker(B)/ im(AB)
of the complex. If the homology corresponds to the twisted ideal sheaf of a surface
in P4 with the expected invariants, then check smoothness of this surface by using
the Jacobian criterion.

In this section, using the construction described above, we establish the existence
of the family of smooth rational surfaces in P4 over a finite field for each 114 ≤
N ≤ 117 and show that there exists a lift to characteristic zero for each family. We
also establish the existence of a smooth rational surface for N = 113. In this case,
the intersection of CA and SB is no longer empty.

Remark 3.1. Let A1 ∈ HomE(4E(3), 2E(2)) and let U be the solution space to
the homogeneous system of linear equations associated with A1. Let UB be the
vector space formed by the pairs of two E-linear combinations of columns of B1.
Then UB can be regarded as a subspace of HomE(2E(2), 3E). Since U contains UB

as a twenty-dimensional subspace, both columns of B2 can be written as E-linear
combinations of columns of B1 if and only if N = 120, so we may exclude this case.

To find A1 with N < 120, we define two further varieties associated to the two
linear matrices. By the general assumption on these matrices, every column of A1

and every row of B1 have rank 2, i.e., they define elements in G = G(2, V ). If
VA and VB are the column space of A1 and the row space of B1 respectively, then
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the corresponding maps of P(VA) and P(VB) into G ⊂ P
(∧2

V
)

are the double
embeddings. We let ZA and ZB be the images of P(VA) and P(VB) under these
double embeddings respectively, i.e., ZA is a Veronese 3-fold; while ZB is a Veronese
surface.

Lemma 3.2. Let A1 be an element of HomE(4E(3), 2E(2)) satisfying (c1) and
(c2), and let Γ = ZA ∩ZB. Suppose that Γ is finite. Then Γ consists of at most six
points.

Proof. First we prove that Γ either consists of at most six points or four points in
Γ lie on a line in both P(VA) and P(VB).

Notice first that ZA itself spans P9 while ZB spans P5. This P5 intersects G in
the union of ZB and a plane P . Thus Γ thought of as a subscheme of P3 = P(VA)
is contained in the four quadrics defined by restricting the linear forms that vanish
on ZB to ZA. Assume now that Γ consists of at least seven distinct points. If
five of them are in a plane, then the conic through these five is a fixed curve in all
quadrics through Γ, which means that the intersection of P5 with ZA contains a
curve C. But P5 intersects G in the union of ZB and a plane, so the curve C must
be contained in this plane, i.e., it must be a conic, the image of a line in P3. The
intersection of the plane and ZB is also a conic, so Γ would contain four collinear
points.

On the other hand, if at most three points are in a plane, there is a unique twisted
cubic through the six points. If four points lie in a plane, this curve degenerates
into a conic and a line or three lines. In either case this possibly reducible twisted
cubic lies in three quadrics, and the six points are defined by four quadrics, a
contradiction.

Assume that ZB and ZA intersect in finite number of points and four of them
lie on a line both in P(VB) and P(VA). The image of these two lines are two conics
in P5 that clearly lie in the plane P . On the one hand the four planes in P(W )
corresponding to the four points each intersects the rational cubic scroll SB in a
conic and the rational normal curve CA in three points. Let U be the union of
these four planes.

The conic, which is obtained as the intersection of the plane P and ZB , cor-
responds to the line whose underlying vector space spanned by two rows of B1.
The determinant of the 2× 2 matrix generated by these two rows defines a quadric
hypersurface Q containing the union U and SB . This quadric may have rank 3
or 4. We will prove that Q also contains CA and that therefore SB and CA must
intersect.

In case Q has rank 4, Q is a cone with a vertex. Since CA meets each plane in
U in three points, CA is contained in Q by the Bezout theorem. If Q has rank 3,
then any plane defined by a linear combination of the two rows contains the same
line, which is the directrix of SB . Assume that CA is not contained in Q. Then
at least two of three points in each plane are common for all four planes, because
otherwise the number of intersection number of Q and CA is going to be more than
8. These points, however, lie on the directrix of SB , which is a contradiction. �

Consider again the matrix equation PA,B = B1 ◦A2 + B2 ◦A1 = 0 with exterior
multiplication. The entries of PA,B are in

∧3
V , which has rank 10, so the equation

PA,B = 0 defines a linear system of equations on the coefficients parameterized by
VA ⊗ VB ⊗

∧2
V of rank N ≤ 120.
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Remark 3.3. A point in ZA∩ZB correspond to a plane in P(V ) that intersect the
curve CA in three points and the surface SB in a conic section.

Lemma 3.4. Let A1 be an element of HomE(4E(3), 2E(2)) satisfying (c1) and
(c2), and let N be the rank of linear system of equations defined by PA,B. If ZA

and ZB intersect in k points, then N is at most 120− k.

Proof. A row R1 in A1 and a column L1 in B1, the corresponding row R2 in
B2 and column L2 in A2 and a 2-vector ω ∈

∧2
V , define an exterior product

(R1 · L2 + R2 · L1) ∧ ω which lies in
∧5

V ' K. Assume that the subspaces of V
generated by L1 and R1 coincide, then

(R1 · L2 + R2 · L1) ∧

(
2∧

L1

)
= 0

independent of L2 and R2. Therefore there is one relation among the coefficients
of PA,B for each point of intersection of ZA and ZB in P(

∧2
V ). Assume now that

there are r ≤ 6 points of intersection ZA ∩ ZB , and consider their corresponding
tensors in VA ⊗ VB ⊗

∧2
V . Notice that these tensors are all pure, so they have

natural projections on each factor. In particular, they are linearly independent if
they are linearly independent in one factor. In fact we end our proof by showing
that the r ≤ 6 points in ZA ∩ ZB are linearly independent in P(

∧2
V ).

Since ZA and ZB are quadratically embedded, no three points on either of them
are collinear. If four points are coplanar, the plane of their span meets both ZA

and ZB in a conic. In the proof of the Lemma 3.2, we saw that this is the case
only if CA and SB intersect. If five points in ZA ∩ZB span only a P3, this P3 must
intersect the Veronese surface ZB in a conic and a residual point, i.e., four of the
five points are coplanar as in the previous case.

Finally if ZA ∩ ZB consists of six points that span a P4, then this P4 intersects
ZB in rational normal quartic curve, or in two conics. But the span of ZB intersects
G in the union of the plane P and ZB , so the P4 intersects G in a curve of degree
4 and a line in P that is bisecant to the curve, or the plane P and a conic that
meets P in a point. Since no four of the six points are coplanar and ZA ∩ ZB is
finite, the intersection of P4 and ZA cannot contain a curve. The six points in
ZA ∩ ZB considered as points in P(VA) therefore lie on five quadrics, which have a
finite intersection. If five of them are in a plane, then the conic in the plane through
those five points must lie in each quadric, a contradiction. If at most four points are
coplanar, there is a unique, possibly reducible twisted cubic curve through the six
points. But then the six points lie on only four quadrics, a contradiction completing
our proof. �

Corollary 3.5. Let F be the family of rational normal curves in P(V ), and let
F(N) be the subfamily of F formed by rational normal curves CA satisfying (c2)
such that the rank of linear system of equations defined by PA,B equals N . Then
codim (F,F(N)) ≤ 120−N .

Proof. Each intersection point of ZA with ZB imposes an independent condition
on CA as long as the intersection is finite. Therefore, the codimension of the family
of rational normal curves CA such that ZA intersects ZB in k < 7 points is k, and
the corollary follows. �
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Remark 3.6. We discuss the cases N = 118 and 119, where we could not find any
example where the homology of the monad is an ideal sheaf of the desired kind.

If N = 119, then for matrices B2 in HomE(2E(2), 3E) obtained in step (2), the
matrix B = (B1, B2) has the syzygies of the following type

0 3 2 . .
-1 . 2 6 10
-2 . . 5 ∗

(3.5)

Taking a map from 4E(3) to 6E(3) at random and compositing the map to the
second map in (3.5) give a homomorphism A : 4E(3) → 2E(2) ⊕ 2E(1). Then A
and B define a complex of type (3.3). The homology ker(B)/ im(A), however, has
rank three.

Similarly, the map B has syzygies of the following type in the case of N = 118:

0 3 2 . .
-1 . 2 5 3
-2 . . 3 ∗

(3.6)

The homology of the associated complex in cohomological degree 0 has rank 1, but
the corresponding scheme does not have the desired invariants.

Proposition 3.7. There exist five distinct families of smooth rational surfaces in
P4 over F5 with d = 12 and π = 13. The corresponding embedding linear systems
are:

(i)
∣∣∣12L−

∑2
i1=1 4Ei1 −

∑11
i2=3 3Ei2 −

∑14
i3=12 2Ei3 −

∑21
i4=15 Ei4

∣∣∣,
(ii)

∣∣∣12L−
∑3

i1=1 4Ei1 −
∑9

i2=4 3Ei2 −
∑15

i3=10 2Ei3 −
∑21

i4=16 Ei4

∣∣∣,
(iii)

∣∣∣12L−
∑4

i1=1 4Ei1 −
∑7

i2=5 3Ei2 −
∑16

i3=8 2Ei3 −
∑21

i4=17 Ei4

∣∣∣,
(iv)

∣∣∣12L−
∑5

i1=1 4Ei1 −
∑17

i2=6 2Ei3 −
∑21

i4=18 Ei4

∣∣∣.
Proof. By random search over F5, we can find an A1 ∈ HomE(4E(3), 2E(2)) satis-
fying (c1) and (c2) for each 114 ≤ N ≤ 117:

(i)
„

e0 + 2e1 + 2e2 −e3 −2e1 + e2 + 2e3 e0 + 2e1 + 2e2 − e3 + 2e4

e0 + 2e1 − e2 + e3 −e4 e1 − 2e2 e3 + 2e4

«
;

(ii)
„

2e3 −e0 + 2e1 − 2e2 + 2e3 − e4 2e1 + 2e2 + 2e4 e0 + 2e2 + e3 − 2e4

2e4 e0 − 2e1 − 2e2 − 2e3 − 2e4 e1 + 2e2 + e3 − e4 e2 + 2e3 − 2e4

«
;

(iii)
„

−e2 − 2e3 2e0 + e2 − e3 − 2e4 −e1 − 2e2 − e3 + 2e4 e0 − e2 + e3 − e4

2e2 + 2e3 − e4 e0 + 2e2 − 2e3 − e4 e1 + e2 + e3 − 2e4 e2 + 2e3 + e4

«
;

(iv)
„

−e1 + e4 −2e0 + e1 − e2 − e4 e1 + e2 − 2e3 + 2e4 e0 + 2e2 − 2e3 + e4

−2e1 − 2e2 − 2e3 + 2e4 e0 + 2e1 − 2e2 − e3 e1 + e2 + 2e3 − 2e4 −2e2 − e4

«
.

A MACAULAY2 script for finding these A1’s can be obtained from [1]. For each matrix,
we can show by (2), (3) and (4) that there is a smooth rational surface in P4 with
the desired invariants. The type of a linear system embedding the surface into P4

can be determined as in Section 2.2. �

Remark 3.8. (i) To find the matrices given in the proof of Proposition 3.7 more
effectively, we take the following extra steps: For two fixed vectors v1 and v2 that
are contained in VB , choose a 2×2 matrix A′

1 with linear entries randomly to make
the augmented matrix A1 = (v1, v2, A

′
1). Then compute N . In this case, N should

be less than or equal to 118 by Corollary 3.5. If N ≤ 117, proceed with steps (2)
to (4) to check whether a smooth surface is found.
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(ii) Let A1 ∈ HomE(4E(3), 2E(2)) with 114 ≤ N ≤ 117 satisfying (c1) and (c2).
By Proposition 3.7, we may assume that there are elements of HomE(2E(2), 3E)
obtained by random choices of values for 140 − N parameters that give rise to
smooth surfaces in P4 with d = 12 and π = 13. Let B2 and B′

2 be such elements of
HomE(2E(2), 3E). Then the corresponding monads are isomorphic if and only if
B2 and B′

2 differ only by a constant (modulo UB). This is equivalent to the random
choices for B2 and B′

2 are the same up to constant. It turns out, therefore, that the
family of smooth surfaces obtained in this way has dimension (140−N − 1)− 20 =
119−N.

(iii) For each A1 given in the proof of Proposition 3.7, we can check that ZA and
ZB intersect in 120−N points. So, for a general choice, the equality in Lemma 3.4
holds, and hence the codimension of F(N) in F is expected to be 120−N .

The proof of Lemma 3.2 suggests the existence of a 2× 4 matrix A1 with entries
from V such that CA is smooth and ZA intersects ZB in more than six points if we
allow CA to intersect SB .

Proposition 3.9. There exists a smooth rational surface in P4 over F3 with d = 12
and π = 13 embedded by∣∣∣∣∣12L− 4E1 −

13∑
i2=2

3Ei2 −
21∑

i4=13

Ei4

∣∣∣∣∣ .
Proof. We can find an A1 ∈ HomE(4E(3), 3E(2)) such that CA is smooth and ZA

intersects ZB in seven points over F3 by random search:

(v)
(

−e4 −e2 − e3 + e4 −e1 e0 − e1 − e2 + e3 + e4

−e2 − e3 + e4 e0 + e1 + e2 + e3 − e4 e2 −e1 − e2 + e3 − e4

)
.

In this example, N = 113. So the codimension of F(N) in F is expected to be 7. For
this A1, there is a smooth rational surface X in P4 with the desired invariants. The
type of a linear system embedding X into P4 can be determined by the adjunction
theory (see Section 2.2). �

4. Lift to characteristic 0

In the previous section, we constructed smooth rational surfaces in P4 over a
small field. We want, however, to find examples defined over the complex numbers
C. In this section, we show the existence of a lift to characteristic 0, using an
argument due to Schreyer, as follows: Let F and F(N) be given as in §3.

Lemma 4.1 ([11]). Let A1 be a point of F(N), where F(N) has codimension 120−
N . Then there exists a number field L and a prime p in L such that the residue
field OL,p/pOL,p is in Fp. Furthermore, if the surface X/Fp corresponding to A1 is
smooth, then the surface X/L corresponding to the generic point Spec L ⊂ SpecOL,p

is also smooth.

Proof. Let p be a prime number. If this is not the case, Z has to be replaced by
the ring of integers in a number field which is Fp as the residue field.

Since F(N)(Fp) has pure codimension 120 − N in A1, there are hyperplanes
H1, . . . ,H120−N in F(Fp) such that A1 is an isolated point of F(N)(Fp) ∩ H1 ∩
· · · ∩ H120−N . We may assume that H1, . . . ,H120−N are defined over Spec Z and
that they meet transversally in A1. This allows us to think that F(N)(Fp) ∩H1 ∩
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· · · ∩ H120−N is defined over Z. Let Z be an irreducible component of F(N)(Z)
containing A1. Then dim Z = 1.

The residue class field of generic point of Z is a number field L that is finitely
generated over Q, because F(N)(Z) is projective. Let OL be the ring of integers of L
and let p be a prime ideal which lies over A1 ∈ Z. Then SpecOL,p → Z ⊂ F(N)(Z)
is an OL,p-valued point which lifts A1. The residue class field OL,p/pOL,p is a finite
extension of Fp.

Performing the construction of the surface over OL,p gives a flat family X of
surfaces over OL,p. Since smoothness is an open property, and since the special
fiber Xp is smooth, the general fiber XL is also smooth. �

Next we argue that the adjunction process of the surface over the number field
L has the same numerical behavior:

Proposition 4.2 ([6]). Let X → SpecOL,p be a family as in Proposition 3.7 or 3.9.
If the Hilbert polynomial of the first adjoint surface of X = X ⊗ Fq is as expected,
and if H1(X,OX(−1)) = 0, then the adjunction map of the general fiber XL blows
down the same number of exceptional lines as the adjunction map of the spacial
fiber X.

Proof. See Corollary 8.4 in [6] for a proof. �

Theorem 4.3. There are at least five different families of smooth rational surfaces
in P4 over C with d = 12 and π = 13.

Proof. Let A1 be one of (i)-(iv) given in the proof of Proposition 3.7 or (v) given in
Proposition 3.9. Suppose that p = 3 if A1 is (v) and otherwise p = 5. By Lemma
4.1, it suffices to show that for each 113 ≤ N ≤ 117, the subfamily F(N) of F
has the desired codimension at this A1. Let P be the set of isomorphic classes of
monads of type

4Ω3(3) → 2Ω2(2)⊕ 2Ω1(1) → 3O,

let (AB , B) be the pair obtained from A1 by (1), (2) and (3) and let TP,(AB ,B) be
the Zariski tangent space of P at the point corresponding to (AB , B). Let

V1 = Hom(4Ω3(3), 2Ω2(2)⊕ 2Ω1(1)) ' 8V ⊕ 8
2∧

V,

V2 = Hom(2Ω2(2)⊕ 2Ω1(1), 3O) ' 6
2∧

V ⊕ 6V,

V3 = Hom(4Ω3(3), 3O) ' 12
3∧

V.

Consider the map
φ : V1 ⊕ V2 → V3

defined by (A′, B′) 7→ B′ ◦ A′. Let AB ∈ V1 and B ∈ V2 be the differentials of the
monad for X given in (1). The differential dφ : V1 ⊕ V2 → V3 of the map φ at the
point (AB , B) is given by (A′, B′) 7→ B ◦ A′ + B′ ◦ AB . Consider the subset P̃ of
φ(0) whose elements give monads of type (3.1). This forms an open subset of φ(0).
Let H denote the group{(

C 0
v D

)∣∣∣∣C,D ∈ GL(2, Fp), v ∈ GL(2, V )
}



12 HIROTACHI ABO AND KRISTIAN RANESTAD

and let G = GL(4, Fp)×H ×GL(3, Fp). Then G′ = G/F×p acts on P̃ by

(A′, B′)(f, g, h) =
(
g ◦A′ ◦ f−1, h ◦B′ ◦ g−1

)
.

Let P be the set of isomorphic classes of monads of type (3.1) and let TP,(AB ,B)

be the Zariski tangent space of P at the point corresponding to (AB , B). Then
P ' P̃ /G′, and hence dim

(
TP,(AB ,B)

)
= dim

(
(dφ)−1(0)/G′). For fixed bases of

V1, V2 and V3, we can give the matrix that represents the differential dφ explicitly.
This matrix enables us to compute the kernel of dφ. This computation can be done
with MACAULAY2:

dim
(
TP,(AB ,B)

)
= dim

(
(dφ)−1(0)

)
− dim(G′) = 90− (53− 1) = 38.

A MACAULAY2 script for this computation can be found in [1]. From Remark 3.8
(ii), the dimension of F(N) is therefore

dim(F(N) = dim(TP,(AB ,B))− (18 + (119−N)) = N − 99.

Recall that the parameter space of rational normal curves in P(V ) has dimension
21. Thus

codim(F(N),F) = 21− (N − 99) = 120−N.

The type of very ample divisor that embeds the surface into P4 follows from
Proposition 4.2, which completes the proof. �
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