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Abstract. — We study subsets of Grassmann varieties G(l, m) over a field F , such
that these subsets are unions of Schubert cycles, with respect to a fixed flag. We
study such sets in detail, and give applications to coding theory, in particular for
Grassmann codes. For l = 2 much is known about such Schubert unions with a
maximal number of Fq-rational points for a given spanning dimension. We study the
case l = 3 and give a conjecture for general l. We also define Schubert union codes
in general, and study the parameters and support weights of these codes.

Résumé. — Soit G(l, n) une variété de Grassmann sur un corps F . Nous étudons
les sousensembles de G étant unions de cycles de Schubert, relativement à un drapeau
fixe. Nous les étudons en détail, et donnons les applications à la théorie des codes
de Grassmann. Dans le cas l = 2 on sait beaucoup sur les unions de Schubert ayant
un nombre maximal de point Fq-rationnels pour un dimension lineaire donnée. Nous
étudons le cas l = 3 et faisons une conjecture pour le cas général. Nous définons les
codes de unions de Schubert en général, et nous étudons les parametres et poids de
support pour ces codes.

1. Introduction

Let G(l, m) = GF (l, m) be the Grassmann variety of l-dimensional subspaces of a

fixed m-dimensional vector space V over a field F . By the standard Plücker coordi-

nates G(l, m) is embedded into Pk−1 = Pk−1
F as a non-degenerate smooth subvariety,

where k =
(

m
l

)

. In [HJR] we defined and studied Schubert unions in G(l, m). These

were unions of Schubert cycles with respect to a fixed coordinate flag for an m-space

V . In this paper we give a more detailed picture of the set of these Schubert unions for

some fixed, low values of l, m. We also raise and partly answer som natural questions,

concerning properties of the associated Grassmann codes C(l, m) in case the field F

is finite.
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In Section 6 we study techniques for finding which Schubert unions that have the

maximum Fq-rational points, given their spanning dimension in the Plücker space.

For l = 2 this issue was treated and clarified in [HJR]. In the present paper we

investigate the case l = 3 where we study an associated “continuous” problem, in

the hope of finding an interplay between the issue of finding optimal Schubert unions

and questions concerning volume estimates of some natural sets in l-space. These

investigations enable us to formulate two natural conjectures about Schubert unions

with a maximal number of points, given their spanning dimension.

In Section 7 we define and study properties of Schubert union codes for l = 2.

These are codes whose generator matrices are formed by Plücker coordinates of the

Fq rational points of a given Schubert union.

The second author was supported in part by The Norwegian Research Council and

thanks for this support and for the kind hospitality extended by Aarhus University,

Denmark, where the support was spent.

2. Basic Description of Schubert Unions

In this section we will recall the well known definition of Schubert cycles in the

Grassmann variety G(l, m) over a field F , and describe unions of such cycles. More

details can be found in [HJR].

Let B = {e1, . . . , em} be a basis of an m-dimensional vector space V over F . Let

Ai = Span{e1, . . . , ei} in V , for i = 1, . . . , m. Then A1 ⊂ A2 ⊂ . . . ⊂ Am = V form a

complete flag of subspaces of V .

The ordered l-tuples α belong to the grid

GG(l,m) = {β = (b1, . . . , bl) ∈ Zl|1 ≤ b1 < b2 < . . . < bl ≤ m}
This grid is partially ordered by α ≤ β if ai ≤ bi for i = 1, . . . , l, and it represents

the Plücker coordinates (the maximal minors of matrices representing l-spaces, with

alternating signs) of the standard embedding of G(l, m) in Pk−1. For each α ∈ GG(l,m)

the Schubert cycle Sα is defined as:

Sα = {W | dim(W ∩ Aai
) ≥ i, i = 1, . . . , l}.

Definition 2.1. — GS = Gα = {β ∈ GG(l,m)|β ≤ α}.

Definition 2.2. — For a subset M of G(l, m) ⊂ P(∧lV ), let L(M) be its linear

span in the projective Plücker space P(∧lV ), and L(M) the linear span of the affine

cone over M in the affine cone over the Plücker space.

We will consider finite intersections and finite unions of such Schubert cycles Sα

with respect to our fixed flag. Set αi = (a(i,1), a(i,2), . . . , a(i,l)), for i = 1, . . . , s.

It is clear that: ∩s
i=1Sαi

= Sγ , where γ = (g1, . . . , gl), and gj is the minimum of

the set {a1,j , a2,j, . . . , as,j}, for j = 1, . . . , l. Thus the intersection of a finite set of
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Schubert cycles Sα is again a Schubert cycle. In particular dimL(∩Sαi
) is equal to

the cardinality of Gγ .

For a union SU = ∪s
i=1Sαi

of Schubert cycles, denote by GU the union GU =

∪s
i=1Gαi

, and set HU = GG(l,m) − GU .

Proposition 2.3. — Let Sα1
, . . . , Sαs

be finitely many Schubert cycles with respect

to our fixed flag. Let Sγ = ∩s
i=1Sαi

be their intersection, and let SU = ∪s
i=1Sαi

be

their union.

1. The intersection Sγ is itself a Schubert cycle with S-grid Gγ = ∩s
i=1Gαi

.

2. L(SU ) ∩ G(l, m) = SU .

3. dim L(SU ) equals the cardinality of the grid GU .

4. The number of Fq-rational points on SU is Σ(x1,...,xl)∈GU
qx1+···+xl−l(l+1)/2.

For Schubert cycles this result was given in [GT].

Definition 2.4. — We denote by gU (q) = Σ(x1,...,xl)∈GU
qx1+···+xl−l(l+1)/2 the num-

ber of Fq-rational points on SU .

Definition 2.5. — Let the natural map

rev : GG(l,m) → GG(l,m)∗

be defined as

(a1, a2, . . . , al) 7→ (m + 1 − al, . . . , m + 1 − a2, m + 1 − al).

Here G(l, m)∗ is the dual Grassmannian parametrizing (m − l)-spaces in V .

We now recall the dual of a Schubert union U .

Definition 2.6. — Let SU be a Schubert union in G(l, m) with G-grid GU . Then

the dual of SU is the Schubert union SU⊥ ⊂ G(l, m)∗ whose G-grid GU⊥ is rev(HU ).

Definition 2.7. — Let SU be a Schubert union, and let gU (q) be its number of Fq-

rational points, as given by Proposition 2.3. Let δ = l(m − l) be the Krull dimension

of G(l, m). Denote by n(q) the number of Fq-rational points of G(l, m), and set

hU (q) = n(q) − g(q).

We have:

Proposition 2.8. — Let SU be a Schubert union. The number of Fq-rational points

of SU⊥ is qδhU (q−1).
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3. Properties of Grassmann Codes

In this section we define and list some known properties of Grassmann codes.

It is well known that GFq
(l, m) contains n points, where

(1) n =
(qm − 1)(qm−1 − 1) · · · (qm−l+1 − 1)

(ql − 1)(ql−1 − 1) · · · (q − 1)
.

Pick a Plücker representative of each of the n points as a column vector in (Fq)
k,

for k =
(

m
l

)

, and form a k × n-matrix M with these n vectors as columns (in any

preferred order). The code C(l, m) is then the code with M as generator matrix.

Hence C is a linear [n, k]-code (only defined up to code equivalence.)

The higher weights d1 < d2 < . . . < dk of G(l, m) satisfy:

(2) dr = n − Hr,

where Hr is the maximum number of points from S contained in a codimension r

subspace of (Fq)
k.

We have (in addition to dk = n) the following essentially well-known result:

Proposition 3.1. — The weights satisfy

dr = qδ + qδ−1 + · · · + qδ−r+1, for r = 1, . . . s, and

dk−a = n − (1 + q + · · · + qa−1), for a = 1, . . . , s,

where s = max(l, m − l) + 1, and δ = dimG(l, m) = l(m − l).

Moreover, for the code C(2, 5) we have d5 = n−(q3+2q2+q+1) = d4+q4 = d6−q2.

The result for the lower weights was given in [N], the result for the higher weights

is just a consequence of the existence of projective spaces within the G(l, m), and

the result for C(2, 5) was given in [HJR]. Studying the proofs of the statements of

Proposition 3.1, one observes:

Corollary 3.2. — For m ≤ 5 all the dr for the C(2, m) are computed by Schubert

unions.

Definition 3.3. — For given l, m, set ∆r = dr − dr−1 for r = 1, ...., k. (∆0 = 0.)

We have:

C(2, 3) :

[

r : 1 2 3

∆r : q2 q 1

]

C(2, 4) :

[

r : 1 2 3 4 5 6

∆r : q4 q3 q2 q2 q 1

]

C(2, 5) :

[

r : 1 2 3 4 5 6 7 8 9 10

∆r : q6 q5 q4 q3 q4 q2 q3 q2 q 1

]

This motivates the following definitions:
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Definition 3.4. — For given l, m, let Jr be the maximum number of points in a

Schubert union spanning a linear space of codimension at least r in the Plücker space,

and set Dr = n − Jr, and Er = Dr − Dr−1, for r = 1, . . . , k. (D0 = 0.)

In view of (2) we then have the following obvious, but useful, result:

Proposition 3.5. — For all l, m, and r we have

dr ≤ Dr.

We can in principle calculate all Dr, using Proposition 2.3. It is an open question

whether the upper bound Dr is equal to the true value dr in the cases not determined

by Propositions 3.1.

Recall the polynomials gU (q) defined in Definition 2.7 (and described in Proposition

2.3). In [HJR] we gave the following result. The details of the proof can be found in

[HJRp].

Proposition 3.6. — Fix a dimension 0 ≤ K ≤
(

m
2

)

, and consider the set of Schubert

unions {SU}K in G(2, m) with spanning dimension K. Among these unions, let SL

be the unique one on the form S(x,m) ∪ S(x+1,y), with 1 ≤ x ≤ m − 1 and 1 ≤ y ≤ m,

and let SR be the unique union of the form S(x,x+1) ∪ S(a,x+2), with 1 ≤ x ≤ m − 1

and 1 ≤ a ≤ x + 1.

Then SL or SR is maximal in {SU}K with respect to the natural lexicographic order

on the polynomials gU . Furthermore, the one(s) that is(are) maximal with respect to

gU , also has(have) the maximum number of points over Fq for all large enough q.

Hence one only has to check two Schubert of each spanning (co)dimension to find

the union maximizing gU . This result makes it a routine matter to find the Jr, Dr

and Er for l = 2 and fixed m if the union(s) U with maximum gU is also the one with

maximal number of points. For large enough q , at least, this always holds.

4. Explicit analysis of Schubert unions for low l and m

In this section we will give a detailed study of Schubert unions in G(2, m) for

some low values of m, and we will also study Schubert unions in G(3, 6). For the

G(2, m) the Schubert unions form a Boolean algebra P (M) (with 2m−1 elements), for

M = {1, . . . m− 1}. We identify a Schubert union SU with an element MU of P (M)

as follows:

Definition 4.1. — MU = {m1, . . . , mr} if there are mi points (x, y) in GU with

x = i, for i = 1, . . . , r, and no points with x = i, for i > r.

The mi form a decreasing sequence.

In Figure 1 we list all Schubert unions in G(2, 5).
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Figure 1. Schubert unions for G(2, 5)

U Span Krull MU number of points Maximal

∅ 0 −1 ∅ 0 Yes

(1, 2) 1 0 {1} 1 Yes

(1, 3) 2 1 {2} q + 1 Yes

(1, 4) 3 2 {3} q2 + q + 1 Yes

(1, 5) 4 3 {4} q3 + q2 + q + 1 Yes

(2, 3) 3 2 {1, 2} q2 + q + 1 Yes

(1, 4) ∪ (2, 3) 4 2 {1, 3} 2q2 + q + 1 No

(1, 5) ∪ (2, 3) 5 3 {1, 4} q3 + 2q2 + q + 1 Yes

(2, 4) 5 3 {2, 3} q3 + 2q2 + q + 1 Yes

(1, 5) ∪ (2, 4) 6 3 {2, 4} 2q3 + 2q2 + q + 1 No

(2, 5) 7 4 {3, 4} q4 + 2q3 + 2q2 + q + 1 Yes

(3, 4) 6 4 {1, 2, 3} q4 + q3 + 2q2 + q + 1 Yes

(1, 5) ∪ (3, 4) 7 4 {1, 2, 4} q4 + 2q3 + 2q2 + q + 1 Yes

(2, 5) ∪ (3, 4) 8 4 {1, 3, 4} 2q4 + 2q3 + 2q2 + q + 1 Yes

(3, 5) 9 5 {2, 3, 4} q5 + 2q4 + 2q3 + 2q2 + q + 1 Yes

(4, 5) 10 6 {1, 2, 3, 4} q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1 Yes

In the column to the right we indicate whether the Schubert union in question has

the maximum possible of points among the Schubert unions of that spanning dimen-

sion. The (affine) spanning dimension is given in the column marked “Span”. The

maximal Krull dimension of a component is given in the column marked “Krull”. This

Krull dimension is of course equal to the degree of gU (q), interpreted as a polynomial

in q, and this is the polynomial appearing in the column marked “number of points”.

Moreover it is well known that the Krull dimension of a Schubert cycle S(a1,...,al) is

a1 + a2 + ... + al − l(l+1)
2 , so the Krull dimension can be “read off“ both from the

leftmost and the “number of points” column.

The dual of a Schubert union with a given MU in G(2, m) is the Schubert union

V with MV = {1, ..., m − 1} − MU .

We observe that

Proposition 4.2. — For the G(2, m) there is no self-dual Schubert union for any

m ≥ 2.

Proof. — A subset MU of M = {1, ..., m− 1} is never equal to its own complement.

We shall see below that the situation may be different for G(l, m) with l = 3.

A table for G(2, 4) can derived from the table for G(2, 5), roughly speaking by only

focusing on those rows where MU is a subset of {1, 2, 3}. A little caution is necessary,
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though. For G(2, 4) one quickly sees that all 8 Schubert unions are maximal for their

spanning dimensions. For G(2, 5) those with MU = {1, 3} or {2, 4} are not maximal.

So it is not an “intrinsic” property of a Schubert union whether it is maximal for its

spanning dimension. It depends on the Grassmann variety, in which it sits.

The tables above were produced, mainly by using Corollary 2.3.

Remark 4.3. — Given two Schubert unions U1, U2 with corresponding polynomials

gU1
(q) and gU2

(q). The issue of which of the two that gives the highest value for given

q is in principle a different one, for each q. On the other hand, if we order the Schubert

unions, first by degree, and then lexicographically with respect to gU for each degree,

then it is clear that this order is the same as the “number of point”-order for all large

enough q. In all the examples we have seen up to now, it is clear by inspection that

these orders are the same for all prime powers q. Hence the “Yes” and “No” in the

“Max.” column can be interpreted in two ways simultaneously (counting points, and

ordering with respect to gU ).

In Figure 2 we give a table listing all Schubert unions, is G(3, 6). We make the

table shorter by listing pairs of dual unions. There is no MU for these unions.

All Schubert unions with spanning dimension at most 9 can be found in the left

half of the table, and unions with spanning dimension at least 11 can be found on the

right side (as duals). For spanning dimension 10 all 6 unions are listed on at least

one side.

Remark 4.4. — (i) The table reveals a situation different from the case l = 2 and
(

m
l

)

even, where no Schubert union is self-dual. Here we see that both (2, 3, 6) and

(1, 3, 6) ∪ (1, 4, 5) ∪ (2, 3, 5) are self-dual Schubert unions.

(ii) It can be shown that for l = 2 we have:

The dual of a Schubert union which is a proper union of s cycles, is a proper union

of s− 1, s or s + 1 cycles. From the tables above we see that this fails for l = 3. The

dual of S(1,3,5) is the proper triple union S(1,5,6) ∪ S(2,3,6) ∪ S(3,4,5) (and vice versa).

We encourage the interested reader to reconstruct this situation, and the selfduality

described in (i), by playing with cubes, representing the coordinate grids associated

to these cycles.

Remark 4.5. — (i) For the Grassmann varieties we have described in the tables

above, a Schubert union has a maximal number of points, given its spanning dimen-

sion, if and only if its dual union enjoys the same property, so the “Yes” and “No”

in the “Max.”-column of the last table apply to the left and right half of the table

simultaneously. The same property holds for (l, m) = (2, 7) and (2, 8), but for reasons

of space we do not give the full tables here, from which the shorter lists of the Er at

the start of this section were deduced.
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Figure 2. Schubert unions for G(3, 6)

U Span Dual Schubert union Max.

∅ 0 (4, 5, 6) Yes

(1, 2, 3) 1 (3, 5, 6) Yes

(1, 2, 4) 2 (2, 5, 6) ∩ (3, 4, 6) Yes

(1, 2, 5) 3 (1, 5, 6) ∩ (3, 4, 6) Yes

(1, 3, 4) 3 (2, 5, 6) ∩ (3, 4, 5) Yes

(1, 2, 6) 4 (3, 4, 6) Yes

(2, 3, 4) 4 (2, 5, 6) Yes

(1, 2, 5) ∪ (1, 3, 4) 4 (1, 5, 6) ∪ (2, 4, 6) ∪ (3, 4, 5) No

(1, 3, 5) 5 (1, 5, 6) ∪ (2, 3, 6) ∪ (3, 4, 5) Yes

(1, 2, 5) ∪ (2, 3, 4) 5 (1, 5, 6) ∪ (2, 4, 6) Yes

(1, 2, 6) ∪ (1, 3, 4) 5 (2, 4, 6) ∪ (3, 4, 5) Yes

(1, 4, 5) 6 (1, 5, 6) ∪ ((3, 4, 5) Yes

(1, 2, 6) ∪ (1, 3, 5) 6 (1, 4, 6) ∪ (2, 3, 6) ∪ (3, 4, 5) No

(1, 2, 6) ∪ (2, 3, 4) 6 (2, 4, 6) No

(1, 3, 5) ∪ (2, 3, 4) 6 (1, 5, 6) ∪ (2, 3, 6) ∪ ((2, 4, 5) No

(1, 3, 6) 7 (2, 3, 6) ∪ (3, 4, 5) Yes

(2, 3, 5) 7 (1, 5, 6) ∪ (2, 3, 6) Yes

(1, 2, 6) ∪ (1, 4, 5) 7 (1, 4, 6) ∪ (3, 4, 5) Yes

(1, 4, 5) ∪ (2, 3, 4) 7 (1, 5, 6) ∪ (2, 4, 5) Yes

(1, 2, 6) ∪ (1, 3, 5) ∪ (2, 3, 4) 7 (1, 4, 6) ∪ (2, 3, 6) ∪ (2, 4, 5) No

(1, 3, 6) ∪ (1, 4, 5) 8 (1, 3, 6) ∪ (3, 4, 5) Yes

(1, 4, 5) ∪ (2, 3, 5) 8 (1, 5, 6) ∪ (2, 3, 5) Yes

(1, 2, 6) ∪ (2, 3, 5) 8 (1, 4, 6) ∪ (2, 3, 6) No

(1, 3, 6) ∪ (2, 3, 4) 8 (2, 3, 6) ∪ (2, 4, 5) No

(1, 2, 6) ∪ (1, 4, 5) ∪ (2, 3, 4) 8 (1, 4, 6) ∪ (2, 4, 5) No

(1, 4, 6) 9 (1, 2, 6) ∪ (3, 4, 5) Yes

(2, 4, 5) 9 (1, 5, 6) ∪ (2, 3, 4) Yes

(1, 3, 6) ∪ (2, 3, 5) 9 (1, 4, 5) ∪ (2, 3, 6) No

(1, 3, 6) ∪ (1, 4, 5) ∪ (2, 3, 4) 9 (1, 3, 6) ∪ (2, 4, 5) No

(1, 2, 6) ∪ (1, 4, 5) ∪ (2, 3, 5) 9 (1, 4, 6) ∪ (2, 3, 5) No

(1, 5, 6) 10 (3, 4, 5) Yes

(2, 3, 6) 10 (2, 3, 6) No

(1, 2, 6) ∪ (2, 4, 5) 10 (1, 4, 6) ∪ (2, 3, 4) No

(1, 3, 6) ∪ (1, 4, 5) ∪ (2, 3, 5) 10 (1, 3, 6) ∪ (1, 4, 5) ∪ (2, 3, 5) No
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(ii)In the table for G(3, 6) above study the 16 unions of cycles S(a,b,c) with c ≤ 5.

This gives rise to the corresponding table for G(3, 5). But this is isomorphic to G(2, 5).

It is an amusing exercise to translate all unions in G(3, 5) to corresponding ones in

G(2, 5) and check that the relevant columns of the tables coincide.

Another way to get a picture of the code-theoretical aspects of Schubert unions is

to list the Er for C(2, m), for m = 6, 7, 8, and for C(3, 6). The values are determined

using a combination of Corollary 2.3 and Proposition 3.6.

C(2, 6) :

[

r : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Er : q8 q7 q6 q5 q4 q6 q5 q4 q3 q2 q4 q3 q2 q 1

]

C(2, 7) :
[

r : 1 2 3 4 5 6 7 8 9 10

Er : q10 q9 q8 q7 q6 q5 q8 q7 q6 q4

]

[

11 12 13 14 15 16 17 18 19 20 21

q5 q6 q4 q3 q2 q5 q4 q3 q2 q 1

]

C(3,6):
[

r : 1 2 3 4 5 6 7 8 9 10

Er : q9 q8 q7 q6 q7 q5 q6 q5 q4 q3

]

[

11 12 13 14 15 16 17 18 19 20

q6 q5 q4 q3 q4 q2 q3 q2 q 1

]

The expressions in boldface indicate values where Er = ∆r because of Proposition

3.1

The expressions not in boldface contribute to upper bounds for “the true values”

dr, when adding monomials from left.

Remark 4.6. — The Schubert unions for the cases studied so far; (l, m) = (2, m),

for m ≤ 8, or (l, m) = (3, 6), have in common that the duality operation reverses

the lexicographic order on the gU for the Schubert unions of each fixed spanning

dimension. This conclusion is obtained from direct inspection of all Schubert unions

appearing, and tables like the ones listed for C(2, 4), C(2, 5), C(2, 6) above. But this

does not hold for all (l, m), not even for l = 2.

Remark 4.7. — We recall from Proposition 3.6 that for each spanning (co)dimension

we need only to check two explicitly defined Schubert unions SL and SR, to find one

which is maximal with respect to gU . In the tables below we utilize this fact to give

another way to describe Schubert unions for (2, m) for low m. We indicate with an

L (go left) if we may use SL, with an R (go right) if we may use SR, and with LR if

and only if we may use both. The spanning codimension is r =
(

m
2

)

−K.
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C(2,7):
[

Codim : 0 1 2 3 4 5 6 7 8 9 10

Direction : LR LR LR LR R R R R R LR L

]

[

Codim. : 11 12 13 14 15 16 17 18 19 20 21

Direction : R LR L L L L L LR LR LR LR

]

C(2,8):
[

Codim. : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Direction : LR LR LR LR R R R R R R LR R R R LR

]

[

Codim. : 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Direction : L L L LR L L L L L L LR LR LR LR

]

C(2,9):
[

Codim. : 0 1 2 3 4 5 6 7 8 9 10 11 12

Direction : LR LR LR LR R R R R R R R R R

]

[

Codim. : 13 14 15 16 17 18 19 20 21 22 23 24

Direction : R R R R R LR L L L L L L

]

[

Codim. : 25 26 27 28 29 30 31 32 33 34 35 36

Direction : L L L L L L L L LR LR LR LR

]

C(2,10):
[

Codim. : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Direction : LR LR LR LR R R R R R R R R R R R R

]

[

Codim. : 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Direction : R R R R LR L R R R LR L L L L

]

[

Codim. : 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Direction : L L L L L L L L L L L L LR LR LR LR

]

It is clear that from these tables one can extract the information giving lists of

the Er as above. Each table starts and ends with 4 occurences of LR. This is

because in the three largest and the three smallest spanning dimensions K there is

only one Schubert union, and because we have only two Schubert unions with spanning

dimension 3, namely S(2,3), in projective terms a β-plane, or S(1,3), an α-plane. Both

have q2 + q + 1 points. In codimension 3 we have the duals of these two, of course

also with the same number of points.

From the tables for G(2, 8) and G(2, 9) one can conclude without further computa-

tions that the Er are always monomials of type qi in these cases (See Question (Q7)

of Section 5). That is because we never jump directly from an R to an L or vice versa
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in these cases, we always go via an LR. For m = 7 there is a jump between L and

R between codimensions 10 and 11, but a calculation reveals that J10 − J11 = q5.

For m = 10 we observe the fatal jump from R to L, passing from codimension 22 to

21. Here E22 is not a monomial in q. As opposed to the tables above it, the one for

(l, m) = (2, 10) is not symmetric in L and R. This proves that the duality operation

does not reverse the lexicographical order on the gU for (l, m) = (2, 10).

5. Some questions and answers about the Grassmann codes C(l, m)

In this section we will study the code-theoretical implications of the observations

in the previous two sections.

For fixed l, m, q let C(l, m) be the Grassmann code over Fq described in Section

3. Recall the invariants dr, Hr, ∆r, Jr, Dr, Er introduceed in Definitions 3.3, and 3.4.

Inspired by Proposition 3.1, Proposition 3.6, and the observations of Section 4 we

now will formulate some natural questions, which we will also comment on briefly:

For each l, m, q we obviously have:

(3)
k

∑

r=1

∆r = dk = n.

Here n and k are the word length and dimension of C(l, m) as before. Moreover it is

clear that n is the sum of k =
(

m
l

)

monomials of type qi. For each l, m one may raise

the following questions:

– (Q1) Are the dr always sums of r monomials of type qi, for r = 1, ..., k ?

– (Q2) Is ∆r always a monomial of the form qi ?

– (Q3) Is it true that:

∆r(q) = ql(m−l)∆k+1−r(q
−1),

for all C(l, m), and all r ? This in turn implies that if the answer to question

(Q2) is (partly) positive, and ∆r = qi for some i, then ∆k+1−r = ql(m−l)−i.

– Answers to (Q1), (Q2), (Q3): Affirmative for (l, m) = (2, 3), (2, 4), (2, 5) by

Proposition 3.1. In other cases we do not know the answers for all r (affirmative

for the smallest and biggest r).

Question (Q3) should be viewed in light of Proposition 2.8 and the duality

of Schubert unions.

– (Q4) Is it true that Jr = Hr, and therefore Dr = dr, and Er = ∆r, for all l, m, r

?

– Answer: Affirmative for (l, m) = (2, 3), (2, 4), (2, 5). In other cases we do not

know the answers for all r (affirmative for the smallest and biggest r).

Taking into account the possibility that the answer to question (Q4) is no, we

may phrase similar questions as (Q,1-3) with the Jr, Dr, Er replacing Hr, dr, ∆r,

respectively:
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– (Q5) Are the Dr and Jr always sums of r monomials of type qi, for r = 1, ..., k

?

Answer: Affirmative for all (l, m) by Proposition 2.3.

– (Q6) Is Er always a monomial of the form qi ?

– Answer: Affirmative for (l, m) = (2, m), for m ≤ 9, and (l, m) = (3, 6). Negative

for some r for (2, m), and m = 10 (or m big enough, see next section). We have

not performed further investigations.

– (Q7) If Jr is computed by a Schubert union SU , is Jk−r then computed by SU∗?

– Answer: Affirmative for (l, m) = (2, m), for m ≤ 8, and (l, m) = (3, 6). Negative

for (2, m), and m = 10 (or big enough, see next section). We have not performed

further investigations.

– (Q8) Is it true that:

Er(q) = q2m−4Ek+1−r(q
−1)?

for all C(l, m), and all r ? This in turn would imply that if the answer to

question (Q6) is (partly) positive, and ∆r = qi for some i, then ∆k+1−r =

ql(m−l)−i.

– Answer: Affirmative for (l, m) = (2, m), for m ≤ 9, and (l, m) = (3, 6). Negative

for (2, m), and m = 10. We have not performed further investigations.

Remark 5.1. — It follows from the results of Section 3 that all questions have af-

firmative answers for l = 2 and m ≤ 5. The affirmative answers to (Q6),(Q7), (Q8)

for (l, m) = (2, 6), (2, 7), (2, 8), (3, 6) are due to the observations in Section 4. For

(l, m) = (2, 9) it is at least clear that (Q6) and (Q8) have affirmative answers. See

Remark 4.7. The negative parts of the answers to these questions follow essentially

from the analysis in Section 4. For (l, m) = (2, 10) we see from Remark 4.7 and ex-

plicit calculations that E22 = J21 −J22 = q9 + q8− q6, so (Q6) has a negative answer.

Moreover E24 = J23 − J24 = q6, and hence (Q8) also has a negative answer.

From the observations above we may conclude:

Proposition 5.2. — Neither of the questions question (Q6),(Q7), and (Q8) do al-

ways have affirmative answers, and questions (Q1), (Q2), (Q3), and (Q4) do therefore

not simultaneously have affirmative answers for all l, m, r, q.

6. Schubert unions with a maximal number of points

Recall the polynomials gU (q) defined in Definition 2.7. Moreover, for l = 2, and

each spanning dimension K, we recall Proposition 3.6, and the two dual Schubert

unions that are candidates for maximal Schubert unions with respect to the natural

lexicographic order on the polynomials gU :

SL = S(x,m) ∪ S(x+1,y), with 1 ≤ x ≤ m − 1 and 1 ≤ y ≤ m, and
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SR = S(x,x+1) ∪ S(a,x+2), with 1 ≤ x ≤ m − 1 and 1 ≤ a ≤ x + 1.

As usual, let k =
(

m
2

)

.

The following result is given in [HJR]. The details of the proof can be found in

[HJRp].:

Proposition 6.1. — For every ǫ > 0, there exists an M , such that if m > M , then

(i) If K ≤ 0.36k − ǫ, then SL is maximal with respect to gU .

(ii) If K ≥ 0.36k + ǫ, then SR is maximal with respect to gU .

A continuous version is the following remark and proposition:

Remark 6.2. — Study the triangle ∆ with corners (0, 0), (0, 1), (1, 1). Look at the

trapeze Tx with corners (0, 0), (x, x), (x, 1), (0, 1) and area A = x − x2

2 . We also

study the triangle Py with corners (0, 0), (y, y), (0, y) and area A = y2

2 . We get

x = 1 −
√

1 − 2A for the trapeze, and y =
√

2A for the triangle. The largest d for

which the trapeze Tx intersects a diagonal x+ y = d is d1(A) = 1 + x = 2−
√

1 − 2A,

where A is the area of Tx. The largest d for which the triangle Py intersects this

diagonal is d2(A) = 2y = 2
√

2A, where A is the area of Py. The proof of the following

result is a straightforward calculation:

Proposition 6.3. — We have d1(A) > d2(A) iff 0 ≤ A < 0.18, corresponding to

36% of the area of the whole triangle ∆.

We would be interested in an l-dimensional analogue of these results, both in a

discrete, and a continuous setting. A natural strategy for finding “almost” all dr for

all Grassmann codes could be:

a) Prove that dr = Dr, for all l, m, r.

b) Show that for all l, m, r there are essentially two main strategies to find an

optimal GU with K = k − r elements. One may either fill up consecutive “layers”

with the first variable x1 fixed, or fill up layers with the last variable xl fixed. Only

in a small zone around a fixed value of r, depending on the sum x1 + . . . + xl it is

hard to decide which of the two strategy to use, if m is big enough compared with

(fixed) l.

c) To fill up each layer is essentially equivalent to solving the problem for an l-value

which is one smaller.

The philosophy is as follows, if we assume that a) holds: For each K one wants

to find the Schubert union with this spanning dimension, with the maximum number

of points. We are happy if we can find one which is maximal with respect to the

lexicographic order on the gU . A necessary condition for being maximal with respect

to gU is being maximal with respect to Krull dimension. The Krull dimension of

a Schubert union is defined to be the biggest Krull dimension of a Schubert cycle

appearing in the union. So we are interested in: For a given “cost” or spanning
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dimension K: How big Krull dimension can you obtain with a Schubert cycle of that

spanning dimension ? This motivates the following definition:

Definition 6.4. — (i) The cost C(x1, . . . xl) is the spanning dimension of the Schu-

bert cycle S(x1,... xl).

(ii) An admissible point is a point x in GG(l,m) such that Krull-dim(Sx) ≥Krull-

dim(Sy) for all y such that C(x) ≥ C(y).

Equivalently: C(x) < C(y) for all y with Krull-dim(Sy) >Krull-dim(Sx).

A formula for the value of C(x1, . . . xl) was given in Theorem 7 of [GT]. It is

also the cardinality of the associated G-grid GU . It is clear that any Schubert union

that maximizes the Krull dimension for given K must contain a Schubert cycle Sx

for admissible x.

It is straightforward to see that for l = 2, the admissible points on each level

diagonal for x1 + x2 are located close to the end points of the diagonal segments

of the coordinate grid. For small values of x1 + x2 the upper points are admis-

sible, for big x1 + x2 the lower ones are admissible. This determines whether we

go left or right to find optimal Schubert unions. Hence we understand that it

is instrumental to identify the admissible poits in order to find optimal Schubert

unions. Proposition 6.2 suggests that the essential picture is captured by study-

ing an analogous continuous problem. Letting m go to infinity for fixed l, and

scaling down a factor m in all directions, we obtain a polyhedron G with corners

(0, 0, . . . , 0), (0, 0, . . . , 1)(0, . . . , 1, 1), . . . , (0, 1, . . . , 1, 1), (1, 1, . . . , 1, 1), and volume
1
l! , which is the “limit” or continuous analogue of GG(l,m).

Definition 6.5. — (i) The continuous cost function of a point x = (x1, . . . ,xl) in

G is

V (x) =

∫

Sx1,x2,... ,xl

dV =

∫ x1

0

∫ x2

y1

. . .

∫ xl

yl−1

dyl . . . dy2dy1

This is the multivolume of Gx which consists of those y in G with y≤x. :

(ii)An admissible point of G is a point x such that y1 + . . . + yl is not bigger than

x1 + . . . + xl for any point y in G with V (y) ≤ V (x).

6.1. A continuous analysis for l = 3. — We will study the continuous problem

for l = 3. Now we study the tetrahedron G with corners (0, 0, 0), (0, 0, 1)(0, 1, 1), (1, 1, 1).

The analogue of the G-grid of the Schubert cycle S(a,b,c) is

G(x,y,z) = {(s, t, u) ∈ G|s ≤ x, t ≤ y, u ≤ z}.

The discrete cost function is

C(a, b, c) = a(b − 1)(c − 2) − a(b − 1)(b − 2)

2
+

a(a − 1)(a − 2)

6
− a(a − 1)(c − 2)

2
,
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while the continuous version is

V (x, y, z) =

∫

Sx,y,z

dV =

∫ x

0

∫ y

s

∫ z

t

du dt ds = xyz − xy2

2
− x2z

2
+

x3

6
.

(We observe that only the homogeneous part of degree l, in this case 3, of the discrete

cost function survives). On G we study the level triangles x+ y + z = d for various d.

The homogenous cost function, restricted to a level triangle, is

fd(x, y, z) =
2x3

3
− x2y

2
− 3xy2

2
+ dxy − dx2

2
.

We are only interested in the cases 2 ≤ d ≤ 3, since it possible to use an arbitrary

small volume V = ǫ and find a Gx,1,1 with volume less than ǫ, and even this volume-

small piece reaches the level triangle d = 2 + x > 2. We now study the stationary

points of fd(x, y, z) on the respective level triangles, and find that they have no local

minima in the interiors, if 2 ≤ d ≤ 3. Restricting fd, to each of the three edges of the

triangles, and calculating, we conclude similarly that there are no minima, except at

the corners. Hence the minimum of fd on a level triangle is always one of the 3 corner

points. Hence we conclude:

Proposition 6.6. — For l = 3 all continuous-admissible points are located at the

line segments (2
3 , 2

3 , 2
3 )(1, 1, 1) and (1

2 , 1
2 , 1)(1, 1, 1) and (0, 1, 1)(1, 1, 1).

These are located on the lines x = y = z, and x = y, z = 1 and y = z = 1,

respectively. Hence it is clear that the volume- or (cost-)cheapest way to reach a

level triangle for d ≥ 2, and also the furthest you can reach with a given volume at

disposal, with some “asymptotic Schubert union grid”, in other words a finite union

of sets G(x,y,z), is to use one of type G(z,z,z) or G(y,y,1) or G(x,1,1). These can be viewed

as limits of usual Schubert cycle grids G(c−2,c−1,c), G(b−1,b,m), G(a,m−1,m), and gives a

three-dimensional analogue of the cycles S(b−1,b) and S(a,m) which typified the process

of “going right” and “going left” in the two-dimensional case.

It remains, to get an analogue of Proposition 6.3, to stratify the interval I = [0, 1
l! ]

into intervals or subsets Ii, for i = 1, ..., l, such that if V ∈ Ii, then the most distance-

potent choice is S(xi,....,xi,1,..,1) (i copies of xi). Most probably each Ii is just an

interval.

To find the sets I1, I2, I3 for l = 3, we find the volumes of G(x,1,1),G(y,y,1),G(z,z,z) :

Vx = x3

6 − x2

2 + x
2 , Vy = y2

2 − y3

3 , Vz = z3

6 , respectively. Inverting expressions, we

get: x = 1− (1−6V )
1

3 and z = (6V )
1

3 . To find y(V ) one would like to solve the cubic

equation 2y3 − 3y2 + 6V = 0. The point with largest d-value on G(x,1,1) is (x, 1, 1),

and the value is 2 + x = 3 − (1 − 6V )
1

3 . The point on G(y,y,1) with largest d-value is

(y, y, 1) with value 2y + 1 = 2y(V ) + 1. The point on G(z,z,z) with largest d-value is

(z, z, z) with value 3z = 3(6V )
1

3 . Hence for each V we must simply find out which

value is the largest,

d1(V ) = 3 − (1 − 6V )
1

3 , or d2(V ) = 2y(V ) + 1 or d3(V ) = 3(6V )
1

3 .
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We denote by V1(d), V2(d), V3(d) the inverses of these functions in d. The equations

2y3 − 3y2 + 6V = 0 and d2 = d2(y) = 2y + 1 give (d2)
3 − 6(d2)

2 + 9d2 − 4 = −24V ,

and hence V = V2(d) = −d3

24 + d2

4 − 9d
24 + 1

6 .

Both d2(V ) and d3(V ) are increasing functions in V , and hence the inequality

d2(V0) > d3(V0) is equivalent to: The point V1, such that d2(V1) = d3(V0), is smaller

than V0 (this is true if V1 can be chosen within an interval where d2 is increasing).

We write this statement as: V1 = V2(d2(V1)) = V2(d3(V0)) < V0. Using only the last

inequality, and calling the variable V instead of V0, we obtain the condition:

V2(d3(V )) < V.

Comparison of d1(V ) and d2(V ) yields V2(d1(V )) < V in the same way, while d1(V )

and d3(V ) can be compared directly.

We now check the condition d2(V ) > d3(V ). It is clear that d2(0) = 1, and

d3(0) = 0, so for small V < d−1
3 (1) = 1

162 we see that d2(V ) is the larger value. Assume

V ≥ 1
162 . There we may apply the criterion V2(d3(V )) < V to check d2(V ) > d3(V ).

This amounts to

−31T 3 + 54T 2 − 27T + 4 < 0,

where T = (6V )
1

3 .

Since d2 and d3 have the same value for T = 1, we may divide by T − 1. This

gives the criterion: 31T 2 − 23T + 4 < 0. Combined with d2 > d3 if V ≤ 1
162 we

see that d2 > d3 iff T < 0.463, that is 6V < (0.463)3 = 0.0992. This small range

6V ∈ [0, 0.0992) is the only one where d2(V ) > d3(V ), while d3(V ) > d2(V ), for

6V ∈ [0.0992, 1).

We now check the condition d2(V ) > d1(V ). We do this by checking when

V2(d1(V )) < V. This gives

U2(5U − 3) ≤ 0,

where U = (1 − 6V )
1

3 . This is the same as:

6V >
53 − 33

53
= 0.784.

Hence d1(V ) > d2(V ) for 6V ∈ [0, 0.784), and d2(V ) > d1(V ) for 6V ∈ (0.784, 1).

We now check when d1(V ) > d3(V ). This can be done directly and gives:

26T 2 − 55T + 26 > 0,

where T = (6V )
1

3 . This holds iff T < 0.713, which is equivalent to 6V < 0.7133 =

0.362. The exact value is (55−
√

321
52 )3. Hence d1(V ) > d2(V ) for 6V ∈ [0, 0.362), and

d2(V ) > d1(V ) for 6V ∈ (0.362, 1). We observe that the interval [0, 0.783), where

d1(V ) > d2(V ), contains the interval [0, 0.0992) where d2(V ) > d3(V ). Hence d2(V )

is never largest of all the di(V ), and we conclude that also for l = 3 there are only

two optimal strategies for the continuous problem.
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Hence, for 6V ∈ [0, 0.362) the distance d1(V ) is largest, and for 6V ∈ (0.362, 1)

the distance d3(V ) is largest. The numerical value 0.362 is strikingly similar to 0.36

in the case l = 2, but the exact values are different. We obtain:

Proposition 6.7. — If V <
( 55−

√
321

52
)3

6 , then the unique point (x, y, z) in G with

largest (x + y + z)-value among those with cost at most V , is of the form (x, 1, 1).

If V >
( 55−

√
321

52
)3

6 , then the unique point (x, y, z) in G with largest (x+ y + z)-value

among those with cost at most V , is of the form (z, z, z).

Inspired by Propositions 3.6, 6.1, and 6.7, we now formulate two natural conjectures

for optimal Schubert unions.

Conjecture 6.8. — Fix a natural number K less than
(

m
l

)

, and consider the set of

Schubert unions {SU}K in G(l, m) with spanning dimension K. We have the following

recursive procedure to find an optimal Schubert union in this set.

(i) Let x be the largest x1 such that C(x1, m − l + 2, . . . , m − 1, m) ≤ K. Set

K ′ = K − C(x, m − l + 2, . . . , m − 1, m). Let G′ be the subset of GG(l,m) with x1 =

x + 1. Identify G′ with GG(l−1,m−x−1) via the bijection f(x + 1, x2, . . . xl) = (x2 −
x − 1, . . . xl − x − 1). Let GU ′ be the grid of an optimal Schubert union U ′ for

GG(l−1,m−x−1) for the spanning dimension K ′, and let G′
L be the inverse image by f

of GU ′ . Let GL be the union of G′
L and G(x,1,...,1), and let SL be the Schubert union

with GSL
= GL.

(ii)Let z be the largest xl such that C(xl − l + 1, . . . , xl − 1, xl) ≤ K. Set K ′′ =

K − C(z − l + 1, . . . , z − 1, z). Let G′′ be the subset of GG(l,m) with xl = z + 1.

Identify G′′ with GG(l−1,z) via the bijection h(x1, . . . xl−1, z + 1) = (x1, . . . xl−1). Let

GU ′′ be the grid of an optimal Schubert union U ′′ for GG(l−1,m−x−1) for the spanning

dimension K ′′, and let G′′
R be the the inverse image by h of GU ′′ . Let GR be the union

of G′′
R and G(z,...,z) and let SR be the Schubert union with GSR

= GR.

Then either SL or SR is an optimal Schubert union for spanning dimension K

(with GS = GL or GS = GR, respectively).

We also claim:

Conjecture 6.9. — Given l ≥ 2. For each m ≥ 2 set k =
(

m
l

)

. Then there exists

a real positive number P such that for every ǫ > 0, there exists an M , such that if

m > M , then

(i) If K ≤ Pk − ǫ, then SL is maximal with respect to gU .

(ii) If K ≥ Pk + ǫ, then SR is maximal with respect to gU .

(iii) For l = 3 we have P = (55−
√

321
52 )3.
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7. Codes from Schubert unions

In earlier sections we have studied the impact of Schubert unions to Grassmann

codes in order to make the bound dr ≤ Dr explicit. Now we will study codes made

from a Schubert union SU in the same way as the codes C(l, m) are made from the

G(l, m). In other words; For a given Schubert union SU and prime power q denote

the (affine) spanning dimension of SU by KU = K. Then the Plücker coordinates of

all points of SU have only zeroes in all the coordinates corresponding to the k − K

points of HU , so we delete them. Choose coordinates for each point, and make the

corresponding K-tuples columns of a k × gU (q)-matrix G. This matrix will be the

generator matrix of a code. If we change coordinates for a point by multiplying by a

factor, the code changes, but its equivalence class and code parameters do not, so by

abuse of notation we denote all equivalent codes appearing this way by CU .

In [HC] it was shown that if l = 2, and we simply have a Schubert cycle Sα, then

the minimum distance d1 = d of the code is qδ, where δ is the Krull dimension of the

Schubert cycle. We will use this result to give the following generalization:

Proposition 7.1. — For a Schubert union SU in G(2, m), which is the proper union

of s Schubert cycles Si with Krull dimensions δi, for i = 1, .., s, the minimum distance

of CU is the smallest number among the qδi .

Proof. — Let Sα be one of the cycles in the given union with minimal Krull dimension

δ. We now intersect SU with the coordinate hyperplane Xα (restricted to the K-space

in which SU sits, if one prefers). Since α is not contained in the Gβ of any Schubert

union Sβ different from Sα appearing in the union, this coordinate hyperplane contains

all these Sβ .

There are exactly qδ points from Sα that are not contained in this hyperplane (all

these points are then of course outside all the other Sβ): If α = (a, b), then this

hyperplane cuts out S(a−1,b)∪S(a,b−1), with exactly one point (a, b) less in its G-grid,

and by Corollary 2.3 we must then subtract qa+b−3 to obtain the number of points.

On the other hand it is clear that if we intersect SU with an arbitrary hyperplane

H in K-space (or an arbitrary hyperplane in the Plücker space, not containing SU ),

then there is at least one Si, which is not contained in H . Now the maximal number

of points of any hyperplane section of Si is equal to the cardinality of Si minus qδi , so

there are at least qδi points of Si − H . Hence there are at least qδi points of SU − H

also. Hence the maximal number of points of SU ∩ H is gU (q) − qδ, where δ is the

smallest δi, and d = d1 is computed by Xαi
for such a corresponding i.

We may also mimick the contents of Proposition 3.1. Let α be such that Sα is one

of the Schubert cycles Si with minimal Krull dimension in SU , and set δ = δi
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Proposition 7.2. — (i) dr = qδ + qδ−1 + · · · + qδ−r+1, for r = 1, . . . s, where s is

the largest natural number such that (a − s + 1), (a − s + 2, b), ..., (a − 1, b), (a, b) all

are contained in GU .

(ii) Let SU = S(a1,b1) ∪ · · · ∪ S(as,bs), and let b be the largest bi. Then dK = gU (q),

and

dk−a = gU (q) − (1 + q + . . . qa−1),

for a = 1, . . . , bs − 1.

Proof. — (i) dr ≥ qδ + qδ−1 + · · · + qδ−r+1 is the Griesmer bound. The opposite

inequalities follow if we can exhibit linear spaces with increasing codimension, which

intersect SU in an appropriate number of points. We intersect with:

X(a,b) = X(a−1,b) = X(a−2,b) = .... = X(a−r+1,b) = 0

Then, as intersections we obtain smaller successive Schubert unions. Their cardinali-

ties are determined by Corollary 2.3 and the fact that we peel off points one by one

to obtain the successive G-grids.

(ii) SU contains a projective space of dimension bs − 2.

Of course we also have a relative bound, analogous to dr ≤ Dr

Proposition 7.3. — Let SU be a Schubert union in G(l, m), and let Mr be the max-

imum cardinality of a Schubert union that is contained in U , and whose spanning

dimension is r less than that of SU . Then dr ≤ gU (q) − Mr.

The proof is obvious.

Example 7.4. — In Section 4 we listed Schubert unions that compute the dr for the

Grassmann code C(2, 5) from G(2, 5). We leave it to the reader to find the full weight

hierarchy for all CU , for all 15 non-empty Schubert unions U of G(2, 5), using the

results above and the table for G(2, 5) in the appendix.

For l ≥ 3 the expected result d = d1 = qδ for Schubert cycles has not yet been

shown. If it is shown, we see that we can extend it to Schubert unions as in the case

l = 2, and also a variant of Proposition 7.2 will then follow.
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