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The problem professor Schreyer originally gave me is the following. Consider
a homogeneous polynomial f of degree 3 (we were looking at double hyperplane
sections of canonical curves) that is a sum of two polynomials in separate vari-
ables, that is f = g + h with g € k[zy,... 25 and h € k[xs;q,...,2,] up to base

change. The minimal resolution of the ideal
({0:0;|i=1,...;s, j=s+1,....,r}) CR=k[0,...,0]

will be part of any resolution of ann f. Therefore the graded Betti number 3,_; ,
of R/ ann f will be nonzero. He asked if I could prove that this was an equivalence.

After computing some examples, I realized degree three did not matter much,
and I wondered if something stronger might be true. Could 1 + §,_;, be the
maximal length of an “additive splitting” of f7 It was also clear that T had to
allow degenerations of such splittings. I decided to take the simple approach of
definition 2.7 and restrict my attention to “deformations” defined over a polyno-
mial ring. In the end it turned out that 1 + (,_;, does not always count the

length of a maximal degenerate splitting.



Chapter 1 contains a brief discussion of background material. In chapter 2 I
define precisely want I mean by regular and degenerate additive splittings. I also
define a matrix algebra M, which probably is the most important new object in
this thesis, and I give some basic results about My and additive splittings.

In chapter 3 I effectively determine all regular splittings, and I use this to cal-
culate the minimal free resolution of R/ ann f and its graded Betti numbers. I also
discuss some consequences for PGor(H ), the scheme parameterizing all graded
Artinian Gorenstein quotients of R. Chapter 4 studies degenerate splittings. The
central question is whether we can use all of My to construct generalizations of f
that splits 8,_;, times. I give some conditions that implies a positive answer, and
I construct several counter examples in general. Finally, chapter 5 generalizes M

and some results about it.

June, 2005 Johannes Kleppe
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CHAPTER 1

Introduction

It is well known that any homogeneous polynomial f of degree two in r variables
over a field of characteristic # 2 can be written as a linear combination of n =
rank H < r squares. Here H = (0,0; f) is the Hessian matrix of f. The usual way
to generalize this to higher degrees is to ask how to write a form f of degree d as
a sum of powers of linear forms, f = Y | ¢;l¢, and how small n can be. This is
usually called Waring’s problem, and has been studied by many people and has

been solved for general f.

There is, however, a different way to generalize the sum of squares theorem.
If we write f = "' | ¢;l7 with n minimal, then [y, ... [, are necessarily linearly
independent. For higher degrees, when f = > ¢;¢ and d > 3, the [;’s can
no longer be linearly independent, except for very special f. With this in mind,
we see that there is another question that naturally generalizes of the sum of
squares theorem: When is it possible to write f as a sum of several homogeneous
polynomials in independent sets of variables? We will call this a regular splitting
of f (definition 2.4). Some examples of polynomials that split regularly are f =
23+ 1oxsry, [ = ma§+ iz +adxt and f = (71 +x9)% + 23 (72 + 23)°. Sometimes
there exist more than one regular splitting of the same polynomial, like f =
2?2 + 23 = L((z1 + 22)? + (21 — 12)?).

To make the theory work in positive characteristics we assume that f is a
homogeneous polynomial in the divided power algebra R = k[z1, ..., x,|PF. The

polynomial ring R = k[0y,...,0,] acts on R by partial differentiation. An im-
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portant ideal in R will be anng f, the set of D € R that annihilates f, i.e.
D(f) = 0. It is well known that R/anng f is a Gorenstein ring of dimension
zero, and furthermore that every graded Artinian Gorenstein quotient arises this
way, cf. lemma 1.3.

To study the splitting behavior of a homogeneous polynomial f of degree d,

we associate to f the following set of r x r-matrices.

Definition 2.14: Given f € Ry, define
My = {A € Maty(r,r) | I5(0 AQ) C anng f}.

Here § = [01,...,0,]7 is a column vector, thus (9 AJ) is the r x 2 matrix
consisting of the two columns 0 and A9, and I5(0 AJ) is the ideal generated by
its 2 x 2 minors. The study of M has a central position in this paper. One goal
is figure out what M can tell us about f. To transfer matrices A € M; back

into polynomials g € R, we also define a k-linear map
Yro- Mf - Rd
sending A € My to the unique g € Ry that satisfies 0g = AJf (definition 2.16).

An important property of M; is the following.

Proposition 2.21: Let d > 3 and f € Rq. My is a k-algebra, and all commut-

ators belong to ker ;. In particular, M; is commutative if ann(f), = 0.

In chapter 3 we analyze the situation of regular splittings completely. In
particular, we prove that the idempotents in M, determine all regular splittings

of f in the following precise way.

THEOREM 3.7:
Assumed > 2, f € Ry and anng(f); = 0. Let Coid(My) be the set of all complete
sets {E\, ..., E,} of orthogonal idempotents in My, and let

Reg(f) ={{g1,- -, 9} | f =91+ + gn is a regular splitting of f}.
The map {E;}I, — {g; = v7(E;)}i—, defines a bijection

Coid(My) — Reg(f).
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In particular, there is a unique maximal regular splitting of f when d > 3.

We also give an extended version of this theorem. In the generalization (the-
orem 3.18) we also prove that, loosely speaking, My = @}, M,,, if these algebras
are computed inside the appropriate rings. Note in particular the uniqueness
when d = 3, which is not there when d = 2.

In the last two sections of chapter 3 we examine a regular splitting f =" | g,
more carefully. For each i, the additive component g; is a polynomial in some
divided power subring S§; C R. The definition of a regular splitting requires that
these subrings are independent in the sense that (S;)1 N Y;,(S;)1 = 0 for all
i. We let S; be a polynomial subring of R dual to §;. Assuming the minimal
free resolutions of every S;/anng,(g;) is known, then we are able to compute the
minimal free resolution of R/anng f. Theorem 3.33 does this for the case n = 2.
The induction process to get n > 2 is carried out for the shifted graded Betti

numbers (see equation (1.1) below), culminating in the following theorem.

THEOREM 3.35:
Letd>2and f,q1,...,9, € Rq. Suppose f = g1 +---+ g, is a regular splitting
of f. Let s; = dimy, Ry_1(g;) for every i. Let s =Y | s;, and define
r r—s " r—s;
= (n—1 — :
Vak = (n )(k;+1) + (k;+1> ;(kJrl)

Denote by B,{j and Bkj the shifted graded Betti numbers of R/anng(f) and
R/ anng(g;), respectively. Then

n

Af 29i

ﬁkj = @} + UnkO1j + Unp—i0d—1,
i=1

for all 0 < j < d and all k € Z. Here the symbol d;; is defined by 0;; = 1 for all 1,
and 6;; = 0 for all i # j.

We proceed to study some consequences for PGor(H), the quasi-projective
scheme parameterizing all graded Artinian Gorenstein quotients R/ with Hilbert
function H. We define a subset PSplit(H,..., H,) C PGor(H) that paramet-
rizes all quotients R/anng f such that f has a regular splitting f = > " ¢
such that the Hilbert function of R/anng(g;) is H; for all i, and we are able to
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prove under some conditions that its closure PSplit(H, ..., H,) is an irreducible,

generically smooth component of PGor(H) (theorem 3.47).

In chapter 4 we turn our attention to degenerate splittings, i.e. polynomials
that are specializations of polynomials that split regularly. A simple example is
f=2@y =1((x+y)® — 2®). The main question that we are trying to shed

some light upon, is the following.

Question 4.1: Given f € Ry, d > 3, is it possible to find f; € Ry[t1, ..., 1t,]
such that fy = f and f; splits regularly dim, M; — 1 times over k(ty,...,t,)?

By lemma 4.2, dimy, M is an upper bound for the length of a regular splitting
of f;. Thus the question asks when this upper bound is achieved. This would
mean that My not only determines the regular splittings of f, but that we are
able to use all of My to construct degenerate splittings as well.

We first prove that we can construct an f; with the desired properties using
all powers of a single nilpotent matrix A. This is theorem 4.5. In particular it
gives a positive answer to question 4.1 in case My is generated by A alone as a

k-algebra.

THEOREM 4.5:

Let d > 3 and f € Ry. Assume that M contains a non-zero nilpotent matrix
A € Matg(r,r), and let n = index(A) —1 > 1. Then f is a specialization of some
ft € Ralt1, ..., t,] that splits regularly n times inside Ry(t1, ..., t,).

We later give a generalized version of this theorem. A careful analysis shows
that this covers most cases with » < 4, and we are able to solve the rest by hand.

Hence we get the following result.

THEOREM 4.9:

Assume that r < 4 and k = k. Let f € Ry, d > 3, satisfy anng(f); = 0. Then
for some n > 1 there exists f; € Ry[t1,...,t,] such that fo = f and f; splits
regularly dimy My — 1 times over k(t1,...,t,).

The rest of chapter 4 is devoted to constructing examples where question 4.1
has a negative answer. We are able to do this for all (r,d) with » > 5 and d > 3,
except the six pairs (5, 3), (6,3),(7,3),(8,3),(5,4) and (6,4).
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Finally, in chapter 5, we consider some generalizations of M;. We do not yet
have a particular use for these generalizations. However, My proved very useful to
us, and we show how to define two similar algebras and prove some basic results

about them.

1.1 Polynomials and divided powers

Let R = k[01,...,0,] be a polynomial ring in r variables with the standard
grading over a field k. As usual, we denote by R, the k-vector space spanned
by all monomials of total degree d. Then R = @459 R4, and elements in Ug>¢ Ry
are called homogeneous. An ideal I in R is homogeneous if I = @4 1; where
I; = IN Ry. The unique maximal homogeneous ideal in R is mg = (04,...,0,).
The graded Betti numbers 3;; of a homogeneous ideal I are the coefficients
that appear in a graded minimal free resolution of I. We will often speak of the
“shifted” graded Betti numbers, by which we mean Bij = Biitj. S0t 0 — F, —
. — F} is a graded minimal free resolution of I, then the i*" term is

Figj@iﬁin(_j) =@ Bz’jR(_i —7) (1.1)

320

In particular, £;; is the minimal number of generators of I of degree j.
Let R = @©4>0 Ra be the graded dual of R, i.e. Ry = Homy (R, k). It is called
a ring of divided powers, and we write R = k[zy,...,z,]P”T. Let Ny denote the

non-negative integers. The divided power monomials

{xm) _ ﬁwz(ai)

i=1

a € Njj and |of IZ%‘:CZ}
i=1

form a basis for R, as a k-vector space. This basis is dual to the standard
monomial basis for Ry, i.e. {0° = 11,0 | 3 € N; and |3| = d}, in the sense that
() (80‘) =1 and z(® (85) = 0 for a@ # . The ring structure of R is the natural

one generated by

2@ ) = (1) glet)

7 a i

see |Eis95, Section A2.4| or [IK99, Appendix A| for details. We will refer to

elements of Ry simply as homogeneous polynomials or forms of degree d. If
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char k = 0, we may identify R with the regular polynomial ring k[xy, ..., z,| by
letting z{? = 2¢/d!
Let R act on R by
% (1)) = glo ),

i.e. the action generated by 9;(z{?) = z{*V and 9;(2{?) = 0 for all i # j.

7

The reason for our notation is that 0; is indeed a derivation, which follows by

bilinearity from

— (a7 L g 4 (@ )

(2

a b*l) :L_Z(a—‘rb—l) + (a+b71) :L_Z(a—&—b—l)

a

x§a+b—l) — (a-i-b) az (xl(a+b))

a

b

~_

Under the identification (%) = 2¢/d! when char k = 0, the action of 9; becomes
normal partial differentiation with respect to z;.

Arrange the elements of the standard monomial bases for R, and Ry into
column vectors A and D using the same ordering. The fact that they are dual
can then be expressed as Dh' = I, the identity matrix. If {f,..., fy} is any
basis for Ry, N = dim; Ryq = (T’_;“d), then there is a dual basis for Ry. Indeed,
there exists an N x N invertible matrix P such that f = [fi,..., fx]T = Ph.
Let E = P7'D. Then EfT= P~ 'Dh'P = I, hence E is the dual basis of f (as
column vectors).

If S is any ring, let Matg(a, b) be the set of a x b matrices defined over S, and
let GL,.(S) be the invertible r x r matrices. When S = k, we usually just write

GL,. We will frequently make use of the following convention.

If v € S® is any vector and A € Matg(a,b) any matrix, we denote by

v; the i*" entry of v and by A;; the (i, /)™ entry of A.

In particular, (Av); = 22:1 A;jvj is the i*" entry of the vector Av, and the (4, 7)™
entry of the rank one matrix (Av)(Bv)Tis (Avv'BT);; = (Av);(Bv);.
For any P € GL,, define ¢p : R — R to be the k-algebra homomorphism

induced by x; — 3%, Pjx; for all i. We usually let = denote the column vector
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x = [x1,...2,]", thus ¢p is induced by x — PTz. The “dual” map R — R, which
we also denote by ¢p, is induced by 9 +— P19, where d = [0, ...,0,]". For any
D € R and f € R, it follows that

op(Df) = (¢pD)(opf),

and in particular, anng(¢pf) = ¢p(anng f).

If D € Matg(a,b) and h € Matg(b,c), then Dh denotes the a X ¢ matrix
whose (i,7)™ entry is (Dh);; = 22:1 D (hg;) € R. Of course, this is nothing
but the normal matrix product, where multiplication is interpreted as the action
of R and R. We already used this notation when discussing dual bases. Also,
for any f € R, we let D(f) (or simply Df) denote the a x b matrix whose
(¢,7)™ entry is (Df);; = D;;(f) € R. It follows that if F € Matg(d’,a), then
E(D(f)) = (ED)(f).

If A € Matg(a,b) and v; € R® is the i™ column vector in A, then we let
I(A) = I(vy --- vp) be the ideal generated by all £ x k minors of A (k < a,b).
Of course, this only depends on im A = (vq,...,v,) = {Z?Zl cviler, ..o, € K}

1.2 Annihilator ideals and Gorenstein quotients
Given any k-vector subspace V C Ry, define its orthogonal V+ C R, by
Vt={DecRy|Df =0V fecV}

Similarly, if U C Ry, define U+ = {f € Rq|Df =0V D € U}.

Let n = dimy V and N = dimy Ry = dimy, Ry. Pick a basis {f1,..., fu} for V,
and expand it to a basis { f1,..., fn} for Rq. Let {D1,..., Dx} be the dual basis
for Ry. Clearly, V+ = (D, 1,..., Dy), the k-vector subspace of R; spanned by
Dyy1, ..., Dy. Therefore,

dim;, V + dim,, V*+ = dimy, Ry.

By symmetry, this equation is true also when applied to V*, that is, we get
dimg V* + dimg V= dimy R;. Hence it follows that dimg V' = dimg V.
Since VA ={g € Rq| Dg =0V D € V+} obviously contains V, we have in fact
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V++ = V. Note in particular that Ry = 0 and Ry = 0. This says precisely
that the pairing (k-bilinear map) Rqy X Rq — k defined by (D, f) — D(f) is

non-degenerate.

Definition 1.1: For any f € Ry, d > 0, the annihilator ideal in R of f is defined
to be

anng(f) ={D € R|Df = 0}.

Since f is homogeneous, anng(f) is a homogeneous ideal in R. We notice that
its degree d part anng(f)q is equal to (f)* as defined above. The annihilator ideals
have several nice properties.

First, consider the homomorphism R, — R4 . defined by D — D(f). We

denote its image by
Re(f) ={D(f)| D € R},

and its kernel is by definition anng(f).. We observe that if R.(f) = 0 for some
e < d = degf, then Ry(f) = 0 because Ry = Ry - R.. Since Ry Xx Ry — k is
non-degenerate, this implies f = 0. Thus the contraction map R, X Rq — Rq_e
is also non-degenerate. The R-module R(f) = @®c>0 Re(f) is called the module

of contractions.

Lemma 1.2: Let d,e > 0 and f € Ry. The ideal anng(f) C R satisfies:

(a) If 0 < k < e < d, then the degree k part anng(f)y is determined by the
degree e part anng(f). by “saturation”, that is, D € anng(f)y if and only
if ED € anng(f). for all E € R._.

(b) Re(f) = Re/annp(f)e and Re(f)* = anng(f)i—c.
(c) dimy(R/anng(f))e = dimg Re(f) = dimg(R/ anng(f))a—e-
(d) Nper, annp(Df) = anng(f) + Ra+ - + Ri—ct1-

In particular, Npeg, anng(Df)g_. = anng(f)g_e-

Proof: To prove (a), let D € Ry. Since Ry . X R4_. — k is non-degenerate, it
follows for any £ € R._; that ED(f) = 0 if and only if E'ED(f) = 0 for all
E' € R;_.. Therefore, ED(f) = 0 for all E € R._j if and only if E"D(f) =0
for all E” € Ry_x, which is equivalent to D(f) = 0 since Ry X Rqr — k is
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non-degenerate. Thus
annp(f)r = {D € Rg| Re—y - D C anng(f).},

i.e. anng(f)x is determined by anng(f). by “saturation”.

The first part of (b) follows immediately from the exact sequence
0 — anng(f). — R. — R.(f) — 0.
Since R.(f) C Ry_e, it follows from (a) that

R(f)*={D€ Ry .|DEf)=0foral E € R.}
={D € Ry .|D(f) =0} = anng(f)g—e-

And (c) follows from (b) by taking dimensions of the two equalities. Note that
S0 anng(Df)g—e ={F € Ry_. | E(Df) =0 for all D € R}
€Ll

= RE(f)L = annp(f)d—e-

Now (d) follows by “saturating downwards” due to (a). (Obviously, it is enough

to use a basis for R, in the intersection.) O

Let f € Rq. The Hilbert function Hy = H(R/anng f) of R/anng(f) com-

putes the dimensions of the graded components of R/anng(f), i.e.
H¢(e) = dimy(R/ anng f), for all e > 0.

Note that (c) implies that the Hilbert function of R/anng(f) is symmetric about
d/2. Since Hs(e) = 0 for all e > d, we will often abuse notation and write
Hy = (hg,...,hq) where h, = Hy(e). Written this way, H; is sometimes called
the h-vector of R/ anng, f.

A finitely generated k-algebra A is Artinian if and only if it has finite di-
mension as a k-vector space. Let I C R be a homogeneous ideal. Then A =
R/I is Artinian if and only if I, = R, for all e > 0. TIts socle is defined by
Socle(R/I) = (0 : mg), i.e. Socle(R/I) = @.> Socle.(R/I) where Socle.(R/I) =
{D € R.|0;D € I.. foralli = 1,...,r}/I.. Furthermore, Homy(—,k) is a
dualizing functor for A, hence its canonical module is

wa = Homy(A, k) = & Homy(A., k).

e>0
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A is called Gorenstein if wqs= A (up to a twist). By [Eis95, proposition 21.5],
A = R/I is Gorenstein if and only if its socle is simple, i.e. dimy Socle(R/I) = 1.
By |Eis95, proposition 21.16| this is equivalent to the minimal free resolution of
A being self-dual.

Lemma 1.3 (Macaulay): There is a one-to-one correspondence between graded
Artinian Gorenstein quotients R/I having socle degree d, and non-zero poly-

nomials f € R4 up to a scalar multiplum. The correspondence is given by
I =anng f and (f) = (Iy)*.

Proof: See |Eis95, Theorem 21.6 and Exercise 21.7| or [IK99, Lemma 2.14|. Ma-

caulay’s original proof in [Mac16, chapter IV] uses inverse systems. O

Note that it is customary to call anng(f) a Gorenstein ideal since the quotient
R/anng f is Gorenstein. We conclude these preliminaries with the following
fundamental lemma. Tt expresses the effect of dualizing (V +— V=) an inclusion

U C V in terms of annihilator ideals.

Lemma 1.4 (Apolarity): Let fi,..., fu,01,-..,9m € Raq be forms of the same

degree d. Then the following statements are equivalent:

(a) <f17-'-7fn> g
(b) N, anng(f;)
i)a 2

(915 Gm)
2N i= 1annR(gi)

(¢) N, anng(f N, anng(g;)a

Proof: (a) just says that all f; can be written as f; = > " ¢;;g; for suitable

7j=1
¢;ij € k. So if D € R annihilates all g;, it necessarily kills all f;, which proves (a)

= (b). (b) = (c) is trivial, and (c¢) = (a) follows from V++ =V and
(Frooo o f) ={D e Ry|D(f;)) =0 }:ﬁlannR(fi)d. 0

Remark 1.5: What is more often called the apolarity lemma, for example [IK99,
Lemma 1.15], follows from lemma 1.4 by letting n = 1 and g; = I'9, 1, =
> pijj, with the additional observation that D(I{V) = D(p;)I{*=® for all D e
R..
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Additive splitting

2.1 What is an additive splitting?

We would like to say that a polynomial like f = {22 + (Y splits since it is
a sum of two polynomials, #{?x( and z{Y, that do not share any variable. Of
course, we want to allow a change of variables. Therefore, we need to make the

idea of “polynomials in separate variables” more precise.

Definition 2.1: Let gq,...,9, € R be homogeneous polynomials, and for all ¢
let d; = deg g;. We say that ¢y, ..., g, are polynomials in (linearly) independent

Ra;—1(g:) N (Z Rdj—l(gj)> =0
J#i
as subspaces of Ry foralli=1,...,n.

sets of variables if

Remark 2.2: Let f € Ry. It is natural to say that Ry_1(f) contains the “native”
variables of f for the following reason. If V' C R; is a k-vector subspace, denote
by k[V]P? the k-subalgebra of R generated by V. If vy, ..., v, is any basis for V,
then k[V]PP = klvy, ..., v,)PF. In particular, k[V]PP = k and k[V]PP = V. For
all 6 € Rg_1(f)t € Ry and all D € Ry_4, it follows that D& f € 6(Rq_1(f)) = 0.
Hence §f = 0 for all § € Ry_1(f)*, and therefore

f € k[Ra1()]PF.

Thus definition 2.1 simply requires that the sets of native variables of ¢1,...,gn

11
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are linearly independent, that is, if Y " ¢;v; = 0 for some v; € Rg,—1(g;) and

¢; € k, then ¢; = 0 for all 4.

Remark 2.3: We note that definition 2.1 implies that

Raa) 0 fla)) =0
J#i
for all i = 1,...,n and all e > 0. Indeed, if b € Ra,—c(g:) N(D;; Ra;—e(95)),
then D(h) € R4,—1(9:) H(Z#i Ra,—1(g;)) = 0 for all D € R._y, hence h = 0.

Definition 2.4: Let f € R;. We say that f splits reqularly n — 1 times if f is a
sum of n non-zero forms of degree d in independent sets of variables. That is, if

there exist non-zero gi,..., g, € R4 such that

f=g++gn

and for all i, Ry_1(g;) ﬂ(z#i Rd,l(gj)) = 0 as subspaces of R;. In this situation,
we call the g;’s additive components of f, and we say that the expression f =

g1+ - -+ gn is a reqular splitting of length n.

Clearly, this concept is uninteresting for d = 1. For d = 2 and chark # 2
it is well known that any f € R, can be written as a sum of n = rank(99"f)
squares. (When chark = 2 it is in general only a limit of a sum of n squares).

Consequently, we will concentrate on d > 3.

Example 2.5: Let chark # 2 and f = 2 4 2y® € k[z,y]”". Then

f=3(+y)?+ (@ -y?)

is a regular splitting of f of length 2. Indeed, Ry((z + y)®) = (z + y) and

Ry((z —y)®) = (z — y), and their intersection is zero.

Remark 2.6: When f splits regularly, it is possible to separate the variables of
its components by a suitable “rectifying” automorphism. More precisely, f € Ry
splits regularly n — 1 times if and only if there exists Jp,...,J, C {1,...,7}
such that 7;NJ; = @ for all ¢ # j, a graded automorphism ¢ : R — R and
nonzero polynomials h; € S; where 8 = k[{x;|j € J;}] C R, such that ¢(f) =
hi+ -+ hy.
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To prove this, assume that f = ¢g; + --- + ¢, is a regular splitting of f.
By definition, Rd_l(gi)ﬂ(zj# Ra-1(g;)) = 0 for all 4. This simply means
that Rq_1(91),..., Ra—1(gn) are linearly independent subspaces of Ry, that is,
if Y, cv; = 0 for some v; € Ry_1(g;) and ¢; € k, then ¢; = 0 for all i. Let
s; = dimy R4_1(¢g;). Then in particular, Y ! ;s; = dimy (Z?:l Rd_l(gi)) < r.
Hence we may choose J1,...J, € {1,...,r} such that |J;| = s; and J;NT; = @
for all ¢« # 5. Now, choose a graded automorphism ¢ : R — R such that
{¢o= ;) |j € Ti} is a basis for Ry_1(g;) for all 4, and let h; = ¢(g;) € Rq and
S' = k[{z;]j € J}PF. Obviously, h; # 0 and ¢(f) = >, ¢(9:) = >, hi. Thus
we only have to prove that h; € S* for all i. We note that

St = ¢(Ra-1(g:)) = (¢Ra-1)(dg:) = Ra-1(h;).

Therefore, for all j ¢ J; and D € Ry, we have 9;D(h;) € 9;(S;) = 0. This
implies that 0;h; = 0 for all ¢ and j ¢ J;, and we are done.

For the converse, we immediately get f = Y "  ¢; with g; = ¢~ *(h;). Note
that Ry 1(g;) = ¢~ (Ra_1(h)). Since Ry 1(h;) C Si, and S}, ..., S obviously
are linearly independent subspaces of Ry, so are Ry 1(¢1),...,Rq—1(g,). Thus
[ =>""1¢iis aregular splitting.

We will also investigate how the regular splitting property specializes. For

this purpose we give the following definition.

Definition 2.7: Let f € R,;. We say that f has a degenerate splitting of length
m if there for some n > 1 exists an f; € Ry[t1,...,t,] such that fo = f and f;
splits regularly m — 1 times inside R4(t1, ..., t,) = k(t1,...,t,)[01,- .., 0rla-

Example 2.8: Let f = 2"y € k[z,y|"", d > 3. Clearly anng f = (07, 02).
If f splits regularly, then it must be in the GLy orbit of ¢ = 2@ + @, and
this implies that anng g is in the GL, orbit of anng f. But anng(f); = (92) and
anng(g)s = (0,0,), hence this is impossible.

Still, even though f does not split regularly, f has a degenerate splitting. For

example, f is a specialization of
fo=3(z+ty) P — W] =2y 4 12Dy

and f; splits inside k(t)[x, y]PP.
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2.2 The associated algebra M/

The starting point of this section is the definition of a regular splitting. We will
see how this naturally leads to the definition of a k-vector space M associated
to f € Rq. My consists of r X r-matrices, and we prove that My is closed under

multiplication when d = deg f > 3. We start with a fundamental observation.

Lemma 2.9: Let f = g1 + -+ + g, be a regular splitting of some f € Ry. Then
anng(f). = 61 anng(g;). for all e < d.

Proof: Let e < d. Lemma 1.4 gives the inclusion anng(f). 2 N, anng(g;)e,
so we only need to prove that anng(f). C anng(g;)e for all i. To do this, let
D € anng(f).. Applying D to f = Y7, g; gives D(¢g1) + --- + D(gn) = 0.
Since D(g1), ..., D(g,) are homogeneous polynomials of positive degree in separ-
ate rings, this implies D(g;) = 0 for all i. Indeed, D(g;) = —>;; D(g;) is an
element of both R.(g;) and > .; R.(g;), and since their intersection is zero by
remark 2.3, it follows that D(g;) = 0. This proves that anng(f). C anng(g;). for

all 7 and all e < d, and we are done. 0]

At first sight, one might think that there exist additional regular splittings of
a polynomial f € Ry if we allow “dummy” variables, i.e. if anng(f); # 0. But it
is not so when d > 2, as we prove next. For this reason, we may freely assume

anng(f); = 0 when studying regular splittings.

Corollary 2.10: Let d > 2 and f € Ry. Every regular splitting of f takes place
inside the subring k[Ry_1(f)]°Y C R.

Proof: Let f = g1 + -+ + g, be a regular splitting of f. By remark 2.2, g; €
k[Rq_1(g:)]P". Lemma 2.9 tells us that anng(f); C anng(g;);, and by duality
(lemma 1.4) we get Rq—1(9;) € Ra—1(f). Thus each additive component is an
element of k[Ry_1(f)]PF. O

Remark 2.11: Let f = ¢; + - + g, be a regular splitting of f € R4. Lemma
2.9 tells us that anng(f). = NI, anng(g;)e for all e < d. Using duality, this
is equivalent to Ry_(f) = D7, Ri—e(g;) for all e < d. In particular, we have
Ry 1(f) = Ra—1(q1) + -+ + Ra—1(g,) when d > 2.
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Let S = k[Rq_1(f)]P" and S' = k[R4_1(g;)]P" for i« = 1,...,n. Since
Ry-1(9:) N(X; 4 Ra-1(g;)) = 0 and 3, Ry-1(9:) = Ra-1(f), we get

S'@p @, 8"=S CR.

Obviously, f € 8] & ...® S}. Hence we have another characterization of a regular
splitting: An f € Ry splits regularly n — 1 times if and only if there exist non-
zero k-vector subspaces Vi, ..., V, C Ry such that Vj ﬂ(z#i Vl) = 0 for all 7 and
S Vi=Raa(f),and f €S]D...0S} where S" = k[V;]PF.

By lemma 2.9, if we want to split an f € Ry, we have to look for g € Ry
such that ann(f). C ann(g). for all e < d. The next lemma investigates this
relationship. Recall that d denotes the column vector & = [d,...,9,]T, thus

of =1[0uf,...,0.f]"

Lemma 2.12: Given f,g € Ry, the following are equivalent:

Q
=
=X
=

S8
L
IN
&
=
z
)
IS9
S

Proof: (a) < (b) is immediate by lemma 1.2. The same lemma also tells us that

N;_, ann(0; f) = ann(f) + R4, which means that (b) just says that
.61 ann(0; f)a—1 C .61 ann(9;g)q_1.

By lemma 1.4, this is equivalent to (0ig,...0,9) C (01 f,...0.f), and (c) just
expresses this in vector form. (b) < (d) since R;'anng(g)y = anng(g)a_1,

again by lemma 1.2a. Finally, lemma 1.2a also shows that (d) < (e), since
(m-ann(f))e = 32, mi - ann(f)e—p = Ry - ann(f)e-1. O

Let f € R4. Both the previous lemma and the next lemma study the equation
0g = AJf. In the previous we gave equivalent conditions on g € Ry for A €
Matg(r, ) to exist. The next lemma tells us when ¢ exists given A. Recall that
is B is any matrix, then [(B) denotes the ideal generated by all k x k-minors of
B.
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Lemma 2.13: Let f € Ry and A € Maty(r,r). The following are equivalent:

(a) There exists g € Ry such that g = AJf,
(b) AdJ(f) is a symmetric matrix,
(¢) I5(0 AJ) C ann f.

Furthermore, if d > 0, then a g € Ry satisfying 0g = AOJf is necessarily unique.

Proof: Tt is well known that a set {g;}/_, can be lifted to a g such that 0;g = g, if
and only if 0;9; = 0;¢; for all ¢, j. This condition simply says that d[g1, ..., g, is a
symmetric matrix. Let g; = (AJf);, that is, g; is the i*" coordinate of the column
vector AJf. Then the existence of g is equivalent to A90Tf being a symmetric
matrix. Thus (a) < (b).

Since (A00T)T = 00TAT it follows that ADJ'(f) is symmetric if and only if
(A00T — DOTAT)(f) = 0. Thus (b) < (c), since the (4,7)™ entry of the matrix
(A0)0T— O(AD)Tis (AD);0; — 0;(AD);, the 2 x 2 minor of the 2 X r matrix (9 AJ)

corresponding to the 7" and j* row (up to sign). The last statement is trivial. [

Note that the 2 x 2 minors of (0 AJ) are elements of Ry, so (c) is really
a condition on ann(f),. Combining lemma 2.9 with lemmas 2.12 and 2.13, we
see that a regular splitting f = g1 + ..., g, implies the existence of matrices A
satisfying I5(0 AQ) C anng f. These matrices will in fact enable us to find both
regular and degenerate splittings. Thus we are naturally lead to the following

definition.

Definition 2.14: Given f € Ry, define
My = {A € Maty(r,r) | 15(0 AQ) C anng f}.

Example 2.15: The notation I5(0 AJ) might be confusing, so we will consider
an example with r = 2. Let R = k[z,y]”" and f = 20 + 2y® € R3. A quick
calculation of the partials of f proves that anng f = (97 — 02, 05). We will show

that the 2 x 2 matrix A = () belongs to M;. Obviously,

v (-6
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The matrix (0 AJ) has 0 as its first column and A0 as its second column, so

0, O,
(0 A9) = al
Oy O
Its only 2 x 2 minor is its determinant, D = 97 — 97, and since D € anng, f, it
follows by definition that A € M.

Let us determine M;. We need to find all matrices B = (‘; g) such that
I,(0 BO) C anng f. Since

0, ady + bO.
<aBa>=< “oe )

0, O, +do,

we get Ir(0 BO) = (c0? + (d — a)8,0, — bd2). Hence 92 — 97 must divide cd? +
(d—a)d,0, — b@g, which is equivalent to @ = d and b = c. Therefore, M consists
of all matrices B with a = d and b = ¢, that is, My = (I, A).

Almost everything that we are going to study in this paper is connected to
M. One goal is to find out what My can tell us about f. Before we can do this,
we need investigate what properties My itself possesses. We will in particular
show that My is closed under matrix multiplication when deg f > 3. Obviously,
d <1 implies anng(f)s = Rs, and therefore My = Maty(r,r). The case d = 2 is
different, and not all of our results will apply to this case. We start with another

definition.

Definition 2.16: Suppose d > 0 and f € R,. Define a map
’)/f : Mf — Rd
by sending A € M; to the unique g € Ry satisfying dg = AJf, cf. lemma 2.13.

Note that 0v¢(A) = AO0f by definition. If chark 1 d, then the Euler identity
(z'0f = df) implies that v,(A) = 22TAJf. By lemmas 2.9 and 2.12, the image
of v contains in particular all additive components of f. We will in chapter 3

see how to extract the regular splitting properties of f from M; explicitly.

Lemma 2.17: Let d > 0 and f € Ry, f # 0. Let (1. be the minimal number of

generators of anng(f) of degree e.
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(a) My is a k-vector space containing the identity matrix I.
(b)

(c)

(d) dimy, My =1+ Bia+1- B

vr: My — Ry is k-linear.
dimy ker v = r - 811 and dimg im vy = 1 + (4.

Proof: Obviously, I € My, so My is nonempty. And since the determinant is
linear in each column, it follows that M/ is a k-vector space. Alternatively, let
A, B € M;. Since 0vs(A) = AJf, it follows for any a,b € k that

O(ay(A) + bys(B)) = adys(A) + bdys(B) = (aA + bB)Of.

This implies that e A+bB € My for all a, b € k, which proves (a), and furthermore
that v;(aA + bB) = ays(A) + bys(B), thus ~; is k-linear.

Of course, v7(A) = 0 if and only if A0f = 0. For any A € Maty(r,r), the
equation A0f = 0 implies that A € My, hence the kernel of v, consists of all
such A. Recall that (49); denotes the i® coordinate of the column vector AQ,
that is, (A0); = a0 where a] is the i*® row of A. Thus

keryy = {A € My | Adf = 0} = {A € Maty(r, 7) | (AD); € annp(f)1V i},

and therefore dimy, ker v; = r - dimy ann(f); = rf1.

Furthermore, by lemma 2.12, the image of v, are precisely those g € R4 that
satisfy Ry - ann(f)s_1 C ann(g)g, which is equivalent to (g) C (R; - ann(f)q_1)*
by lemma 1.4. Since dimy(R/ann(f))s = 1, and R; - ann(f)g—1 is a subspace
of ann(f)y of codimension dimy(ann(f)y/Ry - ann(f)q—1) = B4, it follows that
dimy im vy = codimg(m - ann(f))s = 1 + f14. This finishes part (c). (d) follows
immediately. 0

Remark 2.18: We would like to point out that M} is “large” only for special f.
In fact, when k = k and d > 4, a general f € Ry will satisfy 31, = g = 0 (see
for example [IK99, Proposition 3.12|), which implies My = (I). In particular,
My = M, does not say very much by itself.

Example 2.19: Let us reconsider example 2.15. Since anng f = (07 — 02,03),

we see that §1; = 0 and 313 = 1. Lemma 2.17 implies that dim; M; =1+1 = 2.
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As before, A = (9§) € My since I5(9 Ad) = (92 — 02) C anng f. It follows that
My = (1,A).
Let us also determine im~y;. Letting g = @y +y® € R4, we see that

_ Yy _
99 = (x@) +y(2>) = A9f.

Thus A € My and v¢(A) = ¢g. Obviously, v;(I) = f, hence im~; = (f,g). This
image consists of all h € R3 such that anng(f)2 C anng(h)s. Thus another way
to compute im vy is (Ry - anng(f)2)" = (92 — 0,02,020, — 02)" = (f, g).

Yy Yz

Remark 2.20: Before we move on, we would like to point out that there are
several ways to compute M;. One is to use the definition directly and find all
A € Maty(r,r) such that every 2 x 2 minor of (0 A0) is contained in anng(f),.
This can be effective when anng(f), is simple enough, as in example 2.15. In
particular, if dim; anng(f)s < r — 1, then My = (). Another direct approach is
to solve the system of linear equations that is contained in the statement “A90"f
is symmetric”. We will do this when we prove proposition 4.17.

Alternatively, we can find dimy M; by computing anng f and counting the
number of generators of degree d, and then explicitly find the correct number
of linearly independent matrices A satisfying I5(0 AJ) C anng(f). In fact, most
examples in this paper are constructed by first choosing M C Maty(r, r) and then
finding f € R such that M C M. Having done so, if we thereafter are able to
show that anng f has no generators of degree 1 and dim; M — 1 generators of
degree d, then it follows that My = M.

Note in particular that the My in example 2.19 is closed under matrix mul-
tiplication. This is in fact always true when deg f > 3. We will now prove this

important and a bit surprising fact about Mjy.

Proposition 2.21: Let d > 3 and f € Rq. My is a k-algebra, and all commut-

ators belong to ker ;. In particular, M; is commutative if ann(f); = 0.

Proof: We use lemmas 2.12 and 2.13 several times. Let A, B € M;. Since B €
My, there exists g € Ry such that dg = BOf. Now I5(0 AJ) C Rann(f)s, and
ann(f), C ann(g), since d > 3. Hence A € M, and there exists h € R, such
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that Oh = Adg. Then Oh = ABOf, thus AB € M;. Furthermore, since A99(f),
BOOY(f) and ABAJ'(f) are all symmetric, we get

ABOJ'(f) = 00"(f)(AB)" = 00"(f)BTAT = BA9'(f)AT = BAJI'(f).

Hence (AB — BA)29"f = 0. Note that CO9'f = 0 & (C9);0;f = 0 for all
i,j < COf =0. Thus (AB — BA)0f = 0, and therefore v(AB — BA) = 0. If
ann(f); = 0, then it follows that AB = BA. O

Remark 2.22: When d > 3 it also follows for all A, B € My that
AQO(f)BT = ABOO'(f) = 00'(f)BTAT = BAO'(f)A".

Thus (A0)(B9)'(f) is symmetric, which implies that I,(Ad BO) C ann f, cf.

lemma 2.13.

Example 2.23: Let r = 3, d > 3 and f = z{¥ Yz + 2{2Dz). First, let us
determine anng f. Clearly, anng(f); = 0, and a straightforward computation
shows that anng(f)s = (92, 0505, 0105 — 05). We note that these polynomials are

01 Oy 05
(aZ 05 o)'

By Hilbert-Burch the ideal J = Ranng(f)s defines a scheme of length 3 in
P2, Indeed, 93 = 01(0205) — 02(0105 — 02) € J, and this implies for every e > 2
that (R/J). is spanned by (the images of) 95, 9510, and 9¢~2092. Since 05(f),
¢ 0y(f) and 9¢7202(f) are linearly independent for all 2 < e < d, it follows
that dimg(R/J). = 3 for all e > 1, and that anng(f). = J. for all 1 < e < d.

Thus anng f needs exactly two generators of degree d, and we get

the maximal minors of

anng f = (03, 0503,0105 — 02,070y, OF).

010
A:<001>.
000

We have just seen that anng(f), is generated by the 2 x 2 minors of (9 A9), hence

Let

A € M. Because M; is closed under multiplication, we also have A% € M;. By
looking at anng f, we see that 31; = 0 and (314 = 2. Thus dim; M; = 3, and it
follows that M; = (I, A, A?).
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Remark 2.24: The “formula” for the annihilator ideal anng f in example 2.23
is true even for d = 2. In this case anng f has five generators of degree 2, thus

My will be 6-dimensional. In fact, since in this case

aan:(B?é),

100

it follows that M; consists of all matrices that are symmetric about the anti-

diagonal. Thus My is no longer closed under multiplication.

Remark 2.25: With A as in example 2.23, it is easy to determine all g € R4 such
that A € M,. Indeed, if I5(0 AJ) C anng g for some g € Ry, then anng(g). 2
anng(f)e for all e < d since the 2 x 2 minors of (0 AJ) are the only generators of

anng [ of degree less than d. It follows that
geRy|Ae M} =imvy; = {af + bxl¥ Yy + cal? |a,b,c € k).
g f 1 1

If in addition anng(g); = 0, then a # 0, implying that g is in the GL3 orbit of f
(char k 1 d).

One natural question to ask is the following:
Which subalgebras of Maty(r,r) arise as M for different f € Ry?

We have not been able to determine this in general, but we will in the remainder
of this chapter point out some restrictions on M. We start with the following

result, which holds even for d < 3.

Proposition 2.26: Suppose d > 0 and f € Ry. Let A, B € Maty(r,r) and
C € My. Assume that AC, BC' € M; and BAC = ABC. Then A'BIC € M; for

all i,7 > 0. In particular, My is always closed under exponentiation.

Proof: Lemma 2.13 says that A € M if and only if A99"f is symmetric. Thus
all three matrices CO97f, ACOO"f and BCOO'f are symmetric. It follows that

ABCOTf = ADOTFCTBT = ACOITf BT = 907 fCTATBT = 90T f(ABC)T,

hence ABC' € My, and we are done by induction. The last statement follows by
letting B = C' = I. Note that we have not assumed d > 3 here. 0
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When d > 3 one might wonder if the assumptions C, AC' € M; actually
implies that A € M;. If so, the conclusion of the previous proposition would
immediately follow from the fact that M; is closed under multiplication when
d > 3. But My does not support division, in the sense that C, AC € M does not
generally imply A € My, as seen in the following example.

Example 2.27: Let r =4 and f = 2{* Va, + 2{Dzozs + 2(¥. Then
anng f = (8184 — 82(93, 8284, 83, 8384, 82, 8183, 85_283 — 83_1, 8?, 8il_182).

This implies that dimy M; = 3 when d > 4. Let

It is easy to verify that A% A® € My, thus M; = (I, A%, A*) when d > 4. In
particular, A ¢ My, even though A? A3 € M;.

We will finish this section with a result computing some special elements of

anng f. We start with a lemma.

Lemma 2.28: Let d > 0 and f € Rq. Pick Ay,..., A, By,...,B, € My, and

let we Yt imAf+ > ker Bl and v € (N, ker A]) N(N}_, im B]). Then
(u'0) - (v'0) € anng, f.

Proof: The proof rests on the following equation. If A € M; and b= [by,...,b,]"

and ¢ = [cy,...,c,]" are two vectors, then

o 22ibi0 Do bi(A
Ecja ZCJ

b0 bTAD
0 CTAa

8)2-

Zch 49),

2,7=1

I

and therefore
(b'0) - (c"AD) — (bTAD) - (c'0) € annp, f. (2.1)
By definition of u there exist aq,...a,,, b1,...b, € k" such that B,Ibk =0 and
u="> 1", Alay+ > ,_, by. Furthermore, AJv =0 and v = Bj¢; = --- = B¢, for
some cy,...,c, € k. Putting (A, b,c) = (Ay, ag,v) in (2.1), and using AJv =
implies (afA0)(v'0) € anng f. Letting (A, b, c) = (B, by, cx) gives (bJ0)(v10) €
anng f since BJb, = 0 and BJc;, = v. Adding these equations together proves
that (u'9) - (v'0) € anng f. O
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The next proposition gives us a restriction on My when anng(f); = 0. We

will use this in chapter 4.
Proposition 2.29: Let d > 2 and f € Ry. Pick Ay,...,An, B, ..., B, € My,
and define

U:iimAZ—kzn:kerB,I and V:(ﬁkerAg)ﬂ(ﬁimBg).
k=1 k=1

k=1 k=1
Assume that (a) U+V = k" and UNV # 0, or (b) dim U = r—1 and dim;, V' > 2.
Then anng(f)1 # 0.

Proof: (a) Let u € UNV. Since u € U, lemma 2.28 implies for all v € V' that
(u'0) - (v10) € annp f. Because u € V, we get (u'0) - (v'0) € anng f for allv € U
by the same lemma. Now U + V = k" implies that (u'0) - R, € annp f, hence
(u'0) € anng f.

(b) If V&€ U, then U+ V = k", and we are done by part (a). Thus we
assume that V' C U. Choose uj,us € V, u; }f us. Expand this to a basis
{uy,...,u,_1} for U, and choose u, ¢ U. Then {u[0,...,u}0} is a basis for R;.
Let {l1,...,l.} be the dual basis for R,. Since (u'9)(u]0) € annp f for all u € U,
it follows that ul0f = ¢4~V for some c¢; € k. Similarly, uJ0f = col{4~Y. Thus
(couy — crup)'0f = 0, and anng(f); # 0. O

Example 2.30: We will give an example of each of the two cases of proposition
2.29. In both cases, let r =3, d > 2 and f € Ry.
1. Let By = (88(1)) and By = (88?), and assume that By, By € M. Then
000 000
anan 2 [2(8 Bla) + [2(8 Bga) = (6183, 8283, 8??) = 83 cMpg.
Hence 03 € anng(f)1, and anng(f); # 0. This belongs to case (a) of
proposition 2.29 (with A; = 0 for all 7).
2. Let A, = (858) and A, = (886), and assume that A;, Ay € M. Then
000 000
anng f 2 12(8 Alﬁ) + 12(8 Aga) = (83, 8283, 8%) = (82, 83)2.
Thus f = ;2 + (T Yy + c3{? Va3, and therefore, anng(f); # 0. This
is case (b) of proposition 2.29 (with B; = I for all 7).

M has other properties that further restrict the subalgebras that arise as My,

and we will say a little more about this in the next section.
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2.3 Determinantal ideals

We mentioned in remark 2.20 that most examples in this paper are constructed
by first choosing a subset (usually a subalgebra) M C Matg(r, ). Having chosen
M, we can compute X; = {f € Rq| My O M}, and finally choose one of these f
to present as the example.

We now take a closer look at this method. Given a subset M C Maty(r,r), we
will define an ideal I(M) and an R-module X (M). Studying I(M) and X (M)
can be thought of as an alternative to studying all M, that contain M, and we
will make this connection precise. However, the first half of this section will only
deal with I(M) and a related ideal I(M).

Definition 2.31: Let M be any subset of Maty(r,r). Let I(M) and I(M) be
the ideals in R defined by

I(M)= > 1(0AJ) and I(M)= >  I,(A0B9).
AeM A,BeM
Note that the ideal I(My) is the part of anng f that determines My. Obvi-

ously, if M is a k-vector space, and Ay, ..., A, is a basis for M, then

[(M) =" L(Ai0 A;0) = I,(A10 A0 ... A,0).
i<j
Thus I(M) is the ideal generated by the 2 x 2 minors of a matrix of linear forms.
Conversely, if ¢ is any matrix of linear forms, then I(p) = I(M) for suitable
M. We realize that f(M) is a very general object. In this section we will usually
require that the identity matrix 7 is in M. (Actually, it would be enough to
assume that M contains an invertible matrix, but this is not important to us.)
We start with a result relating I(M) and the simpler object I(M).

Lemma 2.32: Assume I € M C Maty(r,r). Then I(M) C (M) = I(M?)
and (M), = I(M), for all e > 3. In particular, if M is closed under matrix
multiplication, then I(M) = I(M).

Proof: 1(M) C I(M) is immediate when I € M. Let A,B € M, and consider

the determinant

09; (Ad); (BI);
0; (A9); (BI);
Ok (A9 (BO)g

D =
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By expanding along the third column, we get D € I(M). Thus expansion along
the first row shows that

(49); (BI);
(A)r (B

€ I(M) for all i, j and k.

()

Therefore, mp [(M) C I(M). Since I(M) is generated in degree 2, it follows that
(M), = I(M), for all e > 3. Furthermore, since (Ad); = S_r_, A;10k, we get

> Ak

k=1

0; (B i (BI);
O (BO)g

(A0), (ABay,| ~ O (AP0~ (A9) - (BO)

and therefore,
XT:AJ‘k 0; (BO); 0; (BO); 0; (ABO); (A0); (BJ);
P O (BO)y, O (BO)k| |05 (ABO);|  |(AD); (BI);
Hence, if B € M, then I,(A0 BO) C I(M) if and only if I5(0 AB9) C I(M). In
particular, I(M) = I(M?), since I € M implies M C M?. If M is closed under
multiplication, then also M? C M, implying I(M) = I(M). O

T

=) Ay

k=1

. (2.2)

We note that I(M) = I(M) when M is closed under multiplication. If M is
not closed, it is natural to ask if we can close M and not change the ideal 1(M).

This is true, as the following proposition shows.

Proposition 2.33: Assume I € M C Matg(r,r). Let M’ be the k-subalgebra of
Maty(r,7) generated by M. Then I(M') = I(M).

Proof: We have not assumed that M is a k-vector space. It is just any subset
of Matg(r, ) containing the identity matrix I. Therefore, its powers are defined
as M* = {II¥_, A;| A; € M for all i}, and not the linear span. Note that M* C
M*+1 since I € M. Because Maty(r,r) is a finite-dimensional vector space, it
follows that M’ = (M*), the linear span of M*, for large k. Since a minor is linear
in each column, we get I((M*)) = I(M*). Thus to prove that I(M') = I(M), it
is enough to show that I5(9 Ad) C (M) for all A € M* for all k> 0.

For every A, B € Maty(r,r) and all 1 < i < j < r, define (A, B);; € Ry by
(A, B);; = (A0); - (B0O);. We will usually suppress the subscripts. Note that

- i Ay By i (DO

DI); (Cd
&= (Cd), (D),

(AC9); (ADO)
(BCd); (BD?)

J
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Thus (AC, BD) — (AD, BC) € I,(C9 D9), and if I,(CO DJ) C I(M), then
(AC,BD) = (AD,BC) mod I(M). (2.3)

Assume that I,(X0Y9) C I(M) for all X,Y € {I,A,B,C}. We want to
show that I,(0 ABCO) C I(M). This is equivalent to (ABC,I);; = (I, ABC);
mod I(M) for all i and j. To prove this, we will use equation (2.3) eight times,

and each time one of the matrices will be I. Indeed, modulo (M) we have

(ABC,I) = (AB,C) = (A,CB) = (B,CA)
— (BA,C) = (BC, A) = (B, AC) = (C, AB) = (I, ABC).

The rest is a simple induction. We know that I,(0.A9) C I(M) for all A € M?.
Assume for some k > 2 that I;(0 A9) C I(M) for all A € M*. Then by equation
(2.2) also I5(AQ BO) C I(M) for all A € M? and B € M7 as long as i + j < k.
Pick A" = 1"t A; € M*'. Let A = A, B =1I",A; and C = A, so that
ABC = A’. The induction hypothesis and the previous paragraph imply that
I5,(0 A'9) C I(M). Hence we are done by induction on k. O

One consequence of lemma 2.32 and proposition 2.33 is that {I(M)} does not
change much if we restrict our attention to subsets M C Matg(r,r) that are k-
algebras. Indeed, if M C Mat(r,r) is any subset containing the identity matrix
I, and M’ is the k-algebra generated by M, then I(M), = I(M’), for all e > 3.
Thus these ideals can only be different in degree two.

Another consequence is the following corollary.
Corollary 2.34: Let Ay, ..., A, € Matg(r,r) and M = k[A4, ..., A,]. Then

Proof: M is the k-algebra generated by {I,Ai,...,A,} C Matg(r,r), and the

result follows from proposition 2.33. O

We now associate to any subset M C Maty(r,r) a graded R-module X (M).
When we defined M; = {A € Maty(r,r) | Io(0 AQ) C anng f} in definition 2.14,
we required f to a homogeneous polynomial. To simplify the following definition
and results, we will allow any f € R. Of course, if f = Zkzo fr and fr € Ry,
then My = Ng>o My, , since I5(0 A0) is a homogeneous ideal.
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Definition 2.35: Let M C Matg(r, 7). Define the graded R-module X (M) by
X(M)={feR|M C My}

The discussion before the definition explains why X (M) is a graded k-vector
subspace of R. Note that anng(f) C anng(Df) for any D € R. This implies
that My C Mpy, thus X (M) is indeed an R-module. X (M) is closely connected

to I(M), as seen in the following lemma.

Lemma 2.36: Let M C Maty(r,r) be any subset. Then

(a) M C My if and only if I(M) C anng, f,
(

)
b) Xy(M)={f € Ry|Ra_2(f) C Xo(M)} for all d > 3,
(¢) I(M)+ = Xq(M) for all d > 0,
(d) I(M) = Nyexqu I(My) = Npex(ar) anng f.

In particular, I,(0 AQ) C I(M) if and only if A € My for all f € X(M).

Proof: Clearly, I(M) C anng f if and only if I5(0 AJ) C anng f for all A € M,
which is equivalent to M C M;. This is (a).

Let X = X(M). Pick f € Ry, d > 3. Since I(M) is generated in degree
two and anng(f)s—1 = Ni_, anng(0;f)a—1, it follows that My = NI_, My, ;. Hence
f € Xy if and only if 0;f € X,_1 for all ¢, and by induction this is equivalent to
Df € X, for all D € R;_5. This proves (b).

For all d > 0 we have I(M); = {f € Ry4|Df = 0V D € I(M)}, which
equals X, by (a). For any f € X we note that I(M) C I(M;) C anng f, hence
I(M) C Ngex I(My) C Ngex anng f. Furthermore, by (c),

I(M)y =Xy ={D € Ry|Df =0V f € X4} :f&dannR(f)d.

Thus I(M)q 2 (Nyex anng f)q, which implies (d). In particular, it follows that
I,(0 A0) C I(M) if and only if I5(0 A0) C anng f for all f € X, and this is
equivalent to A € My for all f € X. O

Remark 2.37: A consequence of lemma 2.36 is that results about M, often

correspond to results about I(M). For example, we know that M} is a k-algebra
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for all f € R4, d > 3 (proposition 2.21). This corresponds to the fact that
I(M?); CI(M)gfor all d > 3 when I € M (lemma 2.32).

To prove this, let d > 3 and f € Ry, and pick A, B € M. Consider
M = {I,A, B} C M;. We have I(M?); C I(M)y; C anng(f)4. Since anng(f)2
is determined by anng(f)s by lemma 1.2a, and I,(0 AB9) C I(M?), we get
I,(0 ABO) C anng f. Hence AB € Mj.

Conversely, let A, B € M. Then A, B € My for all f € X = X(M), implying
AB € My for all f € Xy, d > 3. Hence I5(0 ABO)q C Nyex, anng(f)g = 1(M)q
for all d > 3, that is, I(M?); C I(M)y. Thus even though the proofs of these two
results look very different, they actually imply each other.

As promised, we give another result that restricts which algebras that arise as
M. The conclusion of this proposition does not in general follow from the other

results we have proven about M.

Proposition 2.38: Suppose Ay, ..., A, € M;. Let a;; be the j™ column of A].
(So A; = [ai1, ..., ai]", i.e. (A;)jx = (ay)x for all i,j,k.) Let s <r. Assume that
a;; =0 for all i > 1 and j < s, and that ag; € {(ayj,...,a,;) for all j > s. Then
B = lap, ..., a05,0...,0]T € M.

Proof: Let M = {Aq,...,A,}. We want to prove that (M) contains every 2 x 2
minor of (0 BJ). If i,j <'s, then

If 7,5 > s, then this minor is obviously zero. So we are left with the case « < s and
J > s. By assumption ag; € (aij,...,an;), thus ag; = Y _,_, cxjax; for suitable
ck; € k. It follows that

o (Boy| o afp| o aOTﬂ Z
9; (B9);| 195 O J; a o 9; a0
= Z (M).
9; 14059 o 0, a)j

Therefore, I5(0 BO) C I(M). Since I(M) C anng f, this implies B € M;. O



2.3 Determinantal ideals 29

Example 2.39: The assumptions in proposition 2.38 might seem a bit strange.
One situation where it can be used, is the following. Let ¢; + ¢o + ¢3 = r. For
i=1,2,3, pick C; € Maty(c;,r), and define B; € Maty(r,r) by

(&3] Ch C1
B=(%) B=(%) B=(4)

Assume that By, B3 € My. If we apply proposition 2.38 with Ay = Bs and
Ay = By — B3, we get By € My. A special case when r = 6 is

C00 Co00 Coo0
Blz(ooo) B2:<oco) B3:<ooo),
000 00 00C

where C' = (8 (1)) As above, By, By € My implies By € M.

We will end this section with a result identifying Z(I(M)) C P"~!, the set of
closed points of the projective scheme determined by I(M).

Proposition 2.40: Suppose M C Maty(r,r). Then
Z(I(M)) ={v € k" \ {0} |v is an eigenvector for every A € M}/k*.

Proof: By definition, I(M) = > ., 12(0 AJ). Thus a v € k" satisfies D(v) = 0
for all D € I(M) if and only if

v, (Av);

=0forall 2 <jandall Ae M.
v (Av);

This is equivalent to v being an eigenvector for every A € M. Thus Z(I(M)) is

simply the projectivization of the union of the eigenspaces. OJ






CHAPTER 3

Regular splittings

This chapter covers our work on regular splittings. The first half deals with how
to find such splittings. Then in section 3.3 we study how a regular splitting
affects the Artinian Gorenstein quotient R/anng f. In fact, if f =3 " g is a
regular splitting of f, then we express the Hilbert function and, more generally,
the (shifted) graded Betti numbers of R/ anng f in terms of those for R/ anng(g;),

i=1,...,n. To get there, we calculate the minimal free resolution of R/anng f.

Section 3.4 concerns PGor(H), the space parameterizing all graded Artinian
Gorenstein quotients R/I with Hilbert function H. We define a subset paramet-
erizing those R/anng f where f splits regularly, and we compute its dimension

and the dimension of the tangent space to PGor(H) at the point R/ anng f.

One goal of this paper is to study what M; can tell us about f € R4, and
in section 3.2 we show how to extract from M/ the regular splitting properties
of f. By corollary 2.10, any regular splitting of f happens inside the subring
k[Rq_1(f)]PY € R. Thus we may assume that anngp(f); = 0 by performing a
suitable base change and reducing the number of variables, if necessary. If in
addition d > 3, proposition 2.21 tells us that My is a commutative k-algebra.
This will allow us to find all regular splittings. It turns out that the idempotents
in M determine the regular splittings, so we start by studying these.

31
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3.1 Idempotents and matrix algebras

This section discusses idempotents in general, and in particular how they relate
to matrix algebras. We will see how eigenvalues and eigenspaces are connected
to idempotents. We start with some elementary definitions.

Let A be a ring with unity. A nonzero element e in A is called an idempotent

if €2 = e. A subset {e1,...,e,} C A is a set of orthogonal idempotents in A if

e? =e; # 0 for all ¢ and e;e; = 0 for all i # j. The set is complete if in addition

HE
Yore; =1 If {e1,...,e,} is not complete, let eg =1 —>"" , e; # 0. Then
€ei€o :ei—eiZej :ei—e? =0 = ege;
j=1

for all i > 0, and €3 = (1 — >, e;)eo = €o. Thus eg is an idempotent, and

{eg,...,en} is a complete set of orthogonal idempotents.
We define a coid to be a set £ = {ey,...,e,} of nonzero elements of A such
that e;e; = 0 for all i # j and Y77, e; = 1. This implies e; = e; )7, ¢; = €7,

thus € is a complete set of orthogonal idempotents (hence the name coid). We
define its length to be I(£) = n, the size of £ as a set.

Assume in addition that A is a commutative ring. Let €& = {ey,...,e,}
and & = {é€},...,e/.} be two coids. Forall 1 < i <nand1l < j < m, let
eij = eiej. Then 37, ey = (D07, €) (D071, €)) = 1, and for all (4, 5) # (k, 1), we
have e;jer = eiejere; = (eier)(eie;) = 0. Thus, if e;; and ey are nonzero, then
they are orthogonal idempotents. In particular, they are not equal. This shows
that

E®E" = {ej| ey # 0}
is another coid, which we call the product coid. This product has the following

properties.

Lemma 3.1: Suppose A is a commutative ring with unity. Let £ = {eq,...,e,}
and &' = {¢},... el } be two coids. Then (E®E') > 1(E), and (E®RE') = (&) if
and only if E @ &' = £. Furthermore, it E @ E' = &, then £ refines £ in the sense
that there exists a partition {J,...,Jm} of {1,...,n} such that e} = Ziejj e;.

/
m

since ) 7", e;¢j = e; # 0. This proves that [(£ ® ') > I(E). Tt also shows that, if

Proof: For each i = 1,...,n, at least one of e;e],...,e;e,, must be nonzero,
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HE®E') = I(E), then for every i there exists a unique j; such that e;e];, # 0. Then

e; = Z;n:l eie; = e;e), hence £ ® £ and £ are equal. For every j =1,...,m, let
Ji={ilji=j} Then J;NJ, = forall j #k,and J1U...UT,, ={1,...,n}.
Thus {J;} is a partition of {1,...,n}, and €] = 31" e;e; = > . ;€. O

The next proposition contains what we will need to know about idempotents.
First, note the following. Let V be any k-vector space, and V;,...,V, C V
be subspaces. When we write V' = @I ; V;, we mean that the natural map
@, Vi — V defined by (v;) — >, v; is an isomorphism. This is equivalent to
Sy Vi=Vand V;N(},,; Vi) =0 for all .

We say that A contains a unique maximal coid if it contains a coid &£ of

maximal length and every coid refines into &£, cf. lemma 3.1.

Proposition 3.2: Let A be a commutative ring with unity.

(a) For every coid {ey,...,e,}, the natural map A — eiA®...Pe,A is an
isomorphism of rings. Furthermore, every ring-isomorphism A — @&}, A;
arise this way up to isomorphisms of the summands A;.

(b) Assume in addition that A is Noetherian. Then A contains a unique max-
imal coid € = {ey, ..., e,}. In particular, the idempotents in A are precisely
the elementse =3, e; with @ # 1 C {1,...,n}.

(c) Let A also be Artinian, and let {ey, ..., e,} be the unique maximal coid.
For every i, the ring A; = e;A is local Artinian, and its maximal ideal is
AWl = fg € A;|a* = 0 for some k}, the set of nilpotent elements in A;. In

particular, A contains exactly n prime ideals.
Proof: We note that if e € A is an idempotent, then the ideal
eA={ealac A} CA

is itself a commutative ring, with identity e. The map a — (eja,...,eya) is
obviously a homomorphism of rings. Since (ay,...,a,) — > .., a; is an inverse,
it is an isomorphism.

Assume that A — @' ;| A; is an isomorphism of rings. For every 1 =1,...,n,
let e; € A be the element mapped to 1 € A; and 0 € A; for all j # i. Then for
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all i # j, we have e;e; — 0 in every component, thus e;e; = 0. And Y7 ;=1
since 1 +— (1,...,1). Hence {ej,...,e,} is a coid, and A — @' ; A; restricts to
isomorphisms e;A — A;. Thus the map A — @} ; A; factors through the natural
map A — @, ;A= @ | A;. This proves (a).

We will now prove (b) in several steps. First, suppose that A contains an

idempotent e # 1. Then 1 — e is also idempotent. Let
T="(A) ={acAla®>=a},

and note that T(eA) = {ea|ea® = ea} = €Y. It follows that the isomorphism
A — eAD(1 — e) A restricts to a bijection T — €T x (1 —¢)7T.

Assume that A contains infinitely many idempotents. Thus T is infinite, and
for every idempotent e, at least one of eY and (1 — €)Y must be infinite. Pick
e; € T\ {0,1} such that (1 —e;)Y is infinite. Since (1 —e;)A has infinitely many
idempotents, we may choose e; € (1—e1)Y\{0,1—e;} such that (1—e)(1—e1)Y
is infinite. Since e; € (1 —e1)Y, we get e;es = 0. We may repeat this process as
many times as we like, producing elements ey, es,... € A such that €? = ¢; # 0
for all i and e;e; = 0 for all i # j. If e, = >, a;e; for some a; € A, then
e: = ZKk a;e;er, = 0, which is a contradiction. Hence we have produced a

non-terminating, ascending sequence of ideals

(e1) € (e1,€2) S (e1,e2,e3) S ..o,

contradicting the Noetherian hypothesis.

Since A has only finitely many idempotents, there is a coid £ of maximal
length. If £ is any coid, we know that (€ ® &) > I(£). By the maximality of &,
it must be an equality, implying EQE’ = £. Furthermore, [(£') < (ERE) = (),
with equality if and only if £ = £. Hence £ is the unique coid of maximal length.
Moreover, £ is a refinement of £, so any coid is obtained from £ by “grouping”
some of its elements as in lemma 3.1. In particular, if e # 1 is any idempotent,
then {e,1 — e} can be refined to € = {ey,...,e,}, implying that there is a non-
empty subset 7 C {1,...,n} such that e =), e;.

To prove (c), assume that A is Artinian, and let a € A. Since

(1) 2 (a) 2 (a*) 2 (a”) 2 ...
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becomes stationary, there is an n > 0 such that (a") = (a"*'). Hence there exists
b € A such that a” = ba"*'. It follows that a"**b* = a" for all k& > 1, and
therefore, (ab)®™ = (ab)". If (ab)" = 0, then a™ = a*"0" = 0. Thus either a is
nilpotent, or (ab)™ # 0 is idempotent.

The ring A; = e;A contains no non-trivial idempotents because {ey,...,e,}
is maximal. Let P C A; be a prime ideal. Obviously, P contains all nilpotents.
But if a € A; is not nilpotent, then we have just proven that a must be invertible.
Thus

P =AM = {a € A;|a is nilpotent}.

Clearly, an ideal P C A = @ | A; is prime ifand only it P=P,&...® P,
and there exists j such that P; is a prime ideal in A; and P; = A; for all 7 # j.
Since A; has a unique prime ideal, it follows that P; = A;?ﬂ. Thus A has exactly

n prime ideals. O

Remark 3.3: Continuing with the notation of the proof of part (c¢), we see
that Ap=(A;)p, = A;. Hence the decomposition A = @}, A4; is the one that is
obtained in [Eis95, section 2.4| using filtrations and localizations.

Note that the ideal AM is nilpotent. Since A; is Noetherian, AM is finitely
generated, say by ai, ..., a,. Since every ay is nilpotent, there exists my, such that
ap* = 0. The ideal (A}")™ is generated by products II", (3°7_; ¢jpar). When
m > > 1_ (my — 1), every monomial in the expansion is necessarily zero. Thus

the product is zero, proving that A is a nilpotent ideal.

Remark 3.4: Note that the commutativity of A in (b) is necessary. Indeed,
Matg(r, r) contains infinitely many idempotents when r > 2 and k is infinite. For

instance, A = (} ¢) is idempotent for all a € k.

In this paper, when we apply proposition 3.2, the ring A will usually be a
matrix algebra M. In this case, the idempotents in M are closely related to the
eigenspaces of M. Before we prove this, we give some definitions.

Let M be a commutative subalgebra M C Matg(r,r), and assume that M
contains the identity matrix /. We say that v € V = k" is an eigenvector for M if
it is an eigenvector for all A € M, that is, if for every A € M there exists A4 € k

such that Av = Aqv. Obviously, v = 0 is an eigenvector.
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Fix an eigenvector v # 0. Then Av = A v determines A4 uniquely. Consider
the map A\ : M — k defined by A\(A) = A4. Let A, B € M. Since M is a
k-algebra, we get aA +bB € M for all a,b € k, and AB € M. Tt follows that

AaA + bB)v = (aA+ bB)v = aAv + bBv = (a\(A) + bA(B))v.
Since v # 0, this implies that A(aA + bB) = aA(A) + bA(B), and similarly,
AMAB) = AMA)A(B). Moreover, A(I) = 1. Thus A is a homomorphism of k-

algebras. We call A an eigenvalue function for M.

For every homomorphism A : M — k of k-algebras, we define
Uy={veV]Av= XA for all A€ M}.

Clearly, A\ is an eigenvalue function for M if and only if Uy, # 0. U, is the
eigenspace associated to \. Let U = 0. Define U for k > 1 inductively by

Uy={veV|(A=XA)veUy forall Ac M}.

In particular, U; = U,, the eigenspace associated to A. Obviously, the sequence
0 C U} C U} C ... must stabilize since V' is of finite dimension. Define V =
> k>0 U¥, that is, V) = UJ for all k > 0. We call V) the generalized eigenspace
associated to .

The following proposition is a spectral theorem for M.

Proposition 3.5: Let M C Maty(r,r) be a commutative subalgebra containing
the identity matrix 1.
(a) M has a unique maximal complete set of orthogonal idempotents {E;}?;.

(b) M; = E;M is local Artinian, and its unique prime ideal is
MM = {A € M;| A is nilpotent}.

(c) M=M&...0&M,.

(d) " =imE;&...5imE,.

(e) Let I = {i|M; = (E;)® MM?}. There are exactly |I| homomorphism
M — k of k-algebras. Indeed, for each i € I, the k-linear map \; : M — k
defined by X\;i(E;) = 1 and \i(A) = 0 for all A € MM & (®;. M;) is a homo-
morphism of k-algebras, and there are no others. Fach \; is an eigenvalue

function, and V), = im E;.
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(f) M; = (E;) ® MM for all i if and only if k contains every eigenvalue of each
AeM.

Proof: Since M has finite dimension as a k-vector space, it is Artinian. Hence
(a), (b) and (c) follow immediately from proposition 3.2.

To prove (d), that is, k" = im F; @ ... ®im E,, it is enough to note that
vi— (Eyv,...,Ew) and (vq,...,v,) — Y ., v; are k-linear maps and inverses of
each other.

Clearly, each )\; is a homomorphism of k-algebras. If A : M — K is any k-
algebra homomorphism onto some subfield K of k, then ker A must be a maximal
ideal in M. Thus ker A = M ®(®;4 M;) for some i. If K = k, then this
kernel must have codimension one as a k-vector subspace of M, which implies
that M; = (E;) & M™. Obviously, A(E;) = A(32; E;) = 1, hence A = \;.

To prove that \; is an eigenvalue function, we must find a nonzero v € k" such
that Av = \;(A)v for all A € M. We shall in fact prove that V), # 0, since this
implies Uy, # 0. Since E; # 0, it is enough to prove that V), =im E;.

Let v € UF. For every j # i we have \;(E;) = 0, and thus Ejv € Uy
Then Efv € U} = 0 by induction. But EF = Ej, hence v € ker E;. From
v € Njy ker B, it follows that v = Zj FEjv = Fyv € im F;. We also note for all
j #iand A € M; that Av = AE;jv = 0. Thus

k
U/’\i:{vekr (Aj—)\i(Aj)I)v:Ofor all Al,...,AkGM}
j=1
k
= {U € im F; (HAj)(U) =0forall Ay,..., Ay € Minﬂ}
j=1
— {v cimF;| Av=0forall A€ (Minﬂ)k}.

Since MM is nilpotent, this implies V3, = im E;, and finishes the proof of (e).

To prove (f), assume that M; = (E;) ® M for all i. Pick A € M. For all i,
since E;A € M;, there exists \; € k such that E;A — \E; € MM Hence there
exists m; > 1 such that (E;A— X, E;)™ = 0. It follows that £, I, (A—X\1)™ =0
for all j. Therefore, II' (A — A\;1)™ = 0. Thus the minimal polynomial of A
divides II7; (A — A\;)™. Hence Ay, ..., \, are all of A’s eigenvalues, and they are
all in k.
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Conversely, let A € M;. A has at least one eigenvalue A € k, and by assump-
tion, A € k. Thus A— \E; € M; is not invertible. Since M; is local, A — \E; must
be nilpotent, i.e. A € (E;)® M. Since this is true for every A € M;, it follows
that M; = (E;) ® MM O

Remark 3.6: If {F,..., E,} is a coid in Matg(r,r), then Ey, ..., E, can easily

be diagonalized simultaneously. Indeed, let s; = rank F; for all ¢, and

Zskqusk}.

k<i k<i

a-{rez

Choose a basis {v;|j € J;} for im E;. Since k" = @ ,im E;, it follows that
Yor i si = r, and that {vy,...,v,.} is a basis for k". Hence {J1,..., T} is a
partition of {1,...,r}, and P = [vy,...,v,] is invertible.

Note that E? = E; is equivalent to F;v = v for all v € im E;. Hence E;jv; = v,
for all j € J;. Similarly, since E;F; = 0 for all @ # j, we get Ev; = 0 for all
Jj & J;. Tt follows that

P'EP =[P 'En,..., P B =

o o O
o ~ O
o o O

where [ is the s; x s; identity matrix. Thus every E! = P7'E;P is a diagonal
matrix, with diagonal entries (E}),;; = 1 if j € J; and (E});; = 0 otherwise.
Also note that a matrix A € Maty(r,r) commutes with every E!, i = 1,...,n,

if and only if A can be written in block diagonal form

A 0 0
A=1o0 . 0|,
0o 0 A,

where A; is an s; X s; matrix. Furthermore,

1

0 0 0
E!Maty(r,r)E; =< [0 A, 0] | A € Maty(s;,s;) ¢,
00 0

hence {A € Maty(r,r) | AE; = E/A for all i} = &, E/ Maty(r,r)EL.
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3.2 Idempotents and regular splittings

We are now ready to prove that the idempotents in M; determine the regular
splittings of f, and how they do it. The bridge between M; and the additive
components of f is the map ~;. Recall that vy = M; — R, sends A € M;
to the unique g € Ry that satisfies dg = AJf (d > 0). This map connects
the idempotents in My to the additive components of f, and establishes a bijec-
tion between the complete sets of orthogonal idempotents in My and the regular

splittings of f.

THEOREM 3.7:
Assumed > 2, f € Ry and anng(f); = 0. Let Coid(My) be the set of all complete
sets {Ey, ..., E,} of orthogonal idempotents in My, and let

Reg(f) = {{g1, -+ 9} | f =g+ -+ gy is a regular splitting of f}.
The map {E;}I" | — {g; = v¢(E;)}_, defines a bijection
Coid(My) — Reg(f).
In particular, there is a unique maximal regular splitting of f when d > 3.

Similar to our usage in the last section, when we here say that there is a
unique maximal regular splitting of f, we mean that there is a unique regular
splitting of maximal length and that every other regular splitting is obtained from

the maximal one by “grouping” some of its summands, cf. proposition 3.2b.

Proof: First, note that anng(f); = 0 is equivalent to Ry_1(f) = R4, that is,
{ODf|D € Ry_1} = k". Hence, if dg; = E;0f, then

{al)gZ ‘ D e Rd—l} = {Ezan | D e Rd,—l} =1im FE;.
Since O(v'x) = v, this implies that
Ry1(g:) = {v'z|v € imE;} C R,. (3.1)

(Recall that z denotes the column vector x = [y, ..., z,]".)
Assume that {E}, ..., E,} C My is a complete set of orthogonal idempotents.
For each 4, let g; = v¢(E;) € Ry, that is, dg; = E;0f. Note that g; # 0 because
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E; # 0 and anng(f); = 0. Since > | E; = I, we get > | g; = f. Furthermore,
for all 4, equation (3.1) implies that

Rq-1(g:) 0 (Z Rd—l(gj)) = {UTH?

J#i

v € imEm(Z imEj>} (3.2)

J#
But the E;’s are orthogonal idempotents, thus im F; ﬂ(zj# im Ej) = 0 by pro-
position 3.5d. Hence f = g, + - + g, is a regular splitting of f.

Conversely, assume that f splits regularly as f = g1 + -+ + g,. By lemmas
2.9 and 2.12 there exists for every ¢ a matrix F; € M; such that dg; = E;0f. E;
is unique since anng(f); = 0, and v;(E;) = g; by definition of ;. Furthermore,
of =31, 0g;=> ¢ E;0f implies " | E; = 1.

Because f =) . ¢g; is a regular splitting, we know for all ¢ that

Ra-1(g:) N (Z Rdl(ﬂj)) =0.
J#i
Combined with equation (3.2), this implies im E;N (3, ,;im E;) = 0. For all
v € k" and all j we know that Eju = ", ExEjv. For any i # j, we rearrange
this equation and get E;Ejv = Ej(v—Ejv) =3, ; By Ejv. This is an element of
im ﬂ(z#i im Ej), and must therefore be zero. Hence F; ;v = 0 for all v € &7,
implying E,E; = 0 for all ¢ # j. This proves that {Ey,..., E,} is a complete set
of orthogonal idempotents in M.

When d > 3, M; is a commutative k-algebra, and has therefore a unique
maximal complete set of orthogonal idempotents, by proposition 3.2. It follows
that f has a unique regular splitting of maximal length, and that every other
regular splitting of f is obtained from the maximal one by “grouping” some of

the summands. O

Remark 3.8: To sum up, theorem 3.7 tells us that there is a correspondence
between regular splittings f = g1 + -+ + g, and complete sets of orthogonal
idempotents {E4, ..., E,} C M/ given by the equation dg; = E;0f. The corres-
pondence is one-to-one because dg; = E;0f determines g; uniquely given E; since

d > 0, and it determines F; uniquely given g; because anng(f); = 0.

Remark 3.9: We want to point out that d > 3 is very different from d = 2 when
we work with regular splittings. If f € R; and d > 3, then M/ contains a unique
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maximal complete set of orthogonal idempotents, and f has therefore a unique
maximal splitting. This is in stark contrast to d = 2, when the representation of
f as a sum of squares is far from unique. The explanation for this difference is
that My does not have a unique maximal complete set of orthogonal idempotents

when d = 2, and the reason for this is that M is not closed under multiplication.

Theorem 3.7 is not as complete as we would like it to be. It tells us how to
find a regular splitting f = > | ¢;, but it does not say how M, is related to
M. This is something we would like to know, since My can contain matrices
that are not idempotent. If these matrices are not found in one of the M, ’s, it
would mean that we loose some information about f (contained in M) when we
pass to the additive components {gi,...,gn}-

Fortunately, this is not the case, as theorem 3.18 will tell us. It would be nice
if the relationship between M, and the M,,’s was as simple as M; = @, M,,.
But it is not, because there is an important difference between f and the g;’s.
In theorem 3.7 we assumed anng(f); = 0, an assumption which was justified
by corollary 2.10. But if f = ¢g; + -+ + ¢, is a non-trivial regular splitting (i.e.
n > 2), then necessarily anng(g;); # 0 for all 4. This affects M,,, and we have
to adjust for this effect. Thus in order to state and prove theorem 3.18, we need
to understand what happens to My if anng(f); # 0. After the adjustment, the

simple relationship between M; and the M_,’s is in fact restored.

Remark 3.10: In the following we will often choose a subspace W C R, and
consider the divided power subalgebra & = k[W]PF C R. (The most important
example is W = Ry_1(f). If anng(f); # 0, then W C Ry and S C R.) We note
that D(g) € S for all g € S and D € R. Thus for any subset S C R, the action
of R on R restricts to an action of S on §. We usually want a polynomial ring
S = k[V] with V' C R, acting as the dual of § (i.e. S=S%).

To ensure that the choice of V' C R; implies S = S8*, we need V=W*. Note
that Ry W+ @W*. Thus choosing S = k[V] C R such that S=8* with the
action induced by R, is equivalent to choosing V C R; such that Ry = W+ @ V.
Note that S C R determines the ideal anng S = {D € R| Dg = 0 for all g € S},
which equals (WW+1), the ideal in R generated by W+. Since R = (W1)® S as

graded k-vector spaces, S determines S only as a direct summand.
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Remark 3.11: Note that £ € Matg(r,r) is idempotent if and only if £ acts as
the identity on its image and k" = im F @ ker E. Hence specifying E is equivalent
to choosing subspaces im F/, ker £ C k" such that £ = im E @ ker E.

A pair (W C R,V C Ry) satisfying W @& V+ = R, determines an idempotent
E € Maty(r,r) by the equations

imE={vek |vzeW} and kerE={vek |veecV}

Note that by remark 3.10, a pair (W, V) satisfying W @ V+ = R, is equivalent
to a pair (S = k[W]PY C R, S = k[V] C R) satisfying S = S*.

Conversely, an idempotent E € Maty(r,r) determines S = k[W]P” C R and
S = k[V] C R by the equations

W={vz|veimE} ={z'Buluck’} CRy,
V={00|veimE"} ={u'Ed|uck’} CR,.

We note that
Vi={v2|(Ww'Ed)(vz) =u'Ev=0Yuck"} = {vz|v € ker E}.

Since FE is idempotent, we know that " = im EF @ ker . This implies that
WaeV+ =R, and Wt@®V = Ry, and therefore S = S*.

Let s = rank F = dim; V' = dimy W. Choose a basis {vy,...,vs} for im E,
and a basis {vsy1,...,v,} for ker E. Since im E @ ker E = k", it follows that the

matrix P = [vy,...,v,] is invertible. Furthermore,

. . I 0
P EP =P |v,...,050,...,0] = )
00

where [ is the s x s identity matrix, cf. remark 3.6. The similarity transformation
E +— P7EP corresponds to a change of variables in R and R, transforming S
into S = k[xzy,..., 2" and S into S = k[Dy, ..., 0], cf. proposition 3.15.

It is usually more convenient to specify an idempotent £ instead of specifying
a pair (§ = k[W]PP S = k[V]) such that Ry = W+ @ V. Therefore, we will
formulate most of the results in this section using idempotents, and we will define
and use S and S only when we have to. If f € R and S = k[W]PF C R, then we
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will often need to know when f € S. Since f € k[Ry_1(f)|PF, this is equivalent
to Rg—1(f) € W. The next lemma allows us to express this in terms of the

idempotent F.

Lemma 3.12: Assume d > 0 and f € Ry. Let E € Maty(r,r) be idempotent,
and define W = {v'x |v € im E}. Then

(2) Ra_1(f) C W if and only if EOf = O,
(b) Rg_1(f) =W if and only if EOf = 0f and rank E = dimy, Rq_1(f).

Proof: Clearly, Ry—1(f) = {Df|D € Rq-1} C W if and only if {0Df|D €
Ry 1} C {Oh|h € W} = imE. Since FE is idempotent, this is equivalent to
EODf = 0Df for all D € Ry, i.e. EOf = 0f. This proves (a). (b) follows
immediately, since rank £ = dim;, W. Note that E0f = 0f implies that rank £ >
dimg Rq—1(f) by (a), thus (b) is the case of minimal rank. O

When f € § C R, the definition of M; is ambiguous in the following way.

Remark 3.13: Let S = k[zy,...,2,)PP and S = k[D,,...,0,]. Assume s < 7, so
that SC R and S C R. Let & = [0y,...,0,]". There are two ways to interpret
definition 2.14 when f € §. We may consider f to be an element of R, giving
My ={A € Maty(r,r) | Io(0AD), C anng f}. Or we may think of f as an element
of S, in which case M} = {A € Maty(s, s) | (0" AD')s C anng f}.

Notice that we choose to write I5(0 AD),. This is the degree two part of the
ideal I5(0 A0) and generates the ideal. The reason for doing this is that I5(0" Ad')
is ambiguous; is it an ideal in R or an ideal in S? But its degree two piece is
the same in both cases; I5(0" Ad'), is simply the k-vector space spanned by the
2 x 2 minors of (0" A9’). The ideals in R and S generated by these minors are
therefore equal to I5(0 AJ')oR and I3(0 AD')sS, respectively.

Since R is our default ring, My will always mean what definition 2.14 says,
ie. My ={A € Matg(r,r)|Io(0 AD); C anng f}. It is not immediately clear
what the analogue of M} should be for a more general subring S C R. We will

in proposition 3.15 prove that the following definition gives us what we want.
Definition 3.14: Assume f € R,;. Let £ € My be idempotent. Define

M§ = My EMaty(r,r)E.
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Of course, M]{ = M. Note that E Maty(r,r)E is closed under multiplication.
Hence M ij is a k-algebra if M is closed under matrix multiplication. In any case,
we note that £ € M¥, and that E acts as the identity on MfE

We want to show that if EOf = Of then Mf reduces to M} (cf. remark
3.13) when we perform a suitable base change and forget about extra variables.
In remark 3.13 we used both anng f and anng f. In general, if f € § C R and
S = S*, then by definition anng f = {D € S| Df = 0}. Hence

anng f = SNanng f

is always true. Recall that, if P € GL,, then ¢p : R — R is the k-algebra
homomorphism induced by z — PTz, and ¢p : R — R is induced by 0 — P~10.

Proposition 3.15: Let f € Ry, d > 0. Suppose I € My is idempotent and
satisfies EOf = Of. Let s =rank E, W = {v'x|v € imE} and V = {v'0|v €
im ET}. Define S = k[W]PY C R and S = k[V] C R. Choose P € GL, such that

E' = PEP! = o .
0 0

Let &' = ¢p(S), " = ¢p(S) and f' = ¢p(f). Then S’ = klxy,...,z]P?,
S' = k[or,....0) and f' € 8. Let & = [d1,...,0,]". Then

M}? g]\4}/ = {A S Matk(s, S) ’ ]2(8' Aal)g Q annsx(f’)}.

Proof: We start by proving that ¢p(S) = k[zy,...,z,]P". We know that W =
{x"Eu|u € k"}. Since ¢p(z'Eu) = (P'z)TEu = 2"PEu = x"E'Pu, it follows
that ¢p(W) = {z"E'v|v € k"} = (x1,...,25). Thus ¢p(S) = k[zy,..., 2",
In a similar fashion we get ¢p(V) = {v'E'0|v € k"} = (D1, ...,0,), implying
¢p(S) = k|01, ...,0s]. Furthermore, EOf = Jf implies Ry_1(f) € W by lemma
3.12. Thus f € k[Rq_1(f)]PP C S, and therefore, f' = ¢p(f) € S'.

In order to show that Mf = M, we first prove that

M{ = {A € EMaty(r,r)E | I,(E) Ad); C anng f}. (3.3)

Assume that A € EMaty(r,r)E. Since A = AE and(E0); € S for all i, it follows
that Io(E0 Ad)s C S automatically. Hence Io(E0 Ad)s C anng f if and only if
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I(EOQ Ad)y C anng f. By lemma 2.13 this latter statement holds if and only
if (AQ)(EO)T(f) is symmetric, which is equivalent to AJJTf being symmetric,
since EOf = 0f. And Ad9'f is symmetric if and only if A € M;. Hence,
if A € EMatg(r,r)E, then I,(EOQ AJ); C anng f < A € My, which proves
equation (3.3).

Now let M = E Maty(r,7)E and

M = PMP™' = E'M (A
= = atg(r,r)E = 0 0

A€ Matk(s,s)} :

Applying equation (3.3) to f" and E’, we see that
M ={Ae M| (E'dAJ), C anng/(f)}.

Clearly, A — (4 3) defines an isomorphism M}, — Mﬁ'. Thus to finish the proof,
it is enough to show that Mﬁ/ = PMppP~'.

Let A € M. Then A € MF' if and only if A99™(f') is symmetric. Note
that ¢p-1(007(f')) = (PO)(PO)'(f) = POIT(f)PT. Hence ADJ'(f’) is symmetric
if and only if ¢p-—1(PLAIIT(f)(P~H)T) = PAPAITf is symmetric, which is
equivalent to P~'AP € M¢. Thus Mﬁ/ = PMPP~'=MF, and we are done. [

Before we go on to theorem 3.18, we need two more lemmas.

Lemma 3.16: Suppose d > 2 and f € Rq. Let £ € My be idempotent. Then
Mf = EMyE. If EOf = 0f and rank E = dimy, Rq_1(f), then M}E = M;E and
M; = M}E@ker'yf.

Proof: EQOTf is symmetric since E € My. If A € My, then AG9'f is symmetric,
hence EAQIY(f)ET= EAEOJf is also symmetric. This proves EAE € M, and
therefore EAE € My Hence A — EAE defines a k-linear map My — MF. It is
clearly surjective. Indeed, if EAE € M{ C My, then EAE — E*AE* = EAE.
Thus ME = EM;E.

If BOf = Of, then EAJOTf — EOITAT(f) = 99TAT(f) = ADO™f, hence
FEAOQf = AJf because d > 2. Since Ry 1(f) = {v'z|v € im F} by lemma 3.12,
we have {0Df|D € R;_1} =im E. It follows that

EAOf = A0f < EAODf = AODfY D € Ry,
& BAFv = ABvYv € k" < EAE = AE.
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Similarly, AOf = 0 if and only if AE = 0. Hence the map M; — M{ above
is also given by A — AFE. This proves that M}E = M;E. Furthermore, the
kernel of this map is obviously {A € M;|AE = 0} = {A € M;|A0f = 0} =
ker v¢. Finally, the composition M}E c My — f is the identity, implying
Mf:MfE@kervf. 0

Lemma 3.17: Suppose d > 2 and f € Rq. Let E € My be idempotent and
g ="¢(E). Then MgE = Mf If d > 3, then even M,E = ME.

Proof: Since dg = EOf, we get A0dTg = AEJO'f. It follows that
M, = {A € Maty(r,r) | AE € M;}. (3.4)

Indeed, A € M, if and only if A997g is symmetric. But A997g = AEJOTf, and
AFEQOTf is symmetric if and only if AE € M;. This proves equation (3.4).

Let A € M,. Then AE € My, and therefore AE = (AE)E € MyE. Thus
MyE C MyE. This implies that M = EMyE C EMyE = M[. Conversely, let
A e EM;E C M;. Since AE = A, we have AE € My, and therefore A € M,
Hence A = EAE € EM,E. This proves that MgE = M}E

Assume d > 3, and let A € M. Since E € My and My is closed under
multiplication, it follows that AE € My, which implies A € M,. This shows that
My C M,. Thus MyE C M,E C M;E, and we are done. OJ

We are now in a position to prove a generalization of theorem 3.7. This time
we do not assume anng(f); = 0. More importantly, however, is that we are able
to show how My and the M, ’s are related. Recall that E acts as the identity on
Mg . Therefore {Ey, ..., E,} is a complete set of idempotents in M if and only
if Y | E; = F and E;E; =0 for all i # j.

THEOREM 3.18:
Let d > 2 and f € Ry. Choose a matrix I € My such that EOf = 0f and
rank £ = dimy, Ry—1(f). Let

Coid (Mf) = {{Ei};;l

O#EiEMf,ZEi:EandEiEj:0Vi7éj},
i=1

Reg(f) = {{91,..-,%}

f =91+ -+ g, is a regular splitting off}.
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The map {E;}!, — {g; = v7(E;)}!—, defines a bijection
Coid (M) — Reg(f).

Assume d > 3. Then M }E is a commutative k-algebra, and there exists a
unique maximal regular splitting of f. Let {Fi,...,E,} be a complete set of
orthogonal idempotents in My, and let g; = ~;(E;). Then

My = MyE; = MfE, foralli, and Mf=© M.

)

Proof: We know that every regular splitting happens inside S = k[Ry_1(f)]”? by
corollary 2.10. Using the isomorphism of proposition 3.15, the first statements
of the theorem are equivalent to the corresponding statements about M ]’c, and
Reg(f’), and follows from theorem 3.7.

Let d > 3. It follows from proposition 2.21 and lemma 3.16 that Mf is a
commutative k-algebra. (Or by the isomorphism with M?,.) The existence of the
unique maximal regular splitting of f then follows by proposition 3.2b.

It remains only to prove the last two statements. Let {Ej,...,E,} be a
complete set of orthogonal idempotents in Mf, and let g; = v¢(E;). Note that
{0Df|D € Rq—1} = im E by lemma 3.12, and recall that E is the identity in
Mg . Since dg; = E;0f, it follows that {0Dg;| D € Ry_1} = im(E;E) = im E;
and M[* = My, E;, cf. the proof of lemma 3.16. Moreover, My, E; = M;E;
by lemma 3.17, and M;E; = M;EE; = M{E; by lemma 3.16. It follows that
MPi = MyE; = MPE, for all i, and MF = @}, MPE, = &}, MP. O

Remark 3.19: Note that an idempotent F as in theorem 3.18 always exists.
Given f € Ry, let W = Ry 1(f), and choose W’ C R such that W W' = R;.
Let E' € Maty(r,r) be the idempotent determined by

imE={vek |vzeW} and kerE={veck |veecW},

cf. remark 3.11. Then EOf = Jf and rank F = dimy Rq_1(f) by lemma 3.12.
Moreover, EOf = 0f implies £ € M. Also note that this £ is not unique since
we have the choice of W' € R;.

Remark 3.20: One goal of this paper is to find out what the algebra M, can
tell us about f. Assume that anng(f); = 0. The idempotent E in theorem 3.18
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must then be the identity matrix 7, and therefore MfE = M. Then the first part
of theorem 3.18 reduces to theorem 3.7, and tells us that the idempotents in M;
determines the regular splittings of f, and how this happens.

Assume d > 3. The last two statements of theorem 3.18 have no counter
part in theorem 3.7. They say that if A € M, then A; = AE; € M} and
A=>5""A; Thus any “information” about f contained in M; is passed on as
“information” about g; contained in M f For example, My contains a nilpotent
matrix if and only if (at least) one of the M[i contains a nilpotent matrix.

In other words, in order to figure out what M, can tell us about f, it should be
enough to find out what Mf can tell us about g; for all i. (Proposition 3.24 can
be used for similar purposes.) Hence we may assume that M, does not contain
any non-trivial idempotents. If & contains every eigenvalue of each A € My, then
this implies that My = (I) & M} by proposition 3.5. And if k = k, then it is
always so, hence modulo theorem 3.18 it is enough to study all f € R, such that
M= ()& M}lﬂ. It is this situation we study in chapter 4.

Theorem 3.18 is formulated using a non-unique idempotent £. We will now
give an intrinsic reformulation of that theorem when d > 3. For that purpose, we

define the following k-algebra.

Definition 3.21: Assume d > 3 and f € Ry. Define Gy = (M), and let
* Gf X Gf — Gf
be the map induced by multiplication in M.

Of course, we could define Gy also for smaller d, but then we would not get
an induced multiplication. The induced map is clearly the following. For any
g,h € Gy, we may choose A, B € My such that ¢ = v¢(A4) and h = 4(B),
and define g x h = v;(AB). We can prove that this is well defined, and that
% is a bilinear, associative and commutative multiplication on Gy, like we do in
proposition 5.8. But here we choose a different approach.

The idempotent £ € My in theorem 3.18 satisfies EOf = 0f and rank E =
dimy, Rq—1(f). Hence My = M}E @ ker ¢ by lemma 3.16. Therefore,

Gy =7p(My) = yp(MF) = MF.
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The map * is clearly induced by the multiplication in M ]‘? , proving that x is well
defined and giving G the structure of a commutative k-algebra. Note that x is
independent of F, by its definition 3.21.

Note that f is the identity element of (G, *) since f = v(I). We have the

following immediate consequence of theorem 3.18.

Corollary 3.22: Let d > 3 and f € Ry. Then f =" | g; is a regular splitting
of f if and only if {¢, ..., g,} is a complete set of orthogonal idempotents in Gy.
In particular, there is a unique maximal regular splitting. If f =" | g; is any

regular splitting, then Gy, = G % g; for all i, and Gy = ®j_, G,.

Example 3.23: Let r =d =3 and f = 2,28 + 2928 + 2§). Then

of = | v129 + Ig?) and  90'f = | a5 a1 T3
Tox3 + T8 0 x3 X9+ a3

It follows that annR(f)1 =0 and annR(f)2 = (8%, 8183, 8132 -+ 8283 — 8%) Thus

I % O % C anng f.
0 83 81 + 63

It follows that

A:

_ o O
o o o

0
1| e M.
1

We note that det(A\[—A) = A?(A—1). Since A has both 0 and 1 as eigenvalues, A is
neither invertible nor nilpotent. Hence there must exists a non-trivial idempotent

in M;! Indeed, we know that
0 00
A2=11 0 1| €My,
1 0 1

and we see that A% = A2, Thus F = A? is such an idempotent.
So far we have shown that M; D k[A] = (I, A, A%). To prove equality, we show

that anng f has exactly two generators of degree 3. Since R/ anng f is Gorenstein
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of codimension 3, the structure theorem of Buchsbaum-Eisenbud [BE77| applies.
Because we already know that anng f has three generators of degree 2 and at least
two generators of degree 3, it follows easily that it cannot have more generators.

Hence

anng [ = (02,0105, 010 + 0y05 — 02,03, 9205),

which are the five Pfaflians of

0 0 o Oy O
0 0 0 03 O+ 0s
—0, 0 0 0 A3

—0y —05 0 0 0
—03 —0,—03 —02 0 0

Thus M; = (I, A, A%), and E = A? is an idempotent of rank 1. We note that
My -E=(E) and M;-(I-FE)=(I—-E,A- A%.

Since A — A? obviously is nilpotent, M; cannot contain another idempotent (in
addition to I, F and I — E). Let g be the additive component of f satisfying
0g = EOf. Since

000 rP) 0
EBof=|(1 0 1| |2z +2@ | = | (22 +25)?@ |,
1 0 1) \aoxs+ 2 (22 + 33)?

it follows that
g = (x93 + 23)® € k[zg + x5]PF.

The other additive component is therefore

h=f—g=(z1—a3)zl? — 2l € k[, — w3, 25]"".
This verifies that f = g + h is a regular splitting of f, as promised by theorem
3.7. Furthermore, M¥ = M;E and M}~" = M;(I — E). Since M/~" contains a
nilpotent matrix, we will in chapter 4 see that h has a degenerate splitting.

We also see that G = (f, g,25)) = ((z1 — 23)2P, 2§, (22 + 23)®). And we
note that f ~ z28?) + 28 + 23, and f ~ z1282 + 2§ as long as char k # 3.
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In remark 2.37 we claimed that results concerning My often corresponds to
results about I(M). In this section we have seen how idempotents in M, are
related to regular splittings of f. We end this section with a result showing how
I(M) and X (M) “splits” if M contains a complete set of orthogonal idempotents.
Recall that

I(M)=) 5L(©AJ) and X(M)={feR|angf2I(M)}.

AeM

Proposition 3.24: Let M C Matg(r,r) be a commutative subalgebra contain-
ing the identity matrix I. Let {Ey,...,E,} be a complete set of orthogonal
idempotents in M. For every i, let M; = ME;, V; = {v'0|v € imE]} C Ry,
S; = k[Vi] and S; = k[{v'x |v € im E;}|PT = S¥. Define Is,(M) = S;NI1(M) and
Xs,(M) = SN X(M). Then

(a) [R(M) = (Zz<]RVZV3) EB( ?:1 [Si(Mi))i
(b) (R/Ir(M))q = @, (S:i/Is,(M;))a for all d > 0, and
(C) XR(M)d = ?:1 X81<Mz)d for all d > 0.

Proof: Note that Ry = @', V; by proposition 3.5d. This implies

- (S s o)
i<j -
for all d > 1. Since V% = (S;)4, the degree d part of S;, we get
(R/ ; RV;V})d - i6=91<si)d

for all d > 0. Thus (b) follows immediately from (a).
Since M = @}, M; (proposition 3.5¢), it follows by definition that

Ip(M) =I(M) =) I,(d A9) = Zn: > L(0 A0). (3.5)

AeM =1 AeM;

Fix i, and let A € M;. Putting (A, B) = (A, E;) into equation (2.2) proves that

1,(0 AD) C I,(0 E;0) + L(E:0 A)),
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and putting (A, B) = (E;, A) gives
LI, (E;0 AD) C I(0 A0).
Since E; € M;, this shows that
D L(0A)) = L(OED) + Y L(E;d A)). (3.6)
AeM; AeM;
Note that (E;0); € V; and ((I — E;)9)x € >_,;; V; for all k. Hence the minors

of (0 E;0) satisfy

Ok (E;0)

5 (ED) €y ViV, (3.7)

J#i

(I - Ez’)a)z 0)1

For all w,v € k" and j # i we have (cf. equation (2.1))

T

Z (E]Tu)kvl

k=1

Ok (E;0)y
0 (E;0)

uTEj8 uTEjElﬁ

= (u'E;0) - (v'E;0
T WTED (u'E;0) - ( )

because E;F; = 0. Since {v'E;0|v € k"} =V, this means that [,(0 F;0) contains
every product V;Vj, j # i. Hence (0 E;0) = >, RV;V; for all i by equation
(3.7). Therefore,

anfg(a Ed) =Y RV (3.8)

i<j
Combining equations (3.5), (3.6) and (3.8), we have proven so far that
=Y RVV;+> Y L(Ed A)).
i<j i=1 AeM;
If A€ M;, then AQ = AE;0, and therefore I(E;0 Ad), C V2 C S;. Hence
(Z va) ( > L(ED Aa)gsi), (3.9)
1<j AEM
a direct sum of graded k-vector spaces. What we have proven also shows that

I(M;) = ) I,(0 A9) = (ZRVV) (Z L(E;d Aa)25i> (3.10)

AeM; JF#i AeM;
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for all 7. It follows that

Is,(M;) = S;NI(M;) = S;nI(M) = Y L(E;d AD),S;. (3.11)
AeM;
With equation (3.9) this proves (a).
To prove (c), note for any i and f € S; that annp f = (3_,, V;) @ anng, f. It
follows from equations (3.9), (3.10) and (3.11) that
Xs.

3

(M;) = {f € S| annp f 2D I(M;)}
= {f € 8| anng, f 2 Is, (M)} = Xs,(M) C X(M).

Since S;NS; =k for i # j, it follows that &, X, (M;)q C X (M), for all d > 0.
To prove equality it is enough to show that their dimensions are equal. And this
follows from (b), since Xs,(M;)g = {f € (Si)a|Df = 0V D € Ig,(M;)q} (by
lemma 2.36d) implies dimy Xs, (M;)q = dimy (S;/Is, (M;)) - O

Remark 3.25: We can give a direct proof of the other inclusion in part (c).
By definition, f € X (M) if and only if M C M;. Let f € X(M)4. Since
{E;} C M C My, there exists g; € S; such that f =>""  g; is a regular splitting
by theorem 3.7 (d = 1 is trivial). Let D € Ig,(M;). Then D(g;) =0 for all j # ¢
since D € (V;), and D(f) = 0 since D € I(M). Hence D(g;) = 0. This proves
that Is,(M;) C anng, g;, i.e. g; € Xs,(M;)q for all 4.

3.3 Minimal resolutions

Now that we know how to find all regular splittings of a form f € Ry, we turn
to consequences for the graded Artinian Gorenstein quotient R/anng f. In this
section we obtain a minimal free resolution of R/anng f when f splits regularly.
This allows us to compute the (shifted) graded Betti numbers of R/anng f.

Fix n > 1, and let Wy, ..., W, C R, satisty Ry = &' W;. For all i define
St = k[W;]PP. Note that Ry = @, W; implies R = S ®}, - - - @, S". For each
i, let Vi = (32, Wi)" € Ry and S" = k[Vi]=(S°)*. Then R, = @}, Vi, and
therefore R = S' ®y, - - - ®; S™.
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Remark 3.26: Let s; = dim; W; = dim; V;, and note that ), s, = r. Let

D sk < gz.sk}.

k<i k<i

a-{rez

for all i. There is a base change (that is, a homogeneous change of variables) of
R such that &' = k[{z;|j € Ji}]PT for all i (cf. remark 2.6). This implies for
all ¢ that S* = k[{0) | j € J;}]. Note that the subspaces {W;}"_,, or equivalently
{Vi}i_,, determine and is determined by a unique set of orthogonal idempotents
{E;}, C Maty(r,r), cf. remark 3.11. Thus the “rectifying” base change above
corresponds to a simultaneous diagonalization of {E;}/_, as in remark 3.6. We
will not assume that this base change has been made when we state and prove

our results, but some claims may be easier to understand with this in mind.

Let f = Y7, ¢; be a regular splitting with g; € S%, ¢; # 0, d > 0. The
following result is fundamental to this section, comparing the ideals anng(f),

anng(g;) and anng:(g;).

Lemma 3.27: With the notation above, the following statements are trie.

(a) For every i we have anng:i(g;) = S'Nanng(g;) and

(i) anng(g;) = (Z#i S{) @ anngi(g;) as graded k-vector spaces,
(ii) anng(g;) = (E#i S{) + Ranngi(g;) as ideals in R, and
(iii) R/ anng(g;) = S*/ anng:i(g;).

(b) There exist nonzero D; € S%, i =1,...,n, such that
anng(f) = n anng(g;) + (D2 — Dy, ..., Dy, — Dy).

(c) We may express N}, anng(g;) as a direct sum of graded k-vector spaces;
n anng(g;) = (Z RS{S{) @ (i@l anngs (gz)) :
1<J
(d) or as a sum of ideals in R;

n

n N i g (a
n anng(g;) ZRSlsl + ZRannS (g:)-

i<j i=1
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(e) The Hilbert function H of R/ anng(f) satisfies

H(R/anng(f)) =Y H(S'/anngi(g;)) — (n — 1) (8o + 6a),

i=1

where J, is 1 in degree e and zero elsewhere.

Proof: By definition, anngi(g;) = {D € S"|D(g;) = 0}, which clearly equals
S*Manng(g;). By construction, D(g;) = 0 for all D € S, j # i. Hence
(Z#i S{) C anng(g;). Since R/(Z#i S{) = 5" we get

anng(g;) = (Z S{) @ anng:i(g;)
JF
as graded k-vector subspaces of R. The rest of (a) follows immediately.

Consider the regular splitting f =" | g;. By lemma 2.9 we have
anng(f). = ‘61 anng(g;)e for all e < d.

Thus the ideals anng(f) and N}, anng(g;) are equal in every degree e # d. In
degree d the right-hand side has codimension n (since the g; are linearly inde-
pendent), hence anng(f) must have n — 1 extra generators of degree d. If we
choose D; € S% such that Di(g1) = -+ = D,(g,) # 0, then clearly

anng(f) = iri anng(g;) + (Ds — Dy, ..., D, — D).

By (a) we have 3.._. RSiS] C anng(g) for all k. Note that

i<j
R, = (Z Re_gsisg) ® (i@l S;‘) for all e > 0.
1<)
Because (N7, anng(g;)) NS? = anng; (g;), this implies both (¢) and (d). Combin-

ing (b) and (c), it follows that (R/anng f). = & ,(S"/ anng: g;). for all e # 0, d,
proving (e). O

Most of the time in this section we will assume n = 2. This makes it easier to
state and prove our results. Let S = S' and 7 = §2. (Of course, we may think
of T as T = 82 ®y, - - - @, 8", reaching n > 2 by induction.) Similarly, let S = S*
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and T =S5% ands=s,andt=sy=7r—5. Hence R=8S®,7 and R=S®;,T.
We will often compare ideals of R, S and T, and some words are in order.
Given a homogeneous ideal I C 9, the inclusion S C R makes [ into a graded
k-vector subspace of R. If J C T is another homogeneous ideal, then I.J is the
k-vector subspace of R spanned by all products ij with ¢ € I and 5 € J. Since I.J
automatically is closed under multiplication from R, it is equal to the ideal in R
generated by all products 5. In particular, I'T is simply the ideal in R generated

by I. There are many ways to think of and write this ideal, including
(=R - I=10sR=1®5(S®,T)=1®,T =1IT.

Similarly, IT-SJ = (I ®s R)@r (R@r J) =1®y J =1J = (IJ). We have used
here a property of tensor products often called base change, cf. [Eis95, proposition
A2.1]. Note that ITNSJ =1IT-SJ = 1J. It follows that

LN Ddy = (I N L) (Ji N Js) (3.12)

for all homogeneous ideals Iy, I C S and Jy, Jo CT.

Fix d > 1, and let ¢ € S; and h € 7;. We want to point out what lemma
3.27 says in this simpler situation. Note that the ideal anng(g) in S generates
the ideal T'anng(g) in R. Let

mg=(S1)CS and mp=(Ty)CT

be the maximal homogeneous ideals in S and T', respectively. Since T'=my @ k,
we get R = Smp @ S. Lemma 3.27 tells us that anng(g) = Smy @ anng(g) and

anng(g) = Smy + T anng(g). Furthermore,
anng(g) Nanng(h) = mgmy + T anng(g) + S anny(h) (3.13)
as ideals in R, and there exist D € S; and F € T} such that
anng(f) = anng(g) Nanng(h) + (D — E). (3.14)

We will use these equations to calculate the minimal resolution of R/anng(f).

They involve products of ideals, and we start with the following lemma.
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Lemma 3.28: Given homogeneous ideals I C S and J C T, let F and G be
their resolutions
F:0-F2 2 FR2 150,

Q:O—>Gt£t—>...w—2>G1£>J—>0,

where the F;’s are free S-modules and the G;’s are free T-modules. Then the

tensor complex
F@rG:0— Hyyy =5 2 H 5 1T—0
is exact, hence a free resolution of I.J in R = S ®; T, and minimal if both F and

G are minimal.

The definition of the tensor complex can be found in [Eis95, section 17.3]. Tts
construction gives H; = 59;;1 F; @i Giy1-j for all ¢ > 1. Note that this is a free
R-module. The maps n; : H; — H;_; for ¢ > 1 are given by

FieyG © BEerGiag @ - @ Fioi®rGy © F,®,Gy
idpy ®¢i\\ %Q(X)idcifl (=D%idp,_, ®A /i®idG1
F1®kGi71 ) ¥ Fi—1®kG1

that is, n; = 69;;11 (g0j+1 ®idg,_, —(=1)/ dp, ® ¢ifj+1); and 71 = @1 @ Py.

Proof of lemma 3.28: The complex is exact since we get it by tensoring over k,
and [ and J are free over k, hence flat. It is trivially minimal when F and G are

minimal by looking at the maps 7;. O

Note that F ®g R = F ®; T is a resolution of [ ®¢ R = IT, the ideal
in R generated by I. Similarly, R ®r G is a resolution of SJ. Furthermore,
(F ®@s R)®r (RerG) =F @ G.

Example 3.29: Let

M:0—->My,— - — M; — mg—0,
N:0—=N,—----—=N —mp—0
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be the Koszul resolutions of mg C S and mp C T, respectively. We know that
M, = (})S(—k) and Ny, = (;)T(—k) for all k. If we apply lemma 3.28 to I = mg

and J = mp, we get a graded minimal free resolution
MN =M, N:0— MNyy 1 — -+ — MN;, — mgmp — 0

of mgmr C R =S ®,T. Here MN, = ®F_, M; @ Nj1_; for all k > 0. Hence
M Ny, = v, R(—k — 1) where

”’“:i@ (k+i—¢> N (Zi) - (kil) - (k:il)

This agrees with the Eagon-Northcott resolution of

o ... 0 0 ... 0
P i
0 e O 35_|_1 e as+t
We chose to write lemma 3.28 in terms of ideals I C S and J C T because
this is how we will use it most of the time. Of course, the result is true more
generally. Indeed, if F and G are resolutions of an S-module M and a T-module

N, respectively, then the tensor complex F ®; G is a resolution of M ®; N, with

the same proof. We will use this is in the next lemma.

Lemma 3.30: Let I C S be a homogeneous ideal, and let I' = Smp + IT C
R. Denote the shifted graded Betti numbers of S/I and R/I' by (. and BL

i ij
respectively. Then for all j,k > 0, we have

k

AI/ t AI

5kj:§ (k—i i
i=0

Proof: The proof rests upon the following observation. If / C S and J C T are
ideals, then S/I ®, T/J=R/(IT + SJ). Indeed,

S/T@pT)J =S/I®s(S@pT/)J)=S/I @ R/SJ
= (/I ®s R)®r R/SJT = R/IT ®x R/SJ = R/(IT + S.J).

It follows that we may compute a resolution of R/(IT'+S.J) as the tensor complex
of the resolutions of S/I and T'/J. We do this with J = my.
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Let F and A be the graded minimal free resolutions of S/I and T/mr, re-
spectively, cf. example 3.29. That is,

F:0—-F,—--—F —F,—S/1—0,
N:0—->N,— -+ — N — Ny —T/mp — 0,
with F = @50 35 S(—i — j) and N; = (1) T (i) for all i > 0,
The tensor complex F ®; N gives a graded minimal free resolution
H:0— Hgyy — -+ — Hy — Hy

of R/(Smp + IT) = R/I', where for all £ > 0 we have

k k t R '
Hy= & F @ Ni-i= @ @ (k_i>5{jR(—k—J).

i=0 >0

The result follows by reading off the Betti numbers from this equation. 0

Since anng(g) = Smp + T anng(g), we may use this lemma to compare the
(shifted) graded Betti numbers of R/anngg and S/anngg. In the next two

results we use the short exact sequence
O—-INJ—I1I&J—1+J—0
and the mapping cone construction (cf. [Eis95, appendix A3.12|) several times.

Proposition 3.31: Let I C S and J C T be homogeneous ideals, and let mg
and mp be the maximal homogeneous ideals in S and T, respectively. Assume

that I, = J, = 0. Let F and G be graded minimal free resolutions
F:0-F2 2 FR2 150,
G: 0GB Iso

Denote the shifted graded Betti numbers of S/I and T/.J by L and (7. Then

ij U
mgmp + IT +SJ C R= S5 ®; T has a graded minimal free resolution

H:0—-H,—---—H —-mgmp+IT+S5J —0

where r = s+t and

et (o () (2 1))

for all k > 0. Here vy = (k+1) (k+1) - <ki1)



60 3 REGULAR SPLITTINGS

Proof: Remember, by definition of the shifted graded Betti numbers, we have
F-: A.I. —7 — 1 . = A'.].T—'—>
1 jEZBO 1] S( l j) and GZ jEZBO 1] ( t .7)

for every i. We will construct the minimal resolution in two similar steps.
Step 1. Note that ITNmgmy = (INmg)(T'Nmy) = Imyp by equation (3.12).

This gives us a short exact sequence
0— Imp — IT®mgmy — mgmp + [T — 0. (3.15)

Let M and N be the Koszul resolutions of mg C S and my C T, respectively,

as in example 3.29. By lemma 3.28 we have four minimal resolutions;
F=F&pT:0-F 2 2 F 25T -0,
G =S®,G:0-G Y. G eT—o,
Fl=Fou N 0— F', S5 2 Sy 0,
G =M®G:0— G, SN 2GS mg — 0.
The free modules in the first resolution are F] = F; ®;, T = ®;>¢ BZIJR(—@ -7,
and we identify the map ¢; ®idr with ¢, since they are given by the same matrix.

Similarly, for the second resolution, we have G} = S ®; G; = B;>0 ﬁA;gR(—z — 7).

The modules in the third and fourth resolution satisfy

k
F' = @l F; @1 Ny

SN |
= [ —k—
ﬂﬁo( 2 k—z’) ) R=k=1)

1=

and similarly, G}_, = ®;>0 (Zf;ll (,.>.) A;g) R(—k — 7).
By tensoring the exact sequence 0 — mp — T — T'/mp — 0 with I, we get a

short exact sequence
0—Imp—IT — 1 ®;T/mp — 0.

We need to lift the inclusion Imy C IT to a map of complexes F” — F’. This
is easily achieved by defining the map F" — F] = F; ®; T to be idp, ®, on the
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summand F; ®; Ny, and zero on all other direct summands of F!'. The mapping
cone construction now gives a resolution --- — Fy® F) — & F] — F| of
I ®; T/m¢ that actually equals the tensor complex associated to I ®j T'/mp
(similar to lemma 3.28). It is obviously minimal by looking at the maps.

Next we lift the inclusion Imy € mgmy to a map of complexes F” — MN.
By looking at the degrees of these maps, we see that they must be minimal when
I; =0, that is, when [ has no linear generators. Indeed, one such lift is

= é1 T ®id : éle Qk Nit1-j — ,él Mj @k Nit1-j,
J= J= J=

where 7 is a lift of I C mg to a map of complexes F — M.
Thus we can lift the map Imy — IT @ mgmy, 2z — (z,—z), in the exact
sequence (3.15) to a map (id ®,) &(—7) of complexes F' — F' & MN. The

mapping cone construction now gives a minimal free resolution

H :0— H

!
spt — o —

of mgmyp + IT, where

k
/ 13 A1 .
Hy=MNy@oFeh_ =y R(-k-1)& (ﬁ; E (k, N Z) L R(—k — 3)>

=1

for all K > 1. This concludes the first step.
Step 2. We notice that mgmy + IT C mgT', and therefore
mgJ C (mgmy + IT)NSJT CmgT'NSJ = mgl.
Hence (mgmy + IT)NSJ = mgJ, and we have a short exact sequence
0— mgJ — (mgmp + IT)® ST — mgmp + [T+ SJ — 0. (3.16)

We now proceed as in the first step, getting a lift of the inclusion mgJ C S.J
to a map of complexes G” — G’. To lift the inclusion mgJ C mgmy + 11 to a
map of complexes G’ — H', we take the lift of mgJ C mgmy to G” — MN, as
in step one, and extend it by zero, since H;, = M N, @ F] & F}' | for all k > 1.

And then the mapping cone construction produces a free resolution

H:0—-H,—--—H —-mgmpr+IT+S5J — 0,
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which is minimal since all maps are minimal. Here Hy, = H, & G}, & G}_, is for

all £ > 0 equal to

Hy=w R(—k—1)& (ﬁ%g <(kt_i)6}2+ (ks_z)ﬁi) R(—k—j)) . O

Remark 3.32: Because anng(g) Nanng(h) = mgmp+71 anng(g)+S anng(h), we
will use proposition 3.31 with / = anng(g) and J = anny(h) when we calculate
the resolution of anng(f) = anng(g) Nanng(h) + (D — E). There is another way

to find the resolution of anng(g) Nanng(h), using the sequence
0 — anng(g) Nanng(h) — anng(g) ® anng(h) — mr — 0.

This is a short exact sequence, and we know the minimal resolutions of the
middle and right-hand side modules. Since the quotients are Artinian, these
resolutions all have the “right” length. Hence we may dualize the sequence, use
the mapping cone to construct a resolution of Ext}; ' (anng(g) Nanng(h), R), and
dualize back. Compared to the proof of proposition 3.31, this is done in one step,
but the resulting resolution is not minimal. Thus more work is needed to find

the cancelations, and in the end the result is obviously the same.

We are now ready to find the minimal resolution of R/ anng f. Note that we

here use the convention that (Z) =0forall b<0andallb>a.

THEOREM 3.33:
Let g € S; and h € 1; for some d > 2. Let f = g+ h € Ry, and assume that
anng(g); = annr(h); = 0. Let F and G be graded minimal free resolutions of

anng g € S and annp h C T,

F:0-F 2 .2 F 25 anngg — 0,

G 0—G 2 2 e Y ammph — 0.

Denote the shifted graded Betti numbers of S/ anng g and T'/ anny h by Bf’; and
Alhj, respectively. That is,

d A ~
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for every ©. Then anng f C R =5 ®; T has a graded minimal free resolution
H:0—-H,—---— H —anngp f —0
with H, = R(—r — d) and
Hy=v,R(—k—1)®v,_ R(—d — k+1)
i1 (2 (r— s\ - iy AN
()85 (o)

forall0 <k <r. Herer =s+t and v, = (kil) - (kil) - (k-tu)

Proof: Since anng gNanng h = mgmy + T anng g + S anng h by equation (3.13)
(or lemma 3.27d), we may apply proposition 3.31. This gives us a graded minimal

free resolution
H :0— H. — .-+ — H; — annggNanngh — 0

with

H, = R(—k—1)® (jéo ikl ((k t_ Z.)ij + (k 3 Z) ’;) R(—k —j)).

By lemma 3.27b, we may choose D € S; and E € T, such that
anng f = (anng g Nanng h) + (D — E).
Since (anng gNanng h) N(D — E) = (D — E)mg, we have a short exact sequence
0— (D—E)mr — (annggNanng h) (D — F) — anng f — 0. (3.17)

Evidently, (D — E)mpg has a Koszul type resolution with k" free module M, =

(7) R(—d — k). Thus by the mapping cone construction we have a resolution
H':0—H 4 — - — H

of anng f, with

r

kE—1

. (j OZ'“; <(kt_i>ﬁgj+ (kiz) *;) R(—k—j)).

(]

H! = M,_, @ H, = ( )R(—d—k+1)€9ukR(—k—1)

(3.18)

P
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Since R/anng f is Gorenstein, its minimal resolution is self-dual. We now
use this to find terms in H” that must be canceled. When we dualize H” (using

MY = Hompg(M, R)), we get a resolution whose k' term is

(H;,/_k)v Rk k(—d — 7“) = Vr_L R(—d —k + 1) S5 (k) :_ 1) R(-/{Z — 1)

(o B )

1=k—

(3.19)

Here we have used Bsgfi’dﬁ. = Bf] and Bthfi’dfj = BZ, which follow from the sym-
metry of the resolutions F and G.

Since anng(g); = 0, we know that 4%, = 3%, = 1, but otherwise the “rim” of
the Betti diagram is zero, i.e. 3}, =0fori =0, j #0, for j =0, #0, fori = s,
j # d, and for j = d, i # s. Similar statements hold for BZ Putting this into
equations (3.18) and (3.19), we see that the first has no terms with twist (—k),

whereas the second has [(;) + (})]R(—k). Thus we see that at least a summand

p=105) + () R(=d = k)

must be canceled from every H;. By looking at the expression for Hj, we see
that its summand with twist equal to (—d — k), is exactly p.

By the construction, the only part of the map H,,, — H}  that can possibly
be non-minimal, is the map from the direct summand M, = (;)R(—d — k) of
Hj' | to the summand p of H}/. By the previous paragraph, all of p must cancel.
But p is mapped into H; , by a map that we know is minimal, hence it must
cancel against M. When we have done so for all &k, every resulting map is
minimal. So we are left with a graded free resolution that must be minimal.
Since (,:) — (kfs) — (kit) = V,_j_1, we see that this resolution is H : 0 — H, —

- — Hy — anng f — 0 with H, = R(—d — r) and

i1 (2 (r—s ~a — [r—t ~h .
¥ (J,Gjl(i:1 (k_i>ﬁij +; (k_i)ﬁij)R<_k_J)>

forall 0 < k < r. O
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Remark 3.34: If we compare theorem 3.33 in the case (s,t) = (3,1) with the
resolution obtained by Iarrobino and Srinivasan in [IS, theorem 3.9], we see that

they agree. Our methods are, however, very different.
As a consequence we can compute the graded Betti numbers of R/ anng f.

THEOREM 3.35:
Letd>2and f,q1,...,9, € Rq. Suppose f = g1 + ---+ g, is a regular splitting
of f. Let s; = dimy, Ry_1(g;) for every i. Let s =Y " | s;, and define

T r—s " (1 — s
= (n—1 - .
Vak = (1 )(k+1)+(k+1) ;(k+1)
Denote by BA,{] and Bk] the shifted graded Betti numbers of R/anng(f) and
R/ anng(g;), respectively. Then

B’chj = ZB;Z; + Vn’ﬂ(;lj + Vn,r—kéd—l,j (320)
=1

for all 0 < j < d and all k € Z. Here the symbol d;; is defined by 0;; = 1 for all 1,
and 6;; = 0 for all i # j.

Proof: Since ng = Uy, = 0 for all £ > r and all £ < 0, it is enough to prove
(3.20) for 0 < k < 7. Let S = k[Ry_1(f)]PF and S; = k[R4_1(9:)]"F. Recall
that f € S and g; € S;. It follows from the definition of a regular splitting that
Ry 1(f) = @ Ra—1(g:), and therefore S = §; ®; -+ @ S, € R, cf. remark
2.11. In particular, s =Y " | s; = dimy Rq_1(f) <.

Choose V' C Ry such that Ry = Ry 1(f)* @V, and let S = k[V]. Then
S =8*, cf. remark 3.10. Denote the shifted graded Betti numbers of S/ anng(f)
by B,fj/f It follows from lemma 3.30 that

s—1
A =5\ 3 r—3s r—s
ﬁgj:2<k_i)@§/f+( . >5Oj+(k_s)5dj (3.21)

i=1
for all j,k > 0. Note that anng(f); =

For every i let V; = (3., Ra-1(g;))" NV C Ry and S; = k[Vi]. Then V =
@I Vi, and therefore S = S; ®; --- ®; S, € R. Furthermore, S; =S/ for all 7,
and anng(f); = @, anng,(g;)1 by lemma 3.27. Thus anng(f); = 0 is equivalent

to anng,(g;)1 = 0 for all 4.
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Denote the shifted graded Betti numbers of .S;/ anng;, (g;) by ﬁkl/gl If we apply
equation (3.21) to g;, we get

s;i—1
A i r—= S i
=1

for all £ > 0 and all 0 < 5 < d. To prove the theorem we first show that

S/f Z Z < ) Gy + VnkO1j + Vn,s—k0d—1,;- (3.23)

=1 [=1

forall 0 < j<dand 0 < k <.

Note that 14, = 0 for all k, since n = 1 implies s = s;. Thus equation (3.23)
is trivially fulfilled for n = 1. We proceed by induction on n.

Assume (3.23) holds for h =¢g;+---+¢g,_1. Let T = S; ®p, - - - @ Sp_1, which
is a polynomial ring in t = Z?:_ll s; variables. Since f = h + g, and annp(h); =
anng, (gn)1 = 0, we may use theorem 3.33 to find the minimal resolution of

S/ anng f. We see that its graded Betti numbers are given by
t—1 s sp—1
BS/f Z (k ) T/h Z ( )6l]n/gn + VQk(Slj + V2,sfk6d71,j
c=1
forall 0 < k < s and 0 < j < d. Since by induction

n—1s;—1

t—s;
T/h Z Z < > S /o + Vn—l,célj + Vn—l,t—céd—l,jy

=1 [=1

the proof of equation (3.23) reduces to the following three binomial identities.
/st t—s; 5 — 5
@ (k;—c) (c—l> N (k—l)
s—t
(k: B c> Vn—1,e 1+ Vok = Vnk

s—t
(3) (k B C) Up—it—ec T V25— k = Uns—k

1

—

T
—_ =

—~
(N
~—

+ O
[l
— =

C

They all follow from the well known formula ., (‘;‘) (k:) = (azb).
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The first follows immediately since we may extend the summation to ¢ € Z

because 1 <[ < s;. In the second we note that

e =0-2( 1)+ (1) —Z (23)

Note that v,,_1 . = 0 for all ¢ > ¢ and all ¢ <0, even ¢ = —1 since (8) = 1. Hence

we can extend the summation in equation (2) to all ¢ € Z, implying

i (Z:D”n—lﬁ: (n_Z)(kil) i (l:i) _HZ_I(Z;O

c=1

S N 0 s—t s — S,
Vop, = — —
o \k+1 k+1 k41 k+1)
equation (2) follows easily. Finally, the third equation equals the second by letting

(¢, k) — (t — ¢, s — k), finishing the proof of equation (3.23).
The theorem now follows by combining equations (3.21), (3.22) and (3.23).

Since

Also here the proof reduces to three binomial identities, and their proofs are

similar to equation (1) above. O

Remark 3.36: We may express ﬁA,f] in terms of Bl‘ji/gi, the shifted graded Betti

numbers of S,/ anng,(g;). From the proof of theorem 3.35, we see that

n s;—1
A r—35; ASi/gi
5@;‘ - Z Z <k: — l>5lj "+ Vpk1j + Vi —k0a-1,5-

i=1 [=1

Remark 3.37: For any f € R; we may arrange the shifted graded Betti numbers
3i; of R/ anng f into the following (d 4 1) x (r + 1) box.

1 Bvg oo B O
0 Br1a-1 --- Big—1 O
0 Br—l,l . Pu 0
0 Broio oo B 1

We call this the Betti diagram of R/anng f. The Betti numbers are all zero
outside this box, i.e. Bij =0 for s <0, for j <0, for ¢ > r, and for 5 > d. Thus
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the socle degree d is equal to the Castelnuovo-Mumford regularity of R/ anng f.
In addition, Bij will always be zero for ¢ = 0, j > 0 and for ¢ = r, j < d, and
Boo = Brd = 1, as indicated.

The values of Bij when j = 0 or j = d are easily determined by equation
(3.21). Since anng(f); = 0, it follows that

BiOZ (T_.S) and Bz‘dz (7?_5)
/) 71— 8

for all 4. In particular, if anng(f); = 0, then they are all zero (except Boo = Bra =
1).

The “inner” rectangle of the Betti diagram, that is, Bij with 0 < 7 < r and
0 < j < d, is determined by theorem 3.35. We note that it is simply the sum of
the “inner” rectangles of the Betti diagrams of R/anng(g;), except an addition

to the rows with j =1 and j =d — 1.

3.4 The parameter space

The closed points of the quasi-affine scheme Gor(r, H) parameterize every f € Ry
such that the Hilbert function of R/anng f equals H. We will in this section
define some “splitting subfamilies” of Gor(r, H), and discuss some of their prop-
erties. We assume here that k is an algebraically closed field. We start by defining
Gor(r, H), cf. [TK99, definition 1.10].

Let

A= {a =(o1,...,a.) €EZ" | a; > 0 for all 7 and Zai :d}, (3.24)

=1

and note that |A| = ("J”;*l) = dimy, Ry4. We consider A = k[{z, | @ € A}], which
is a polynomial ring in |A| variables, to be the coordinate ring of A(R4). We
think of
F = Zzax(a) e AR, Ry
acA
as the generic element of Ry. The action of R on R extend by A-linearity to an
action on A ®; R. In particular, if D € Ry, then D(F) =Y _, z,D(z®) is an

element of A;.
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For any 0 < e < d, fix bases D = {Dy,..., Dy} and € = {E,..., Ey} for
Rq_. and R,, respectively. Let D = [Dy,...,Dy]Tand E = [E),..., Ey]T, and
define Catz = DET. Tt is customary to require that D and £ are the standard
bases {0} ordered lexicographically, and to call Cat? the “catalecticant” matrix
of this size. Note that the (i, 7)™ entry of Cat®(F) is

(Cati(F)),, = DiE;(F) = ) zaDi5;(2')) € Ay
acA

If f € Ry, then Cat?(f) is a matrix representation of the map R, — Rg_.
given by D +— D(f). Hence

dimy(R/ ann f). = rank Cat?(f) = dimy(R/ann f)4_.
by lemma 1.2. Therefore the k x k minors of Cat?(F) cut out the subset
{f € Rq| dimy(R/ann f). <k} C A(Rq).

Definition 3.38: Let H = (hg,...,hy) be a symmetric sequence of positive
integers (i.e. hg_; = h; for all i) such that hy = 1 and h; < r. We define
Gor<(r, H) to be the affine subscheme of A(R,) defined by the ideal

d—1

IH = ZIhE+1 (Catg(F))

e=1
We let Gor(r, H) be the open subscheme of Gor<(r, H) where some h, X h,
minor is nonzero for each e. We denote by Gor(r, H) the corresponding reduced
scheme, which is then the quasi-affine algebraic set parameterizing all f € Ry
such that H(R/ann f) = H. Furthermore, let PGor(r, H) and PGor(r, H) be
the projectivizations of Gor(r, H) and Gor(r, H), respectively. By virtue of the
Macaulay duality (cf. lemma 1.3), PGor(r, H) parameterizes the graded Artinian
Gorenstein quotients R/I with Hilbert function H.

We are now ready to define a set of f € Gor(r, H) that split. This subset will
depend on the Hilbert function of every additive component of f. Recall that if
[ =31 giis a regular splitting of f, then by lemma 3.27 (a and e)

H(R/ anng f) = ZH(R/ annRgi) —(n— 1)(50 + 5d).
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Definition 3.39: Let r > 1, d > 2 and n > 1. For each 7 = 1,...,n, suppose
H; = (hio, ..., hig) is a symmetric sequence of positive integers such that h;y = 1
and > hy <r. Let H= (H,...,H,)and H=> " H;— (n—1)(d +d4), i.e
H = (ho,...,hq) where hg = hg=1and h; =" | h;; for all 0 < j < d. Define

Split(r, H) = Split(r,d,n, H) C Gor(r, H)

to be the subset parameterizing all f € R, with the following property: There
exist a regular splitting f = > | g; such that H(R/anngg;) = H; for all i. Let
PSplit(r, H) C PGor(r, H) be the projectivization of Split(r, H).

Obviously, Split(r, H) reduces to Gor(r,H) if n = 1. Split(r, H) is always
a constructible subset of Gor(r, H), since it is the image of the morphism p,
see lemma 3.40. Note that every linear map k® — k", that is, every matrix
C € Matg(r, s), induces a homomorphism of k-algebras k[zy,...,z,?" — R,

determined by [z1,..., x5 — [21,...,2,]C, that we denote ¢¢.

Lemma 3.40: Let H = (Hy, ..., H,) be an n-tuple of symmetric h-vectors H; =
(Rios - - - s hiq) such that hyy = 1 for all i, and >,  hy < r. Let s; = hjy, s =
($1,...,8n) and H = >"  H; — (n — 1)(0g + 04), where 0, is 1 in degree e and

zero elsewhere. Define

C; € Maty(r, s;) and dimy, Zim C; = ZSZ}

i=1 i=1

CI>§: {(¢C1""7¢Cn)

Then Split(r, H) is the image of the morphism
p: Py x HGor(si, H;) — Gor(r,H),
i=1

((¢C17 SR ¢Cn>’ (gla s 7gn>) = Z¢Cz(gl)

Furthermore, the fiber over any closed point has dimension Y, | s2.

Proof: The first part is clear from definition 3.39. Note that the condition
dimy Y7 imC; = > | 's; in the definition of @ is equivalent to rankC; = s;
and imC;N Y-, im C; = 0 for all 4.
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To find the dimension of the fibers, we will start by describing a group that
acts on &, x II7" | Gor(s;, H;) in such a way that the morphism p is constant on
the orbits of the group action.

First, let the group II}" ; GL;, act on ®, x II?" , Gor(s;, H;) by

(Pi)?:l X ((¢Ci)?:1a (91’)?:1) = <(¢cipfl)?:1> <¢Pi(9i)>?:1>~

Obviously, ¢CiP[1 = ¢¢, © QbPi—l, and therefore, (gbciqu)((épigi) = ¢c, (9:)-

Second, let ¥,, denote the symmetric group on ’n symbols. A permutation
o € %, acts on the n-tuple H = (Hy,..., H,) by permuting its coordinates, i.e.,
o(H) = (Hg_1(1), o 7Hg—l(n)). Let Gy be the subgroup of ¥, defined by

GE:{UEEH|U(ﬂ):ﬁ}‘

Note that Gy is a product of symmetric groups. Indeed, let k be the number
of distinct elements of {Hy,..., H,}. Call these elements Hj,..., H;, and let
n; > 1 be the number of j such that H; = H]. Then Zle n; = n, and

Gu=X, XXX,

The group Gy acts on &, x I, Gor(s;, H;) by

o X ((<Z5Ci)?=1v (91')?:1) = <(¢Ca*1<i))?=1’ (g"_l(i))?ﬂ)'

Indeed, since any o € Gy fixes H, we have H,-1; = H;, and in particular
So-1(i) = 8; since s; = h;1. Thus C,-1(;y € Maty(r,s;) and g,-1(;) € Gor(s;, H;).
Clearly, > dc,-1 (90-1)) = Doiey ¢c,(g;). Thus the morphism p is constant
on the orbits of also this group action.

Suppose f € im p. By theorem 3.18 f has a unique maximal regular splitting
f = >", fl, and every other regular splitting is obtained by grouping some
of the summands. Evidently, since f € Split(r,d,n, H), there is at least one
way to group the summands such that f = > | f; is a regular splitting and
H(R/ annR(fi)) = H, for all 7, and there are only finitely many such “groupings”.
If f = >0, fiis any such expression, then clearly there exists ((¢c,)™y, (9:)1-y) €
O, x II7, Gor(s;, H;) such that f; = ¢¢,(g;) for all i.
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Now, if ((¢c,)iy, (9:)7=1) € p~(f) is any element of the fiber over f, then
the expression f = >  ¢¢,(g:) is one of those finitely many groupings. As-
sume ((¢cr)iy, (9i)f-,) is another element of the fiber such that the expression

f=2_i_1 ¢c:(gi) corresponds to the same grouping. Since

H(R/ anng(¢c,(g:))) = H; = H(R/ anng(écr(g)))),

there exists 0 € Gy such that ¢cr(g;) = ¢c,-1(, (go—fl(i)) for all i. By composing
with o, we may assume ¢cr(g;) = ¢c;(g:) for all i. Note that d(éc,(g:) =
Cidc;(0g) and Ry_1(0g) = k. It follows that Ry 10(¢c,(9:)) = imC;, and
therefore im C/ = im C;. Thus there exists P; € GL,, such that C} = C;P;" for
all i. Moreover, ¢, (gi) = der(g)) = dcu(6p19)) implies g} = ép,(gs) since é,
is injective. This proves that ((dc)iy, (9/)i2;) and ((¢¢,)iy, (9:i)f,) are in the
same orbit.

We have shown that the fiber p='(f) over f is of a finite union of (Gg X
IT7" | GLy,)-orbits; one orbit for each grouping f = > | f; of the maximal split-
ting of f such that H(R/anng(f;)) = H;. By considering how the group acts on
®,, we see that different group elements give different elements in the orbit. It
follows that the dimension of any fiber equals dim(IT7_; GL,,) = >, s? O]

i=17%"

Example 3.41: Let n = 2. The fiber over f = 2@ 4 2{ € Split(r,d, 2, H) is
a single orbit. However, the fiber over f = z{® + 2{ 4+ 2{) € Split(r,d, 2, H)

consists of three orbits, one for each of the expressions f = z{® + > i xgd).

Remark 3.42: We have seen that p is constant on the orbits of the action of

Gg x I | GLg,. If the geometric quotient exists, we get an induced map

(o Tl ot / (62 T 8. — Gorte

i=1 i=1

Let U; C Gor(s;, H;) parameterize all g € k[zy,...,x,]P" that do not have
any non-trivial regular splitting, and U C Split(r,n, H) be those f € R4 where
f = >" g is a maximal splitting. The morphism above restricts to a map
(@, x I, U;) /(G x I, GL,,) — U. By the proof of lemma 3.40, this is a

bijection.
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Remark 3.43: We would like to identify 20, = &,/ II7 | GL,,. Let Grass(s;,r)
be the Grassmannian that parameterizes s;-dimensional k-vector subspaces of
R1=k". We may think of Grass(s;, ) as the set of equivalence classes of injective,
linear maps k®* — Ry, two maps being equivalent if they have the same image.
It follows that 20, is the open subscheme of II7.; Grass(s;, ) parameterizing all
n-tuples W = (Wi, ..., W,) of subspaces W; C R, such that dim; W; = s; and
wW;n > .., W; =0 for all .

i Vi
Remark 3.44: For completeness, we want to describe the corresponding map of
structure sheafs, p? : Ocor(r,i)y — PxOv,x11m | Gor(s, Hy)-

For each i, let (c;;1) be the entries of C; € Maty(r, s;), i.e.

G .- Cig
Ci=
Cirt - Cirs;
Since > " im C; = im[CY, ..., C,], it follows that @, is isomorphic to the set of rx
(>, si)-matrices of maximal rank. Let Y be the coordinate ring of Maty(r, >, s;).

We choose to write Y as
Y = @ k[{yr | 1<j<rand 1<k <s}].
i=1

Let 8' = klxy,...,2,]°" and S = k[0, ...,0,,]. By definition, Gor(s;, H;)
parametrizes all g; € S} such that the Hilbert function of S/ anng:(g;) is H;. The
coordinate ring of A(S}) is A; = k[{zi, |y € A;}], where

v > 0 for all k£ and nyk = d}.

Ai N {fy = (717"'7782') S/
k=1

Gor<(s;, H;) is the affine subscheme of A(S?) whose coordinate ring is A; /I,
cf. definition 3.38. Any g; € S} can be written as

gi = Z iy ﬁx;’wg).

YEA; k=1

It follows that

iil@z (9:) = i Z Qi ﬁ(i Cijkxj)wk)'

i=1 veA; k=1 j=1
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When we expand this, we see that for any o = (aq,...,a;,) € A (cf. equation
(3.24)) the coefficient in front of 2(®) = II_, z{*) is

n T

.. B]k
S5 X TM(,, ) TT]
i=1 y€A; {B;x>0} j=1 JL Jsi

i1 Bik="k

>ri Bik=ay

( Qy ) . Oéj!
ﬁjla"'?ﬁjsi ﬁ]l‘ﬁjszl

appears as a result of how the multiplication in R is defined.
The coordinate ring of A(Ry) is A = k[{za | @ € A}]. Let

The multinomial

A=Y @, A Q- @ A,

be the k-algebra homomorphism induced by

zaHzn:ZZw Z ﬁ Kﬁjl,...,ﬁjsz)nygﬂ

=1 yeAi  {Bj>0} =1
i1 Bik="k
YRl Bik=ay

for all « € A. This implies that FF = > _, 202 € A ®;, Ry is mapped to
> iz 9i(Fy), where Fy =3 2,2 € A; @, S and

T1 Yiix - Yir1 T1
it | |
Ts; Yits; -+ UYirs; Ty

Hence Cat?(F) — Y1 Catd(¢;(F;)) = Y., P; Cat?(F;) P/ for suitable matrices
P; and P/ with entries in Y. Since every (hs + 1) x (hi + 1)-minor of Cat?(F})
is zero in A; /Iy, it follows that every (h. + 1) x (h 4+ 1)-minor of Cat?(F) maps
to zero in Y ®y Ay /Iy, ®y -+ @k Ap/Ig,. This induces a map

A/IH —Y ® Al/fgl R+ S An/IHn-

This ringhomomorphism is equivalent to a morphism of affine schemes;

¥ - Maty(r, >, s;) % HGOTS(% H;) — Gor<(r, H).
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Let f = S, é¢,(g:) € imyNGor(r, H). Since Ry_18(¢¢,(g;)) = im Cj, it fol-
lows that

n

im Catgfl (Z qu’i (g») = Rd_la(z gbci (92)) Q Z im Cl

i=1
Hence rank Cat? ,(f) = hy = >_r_, s; implies that dim; > imC; = Y7 s;.
Thus .
¢~ (Gor(r, H)) = &, x H Gor(s;, H;).
i=1
Since Gor(r, H) is an open subscheme of Gor<(r, H), it follows that (i, 97)
restricts to (p, p).

The next lemma rewrites the definition of Split(r, H) so that it gives conditions

on the ideal I = anng f instead of conditions on f directly.

Lemma 3.45: PSplit(r, H) parameterizes all R/I € PGor(r, H) that have the
following properties: There exist subspaces Vy,...,V, C R; with dim; V; = hj
such that Ry = I, @(@?:1 Vi) and V;V; C I, for all i # j. Furthermore,
S'/INS" € PGor(hy, H;) for all i, where S* = k[V;] C R.

Proof: Pick f € Split(r, H) such that I = anng f. By definition 3.39 there exists
a regular splitting f = >  ¢; such that H(R/anngg;) = H; for all i, and
gi €S = k[Rq_1(f)]P? by corollary 2.10. Choose V' C Ry such that Ry = I, &V,
and let S = k[V]=S8*. By lemma 3.27(ai) we get anng f = ([;) @ anng f. For all
ilet W; = Rq—1(9;) € Ry and define V; = (Z#i W;)rnsScVv.

Note that dimy W; = dimg(R/ anng g;)1 = hs1. Since §; = @, W;, it follows
that S; = V = @, V;. Therefore V; 2 W, and dim; V; = hy. Let S* = k[V;].
By lemma 3.27 (b and ¢) there exist nonzero D; € S such that

anng f = (Z SV;‘/J') @(591 annw(%)) +(Dy — Dy,...,D, — Dy).

i<j

It follows that anng:(g;) = anng(f) N.S* = I NS’ Therefore,

I=(I) @<Z swj) @(é(msi)) +(Dy—Dy,....,D,— D). (3.25)

i<j =
In particular, V;V; C I, for all i # j. This proves all the properties listed in
lemma 3.45. The opposite implication follows from equation (3.25). O
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Remark 3.46: Note that the existence of the D;’s in equation (3.25) implies
that the map I — (I,{V;},{INS%}) is not 1-to-1. This is easily understood if
we translate to polynomials. Since annihilator ideals determine polynomial only
up to a nonzero scalar, it follows that the fiber over {INS* = anngi(g;)} are all
I = anng(f) such that f =3"" , c¢;9; and ¢; # 0 for all <.

If R/I € PGor(r,H), we denote by Tg/; the tangent space to Gor(r, H)
(the affine cone over PGor(r, H)) at a point corresponding to R/I. Recall that
PSplit(r, H) parametrizes all R/ anng f such that f € R, and there exist a regular
splitting f =Y | g; such that H(R/anng g;) = H; for all i, cf. definition 3.39.

THEOREM 3.47:

Assume k =k. Letr >1,d >4 andn > 1. Let H = (Hy, ..., H,) be an n-tuple
of symmetric h-vectors H; = (hyo, . . ., hig) such that Y ., hyy <1 and hy =1 for
alli. Let s; =hyy > land H =) | H;— (n—1)(y + 04) where 6. is 1 in degree

e and zero elsewhere.

(a) The dimension of PSplit(r, H) C PGor(r, H) C P(R4) is

dim PSplit(r, H) =n — 1+ Z dim PGor(s;, H;) + Z si(r — s;).

i=1 i=1

(b) PSplit(r, H) is irreducible if PGor(s;, H;) is irreducible for all i.

Let R/I € PSplit(r, H). Choose Vi,...V, C Ry such that dimy V; = s; for all i,
Ry = L®(ar, Vi) and V;V; C I, for all i # j, cf. lemma 3.45. Let S° = k[V}]
and J; = INS" € PGor(s;, H;). For each i, let 3{; be the minimal number of

generators of degree j of J; (as an ideal in S).

(¢) The dimension of the tangent space to the affine cone over PGor(r, H) at

a point corresponding to R/ is

dlmk TR/] = Zdlmk ’ZTS’Z/Jl + ZSi(T’ — SZ') + ZZSj Bi,dfl'
=1

i=1 =1 j#i

(d) Assume in addition for all i that S*/J; is a smooth point of PGor(s;, H;)
and 8} ;| = 0. Then R/I is a smooth point of PGor(r, H). Moreover, R/I
is contained in a unique irreducible component of the closure PSplit(r, H).

This component is also an irreducible component of PGor(r, H).
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In particular, if PGor(s;, H;) is irreducible and generically smooth for all i, and
Br.a-1(J;) = 0 for general S'/J; € PGor(s;, H;), then the closure PSplit(r, H)
is an irreducible component of PGor(r, H), and PGor(r, H) is smooth in some

non-empty open subset of PSplit(r, H).

This is a generalization of [IS, theorem 3.11].

Proof: (a) follows from lemma 3.40, since the lemma implies that
dim Split(r, H) = Z dim Gor(s;, H;) + Z rs; — Z 57,
i=1 i=1 i=1

Alternatively, we can count dimensions using equation (3.25), just note that
the V;’s are determined only modulo I;. Let s = dimg(R/I); = > ., s;. Then
we get s(r — s) for the choice of I C Ry, s;(s — s;) for the choice on V; (modulo
I,), dim PGor(s;, H;) for the choice of INS* C S% and finally n— 1 for the choice
of Dy — Dy, ..., D, — D; € Rg. Adding these together proves (a).

(b) follows immediately from lemma 3.40.

To prove (c), we use theorem 3.9 in [IK99| (see also remarks 3.10 and 4.3
in the same book), which tells us that dimy 7g;; = dimg(R/I?)4. Note that
H(S'/J;) = H; for all i by definition of PSplit(r, H).

Assume first that I; = 0. Note that this implies R, = &}, Vi, and therefore
R=5'"® - ®;S"and r =)' | s;. By equation (3.25) we have

I, = (Z Rezs;‘S{) ® (él J)

i<j
as a direct sum of k-vector subspaces of R, for all degrees e < d. In particular,
I, = 0 is equivalent to J;; = for all 7.

Let S =8'®@ - @, 5" !, Jg =1INS and s = Z;:llsi, and let T = S,
Jr=INT and t =s,. Then I, = R._251T1 @& Jg ® Jr. for all e < d. Tt follows
for all 2 <e <d-— 2 that

Io-Ig-e = Ri_4S:T5 @ Jse - Jsa—e @ JIre - JTd—e
S Tl (Sd—e—ljs,e + Se—IJS,d—e) S Sl (Td—e—le,e + Te—le,d—e)~
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Since I, = 0 implies Jg; = Jry =0, and 329728, . 1Js. = S1Js42, We get

d—2
(I?)a =Y I Toe = Ri_sS2Ty ®(J3)a B(J7)a & $1T1 Js.4—2 ® $1T1 Jra2.

e=2

Because Ry = Sqg®T1Sq-1 DB Rg_4515 B S1Ty_1 b Ty, it follows that

(R/I1?)a=(S/J%)a®(T/J7)a®Ti(Sa-1/S1Jsa-2) ®S1(Ta—1/TiJr,4-2)-

To find the dimension of (R/I?)4, we need the dimension of Sy 1/51Js.4 2.
We note that Sg—1/S1Js4-2= Sa-1/Jsa-1 P Jsa-1/S1Js4-2 as k-vector spaces.
And furthermore, dimy Sy_1/Js4-1 = dimy(S/Jg)a—1 = dimg(S/Js); = s and
dimy,(Js,a-1/S1J54-2) = 875 . Thus

dlkal(Sd 1/51J5d 2) —t(S—Fﬁld 1)
and similarly dimy S; (Td_l/Tl JTyd_g) = (t + ﬁl e 1) Therefore,
dimg (R/1?) 4 = dimy (S/JE)a + dimy, (T/J3) a + 25t + 3] o1t s3] IRE

Note that 35 1= Z?:_ll B} 4_1 since d > 4. Induction on n now gives

dimy, R/I2d—2d1mk S/JSZCH—Z (r—s; +Z 51(1 - ()

Next we no longer assume I = 0. Let V=&, V,, S =k[V], J =1NS and
s=>1r .8 <r. LetT = k[l] so that R = S®;T. Since I. = R._1T1 D J,
for all e, it follows that (I?)y = Ry oTo®T1Jy 1 ®(J?)q. This implies that
dimy(R/I%)y = dimy,(S/J?)q + s(r — s). Since J; = 0, we can find dimg(S/J?)4
by using (x) (with r replaced by s). Doing this proves (c).

To prove (d), we use the morphism p : &, x 111", Gor(s;, H;) — Gor(r, H)
from lemma 3.40. For each i let X; be the unique irreducible component of
Gor(s;, H;) containing S*/J;. It is indeed unique since S*/J; is a smooth point
on PGor(s;, H;). Let p' : &, x II' | X; — Gor(r, H) be the restriction of p, and
let im p’ be the closure of im p’ in Gor(r, H). Note that im p/ is irreducible. Tt is
well known that the fiber (p')~'(R/I) must have dimension

> dim (CIDS X HX,) — dimimp'.
i=1
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Furthermore, dim(p')"'(R/I) < dimp Y (R/I) = Y., s by lemma 3.40. Note

that dim X; = dimy 7g:/;, since St/J; is a smooth point on PGor(s;, H;). Since
B 41 = 0, it follows from (c) that the dimension of Gor(r, H) at R/I is

dimp/; Gor(r, H) > dimim p/

> dim(CI)sx ﬁXz> —is?

=1 =1

= Zdlmk ,]-SZ/J’L + Zsi(r — Si)
i=1 1=1
= dlmk TR/I > dimR/[ GOI"(T’, H)

Hence dimy, 7g/; = dimp/; Gor(r, H) = dimimp/. Thus R/I is a smooth point
on PGor(r, H), and is therefore contained in a unique irreducible component X
of PGor(r, H). Since dim X = dimpg,; Gor(r, H) = dimim p/, it follows that only
one component of Split(r, H) contains R/I, namely im /.

The final statement follows easily. O

Remark 3.48: We assume in this remark that d = 3. We see from the proof
of theorem 3.47 that the dimension formula in (a) is valid also in this case. But
the formula in (b) is no longer true in general. We need an additional correction
term on the right-hand side. It is not difficult to show that this correction term
is >, 5i8;5k- Note that if d = 3 then 3} ;, | = (%) for all i. It follows that the

tangent space dimension when d = 3 is
. n . n S n SZ
dlmk TR/] = izldlmk 7?92/‘]1 + izlsi(r — 8i> + (3> - ZZI (3)
Thus dimy, 7g/; > dim PSplit(r, H) when n > 2, except n =2 and s; = s, = 1.
Remark 3.49: Let Bij be the shifted graded Betti numbers of R/anng f. The
Hilbert function of R/ anng f for a general f € R, is equal to

Hd?r(e) = mln(dlmk Re, dlmk Rcke)

by [TK99, Proposition 3.12]. This is equivalent to anng(f). = 0 for all e < d/2,
that is, Blj = 0 for all j < d/2 — 1. Tt follows that Bz’j = 0 for all © > 0 and
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j <d/2—1. Recall that Bij = Br—i,d—j since the minimal resolution of R/ anng f
is symmetric, hence sz =0forali<randj>d—(d/2—-1)=d/2+ 1. This
shows that, if d = 2m, then Bij =0 for all j # m, and if d = 2m + 1, then Bij =0
for all j # m,m+ 1, except Boo = Bra = 1. Therefore, when d > 6, it follows that
Brd—1 = Bljd_Q = 0 for a general f € R,.

It is known that PGor(r, H) is smooth and irreducible for » < 3. (For r =3
see |Die96] and [K1e98|.) Tt is also known to be generically smooth in some cases
with r > 3, see [IK99|. Hence we can use theorem 3.47 to produce irreducible,

generically smooth components of PGor(r, H) for suitable H when d > 6.



CHAPTER 4
Degenerate splittings

In chapter 3 we proved that if A € My is idempotent, then the polynomial g
satisfying dg = AJf is an additive component of f. In this chapter we will
study what happens when A is nilpotent. The idea is to “deform” the situation
so that f,g € R4 becomes fi,g: € Ralti,...,t,) and A becomes an idempotent
Ay € Matyg, ..1,1(r,7), preserving the relation dg, = A0 f;.

Our investigations in this chapter were guided by the following question.

Question 4.1: Given f € Ry, d > 3, is it possible to find f; € Ry[t1,. .., 1t,]
such that fy = f and f; splits regularly dimy, M; — 1 times over k(ty,...,t,)?

Sections 4.1 and 4.2 deal with cases where we can give a positive answer to
this question, and cases in which we can produce counter examples, respectively.
The motivation behind the question is that dim; My — 1 is an upper bound for
the number of times that f; can split when we require fy = f, see lemma 4.2
below. There is also a flatness condition we would like f; to satisfy, but we will
ignore that in this paper, cf. remark 4.4.

Note that dimy My —1 = 7311 + B14 by lemma 2.17. Since f; can split at most
r — 1 times (that is, have at most r additive components), we see that question
4.1 automatically has a negative answer if 317 > 0, i.e. if anng(f); # 0.

Recall that by corollary 2.10 the “regular splitting properties” of f does not
change if we add dummy variables since any regular splitting must happen inside
the subring k[Ry_1(f)]PF € R. Tt is not so for degenerate splittings, as seen in

example 4.3 below. For this reason most f we consider in this chapter will satisfy

81
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anng(f); = 0. Note that this implies that dimy My — 1 = By4.

We will now prove that the number dimy My — 1 in question 4.1 is an upper
bound. Recall that by theorem 3.18 the regular splittings of f; inside Ry ®p
k(ti,...,t,) = Ra(ty,...,t,) are determined by the idempotents in

.]\4f‘15 = {A - Matk(tl ..... tn)(?‘, T) ‘ _[2(8 Aa) g annR(tl _____ tn) ft}

Lemma 4.2: Let f, € Rylti,...,t,). Then dimyy, . ., My, < dimy My In
particular, if f; splits regularly m times, then m < dimy My, — 1.

-----

Proof: First assume that n = 1. Then f; = Zkzo tk i, for some f, € Ry Let
Ay, ... Ay € Matyyy(r,r) form a basis for My, as a k(t)-vector space. We
may multiply by denominators and assume A; € Matyy(r,7) for all . Write
A = D70 tF Ay, with Ay, € Maty(r,r). Assume that Aj,..., Ay are linearly
dependent, say » . c;A;p = 0 where ¢; € k, not all zero. Choose j such that
a; = max{q; | ¢; # 0}, and replace A; with (¢;t)"' D" ¢;A;. The new A;’s still
form a k(t)-basis for My,, and the degree of A; as a polynomial in ¢ has decreased.
Continuing this process, we arrive at a basis {A;} such that Ay, ..., A, are lin-
early independent.

For every i, since A; € My,, there exists a polynomial g; € R4(t) such that
0g; = Ai0f;. And because A; € Matyy(r,r) it follows that g; € Rg4[t]. Thus
g = Zkzo tk gsr, for suitable g; € Rq. It follows that

Ztkagik = 0g; = A0f: = Z tj+kAijafk-

k>0 5,k>0
In particular, dg,0 = A0 fo, implying A;o € My, for all i. Since {A;o} are linearly
independent, it follows that dimy, My, > dimyy) My,.

For general n > 1, let k" = k(ty,...,t,—1). There exist f, € Rylt1,...,tn-1]
such that f; = Zkgo th £/, and the above argument shows that dimy My >

dimys(y,y My,. Induction on n proves that dimy My, > dimyq, . 4,) My,.
If f; splits regularly m times, then M}, contains m+1 orthogonal idempotents,
hence dimy My, > dimy,..+,,) My, > m + 1. O

Example 4.3: Let d > 4 and f = 2{* 222 € R = k[z;,22)P". With R =
k[01, 0o] we get annp f = (03,00 ) and M; = (I), hence f cannot be a specializa-
tion of an f; € Ry[ty,. .., 1, that splits. But it is easy to find f; € k[t][x1, zo, x3]PF
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such that fo = f and f; splits! Indeed, one such choice is

fr =t 3ty 4ty + 323) D — (21 + 229) @D + (1 — )] = £ mod (t).

Note that even this is in concordance with lemma 4.2.

Remark 4.4: Let f € R;. When we look for f; € Rylty,...,t,] such that
fo = f, there are several properties we would like f; to have. Our main con-
cern in this chapter is that we want f; to split regularly dimy M; — 1 times
over k(ty,...,t,), giving a positive answer to question 4.1. But in addition, we
would like R(t1,...,t,)(fe) = R(t1,...,tn)/ annpg,,. 1) (fr) and R(f) = R/ anng f

to have equal Hilbert functions, for the following reason.

Let ky = kft1,...,ta], Rt = R Qk ki and Ry = R ®y ky. An f; € Ry Q4 Ky
determines a family k;, — R/ Ri(f;). Let Cy = Ri(fy) = R(fi) ®x bkt € Ry 1t
is easy to show that R/Cy = R;/C; @y, ki/(t1,...,tn) = R/R(fo), thus R(fo) is
a specialization of the family. We would like this family to be flat, at least in
an open neighbourhood of the origin. This simply means that the generic fiber
R(ty,...,t,)(f:) has the same Hilbert function as R(fy). (The condition that f;
should have a regular splitting of length dimy My inside R4(ty,. .., ty), is also a

statement about the generic fiber.)

Note that, although the family k, — R;/J; where J;, = anng,(f;) is maybe
more natural to consider, it is also more problematic, since f; — R;/J; — R/Jy
does not generally commute with med f; — fy — R/anng(fy). In general we
only have an inclusion Jy C anng(fy). If f # 0, then (Jy)g = anng(fy)q, and
since anng(fp) is determined by its degree d piece by lemma 1.2a, it follows that
anng(fo) = sat<y Jo = ®_{D € R.|Rg_c- D C Jo} + (Ras1)-

Of course we would like R(f) to be a specialization of a flat, splitting fam-
ily, but in this chapter we study question 4.1 without the additional flatness
requirement. Note that we do not know of any example in which question 4.1

has a positive answer, but would have had a negative answer if we had required

H(R(ty, ... 1) (o)) = H(R())-
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4.1 Positive results

In this section we consider some cases where we are able to prove that question 4.1
has a positive answer. We start with a result that effectively “deforms” a relation
0g = AJf with A nilpotent to a relation dg;, = A;0f; with A; idempotent. The
proof is an explicit construction of f; using the nilpotent matrix A € My as input
data. This will later allow us to answer question 4.1 positively when r < 4.

Suppose A is nilpotent, i.e. A¥ =0 for k> 0. The index of A is defined by
index(A) = min{k > 1| A* = 0}.

Let A be a nilpotent matrix of index n + 1, i.e., A" =0 and A" # 0. Then
A = T A A2 ... A" are linearly independent. To see why, assume there is a
non-zero relation > ,_, cx A" = 0, and let ¢ = min{k | ¢, # 0} < n. Multiplying

the relation by A" % implies that ¢;A" = 0, which is a contradiction.

THEOREM 4.5:

Let d > 3 and f € Ry. Assume that M contains a non-zero nilpotent matrix
A € Matg(r,r), and let n = index(A) —1 > 1. Then f is a specialization of some
ft € Ralt1, ..., t,] that splits regularly n times inside Ry(t1, ..., t,).

Proof: Since My is closed under multiplication by proposition 2.21, it contains
k[A] = (I, A,..., A"), the k-algebra generated by A.

Choose an idempotent E € Maty(r,r) such that ker E = ker A™. (Le. let
U = ker A and choose W such that and UNW =0 and U+ W = k". Then let £
represent the linear map that acts as the identity on W and takes U to 0.) This
implies that A"FE = A™ and that there exists a matrix () € Maty(r, r) such that
E = QA". Note that EA = 0. Define

A=A+ tE.
Then A} = A" +tA" 'E+ .- +{"E, and
A;H_l _ An—H + tA"E = tn+1E = tA:L

It follows that (A})? = ¢" A7, hence ¢t " A} is idempotent. Now define

P=1+Y t"A*Q.
k=1
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P is chosen so that A} = PA". Since det P = 1 (mod ¢), P is an invertible
element of Maty(r, 7). Let ¢p be the homomorphism defined by 2 — PTz on R
and by 0 — P~10 on R, as usual. Recall that for all g € R and D € R we have
¢p(Dg) = ¢p(D)dp(g). Also note that (PA™)? = t"PA™ implies A"PA™ = t"A™.

Since A™ € My, there exists a polynomial g € R4 such that dg = A"0f. Let
g = 0p(9) = D ps0t" gk € Ralt], and define

fe=f+t" (gt - Ztkgk) =f+ Ztk9n+k € Ralt]-
k=0

k>0

We want to prove that A, € My,. We start by calculating Jg;.

dg: = 09p(g) = Pop(dg) = Pop(A"0f) = Alpp(0f) (4.1)

Multiplying (4.1) by A™, and using A"PA"™ = t"A", gives A"0g, = t"¢p(dg).
Since the entries of dg and ¢p(dg) are in R[t], this implies that A"dg; = 0 for all
i <n,and A"0g, = 0g = A"Of. In particular, Fdg, = QA"0g, = EJf.

When we multiply (4.1) by A, the result is A;0g; = t0g;. As polynomials in
t this equals (A +tE) (32,50 t'0g:) = t(32;50t'0gi), and implies that

Adg; + EDg;_1 = 0g;_, for all i > 0.

(Actually, this implies that Adg; = 0g;_; for all 0 < i < n, since F = QA™ and
we have already proven that A"0g;_1 = 0 for i < n.) Also, since A € My, there
exists h € Ry such that Oh = AJf.

Putting all this together, we get

Adfi = (A+1tE) <af + Z tkagn+k>

k>0

= AOf +tEOf + Y t"Adguu + Y " Edg, 4

k>0 k>0

= 0h + Z tr (Aagn—i-k: + E39n+k—1)

k>0
=0h+ Y t*0g, 11k = O(h+ tgn + gnr +...).

k>0

This proves that A, € My,. And since Mjy, is closed under multiplication, it
follows that k[A,] = (I, As, ..., A}) C My,.



86 4 DEGENERATE SPLITTINGS

Since E' = [ —t"A} is idempotent, we may apply theorem 3.18. It tells
us that f; has a regular splitting with two additive components, t~"g; and f' =

t"(t"f — go —tgy — - -+ — t"gy), and furthermore that
KA E = (B, AE,... AP By € ME .

Hence we may repeat our procedure on f’. By induction on n, we arrive at some

ft € Ralts, ..., t,] such that fo = f and f; splits regularly n times. O

Remark 4.6: The choice of F in the proof of theorem 4.5 boils down to choosing
@ € Matg(r,r) such that A"QA™ = A", and then letting F = QA™. This then
implies ker E = ker A" and that E is idempotent. We note that () is certainly
not unique. If A" is in Jordan normal form, then we may let Q = AT. This is

what we will do in most explicit cases.

Corollary 4.7: Supposek =k andd > 3. Let f € Ry. Assume that anng(f), =
0, and let 31; be the minimal number of generators of anng f of degree j. Then

f has a regular or degenerate splitting if and only if 314 > 0.

Proof: Since 311 = 0, we have dimy My — 1 = 314. Thus 14 > 0 if and only if
M; contains a matrix A ¢ (I). Since k = k, we may assume that A is either
idempotent or nilpotent. It follows from theorem 3.18 that M; contains a non-
trivial idempotent if and only if f splits regularly. By theorem 4.5, if A € M;
is non-zero and nilpotent, then f has a degenerate splitting. Finally, if f has a

degenerate splitting, then dimy My —1 > 1 by lemma 4.2. O

Let f € Rq with d > 3. If M/ is generated by one matrix, then theorem 4.5
answers question 4.1 affirmatively, that is, we can find f; € Ry[t1,...,t,] such
that fo = f and f; splits regularly dimj, M; — 1 times over k(ty,...,t,). This is
the best we can hope for by lemma 4.2, and our next theorem proves that this is

always possible when r < 4. But first we need some facts about matrices.

Lemma 4.8: Given matrices A, B € Maty(r,r) the following are true.

(a) rank A + rank B — r < rank(AB) < min(rank A, rank B).
(b) If AB = BA, A# 0 and B is nilpotent, then rank(AB) < rank A.
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(¢) If AB = BA, rank A =r — 1 and A is nilpotent, then A""! # 0 and
BeklAl=(I,A,..., A1),

Proof: (a) The right inequality follows from the inclusions ker(AB) D ker B and
im(AB) C im A. To prove the left inequality, let 3 be the restriction of the map
B : k" — k" to ker(AB). Obviously, ker 3 = {v € ker(AB)|Bv = 0} = ker B,
and im 3 C ker A. Hence

dimy ker(AB) = dimy, ker 5 4 dimy im 8 < dimy ker B + dimy ker A,

which is equivalent to rank(AB) > rank A 4+ rank B — 7.
(b) Assume that rank(AB) = rank A. We know that im(AB) C im A, hence
equal ranks implies im(AB) = im A. Tt follows that im(AB¥) = im A for all k by

induction on k. Indeed, since AB = BA, we have
im AB* = im BAB* = B(im AB*) = B(im A) = im BA = im AB = im A.

But B is nilpotent, implying im A = im AB” = im0 = 0. Hence A = 0. There-
fore, when A # 0, it follows that rank AB < rank A.
(c) Let A° = I. Part (a) implies for all k£ > 0 that

rank A**' > rank A¥ + rank A — r = rank A* — 1.
Since A is nilpotent, we know that A" = 0. Therefore,
0=rank A" >rank A" ' —1 >rank A" ? —2> ... >rank A — (r — 1) = 0.

It follows that all inequalities must be equalities, that is, rank A* = r — k for all
0 < k < r. In particular, A"~! # 0. Moreover, the quotient ker A*/ker A*~1 has
dimension 1 for all 1 < k < r. Consider the filtration

O=ker] CkerACkerA>C--- Cker A" ' Cker A" ="

Choose v; ¢ ker A", and let v, = A* v, for k = 2,...,r. Then {vy,...,v.}
is a basis for k". To prove this, note that v, ¢ ker A"~ because A" lv; # 0,
but v, € ker A" %! since A" = 0. Assume that vy, ...,v, are linearly dependent.

Then there exist ¢q,...,¢, € k, not all zero, such that ., c;v; = 0. If we let
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k = min{i|c; # 0}, then v, = ¢, (X1, civi). But v; € ker A7* for all i > Fk,
implying v;, € ker A”~*_ a contradiction.
There exist ¢1,...,¢, € k such that Buy = > v, = Y i, ;A" oy since

{v1,...,v.} is a basis for k". Since AB = BA it follows for all k that

Bu, = BA* v, = A* 1By,

= Ak_l Z CiAi_l’Ul = Z CiAi_lAk_l'Ul = Z CiAi_l'Uk.
i=1 i=1 i=1
Since {v;} is a basis, it follows that B = >""_, ¢;A""!, that is, B € k[A]. O

The following theorem gives a positive answer to question 4.1 when r < 4.

THEOREM 4.9:

Assume that r < 4 and k = k. Let f € Ry, d > 3, satisfy anng(f); = 0. Then
for some n > 1 there exists f; € Ry[t1,...,t,] such that fo = f and f, splits
regularly dimy, My — 1 times over k(t1,...,t,).

Proof: We may assume that M; does not contain any non-trivial idempotent,
because if it does, we apply theorem 3.18 first, and then the following proof
on each additive component. Since k = k, it follows by proposition 3.5 that
My = (I) ® M}" where M}"' = {A € My| A is nilpotent}.

The conclusion follows from theorem 4.5 if M is generated by a single matrix.
And if M} contains a matrix A of rank r — 1, then My = k[A] by lemma 4.8.
Therefore, we now assume that My is not generated by a single matrix, and in
particular, that all matrices in M}" have rank < r — 2.

If r = 1, then f = cz{® and M; = (I), thus there is nothing to prove. If
r = 2, then My must be generated by a single matrix, and we are done.

If 7 = 3, then M}" may only contain matrices of rank 1. Since My cannot
be generated by a single matrix, M}lﬂ must contain two matrices A }f B of rank
1. We may write A = ulvf and B = ugv; for suitable vectors u;,v; € k". Note
that A2 = B2 = AB = BA = 0 since their ranks are < 1 by lemma 4.8b. Thus
ulv; = 0 for all 4,5 = 1,2. If uy }f ug, then this implies vy || vy since r = 3.
Similarly, v; }f vy implies u; || ue. However, both cases are impossible, since each
imply anng(f); # 0 by corollary 2.29. (These are essentially the two cases in
example 2.30.)
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Suppose 7 = 4 and that M only contains matrices of rank < 2. We will
break down the proof of this case into four subcases.

Case 1. Assume M} contains two matrices A Jf B of rank 1, i.e. A = ujvf
and B = uyv). Then uiva = 0 for all 4,j = 1,2 as above. Again, both u; || us
and vy || v9 lead to contradictions by corollary 2.29. Thus we may up to a base
change assume u; = [1000]" and uy = [0100]". Hence v; = [00x*]T, and after

another change of basis, v; = [0010]" and vy = [0001]". In other words,

0000 0009
A=10000 and B=1{6000]-
0000 0000

Since I5(0 A0 BO) C ann f, this already implies that there exist c¢i,cy € k and
g € k[x1, 2)PY such that f = ciwsz@™Y + cowgri®™ + g. Note that cj,cp # 0
since ann(f); = 0, and we may assume ¢; = ¢y = 1.

Suppose that M} contains a matrix C' in addition to A and B. Then CA =
AC = CB = BC = 0 because their ranks are < 1. This implies that

C'=(8%) as a 2 x 2 block matrix using 2 x 2 blocks,

and modulo A and B we may assume that = (9 ). It follows that
Ig(@ C’(’?) = (b8103 — CL0284) g anng f

Hence 0 = (00105 — ada04)(f) = ba{4=2 — az{d=2). This implies @ = b = 0 since
d > 3. Thus we have proven that My = (I, A, B). Let

fi= %((931 + taz) @ — 2@ 4 (g + twy) @ — ng”) +g.

Then fy = f, and f; ~ xgd) + :L’Sfl) — (:zzﬁd) + xgd) — tg) obviously splits twice.
Case 2. Suppose M; does not contain any matrix of rank 1. If A, B € M,
then both have rank 2 and A? = B? = AB = BA = 0. We may assume that
A= (3}), which implies that B = (J%'). But then B — XA has rank 1 when A
is an eigenvalue for B’, a contradiction. Therefore, for the rest of the proof we

may assume that M; contains exactly one matrix of rank 1.

Case 3. Assume M, does not contain any A of rank 2 satisfying A* = 0. Then
M must contain an A such that rank A = 2 and A% # 0. Note that rank A? = 1.
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Because M # k[A], there exists B € My, B ¢ k[A]. Then rank B = 2 since M}
cannot contain several matrices of rank 1. Thus B? # 0, and therefore B? = bA2,
b#0. Also rank AB < 1, hence AB = BA = aA?%. Let t be a root of t> + 2at + b.
Since rank(tA + B) < 1 implies B € k[A], we get rank(tA + B) = 2. But
(tA+ B)? = (t* + 2at + b) A% = 0, contradicting our assumption.

Case 4. Hence M; contains a matrix A of rank 2 satisfying A*> = 0 and
a matrix B of rank 1. We may assume that 4 = (3§). From AB = BA it
follows that B = (%1 gf), and B; = 0 since rank B = 1. Modulo a similarity
transformation B — PBP~! with P = ((g g) we may assume that

322(/\01;)2) or BzZ(é‘}\),
and modulo A this becomes By € {(§9§),(84)}. Since B is the only matrix in

My of rank 1 (up to a scalar), the first must be disregarded. (It reduces to case
1 above.) Hence By = ($}). It follows that

(d-1) (d—2)

f=mx + T3XoT +g where g€ klxy,1]"7,

up to a base change. Define f; € R,[t] by
Je= ﬁ((ﬂh + sxy + twg + Stl’4)(d) — (z1 + $$2)(d) — (z1 + t$3)(d) + x@) +g.

Then fo = f, and f, = splits twice. If My = (I, A, B), then we are done.
Thus assume that M contains a matrix C' ¢ (A, B). Because CA = AC

and CB = BC, we have
c1 Cc2 €3 C4
. 0 c1 ¢c5 cg
C_ (0 0 c1 CQ)'
00 0aca

Clearly, ¢; = 0 since C' is nilpotent. If ¢ = 0, then rank(C' — c3A — ¢4 B) < 1,
thus C € (A, B) since B is the only matrix in M/ of rank 1. This contradiction
allows us to assume that c; = 1. It also implies that M}" cannot contain yet
another matrix, since we then would have to get another one of rank 1. Therefore,
My = (I,A,B,C). Now, rankC < 3 implies ¢; = 0, and modulo B we may
assume ¢4 = 0. If char k # 2, we may also assume c3 = ¢g = 0. This follows from
the similarity transformation C'— PCP~! where P = (é ?) with ) = (2 8) and
q = (s — ¢g). It follows that

(d—1)

+ T30y + cxﬁd)
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up to a base change. (We may even assume ¢ = 0 if chark t d.) Let
fi==+ ((:vl + 51y + twg + steg) D — (21 + s29) D — (3 + tz) D + :16@) + cal?,

Then fy = f, and f; ~ 2{® + 2( 4+ (@ + 2(@ splits regularly three times.

If chark = 2, then the case (c3,¢5) = (0,1) is not in the GLg(4) orbit of
(c3,¢6) = (0,0). A base change shows that this additional case is isomorphic to
M; = (I, A, B, A?) where A> = B? and

0
- (1) o
0
+ cx\?. Let

This implies that f = z42{™V + 2P 202 4 @) p(d=2

1
0
0
0

[le) ]
[elelelo)]
[elelale)]

0
0
0
0

OO
~ OrOO

fi=t7" (t<a:1 +twy + t22g) D + 2y + tay) @
— (1 + Py + t223) D + (1 -2t + ct?’)xgd))

Again, fo = f, and f; ~ 2(D + 28 + 2(@ 4 (@ splits regularly three times. Hence
in each case we have found an f; € Ry[t1,...,t,] such that fo = f and f; splits

regularly dimj, M; — 1 times over k(ty,...,t,), and we are done. O

Remark 4.10: Note that the last case of the proof says the following. Suppose
M contains two matrices of rank 2 that are non-proportional. If char £ # 2, then
M contains exactly two of rank 2 such that A? = 0. If char k = 2, then there are
two possibilities. Either every matrix in M, of rank 2 satisfies A? = 0, or only

one matrix is of this type, and the rest satisfy A% # 0.
We will end this section with a generalization of theorem 4.5.

THEOREM 4.11:

Suppose d > 3 and f € Ry. Let Aq,..., A, € Matg(r,r) be nonzero and nil-
potent, and assume there exist orthogonal idempotents Ei,..., F,, such that
E;A; = AE; = A, for all i. Let n; = index A; and 1 < a; < n;. Assume that
A¥ € My for all k > a; and all i = 1,...,m. Let n = Y " (n; — a;). Then f
is a specialization of some f; € Ry[t1,...,t,] that splits regularly n times over
k(ty, ... ty).

Proof: The proof uses the same ideas as the proof of theorem 4.5, with some

modifications. Fix one i € {1,...,m}, and choose @ € E;Maty(r,r)E; such
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that AP 'QA™ ™ = A™™'. Define matrices P = [ 4 S/ ' ## A" 7FQ and
Ay = Ay FtQAY . Tt follows that A%~ = PA™ " and A% = tA% ' Because
Al ¢ My, there exists g € R4 such that 0g = A9 f. Define

9t = ¢p(g) = Ztkgk and  fi=[f+ Ztkgni—l—&-k-
k>0 k>1

For all ¢ # j, it follows from E;E; = 0 that A,;E; = E;A; = A;A; = 0. Thus
A;A; = 0. Since dg; = Pop(0g) = AZi_1¢p<af), it follows that A;0¢g, = 0, and
therefore, A;0g, = 0 for all £ > 0. Hence A;? € My, for all j # i and k > a;.

We will now prove that AXOf, = A¥Of + > 51 0gn, 1y for all k > 0.
Assume it is true for some k > 0. The arguments following equation (4.1) in the
proof of theorem 4.5 apply here and show that A?i_lf)gni_j = 0 for all j > 1,
A?iila‘f = A?Fl@gm_l and Aiagm_lﬂ + QA?i*lagni_Q_‘_j = agni—Q—i-j for all j It
follows that

ATof, = (Ai + tQA?Fl> (Af@f + Z tjagni—l—k+j)

>1
= Aftof + Z t/ (Aiagni717k+j + QA?i_lagni727k+j>
i>1
= Aof + Z t O, —2—rj-
j>1

Since AF € My for all k > q; it follows that A% € My, for all k > a;. In particular,
E'=1— (1A~ € My,
Since F’ is idempotent, we may apply theorem 3.18. It tells us that f; has a

regular splitting with the following two additive components, t "*1g, and

Jr=tm T = go—tgr — - — " g ),

and furthermore that (A E")F = ALE" € M for all k > a;. Hence we may
repeat our procedure on f’. By induction on n; and i, we arrive at some f; €
Ralt1, ..., t,] such that fo = f and f; splits regularly n times. O

Remark 4.12: We assume in theorem 4.11 that A¥ € M; for all k > a;. Tt is
in fact enough to assume A" B;, AfiHCi € M; for some invertible B;, C; € k[A,].
Indeed, apply proposition 2.26 with A = A;B;'C;, B = I and C = A}'B,.
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It follows that A*C' = A%T*Bl=*C* ¢ M; for all k > 0. In particular, with
k=mn;—a;—1, weget A 'P ¢ My where P € k[A,;] is invertible. This implies
A€ M since AT = 0. Now letting k = n; — a; — 2 implies A7*~* € M;. By
descending induction on k we get A¥ € M, for all k > a;.

4.2 Counter examples

In this section we will produce examples of f € Ry in which we cannot find an
ft € Ralt1, ..., t,] such that fy = f and f; splits regularly dimy, M —1 times over
k(ti,...,t,). Thus question 4.1 has a negative answer for these f. There exist
many such examples due to purely numerical reasons, and the following theorem

enables us to find some.

THEOREM 4.13:

Let d > 3, s < r and 8§ = k[xy,...,z,]°’" C R. Suppose h € S; does not
split regularly. Let f = h + mgﬂlr)l + -+ 2@ € Ry Assume that there exists
an fy € Rylt1,...,t,] such that fo = f and f; splits regularly m — 1 times over
k(ti,...,t,). Suppose m > r—s+1. Then M, must contain a non-zero nilpotent

matrix of rank < s/(m —r + s).

Proof: Clearly, m < r. Note that if anng(f); # 0, then anng(h); # 0. In this
case M, will contain nilpotent matrices of rank 1, and we are done. Therefore,
we may assume anng(f); = 0. This implies anng,
that f # 0 since s >r—m+1> 1.

For each k =1,...,r — s, define E} € Maty(r,r) by

t)(fe)1 = 0. It also implies

-----

(B = 1 ifi=j5=k+s,
0 otherwise.
Clearly, E} is a diagonal idempotent of rank 1. Furthermore, 8(91:&‘%) = Fpof,
thus Ey, € My. Let Ey =1 — ), Ey € M;. It follows by theorem 3.18 that
My=My®M &...0M,_; where My, = MsE, = (Ej) for k=1,...,r —s, and
My = MyEy= M. To be precise, My = {(49) A€ M,}.
Choose a multiplicative (monomial) order on k' = k[ty,...,t,] with 1 as the

smallest element. If V' is any k-vector space and v € V' =V ®y, k[t1,...,t,],
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v # 0, denote by lc(v) € V' the leading coefficient of v, which to us the coefficient
of the smallest non-zero term of v in the ordering. Note that if o : U xV — W
is a k-bilinear map, it induces a k'-bilinear map ¢’ : U’ x V' — W'. Then
le(¢'(u,v)) = p(le(w),lc(v)) as long as ¢(lc(u),le(v)) # 0.

There exist orthogonal idempotents Ay, ..., A,, € My, and non-zero polyno-
mials ¢i1,...,9m € Ralt1,...,t,) such that > " A, = I and 0g; = A;0f;. Let
the common denominator of the entries of A; be \; € k[t1,...,t,]. We may scale
A; such that Ic(\;) = 1. Replace A; by A\;A;. Then A; € Matygy,
A% = )\A;. Moreover, replace g; by \;g; to preserve the relation dg; = A;0f;.
This implies that g; € Rylt1, ..., ts)-

Let Ay = le(4;) # 0. Note that le(fy) = f, and Apdf # 0 because
anng(f); = 0. It follows that

tn] (r,r) and

,,,,,

0lc(gi) = 1c(0g;) = le(A;0f) = 1c(A;)01c(fy) = Aidf.

Hence A € M;. If A% # 0, then A% = 1c(A?) = le(NiA;) = Aip. Thus A% =0 or
A% = Ay for all 4. Furthermore, AijpAjo = 0 for all 7 # j, because A;A4; = 0. In
addition, rank A;y < rank A;. (If some minor of A; is zero, then the corresponding
minor of A;y must also be zero.)

Since h does not split regularly, M, does not contain any non-trivial idem-
potents. Hence {E;} is the unique maximal coid in M}, and any idempotent
in My is a sum of some of the E;’s. Assume A;, is idempotent. We want to
prove that A, € (Ey,...,E._s). If it is not, then AgFEy = Ey. For all j # i,
we have AjoA;y = 0, and therefore AjoFy = 0 and Ajy # Aj. This implies
Ajo € &3 M; = (Ey,...,E,_), and it follows that A% # 0. Hence Aj, must
be an idempotent! Therefore {A;o}7L, is a set of orthogonal idempotents, but
{E;};=0 is maximal, hence m <1 — s+ 1, a contradiction.

Let J = {i| A}, = A} and k = >, rank A;y > |J|. By the last paragraph,

k <r —s. Clearly, the number of nilpotents among {A;}", is
m—\|J|>m—-k>m—r+s>2.

Now suppose that M), does not contain any non-zero nilpotent matrix of rank
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<s/(m —r+s). Then rank A;p > s/(m —r + s) for all i ¢ J. It follows that

m

- s
= kA; > k A >k —k)———
r ;ran _;ran 0 + (m >m—r+s
~ms—(r—m)k S ms — (r—m)(r —s)
 om—r+4+s m-—r-+s Y
which is the contradiction we sought. 0

Remark 4.14: It is not correct that if My, contains m idempotents of rank
< k, then My, must contain m idempotents or nilpotents of rank < k. A simple
example is f = zoz{"™Y, r = 2. Then My = (I, A) where A; = (J}). Let f, =
t7H(zy + ) D — 2], so that fo = f. Then My, = (A;, B;) where A, = (3f1)
and By = (J1). Thus both Ay = By = A. We see that My, can contain two
idempotents of rank 1 even though dim;{A € M| rank A <1} =1.

Now that we have theorem 4.13 at our disposal, we are ready to give the first

example in which question 4.1 has a negative answer.
Example 4.15: Suppose r =5 and a,b > 2. Let

F =2l Vgl gy 4 g @g®p, 1 plat) -1y
Then f € R; where d =a+ b+ 1 > 5. The annihilator ideal is

anng(f) = (03,04, 85)2 + (0104 — 0203, 0105 — 0204)
+ (0705, 0505, 0772, 057%) + (07105, 0105™1).

It is easy to check that anng f contains the right-hand side. For the converse,
assume that D € anng(f).. Modulo (95, 9y,d5)? there exist D; € k[dy, D] such
that D = 03D+ 04 Do+ 05 D3+ Dy, and modulo (0,04 — 0203, 0105 — 020,) we may
assume that Dy = 0 and D3 = ;0,05 2 + c,05 ', Computing D f, we see that
Df = 0 is equivalent to Dy(z{* VzP+Y) + Ds(z{V2P=Y) = Dy(f) = 0. This
implies that D, € (9¢,05™2), Dy € (85) and D, € (992,052, 007108, 0eobt),
and proves that D is contained in the right-hand side.

Since a,b > 2, we see that anng f has two generators of degree d. Thus
dimy, My = 3. Let g, = 2{@2@+Y | gy = 2@+ 2() and

Tt 98848
Ay =1[o00000 |, Ay =100000 |.

00000 00000

00000 00000



96 4 DEGENERATE SPLITTINGS

A simple calculation shows that dg; = A;0f and 0g, = A0 f. This implies that
Ay, Ay € My, and it follows that My = (I, Ay, As). (Note that gy = 01h and
g2 = Ooh where h = z{eFDg{+1).)

Since My does not contain any non-zero nilpotent matrix of rank 1, theorem
4.13 implies that there does not exist an f; € Rylty,...,t,] such that fo = f
and f; splits regularly dimj My — 1 times over k(t1,...,t,). Moreover, by adding

terms (¥ with ¢ > 5, we have produced such examples for all » > 5 and d > 5.

Example 4.16: Let us consider the following two polynomials.

(a) fi=m4 ($2$§2)) + x5 ($1$g2) + 9652)953)
+ 26 (12025 + 28)) + 27 (2P 23 + 112P) € Ry r =T.
(b) fo=ws (953334) + T (902334 + 9552))
+ ZL’7(J]1ZL’4 + CL’Q!L’g) + g (1’11’3 + CL’&Q)) + Zg (1’11’2) c Rg, r=29.

Tedious but simple computations show that the annihilators are:

anng(f1) = (01,05, 95, 07)% + (0104, 0204 — 105, 0304 — D205, 0205 — D106,
0305 — 0205, 0205 — 0107, 0306 — 020;) + (0105 — 03)
+ (020501, 0507) + (07, 0702, 05) + (05, 0505)

anng(fz) = (95, . .., 09)* + (0105, 0205, 0105, 0305 — D205, 0105 — D306,
0205 — 0107, 0305 — 0207, 0406 — 0307, 0207 — 0105, D307 — D205,
0407 — 0505, 0205 — 010y, D305 — 020y, 0405, 0509, 040y
+ (07,05 — 0105, 0505 — 0104, 03 — 0504, 07) + (0303, 0,03)

In both cases, dimy My, = 3. It is easy to check that the two nilpotent matrices
in My, are of rank 3, and of rank 4 in My,. By theorem 4.13, there does not exist
an f, € Rylt1, ..., t,) such that fo = f; and f; splits regularly dimy My, — 1 times
over k(ti,...,t,). Again, we may add terms z{¥ to produce such examples for
all » > 7 when d =4 and all » > 9 when d = 3.

The next proposition allows us to construct f such that My does not contain
nilpotent matrices of small rank. The previous examples are special cases of this

proposition.
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Proposition 4.17: Suppose d > 3, s > 2, g > 1 and r = 2s +q. Let § =
klzy,...,x )PP CR = k[zy,...,z.]P". Let g1,...,9s1q € Sa_1 satisty 0;119; =
0igjix1 = hivj_o € Sg_o for all 1 < i < sand 1 < j < s+ q. Define f =
Z::f Tsrigi € Ry. Assume that h; = 0 for alli < s—1, and that hy_1,..., heigi1
are linearly independent. Then M; = (I, By, ..., B,) where, foreach k =0...,q,

1, ifi<sandj=s+k+u,
(Br)ij = _
0, otherwise.

Proof: For each k we note that By is block matrix of the form (§ %), where
By, € Maty(s, s+¢q) is a “displaced” identity matrix. That is, By, is a block matrix
of the form (01 1 02), where O; is an s X k zero matrix, [ is an s X s identity
matrix, and O is an s X (¢ — k) zero matrix. In particular, rank By, = s.

By computing 09'f, we see that it has a block decomposition,

X, X
aa‘rf _ 1 2 ’
X3 0
where X; € Matg(s,s) and Xy € Maty(s,s + ¢). X is a Hankel matrix in the
sense that (X3);; = 0,9, = hipj_1 forall1 <i<sand 1 <j<s+g,ie

hi ... hgig
X, =XJ =
hs ... h.
We note that the columns and rows of X, are linearly independent over k. This

implies that anng(f); = 0.
By lemma 2.13, A = (ﬁ; 42) € My if and only if

4907} — (Ale + Ay X A1X2>

A3X1 + A4X3 A3X2

is symmetric. Since the entries of X; and X, = X are linearly independent, this

is equivalent to both

A1X1 0 d A2X3 A1X2
an
A3X1 0 A4X3 A3X2
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being symmetric. In particular, it implies that A3 X; = 0. Let a' be a row in As,
and define 6 = >°7 | @;0;. Then 0 = a'X; = [0O1f,...,00sf], i.e. 0= 9;0f =
ZH? T4 0i0g; for all i < s. This implies dg; = 0 for all j, and therefore, 6 f = 0.
Since anng(f); = 0, it follows that Az = 0.

Next we investigate A;X3 = (4;X5)T. We will use induction to prove that
both A; and A4 are identity matrices, up to a scalar. Let a;; = (Ay);; for all
1 S Z,j S S +q and bij = (Al)ij for all 1 S Z,] S s. Then

s+q s+q
(AsXs)ij = > (Aa)ir(Xa); Zazkhg+k 1,
k=1

and Similarly, (AlXZ)ji = ZZ:l bjkhi+l<:—1- Thus A4X3 = (AlXQ)T is equivalent

to the following set of equations;

s+q
Z%k@% 1= ijkhwk tforalll1<i<s+gqgand1<j <s. (%1)
k=1 k=1

Let ¢ = aq;. Consider first the equation ZZZ arghr =Y 3, bighy, which we
get from (1) by letting ¢ = j = 1. Since the non-zero h;’s involved are linearly
independent, it follows that ay, = 0 for all k > s. Next put i = 1 into (*1) to get
ZZZ’{ a1khjin—1 = Y py Djxhg. I ay, = 0 for all k > s — j + 3, then this equation
implies as_;j+2 = 0. By induction on j, a;; = 0 for all £ > 1. Hence (%) with
J = 1 reduces to ai1h; =Y 7, bjthy = bj_1hs_1 + bjsh, for all j. This implies
that bj, = cd;, for K = s — 1 and k = s. The symbol 0;;, is defined by 0;; = 1 for
all 7, and 0;; = 0 for all j # k.

Now assume for some 2 < i < s+ ¢, that bj, = cdj; for all 1 < j < s and
k > s —i. Consider the right-hand side of (x;). If & < s — 4, then h;x_1 = 0.
When k > s — 1, all b, are zero by the induction hypothesis, except b;; = c.
Thus Zizl bikhitx—1 consists of at most two terms, b; ;_;hs_1 (k = s — 1, requires
i < s)and chiyj_1 (k= 7, requires s —i < j <s). Henceif j = 1 and ¢ > s, then
(%1) becomes Zs+q a;xhy = ch;. Since hy_q, ..., hyy, are linearly independent, it
follows that a;; = cd;, for all £ > s and by s—; = a;5-1.

Assume for some 2 < j < s that we know a;, = ¢d;, for all k > s — 5 + 1.

Then the left-hand side of (1) consist of at most three terms, corresponding to
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k=s—j,k=s—j+1and k=1i>s— j+ 1. Hence (1) reduces to

Qi s—jls—1 + Qi s—jy1hs + chiyj = bjs—ihs—1+ chiyj_1.

(j <s) (i>s—j+1) (i < s) (1>s—17)

We have written under each term what it requires. The two terms ch;,;_; cancel
each other, except when i = s — j + 1. It follows that a; ;41 = cd; s—j+1 and
bjs—i = a;s—j. By induction on j, a;; = coi, for all & > 1, and b,y = a;5—; =
cdjs—; for all 7 > 1. By induction on 4, bj, = cd;, for all 1 < j,k < s, and
a;r = cdy, for all 1 < i,k < s+ g. This means that A; = ¢l and Ay = cl.

Finally, to finish the proof, we need to show that A, X3 is symmetric if and
only if A, € (Bé,...,Bé). Let a;; = (Ag);; forall1 <i<sand 1 <j<s+g,
and let a;; = 0 for 7 < 0. Ay X3 is symmetric if and only if

s+q s+q
Z aikhj+k_1 = Z ajkhi_;,_k_l forall 1 < j <1<s. (*2)
k=1 k=1

Assume for some 2 < i < s that a;p = 0 for all £ > s+ ¢+ 2 — i. Equation (x3)
with j = 1 says that ZZ:{ aixhie = Zzz a1hisk—1. Since hy =0 for k < s—1
and hs_1,..., hsyqt1 are linearly independent, it follows that ay s4442-; = 0 and
Qi = a1 p—i41 for all k = s —1,...,5 + ¢. By induction on %, a;;, = 0 for all
k>q+2and ay, = ay i+ forall (i,k) € {2,...,s} x{s—1,...,s+¢}.

Assume for some 2 < o < s that
aij = ayj—i41 for all pairs {(i,7) |i <aorj>s—a}. (x3)
This is true for @ = 2. For some o < 3 < s assume in addition that

A5 = A1 j—i+1 for all pairs

{G.9)| (G <p—2andj=s—a)or(i=aandj>s—F+2)},

(*4)

and also that
ag—-1,5s—a — Qa,s—F+1- (*5)
These assumptions hold for § = o+ 1. For all k£ > s — § + 2 it follows in

particular that agg_n+s = @1 k—a+1 = aax by putting (i,j) = (6,k — a + )
in (*3) and (¢,7) = (a,k) in (%4). Therefore, any term on the left-hand side
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of ZZ:{ Aakhpir—1 = zzg agrhotr—1 with s — 34+ 2 < k < s + ¢ cancel the
corresponding term on the right-hand side. In addition, we already know that
any term on the right-hand side with £ > ¢ + 2 are zero. Hence the equation

reduces to

aa,sfﬁh/sfl + aa,sfﬁJrlhs = aﬁ,sfahsfl + aﬁ,sfa+1hs-

This implies that ags_oq = aas—p and aqs—p+1 = ags—a+1. And because
A3-15-0 = Gas—p+1 DY (¥5) and ags_ai1 = @1s5-a-—p+2 Dy (x3), it follows that
g—1s—a = @1s—a—p+2. Lhese equations are exactly what we need to proceed
with induction on 3. This induction ends after 3 = s, proving (x4) and (x5) with
B = s+1. In order to continue with induction on «, we need (x3) with o — a+1.
Now (x4) with 3 = s+ 1 contains all these equations, except ass—q = a1,1-o. But
Uss—a = Qoo DY (%5) with 8 = s+ 1, implying ass—o = @ao = 0 = a11_,. Hence
we may do induction on «, finally proving (x3) with @ = s. Since ay, = 0
for all £ < 0 and all £ > ¢ + 2, this gives us exactly what we wanted, namely
Ay = Zizo a1k+1By,.

The converse statement, that Ay € (By, ..., B;) implies that A, X3 is sym-

metric, follows easily from equation (x3). This completes the proof. !

Remark 4.18: Proposition 4.17 involves polynomials gi,...,gs1+q € Sg—1 that
satisfy 0;419; = 0igj41 for all 1 < ¢ < sand 1 < j < s+ ¢. Using the {g¢;}
we defined hqy,...,h.—1 € Sq—2 by hiyj_1 = 0;g;. This actually implies that
Oiy1h; = Oihjyq for all 1 <7 < sand 1 < j < r —1. Indeed, if ¢+ < s and
j <r—1, then we may choose k < s+ ¢ such that h; = 0;_;119x. Hence

ai—i—lhj = 3z‘+13j—k+19k = 3i5j—k+19k+1 = aihj+1-

Assume conversely that we have polynomials hq,...,h,_1 € S, o satisfying
Oit1hj = O;hjyq forall 1 <i<sand1<j<r—1 Forsomeke{l,...,s+¢q},
consider {hy,...,hgrr—1}. Since this set satisfies 0;hx_14; = Ojhi_14; for all
1 < 4,7 < r, it follows that there exists g, such that 0;,gr = hi_14; for all
1 <@ <r. This defines ¢i,...,gs+q € Si—1, and 0;119; = hiyj = 0;gj11.

Remark 4.19: Let fl] = (AQXg)Z] = Z—:i aikhj+k,1 for 1 S Z,j S S. A2X3

is symmetric if and only if it is a Hankel matrix, i.e. fiy1; = fijq1 for all
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1 < 4,7 < s. One implication is obvious. To prove the other, assume that
Ay X5 is symmetric. Note that 0;11h; = 0;hj11 by remark 4.18. Therefore,
Okt1fij = Opfijyr forall 1 < ¢ < sand all 1 < j,k < s. Assume for some
2 <k <2s—2that fiy1; = fij41 forall 1 <4, j < ssuch that i 4 j = k. The
following now follows for all 1 <7< sand 1 < j < ssuchthat i+ j=%k+ 1.
If | < s, then Oifit1; = Oip1fiv1j—1 = O fij = Ofij41. Similarly, if [ > 1,
then 3zfi+1,j = 8lflfi+1,j+1 = alflfj+l,i+l = alfjJrl,i = alfi,jJrl- Here we also used
that Ay X3 is symmetric. Together this shows that 0, fi11,; = 0,fi j+1 for all [, and
therefore f;11; = fij+1. We have assumed j > 1 here, thus we still need to prove
that fry11 = fr2 when k < s. But this follows by the symmetry of A3 X3, which

implies fry11 = f1x+1. By induction on k, A;X3 is Hankel.

Remark 4.20: The assumption in proposition 4.17 that 0,119, = 0,g;41 for all
1 <i<sand1l<j<s+qensures that B, € My forall k =0,...,q. The extra
restrictions on the h;’s guarantee that M; = (I, By, ..., B,). There are other
restrictions we could impose on {h;} to achieve the same ends, but at least ¢+3 of
the h;’s must be linearly independent. To prove this, let v = dimy(hq, ..., h,_1).
Let us count the number of linearly independent equations that the symmetry of
Ay X5 imposes on the entries of Ay. Let f;; = (42.X3);;. By remark 4.19 we may
use the equivalent statement that A, X3 is a Hankel matrix.

For every i = 1,...,s — 1, the equation f;» = f;111 reduces to at most v
equations over k. For every j = 3,...,s, the equation f;; = fiy1,;-1 gives at
most one more equation, namely 9972 f;; = 9972 f,,1 ;1. All others are covered
by fij—1 = fit1,—2 since Oy fi; = Oxt1fij—1 for all £ < s. Thus we get at most
(s—1)(v+s—2) linearly independent equations. In order to make dimy, M; = ¢g+2,
we need to reduce the s(s+ q) entries of Ay to ¢+ 1. We can only hope to achieve
this if

(s—1(v+s—-2)>s(s+q) —(¢g+1)=(s—1)(s+qg+1).
Since s > 2, this is equivalent to v > ¢ + 3.

When using proposition 4.17, we need to construct the g;’s involved. By
remark 4.18, the condition on the g;’s is equivalent to the corresponding condition

on the h;’s. Since the h;’s have extra restrictions, it is easier to work directly with
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them. The next lemma tells us how the {h;} can and must be chosen.

Lemma 4.21: Let f € Ry. Define a homogeneous ideal J C R by

J=1I (g: 8:321):({@83-“—8“1@- i,jzl,...,r—l}).

Then the following statements are equivalent.
(a) J Canng f.
(b) There exists g € Rq such that 0,9 = 0;.1f foralli=1,...,r — 1.
This ¢ is unique modulo {(z(?).
(¢) There exists h € Ry such that O;h = 0,1 f foralli =2,...,r.
This h is unique modulo (z{?).

(d) f is a linear combination of the terms in (xy + txg + - - - + 1" x,) (@,

(e) f is a linear combination of the terms in (xz, +tx,_j + -+ +t""La)@,
Furthermore, if n > 2, then fi,..., f, € Rq satisty 0;fj41 = Oip1f; for all 1 <
i<sandl < j<mnifandonly if fi,..., f, are n consecutive terms in c;(x, +
tr,_y 4 -+t 2D for some ¢, € kt].

Remark 4.22: For any a = (ay,..., o) € Nj define o(a) = >_._,(r —i)a;. Let
la) =37, a; and m = max{o(«a)| >, o = d} = (r — 1)d, and define

g =Y =R,

for all 0 < k < m. Clearly, gq0, - . -, gam are linearly independent, and
L@ X
(Ir+txr_1+"'+t Il) —Zt Gdk -
k=0

Thus {gq} are the terms we speak of in lemma 4.21e. The lemma implies that
Ji ={f €Rq|J Canng f} = (gao, - - - , gam), hence dimy(R/J)g = m + 1 for all
d > 0.

Proof of lemma 4.21: The implications (b) = (a), (¢) = (a) and (d) = (a) are
all obvious. Furthermore, (d) < (e), because the two expansions have the same
terms, just in opposite order, since

@ _ ()

(r b0y 4o+ 17 ) D @y + day 4 (D) )
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To prove (a) = (b), assume that J C anng f. Forany i =1,...,7 let ¢; € k"
be the i unit vector, i.e. (¢;); = 1if j =7, and (e;); = 0 otherwise. In particular,
a=(a,...,0a,) = >, oe;. For any a such that |o| = d, let

goeiteiri(f) if ay > 0 for some i < r,

Ga =
0, if a, = d.

This is well defined since J C anng f. Note that g, is an element of k. Define
a polynomial g € Ry by g = szd gz, Tt follows that 0, = 0,1 f for all
i < r. Indeed, for all || = d — 1 we get 00,9 = gaye, = 0T f = 00541 f.
Obviously, if both g and ¢’ satisfy (b), then 0;¢' = ;41 f = 0;g for all i < r, hence
g — g € {z!D). This proves (a) = (b). Moreover, we obtain a proof of (a) = (c)
by renaming the variables (xq,...,2,) — (2, ..., z1).

Note that (a) = (e) follows from (a) = (b) and the last statement. Thus we
are done when we prove the last statement. One implication is obvious. To prove
the other, let n > 2 and assume that fi,..., f, € Rq satisty 0;f;11 = 0i11f; for
all 1 <i < sand 1< j<mn. Inparticular, J C anng(f;) for all . From what
we have already proven, we may for k£ > n inductively choose f; € R4 such that
Oifj41 = Oip1f; for all i < r and 9%(fy) = 0, and similarly for k£ < 0, except then
Ol (fr) = 0. For all a = (av,... ), a; > 0, let o(a) = >i_,(r — i)oy. Since
0i(fr) = Or(fr—(r—s)), it follows that 0%(fi) = 8,‘,1(fk_o(a)) for all k. Obviously,
max{o(a)| > a0, =N} = (r—1)-N. If k > n+(r—1)N, then for all || > N
we have 9°(fi,) = 0%(fr—o(a)) = 0, hence f = 0. Similarly, f, = 0 for all k¥ < 0.

Pick a,b > 0 such that f_,, f, # 0and f_4_1 = fop1 = 0. (In fact, f_, = ¢z
and f, = cox{®.) Define f, = Z:g th fo_a € Ra[t]. Tt follows for all i < r that

a+b a+b
(0; = t0i1)(fe) = Oify — tOipa fe = Ztkaifk—a — tz %01 foa
k=0 k=0
= Z %0 fr—a — Ztk—i_laifk:fmrl = 0.
kez kez

Thus anngy)(f;) 2 (01 — t0s, ..., 0r—1 — tO,, 03+1). Note that
annpy) ((xr + t”_lml)(d)) = ((91 —t09,...,00_1 — tO,, 6§+1).

By lemma 1.4 there exists ¢, € k(t) such that f, = ¢,(2, + -+ +t"'21)@. Since
fi € Ralt], it follows that ¢; = 92 f, € k[t], finishing the proof. O
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Remark 4.23: By remark 4.18 and lemma 4.21, the polynomials hq, ..., h,_
in proposition 4.17 must be r — 1 consecutive terms in ct(ZZ;B thas_y) @2 for
some ¢, € k[t]. We also need h; =0 for all i < s—1 and hs_1, ..., hsiqt1 linearly
independent. Since there are (d — 2)(s — 1) + 1 linearly independent terms in

( - t*z,_;)"?), those conditions can be met if and only if
G+2< (d=2)(s—1).

In particular, it is possible to construct such examples with ¢ = 1 as long
as (d —2)(s—1) > 3,i.e. s >4 whend=3,s>3whend =4, and s > 2
when d > 5. This is what we did in examples 4.15 and 4.16. We may now also

construct examples having ¢ > 1.

Remark 4.24: We started this chapter with the following question 4.1. Given
a polynomial f € Ry, d > 3, is it possible to find f; € Ry[t1,...,t,] such that
fo = f and f; splits regularly dimj, My — 1 times over k(ty,...,t,)7 When r <4
we proved in theorem 4.9 that this is always possible. When r > 5 and d > 5, or
r>7and d=4,orr>9and d = 3, we have found examples that this is not

always possible. This leaves only the six pairs

(r,d) € {(5,3),(6,3),(7,3),(8,3),(5,4), (6,4) }.

We end this chapter with the following example. It is basically the first
degenerate splitting example we ever considered, and theorem 4.5 was formulated

and proven with this example as a model.

Example 4.25: Let A € Matg(r,r) be the fundamental Jordan block, i.e.

1, ifj=i+1,

Aij =
0, otherwise.

Let the ideal J C R be defined as in lemma 4.21, and let
[=10(0A0)=L(3 0 %1 %) =JT40,(0a...0,).

Foralld > 0and k=0,...,(r — 1)d, define hg, € Ry by

(r—1)d
(o1 +tay+ -+ 072,) Y = 3 hg. (4.2)
k=0
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If we let 7(o) = > i, (¢ — 1)cy;, then this simply means that

hdk: Z l'(a).

|a|=d

T(a)=k
Note that Oihgr, = ha—1x—iy1 for all i =1,... 7. Let f € Ry. It follows from
lemma 4.21 that I C anng f if and only if f € (hgo, ..., har—1). This implies that

Iy ={f€Ry|ICampf} = (hao,. .., has—1),

and therefore dimy,(R/I)y = r for all d > 0. Note that 0,(hq,) = 0forall k < r—1,
thus anng(f)1 # 0if f € (hao,- .., har—2)-

Let d > 3 and f = hg,—1. Clearly anng(f); = 0, hence proposition 2.21
implies that My is a commutative k-algebra. Since A € My, it follows by lemma
4.8c that M; = k[A]. Let us prove that

annp f=1+01"-(01,...,0,_1). (4.3)

Since O;hagr = ha_1x_is1, it follows that & 20, f = hi,; = x,41; for all i =
1,...,7. These are linearly independent, and it follows that {0f0;f}_, are
linearly independent for all 0 < k£ < d — 2. Hence for all 0 < e < d we
get dimg(R/anng f). > r = dimg(R/I).. Since I C anng f, it follows that
anng(f)e = I for all e < d and H(R/anng ) = (1,r,7,...,r,1). In degree d
anng f needs r — 1 extra generators. Since 9¢710,f = 0 for all i < r, equation
(4.3) follows. Note that anng f is generated in degree two and d only.

Equation (4.2) can be used to define a degenerate splitting of length r of f.

Indeed, substituting £ + 1 for r, the equation may be rewritten as

ha. + Ztiikhdi = ¢k <(SL’1 +ixg+ -+ thk+1)(d) — Ztlhdl>

i>k i<k

Since hy; € k1, ..., 2x)PT for all i < k, we may proceed carefully by induction
and prove that there exists a polynomial h} € k[t1,... tg][z1,..., zx1]PF such
that h) = hg, and h} splits k times inside k(ty,...,t;)[x1, ..., 2p1)PF. In par-
ticular, there exists f; € Rq[t1,...,t,—1] such that fo = f and f; splits r — 1

times over k(ty,...,t,_1), which is also what theorem 4.5 guarantees. In fact, the
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degenerate splitting f; we get from equation (4.2) is essentially the same as the
one theorem 4.5 gives us, since A*f = Ohg, 1 for all k.

Note that f; ~ 2{® 4 .- + xﬁd), thus this example is an extremal case. Other
examples of f € Ry such that My = k[A] and A is in Jordan normal form can be

constructed from this one.



CHAPTER 5

(zeneralizations

A central object in this paper has been My, the matrix algebra that we have
associated to any f € Ry4. In this chapter we consider how to generalize the con-
struction of My and some of the results in section 2.2. In fact, we will define two
different generalizations of My, and both give is new algebras. Indeed, we show
that both M7 = (®2h MS) ®(Desg—2 Matp, (r,7)), where M/ is defined below,
and Myp = {A € Maty(N,N)| (D AD) C anng f} are (non-commutative)
k-algebras, see propositions 5.5 and 5.11.

We start by defining a k-vector space M7 that generalizes My in the sense
that M = M;.

Definition 5.1: Let d > 0 and f € R,;. For all e > 0 define Mg by
M) = {A € Matg,(r,r)| I,(0 AD) C annp f}.

Lemmas 2.12 and 2.13 were important tools in the study of M. They provided
a connection between M, and polynomials g € R, that we later used to find reg-
ular and degenerate splittings of f. Lemma 5.2 updates both lemmas, connecting

M/ to polynomials g € R4_. that are related to f.

Lemma 5.2: Supposed > e >0 and f € Ry.

(a) Let A € Matg, (r,7). The following are equivalent.
(i) I2(0 AQ) C anng f.

(i) A9JTf is a symmetric matrix.

107
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(iii) There exists g € Rq_. such that 0g = AJf.

Furthermore, this g is unique if e < d.

(b) Let g € Ryq—.. The following are equivalent.
(i) There exists A € Matg,_(r,r) such that 0g = AJf.
(i) Ri(g) C Res1(f)-

(ili) anng(f)i—e—1 € anng(g)d—c—1-

Proof: The proof of the equivalences in (a) is an exact copy of the proof of lemma
2.13, and the uniqueness of g is obvious. To prove (b), the existence of an A such
that dg = AJf simply means that R;(g) C Rey1(f). By duality this is equivalent
to anng(g)g—e—1 = R1(9)" 2 Resa(f)" = anng(f)a—c-1- 0

Definition 5.3: If d > e > 0 and f € Ry, let
v ML — R

be the k-linear map defined by sending a matrix A € M/ to the unique polynomial
g € Ry satistying dg = AJf, cf. lemma 5.2a.

v/ is indeed a map of k-vector spaces since dg = AJf is k-linear in both
A and g. In chapters 3 and 4 we used elements in the image of v; = fyg to
produce regular and degenerate splittings of f. Even though we do not find such
an explicit use of the polynomials in im~/ when e > 0, we are still interested in

its image. We start by calculating the kernel and image of 7/ .
Lemma 5.4: Suppose d > e >0 and f € Ry. Then

imqf = (mpanng f)g.

kerv) = {A € Matpg, (r,7)| A0f = 0}.

Moreover, if we let 31; be the minimal number of generators of anng(f) of degree

J, then

dimy im ! = dimg(R/ann f)g—c + Bra—e,

dimy kery! = re - (T;lie) + 7 - dimy ann(f)e1.
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Proof: By lemma 5.2b, imv/ = {g € Ry_.| anng(f)yg_e1 C anng(g)g_c_1}-
Since anng g is determined by its degree d — e piece by lemma 1.2a, it follows
that im~/ = (R; - anng(f)g_e_1)* = (mpanng f)+ .. Evidently, R anng f4 . 1

is a k-vector subspace of anng(f)4—. of codimension 3, 4_.. Hence
dimy im ! = codimy (R - anng(f)g—e—1) = dimg(R/ann f)g—ec + F1d—e-

Since 9/ (A) = AJf, we get kerv/ = {A € Matg, (r,7) | A0f = 0}. If we let
Vo={D=[D;...D,JT€ R.| >, D;0; € ann([)e41}, we see that dimy kerv/ =
r - dimy V.. We note that V. is the kernel of the map R, — R4_._1 given by
D +— . D;0;(f). This map is the composition R, — R.i1 — R4_e_1, and its

image is R..1(f) since R, — R,y is surjective. It follows that

dimy V, = r - (T_?e) —dimg Re1(f) =€~ (’;1:6) + dimy ann(f)eq1- O

The first significant property that My possesses is that it is closed under
matrix multiplication when d > 3. Our definition of M/ allows us to transfer this
to Mf = @620 Mf

J, with a similar restriction. The following proposition should

therefore come as no surprise.

Proposition 5.5: Suppose a + b < d — 3. Matrix multiplication defines a map
Mz{ x MI{ - C{erv
and all commutators belong to ker~/ . In particular, the augmentation
—~ d—3
M=o M o ® Matg(rr)
e=0 e>d—2
is a (non-commutative) graded k-algebra with unity.

Proof: The proof of proposition 2.21 generalizes immediately. ([l

Since MJ = Matg,_(r,r) for all e > d — 1, we see that MY differs from M/
only in degree d — 2. It is interesting that the image of the multiplication map
Mf x M — Matg,_,(
An easy example is 7 = 2 and f = 2{? + 22 € R,. Then 997f = I, thus M

consists of all symmetric matrices. But the product of two symmetric matrices

r,r) is generally not contained in MJ,, if a +b=d — 2.

is not symmetric, unless they commute.



110 5 GENERALIZATIONS

We now want to study im v/ in more detail. To help us do that we define the
following graded R-modules.

Definition 5.6: If f € Ry, let F/ = @, F/ and Gf = &, GI where

Fef ={9 € Ry | ann(f) C ann(g)y Vk < d — e},

In the following we will often drop the superscripts (7). Obviously, G4 = k
and G, = F, = 0 for all e > d. Note that G, = {g € Ry_e| anng(f)g_e_1 C

anng(g)q—e—1} for all e by lemma 1.2a. In particular, lemma 5.2b implies that
G. = im’yg forall 0<e<d.

The next lemma summarizes some nice properties of F' and G.

Lemma 5.7: Suppose f € Ry. Then the following are trie.

(a) G={geR|0ige FVi} O F=R(f),
(b) dimy(G/F)e = (14—, for all e, and
(¢) G=Homg(R/mpganng f, k).

In particular, G is a graded canonical module for R/mp anng f, and we can get a
free resolution of G (as a graded R-module) by computing one for R/mpg anng f

and dualizing.

Proof: Recall that R.(f)* = anng(f)4_. by lemma 1.2b. Dualizing this equation
gives R.(f) = {9 € Ra—e|Dg = 0V D € anng(f)s_}, which equals F, by
lemma 1.2a. Combining this with lemma 5.2b, we get G. = {g € Ry | R1(g) C
Rei1(f) = Feyq}. This proves (a).

(b) follows from lemma 5.4 if 0 < e < d, and it is trivial otherwise.

Before we prove (c), we want to say something about dualizing F'. Note that
R. = Homg(R,, k) since R by definition is the graded dual of R. This implies
R. = Homg (R, k). Since F;_. C R, the map R, — Homy(Fy_., k) is clearly
surjective, and its kernel is {D € R.|D(g) =0V g € F;_.} = F; ., = anng(f)..
Thus Homg (Fy_., k) =(R/ anng f)., and therefore Homy(F, k) = R/ anng f. This
explains why F* 2= F', which is the Gorenstein property of F.
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Turning to G, the map R, — Homy (G4, k) is surjective as above. Its ker-
nel is {D € R.|D(g) =0Vg € Gy} = G5 ., and G; , = (mganng f). by
lemma 5.4. This shows that Homy (G, k)= R/mganng f, proving (c¢). The last

statements follow since R/mpganng f is Artinian. O

Since F' = R(f), multiplication in R induces a ring structure on F' given by
D(f)~ E(f) = DE(f). For all a,b such that a + b # d, we can extend x to a
bilinear map F, X Gy — Gayp by D(f)*x g = D(g). This is well defined because
a # d — b implies anng(f), C anng(g),. The equation D(f) x g = D(g) is not
well defined when a =d — b and g € Gy \ Fp, thus G is not quite an F-module.

In order to extend the multiplication to all of G, we need an even larger
restriction on the degrees, as seen in the following proposition. Note that M7
contains R-1 = {D-I|D € R}, the subalgebra consisting of all multiples of the
identity matrix. Clearly, if D € R., then v/ (D - I) = D(f). Thus v/ : M — G,
maps R, - I onto F,.

Proposition 5.8: v = @, . induces a multiplication x : G, X Gy — Gy for

a-+b < d— 3 that is associative, commutative and k-bilinear. f € G acts as the
identity. Furthermore, D(f)*h = D(h) for all D € R, and h € G,,.

Proof: Given g € GG, and h € Gy, we can find A € M, and B € M, such that
g = Ya(A) and h = 7(B) since G, = im~,. Since a + b < d — 3 it follows from
proposition 5.5 that AB € M,,, and BAJf = ABOf. We define g x h to be

gxh= ’Ya-‘rb(AB) € Ga+b-

First we prove that this is well defined. Assume that 7,(A’) = v,(A) and
YWw(B') = 4(B). Then A'0f = A0f and B'0f = BOf, and therefore

O(Vars(A'B")) = AB'Of = A'BOf
= BA'Of = BAOf = ABOf = 0(Vass(AB)).

Hence /ya—l—b(A/B,) = 7a+b(AB)'
Now, ABOf = BAOf is equivalent to va1s(AB) = Ya1s(BA), which implies
gxh = hxg. Associativity follows from associativity of matrix multiplication, and

the bilinearity is obvious. Furthermore, from f = ~o(I) it follows that fxg =g
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for all ¢ € G,y a < d—3. Finally, if D € R,, then D(f) = ~,(D - I). Hence
D(f) x h =7a(D - I) x %(B) = Yas(D - B) = D(h). 0

The last statement, D(f) x h = D(h), says that x restricts to the “module”
action F, X Gy — Gg.p, but with the stronger requirement a +b < d — 3. Let us
extend the multiplication x : G, X G, — Gqyp by zero if a+b > d—2. We do this
to get an algebra, but note that * no longer restricts to D(f) x E(f) = DE(f)
on F"whena+b>d— 2.

Corollary 5.9: The truncation G = ®3 G, is a commutative k-algebra.
Proof: This is immediate from proposition 5.8. O

Remark 5.10: Proposition 5.8 implies in particular that G is a module over
Gy for all e < d — 3. We first discovered this the following way. Let N =
(Zif), and fix a basis {D1,..., Dy} be for R.y1. Define D = [Dy,---, Dy]" and
M! = {A € Maty(r, N) | I,(0 AD) C ann f}. Just slightly modifying ideas in this
chapter, it is easy to see that there is a surjective map M. — G, and that matrix
multiplication M{ x M. — M/ induces the same module action Gy x G, — G, as

above.

There are other ways, in addition to M/, to generalize the construction of M.
We feel the following is worth mentioning. Fix some e > 1, and let N = dimy, R, =
(""*). Choose a basis D = {Dy,..., Dy} for R., and let D = [D; ... Dy]". For
any d > 0 and f € Ry, we define

M p ={A e Mat,(N,N)|I,(D AD) C anng f}.

My p is clearly a k-vector space containing the identity matrix. We note that
My = My, thus this is another generalization of M. However, one of the basic
lemmas we used to study My, lemma 2.13, does not generalize to M;p when
e > 2. That is, I5(D AD) C ann f does not imply that there exists g € R4 such
that Dg = ADf. The converse implication is obviously still true. On the other
hand, lemma 2.12 generalizes, i.e. ann(f)s—. C ann(g)s—. if and only if there

exists A € Maty(N, N) such that Dg = ADf. But the reason for including My p

here, is that proposition 2.21 generalizes.
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Proposition 5.11: Suppose e > 1 and d > 3e. Let f € Ry. Then M;p is
closed under matrix multiplication. If furthermore ann(f). = 0, then My p is a

commutative k-algebra.

Proof: Pick A, B € My p. Note that for all 4, 7,k the 3 x 3 minor

belongs to ann(f)s. by expansion along the third column. Expanding along the

third row proves that

for all 4,7 and k. Since d > 3e it follows that I5(AD BD) C ann f. Hence
(AD)(BD)'(f) = ADD'(f)BT is symmetric, and therefore

ABDD'(f) = ADDY(f)B"= BDD'(f)A"= DD'(f)B'A"= DD'(f)(AB)".
This means that AB € M p. Moreover,
ABDD'(f) = DD'(f)BTAT= BDD'(f)AT = BADD'(f),

which implies that (AB — BA)Df = 0. If ann(f). = 0, then AB = BA. O
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