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Abstract

The problem of expressing a homogenous polynomial f as a sum of powers
of linear forms is investigated via apolarity and solved in the following cases:
f is a binary form, f is a ternary cubic and f is a ternary quartic.

While a general binary form f of degree d is a sum of dd+1
2 e linear powers,

we prove that there are special f which need d summands in a representation
as a sum of dth-powers of linear forms. Similarly, it is known that a general
ternary cubic and quartic is a sum of 4, respectively 6, linear powers. We
prove that there are some ternary cubics and quartics f which are a sum of
5, respectively 7, linear powers and no less. Furthermore, we find all such f .





Preface

This thesis has been written for the degree of Candidatus Scientiarum at the
Department of Mathematics, University of Oslo. My supervisor has been
associate professor Kristian Ranestad.

In this thesis I solve the problem of expressing all homogenous poly-
nomials f as sums of powers of linear forms, when f is a binary form, a
ternary cubic and a ternary quartic. For a general f , the minimal number of
summands is known, but little is known for all f . In particular, the results
in chapter 3 about ternary quartics are, to my knowledge, previously not
known.

I have tried to emphasize the number of summands needed in a repre-
sentation of a given form as a sum of powers of linear forms, and what the
forms that are “exceptional” in some sense, look like. In order to obtain my
results, several different methods have been used, and each one is described
briefly at the end of the introduction.
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Chapter 0

Introduction

During the last decades of the 19th century, a lot of work was done to deter-
mine how a homogenous polynomial f of degree d can be represented as a
sum of powers of linear forms,

f = ld1 + ld2 + · · ·+ lds ,

and the problem has regained interest in recent years. There are two main
issues. One is to find the minimal number s of summands that are needed in
such a representation. The other is, given the minimal s, to determine the
size of the family of such representations. For a general form f the question
about the minimal s was recently solved.

Theorem 0.1 (Alexander-Hirschowitz):
A general form f of degree d in n+1 variables is a sum of s = d 1

n+1

(
n+d
n

)e†
powers of linear forms, unless

d = 2, where s = n+ 1 instead of dn+2
2 e,

d = 4 and n = 2, 3, 4, where s = 6, 10, 15 instead of 5, 9, 14, respectively,
d = 3 and n = 4, where s = 8 instead of 7.

Proof: This follows from a result of Alexander and Hirshowitz [1] and Ter-
racini’s Lemma [18]. The exceptions where classically known, see [3], [14],
[17], [15], [12] and [5]. ¤

But even though the minimal s is found for a general f , little is known
when all f are to be considered. For a special f the minimal value of s may
be both smaller or bigger. In this thesis we will find the minimal s for all
binary forms (chapter 1), ternary cubics (chapter 2) and ternary quartics
(chapter 3). While the general f in these three cases is a sum of dd+1

2 e, 4 or
6 linear power, respectively, we will see that this is not the case for all f .

†Recall that dxe is the smallest integer greater than or equal to x.
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2 0 Introduction

0.1 Notation and terminology

Throughout this thesis k will be an algebraically closed field of characteristic
0, but many of the results obtains here, are valid in a broader context.

Whenever A is a graded ring, or a graded ideal in a graded ring, Ad will
denote the component of A of degree d, and we will write 〈a1, . . . , am〉 for
the subvectorspace of Ad generated by the elements a1, . . . , am ∈ Ad. As
usual, (a1, . . . , am) denotes the ideal of A generated by these elements.

We will use the word form to mean a homogenous polynomial of positive
degree. In particular, the words quadric, cubic and quartic will refer to a
form of degree two, three and four, respectively. And by binary and ternary
forms we will mean forms in two, respectively three, variables.

Now, for any two polynomials f, g ∈ S = k[x0, . . . , xn], let f ∼ g if
and only if there exists an invertible linear transformation ϕ of S1 such that
ϕ̄(f) = g, where ϕ̄ is the homomorphism S → S of k-algebras induced by
ϕ. This defines an equivalence relation ∼ on S which represents a change of
basis. Notice that if f ∼ g and f =

∑s
i=1 λi l

d
i for some li ∈ S1 and λi ∈ k,

then g = ϕ̄(f) =
∑s

i=1 λi ϕ(li)
d. Hence the minimal s such that f is a sum of

s linear powers, is an invariant of the equivalence class of f under ∼. Since
finding such s is the main problem in this thesis, we will often perform such
invertible linear transformations of S1. Therefore any linear transformation
will be assumed invertible, unless otherwise specified. Moreover, when we
say that some polynomial is unique with respect to some property, we will
often mean unique up to a nonzero scalar.

When we want to emphasize that a form f is a sum of s linear powers,
and no less than s linear powers, we sometimes say “f is a sum of exactly
s linear powers”. This does not mean that f cannot be written as a sum of
more than s linear powers, of course.

0.2 Preliminary definitions and results

We want the two polynomial rings S = k[x0, . . . , xn] and T = k[∂0, . . . , ∂n]
to act on each other by differentiation. T acts on S in the usual way, i.e.

(
n∏

i=0

∂αi
i

)(
n∏

i=0

xβi
i

)
=

n∏

i=0

αi!

(
βi
αi

)
xβi−αi
i

or ∂α(xβ) = α!
(
β
α

)
xβ−α when we use multi-indices. Similarly we define the

action of S on T by xβ(∂α) = β!
(
α
β

)
∂α−β . In particular we notice that

f(D) =
∑
α

α! aαbα = D(f)
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for two forms f =
∑

α aαx
α ∈ S and D =

∑
β bβ∂

β ∈ T of the same degree.
Furthermore,

D
(
lda
)
= e!

(
d
e

)
D(a) ld−e

a (0.1)

for any D ∈ Te and la =
∑n

i=0 aixi ∈ S1, where a = (a0, . . . , an) ∈ Pn. Of
course, D

(
lda
)
= 0 when e > d. In general, we say that two forms f ∈ S and

D ∈ T are apolar if f(D) = D(f) = 0.

Definition 0.2: When f ∈ S is a homogenous polynomial, define f⊥ by

f⊥ = {D ∈ T |D(f) = 0}
and Af by

Af = T/f⊥.

It is easily seen that f⊥ is a homogenous ideal of T , f = ⊕e≥0 f
⊥
e .

Moreover, Af has a one-dimensional socle in degree deg f , and is a graded
Artinian Gorenstein ring. Furthermore, every graded Artinian Gorenstein
ring arise this way for suitable f . This is the content of the following lemma.

Lemma 0.3 (Macaulay, [11]): The map f 7→ Af gives a bijection between
hypersurfaces F = {f = 0} ⊆ Pn of degree d and graded Artinian Gorenstein
quotient rings A = T/I of T with socle in degree d.

Proof: For Macaulay’s result in terms of inverse systems, see [11, chapter
IV], [6, theorem 21.6 and exercise 21.7], [7] or [10, lemma 1.2]. ¤

The polynomial f is called the dual socle generator of Af , and is defined
only up to a nonzero scalar. Also note that for any f ∈ Sd,

n∩
i=0

(∂if)
⊥ = {D ∈ T | ∂iD(f) = 0 ∀ i = 0, . . . , n} = f⊥ ∪Td (0.2)

because ∂ig = 0 for all i if and only if g ∈ S0 = k.
For any f ∈ Sd, we define ϕf : Td → k by ϕf (D) = D(f) = f(D). This is

obviously a k-linear homomorphism, and
∑

i ciϕfi = ϕg where g =
∑

i cifi.
Furthermore, ϕf = 0 if and only ifD(f) = 0 for allD ∈ Td, which means that
f = 0. Hence Homk(Td, k) = {ϕf | f ∈ Sd}, because these two vectorspaces
have equal dimensions. We are now ready to prove our main lemma.

Lemma 0.4: Let f, g1, . . . , gs ∈ Sd be forms of the same degree d. Then
the following statements are equivalent:

(a) there exist λ1, . . . , λs ∈ k such that f =
s∑

i=1

λi gi

(b)
s∩

i=1
(gi)

⊥ ⊆ f⊥
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(c)
s∩

i=1
(gi)

⊥
d ⊆ f⊥

d

Proof: The first implication (a) ⇒ (b) follows immediately from the fact
that if f =

∑s
i=1 λi gi, then D(f) =

∑s
i=1 λiD(gi). The second, (b) ⇒ (c),

is obvious. To prove that (c) ⇒ (a), we proceed as follows:
First we claim that, for any g1, . . . , gs ∈ Sd, we have

dimk

s∩
i=1

(gi)
⊥
d = dimk Td − dimk〈g1, . . . , gs〉. (0.3)

Let t = dimk〈g1, . . . , gs〉 ≤ s. Possibly after renumbering the elements,
we may assume that 〈g1, . . . , gt〉 = 〈g1, . . . , gs〉. Furthermore, ∩t

i=1(gi)
⊥
d =

∩s
i=1(gi)

⊥
d . If we now look at Homk(V, k) where V = Sd/〈g1, . . . , gt〉, we see

that for any D ∈ ∩t
i=1(gi)

⊥
d , the map h 7→ D(h) defines a k-linear homo-

morphism ψD : V → k. If ψD = 0, then D(h + 〈g1, . . . , gt〉) = 0 for all
h ∈ Sd, hence D = 0. Therefore the map ∩t

i=1(gi)
⊥
d ↪→ Homk(V, k) given by

D 7→ ψD is injective, and it follows that

dimk

t∩
i=1

(gi)
⊥
d ≤ dimk Homk(V, k) = dimk V = dimk Td − t. (0.4)

On the other hand, we know that the following sequence is exact,

0 → t∩
i=1

(gi)
⊥
d → Td → t⊕

i=1
Td/(gi)

⊥
d ,

which gives that

dimk Td − dimk

t∩
i=1

(gi)
⊥
d ≤ dimk

t⊕
i=1

Td/(gi)
⊥
d =

t∑

i=1

1 = t. (0.5)

The equations (0.4) and (0.5) implies that dimk ∩t
i=1(gi)

⊥
d = dimk Td − t,

which proves (0.3). Now we have

(c) ⇔ s∩
i=1

(gi)
⊥
d ∩ f⊥

d =
s∩

i=1
(gi)

⊥
d ⇔ dimk

s∩
i=1

(gi)
⊥
d ∩ f⊥

d = dimk

s∩
i=1

(gi)
⊥
d

By (0.3) this is equivalent to dimk〈g1, . . . , gs, f〉 = dimk〈g1, . . . , gs〉, which
means that 〈g1, . . . , gs, f〉 = 〈g1, . . . , gs〉. Therefore, f ∈ 〈g1, . . . , gs〉, and
there exist λ1, . . . , λs ∈ k such that f =

∑s
i=1 λi gi. ¤

Remark 0.4.1: We can also prove the implication (c) ⇒ (a) the following
way: Consider the projections Td → Td/∩s

i=1(gi)
⊥
d → Td/f

⊥
d and the induced

injections

Homk(Td/f
⊥
d , k) ⊆ Homk(Td

/ s∩
i=1

(gi)
⊥
d , k) ⊆ Homk(Td, k). (0.6)
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The proof of equation (0.3) actually proves that Homk(Td/∩s
i=1(gi)

⊥
d , k) =

〈ϕg1 , . . . , ϕgs〉, because they have equal dimensions. Hence the first of the
inclusions in (0.6) implies that ϕf ∈ 〈ϕg1 , . . . , ϕgs〉, that is, there exist
λ1, . . . , λs ∈ k such that ϕf =

∑s
i=1 λi ϕgi . This means that D(f) =∑s

i=1 λiD(gi) = D
(∑s

i=1 λi gi
)
for all D ∈ Td, and it follows that f =∑s

i=1 λi gi. Compare this proof with [13, paragraph 1.3] or [16, theorem
1.4].

Normally, we will use lemma 0.4 in situations where the gi’s are powers of
linear forms, that is, gi = ldai where lai =

∑n
j=0 aijxj and ai = (ai0, . . . , ain)

is a point in Pn. In this case we see that

s∩
i=1

(
ldai

)⊥
e
= {D ∈ Te |D

(
ldai

)
= 0 ∀ i = 1, . . . , s}

For e > d this obviously equals all of Te, but when e ≤ d it follows from
equation (0.1) that

s∩
i=1

(
ldai

)⊥
e
= {D ∈ Te |D(ai) = 0 ∀ i = 1, . . . , s} =

s∩
i=1

(
leai

)⊥
e
= Ie (0.7)

where I = ∩s
i=1mai and mP is the “maximal” homogenous ideal through

P = (p0, . . . , pn) ∈ Pn generated by the 2 × 2 minors of ( x0 x1 ··· xn
p0 p1 ··· pn ). We

see that we might describe I as I = ⊕d≥0 ∩s
i=1(l

d
ai)

⊥
d . Using equation (0.7),

lemma 0.4 says that f ∈ 〈lda1 , . . . , ldas〉 if and only if I ⊆ ∩s
i=1(l

d
ai)

⊥ ⊆ f⊥.
Thus we have proved the following corollary:

Corollary 0.5: If f ∈ S is a form of degree d, then f is a sum of s linear
powers lda1 , . . . , l

d
as , with lai ∈ S1, if and only if

s∩
i=1

mai ⊆ f⊥.

Furthermore, ∩s
i=1(mai)e = ∩s

i=1

(
ldai

)⊥
e
for all degrees e ≤ d.

In general, we call a subscheme Γ of Pn apolar to f if the homogenous
ideal IΓ of Γ is contained in f⊥. Hence the corollary says that f =

∑s
i=1 λi l

d
ai

for some reduced set of points Γ = {a1, . . . , as} if and only if the homogenous
ideal IΓ = ∩s

i=1mai is apolar to f .

Remark 0.5.1: We have seen that if f =
∑s

i=1 λi l
d
ai , then ∩s

i=1(l
d
ai)

⊥ ⊆ f⊥,
and hence dimk ∩s

i=1(l
d
ai)

⊥
e ≤ dimk f

⊥
e for all e. Now equation (0.3) says that

dimk ∩s
i=1(l

d
ai)

⊥
e = dimk Te − dimk〈lea1 , . . . , leas〉 ≥ dimk Te − s, which gives

s ≥ dimk Te − dimk

s∩
i=1

(ldai)
⊥
e ≥ dimk Te − dimk f

⊥
e = dimk A

f
e . (0.8)

Hence any f cannot be a sum of less linear powers than the maximum of the
Hilbert function of Af .
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One might think that equation (0.8) ought to be an equality for general
f , but this is not true. Since Af is Artinian Gorenstein with socledegree
d = deg f , the maximum of the Hilbert function of Af is dimk A

f
e0 where

e0 = bd2c. Now dimk A
f
e0 ≤ dimk Te0 =

(
n+e0
e0

)
for all f ∈ Sd, while the s

given in theorem 0.1 satisfies s ≥ (
n+e0
e0

)
, with equality only when n and d are

very small. Therefore, equation (0.8) cannot be an equality for a general f ,
unless n and d are very small. However, (0.8) is an equality for f =

∑s
i=1 l

d
i

if the linear forms l1, . . . , ls are general enough, see [8].

Now we want to define two quantities that will play an important role
in this thesis. They cover different needs, in fact, the first one will be used
mostly in the last couple of sections, while the second will be used almost
everywhere else.

Definition 0.6: For f ∈ S2d we define the catalecticant matrix of f to be

CatD(f) =
(
DiDj(f)

)
1≤i,j≤N

where N =
(
n+d
n

)
and D = {D1, . . . , DN} is a basis for Td.

We may think of CatD as a matrix with entries in T2d, namely CatD =
vDvTD where vD is a N × 1 matrix (a columnvector) and vTD = [D0, . . . , DN ]
is the transpose of vD. In particular, rankCatD(f) is independent of the
choice of basis for Td. Indeed, if E is another basis, then vE = AvD for some
invertible N × N matrix A, and CatE(f) = (vEvTE )(f) = (AvDvTDA

T )(f) =
ACatD(f)AT . Moreover, since multiplication in Af gives perfect pairings
Af

d ×Af
d → Af

2d
∼= k, we have

rankCatD(f) = dimk A
f
d . (0.9)

Definition 0.7: Given f ∈ Sd such that f⊥
e = 〈D0, . . . , Dm〉, we define

the rational map πf
e : Pn → Pm by πf

e (a) =
(
D0(a), . . . , Dm(a)

)
for a =

(a0, . . . , an) ∈ Pn.
We notice that the base locus of πf

e , i.e.

{a ∈ Pn |Di(a) = 0 ∀ i = 0, . . . ,m} =
m∩
i=0

V (Di) = V (f⊥
e ),

is independent of the choice of basis for f⊥
e . For e ≤ d we might think of πf

e

as the composition of the e-uple embedding of Pn and the projection from
the partials of f of order d − e, {D(f) |D ∈ Td−e}, considered as points in
P(

n+e
e )−1. See [13, chapter 2] for more details about this construction and a

general motivation for studying this map.

Throughout this thesis we will several times encounter a set of points Γ
that is a complete intersection of two forms f, g ∈ k[x0, x1, x2], and we need
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to know the generators of the homogenous ideal IΓ. In situations where f
and g intersect nonsingularly, the following theorem will be useful.

Theorem 0.8 (Max Noether):
Suppose that two forms f, g ∈ k[x0, x1, x2] meet transversely in a finite set of
points Γ. If h ∈ k[x0, x1, x2] is any form that vanishes on Γ, then h ∈ (f, g).

Proof: That f and g meet transversely means that their intersection Γ is
nonsingular, and the result is a consequence of the unmixedness theorem,
see [6, corollary 18.14 and exercise 18.10]. ¤

Before we start our investigations, we would like to say a few words about
our methods: The most used notion in this thesis is apolarity, we usually use
the ideal f⊥ in conjunction with lemma 0.4 or corollary 0.5 to find powersum-
representations for f . As long as the dimension of f⊥

e is large enough for
small e, specifically dimk f

⊥
2 ≥ 2 when f is a ternary quartic, we prove some

of our results by studying πf
e and its base locus. When dimk f

⊥
e is too small,

we often try to subtract a suitable multiple of some linear power from f to
get a new form g = f − λ ld where dimk g

⊥
e > dimk f

⊥
e , provided we can

control g⊥e /f⊥
e sufficiently. Finally, in section 3.3.1 we use the Buchsbaum-

Eisenbud structure theorem [2] to get a minimal free resolution for Af , and
further manipulations of this gives us what we want.





Chapter 1

Binary forms

In this chapter we deal with binary forms, that is, homogenous polynomials
in two variables, and we will prove that any binary form f is a sum of deg f
linear powers. But to do so, we need the following lemma. Note that we call
a binary form f squarefree if no factor of f appears twice, i.e. f =

∏
i li for

some linear forms li where li ∦ lj for all i 6= j.

Lemma 1.1: Let f1, . . . , fn ∈ k[x0, x1] be binary forms of the same degree
such that any linear combination of them is not squarefree. Then there exists
a linear form l ∈ k[x0, x1]1 such that l2 |fi for all i.

Proof: We may assume that the fi’s are linearly independent, or else we
could replace them by a linearly independent subset. Let g =

∑n
i=2 cifi

be any linear combination of f2, . . . , fn, and consider the Jacobian matrix
J =

(
∂0f1 ∂0g
∂1f1 ∂1g

)
. This matrix has rank ≤ 1 at a point P ∈ P1 if and only

if (detJ)(P ) = 0. If det J equals 0 as an element of k[x0, x1], then f1 and
g are equal, up to a scalar. This is impossible since the fi’s are linearly
independent. Hence there are only finitely many P that makes (detJ)(P )
zero, which is equivalent to ∇f1(P ) ‖ ∇g(P ), where ∇f = (∂if). For any
such P , either both ∇f1(P ) and ∇g(P ) equals zero, or there exists a unique
point (a, b) ∈ P1 such that ∇(af1 + bg)(P ) = 0. Therefore, there must exist
P ∈ P1 such that ∇f1(P ) = ∇g(P ) = 0, or else there would only be finitely
many (a, b) ∈ P1 such that af1 + bg is not squarefree, which contradicts our
assumptions. But this means that both f1 and g has a double root in P , i.e.
there exists l ∈ k[x0, x1] of degree 1 such that l2 |f1 and l2 |g.

This l might in general depend on the linear combination g =
∑n

i=2 cifi.
Since f1 is a nonzero polynomial, we know that there are only finitely many l
such that l2 |f1, say l1, . . . , lm. Let Vj = {(c2, . . . , cn) | l2j divides

∑n
i=2 cifi}.

Now ∪m
j=1 Vj = kn−1 because any linear combination

∑n
i=2 cifi has a common

square factor with f1. Since every Vj is a vectorspace, there must be one j
such that Vj = kn−1. Hence for this j we have l2j |fi for all i. ¤

9



10 1 Binary forms

Remark 1.1.1: Since char k = 0, we can use Bertini’s theorem [9, p. 274-
275] to prove lemma 1.1. Given n binary forms f1, . . . , fn of the same degree
such that any linear combination is not squarefree, let h = gcd(f1, . . . , fn)
and f̃i = fi/h. Then 〈f̃1, . . . , f̃n〉 is a base-point-free linear system, and by
Bertini’s theorem the general member is nonsingular. Furthermore, if we let
a1, . . . , am be the zeroes of h, then {g ∈ 〈f̃1, . . . , f̃n〉 | g(ai) = 0} is a proper,
closed subset for all i. Hence we can find g ∈ 〈f̃1, . . . , f̃n〉 such that g is
nonsingular and g(ai) 6= 0 for all i. By assumption, g · h ∈ 〈f1, . . . , fn〉 is
not squarefree. Then h cannot be squarefree, since g is squarefree and has
no common factor with h. But this means that there exists a linear form l
such that l2 |h, and then l2 |fi for all i.

Theorem 1.2:
Every binary form f ∈ k[x0, x1] of degree d is a sum of d or less linear
powers.

Proof: We claim that

f is a sum of s linear powers ⇔ ∃D ∈ f⊥
s such that D is squarefree.

Even though we only need one of the implications to prove theorem 1.2, we
will prove the equivalence for later use.

Assume that f =
∑s

i=1 λi l
d
ai where a1, . . . , as are distinct points in P1.

Let δi = ai0∂1 − ai1∂0 and D =
∏s

i=1 δi. Then δi is the unique δ ∈ k[∂0, ∂1]1
such that δ(lai) = 0, and D is squarefree. Furthermore, D(lai) = 0 for all
i = 1, . . . , s, hence D ∈ f⊥

s .
Conversely, assume that there exists D ∈ f⊥

s which is squarefree. Factor-
ize this D into its linear factors, i.e. D =

∏s
i=1 δi for some δi = ai0∂1−ai1∂0,

where ai = (ai0, ai1) are points in P1. These points are all distinct since D is
squarefree. Now, mai = (δi), which implies that ∩s

i=1mai =
(∏s

i=1 δi
)
= (D).

Then ∩s
i=1mai ⊆ f⊥ because D ∈ f⊥, and by corollary 0.5 this means that

there exist λ1, . . . , λs such that f =
∑s

i=1 λi l
d
ai , as claimed.

Now assume that f ∈ k[x0, x1]d is not a sum of d linear powers. Then no
D ∈ f⊥

d is squarefree, and by lemma 1.1, they have a common square factor.
This means that f⊥

d ⊆ (δ2)d for some δ ∈ k[∂0, ∂1]1, which obviously is
impossible since dimk f

⊥
d = dimk k[∂0, ∂1]d−1 = d and dimk(δ

2)d = d−1. ¤

Remark 1.2.1: The proof of theorem 1.2 tells us exactly which forms f ∈
k[x0, x1]d that are not a sum of less than d linear powers. If d = 1 then this
is obviously any nonzero f , and if d = 2 then f must be a product of two
different linear forms. For d ≥ 3 any such f must satisfy that no D ∈ f⊥

d−1 is
squarefree, which implies that f⊥

d−1 ⊆ (δ2)d−1 for some δ ∈ k[∂0, ∂1]1. Since

dimk f
⊥
d−1 = dimk k[∂0, ∂1]d−1 − dimk A

f
d−1 = d− dimk A

f
1 ≥ d− 2
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because Af = k[∂0, ∂1]/f
⊥ is Gorenstein by 0.3, and dimk(δ

2)d−1 = d− 2, it
follows that f⊥

d−1 = (δ2)d−1. Hence D(δ2f) = 0 for all D ∈ k[∂0, ∂1]d−3, and
therefore δ2(f) = 0. Consequently, f = l1 · ld−1

2 where {l1, l2} is a basis for
k[x0, x1]1 such that δ(l1) 6= 0 and δ(l2) = 0.

On the other hand, if f = x0x
d−1
1 , then f⊥ = (∂2

0 , ∂
d
1). Now f⊥

e = (∂2
0)e

for all e < d, so the lowest degree for which there exists D ∈ f⊥ that is
squarefree, is d (take for instance ∂d

0−∂d
1 ∈ f⊥

d ). Therefore, this is an f which
is a sum of d linear powers and no less, and up to linear transformations of
k[x0, x1]1, this is the only one.

Remark 1.2.2: Using the same notation as in the proof of theorem 1.2,
we see that for all degrees e ≤ d we have ∩s

i=1

(
ldi
)⊥
e

= ∩s
i=1(mai)e = (D)e,

which implies that dimk ∩s
i=1

(
ldi
)⊥
d

= max(d + 1 − s, 0). By (0.3), this is
the same as saying that for any i ≤ s, ldi is not contained in the subspace
generated by ld1, . . . , l

d
i−1, since the dimension of the intersection drops by one

for each ldi added. Therefore, the minimal s such that there exist different
(nonproportional) l1, . . . , ls ∈ k[x, y]1 with

∑s
i=1 l

d
i = 0, is d+2. This can of

course be proven more directly.





Chapter 2

Ternary cubics

In this chapter we investigate how to write a ternary cubic f ∈ k[x0, x1, x2]3
as a sum of linear powers. Theorem 0.1 tells us that a general ternary cubic
is a sum of four linear powers. Our main result states that every f is a sum
of four or less linear powers, with one exception.

Our method will use the rational map πf
e as defined in definition 0.7

πf
2 : P 7→ (D0(P ), D1(P ), D2(P ))

with e = 2, and we will first motivate this. Note that we by a fibre of πf
2

at the point a will refer to the intersection {∑i ciDi = 0} ∩ {∑i c
′
iDi = 0}

where
∑

i ciyi and
∑

i c
′
iyi are two lines that intersect in a. In particular, all

base points are part of any fibre of πf
2 .

Now, assume that an f ∈ k[x0, x1, x2]3 with f⊥
1 = 0 is a sum of four

linear powers, say f =
∑4

i=1 λi l
4
ai . Since dimk f

⊥
1 = 0, the Hilbert function

of Af must equal (1, 3, 3, 1), and all four points a1, . . . , a4 cannot lie on
a line. Hence the vectorspace of quadrics passing through {a1, . . . , a4} is
two-dimensional. Therefore, we can find two linearly independent quadrics
D0, D1 ∈ T2 such that Dj(ai) = 0 for all i and j, which implies that D0(f) =
D1(f) = 0. Since dimk f

⊥
2 = 3, f⊥

2 = 〈D0, D1, D2〉 for some D2 ∈ T2.
If no line passes through three of the points {ai}, the intersection of D0

and D1 will be {a1, . . . , a4}. Hence πf
2 : P2 → P2 has at least one fibre of

degree four, namely (πf
2 )

−1(0, 0, 1) = {a1, . . . , a4}. On the other hand, if
three of the points a1, . . . , a4 lie on a line L = {δ0 = 0}, say {a1, a2, a3} ⊆ L,
then δ0f = λ4l

2
a4 . As we will prove in lemma 2.1, this means that a4 is

a base point of πf
2 . If a quadric contains three points on a line, then the

quadric must be reducible with the line as one component. Hence D0 = δ0δ1
and D1 = δ0δ2 for some δi ∈ T1, and {δ1 = 0} ∩ {δ2 = 0} = {a4}. In this
case, the fibre of πf

2 above (0, 0, 1) consists of the line L (with two embedded
points) and the isolated point a4. In both cases, we see that the four points
{ai} are contained within a fibre of πf

2 .

13
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We will need the following lemmas, which we prove in the more general
setting where S = k[x0, . . . , xn] and T = k[∂0, . . . , ∂n].

Lemma 2.1: Let f ∈ Sd be any form such that f⊥
e = 〈D0, . . . , Dm〉 for some

e ≤ d and Di ∈ Te. Then a point a ∈ Pn is a base point of πf
e : Pn → Pm if

and only if there exists an E ∈ Td−e such that E(f) = lea.

Proof: By definition, a is a base point of πf
e if and only if Di(a) = 0 for all

i = 0, . . . ,m. If E = {E0, . . . , EN} is a basis for Td−e, then

N∩
i=0

(Eif)
⊥
e = {D ∈ Te |Ei(D(f)) = 0 ∀ i} = {D ∈ Te |D(f) = 0} = f⊥

e .

Hence Di(a) = 0 for all i if and only if

(
lea
)⊥
e
= {D ∈ Te |D(a) = 0} ⊇ f⊥

e =
N∩
i=0

(Eif)
⊥
e .

By lemma 0.4 this is equivalent to lea =
∑N

i=0 λiEif = (
∑N

i=0 λiEi)(f) for
some λi ∈ k. With E =

∑N
i=0 λiEi ∈ Td−e we get the desired conclusion. ¤

Lemma 2.2: Let A = (aij) be an (n+1)×(n+1)matrix where aij ∈ k for all
0 ≤ i, j ≤ n. For i = 0, . . . , n, define x̄i ∈ S1 and ∂̄i ∈ T1 by x̄i =

∑n
j=0 aijxj

and ∂̄i =
∑n

j=0 aji∂j . Let ϕ : S → S be the homomorphism of k-algebras
induced by xi 7→ x̄i. Similarly, let ψ : T → T be the homomorphism induced
by ∂i 7→ ∂̄i. Then for all D ∈ T ,

D
(
ϕ(f)

)
= ϕ

(
ψ(D)(f)

)
. (2.1)

We note that the linear transformation of S1 which induces ϕ, is given by
x̄ = Ax, where x and x̄ are columnvectors, xT = [x0, . . . , xn]. Similarly, the
linear transformation of T1 is given by ∂̄ = AT∂. These linear transformation
might not be invertible, since A is not assumed invertible, but A should
always be invertible when we use this lemma in the following.

For convenience, we will adopt the analytical standard and write f(x̄)
for ϕ(f) in this proof, and think of f(x̄) as “f(x) where xi is replaced by x̄i”.

Proof of Lemma 2.2. Since both ϕ and ψ are homomorphisms of k-algebras,
we only need to verify (2.1) for all D ∈ {∂0, . . . , ∂n}. And this is really a
simple consequence of the chain rule.

∂i
(
ϕ(f)

)
= ∂i

(
f(x̄)

)
=

n∑

j=0

(∂jf)(x̄) · ∂ix̄j =
n∑

j=0

aji(∂jf)(x̄)

= ϕ
( n∑

j=0

aji∂jf
)
= ϕ

(
ψ(∂i)(f)

)
.

¤
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Remark 2.2.1: Notice that if g ∼ f , then by definition f = ϕ(g) where
ϕ is a homomorphism of k-algebras S → S induced by an invertible linear
transformation of S1. By lemma 2.2 we have

D(f) = D
(
ϕ(g)

)
= ϕ

(
ψ(D)(g)

)
.

Since ϕ(h) = 0 if and only if h = 0, it follows that

f⊥ = {D ∈ T |D(f) = 0} = {D ∈ T |ψ(D)(g) = 0} = {ψ−1(D) |D ∈ g⊥}.
Hence g⊥ = ψ(f⊥), which implies that πg

e and πf
e have isomorphic base loci

and Ag = T/g⊥ ∼= T/f⊥ = Af .

For the rest of this chapter, we let S = k[x0, x1, x2] and T = k[∂0, ∂1, ∂2].
Note that, in the proof of theorem 2.3, we will only consider the base locus
of πf

2 as a set of points, not as a scheme. Also, recall that if f ∼ g, then
f is a sum of s linear powers if and only if g is. Hence we are allowed to
perform automorphisms ϕ of S induced by linear transformations of S1 and
replace f by ϕ(f). By lemma 2.2, a linear transformation of S1 corresponds
to a linear transformation of T1, and we will normally use this fact without
explicitly refering to the lemma.

Theorem 2.3:
Every ternary cubic f ∈ S3 is a sum of four or less linear powers, except
f ∼ x0x

2
1 + x1x

2
2. This is a sum of exactly five linear powers.

Proof: If dimk f
⊥
1 > 0, then there exists δ ∈ T1 such that δ(f) = 0. This

means that after a suitable linear transformation, we can assume that f ∈
k[x0, x1], and theorem 1.2 tells us that f is a sum of 3 or less linear powers.

When f⊥
1 = 0, the Hilbert function of the Artinian Gorenstein ring Af

must be (1, 3, 3, 1). Hence dimk f
⊥
2 = 3, and πf

2 is a rational map P2 → P2.
If the linear system f⊥

2 is base-point-free, it follows by applying Bertini’s
theorem twice (once to get a nonsingular quadric, next to get another that
intersects the first one properly), that there exist two linearly independent
quadrics D0, D1 ∈ f⊥

2 which intersect nonsingularly, i.e. in four distinct
points a1, . . . , a4 ∈ P2. Then ∩4

i=1mai ⊆ (D0, D1) by theorem 0.8. Since
(D0, D1) ⊆ f⊥, it follows that f is a linear combination of l3a1 , . . . , l

3
a4 by

corollary 0.5.
Now assume that πf

2 has base points, and let a = (a0, a1, a2) ∈ P2 be one.
Then by lemma 2.1, there exists δ ∈ T1 such that δf = l2a. Furthermore,
by lemma 2.2, if we let ϕ be the automorphism of S induced by a linear
transformation of S1 corresponding to a linear transformation ∂0 7→ δ of T1,
then

∂0
(
ϕ(f)

)
= ϕ

(
δ(f)

)
= ϕ

(
l2a
)
= ϕ(la)

2.

Hence we may assume that ∂0f = l2a. If a0 6= 0, we can integrate this
equation to get f = 1

3a0
l3a+ g, where g ∈ k[x1, x2]3. By theorem 1.2 this g is
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a sum of three or less linear powers, and f is therefore a sum of four or less
linear powers.

We now assume that πf
2 has two distinct base points, a and b. Then there

are δ, δ′ ∈ T1 such that δf = l2a and δ′f = l2b . Since a and b are distinct,
δ and δ′ are linearly independent, and we might assume that δ = ∂0 and
δ′ = ∂1 after a suitable linear transformation. Hence ∂0f = l2a and ∂1f = l2b .
Then ∂0∂1f = 2a1la = 2b0lb, and since a and b are distinct, we must have
a1 = b0 = 0. If now a0 = b1 = 0, then la ‖ x2 ‖ lb, a contradiction. Hence
either a0 6= 0 or b1 6= 0, and we can integrate the corresponding equation and
find a representation of f as a sum of four or less linear powers, following
the ideas of the previous paragraph.

Assume that f is not a sum of four linear powers. Then by the previous
paragraphs, πf

2 has exactly one base point, and we may assume that ∂0f = l2a
where a0 = 0. In this case we can perform a linear transformation and get
la = x1. Then we have ∂0f = x21, and by integrating this equation, we get

f = x0x
2
1 +

3∑

i=0

cix
3−i
1 xi2 = (x0 + c0x1 + c1x2)x

2
1 + c2x1x

2
2 + c3x

3
2.

This reduces to f = x0x
2
1 + sx1x

2
2 + tx32 after another linear transformation.

Here s must be nonzero, because if s = 0, then f − tx32 is a polynomial in
two variables and hence a sum of three linear powers by theorem 1.2, which
contradicts our assumption. By scaling x2, we might assume that s = 1.

Then f = x0x
2
1 + x1x

2
2 + tx32 and f⊥

2 = 〈∂2
0 , ∂

2
2 − ∂0∂1 − 3t∂1∂2, ∂0∂2〉.

The base points of this system are (0, 1, 0) and (0, 1, 3t), and since πf
2 should

have only one base point, t must equal 0. Hence the only f which might not
be a sum of four or less linear powers, is f = x0x

2
1+x1x

2
2, up to equivalence.

When f = x0x
2
1+x1x

2
2, we get f⊥

2 = 〈∂2
0 , ∂

2
2 −∂0∂1, ∂0∂2〉. Now πf

2 maps
{∂0 = 0} to (0, 1, 0), except the base point (0, 1, 0), and it is an isomorphism
everywhere else. Since every fibre of πf

2 is contained within a line, f cannot
be a sum of four linear powers, by the argument at the beginning of this
chapter. But it is easily seen that f is a sum of five linear powers, just look
at f + x32 which is a sum of four linear powers. ¤

Remark 2.3.1: If an f ∈ S3 with f⊥
1 = 0 is a sum of three linear powers,

say f =
∑3

i=1 λi l
3
i , then the li’s must be linearly independent since f⊥

1 = 0.
Hence f = x30 + x31 + x32 after a linear transformation. Thus an f ∈ S3 such
that f⊥

1 = 0 and f � x30 + x31 + x32 and f � x0x
2
1 + x1x

2
2, is a sum of exactly

four linear powers.

Example 2.3.2: Let us have a closer look at the exception f = x0x
2
1 + x1x

2
2

of theorem 2.3. Since f⊥
2 = 〈∂2

0 , ∂
2
2 − ∂0∂1, ∂0∂2〉, we see that

(
πf
2

)2
(a0, a1, a2) = πf

2 (a
2
0, a

2
2 − a0a1, a0a2) = a30(a0, a1, a2).
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This means that πf
2 is an isomorphism on {∂0 6= 0}. Moreover, the line

{∂0 = 0} maps to (0, 1, 0), except the base point P0 = (0, 1, 0). Hence the
fibre of πf

2 above a point P ∈ P2 is

3P0 + a point ∈ {∂0 6= 0}
3P0 + the line {∂0 = 0}

4P0

if
if
if

P ∈ {∂0 6= 0}
P = P0

P ∈ {∂0 = 0}r P0

In particular we notice that every fibre of πf
2 is contained within a line.

We have used the birational map πf
2 to study the linear system f⊥

2 , but
we can also look at f⊥

2 more algebraically. Let I = (f⊥
2 ) be the homogenous

ideal generated by f⊥
2 . We notice that I is a primary ideal with rad I = (x, y),

and that I is generated by the 2 × 2 minors of
(

∂0 ∂2 ∂1
0 ∂0 ∂2

)
. The reason why

this f is an exception, is related to the fact that dimk(T/I)(x,z) = deg I = 3.
Hence the intersection multiplicity at (0, 1, 0) of any pair of quadrics in f⊥

2

must be at least three, as we realized from the discussion of πf
2 .

Example 2.3.3: f = x0x
2
1+x1x

2
2+tx32 where t 6= 0 provides us with another

quite interesting example. After the linear transformation given by

x0 7→ x0 − 2
27 t

−2x1 +
1
3 t

−4/3x2, x1 7→ x1, x2 7→ −1
3 t

−1x1 + t−1/3x2,

we may assume that f = x0x
2
1 + x32. In this case f⊥

2 = 〈∂0∂2, ∂1∂2, ∂2
0〉, and

(
πf
2

)2
(a0, a1, a2) = πf

2 (a0a2, a1a2, a
2
0) = a20a2(a0, a1, a2).

Hence, πf
2 is an isomorphism on {∂0∂2 6= 0}, and it maps {∂0 = 0} to (0, 1, 0)

and {∂2 = 0} to (0, 0, 1), except the base points (0, 1, 0) and (0, 0, 1).
We know from the proof of theorem 2.3 that f is a sum of four or less

linear powers, since πf
2 has two base points in this case. Moreover, since πg

2

has three base points when g = x30 + x31 + x32, and only one base point when
g = x0x

2
1 + x1x

2
2, it follows by remarks 2.3.1 and 2.2.1, that f is a sum of

four linear powers and no less.
Notice that the homogenous ideal J = (f⊥

2 ) in this case is generated by
the 2 × 2 minors of

(
∂0 ∂1 0
0 ∂0 ∂2

)
, and that J = (x, y) ∩ (x2, z) is a primary

decomposition of J . Hence every pair of quadrics in f⊥
2 intersect singularly

in (0, 1, 0). In this case, however, we can find a pair that intersect in a line
and a point outside, for instance ∂0∂2 and ∂1∂2. Hence we have a fibre of πf

2

that is not contained in a line.





Chapter 3

Ternary quartics

We will now turn our attention to our main objects of study, polynomials of
degree four in three variables, f ∈ S4, where S = k[x0, x1, x2]. If dimk f

⊥
1 >

0, we get f ∈ k[x0, x1]4 after a suitable linear transformation, and these
cases were treated in general in chapter 1. Therefore, in this chapter we will
only consider f where f⊥

1 = 0. This implies that Af has Hilbert function
(1, 3, s, 3, 1) where 3 ≤ s ≤ 6, and the general f is a sum of six linear powers,
by theorem 0.1. It is not true that every f ∈ S4 is a sum of six or less linear
powers, as we will see. However, seven linear powers always suffice. We will
treat each possible value of dimk f

⊥
2 separately, and the methods used will

vary quite a bit. Notice that the assumption f⊥
1 = 0 above is automatically

satisfied when dimk f
⊥
2 < 3.

For any la1 , . . . las ∈ S1, it follows from (0.3) and (0.7) that

dimk

s∩
i=1

(
ldai

)⊥
e
= dimk

s∩
i=1

(
leai

)⊥
e

= dimk Te − dimk〈lea1 , . . . , leas〉 ≥
(
e+2
2

)− s,
(3.1)

for all e ≤ d and with equality if and only if lea1 , . . . , l
e
as are linearly inde-

pendent. Because of this inequality, an f ∈ S4 cannot be a sum of less than
dimk A

f
2 linear powers, see remark 0.5.1.

3.1 Base points

Having our methods from chapter 2 fresh in memory, we start by investi-
gating πf

3 . Since dimk f
⊥
3 = 7, πf

3 is now a rational map P2 → P6 defined
by P 7→ (Di(P )) where f⊥

3 = 〈D0, . . . , D6〉. Proposition 3.1 tells us what
happens if this map has base points. But first we look at some examples.

Example 3.0.1: Let f = x40 + x41 + x42. By computing the partials of f ,
we see that f⊥ = (∂0∂1, ∂0∂2, ∂1∂2, ∂

4
0 − ∂4

1 , ∂
4
0 − ∂4

2). Hence dimk f
⊥
2 = 3.

Furthermore, f⊥
3 = (f⊥

2 )3 since the ideal f⊥ has no generators of degree

19
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three. This implies that πf
2 and πf

3 have the same base points, which are
(1, 0, 0), (0, 1, 0) and (0, 0, 1). f is evidently a sum of three linear powers and
no less, since f⊥

1 = 0.
Now let g be any ternary quartic such that g⊥1 = 0 and g is a sum of

three linear powers, say g =
∑3

i=1 λi l
4
ai . Then the lai ’s must be linearly

independent, since g⊥1 = 0, and therefore g ∼ f .

Example 3.0.2: Let f = x0x
3
1 + x42. Then f⊥

2 = 〈∂2
0 , ∂0∂2, ∂1∂2〉 and

f⊥
3 = 〈∂3

0 , ∂
2
0∂1, ∂

2
0∂2, ∂0∂1∂2, ∂0∂

2
2 , ∂

2
1∂2, ∂1∂

2
2〉 = (f⊥

2 )3.

We notice that πf
2 and πf

3 have equal base loci since f⊥
3 = (f⊥

2 )3, and that
f⊥
2 equals f⊥

2 of example 2.3.3. Hence πf
3 has two base points, (0, 1, 0) and

(0, 0, 1), where the first one is a double point.
It is obvious that f is a sum of five linear powers, since x0x31 ∈ k[x0, x1]4.

In order to prove that f is not a sum of less than five linear powers, we
assume that f =

∑4
i=1 λi l

4
ai for some distinct points ai ∈ P2. Then I =

∩4
i=1(l

4
ai)

⊥ ⊆ f⊥, and in particular I2 ⊆ f⊥
2 = 〈∂2

0 , ∂0∂2, ∂1∂2〉. If ∂2
0 ∈ I,

then ∂0(ai) = 0 for all i, and hence ∂0(f) = 0. Since this contradicts the
fact that f⊥

1 = 0, we have ∂2
0 6∈ I, and therefore dimk I2 ≤ 2. Now (3.1)

implies that dimk I2 = 2, and that the l2ai ’s are linearly independent. But
this is impossible since 0 = ∂2

0(f) = 12
∑4

i=1 λi ∂0(ai)
2 l2ai .

The following proposition solves the base point case completely. Notice
that once again, we only consider the base locus of πf

e to be a set of points.

Proposition 3.1: Given f ∈ S4 such that f⊥
1 = 0 and πf

3 has at least one
base point. Then πf

3 has less than four base points, and:

(a) if πf
3 has three base points, then f ∼ x40 + x41 + x42, and f is a sum of

exactly three linear powers.

(b) if πf
3 has exactly two base points, then f ∼ x0x

3
1 + x42, which is a sum

of exactly five linear powers.

(c) if πf
3 has only one base point, then f is a sum of exactly four or exactly

six linear powers, except f ∼ x0x
3
1 + x21x

2
2, which is a sum of exactly

seven linear powers.

Furthermore, dimk f
⊥
2 = 2 if f is a sum of exactly four or six linear powers,

and dimk f
⊥
2 = 3 if f is a sum of exactly three, five or seven linear powers.

Proof: First we assume that πf
3 has at least two distinct base points, say

a and b. Then by lemma 2.1, there are δ0, δ1 ∈ T1 such that δ0f = l3a
and δ1f = l3b . Now, δ0 and δ1 are linearly independent, because a and
b are distinct points in P2, and hence by lemma 2.2 we might perform a
linear transformation such that δi = ∂i. Then ∂0f = l3a and ∂1f = l3b ,
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which implies that ∂0∂1f = 3a1 l
2
a = 3b0 l

2
b . Since a and b are distinct, we

must have a1 = b0 = 0 and either a0 6= 0 or b1 6= 0. By integrating the
corresponding equation and performing a linear transformation, we might
assume that f = x42 + g where g ∈ k[x0, x1]4.

Now, (0, 0, 1) is obviously a base point, since ∂2f = 4x32. Let p ∈ P2 be
a second base point, hence δqf = l3p for some δq =

∑2
i=0 qi∂i ∈ T1. Then

3p2 l
2
p = ∂2l

3
p = δq∂2f = δq(4x

3
2) = 12q2x

2
2, which requires that p2 = q2 = 0

since p 6= (0, 0, 1). By performing a suitable linear transformation of k[∂0, ∂1],
we can assume that δq = ∂0, hence ∂0f = ∂0g = l3p. If p0 = 0, then
f ∼ x0x

3
1+x42. By example 3.0.2 this f is a sum of five linear powers, and no

less than five. Moreover, dimk f
⊥
2 = 3 and πf

3 has exactly two base points.
If p0 6= 0, we can integrate to get g = 1

4p0
l4p + cx41. Since dimk f

⊥
1 = 0, we

must have c 6= 0, and then f = x40 + x41 + x42 after a linear transformation.
By example 3.0.1 this f is a sum of exactly three linear powers, dimk f

⊥
2 = 3

and πf
3 has three base points. Thus so far we have proved (a) and (b) and

that πf
3 has less than four base points.

Consider the case where πf
3 has only one base point, a = (a0, a1, a2).

Then there exists δ ∈ T1 such that δf = l3a. Furthermore, by lemma 2.2, we
may assume that δ = ∂0, i.e. ∂0f = l3a. If a0 6= 0, then we can integrate
this equation to get f = 1

4a0
l4a + g where g ∈ k[x1, x2]4. Moreover, we may

assume that f = x40+g after a linear transformation mapping la to 4
√
4a0 x0.

Now if g ∼ x1x
3
2, then f ∼ x40 + x1x

3
2 ∼ x0x

3
1 + x42, but this is impossible

since πf
3 has only one base point. Then by theorem 1.2 and remark 1.2.1, g is

a sum of at most three linear powers. Hence f is a sum of four or less linear
powers. But f cannot be a sum of three linear powers, by example 3.0.1 and
the fact that πf

3 has only one base point. Hence g ∼ x41+x42+(c1x1+c2x2)
4,

and we may assume that f = x40+x41+x42+(c1x1+c2x2)
4 where both ci 6= 0.

Hence f is a sum of exactly four linear powers, and f⊥
2 = 〈∂0∂1, ∂0∂2〉 so

dimk f
⊥
2 = 2.

If a0 = 0, then we can assume that ∂0f = x31. Integration gives

f = x0x
3
1 + g(x1, x2) = (x0 + c0x1 + c1x2)x

3
1 + c2x

2
1x

2
2 + c3x1x

3
2 + c4x

4
2

where g =
∑4

i=0 cix
4−i
1 xi2 ∈ k[x1, x2]4. Since f⊥

1 = 0, not all of c2, c3, c4 can
be zero. Hence after a linear transformation, we might assume that

f = x0x
3
1 + rx21x

2
2 + sx1x

3
2 + tx42

where (r, s, t) ∈ P2. If we look at all second derivatives of f ,

∂2
0f = ∂0∂2f = 0 ∂0∂1f = 3x21 ∂2

1f = 6x0x1 + 2rx22

∂1∂2f = 4rx1x2 + 3sx22 (∂2
2 − 2

3r∂0∂1)f = 6sx1x2 + 12tx22

we see that 〈∂2
0 , ∂0∂2〉 ⊆ f⊥

2 , and the dimension of f⊥
2 depends on whether

∂1∂2f and (∂2
2 − 2

3r∂0∂1)f are proportional or not. In terms of the quantity
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∆ = 8rt− 3s2,

dimk f
⊥
2 =

{
2, ∆ 6= 0

3, ∆ = 0.

First we consider the case ∆ = 0. Then t = 0, because if t 6= 0, then πf
3 has

two base points. Indeed, f − 1
28t3

(sx1 + 4tx2)
4 = (x0 − s4

28t3
x1 − s3

24t2
x2)x

3
1,

hence f ∼ x0x
3
1+x42 and we conclude by example 3.0.2. With t = 0, we have

f ∼ x0x
3
1 + x21x

2
2. Now example 3.1.2 tells us that πf

3 has exactly one base
point and that f is the sum of seven linear powers, and no less.

Finally we suppose ∆ 6= 0. Assume that f is a sum of five linear powers,
i.e. f =

∑5
i=1 λi l

4
ai . This is equivalent to I = ∩5

i=1(l
4
ai)

⊥ ⊆ f⊥, and hence
I2 ⊆ f⊥

2 = 〈∂2
0 , ∂0∂2〉. If ∂2

0 ∈ I, then ∂0(ai) = 0 for all i, hence ∂0 ∈ I.
This implies that ∂0 ∈ f⊥, which is a contradiction. Hence ∂2

0 6∈ I and
dimk I2 ≤ 1. By (3.1), dimk I2 = 1 and l2a1 , . . . , l

2
a5 are linearly independent.

But since ∂2
0 ∈ f⊥, we have

0 = ∂2
0f = 12

5∑

i=1

λi ∂0(ai)
2 l2ai ,

and this is now a contradiction. Hence f is not a sum of five linear powers.
On the other hand, to prove that f is a sum of six linear powers, we consider

g = αf + (x2 + βx1)
4 = (αx0 + β4x1 + 4β3x2)x

3
1 + r′x21x

2
2 + s′x1x32 + t′x42

where r′ = αr+6β2, s′ = αs+4β and t′ = αt+1. If we can choose α and β
such that ∆′ = 8r′t′ − 3(s′)2 = 0 and t′ 6= 0, it follows that πg

3 has two base
points, and g is a sum of five linear powers, as solved above. Furthermore,
if α 6= 0, then f = 1

α(g − (x2 + βx1)
4) is a sum of six linear powers.

To prove that such choices for α and β are possible, just pick β such that
r− 3sβ+6tβ2 6= 0 and s− tβ 6= 0. This is possible since ∆ 6= 0 implies that
not both s and t are zero. Now let α = 8

∆(−r + 3sβ − 6tβ2). Then α 6= 0,
∆′ = α(α∆+ 8(r − 3sβ + 6tβ2)) = 0 and t′ = 3

∆(s− tβ)2 6= 0. ¤

Remark 3.1.1: In the proof of proposition 3.1 we showed that πf
3 has less

than four base points indirectly, we proved that if it has more than one base
point, then it has either two or three. This fact is true in a more general
setting, and it is possible to prove it directly.

Let f ∈ Sd and suppose that πf
d−1 has four distinct base points, a1, . . . , a4.

Then there exist δi ∈ T1 such that δif = ld−1
ai . But the δi’s must be linearly

dependent, say
∑4

i=1 ciδi = 0 for some ci ∈ k. Then
∑4

i=1 ci l
d−1
ai = 0 also,

but four distinct (d− 1)th-powers are linearly independent for d ≥ 4.

Example 3.1.2: Let f = 1
3x0x

3
1+

1
2x

2
1x

2
2. Note that ∂1f = x0x

2
1+x1x

2
2 is the

polynomial studied in example 2.3.2. Furthermore, f⊥
2 = 〈∂2

0 , ∂
2
2−∂0∂1, ∂0∂2〉
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and

f⊥
3 = 〈∂3

0 , ∂
2
0∂1, ∂

2
0∂2, ∂0∂1∂2, ∂0∂

2
2 , ∂

3
2 , ∂1(∂

2
2 − ∂0∂1)〉 = (f⊥

2 )3.

In this case we see that πf
3 has only one base point, namely (0, 1, 0). We

notice that f⊥
2 equals f⊥

2 of example 2.3.2, and that πf
2 and πf

3 have the
same base locus. The scheme corresponding to T/(f⊥

3 ) is a triple point, and
it is this fact that makes f so exceptional.

Assume that f =
∑6

i=1 λi l
4
ai , where a1, . . . , a6 are six distinct points in

P2. Let I = ∩6
i=1(l

4
ai)

⊥ ⊆ f⊥, then in particular, I2 ⊆ f⊥
2 . Since ∂2

0 6∈ I

and 0 = ∂2
0(f) = 12

∑6
i=1 λi ∂0(ai)

2 l2ai , we must have dimk I2 ∈ {1, 2}. If
dimk I2 = 2, then there are two quadrics in f⊥

2 passing through all six points.
Then these points should be contained in a fibre of πf

2 , which is impossible
(see example 2.3.2). Hence dimk I2 = 1, i.e. I2 = 〈D0〉 for some D0 ∈ f⊥

2 .
Since dimk I3 ≥ 4 by (3.1), there exists D1 ∈ I3r(D0)3. Now (D0, D1) ⊆

I ⊆ f⊥, and {a1, . . . , a6} ⊆ X where X = V (D0) ∩ V (D1). We notice that
any D in f⊥

2 or f⊥
3 intersects {∂0 = 0} singularly in (0, 1, 0). Hence D0 and

D1 also intersect singularly in (0, 1, 0). If they have no common factor, then
X consists of less than six distinct points, which is a contradiction.

When D0 and D1 have a common factor, we want to prove that X is
contained within a line and a point. Then at least five of the points ai must
be contained in the line, and hence dimk I2 ≥ 2, which is a contradiction.

Assume that D0 and D1 have a common factor, then D0 must be re-
ducible since D1 6∈ (D0), and therefore D0 ∈ 〈∂2

0 , ∂0∂2〉. Since we know
that D0 6= ∂2

0 , it follows that D0 = ∂0(∂2 + c∂0) for some c ∈ k. Then D1

must have ∂0 or ∂2 + c∂0 as a factor, and therefore D1 ∈ (∂2
0 , ∂0∂2)3 + 〈∂3

2〉.
Since (∂2

0 , ∂0∂2) = (∂2
0 , D0), we might assume that D0 ∈ (∂2

0)3+〈∂3
2〉 without

changing X. Then D1 = δa∂
2
0 + b∂3

2 for suitable δa =
∑2

i=0 ai∂i ∈ T1 and
b ∈ k. We see that D0 and D1 have ∂0 as a common factor if and only if
b = 0, but then X ⊆ {∂0 = 0}∪{a point}. Hence b 6= 0, and we may assume
that b = 1. Then D0 and D1 must have ∂2 + c∂0 as a common factor, which
means that the point (1, c′,−c) ∈ {D1 = 0} for all c′ ∈ k. This implies that
a1 = 0. Then D1 ∈ k[∂0, ∂2], which means that {D1 = 0} consists of three
lines through (0, 1, 0). Then X = {∂2 + c∂0}, and we have the contradiction
we sought.

Since f + x42 obviously is a sum of six linear powers, the conclusion is
that f is a sum of seven linear powers, and no less.

Remark 3.1.3: Let us have another look at f = x0x
3
1+ rx21x

2
2+ sx1x

3
2+ tx42

where (r, s, t) ∈ P2 and ∆ = 8rt−3s2. When ∆ 6= 0, it is possible to perform
linear transformations such that (r, s, t) = (0, 1, 0) or (1, 0, 1). Indeed, if
t 6= 0, then we can assume t = 1, and by performing x2 7→ x2 − s

4x1, we
might assume s = 0. Now r must be nonzero, since f is not a sum of less
than six linear powers. Hence by scaling x1 and x0, we may assume r = 1. If
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t = 0 then ∆ 6= 0 implies s 6= 0. By scaling x2 we might assume s = 1, and
then the linear transformation x2 7→ x2 − r

3x1 permits us to assume r = 0.
Hence the following is true:

∆ = 0 ∧ t 6= 0 ⇒ f ∼ x0x
3
1 + x42 a sum of 5 linear powers

∆ 6= 0 ∧ t = 0 ⇒ f ∼ x0x
3
1 + x1x

3
2 a sum of 6 linear powers

∆ 6= 0 ∧ t 6= 0 ⇒ f ∼ x0x
3
1 + x21x

2
2 + x42 a sum of 6 linear powers

∆ = 0 ∧ t = 0 ⇒ f ∼ x0x
3
1 + x21x

2
2 a sum of 7 linear powers

3.2 dimk f
⊥
2 ≥ 2

First we will look at f ∈ S4 such that Af = T/f⊥ has Hilbert function
(1, 3, 4, 3, 1). This means that f⊥

2 = 〈D0, D1〉 for some linearly independent
Di ∈ T2. We know that f =

∑s
i=1 λi l

4
ai ⇔ ∩s

i=1(l
4
ai)

⊥ ⊆ f⊥ and the right
inclusion implies that ∩s

i=1(l
4
ai)

⊥
2 = ∩s

i=1(l
2
ai)

⊥
2 ⊆ f⊥

2 = 〈D0, D1〉. Thus if f
is a sum of four linear powers, then ∩4

i=1(l
2
ai)

⊥
2 = 〈D0, D1〉 by (3.1). Hence

Dj(ai) = 0 for all i and j. If we let Xf = {D0 = 0} ∩ {D1 = 0}, this means
that ai ∈ Xf for all i. The following result tells us that f is a sum of either
four or six linear powers, depending on how Xf looks like.

Theorem 3.2:
Given f ∈ S4 such that f⊥

2 = 〈D0, D1〉, let Xf = V (D0) ∩ V (D1).

(a) If Xf consists of four distinct points, then f is a sum of the corre-
sponding four linear powers.

(b) If Xf is supported at less that four points, then f is a sum of six linear
powers, and no less.

(c) If Xf is supported at a line and a point outside the line, then f is a
sum of four linear powers.

(d) If Xf has support on a line only, then f is a sum of exactly six linear
powers.

Proof: We recall that by remark 0.5.1, f cannot be a sum of less than four
linear powers, since dimk A

f
2 = 4. To prove (a), let a1, . . . , a4 be the four

points of Xf , and let I = ∩4
i=1mai . Then I = (D0, D1) by theorem 0.8.

Hence I ⊆ f⊥, and by corollary 0.5, f =
∑4

i=1 λi l
4
ai for suitable λi ∈ k.

To prove (c) and (d), we recall that by lemma 2.1 a point a is a base point
of πf

3 if and only if δ0f = l3a for some δ0 ∈ T1. Moreover, this is equivalent to
δ0δ1f = δ0δ2f = 0 for some δ1, δ2 ∈ T1 such that {δ1 = 0} ∩ {δ2 = 0} = {a},
because f⊥

1 = 0. Hence, since dimk f
⊥
2 = 2, we see that a point a ∈ P2 is a

base point of πf
3 if and only if f⊥

2 = 〈δ0δ1, δ0δ2〉 for some δi ∈ T1 such that
{δ1 = 0} ∩ {δ2 = 0} = {a}. Note that πf

3 cannot have more than one base
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point by proposition 3.1 since dimk f
⊥
2 = 2. We realize that both (c) and (d)

correspond to base point cases of proposition 3.1. In (c) the base point a lies
outside the line {δ0 = 0}, hence ∂0f = x30 after a linear transformation, and
from the proof of proposition 3.1 we see that f is a sum of exactly four linear
powers. In (d) the base point a lies on the line {δ0 = 0}, hence ∂0f = x31
after a linear transformation, and from the proof of proposition 3.1 we see
that f is a sum of exactly six linear powers.

In (b), Xf has support on less than four points. Then it follows from the
argument given prior to this theorem, that f cannot be a sum of four linear
powers. Assume that f is a sum of five linear powers, say f =

∑5
i=1 λi l

4
ai ,

λi 6= 0, and let I = ∩5
i=1(l

4
ai)

⊥. By lemma 0.4, I ⊆ f⊥, and hence dimk I2 ≤
2. If dimk I2 = 2, then I2 = f⊥

2 = 〈D0, D1〉, and thus Dj(ai) = 0 for all
i and j. This means that ai ∈ Xf for all i, which is impossible since Xf

is supported at less than four points. Hence dimk I2 ≤ 1, and by (3.1),
dimk I2 = 1 and the lai ’s are linearly independent. Moreover, I2 = 〈D′

0〉 for
some D′

0 ∈ f⊥
2 . Pick D′

1 ∈ f⊥
2 such that f⊥

2 = 〈D′
0, D

′
1〉. Then

0 = D′
1(f) =

5∑

i=1

λiD
′
1

(
l4ai

)
= 12

5∑

i=1

λiD
′
1(ai) l

2
ai

which is a contradiction since D′
1 6∈ I implies that D′

1(ai) is not 0 for all i.
In order to prove that f is a sum of six linear powers, we consider πf

3 .
Since D0 and D1 are relative prime, we realize that πf

3 is base-point-free,
compare with the paragraph concerning (c) and (d). Therefore, by Bertini’s
theorem, the general member of the linear system f⊥

3 is nonsingular. Since
D0 and D1 have no common factor, it follows that dimk(D0, D1)3 = 6.
Thus f⊥

3 = (D0, D1)3 + 〈D2〉 for some D2 ∈ T3. Since {c = 0} is a proper
closed subset of f⊥

3 = {cD2 +D3 |D3 ∈ (D0, D1)3}, we can find D ∈ f⊥
3 r

(D0, D1)3 that is nonsingular. Now define ϕ : {D = 0} → P1 by ϕ(P ) =
(D0(P ), D1(P )). This map is base-point-free, since f⊥

3 = (D0, D1)3 + 〈D〉
and any base point of ϕ would be a base point of πf

3 as well. Now Bertini’s
theorem implies that the general member of 〈D0, D1〉 is nonsingular when
considered as a subscheme of {D = 0}. Let D′ be one such member. Hence
we have D ∈ f⊥

3 and D′ ∈ f⊥
2 that intersect nonsingularly, i.e. in six distinct

points, say a1, . . . , a6. Let Γ = {a1, . . . , a6}. Then IΓ = (D,D′) by theorem
0.8, and by corollary 0.5, there exist λi such that f =

∑6
i=1 λi l

4
ai . ¤

Example 3.2.1: Let f = x0x
3
1 + 3x20x1x2. We start by observing that since

f⊥
2 = 〈∂2

1 − ∂0∂2, ∂
2
2〉, we have Xf = {(1, 0, 0)}. Then by theorem 3.2, f

should be a sum of exactly six linear powers. To find such an representation
explicitly, we look at f⊥

3 . We see that

f⊥
3 = 〈∂3

0 , ∂
2
1∂2, ∂0∂

2
2 , ∂1∂

2
2 , ∂

3
2 , ∂0(∂

2
1 − ∂0∂2), ∂1(∂

2
1 − ∂0∂2)〉,
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and hence f⊥
3 = 〈∂3

0〉+(f⊥
2 )3. In the proof of theorem we used a D ∈ f⊥

2 and
a D′ ∈ f⊥

3 which intersected nonsingularly. We can achieve this by choosing
D = ∂2

1 − ∂0∂2 and D′ = ∂3
0 − ∂3

2 . In fact, the intersection is now

{D = 0} ∩ {D′ = 0} = {(1,±1, 1), (1,±ε, ε2), (1,±ε2, ε)}

where ε = e2πi/3 is a third-root of 1. Now f should be a sum of six linear
powers corresponding to these six points. Indeed, we see that

f = 1
24

(
(x0 + x1 + x2)

4 − (x0 − x1 + x2)
4 + (x0 + εx1 + ε2x2)

4

− (x0 − εx1 + ε2x2)
4 + (x0 + ε2x1 + εx2)

4 − (x0 − ε2x1 + εx2)
4
)
.

Remark 3.2.2: We note that if f is a sum of four “general enough” linear
powers, indeed any f ∼ x40 + x41 + x42 + l4a where la 6= xi, then dimk f

⊥
2 = 2,

compare with remark 0.5.1. If ai 6= 0 for all i, this f belongs to category
(a) of theorem 3.2, while it belongs to (c) if ai = 0 for exactly one i. From
the proof of proposition 3.1, we know that category (d) is nonempty, and
together with example 3.2.1 this proves that all four categories of theorem
3.2 are nonempty.

Now we turn to f ∈ S4 such that dimk f
⊥
2 = 3. This case is rather simple,

as the following theorem tells us.

Theorem 3.3:
Given f ∈ S4 such that Af has Hilbert function (1, 3, 3, 3, 1). Then either

(a) f ∼ x40 + x41 + x42, a sum of three linear powers, or

(b) f ∼ x0x
3
1 + x42, a sum of five linear powers, or

(c) f ∼ x0x
3
1 + x21x

2
2, a sum of seven linear powers.

Proof: Note that dimk f
⊥
2 = 3, and assume that πf

2 is base-point-free. By
Bertini’s theorem there are two quadricsD0, D1 ∈ f⊥

2 which intersect nonsin-
gularly, i.e. in four distinct points. Let Γ = V (D0) ∩ V (D1) = {a1, . . . , a4}.
By theorem 0.8, IΓ = (D0, D1). Since Di ∈ f⊥, we have IΓ ⊆ f⊥, and by
corollary 0.5, f =

∑4
i=1 λi l

4
ai for suitable λi ∈ k. Since f⊥

1 = 0, then {lai}
must be a basis for S1, and either f ∼ x40 + x41 + x42 or f ∼ x40 + x41 + x42 + l4a.
The first case is impossible since we assumed that πf

2 had no base points.
Hence after a linear transformation, we get f = x40 + x41 + x42 + l4a where
a 6= (1, 0, 0), (0, 1, 0), (0, 0, 1). But then dimk A

f
2 = 4, which is a contradic-

tion.
Hence πf

2 has at least one base point, and so has πf
3 , since f⊥

3 = (f⊥
2 )3.

Note that the ideal f⊥ has three generators of degree two and two of degree
four, see for instance [16] or [4]. Now the conclusion follows easily from
proposition 3.1, since dimk f

⊥
2 = 3. ¤
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3.3 dimk f
⊥
2 = 1

We now turn our attention to the case whereAf = T/f⊥ has Hilbert function
(1, 3, 5, 3, 1). We know from (3.1) that such an f cannot be a sum of less
than five linear powers. Furthermore, f⊥

2 = 〈D0〉 for some D0 ∈ T2. Here
D0 might be nonsingular or not, and our discussion will deal with each case
quite differently. In both cases however, if f is a sum of six or less linear
powers, then the six points must lie on {D0 = 0}, i.e.

f =
s∑

i=1

λi l
4
ai where s ≤ 6 ⇒ {a1, . . . , as} ⊆ {D0 = 0}. (3.2)

To prove this, look at I = ∩s
i=1(l

4
ai)

⊥ ⊆ f⊥. We know that dimk I2 ≤
dimk f

⊥
2 = 1 and dimk I2 = dimk T2 − dimk〈l2a1 , . . . , l2as〉 ≥ 6− s. For s = 6,

assume that dimk I2 = 0. Then dimk〈l2a1 , . . . , l2a6〉 = 6, hence the l2ai ’s are
linearly independent by (3.1). But 0 = D0(f) = 12

∑s
i=1 λiD0(ai) l

2
ai , which

is a contradiction. Hence dimk I2 = 1 in all cases, which means that I2 =
〈D0〉 and D0(ai) = 0 for all i.

3.3.1 D0 nonsingular

In this case D0 is a nonsingular quadric, and the discussion of this case is
inspired by the one found in [16].

Theorem 3.4:
Any f such that f⊥

2 = 〈D0〉 with D0 nonsingular, is a sum of exactly five
linear powers.

Proof: Since Af is Gorenstein of codimension 3, the structure theorem of
Buchsbaum-Eisenbud [2] applies. Hence Af has the following minimal free
resolution

0 → T (−7) → F2 → F1 → T → Af → 0

where F1 = T (−3) ⊕ T (−2)⊕4, F ∗
2
∼= F1(7), φ is a skew-symmetric 5 × 5

matrix and f⊥ is generated by the 4× 4 pfaffians of φ. Thus

φ =




0 q1 q2 q3 q4
−q1 0 δ1 δ2 δ3
−q2 −δ1 0 δ4 δ5
−q3 −δ2 −δ4 0 δ6
−q4 −δ3 −δ5 −δ6 0




(3.3)

where qi ∈ T2 and δi ∈ T1. Now we want to perform “symmetrical” row- and
column-operations on φ to obtains a skew-symmetrical matrix with more
zeroes. Such operations do not change the ideal generated by the pfaffians.
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If the forms δ3, δ5 and δ6 are linearly dependent, we get a matrix with
zeroes at the positions where ±δ6 are now by performing the suitable row-
and column-operations. In particular, if δ3 = 0, then just interchange the
second and the fourth row. If δ5 = aδ3 for some a ∈ k, then subtract a times
the second row from the third row, and then interchange row number three
and four. If δ6 = aδ3 + bδ5 for some scalars a, b ∈ k, then replace the fourth
row with itself minus a times the second row minus b times the third row.

Next we assume that δ3, δ5 and δ6 are linearly independent. By inter-
changing the last two columns, we may assume that {δ2, δ4, δ6} is a basis
for T1. Hence δ3 = a2δ2 + a4δ4 + a6δ6 for some ai ∈ k, and by subtracting
a6 times the fourth row from the second, we get δ3 ∈ 〈δ2, δ4〉. Similarly we
may assume that δ5 ∈ 〈δ2, δ4〉. Hence δi = ai2δ2 + ai4δ4 for i = 3, 5, where
aij ∈ k. Then by subtracting µ times the fourth row from the fifth, where
µ is a solution of

∣∣ a32−µ a52
a34 a54−µ

∣∣ = 0, it follows that dimk〈δ3, δ5〉 = 1. Thus
the δ’s in the last column are linearly dependent, and hence we can, without
loss of generality, assume that δ6 = 0.

Now the 4×4 pfaffian that gives D0, the quadric generator of f⊥, equals
δ3δ4− δ2δ5. This is irreducible by assumption, hence in particular, δ2 and δ3
must be nonproportional. Then either δ4 ∈ 〈δ2, δ3〉, or {δ2, δ3, δ4} is a basis
for T1. In the first case, by subtracting a suitable multiple of the second row
from the third and then scale the third row, we can assume that δ4 = δ3.
In the second case, by expressing δ5 as a linear combination of δ2, δ3 and
δ4, and subtracting its components along δ3 and δ4, we might assume that
δ5 = δ2. Then interchange the last two rows and columns to get δ4 = δ3.

If δ5 ∈ 〈δ2, δ3〉, then D0 = δ23 − δ2δ5 is a polynomial in two variables,
which contradicts the fact that D0 is irreducible. Therefore, {δ2, δ3, δ5} is a
basis for T1, and after a linear transformation, we get δ2 = ∂0, δ3 = ∂1 and
δ5 = ∂2. Furthermore, we get δ1 = 0 by subtracting suitable multiples of the
fourth and fifth column from the third, and a suitable multiple of the fifth
row from the second. All in all, we have proved that after several row- and
column-operations, we can assume that

φ =




0 q1 q2 q3 q4
−q1 0 0 ∂0 ∂1
−q2 0 0 ∂1 ∂2
−q3 −∂0 −∂1 0 0
−q4 −∂1 −∂2 0 0




(3.4)

where qi ∈ T2. The pfaffians of this matrix are

∂2
1 − ∂0∂2 q2∂0 − q1∂1 q2∂1 − q1∂2 q4∂0 − q3∂1 q4∂1 − q3∂2

and we see that D0 = ∂2
1 − ∂0∂2 is irreducible, as it should be.

Since we below will need to make a linear combination of the qi’s, we
notice that by adding c times the second column to the fourth, and c times
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the third to the fifth, and performing the “symmetrical” row-operations, we
get a matrix that is equal to the one we have, except for q3 and q4. The new
entries are q′3 = q3 + cq1 and q′4 = q4 + cq2. Hence the two new pfaffians are
q′4∂i − q′3∂i+1 = (q4∂i − q3∂i+1) + c(q4∂i − q3∂i+1) for i = 0, 1.

Now, P ∈ {∂2
1 − ∂0∂2 = 0} ⊆ P2 if and only if P = (s2, st, t2) for some

(s, t) ∈ P1. Hence the three pfaffians D0, q2∂0 − q1∂1 and q2∂1 − q1∂2 are all
zero if and only if q̄2s− q̄1t = 0, where q̄i = qi(s

2, st, t2) ∈ k[s, t]4. Similarly,
D0 and the two last pfaffians are zero if and only if q̄4s− q̄3t = 0.

If every linear combination of q̄2s− q̄1t and q̄4s− q̄3t have multiple zeroes,
then by lemma 1.1, they must have a common (double) zero (s, t) ∈ P1. But
then (s2, st, t2) ∈ P2 would be a common zero for all five generator of f⊥,
which is impossible. Hence there is a linear combination of q̄2s − q̄1t and
q̄4s− q̄3t that has five distinct roots. As we noticed above, we may assume
that this is q̄4s− q̄3t. Now let ψ be the upper right 3× 2 submatrix of φ, i.e.

ψ =



q3 q4
∂0 ∂1
∂1 ∂2


 .

Then the three pfaffians D0, D1 = q4∂0 − q3∂1 and D2 = q4∂1 − q3∂2 of
φ equals the 2 × 2 minors of ψ, and they intersect in five distinct points,
say Γ = {a1, . . . , a5}. By Hilbert-Burch [6, theorem 20.15] the homogenous
ideal IΓ of these points is generated by the 2 × 2 minors of ψ. Hence IΓ =
(D0, D1, D2) ⊆ f⊥, and we get f =

∑5
i=1 λi l

4
ai for suitable λi ∈ k by

corollary 0.5. ¤

3.3.2 D0 singular

We now turn our attention to the case where D0 is singular, and since D0

is a quadric, this means that D0 is reducible. If an f with f⊥
2 = 〈D0〉 is a

sum of five linear powers, then one way to find such a representation, is to
subtract a suitable linear power from f . Hopefully, we get a new polynomial
g with dimk g

⊥
2 = 2, and by theorem 3.2 we know when such a polynomial is

a sum of four linear powers. This is essensially what we are going to do, but
first we need to do some preparations, starting with the following lemma, in
which trM is the trace of M and idn is the n× n identity matrix.

Lemma 3.5: Let Mn = (mij) be an n× n matrix of rank ≤ 1. Then

det
(
idn−λMn

)
= 1− λ · trMn. (3.5)

Proof: If n = 1, the statement is obviously true. Assume that equation (3.5)
is true for some n ≥ 1, and let ~mi and ~ei be the ith column of Mn+1 and
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idn+1, respectively. Then
∣∣~e1 − λ~m1 ~e2 − λ~m2 · · · ~en − λ~mn ~mn+1

∣∣
=

∣∣~e1 ~e2 − λ~m2 · · · ~en − λ~mn ~mn+1

∣∣
− λ

∣∣~m1 ~e2 − λ~m2 · · · ~en − λ~mn ~mn+1

∣∣
=

∣∣~e1 ~e2 − λ~m2 · · · ~en − λ~mn ~mn+1

∣∣− λ · 0
= . . . =

∣∣~e1 ~e2 · · · ~en ~mn+1

∣∣ = mn+1,n+1

and therefore

det
(
idn+1−λMn+1

)
=

∣∣~e1 − λ~m1 · · · ~en − λ~mn ~en+1 − λ~mn+1

∣∣
=

∣∣~e1 − λ~m1 · · · ~en − λ~mn ~en+1

∣∣
− λ

∣∣~e1 − λ~m1 · · · ~en − λ~mn ~mn+1

∣∣
= det

(
idn−λMn

)− λ ·mn+1,n+1

= 1− λ · trMn+1

and the lemma follows by induction on n. ¤

Assume we have an f ∈ S4 with f⊥
2 = 〈D0〉 for some D0 ∈ T2. Our

goal is now to find a method that determines when it is possible to subtract
a linear power from f and get a new form g which is a sum of four linear
powers. First choose D1, . . . , D5 ∈ T2 such that D = {D0, . . . , D5} is a basis
for T2. Observe that with this basis we have

CatD
(
f
)
=

[
0 0
0 A

]

where A is a symmetrical 5 × 5 matrix. In fact, in terms of the vector
vT = [D1, . . . , D5], we see that A = (vvT )(f). Futhermore, A is invertible
since rankCatD(f) = dimk A

f
2 = 5 by (0.9). For any a ∈ {D0 = 0} we have

CatD
(
l4a
)
=

[
0 0
0 C

]
and CatD

(
g
)
=

[
0 0
0 A− λC

]

where C = (vvT )(l4a) and g = f − λ l4a. Since DiDj(l
4
a) = 24Di(a)Dj(a), it

follows that C = 24 v(a)v(a)T . Hence rankC = 1, and

rankCatD(g) = rank(A− λC) ≥ rankA− rankC = 4

with equality if and only if det(A − λC) = 0. If we let B = A−1, then this
is equivalent to det(id5−λBC) = 0. As we have proved in lemma 3.5, this
determinant equals 1−λ·tr(BC). Using the fact that tr(u1uT2 ) = tr(uT2 u1) =
uT2 u1 holds for any columnvectors u1 and u2, we get

tr(BC) = 24 tr(Bv(a)v(a)T ) = 24 v(a)TB v(a) = 24 η(a)
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where we define η ∈ T4 by
η = vTB v. (3.6)

Hence if η(a) = 0, the rank of CatD(g) always equals 5. However, if η(a) 6= 0,
then there exists a unique λa ∈ k such that rankCatD(f−λa l

4
a) = 4, namely

λa = 1
24 η(a) .

Since dimk(f−λa l
4
a)

⊥
2 = 2 andD0(f−λa l

4
a) = D0(f)−12λaD0(a) l

2
a = 0,

it follows that (f − λa l
4
a)

⊥
2 = 〈D0, ρa〉 for some ρa ∈ 〈D1, . . . , D5〉. This ρa

is unique up to a scalar. Now 0 = ρa(f − λa l
4
a) = ρa(f) − 12λa ρa(a) l

2
a,

hence ρa(a) 6= 0 because ρa(f) 6= 0. Scale ρa such that ρa(a) = η(a), and let
ρa =

∑5
i=1 ciDi = cT v. For all j we now have

0 = ρaDj(f − λal
4
a) = ρaDj(f)− 24λaρa(a)Dj(a) =

5∑

i=1

ciDiDj(f)−Dj(a)

Written as a matrix equation, this says Ac = v(a). Hence c = B v(a) and

ρa = v(a)TB v = vTB v(a). (3.7)

In particular, we notice that ρa 6= 0 since v(a) 6= 0.
Notice that both η and ρa are independent of the basis D, as long as

D0 is one of the basisvectors. If E = {D0, E1, . . . , E5} is another basis, then
vE = MvD for some invertible 5× 5 matrix M . Here vTE = [E1, . . . , E5] and
vD is the columnvector v above. Now AE = (vEvTE )(f) = (MvDvTDM

T )(f) =
MADMT and BE = A−1

E = (MT )−1BDM−1. Hence

ηE = vTE BE vE =
(
vTDM

T
)(
(MT )−1BDM−1

)(
MvD

)
= vTDBD vD = ηD,

and similarly for ρa. If E is a basis that does not have D0 as a basisvector,
then our method to define η and ρa fails, and we just define η and ρa to be
the same polynomials as in the cases where E contains D0. Also notice that
η is nonzero as an element of T , since

η(f) = tr
(
BvvT

)
(f) = tr

(
BvvT (f)

)
= tr(BA) = tr(id5) = 5. (3.8)

Now, if there exists an a 6∈ {η = 0} such thatD0 and ρa intersect in either
four distinct points or a line and a point outside the line, then theorem 3.2
tells us that f−λal

4
a is a sum of four linear powers, and f is then a sum of five.

On the other hand, if f =
∑5

i=1 λi l
4
ai , then {a1, . . . , a5} ⊆ {D0 = 0}, as we

proved in the beginning of section 3.3. Futhermore, gj = f − λj l
4
aj is a sum

of four linear powers, hence rankCatD(gj) ≤ 4 by (0.9) and (0.8). Since we
have already shown that this rank is ≥ 4, it follows that rankCatD(gj) = 4.
Then we must have aj 6∈ {η = 0}, λj = λaj and (gj)

⊥
2 = 〈D0, ρaj 〉. Since

gj is a sum of four linear powers, it follows from theorem 3.2 that D0 and
ρaj intersect in either four distinct points or a line and a point outside. The
other four points, {ai | i 6= j}, are contained in this intersection.
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Example 3.5.1: As an example of the quantities we have just introduced, let
us look at f = 1

24

(
(c0x0+4x2)x

3
0+6x21x

2
2+ c1x

4
2

)
, where cj ∈ k. We see that

f⊥
2 = 〈∂0∂1〉, hence our discussion above applies. As a basis for T2, choose
D = {∂0∂1, ∂2

0 , ∂
2
1 , ∂

2
2 , ∂0∂2, ∂1∂2}, and let vT = [∂2

0 , ∂
2
1 , ∂

2
2 , ∂0∂2, ∂1∂2]. Then

CatD(f) =
[
0 0
0 A

]
where A = (vvT )(f) =




c0 0 0 1 0
0 0 1 0 0
0 1 c1 0 0
1 0 0 0 0
0 0 0 0 1



.

In particular, we see that A is invertible, and its inverse B is given by

B = A−1 =




0 0 0 1 0
0 −c1 1 0 0
0 1 0 0 0
1 0 0 −c0 0
0 0 0 0 1



.

Using η = vTB v (3.6) and ρa = vTB v(a) (3.7), we see that

η = 2∂3
0∂2 − c0∂

2
0∂

2
2 − c1∂

4
1 + 3∂2

1∂
2
2 ,

ρa = a0a2∂
2
0 + (a22 − c1a

2
1)∂

2
1 + a21∂

2
2 + a0(a0 − c0a2)∂0∂2 + a1a2∂1∂2,

and simple calculations now gives η(f) = 5, as expected.
For any a ∈ Y0 := {∂0 = 0}, we have ρa = (a22−c1a

2
1)∂

2
1+a21∂

2
2+a1a2∂1∂2.

Hence the intersection between Ca := {ρa = 0} and Y1 := {∂1 = 0} is given
by a21∂

2
2 = 0. If a1 6= 0, this intersection is just the (double) point (1, 0, 0),

and Xf := Ca ∩ Cf , where Cf := {∂0∂1 = 0} = Y0 ∪ Y1, is supported at less
than four points. If a1 = 0, then a = (0, 0, 1) and ρa = ∂2

1 . In this case Xf

has support on a line only.
Next we notice that ρa = a0a2∂

2
0 + a22∂

2
1 + a0(a0 − c0a2)∂0∂2 for any

a ∈ Y1. Therefore, Ca ∩ Y0 = {a22∂2
1 = 0}, which is a double point if a2 6= 0.

On the other hand, if a2 = 0, then a = (1, 0, 0) and ρa = ∂0∂2. Hence Xf

has support on a line and a point outside the line. But now η(1, 0, 0) = 0.
Since for any a ∈ Cf , either a ∈ {η = 0} or Xf = Ca ∩ Cf has support

in less than four points or on a line, it follows from the discussion preceding
this example, that f cannot be a sum of five linear powers.

Remark 3.5.2: The polynomial f studied in example 3.5.1 is not the only
polynomial that is not a sum of five linear powers. Both h1 and h2 where

h1 =
1
24

(
(c0x0 + 4x2)x

3
0 + x41 + (4x1 + c1x2)x

3
2

)

h2 =
1
24

(
(c0x0 + 4x2)x

3
0 + (c1x1 + 4x2)x

3
1 + x42

)
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share this property with f . In both cases, (hi)⊥2 = 〈∂0∂1〉. With h1 we have

η = 2∂3
0∂2 − c0∂

2
0∂

2
2 + ∂4

1 − c1∂
2
1∂

2
2 + 2∂1∂

3
2 ,

ρa = a0a2∂
2
0 + a21∂

2
1 + a1a2∂

2
2 + a0(a0 − c0a2)∂0∂2 + a2(a2 − c1a1)∂1∂2,

while using h2 we get

η = 2∂3
0∂2 − c0∂

2
0∂

2
2 + 2∂3

1∂2 − c1∂
2
1∂

2
2 + ∂4

2 ,

ρa = a0a2∂
2
0 + a1a2∂

2
1 + a22∂

2
2 + a0(a0 − c0a2)∂0∂2 + a1(a1 − c1a2)∂1∂2.

In both cases it is easy to check that Ca ∩Chi is supported at less than four
points or at just a line for all a ∈ Chi such that η(a) 6= 0.

Theorem 3.6 tells us that up to linear transformations, these polynomials
are the only ones with f⊥

2 = 〈D0〉 and D0 singular, which are not a sum of
five linear powers.

We are now ready to prove the following theorem, which tells us how
many linear powers are needed to express an f with dimk f

⊥
2 = 1 as a linear

combination of them.

Theorem 3.6:
Given f ∈ S4 such that f⊥

2 = 〈D0〉 and D0 is singular. If {D0 = 0} is a
product of two distinct lines, then f is a sum of five linear powers, except
when

1. f ∼ (c0x0 + x2)x
3
0 + x21x

2
2 + c1x

4
2

2. f ∼ (c0x0 + x2)x
3
0 + x41 + (x1 + c1x2)x

3
2

3. f ∼ (c0x0 + x2)x
3
0 + (c1x1 + x2)x

3
1 + x42

In these three cases, f is a sum of six linear powers. If {D0 = 0} is a double
line, then f is a sum of exactly seven linear powers.

Proof: The simlest case is when {D0 = 0} is a double line, that is, D0 = δ2

for some δ ∈ T1. If f is a linear combination of l4a1 , . . . , l
4
as where s ≤ 6,

then {a1, . . . , as} ⊆ {D0 = 0}, as we proved in the beginning of section 3.3.
Hence δ(ai) = 0 for all i, and therefore δ(f) = 0. But this contradicts the
fact that f⊥

1 = 0. To prove that f is indeed a sum of seven linear powers, we
just have to notice that since η 6= 0 by (3.8), we can find a 6∈ {η = 0}. Then
dimk(f − λal

4
a)

⊥
2 = 2, and by theorem 3.2, f − λal

4
a is a sum of six linear

powers.
When {D0 = 0} is a product of two distinct lines, we may assume that

D0 = ∂0∂1 after a linear transformation. Hence f = h0(x0, x2) + h1(x1, x2)
where both h0 and h1 are binary forms. First we want to prove that f
necessarily is a sum of six linear powers. If not, at least one of the hi’s cannot
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be a sum of three linear powers. In fact, since f = (h0 + cx42) + (h1 − cx42),
we can assume that h0+ cx42 is not a sum of three linear powers for infinitely
many c ∈ k. By remark 1.2.1, this means that h0 + cx42 = l1l

3
2 for some

li = li(c) ∈ S1 for these c. Hence h0+cx42 is not squarefree for infinitely many
c, and by the proof of lemma 1.1, we conclude that they must have a common
multiple root. Hence h0 = lx32 for some l ∈ S1, but then ∂2

0f = ∂2
0h0 = 0,

which contradicts the fact that f⊥
2 = 〈∂0∂2〉.

Consider ∂0f = ∂0h0. If ∂0h0 � x0x
2
2, then by remark 1.2.1 ∂0h0 = l3a+l3b

for some la, lb ∈ k[x0, x2]1. Here a and b must be distinct points in P1, or
else dimk f

⊥
2 > 1. Assume that a0, b0 6= 0, and let g = f − 1

4a0
l4a and

δ = b0∂2 − b2∂0. Now δ∂0g = δ(∂0f − l3a) = δ(l3b ) = 0, and furthermore
∂0∂1g = ∂0(∂1f − 0) = 0. Also rankCat(g) ≥ 4 since rankCat(f) = 5.
Therefore, g⊥2 = 〈∂0∂1, ∂0δ〉. We see that {∂1 = 0}∩{δ = 0} = b 6∈ {∂0 = 0},
and by theorem 3.2 g is a sum of four fourth-powers of linear forms. Hence
f is a sum of five linear powers.

Now assume that f is not a sum of five linear powers. Then, for both
i = 0 and i = 1, the previous paragraph shows that ∂ihi must equal either
l31 + x32 or l2l23 for some lj ∈ k[xi, x2]1. If ∂ihi = l31 + x32 with ∂il1 6= 0, then
hi =

1
4∂il1

l41 + xix
3
2 + cx42 for some c ∈ k. Thus hi = x4i + lax

3
2 where ai 6= 0

after a linear transformation of k[xi, x2]1 that leaves x2 fixed. If ∂ihi = l1l
2
2,

then 12(∂il2)
2hi = (4(∂il2)l1 − (∂il1)l2)l

3
2 + cx42 for some c ∈ k. If ∂il2 6= 0,

it follows that hi = lbx
3
i + cx42 with b2 6= 0 after a linear transformation

that leaves x2 fixed. If ∂il2 = 0, then ∂ihi = l1x
2
2 where ∂il1 6= 0. Hence

hi =
1

2∂il1
l21x

2
2 + cx42 for some c ∈ k, and hi = x2ix

2
2 + cx42 after the linear

transformation given by l1 7→
√
2∂il1 xi and x2 7→ x2.

Now we notice that ∂2
i (x

2
ix

2
2 + cx42) = 2x22 and ∂i∂2(x

4
i + lax

3
2) = 3aix

2
2.

Hence if both hi’s are of one of these two “forms”, then dimk f
⊥
2 > 1. For

instance, if h0 = x20x
2
2+cx42 and h1 = x41+ lax

3
2, then (3a1∂

2
0−2∂1∂2)(f) = 0.

Since f⊥
2 = 〈∂0∂1〉 by assumption, it follows that one of the hi’s must equal

the last “form”. Hence we may assume that h0 = lbx
3
0 + cx42.

Then f = h0+h1 must look like either lbx30+x41+lax
3
2 or lbx30+x21x

2
2+cx42

or lbx30 + lb′x
3
1 + c′x42. In the last case, c′ 6= 0, or else ∂2

2f would equal zero.
Moreover, we know that b2, a1, b′2 6= 0. By scaling the variables suitably, we
can assume that these constants all equal 1. Hence we have proved that if f
is not a sum of five linear powers, then after a linear transformation f must
be equal to one of the following three forms:

1. f = (c0x0 + x2)x
3
0 + x21x

2
2 + c1x

4
2

2. f = (c0x0 + x2)x
3
0 + x41 + (x1 + c1x2)x

3
2

3. f = (c0x0 + x2)x
3
0 + (c1x1 + x2)x

3
1 + x42

where cj ∈ k. On the other hand, these f are not a sum of five linear powers,
as proven in example 3.5.1 and remark 3.5.2. The only difference between
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these f and those in examble 3.5.1 and remark 3.5.2 is that those f are scaled
differently, as is easily verified. This concludes the proof of the theorem. ¤

Remark 3.6.1: In the first case we considered in this chapter, where f⊥
2 =

〈D0〉 and D0 was nonsingular, we quite successfully used the structure theo-
rem of Buchsbaum-Eisenbud [2] to prove that f was a sum of five linear
powers. Of course, we could use this method for any f ∈ S since Af always
is Gorenstein of codimension 3. In fact, when D0 = ∂0∂1, it is not hard to
prove that φ can be chosen to look like this,

φ =




0 q1 q2 q3 q4
−q1 0 0 ∂0 ∂2
−q2 0 0 0 ∂1
−q3 −∂0 0 0 0
−q4 −∂2 −∂1 0 0




but from here on it gets more complicated. One reason for this is the fact
that not all of these f are a sum of five linear powers.

In the next section, where we look at f such that dimk f
⊥
2 = 0, we will

see that all f are “general” in the sense that they are a sum of six linear
powers. But even in this case we do not use the structure theorem, since the
matrix φ in that case will be 7× 7 and hence more difficult to work with.

3.4 dimk f
⊥
2 = 0

In this section we will look at f ∈ S4 such that Af has Hilbert function
(1, 3, 6, 3, 1), and as we soon will see, any such f is general in the sense that
it is a sum of six linear powers. But before we turn to the proof of this, there
are a couple of things we want to point out.

Prior to theorem 3.6 we introduced several quantities. Of course, we
could do the same things in this case, with the insignificant difference that
whenever D = {D0, . . . , D5} is any basis for T2, we let A = CatD(f) since
this matrix is invertible. However, we want to start at the other end this
time.

Whenever D = {D0, . . . , D5} is a basis for T2, let B = {h0, . . . , h5} be
the “dual” basis for S2 in the sense that

Di(hj) = hj(Di) =

{
1, if i = j,

0, otherwise.

Such a basis always exists. Indeed, for any j = 1, . . . , 6, we see that

dimk ∩
i 6=j

(Di)
⊥
2 = dimk S2 − dimk〈{Di}i 6=j〉 = 1



36 3 Ternary quartics

by (0.3), hence ∩i6=j(Di)
⊥
2 = 〈h′j〉 for some nonzero h′j ∈ S2. Since D is

a basis and h′j(Di) = 0 for all i 6= j, it follows that h′j(Dj) 6= 0. Hence,
if we let hj = h′j/h

′
j(Dj), we get the desired “dual” basis. Note that with

uT = [h0, . . . , h5] and vT = [D0, . . . , D5], D and B are dual bases if and only
if uvT = vuT = id6.

Given f ∈ S4 with dimk f
⊥
2 = 0, we let A = CatD(f) = (vvT )(f) and

B = A−1. Then for any a ∈ P2, we define ρa ∈ T2 by

ρa = v(a)TB v.

It is immediate from this definition that ρa 6= 0 for all a and ρa 6= ρb for
a 6= b. Since v(f) is a columnvector with entries in S2, it equals Cu for some
6× 6 matrix C. But then C = CuvT = v(f)vT = (vvT )(f) = A, and hence

v(f) = Au.

With η = vTB v as before, we see that η 6= 0, because

η(f) = (vTB v)(f) = vTB (v(f)) = vTBAu = vTu = tr(id6) = 6. (3.9)

Furthermore, ρa(f) = v(a)TB v(f) = v(a)Tu. Since ρa is independent
of the choice of basis D, we might assume that D is the standard ba-
sis for T2, D = {∂2

0 , ∂
2
1 , ∂

2
2 , ∂0∂1, ∂0∂2, ∂1∂2}. Then the dual basis equals

B = {1
2x

2
0,

1
2x

2
1,

1
2x

2
2, x0x1, x0x2, x1x2}, and hence ρa(f) =

1
2(
∑

aixi)
2 = 1

2 l
2
a.

Since ρa(l4a) = 12 ρa(a) l
2
a, it follows that if ρa(a) = η(a) 6= 0, then ρa(f−

λal
4
a) = 0 where λa = 1

24ρa(a)
, as in the discussion prior to example 3.5.1.

Now dimk(f − λal
4
a)

⊥
2 = rankCatD(f − λal

4
a) ≥ rankA− rankCatD(l4a) = 5

by (0.9). Hence we have proved that for any a 6∈ {η = 0}, we have

(f − λal
4
a)

⊥
2 = 〈ρa〉. (3.10)

Furthermore, if D(f) is a square for some D ∈ T2, say D(f) = l2a, then
(D − 2ρa)(f) = 0. Since f⊥

2 = 0, it follows that D = 2ρa. Thus the ρa’s are
precisely those D ∈ T2 such that D(f) is a square.

Theorem 3.7:
Any f ∈ S4 such that f⊥

2 = 0 is a sum of six linear powers.

Proof: The idea behind the proof is this: Since η 6= 0 by (3.9), we can
find a ∈ P2 such that η(a) 6= 0. Then we consider g = f − λal

4
a, and by

(3.10) we have g⊥2 = 〈ρa〉. Therefore, theorems 3.4 and 3.6 tell us when g
is a sum of five linear powers. But we need to know what ρa looks like.
Since ρa is a quadric, the rank of Ha = (xixj(ρa))i,j=0,1,2 decides whether
ρa is nonsingular, a product of two distinct lines or a square. Thus both
Z0 = {a | ρa is reducible} and Z1 = {a | ρa is a square} are closed subsets of
P2, since Z0 = {a | detHa = 0} and Z1 = {a | rankHa ≤ 1}.
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Any a such that ρa is a square, is of no use when we try to write f as a
sum of six linear powers, hence we need to control the size of Z1. Assume
that Z1 contains four distinct points a1, . . . , a4 on a line, i.e. δ(ai) = 0
for some δ ∈ T1. Now ρai is a square, hence ρai = δ2bi , and b1, . . . , b4 are
four distinct points in P̌2. The l2ai ’s are linearly dependent because the
points ai lie on a line, hence

∑4
i=1 cil

2
ai = 0 for some ci ∈ k, not all zero.

It follows that
∑4

i=1 ciδ
2
bi

= 0, since (
∑4

i=1 ciρai)(f) =
∑4

i=1 ci · 1
2 l

2
ai = 0

and f⊥
2 = 0. But the only way four squares can be linearly dependent,

is that the corresponding points {b1, . . . , b4} contained in a line. Hence we
might assume that δbi ∈ k[∂0, ∂1] for all i after a linear transformation. Then
{δ2bi}4i=1 is a basis for k[∂0, ∂1]2, and since δ2bi(f) =

1
2 l

2
ai , it follows thatD(f) ∈

〈l2a1 , . . . , l2a4〉 for all D ∈ k[∂0, ∂1]2. This implies that δ∂2
0(f) = δ∂0∂1(f) =

δ∂2
1(f) = 0 because δ(ai) = 0 for all i. Thus we get ∂0δ(f), ∂1δ(f) ∈ 〈x22〉

and δ′δ(f) = 0 for a suitable δ′ ∈ 〈∂0, ∂1〉. This contradicts the fact that
f⊥
2 = 0, and it proves that Z1 cannot contain four distinct points on a line.

Let Ca = {ρa = 0} and X = {η = 0}. If there exists an a 6∈ X such
that ρa is nonsingular, then by theorem 3.4, f − λal

4
a is a sum of five linear

powers. Now assume that f is not a sum of six linear powers. Then ρa must
be singular for all a 6∈ X. Since Z0 is a closed subset of P2 and η 6= 0 as an
element of T4, it follows that ρa is reducible for all a ∈ P2.

We notice that for any a, b 6∈ X such that ρa(b) = ρb(a) = 0, Ca and
Cb cannot intersect in neither four distinct points nor a line and a point
outside. Indeed, if we could find such points a and b, then g⊥2 = 〈ρa, ρb〉
where g = f − λa l

4
a − λb l

4
b , and by theorem 3.2, g would be a sum of four

linear powers. This is impossible, since f is not a sum of six linear powers
by assumption.

From the definition of ρa, we see that ρa(b) = ρb(a). It follows that the
set of points a such that Ca passes through a given point p, is exactly Cp.
Furthermore, X and Ca have a common linear component L for some a if and
only if a ∈ Cb for all b ∈ L, i.e. a ∈ ∩b∈LCb. Hence Y = {a ∈ P2 |X and Ca

has a common component } is a proper, closed subset of P2, since X cannot
have more than four linear components.

Since X, Y and Z1 are proper, closed subsets of P2, we may pick an
a ∈ P2 such that η(a) 6= 0, ρa is not a square and X and Ca have no
common components. Let p be the singular point of Ca. Since ρa 6= ρp, we
can find a linear component L of Ca that is not contained in Cp. Now the
“bad” points on L are the points b such that ρp(b) = 0 or η(b) = 0, and we
know that there are only finitely many of them. If b1 is any other point, then
ρb1(a) = 0 and ρb1(p) 6= 0. Hence Ca and Cb1 has no common component.
Since we have assumed that f is not a sum of six linear powers, Ca and
Cb1 must intersect singularly, and the only way this can happen, is that Ca

contains the singular point q1 of Cb1 .
Let b2 ∈ L be another “good” point. Then the singular points q1 and q2
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of Cb1 and Cb2 , respectively, cannot be distinct and lie on the same linear
component of Ca. Indeed, if they did, then Cb1 and Cb2 would intersect in
four distinct points, because any linear component of Cbi which contained qj ,
i 6= j, would necessarily pass through p. Since Ca has only two components,
then the Cbi ’s must have a common singular point q ∈ Ca for infinitely many
“good” points bi ∈ L. Since every Cbi necessarily contains a, it follows that
they all have a common linear component, that is, the unique line {δ = 0}
through a and q.

Let b1, b2 and b3 be three such points. Then ρbi = δiδ for some δi ∈
T1, and the δi’s are linearly dependent because δi(q) = 0 for all i. Hence∑3

i=1 ciδi = 0 for some ci ∈ k, not all of them zero. Then
∑3

i=1 ciρbi = 0
and

∑3
i=1 cil

2
bi

= 2(
∑3

i=1 ciρbi)(f) = 0. But this is impossible for distinct
points bi ∈ P2, hence we have our desired contradiction. ¤
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