Representing a Homogenous Polynomial as a Sum of Powers of Linear Forms

Thesis for the Degree of
Candidatus Scientiarum

Johannes Kleppe

Department of Mathematics
University of Oslo
Spring 1999

Abstract

The problem of expressing a homogenous polynomial f as a sum of powers of linear forms is investigated via apolarity and solved in the following cases: f is a binary form, f is a ternary cubic and f is a ternary quartic.

While a general binary form f of degree d is a sum of $\left\lceil\frac{d+1}{2}\right\rceil$ linear powers, we prove that there are special f which need d summands in a representation as a sum of $d^{\text {th }}$-powers of linear forms. Similarly, it is known that a general ternary cubic and quartic is a sum of 4 , respectively 6 , linear powers. We prove that there are some ternary cubics and quartics f which are a sum of 5 , respectively 7, linear powers and no less. Furthermore, we find all such f.

Preface

This thesis has been written for the degree of Candidatus Scientiarum at the Department of Mathematics, University of Oslo. My supervisor has been associate professor Kristian Ranestad.

In this thesis I solve the problem of expressing all homogenous polynomials f as sums of powers of linear forms, when f is a binary form, a ternary cubic and a ternary quartic. For a general f, the minimal number of summands is known, but little is known for all f. In particular, the results in chapter 3 about ternary quartics are, to my knowledge, previously not known.

I have tried to emphasize the number of summands needed in a representation of a given form as a sum of powers of linear forms, and what the forms that are "exceptional" in some sense, look like. In order to obtain my results, several different methods have been used, and each one is described briefly at the end of the introduction.

Acknowledgments

I would like to thank my supervisor for introducing me to this field of mathematics. Every discussion we had gave me many new ideas and question to investigate. I am also grateful for the way he let me work at my own pace, and I feel I have learnt a good deal about research in general and algebraic geometry in particular.

A special thanks goes to my father, Jan O. Kleppe. Whenever I had a question, he was there for me with his knowledge of general theory and enthusiasm for my work. Also I want to thank the rest of my family and my friends for being there when I needed a break from my master thesis.

Finally, I would like to say that even though mathematics can be exciting, beautiful and important, when it comes to what gives life meaning, it cannot compete with faith, hope and love.

Contents

Preface i
Acknowledgments i
0 Introduction 1
0.1 Notation and terminology 2
0.2 Preliminary definitions and results 2
1 Binary forms 9
2 Ternary cubics 13
3 Ternary quartics 19
3.1 Base points 19
$3.2 \quad \operatorname{dim}_{k} f_{2}^{\perp} \geq 2$ 24
$3.3 \quad \operatorname{dim}_{k} f_{2}^{\perp}=1$ 27
3.3.1 D_{0} nonsingular 27
3.3.2 D_{0} singular 29
$3.4 \operatorname{dim}_{k} f_{2}^{\perp}=0$ 35
Bibliography 39

Chapter 0

Introduction

During the last decades of the $19^{\text {th }}$ century, a lot of work was done to determine how a homogenous polynomial f of degree d can be represented as a sum of powers of linear forms,

$$
f=l_{1}^{d}+l_{2}^{d}+\cdots+l_{s}^{d},
$$

and the problem has regained interest in recent years. There are two main issues. One is to find the minimal number s of summands that are needed in such a representation. The other is, given the minimal s, to determine the size of the family of such representations. For a general form f the question about the minimal s was recently solved.

Theorem 0.1 (Alexander-Hirschowitz):
A general form f of degree d in $n+1$ variables is a sum of $s=\left\lceil\frac{1}{n+1}\binom{n+d}{n}\right\rceil^{\dagger}$ powers of linear forms, unless

$$
d=2 \text {, where } s=n+1 \text { instead of }\left\lceil\frac{n+2}{2}\right\rceil \text {, }
$$

$d=4$ and $n=2,3,4$, where $s=6,10,15$ instead of $5,9,14$, respectively,
$d=3$ and $n=4$, where $s=8$ instead of 7 .
Proof: This follows from a result of Alexander and Hirshowitz [1] and Terracini's Lemma [18]. The exceptions where classically known, see [3], [14], [17], [15], [12] and [5].

But even though the minimal s is found for a general f, little is known when all f are to be considered. For a special f the minimal value of s may be both smaller or bigger. In this thesis we will find the minimal s for all binary forms (chapter 1), ternary cubics (chapter 2) and ternary quartics (chapter 3). While the general f in these three cases is a sum of $\left\lceil\frac{d+1}{2}\right\rceil, 4$ or 6 linear power, respectively, we will see that this is not the case for all f.

[^0]
0.1 Notation and terminology

Throughout this thesis k will be an algebraically closed field of characteristic 0 , but many of the results obtains here, are valid in a broader context.

Whenever A is a graded ring, or a graded ideal in a graded ring, A_{d} will denote the component of A of degree d, and we will write $\left\langle a_{1}, \ldots, a_{m}\right\rangle$ for the subvectorspace of A_{d} generated by the elements $a_{1}, \ldots, a_{m} \in A_{d}$. As usual, $\left(a_{1}, \ldots, a_{m}\right)$ denotes the ideal of A generated by these elements.

We will use the word form to mean a homogenous polynomial of positive degree. In particular, the words quadric, cubic and quartic will refer to a form of degree two, three and four, respectively. And by binary and ternary forms we will mean forms in two, respectively three, variables.

Now, for any two polynomials $f, g \in S=k\left[x_{0}, \ldots, x_{n}\right]$, let $f \sim g$ if and only if there exists an invertible linear transformation φ of S_{1} such that $\bar{\varphi}(f)=g$, where $\bar{\varphi}$ is the homomorphism $S \rightarrow S$ of k-algebras induced by φ. This defines an equivalence relation \sim on S which represents a change of basis. Notice that if $f \sim g$ and $f=\sum_{i=1}^{s} \lambda_{i} l_{i}^{d}$ for some $l_{i} \in S_{1}$ and $\lambda_{i} \in k$, then $g=\bar{\varphi}(f)=\sum_{i=1}^{s} \lambda_{i} \varphi\left(l_{i}\right)^{d}$. Hence the minimal s such that f is a sum of s linear powers, is an invariant of the equivalence class of f under \sim. Since finding such s is the main problem in this thesis, we will often perform such invertible linear transformations of S_{1}. Therefore any linear transformation will be assumed invertible, unless otherwise specified. Moreover, when we say that some polynomial is unique with respect to some property, we will often mean unique up to a nonzero scalar.

When we want to emphasize that a form f is a sum of s linear powers, and no less than s linear powers, we sometimes say " f is a sum of exactly s linear powers". This does not mean that f cannot be written as a sum of more than s linear powers, of course.

0.2 Preliminary definitions and results

We want the two polynomial rings $S=k\left[x_{0}, \ldots, x_{n}\right]$ and $T=k\left[\partial_{0}, \ldots, \partial_{n}\right]$ to act on each other by differentiation. T acts on S in the usual way, i.e.

$$
\left(\prod_{i=0}^{n} \partial_{i}^{\alpha_{i}}\right)\left(\prod_{i=0}^{n} x_{i}^{\beta_{i}}\right)=\prod_{i=0}^{n} \alpha_{i}!\binom{\beta_{i}}{\alpha_{i}} x_{i}^{\beta_{i}-\alpha_{i}}
$$

or $\partial^{\alpha}\left(x^{\beta}\right)=\alpha!\binom{\beta}{\alpha} x^{\beta-\alpha}$ when we use multi-indices. Similarly we define the action of S on T by $x^{\beta}\left(\partial^{\alpha}\right)=\beta!\binom{\alpha}{\beta} \partial^{\alpha-\beta}$. In particular we notice that

$$
f(D)=\sum_{\alpha} \alpha!a_{\alpha} b_{\alpha}=D(f)
$$

for two forms $f=\sum_{\alpha} a_{\alpha} x^{\alpha} \in S$ and $D=\sum_{\beta} b_{\beta} \partial^{\beta} \in T$ of the same degree. Furthermore,

$$
\begin{equation*}
D\left(l_{a}^{d}\right)=e!\binom{d}{e} D(a) l_{a}^{d-e} \tag{0.1}
\end{equation*}
$$

for any $D \in T_{e}$ and $l_{a}=\sum_{i=0}^{n} a_{i} x_{i} \in S_{1}$, where $a=\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{P}^{n}$. Of course, $D\left(l_{a}^{d}\right)=0$ when $e>d$. In general, we say that two forms $f \in S$ and $D \in T$ are apolar if $f(D)=D(f)=0$.

Definition 0.2: When $f \in S$ is a homogenous polynomial, define f^{\perp} by

$$
f^{\perp}=\{D \in T \mid D(f)=0\}
$$

and A^{f} by

$$
A^{f}=T / f^{\perp} .
$$

It is easily seen that f^{\perp} is a homogenous ideal of $T, f=\oplus_{e \geq 0} f_{e}^{\perp}$. Moreover, A^{f} has a one-dimensional socle in degree $\operatorname{deg} f$, and is a graded Artinian Gorenstein ring. Furthermore, every graded Artinian Gorenstein ring arise this way for suitable f. This is the content of the following lemma.

Lemma 0.3 (Macaulay, [11]): The map $f \mapsto A^{f}$ gives a bijection between hypersurfaces $F=\{f=0\} \subseteq \mathbb{P}^{n}$ of degree d and graded Artinian Gorenstein quotient rings $A=T / I$ of T with socle in degree d.

Proof: For Macaulay's result in terms of inverse systems, see [11, chapter IV], [6, theorem 21.6 and exercise 21.7], [7] or [10, lemma 1.2].

The polynomial f is called the dual socle generator of A^{f}, and is defined only up to a nonzero scalar. Also note that for any $f \in S_{d}$,

$$
\begin{equation*}
\bigcap_{i=0}^{n}\left(\partial_{i} f\right)^{\perp}=\left\{D \in T \mid \partial_{i} D(f)=0 \forall i=0, \ldots, n\right\}=f^{\perp} \cup T_{d} \tag{0.2}
\end{equation*}
$$

because $\partial_{i} g=0$ for all i if and only if $g \in S_{0}=k$.
For any $f \in S_{d}$, we define $\varphi_{f}: T_{d} \rightarrow k$ by $\varphi_{f}(D)=D(f)=f(D)$. This is obviously a k-linear homomorphism, and $\sum_{i} c_{i} \varphi_{f_{i}}=\varphi_{g}$ where $g=\sum_{i} c_{i} f_{i}$. Furthermore, $\varphi_{f}=0$ if and only if $D(f)=0$ for all $D \in T_{d}$, which means that $f=0$. Hence $\operatorname{Hom}_{k}\left(T_{d}, k\right)=\left\{\varphi_{f} \mid f \in S_{d}\right\}$, because these two vectorspaces have equal dimensions. We are now ready to prove our main lemma.

Lemma 0.4: Let $f, g_{1}, \ldots, g_{s} \in S_{d}$ be forms of the same degree d. Then the following statements are equivalent:
(a) there exist $\lambda_{1}, \ldots, \lambda_{s} \in k$ such that $f=\sum_{i=1}^{s} \lambda_{i} g_{i}$
(b) $\bigcap_{i=1}^{s}\left(g_{i}\right)^{\perp} \subseteq f^{\perp}$
(c) $\bigcap_{i=1}^{s}\left(g_{i}\right) \frac{\perp}{d} \subseteq f_{d}^{\perp}$

Proof: The first implication (a) \Rightarrow (b) follows immediately from the fact that if $f=\sum_{i=1}^{s} \lambda_{i} g_{i}$, then $D(f)=\sum_{i=1}^{s} \lambda_{i} D\left(g_{i}\right)$. The second, (b) $\Rightarrow(\mathrm{c})$, is obvious. To prove that (c) \Rightarrow (a), we proceed as follows:

First we claim that, for any $g_{1}, \ldots, g_{s} \in S_{d}$, we have

$$
\begin{equation*}
\operatorname{dim}_{k} \bigcap_{i=1}^{s}\left(g_{i}\right)_{d}^{\perp}=\operatorname{dim}_{k} T_{d}-\operatorname{dim}_{k}\left\langle g_{1}, \ldots, g_{s}\right\rangle \tag{0.3}
\end{equation*}
$$

Let $t=\operatorname{dim}_{k}\left\langle g_{1}, \ldots, g_{s}\right\rangle \leq s$. Possibly after renumbering the elements, we may assume that $\left\langle g_{1}, \ldots, g_{t}\right\rangle=\left\langle g_{1}, \ldots, g_{s}\right\rangle$. Furthermore, $\cap_{i=1}^{t}\left(g_{i}\right) \frac{\perp}{d}=$ $\cap_{i=1}^{s}\left(g_{i}\right)_{d}^{\perp}$. If we now look at $\operatorname{Hom}_{k}(V, k)$ where $V=S_{d} /\left\langle g_{1}, \ldots, g_{t}\right\rangle$, we see that for any $D \in \cap_{i=1}^{t}\left(g_{i}\right) \frac{\perp}{d}$, the map $h \mapsto D(h)$ defines a k-linear homomorphism $\psi_{D}: V \rightarrow k$. If $\psi_{D}=0$, then $D\left(h+\left\langle g_{1}, \ldots, g_{t}\right\rangle\right)=0$ for all $h \in S_{d}$, hence $D=0$. Therefore the map $\cap_{i=1}^{t}\left(g_{i}\right) \frac{1}{d} \hookrightarrow \operatorname{Hom}_{k}(V, k)$ given by $D \mapsto \psi_{D}$ is injective, and it follows that

$$
\begin{equation*}
\operatorname{dim}_{k} \bigcap_{i=1}^{t}\left(g_{i}\right)_{d}^{\perp} \leq \operatorname{dim}_{k} \operatorname{Hom}_{k}(V, k)=\operatorname{dim}_{k} V=\operatorname{dim}_{k} T_{d}-t . \tag{0.4}
\end{equation*}
$$

On the other hand, we know that the following sequence is exact,

$$
0 \rightarrow \bigcap_{i=1}^{t}\left(g_{i}\right) \frac{\perp}{d} \rightarrow T_{d} \rightarrow \underset{i=1}{\stackrel{t}{\oplus}} T_{d} /\left(g_{i}\right)_{d}^{\perp}
$$

which gives that

$$
\begin{equation*}
\operatorname{dim}_{k} T_{d}-\operatorname{dim}_{k} \bigcap_{i=1}^{t}\left(g_{i}\right) \frac{\perp}{d} \leq \operatorname{dim}_{k} \underset{i=1}{\stackrel{t}{\oplus}} T_{d} /\left(g_{i}\right) \frac{\perp}{d}=\sum_{i=1}^{t} 1=t . \tag{0.5}
\end{equation*}
$$

The equations (0.4) and (0.5) implies that $\operatorname{dim}_{k} \cap \cap_{i=1}^{t}\left(g_{i}\right) \frac{\perp}{d}=\operatorname{dim}_{k} T_{d}-t$, which proves (0.3). Now we have

$$
\text { (c) } \Leftrightarrow \bigcap_{i=1}^{s}\left(g_{i}\right) \frac{\perp}{d} \cap f_{d}^{\perp}=\bigcap_{i=1}^{s}\left(g_{i}\right) \frac{\perp}{d} \Leftrightarrow \operatorname{dim}_{k} \bigcap_{i=1}^{s}\left(g_{i}\right) \frac{\perp}{d} \cap f_{d}^{\perp}=\operatorname{dim}_{k} \bigcap_{i=1}^{s}\left(g_{i}\right) \frac{\perp}{d}
$$

By (0.3) this is equivalent to $\operatorname{dim}_{k}\left\langle g_{1}, \ldots, g_{s}, f\right\rangle=\operatorname{dim}_{k}\left\langle g_{1}, \ldots, g_{s}\right\rangle$, which means that $\left\langle g_{1}, \ldots, g_{s}, f\right\rangle=\left\langle g_{1}, \ldots, g_{s}\right\rangle$. Therefore, $f \in\left\langle g_{1}, \ldots, g_{s}\right\rangle$, and there exist $\lambda_{1}, \ldots, \lambda_{s} \in k$ such that $f=\sum_{i=1}^{s} \lambda_{i} g_{i}$.

Remark 0.4.1: We can also prove the implication (c) \Rightarrow (a) the following way: Consider the projections $T_{d} \rightarrow T_{d} / \cap_{i=1}^{s}\left(g_{i}\right) \frac{\perp}{d} \rightarrow T_{d} / f_{d}^{\perp}$ and the induced injections

$$
\begin{equation*}
\operatorname{Hom}_{k}\left(T_{d} / f_{d}^{\perp}, k\right) \subseteq \operatorname{Hom}_{k}\left(T_{d} / \bigcap_{i=1}^{s}\left(g_{i}\right) \frac{\perp}{d}, k\right) \subseteq \operatorname{Hom}_{k}\left(T_{d}, k\right) \tag{0.6}
\end{equation*}
$$

The proof of equation (0.3) actually proves that $\operatorname{Hom}_{k}\left(T_{d} / \cap_{i=1}^{s}\left(g_{i}\right) \frac{\perp}{d}, k\right)=$ $\left\langle\varphi_{g_{1}}, \ldots, \varphi_{g_{s}}\right\rangle$, because they have equal dimensions. Hence the first of the inclusions in (0.6) implies that $\varphi_{f} \in\left\langle\varphi_{g_{1}}, \ldots, \varphi_{g_{s}}\right\rangle$, that is, there exist $\lambda_{1}, \ldots, \lambda_{s} \in k$ such that $\varphi_{f}=\sum_{i=1}^{s} \lambda_{i} \varphi_{g_{i}}$. This means that $D(f)=$ $\sum_{i=1}^{s} \lambda_{i} D\left(g_{i}\right)=D\left(\sum_{i=1}^{s} \lambda_{i} g_{i}\right)$ for all $D \in T_{d}$, and it follows that $f=$ $\sum_{i=1}^{s} \lambda_{i} g_{i}$. Compare this proof with [13, paragraph 1.3] or [16, theorem 1.4].

Normally, we will use lemma 0.4 in situations where the g_{i} 's are powers of linear forms, that is, $g_{i}=l_{a_{i}}^{d}$ where $l_{a_{i}}=\sum_{j=0}^{n} a_{i j} x_{j}$ and $a_{i}=\left(a_{i 0}, \ldots, a_{i n}\right)$ is a point in \mathbb{P}^{n}. In this case we see that

$$
\bigcap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)_{e}^{\perp}=\left\{D \in T_{e} \mid D\left(l_{a_{i}}^{d}\right)=0 \forall i=1, \ldots, s\right\}
$$

For $e>d$ this obviously equals all of T_{e}, but when $e \leq d$ it follows from equation (0.1) that

$$
\begin{equation*}
\bigcap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)_{e}^{\perp}=\left\{D \in T_{e} \mid D\left(a_{i}\right)=0 \forall i=1, \ldots, s\right\}=\bigcap_{i=1}^{s}\left(l_{a_{i}}^{e}\right)_{e}^{\perp}=I_{e} \tag{0.7}
\end{equation*}
$$

where $I=\cap_{i=1}^{s} \mathrm{~m}_{a_{i}}$ and m_{P} is the "maximal" homogenous ideal through $P=\left(p_{0}, \ldots, p_{n}\right) \in \mathbb{P}^{n}$ generated by the 2×2 minors of $\left(\begin{array}{ccc}x_{0} & x_{1} & \ldots \\ p_{0} & x_{1} & x_{n} \\ p_{n}\end{array}\right)$. We see that we might describe I as $I=\oplus_{d \geq 0} \cap_{i=1}^{s}\left(l_{a_{i}}^{d}\right) \frac{1}{d}$. Using equation (0.7), lemma 0.4 says that $f \in\left\langle l_{a_{1}}^{d}, \ldots, l_{a_{s}}^{d}\right\rangle$ if and only if $I \subseteq \cap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)^{\perp} \subseteq f^{\perp}$. Thus we have proved the following corollary:

Corollary 0.5: If $f \in S$ is a form of degree d, then f is a sum of s linear powers $l_{a_{1}}^{d}, \ldots, l_{a_{s}}^{d}$, with $l_{a_{i}} \in S_{1}$, if and only if

$$
\bigcap_{i=1}^{s} \mathrm{~m}_{a_{i}} \subseteq f^{\perp} .
$$

Furthermore, $\cap_{i=1}^{s}\left(\mathrm{~m}_{a_{i}}\right)_{e}=\cap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)_{e}^{\perp}$ for all degrees $e \leq d$.
In general, we call a subscheme Γ of \mathbb{P}^{n} apolar to f if the homogenous ideal I_{Γ} of Γ is contained in f^{\perp}. Hence the corollary says that $f=\sum_{i=1}^{s} \lambda_{i} l_{a_{i}}^{d}$ for some reduced set of points $\Gamma=\left\{a_{1}, \ldots, a_{s}\right\}$ if and only if the homogenous ideal $I_{\Gamma}=\cap_{i=1}^{s} \mathrm{~m}_{a_{i}}$ is apolar to f.

REmARK 0.5.1: We have seen that if $f=\sum_{i=1}^{s} \lambda_{i} l_{a_{i}}^{d}$, then $\cap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)^{\perp} \subseteq f^{\perp}$, and hence $\operatorname{dim}_{k} \cap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)_{e}^{\perp} \leq \operatorname{dim}_{k} f_{e}^{\perp}$ for all e. Now equation (0.3) says that $\operatorname{dim}_{k} \cap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)_{e}^{\perp}=\operatorname{dim}_{k} T_{e}-\operatorname{dim}_{k}\left\langle l_{a_{1}}^{e}, \ldots, l_{a_{s}}^{e}\right\rangle \geq \operatorname{dim}_{k} T_{e}-s$, which gives

$$
\begin{equation*}
s \geq \operatorname{dim}_{k} T_{e}-\operatorname{dim}_{k} \bigcap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)_{e}^{\perp} \geq \operatorname{dim}_{k} T_{e}-\operatorname{dim}_{k} f_{e}^{\perp}=\operatorname{dim}_{k} A_{e}^{f} . \tag{0.8}
\end{equation*}
$$

Hence any f cannot be a sum of less linear powers than the maximum of the Hilbert function of A^{f}.

One might think that equation (0.8) ought to be an equality for general f, but this is not true. Since A^{f} is Artinian Gorenstein with socledegree $d=\operatorname{deg} f$, the maximum of the Hilbert function of A^{f} is $\operatorname{dim}_{k} A_{e_{0}}^{f}$ where $e_{0}=\left\lfloor\frac{d}{2}\right\rfloor$. Now $\operatorname{dim}_{k} A_{e_{0}}^{f} \leq \operatorname{dim}_{k} T_{e_{0}}=\binom{n+e_{0}}{e_{0}}$ for all $f \in S_{d}$, while the s given in theorem 0.1 satisfies $s \geq\binom{ n+e_{0}}{e_{0}}$, with equality only when n and d are very small. Therefore, equation (0.8) cannot be an equality for a general f, unless n and d are very small. However, (0.8) is an equality for $f=\sum_{i=1}^{s} l_{i}^{d}$ if the linear forms l_{1}, \ldots, l_{s} are general enough, see [8].

Now we want to define two quantities that will play an important role in this thesis. They cover different needs, in fact, the first one will be used mostly in the last couple of sections, while the second will be used almost everywhere else.

Definition 0.6: For $f \in S_{2 d}$ we define the catalecticant matrix of f to be

$$
\operatorname{Cat}_{\mathcal{D}}(f)=\left(D_{i} D_{j}(f)\right)_{1 \leq i, j \leq N}
$$

where $N=\binom{n+d}{n}$ and $\mathcal{D}=\left\{D_{1}, \ldots, D_{N}\right\}$ is a basis for T_{d}.
We may think of $\mathrm{Cat}_{\mathcal{D}}$ as a matrix with entries in $T_{2 d}$, namely $\mathrm{Cat}_{\mathcal{D}}=$ $v_{\mathcal{D}} v_{\mathcal{D}}^{T}$ where $v_{\mathcal{D}}$ is a $N \times 1$ matrix (a columnvector) and $v_{\mathcal{D}}^{T}=\left[D_{0}, \ldots, D_{N}\right]$ is the transpose of $v_{\mathcal{D}}$. In particular, $\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}(f)$ is independent of the choice of basis for T_{d}. Indeed, if \mathcal{E} is another basis, then $v_{\mathcal{E}}=A v_{\mathcal{D}}$ for some invertible $N \times N$ matrix A, and $\operatorname{Cat}_{\mathcal{E}}(f)=\left(v_{\mathcal{E}} v_{\mathcal{E}}^{T}\right)(f)=\left(A v_{\mathcal{D}} v_{\mathcal{D}}^{T} A^{T}\right)(f)=$ $A \operatorname{Cat}_{\mathcal{D}}(f) A^{T}$. Moreover, since multiplication in A^{f} gives perfect pairings $A_{d}^{f} \times A_{d}^{f} \rightarrow A_{2 d}^{f} \cong k$, we have

$$
\begin{equation*}
\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}(f)=\operatorname{dim}_{k} A_{d}^{f} \tag{0.9}
\end{equation*}
$$

Definition 0.7: Given $f \in S_{d}$ such that $f_{e}^{\perp}=\left\langle D_{0}, \ldots, D_{m}\right\rangle$, we define the rational map $\pi_{e}^{f}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ by $\pi_{e}^{f}(a)=\left(D_{0}(a), \ldots, D_{m}(a)\right)$ for $a=$ $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{P}^{n}$.

We notice that the base locus of π_{e}^{f}, i.e.

$$
\left\{a \in \mathbb{P}^{n} \mid D_{i}(a)=0 \forall i=0, \ldots, m\right\}=\bigcap_{i=0}^{m} V\left(D_{i}\right)=V\left(f_{e}^{\perp}\right)
$$

is independent of the choice of basis for f_{e}^{\perp}. For $e \leq d$ we might think of π_{e}^{f} as the composition of the e-uple embedding of \mathbb{P}^{n} and the projection from the partials of f of order $d-e,\left\{D(f) \mid D \in T_{d-e}\right\}$, considered as points in $\mathbb{P}^{\binom{n+e}{e}-1}$. See [13, chapter 2] for more details about this construction and a general motivation for studying this map.

Throughout this thesis we will several times encounter a set of points Γ that is a complete intersection of two forms $f, g \in k\left[x_{0}, x_{1}, x_{2}\right]$, and we need
to know the generators of the homogenous ideal I_{Γ}. In situations where f and g intersect nonsingularly, the following theorem will be useful.

Theorem 0.8 (Max Noether):
Suppose that two forms $f, g \in k\left[x_{0}, x_{1}, x_{2}\right]$ meet transversely in a finite set of points Γ. If $h \in k\left[x_{0}, x_{1}, x_{2}\right]$ is any form that vanishes on Γ, then $h \in(f, g)$.

Proof: That f and g meet transversely means that their intersection Γ is nonsingular, and the result is a consequence of the unmixedness theorem, see [6, corollary 18.14 and exercise 18.10].

Before we start our investigations, we would like to say a few words about our methods: The most used notion in this thesis is apolarity, we usually use the ideal f^{\perp} in conjunction with lemma 0.4 or corollary 0.5 to find powersumrepresentations for f. As long as the dimension of f_{e}^{\perp} is large enough for small e, specifically $\operatorname{dim}_{k} f_{2}^{\perp} \geq 2$ when f is a ternary quartic, we prove some of our results by studying π_{e}^{f} and its base locus. When $\operatorname{dim}_{k} f_{e}^{\perp}$ is too small, we often try to subtract a suitable multiple of some linear power from f to get a new form $g=f-\lambda l^{d}$ where $\operatorname{dim}_{k} g_{e}^{\perp}>\operatorname{dim}_{k} f_{e}^{\perp}$, provided we can control $g_{e}^{\perp} / f_{e}^{\perp}$ sufficiently. Finally, in section 3.3 .1 we use the BuchsbaumEisenbud structure theorem [2] to get a minimal free resolution for A^{f}, and further manipulations of this gives us what we want.

Chapter 1

Binary forms

In this chapter we deal with binary forms, that is, homogenous polynomials in two variables, and we will prove that any binary form f is a sum of $\operatorname{deg} f$ linear powers. But to do so, we need the following lemma. Note that we call a binary form f squarefree if no factor of f appears twice, i.e. $f=\prod_{i} l_{i}$ for some linear forms l_{i} where $l_{i} \nVdash l_{j}$ for all $i \neq j$.

Lemma 1.1: Let $f_{1}, \ldots, f_{n} \in k\left[x_{0}, x_{1}\right]$ be binary forms of the same degree such that any linear combination of them is not squarefree. Then there exists a linear form $l \in k\left[x_{0}, x_{1}\right]_{1}$ such that $l^{2} \mid f_{i}$ for all i.

Proof: We may assume that the f_{i} 's are linearly independent, or else we could replace them by a linearly independent subset. Let $g=\sum_{i=2}^{n} c_{i} f_{i}$ be any linear combination of f_{2}, \ldots, f_{n}, and consider the Jacobian matrix $J=\binom{\partial_{0} f_{1} \partial_{0} g}{\partial_{1} f_{1} \partial_{1} g}$. This matrix has rank ≤ 1 at a point $P \in \mathbb{P}^{1}$ if and only if $(\operatorname{det} J)(P)=0$. If $\operatorname{det} J$ equals 0 as an element of $k\left[x_{0}, x_{1}\right]$, then f_{1} and g are equal, up to a scalar. This is impossible since the f_{i} 's are linearly independent. Hence there are only finitely many P that makes $(\operatorname{det} J)(P)$ zero, which is equivalent to $\nabla f_{1}(P) \| \nabla g(P)$, where $\nabla f=\left(\partial_{i} f\right)$. For any such P, either both $\nabla f_{1}(P)$ and $\nabla g(P)$ equals zero, or there exists a unique point $(a, b) \in \mathbb{P}^{1}$ such that $\nabla\left(a f_{1}+b g\right)(P)=0$. Therefore, there must exist $P \in \mathbb{P}^{1}$ such that $\nabla f_{1}(P)=\nabla g(P)=0$, or else there would only be finitely many $(a, b) \in \mathbb{P}^{1}$ such that $a f_{1}+b g$ is not squarefree, which contradicts our assumptions. But this means that both f_{1} and g has a double root in P, i.e. there exists $l \in k\left[x_{0}, x_{1}\right]$ of degree 1 such that $l^{2} \mid f_{1}$ and $l^{2} \mid g$.

This l might in general depend on the linear combination $g=\sum_{i=2}^{n} c_{i} f_{i}$. Since f_{1} is a nonzero polynomial, we know that there are only finitely many l such that $l^{2} \mid f_{1}$, say l_{1}, \ldots, l_{m}. Let $V_{j}=\left\{\left(c_{2}, \ldots, c_{n}\right) \mid l_{j}^{2}\right.$ divides $\left.\sum_{i=2}^{n} c_{i} f_{i}\right\}$. Now $\cup_{j=1}^{m} V_{j}=k^{n-1}$ because any linear combination $\sum_{i=2}^{n} c_{i} f_{i}$ has a common square factor with f_{1}. Since every V_{j} is a vectorspace, there must be one j such that $V_{j}=k^{n-1}$. Hence for this j we have $l_{j}^{2} \mid f_{i}$ for all i.

Remark 1.1.1: Since char $k=0$, we can use Bertini's theorem [9, p. 274275] to prove lemma 1.1. Given n binary forms f_{1}, \ldots, f_{n} of the same degree such that any linear combination is not squarefree, let $h=\operatorname{gcd}\left(f_{1}, \ldots, f_{n}\right)$ and $\tilde{f}_{i}=f_{i} / h$. Then $\left\langle\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right\rangle$ is a base-point-free linear system, and by Bertini's theorem the general member is nonsingular. Furthermore, if we let a_{1}, \ldots, a_{m} be the zeroes of h, then $\left\{g \in\left\langle\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right\rangle \mid g\left(a_{i}\right)=0\right\}$ is a proper, closed subset for all i. Hence we can find $g \in\left\langle\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right\rangle$ such that g is nonsingular and $g\left(a_{i}\right) \neq 0$ for all i. By assumption, $g \cdot h \in\left\langle f_{1}, \ldots, f_{n}\right\rangle$ is not squarefree. Then h cannot be squarefree, since g is squarefree and has no common factor with h. But this means that there exists a linear form l such that $l^{2} \mid h$, and then $l^{2} \mid f_{i}$ for all i.

Theorem 1.2:

Every binary form $f \in k\left[x_{0}, x_{1}\right]$ of degree d is a sum of d or less linear powers.

Proof: We claim that
f is a sum of s linear powers $\Leftrightarrow \exists D \in f_{s}^{\perp}$ such that D is squarefree.
Even though we only need one of the implications to prove theorem 1.2 , we will prove the equivalence for later use.

Assume that $f=\sum_{i=1}^{s} \lambda_{i} l_{a_{i}}^{d}$ where a_{1}, \ldots, a_{s} are distinct points in \mathbb{P}^{1}. Let $\delta_{i}=a_{i 0} \partial_{1}-a_{i 1} \partial_{0}$ and $D=\prod_{i=1}^{s} \delta_{i}$. Then δ_{i} is the unique $\delta \in k\left[\partial_{0}, \partial_{1}\right]_{1}$ such that $\delta\left(l_{a_{i}}\right)=0$, and D is squarefree. Furthermore, $D\left(l_{a_{i}}\right)=0$ for all $i=1, \ldots, s$, hence $D \in f_{s}^{\perp}$.

Conversely, assume that there exists $D \in f_{s}^{\perp}$ which is squarefree. Factorize this D into its linear factors, i.e. $D=\prod_{i=1}^{s} \delta_{i}$ for some $\delta_{i}=a_{i 0} \partial_{1}-a_{i 1} \partial_{0}$, where $a_{i}=\left(a_{i 0}, a_{i 1}\right)$ are points in \mathbb{P}^{1}. These points are all distinct since D is squarefree. Now, $\mathrm{m}_{a_{i}}=\left(\delta_{i}\right)$, which implies that $\cap_{i=1}^{s} \mathrm{~m}_{a_{i}}=\left(\prod_{i=1}^{s} \delta_{i}\right)=(D)$. Then $\cap_{i=1}^{s} \mathrm{~m}_{a_{i}} \subseteq f^{\perp}$ because $D \in f^{\perp}$, and by corollary 0.5 this means that there exist $\lambda_{1}, \ldots, \lambda_{s}$ such that $f=\sum_{i=1}^{s} \lambda_{i} l_{a_{i}}^{d}$, as claimed.

Now assume that $f \in k\left[x_{0}, x_{1}\right]_{d}$ is not a sum of d linear powers. Then no $D \in f_{d}^{\perp}$ is squarefree, and by lemma 1.1, they have a common square factor. This means that $f_{d}^{\perp} \subseteq\left(\delta^{2}\right)_{d}$ for some $\delta \in k\left[\partial_{0}, \partial_{1}\right]_{1}$, which obviously is impossible since $\operatorname{dim}_{k} f_{d}^{\perp}=\operatorname{dim}_{k} k\left[\partial_{0}, \partial_{1}\right]_{d}-1=d$ and $\operatorname{dim}_{k}\left(\delta^{2}\right)_{d}=d-1$.

Remark 1.2.1: The proof of theorem 1.2 tells us exactly which forms $f \in$ $k\left[x_{0}, x_{1}\right]_{d}$ that are not a sum of less than d linear powers. If $d=1$ then this is obviously any nonzero f, and if $d=2$ then f must be a product of two different linear forms. For $d \geq 3$ any such f must satisfy that no $D \in f_{d-1}^{\perp}$ is squarefree, which implies that $f_{d-1}^{\perp} \subseteq\left(\delta^{2}\right)_{d-1}$ for some $\delta \in k\left[\partial_{0}, \partial_{1}\right]_{1}$. Since

$$
\operatorname{dim}_{k} f_{d-1}^{\perp}=\operatorname{dim}_{k} k\left[\partial_{0}, \partial_{1}\right]_{d-1}-\operatorname{dim}_{k} A_{d-1}^{f}=d-\operatorname{dim}_{k} A_{1}^{f} \geq d-2
$$

because $A^{f}=k\left[\partial_{0}, \partial_{1}\right] / f^{\perp}$ is Gorenstein by 0.3 , and $\operatorname{dim}_{k}\left(\delta^{2}\right)_{d-1}=d-2$, it follows that $f_{d-1}^{\perp}=\left(\delta^{2}\right)_{d-1}$. Hence $D\left(\delta^{2} f\right)=0$ for all $D \in k\left[\partial_{0}, \partial_{1}\right]_{d-3}$, and therefore $\delta^{2}(f)=0$. Consequently, $f=l_{1} \cdot l_{2}^{d-1}$ where $\left\{l_{1}, l_{2}\right\}$ is a basis for $k\left[x_{0}, x_{1}\right]_{1}$ such that $\delta\left(l_{1}\right) \neq 0$ and $\delta\left(l_{2}\right)=0$.

On the other hand, if $f=x_{0} x_{1}^{d-1}$, then $f^{\perp}=\left(\partial_{0}^{2}, \partial_{1}^{d}\right)$. Now $f_{e}^{\perp}=\left(\partial_{0}^{2}\right)_{e}$ for all $e<d$, so the lowest degree for which there exists $D \in f^{\perp}$ that is squarefree, is d (take for instance $\partial_{0}^{d}-\partial_{1}^{d} \in f_{d}^{\perp}$). Therefore, this is an f which is a sum of d linear powers and no less, and up to linear transformations of $k\left[x_{0}, x_{1}\right]_{1}$, this is the only one.

REMARK 1.2.2: Using the same notation as in the proof of theorem 1.2, we see that for all degrees $e \leq d$ we have $\cap_{i=1}^{s}\left(l_{i}^{d}\right)_{e}^{\perp}=\cap_{i=1}^{s}\left(\mathrm{~m}_{a_{i}}\right)_{e}=(D)_{e}$, which implies that $\operatorname{dim}_{k} \cap_{i=1}^{s}\left(l_{i}^{d}\right)_{d}^{\perp}=\max (d+1-s, 0)$. By (0.3), this is the same as saying that for any $i \leq s, l_{i}^{d}$ is not contained in the subspace generated by $l_{1}^{d}, \ldots, l_{i-1}^{d}$, since the dimension of the intersection drops by one for each l_{i}^{d} added. Therefore, the minimal s such that there exist different (nonproportional) $l_{1}, \ldots, l_{s} \in k[x, y]_{1}$ with $\sum_{i=1}^{s} l_{i}^{d}=0$, is $d+2$. This can of course be proven more directly.

Chapter 2

Ternary cubics

In this chapter we investigate how to write a ternary cubic $f \in k\left[x_{0}, x_{1}, x_{2}\right]_{3}$ as a sum of linear powers. Theorem 0.1 tells us that a general ternary cubic is a sum of four linear powers. Our main result states that every f is a sum of four or less linear powers, with one exception.

Our method will use the rational map π_{e}^{f} as defined in definition 0.7

$$
\pi_{2}^{f}: P \mapsto\left(D_{0}(P), D_{1}(P), D_{2}(P)\right)
$$

with $e=2$, and we will first motivate this. Note that we by a fibre of π_{2}^{f} at the point a will refer to the intersection $\left\{\sum_{i} c_{i} D_{i}=0\right\} \cap\left\{\sum_{i} c_{i}^{\prime} D_{i}=0\right\}$ where $\sum_{i} c_{i} y_{i}$ and $\sum_{i} c_{i}^{\prime} y_{i}$ are two lines that intersect in a. In particular, all base points are part of any fibre of π_{2}^{f}.

Now, assume that an $f \in k\left[x_{0}, x_{1}, x_{2}\right]_{3}$ with $f_{1}^{\perp}=0$ is a sum of four linear powers, say $f=\sum_{i=1}^{4} \lambda_{i} l_{a_{i}}^{4}$. Since $\operatorname{dim}_{k} f_{1}^{\perp}=0$, the Hilbert function of A^{f} must equal $(1,3,3,1)$, and all four points a_{1}, \ldots, a_{4} cannot lie on a line. Hence the vectorspace of quadrics passing through $\left\{a_{1}, \ldots, a_{4}\right\}$ is two-dimensional. Therefore, we can find two linearly independent quadrics $D_{0}, D_{1} \in T_{2}$ such that $D_{j}\left(a_{i}\right)=0$ for all i and j, which implies that $D_{0}(f)=$ $D_{1}(f)=0$. Since $\operatorname{dim}_{k} f_{2}^{\perp}=3, f_{2}^{\perp}=\left\langle D_{0}, D_{1}, D_{2}\right\rangle$ for some $D_{2} \in T_{2}$.

If no line passes through three of the points $\left\{a_{i}\right\}$, the intersection of D_{0} and D_{1} will be $\left\{a_{1}, \ldots, a_{4}\right\}$. Hence $\pi_{2}^{f}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ has at least one fibre of degree four, namely $\left(\pi_{2}^{f}\right)^{-1}(0,0,1)=\left\{a_{1}, \ldots, a_{4}\right\}$. On the other hand, if three of the points a_{1}, \ldots, a_{4} lie on a line $L=\left\{\delta_{0}=0\right\}$, say $\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq L$, then $\delta_{0} f=\lambda_{4} l_{a_{4}}^{2}$. As we will prove in lemma 2.1, this means that a_{4} is a base point of π_{2}^{f}. If a quadric contains three points on a line, then the quadric must be reducible with the line as one component. Hence $D_{0}=\delta_{0} \delta_{1}$ and $D_{1}=\delta_{0} \delta_{2}$ for some $\delta_{i} \in T_{1}$, and $\left\{\delta_{1}=0\right\} \cap\left\{\delta_{2}=0\right\}=\left\{a_{4}\right\}$. In this case, the fibre of π_{2}^{f} above $(0,0,1)$ consists of the line L (with two embedded points) and the isolated point a_{4}. In both cases, we see that the four points $\left\{a_{i}\right\}$ are contained within a fibre of π_{2}^{f}.

We will need the following lemmas, which we prove in the more general setting where $S=k\left[x_{0}, \ldots, x_{n}\right]$ and $T=k\left[\partial_{0}, \ldots, \partial_{n}\right]$.

Lemma 2.1: Let $f \in S_{d}$ be any form such that $f_{e}^{\perp}=\left\langle D_{0}, \ldots, D_{m}\right\rangle$ for some $e \leq d$ and $D_{i} \in T_{e}$. Then a point $a \in \mathbb{P}^{n}$ is a base point of $\pi_{e}^{f}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ if and only if there exists an $E \in T_{d-e}$ such that $E(f)=l_{a}^{e}$.

Proof: By definition, a is a base point of π_{e}^{f} if and only if $D_{i}(a)=0$ for all $i=0, \ldots, m$. If $\mathcal{E}=\left\{E_{0}, \ldots, E_{N}\right\}$ is a basis for T_{d-e}, then

$$
\bigcap_{i=0}^{N}\left(E_{i} f\right)_{e}^{\perp}=\left\{D \in T_{e} \mid E_{i}(D(f))=0 \forall i\right\}=\left\{D \in T_{e} \mid D(f)=0\right\}=f_{e}^{\perp}
$$

Hence $D_{i}(a)=0$ for all i if and only if

$$
\left(l_{a}^{e}\right)_{e}^{\perp}=\left\{D \in T_{e} \mid D(a)=0\right\} \supseteq f_{e}^{\perp}=\bigcap_{i=0}^{N}\left(E_{i} f\right)_{e}^{\perp}
$$

By lemma 0.4 this is equivalent to $l_{a}^{e}=\sum_{i=0}^{N} \lambda_{i} E_{i} f=\left(\sum_{i=0}^{N} \lambda_{i} E_{i}\right)(f)$ for some $\lambda_{i} \in k$. With $E=\sum_{i=0}^{N} \lambda_{i} E_{i} \in T_{d-e}$ we get the desired conclusion.

Lemma 2.2: Let $A=\left(a_{i j}\right)$ be an $(n+1) \times(n+1)$ matrix where $a_{i j} \in k$ for all $0 \leq i, j \leq n$. For $i=0, \ldots, n$, define $\bar{x}_{i} \in S_{1}$ and $\bar{\partial}_{i} \in T_{1}$ by $\bar{x}_{i}=\sum_{j=0}^{n} a_{i j} x_{j}$ and $\bar{\partial}_{i}=\sum_{j=0}^{n} a_{j i} \partial_{j}$. Let $\varphi: S \rightarrow S$ be the homomorphism of k-algebras induced by $x_{i} \mapsto \bar{x}_{i}$. Similarly, let $\psi: T \rightarrow T$ be the homomorphism induced by $\partial_{i} \mapsto \bar{\partial}_{i}$. Then for all $D \in T$,

$$
\begin{equation*}
D(\varphi(f))=\varphi(\psi(D)(f)) \tag{2.1}
\end{equation*}
$$

We note that the linear transformation of S_{1} which induces φ, is given by $\bar{x}=A x$, where x and \bar{x} are columnvectors, $x^{T}=\left[x_{0}, \ldots, x_{n}\right]$. Similarly, the linear transformation of T_{1} is given by $\bar{\partial}=A^{T} \partial$. These linear transformation might not be invertible, since A is not assumed invertible, but A should always be invertible when we use this lemma in the following.

For convenience, we will adopt the analytical standard and write $f(\bar{x})$ for $\varphi(f)$ in this proof, and think of $f(\bar{x})$ as " $f(x)$ where x_{i} is replaced by \bar{x}_{i} ".

Proof of Lemma 2.2. Since both φ and ψ are homomorphisms of k-algebras, we only need to verify (2.1) for all $D \in\left\{\partial_{0}, \ldots, \partial_{n}\right\}$. And this is really a simple consequence of the chain rule.

$$
\begin{aligned}
\partial_{i}(\varphi(f)) & =\partial_{i}(f(\bar{x}))=\sum_{j=0}^{n}\left(\partial_{j} f\right)(\bar{x}) \cdot \partial_{i} \bar{x}_{j}=\sum_{j=0}^{n} a_{j i}\left(\partial_{j} f\right)(\bar{x}) \\
& =\varphi\left(\sum_{j=0}^{n} a_{j i} \partial_{j} f\right)=\varphi\left(\psi\left(\partial_{i}\right)(f)\right) .
\end{aligned}
$$

REmARK 2.2.1: Notice that if $g \sim f$, then by definition $f=\varphi(g)$ where φ is a homomorphism of k-algebras $S \rightarrow S$ induced by an invertible linear transformation of S_{1}. By lemma 2.2 we have

$$
D(f)=D(\varphi(g))=\varphi(\psi(D)(g))
$$

Since $\varphi(h)=0$ if and only if $h=0$, it follows that

$$
f^{\perp}=\{D \in T \mid D(f)=0\}=\{D \in T \mid \psi(D)(g)=0\}=\left\{\psi^{-1}(D) \mid D \in g^{\perp}\right\}
$$

Hence $g^{\perp}=\psi\left(f^{\perp}\right)$, which implies that π_{e}^{g} and π_{e}^{f} have isomorphic base loci and $A^{g}=T / g^{\perp} \cong T / f^{\perp}=A^{f}$.

For the rest of this chapter, we let $S=k\left[x_{0}, x_{1}, x_{2}\right]$ and $T=k\left[\partial_{0}, \partial_{1}, \partial_{2}\right]$. Note that, in the proof of theorem 2.3, we will only consider the base locus of π_{2}^{f} as a set of points, not as a scheme. Also, recall that if $f \sim g$, then f is a sum of s linear powers if and only if g is. Hence we are allowed to perform automorphisms φ of S induced by linear transformations of S_{1} and replace f by $\varphi(f)$. By lemma 2.2 , a linear transformation of S_{1} corresponds to a linear transformation of T_{1}, and we will normally use this fact without explicitly refering to the lemma.

Theorem 2.3:

Every ternary cubic $f \in S_{3}$ is a sum of four or less linear powers, except $f \sim x_{0} x_{1}^{2}+x_{1} x_{2}^{2}$. This is a sum of exactly five linear powers.

Proof: If $\operatorname{dim}_{k} f_{1}^{\perp}>0$, then there exists $\delta \in T_{1}$ such that $\delta(f)=0$. This means that after a suitable linear transformation, we can assume that $f \in$ $k\left[x_{0}, x_{1}\right]$, and theorem 1.2 tells us that f is a sum of 3 or less linear powers.

When $f_{1}^{\perp}=0$, the Hilbert function of the Artinian Gorenstein ring A^{f} must be $(1,3,3,1)$. Hence $\operatorname{dim}_{k} f_{2}^{\perp}=3$, and π_{2}^{f} is a rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$. If the linear system f_{2}^{\perp} is base-point-free, it follows by applying Bertini's theorem twice (once to get a nonsingular quadric, next to get another that intersects the first one properly), that there exist two linearly independent quadrics $D_{0}, D_{1} \in f_{2}^{\perp}$ which intersect nonsingularly, i.e. in four distinct points $a_{1}, \ldots, a_{4} \in \mathbb{P}^{2}$. Then $\cap_{i=1}^{4} \mathrm{~m}_{a_{i}} \subseteq\left(D_{0}, D_{1}\right)$ by theorem 0.8 . Since $\left(D_{0}, D_{1}\right) \subseteq f^{\perp}$, it follows that f is a linear combination of $l_{a_{1}}^{3}, \ldots, l_{a_{4}}^{3}$ by corollary 0.5.

Now assume that π_{2}^{f} has base points, and let $a=\left(a_{0}, a_{1}, a_{2}\right) \in \mathbb{P}^{2}$ be one. Then by lemma 2.1, there exists $\delta \in T_{1}$ such that $\delta f=l_{a}^{2}$. Furthermore, by lemma 2.2 , if we let φ be the automorphism of S induced by a linear transformation of S_{1} corresponding to a linear transformation $\partial_{0} \mapsto \delta$ of T_{1}, then

$$
\partial_{0}(\varphi(f))=\varphi(\delta(f))=\varphi\left(l_{a}^{2}\right)=\varphi\left(l_{a}\right)^{2}
$$

Hence we may assume that $\partial_{0} f=l_{a}^{2}$. If $a_{0} \neq 0$, we can integrate this equation to get $f=\frac{1}{3 a_{0}} l_{a}^{3}+g$, where $g \in k\left[x_{1}, x_{2}\right]_{3}$. By theorem 1.2 this g is
a sum of three or less linear powers, and f is therefore a sum of four or less linear powers.

We now assume that π_{2}^{f} has two distinct base points, a and b. Then there are $\delta, \delta^{\prime} \in T_{1}$ such that $\delta f=l_{a}^{2}$ and $\delta^{\prime} f=l_{b}^{2}$. Since a and b are distinct, δ and δ^{\prime} are linearly independent, and we might assume that $\delta=\partial_{0}$ and $\delta^{\prime}=\partial_{1}$ after a suitable linear transformation. Hence $\partial_{0} f=l_{a}^{2}$ and $\partial_{1} f=l_{b}^{2}$. Then $\partial_{0} \partial_{1} f=2 a_{1} l_{a}=2 b_{0} l_{b}$, and since a and b are distinct, we must have $a_{1}=b_{0}=0$. If now $a_{0}=b_{1}=0$, then $l_{a}\left\|x_{2}\right\| l_{b}$, a contradiction. Hence either $a_{0} \neq 0$ or $b_{1} \neq 0$, and we can integrate the corresponding equation and find a representation of f as a sum of four or less linear powers, following the ideas of the previous paragraph.

Assume that f is not a sum of four linear powers. Then by the previous paragraphs, π_{2}^{f} has exactly one base point, and we may assume that $\partial_{0} f=l_{a}^{2}$ where $a_{0}=0$. In this case we can perform a linear transformation and get $l_{a}=x_{1}$. Then we have $\partial_{0} f=x_{1}^{2}$, and by integrating this equation, we get

$$
f=x_{0} x_{1}^{2}+\sum_{i=0}^{3} c_{i} x_{1}^{3-i} x_{2}^{i}=\left(x_{0}+c_{0} x_{1}+c_{1} x_{2}\right) x_{1}^{2}+c_{2} x_{1} x_{2}^{2}+c_{3} x_{2}^{3}
$$

This reduces to $f=x_{0} x_{1}^{2}+s x_{1} x_{2}^{2}+t x_{2}^{3}$ after another linear transformation. Here s must be nonzero, because if $s=0$, then $f-t x_{2}^{3}$ is a polynomial in two variables and hence a sum of three linear powers by theorem 1.2 , which contradicts our assumption. By scaling x_{2}, we might assume that $s=1$.

Then $f=x_{0} x_{1}^{2}+x_{1} x_{2}^{2}+t x_{2}^{3}$ and $f_{2}^{\perp}=\left\langle\partial_{0}^{2}, \partial_{2}^{2}-\partial_{0} \partial_{1}-3 t \partial_{1} \partial_{2}, \partial_{0} \partial_{2}\right\rangle$. The base points of this system are $(0,1,0)$ and $(0,1,3 t)$, and since π_{2}^{f} should have only one base point, t must equal 0 . Hence the only f which might not be a sum of four or less linear powers, is $f=x_{0} x_{1}^{2}+x_{1} x_{2}^{2}$, up to equivalence.

When $f=x_{0} x_{1}^{2}+x_{1} x_{2}^{2}$, we get $f_{2}^{\perp}=\left\langle\partial_{0}^{2}, \partial_{2}^{2}-\partial_{0} \partial_{1}, \partial_{0} \partial_{2}\right\rangle$. Now π_{2}^{f} maps $\left\{\partial_{0}=0\right\}$ to $(0,1,0)$, except the base point $(0,1,0)$, and it is an isomorphism everywhere else. Since every fibre of π_{2}^{f} is contained within a line, f cannot be a sum of four linear powers, by the argument at the beginning of this chapter. But it is easily seen that f is a sum of five linear powers, just look at $f+x_{2}^{3}$ which is a sum of four linear powers.

REMARK 2.3.1: If an $f \in S_{3}$ with $f_{1}^{\perp}=0$ is a sum of three linear powers, say $f=\sum_{i=1}^{3} \lambda_{i} l_{i}^{3}$, then the l_{i} 's must be linearly independent since $f_{1}^{\perp}=0$. Hence $f=x_{0}^{3}+x_{1}^{3}+x_{2}^{3}$ after a linear transformation. Thus an $f \in S_{3}$ such that $f_{1}^{\perp}=0$ and $f \nsim x_{0}^{3}+x_{1}^{3}+x_{2}^{3}$ and $f \nsim x_{0} x_{1}^{2}+x_{1} x_{2}^{2}$, is a sum of exactly four linear powers.

ExAMPLE 2.3.2: Let us have a closer look at the exception $f=x_{0} x_{1}^{2}+x_{1} x_{2}^{2}$ of theorem 2.3. Since $f_{2}^{\perp}=\left\langle\partial_{0}^{2}, \partial_{2}^{2}-\partial_{0} \partial_{1}, \partial_{0} \partial_{2}\right\rangle$, we see that

$$
\left(\pi_{2}^{f}\right)^{2}\left(a_{0}, a_{1}, a_{2}\right)=\pi_{2}^{f}\left(a_{0}^{2}, a_{2}^{2}-a_{0} a_{1}, a_{0} a_{2}\right)=a_{0}^{3}\left(a_{0}, a_{1}, a_{2}\right)
$$

This means that π_{2}^{f} is an isomorphism on $\left\{\partial_{0} \neq 0\right\}$. Moreover, the line $\left\{\partial_{0}=0\right\}$ maps to $(0,1,0)$, except the base point $P_{0}=(0,1,0)$. Hence the fibre of π_{2}^{f} above a point $P \in \mathbb{P}^{2}$ is

$$
\begin{array}{ccc}
3 P_{0}+\text { a point } \in\left\{\partial_{0} \neq 0\right\} & \text { if } & P \in\left\{\partial_{0} \neq 0\right\} \\
3 P_{0}+\text { the line }\left\{\partial_{0}=0\right\} & \text { if } & P=P_{0} \\
4 P_{0} & \text { if } & P \in\left\{\partial_{0}=0\right\} \backslash P_{0}
\end{array}
$$

In particular we notice that every fibre of π_{2}^{f} is contained within a line.
We have used the birational map π_{2}^{f} to study the linear system f_{2}^{\perp}, but we can also look at f_{2}^{\perp} more algebraically. Let $I=\left(f_{2}^{\perp}\right)$ be the homogenous ideal generated by f_{2}^{\perp}. We notice that I is a primary ideal with $\operatorname{rad} I=(x, y)$, and that I is generated by the 2×2 minors of $\left(\begin{array}{ccc}\partial_{0} & A_{2} & \partial_{1} \\ 0 & \partial_{0} & \partial_{2}\end{array}\right)$. The reason why this f is an exception, is related to the fact that $\operatorname{dim}_{k}(T / I)_{(x, z)}=\operatorname{deg} I=3$. Hence the intersection multiplicity at $(0,1,0)$ of any pair of quadrics in f_{2}^{\perp} must be at least three, as we realized from the discussion of π_{2}^{f}.

Example 2.3.3: $f=x_{0} x_{1}^{2}+x_{1} x_{2}^{2}+t x_{2}^{3}$ where $t \neq 0$ provides us with another quite interesting example. After the linear transformation given by

$$
x_{0} \mapsto x_{0}-\frac{2}{27} t^{-2} x_{1}+\frac{1}{3} t^{-4 / 3} x_{2}, \quad x_{1} \mapsto x_{1}, \quad x_{2} \mapsto-\frac{1}{3} t^{-1} x_{1}+t^{-1 / 3} x_{2},
$$

we may assume that $f=x_{0} x_{1}^{2}+x_{2}^{3}$. In this case $f_{2}^{\perp}=\left\langle\partial_{0} \partial_{2}, \partial_{1} \partial_{2}, \partial_{0}^{2}\right\rangle$, and

$$
\left(\pi_{2}^{f}\right)^{2}\left(a_{0}, a_{1}, a_{2}\right)=\pi_{2}^{f}\left(a_{0} a_{2}, a_{1} a_{2}, a_{0}^{2}\right)=a_{0}^{2} a_{2}\left(a_{0}, a_{1}, a_{2}\right)
$$

Hence, π_{2}^{f} is an isomorphism on $\left\{\partial_{0} \partial_{2} \neq 0\right\}$, and it maps $\left\{\partial_{0}=0\right\}$ to $(0,1,0)$ and $\left\{\partial_{2}=0\right\}$ to $(0,0,1)$, except the base points $(0,1,0)$ and $(0,0,1)$.

We know from the proof of theorem 2.3 that f is a sum of four or less linear powers, since π_{2}^{f} has two base points in this case. Moreover, since π_{2}^{g} has three base points when $g=x_{0}^{3}+x_{1}^{3}+x_{2}^{3}$, and only one base point when $g=x_{0} x_{1}^{2}+x_{1} x_{2}^{2}$, it follows by remarks 2.3.1 and 2.2.1, that f is a sum of four linear powers and no less.

Notice that the homogenous ideal $J=\left(f_{2}^{\perp}\right)$ in this case is generated by the 2×2 minors of $\left(\begin{array}{ccc}\partial_{0} & \partial_{1} & 0 \\ 0 & \partial_{0} & \partial_{2}\end{array}\right)$, and that $J=(x, y) \cap\left(x^{2}, z\right)$ is a primary decomposition of J. Hence every pair of quadrics in f_{2}^{\perp} intersect singularly in $(0,1,0)$. In this case, however, we can find a pair that intersect in a line and a point outside, for instance $\partial_{0} \partial_{2}$ and $\partial_{1} \partial_{2}$. Hence we have a fibre of π_{2}^{f} that is not contained in a line.

Chapter 3

Ternary quartics

We will now turn our attention to our main objects of study, polynomials of degree four in three variables, $f \in S_{4}$, where $S=k\left[x_{0}, x_{1}, x_{2}\right]$. If $\operatorname{dim}_{k} f_{1}^{\perp}>$ 0 , we get $f \in k\left[x_{0}, x_{1}\right]_{4}$ after a suitable linear transformation, and these cases were treated in general in chapter 1 . Therefore, in this chapter we will only consider f where $f_{1}^{\perp}=0$. This implies that A^{f} has Hilbert function $(1,3, s, 3,1)$ where $3 \leq s \leq 6$, and the general f is a sum of six linear powers, by theorem 0.1 . It is not true that every $f \in S_{4}$ is a sum of six or less linear powers, as we will see. However, seven linear powers always suffice. We will treat each possible value of $\operatorname{dim}_{k} f_{2}^{\perp}$ separately, and the methods used will vary quite a bit. Notice that the assumption $f_{1}^{\perp}=0$ above is automatically satisfied when $\operatorname{dim}_{k} f_{2}^{\perp}<3$.

For any $l_{a_{1}}, \ldots l_{a_{s}} \in S_{1}$, it follows from (0.3) and (0.7) that

$$
\begin{align*}
\operatorname{dim}_{k} \bigcap_{i=1}^{s}\left(l_{a_{i}}^{d}\right)_{e}^{\perp} & =\operatorname{dim}_{k} \bigcap_{i=1}^{s}\left(l_{a_{i}}^{e}\right)_{e}^{\perp} \tag{3.1}\\
& =\operatorname{dim}_{k} T_{e}-\operatorname{dim}_{k}\left\langle l_{a_{1}}^{e}, \ldots, l_{a_{s}}^{e}\right\rangle \geq\binom{ e+2}{2}-s,
\end{align*}
$$

for all $e \leq d$ and with equality if and only if $l_{a_{1}}^{e}, \ldots, l_{a_{s}}^{e}$ are linearly independent. Because of this inequality, an $f \in S_{4}$ cannot be a sum of less than $\operatorname{dim}_{k} A_{2}^{f}$ linear powers, see remark 0.5.1.

3.1 Base points

Having our methods from chapter 2 fresh in memory, we start by investigating π_{3}^{f}. Since $\operatorname{dim}_{k} f_{3}^{\perp}=7, \pi_{3}^{f}$ is now a rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{6}$ defined by $P \mapsto\left(D_{i}(P)\right)$ where $f_{3}^{\perp}=\left\langle D_{0}, \ldots, D_{6}\right\rangle$. Proposition 3.1 tells us what happens if this map has base points. But first we look at some examples.

Example 3.0.1: Let $f=x_{0}^{4}+x_{1}^{4}+x_{2}^{4}$. By computing the partials of f, we see that $f^{\perp}=\left(\partial_{0} \partial_{1}, \partial_{0} \partial_{2}, \partial_{1} \partial_{2}, \partial_{0}^{4}-\partial_{1}^{4}, \partial_{0}^{4}-\partial_{2}^{4}\right)$. Hence $\operatorname{dim}_{k} f_{2}^{\perp}=3$. Furthermore, $f_{3}^{\perp}=\left(f_{2}^{\perp}\right)_{3}$ since the ideal f^{\perp} has no generators of degree
three. This implies that π_{2}^{f} and π_{3}^{f} have the same base points, which are $(1,0,0),(0,1,0)$ and $(0,0,1) . f$ is evidently a sum of three linear powers and no less, since $f_{1}^{\perp}=0$.

Now let g be any ternary quartic such that $g_{1}^{\perp}=0$ and g is a sum of three linear powers, say $g=\sum_{i=1}^{3} \lambda_{i} l_{a_{i}}^{4}$. Then the $l_{a_{i}}$'s must be linearly independent, since $g_{1}^{\perp}=0$, and therefore $g \sim f$.

EXAMPLE 3.0.2: Let $f=x_{0} x_{1}^{3}+x_{2}^{4}$. Then $f_{2}^{\perp}=\left\langle\partial_{0}^{2}, \partial_{0} \partial_{2}, \partial_{1} \partial_{2}\right\rangle$ and

$$
f_{3}^{\perp}=\left\langle\partial_{0}^{3}, \partial_{0}^{2} \partial_{1}, \partial_{0}^{2} \partial_{2}, \partial_{0} \partial_{1} \partial_{2}, \partial_{0} \partial_{2}^{2}, \partial_{1}^{2} \partial_{2}, \partial_{1} \partial_{2}^{2}\right\rangle=\left(f_{2}^{\perp}\right)_{3}
$$

We notice that π_{2}^{f} and π_{3}^{f} have equal base loci since $f_{3}^{\perp}=\left(f_{2}^{\perp}\right)_{3}$, and that f_{2}^{\perp} equals f_{2}^{\perp} of example 2.3.3. Hence π_{3}^{f} has two base points, $(0,1,0)$ and $(0,0,1)$, where the first one is a double point.

It is obvious that f is a sum of five linear powers, since $x_{0} x_{1}^{3} \in k\left[x_{0}, x_{1}\right]_{4}$. In order to prove that f is not a sum of less than five linear powers, we assume that $f=\sum_{i=1}^{4} \lambda_{i} l_{a_{i}}^{4}$ for some distinct points $a_{i} \in \mathbb{P}^{2}$. Then $I=$ $\cap_{i=1}^{4}\left(l_{a_{i}}^{4}\right)^{\perp} \subseteq f^{\perp}$, and in particular $I_{2} \subseteq f_{2}^{\perp}=\left\langle\partial_{0}^{2}, \partial_{0} \partial_{2}, \partial_{1} \partial_{2}\right\rangle$. If $\partial_{0}^{2} \in I$, then $\partial_{0}\left(a_{i}\right)=0$ for all i, and hence $\partial_{0}(f)=0$. Since this contradicts the fact that $f_{1}^{\perp}=0$, we have $\partial_{0}^{2} \notin I$, and therefore $\operatorname{dim}_{k} I_{2} \leq 2$. Now (3.1) implies that $\operatorname{dim}_{k} I_{2}=2$, and that the $l_{a_{i}}^{2}$'s are linearly independent. But this is impossible since $0=\partial_{0}^{2}(f)=12 \sum_{i=1}^{4} \lambda_{i} \partial_{0}\left(a_{i}\right)^{2} l_{a_{i}}^{2}$.

The following proposition solves the base point case completely. Notice that once again, we only consider the base locus of π_{e}^{f} to be a set of points.

Proposition 3.1: Given $f \in S_{4}$ such that $f_{1}^{\perp}=0$ and π_{3}^{f} has at least one base point. Then π_{3}^{f} has less than four base points, and:
(a) if π_{3}^{f} has three base points, then $f \sim x_{0}^{4}+x_{1}^{4}+x_{2}^{4}$, and f is a sum of exactly three linear powers.
(b) if π_{3}^{f} has exactly two base points, then $f \sim x_{0} x_{1}^{3}+x_{2}^{4}$, which is a sum of exactly five linear powers.
(c) if π_{3}^{f} has only one base point, then f is a sum of exactly four or exactly six linear powers, except $f \sim x_{0} x_{1}^{3}+x_{1}^{2} x_{2}^{2}$, which is a sum of exactly seven linear powers.

Furthermore, $\operatorname{dim}_{k} f_{2}^{\perp}=2$ if f is a sum of exactly four or six linear powers, and $\operatorname{dim}_{k} f_{2}^{\perp}=3$ if f is a sum of exactly three, five or seven linear powers.

Proof: First we assume that π_{3}^{f} has at least two distinct base points, say a and b. Then by lemma 2.1, there are $\delta_{0}, \delta_{1} \in T_{1}$ such that $\delta_{0} f=l_{a}^{3}$ and $\delta_{1} f=l_{b}^{3}$. Now, δ_{0} and δ_{1} are linearly independent, because a and b are distinct points in \mathbb{P}^{2}, and hence by lemma 2.2 we might perform a linear transformation such that $\delta_{i}=\partial_{i}$. Then $\partial_{0} f=l_{a}^{3}$ and $\partial_{1} f=l_{b}^{3}$,
which implies that $\partial_{0} \partial_{1} f=3 a_{1} l_{a}^{2}=3 b_{0} l_{b}^{2}$. Since a and b are distinct, we must have $a_{1}=b_{0}=0$ and either $a_{0} \neq 0$ or $b_{1} \neq 0$. By integrating the corresponding equation and performing a linear transformation, we might assume that $f=x_{2}^{4}+g$ where $g \in k\left[x_{0}, x_{1}\right]_{4}$.

Now, $(0,0,1)$ is obviously a base point, since $\partial_{2} f=4 x_{2}^{3}$. Let $p \in \mathbb{P}^{2}$ be a second base point, hence $\delta_{q} f=l_{p}^{3}$ for some $\delta_{q}=\sum_{i=0}^{2} q_{i} \partial_{i} \in T_{1}$. Then $3 p_{2} l_{p}^{2}=\partial_{2} l_{p}^{3}=\delta_{q} \partial_{2} f=\delta_{q}\left(4 x_{2}^{3}\right)=12 q_{2} x_{2}^{2}$, which requires that $p_{2}=q_{2}=0$ since $p \neq(0,0,1)$. By performing a suitable linear transformation of $k\left[\partial_{0}, \partial_{1}\right]$, we can assume that $\delta_{q}=\partial_{0}$, hence $\partial_{0} f=\partial_{0} g=l_{p}^{3}$. If $p_{0}=0$, then $f \sim x_{0} x_{1}^{3}+x_{2}^{4}$. By example 3.0.2 this f is a sum of five linear powers, and no less than five. Moreover, $\operatorname{dim}_{k} f_{2}^{\perp}=3$ and π_{3}^{f} has exactly two base points. If $p_{0} \neq 0$, we can integrate to get $g=\frac{1}{4 p_{0}} l_{p}^{4}+c x_{1}^{4}$. Since $\operatorname{dim}_{k} f_{1}^{\perp}=0$, we must have $c \neq 0$, and then $f=x_{0}^{4}+x_{1}^{4}+x_{2}^{4}$ after a linear transformation. By example 3.0.1 this f is a sum of exactly three linear powers, $\operatorname{dim}_{k} f_{2}^{\perp}=3$ and π_{3}^{f} has three base points. Thus so far we have proved (a) and (b) and that π_{3}^{f} has less than four base points.

Consider the case where π_{3}^{f} has only one base point, $a=\left(a_{0}, a_{1}, a_{2}\right)$. Then there exists $\delta \in T_{1}$ such that $\delta f=l_{a}^{3}$. Furthermore, by lemma 2.2, we may assume that $\delta=\partial_{0}$, i.e. $\partial_{0} f=l_{a}^{3}$. If $a_{0} \neq 0$, then we can integrate this equation to get $f=\frac{1}{4 a_{0}} l_{a}^{4}+g$ where $g \in k\left[x_{1}, x_{2}\right]_{4}$. Moreover, we may assume that $f=x_{0}^{4}+g$ after a linear transformation mapping l_{a} to $\sqrt[4]{4 a_{0}} x_{0}$.

Now if $g \sim x_{1} x_{2}^{3}$, then $f \sim x_{0}^{4}+x_{1} x_{2}^{3} \sim x_{0} x_{1}^{3}+x_{2}^{4}$, but this is impossible since π_{3}^{f} has only one base point. Then by theorem 1.2 and remark $1.2 .1, g$ is a sum of at most three linear powers. Hence f is a sum of four or less linear powers. But f cannot be a sum of three linear powers, by example 3.0.1 and the fact that π_{3}^{f} has only one base point. Hence $g \sim x_{1}^{4}+x_{2}^{4}+\left(c_{1} x_{1}+c_{2} x_{2}\right)^{4}$, and we may assume that $f=x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+\left(c_{1} x_{1}+c_{2} x_{2}\right)^{4}$ where both $c_{i} \neq 0$. Hence f is a sum of exactly four linear powers, and $f_{2}^{\perp}=\left\langle\partial_{0} \partial_{1}, \partial_{0} \partial_{2}\right\rangle$ so $\operatorname{dim}_{k} f_{2}^{\perp}=2$.

If $a_{0}=0$, then we can assume that $\partial_{0} f=x_{1}^{3}$. Integration gives

$$
f=x_{0} x_{1}^{3}+g\left(x_{1}, x_{2}\right)=\left(x_{0}+c_{0} x_{1}+c_{1} x_{2}\right) x_{1}^{3}+c_{2} x_{1}^{2} x_{2}^{2}+c_{3} x_{1} x_{2}^{3}+c_{4} x_{2}^{4}
$$

where $g=\sum_{i=0}^{4} c_{i} x_{1}^{4-i} x_{2}^{i} \in k\left[x_{1}, x_{2}\right]_{4}$. Since $f_{1}^{\perp}=0$, not all of c_{2}, c_{3}, c_{4} can be zero. Hence after a linear transformation, we might assume that

$$
f=x_{0} x_{1}^{3}+r x_{1}^{2} x_{2}^{2}+s x_{1} x_{2}^{3}+t x_{2}^{4}
$$

where $(r, s, t) \in \mathbb{P}^{2}$. If we look at all second derivatives of f,

$$
\begin{gathered}
\partial_{0}^{2} f=\partial_{0} \partial_{2} f=0 \quad \partial_{0} \partial_{1} f=3 x_{1}^{2} \quad \partial_{1}^{2} f=6 x_{0} x_{1}+2 r x_{2}^{2} \\
\partial_{1} \partial_{2} f=4 r x_{1} x_{2}+3 s x_{2}^{2} \quad\left(\partial_{2}^{2}-\frac{2}{3} r \partial_{0} \partial_{1}\right) f=6 s x_{1} x_{2}+12 t x_{2}^{2}
\end{gathered}
$$

we see that $\left\langle\partial_{0}^{2}, \partial_{0} \partial_{2}\right\rangle \subseteq f_{2}^{\perp}$, and the dimension of f_{2}^{\perp} depends on whether $\partial_{1} \partial_{2} f$ and $\left(\partial_{2}^{2}-\frac{2}{3} r \partial_{0} \partial_{1}\right) f$ are proportional or not. In terms of the quantity
$\Delta=8 r t-3 s^{2}$,

$$
\operatorname{dim}_{k} f_{2}^{\perp}= \begin{cases}2, & \Delta \neq 0 \\ 3, & \Delta=0\end{cases}
$$

First we consider the case $\Delta=0$. Then $t=0$, because if $t \neq 0$, then π_{3}^{f} has two base points. Indeed, $f-\frac{1}{2^{8} t^{3}}\left(s x_{1}+4 t x_{2}\right)^{4}=\left(x_{0}-\frac{s^{4}}{2^{8} t^{3}} x_{1}-\frac{s^{3}}{2^{4} t^{2}} x_{2}\right) x_{1}^{3}$, hence $f \sim x_{0} x_{1}^{3}+x_{2}^{4}$ and we conclude by example 3.0.2. With $t=0$, we have $f \sim x_{0} x_{1}^{3}+x_{1}^{2} x_{2}^{2}$. Now example 3.1.2 tells us that π_{3}^{f} has exactly one base point and that f is the sum of seven linear powers, and no less.

Finally we suppose $\Delta \neq 0$. Assume that f is a sum of five linear powers, i.e. $f=\sum_{i=1}^{5} \lambda_{i} l_{a_{i}}^{4}$. This is equivalent to $I=\cap_{i=1}^{5}\left(l_{a_{i}}^{4}\right)^{\perp} \subseteq f^{\perp}$, and hence $I_{2} \subseteq f_{2}^{\perp}=\left\langle\partial_{0}^{2}, \partial_{0} \partial_{2}\right\rangle$. If $\partial_{0}^{2} \in I$, then $\partial_{0}\left(a_{i}\right)=0$ for all i, hence $\partial_{0} \in I$. This implies that $\partial_{0} \in f^{\perp}$, which is a contradiction. Hence $\partial_{0}^{2} \notin I$ and $\operatorname{dim}_{k} I_{2} \leq 1$. By (3.1), $\operatorname{dim}_{k} I_{2}=1$ and $l_{a_{1}}^{2}, \ldots, l_{a_{5}}^{2}$ are linearly independent. But since $\partial_{0}^{2} \in f^{\perp}$, we have

$$
0=\partial_{0}^{2} f=12 \sum_{i=1}^{5} \lambda_{i} \partial_{0}\left(a_{i}\right)^{2} l_{a_{i}}^{2}
$$

and this is now a contradiction. Hence f is not a sum of five linear powers. On the other hand, to prove that f is a sum of six linear powers, we consider

$$
g=\alpha f+\left(x_{2}+\beta x_{1}\right)^{4}=\left(\alpha x_{0}+\beta^{4} x_{1}+4 \beta^{3} x_{2}\right) x_{1}^{3}+r^{\prime} x_{1}^{2} x_{2}^{2}+s^{\prime} x_{1} x_{2}^{3}+t^{\prime} x_{2}^{4}
$$

where $r^{\prime}=\alpha r+6 \beta^{2}, s^{\prime}=\alpha s+4 \beta$ and $t^{\prime}=\alpha t+1$. If we can choose α and β such that $\Delta^{\prime}=8 r^{\prime} t^{\prime}-3\left(s^{\prime}\right)^{2}=0$ and $t^{\prime} \neq 0$, it follows that π_{3}^{g} has two base points, and g is a sum of five linear powers, as solved above. Furthermore, if $\alpha \neq 0$, then $f=\frac{1}{\alpha}\left(g-\left(x_{2}+\beta x_{1}\right)^{4}\right)$ is a sum of six linear powers.

To prove that such choices for α and β are possible, just pick β such that $r-3 s \beta+6 t \beta^{2} \neq 0$ and $s-t \beta \neq 0$. This is possible since $\Delta \neq 0$ implies that not both s and t are zero. Now let $\alpha=\frac{8}{\Delta}\left(-r+3 s \beta-6 t \beta^{2}\right)$. Then $\alpha \neq 0$, $\Delta^{\prime}=\alpha\left(\alpha \Delta+8\left(r-3 s \beta+6 t \beta^{2}\right)\right)=0$ and $t^{\prime}=\frac{3}{\Delta}(s-t \beta)^{2} \neq 0$.

REMARK 3.1.1: In the proof of proposition 3.1 we showed that π_{3}^{f} has less than four base points indirectly, we proved that if it has more than one base point, then it has either two or three. This fact is true in a more general setting, and it is possible to prove it directly.

Let $f \in S_{d}$ and suppose that π_{d-1}^{f} has four distinct base points, a_{1}, \ldots, a_{4}. Then there exist $\delta_{i} \in T_{1}$ such that $\delta_{i} f=l_{a_{i}}^{d-1}$. But the δ_{i} 's must be linearly dependent, say $\sum_{i=1}^{4} c_{i} \delta_{i}=0$ for some $c_{i} \in k$. Then $\sum_{i=1}^{4} c_{i} l_{a_{i}}^{d-1}=0$ also, but four distinct $(d-1)^{\text {th }}$-powers are linearly independent for $d \geq 4$.

ExAmple 3.1.2: Let $f=\frac{1}{3} x_{0} x_{1}^{3}+\frac{1}{2} x_{1}^{2} x_{2}^{2}$. Note that $\partial_{1} f=x_{0} x_{1}^{2}+x_{1} x_{2}^{2}$ is the polynomial studied in example 2.3.2. Furthermore, $f_{2}^{\perp}=\left\langle\partial_{0}^{2}, \partial_{2}^{2}-\partial_{0} \partial_{1}, \partial_{0} \partial_{2}\right\rangle$
and

$$
f_{3}^{\perp}=\left\langle\partial_{0}^{3}, \partial_{0}^{2} \partial_{1}, \partial_{0}^{2} \partial_{2}, \partial_{0} \partial_{1} \partial_{2}, \partial_{0} \partial_{2}^{2}, \partial_{2}^{3}, \partial_{1}\left(\partial_{2}^{2}-\partial_{0} \partial_{1}\right)\right\rangle=\left(f_{2}^{\perp}\right)_{3} .
$$

In this case we see that π_{3}^{f} has only one base point, namely $(0,1,0)$. We notice that f_{2}^{\perp} equals f_{2}^{\perp} of example 2.3.2, and that π_{2}^{f} and π_{3}^{f} have the same base locus. The scheme corresponding to $T /\left(f_{3}^{\perp}\right)$ is a triple point, and it is this fact that makes f so exceptional.

Assume that $f=\sum_{i=1}^{6} \lambda_{i} l_{a_{i}}^{4}$, where a_{1}, \ldots, a_{6} are six distinct points in \mathbb{P}^{2}. Let $I=\cap_{i=1}^{6}\left(l_{a_{i}}^{4}\right)^{\perp} \subseteq f^{\perp}$, then in particular, $I_{2} \subseteq f_{2}^{\perp}$. Since $\partial_{0}^{2} \notin I$ and $0=\partial_{0}^{2}(f)=12 \sum_{i=1}^{6} \lambda_{i} \partial_{0}\left(a_{i}\right)^{2} l_{a_{i}}^{2}$, we must have $\operatorname{dim}_{k} I_{2} \in\{1,2\}$. If $\operatorname{dim}_{k} I_{2}=2$, then there are two quadrics in f_{2}^{\perp} passing through all six points. Then these points should be contained in a fibre of π_{2}^{f}, which is impossible (see example 2.3.2). Hence $\operatorname{dim}_{k} I_{2}=1$, i.e. $I_{2}=\left\langle D_{0}\right\rangle$ for some $D_{0} \in f_{2}^{\perp}$.

Since $\operatorname{dim}_{k} I_{3} \geq 4$ by (3.1), there exists $D_{1} \in I_{3} \backslash\left(D_{0}\right)_{3}$. Now $\left(D_{0}, D_{1}\right) \subseteq$ $I \subseteq f^{\perp}$, and $\left\{a_{1}, \ldots, a_{6}\right\} \subseteq X$ where $X=V\left(D_{0}\right) \cap V\left(D_{1}\right)$. We notice that any D in f_{2}^{\perp} or f_{3}^{\perp} intersects $\left\{\partial_{0}=0\right\}$ singularly in $(0,1,0)$. Hence D_{0} and D_{1} also intersect singularly in $(0,1,0)$. If they have no common factor, then X consists of less than six distinct points, which is a contradiction.

When D_{0} and D_{1} have a common factor, we want to prove that X is contained within a line and a point. Then at least five of the points a_{i} must be contained in the line, and hence $\operatorname{dim}_{k} I_{2} \geq 2$, which is a contradiction.

Assume that D_{0} and D_{1} have a common factor, then D_{0} must be reducible since $D_{1} \notin\left(D_{0}\right)$, and therefore $D_{0} \in\left\langle\partial_{0}^{2}, \partial_{0} \partial_{2}\right\rangle$. Since we know that $D_{0} \neq \partial_{0}^{2}$, it follows that $D_{0}=\partial_{0}\left(\partial_{2}+c \partial_{0}\right)$ for some $c \in k$. Then D_{1} must have ∂_{0} or $\partial_{2}+c \partial_{0}$ as a factor, and therefore $D_{1} \in\left(\partial_{0}^{2}, \partial_{0} \partial_{2}\right)_{3}+\left\langle\partial_{2}^{3}\right\rangle$. Since $\left(\partial_{0}^{2}, \partial_{0} \partial_{2}\right)=\left(\partial_{0}^{2}, D_{0}\right)$, we might assume that $D_{0} \in\left(\partial_{0}^{2}\right)_{3}+\left\langle\partial_{2}^{3}\right\rangle$ without changing X. Then $D_{1}=\delta_{a} \partial_{0}^{2}+b \partial_{2}^{3}$ for suitable $\delta_{a}=\sum_{i=0}^{2} a_{i} \partial_{i} \in T_{1}$ and $b \in k$. We see that D_{0} and D_{1} have ∂_{0} as a common factor if and only if $b=0$, but then $X \subseteq\left\{\partial_{0}=0\right\} \cup\{$ a point $\}$. Hence $b \neq 0$, and we may assume that $b=1$. Then D_{0} and D_{1} must have $\partial_{2}+c \partial_{0}$ as a common factor, which means that the point $\left(1, c^{\prime},-c\right) \in\left\{D_{1}=0\right\}$ for all $c^{\prime} \in k$. This implies that $a_{1}=0$. Then $D_{1} \in k\left[\partial_{0}, \partial_{2}\right]$, which means that $\left\{D_{1}=0\right\}$ consists of three lines through $(0,1,0)$. Then $X=\left\{\partial_{2}+c \partial_{0}\right\}$, and we have the contradiction we sought.

Since $f+x_{2}^{4}$ obviously is a sum of six linear powers, the conclusion is that f is a sum of seven linear powers, and no less.

Remark 3.1.3: Let us have another look at $f=x_{0} x_{1}^{3}+r x_{1}^{2} x_{2}^{2}+s x_{1} x_{2}^{3}+t x_{2}^{4}$ where $(r, s, t) \in \mathbb{P}^{2}$ and $\Delta=8 r t-3 s^{2}$. When $\Delta \neq 0$, it is possible to perform linear transformations such that $(r, s, t)=(0,1,0)$ or $(1,0,1)$. Indeed, if $t \neq 0$, then we can assume $t=1$, and by performing $x_{2} \mapsto x_{2}-\frac{s}{4} x_{1}$, we might assume $s=0$. Now r must be nonzero, since f is not a sum of less than six linear powers. Hence by scaling x_{1} and x_{0}, we may assume $r=1$. If
$t=0$ then $\Delta \neq 0$ implies $s \neq 0$. By scaling x_{2} we might assume $s=1$, and then the linear transformation $x_{2} \mapsto x_{2}-\frac{r}{3} x_{1}$ permits us to assume $r=0$. Hence the following is true:

$$
\begin{array}{llll}
\Delta=0 \wedge t \neq 0 & \Rightarrow & f \sim x_{0} x_{1}^{3}+x_{2}^{4} & \text { a sum of } 5 \text { linear powers } \\
\Delta \neq 0 \wedge t=0 & \Rightarrow & f \sim x_{0} x_{1}^{3}+x_{1} x_{2}^{3} & \text { a sum of } 6 \text { linear powers } \\
\Delta \neq 0 \wedge t \neq 0 & \Rightarrow & f \sim x_{0} x_{1}^{3}+x_{1}^{2} x_{2}^{2}+x_{2}^{4} & \text { a sum of } 6 \text { linear powers } \\
\Delta=0 \wedge t=0 & \Rightarrow f \sim x_{0} x_{1}^{3}+x_{1}^{2} x_{2}^{2} & \text { a sum of } 7 \text { linear powers }
\end{array}
$$

$3.2 \operatorname{dim}_{k} f_{2}^{\perp} \geq 2$

First we will look at $f \in S_{4}$ such that $A^{f}=T / f^{\perp}$ has Hilbert function $(1,3,4,3,1)$. This means that $f_{2}^{\perp}=\left\langle D_{0}, D_{1}\right\rangle$ for some linearly independent $D_{i} \in T_{2}$. We know that $f=\sum_{i=1}^{s} \lambda_{i} l_{a_{i}}^{4} \Leftrightarrow \cap_{i=1}^{s}\left(l_{a_{i}}^{4}\right)^{\perp} \subseteq f^{\perp}$ and the right inclusion implies that $\cap_{i=1}^{s}\left(l_{a_{i}}^{4}\right) \frac{\perp}{2}=\cap_{i=1}^{s}\left(l_{a_{i}}^{2}\right) \frac{\perp}{2} \subseteq f_{2}^{\perp}=\left\langle D_{0}, D_{1}\right\rangle$. Thus if f is a sum of four linear powers, then $\cap_{i=1}^{4}\left(l_{a_{i}}^{2}\right) \frac{1}{2}=\left\langle D_{0}, D_{1}\right\rangle$ by (3.1). Hence $D_{j}\left(a_{i}\right)=0$ for all i and j. If we let $X_{f}=\left\{D_{0}=0\right\} \cap\left\{D_{1}=0\right\}$, this means that $a_{i} \in X_{f}$ for all i. The following result tells us that f is a sum of either four or six linear powers, depending on how X_{f} looks like.

Theorem 3.2:

Given $f \in S_{4}$ such that $f_{2}^{\perp}=\left\langle D_{0}, D_{1}\right\rangle$, let $X_{f}=V\left(D_{0}\right) \cap V\left(D_{1}\right)$.
(a) If X_{f} consists of four distinct points, then f is a sum of the corresponding four linear powers.
(b) If X_{f} is supported at less that four points, then f is a sum of six linear powers, and no less.
(c) If X_{f} is supported at a line and a point outside the line, then f is a sum of four linear powers.
(d) If X_{f} has support on a line only, then f is a sum of exactly six linear powers.

Proof: We recall that by remark 0.5.1, f cannot be a sum of less than four linear powers, since $\operatorname{dim}_{k} A_{2}^{f}=4$. To prove (a), let a_{1}, \ldots, a_{4} be the four points of X_{f}, and let $I=\cap_{i=1}^{4} \mathrm{~m}_{a_{i}}$. Then $I=\left(D_{0}, D_{1}\right)$ by theorem 0.8. Hence $I \subseteq f^{\perp}$, and by corollary $0.5, f=\sum_{i=1}^{4} \lambda_{i} l_{a_{i}}^{4}$ for suitable $\lambda_{i} \in k$.

To prove (c) and (d), we recall that by lemma 2.1 a point a is a base point of π_{3}^{f} if and only if $\delta_{0} f=l_{a}^{3}$ for some $\delta_{0} \in T_{1}$. Moreover, this is equivalent to $\delta_{0} \delta_{1} f=\delta_{0} \delta_{2} f=0$ for some $\delta_{1}, \delta_{2} \in T_{1}$ such that $\left\{\delta_{1}=0\right\} \cap\left\{\delta_{2}=0\right\}=\{a\}$, because $f_{1}^{\perp}=0$. Hence, since $\operatorname{dim}_{k} f_{2}^{\perp}=2$, we see that a point $a \in \mathbb{P}^{2}$ is a base point of π_{3}^{f} if and only if $f_{2}^{\perp}=\left\langle\delta_{0} \delta_{1}, \delta_{0} \delta_{2}\right\rangle$ for some $\delta_{i} \in T_{1}$ such that $\left\{\delta_{1}=0\right\} \cap\left\{\delta_{2}=0\right\}=\{a\}$. Note that π_{3}^{f} cannot have more than one base
point by proposition 3.1 since $\operatorname{dim}_{k} f_{2}^{\perp}=2$. We realize that both (c) and (d) correspond to base point cases of proposition 3.1. In (c) the base point a lies outside the line $\left\{\delta_{0}=0\right\}$, hence $\partial_{0} f=x_{0}^{3}$ after a linear transformation, and from the proof of proposition 3.1 we see that f is a sum of exactly four linear powers. In (d) the base point a lies on the line $\left\{\delta_{0}=0\right\}$, hence $\partial_{0} f=x_{1}^{3}$ after a linear transformation, and from the proof of proposition 3.1 we see that f is a sum of exactly six linear powers.

In (b), X_{f} has support on less than four points. Then it follows from the argument given prior to this theorem, that f cannot be a sum of four linear powers. Assume that f is a sum of five linear powers, say $f=\sum_{i=1}^{5} \lambda_{i} l_{a_{i}}^{4}$, $\lambda_{i} \neq 0$, and let $I=\cap_{i=1}^{5}\left(l_{a_{i}}^{4}\right)^{\perp}$. By lemma $0.4, I \subseteq f^{\perp}$, and hence $\operatorname{dim}_{k} I_{2} \leq$ 2. If $\operatorname{dim}_{k} I_{2}=2$, then $I_{2}=f_{2}^{\perp}=\left\langle D_{0}, D_{1}\right\rangle$, and thus $D_{j}\left(a_{i}\right)=0$ for all i and j. This means that $a_{i} \in X_{f}$ for all i, which is impossible since X_{f} is supported at less than four points. Hence $\operatorname{dim}_{k} I_{2} \leq 1$, and by (3.1), $\operatorname{dim}_{k} I_{2}=1$ and the $l_{a_{i}}$'s are linearly independent. Moreover, $I_{2}=\left\langle D_{0}^{\prime}\right\rangle$ for some $D_{0}^{\prime} \in f_{2}^{\perp}$. Pick $D_{1}^{\prime} \in f_{2}^{\perp}$ such that $f_{2}^{\perp}=\left\langle D_{0}^{\prime}, D_{1}^{\prime}\right\rangle$. Then

$$
0=D_{1}^{\prime}(f)=\sum_{i=1}^{5} \lambda_{i} D_{1}^{\prime}\left(l_{a_{i}}^{4}\right)=12 \sum_{i=1}^{5} \lambda_{i} D_{1}^{\prime}\left(a_{i}\right) l_{a_{i}}^{2}
$$

which is a contradiction since $D_{1}^{\prime} \notin I$ implies that $D_{1}^{\prime}\left(a_{i}\right)$ is not 0 for all i.
In order to prove that f is a sum of six linear powers, we consider π_{3}^{f}. Since D_{0} and D_{1} are relative prime, we realize that π_{3}^{f} is base-point-free, compare with the paragraph concerning (c) and (d). Therefore, by Bertini's theorem, the general member of the linear system f_{3}^{\perp} is nonsingular. Since D_{0} and D_{1} have no common factor, it follows that $\operatorname{dim}_{k}\left(D_{0}, D_{1}\right)_{3}=6$. Thus $f_{3}^{\perp}=\left(D_{0}, D_{1}\right)_{3}+\left\langle D_{2}\right\rangle$ for some $D_{2} \in T_{3}$. Since $\{c=0\}$ is a proper closed subset of $f_{3}^{\perp}=\left\{c D_{2}+D_{3} \mid D_{3} \in\left(D_{0}, D_{1}\right)_{3}\right\}$, we can find $D \in f_{3}^{\perp} \backslash$ $\left(D_{0}, D_{1}\right)_{3}$ that is nonsingular. Now define $\varphi:\{D=0\} \rightarrow \mathbb{P}^{1}$ by $\varphi(P)=$ $\left(D_{0}(P), D_{1}(P)\right)$. This map is base-point-free, since $f_{3}^{\perp}=\left(D_{0}, D_{1}\right)_{3}+\langle D\rangle$ and any base point of φ would be a base point of π_{3}^{f} as well. Now Bertini's theorem implies that the general member of $\left\langle D_{0}, D_{1}\right\rangle$ is nonsingular when considered as a subscheme of $\{D=0\}$. Let D^{\prime} be one such member. Hence we have $D \in f_{3}^{\perp}$ and $D^{\prime} \in f_{2}^{\perp}$ that intersect nonsingularly, i.e. in six distinct points, say a_{1}, \ldots, a_{6}. Let $\Gamma=\left\{a_{1}, \ldots, a_{6}\right\}$. Then $I_{\Gamma}=\left(D, D^{\prime}\right)$ by theorem 0.8 , and by corollary 0.5 , there exist λ_{i} such that $f=\sum_{i=1}^{6} \lambda_{i} l_{a_{i}}^{4}$.

Example 3.2.1: Let $f=x_{0} x_{1}^{3}+3 x_{0}^{2} x_{1} x_{2}$. We start by observing that since $f_{2}^{\perp}=\left\langle\partial_{1}^{2}-\partial_{0} \partial_{2}, \partial_{2}^{2}\right\rangle$, we have $X_{f}=\{(1,0,0)\}$. Then by theorem 3.2, f should be a sum of exactly six linear powers. To find such an representation explicitly, we look at f_{3}^{\perp}. We see that

$$
f_{3}^{\perp}=\left\langle\partial_{0}^{3}, \partial_{1}^{2} \partial_{2}, \partial_{0} \partial_{2}^{2}, \partial_{1} \partial_{2}^{2}, \partial_{2}^{3}, \partial_{0}\left(\partial_{1}^{2}-\partial_{0} \partial_{2}\right), \partial_{1}\left(\partial_{1}^{2}-\partial_{0} \partial_{2}\right)\right\rangle
$$

and hence $f_{3}^{\perp}=\left\langle\partial_{0}^{3}\right\rangle+\left(f_{2}^{\perp}\right)_{3}$. In the proof of theorem we used a $D \in f_{2}^{\perp}$ and a $D^{\prime} \in f_{3}^{\perp}$ which intersected nonsingularly. We can achieve this by choosing $D=\partial_{1}^{2}-\partial_{0} \partial_{2}$ and $D^{\prime}=\partial_{0}^{3}-\partial_{2}^{3}$. In fact, the intersection is now

$$
\{D=0\} \cap\left\{D^{\prime}=0\right\}=\left\{(1, \pm 1,1),\left(1, \pm \epsilon, \epsilon^{2}\right),\left(1, \pm \epsilon^{2}, \epsilon\right)\right\}
$$

where $\epsilon=e^{2 \pi i / 3}$ is a third-root of 1 . Now f should be a sum of six linear powers corresponding to these six points. Indeed, we see that

$$
\begin{aligned}
f=\frac{1}{24} & \left(\left(x_{0}+x_{1}+x_{2}\right)^{4}-\left(x_{0}-x_{1}+x_{2}\right)^{4}+\left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}\right)^{4}\right. \\
& \left.-\left(x_{0}-\epsilon x_{1}+\epsilon^{2} x_{2}\right)^{4}+\left(x_{0}+\epsilon^{2} x_{1}+\epsilon x_{2}\right)^{4}-\left(x_{0}-\epsilon^{2} x_{1}+\epsilon x_{2}\right)^{4}\right)
\end{aligned}
$$

REmARK 3.2.2: We note that if f is a sum of four "general enough" linear powers, indeed any $f \sim x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+l_{a}^{4}$ where $l_{a} \neq x_{i}$, then $\operatorname{dim}_{k} f_{2}^{\perp}=2$, compare with remark 0.5.1. If $a_{i} \neq 0$ for all i, this f belongs to category (a) of theorem 3.2, while it belongs to (c) if $a_{i}=0$ for exactly one i. From the proof of proposition 3.1, we know that category (d) is nonempty, and together with example 3.2 .1 this proves that all four categories of theorem 3.2 are nonempty.

Now we turn to $f \in S_{4}$ such that $\operatorname{dim}_{k} f_{2}^{\perp}=3$. This case is rather simple, as the following theorem tells us.

Theorem 3.3:

Given $f \in S_{4}$ such that A^{f} has Hilbert function $(1,3,3,3,1)$. Then either
(a) $f \sim x_{0}^{4}+x_{1}^{4}+x_{2}^{4}$, a sum of three linear powers, or
(b) $f \sim x_{0} x_{1}^{3}+x_{2}^{4}$, a sum of five linear powers, or
(c) $f \sim x_{0} x_{1}^{3}+x_{1}^{2} x_{2}^{2}$, a sum of seven linear powers.

Proof: Note that $\operatorname{dim}_{k} f_{2}^{\perp}=3$, and assume that π_{2}^{f} is base-point-free. By Bertini's theorem there are two quadrics $D_{0}, D_{1} \in f_{2}^{\perp}$ which intersect nonsingularly, i.e. in four distinct points. Let $\Gamma=V\left(D_{0}\right) \cap V\left(D_{1}\right)=\left\{a_{1}, \ldots, a_{4}\right\}$. By theorem 0.8, $I_{\Gamma}=\left(D_{0}, D_{1}\right)$. Since $D_{i} \in f^{\perp}$, we have $I_{\Gamma} \subseteq f^{\perp}$, and by corollary $0.5, f=\sum_{i=1}^{4} \lambda_{i} l_{a_{i}}^{4}$ for suitable $\lambda_{i} \in k$. Since $f_{1}^{\perp}=0$, then $\left\{l_{a_{i}}\right\}$ must be a basis for S_{1}, and either $f \sim x_{0}^{4}+x_{1}^{4}+x_{2}^{4}$ or $f \sim x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+l_{a}^{4}$. The first case is impossible since we assumed that π_{2}^{f} had no base points. Hence after a linear transformation, we get $f=x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+l_{a}^{4}$ where $a \neq(1,0,0),(0,1,0),(0,0,1)$. But then $\operatorname{dim}_{k} A_{2}^{f}=4$, which is a contradiction.

Hence π_{2}^{f} has at least one base point, and so has π_{3}^{f}, since $f_{3}^{\perp}=\left(f_{2}^{\perp}\right)_{3}$. Note that the ideal f^{\perp} has three generators of degree two and two of degree four, see for instance [16] or [4]. Now the conclusion follows easily from proposition 3.1, since $\operatorname{dim}_{k} f_{2}^{\perp}=3$.

$3.3 \operatorname{dim}_{k} f_{2}^{\perp}=1$

We now turn our attention to the case where $A^{f}=T / f^{\perp}$ has Hilbert function $(1,3,5,3,1)$. We know from (3.1) that such an f cannot be a sum of less than five linear powers. Furthermore, $f_{2}^{\perp}=\left\langle D_{0}\right\rangle$ for some $D_{0} \in T_{2}$. Here D_{0} might be nonsingular or not, and our discussion will deal with each case quite differently. In both cases however, if f is a sum of six or less linear powers, then the six points must lie on $\left\{D_{0}=0\right\}$, i.e.

$$
\begin{equation*}
f=\sum_{i=1}^{s} \lambda_{i} l_{a_{i}}^{4} \text { where } s \leq 6 \Rightarrow\left\{a_{1}, \ldots, a_{s}\right\} \subseteq\left\{D_{0}=0\right\} . \tag{3.2}
\end{equation*}
$$

To prove this, look at $I=\cap_{i=1}^{s}\left(l_{a_{i}}^{4}\right)^{\perp} \subseteq f^{\perp}$. We know that $\operatorname{dim}_{k} I_{2} \leq$ $\operatorname{dim}_{k} f_{2}^{\perp}=1$ and $\operatorname{dim}_{k} I_{2}=\operatorname{dim}_{k} T_{2}-\operatorname{dim}_{k}\left\langle l_{a_{1}}^{2}, \ldots, l_{a_{s}}^{2}\right\rangle \geq 6-s$. For $s=6$, assume that $\operatorname{dim}_{k} I_{2}=0$. Then $\operatorname{dim}_{k}\left\langle l_{a_{1}}^{2}, \ldots, l_{a_{6}}^{2}\right\rangle=6$, hence the $l_{a_{i}}^{2}$'s are linearly independent by (3.1). But $0=D_{0}(f)=12 \sum_{i=1}^{s} \lambda_{i} D_{0}\left(a_{i}\right) l_{a_{i}}^{2}$, which is a contradiction. Hence $\operatorname{dim}_{k} I_{2}=1 \mathrm{in}$ all cases, which means that $I_{2}=$ $\left\langle D_{0}\right\rangle$ and $D_{0}\left(a_{i}\right)=0$ for all i.

3.3.1 $\quad D_{0}$ nonsingular

In this case D_{0} is a nonsingular quadric, and the discussion of this case is inspired by the one found in [16].

Theorem 3.4:

Any f such that $f_{2}^{\perp}=\left\langle D_{0}\right\rangle$ with D_{0} nonsingular, is a sum of exactly five linear powers.

Proof: Since A^{f} is Gorenstein of codimension 3, the structure theorem of Buchsbaum-Eisenbud [2] applies. Hence A^{f} has the following minimal free resolution

$$
0 \rightarrow T(-7) \rightarrow F_{2} \rightarrow F_{1} \rightarrow T \rightarrow A^{f} \rightarrow 0
$$

where $F_{1}=T(-3) \oplus T(-2)^{\oplus 4}, F_{2}^{*} \cong F_{1}(7), \phi$ is a skew-symmetric 5×5 matrix and f^{\perp} is generated by the 4×4 pfaffians of ϕ. Thus

$$
\phi=\left[\begin{array}{ccccc}
0 & q_{1} & q_{2} & q_{3} & q_{4} \tag{3.3}\\
-q_{1} & 0 & \delta_{1} & \delta_{2} & \delta_{3} \\
-q_{2} & -\delta_{1} & 0 & \delta_{4} & \delta_{5} \\
-q_{3} & -\delta_{2} & -\delta_{4} & 0 & \delta_{6} \\
-q_{4} & -\delta_{3} & -\delta_{5} & -\delta_{6} & 0
\end{array}\right]
$$

where $q_{i} \in T_{2}$ and $\delta_{i} \in T_{1}$. Now we want to perform "symmetrical" row- and column-operations on ϕ to obtains a skew-symmetrical matrix with more zeroes. Such operations do not change the ideal generated by the pfaffians.

If the forms δ_{3}, δ_{5} and δ_{6} are linearly dependent, we get a matrix with zeroes at the positions where $\pm \delta_{6}$ are now by performing the suitable rowand column-operations. In particular, if $\delta_{3}=0$, then just interchange the second and the fourth row. If $\delta_{5}=a \delta_{3}$ for some $a \in k$, then subtract a times the second row from the third row, and then interchange row number three and four. If $\delta_{6}=a \delta_{3}+b \delta_{5}$ for some scalars $a, b \in k$, then replace the fourth row with itself minus a times the second row minus b times the third row.

Next we assume that δ_{3}, δ_{5} and δ_{6} are linearly independent. By interchanging the last two columns, we may assume that $\left\{\delta_{2}, \delta_{4}, \delta_{6}\right\}$ is a basis for T_{1}. Hence $\delta_{3}=a_{2} \delta_{2}+a_{4} \delta_{4}+a_{6} \delta_{6}$ for some $a_{i} \in k$, and by subtracting a_{6} times the fourth row from the second, we get $\delta_{3} \in\left\langle\delta_{2}, \delta_{4}\right\rangle$. Similarly we may assume that $\delta_{5} \in\left\langle\delta_{2}, \delta_{4}\right\rangle$. Hence $\delta_{i}=a_{i 2} \delta_{2}+a_{i 4} \delta_{4}$ for $i=3,5$, where $a_{i j} \in k$. Then by subtracting μ times the fourth row from the fifth, where μ is a solution of $\left|\begin{array}{cc}a_{32}-\mu & a_{52} \\ a_{34} & a_{54}-\mu\end{array}\right|=0$, it follows that $\operatorname{dim}_{k}\left\langle\delta_{3}, \delta_{5}\right\rangle=1$. Thus the δ 's in the last column are linearly dependent, and hence we can, without loss of generality, assume that $\delta_{6}=0$.

Now the 4×4 pfaffian that gives D_{0}, the quadric generator of f^{\perp}, equals $\delta_{3} \delta_{4}-\delta_{2} \delta_{5}$. This is irreducible by assumption, hence in particular, δ_{2} and δ_{3} must be nonproportional. Then either $\delta_{4} \in\left\langle\delta_{2}, \delta_{3}\right\rangle$, or $\left\{\delta_{2}, \delta_{3}, \delta_{4}\right\}$ is a basis for T_{1}. In the first case, by subtracting a suitable multiple of the second row from the third and then scale the third row, we can assume that $\delta_{4}=\delta_{3}$. In the second case, by expressing δ_{5} as a linear combination of δ_{2}, δ_{3} and δ_{4}, and subtracting its components along δ_{3} and δ_{4}, we might assume that $\delta_{5}=\delta_{2}$. Then interchange the last two rows and columns to get $\delta_{4}=\delta_{3}$.

If $\delta_{5} \in\left\langle\delta_{2}, \delta_{3}\right\rangle$, then $D_{0}=\delta_{3}^{2}-\delta_{2} \delta_{5}$ is a polynomial in two variables, which contradicts the fact that D_{0} is irreducible. Therefore, $\left\{\delta_{2}, \delta_{3}, \delta_{5}\right\}$ is a basis for T_{1}, and after a linear transformation, we get $\delta_{2}=\partial_{0}, \delta_{3}=\partial_{1}$ and $\delta_{5}=\partial_{2}$. Furthermore, we get $\delta_{1}=0$ by subtracting suitable multiples of the fourth and fifth column from the third, and a suitable multiple of the fifth row from the second. All in all, we have proved that after several row- and column-operations, we can assume that

$$
\phi=\left[\begin{array}{ccccc}
0 & q_{1} & q_{2} & q_{3} & q_{4} \tag{3.4}\\
-q_{1} & 0 & 0 & \partial_{0} & \partial_{1} \\
-q_{2} & 0 & 0 & \partial_{1} & \partial_{2} \\
-q_{3} & -\partial_{0} & -\partial_{1} & 0 & 0 \\
-q_{4} & -\partial_{1} & -\partial_{2} & 0 & 0
\end{array}\right]
$$

where $q_{i} \in T_{2}$. The pfaffians of this matrix are

$$
\partial_{1}^{2}-\partial_{0} \partial_{2} \quad q_{2} \partial_{0}-q_{1} \partial_{1} \quad q_{2} \partial_{1}-q_{1} \partial_{2} \quad q_{4} \partial_{0}-q_{3} \partial_{1} \quad q_{4} \partial_{1}-q_{3} \partial_{2}
$$

and we see that $D_{0}=\partial_{1}^{2}-\partial_{0} \partial_{2}$ is irreducible, as it should be.
Since we below will need to make a linear combination of the q_{i} 's, we notice that by adding c times the second column to the fourth, and c times
the third to the fifth, and performing the "symmetrical" row-operations, we get a matrix that is equal to the one we have, except for q_{3} and q_{4}. The new entries are $q_{3}^{\prime}=q_{3}+c q_{1}$ and $q_{4}^{\prime}=q_{4}+c q_{2}$. Hence the two new pfaffians are $q_{4}^{\prime} \partial_{i}-q_{3}^{\prime} \partial_{i+1}=\left(q_{4} \partial_{i}-q_{3} \partial_{i+1}\right)+c\left(q_{4} \partial_{i}-q_{3} \partial_{i+1}\right)$ for $i=0,1$.

Now, $P \in\left\{\partial_{1}^{2}-\partial_{0} \partial_{2}=0\right\} \subseteq \mathbb{P}^{2}$ if and only if $P=\left(s^{2}, s t, t^{2}\right)$ for some $(s, t) \in \mathbb{P}^{1}$. Hence the three pfaffians $D_{0}, q_{2} \partial_{0}-q_{1} \partial_{1}$ and $q_{2} \partial_{1}-q_{1} \partial_{2}$ are all zero if and only if $\bar{q}_{2} s-\bar{q}_{1} t=0$, where $\bar{q}_{i}=q_{i}\left(s^{2}, s t, t^{2}\right) \in k[s, t]_{4}$. Similarly, D_{0} and the two last pfaffians are zero if and only if $\bar{q}_{4} s-\bar{q}_{3} t=0$.

If every linear combination of $\bar{q}_{2} s-\bar{q}_{1} t$ and $\bar{q}_{4} s-\bar{q}_{3} t$ have multiple zeroes, then by lemma 1.1, they must have a common (double) zero $(s, t) \in \mathbb{P}^{1}$. But then $\left(s^{2}, s t, t^{2}\right) \in \mathbb{P}^{2}$ would be a common zero for all five generator of f^{\perp}, which is impossible. Hence there is a linear combination of $\bar{q}_{2} s-\bar{q}_{1} t$ and $\bar{q}_{4} s-\bar{q}_{3} t$ that has five distinct roots. As we noticed above, we may assume that this is $\bar{q}_{4} s-\bar{q}_{3} t$. Now let ψ be the upper right 3×2 submatrix of ϕ, i.e.

$$
\psi=\left[\begin{array}{cc}
q_{3} & q_{4} \\
\partial_{0} & \partial_{1} \\
\partial_{1} & \partial_{2}
\end{array}\right] .
$$

Then the three pfaffians $D_{0}, D_{1}=q_{4} \partial_{0}-q_{3} \partial_{1}$ and $D_{2}=q_{4} \partial_{1}-q_{3} \partial_{2}$ of ϕ equals the 2×2 minors of ψ, and they intersect in five distinct points, say $\Gamma=\left\{a_{1}, \ldots, a_{5}\right\}$. By Hilbert-Burch [6, theorem 20.15] the homogenous ideal I_{Γ} of these points is generated by the 2×2 minors of ψ. Hence $I_{\Gamma}=$ $\left(D_{0}, D_{1}, D_{2}\right) \subseteq f^{\perp}$, and we get $f=\sum_{i=1}^{5} \lambda_{i} l_{a_{i}}^{4}$ for suitable $\lambda_{i} \in k$ by corollary 0.5.

3.3.2 $\quad D_{0}$ singular

We now turn our attention to the case where D_{0} is singular, and since D_{0} is a quadric, this means that D_{0} is reducible. If an f with $f_{2}^{\perp}=\left\langle D_{0}\right\rangle$ is a sum of five linear powers, then one way to find such a representation, is to subtract a suitable linear power from f. Hopefully, we get a new polynomial g with $\operatorname{dim}_{k} g_{2}^{\perp}=2$, and by theorem 3.2 we know when such a polynomial is a sum of four linear powers. This is essensially what we are going to do, but first we need to do some preparations, starting with the following lemma, in which $\operatorname{tr} M$ is the trace of M and id_{n} is the $n \times n$ identity matrix.

Lemma 3.5: Let $M_{n}=\left(m_{i j}\right)$ be an $n \times n$ matrix of rank ≤ 1. Then

$$
\begin{equation*}
\operatorname{det}\left(\mathrm{id}_{n}-\lambda M_{n}\right)=1-\lambda \cdot \operatorname{tr} M_{n} \tag{3.5}
\end{equation*}
$$

Proof: If $n=1$, the statement is obviously true. Assume that equation (3.5) is true for some $n \geq 1$, and let \vec{m}_{i} and \vec{e}_{i} be the $i^{\text {th }}$ column of M_{n+1} and
id_{n+1}, respectively. Then

$$
\begin{aligned}
& \left|\begin{array}{llll}
\vec{e}_{1}-\lambda \vec{m}_{1} & \vec{e}_{2}-\lambda \vec{m}_{2} & \cdots & \vec{e}_{n}-\lambda \vec{m}_{n}
\end{array} \vec{m}_{n+1}\right| \\
& =\left|\begin{array}{llll}
\vec{e}_{1} & \vec{e}_{2}-\lambda \vec{m}_{2} & \cdots & \vec{e}_{n}-\lambda \vec{m}_{n}
\end{array} \vec{m}_{n+1}\right| \\
& -\lambda\left|\vec{m}_{1} \quad \vec{e}_{2}-\lambda \vec{m}_{2} \quad \cdots \quad \vec{e}_{n}-\lambda \vec{m}_{n} \quad \vec{m}_{n+1}\right| \\
& =\left|\begin{array}{llll}
\vec{e}_{1} & \vec{e}_{2}-\lambda \vec{m}_{2} & \cdots & \vec{e}_{n}-\lambda \vec{m}_{n}
\end{array} \vec{m}_{n+1}\right|-\lambda \cdot 0 \\
& =\ldots=\left|\begin{array}{lllll}
\vec{e}_{1} & \vec{e}_{2} & \cdots & \vec{e}_{n} & \vec{m}_{n+1}
\end{array}\right|=m_{n+1, n+1}
\end{aligned}
$$

and therefore

$$
\left.\begin{aligned}
& \operatorname{det}\left(\operatorname{id}_{n+1}-\lambda M_{n+1}\right)=\left|\begin{array}{llll}
\vec{e}_{1}-\lambda \vec{m}_{1} & \cdots & \vec{e}_{n}-\lambda \vec{m}_{n} & \vec{e}_{n+1}-\lambda \vec{m}_{n+1}
\end{array}\right| \\
&=\left|\begin{array}{llll}
\vec{e}_{1}-\lambda \vec{m}_{1} & \cdots & \vec{e}_{n}-\lambda \vec{m}_{n} & \vec{e}_{n+1}
\end{array}\right| \\
&-\lambda \mid \vec{e}_{1}-\lambda \vec{m}_{1} \\
& \cdots \vec{e}_{n}-\lambda \vec{m}_{n} \\
& \vec{m}_{n+1}
\end{aligned} \right\rvert\,, \begin{array}{ll}
= & \operatorname{det}\left(\mathrm{id}_{n}-\lambda M_{n}\right)-\lambda \cdot m_{n+1, n+1} \\
= & 1-\lambda \cdot \operatorname{tr} M_{n+1}
\end{array}
$$

and the lemma follows by induction on n.
Assume we have an $f \in S_{4}$ with $f_{2}^{\perp}=\left\langle D_{0}\right\rangle$ for some $D_{0} \in T_{2}$. Our goal is now to find a method that determines when it is possible to subtract a linear power from f and get a new form g which is a sum of four linear powers. First choose $D_{1}, \ldots, D_{5} \in T_{2}$ such that $\mathcal{D}=\left\{D_{0}, \ldots, D_{5}\right\}$ is a basis for T_{2}. Observe that with this basis we have

$$
\operatorname{Cat}_{\mathcal{D}}(f)=\left[\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right]
$$

where A is a symmetrical 5×5 matrix. In fact, in terms of the vector $v^{T}=\left[D_{1}, \ldots, D_{5}\right]$, we see that $A=\left(v v^{T}\right)(f)$. Futhermore, A is invertible since $\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}(f)=\operatorname{dim}_{k} A_{2}^{f}=5$ by (0.9). For any $a \in\left\{D_{0}=0\right\}$ we have

$$
\operatorname{Cat}_{\mathcal{D}}\left(l_{a}^{4}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & C
\end{array}\right] \quad \text { and } \quad \operatorname{Cat}_{\mathcal{D}}(g)=\left[\begin{array}{cc}
0 & 0 \\
0 & A-\lambda C
\end{array}\right]
$$

where $C=\left(v v^{T}\right)\left(l_{a}^{4}\right)$ and $g=f-\lambda l_{a}^{4}$. Since $D_{i} D_{j}\left(l_{a}^{4}\right)=24 D_{i}(a) D_{j}(a)$, it follows that $C=24 v(a) v(a)^{T}$. Hence $\operatorname{rank} C=1$, and

$$
\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}(g)=\operatorname{rank}(A-\lambda C) \geq \operatorname{rank} A-\operatorname{rank} C=4
$$

with equality if and only if $\operatorname{det}(A-\lambda C)=0$. If we let $B=A^{-1}$, then this is equivalent to $\operatorname{det}\left(\mathrm{id}_{5}-\lambda B C\right)=0$. As we have proved in lemma 3.5, this determinant equals $1-\lambda \cdot \operatorname{tr}(B C)$. Using the fact that $\operatorname{tr}\left(u_{1} u_{2}^{T}\right)=\operatorname{tr}\left(u_{2}^{T} u_{1}\right)=$ $u_{2}^{T} u_{1}$ holds for any columnvectors u_{1} and u_{2}, we get

$$
\operatorname{tr}(B C)=24 \operatorname{tr}\left(B v(a) v(a)^{T}\right)=24 v(a)^{T} B v(a)=24 \eta(a)
$$

where we define $\eta \in T_{4}$ by

$$
\begin{equation*}
\eta=v^{T} B v . \tag{3.6}
\end{equation*}
$$

Hence if $\eta(a)=0$, the rank of $\operatorname{Cat}_{\mathcal{D}}(g)$ always equals 5 . However, if $\eta(a) \neq 0$, then there exists a unique $\lambda_{a} \in k$ such that $\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}\left(f-\lambda_{a} l_{a}^{4}\right)=4$, namely $\lambda_{a}=\frac{1}{24 \eta(a)}$.

Since $\operatorname{dim}_{k}\left(f-\lambda_{a} l_{a}^{4}\right)_{2}^{\perp}=2$ and $D_{0}\left(f-\lambda_{a} l_{a}^{4}\right)=D_{0}(f)-12 \lambda_{a} D_{0}(a) l_{a}^{2}=0$, it follows that $\left(f-\lambda_{a} l_{a}^{4}\right)^{\perp}=\left\langle D_{0}, \rho_{a}\right\rangle$ for some $\rho_{a} \in\left\langle D_{1}, \ldots, D_{5}\right\rangle$. This ρ_{a} is unique up to a scalar. Now $0=\rho_{a}\left(f-\lambda_{a} l_{a}^{4}\right)=\rho_{a}(f)-12 \lambda_{a} \rho_{a}(a) l_{a}^{2}$, hence $\rho_{a}(a) \neq 0$ because $\rho_{a}(f) \neq 0$. Scale ρ_{a} such that $\rho_{a}(a)=\eta(a)$, and let $\rho_{a}=\sum_{i=1}^{5} c_{i} D_{i}=c^{T} v$. For all j we now have
$0=\rho_{a} D_{j}\left(f-\lambda_{a} l_{a}^{4}\right)=\rho_{a} D_{j}(f)-24 \lambda_{a} \rho_{a}(a) D_{j}(a)=\sum_{i=1}^{5} c_{i} D_{i} D_{j}(f)-D_{j}(a)$
Written as a matrix equation, this says $A c=v(a)$. Hence $c=B v(a)$ and

$$
\begin{equation*}
\rho_{a}=v(a)^{T} B v=v^{T} B v(a) . \tag{3.7}
\end{equation*}
$$

In particular, we notice that $\rho_{a} \neq 0$ since $v(a) \neq 0$.
Notice that both η and ρ_{a} are independent of the basis \mathcal{D}, as long as D_{0} is one of the basisvectors. If $\mathcal{E}=\left\{D_{0}, E_{1}, \ldots, E_{5}\right\}$ is another basis, then $v_{\mathcal{E}}=M v_{\mathcal{D}}$ for some invertible 5×5 matrix M. Here $v_{\mathcal{E}}^{T}=\left[E_{1}, \ldots, E_{5}\right]$ and $v_{\mathcal{D}}$ is the columnvector v above. Now $A_{\mathcal{E}}=\left(v_{\mathcal{E}} v_{\mathcal{E}}^{T}\right)(f)=\left(M v_{\mathcal{D}} v_{\mathcal{D}}^{T} M^{T}\right)(f)=$ $M A_{\mathcal{D}} M^{T}$ and $B_{\mathcal{E}}=A_{\mathcal{E}}^{-1}=\left(M^{T}\right)^{-1} B_{\mathcal{D}} M^{-1}$. Hence

$$
\eta_{\mathcal{E}}=v_{\mathcal{E}}^{T} B_{\mathcal{E}} v_{\mathcal{E}}=\left(v_{\mathcal{D}}^{T} M^{T}\right)\left(\left(M^{T}\right)^{-1} B_{\mathcal{D}} M^{-1}\right)\left(M v_{\mathcal{D}}\right)=v_{\mathcal{D}}^{T} B_{\mathcal{D}} v_{\mathcal{D}}=\eta_{\mathcal{D}}
$$

and similarly for ρ_{a}. If \mathcal{E} is a basis that does not have D_{0} as a basisvector, then our method to define η and ρ_{a} fails, and we just define η and ρ_{a} to be the same polynomials as in the cases where \mathcal{E} contains D_{0}. Also notice that η is nonzero as an element of T, since

$$
\begin{equation*}
\eta(f)=\operatorname{tr}\left(B v v^{T}\right)(f)=\operatorname{tr}\left(B v v^{T}(f)\right)=\operatorname{tr}(B A)=\operatorname{tr}\left(\operatorname{id}_{5}\right)=5 . \tag{3.8}
\end{equation*}
$$

Now, if there exists an $a \notin\{\eta=0\}$ such that D_{0} and ρ_{a} intersect in either four distinct points or a line and a point outside the line, then theorem 3.2 tells us that $f-\lambda_{a} l_{a}^{4}$ is a sum of four linear powers, and f is then a sum of five. On the other hand, if $f=\sum_{i=1}^{5} \lambda_{i} l_{a_{i}}^{4}$, then $\left\{a_{1}, \ldots, a_{5}\right\} \subseteq\left\{D_{0}=0\right\}$, as we proved in the beginning of section 3.3. Futhermore, $g_{j}=f-\lambda_{j} l_{a_{j}}^{4}$ is a sum of four linear powers, hence $\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}\left(g_{j}\right) \leq 4$ by (0.9) and (0.8). Since we have already shown that this rank is ≥ 4, it follows that $\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}\left(g_{j}\right)=4$. Then we must have $a_{j} \notin\{\eta=0\}, \lambda_{j}=\lambda_{a_{j}}$ and $\left(g_{j}\right)_{2}^{\perp}=\left\langle D_{0}, \rho_{a_{j}}\right\rangle$. Since g_{j} is a sum of four linear powers, it follows from theorem 3.2 that D_{0} and $\rho_{a_{j}}$ intersect in either four distinct points or a line and a point outside. The other four points, $\left\{a_{i} \mid i \neq j\right\}$, are contained in this intersection.

Example 3.5.1: As an example of the quantities we have just introduced, let us look at $f=\frac{1}{24}\left(\left(c_{0} x_{0}+4 x_{2}\right) x_{0}^{3}+6 x_{1}^{2} x_{2}^{2}+c_{1} x_{2}^{4}\right)$, where $c_{j} \in k$. We see that $f_{2}^{\perp}=\left\langle\partial_{0} \partial_{1}\right\rangle$, hence our discussion above applies. As a basis for T_{2}, choose $\mathcal{D}=\left\{\partial_{0} \partial_{1}, \partial_{0}^{2}, \partial_{1}^{2}, \partial_{2}^{2}, \partial_{0} \partial_{2}, \partial_{1} \partial_{2}\right\}$, and let $v^{T}=\left[\partial_{0}^{2}, \partial_{1}^{2}, \partial_{2}^{2}, \partial_{0} \partial_{2}, \partial_{1} \partial_{2}\right]$. Then

$$
\operatorname{Cat}_{\mathcal{D}}(f)=\left[\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right] \quad \text { where } \quad A=\left(v v^{T}\right)(f)=\left[\begin{array}{ccccc}
c_{0} & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & c_{1} & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

In particular, we see that A is invertible, and its inverse B is given by

$$
B=A^{-1}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & -c_{1} & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & -c_{0} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Using $\eta=v^{T} B v(3.6)$ and $\rho_{a}=v^{T} B v(a)$ (3.7), we see that

$$
\begin{aligned}
\eta & =2 \partial_{0}^{3} \partial_{2}-c_{0} \partial_{0}^{2} \partial_{2}^{2}-c_{1} \partial_{1}^{4}+3 \partial_{1}^{2} \partial_{2}^{2}, \\
\rho_{a} & =a_{0} a_{2} \partial_{0}^{2}+\left(a_{2}^{2}-c_{1} a_{1}^{2}\right) \partial_{1}^{2}+a_{1}^{2} \partial_{2}^{2}+a_{0}\left(a_{0}-c_{0} a_{2}\right) \partial_{0} \partial_{2}+a_{1} a_{2} \partial_{1} \partial_{2},
\end{aligned}
$$

and simple calculations now gives $\eta(f)=5$, as expected.
For any $a \in Y_{0}:=\left\{\partial_{0}=0\right\}$, we have $\rho_{a}=\left(a_{2}^{2}-c_{1} a_{1}^{2}\right) \partial_{1}^{2}+a_{1}^{2} \partial_{2}^{2}+a_{1} a_{2} \partial_{1} \partial_{2}$. Hence the intersection between $C_{a}:=\left\{\rho_{a}=0\right\}$ and $Y_{1}:=\left\{\partial_{1}=0\right\}$ is given by $a_{1}^{2} \partial_{2}^{2}=0$. If $a_{1} \neq 0$, this intersection is just the (double) point ($1,0,0$), and $X_{f}:=C_{a} \cap C_{f}$, where $C_{f}:=\left\{\partial_{0} \partial_{1}=0\right\}=Y_{0} \cup Y_{1}$, is supported at less than four points. If $a_{1}=0$, then $a=(0,0,1)$ and $\rho_{a}=\partial_{1}^{2}$. In this case X_{f} has support on a line only.

Next we notice that $\rho_{a}=a_{0} a_{2} \partial_{0}^{2}+a_{2}^{2} \partial_{1}^{2}+a_{0}\left(a_{0}-c_{0} a_{2}\right) \partial_{0} \partial_{2}$ for any $a \in Y_{1}$. Therefore, $C_{a} \cap Y_{0}=\left\{a_{2}^{2} \partial_{1}^{2}=0\right\}$, which is a double point if $a_{2} \neq 0$. On the other hand, if $a_{2}=0$, then $a=(1,0,0)$ and $\rho_{a}=\partial_{0} \partial_{2}$. Hence X_{f} has support on a line and a point outside the line. But now $\eta(1,0,0)=0$.

Since for any $a \in C_{f}$, either $a \in\{\eta=0\}$ or $X_{f}=C_{a} \cap C_{f}$ has support in less than four points or on a line, it follows from the discussion preceding this example, that f cannot be a sum of five linear powers.

Remark 3.5.2: The polynomial f studied in example 3.5 .1 is not the only polynomial that is not a sum of five linear powers. Both h_{1} and h_{2} where

$$
\begin{aligned}
& h_{1}=\frac{1}{24}\left(\left(c_{0} x_{0}+4 x_{2}\right) x_{0}^{3}+x_{1}^{4}+\left(4 x_{1}+c_{1} x_{2}\right) x_{2}^{3}\right) \\
& h_{2}=\frac{1}{24}\left(\left(c_{0} x_{0}+4 x_{2}\right) x_{0}^{3}+\left(c_{1} x_{1}+4 x_{2}\right) x_{1}^{3}+x_{2}^{4}\right)
\end{aligned}
$$

share this property with f. In both cases, $\left(h_{i}\right) \frac{1}{2}=\left\langle\partial_{0} \partial_{1}\right\rangle$. With h_{1} we have

$$
\begin{aligned}
\eta & =2 \partial_{0}^{3} \partial_{2}-c_{0} \partial_{0}^{2} \partial_{2}^{2}+\partial_{1}^{4}-c_{1} \partial_{1}^{2} \partial_{2}^{2}+2 \partial_{1} \partial_{2}^{3}, \\
\rho_{a} & =a_{0} a_{2} \partial_{0}^{2}+a_{1}^{2} \partial_{1}^{2}+a_{1} a_{2} \partial_{2}^{2}+a_{0}\left(a_{0}-c_{0} a_{2}\right) \partial_{0} \partial_{2}+a_{2}\left(a_{2}-c_{1} a_{1}\right) \partial_{1} \partial_{2},
\end{aligned}
$$

while using h_{2} we get

$$
\begin{aligned}
\eta & =2 \partial_{0}^{3} \partial_{2}-c_{0} \partial_{0}^{2} \partial_{2}^{2}+2 \partial_{1}^{3} \partial_{2}-c_{1} \partial_{1}^{2} \partial_{2}^{2}+\partial_{2}^{4}, \\
\rho_{a} & =a_{0} a_{2} \partial_{0}^{2}+a_{1} a_{2} \partial_{1}^{2}+a_{2}^{2} \partial_{2}^{2}+a_{0}\left(a_{0}-c_{0} a_{2}\right) \partial_{0} \partial_{2}+a_{1}\left(a_{1}-c_{1} a_{2}\right) \partial_{1} \partial_{2} .
\end{aligned}
$$

In both cases it is easy to check that $C_{a} \cap C_{h_{i}}$ is supported at less than four points or at just a line for all $a \in C_{h_{i}}$ such that $\eta(a) \neq 0$.

Theorem 3.6 tells us that up to linear transformations, these polynomials are the only ones with $f_{2}^{\perp}=\left\langle D_{0}\right\rangle$ and D_{0} singular, which are not a sum of five linear powers.

We are now ready to prove the following theorem, which tells us how many linear powers are needed to express an f with $\operatorname{dim}_{k} f_{2}^{\perp}=1$ as a linear combination of them.

Theorem 3.6:

Given $f \in S_{4}$ such that $f_{2}^{\perp}=\left\langle D_{0}\right\rangle$ and D_{0} is singular. If $\left\{D_{0}=0\right\}$ is a product of two distinct lines, then f is a sum of five linear powers, except when

1. $f \sim\left(c_{0} x_{0}+x_{2}\right) x_{0}^{3}+x_{1}^{2} x_{2}^{2}+c_{1} x_{2}^{4}$
2. $f \sim\left(c_{0} x_{0}+x_{2}\right) x_{0}^{3}+x_{1}^{4}+\left(x_{1}+c_{1} x_{2}\right) x_{2}^{3}$
3. $f \sim\left(c_{0} x_{0}+x_{2}\right) x_{0}^{3}+\left(c_{1} x_{1}+x_{2}\right) x_{1}^{3}+x_{2}^{4}$

In these three cases, f is a sum of six linear powers. If $\left\{D_{0}=0\right\}$ is a double line, then f is a sum of exactly seven linear powers.

Proof: The simlest case is when $\left\{D_{0}=0\right\}$ is a double line, that is, $D_{0}=\delta^{2}$ for some $\delta \in T_{1}$. If f is a linear combination of $l_{a_{1}}^{4}, \ldots, l_{a_{s}}^{4}$ where $s \leq 6$, then $\left\{a_{1}, \ldots, a_{s}\right\} \subseteq\left\{D_{0}=0\right\}$, as we proved in the beginning of section 3.3. Hence $\delta\left(a_{i}\right)=0$ for all i, and therefore $\delta(f)=0$. But this contradicts the fact that $f_{1}^{\perp}=0$. To prove that f is indeed a sum of seven linear powers, we just have to notice that since $\eta \neq 0$ by (3.8), we can find $a \notin\{\eta=0\}$. Then $\operatorname{dim}_{k}\left(f-\lambda_{a} l_{a}^{4}\right) \frac{\perp}{2}=2$, and by theorem 3.2, $f-\lambda_{a} l_{a}^{4}$ is a sum of six linear powers.

When $\left\{D_{0}=0\right\}$ is a product of two distinct lines, we may assume that $D_{0}=\partial_{0} \partial_{1}$ after a linear transformation. Hence $f=h_{0}\left(x_{0}, x_{2}\right)+h_{1}\left(x_{1}, x_{2}\right)$ where both h_{0} and h_{1} are binary forms. First we want to prove that f necessarily is a sum of six linear powers. If not, at least one of the h_{i} 's cannot
be a sum of three linear powers. In fact, since $f=\left(h_{0}+c x_{2}^{4}\right)+\left(h_{1}-c x_{2}^{4}\right)$, we can assume that $h_{0}+c x_{2}^{4}$ is not a sum of three linear powers for infinitely many $c \in k$. By remark 1.2.1, this means that $h_{0}+c x_{2}^{4}=l_{1} l_{2}^{3}$ for some $l_{i}=l_{i}(c) \in S_{1}$ for these c. Hence $h_{0}+c x_{2}^{4}$ is not squarefree for infinitely many c, and by the proof of lemma 1.1, we conclude that they must have a common multiple root. Hence $h_{0}=l x_{2}^{3}$ for some $l \in S_{1}$, but then $\partial_{0}^{2} f=\partial_{0}^{2} h_{0}=0$, which contradicts the fact that $f_{2}^{\perp}=\left\langle\partial_{0} \partial_{2}\right\rangle$.

Consider $\partial_{0} f=\partial_{0} h_{0}$. If $\partial_{0} h_{0} \nsim x_{0} x_{2}^{2}$, then by remark 1.2.1 $\partial_{0} h_{0}=l_{a}^{3}+l_{b}^{3}$ for some $l_{a}, l_{b} \in k\left[x_{0}, x_{2}\right]_{1}$. Here a and b must be distinct points in \mathbb{P}^{1}, or else $\operatorname{dim}_{k} f_{2}^{\perp}>1$. Assume that $a_{0}, b_{0} \neq 0$, and let $g=f-\frac{1}{4 a_{0}} l_{a}^{4}$ and $\delta=b_{0} \partial_{2}-b_{2} \partial_{0}$. Now $\delta \partial_{0} g=\delta\left(\partial_{0} f-l_{a}^{3}\right)=\delta\left(l_{b}^{3}\right)=0$, and furthermore $\partial_{0} \partial_{1} g=\partial_{0}\left(\partial_{1} f-0\right)=0$. Also $\operatorname{rank} \operatorname{Cat}(g) \geq 4$ since $\operatorname{rank} \operatorname{Cat}(f)=5$. Therefore, $g_{2}^{\perp}=\left\langle\partial_{0} \partial_{1}, \partial_{0} \delta\right\rangle$. We see that $\left\{\partial_{1}=\overline{0}\right\} \cap\{\delta=0\}=b \notin\left\{\partial_{0}=0\right\}$, and by theorem $3.2 g$ is a sum of four fourth-powers of linear forms. Hence f is a sum of five linear powers.

Now assume that f is not a sum of five linear powers. Then, for both $i=0$ and $i=1$, the previous paragraph shows that $\partial_{i} h_{i}$ must equal either $l_{1}^{3}+x_{2}^{3}$ or $l_{2} l_{3}^{2}$ for some $l_{j} \in k\left[x_{i}, x_{2}\right]_{1}$. If $\partial_{i} h_{i}=l_{1}^{3}+x_{2}^{3}$ with $\partial_{i} l_{1} \neq 0$, then $h_{i}=\frac{1}{4 \partial_{i} l_{1}} l_{1}^{4}+x_{i} x_{2}^{3}+c x_{2}^{4}$ for some $c \in k$. Thus $h_{i}=x_{i}^{4}+l_{a} x_{2}^{3}$ where $a_{i} \neq 0$ after a linear transformation of $k\left[x_{i}, x_{2}\right]_{1}$ that leaves x_{2} fixed. If $\partial_{i} h_{i}=l_{1} l_{2}^{2}$, then $12\left(\partial_{i} l_{2}\right)^{2} h_{i}=\left(4\left(\partial_{i} l_{2}\right) l_{1}-\left(\partial_{i} l_{1}\right) l_{2}\right) l_{2}^{3}+c x_{2}^{4}$ for some $c \in k$. If $\partial_{i} l_{2} \neq 0$, it follows that $h_{i}=l_{b} x_{i}^{3}+c x_{2}^{4}$ with $b_{2} \neq 0$ after a linear transformation that leaves x_{2} fixed. If $\partial_{i} l_{2}=0$, then $\partial_{i} h_{i}=l_{1} x_{2}^{2}$ where $\partial_{i} l_{1} \neq 0$. Hence $h_{i}=\frac{1}{2 \partial_{i} l_{1}} l_{1}^{2} x_{2}^{2}+c x_{2}^{4}$ for some $c \in k$, and $h_{i}=x_{i}^{2} x_{2}^{2}+c x_{2}^{4}$ after the linear transformation given by $l_{1} \mapsto \sqrt{2 \partial_{i} l_{1}} x_{i}$ and $x_{2} \mapsto x_{2}$.

Now we notice that $\partial_{i}^{2}\left(x_{i}^{2} x_{2}^{2}+c x_{2}^{4}\right)=2 x_{2}^{2}$ and $\partial_{i} \partial_{2}\left(x_{i}^{4}+l_{a} x_{2}^{3}\right)=3 a_{i} x_{2}^{2}$. Hence if both h_{i} 's are of one of these two "forms", then $\operatorname{dim}_{k} f_{2}^{\perp}>1$. For instance, if $h_{0}=x_{0}^{2} x_{2}^{2}+c x_{2}^{4}$ and $h_{1}=x_{1}^{4}+l_{a} x_{2}^{3}$, then $\left(3 a_{1} \partial_{0}^{2}-2 \partial_{1} \partial_{2}\right)(f)=0$. Since $f_{2}^{\perp}=\left\langle\partial_{0} \partial_{1}\right\rangle$ by assumption, it follows that one of the h_{i} 's must equal the last "form". Hence we may assume that $h_{0}=l_{b} x_{0}^{3}+c x_{2}^{4}$.

Then $f=h_{0}+h_{1}$ must look like either $l_{b} x_{0}^{3}+x_{1}^{4}+l_{a} x_{2}^{3}$ or $l_{b} x_{0}^{3}+x_{1}^{2} x_{2}^{2}+c x_{2}^{4}$ or $l_{b} x_{0}^{3}+l_{b^{\prime}} x_{1}^{3}+c^{\prime} x_{2}^{4}$. In the last case, $c^{\prime} \neq 0$, or else $\partial_{2}^{2} f$ would equal zero. Moreover, we know that $b_{2}, a_{1}, b_{2}^{\prime} \neq 0$. By scaling the variables suitably, we can assume that these constants all equal 1 . Hence we have proved that if f is not a sum of five linear powers, then after a linear transformation f must be equal to one of the following three forms:

1. $f=\left(c_{0} x_{0}+x_{2}\right) x_{0}^{3}+x_{1}^{2} x_{2}^{2}+c_{1} x_{2}^{4}$
2. $f=\left(c_{0} x_{0}+x_{2}\right) x_{0}^{3}+x_{1}^{4}+\left(x_{1}+c_{1} x_{2}\right) x_{2}^{3}$
3. $f=\left(c_{0} x_{0}+x_{2}\right) x_{0}^{3}+\left(c_{1} x_{1}+x_{2}\right) x_{1}^{3}+x_{2}^{4}$
where $c_{j} \in k$. On the other hand, these f are not a sum of five linear powers, as proven in example 3.5.1 and remark 3.5.2. The only difference between
these f and those in examble 3.5.1 and remark 3.5.2 is that those f are scaled differently, as is easily verified. This concludes the proof of the theorem.

REmark 3.6.1: In the first case we considered in this chapter, where $f_{2}^{\perp}=$ $\left\langle D_{0}\right\rangle$ and D_{0} was nonsingular, we quite successfully used the structure theorem of Buchsbaum-Eisenbud [2] to prove that f was a sum of five linear powers. Of course, we could use this method for any $f \in S$ since A^{f} always is Gorenstein of codimension 3. In fact, when $D_{0}=\partial_{0} \partial_{1}$, it is not hard to prove that ϕ can be chosen to look like this,

$$
\phi=\left[\begin{array}{ccccc}
0 & q_{1} & q_{2} & q_{3} & q_{4} \\
-q_{1} & 0 & 0 & \partial_{0} & \partial_{2} \\
-q_{2} & 0 & 0 & 0 & \partial_{1} \\
-q_{3} & -\partial_{0} & 0 & 0 & 0 \\
-q_{4} & -\partial_{2} & -\partial_{1} & 0 & 0
\end{array}\right]
$$

but from here on it gets more complicated. One reason for this is the fact that not all of these f are a sum of five linear powers.

In the next section, where we look at f such that $\operatorname{dim}_{k} f_{2}^{\perp}=0$, we will see that all f are "general" in the sense that they are a sum of six linear powers. But even in this case we do not use the structure theorem, since the matrix ϕ in that case will be 7×7 and hence more difficult to work with.

$3.4 \operatorname{dim}_{k} f_{2}^{\perp}=0$

In this section we will look at $f \in S_{4}$ such that A^{f} has Hilbert function $(1,3,6,3,1)$, and as we soon will see, any such f is general in the sense that it is a sum of six linear powers. But before we turn to the proof of this, there are a couple of things we want to point out.

Prior to theorem 3.6 we introduced several quantities. Of course, we could do the same things in this case, with the insignificant difference that whenever $\mathcal{D}=\left\{D_{0}, \ldots, D_{5}\right\}$ is any basis for T_{2}, we let $A=\operatorname{Cat}_{\mathcal{D}}(f)$ since this matrix is invertible. However, we want to start at the other end this time.

Whenever $\mathcal{D}=\left\{D_{0}, \ldots, D_{5}\right\}$ is a basis for T_{2}, let $\mathcal{B}=\left\{h_{0}, \ldots, h_{5}\right\}$ be the "dual" basis for S_{2} in the sense that

$$
D_{i}\left(h_{j}\right)=h_{j}\left(D_{i}\right)= \begin{cases}1, & \text { if } i=j, \\ 0, & \text { otherwise }\end{cases}
$$

Such a basis always exists. Indeed, for any $j=1, \ldots, 6$, we see that

$$
\operatorname{dim}_{k} \bigcap_{i \neq j}\left(D_{i}\right) \frac{\perp}{2}=\operatorname{dim}_{k} S_{2}-\operatorname{dim}_{k}\left\langle\left\{D_{i}\right\}_{i \neq j}\right\rangle=1
$$

by (0.3), hence $\cap_{i \neq j}\left(D_{i}\right)_{2}^{\perp}=\left\langle h_{j}^{\prime}\right\rangle$ for some nonzero $h_{j}^{\prime} \in S_{2}$. Since \mathcal{D} is a basis and $h_{j}^{\prime}\left(D_{i}\right)=0$ for all $i \neq j$, it follows that $h_{j}^{\prime}\left(D_{j}\right) \neq 0$. Hence, if we let $h_{j}=h_{j}^{\prime} / h_{j}^{\prime}\left(D_{j}\right)$, we get the desired "dual" basis. Note that with $u^{T}=\left[h_{0}, \ldots, h_{5}\right]$ and $v^{T}=\left[D_{0}, \ldots, D_{5}\right], \mathcal{D}$ and \mathcal{B} are dual bases if and only if $u v^{T}=v u^{T}=\operatorname{id}_{6}$.

Given $f \in S_{4}$ with $\operatorname{dim}_{k} f_{2}^{\perp}=0$, we let $A=\operatorname{Cat}_{\mathcal{D}}(f)=\left(v v^{T}\right)(f)$ and $B=A^{-1}$. Then for any $a \in \mathbb{P}^{2}$, we define $\rho_{a} \in T_{2}$ by

$$
\rho_{a}=v(a)^{T} B v .
$$

It is immediate from this definition that $\rho_{a} \neq 0$ for all a and $\rho_{a} \neq \rho_{b}$ for $a \neq b$. Since $v(f)$ is a columnvector with entries in S_{2}, it equals $C u$ for some 6×6 matrix C. But then $C=C u v^{T}=v(f) v^{T}=\left(v v^{T}\right)(f)=A$, and hence

$$
v(f)=A u .
$$

With $\eta=v^{T} B v$ as before, we see that $\eta \neq 0$, because

$$
\begin{equation*}
\eta(f)=\left(v^{T} B v\right)(f)=v^{T} B(v(f))=v^{T} B A u=v^{T} u=\operatorname{tr}\left(\mathrm{id}_{6}\right)=6 . \tag{3.9}
\end{equation*}
$$

Furthermore, $\rho_{a}(f)=v(a)^{T} B v(f)=v(a)^{T} u$. Since ρ_{a} is independent of the choice of basis \mathcal{D}, we might assume that \mathcal{D} is the standard basis for $T_{2}, \mathcal{D}=\left\{\partial_{0}^{2}, \partial_{1}^{2}, \partial_{2}^{2}, \partial_{0} \partial_{1}, \partial_{0} \partial_{2}, \partial_{1} \partial_{2}\right\}$. Then the dual basis equals $\mathcal{B}=\left\{\frac{1}{2} x_{0}^{2}, \frac{1}{2} x_{1}^{2}, \frac{1}{2} x_{2}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1} x_{2}\right\}$, and hence $\rho_{a}(f)=\frac{1}{2}\left(\sum a_{i} x_{i}\right)^{2}=\frac{1}{2} l_{a}^{2}$.

Since $\rho_{a}\left(l_{a}^{4}\right)=12 \rho_{a}(a) l_{a}^{2}$, it follows that if $\rho_{a}(a)=\eta(a) \neq 0$, then $\rho_{a}(f-$ $\left.\lambda_{a} l_{a}^{4}\right)=0$ where $\lambda_{a}=\frac{1}{24 \rho_{a}(a)}$, as in the discussion prior to example 3.5.1. Now $\operatorname{dim}_{k}\left(f-\lambda_{a} l_{a}^{4}\right) \frac{1}{2}=\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}\left(f-\lambda_{a} l_{a}^{4}\right) \geq \operatorname{rank} A-\operatorname{rank} \operatorname{Cat}_{\mathcal{D}}\left(l_{a}^{4}\right)=5$ by (0.9). Hence we have proved that for any $a \notin\{\eta=0\}$, we have

$$
\begin{equation*}
\left(f-\lambda_{a} l_{a}^{4}\right)_{2}^{\perp}=\left\langle\rho_{a}\right\rangle . \tag{3.10}
\end{equation*}
$$

Furthermore, if $D(f)$ is a square for some $D \in T_{2}$, say $D(f)=l_{a}^{2}$, then $\left(D-2 \rho_{a}\right)(f)=0$. Since $f_{2}^{\perp}=0$, it follows that $D=2 \rho_{a}$. Thus the ρ_{a} 's are precisely those $D \in T_{2}$ such that $D(f)$ is a square.

Theorem 3.7:

Any $f \in S_{4}$ such that $f_{2}^{\perp}=0$ is a sum of six linear powers.
Proof: The idea behind the proof is this: Since $\eta \neq 0$ by (3.9), we can find $a \in \mathbb{P}^{2}$ such that $\eta(a) \neq 0$. Then we consider $g=f-\lambda_{a} l_{a}^{4}$, and by (3.10) we have $g_{2}^{\perp}=\left\langle\rho_{a}\right\rangle$. Therefore, theorems 3.4 and 3.6 tell us when g is a sum of five linear powers. But we need to know what ρ_{a} looks like. Since ρ_{a} is a quadric, the rank of $H_{a}=\left(x_{i} x_{j}\left(\rho_{a}\right)\right)_{i, j=0,1,2}$ decides whether ρ_{a} is nonsingular, a product of two distinct lines or a square. Thus both $Z_{0}=\left\{a \mid \rho_{a}\right.$ is reducible $\}$ and $Z_{1}=\left\{a \mid \rho_{a}\right.$ is a square $\}$ are closed subsets of \mathbb{P}^{2}, since $Z_{0}=\left\{a \mid \operatorname{det} H_{a}=0\right\}$ and $Z_{1}=\left\{a \mid \operatorname{rank} H_{a} \leq 1\right\}$.

Any a such that ρ_{a} is a square, is of no use when we try to write f as a sum of six linear powers, hence we need to control the size of Z_{1}. Assume that Z_{1} contains four distinct points a_{1}, \ldots, a_{4} on a line, i.e. $\delta\left(a_{i}\right)=0$ for some $\delta \in T_{1}$. Now $\rho_{a_{i}}$ is a square, hence $\rho_{a_{i}}=\delta_{b_{i}}^{2}$, and b_{1}, \ldots, b_{4} are four distinct points in $\check{\mathbb{P}}^{2}$. The $l_{a_{i}}^{2}$'s are linearly dependent because the points a_{i} lie on a line, hence $\sum_{i=1}^{4} c_{i} l_{a_{i}}^{2}=0$ for some $c_{i} \in k$, not all zero. It follows that $\sum_{i=1}^{4} c_{i} \delta_{b_{i}}^{2}=0$, since $\left(\sum_{i=1}^{4} c_{i} \rho_{a_{i}}\right)(f)=\sum_{i=1}^{4} c_{i} \cdot \frac{1}{2} l_{a_{i}}^{2}=0$ and $f_{2}^{\perp}=0$. But the only way four squares can be linearly dependent, is that the corresponding points $\left\{b_{1}, \ldots, b_{4}\right\}$ contained in a line. Hence we might assume that $\delta_{b_{i}} \in k\left[\partial_{0}, \partial_{1}\right]$ for all i after a linear transformation. Then $\left\{\delta_{b_{i}}^{2}\right\}_{i=1}^{4}$ is a basis for $k\left[\partial_{0}, \partial_{1}\right]_{2}$, and since $\delta_{b_{i}}^{2}(f)=\frac{1}{2} l_{a_{i}}^{2}$, it follows that $D(f) \in$ $\left\langle l_{a_{2}}^{2}, \ldots, l_{a_{4}}^{2}\right\rangle$ for all $D \in k\left[\partial_{0}, \partial_{1}\right]_{2}$. This implies that $\delta \partial_{0}^{2}(f)=\delta \partial_{0} \partial_{1}(f)=$ $\delta \partial_{1}^{2}(f)=0$ because $\delta\left(a_{i}\right)=0$ for all i. Thus we get $\partial_{0} \delta(f), \partial_{1} \delta(f) \in\left\langle x_{2}^{2}\right\rangle$ and $\delta^{\prime} \delta(f)=0$ for a suitable $\delta^{\prime} \in\left\langle\partial_{0}, \partial_{1}\right\rangle$. This contradicts the fact that $f_{2}^{\perp}=0$, and it proves that Z_{1} cannot contain four distinct points on a line.

Let $C_{a}=\left\{\rho_{a}=0\right\}$ and $X=\{\eta=0\}$. If there exists an $a \notin X$ such that ρ_{a} is nonsingular, then by theorem 3.4, $f-\lambda_{a} l_{a}^{4}$ is a sum of five linear powers. Now assume that f is not a sum of six linear powers. Then ρ_{a} must be singular for all $a \notin X$. Since Z_{0} is a closed subset of \mathbb{P}^{2} and $\eta \neq 0$ as an element of T_{4}, it follows that ρ_{a} is reducible for all $a \in \mathbb{P}^{2}$.

We notice that for any $a, b \notin X$ such that $\rho_{a}(b)=\rho_{b}(a)=0, C_{a}$ and C_{b} cannot intersect in neither four distinct points nor a line and a point outside. Indeed, if we could find such points a and b, then $g_{2}^{\perp}=\left\langle\rho_{a}, \rho_{b}\right\rangle$ where $g=f-\lambda_{a} l_{a}^{4}-\lambda_{b} l_{b}^{4}$, and by theorem $3.2, g$ would be a sum of four linear powers. This is impossible, since f is not a sum of six linear powers by assumption.

From the definition of ρ_{a}, we see that $\rho_{a}(b)=\rho_{b}(a)$. It follows that the set of points a such that C_{a} passes through a given point p, is exactly C_{p}. Furthermore, X and C_{a} have a common linear component L for some a if and only if $a \in C_{b}$ for all $b \in L$, i.e. $a \in \cap_{b \in L} C_{b}$. Hence $Y=\left\{a \in \mathbb{P}^{2} \mid X\right.$ and C_{a} has a common component $\}$ is a proper, closed subset of \mathbb{P}^{2}, since X cannot have more than four linear components.

Since X, Y and Z_{1} are proper, closed subsets of \mathbb{P}^{2}, we may pick an $a \in \mathbb{P}^{2}$ such that $\eta(a) \neq 0, \rho_{a}$ is not a square and X and C_{a} have no common components. Let p be the singular point of C_{a}. Since $\rho_{a} \neq \rho_{p}$, we can find a linear component L of C_{a} that is not contained in C_{p}. Now the "bad" points on L are the points b such that $\rho_{p}(b)=0$ or $\eta(b)=0$, and we know that there are only finitely many of them. If b_{1} is any other point, then $\rho_{b_{1}}(a)=0$ and $\rho_{b_{1}}(p) \neq 0$. Hence C_{a} and $C_{b_{1}}$ has no common component. Since we have assumed that f is not a sum of six linear powers, C_{a} and $C_{b_{1}}$ must intersect singularly, and the only way this can happen, is that C_{a} contains the singular point q_{1} of $C_{b_{1}}$.

Let $b_{2} \in L$ be another "good" point. Then the singular points q_{1} and q_{2}
of $C_{b_{1}}$ and $C_{b_{2}}$, respectively, cannot be distinct and lie on the same linear component of C_{a}. Indeed, if they did, then $C_{b_{1}}$ and $C_{b_{2}}$ would intersect in four distinct points, because any linear component of $C_{b_{i}}$ which contained q_{j}, $i \neq j$, would necessarily pass through p. Since C_{a} has only two components, then the $C_{b_{i}}$'s must have a common singular point $q \in C_{a}$ for infinitely many "good" points $b_{i} \in L$. Since every $C_{b_{i}}$ necessarily contains a, it follows that they all have a common linear component, that is, the unique line $\{\delta=0\}$ through a and q.

Let b_{1}, b_{2} and b_{3} be three such points. Then $\rho_{b_{i}}=\delta_{i} \delta$ for some $\delta_{i} \in$ T_{1}, and the δ_{i} 's are linearly dependent because $\delta_{i}(q)=0$ for all i. Hence $\sum_{i=1}^{3} c_{i} \delta_{i}=0$ for some $c_{i} \in k$, not all of them zero. Then $\sum_{i=1}^{3} c_{i} \rho_{b_{i}}=0$ and $\sum_{i=1}^{3} c_{i} l_{b_{i}}^{2}=2\left(\sum_{i=1}^{3} c_{i} \rho_{b_{i}}\right)(f)=0$. But this is impossible for distinct points $b_{i} \in \mathbb{P}^{2}$, hence we have our desired contradiction.

Bibliography

[1] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, Journal of Algebraic Geometry 1 (1995), 201-222.
[2] D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for codimension three, Amer. J. Math. 99 (1977), 447-485.
[3] A. Clebsch, Über Curven vierter Ordnung, J. Reine Angew. Math. 59 (1861), 125-145.
[4] S. J. Diesel, Some irreducibility and dimension theorems for families of height 3 gorenstein algebras, Pacific J. Math. 172 (1996), 363-395.
[5] A. Dixon, The canonical forms of the ternary sextic and the quarternary quartic, Proc. London Math. Soc. (2) 4 (1906), 223-227.
[6] D. Eisenbud, Commutative Algebra, with a View Toward Algebraic Geometry, GTM^{\dagger}, no. 150, Springer-Verlag, New York, 1995.
[7] J. Emsalem, Géomètrie des Points Epais, Bull. Soc. Math. France 106 (1978), 399-416.
[8] J. Emsalem and A. Iarrobino, Some zero-dimensional generic singularities; finite algebras having small tangent space, Compositio Math. $\mathbf{3 6}$ (1978), 145-188.
[9] R. Hartshorne, Algebraic Geometry, GTM ${ }^{\dagger}$, no. 52, Springer-Verlag, New York, 1977, Full address: Springer-Verlag New York Inc., 175 Fifth Avenue, New York, NY 10010, USA.
[10] A. Iarrobino, Associated graded algebra of a Gorenstein Artin algebra, AMS Memoirs Vol. 107 (1994), no. 514.
[11] F. H. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge University Press, London, 1916.

[^1][12] F. Palatini, Sulla rappresentazione delle forme ternaire mediante la somma di potenze di forme lineari, Rom. Acc. L. Rend. (5) 12 (1903), 378-384.
[13] K. Ranestad and F.-O. Schreyer, Varieties of sums of powers, eprint, http://www.math.uio.no/~ranestad/papers.html.
[14] T. Reye, Darstellung quarternärer biquadratischer Formen als Summen von zehn Biquadraten, J. Reine Angew. Math. 78 (1874), 123-129.
[15] H. W. Richmond, On canonical forms, Quart. J. Pure Appl. Math. 33 (1904), 331-340.
[16] F.-O. Schreyer, Algebra and geometry of Fano 3-folds of genus 12 and index 1, a preliminary manuscript,
http://btm8x5.mat.uni-bayreuth.de/~schreyer/Papers.html.
[17] J. J. Sylvester, Sur une extension d'un théorème de Clebsch relatif aux courbes de quartième degré, Compte Rendus de l'Acad. de Science 102 (1886), 1532-1534, (Collected Math. Works IV, p. 527-530).
[18] A. Terracini, Sulle V_{k} per cui la varietà degli $S_{h}(h+1)$-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396.

[^0]: ${ }^{\dagger}$ Recall that $\lceil x\rceil$ is the smallest integer greater than or equal to x.

[^1]: ${ }^{\dagger}$ Graduate Texts in Mathematics

