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The problem professor Schreyer originally gave me is the following. Consider
a homogeneous polynomial f of degree 3 (we were looking at double hyperplane
sections of canonical curves) that is a sum of two polynomials in separate vari-
ables, that is f = g + h with g ∈ k[x1, . . . xs] and h ∈ k[xs+1, . . . , xr] up to base
change. The minimal resolution of the ideal

({∂i∂j | i = 1, . . . , s, j = s+ 1, . . . , r}) ⊆ R = k[∂1, . . . , ∂r]

will be part of any resolution of ann f . Therefore the graded Betti number βr−1,r

of R/ ann f will be nonzero. He asked if I could prove that this was an equivalence.
After computing some examples, I realized degree three did not matter much,

and I wondered if something stronger might be true. Could 1 + βr−1,r be the
maximal length of an �additive splitting� of f? It was also clear that I had to
allow degenerations of such splittings. I decided to take the simple approach of
de�nition 2.7 and restrict my attention to �deformations� de�ned over a polyno-
mial ring. In the end it turned out that 1 + βr−1,r does not always count the
length of a maximal degenerate splitting.
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Chapter 1 contains a brief discussion of background material. In chapter 2 I
de�ne precisely want I mean by regular and degenerate additive splittings. I also
de�ne a matrix algebra Mf , which probably is the most important new object in
this thesis, and I give some basic results about Mf and additive splittings.

In chapter 3 I e�ectively determine all regular splittings, and I use this to cal-
culate the minimal free resolution of R/ ann f and its graded Betti numbers. I also
discuss some consequences for PGor(H), the scheme parameterizing all graded
Artinian Gorenstein quotients of R. Chapter 4 studies degenerate splittings. The
central question is whether we can use all of Mf to construct generalizations of f
that splits βr−1,r times. I give some conditions that implies a positive answer, and
I construct several counter examples in general. Finally, chapter 5 generalizesMf

and some results about it.

June, 2005 Johannes Kleppe

ii



Contents

Preface i

1 Introduction 1
1.1 Polynomials and divided powers . . . . . . . . . . . . . . . . . . . 5
1.2 Annihilator ideals and Gorenstein quotients . . . . . . . . . . . . 7

2 Additive splitting 11
2.1 What is an additive splitting? . . . . . . . . . . . . . . . . . . . . 11
2.2 The associated algebra Mf . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Determinantal ideals . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Regular splittings 31
3.1 Idempotents and matrix algebras . . . . . . . . . . . . . . . . . . 32
3.2 Idempotents and regular splittings . . . . . . . . . . . . . . . . . . 39
3.3 Minimal resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 The parameter space . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Degenerate splittings 81
4.1 Positive results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Counter examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Generalizations 107

Bibliography 115

iii





Chapter 1

Introduction

It is well known that any homogeneous polynomial f of degree two in r variables
over a �eld of characteristic 6= 2 can be written as a linear combination of n =

rankH ≤ r squares. Here H = (∂i∂jf) is the Hessian matrix of f . The usual way
to generalize this to higher degrees is to ask how to write a form f of degree d as
a sum of powers of linear forms, f =

∑n
i=1 cil

d
i , and how small n can be. This is

usually called Waring's problem, and has been studied by many people and has
been solved for general f .

There is, however, a di�erent way to generalize the sum of squares theorem.
If we write f =

∑n
i=1 cil

2
i with n minimal, then l1, . . . , ln are necessarily linearly

independent. For higher degrees, when f =
∑n

i=1 cil
d
i and d ≥ 3, the li's can

no longer be linearly independent, except for very special f . With this in mind,
we see that there is another question that naturally generalizes of the sum of
squares theorem: When is it possible to write f as a sum of several homogeneous
polynomials in independent sets of variables? We will call this a regular splitting
of f (de�nition 2.4). Some examples of polynomials that split regularly are f =

x3
1 +x2x3x4, f = x1x

6
2 +x2

3x
5
4 +x3

4x
4
5 and f = (x1 +x2)

8 +x3
2(x2 +x3)

5. Sometimes
there exist more than one regular splitting of the same polynomial, like f =

x2
1 + x2

2 = 1
2

(
(x1 + x2)

2 + (x1 − x2)
2
).

To make the theory work in positive characteristics we assume that f is a
homogeneous polynomial in the divided power algebra R = k[x1, . . . , xr]

DP . The
polynomial ring R = k[∂1, . . . , ∂r] acts on R by partial di�erentiation. An im-
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2 1 Introduction

portant ideal in R will be annR f , the set of D ∈ R that annihilates f , i.e.
D(f) = 0. It is well known that R/ annR f is a Gorenstein ring of dimension
zero, and furthermore that every graded Artinian Gorenstein quotient arises this
way, cf. lemma 1.3.

To study the splitting behavior of a homogeneous polynomial f of degree d,
we associate to f the following set of r × r-matrices.
De�nition 2.14: Given f ∈ Rd, de�ne

Mf = {A ∈ Matk(r, r) | I2(∂ A∂) ⊆ annR f}.

Here ∂ = [∂1, . . . , ∂r]
T is a column vector, thus (∂ A∂) is the r × 2 matrix

consisting of the two columns ∂ and A∂, and I2(∂ A∂) is the ideal generated by
its 2× 2 minors. The study of Mf has a central position in this paper. One goal
is �gure out what Mf can tell us about f . To transfer matrices A ∈ Mf back
into polynomials g ∈ R, we also de�ne a k-linear map

γf : Mf → Rd

sending A ∈ Mf to the unique g ∈ Rd that satis�es ∂g = A∂f (de�nition 2.16).
An important property of Mf is the following.
Proposition 2.21: Let d ≥ 3 and f ∈ Rd. Mf is a k-algebra, and all commut-
ators belong to ker γf . In particular, Mf is commutative if ann(f)1 = 0.

In chapter 3 we analyze the situation of regular splittings completely. In
particular, we prove that the idempotents in Mf determine all regular splittings
of f in the following precise way.
Theorem 3.7:
Assume d ≥ 2, f ∈ Rd and annR(f)1 = 0. Let Coid(Mf ) be the set of all complete
sets {E1, . . . , En} of orthogonal idempotents in Mf , and let

Reg(f) = {{g1, . . . , gn} | f = g1 + · · ·+ gn is a regular splitting of f}.

The map {Ei}ni=1 7→ {gi = γf (Ei)}ni=1 de�nes a bijection

Coid(Mf ) → Reg(f).
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In particular, there is a unique maximal regular splitting of f when d ≥ 3.

We also give an extended version of this theorem. In the generalization (the-
orem 3.18) we also prove that, loosely speaking, Mf = ⊕n

i=1Mgi
, if these algebras

are computed inside the appropriate rings. Note in particular the uniqueness
when d = 3, which is not there when d = 2.

In the last two sections of chapter 3 we examine a regular splitting f =
∑n

i=1 gi

more carefully. For each i, the additive component gi is a polynomial in some
divided power subring Si ⊆ R. The de�nition of a regular splitting requires that
these subrings are independent in the sense that (Si)1 ∩

∑
j 6=i(Sj)1 = 0 for all

i. We let Si be a polynomial subring of R dual to Si. Assuming the minimal
free resolutions of every Si/ annSi

(gi) is known, then we are able to compute the
minimal free resolution of R/ annR f . Theorem 3.33 does this for the case n = 2.
The induction process to get n ≥ 2 is carried out for the shifted graded Betti
numbers (see equation (1.1) below), culminating in the following theorem.
Theorem 3.35:
Let d ≥ 2 and f, g1, . . . , gn ∈ Rd. Suppose f = g1 + · · ·+ gn is a regular splitting
of f . Let si = dimk Rd−1(gi) for every i. Let s =

∑n
i=1 si, and de�ne

νnk = (n− 1)

(
r

k + 1

)
+

(
r − s

k + 1

)
−

n∑
i=1

(
r − si
k + 1

)
.

Denote by β̂fkj and β̂gi

kj the shifted graded Betti numbers of R/ annR(f) and
R/ annR(gi), respectively. Then

β̂fkj =
n∑
i=1

β̂gi

kj + νnkδ1j + νn,r−kδd−1,j

for all 0 < j < d and all k ∈ Z. Here the symbol δij is de�ned by δii = 1 for all i,
and δij = 0 for all i 6= j.

We proceed to study some consequences for PGor(H), the quasi-projective
scheme parameterizing all graded Artinian Gorenstein quotients R/I with Hilbert
function H. We de�ne a subset PSplit(H1, . . . , Hn) ⊆ PGor(H) that paramet-
rizes all quotients R/ annR f such that f has a regular splitting f =

∑n
i=1 gi

such that the Hilbert function of R/ annR(gi) is Hi for all i, and we are able to
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prove under some conditions that its closure PSplit(H1, . . . , Hn) is an irreducible,
generically smooth component of PGor(H) (theorem 3.47).

In chapter 4 we turn our attention to degenerate splittings, i.e. polynomials
that are specializations of polynomials that split regularly. A simple example is
f = x(2)y = 1

t

(
(x + y)(3) − x(3)

). The main question that we are trying to shed
some light upon, is the following.

Question 4.1: Given f ∈ Rd, d ≥ 3, is it possible to �nd ft ∈ Rd[t1, . . . , tn]

such that f0 = f and ft splits regularly dimkMf − 1 times over k(t1, . . . , tn)?

By lemma 4.2, dimkMf is an upper bound for the length of a regular splitting
of ft. Thus the question asks when this upper bound is achieved. This would
mean that Mf not only determines the regular splittings of f , but that we are
able to use all of Mf to construct degenerate splittings as well.

We �rst prove that we can construct an ft with the desired properties using
all powers of a single nilpotent matrix A. This is theorem 4.5. In particular it
gives a positive answer to question 4.1 in case Mf is generated by A alone as a
k-algebra.

Theorem 4.5:
Let d ≥ 3 and f ∈ Rd. Assume that Mf contains a non-zero nilpotent matrix
A ∈ Matk(r, r), and let n = index(A)− 1 ≥ 1. Then f is a specialization of some
ft ∈ Rd[t1, . . . , tn] that splits regularly n times inside Rd(t1, . . . , tn).

We later give a generalized version of this theorem. A careful analysis shows
that this covers most cases with r ≤ 4, and we are able to solve the rest by hand.
Hence we get the following result.

Theorem 4.9:
Assume that r ≤ 4 and k̄ = k. Let f ∈ Rd, d ≥ 3, satisfy annR(f)1 = 0. Then
for some n ≥ 1 there exists ft ∈ Rd[t1, . . . , tn] such that f0 = f and ft splits
regularly dimkMf − 1 times over k(t1, . . . , tn).

The rest of chapter 4 is devoted to constructing examples where question 4.1
has a negative answer. We are able to do this for all (r, d) with r ≥ 5 and d ≥ 3,
except the six pairs (5, 3), (6, 3), (7, 3), (8, 3), (5, 4) and (6, 4).
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Finally, in chapter 5, we consider some generalizations of Mf . We do not yet
have a particular use for these generalizations. However,Mf proved very useful to
us, and we show how to de�ne two similar algebras and prove some basic results
about them.

1.1 Polynomials and divided powers

Let R = k[∂1, . . . , ∂r] be a polynomial ring in r variables with the standard
grading over a �eld k. As usual, we denote by Rd the k-vector space spanned
by all monomials of total degree d. Then R = ⊕d≥0Rd, and elements in ∪d≥0Rd

are called homogeneous. An ideal I in R is homogeneous if I = ⊕d Id where
Id = I ∩Rd. The unique maximal homogeneous ideal in R is mR = (∂1, . . . , ∂r).

The graded Betti numbers βij of a homogeneous ideal I are the coe�cients
that appear in a graded minimal free resolution of I. We will often speak of the
�shifted� graded Betti numbers, by which we mean β̂ij = βi,i+j. So if 0 → Fc →
· · · → F1 is a graded minimal free resolution of I, then the ith term is

Fi∼= ⊕
j≥i

βijR(−j) = ⊕
j≥0

β̂ijR(−i− j) (1.1)

In particular, β1j is the minimal number of generators of I of degree j.
Let R = ⊕d≥0Rd be the graded dual of R, i.e. Rd = Homk(Rd, k). It is called

a ring of divided powers, and we write R = k[x1, . . . , xr]
DP . Let N0 denote the

non-negative integers. The divided power monomials{
x(α) =

r∏
i=1

x(αi)
i

∣∣∣∣ α ∈ Nr
0 and |α| =

r∑
i=1

αi = d

}
form a basis for Rd as a k-vector space. This basis is dual to the standard
monomial basis for Rd, i.e. {∂β = Πi ∂

αi
i | β ∈ Nr

0 and |β| = d}, in the sense that
x(α)

(
∂α
)

= 1 and x(α)
(
∂β
)

= 0 for α 6= β. The ring structure of R is the natural
one generated by

x(a)
i · x(b)

i =
(
a+b
a

)
x(a+b)
i ,

see [Eis95, Section A2.4] or [IK99, Appendix A] for details. We will refer to
elements of Rd simply as homogeneous polynomials or forms of degree d. If



6 1 Introduction

char k = 0, we may identify R with the regular polynomial ring k[x1, . . . , xr] by
letting x(d)

i = xdi /d!

Let R act on R by
∂β
(
x(α)

)
= x(α−β),

i.e. the action generated by ∂i
(
x(d)
i

)
= x(d−1)

i and ∂j
(
x(d)
i

)
= 0 for all i 6= j.

The reason for our notation is that ∂i is indeed a derivation, which follows by
bilinearity from

∂i
(
x(a)
i

)
· x(b)

i + x(a)
i · ∂i

(
x(b)
i

)
= x(a−1)

i · x(b)
i + x(a)

i · x(b−1)
i

=
(
a+b−1
a−1

)
x(a+b−1)
i +

(
a+b−1
a

)
x(a+b−1)
i

=
(
a+b
a

)
x(a+b−1)
i =

(
a+b
a

)
∂i
(
x(a+b)
i

)
= ∂i

(
x(a)
i · x(b)

i

)
.

Under the identi�cation x(d)
i = xdi /d! when char k = 0, the action of ∂i becomes

normal partial di�erentiation with respect to xi.
Arrange the elements of the standard monomial bases for Rd and Rd into

column vectors h and D using the same ordering. The fact that they are dual
can then be expressed as DhT = I, the identity matrix. If {f1, . . . , fN} is any
basis for Rd, N = dimkRd =

(
r−1+d
d

), then there is a dual basis for Rd. Indeed,
there exists an N × N invertible matrix P such that f = [f1, . . . , fN ]T = PTh.
Let E = P−1D. Then EfT = P−1DhTP = I, hence E is the dual basis of f (as
column vectors).

If S is any ring, let MatS(a, b) be the set of a× b matrices de�ned over S, and
let GLr(S) be the invertible r × r matrices. When S = k, we usually just write
GLr. We will frequently make use of the following convention.

If v ∈ Sb is any vector and A ∈ MatS(a, b) any matrix, we denote by
vi the ith entry of v and by Aij the (i, j)th entry of A.

In particular, (Av)i =
∑b

j=1Aijvj is the ith entry of the vector Av, and the (i, j)th

entry of the rank one matrix (Av)(Bv)T is (AvvTBT)ij = (Av)i(Bv)j.
For any P ∈ GLr, de�ne φP : R → R to be the k-algebra homomorphism

induced by xi 7→
∑r

j=1 Pjixj for all i. We usually let x denote the column vector
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x = [x1, . . . xr]
T, thus φP is induced by x 7→ PTx. The �dual� map R→ R, which

we also denote by φP , is induced by ∂ 7→ P−1∂, where ∂ = [∂1, . . . , ∂r]
T. For any

D ∈ R and f ∈ R, it follows that

φP (Df) = (φPD)(φPf),

and in particular, annR(φPf) = φP (annR f).
If D ∈ MatR(a, b) and h ∈ MatR(b, c), then Dh denotes the a × c matrix

whose (i, j)th entry is (Dh)ij =
∑b

k=1Dik(hkj) ∈ R. Of course, this is nothing
but the normal matrix product, where multiplication is interpreted as the action
of R and R. We already used this notation when discussing dual bases. Also,
for any f ∈ R, we let D(f) (or simply Df) denote the a × b matrix whose
(i, j)th entry is (Df)ij = Dij(f) ∈ R. It follows that if E ∈ MatR(a′, a), then
E(D(f)) = (ED)(f).

If A ∈ MatR(a, b) and vi ∈ Ra is the ith column vector in A, then we let
Ik(A) = Ik(v1 · · · vb) be the ideal generated by all k × k minors of A (k ≤ a, b).
Of course, this only depends on imA = 〈v1, . . . , vb〉 = {

∑b
i=1 civi | c1, . . . , cb ∈ k}.

1.2 Annihilator ideals and Gorenstein quotients

Given any k-vector subspace V ⊆ Rd, de�ne its orthogonal V ⊥ ⊆ Rd by

V ⊥ = {D ∈ Rd |Df = 0 ∀ f ∈ V }.

Similarly, if U ⊆ Rd, de�ne U⊥ = {f ∈ Rd |Df = 0 ∀D ∈ U}.
Let n = dimk V and N = dimkRd = dimk Rd. Pick a basis {f1, . . . , fn} for V ,

and expand it to a basis {f1, . . . , fN} for Rd. Let {D1, . . . , DN} be the dual basis
for Rd. Clearly, V ⊥ = 〈Dn+1, . . . , DN〉, the k-vector subspace of Rd spanned by
Dn+1, . . . , DN . Therefore,

dimk V + dimk V
⊥ = dimk Rd.

By symmetry, this equation is true also when applied to V ⊥, that is, we get
dimk V

⊥ + dimk V
⊥⊥ = dimk Rd. Hence it follows that dimk V

⊥⊥ = dimk V .
Since V ⊥⊥ = {g ∈ Rd |Dg = 0 ∀D ∈ V ⊥} obviously contains V , we have in fact



8 1 Introduction

V ⊥⊥ = V . Note in particular that R⊥
d = 0 and R⊥

d = 0. This says precisely
that the pairing (k-bilinear map) Rd × Rd → k de�ned by (D, f) 7→ D(f) is
non-degenerate.

De�nition 1.1: For any f ∈ Rd, d ≥ 0, the annihilator ideal in R of f is de�ned
to be

annR(f) = {D ∈ R |Df = 0}.

Since f is homogeneous, annR(f) is a homogeneous ideal in R. We notice that
its degree d part annR(f)d is equal to 〈f〉⊥ as de�ned above. The annihilator ideals
have several nice properties.

First, consider the homomorphism Re → Rd−e de�ned by D 7→ D(f). We
denote its image by

Re(f) = {D(f) |D ∈ Re},

and its kernel is by de�nition annR(f)e. We observe that if Re(f) = 0 for some
e < d = deg f , then Rd(f) = 0 because Rd = Rd−e · Re. Since Rd × Rd → k is
non-degenerate, this implies f = 0. Thus the contraction map Re ×Rd → Rd−e

is also non-degenerate. The R-module R(f) = ⊕e≥0Re(f) is called the module
of contractions.

Lemma 1.2: Let d, e ≥ 0 and f ∈ Rd. The ideal annR(f) ⊆ R satis�es:

(a) If 0 ≤ k ≤ e ≤ d, then the degree k part annR(f)k is determined by the
degree e part annR(f)e by �saturation�, that is, D ∈ annR(f)k if and only
if ED ∈ annR(f)e for all E ∈ Re−k.

(b) Re(f)∼=Re/ annR(f)e and Re(f)⊥ = annR(f)d−e.

(c) dimk(R/ annR(f))e = dimk Re(f) = dimk(R/ annR(f))d−e.

(d) ∩D∈Re annR(Df) = annR(f) +Rd + · · ·+Rd−e+1.

In particular, ∩D∈Re annR(Df)d−e = annR(f)d−e.

Proof: To prove (a), let D ∈ Rk. Since Rd−e × Rd−e → k is non-degenerate, it
follows for any E ∈ Re−k that ED(f) = 0 if and only if E ′ED(f) = 0 for all
E ′ ∈ Rd−e. Therefore, ED(f) = 0 for all E ∈ Re−k if and only if E ′′D(f) = 0

for all E ′′ ∈ Rd−k, which is equivalent to D(f) = 0 since Rd−k × Rd−k → k is
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non-degenerate. Thus

annR(f)k = {D ∈ Rk |Re−k ·D ⊆ annR(f)e},

i.e. annR(f)k is determined by annR(f)e by �saturation�.
The �rst part of (b) follows immediately from the exact sequence

0 → annR(f)e → Re → Re(f) → 0.

Since Re(f) ⊆ Rd−e, it follows from (a) that

Re(f)⊥ = {D ∈ Rd−e |D(Ef) = 0 for all E ∈ Re}

= {D ∈ Rd−e |D(f) = 0} = annR(f)d−e.

And (c) follows from (b) by taking dimensions of the two equalities. Note that

∩
D∈Re

annR(Df)d−e = {E ∈ Rd−e |E(Df) = 0 for all D ∈ Re}

= Re(f)⊥ = annR(f)d−e.

Now (d) follows by �saturating downwards� due to (a). (Obviously, it is enough
to use a basis for Re in the intersection.) �

Let f ∈ Rd. The Hilbert function Hf = H(R/ annR f) of R/ annR(f) com-
putes the dimensions of the graded components of R/ annR(f), i.e.

Hf (e) = dimk(R/ annR f)e for all e ≥ 0.

Note that (c) implies that the Hilbert function of R/ annR(f) is symmetric about
d/2. Since Hf (e) = 0 for all e > d, we will often abuse notation and write
Hf = (h0, . . . , hd) where he = Hf (e). Written this way, Hf is sometimes called
the h-vector of R/ annR f .

A �nitely generated k-algebra A is Artinian if and only if it has �nite di-
mension as a k-vector space. Let I ⊆ R be a homogeneous ideal. Then A =

R/I is Artinian if and only if Ie = Re for all e � 0. Its socle is de�ned by
Socle(R/I) = (0 : mR), i.e. Socle(R/I) = ⊕e≥0 Soclee(R/I) where Soclee(R/I) =

{D ∈ Re | ∂iD ∈ Ie+1 for all i = 1, . . . , r}/Ie. Furthermore, Homk(−, k) is a
dualizing functor for A, hence its canonical module is

ωA = Homk(A, k) = ⊕
e≥0

Homk(Ae, k).
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A is called Gorenstein if ωA∼=A (up to a twist). By [Eis95, proposition 21.5],
A = R/I is Gorenstein if and only if its socle is simple, i.e. dimk Socle(R/I) = 1.
By [Eis95, proposition 21.16] this is equivalent to the minimal free resolution of
A being self-dual.
Lemma 1.3 (Macaulay): There is a one-to-one correspondence between graded
Artinian Gorenstein quotients R/I having socle degree d, and non-zero poly-
nomials f ∈ Rd up to a scalar multiplum. The correspondence is given by
I = annR f and 〈f〉 = (Id)

⊥.

Proof: See [Eis95, Theorem 21.6 and Exercise 21.7] or [IK99, Lemma 2.14]. Ma-
caulay's original proof in [Mac16, chapter IV] uses inverse systems. �

Note that it is customary to call annR(f) a Gorenstein ideal since the quotient
R/ annR f is Gorenstein. We conclude these preliminaries with the following
fundamental lemma. It expresses the e�ect of dualizing (V 7→ V ⊥) an inclusion
U ⊆ V in terms of annihilator ideals.
Lemma 1.4 (Apolarity): Let f1, . . . , fn, g1, . . . , gm ∈ Rd be forms of the same
degree d. Then the following statements are equivalent:

(a) 〈f1, . . . , fn〉 ⊆ 〈g1, . . . , gm〉

(b) ∩ni=1 annR(fi) ⊇ ∩mi=1 annR(gi)

(c) ∩ni=1 annR(fi)d ⊇ ∩mi=1 annR(gi)d

Proof: (a) just says that all fi can be written as fi =
∑m

j=1 cijgj for suitable
cij ∈ k. So if D ∈ R annihilates all gj, it necessarily kills all fi, which proves (a)
⇒ (b). (b) ⇒ (c) is trivial, and (c) ⇒ (a) follows from V ⊥⊥ = V and

〈f1, . . . , fn〉⊥ = {D ∈ Rd |D(fi) = 0 ∀ i} =
n
∩
i=1

annR(fi)d. �

Remark 1.5: What is more often called the apolarity lemma, for example [IK99,
Lemma 1.15], follows from lemma 1.4 by letting n = 1 and gi = l(d)pi

, lpi
=∑

j pijxj, with the additional observation that D(l(d)pi
) = D(pi)l

(d−e)
pi

for all D ∈
Re.



Chapter 2

Additive splitting

2.1 What is an additive splitting?

We would like to say that a polynomial like f = x(2)
1 x(2)

2 + x(4)
3 splits since it is

a sum of two polynomials, x(2)
1 x(2)

2 and x(4)
3 , that do not share any variable. Of

course, we want to allow a change of variables. Therefore, we need to make the
idea of �polynomials in separate variables� more precise.
De�nition 2.1: Let g1, . . . , gn ∈ R be homogeneous polynomials, and for all i
let di = deg gi. We say that g1, . . . , gn are polynomials in (linearly) independent
sets of variables if

Rdi−1(gi)∩
(∑
j 6=i

Rdj−1(gj)

)
= 0

as subspaces of R1 for all i = 1, . . . , n.
Remark 2.2: Let f ∈ Rd. It is natural to say that Rd−1(f) contains the �native�
variables of f for the following reason. If V ⊆ R1 is a k-vector subspace, denote
by k[V ]DP the k-subalgebra of R generated by V . If v1, . . . , vn is any basis for V ,
then k[V ]DP = k[v1, . . . , vn]

DP . In particular, k[V ]DP0 = k and k[V ]DP1 = V . For
all δ ∈ Rd−1(f)⊥ ⊆ R1 and all D ∈ Rd−1, it follows that Dδf ∈ δ(Rd−1(f)) = 0.
Hence δf = 0 for all δ ∈ Rd−1(f)⊥, and therefore

f ∈ k[Rd−1(f)]DP .

Thus de�nition 2.1 simply requires that the sets of native variables of g1, . . . , gn

11
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are linearly independent, that is, if ∑n
i=1 civi = 0 for some vi ∈ Rdi−1(gi) and

ci ∈ k, then ci = 0 for all i.
Remark 2.3: We note that de�nition 2.1 implies that

Rdi−e(gi)∩
(∑
j 6=i

Rdj−e(gj)

)
= 0

for all i = 1, . . . , n and all e > 0. Indeed, if h ∈ Rdi−e(gi)∩
(∑

j 6=iRdj−e(gj)
),

then D(h) ∈ Rdi−1(gi)∩
(∑

j 6=iRdj−1(gj)
)

= 0 for all D ∈ Re−1, hence h = 0.
De�nition 2.4: Let f ∈ Rd. We say that f splits regularly n− 1 times if f is a
sum of n non-zero forms of degree d in independent sets of variables. That is, if
there exist non-zero g1, . . . , gn ∈ Rd such that

f = g1 + · · ·+ gn,

and for all i, Rd−1(gi)∩
(∑

j 6=iRd−1(gj)
)

= 0 as subspaces of R1. In this situation,
we call the gi's additive components of f , and we say that the expression f =

g1 + · · ·+ gn is a regular splitting of length n.
Clearly, this concept is uninteresting for d = 1. For d = 2 and char k 6= 2

it is well known that any f ∈ R2 can be written as a sum of n = rank(∂∂Tf)

squares. (When char k = 2 it is in general only a limit of a sum of n squares).
Consequently, we will concentrate on d ≥ 3.
Example 2.5: Let char k 6= 2 and f = x(3) + xy(2) ∈ k[x, y]DP . Then

f = 1
2

(
(x+ y)(3) + (x− y)(3)

)
is a regular splitting of f of length 2. Indeed, R2

(
(x + y)(3)

)
= 〈x + y〉 and

R2

(
(x− y)(3)

)
= 〈x− y〉, and their intersection is zero.

Remark 2.6: When f splits regularly, it is possible to separate the variables of
its components by a suitable �rectifying� automorphism. More precisely, f ∈ Rd

splits regularly n − 1 times if and only if there exists J1, . . . ,Jn ⊆ {1, . . . , r}
such that Ji ∩Jj = ∅ for all i 6= j, a graded automorphism φ : R → R and
nonzero polynomials hi ∈ S id where S i = k[{xj | j ∈ Ji}] ⊆ R, such that φ(f) =

h1 + · · ·+ hn.
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To prove this, assume that f = g1 + · · · + gn is a regular splitting of f .
By de�nition, Rd−1(gi)∩

(∑
j 6=iRd−1(gj)

)
= 0 for all i. This simply means

that Rd−1(g1), . . . , Rd−1(gn) are linearly independent subspaces of R1, that is,
if ∑n

i=1 civi = 0 for some vi ∈ Rd−1(gi) and ci ∈ k, then ci = 0 for all i. Let
si = dimk Rd−1(gi). Then in particular, ∑n

i=1 si = dimk

(∑n
i=1Rd−1(gi)

)
≤ r.

Hence we may choose J1, . . .Jn ⊆ {1, . . . , r} such that |Ji| = si and Ji ∩Jj = ∅
for all i 6= j. Now, choose a graded automorphism φ : R → R such that
{φ−1(xj) | j ∈ Ji} is a basis for Rd−1(gi) for all i, and let hi = φ(gi) ∈ Rd and
S i = k[{xj | j ∈ Ji}]DP . Obviously, hi 6= 0 and φ(f) =

∑
i φ(gi) =

∑
i hi. Thus

we only have to prove that hi ∈ S i for all i. We note that

S i1 = φ(Rd−1(gi)) = (φRd−1)(φgi) = Rd−1(hi).

Therefore, for all j /∈ Ji and D ∈ Rd−1, we have ∂jD(hi) ∈ ∂j(S i1) = 0. This
implies that ∂jhi = 0 for all i and j /∈ Ji, and we are done.

For the converse, we immediately get f =
∑n

i=1 gi with gi = φ−1(hi). Note
that Rd−1(gi) = φ−1(Rd−1(hi)). Since Rd−1(hi) ⊆ S i1, and S1

1 , . . . ,Sn1 obviously
are linearly independent subspaces of R1, so are Rd−1(g1), . . . , Rd−1(gn). Thus
f =

∑n
i=1 gi is a regular splitting.

We will also investigate how the regular splitting property specializes. For
this purpose we give the following de�nition.
De�nition 2.7: Let f ∈ Rd. We say that f has a degenerate splitting of length
m if there for some n ≥ 1 exists an ft ∈ Rd[t1, . . . , tn] such that f0 = f and ft
splits regularly m− 1 times inside Rd(t1, . . . , tn) = k(t1, . . . , tn)[∂1, . . . , ∂r]d.
Example 2.8: Let f = x(d−1)y ∈ k[x, y]DP , d ≥ 3. Clearly annR f = (∂2

y , ∂
d
x).

If f splits regularly, then it must be in the GL2 orbit of g = x(d) + y(d), and
this implies that annR g is in the GL2 orbit of annR f . But annR(f)2 = 〈∂2

y〉 and
annR(g)2 = 〈∂x∂y〉, hence this is impossible.

Still, even though f does not split regularly, f has a degenerate splitting. For
example, f is a specialization of

ft = 1
t

[
(x+ ty)(d) − x(d)

]
= x(d−1)y + tx(d−2)y(2) + . . . ,

and ft splits inside k(t)[x, y]DP .
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2.2 The associated algebra Mf

The starting point of this section is the de�nition of a regular splitting. We will
see how this naturally leads to the de�nition of a k-vector space Mf associated
to f ∈ Rd. Mf consists of r × r-matrices, and we prove that Mf is closed under
multiplication when d = deg f ≥ 3. We start with a fundamental observation.
Lemma 2.9: Let f = g1 + · · ·+ gn be a regular splitting of some f ∈ Rd. Then

annR(f)e =
n
∩
i=1

annR(gi)e for all e < d.

Proof: Let e < d. Lemma 1.4 gives the inclusion annR(f)e ⊇ ∩ni=1 annR(gi)e,
so we only need to prove that annR(f)e ⊆ annR(gi)e for all i. To do this, let
D ∈ annR(f)e. Applying D to f =

∑n
i=1 gi gives D(g1) + · · · + D(gn) = 0.

Since D(g1), . . . , D(gn) are homogeneous polynomials of positive degree in separ-
ate rings, this implies D(gi) = 0 for all i. Indeed, D(gi) = −

∑
j 6=iD(gj) is an

element of both Re(gi) and ∑j 6=iRe(gj), and since their intersection is zero by
remark 2.3, it follows that D(gi) = 0. This proves that annR(f)e ⊆ annR(gi)e for
all i and all e < d, and we are done. �

At �rst sight, one might think that there exist additional regular splittings of
a polynomial f ∈ Rd if we allow �dummy� variables, i.e. if annR(f)1 6= 0. But it
is not so when d ≥ 2, as we prove next. For this reason, we may freely assume
annR(f)1 = 0 when studying regular splittings.
Corollary 2.10: Let d ≥ 2 and f ∈ Rd. Every regular splitting of f takes place
inside the subring k[Rd−1(f)]DP ⊆ R.

Proof: Let f = g1 + · · · + gn be a regular splitting of f . By remark 2.2, gi ∈
k[Rd−1(gi)]

DP . Lemma 2.9 tells us that annR(f)1 ⊆ annR(gi)1, and by duality
(lemma 1.4) we get Rd−1(gi) ⊆ Rd−1(f). Thus each additive component is an
element of k[Rd−1(f)]DP . �

Remark 2.11: Let f = g1 + · · · + gn be a regular splitting of f ∈ Rd. Lemma
2.9 tells us that annR(f)e = ∩ni=1 annR(gi)e for all e < d. Using duality, this
is equivalent to Rd−e(f) =

∑n
i=1Rd−e(gi) for all e < d. In particular, we have

Rd−1(f) = Rd−1(g1) + · · ·+Rd−1(gn) when d ≥ 2.
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Let S = k[Rd−1(f)]DP and S i = k[Rd−1(gi)]
DP for i = 1, . . . , n. Since

Rd−1(gi)∩
(∑

j 6=iRd−1(gj)
)

= 0 and ∑iRd−1(gi) = Rd−1(f), we get

S1 ⊗k · · · ⊗k Sn = S ⊆ R.

Obviously, f ∈ S1
d ⊕ . . .⊕Snd . Hence we have another characterization of a regular

splitting: An f ∈ Rd splits regularly n − 1 times if and only if there exist non-
zero k-vector subspaces V1, . . . , Vn ⊆ R1 such that Vi ∩

(∑
j 6=i Vj

)
= 0 for all i and∑n

i=1 Vi = Rd−1(f), and f ∈ S1
d ⊕ . . .⊕Snd where S i = k[Vi]

DP .
By lemma 2.9, if we want to split an f ∈ Rd, we have to look for g ∈ Rd

such that ann(f)e ⊆ ann(g)e for all e < d. The next lemma investigates this
relationship. Recall that ∂ denotes the column vector ∂ = [∂1, . . . , ∂r]

T, thus
∂f = [∂1f, . . . , ∂rf ]T.
Lemma 2.12: Given f, g ∈ Rd, the following are equivalent:

(a) ann(f)e ⊆ ann(g)e for all e < d,

(b) ann(f)d−1 ⊆ ann(g)d−1,

(c) there exists a matrix A ∈ Matk(r, r) such that ∂g = A∂f ,

(d) R1 · ann(f)d−1 ⊆ ann(g)d,

(e) m · ann(f) ⊆ ann(g).

Proof: (a) ⇔ (b) is immediate by lemma 1.2. The same lemma also tells us that
∩ri=1 ann(∂if) = ann(f) +Rd, which means that (b) just says that

r
∩
i=1

ann(∂if)d−1 ⊆
r
∩
i=1

ann(∂ig)d−1.

By lemma 1.4, this is equivalent to 〈∂1g, . . . ∂rg〉 ⊆ 〈∂1f, . . . ∂rf〉, and (c) just
expresses this in vector form. (b) ⇔ (d) since R−1

1 annR(g)d = annR(g)d−1,
again by lemma 1.2a. Finally, lemma 1.2a also shows that (d) ⇔ (e), since
(m · ann(f))e =

∑
k mk · ann(f)e−k = R1 · ann(f)e−1. �

Let f ∈ Rd. Both the previous lemma and the next lemma study the equation
∂g = A∂f . In the previous we gave equivalent conditions on g ∈ Rd for A ∈
Matk(r, r) to exist. The next lemma tells us when g exists given A. Recall that
is B is any matrix, then Ik(B) denotes the ideal generated by all k× k-minors of
B.
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Lemma 2.13: Let f ∈ Rd and A ∈ Matk(r, r). The following are equivalent:

(a) There exists g ∈ Rd such that ∂g = A∂f ,

(b) A∂∂T(f) is a symmetric matrix,

(c) I2(∂ A∂) ⊆ ann f .

Furthermore, if d > 0, then a g ∈ Rd satisfying ∂g = A∂f is necessarily unique.

Proof: It is well known that a set {gi}ri=1 can be lifted to a g such that ∂ig = gi if
and only if ∂jgi = ∂igj for all i, j. This condition simply says that ∂[g1, . . . , gr] is a
symmetric matrix. Let gi = (A∂f)i, that is, gi is the ith coordinate of the column
vector A∂f . Then the existence of g is equivalent to A∂∂Tf being a symmetric
matrix. Thus (a) ⇔ (b).

Since (A∂∂T)T = ∂∂TAT, it follows that A∂∂T(f) is symmetric if and only if
(A∂∂T− ∂∂TAT)(f) = 0. Thus (b) ⇔ (c), since the (i, j)th entry of the matrix
(A∂)∂T− ∂(A∂)T is (A∂)i∂j − ∂i(A∂)j, the 2× 2 minor of the 2× r matrix (∂ A∂)

corresponding to the ith and jth row (up to sign). The last statement is trivial. �

Note that the 2 × 2 minors of (∂ A∂) are elements of R2, so (c) is really
a condition on ann(f)2. Combining lemma 2.9 with lemmas 2.12 and 2.13, we
see that a regular splitting f = g1 + . . . , gn implies the existence of matrices A
satisfying I2(∂ A∂) ⊆ annR f . These matrices will in fact enable us to �nd both
regular and degenerate splittings. Thus we are naturally lead to the following
de�nition.

De�nition 2.14: Given f ∈ Rd, de�ne

Mf = {A ∈ Matk(r, r) | I2(∂ A∂) ⊆ annR f}.

Example 2.15: The notation I2(∂ A∂) might be confusing, so we will consider
an example with r = 2. Let R = k[x, y]DP and f = x(3) + xy(2) ∈ R3. A quick
calculation of the partials of f proves that annR f = (∂2

x − ∂2
y , ∂

3
y). We will show

that the 2× 2 matrix A =
(

0 1
1 0

) belongs to Mf . Obviously,

A∂ =

(
0 1

1 0

)
·

(
∂x

∂y

)
=

(
∂y

∂x

)
.
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The matrix (∂ A∂) has ∂ as its �rst column and A∂ as its second column, so

(∂ A∂) =

(
∂x ∂y

∂y ∂x

)
.

Its only 2 × 2 minor is its determinant, D = ∂2
x − ∂2

y , and since D ∈ annR f , it
follows by de�nition that A ∈Mf .

Let us determine Mf . We need to �nd all matrices B =
(
a b
c d

) such that
I2(∂ B∂) ⊆ annR f . Since

(∂ B∂) =

(
∂x a∂x + b∂y

∂y c∂x + d∂y

)
,

we get I2(∂ B∂) =
(
c∂2

x + (d − a)∂x∂y − b∂2
y

). Hence ∂2
x − ∂2

y must divide c∂2
x +

(d− a)∂x∂y− b∂2
y , which is equivalent to a = d and b = c. Therefore, Mf consists

of all matrices B with a = d and b = c, that is, Mf = 〈I, A〉.
Almost everything that we are going to study in this paper is connected to

Mf . One goal is to �nd out what Mf can tell us about f . Before we can do this,
we need investigate what properties Mf itself possesses. We will in particular
show that Mf is closed under matrix multiplication when deg f ≥ 3. Obviously,
d ≤ 1 implies annR(f)2 = R2, and therefore Mf = Matk(r, r). The case d = 2 is
di�erent, and not all of our results will apply to this case. We start with another
de�nition.
De�nition 2.16: Suppose d > 0 and f ∈ Rd. De�ne a map

γf : Mf → Rd

by sending A ∈Mf to the unique g ∈ Rd satisfying ∂g = A∂f , cf. lemma 2.13.
Note that ∂γf (A) = A∂f by de�nition. If char k - d, then the Euler identity

(xT∂f = df) implies that γf (A) = 1
d
xTA∂f . By lemmas 2.9 and 2.12, the image

of γf contains in particular all additive components of f . We will in chapter 3
see how to extract the regular splitting properties of f from Mf explicitly.
Lemma 2.17: Let d > 0 and f ∈ Rd, f 6= 0. Let β1e be the minimal number of
generators of annR(f) of degree e.
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(a) Mf is a k-vector space containing the identity matrix I.

(b) γf : Mf → Rd is k-linear.

(c) dimk ker γf = r · β11 and dimk im γf = 1 + β1d.

(d) dimkMf = 1 + β1d + r · β11.

Proof: Obviously, I ∈ Mf , so Mf is nonempty. And since the determinant is
linear in each column, it follows that Mf is a k-vector space. Alternatively, let
A,B ∈Mf . Since ∂γf (A) = A∂f , it follows for any a, b ∈ k that

∂
(
aγf (A) + bγf (B)

)
= a∂γf (A) + b∂γf (B) = (aA+ bB)∂f.

This implies that aA+bB ∈Mf for all a, b ∈ k, which proves (a), and furthermore
that γf (aA+ bB) = aγf (A) + bγf (B), thus γf is k-linear.

Of course, γf (A) = 0 if and only if A∂f = 0. For any A ∈ Matk(r, r), the
equation A∂f = 0 implies that A ∈ Mf , hence the kernel of γf consists of all
such A. Recall that (A∂)i denotes the ith coordinate of the column vector A∂,
that is, (A∂)i = aT

i∂ where aT
i is the ith row of A. Thus

ker γf = {A ∈Mf |A∂f = 0} = {A ∈ Matk(r, r) | (A∂)i ∈ annR(f)1 ∀ i},

and therefore dimk ker γf = r · dimk ann(f)1 = rβ11.
Furthermore, by lemma 2.12, the image of γf are precisely those g ∈ Rd that

satisfy R1 · ann(f)d−1 ⊆ ann(g)d, which is equivalent to 〈g〉 ⊆ (R1 · ann(f)d−1)
⊥

by lemma 1.4. Since dimk(R/ ann(f))d = 1, and R1 · ann(f)d−1 is a subspace
of ann(f)d of codimension dimk(ann(f)d/R1 · ann(f)d−1) = β1d, it follows that
dimk im γf = codimk(m · ann(f))d = 1 + β1d. This �nishes part (c). (d) follows
immediately. �

Remark 2.18: We would like to point out that Mf is �large� only for special f .
In fact, when k = k̄ and d ≥ 4, a general f ∈ Rd will satisfy β11 = β1d = 0 (see
for example [IK99, Proposition 3.12]), which implies Mf = 〈I〉. In particular,
Mf = Mg does not say very much by itself.

Example 2.19: Let us reconsider example 2.15. Since annR f = (∂2
x − ∂2

y , ∂
3
y),

we see that β11 = 0 and β13 = 1. Lemma 2.17 implies that dimkMf = 1 + 1 = 2.
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As before, A =
(

0 1
1 0

)
∈ Mf since I2(∂ A∂) = (∂2

x − ∂2
y) ⊆ annR f . It follows that

Mf = 〈I, A〉.
Let us also determine im γf . Letting g = x(2)y + y(3) ∈ R3, we see that

∂g =

(
xy

x(2) + y(2)

)
= A∂f.

Thus A ∈ Mf and γf (A) = g. Obviously, γf (I) = f , hence im γf = 〈f, g〉. This
image consists of all h ∈ R3 such that annR(f)2 ⊆ annR(h)2. Thus another way
to compute im γf is (R1 · annR(f)2)

⊥ = 〈∂3
x − ∂x∂

2
y , ∂

2
x∂y − ∂3

y〉⊥ = 〈f, g〉.

Remark 2.20: Before we move on, we would like to point out that there are
several ways to compute Mf . One is to use the de�nition directly and �nd all
A ∈ Matk(r, r) such that every 2 × 2 minor of (∂ A∂) is contained in annR(f)2.
This can be e�ective when annR(f)2 is simple enough, as in example 2.15. In
particular, if dimk annR(f)2 < r − 1, then Mf = 〈I〉. Another direct approach is
to solve the system of linear equations that is contained in the statement �A∂∂Tf

is symmetric�. We will do this when we prove proposition 4.17.
Alternatively, we can �nd dimkMf by computing annR f and counting the

number of generators of degree d, and then explicitly �nd the correct number
of linearly independent matrices A satisfying I2(∂ A∂) ⊆ annR(f). In fact, most
examples in this paper are constructed by �rst choosingM ⊆ Matk(r, r) and then
�nding f ∈ R such that M ⊆ Mf . Having done so, if we thereafter are able to
show that annR f has no generators of degree 1 and dimkM − 1 generators of
degree d, then it follows that Mf = M .

Note in particular that the Mf in example 2.19 is closed under matrix mul-
tiplication. This is in fact always true when deg f ≥ 3. We will now prove this
important and a bit surprising fact about Mf .

Proposition 2.21: Let d ≥ 3 and f ∈ Rd. Mf is a k-algebra, and all commut-
ators belong to ker γf . In particular, Mf is commutative if ann(f)1 = 0.

Proof: We use lemmas 2.12 and 2.13 several times. Let A,B ∈ Mf . Since B ∈
Mf , there exists g ∈ Rd such that ∂g = B∂f . Now I2(∂ A∂) ⊆ R ann(f)2, and
ann(f)2 ⊆ ann(g)2 since d ≥ 3. Hence A ∈ Mg, and there exists h ∈ Rd such
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that ∂h = A∂g. Then ∂h = AB∂f , thus AB ∈Mf . Furthermore, since A∂∂T(f),
B∂∂T(f) and AB∂∂T(f) are all symmetric, we get

AB∂∂T(f) = ∂∂T(f)(AB)T = ∂∂T(f)BTAT = B∂∂T(f)AT = BA∂∂T(f).

Hence (AB − BA)∂∂Tf = 0. Note that C∂∂Tf = 0 ⇔ (C∂)i∂jf = 0 for all
i, j ⇔ C∂f = 0. Thus (AB − BA)∂f = 0, and therefore γf (AB − BA) = 0. If
ann(f)1 = 0, then it follows that AB = BA. �

Remark 2.22: When d ≥ 3 it also follows for all A,B ∈Mf that

A∂∂T(f)BT = AB∂∂T(f) = ∂∂T(f)BTAT = B∂∂T(f)AT.

Thus (A∂)(B∂)T(f) is symmetric, which implies that I2(A∂ B∂) ⊆ ann f , cf.
lemma 2.13.
Example 2.23: Let r = 3, d ≥ 3 and f = x(d−1)

1 x3 + x(d−2)
1 x(2)

2 . First, let us
determine annR f . Clearly, annR(f)1 = 0, and a straightforward computation
shows that annR(f)2 = 〈∂2

3 , ∂2∂3, ∂1∂3− ∂2
2〉. We note that these polynomials are

the maximal minors of (
∂1 ∂2 ∂3

∂2 ∂3 0

)
.

By Hilbert-Burch the ideal J = R annR(f)2 de�nes a scheme of length 3 in
P2. Indeed, ∂3

2 = ∂1(∂2∂3) − ∂2(∂1∂3 − ∂2
2) ∈ J , and this implies for every e ≥ 2

that (R/J)e is spanned by (the images of) ∂e1, ∂e−1
1 ∂2 and ∂e−2

1 ∂2
2 . Since ∂e1(f),

∂e−1
1 ∂2(f) and ∂e−2

1 ∂2
2(f) are linearly independent for all 2 ≤ e < d, it follows

that dimk(R/J)e = 3 for all e > 1, and that annR(f)e = Je for all 1 < e < d.
Thus annR f needs exactly two generators of degree d, and we get

annR f = (∂2
3 , ∂2∂3, ∂1∂3 − ∂2

2 , ∂
d−1
1 ∂2, ∂

d
1).

Let
A =

(
0 1 0
0 0 1
0 0 0

)
.

We have just seen that annR(f)2 is generated by the 2×2 minors of (∂A∂), hence
A ∈ Mf . Because Mf is closed under multiplication, we also have A2 ∈ Mf . By
looking at annR f , we see that β11 = 0 and β1d = 2. Thus dimkMf = 3, and it
follows that Mf = 〈I, A,A2〉.
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Remark 2.24: The �formula� for the annihilator ideal annR f in example 2.23
is true even for d = 2. In this case annR f has �ve generators of degree 2, thus
Mf will be 6-dimensional. In fact, since in this case

∂∂Tf =
(

0 0 1
0 1 0
1 0 0

)
,

it follows that Mf consists of all matrices that are symmetric about the anti-
diagonal. Thus Mf is no longer closed under multiplication.

Remark 2.25: With A as in example 2.23, it is easy to determine all g ∈ Rd such
that A ∈ Mg. Indeed, if I2(∂ A∂) ⊆ annR g for some g ∈ Rd, then annR(g)e ⊇
annR(f)e for all e < d since the 2× 2 minors of (∂ A∂) are the only generators of
annR f of degree less than d. It follows that

{g ∈ Rd |A ∈Mg} = im γf = {af + bx(d−1)
1 x2 + cx(d)

1 | a, b, c ∈ k}.

If in addition annR(g)1 = 0, then a 6= 0, implying that g is in the GL3 orbit of f
(char k - d).

One natural question to ask is the following:

Which subalgebras of Matk(r, r) arise as Mf for di�erent f ∈ Rd?

We have not been able to determine this in general, but we will in the remainder
of this chapter point out some restrictions on Mf . We start with the following
result, which holds even for d < 3.

Proposition 2.26: Suppose d ≥ 0 and f ∈ Rd. Let A,B ∈ Matk(r, r) and
C ∈Mf . Assume that AC,BC ∈Mf and BAC = ABC. Then AiBjC ∈Mf for
all i, j ≥ 0. In particular, Mf is always closed under exponentiation.

Proof: Lemma 2.13 says that A ∈ Mf if and only if A∂∂Tf is symmetric. Thus
all three matrices C∂∂Tf , AC∂∂Tf and BC∂∂Tf are symmetric. It follows that

ABC∂∂Tf = A∂∂TfCTBT = AC∂∂TfBT = ∂∂TfCTATBT = ∂∂Tf(ABC)T,

hence ABC ∈ Mf , and we are done by induction. The last statement follows by
letting B = C = I. Note that we have not assumed d ≥ 3 here. �
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When d ≥ 3 one might wonder if the assumptions C,AC ∈ Mf actually
implies that A ∈ Mf . If so, the conclusion of the previous proposition would
immediately follow from the fact that Mf is closed under multiplication when
d ≥ 3. But Mf does not support division, in the sense that C,AC ∈Mf does not
generally imply A ∈Mf , as seen in the following example.
Example 2.27: Let r = 4 and f = x(d−1)

1 x4 + x(d−2)
1 x2x3 + x(d)

2 . Then

annR f = (∂1∂4 − ∂2∂3, ∂2∂4, ∂
2
3 , ∂3∂4, ∂

2
4 , ∂1∂

2
2 , ∂

d−2
1 ∂3 − ∂d−1

2 , ∂d1 , ∂
d−1
1 ∂2).

This implies that dimkMf = 3 when d ≥ 4. Let

A =

(
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
.

It is easy to verify that A2, A3 ∈ Mf , thus Mf = 〈I, A2, A3〉 when d ≥ 4. In
particular, A /∈Mf , even though A2, A3 ∈Mf .

We will �nish this section with a result computing some special elements of
annR f . We start with a lemma.
Lemma 2.28: Let d ≥ 0 and f ∈ Rd. Pick A1, . . . , Am, B1, . . . , Bn ∈ Mf , and
let u ∈

∑m
k=1 imAT

k +
∑n

k=1 kerBT
k and v ∈

(
∩mk=1 kerAT

k

)
∩
(
∩nk=1 imBT

k

)
. Then

(uT∂) · (vT∂) ∈ annR f.

Proof: The proof rests on the following equation. If A ∈Mf and b = [b1, . . . , br]
T

and c = [c1, . . . , cr]
T are two vectors, then∣∣∣∣∣bT∂ bTA∂

cT∂ cTA∂

∣∣∣∣∣ =

∣∣∣∣∣
∑

i bi∂i
∑

i bi(A∂)i∑
j cj∂j

∑
j cj(A∂)j

∣∣∣∣∣ =
r∑

i,j=1

bicj

∣∣∣∣∣∂i (A∂)i

∂j (A∂)j

∣∣∣∣∣ ,
and therefore

(bT∂) · (cTA∂)− (bTA∂) · (cT∂) ∈ annR f. (2.1)
By de�nition of u there exist a1, . . . am, b1, . . . bn ∈ kr such that BT

kbk = 0 and
u =

∑m
k=1A

T
kak +

∑n
k=1 bk. Furthermore, AT

kv = 0 and v = BT
1c1 = · · · = BT

ncn for
some c1, . . . , cn ∈ kr. Putting (A, b, c) = (Ak, ak, v) in (2.1), and using AT

kv = 0,
implies (aT

kAk∂)(vT∂) ∈ annR f . Letting (A, b, c) = (Bk, bk, ck) gives (bTk∂)(vT∂) ∈
annR f since BT

kbk = 0 and BT
kck = v. Adding these equations together proves

that (uT∂) · (vT∂) ∈ annR f . �
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The next proposition gives us a restriction on Mf when annR(f)1 = 0. We
will use this in chapter 4.
Proposition 2.29: Let d ≥ 2 and f ∈ Rd. Pick A1, . . . , Am, B1, . . . , Bn ∈ Mf ,
and de�ne

U =
m∑
k=1

imAT
k +

n∑
k=1

kerBT
k and V =

( m⋂
k=1

kerAT
k

)
∩
( n⋂
k=1

imBT
k

)
.

Assume that (a) U+V = kr and U ∩V 6= 0, or (b) dimk U = r−1 and dimk V ≥ 2.
Then annR(f)1 6= 0.

Proof: (a) Let u ∈ U ∩V . Since u ∈ U , lemma 2.28 implies for all v ∈ V that
(uT∂) · (vT∂) ∈ annR f . Because u ∈ V , we get (uT∂) · (vT∂) ∈ annR f for all v ∈ U
by the same lemma. Now U + V = kr implies that (uT∂) · R1 ∈ annR f , hence
(uT∂) ∈ annR f .

(b) If V * U , then U + V = kr, and we are done by part (a). Thus we
assume that V ⊆ U . Choose u1, u2 ∈ V , u1 ∦ u2. Expand this to a basis
{u1, . . . , ur−1} for U , and choose ur /∈ U . Then {uT

1∂, . . . , u
T
r∂} is a basis for R1.

Let {l1, . . . , lr} be the dual basis for R1. Since (uT∂)(uT
1∂) ∈ annR f for all u ∈ U ,

it follows that uT
1∂f = c1l

(d−1)
r for some c1 ∈ k. Similarly, uT

2∂f = c2l
(d−1)
r . Thus

(c2u1 − c1u2)
T∂f = 0, and annR(f)1 6= 0. �

Example 2.30: We will give an example of each of the two cases of proposition
2.29. In both cases, let r = 3, d ≥ 2 and f ∈ Rd.

1. Let B1 =
(

0 0 1
0 0 0
0 0 0

)
and B2 =

(
0 0 0
0 0 1
0 0 0

)
, and assume that B1, B2 ∈Mf . Then

annR f ⊇ I2(∂ B1∂) + I2(∂ B2∂) = (∂1∂3, ∂2∂3, ∂
2
3) = ∂3 ·mR.

Hence ∂3 ∈ annR(f)1, and annR(f)1 6= 0. This belongs to case (a) of
proposition 2.29 (with Ai = 0 for all i).

2. Let A1 =
(

0 1 0
0 0 0
0 0 0

)
and A2 =

(
0 0 1
0 0 0
0 0 0

)
, and assume that A1, A2 ∈Mf . Then

annR f ⊇ I2(∂ A1∂) + I2(∂ A2∂) = (∂2
2 , ∂2∂3, ∂

2
3) = (∂2, ∂3)

2.

Thus f = c1x
(d)
1 +c2x

(d−1)
1 x2+c3x

(d−1)
1 x3, and therefore, annR(f)1 6= 0. This

is case (b) of proposition 2.29 (with Bi = I for all i).
Mf has other properties that further restrict the subalgebras that arise asMf ,

and we will say a little more about this in the next section.
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2.3 Determinantal ideals

We mentioned in remark 2.20 that most examples in this paper are constructed
by �rst choosing a subset (usually a subalgebra) M ⊆ Matk(r, r). Having chosen
M , we can compute Xd = {f ∈ Rd |Mf ⊇M}, and �nally choose one of these f
to present as the example.

We now take a closer look at this method. Given a subsetM ⊆ Matk(r, r), we
will de�ne an ideal I(M) and an R-module X(M). Studying I(M) and X(M)

can be thought of as an alternative to studying all Mf that contain M , and we
will make this connection precise. However, the �rst half of this section will only
deal with I(M) and a related ideal Ǐ(M).
De�nition 2.31: Let M be any subset of Matk(r, r). Let I(M) and Ǐ(M) be
the ideals in R de�ned by

I(M) =
∑
A∈M

I2(∂ A∂) and Ǐ(M) =
∑

A,B∈M

I2(A∂ B∂).

Note that the ideal I(Mf ) is the part of annR f that determines Mf . Obvi-
ously, if M is a k-vector space, and A1, . . . , An is a basis for M , then

Ǐ(M) =
∑
i<j

I2(Ai∂ Aj∂) = I2(A1∂ A2∂ . . . An∂).

Thus Ǐ(M) is the ideal generated by the 2× 2 minors of a matrix of linear forms.
Conversely, if ϕ is any matrix of linear forms, then I2(ϕ) = Ǐ(M) for suitable
M . We realize that Ǐ(M) is a very general object. In this section we will usually
require that the identity matrix I is in M . (Actually, it would be enough to
assume that M contains an invertible matrix, but this is not important to us.)
We start with a result relating Ǐ(M) and the simpler object I(M).
Lemma 2.32: Assume I ∈ M ⊆ Matk(r, r). Then I(M) ⊆ Ǐ(M) = I(M2)

and I(M)e = Ǐ(M)e for all e ≥ 3. In particular, if M is closed under matrix
multiplication, then I(M) = Ǐ(M).

Proof: I(M) ⊆ Ǐ(M) is immediate when I ∈ M . Let A,B ∈ M , and consider
the determinant

D =

∣∣∣∣ ∂i (A∂)i (B∂)i

∂j (A∂)j (B∂)j

∂k (A∂)k (B∂)k

∣∣∣∣ .
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By expanding along the third column, we get D ∈ I(M). Thus expansion along
the �rst row shows that

∂i ·

∣∣∣∣∣(A∂)j (B∂)j

(A∂)k (B∂)k

∣∣∣∣∣ ∈ I(M) for all i, j and k.

Therefore, mR Ǐ(M) ⊆ I(M). Since Ǐ(M) is generated in degree 2, it follows that
Ǐ(M)e = I(M)e for all e ≥ 3. Furthermore, since (A∂)j =

∑r
k=1Ajk∂k, we get

r∑
k=1

Ajk

∣∣∣∣∣ ∂i (B∂)i

∂k (B∂)k

∣∣∣∣∣ =

∣∣∣∣∣ ∂i (B∂)i

(A∂)j (AB∂)j

∣∣∣∣∣ = ∂i · (AB∂)j − (A∂)j · (B∂)i

and therefore,
r∑

k=1

Ajk

∣∣∣∣∣ ∂i (B∂)i

∂k (B∂)k

∣∣∣∣∣−
r∑

k=1

Aik

∣∣∣∣∣ ∂j (B∂)j

∂k (B∂)k

∣∣∣∣∣ =

∣∣∣∣∣ ∂i (AB∂)i

∂j (AB∂)j

∣∣∣∣∣+
∣∣∣∣∣(A∂)i (B∂)i

(A∂)j (B∂)j

∣∣∣∣∣. (2.2)

Hence, if B ∈ M , then I2(A∂ B∂) ⊆ I(M) if and only if I2(∂ AB∂) ⊆ I(M). In
particular, Ǐ(M) = I(M2), since I ∈ M implies M ⊆ M2. If M is closed under
multiplication, then also M2 ⊆M , implying I(M) = Ǐ(M). �

We note that Ǐ(M) = I(M) when M is closed under multiplication. If M is
not closed, it is natural to ask if we can close M and not change the ideal Ǐ(M).
This is true, as the following proposition shows.
Proposition 2.33: Assume I ∈M ⊆ Matk(r, r). Let M ′ be the k-subalgebra of
Matk(r, r) generated by M . Then I(M ′) = Ǐ(M).

Proof: We have not assumed that M is a k-vector space. It is just any subset
of Matk(r, r) containing the identity matrix I. Therefore, its powers are de�ned
as Mk = {Πk

i=1Ai |Ai ∈ M for all i}, and not the linear span. Note that Mk ⊆
Mk+1 since I ∈ M . Because Matk(r, r) is a �nite-dimensional vector space, it
follows thatM ′ = 〈Mk〉, the linear span ofMk, for large k. Since a minor is linear
in each column, we get I(〈Mk〉) = I(Mk). Thus to prove that I(M ′) = Ǐ(M), it
is enough to show that I2(∂ A∂) ⊆ Ǐ(M) for all A ∈Mk for all k � 0.

For every A,B ∈ Matk(r, r) and all 1 ≤ i < j ≤ r, de�ne (A,B)ij ∈ R2 by
(A,B)ij = (A∂)i · (B∂)j. We will usually suppress the subscripts. Note that∣∣∣∣∣(AC∂)i (AD∂)i

(BC∂)j (BD∂)j

∣∣∣∣∣ =
r∑

k,l=1

AikBjl

∣∣∣∣∣(C∂)k (D∂)k

(C∂)l (D∂)l

∣∣∣∣∣ .
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Thus (AC,BD)− (AD,BC) ∈ I2(C∂ D∂), and if I2(C∂ D∂) ⊆ Ǐ(M), then

(AC,BD) = (AD,BC) mod Ǐ(M). (2.3)

Assume that I2(X∂ Y ∂) ⊆ Ǐ(M) for all X, Y ∈ {I, A,B,C}. We want to
show that I2(∂ ABC∂) ⊆ Ǐ(M). This is equivalent to (ABC, I)ij = (I, ABC)ij

mod Ǐ(M) for all i and j. To prove this, we will use equation (2.3) eight times,
and each time one of the matrices will be I. Indeed, modulo Ǐ(M) we have

(ABC, I) = (AB,C) = (A,CB) = (B,CA)

= (BA,C) = (BC,A) = (B,AC) = (C,AB) = (I, ABC).

The rest is a simple induction. We know that I2(∂A∂) ⊆ Ǐ(M) for all A ∈M2.
Assume for some k ≥ 2 that I2(∂ A∂) ⊆ Ǐ(M) for all A ∈Mk. Then by equation
(2.2) also I2(A∂ B∂) ⊆ Ǐ(M) for all A ∈ M i and B ∈ M j as long as i + j ≤ k.
Pick A′ = Πk+1

i=1 Ai ∈ Mk+1. Let A = A1, B = Πk
i=2Ai and C = Ak+1 so that

ABC = A′. The induction hypothesis and the previous paragraph imply that
I2(∂ A

′∂) ⊆ Ǐ(M). Hence we are done by induction on k. �

One consequence of lemma 2.32 and proposition 2.33 is that {I(M)} does not
change much if we restrict our attention to subsets M ⊆ Matk(r, r) that are k-
algebras. Indeed, if M ⊆ Matk(r, r) is any subset containing the identity matrix
I, and M ′ is the k-algebra generated by M , then I(M)e = I(M ′)e for all e ≥ 3.
Thus these ideals can only be di�erent in degree two.

Another consequence is the following corollary.
Corollary 2.34: Let A1, . . . , An ∈ Matk(r, r) and M = k[A1, . . . , An]. Then

I(M) = I2(∂ A1∂ · · · An∂).

Proof: M is the k-algebra generated by {I, A1, . . . , An} ⊆ Matk(r, r), and the
result follows from proposition 2.33. �

We now associate to any subset M ⊆ Matk(r, r) a graded R-module X(M).
When we de�ned Mf = {A ∈ Matk(r, r) | I2(∂ A∂) ⊆ annR f} in de�nition 2.14,
we required f to a homogeneous polynomial. To simplify the following de�nition
and results, we will allow any f ∈ R. Of course, if f =

∑
k≥0 fk and fk ∈ Rk,

then Mf = ∩k≥0Mfk
, since I2(∂ A∂) is a homogeneous ideal.
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De�nition 2.35: Let M ⊆ Matk(r, r). De�ne the graded R-module X(M) by

X(M) = {f ∈ R |M ⊆Mf}.

The discussion before the de�nition explains why X(M) is a graded k-vector
subspace of R. Note that annR(f) ⊆ annR(Df) for any D ∈ R. This implies
that Mf ⊆MDf , thus X(M) is indeed an R-module. X(M) is closely connected
to I(M), as seen in the following lemma.

Lemma 2.36: Let M ⊆ Matk(r, r) be any subset. Then

(a) M ⊆Mf if and only if I(M) ⊆ annR f ,

(b) Xd(M) = {f ∈ Rd |Rd−2(f) ⊆ X2(M)} for all d ≥ 3,

(c) I(M)⊥d = Xd(M) for all d ≥ 0,

(d) I(M) = ∩f∈X(M) I(Mf ) = ∩f∈X(M) annR f .

In particular, I2(∂ A∂) ⊆ I(M) if and only if A ∈Mf for all f ∈ X(M).

Proof: Clearly, I(M) ⊆ annR f if and only if I2(∂ A∂) ⊆ annR f for all A ∈ M ,
which is equivalent to M ⊆Mf . This is (a).

Let X = X(M). Pick f ∈ Rd, d ≥ 3. Since I(M) is generated in degree
two and annR(f)d−1 = ∩ri=1 annR(∂if)d−1, it follows that Mf = ∩ri=1M∂if . Hence
f ∈ Xd if and only if ∂if ∈ Xd−1 for all i, and by induction this is equivalent to
Df ∈ X2 for all D ∈ Rd−2. This proves (b).

For all d ≥ 0 we have I(M)⊥d = {f ∈ Rd |Df = 0 ∀ D ∈ I(M)}, which
equals Xd by (a). For any f ∈ X we note that I(M) ⊆ I(Mf ) ⊆ annR f , hence
I(M) ⊆ ∩f∈X I(Mf ) ⊆ ∩f∈X annR f . Furthermore, by (c),

I(M)d = X⊥
d = {D ∈ Rd |Df = 0 ∀ f ∈ Xd} = ∩

f∈Xd

annR(f)d.

Thus I(M)d ⊇ (∩f∈X annR f)d, which implies (d). In particular, it follows that
I2(∂ A∂) ⊆ I(M) if and only if I2(∂ A∂) ⊆ annR f for all f ∈ X, and this is
equivalent to A ∈Mf for all f ∈ X. �

Remark 2.37: A consequence of lemma 2.36 is that results about Mf often
correspond to results about I(M). For example, we know that Mf is a k-algebra
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for all f ∈ Rd, d ≥ 3 (proposition 2.21). This corresponds to the fact that
I(M2)d ⊆ I(M)d for all d ≥ 3 when I ∈M (lemma 2.32).

To prove this, let d ≥ 3 and f ∈ Rd, and pick A,B ∈ Mf . Consider
M = {I, A,B} ⊆ Mf . We have I(M2)d ⊆ I(M)d ⊆ annR(f)d. Since annR(f)2

is determined by annR(f)d by lemma 1.2a, and I2(∂ AB∂) ⊆ I(M2), we get
I2(∂ AB∂) ⊆ annR f . Hence AB ∈Mf .

Conversely, let A,B ∈M . Then A,B ∈Mf for all f ∈ X = X(M), implying
AB ∈ Mf for all f ∈ Xd, d ≥ 3. Hence I2(∂ AB∂)d ⊆ ∩f∈Xd

annR(f)d = I(M)d

for all d ≥ 3, that is, I(M2)d ⊆ I(M)d. Thus even though the proofs of these two
results look very di�erent, they actually imply each other.

As promised, we give another result that restricts which algebras that arise as
Mf . The conclusion of this proposition does not in general follow from the other
results we have proven about Mf .

Proposition 2.38: Suppose A0, . . . , An ∈ Mf . Let aij be the jth column of AT
i .

(So Ai = [ai1, . . . , air]
T, i.e. (Ai)jk = (aij)k for all i, j, k.) Let s < r. Assume that

aij = 0 for all i ≥ 1 and j ≤ s, and that a0j ∈ 〈a1j, . . . , anj〉 for all j > s. Then
B = [a01, . . . , a0s, 0 . . . , 0]T∈Mf .

Proof: Let M = {A0, . . . , An}. We want to prove that I(M) contains every 2× 2

minor of (∂ B∂). If i, j ≤ s, then∣∣∣∣∣∂i (B∂)i

∂j (B∂)j

∣∣∣∣∣ =

∣∣∣∣∣∂i (A0∂)i

∂j (A0∂)j

∣∣∣∣∣ ∈ I(M).

If i, j > s, then this minor is obviously zero. So we are left with the case i ≤ s and
j > s. By assumption a0j ∈ 〈a1j, . . . , anj〉, thus a0j =

∑n
k=1 ckjakj for suitable

ckj ∈ k. It follows that∣∣∣∣∣∂i (B∂)i

∂j (B∂)j

∣∣∣∣∣ =

∣∣∣∣∣∂i aT
0i∂

∂j 0

∣∣∣∣∣ =

∣∣∣∣∣∂i aT
0i∂

∂j aT
0j∂

∣∣∣∣∣−
n∑
k=1

ckj

∣∣∣∣∣∂i 0

∂j aT
kj∂

∣∣∣∣∣
=

∣∣∣∣∣∂i (A0∂)i

∂j (A0∂)j

∣∣∣∣∣−
n∑
k=1

ckj

∣∣∣∣∣∂i (Ak∂)i

∂j (Ak∂)j

∣∣∣∣∣ ∈ I(M).

Therefore, I2(∂ B∂) ⊆ I(M). Since I(M) ⊆ annR f , this implies B ∈Mf . �
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Example 2.39: The assumptions in proposition 2.38 might seem a bit strange.
One situation where it can be used, is the following. Let c1 + c2 + c3 = r. For
i = 1, 2, 3, pick Ci ∈ Matk(ci, r), and de�ne Bi ∈ Matk(r, r) by

B1 =
(
C1
0
0

)
B2 =

(
C1
C2
0

)
B3 =

(
C1
0
C3

)
.

Assume that B2, B3 ∈ Mf . If we apply proposition 2.38 with A0 = B2 and
A1 = B2 −B3, we get B1 ∈Mf . A special case when r = 6 is

B1 =
(
C 0 0
0 0 0
0 0 0

)
B2 =

(
C 0 0
0 C 0
0 0 0

)
B3 =

(
C 0 0
0 0 0
0 0 C

)
,

where C =
(

0 1
0 0

)
. As above, B2, B3 ∈Mf implies B1 ∈Mf .

We will end this section with a result identifying Z(I(M)) ⊆ Pr−1, the set of
closed points of the projective scheme determined by I(M).
Proposition 2.40: Suppose M ⊆ Matk(r, r). Then

Z(I(M)) = {v ∈ kr \ {0} | v is an eigenvector for every A ∈M}/k∗.

Proof: By de�nition, I(M) =
∑

A∈M I2(∂ A∂). Thus a v ∈ kr satis�es D(v) = 0

for all D ∈ I(M) if and only if∣∣∣∣∣vi (Av)i

vj (Av)j

∣∣∣∣∣ = 0 for all i < j and all A ∈M .

This is equivalent to v being an eigenvector for every A ∈ M . Thus Z(I(M)) is
simply the projectivization of the union of the eigenspaces. �





Chapter 3

Regular splittings

This chapter covers our work on regular splittings. The �rst half deals with how
to �nd such splittings. Then in section 3.3 we study how a regular splitting
a�ects the Artinian Gorenstein quotient R/ annR f . In fact, if f =

∑n
i=1 gi is a

regular splitting of f , then we express the Hilbert function and, more generally,
the (shifted) graded Betti numbers of R/ annR f in terms of those for R/ annR(gi),
i = 1, . . . , n. To get there, we calculate the minimal free resolution of R/ annR f .

Section 3.4 concerns PGor(H), the space parameterizing all graded Artinian
Gorenstein quotients R/I with Hilbert function H. We de�ne a subset paramet-
erizing those R/ annR f where f splits regularly, and we compute its dimension
and the dimension of the tangent space to PGor(H) at the point R/ annR f .

One goal of this paper is to study what Mf can tell us about f ∈ Rd, and
in section 3.2 we show how to extract from Mf the regular splitting properties
of f . By corollary 2.10, any regular splitting of f happens inside the subring
k[Rd−1(f)]DP ⊆ R. Thus we may assume that annR(f)1 = 0 by performing a
suitable base change and reducing the number of variables, if necessary. If in
addition d ≥ 3, proposition 2.21 tells us that Mf is a commutative k-algebra.
This will allow us to �nd all regular splittings. It turns out that the idempotents
in Mf determine the regular splittings, so we start by studying these.

31
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3.1 Idempotents and matrix algebras

This section discusses idempotents in general, and in particular how they relate
to matrix algebras. We will see how eigenvalues and eigenspaces are connected
to idempotents. We start with some elementary de�nitions.

Let A be a ring with unity. A nonzero element e in A is called an idempotent
if e2 = e. A subset {e1, . . . , en} ⊆ A is a set of orthogonal idempotents in A if
e2i = ei 6= 0 for all i and eiej = 0 for all i 6= j. The set is complete if in addition∑n

i=1 ei = 1. If {e1, . . . , en} is not complete, let e0 = 1−
∑n

i=1 ei 6= 0. Then

eie0 = ei − ei

n∑
j=1

ej = ei − e2i = 0 = e0ei

for all i > 0, and e20 = (1 −
∑n

i=1 ei)e0 = e0. Thus e0 is an idempotent, and
{e0, . . . , en} is a complete set of orthogonal idempotents.

We de�ne a coid to be a set E = {e1, . . . , en} of nonzero elements of A such
that eiej = 0 for all i 6= j and ∑n

i=1 ei = 1. This implies ei = ei
∑n

j=1 ej = e2i ,
thus E is a complete set of orthogonal idempotents (hence the name coid). We
de�ne its length to be l(E) = n, the size of E as a set.

Assume in addition that A is a commutative ring. Let E = {e1, . . . , en}
and E ′ = {e′1, . . . , e′m} be two coids. For all 1 ≤ i ≤ n and 1 ≤ j ≤ m, let
eij = eie

′
j. Then

∑
i,j eij = (

∑n
i=1 ei)(

∑m
j=1 e

′
j) = 1, and for all (i, j) 6= (k, l), we

have eijekl = eie
′
jeke

′
l = (eiek)(e

′
je
′
l) = 0. Thus, if eij and ekl are nonzero, then

they are orthogonal idempotents. In particular, they are not equal. This shows
that

E ⊗ E ′ = {eij | eij 6= 0}

is another coid, which we call the product coid. This product has the following
properties.
Lemma 3.1: Suppose A is a commutative ring with unity. Let E = {e1, . . . , en}
and E ′ = {e′1, . . . , e′m} be two coids. Then l(E ⊗E ′) ≥ l(E), and l(E ⊗E ′) = l(E) if
and only if E ⊗ E ′ = E . Furthermore, if E ⊗ E ′ = E , then E re�nes E ′ in the sense
that there exists a partition {J1, . . . ,Jm} of {1, . . . , n} such that e′j =

∑
i∈Jj

ei.

Proof: For each i = 1, . . . , n, at least one of eie′1, . . . , eie′m must be nonzero,
since∑m

j=1 eie
′
j = ei 6= 0. This proves that l(E ⊗E ′) ≥ l(E). It also shows that, if
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l(E⊗E ′) = l(E), then for every i there exists a unique ji such that eie′ji 6= 0. Then
ei =

∑m
j=1 eie

′
j = eie

′
ji
, hence E ⊗ E ′ and E are equal. For every j = 1, . . . ,m, let

Jj = {i | ji = j}. Then Jj ∩Jk = ∅ for all j 6= k, and J1 ∪ . . .∪Jm = {1, . . . , n}.
Thus {Jj} is a partition of {1, . . . , n}, and e′j =

∑n
i=1 eie

′
j =

∑
i∈Jj

ei. �

The next proposition contains what we will need to know about idempotents.
First, note the following. Let V be any k-vector space, and V1, . . . , Vn ⊆ V

be subspaces. When we write V = ⊕n
i=1 Vi, we mean that the natural map

⊕n
i=1 Vi → V de�ned by (vi) 7→

∑n
i=1 vi is an isomorphism. This is equivalent to∑n

i=1 Vi = V and Vi ∩
(∑

j 6=i Vj
)

= 0 for all i.
We say that A contains a unique maximal coid if it contains a coid E of

maximal length and every coid re�nes into E , cf. lemma 3.1.

Proposition 3.2: Let A be a commutative ring with unity.

(a) For every coid {e1, . . . , en}, the natural map A → e1A⊕ . . .⊕ enA is an
isomorphism of rings. Furthermore, every ring-isomorphism A → ⊕n

i=1Ai

arise this way up to isomorphisms of the summands Ai.

(b) Assume in addition that A is Noetherian. Then A contains a unique max-
imal coid E = {e1, . . . , en}. In particular, the idempotents in A are precisely
the elements e =

∑
i∈I ei with ∅ 6= I ⊆ {1, . . . , n}.

(c) Let A also be Artinian, and let {e1, . . . , en} be the unique maximal coid.
For every i, the ring Ai = eiA is local Artinian, and its maximal ideal is
Anil
i = {a ∈ Ai | ak = 0 for some k}, the set of nilpotent elements in Ai. In

particular, A contains exactly n prime ideals.

Proof: We note that if e ∈ A is an idempotent, then the ideal

eA = {ea | a ∈ A} ⊆ A

is itself a commutative ring, with identity e. The map a 7→ (e1a, . . . , ena) is
obviously a homomorphism of rings. Since (a1, . . . , an) 7→

∑n
i=1 ai is an inverse,

it is an isomorphism.
Assume that A→ ⊕n

i=1Ai is an isomorphism of rings. For every i = 1, . . . , n,
let ei ∈ A be the element mapped to 1 ∈ Ai and 0 ∈ Aj for all j 6= i. Then for
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all i 6= j, we have eiej 7→ 0 in every component, thus eiej = 0. And ∑n
i=1 ei = 1

since 1 7→ (1, . . . , 1). Hence {e1, . . . , en} is a coid, and A → ⊕n
i=1Ai restricts to

isomorphisms eiA→ Ai. Thus the map A→ ⊕n
i=1Ai factors through the natural

map A→ ⊕n
i=1 eiA

∼=⊕n
i=1Ai. This proves (a).

We will now prove (b) in several steps. First, suppose that A contains an
idempotent e 6= 1. Then 1− e is also idempotent. Let

Υ = Υ(A) = {a ∈ A | a2 = a},

and note that Υ(eA) = {ea | ea2 = ea} = eΥ. It follows that the isomorphism
A→ eA⊕(1− e)A restricts to a bijection Υ → eΥ× (1− e)Υ.

Assume that A contains in�nitely many idempotents. Thus Υ is in�nite, and
for every idempotent e, at least one of eΥ and (1 − e)Υ must be in�nite. Pick
e1 ∈ Υ \ {0, 1} such that (1− e1)Υ is in�nite. Since (1− e1)A has in�nitely many
idempotents, we may choose e2 ∈ (1−e1)Υ\{0, 1−e1} such that (1−e2)(1−e1)Υ
is in�nite. Since e2 ∈ (1− e1)Υ, we get e1e2 = 0. We may repeat this process as
many times as we like, producing elements e1, e2, . . . ∈ A such that e2i = ei 6= 0

for all i and eiej = 0 for all i 6= j. If ek =
∑

i<k aiei for some ai ∈ A, then
e2k =

∑
i<k aieiek = 0, which is a contradiction. Hence we have produced a

non-terminating, ascending sequence of ideals

(e1) ( (e1, e2) ( (e1, e2, e3) ( . . . ,

contradicting the Noetherian hypothesis.
Since A has only �nitely many idempotents, there is a coid E of maximal

length. If E ′ is any coid, we know that l(E ⊗ E ′) ≥ l(E). By the maximality of E ,
it must be an equality, implying E⊗E ′ = E . Furthermore, l(E ′) ≤ l(E⊗E ′) = l(E),
with equality if and only if E ′ = E . Hence E is the unique coid of maximal length.
Moreover, E is a re�nement of E ′, so any coid is obtained from E by �grouping�
some of its elements as in lemma 3.1. In particular, if e 6= 1 is any idempotent,
then {e, 1 − e} can be re�ned to E = {e1, . . . , en}, implying that there is a non-
empty subset I ⊆ {1, . . . , n} such that e =

∑
i∈I ei.

To prove (c), assume that A is Artinian, and let a ∈ A. Since

(1) ⊇ (a) ⊇ (a2) ⊇ (a3) ⊇ . . .
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becomes stationary, there is an n ≥ 0 such that (an) = (an+1). Hence there exists
b ∈ A such that an = ban+1. It follows that an+kbk = an for all k ≥ 1, and
therefore, (ab)2n = (ab)n. If (ab)n = 0, then an = a2nbn = 0. Thus either a is
nilpotent, or (ab)n 6= 0 is idempotent.

The ring Ai = eiA contains no non-trivial idempotents because {e1, . . . , en}
is maximal. Let P ⊆ Ai be a prime ideal. Obviously, P contains all nilpotents.
But if a ∈ Ai is not nilpotent, then we have just proven that a must be invertible.
Thus

P = Anil
i = {a ∈ Ai | a is nilpotent}.

Clearly, an ideal P ⊆ A = ⊕n
i=1Ai is prime if and only if P = P1⊕ . . .⊕Pn

and there exists j such that Pj is a prime ideal in Aj and Pi = Ai for all i 6= j.
Since Aj has a unique prime ideal, it follows that Pj = Anil

j . Thus A has exactly
n prime ideals. �

Remark 3.3: Continuing with the notation of the proof of part (c), we see
that AP ∼=(Aj)Pj

∼=Aj. Hence the decomposition A = ⊕n
i=1Ai is the one that is

obtained in [Eis95, section 2.4] using �ltrations and localizations.
Note that the ideal Anil

i is nilpotent. Since Ai is Noetherian, Anil
i is �nitely

generated, say by a1, . . . , aq. Since every ak is nilpotent, there exists mk such that
amk
k = 0. The ideal (Anil

i )m is generated by products Πm
j=1

(∑q
k=1 cjkak

). When
m >

∑q
k=1(mk − 1), every monomial in the expansion is necessarily zero. Thus

the product is zero, proving that Anil
i is a nilpotent ideal.

Remark 3.4: Note that the commutativity of A in (b) is necessary. Indeed,
Matk(r, r) contains in�nitely many idempotents when r ≥ 2 and k is in�nite. For
instance, A =

(
1 a
0 0

) is idempotent for all a ∈ k.

In this paper, when we apply proposition 3.2, the ring A will usually be a
matrix algebra M . In this case, the idempotents in M are closely related to the
eigenspaces of M . Before we prove this, we give some de�nitions.

Let M be a commutative subalgebra M ⊆ Matk(r, r), and assume that M
contains the identity matrix I. We say that v ∈ V = kr is an eigenvector for M if
it is an eigenvector for all A ∈M , that is, if for every A ∈M there exists λA ∈ k
such that Av = λAv. Obviously, v = 0 is an eigenvector.
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Fix an eigenvector v 6= 0. Then Av = λAv determines λA uniquely. Consider
the map λ : M → k de�ned by λ(A) = λA. Let A,B ∈ M . Since M is a
k-algebra, we get aA+ bB ∈M for all a, b ∈ k, and AB ∈M . It follows that

λ(aA+ bB)v = (aA+ bB)v = aAv + bBv =
(
aλ(A) + bλ(B)

)
v.

Since v 6= 0, this implies that λ(aA + bB) = aλ(A) + bλ(B), and similarly,
λ(AB) = λ(A)λ(B). Moreover, λ(I) = 1. Thus λ is a homomorphism of k-
algebras. We call λ an eigenvalue function for M .

For every homomorphism λ : M → k of k-algebras, we de�ne
Uλ = {v ∈ V |Av = λ(A)v for all A ∈M}.

Clearly, λ is an eigenvalue function for M if and only if Uλ 6= 0. Uλ is the
eigenspace associated to λ. Let U0

λ = 0. De�ne Uk
λ for k ≥ 1 inductively by

Uk
λ =

{
v ∈ V

∣∣ (A− λ(A)I
)
v ∈ Uk−1

λ for all A ∈M}.
In particular, U1

λ = Uλ, the eigenspace associated to λ. Obviously, the sequence
0 ⊆ U1

λ ⊆ U2
λ ⊆ . . . must stabilize since V is of �nite dimension. De�ne Vλ =∑

k≥0 U
k
λ , that is, Vλ = Uk

λ for all k � 0. We call Vλ the generalized eigenspace
associated to λ.

The following proposition is a spectral theorem for M .
Proposition 3.5: Let M ⊆ Matk(r, r) be a commutative subalgebra containing
the identity matrix I.

(a) M has a unique maximal complete set of orthogonal idempotents {Ei}ni=1.

(b) Mi = EiM is local Artinian, and its unique prime ideal is

Mnil
i = {A ∈Mi |A is nilpotent}.

(c) M = M1⊕ . . .⊕Mn.

(d) kr = imE1⊕ . . .⊕ imEn.

(e) Let I = {i |Mi = 〈Ei〉⊕Mnil
i }. There are exactly |I| homomorphism

M → k of k-algebras. Indeed, for each i ∈ I, the k-linear map λi : M → k

de�ned by λi(Ei) = 1 and λi(A) = 0 for all A ∈Mnil
i ⊕

(
⊕j 6=iMj

)
is a homo-

morphism of k-algebras, and there are no others. Each λi is an eigenvalue
function, and Vλi

= imEi.
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(f) Mi = 〈Ei〉⊕Mnil
i for all i if and only if k contains every eigenvalue of each

A ∈M .

Proof: Since M has �nite dimension as a k-vector space, it is Artinian. Hence
(a), (b) and (c) follow immediately from proposition 3.2.

To prove (d), that is, kr = imE1⊕ . . .⊕ imEn, it is enough to note that
v 7→ (E1v, . . . , Env) and (v1, . . . , vn) 7→

∑n
i=1 vi are k-linear maps and inverses of

each other.
Clearly, each λi is a homomorphism of k-algebras. If λ : M → K is any k-

algebra homomorphism onto some sub�eld K of k̄, then kerλ must be a maximal
ideal in M . Thus kerλ = Mnil

i ⊕
(
⊕j 6=iMj

) for some i. If K = k, then this
kernel must have codimension one as a k-vector subspace of M , which implies
that Mi = 〈Ei〉⊕Mnil

i . Obviously, λ(Ei) = λ
(∑

j Ej
)

= 1, hence λ = λi.
To prove that λi is an eigenvalue function, we must �nd a nonzero v ∈ kr such

that Av = λi(A)v for all A ∈ M . We shall in fact prove that Vλi
6= 0, since this

implies Uλi
6= 0. Since Ei 6= 0, it is enough to prove that Vλi

= imEi.
Let v ∈ Uk

λi
. For every j 6= i we have λi(Ej) = 0, and thus Ejv ∈ Uk−1

λi
.

Then Ek
j v ∈ U0

λi
= 0 by induction. But Ek

j = Ej, hence v ∈ kerEj. From
v ∈ ∩j 6=i kerEj, it follows that v =

∑
j Ejv = Eiv ∈ imEi. We also note for all

j 6= i and A ∈Mj that Av = AEjv = 0. Thus

Uk
λi

=

{
v ∈ kr

∣∣∣∣ k∏
j=1

(
Aj − λi(Aj)I

)
v = 0 for all A1, . . . , Ak ∈M

}

=

{
v ∈ imEi

∣∣∣∣ ( k∏
j=1

Aj

)
(v) = 0 for all A1, . . . , Ak ∈Mnil

i

}
=

{
v ∈ imEi

∣∣∣∣ Av = 0 for all A ∈ (Mnil
i

)
k

}
.

Since Mnil
i is nilpotent, this implies Vλi

= imEi, and �nishes the proof of (e).
To prove (f), assume that Mi = 〈Ei〉⊕Mnil

i for all i. Pick A ∈ M . For all i,
since EiA ∈ Mi, there exists λi ∈ k such that EiA − λiEi ∈ Mnil

i . Hence there
existsmi ≥ 1 such that (EiA−λiEi)mi = 0. It follows that Ej Πn

i=1(A−λiI)mi = 0

for all j. Therefore, Πn
i=1(A − λiI)

mi = 0. Thus the minimal polynomial of A
divides Πn

i=1(λ− λi)
mi . Hence λ1, . . . , λn are all of A's eigenvalues, and they are

all in k.
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Conversely, let A ∈Mi. A has at least one eigenvalue λ ∈ k̄, and by assump-
tion, λ ∈ k. Thus A−λEi ∈Mi is not invertible. SinceMi is local, A−λEi must
be nilpotent, i.e. A ∈ 〈Ei〉⊕Mnil

i . Since this is true for every A ∈ Mi, it follows
that Mi = 〈Ei〉⊕Mnil

i . �

Remark 3.6: If {E1, . . . , En} is a coid in Matk(r, r), then E1, . . . , En can easily
be diagonalized simultaneously. Indeed, let si = rankEi for all i, and

Ji =

{
j ∈ Z

∣∣∣∣ ∑
k<i

sk < j ≤
∑
k≤i

sk

}
.

Choose a basis {vj | j ∈ Ji} for imEi. Since kr = ⊕n
i=1 imEi, it follows that∑n

i=1 si = r, and that {v1, . . . , vr} is a basis for kr. Hence {J1, . . . ,Jn} is a
partition of {1, . . . , r}, and P = [v1, . . . , vr] is invertible.

Note that E2
i = Ei is equivalent to Eiv = v for all v ∈ imEi. Hence Eivj = vj

for all j ∈ Ji. Similarly, since EiEj = 0 for all i 6= j, we get Eivj = 0 for all
j /∈ Ji. It follows that

P−1EiP =
[
P−1Eiv1, . . . , P

−1Eiv1

]
=


0 0 0

0 I 0

0 0 0

,
where I is the si × si identity matrix. Thus every E ′

i = P−1EiP is a diagonal
matrix, with diagonal entries (E ′

i)jj = 1 if j ∈ Ji and (E ′
i)jj = 0 otherwise.

Also note that a matrix A ∈ Matk(r, r) commutes with every E ′
i, i = 1, . . . , n,

if and only if A can be written in block diagonal form

A =


A1 0 0

0
. . . 0

0 0 An

,
where Ai is an si × si matrix. Furthermore,

E ′
i Matk(r, r)E

′
i =




0 0 0

0 Ai 0

0 0 0


∣∣∣∣∣∣∣∣ Ai ∈ Matk(si, si)

 ,

hence {A ∈ Matk(r, r)
∣∣ AE ′

i = E ′
iA for all i} = ⊕n

i=1E
′
i Matk(r, r)E

′
i.



3.2 Idempotents and regular splittings 39

3.2 Idempotents and regular splittings

We are now ready to prove that the idempotents in Mf determine the regular
splittings of f , and how they do it. The bridge between Mf and the additive
components of f is the map γf . Recall that γf = Mf → Rd sends A ∈ Mf

to the unique g ∈ Rd that satis�es ∂g = A∂f (d > 0). This map connects
the idempotents in Mf to the additive components of f , and establishes a bijec-
tion between the complete sets of orthogonal idempotents in Mf and the regular
splittings of f .
Theorem 3.7:
Assume d ≥ 2, f ∈ Rd and annR(f)1 = 0. Let Coid(Mf ) be the set of all complete
sets {E1, . . . , En} of orthogonal idempotents in Mf , and let

Reg(f) =
{
{g1, . . . , gn}

∣∣ f = g1 + · · ·+ gn is a regular splitting of f
}
.

The map {Ei}ni=1 7→ {gi = γf (Ei)}ni=1 de�nes a bijection

Coid(Mf ) → Reg(f).

In particular, there is a unique maximal regular splitting of f when d ≥ 3.

Similar to our usage in the last section, when we here say that there is a
unique maximal regular splitting of f , we mean that there is a unique regular
splitting of maximal length and that every other regular splitting is obtained from
the maximal one by �grouping� some of its summands, cf. proposition 3.2b.

Proof: First, note that annR(f)1 = 0 is equivalent to Rd−1(f) = R1, that is,
{∂Df |D ∈ Rd−1} = kr. Hence, if ∂gi = Ei∂f , then

{∂Dgi |D ∈ Rd−1} = {Ei∂Df |D ∈ Rd−1} = imEi.

Since ∂(vTx) = v, this implies that

Rd−1(gi) = {vTx | v ∈ imEi} ⊆ R1. (3.1)

(Recall that x denotes the column vector x = [x1, . . . , xr]
T.)

Assume that {E1, . . . , En} ⊆Mf is a complete set of orthogonal idempotents.
For each i, let gi = γf (Ei) ∈ Rd, that is, ∂gi = Ei∂f . Note that gi 6= 0 because
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Ei 6= 0 and annR(f)1 = 0. Since ∑n
i=1Ei = I, we get ∑n

i=1 gi = f . Furthermore,
for all i, equation (3.1) implies that

Rd−1(gi)∩
(∑
j 6=i

Rd−1(gj)

)
=

{
vTx

∣∣∣∣ v ∈ imEi ∩
(∑
j 6=i

imEj

)}
(3.2)

But the Ei's are orthogonal idempotents, thus imEi ∩
(∑

j 6=i imEj
)

= 0 by pro-
position 3.5d. Hence f = g1 + · · ·+ gn is a regular splitting of f .

Conversely, assume that f splits regularly as f = g1 + · · · + gn. By lemmas
2.9 and 2.12 there exists for every i a matrix Ei ∈Mf such that ∂gi = Ei∂f . Ei
is unique since annR(f)1 = 0, and γf (Ei) = gi by de�nition of γf . Furthermore,
∂f =

∑n
i=1 ∂gi =

∑n
i=1Ei∂f implies ∑n

i=1Ei = I.
Because f =

∑
i gi is a regular splitting, we know for all i that

Rd−1(gi)∩
(∑
j 6=i

Rd−1(gj)

)
= 0.

Combined with equation (3.2), this implies imEi ∩
(∑

j 6=i imEj
)

= 0. For all
v ∈ kr and all j we know that Ejv =

∑n
k=1EkEjv. For any i 6= j, we rearrange

this equation and get EiEjv = Ej(v−Ejv)−
∑

k 6=i,j EkEjv. This is an element of
imEi ∩

(∑
j 6=i imEj

), and must therefore be zero. Hence EiEjv = 0 for all v ∈ kr,
implying EiEj = 0 for all i 6= j. This proves that {E1, . . . , En} is a complete set
of orthogonal idempotents in Mf .

When d ≥ 3, Mf is a commutative k-algebra, and has therefore a unique
maximal complete set of orthogonal idempotents, by proposition 3.2. It follows
that f has a unique regular splitting of maximal length, and that every other
regular splitting of f is obtained from the maximal one by �grouping� some of
the summands. �

Remark 3.8: To sum up, theorem 3.7 tells us that there is a correspondence
between regular splittings f = g1 + · · · + gn and complete sets of orthogonal
idempotents {E1, . . . , En} ⊆ Mf given by the equation ∂gi = Ei∂f . The corres-
pondence is one-to-one because ∂gi = Ei∂f determines gi uniquely given Ei since
d > 0, and it determines Ei uniquely given gi because annR(f)1 = 0.
Remark 3.9: We want to point out that d ≥ 3 is very di�erent from d = 2 when
we work with regular splittings. If f ∈ Rd and d ≥ 3, then Mf contains a unique
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maximal complete set of orthogonal idempotents, and f has therefore a unique
maximal splitting. This is in stark contrast to d = 2, when the representation of
f as a sum of squares is far from unique. The explanation for this di�erence is
thatMf does not have a unique maximal complete set of orthogonal idempotents
when d = 2, and the reason for this is that Mf is not closed under multiplication.

Theorem 3.7 is not as complete as we would like it to be. It tells us how to
�nd a regular splitting f =

∑n
i=1 gi, but it does not say how Mgi

is related to
Mf . This is something we would like to know, since Mf can contain matrices
that are not idempotent. If these matrices are not found in one of the Mgi

's, it
would mean that we loose some information about f (contained in Mf ) when we
pass to the additive components {g1, . . . , gn}.

Fortunately, this is not the case, as theorem 3.18 will tell us. It would be nice
if the relationship between Mf and the Mgi

's was as simple as Mf = ⊕n
i=1Mgi

.
But it is not, because there is an important di�erence between f and the gi's.
In theorem 3.7 we assumed annR(f)1 = 0, an assumption which was justi�ed
by corollary 2.10. But if f = g1 + · · · + gn is a non-trivial regular splitting (i.e.
n ≥ 2), then necessarily annR(gi)1 6= 0 for all i. This a�ects Mgi

, and we have
to adjust for this e�ect. Thus in order to state and prove theorem 3.18, we need
to understand what happens to Mf if annR(f)1 6= 0. After the adjustment, the
simple relationship between Mf and the Mgi

's is in fact restored.

Remark 3.10: In the following we will often choose a subspace W ⊆ R1 and
consider the divided power subalgebra S = k[W ]DP ⊆ R. (The most important
example is W = Rd−1(f). If annR(f)1 6= 0, then W ( R1 and S ( R.) We note
that D(g) ∈ S for all g ∈ S and D ∈ R. Thus for any subset S ⊆ R, the action
of R on R restricts to an action of S on S. We usually want a polynomial ring
S = k[V ] with V ⊆ R1 acting as the dual of S (i.e. S∼=S∗).

To ensure that the choice of V ⊆ R1 implies S∼=S∗, we need V ∼=W ∗. Note
that R1

∼=W⊥⊕W ∗. Thus choosing S = k[V ] ⊆ R such that S∼=S∗ with the
action induced by R, is equivalent to choosing V ⊆ R1 such that R1 = W⊥⊕V .
Note that S ⊆ R determines the ideal annR S = {D ∈ R |Dg = 0 for all g ∈ S},
which equals (W⊥), the ideal in R generated by W⊥. Since R = (W⊥)⊕S as
graded k-vector spaces, S determines S only as a direct summand.
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Remark 3.11: Note that E ∈ Matk(r, r) is idempotent if and only if E acts as
the identity on its image and kr = imE⊕ kerE. Hence specifying E is equivalent
to choosing subspaces imE, kerE ⊆ kr such that kr = imE⊕ kerE.

A pair (W ⊆ R1, V ⊆ R1) satisfyingW ⊕V ⊥ = R1 determines an idempotent
E ∈ Matk(r, r) by the equations

imE = {v ∈ kr | vTx ∈ W} and kerE = {v ∈ kr | vTx ∈ V ⊥}.

Note that by remark 3.10, a pair (W,V ) satisfying W ⊕V ⊥ = R1 is equivalent
to a pair (S = k[W ]DP ⊆ R, S = k[V ] ⊆ R) satisfying S = S∗.

Conversely, an idempotent E ∈ Matk(r, r) determines S = k[W ]DP ⊆ R and
S = k[V ] ⊆ R by the equations

W = {vTx | v ∈ imE} = {xTEu |u ∈ kr} ⊆ R1,

V = {vT∂ | v ∈ imET} = {uTE∂ |u ∈ kr} ⊆ R1.

We note that

V ⊥ = {vTx | (uTE∂)(vTx) = uTEv = 0 ∀ u ∈ kr} = {vTx | v ∈ kerE}.

Since E is idempotent, we know that kr = imE⊕ kerE. This implies that
W ⊕V ⊥ = R1 and W⊥⊕V = R1, and therefore S∼=S∗.

Let s = rankE = dimk V = dimkW . Choose a basis {v1, . . . , vs} for imE,
and a basis {vs+1, . . . , vr} for kerE. Since imE⊕ kerE = kr, it follows that the
matrix P = [v1, . . . , vr] is invertible. Furthermore,

P−1EP = P−1[v1, . . . , vs, 0, . . . , 0] =

(
I 0

0 0

)
,

where I is the s×s identity matrix, cf. remark 3.6. The similarity transformation
E 7→ P−1EP corresponds to a change of variables in R and R, transforming S
into S = k[x1, . . . , xs]

DP and S into S = k[∂1, . . . , ∂s], cf. proposition 3.15.
It is usually more convenient to specify an idempotent E instead of specifying

a pair (S = k[W ]DP , S = k[V ]) such that R1 = W⊥⊕V . Therefore, we will
formulate most of the results in this section using idempotents, and we will de�ne
and use S and S only when we have to. If f ∈ R and S = k[W ]DP ⊆ R, then we
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will often need to know when f ∈ S. Since f ∈ k[Rd−1(f)]DP , this is equivalent
to Rd−1(f) ⊆ W . The next lemma allows us to express this in terms of the
idempotent E.
Lemma 3.12: Assume d > 0 and f ∈ Rd. Let E ∈ Matk(r, r) be idempotent,
and de�ne W = {vTx | v ∈ imE}. Then

(a) Rd−1(f) ⊆ W if and only if E∂f = ∂f ,

(b) Rd−1(f) = W if and only if E∂f = ∂f and rankE = dimk Rd−1(f).

Proof: Clearly, Rd−1(f) = {Df |D ∈ Rd−1} ⊆ W if and only if {∂Df |D ∈
Rd−1} ⊆ {∂h |h ∈ W} = imE. Since E is idempotent, this is equivalent to
E∂Df = ∂Df for all D ∈ Rd−1, i.e. E∂f = ∂f . This proves (a). (b) follows
immediately, since rankE = dimkW . Note that E∂f = ∂f implies that rankE ≥
dimk Rd−1(f) by (a), thus (b) is the case of minimal rank. �

When f ∈ S ( R, the de�nition of Mf is ambiguous in the following way.
Remark 3.13: Let S = k[x1, . . . , xs]

DP and S = k[∂1, . . . , ∂s]. Assume s < r, so
that S ( R and S ( R. Let ∂′ = [∂1, . . . , ∂s]

T. There are two ways to interpret
de�nition 2.14 when f ∈ S. We may consider f to be an element of R, giving
Mf = {A ∈ Matk(r, r) | I2(∂A∂)2 ⊆ annR f}. Or we may think of f as an element
of S, in which case M ′

f = {A ∈ Matk(s, s) | I2(∂′A∂′)2 ⊆ annS f}.
Notice that we choose to write I2(∂ A∂)2. This is the degree two part of the

ideal I2(∂ A∂) and generates the ideal. The reason for doing this is that I2(∂′A∂′)
is ambiguous; is it an ideal in R or an ideal in S? But its degree two piece is
the same in both cases; I2(∂′A∂′)2 is simply the k-vector space spanned by the
2 × 2 minors of (∂′A∂′). The ideals in R and S generated by these minors are
therefore equal to I2(∂′A∂′)2R and I2(∂′A∂′)2S, respectively.

Since R is our default ring, Mf will always mean what de�nition 2.14 says,
i.e. Mf = {A ∈ Matk(r, r) | I2(∂ A∂)2 ⊆ annR f}. It is not immediately clear
what the analogue of M ′

f should be for a more general subring S ⊆ R. We will
in proposition 3.15 prove that the following de�nition gives us what we want.
De�nition 3.14: Assume f ∈ Rd. Let E ∈Mf be idempotent. De�ne

ME
f = Mf ∩EMatk(r, r)E.
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Of course, M I
f = Mf . Note that EMatk(r, r)E is closed under multiplication.

HenceME
f is a k-algebra ifMf is closed under matrix multiplication. In any case,

we note that E ∈ME
f , and that E acts as the identity on ME

f .
We want to show that if E∂f = ∂f then ME

f reduces to M ′
f (cf. remark

3.13) when we perform a suitable base change and forget about extra variables.
In remark 3.13 we used both annR f and annS f . In general, if f ∈ S ⊆ R and
S∼=S∗, then by de�nition annS f = {D ∈ S |Df = 0}. Hence

annS f = S ∩ annR f

is always true. Recall that, if P ∈ GLr, then φP : R → R is the k-algebra
homomorphism induced by x 7→ PTx, and φP : R→ R is induced by ∂ 7→ P−1∂.
Proposition 3.15: Let f ∈ Rd, d > 0. Suppose E ∈ Mf is idempotent and
satis�es E∂f = ∂f . Let s = rankE, W = {vTx | v ∈ imE} and V = {vT∂ | v ∈
imET}. De�ne S = k[W ]DP ⊆ R and S = k[V ] ⊆ R. Choose P ∈ GLr such that

E ′ = PEP−1 =

(
I 0

0 0

)
.

Let S ′ = φP (S), S ′ = φP (S) and f ′ = φP (f). Then S ′ = k[x1, . . . , xs]
DP ,

S ′ = k[∂1, . . . , ∂s] and f ′ ∈ S ′. Let ∂′ = [∂1, . . . , ∂s]
T. Then

ME
f
∼=M ′

f ′ =
{
A ∈ Matk(s, s)

∣∣ I2(∂′ A∂′)2 ⊆ annS′(f
′)
}
.

Proof: We start by proving that φP (S) = k[x1, . . . , xs]
DP . We know that W =

{xTEu |u ∈ kr}. Since φP (xTEu) = (PTx)TEu = xTPEu = xTE ′Pu, it follows
that φP (W ) = {xTE ′v | v ∈ kr} = 〈x1, . . . , xs〉. Thus φP (S) = k[x1, . . . , xs]

DP .
In a similar fashion we get φP (V ) = {vTE ′∂ | v ∈ kr} = 〈∂1, . . . , ∂s〉, implying
φP (S) = k[∂1, . . . , ∂s]. Furthermore, E∂f = ∂f implies Rd−1(f) ⊆ W by lemma
3.12. Thus f ∈ k[Rd−1(f)]DP ⊆ S, and therefore, f ′ = φP (f) ∈ S ′.

In order to show that ME
f
∼=M ′

f ′ , we �rst prove that

ME
f =

{
A ∈ EMatk(r, r)E

∣∣ I2(E∂ A∂)2 ⊆ annS f
}
. (3.3)

Assume that A ∈ EMatk(r, r)E. Since A = AE and(E∂)i ∈ S for all i, it follows
that I2(E∂ A∂)2 ⊆ S automatically. Hence I2(E∂ A∂)2 ⊆ annS f if and only if
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I2(E∂ A∂)2 ⊆ annR f . By lemma 2.13 this latter statement holds if and only
if (A∂)(E∂)T(f) is symmetric, which is equivalent to A∂∂Tf being symmetric,
since E∂f = ∂f . And A∂∂Tf is symmetric if and only if A ∈ Mf . Hence,
if A ∈ EMatk(r, r)E, then I2(E∂ A∂)2 ⊆ annS f ⇔ A ∈ Mf , which proves
equation (3.3).

Now let M = EMatk(r, r)E and

M ′ = PMP−1 = E ′ Matk(r, r)E
′ =

{(
A 0

0 0

)∣∣∣∣∣ A ∈ Matk(s, s)

}
.

Applying equation (3.3) to f ′ and E ′, we see that
ME′

f ′ =
{
A ∈M ′ ∣∣ I2(E ′∂ A∂)2 ⊆ annS′(f

′)
}
.

Clearly, A 7→ ( A 0
0 0 ) de�nes an isomorphismM ′

f ′ →ME′

f ′ . Thus to �nish the proof,
it is enough to show that ME′

f ′ = PME
f P

−1.
Let A ∈ M ′. Then A ∈ ME′

f ′ if and only if A∂∂T(f ′) is symmetric. Note
that φP−1(∂∂T(f ′)) = (P∂)(P∂)T(f) = P∂∂T(f)PT. Hence A∂∂T(f ′) is symmetric
if and only if φP−1(P−1A∂∂T(f ′)(P−1)T) = P−1AP∂∂Tf is symmetric, which is
equivalent to P−1AP ∈ME

f . ThusME′

f ′ = PME
f P

−1∼=ME
f , and we are done. �

Before we go on to theorem 3.18, we need two more lemmas.
Lemma 3.16: Suppose d ≥ 2 and f ∈ Rd. Let E ∈ Mf be idempotent. Then
ME

f = EMfE. If E∂f = ∂f and rankE = dimk Rd−1(f), then ME
f = MfE and

Mf = ME
f ⊕ ker γf .

Proof: E∂∂Tf is symmetric since E ∈Mf . If A ∈Mf , then A∂∂Tf is symmetric,
hence EA∂∂T(f)ET = EAE∂∂Tf is also symmetric. This proves EAE ∈Mf , and
therefore EAE ∈ME

f . Hence A 7→ EAE de�nes a k-linear map Mf →ME
f . It is

clearly surjective. Indeed, if EAE ∈ ME
f ⊆ Mf , then EAE 7→ E2AE2 = EAE.

Thus ME
f = EMfE.

If E∂f = ∂f , then EA∂∂Tf = E∂∂TAT(f) = ∂∂TAT(f) = A∂∂Tf , hence
EA∂f = A∂f because d ≥ 2. Since Rd−1(f) = {vTx | v ∈ imE} by lemma 3.12,
we have {∂Df |D ∈ Rd−1} = imE. It follows that

EA∂f = A∂f ⇔ EA∂Df = A∂Df ∀D ∈ Rd−1

⇔ EAEv = AEv ∀ v ∈ kr ⇔ EAE = AE.
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Similarly, A∂f = 0 if and only if AE = 0. Hence the map Mf → ME
f above

is also given by A 7→ AE. This proves that ME
f = MfE. Furthermore, the

kernel of this map is obviously {A ∈ Mf |AE = 0} = {A ∈ Mf |A∂f = 0} =

ker γf . Finally, the composition ME
f ⊆ Mf → ME

f is the identity, implying
Mf = ME

f ⊕ ker γf . �

Lemma 3.17: Suppose d ≥ 2 and f ∈ Rd. Let E ∈ Mf be idempotent and
g = γf (E). Then ME

g = ME
f . If d ≥ 3, then even MgE = MfE.

Proof: Since ∂g = E∂f , we get A∂∂Tg = AE∂∂Tf . It follows that

Mg = {A ∈ Matk(r, r) |AE ∈Mf}. (3.4)

Indeed, A ∈ Mg if and only if A∂∂Tg is symmetric. But A∂∂Tg = AE∂∂Tf , and
AE∂∂Tf is symmetric if and only if AE ∈Mf . This proves equation (3.4).

Let A ∈ Mg. Then AE ∈ Mf , and therefore AE = (AE)E ∈ MfE. Thus
MgE ⊆ MfE. This implies that ME

g = EMgE ⊆ EMfE = ME
f . Conversely, let

A ∈ EMfE ⊆ Mf . Since AE = A, we have AE ∈ Mf , and therefore A ∈ Mg.
Hence A = EAE ∈ EMgE. This proves that ME

g = ME
f .

Assume d ≥ 3, and let A ∈ Mf . Since E ∈ Mf and Mf is closed under
multiplication, it follows that AE ∈Mf , which implies A ∈Mg. This shows that
Mf ⊆Mg. Thus MfE ⊆MgE ⊆MfE, and we are done. �

We are now in a position to prove a generalization of theorem 3.7. This time
we do not assume annR(f)1 = 0. More importantly, however, is that we are able
to show how Mf and the Mgi

's are related. Recall that E acts as the identity on
ME

f . Therefore {E1, . . . , En} is a complete set of idempotents in ME
f if and only

if ∑n
i=1Ei = E and EiEj = 0 for all i 6= j.

Theorem 3.18:
Let d ≥ 2 and f ∈ Rd. Choose a matrix E ∈ Mf such that E∂f = ∂f and
rankE = dimk Rd−1(f). Let

Coid
(
ME

f

)
=

{
{Ei}ni=1

∣∣∣∣ 0 6= Ei ∈ME
f ,

n∑
i=1

Ei = E and EiEj = 0 ∀ i 6= j

}
,

Reg(f) =

{
{g1, . . . , gn}

∣∣∣∣ f = g1 + · · ·+ gn is a regular splitting of f
}
.
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The map {Ei}ni=1 7→ {gi = γf (Ei)}ni=1 de�nes a bijection

Coid
(
ME

f

)
→ Reg(f).

Assume d ≥ 3. Then ME
f is a commutative k-algebra, and there exists a

unique maximal regular splitting of f . Let {E1, . . . , En} be a complete set of
orthogonal idempotents in ME

f , and let gi = γf (Ei). Then

MEi
gi

= MfEi = ME
f Ei for all i, and ME

f =
n
⊕
i=1

MEi
gi
.

Proof: We know that every regular splitting happens inside S = k[Rd−1(f)]DP by
corollary 2.10. Using the isomorphism of proposition 3.15, the �rst statements
of the theorem are equivalent to the corresponding statements about M ′

f ′ and
Reg(f ′), and follows from theorem 3.7.

Let d ≥ 3. It follows from proposition 2.21 and lemma 3.16 that ME
f is a

commutative k-algebra. (Or by the isomorphism with M ′
f ′ .) The existence of the

unique maximal regular splitting of f then follows by proposition 3.2b.
It remains only to prove the last two statements. Let {E1, . . . , En} be a

complete set of orthogonal idempotents in ME
f , and let gi = γf (Ei). Note that

{∂Df |D ∈ Rd−1} = imE by lemma 3.12, and recall that E is the identity in
ME

f . Since ∂gi = Ei∂f , it follows that {∂Dgi |D ∈ Rd−1} = im(EiE) = imEi

and MEi
gi

= Mgi
Ei, cf. the proof of lemma 3.16. Moreover, Mgi

Ei = MfEi

by lemma 3.17, and MfEi = MfEEi = ME
f Ei by lemma 3.16. It follows that

MEi
gi

= MfEi = ME
f Ei for all i, and ME

f = ⊕n
i=1M

E
f Ei = ⊕n

i=1M
Ei
gi
. �

Remark 3.19: Note that an idempotent E as in theorem 3.18 always exists.
Given f ∈ Rd, let W = Rd−1(f), and choose W ′ ⊆ R1 such that W ⊕W ′ = R1.
Let E ∈ Matk(r, r) be the idempotent determined by

imE = {v ∈ kr | vTx ∈ W} and kerE = {v ∈ kr | vTx ∈ W ′},

cf. remark 3.11. Then E∂f = ∂f and rankE = dimk Rd−1(f) by lemma 3.12.
Moreover, E∂f = ∂f implies E ∈ Mf . Also note that this E is not unique since
we have the choice of W ′ ∈ R1.
Remark 3.20: One goal of this paper is to �nd out what the algebra Mf can
tell us about f . Assume that annR(f)1 = 0. The idempotent E in theorem 3.18
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must then be the identity matrix I, and therefore ME
f = Mf . Then the �rst part

of theorem 3.18 reduces to theorem 3.7, and tells us that the idempotents in Mf

determines the regular splittings of f , and how this happens.
Assume d ≥ 3. The last two statements of theorem 3.18 have no counter

part in theorem 3.7. They say that if A ∈ Mf , then Ai = AEi ∈ MEi
gi

and
A =

∑n
i=1Ai. Thus any �information� about f contained in Mf is passed on as

�information� about gi contained in MEi
gi
. For example, Mf contains a nilpotent

matrix if and only if (at least) one of the MEi
gi

contains a nilpotent matrix.
In other words, in order to �gure out whatMf can tell us about f , it should be

enough to �nd out what MEi
gi

can tell us about gi for all i. (Proposition 3.24 can
be used for similar purposes.) Hence we may assume that Mf does not contain
any non-trivial idempotents. If k contains every eigenvalue of each A ∈Mf , then
this implies that Mf = 〈I〉⊕Mnil

f by proposition 3.5. And if k = k̄, then it is
always so, hence modulo theorem 3.18 it is enough to study all f ∈ Rd such that
Mf = 〈I〉⊕Mnil

f . It is this situation we study in chapter 4.
Theorem 3.18 is formulated using a non-unique idempotent E. We will now

give an intrinsic reformulation of that theorem when d ≥ 3. For that purpose, we
de�ne the following k-algebra.
De�nition 3.21: Assume d ≥ 3 and f ∈ Rd. De�ne Gf = γf (Mf ), and let

? : Gf ×Gf → Gf

be the map induced by multiplication in Mf .
Of course, we could de�ne Gf also for smaller d, but then we would not get

an induced multiplication. The induced map is clearly the following. For any
g, h ∈ Gf , we may choose A,B ∈ Mf such that g = γf (A) and h = γf (B),
and de�ne g ? h = γf (AB). We can prove that this is well de�ned, and that
? is a bilinear, associative and commutative multiplication on Gf , like we do in
proposition 5.8. But here we choose a di�erent approach.

The idempotent E ∈ Mf in theorem 3.18 satis�es E∂f = ∂f and rankE =

dimk Rd−1(f). Hence Mf = ME
f ⊕ ker γf by lemma 3.16. Therefore,

Gf = γf (Mf ) = γf (M
E
f )∼=ME

f .
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The map ? is clearly induced by the multiplication in ME
f , proving that ? is well

de�ned and giving Gf the structure of a commutative k-algebra. Note that ? is
independent of E, by its de�nition 3.21.

Note that f is the identity element of (Gf , ?) since f = γf (I). We have the
following immediate consequence of theorem 3.18.
Corollary 3.22: Let d ≥ 3 and f ∈ Rd. Then f =

∑n
i=1 gi is a regular splitting

of f if and only if {g1, . . . , gn} is a complete set of orthogonal idempotents in Gf .
In particular, there is a unique maximal regular splitting. If f =

∑n
i=1 gi is any

regular splitting, then Ggi
= Gf ? gi for all i, and Gf = ⊕n

i=1Ggi
.

Example 3.23: Let r = d = 3 and f = x1x
(2)
2 + x2x

(2)
3 + x(3)

3 . Then

∂f =


x(2)

2

x1x2 + x(2)
3

x2x3 + x(2)
3

 and ∂∂Tf =


0 x2 0

x2 x1 x3

0 x3 x2 + x3

.
It follows that annR(f)1 = 0 and annR(f)2 = 〈∂2

1 , ∂1∂3, ∂1∂2 + ∂2∂3 − ∂2
3〉. Thus

I2

(
∂1 ∂2 ∂3

0 ∂3 ∂1 + ∂3

)
⊆ annR f.

It follows that

A =


0 0 0

0 0 1

1 0 1

 ∈Mf .

We note that det(λI−A) = λ2(λ−1). SinceA has both 0 and 1 as eigenvalues, A is
neither invertible nor nilpotent. Hence there must exists a non-trivial idempotent
in Mf ! Indeed, we know that

A2 =


0 0 0

1 0 1

1 0 1

 ∈Mf ,

and we see that A3 = A2. Thus E = A2 is such an idempotent.
So far we have shown thatMf ⊇ k[A] = 〈I, A,A2〉. To prove equality, we show

that annR f has exactly two generators of degree 3. Since R/ annR f is Gorenstein
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of codimension 3, the structure theorem of Buchsbaum-Eisenbud [BE77] applies.
Because we already know that annR f has three generators of degree 2 and at least
two generators of degree 3, it follows easily that it cannot have more generators.
Hence

annR f =
(
∂2

1 , ∂1∂3, ∂1∂2 + ∂2∂3 − ∂2
3 , ∂

3
2 , ∂

2
2∂3

)
,

which are the �ve Pfa�ans of

0 0 ∂1 ∂2 ∂3

0 0 0 ∂3 ∂1 + ∂3

−∂1 0 0 0 ∂2
2

−∂2 −∂3 0 0 0

−∂3 −∂1 − ∂3 −∂2
2 0 0


.

Thus Mf = 〈I, A,A2〉, and E = A2 is an idempotent of rank 1. We note that

Mf · E = 〈E〉 and Mf · (I − E) = 〈I − E,A− A2〉.

Since A − A2 obviously is nilpotent, Mf cannot contain another idempotent (in
addition to I, E and I − E). Let g be the additive component of f satisfying
∂g = E∂f . Since

E∂f =


0 0 0

1 0 1

1 0 1




x(2)
2

x1x2 + x(2)
3

x2x3 + x(2)
3

 =


0

(x2 + x3)
(2)

(x2 + x3)
(2)

 ,

it follows that
g = (x2 + x3)

(3) ∈ k[x2 + x3]
DP .

The other additive component is therefore

h = f − g = (x1 − x3)x
(2)
2 − x(3)

2 ∈ k[x1 − x3, x2]
DP .

This veri�es that f = g + h is a regular splitting of f , as promised by theorem
3.7. Furthermore, ME

g = MfE and M I−E
h = Mf (I − E). Since M I−E

h contains a
nilpotent matrix, we will in chapter 4 see that h has a degenerate splitting.

We also see that Gf = 〈f, g, x(3)
2 〉 = 〈(x1 − x3)x

(2)
2 , x(3)

2 , (x2 + x3)
(3)〉. And we

note that f ∼ x1x
(2)
2 + x(3)

2 + x(3)
3 , and f ∼ x1x

(2)
2 + x(3)

3 as long as char k 6= 3.
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In remark 2.37 we claimed that results concerning Mf often corresponds to
results about I(M). In this section we have seen how idempotents in Mf are
related to regular splittings of f . We end this section with a result showing how
I(M) and X(M) �splits� ifM contains a complete set of orthogonal idempotents.
Recall that

I(M) =
∑
A∈M

I2(∂ A∂) and X(M) =
{
f ∈ R

∣∣ annR f ⊇ I(M)
}
.

Proposition 3.24: Let M ⊆ Matk(r, r) be a commutative subalgebra contain-
ing the identity matrix I. Let {E1, . . . , En} be a complete set of orthogonal
idempotents in M . For every i, let Mi = MEi, Vi = {vT∂ | v ∈ imET

i } ⊆ R1,
Si = k[Vi] and Si = k[{vTx | v ∈ imEi}]DP ∼=S∗i . De�ne ISi

(M) = Si ∩ I(M) and
XSi

(M) = Si ∩X(M). Then

(a) IR(M) =
(∑

i<jRViVj
)
⊕
(
⊕n
i=1 ISi

(Mi)
)
,

(b) (R/IR(M)
)
d = ⊕n

i=1

(
Si/ISi

(Mi)
)
d for all d > 0, and

(c) XR(M)d = ⊕n
i=1XSi

(Mi)d for all d > 0.

Proof: Note that R1 = ⊕n
i=1 Vi by proposition 3.5d. This implies

Rd =
(∑
i<j

Rd−2ViVj

)
⊕
( n
⊕
i=1

V d
i

)
for all d ≥ 1. Since V d

i = (Si)d, the degree d part of Si, we get(
R
/∑

i<j

RViVj

)
d

=
n
⊕
i=1

(Si)d

for all d > 0. Thus (b) follows immediately from (a).
Since M = ⊕n

i=1Mi (proposition 3.5c), it follows by de�nition that

IR(M) = I(M) =
∑
A∈M

I2(∂ A∂) =
n∑
i=1

∑
A∈Mi

I2(∂ A∂). (3.5)

Fix i, and let A ∈Mi. Putting (A,B) = (A,Ei) into equation (2.2) proves that

I2(∂ A∂) ⊆ I2(∂ Ei∂) + I2(Ei∂ A∂),
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and putting (A,B) = (Ei, A) gives

I2(Ei∂ A∂) ⊆ I2(∂ A∂).

Since Ei ∈Mi, this shows that∑
A∈Mi

I2(∂ A∂) = I2(∂ Ei∂) +
∑
A∈Mi

I2(Ei∂ A∂). (3.6)

Note that (Ei∂)k ∈ Vi and ((I −Ei)∂)k ∈
∑

j 6=i Vj for all k. Hence the minors
of (∂ Ei∂) satisfy∣∣∣∣∣∂k (Ei∂)k

∂l (Ei∂)l

∣∣∣∣∣ =

∣∣∣∣∣((I − Ei)∂)k (Ei∂)k

((I − Ei)∂)l (Ei∂)l

∣∣∣∣∣ ∈∑
j 6=i

ViVj. (3.7)

For all u, v ∈ kr and j 6= i we have (cf. equation (2.1))
r∑

k,l=1

(ET
ju)kvl

∣∣∣∣∣∂k (Ei∂)k

∂l (Ei∂)l

∣∣∣∣∣ =

∣∣∣∣∣uTEj∂ uTEjEi∂

vT∂ vTEi∂

∣∣∣∣∣ = (uTEj∂) · (vTEi∂)

because EjEi = 0. Since {vTEi∂ | v ∈ kr} = Vi, this means that I2(∂Ei∂) contains
every product ViVj, j 6= i. Hence I2(∂ Ei∂) =

∑
j 6=iRViVj for all i by equation

(3.7). Therefore,
n∑
i=1

I2(∂ Ei∂) =
∑
i<j

RViVj. (3.8)

Combining equations (3.5), (3.6) and (3.8), we have proven so far that

I(M) =
∑
i<j

RViVj +
n∑
i=1

∑
A∈Mi

I2(Ei∂ A∂).

If A ∈Mi, then A∂ = AEi∂, and therefore I2(Ei∂ A∂)2 ⊆ V 2
i ⊆ Si. Hence

I(M) =

(∑
i<j

RViVj

)
⊕
(

n
⊕
i=1

∑
A∈Mi

I2(Ei∂ A∂)2Si

)
, (3.9)

a direct sum of graded k-vector spaces. What we have proven also shows that

I(Mi) =
∑
A∈Mi

I2(∂ A∂) =

(∑
j 6=i

RViVj

)
⊕
(∑
A∈Mi

I2(Ei∂ A∂)2Si

)
(3.10)
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for all i. It follows that

ISi
(Mi) = Si ∩ I(Mi) = Si ∩ I(M) =

∑
A∈Mi

I2(Ei∂ A∂)2Si. (3.11)

With equation (3.9) this proves (a).
To prove (c), note for any i and f ∈ Si that annR f = (

∑
j 6=i Vj)⊕ annSi

f . It
follows from equations (3.9), (3.10) and (3.11) that

XSi
(Mi) =

{
f ∈ Si

∣∣ annR f ⊇ I(Mi)
}

=
{
f ∈ Si

∣∣ annSi
f ⊇ ISi

(Mi)
}

= XSi
(M) ⊆ X(M).

Since Si ∩Sj = k for i 6= j, it follows that ⊕n
i=1XSi

(Mi)d ⊆ X(M)d for all d > 0.
To prove equality it is enough to show that their dimensions are equal. And this
follows from (b), since XSi

(Mi)d = {f ∈ (Si)d |Df = 0 ∀ D ∈ ISi
(Mi)d} (by

lemma 2.36d) implies dimkXSi
(Mi)d = dimk

(
Si/ISi

(Mi)
)
d. �

Remark 3.25: We can give a direct proof of the other inclusion in part (c).
By de�nition, f ∈ X(M) if and only if M ⊆ Mf . Let f ∈ X(M)d. Since
{Ei} ⊆M ⊆Mf , there exists gi ∈ Si such that f =

∑n
i=1 gi is a regular splitting

by theorem 3.7 (d = 1 is trivial). Let D ∈ ISi
(Mi). Then D(gj) = 0 for all j 6= i

since D ∈ (Vi), and D(f) = 0 since D ∈ I(M). Hence D(gi) = 0. This proves
that ISi

(Mi) ⊆ annSi
gi, i.e. gi ∈ XSi

(Mi)d for all i.

3.3 Minimal resolutions

Now that we know how to �nd all regular splittings of a form f ∈ Rd, we turn
to consequences for the graded Artinian Gorenstein quotient R/ annR f . In this
section we obtain a minimal free resolution of R/ annR f when f splits regularly.
This allows us to compute the (shifted) graded Betti numbers of R/ annR f .

Fix n ≥ 1, and let W1, . . . ,Wn ⊆ R1 satisfy R1 = ⊕n
i=1Wi. For all i de�ne

S i = k[Wi]
DP . Note that R1 = ⊕n

i=1Wi implies R = S1 ⊗k · · · ⊗k Sn. For each
i, let Vi = (

∑
j 6=iWi)

⊥ ⊆ R1 and Si = k[Vi]∼=(S i)∗. Then R1 = ⊕n
i=1 Vi, and

therefore R = S1 ⊗k · · · ⊗k S
n.
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Remark 3.26: Let si = dimkWi = dimk Vi, and note that ∑n
i=1 si = r. Let

Ji =

{
j ∈ Z

∣∣∣∣ ∑
k<i

sk < j ≤
∑
k≤i

sk

}
.

for all i. There is a base change (that is, a homogeneous change of variables) of
R such that S i = k[{xj | j ∈ Ji}]DP for all i (cf. remark 2.6). This implies for
all i that Si = k[{∂k | j ∈ Ji}]. Note that the subspaces {Wi}ri=1, or equivalently
{Vi}ri=1, determine and is determined by a unique set of orthogonal idempotents
{Ei}ni=1 ⊆ Matk(r, r), cf. remark 3.11. Thus the �rectifying� base change above
corresponds to a simultaneous diagonalization of {Ei}ri=1 as in remark 3.6. We
will not assume that this base change has been made when we state and prove
our results, but some claims may be easier to understand with this in mind.

Let f =
∑r

i=1 gi be a regular splitting with gi ∈ S id, gi 6= 0, d > 0. The
following result is fundamental to this section, comparing the ideals annR(f),
annR(gi) and annSi(gi).

Lemma 3.27: With the notation above, the following statements are true.

(a) For every i we have annSi(gi) = Si ∩ annR(gi) and

(i) annR(gi) =
(∑

j 6=i S
j
1

)
⊕ annSi(gi) as graded k-vector spaces,

(ii) annR(gi) =
(∑

j 6=i S
j
1

)
+R annSi(gi) as ideals in R, and

(iii) R/ annR(gi)∼=Si/ annSi(gi).

(b) There exist nonzero Di ∈ Sid, i = 1, . . . , n, such that

annR(f) =
n
∩
i=1

annR(gi) + (D2 −D1, . . . , Dn −D1).

(c) We may express ∩ni=1 annR(gi) as a direct sum of graded k-vector spaces;

n
∩
i=1

annR(gi) =

(∑
i<j

RSi1S
j
1

)
⊕
(

n
⊕
i=1

annSi(gi)

)
,

(d) or as a sum of ideals in R;

n
∩
i=1

annR(gi) =
∑
i<j

RSi1S
j
1 +

n∑
i=1

R annSi(gi).
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(e) The Hilbert function H of R/ annR(f) satis�es

H
(
R/ annR(f)

)
=

n∑
i=1

H
(
Si/ annSi(gi)

)
− (n− 1)

(
δ0 + δd

)
,

where δe is 1 in degree e and zero elsewhere.

Proof: By de�nition, annSi(gi) = {D ∈ Si |D(gi) = 0}, which clearly equals
Si ∩ annR(gi). By construction, D(gi) = 0 for all D ∈ Sj1, j 6= i. Hence(∑

j 6=i S
j
1

)
⊆ annR(gi). Since R/

(∑
j 6=i S

j
1

)
= Si, we get

annR(gi) =
(∑
j 6=i

Sj1

)
⊕ annSi(gi)

as graded k-vector subspaces of R. The rest of (a) follows immediately.
Consider the regular splitting f =

∑n
i=1 gi. By lemma 2.9 we have

annR(f)e =
n
∩
i=1

annR(gi)e for all e < d.

Thus the ideals annR(f) and ∩ni=1 annR(gi) are equal in every degree e 6= d. In
degree d the right-hand side has codimension n (since the gi are linearly inde-
pendent), hence annR(f) must have n − 1 extra generators of degree d. If we
choose Di ∈ Sid such that D1(g1) = · · · = Dn(gn) 6= 0, then clearly

annR(f) =
n
∩
i=1

annR(gi) + (D2 −D1, . . . , Dn −D1).

By (a) we have ∑i<j RS
i
1S

j
1 ⊆ annR(gk) for all k. Note that

Re =

(∑
i<j

Re−2S
i
1S

j
1

)
⊕
(

n
⊕
i=1

Sie

)
for all e > 0.

Because (∩ni=1 annR(gi)
)
∩Sj = annSj(gj), this implies both (c) and (d). Combin-

ing (b) and (c), it follows that (R/ annR f)e = ⊕n
i=1(S

i/ annSi gi)e for all e 6= 0, d,
proving (e). �

Most of the time in this section we will assume n = 2. This makes it easier to
state and prove our results. Let S = S1 and T = S2. (Of course, we may think
of T as T = S2⊗k · · · ⊗k Sn, reaching n > 2 by induction.) Similarly, let S = S1
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and T = S2, and s = s1 and t = s2 = r− s. Hence R = S ⊗k T and R = S⊗k T .
We will often compare ideals of R, S and T , and some words are in order.

Given a homogeneous ideal I ⊆ S, the inclusion S ⊆ R makes I into a graded
k-vector subspace of R. If J ⊆ T is another homogeneous ideal, then IJ is the
k-vector subspace of R spanned by all products ij with i ∈ I and j ∈ J . Since IJ
automatically is closed under multiplication from R, it is equal to the ideal in R
generated by all products ij. In particular, IT is simply the ideal in R generated
by I. There are many ways to think of and write this ideal, including

(I) = R · I = I ⊗S R = I ⊗S (S ⊗k T ) = I ⊗k T = IT.

Similarly, IT · SJ = (I ⊗S R)⊗R (R⊗T J) = I ⊗k J = IJ = (IJ). We have used
here a property of tensor products often called base change, cf. [Eis95, proposition
A2.1]. Note that IT ∩SJ = IT · SJ = IJ . It follows that

I1J1 ∩ I2J2 = (I1 ∩ I2)(J1 ∩ J2) (3.12)

for all homogeneous ideals I1, I2 ⊆ S and J1, J2 ⊆ T .
Fix d ≥ 1, and let g ∈ Sd and h ∈ Td. We want to point out what lemma

3.27 says in this simpler situation. Note that the ideal annS(g) in S generates
the ideal T annS(g) in R. Let

mS = (S1) ⊆ S and mT = (T1) ⊆ T

be the maximal homogeneous ideals in S and T , respectively. Since T = mT ⊕ k,
we get R = SmT ⊕S. Lemma 3.27 tells us that annR(g) = SmT ⊕ annS(g) and
annR(g) = SmT + T annS(g). Furthermore,

annR(g)∩ annR(h) = mSmT + T annS(g) + S annT (h) (3.13)

as ideals in R, and there exist D ∈ Sd and E ∈ Td such that

annR(f) = annR(g)∩ annR(h) + (D − E). (3.14)

We will use these equations to calculate the minimal resolution of R/ annR(f).
They involve products of ideals, and we start with the following lemma.
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Lemma 3.28: Given homogeneous ideals I ⊆ S and J ⊆ T , let F and G be
their resolutions

F : 0 → Fs
ϕs−→ . . .

ϕ2−→ F1
ϕ1−→ I → 0,

G : 0 → Gt
ψt−→ . . .

ψ2−→ G1
ψ1−→ J → 0,

where the Fi's are free S-modules and the Gi's are free T -modules. Then the
tensor complex

F ⊗k G : 0 → Hs+t−1
ηs+t−1−−−−→ . . .

η2−→ H1
η1−→ IJ → 0

is exact, hence a free resolution of IJ in R = S⊗k T , and minimal if both F and
G are minimal.

The de�nition of the tensor complex can be found in [Eis95, section 17.3]. Its
construction gives Hi = ⊕i

j=1 Fj ⊗k Gi+1−j for all i ≥ 1. Note that this is a free
R-module. The maps ηi : Hi → Hi−1 for i > 1 are given by

F1 ⊗k Gi

idF1
⊗ψi ��?

??
??

? ⊕ F2 ⊗k Gi−1

ϕ2⊗idGi−1}}{{
{{

{{
{

⊕ . . . ⊕ Fi−1 ⊗k G2

(−1)i idFi−1
⊗ψ2 !!CC

CC
CC

C
⊕ Fi ⊗k G1

ϕi⊗idG1����
��

��

F1 ⊗k Gi−1 ⊕ . . . ⊕ Fi−1 ⊗k G1

that is, ηi = ⊕i−1
j=1

(
ϕj+1 ⊗ idGi−j

−(−1)j idFj
⊗ ψi−j+1

), and η1 = ϕ1 ⊗ ψ1.

Proof of lemma 3.28: The complex is exact since we get it by tensoring over k,
and I and J are free over k, hence �at. It is trivially minimal when F and G are
minimal by looking at the maps ηi. �

Note that F ⊗S R = F ⊗k T is a resolution of I ⊗S R = IT , the ideal
in R generated by I. Similarly, R ⊗T G is a resolution of SJ . Furthermore,
(F ⊗S R)⊗R (R⊗T G) = F ⊗k G.

Example 3.29: Let

M : 0 →Ms → · · · →M1 → mS → 0,

N : 0 → Nt → · · · → N1 → mT → 0
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be the Koszul resolutions of mS ⊆ S and mT ⊆ T , respectively. We know that
Mk =

(
s
k

)
S(−k) and Nk =

(
t
k

)
T (−k) for all k. If we apply lemma 3.28 to I = mS

and J = mT , we get a graded minimal free resolution

MN = M⊗k N : 0 →MNs+t−1 → · · · →MN1 → mSmT → 0

of mSmT ⊆ R = S ⊗k T . Here MNk = ⊕k
i=1Mi ⊗k Nk+1−i for all k > 0. Hence

MNk = νkR(−k − 1) where

νk =
k∑
i=1

(
s

i

)(
t

k + 1− i

)
=

(
s+ t

k + 1

)
−
(

s

k + 1

)
−
(

t

k + 1

)
.

This agrees with the Eagon-Northcott resolution of

I2

(
∂1 . . . ∂s 0 . . . 0

0 . . . 0 ∂s+1 . . . ∂s+t

)
.

We chose to write lemma 3.28 in terms of ideals I ⊆ S and J ⊆ T because
this is how we will use it most of the time. Of course, the result is true more
generally. Indeed, if F and G are resolutions of an S-module M and a T -module
N , respectively, then the tensor complex F ⊗k G is a resolution of M ⊗k N , with
the same proof. We will use this is in the next lemma.
Lemma 3.30: Let I ⊆ S be a homogeneous ideal, and let I ′ = SmT + IT ⊆
R. Denote the shifted graded Betti numbers of S/I and R/I ′ by β̂Iij and β̂I

′
ij ,

respectively. Then for all j, k ≥ 0, we have

β̂I
′

kj =
k∑
i=0

(
t

k − i

)
β̂Iij.

Proof: The proof rests upon the following observation. If I ⊆ S and J ⊆ T are
ideals, then S/I ⊗k T/J ∼=R/(IT + SJ). Indeed,

S/I ⊗k T/J = S/I ⊗S (S ⊗k T/J) = S/I ⊗k R/SJ

= (S/I ⊗S R)⊗R R/SJ = R/IT ⊗R R/SJ = R/(IT + SJ).

It follows that we may compute a resolution of R/(IT+SJ) as the tensor complex
of the resolutions of S/I and T/J . We do this with J = mT .
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Let F and N be the graded minimal free resolutions of S/I and T/mT , re-
spectively, cf. example 3.29. That is,

F : 0 → Fs → · · · → F1 → F0 → S/I → 0,

N : 0 → Nt → · · · → N1 → N0 → T/mT → 0,

with Fi = ⊕j≥0 β̂
I
ij S(−i− j) and Ni =

(
t
i

)
T (−i) for all i ≥ 0.

The tensor complex F ⊗k N gives a graded minimal free resolution
H : 0 → Hs+t → · · · → H1 → H0

of R/(SmT + IT ) = R/I ′, where for all k ≥ 0 we have

Hk =
k
⊕
i=0

Fi ⊗k Nk−i =
k
⊕
i=0

⊕
j≥0

(
t

k − i

)
β̂Iij R(−k − j).

The result follows by reading o� the Betti numbers from this equation. �

Since annR(g) = SmT + T annS(g), we may use this lemma to compare the
(shifted) graded Betti numbers of R/ annR g and S/ annS g. In the next two
results we use the short exact sequence

0 → I ∩ J → I ⊕ J → I + J → 0

and the mapping cone construction (cf. [Eis95, appendix A3.12]) several times.
Proposition 3.31: Let I ⊆ S and J ⊆ T be homogeneous ideals, and let mS

and mT be the maximal homogeneous ideals in S and T , respectively. Assume
that I1 = J1 = 0. Let F and G be graded minimal free resolutions

F : 0 → Fs
ϕs−→ . . .

ϕ2−→ F1
ϕ1−→ I → 0,

G : 0 → Gt
ψt−→ . . .

ψ2−→ G1
ψ1−→ J → 0.

Denote the shifted graded Betti numbers of S/I and T/J by β̂Iij and β̂Jij. Then
mSmT + IT + SJ ⊆ R = S ⊗k T has a graded minimal free resolution

H : 0 → Hr → · · · → H1 → mSmT + IT + SJ → 0

where r = s+ t and

Hk = νk R(−k − 1)⊕

(
⊕
j≥0

k∑
i=1

((
t

k − i

)
β̂Iij +

(
s

k − i

)
β̂Jij

)
R(−k − j)

)
for all k > 0. Here νk =

(
r

k+1

)
−
(

s
k+1

)
−
(

t
k+1

)
.
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Proof: Remember, by de�nition of the shifted graded Betti numbers, we have

Fi = ⊕
j≥0

β̂Iij S(−i− j) and Gi = ⊕
j≥0

β̂Jij T (−i− j)

for every i. We will construct the minimal resolution in two similar steps.
Step 1. Note that IT ∩mSmT = (I ∩mS)(T ∩mT ) = ImT by equation (3.12).
This gives us a short exact sequence

0 → ImT → IT ⊕mSmT → mSmT + IT → 0. (3.15)

LetM and N be the Koszul resolutions of mS ⊆ S and mT ⊆ T , respectively,
as in example 3.29. By lemma 3.28 we have four minimal resolutions;

F ′ = F ⊗k T : 0 → F ′
s

ϕs−→ . . .
ϕ2−→ F ′

1

ϕ1−→ IT → 0,

G ′ = S ⊗k G : 0 → G′
t

ψt−→ . . .
ψ2−→ G′

1

ψ1−→ SJ → 0,

F ′′ = F ⊗k N : 0 → F ′′
s+t−1

ζs+t−1−−−−→ . . .
ζ2−→ F ′′

1

ζ1−→ ImT → 0,

G ′′ = M⊗k G : 0 → G′′
s+t−1

ξs+t−1−−−−→ . . .
ξ2−→ G′′

1

ξ1−→ mSJ → 0.

The free modules in the �rst resolution are F ′
i = Fi ⊗k T = ⊕j≥0 β̂

I
ijR(−i − j),

and we identify the map ϕi⊗ idT with ϕi since they are given by the same matrix.
Similarly, for the second resolution, we have G′

i = S ⊗k Gi = ⊕j≥0 β̂
J
ijR(−i− j).

The modules in the third and fourth resolution satisfy

F ′′
k−1 =

k−1
⊕
i=1

Fi ⊗k Nk−i

=
k−1
⊕
i=1

((
⊕
j≥0

β̂Iij S(−i− j)
)
⊗k

(
t

k − i

)
T (−k + i)

)
= ⊕

j≥0

( k−1∑
i=1

(
t

k − i

)
β̂Iij

)
R(−k − j),

and similarly, G′′
k−1 = ⊕j≥0

(∑k−1
i=1

(
s
k−i

)
β̂Jij

)
R(−k − j).

By tensoring the exact sequence 0 → mT → T → T/mT → 0 with I, we get a
short exact sequence

0 → ImT → IT → I ⊗k T/mT → 0.

We need to lift the inclusion ImT ⊆ IT to a map of complexes F ′′ → F ′. This
is easily achieved by de�ning the map F ′′

i → F ′
i = Fi ⊗k T to be idFi

⊗ψ1 on the
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summand Fi ⊗k N1, and zero on all other direct summands of F ′′
i . The mapping

cone construction now gives a resolution · · · → F ′
3⊕F ′′

2 → F ′
2⊕F ′′

1 → F ′
1 of

I ⊗k T/mT that actually equals the tensor complex associated to I ⊗k T/mT

(similar to lemma 3.28). It is obviously minimal by looking at the maps.
Next we lift the inclusion ImT ⊆ mSmT to a map of complexes F ′′ →MN .

By looking at the degrees of these maps, we see that they must be minimal when
I1 = 0, that is, when I has no linear generators. Indeed, one such lift is

π̄i =
i
⊕
j=1

πj ⊗ id :
i
⊕
j=1

Fj ⊗k Ni+1−j →
i
⊕
j=1

Mj ⊗k Ni+1−j,

where π is a lift of I ⊆ mS to a map of complexes F →M.
Thus we can lift the map ImT ↪→ IT ⊕mSmT , z 7→ (z,−z), in the exact

sequence (3.15) to a map (id⊗ψ1)⊕(−π̄) of complexes F ′′ → F ′⊕MN . The
mapping cone construction now gives a minimal free resolution

H′ : 0 → H ′
s+t → · · · → H ′

1

of mSmT + IT , where

H ′
k = MNk⊕F ′

k⊕F ′′
k−1 = νk R(−k − 1)⊕

(
⊕
j≥0

k∑
i=1

(
t

k − i

)
β̂Iij R(−k − j)

)
for all k ≥ 1. This concludes the �rst step.
Step 2. We notice that mSmT + IT ⊆ mST , and therefore

mSJ ⊆ (mSmT + IT )∩SJ ⊆ mST ∩SJ = mSJ.

Hence (mSmT + IT )∩SJ = mSJ , and we have a short exact sequence

0 → mSJ → (mSmT + IT )⊕SJ → mSmT + IT + SJ → 0. (3.16)

We now proceed as in the �rst step, getting a lift of the inclusion mSJ ⊆ SJ

to a map of complexes G ′′ → G ′. To lift the inclusion mSJ ⊆ mSmT + TI to a
map of complexes G ′′ → H′, we take the lift of mSJ ⊆ mSmT to G ′′ →MN , as
in step one, and extend it by zero, since H ′

k = MNk⊕F ′
k⊕F ′′

k−1 for all k ≥ 1.
And then the mapping cone construction produces a free resolution

H : 0 → Hr → · · · → H1 → mSmT + IT + SJ → 0,
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which is minimal since all maps are minimal. Here Hk = H ′
k⊕G′

k⊕G′′
k−1 is for

all k > 0 equal to

Hk = νk R(−k − 1)⊕

(
⊕
j≥0

k∑
i=1

((
t

k − i

)
β̂Iij +

(
s

k − i

)
β̂Jij

)
R(−k − j)

)
. �

Remark 3.32: Because annR(g)∩ annR(h) = mSmT+T annS(g)+S annT (h), we
will use proposition 3.31 with I = annS(g) and J = annT (h) when we calculate
the resolution of annR(f) = annR(g)∩ annR(h) + (D−E). There is another way
to �nd the resolution of annR(g)∩ annR(h), using the sequence

0 → annR(g)∩ annR(h) → annR(g)⊕ annR(h) → mR → 0.

This is a short exact sequence, and we know the minimal resolutions of the
middle and right-hand side modules. Since the quotients are Artinian, these
resolutions all have the �right� length. Hence we may dualize the sequence, use
the mapping cone to construct a resolution of Extr−1

R

(
annR(g)∩ annR(h), R

), and
dualize back. Compared to the proof of proposition 3.31, this is done in one step,
but the resulting resolution is not minimal. Thus more work is needed to �nd
the cancelations, and in the end the result is obviously the same.

We are now ready to �nd the minimal resolution of R/ annR f . Note that we
here use the convention that (a

b

)
= 0 for all b < 0 and all b > a.

Theorem 3.33:
Let g ∈ Sd and h ∈ Td for some d ≥ 2. Let f = g + h ∈ Rd, and assume that
annS(g)1 = annT (h)1 = 0. Let F and G be graded minimal free resolutions of
annS g ⊆ S and annT h ⊆ T ,

F : 0 → Fs
ϕs−→ . . .

ϕ2−→ F1
ϕ1−→ annS g → 0,

G : 0 → Gt
ψt−→ . . .

ψ2−→ G1
ψ1−→ annT h→ 0.

Denote the shifted graded Betti numbers of S/ annS g and T/ annT h by β̂gij and
β̂hij, respectively. That is,

Fi =
d
⊕
j=0

β̂gij S(−i− j) and Gi =
d
⊕
j=0

β̂hij T (−i− j)
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for every i. Then annR f ⊆ R = S ⊗k T has a graded minimal free resolution

H : 0 → Hr → · · · → H1 → annR f → 0

with Hr = R(−r − d) and

Hk = νk R(−k − 1)⊕ νr−k R(−d− k + 1)

⊕

(
d−1
⊕
j=1

( s−1∑
i=1

(
r − s

k − i

)
β̂gij +

t−1∑
i=1

(
r − t

k − i

)
β̂hij

)
R(−k − j)

)

for all 0 < k < r. Here r = s+ t and νk =
(

r
k+1

)
−
(

s
k+1

)
−
(

t
k+1

)
.

Proof: Since annR g ∩ annR h = mSmT + T annS g + S annT h by equation (3.13)
(or lemma 3.27d), we may apply proposition 3.31. This gives us a graded minimal
free resolution

H′ : 0 → H ′
r → · · · → H ′

1 → annR g ∩ annR h→ 0

with

H ′
k = νk R(−k − 1)⊕

(
d
⊕
j=0

k∑
i=1

((
t

k − i

)
β̂gij +

(
s

k − i

)
β̂hij

)
R(−k − j)

)
.

By lemma 3.27b, we may choose D ∈ Sd and E ∈ Td such that

annR f = (annR g ∩ annR h) + (D − E).

Since (annR g ∩ annR h)∩(D−E) = (D−E)mR, we have a short exact sequence

0 → (D − E)mR → (annR g ∩ annR h)⊕(D − E) → annR f → 0. (3.17)

Evidently, (D − E)mR has a Koszul type resolution with kth free module Mk =(
r
k

)
R(−d− k). Thus by the mapping cone construction we have a resolution

H′′ : 0 → H ′′
r+1 → · · · → H ′′

1

of annR f , with

H ′′
k = Mk−1⊕H ′

k =

(
r

k − 1

)
R(−d− k + 1)⊕ νk R(−k − 1)

⊕

(
d
⊕
j=0

k∑
i=1

((
t

k − i

)
β̂gij +

(
s

k − i

)
β̂hij

)
R(−k − j)

)
.

(3.18)
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Since R/ annR f is Gorenstein, its minimal resolution is self-dual. We now
use this to �nd terms in H′′ that must be canceled. When we dualize H′′ (using
M∨ = HomR(M,R)), we get a resolution whose kth term is

(H ′′
r−k)

∨ ⊗k k(−d− r) = νr−k R(−d− k + 1)⊕
(

r

k + 1

)
R(−k − 1)

⊕

(
d
⊕
j=0

( s−1∑
i=k−t

(
t

k − i

)
β̂gij +

t−1∑
i=k−s

(
s

k − i

)
β̂hij

)
R(−k − j)

)
.

(3.19)

Here we have used β̂gs−i,d−j = β̂gij and β̂ht−i,d−j = β̂hij, which follow from the sym-
metry of the resolutions F and G.

Since annS(g)1 = 0, we know that β̂gsd = β̂g00 = 1, but otherwise the �rim� of
the Betti diagram is zero, i.e. β̂gij = 0 for i = 0, j 6= 0, for j = 0, i 6= 0, for i = s,
j 6= d, and for j = d, i 6= s. Similar statements hold for β̂hij. Putting this into
equations (3.18) and (3.19), we see that the �rst has no terms with twist (−k),
whereas the second has [

(
t
k

)
+
(
s
k

)
]R(−k). Thus we see that at least a summand

ρ =
[(

t
k−s

)
+
(
s
k−t

)]
R(−d− k)

must be canceled from every H ′′
k . By looking at the expression for H ′′

k , we see
that its summand with twist equal to (−d− k), is exactly ρ.

By the construction, the only part of the map H ′′
k+1 → H ′′

k that can possibly
be non-minimal, is the map from the direct summand Mk =

(
r
k

)
R(−d − k) of

H ′′
k+1 to the summand ρ of H ′′

k . By the previous paragraph, all of ρ must cancel.
But ρ is mapped into H ′′

k−1 by a map that we know is minimal, hence it must
cancel against Mk. When we have done so for all k, every resulting map is
minimal. So we are left with a graded free resolution that must be minimal.
Since (r

k

)
−
(

t
k−s

)
−
(
s
k−t

)
= νr−k−1, we see that this resolution is H : 0 → Hr →

· · · → H1 → annR f → 0 with Hr = R(−d− r) and

Hk = νk R(−k − 1)⊕ νr−k R(−d− k + 1)

⊕

(
d−1
⊕
j=1

( s−1∑
i=1

(
r − s

k − i

)
β̂gij +

t−1∑
i=1

(
r − t

k − i

)
β̂hij

)
R(−k − j)

)

for all 0 < k < r. �
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Remark 3.34: If we compare theorem 3.33 in the case (s, t) = (3, 1) with the
resolution obtained by Iarrobino and Srinivasan in [IS, theorem 3.9], we see that
they agree. Our methods are, however, very di�erent.

As a consequence we can compute the graded Betti numbers of R/ annR f .
Theorem 3.35:
Let d ≥ 2 and f, g1, . . . , gn ∈ Rd. Suppose f = g1 + · · ·+ gn is a regular splitting
of f . Let si = dimk Rd−1(gi) for every i. Let s =

∑n
i=1 si, and de�ne

νnk = (n− 1)

(
r

k + 1

)
+

(
r − s

k + 1

)
−

n∑
i=1

(
r − si
k + 1

)
.

Denote by β̂fkj and β̂gi

kj the shifted graded Betti numbers of R/ annR(f) and
R/ annR(gi), respectively. Then

β̂fkj =
n∑
i=1

β̂gi

kj + νnkδ1j + νn,r−kδd−1,j (3.20)

for all 0 < j < d and all k ∈ Z. Here the symbol δij is de�ned by δii = 1 for all i,
and δij = 0 for all i 6= j.

Proof: Since β̂fkj = vnk = 0 for all k ≥ r and all k ≤ 0, it is enough to prove
(3.20) for 0 < k < r. Let S = k[Rd−1(f)]DP and Si = k[Rd−1(gi)]

DP . Recall
that f ∈ S and gi ∈ Si. It follows from the de�nition of a regular splitting that
Rd−1(f) = ⊕n

i=1Rd−1(gi), and therefore S = S1 ⊗k · · · ⊗k Sn ⊆ R, cf. remark
2.11. In particular, s =

∑n
i=1 si = dimk Rd−1(f) ≤ r.

Choose V ⊆ R1 such that R1 = Rd−1(f)⊥⊕V , and let S = k[V ]. Then
S∼=S∗, cf. remark 3.10. Denote the shifted graded Betti numbers of S/ annS(f)

by β̂S/fkj . It follows from lemma 3.30 that

β̂fkj =
s−1∑
i=1

(
r − s

k − i

)
β̂
S/f
ij +

(
r − s

k

)
δ0j +

(
r − s

k − s

)
δdj (3.21)

for all j, k ≥ 0. Note that annS(f)1 = 0.
For every i let Vi =

(∑
j 6=iRd−1(gj)

)⊥ ∩V ⊆ R1 and Si = k[Vi]. Then V =

⊕n
i=1 Vi, and therefore S = S1 ⊗k · · · ⊗k Sn ⊆ R. Furthermore, Si∼=S∗i for all i,

and annS(f)1 = ⊕n
i=1 annSi

(gi)1 by lemma 3.27. Thus annR(f)1 = 0 is equivalent
to annSi

(gi)1 = 0 for all i.
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Denote the shifted graded Betti numbers of Si/ annSi
(gi) by β̂Si/gi

kj . If we apply
equation (3.21) to gi, we get

β̂gi

kj =

si−1∑
l=1

(
r − si
k − l

)
β̂
Si/gi

lj (3.22)

for all k ≥ 0 and all 0 < j < d. To prove the theorem we �rst show that

β̂
S/f
kj =

n∑
i=1

si−1∑
l=1

(
s− si
k − l

)
β̂
Si/gi

lj + νnkδ1j + νn,s−kδd−1,j. (3.23)

for all 0 < j < d and 0 < k < r.
Note that ν1k = 0 for all k, since n = 1 implies s = s1. Thus equation (3.23)

is trivially ful�lled for n = 1. We proceed by induction on n.
Assume (3.23) holds for h = g1 + · · ·+ gn−1. Let T = S1⊗k · · ·⊗k Sn−1, which

is a polynomial ring in t =
∑n−1

i=1 si variables. Since f = h + gn and annT (h)1 =

annSn(gn)1 = 0, we may use theorem 3.33 to �nd the minimal resolution of
S/ annS f . We see that its graded Betti numbers are given by

β̂
S/f
kj =

t−1∑
c=1

(
s− t

k − c

)
β̂
T/h
cj +

sn−1∑
l=1

(
s− sn
k − l

)
β̂
Sn/gn

lj + ν2kδ1j + ν2,s−kδd−1,j

for all 0 < k < s and 0 < j < d. Since by induction

β̂
T/h
cj =

n−1∑
i=1

si−1∑
l=1

(
t− si
c− l

)
β̂
Si/gi

lj + νn−1,cδ1j + νn−1,t−cδd−1,j,

the proof of equation (3.23) reduces to the following three binomial identities.

(1)
t−1∑
c=1

(
s− t

k − c

)(
t− si
c− l

)
=

(
s− si
k − l

)

(2)
t−1∑
c=1

(
s− t

k − c

)
νn−1,c + ν2k = νnk

(3)
t−1∑
c=1

(
s− t

k − c

)
νn−1,t−c + ν2,s−k = νn,s−k

They all follow from the well known formula ∑i∈Z
(
a
i

)(
b
k−i

)
=
(
a+b
k

).
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The �rst follows immediately since we may extend the summation to c ∈ Z
because 1 ≤ l < si. In the second we note that

νn−1,c = (n− 2)

(
t

c+ 1

)
+

(
0

c+ 1

)
−

n−1∑
i=1

(
t− si
c+ 1

)
.

Note that νn−1,c = 0 for all c ≥ t and all c ≤ 0, even c = −1 since (0
0

)
= 1. Hence

we can extend the summation in equation (2) to all c ∈ Z, implying
t−1∑
c=1

(
s− t

k − c

)
νn−1,c = (n− 2)

(
s

k + 1

)
+

(
s− t

k + 1

)
−

n−1∑
i=1

(
s− si
k + 1

)
.

Since
ν2k =

(
s

k + 1

)
+

(
0

k + 1

)
−
(
s− t

k + 1

)
−
(
s− sn
k + 1

)
,

equation (2) follows easily. Finally, the third equation equals the second by letting
(c, k) 7→ (t− c, s− k), �nishing the proof of equation (3.23).

The theorem now follows by combining equations (3.21), (3.22) and (3.23).
Also here the proof reduces to three binomial identities, and their proofs are
similar to equation (1) above. �

Remark 3.36: We may express β̂fkj in terms of β̂Si/gi

lj , the shifted graded Betti
numbers of Si/ annSi

(gi). From the proof of theorem 3.35, we see that

β̂fkj =
n∑
i=1

si−1∑
l=1

(
r − si
k − l

)
β̂
Si/gi

lj + νnkδ1j + νn,r−kδd−1,j.

Remark 3.37: For any f ∈ Rd we may arrange the shifted graded Betti numbers
β̂ij of R/ annR f into the following (d+ 1)× (r + 1) box.

1 β̂r−1,d . . . β̂1d 0

0 β̂r−1,d−1 . . . β̂1,d−1 0
... ... ... ...
0 β̂r−1,1 . . . β̂11 0

0 β̂r−1,0 . . . β̂10 1

We call this the Betti diagram of R/ annR f . The Betti numbers are all zero
outside this box, i.e. β̂ij = 0 for i < 0, for j < 0, for i > r, and for j > d. Thus
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the socle degree d is equal to the Castelnuovo-Mumford regularity of R/ annR f .
In addition, β̂ij will always be zero for i = 0, j > 0 and for i = r, j < d, and
β̂00 = β̂rd = 1, as indicated.

The values of β̂ij when j = 0 or j = d are easily determined by equation
(3.21). Since annS(f)1 = 0, it follows that

β̂i0 =

(
r − s

i

)
and β̂id =

(
r − s

i− s

)
for all i. In particular, if annR(f)1 = 0, then they are all zero (except β̂00 = β̂rd =

1).
The �inner� rectangle of the Betti diagram, that is, β̂ij with 0 < i < r and

0 < j < d, is determined by theorem 3.35. We note that it is simply the sum of
the �inner� rectangles of the Betti diagrams of R/ annR(gi), except an addition
to the rows with j = 1 and j = d− 1.

3.4 The parameter space

The closed points of the quasi-a�ne scheme Gor(r,H) parameterize every f ∈ Rd

such that the Hilbert function of R/ annR f equals H. We will in this section
de�ne some �splitting subfamilies� of Gor(r,H), and discuss some of their prop-
erties. We assume here that k is an algebraically closed �eld. We start by de�ning
Gor(r,H), cf. [IK99, de�nition 1.10].

Let

A =

{
α = (α1, . . . , αr) ∈ Zr

∣∣∣∣ αi ≥ 0 for all i and
r∑
i=1

αi = d

}
, (3.24)

and note that |A| = (r+d−1
d

)
= dimkRd. We consider A = k[{zα |α ∈ A}], which

is a polynomial ring in |A| variables, to be the coordinate ring of A(Rd). We
think of

F =
∑
α∈A

zαx
(α) ∈ A⊗k Rd

as the generic element of Rd. The action of R on R extend by A-linearity to an
action on A⊗k R. In particular, if D ∈ Rd, then D(F ) =

∑
α∈A zαD(x(α)) is an

element of A1.
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For any 0 ≤ e ≤ d, �x bases D = {D1, . . . , DM} and E = {E1, . . . , EN} for
Rd−e and Re, respectively. Let D = [D1, . . . , DM ]T and E = [E1, . . . , EN ]T, and
de�ne Catde = DET. It is customary to require that D and E are the standard
bases {∂α} ordered lexicographically, and to call Catde the �catalecticant� matrix
of this size. Note that the (i, j)th entry of Catde(F ) is(

Catde(F )
)
ij

= DiEj(F ) =
∑
α∈A

zαDiEj
(
x(α)

)
∈ A1.

If f ∈ Rd, then Catde(f) is a matrix representation of the map Re → Rd−e

given by D 7→ D(f). Hence

dimk(R/ ann f)e = rank Catde(f) = dimk(R/ ann f)d−e

by lemma 1.2. Therefore the k × k minors of Catde(F ) cut out the subset{
f ∈ Rd

∣∣ dimk(R/ ann f)e < k
}
⊆ A(Rd).

De�nition 3.38: Let H = (h0, . . . , hd) be a symmetric sequence of positive
integers (i.e. hd−i = hi for all i) such that h0 = 1 and h1 ≤ r. We de�ne
Gor≤(r,H) to be the a�ne subscheme of A(Rd) de�ned by the ideal

IH =
d−1∑
e=1

Ihe+1

(
Catde(F )

)
.

We let Gor(r,H) be the open subscheme of Gor≤(r,H) where some he × he

minor is nonzero for each e. We denote by Gor(r,H) the corresponding reduced
scheme, which is then the quasi-a�ne algebraic set parameterizing all f ∈ Rd

such that H(R/ ann f) = H. Furthermore, let PGor(r,H) and PGor(r,H) be
the projectivizations of Gor(r,H) and Gor(r,H), respectively. By virtue of the
Macaulay duality (cf. lemma 1.3), PGor(r,H) parameterizes the graded Artinian
Gorenstein quotients R/I with Hilbert function H.

We are now ready to de�ne a set of f ∈ Gor(r,H) that split. This subset will
depend on the Hilbert function of every additive component of f . Recall that if
f =

∑n
i=1 gi is a regular splitting of f , then by lemma 3.27 (a and e)

H
(
R/ annR f

)
=

n∑
i=1

H
(
R/ annR gi

)
− (n− 1)

(
δ0 + δd

)
.
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De�nition 3.39: Let r ≥ 1, d ≥ 2 and n ≥ 1. For each i = 1, . . . , n, suppose
Hi = (hi0, . . . , hid) is a symmetric sequence of positive integers such that hi0 = 1

and∑n
i=1 hi1 ≤ r. Let H = (H1, . . . , Hn) and H =

∑n
i=1Hi− (n− 1)(δ0 + δd), i.e

H = (h0, . . . , hd) where h0 = hd = 1 and hj =
∑n

i=1 hij for all 0 < j < d. De�ne

Split(r,H) = Split(r, d, n,H) ⊆ Gor(r,H)

to be the subset parameterizing all f ∈ Rd with the following property: There
exist a regular splitting f =

∑n
i=1 gi such that H(R/ annR gi) = Hi for all i. Let

PSplit(r,H) ⊆ PGor(r,H) be the projectivization of Split(r,H).

Obviously, Split(r,H) reduces to Gor(r,H) if n = 1. Split(r,H) is always
a constructible subset of Gor(r,H), since it is the image of the morphism ρ,
see lemma 3.40. Note that every linear map ks → kr, that is, every matrix
C ∈ Matk(r, s), induces a homomorphism of k-algebras k[x1, . . . , xs]

DP → R,
determined by [x1, . . . , xs] 7→ [x1, . . . , xr]C, that we denote φC .

Lemma 3.40: Let H = (H1, . . . , Hn) be an n-tuple of symmetric h-vectors Hi =

(hi0, . . . , hid) such that hi0 = 1 for all i, and
∑n

i=1 hi1 ≤ r. Let si = hi1, s =

(s1, . . . , sn) and H =
∑n

i=1Hi − (n − 1)(δ0 + δd), where δe is 1 in degree e and
zero elsewhere. De�ne

Φs =

{
(φC1 , . . . , φCn)

∣∣∣∣ Ci ∈ Matk(r, si) and dimk

n∑
i=1

imCi =
n∑
i=1

si

}
.

Then Split(r,H) is the image of the morphism

ρ : Φs ×
n∏
i=1

Gor(si, Hi) → Gor(r,H),

(
(φC1 , . . . , φCn), (g1, . . . , gn)

)
7→

n∑
i=1

φCi
(gi).

Furthermore, the �ber over any closed point has dimension
∑n

i=1 s
2
i .

Proof: The �rst part is clear from de�nition 3.39. Note that the condition
dimk

∑n
i=1 imCi =

∑n
i=1 si in the de�nition of Φs is equivalent to rankCi = si

and imCi ∩
∑

j 6=i imCj = 0 for all i.
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To �nd the dimension of the �bers, we will start by describing a group that
acts on Φs × Πn

i=1 Gor(si, Hi) in such a way that the morphism ρ is constant on
the orbits of the group action.

First, let the group Πn
i=1 GLsi

act on Φs × Πn
i=1 Gor(si, Hi) by(

Pi
)
n
i=1 ×

((
φCi

)
n
i=1,

(
gi
)
n
i=1

)
7→
((
φCiP

−1
i

)
n
i=1,

(
φPi

(gi)
)
n
i=1

)
.

Obviously, φCiP
−1
i

= φCi
◦ φP−1

i
, and therefore, (φCiP

−1
i

)
(φPi

gi) = φCi
(gi).

Second, let Σn denote the symmetric group on n symbols. A permutation
σ ∈ Σn acts on the n-tuple H = (H1, . . . , Hn) by permuting its coordinates, i.e.,
σ(H) =

(
Hσ−1(1), . . . , Hσ−1(n)

). Let GH be the subgroup of Σn de�ned by

GH = {σ ∈ Σn |σ(H) = H}.

Note that GH is a product of symmetric groups. Indeed, let k be the number
of distinct elements of {H1, . . . , Hn}. Call these elements H ′

1, . . . , H
′
k, and let

ni ≥ 1 be the number of j such that Hj = H ′
i. Then

∑k
i=1 ni = n, and

GH
∼= Σn1 × · · · × Σnk

.

The group GH acts on Φs × Πn
i=1 Gor(si, Hi) by

σ ×
((
φCi

)
n
i=1,

(
gi
)
n
i=1

)
7→
((
φCσ−1(i)

)
n
i=1,

(
gσ−1(i)

)
n
i=1

)
.

Indeed, since any σ ∈ GH �xes H, we have Hσ−1(i) = Hi, and in particular
sσ−1(i) = si since si = hi1. Thus Cσ−1(i) ∈ Matk(r, si) and gσ−1(i) ∈ Gor(si, Hi).
Clearly, ∑n

i=1 φCσ−1(i)

(
gσ−1(i)

)
=
∑n

i=1 φCi
(gi). Thus the morphism ρ is constant

on the orbits of also this group action.
Suppose f ∈ im ρ. By theorem 3.18 f has a unique maximal regular splitting

f =
∑m

i=1 f
′
i , and every other regular splitting is obtained by grouping some

of the summands. Evidently, since f ∈ Split(r, d, n,H), there is at least one
way to group the summands such that f =

∑n
i=1 fi is a regular splitting and

H
(
R/ annR(fi)

)
= Hi for all i, and there are only �nitely many such �groupings�.

If f =
∑n

i=1 fi is any such expression, then clearly there exists
(
(φCi

)ni=1, (gi)
n
i=1

)
∈

Φs × Πn
i=1 Gor(si, Hi) such that fi = φCi

(gi) for all i.
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Now, if ((φCi
)ni=1, (gi)

n
i=1

)
∈ ρ−1(f) is any element of the �ber over f , then

the expression f =
∑n

i=1 φCi
(gi) is one of those �nitely many groupings. As-

sume ((φC′
i
)ni=1, (g

′
i)
n
i=1

) is another element of the �ber such that the expression
f =

∑n
i=1 φC′

i
(g′i) corresponds to the same grouping. Since

H
(
R/ annR(φCi

(gi))
)

= Hi = H
(
R/ annR(φC′

i
(g′i))

)
,

there exists σ ∈ GH such that φC′
i
(g′i) = φCσ−1(i)

(
gσ−1(i)

) for all i. By composing
with σ, we may assume φC′

i
(g′i) = φCi

(gi) for all i. Note that ∂(φCi
(gi)) =

CiφCi
(∂g) and Rd−1(∂g) = ksi . It follows that Rd−1∂(φCi

(gi)) = imCi, and
therefore imC ′

i = imCi. Thus there exists Pi ∈ GLsi
such that C ′

i = CiP
−1
i for

all i. Moreover, φCi
(gi) = φC′

i
(g′i) = φCi

(φP−1
i
g′i) implies g′i = φPi

(gi) since φCi

is injective. This proves that ((φC′
i
)ni=1, (g

′
i)
n
i=1

) and ((φCi
)ni=1, (gi)

n
i=1

) are in the
same orbit.

We have shown that the �ber ρ−1(f) over f is of a �nite union of (GH ×
Πn
i=1 GLsi

)-orbits; one orbit for each grouping f =
∑n

i=1 fi of the maximal split-
ting of f such that H(R/ annR(fi)

)
= Hi. By considering how the group acts on

Φs, we see that di�erent group elements give di�erent elements in the orbit. It
follows that the dimension of any �ber equals dim(Πn

i=1 GLsi
) =

∑n
i=1 s

2
i . �

Example 3.41: Let n = 2. The �ber over f = x(d)
1 + x(d)

2 ∈ Split(r, d, 2, H) is
a single orbit. However, the �ber over f = x(d)

1 + x(d)
2 + x(d)

3 ∈ Split(r, d, 2, H)

consists of three orbits, one for each of the expressions f = x(d)
i +

∑
j 6=i x

(d)
j .

Remark 3.42: We have seen that ρ is constant on the orbits of the action of
GH × Πn

i=1 GLsi
. If the geometric quotient exists, we get an induced map(

Φs ×
n∏
i=1

Gor(si, Hi)

)/(
GH ×

n∏
i=1

GLsi

)
→ Gor(r,H).

Let Ui ⊆ Gor(si, Hi) parameterize all g ∈ k[x1, . . . , xsi
]DP that do not have

any non-trivial regular splitting, and U ⊆ Split(r, n,H) be those f ∈ Rd where
f =

∑n
i=1 gi is a maximal splitting. The morphism above restricts to a map(

Φs × Πn
i=1 Ui

)/(
GH × Πn

i=1 GLsi

)
→ U . By the proof of lemma 3.40, this is a

bijection.
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Remark 3.43: We would like to identify Ws = Φs/Πn
i=1 GLsi

. Let Grass(si, r)

be the Grassmannian that parameterizes si-dimensional k-vector subspaces of
R1

∼= kr. We may think of Grass(si, r) as the set of equivalence classes of injective,
linear maps ksi ↪→ R1, two maps being equivalent if they have the same image.
It follows that Ws is the open subscheme of Πn

i=1 Grass(si, r) parameterizing all
n-tuples W = (W1, . . . ,Wn) of subspaces Wi ⊆ R1 such that dimkWi = si and
Wi ∩

∑
j 6=iWj = 0 for all i.

Remark 3.44: For completeness, we want to describe the corresponding map of
structure sheafs, ρ# : OGor(r,H) → ρ∗OΦs×Πn

i=1 Gor(si,Hi).
For each i, let (cijk) be the entries of Ci ∈ Matk(r, si), i.e.

Ci =


ci11 . . . ci1si... ...
cir1 . . . cirsi

.
Since∑n

i=1 imCi = im[C1, . . . , Cn], it follows that Φs is isomorphic to the set of r×
(
∑

i si)-matrices of maximal rank. Let Y be the coordinate ring of Matk(r,
∑

i si).
We choose to write Y as

Y =
n

i=1
⊗k k

[{
yijk

∣∣ 1 ≤ j ≤ r and 1 ≤ k ≤ si
}]
.

Let S i = k[x1, . . . , xsi
]DP and Si = k[∂1, . . . , ∂si

]. By de�nition, Gor(si, Hi)

parametrizes all gi ∈ S id such that the Hilbert function of Si/ annSi(gi) is Hi. The
coordinate ring of A(S id) is Ai = k[{ziγ | γ ∈ Ai}], where

Ai =

{
γ = (γ1, . . . , γsi

) ∈ Zsi

∣∣∣∣ γk ≥ 0 for all k and
si∑
k=1

γk = d

}
.

Gor≤(si, Hi) is the a�ne subscheme of A(S id) whose coordinate ring is Ai/IHi
,

cf. de�nition 3.38. Any gi ∈ S id can be written as

gi =
∑
γ∈Ai

aiγ

si∏
k=1

x
(γk)
k .

It follows that
n∑
i=1

φCi
(gi) =

n∑
i=1

∑
γ∈Ai

aiγ

si∏
k=1

( r∑
j=1

cijkxj

)(γk)

.
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When we expand this, we see that for any α = (α1, . . . , αr) ∈ A (cf. equation
(3.24)) the coe�cient in front of x(α) = Πr

j=1 x
(αj)
j is

n∑
i=1

∑
γ∈Ai

aiγ ·
∑

{βjk≥0}∑r
j=1 βjk=γk∑si
k=1 βjk=αj

r∏
j=1

[(
αj

βj1, . . . , βjsi

) si∏
k=1

c
βjk

ijk

]
.

The multinomial (
αj

βj1, . . . , βjsi

)
=

αj!

βj1! · · · βjsi
!

appears as a result of how the multiplication in R is de�ned.
The coordinate ring of A(Rd) is A = k[{zα |α ∈ A}]. Let

A → Y ⊗k A1 ⊗k · · · ⊗k An

be the k-algebra homomorphism induced by

zα 7→
n∑
i=1

∑
γ∈Ai

ziγ ·
∑

{βjk≥0}∑r
j=1 βjk=γk∑si
k=1 βjk=αj

r∏
j=1

[(
αj

βj1, . . . , βjsi

) si∏
k=1

y
βjk

ijk

]

for all α ∈ A. This implies that F =
∑

α∈A zαx
(α) ∈ A ⊗k Rd is mapped to∑n

i=1 φi(Fi), where Fi =
∑

γ∈Ai
ziγx

(γ) ∈ Ai ⊗k S id and

φi :


x1

...
xsi

 7→


yi11 . . . yir1
... ...

yi1si
. . . yirsi



x1

...
xr

.
Hence Catde(F ) 7→

∑n
i=1 Catde(φi(Fi)) =

∑n
i=1 Pi Catde(Fi)P

′
i for suitable matrices

Pi and P ′
i with entries in Y . Since every (hie + 1) × (hie + 1)-minor of Catde(Fi)

is zero in Ai/IHi
, it follows that every (he + 1)× (he + 1)-minor of Catde(F ) maps

to zero in Y ⊗k A1/IH1 ⊗k · · · ⊗k An/IHn . This induces a map

A/IH → Y ⊗k A1/IH1 ⊗k · · · ⊗k An/IHn .

This ringhomomorphism is equivalent to a morphism of a�ne schemes;

ψ : Matk(r,
∑

i si)×
n∏
i=1

Gor≤(si, Hi) → Gor≤(r,H).
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Let f =
∑n

i=1 φCi
(gi) ∈ imψ ∩Gor(r,H). Since Rd−1∂(φCi

(gi)) = imCi, it fol-
lows that

im Catdd−1

( n∑
i=1

φCi
(gi)

)
= Rd−1∂

( n∑
i=1

φCi
(gi)

)
⊆

n∑
i=1

imCi.

Hence rank Catdd−1(f) = h1 =
∑n

i=1 si implies that dimk

∑n
i=1 imCi =

∑n
i=1 si.

Thus
ψ−1

(
Gor(r,H)

)
= Φs ×

n∏
i=1

Gor(si, Hi).

Since Gor(r,H) is an open subscheme of Gor≤(r,H), it follows that (ψ, ψ#)

restricts to (ρ, ρ#).
The next lemma rewrites the de�nition of Split(r,H) so that it gives conditions

on the ideal I = annR f instead of conditions on f directly.
Lemma 3.45: PSplit(r,H) parameterizes all R/I ∈ PGor(r,H) that have the
following properties: There exist subspaces V1, . . . , Vn ⊆ R1 with dimk Vi = hi1

such that R1 = I1⊕
(
⊕n
i=1 Vi

)
and ViVj ⊆ I2 for all i 6= j. Furthermore,

Si/I ∩Si ∈ PGor(hi1, Hi) for all i, where Si = k[Vi] ⊆ R.

Proof: Pick f ∈ Split(r,H) such that I = annR f . By de�nition 3.39 there exists
a regular splitting f =

∑n
i=1 gi such that H(R/ annR gi) = Hi for all i, and

gi ∈ S = k[Rd−1(f)]DP by corollary 2.10. Choose V ⊆ R1 such that R1 = I1⊕V ,
and let S = k[V ]∼=S∗. By lemma 3.27(ai) we get annR f = (I1)⊕ annS f . For all
i let Wi = Rd−1(gi) ⊆ R1 and de�ne Vi = (

∑
j 6=iWj)

⊥ ∩S ⊆ V .
Note that dimkWi = dimk(R/ annR gi)1 = hi1. Since S1 = ⊕n

i=1Wi, it follows
that S1 = V = ⊕n

i=1 Vi. Therefore Vi∼=W ∗
i , and dimk Vi = hi1. Let Si = k[Vi].

By lemma 3.27 (b and c) there exist nonzero Di ∈ Sid such that

annS f =

(∑
i<j

SViVj

)
⊕
(

n
⊕
i=1

annSi(gi)

)
+ (D2 −D1, . . . , Dn −D1).

It follows that annSi(gi) = annS(f)∩Si = I ∩Si. Therefore,

I = (I1)⊕
(∑
i<j

SViVj

)
⊕
(

n
⊕
i=1

(I ∩Si)
)

+ (D2 −D1, . . . , Dn −D1). (3.25)

In particular, ViVj ⊆ I2 for all i 6= j. This proves all the properties listed in
lemma 3.45. The opposite implication follows from equation (3.25). �
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Remark 3.46: Note that the existence of the Di's in equation (3.25) implies
that the map I 7→ (I1, {Vi}, {I ∩Si}) is not 1-to-1. This is easily understood if
we translate to polynomials. Since annihilator ideals determine polynomial only
up to a nonzero scalar, it follows that the �ber over {I ∩Si = annSi(gi)} are all
I = annR(f) such that f =

∑n
i=1 cigi and ci 6= 0 for all i.

If R/I ∈ PGor(r,H), we denote by TR/I the tangent space to Gor(r,H)

(the a�ne cone over PGor(r,H)) at a point corresponding to R/I. Recall that
PSplit(r,H) parametrizes allR/ annR f such that f ∈ Rd and there exist a regular
splitting f =

∑n
i=1 gi such that H(R/ annR gi) = Hi for all i, cf. de�nition 3.39.

Theorem 3.47:
Assume k = k̄. Let r ≥ 1, d ≥ 4 and n ≥ 1. Let H = (H1, . . . , Hn) be an n-tuple
of symmetric h-vectors Hi = (hi0, . . . , hid) such that

∑n
i=1 hi1 ≤ r and hi0 = 1 for

all i. Let si = hi1 ≥ 1 and H =
∑n

i=1Hi− (n− 1)(δ0 + δd) where δe is 1 in degree
e and zero elsewhere.

(a) The dimension of PSplit(r,H) ⊆ PGor(r,H) ⊆ P(Rd) is

dim PSplit(r,H) = n− 1 +
n∑
i=1

dim PGor(si, Hi) +
n∑
i=1

si(r − si).

(b) PSplit(r,H) is irreducible if PGor(si, Hi) is irreducible for all i.

Let R/I ∈ PSplit(r,H). Choose V1, . . . Vn ⊆ R1 such that dimk Vi = si for all i,
R1 = I1⊕

(
⊕n
i=1 Vi

)
and ViVj ⊆ I2 for all i 6= j, cf. lemma 3.45. Let Si = k[Vi]

and Ji = I ∩Si ∈ PGor(si, Hi). For each i, let βi1j be the minimal number of
generators of degree j of Ji (as an ideal in Si).

(c) The dimension of the tangent space to the a�ne cone over PGor(r,H) at
a point corresponding to R/I is

dimk TR/I =
n∑
i=1

dimk TSi/Ji
+

n∑
i=1

si(r − si) +
n∑
i=1

∑
j 6=i

sj β
i
1,d−1.

(d) Assume in addition for all i that Si/Ji is a smooth point of PGor(si, Hi)

and βi1,d−1 = 0. Then R/I is a smooth point of PGor(r,H). Moreover, R/I
is contained in a unique irreducible component of the closure PSplit(r,H).
This component is also an irreducible component of PGor(r,H).
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In particular, if PGor(si, Hi) is irreducible and generically smooth for all i, and
β1,d−1(Ji) = 0 for general Si/Ji ∈ PGor(si, Hi), then the closure PSplit(r,H)

is an irreducible component of PGor(r,H), and PGor(r,H) is smooth in some
non-empty open subset of PSplit(r,H).

This is a generalization of [IS, theorem 3.11].

Proof: (a) follows from lemma 3.40, since the lemma implies that

dim Split(r,H) =
n∑
i=1

dim Gor(si, Hi) +
n∑
i=1

rsi −
n∑
i=1

s2
i .

Alternatively, we can count dimensions using equation (3.25), just note that
the Vi's are determined only modulo I1. Let s = dimk(R/I)1 =

∑n
i=1 si. Then

we get s(r − s) for the choice of I1 ⊆ R1, si(s− si) for the choice on Vi (modulo
I1), dim PGor(si, Hi) for the choice of I ∩Si ⊆ Si, and �nally n−1 for the choice
of D2 −D1, . . . , Dn −D1 ∈ Rd. Adding these together proves (a).

(b) follows immediately from lemma 3.40.
To prove (c), we use theorem 3.9 in [IK99] (see also remarks 3.10 and 4.3

in the same book), which tells us that dimk TR/I = dimk(R/I
2)d. Note that

H(Si/Ji) = Hi for all i by de�nition of PSplit(r,H).
Assume �rst that I1 = 0. Note that this implies R1 = ⊕n

i=1 Vi, and therefore
R = S1 ⊗k · · · ⊗k S

n and r =
∑n

i=1 si. By equation (3.25) we have

Ie =

(∑
i<j

Re−2S
i
1S

j
1

)
⊕
(

n
⊕
i=1

Ji,e

)

as a direct sum of k-vector subspaces of Re for all degrees e < d. In particular,
I1 = 0 is equivalent to Ji,1 = for all i.

Let S = S1 ⊗k · · · ⊗k S
n−1, JS = I ∩S and s =

∑n−1
i=1 si, and let T = Sn,

JT = I ∩T and t = sn. Then Ie = Re−2S1T1⊕ JS,e⊕ JT,e for all e < d. It follows
for all 2 ≤ e ≤ d− 2 that

Ie · Id−e = Rd−4S2T2⊕ JS,e · JS,d−e⊕ JT,e · JT,d−e
⊕T1(Sd−e−1JS,e + Se−1JS,d−e)⊕S1(Td−e−1JT,e + Te−1JT,d−e).
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Since I1 = 0 implies JS,1 = JT,1 = 0, and ∑d−2
e=2 Sd−e−1JS,e = S1JS,d−2, we get

(I2)d =
d−2∑
e=2

Ie · Id−e = Rd−4S2T2⊕(J2
S)d⊕(J2

T )d⊕S1T1JS,d−2⊕S1T1JT,d−2.

Because Rd = Sd⊕T1Sd−1⊕Rd−4S2T2⊕S1Td−1⊕Td, it follows that(
R/I2

)
d =

(
S/J2

S

)
d⊕
(
T/J2

T

)
d⊕T1

(
Sd−1/S1JS,d−2

)
⊕S1

(
Td−1/T1JT,d−2

)
.

To �nd the dimension of (R/I2)d, we need the dimension of Sd−1/S1JS,d−2.
We note that Sd−1/S1JS,d−2

∼=Sd−1/JS,d−1⊕ JS,d−1/S1JS,d−2 as k-vector spaces.
And furthermore, dimk Sd−1/JS,d−1 = dimk(S/JS)d−1 = dimk(S/JS)1 = s and
dimk(JS,d−1/S1JS,d−2) = βJS

1,d−1. Thus

dimk T1

(
Sd−1/S1JS,d−2

)
= t
(
s+ βJS

1,d−1

)
,

and similarly dimk S1

(
Td−1/T1JT,d−2

)
= s
(
t+ βJT

1,d−1

). Therefore,
dimk

(
R/I2

)
d = dimk

(
S/J2

S

)
d + dimk

(
T/J2

T

)
d + 2st+ tβJS

1,d−1 + sβJT
1,d−1.

Note that βJS
1,d−1 =

∑n−1
i=1 β

i
1,d−1 since d ≥ 4. Induction on n now gives

dimk

(
R/I2

)
d =

n∑
i=1

dimk

(
Si/J2

Si

)
d +

n∑
i=1

si(r − si) +
n∑
i=1

(r − si)β
i
1,d−1. (∗)

Next we no longer assume I1 = 0. Let V = ⊕n
i=1 Vi, S = k[V ], J = I ∩S and

s =
∑n

i=1 si ≤ r. Let T = k[I1] so that R = S ⊗k T . Since Ie = Re−1T1⊕ Je
for all e, it follows that (I2)d = Rd−2T2⊕T1Jd−1⊕(J2)d. This implies that
dimk(R/I

2)d = dimk(S/J
2)d + s(r − s). Since J1 = 0, we can �nd dimk(S/J

2)d

by using (∗) (with r replaced by s). Doing this proves (c).
To prove (d), we use the morphism ρ : Φs × Πn

i=1 Gor(si, Hi) → Gor(r,H)

from lemma 3.40. For each i let Xi be the unique irreducible component of
Gor(si, Hi) containing Si/Ji. It is indeed unique since Si/Ji is a smooth point
on PGor(si, Hi). Let ρ′ : Φs × Πn

i=1Xi → Gor(r,H) be the restriction of ρ, and
let im ρ′ be the closure of im ρ′ in Gor(r,H). Note that im ρ′ is irreducible. It is
well known that the �ber (ρ′)−1(R/I) must have dimension

≥ dim

(
Φs ×

n∏
i=1

Xi

)
− dim im ρ′.
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Furthermore, dim(ρ′)−1(R/I) ≤ dim ρ−1(R/I) =
∑n

i=1 s
2
i by lemma 3.40. Note

that dimXi = dimk TSi/Ji
since Si/Ji is a smooth point on PGor(si, Hi). Since

βi1,d−1 = 0, it follows from (c) that the dimension of Gor(r,H) at R/I is

dimR/I Gor(r,H) ≥ dim im ρ′

≥ dim

(
Φs ×

n∏
i=1

Xi

)
−

n∑
i=1

s2
i

=
n∑
i=1

dimk TSi/Ji
+

n∑
i=1

si(r − si)

= dimk TR/I ≥ dimR/I Gor(r,H)

Hence dimk TR/I = dimR/I Gor(r,H) = dim im ρ′. Thus R/I is a smooth point
on PGor(r,H), and is therefore contained in a unique irreducible component X
of PGor(r,H). Since dimX = dimR/I Gor(r,H) = dim im ρ′, it follows that only
one component of Split(r,H) contains R/I, namely im ρ′.

The �nal statement follows easily. �

Remark 3.48: We assume in this remark that d = 3. We see from the proof
of theorem 3.47 that the dimension formula in (a) is valid also in this case. But
the formula in (b) is no longer true in general. We need an additional correction
term on the right-hand side. It is not di�cult to show that this correction term
is∑i<j<k sisjsk. Note that if d = 3 then βi1,d−1 =

(
si

2

) for all i. It follows that the
tangent space dimension when d = 3 is

dimk TR/I =
n∑
i=1

dimk TSi/Ji
+

n∑
i=1

si(r − si) +

(
s

3

)
−

n∑
i=1

(
si
3

)
.

Thus dimk TR/I > dim PSplit(r,H) when n ≥ 2, except n = 2 and s1 = s2 = 1.

Remark 3.49: Let β̂ij be the shifted graded Betti numbers of R/ annR f . The
Hilbert function of R/ annR f for a general f ∈ Rd is equal to

Hd,r(e) = min(dimk Re, dimk Rd−e)

by [IK99, Proposition 3.12]. This is equivalent to annR(f)e = 0 for all e ≤ d/2,
that is, β̂1j = 0 for all j ≤ d/2 − 1. It follows that β̂ij = 0 for all i > 0 and
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j ≤ d/2− 1. Recall that β̂ij = β̂r−i,d−j since the minimal resolution of R/ annR f

is symmetric, hence β̂ij = 0 for all i < r and j ≥ d − (d/2 − 1) = d/2 + 1. This
shows that, if d = 2m, then β̂ij = 0 for all j 6= m, and if d = 2m+1, then β̂ij = 0

for all j 6= m,m+1, except β̂00 = β̂rd = 1. Therefore, when d ≥ 6, it follows that
β1,d−1 = β̂1,d−2 = 0 for a general f ∈ Rd.

It is known that PGor(r,H) is smooth and irreducible for r ≤ 3. (For r = 3

see [Die96] and [Kle98].) It is also known to be generically smooth in some cases
with r > 3, see [IK99]. Hence we can use theorem 3.47 to produce irreducible,
generically smooth components of PGor(r,H) for suitable H when d ≥ 6.



Chapter 4

Degenerate splittings

In chapter 3 we proved that if A ∈ Mf is idempotent, then the polynomial g
satisfying ∂g = A∂f is an additive component of f . In this chapter we will
study what happens when A is nilpotent. The idea is to �deform� the situation
so that f, g ∈ Rd becomes ft, gt ∈ Rd[t1, . . . , tn] and A becomes an idempotent
At ∈ Matk[t1,...,tn](r, r), preserving the relation ∂gt = At∂ft.

Our investigations in this chapter were guided by the following question.

Question 4.1: Given f ∈ Rd, d ≥ 3, is it possible to �nd ft ∈ Rd[t1, . . . , tn]

such that f0 = f and ft splits regularly dimkMf − 1 times over k(t1, . . . , tn)?

Sections 4.1 and 4.2 deal with cases where we can give a positive answer to
this question, and cases in which we can produce counter examples, respectively.
The motivation behind the question is that dimkMf − 1 is an upper bound for
the number of times that ft can split when we require f0 = f , see lemma 4.2
below. There is also a �atness condition we would like ft to satisfy, but we will
ignore that in this paper, cf. remark 4.4.

Note that dimkMf −1 = rβ11 +β1d by lemma 2.17. Since ft can split at most
r − 1 times (that is, have at most r additive components), we see that question
4.1 automatically has a negative answer if β11 > 0, i.e. if annR(f)1 6= 0.

Recall that by corollary 2.10 the �regular splitting properties� of f does not
change if we add dummy variables since any regular splitting must happen inside
the subring k[Rd−1(f)]DP ⊆ R. It is not so for degenerate splittings, as seen in
example 4.3 below. For this reason most f we consider in this chapter will satisfy

81
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annR(f)1 = 0. Note that this implies that dimkMf − 1 = β1d.
We will now prove that the number dimkMf − 1 in question 4.1 is an upper

bound. Recall that by theorem 3.18 the regular splittings of ft inside Rd ⊗k

k(t1, . . . , tn) = Rd(t1, . . . , tn) are determined by the idempotents in

Mft = {A ∈ Matk(t1,...,tn)(r, r) | I2(∂ A∂) ⊆ annR(t1,...,tn) ft}.

Lemma 4.2: Let ft ∈ Rd[t1, . . . , tn]. Then dimk(t1,...,tn)Mft ≤ dimkMf0 . In
particular, if ft splits regularly m times, then m ≤ dimkMf0 − 1.

Proof: First assume that n = 1. Then ft =
∑

k≥0 t
kfk for some fk ∈ Rd. Let

A1, . . . , Am ∈ Matk(t)(r, r) form a basis for Mft as a k(t)-vector space. We
may multiply by denominators and assume Ai ∈ Matk[t](r, r) for all i. Write
Ai =

∑ai

k=0 t
kAik with Aik ∈ Matk(r, r). Assume that A10, . . . , Am0 are linearly

dependent, say ∑m
i=0 ciAi0 = 0 where ci ∈ k, not all zero. Choose j such that

aj = max{ai | ci 6= 0}, and replace Aj with (cjt)
−1
∑m

i=0 ciAi. The new Ai's still
form a k(t)-basis forMft , and the degree of Aj as a polynomial in t has decreased.
Continuing this process, we arrive at a basis {Ai} such that A10, . . . , Am0 are lin-
early independent.

For every i, since Ai ∈ Mft , there exists a polynomial gi ∈ Rd(t) such that
∂gi = Ai∂ft. And because Ai ∈ Matk[t](r, r) it follows that gi ∈ Rd[t]. Thus
gi =

∑
k≥0 t

kgik for suitable gik ∈ Rd. It follows that∑
k≥0

tk∂gik = ∂gi = Ai∂ft =
∑
j,k≥0

tj+kAij∂fk.

In particular, ∂gi0 = Ai0∂f0, implying Ai0 ∈Mf0 for all i. Since {Ai0} are linearly
independent, it follows that dimkMf0 ≥ dimk(t)Mft .

For general n ≥ 1, let k′ = k(t1, . . . , tn−1). There exist f ′k ∈ Rd[t1, . . . , tn−1]

such that ft =
∑

k≥0 t
k
nf

′
k, and the above argument shows that dimk′ Mf ′0

≥
dimk′(tn)Mft . Induction on n proves that dimkMf0 ≥ dimk(t1,...,tn)Mft .

If ft splits regularlym times, thenMft containsm+1 orthogonal idempotents,
hence dimkMf0 ≥ dimk(t1,...,tn)Mft ≥ m+ 1. �

Example 4.3: Let d ≥ 4 and f = x(d−2)
1 x(2)

2 ∈ R = k[x1, x2]
DP . With R =

k[∂1, ∂2] we get annR f = (∂3
2 , ∂

d−1
1 ) andMf = 〈I〉, hence f cannot be a specializa-

tion of an ft ∈ Rd[t1, . . . , tn] that splits. But it is easy to �nd ft ∈ k[t][x1, x2, x3]
DP
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such that f0 = f and ft splits! Indeed, one such choice is

ft = t−3[t(x1 + tx2 + t3x3)
(d) − (x1 + t2x2)

(d) + (1− t)x(d)
1 ] ≡ f mod (t).

Note that even this is in concordance with lemma 4.2.

Remark 4.4: Let f ∈ Rd. When we look for ft ∈ Rd[t1, . . . , tn] such that
f0 = f , there are several properties we would like ft to have. Our main con-
cern in this chapter is that we want ft to split regularly dimkMf − 1 times
over k(t1, . . . , tn), giving a positive answer to question 4.1. But in addition, we
would likeR(t1, . . . , tn)(ft)∼=R(t1, . . . , tn)/ annR(t1,...,tn)(ft) andR(f)∼=R/ annR f

to have equal Hilbert functions, for the following reason.
Let kt = k[t1, . . . , tn], Rt = R ⊗k kt and Rt = R ⊗k kt. An ft ∈ Rd ⊗k kt

determines a family kt → Rt/Rt(ft). Let Ct = Rt(ft) = R(ft) ⊗k kt ⊆ Rt. It
is easy to show that R/C0 = Rt/Ct ⊗kt kt/(t1, . . . , tn) = R/R(f0), thus R(f0) is
a specialization of the family. We would like this family to be �at, at least in
an open neighbourhood of the origin. This simply means that the generic �ber
R(t1, . . . , tn)(ft) has the same Hilbert function as R(f0). (The condition that ft
should have a regular splitting of length dimkMf inside Rd(t1, . . . , tn), is also a
statement about the generic �ber.)

Note that, although the family kt → Rt/Jt where Jt = annRt(ft) is maybe
more natural to consider, it is also more problematic, since ft 7→ Rt/Jt 7→ R/J0

does not generally commute with med ft 7→ f0 7→ R/ annR(f0). In general we
only have an inclusion J0 ⊆ annR(f0). If f 6= 0, then (J0)d = annR(f0)d, and
since annR(f0) is determined by its degree d piece by lemma 1.2a, it follows that
annR(f0) = sat≤d J0 = ⊕d

e=0{D ∈ Re |Rd−e ·D ⊆ J0}+ (Rd+1).
Of course we would like R(f) to be a specialization of a �at, splitting fam-

ily, but in this chapter we study question 4.1 without the additional �atness
requirement. Note that we do not know of any example in which question 4.1
has a positive answer, but would have had a negative answer if we had required
H(R(t1, . . . , tn)(ft)) = H(R(f)).
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4.1 Positive results

In this section we consider some cases where we are able to prove that question 4.1
has a positive answer. We start with a result that e�ectively �deforms� a relation
∂g = A∂f with A nilpotent to a relation ∂gt = At∂ft with At idempotent. The
proof is an explicit construction of ft using the nilpotent matrix A ∈Mf as input
data. This will later allow us to answer question 4.1 positively when r ≤ 4.

Suppose A is nilpotent, i.e. Ak = 0 for k � 0. The index of A is de�ned by
index(A) = min{k ≥ 1 |Ak = 0}.

Let A be a nilpotent matrix of index n+ 1, i.e., An+1 = 0 and An 6= 0. Then
A0 = I, A,A2, . . . , An are linearly independent. To see why, assume there is a
non-zero relation ∑n

k=0 ckA
k = 0, and let i = min{k | ck 6= 0} ≤ n. Multiplying

the relation by An−i implies that ciAn = 0, which is a contradiction.
Theorem 4.5:
Let d ≥ 3 and f ∈ Rd. Assume that Mf contains a non-zero nilpotent matrix
A ∈ Matk(r, r), and let n = index(A)− 1 ≥ 1. Then f is a specialization of some
ft ∈ Rd[t1, . . . , tn] that splits regularly n times inside Rd(t1, . . . , tn).

Proof: Since Mf is closed under multiplication by proposition 2.21, it contains
k[A] = 〈I, A, . . . , An〉, the k-algebra generated by A.

Choose an idempotent E ∈ Matk(r, r) such that kerE = kerAn. (I.e. let
U = kerA and choose W such that and U ∩W = 0 and U +W = kr. Then let E
represent the linear map that acts as the identity on W and takes U to 0.) This
implies that AnE = An and that there exists a matrix Q ∈ Matk(r, r) such that
E = QAn. Note that EA = 0. De�ne

At = A+ tE.

Then Ant = An + tAn−1E + · · ·+ tnE, and
An+1
t = An+1 + tAnE + · · ·+ tn+1E = tAnt .

It follows that (Ant )
2 = tnAnt , hence t−nAnt is idempotent. Now de�ne

P = I +
n∑
k=1

tkAn−kQ.
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P is chosen so that Ant = PAn. Since detP ≡ 1 (mod t), P is an invertible
element of Matk(t)(r, r). Let φP be the homomorphism de�ned by x 7→ PTx on R
and by ∂ 7→ P−1∂ on R, as usual. Recall that for all g ∈ R and D ∈ R we have
φP (Dg) = φP (D)φP (g). Also note that (PAn)2 = tnPAn implies AnPAn = tnAn.

Since An ∈ Mf , there exists a polynomial g ∈ Rd such that ∂g = An∂f . Let
gt = φP (g) =

∑
k≥0 t

kgk ∈ Rd[t], and de�ne

ft = f + t−n
(
gt −

n∑
k=0

tkgk

)
= f +

∑
k>0

tkgn+k ∈ Rd[t].

We want to prove that At ∈Mft . We start by calculating ∂gt.

∂gt = ∂φP (g) = PφP (∂g) = PφP (An∂f) = Ant φP (∂f) (4.1)

Multiplying (4.1) by An, and using AnPAn = tnAn, gives An∂gt = tnφP (∂g).
Since the entries of ∂g and φP (∂g) are in R[t], this implies that An∂gi = 0 for all
i < n, and An∂gn = ∂g = An∂f . In particular, E∂gn = QAn∂gn = E∂f .

When we multiply (4.1) by At, the result is At∂gt = t∂gt. As polynomials in
t this equals (A+ tE)(

∑
i≥0 t

i∂gi) = t(
∑

i≥0 t
i∂gi), and implies that

A∂gi + E∂gi−1 = ∂gi−1 for all i ≥ 0.

(Actually, this implies that A∂gi = ∂gi−1 for all 0 ≤ i ≤ n, since E = QAn and
we have already proven that An∂gi−1 = 0 for i ≤ n.) Also, since A ∈ Mf , there
exists h ∈ Rd such that ∂h = A∂f .

Putting all this together, we get

At∂ft =
(
A+ tE

)(
∂f +

∑
k>0

tk∂gn+k

)
= A∂f + tE∂f +

∑
k>0

tkA∂gn+k +
∑
k>0

tk+1E∂gn+k

= ∂h+
∑
k>0

tk
(
A∂gn+k + E∂gn+k−1

)
= ∂h+

∑
k>0

tk∂gn−1+k = ∂
(
h+ tgn + t2gn+1 + . . .

)
.

This proves that At ∈ Mft . And since Mft is closed under multiplication, it
follows that k[At] = 〈I, At, . . . , Ant 〉 ⊆Mft .
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Since E ′ = I − t−nAnt is idempotent, we may apply theorem 3.18. It tells
us that ft has a regular splitting with two additive components, t−ngt and f ′ =

t−n(tnf − g0 − tg1 − · · · − tngn), and furthermore that

k[At] · E ′ = 〈E ′, AtE
′, . . . , An−1

t E ′〉 ⊆ME′

f ′ .

Hence we may repeat our procedure on f ′. By induction on n, we arrive at some
ft ∈ Rd[t1, . . . , tn] such that f0 = f and ft splits regularly n times. �

Remark 4.6: The choice of E in the proof of theorem 4.5 boils down to choosing
Q ∈ Matk(r, r) such that AnQAn = An, and then letting E = QAn. This then
implies kerE = kerAn and that E is idempotent. We note that Q is certainly
not unique. If An is in Jordan normal form, then we may let Q = AT. This is
what we will do in most explicit cases.

Corollary 4.7: Suppose k = k̄ and d ≥ 3. Let f ∈ Rd. Assume that annR(f)1 =

0, and let β1j be the minimal number of generators of annR f of degree j. Then
f has a regular or degenerate splitting if and only if β1d > 0.

Proof: Since β11 = 0, we have dimkMf − 1 = β1d. Thus β1d > 0 if and only if
Mf contains a matrix A /∈ 〈I〉. Since k = k̄, we may assume that A is either
idempotent or nilpotent. It follows from theorem 3.18 that Mf contains a non-
trivial idempotent if and only if f splits regularly. By theorem 4.5, if A ∈ Mf

is non-zero and nilpotent, then f has a degenerate splitting. Finally, if f has a
degenerate splitting, then dimkMf − 1 ≥ 1 by lemma 4.2. �

Let f ∈ Rd with d ≥ 3. If Mf is generated by one matrix, then theorem 4.5
answers question 4.1 a�rmatively, that is, we can �nd ft ∈ Rd[t1, . . . , tn] such
that f0 = f and ft splits regularly dimkMf − 1 times over k(t1, . . . , tn). This is
the best we can hope for by lemma 4.2, and our next theorem proves that this is
always possible when r ≤ 4. But �rst we need some facts about matrices.

Lemma 4.8: Given matrices A,B ∈ Matk(r, r) the following are true.

(a) rankA+ rankB − r ≤ rank(AB) ≤ min(rankA, rankB).

(b) If AB = BA, A 6= 0 and B is nilpotent, then rank(AB) < rankA.
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(c) If AB = BA, rankA = r − 1 and A is nilpotent, then Ar−1 6= 0 and

B ∈ k[A] = 〈I, A, . . . , Ar−1〉.

Proof: (a) The right inequality follows from the inclusions ker(AB) ⊇ kerB and
im(AB) ⊆ imA. To prove the left inequality, let β be the restriction of the map
B : kr → kr to ker(AB). Obviously, ker β = {v ∈ ker(AB) |Bv = 0} = kerB,
and im β ⊆ kerA. Hence

dimk ker(AB) = dimk ker β + dimk im β ≤ dimk kerB + dimk kerA,

which is equivalent to rank(AB) ≥ rankA+ rankB − r.
(b) Assume that rank(AB) = rankA. We know that im(AB) ⊆ imA, hence

equal ranks implies im(AB) = imA. It follows that im(ABk) = imA for all k by
induction on k. Indeed, since AB = BA, we have

imABk+1 = imBABk = B(imABk) = B(imA) = imBA = imAB = imA.

But B is nilpotent, implying imA = imABr = im 0 = 0. Hence A = 0. There-
fore, when A 6= 0, it follows that rankAB < rankA.

(c) Let A0 = I. Part (a) implies for all k ≥ 0 that

rankAk+1 ≥ rankAk + rankA− r = rankAk − 1.

Since A is nilpotent, we know that Ar = 0. Therefore,

0 = rankAr ≥ rankAr−1 − 1 ≥ rankAr−2 − 2 ≥ · · · ≥ rankA− (r − 1) = 0.

It follows that all inequalities must be equalities, that is, rankAk = r − k for all
0 ≤ k ≤ r. In particular, Ar−1 6= 0. Moreover, the quotient kerAk/ kerAk−1 has
dimension 1 for all 1 ≤ k ≤ r. Consider the �ltration

0 = ker I ( kerA ( kerA2 ( · · · ( kerAr−1 ( kerAr = kr.

Choose v1 /∈ kerAr−1, and let vk = Ak−1v1 for k = 2, . . . , r. Then {v1, . . . , vr}
is a basis for kr. To prove this, note that vk /∈ kerAr−k because Ar−1v1 6= 0,
but vk ∈ kerAr−k+1 since Ar = 0. Assume that v1, . . . , vr are linearly dependent.
Then there exist c1, . . . , cr ∈ k, not all zero, such that ∑r

i=1 civi = 0. If we let
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k = min{i | ci 6= 0}, then vk = c−1
k (
∑r

i=k+1 civi). But vi ∈ kerAr−k for all i > k,
implying vk ∈ kerAr−k, a contradiction.

There exist c1, . . . , cr ∈ k such that Bv1 =
∑r

i=1 civi =
∑r

i=1 ciA
i−1v1 since

{v1, . . . , vr} is a basis for kr. Since AB = BA it follows for all k that

Bvk = BAk−1v1 = Ak−1Bv1

= Ak−1

r∑
i=1

ciA
i−1v1 =

r∑
i=1

ciA
i−1Ak−1v1 =

r∑
i=1

ciA
i−1vk.

Since {vi} is a basis, it follows that B =
∑r

i=1 ciA
i−1, that is, B ∈ k[A]. �

The following theorem gives a positive answer to question 4.1 when r ≤ 4.
Theorem 4.9:
Assume that r ≤ 4 and k̄ = k. Let f ∈ Rd, d ≥ 3, satisfy annR(f)1 = 0. Then
for some n ≥ 1 there exists ft ∈ Rd[t1, . . . , tn] such that f0 = f and ft splits
regularly dimkMf − 1 times over k(t1, . . . , tn).

Proof: We may assume that Mf does not contain any non-trivial idempotent,
because if it does, we apply theorem 3.18 �rst, and then the following proof
on each additive component. Since k̄ = k, it follows by proposition 3.5 that
Mf = 〈I〉⊕Mnil

f where Mnil
f = {A ∈Mf |A is nilpotent}.

The conclusion follows from theorem 4.5 ifMf is generated by a single matrix.
And if Mnil

f contains a matrix A of rank r − 1, then Mf = k[A] by lemma 4.8.
Therefore, we now assume that Mf is not generated by a single matrix, and in
particular, that all matrices in Mnil

f have rank ≤ r − 2.
If r = 1, then f = cx(d)

1 and Mf = 〈I〉, thus there is nothing to prove. If
r = 2, then Mf must be generated by a single matrix, and we are done.

If r = 3, then Mnil
f may only contain matrices of rank 1. Since Mf cannot

be generated by a single matrix, Mnil
f must contain two matrices A ∦ B of rank

1. We may write A = u1v
T
1 and B = u2v

T
2 for suitable vectors ui, vj ∈ kr. Note

that A2 = B2 = AB = BA = 0 since their ranks are < 1 by lemma 4.8b. Thus
uT
ivj = 0 for all i, j = 1, 2. If u1 ∦ u2, then this implies v1 ‖ v2 since r = 3.

Similarly, v1 ∦ v2 implies u1 ‖ u2. However, both cases are impossible, since each
imply annR(f)1 6= 0 by corollary 2.29. (These are essentially the two cases in
example 2.30.)
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Suppose r = 4 and that Mnil
f only contains matrices of rank ≤ 2. We will

break down the proof of this case into four subcases.
Case 1. Assume Mnil

f contains two matrices A ∦ B of rank 1, i.e. A = u1v
T
1

and B = u2v
T
2. Then uivT

j = 0 for all i, j = 1, 2 as above. Again, both u1 ‖ u2

and v1 ‖ v2 lead to contradictions by corollary 2.29. Thus we may up to a base
change assume u1 = [1000]T and u2 = [0100]T. Hence vi = [00∗∗]T, and after
another change of basis, v1 = [0010]T and v2 = [0001]T. In other words,

A =

(
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

)
and B =

(
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
.

Since I2(∂ A∂ B∂) ⊆ ann f , this already implies that there exist c1, c2 ∈ k and
g ∈ k[x1, x2]

DP such that f = c1x3x
(d−1)
1 + c2x4x

(d−1)
2 + g. Note that c1, c2 6= 0

since ann(f)1 = 0, and we may assume c1 = c2 = 1.
Suppose that Mnil

f contains a matrix C in addition to A and B. Then CA =

AC = CB = BC = 0 because their ranks are < 1. This implies that

C =
(

0 ?
0 0

) as a 2× 2 block matrix using 2× 2 blocks,

and modulo A and B we may assume that ? =
(

0 a
b 0

)
. It follows that

I2(∂ C∂) = (b∂1∂3 − a∂2∂4) ⊆ annR f.

Hence 0 = (b∂1∂3 − a∂2∂4)(f) = bx(d−2)
1 − ax(d−2)

2 . This implies a = b = 0 since
d ≥ 3. Thus we have proven that Mf = 〈I, A,B〉. Let

ft = 1
t

(
(x1 + tx3)

(d) − x(d)
1 + (x2 + tx4)

(d) − x(d)
2

)
+ g.

Then f0 = f , and ft ∼ x(d)
3 + x(d)

4 −
(
x(d)

1 + x(d)
2 − tg

) obviously splits twice.
Case 2. Suppose Mf does not contain any matrix of rank 1. If A,B ∈ Mnil

f ,
then both have rank 2 and A2 = B2 = AB = BA = 0. We may assume that
A =

(
0 I
0 0

)
, which implies that B =

(
0 B′
0 0

)
. But then B − λA has rank 1 when λ

is an eigenvalue for B′, a contradiction. Therefore, for the rest of the proof we
may assume that Mf contains exactly one matrix of rank 1.

Case 3. AssumeMf does not contain any A of rank 2 satisfying A2 = 0. Then
Mf must contain an A such that rankA = 2 and A2 6= 0. Note that rankA2 = 1.
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Because Mf 6= k[A], there exists B ∈ Mf , B /∈ k[A]. Then rankB = 2 since Mf

cannot contain several matrices of rank 1. Thus B2 6= 0, and therefore B2 = bA2,
b 6= 0. Also rankAB ≤ 1, hence AB = BA = aA2. Let t be a root of t2 +2at+ b.
Since rank(tA + B) ≤ 1 implies B ∈ k[A], we get rank(tA + B) = 2. But
(tA+B)2 = (t2 + 2at+ b)A2 = 0, contradicting our assumption.

Case 4. Hence Mf contains a matrix A of rank 2 satisfying A2 = 0 and
a matrix B of rank 1. We may assume that A =

(
0 I
0 0

)
. From AB = BA it

follows that B =
(
B1 B2
0 B1

)
, and B1 = 0 since rankB = 1. Modulo a similarity

transformation B 7→ PBP−1 with P =
(
Q 0
0 Q

) we may assume that

B2 =
(
λ1 0
0 λ2

)
or B2 =

(
λ 1
0 λ

)
,

and modulo A this becomes B2 ∈
{(

1 0
0 0

)
,
(

0 1
0 0

)}
. Since B is the only matrix in

Mf of rank 1 (up to a scalar), the �rst must be disregarded. (It reduces to case
1 above.) Hence B2 =

(
0 1
0 0

)
. It follows that

f = x4x
(d−1)
1 + x3x2x

(d−2)
1 + g where g ∈ k[x1, x2]

DP ,

up to a base change. De�ne ft ∈ Rd[t] by

ft = 1
st

(
(x1 + sx2 + tx3 + stx4)

(d) − (x1 + sx2)
(d) − (x1 + tx3)

(d) + x(d)
1

)
+ g.

Then f0 = f , and ft∼= splits twice. If Mf = 〈I, A,B〉, then we are done.
Thus assume that Mnil

f contains a matrix C /∈ 〈A,B〉. Because CA = AC

and CB = BC, we have
C =

( c1 c2 c3 c4
0 c1 c5 c6
0 0 c1 c2
0 0 0 c1

)
.

Clearly, c1 = 0 since C is nilpotent. If c2 = 0, then rank(C − c3A − c4B) ≤ 1,
thus C ∈ 〈A,B〉 since B is the only matrix in Mf of rank 1. This contradiction
allows us to assume that c2 = 1. It also implies that Mnil

f cannot contain yet
another matrix, since we then would have to get another one of rank 1. Therefore,
Mf = 〈I, A,B,C〉. Now, rankC < 3 implies c5 = 0, and modulo B we may
assume c4 = 0. If char k 6= 2, we may also assume c3 = c6 = 0. This follows from
the similarity transformation C 7→ PCP−1 where P =

(
I Q
0 I

) with Q =
(

0 0
q 0

) and
q = 1

2
(c3 − c6). It follows that

f = x4x
(d−1)
1 + x3x2x

(d−2)
1 + cx(d)

1



4.1 Positive results 91

up to a base change. (We may even assume c = 0 if char k - d.) Let

ft = 1
st

(
(x1 + sx2 + tx3 + stx4)

(d) − (x1 + sx2)
(d) − (x1 + tx3)

(d) + x(d)
1

)
+ cx(d)

1 .

Then f0 = f , and ft ∼ x(d)
1 + x(d)

2 + x(d)
3 + x(d)

4 splits regularly three times.
If char k = 2, then the case (c3, c6) = (0, 1) is not in the GLk(4) orbit of

(c3, c6) = (0, 0). A base change shows that this additional case is isomorphic to
Mf = 〈I, A,B,A2〉 where A2 = B2 and

A =

(
0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
B =

(
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

)
.

This implies that f = x4x
(d−1)
1 + x(2)

3 x(d−2)
1 + x(2)

2 x(d−2)
1 + cx(d)

1 . Let

ft = t−3
(
t(x1 + tx2 + t2x4)

(d) + t(x1 + tx3)
(d)

− (x1 + t2x2 + t2x3)
(d) + (1− 2t+ ct3)x(d)

1

)
.

Again, f0 = f , and ft ∼ x(d)
1 +x(d)

2 +x(d)
3 +x(d)

4 splits regularly three times. Hence
in each case we have found an ft ∈ Rd[t1, . . . , tn] such that f0 = f and ft splits
regularly dimkMf − 1 times over k(t1, . . . , tn), and we are done. �

Remark 4.10: Note that the last case of the proof says the following. Suppose
Mf contains two matrices of rank 2 that are non-proportional. If char k 6= 2, then
Mf contains exactly two of rank 2 such that A2 = 0. If char k = 2, then there are
two possibilities. Either every matrix in Mf of rank 2 satis�es A2 = 0, or only
one matrix is of this type, and the rest satisfy A2 6= 0.

We will end this section with a generalization of theorem 4.5.
Theorem 4.11:
Suppose d ≥ 3 and f ∈ Rd. Let A1, . . . , Am ∈ Matk(r, r) be nonzero and nil-
potent, and assume there exist orthogonal idempotents E1, . . . , Em such that
EiAi = AiEi = Ai for all i. Let ni = indexAi and 1 ≤ ai < ni. Assume that
Aki ∈ Mf for all k ≥ ai and all i = 1, . . . ,m. Let n =

∑m
i=1(ni − ai). Then f

is a specialization of some ft ∈ Rd[t1, . . . , tn] that splits regularly n times over
k(t1, . . . , tn).

Proof: The proof uses the same ideas as the proof of theorem 4.5, with some
modi�cations. Fix one i ∈ {1, . . . ,m}, and choose Q ∈ Ei Matk(r, r)Ei such
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that Ani−1
i QAni−1

i = Ani−1
i . De�ne matrices P = I +

∑ni−1
k=1 tkAni−1−k

i Q and
Ait = Ai + tQAni−1

i . It follows that Ani−1
it = PAni−1

i and Ani
it = tAni−1

it . Because
Ani−1
i ∈Mf , there exists g ∈ Rd such that ∂g = Ani−1

i ∂f . De�ne

gt = φP (g) =
∑
k≥0

tkgk and ft = f +
∑
k≥1

tkgni−1+k.

For all i 6= j, it follows from EiEj = 0 that AiEj = EjAi = AiAj = 0. Thus
AjAit = 0. Since ∂gt = PφP (∂g) = Ani−1

it φP (∂f), it follows that Aj∂gt = 0, and
therefore, Aj∂gk = 0 for all k ≥ 0. Hence Akj ∈Mft for all j 6= i and k ≥ aj.

We will now prove that Akit∂ft = Aki ∂f +
∑

j≥1 t
j∂gni−1−k+j for all k ≥ 0.

Assume it is true for some k ≥ 0. The arguments following equation (4.1) in the
proof of theorem 4.5 apply here and show that Ani−1

i ∂gni−j = 0 for all j > 1,
Ani−1
i ∂f = Ani−1

i ∂gni−1 and Ai∂gni−1+j +QAni−1
i ∂gni−2+j = ∂gni−2+j for all j. It

follows that

Ak+1
it ∂ft =

(
Ai + tQAni−1

i

)(
Aki ∂f +

∑
j≥1

tj∂gni−1−k+j

)
= Ak+1

i ∂f +
∑
j≥1

tj
(
Ai∂gni−1−k+j +QAni−1

i ∂gni−2−k+j

)
= Ak+1

i ∂f +
∑
j≥1

tj∂gni−2−k+j.

Since Aki ∈Mf for all k ≥ ai it follows that Akit ∈Mft for all k ≥ ai. In particular,
E ′ = I − (t−1Ait)

ni−1 ∈Mft .
Since E ′ is idempotent, we may apply theorem 3.18. It tells us that ft has a

regular splitting with the following two additive components, t−ni+1gt and

f ′ = t−ni+1
(
tni−1f − g0 − tg1 − · · · − tni−1gni−1

)
,

and furthermore that (AitE
′)k = AkitE

′ ∈ ME′

f ′ for all k ≥ ai. Hence we may
repeat our procedure on f ′. By induction on ni and i, we arrive at some ft ∈
Rd[t1, . . . , tn] such that f0 = f and ft splits regularly n times. �

Remark 4.12: We assume in theorem 4.11 that Aki ∈ Mf for all k ≥ ai. It is
in fact enough to assume Aai

i Bi, A
ai+1
i Ci ∈Mf for some invertible Bi, Ci ∈ k[Ai].

Indeed, apply proposition 2.26 with A = AiB
−1
i Ci, B = I and C = Aai

i Bi.
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It follows that AkC = Aai+k
i B1−k

i Ck
i ∈ Mf for all k ≥ 0. In particular, with

k = ni − ai − 1, we get Ani−1
i P ∈Mf where P ∈ k[Ai] is invertible. This implies

Ani−1
i ∈ Mf since Ani

i = 0. Now letting k = ni − ai − 2 implies Ani−2
i ∈ Mf . By

descending induction on k we get Aki ∈Mf for all k ≥ ai.

4.2 Counter examples

In this section we will produce examples of f ∈ Rd in which we cannot �nd an
ft ∈ Rd[t1, . . . , tn] such that f0 = f and ft splits regularly dimkMf −1 times over
k(t1, . . . , tn). Thus question 4.1 has a negative answer for these f . There exist
many such examples due to purely numerical reasons, and the following theorem
enables us to �nd some.
Theorem 4.13:
Let d ≥ 3, s ≤ r and S = k[x1, . . . , xs]

DP ⊆ R. Suppose h ∈ Sd does not
split regularly. Let f = h + x(d)

s+1 + · · · + x(d)
r ∈ Rd. Assume that there exists

an ft ∈ Rd[t1, . . . , tn] such that f0 = f and ft splits regularly m − 1 times over
k(t1, . . . , tn). Suppose m > r−s+1. ThenMh must contain a non-zero nilpotent
matrix of rank ≤ s/(m− r + s).

Proof: Clearly, m ≤ r. Note that if annR(f)1 6= 0, then annS(h)1 6= 0. In this
case Mh will contain nilpotent matrices of rank 1, and we are done. Therefore,
we may assume annR(f)1 = 0. This implies annR(t1,...,tn)(ft)1 = 0. It also implies
that f 6= 0 since s > r −m+ 1 ≥ 1.

For each k = 1, . . . , r − s, de�ne Ek ∈ Matk(r, r) by

(Ek)ij =

1 if i = j = k + s,
0 otherwise.

Clearly, Ek is a diagonal idempotent of rank 1. Furthermore, ∂(x(d)
s+k

)
= Ek∂f ,

thus Ek ∈ Mf . Let E0 = I −
∑r−s

k=1Ek ∈ Mf . It follows by theorem 3.18 that
Mf = M0⊕M1⊕ . . .⊕Mr−s where Mk = MfEk = 〈Ek〉 for k = 1, . . . , r − s, and
M0 = MfE0

∼=Mh. To be precise, M0 =
{(

A 0
0 0

)
|A ∈Mh

}
.

Choose a multiplicative (monomial) order on k′ = k[t1, . . . , tn] with 1 as the
smallest element. If V is any k-vector space and v ∈ V ′ = V ⊗k k[t1, . . . , tn],
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v 6= 0, denote by lc(v) ∈ V the leading coe�cient of v, which to us the coe�cient
of the smallest non-zero term of v in the ordering. Note that if ϕ : U × V → W

is a k-bilinear map, it induces a k′-bilinear map ϕ′ : U ′ × V ′ → W ′. Then
lc
(
ϕ′(u, v)

)
= ϕ

(
lc(u), lc(v)

) as long as ϕ(lc(u), lc(v)) 6= 0.
There exist orthogonal idempotents A1, . . . , Am ∈ Mft and non-zero polyno-

mials g1, . . . , gm ∈ Rd(t1, . . . , tn) such that ∑m
i=1Ai = I and ∂gi = Ai∂ft. Let

the common denominator of the entries of Ai be λi ∈ k[t1, . . . , tn]. We may scale
λi such that lc(λi) = 1. Replace Ai by λiAi. Then Ai ∈ Matk[t1,...,tn](r, r) and
A2
i = λiAi. Moreover, replace gi by λigi to preserve the relation ∂gi = Ai∂ft.

This implies that gi ∈ Rd[t1, . . . , tn].
Let Ai0 = lc(Ai) 6= 0. Note that lc(ft) = f , and Ai0∂f 6= 0 because

annR(f)1 = 0. It follows that

∂ lc(gi) = lc(∂gi) = lc(Ai∂ft) = lc(Ai)∂ lc(ft) = Ai0∂f.

Hence Ai0 ∈Mf . If A2
i0 6= 0, then A2

i0 = lc(A2
i ) = lc(λiAi) = Ai0. Thus A2

i0 = 0 or
A2
i0 = Ai0 for all i. Furthermore, Ai0Aj0 = 0 for all i 6= j, because AiAj = 0. In

addition, rankAi0 ≤ rankAi. (If some minor of Ai is zero, then the corresponding
minor of Ai0 must also be zero.)

Since h does not split regularly, Mh does not contain any non-trivial idem-
potents. Hence {Ei} is the unique maximal coid in Mf , and any idempotent
in Mf is a sum of some of the Ei's. Assume Ai0 is idempotent. We want to
prove that Ai0 ∈ 〈E1, . . . , Er−s〉. If it is not, then Ai0E0 = E0. For all j 6= i,
we have Aj0Ai0 = 0, and therefore Aj0E0 = 0 and Aj0 6= Ai0. This implies
Aj0 ∈ ⊕r−s

i=1 Mi = 〈E1, . . . , Er−s〉, and it follows that A2
j0 6= 0. Hence Aj0 must

be an idempotent! Therefore {Aj0}mj=1 is a set of orthogonal idempotents, but
{Ej}r−sj=0 is maximal, hence m ≤ r − s+ 1, a contradiction.

Let J = {i |A2
i0 = Ai0} and k =

∑
i∈J rankAi0 ≥ |J |. By the last paragraph,

k ≤ r − s. Clearly, the number of nilpotents among {Ai0}mi=1 is

m− |J | ≥ m− k ≥ m− r + s ≥ 2.

Now suppose that Mh does not contain any non-zero nilpotent matrix of rank
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≤ s/(m− r + s). Then rankAi0 > s/(m− r + s) for all i /∈ J . It follows that

r =
m∑
i=1

rankAi ≥
m∑
i=1

rankAi0 > k + (m− k)
s

m− r + s

=
ms− (r −m)k

m− r + s
≥ ms− (r −m)(r − s)

m− r + s
= r,

which is the contradiction we sought. �

Remark 4.14: It is not correct that if Mft contains m idempotents of rank
≤ k, then Mf0 must contain m idempotents or nilpotents of rank ≤ k. A simple
example is f = x2x

(d−1)
1 , r = 2. Then Mf = 〈I, A〉 where A1 =

(
0 1
0 0

)
. Let ft =

t−1[(x1 + tx2)
(d) − x(d)

1 ], so that f0 = f . Then Mft = 〈At, Bt〉 where At = ( −t 1
0 0 )

and Bt = ( 0 1
0 t ) . Thus both A0 = B0 = A. We see that Mft can contain two

idempotents of rank 1 even though dimk{A ∈Mf | rankA ≤ 1} = 1.
Now that we have theorem 4.13 at our disposal, we are ready to give the �rst

example in which question 4.1 has a negative answer.
Example 4.15: Suppose r = 5 and a, b ≥ 2. Let

f = x(a−1)
1 x(b+1)

2 x3 + x(a)
1 x(b)

2 x4 + x(a+1)
1 x(b−1)

2 x5.

Then f ∈ Rd where d = a+ b+ 1 ≥ 5. The annihilator ideal is
annR(f) = (∂3, ∂4, ∂5)

2 + (∂1∂4 − ∂2∂3, ∂1∂5 − ∂2∂4)

+ (∂a1∂3, ∂
b
2∂5, ∂

a+2
1 , ∂b+2

2 ) + (∂a+1
1 ∂b2, ∂

a
1∂

b+1
2 ).

It is easy to check that annR f contains the right-hand side. For the converse,
assume that D ∈ annR(f)e. Modulo (∂3, ∂4, ∂5)

2 there exist Di ∈ k[∂1, ∂2] such
that D = ∂3D1+∂4D2+∂5D3+D4, and modulo (∂1∂4−∂2∂3, ∂1∂5−∂2∂4) we may
assume that D2 = 0 and D3 = c1∂1∂

e−2
2 + c2∂

e−1
2 . Computing Df , we see that

Df = 0 is equivalent to D1(x
(a−1)
1 x(b+1)

2 ) + D3(x
(a+1)
1 x(b−1)

2 ) = D4(f) = 0. This
implies that D1 ∈ (∂a1 , ∂

b+2
2 ), D3 ∈ (∂b2) and D4 ∈ (∂a+2

1 , ∂b+2
2 , ∂a+1

1 ∂b2, ∂
a
1∂

b+1
2 ),

and proves that D is contained in the right-hand side.
Since a, b ≥ 2, we see that annR f has two generators of degree d. Thus

dimkMf = 3. Let g1 = x(a)
1 x(b+1)

2 , g2 = x(a+1)
1 x(b)

2 and

A1 =

(
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
, A2 =

(
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
.
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A simple calculation shows that ∂g1 = A1∂f and ∂g2 = A2∂f . This implies that
A1, A2 ∈ Mf , and it follows that Mf = 〈I, A1, A2〉. (Note that g1 = ∂1h and
g2 = ∂2h where h = x(a+1)

1 x(b+1)
2 .)

Since Mf does not contain any non-zero nilpotent matrix of rank 1, theorem
4.13 implies that there does not exist an ft ∈ Rd[t1, . . . , tn] such that f0 = f

and ft splits regularly dimkMf − 1 times over k(t1, . . . , tn). Moreover, by adding
terms x(d)

i with i > 5, we have produced such examples for all r ≥ 5 and d ≥ 5.

Example 4.16: Let us consider the following two polynomials.

(a) f1 = x4

(
x2x

(2)
3

)
+ x5

(
x1x

(2)
3 + x(2)

2 x3

)
+ x6

(
x1x2x3 + x(3)

2

)
+ x7

(
x(2)

1 x3 + x1x
(2)
2

)
∈ R4, r = 7.

(b) f2 = x5

(
x3x4

)
+ x6

(
x2x4 + x(2)

3

)
+ x7

(
x1x4 + x2x3

)
+ x8

(
x1x3 + x(2)

2

)
+ x9

(
x1x2

)
∈ R3, r = 9.

Tedious but simple computations show that the annihilators are:

annR(f1) = (∂4, ∂5, ∂6, ∂7)
2 + (∂1∂4, ∂2∂4 − ∂1∂5, ∂3∂4 − ∂2∂5, ∂2∂5 − ∂1∂6,

∂3∂5 − ∂2∂6, ∂2∂6 − ∂1∂7, ∂3∂6 − ∂2∂7) + (∂1∂3 − ∂2
2)

+ (∂2∂3∂7, ∂
2
3∂7) + (∂3

1 , ∂
2
1∂2, ∂

3
3) + (∂4

2 , ∂
3
2∂3)

annR(f2) = (∂5, . . . , ∂9)
2 + (∂1∂5, ∂2∂5, ∂1∂6, ∂3∂5 − ∂2∂6, ∂4∂5 − ∂3∂6,

∂2∂6 − ∂1∂7, ∂3∂6 − ∂2∂7, ∂4∂6 − ∂3∂7, ∂2∂7 − ∂1∂8, ∂3∂7 − ∂2∂8,

∂4∂7 − ∂3∂8, ∂2∂8 − ∂1∂9, ∂3∂8 − ∂2∂9, ∂4∂8, ∂3∂9, ∂4∂9)

+ (∂2
1 , ∂

2
2 − ∂1∂3, ∂2∂3 − ∂1∂4, ∂

2
3 − ∂2∂4, ∂

2
4) + (∂2

2∂3, ∂2∂
2
3)

In both cases, dimkMfi
= 3. It is easy to check that the two nilpotent matrices

in Mf1 are of rank 3, and of rank 4 in Mf2 . By theorem 4.13, there does not exist
an ft ∈ Rd[t1, . . . , tn] such that f0 = fi and ft splits regularly dimkMfi

− 1 times
over k(t1, . . . , tn). Again, we may add terms x(d)

i to produce such examples for
all r ≥ 7 when d = 4 and all r ≥ 9 when d = 3.

The next proposition allows us to construct f such that Mf does not contain
nilpotent matrices of small rank. The previous examples are special cases of this
proposition.
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Proposition 4.17: Suppose d ≥ 3, s ≥ 2, q ≥ 1 and r = 2s + q. Let S =

k[x1, . . . , xs]
DP ⊆ R = k[x1, . . . , xr]

DP . Let g1, . . . , gs+q ∈ Sd−1 satisfy ∂i+1gj =

∂igj+1 = hi+j−2 ∈ Sd−2 for all 1 ≤ i < s and 1 ≤ j < s + q. De�ne f =∑s+q
i=1 xs+igi ∈ Rd. Assume that hi = 0 for all i < s−1, and that hs−1, . . . , hs+q+1

are linearly independent. Then Mf = 〈I, B0, . . . , Bq〉 where, for each k = 0 . . . , q,

(Bk)ij =

1, if i ≤ s and j = s+ k + i,

0, otherwise.

Proof: For each k we note that Bk is block matrix of the form (
0 B′

k
0 0

)
, where

B′
k ∈ Matk(s, s+q) is a �displaced� identity matrix. That is, B′

k is a block matrix
of the form (

O1 I O2

), where O1 is an s × k zero matrix, I is an s × s identity
matrix, and O2 is an s× (q − k) zero matrix. In particular, rankBk = s.

By computing ∂∂Tf , we see that it has a block decomposition,

∂∂Tf =

(
X1 X2

X3 0

)
,

where X1 ∈ Matk(s, s) and X2 ∈ Matk(s, s + q). X2 is a Hankel matrix in the
sense that (X2)ij = ∂igj = hi+j−1 for all 1 ≤ i ≤ s and 1 ≤ j ≤ s+ q, i.e

X2 = XT
3 =


h1 . . . hs+q

: :

hs . . . hr−1

 .

We note that the columns and rows of X2 are linearly independent over k. This
implies that annR(f)1 = 0.

By lemma 2.13, A =
(
A1 A2
A3 A4

)
∈Mf if and only if

A∂∂Tf =

(
A1X1 + A2X3 A1X2

A3X1 + A4X3 A3X2

)

is symmetric. Since the entries of X1 and X2 = XT
3 are linearly independent, this

is equivalent to both(
A1X1 0

A3X1 0

)
and

(
A2X3 A1X2

A4X3 A3X2

)
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being symmetric. In particular, it implies that A3X1 = 0. Let aT be a row in A3,
and de�ne δ =

∑s
i=1 ai∂i. Then 0 = aTX1 = [δ∂1f, . . . , δ∂sf ], i.e. 0 = ∂iδf =∑s+q

j=1 xs+j∂iδgj for all i ≤ s. This implies δgj = 0 for all j, and therefore, δf = 0.
Since annR(f)1 = 0, it follows that A3 = 0.

Next we investigate A4X3 = (A1X2)
T. We will use induction to prove that

both A1 and A4 are identity matrices, up to a scalar. Let aij = (A4)ij for all
1 ≤ i, j ≤ s+ q and bij = (A1)ij for all 1 ≤ i, j ≤ s. Then

(A4X3)ij =

s+q∑
k=1

(A4)ik(X3)kj =

s+q∑
k=1

aikhj+k−1,

and similarly, (A1X2)ji =
∑s

k=1 bjkhi+k−1. Thus A4X3 = (A1X2)
T is equivalent

to the following set of equations;
s+q∑
k=1

aikhj+k−1 =
s∑

k=1

bjkhi+k−1 for all 1 ≤ i ≤ s+ q and 1 ≤ j ≤ s. (∗1)

Let c = a11. Consider �rst the equation
∑s+q

k=1 a1khk =
∑s

k=1 b1khk, which we
get from (∗1) by letting i = j = 1. Since the non-zero hk's involved are linearly
independent, it follows that a1k = 0 for all k > s. Next put i = 1 into (∗1) to get∑s+q

k=1 a1khj+k−1 =
∑s

k=1 bjkhk. If a1k = 0 for all k ≥ s− j + 3, then this equation
implies as−j+2 = 0. By induction on j, a1k = 0 for all k > 1. Hence (∗1) with
j = 1 reduces to a11hj =

∑s
k=1 bjkhk = bj,s−1hs−1 + bjshs for all j. This implies

that bjk = cδjk for k = s− 1 and k = s. The symbol δjk is de�ned by δjj = 1 for
all j, and δjk = 0 for all j 6= k.

Now assume for some 2 ≤ i ≤ s + q, that bjk = cδjk for all 1 ≤ j ≤ s and
k > s − i. Consider the right-hand side of (∗1). If k < s − i, then hi+k−1 = 0.
When k > s − i, all bjk are zero by the induction hypothesis, except bjj = c.
Thus∑s

k=1 bjkhi+k−1 consists of at most two terms, bj,s−ihs−1 (k = s− i, requires
i < s) and chi+j−1 (k = j, requires s− i < j ≤ s). Hence if j = 1 and i ≥ s, then
(∗1) becomes ∑s+q

k=1 aikhk = chi. Since hs−1, . . . , hs+q are linearly independent, it
follows that aik = cδik for all k ≥ s and b1,s−i = ai,s−1.

Assume for some 2 ≤ j ≤ s that we know aik = cδik for all k > s − j + 1.
Then the left-hand side of (∗1) consist of at most three terms, corresponding to
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k = s− j, k = s− j + 1 and k = i > s− j + 1. Hence (∗1) reduces to

ai,s−jhs−1

(j < s)

+ ai,s−j+1hs + chi+j−1

(i > s− j + 1)

= bj,s−ihs−1

(i < s)

+ chi+j−1.

(i > s− j)

We have written under each term what it requires. The two terms chi+j−1 cancel
each other, except when i = s − j + 1. It follows that ai,s−j+1 = cδi,s−j+1 and
bj,s−i = ai,s−j. By induction on j, aik = cδik for all k ≥ 1, and bj,s−i = ai,s−j =

cδj,s−i for all j ≥ 1. By induction on i, bjk = cδjk for all 1 ≤ j, k ≤ s, and
aik = cδik for all 1 ≤ i, k ≤ s+ q. This means that A1 = cI and A4 = cI.

Finally, to �nish the proof, we need to show that A2X3 is symmetric if and
only if A2 ∈ 〈B′

0, . . . , B
′
q〉. Let aij = (A2)ij for all 1 ≤ i ≤ s and 1 ≤ j ≤ s + q,

and let aij = 0 for j ≤ 0. A2X3 is symmetric if and only if
s+q∑
k=1

aikhj+k−1 =

s+q∑
k=1

ajkhi+k−1 for all 1 ≤ j < i ≤ s. (∗2)

Assume for some 2 ≤ i ≤ s that a1k = 0 for all k > s + q + 2− i. Equation (∗2)
with j = 1 says that ∑s+q

k=1 aikhk =
∑s+q

k=1 a1khi+k−1. Since hk = 0 for k < s − 1

and hs−1, . . . , hs+q+1 are linearly independent, it follows that a1,s+q+2−i = 0 and
aik = a1,k−i+1 for all k = s − 1, . . . , s + q. By induction on i, a1k = 0 for all
k ≥ q + 2 and aik = a1,k−i+1 for all (i, k) ∈ {2, . . . , s} × {s− 1, . . . , s+ q}.

Assume for some 2 ≤ α < s that

aij = a1,j−i+1 for all pairs {(i, j) ∣∣ i < α or j > s− α
}
. (∗3)

This is true for α = 2. For some α < β ≤ s assume in addition that

aij = a1,j−i+1 for all pairs{
(i, j)

∣∣ (i ≤ β − 2 and j = s− α) or (i = α and j ≥ s− β + 2)
}
,

(∗4)

and also that
aβ−1,s−α = aα,s−β+1. (∗5)

These assumptions hold for β = α + 1. For all k ≥ s − β + 2 it follows in
particular that aβ,k−α+β = a1,k−α+1 = aαk by putting (i, j) = (β, k − α + β)

in (∗3) and (i, j) = (α, k) in (∗4). Therefore, any term on the left-hand side
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of ∑s+q
k=1 aαkhβ+k−1 =

∑s+q
k=1 aβkhα+k−1 with s − β + 2 ≤ k ≤ s + q cancel the

corresponding term on the right-hand side. In addition, we already know that
any term on the right-hand side with k ≥ q + 2 are zero. Hence the equation
reduces to

aα,s−βhs−1 + aα,s−β+1hs = aβ,s−αhs−1 + aβ,s−α+1hs.

This implies that aβ,s−α = aα,s−β and aα,s−β+1 = aβ,s−α+1. And because
aβ−1,s−α = aα,s−β+1 by (∗5) and aβ,s−α+1 = a1,s−α−β+2 by (∗3), it follows that
aβ−1,s−α = a1,s−α−β+2. These equations are exactly what we need to proceed
with induction on β. This induction ends after β = s, proving (∗4) and (∗5) with
β = s+1. In order to continue with induction on α, we need (∗3) with α 7→ α+1.
Now (∗4) with β = s+1 contains all these equations, except as,s−α = a1,1−α. But
as,s−α = aα0 by (∗5) with β = s + 1, implying as,s−α = aα0 = 0 = a1,1−α. Hence
we may do induction on α, �nally proving (∗3) with α = s. Since α1k = 0

for all k ≤ 0 and all k ≥ q + 2, this gives us exactly what we wanted, namely
A2 =

∑q
k=0 a1,k+1B

′
k.

The converse statement, that A2 ∈ 〈B′
0, . . . , B

′
q〉 implies that A2X3 is sym-

metric, follows easily from equation (∗2). This completes the proof. �

Remark 4.18: Proposition 4.17 involves polynomials g1, . . . , gs+q ∈ Sd−1 that
satisfy ∂i+1gj = ∂igj+1 for all 1 ≤ i < s and 1 ≤ j < s + q. Using the {gi}
we de�ned h1, . . . , hr−1 ∈ Sd−2 by hi+j−1 = ∂igj. This actually implies that
∂i+1hj = ∂ihj+1 for all 1 ≤ i < s and 1 ≤ j < r − 1. Indeed, if i < s and
j < r − 1, then we may choose k < s+ q such that hj = ∂j−k+1gk. Hence

∂i+1hj = ∂i+1∂j−k+1gk = ∂i∂j−k+1gk+1 = ∂ihj+1.

Assume conversely that we have polynomials h1, . . . , hr−1 ∈ Sd−2 satisfying
∂i+1hj = ∂ihj+1 for all 1 ≤ i < s and 1 ≤ j < r − 1. For some k ∈ {1, . . . , s+ q},
consider {hk, . . . , hk+r−1}. Since this set satis�es ∂ihk−1+j = ∂jhk−1+i for all
1 ≤ i, j ≤ r, it follows that there exists gk such that ∂igk = hk−1+i for all
1 ≤ i ≤ r. This de�nes g1, . . . , gs+q ∈ Sd−1, and ∂i+1gj = hi+j = ∂igj+1.

Remark 4.19: Let fij = (A2X3)ij =
∑s+q

k=1 aikhj+k−1 for 1 ≤ i, j ≤ s. A2X3

is symmetric if and only if it is a Hankel matrix, i.e. fi+1,j = fi,j+1 for all
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1 ≤ i, j < s. One implication is obvious. To prove the other, assume that
A2X3 is symmetric. Note that ∂i+1hj = ∂ihj+1 by remark 4.18. Therefore,
∂k+1fij = ∂kfi,j+1 for all 1 ≤ i ≤ s and all 1 ≤ j, k < s. Assume for some
2 ≤ k ≤ 2s − 2 that fi+1,j = fi,j+1 for all 1 ≤ i, j < s such that i + j = k. The
following now follows for all 1 ≤ i < s and 1 < j < s such that i+ j = k + 1.

If l < s, then ∂lfi+1,j = ∂l+1fi+1,j−1 = ∂l+1fij = ∂lfi,j+1. Similarly, if l > 1,
then ∂lfi+1,j = ∂l−1fi+1,j+1 = ∂l−1fj+1,i+1 = ∂lfj+1,i = ∂lfi,j+1. Here we also used
that A2X3 is symmetric. Together this shows that ∂lfi+1,j = ∂lfi,j+1 for all l, and
therefore fi+1,j = fi,j+1. We have assumed j > 1 here, thus we still need to prove
that fk+1,1 = fk,2 when k < s. But this follows by the symmetry of A2X3, which
implies fk+1,1 = f1,k+1. By induction on k, A2X3 is Hankel.
Remark 4.20: The assumption in proposition 4.17 that ∂i+1gj = ∂igj+1 for all
1 ≤ i < s and 1 ≤ j < s+ q ensures that Bk ∈Mf for all k = 0, . . . , q. The extra
restrictions on the hi's guarantee that Mf = 〈I, B0, . . . , Bq〉. There are other
restrictions we could impose on {hi} to achieve the same ends, but at least q+3 of
the hi's must be linearly independent. To prove this, let ν = dimk〈h1, . . . , hr−1〉.
Let us count the number of linearly independent equations that the symmetry of
A2X3 imposes on the entries of A2. Let fij = (A2X3)ij. By remark 4.19 we may
use the equivalent statement that A2X3 is a Hankel matrix.

For every i = 1, . . . , s − 1, the equation fi2 = fi+1,1 reduces to at most ν
equations over k. For every j = 3, . . . , s, the equation fij = fi+1,j−1 gives at
most one more equation, namely ∂d−2

s fij = ∂d−2
s fi+1,j−1. All others are covered

by fi,j−1 = fi+1,j−2 since ∂kfij = ∂k+1fi,j−1 for all k < s. Thus we get at most
(s−1)(ν+s−2) linearly independent equations. In order to make dimkMf = q+2,
we need to reduce the s(s+ q) entries of A2 to q+1. We can only hope to achieve
this if

(s− 1)(ν + s− 2) ≥ s(s+ q)− (q + 1) = (s− 1)(s+ q + 1).

Since s ≥ 2, this is equivalent to ν ≥ q + 3.
When using proposition 4.17, we need to construct the gi's involved. By

remark 4.18, the condition on the gi's is equivalent to the corresponding condition
on the hi's. Since the hi's have extra restrictions, it is easier to work directly with
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them. The next lemma tells us how the {hi} can and must be chosen.
Lemma 4.21: Let f ∈ Rd. De�ne a homogeneous ideal J ⊆ R by

J = I2

(
∂1 . . . ∂r−1

∂2 . . . ∂r

)
=
({
∂i∂j+1 − ∂i+1∂j

∣∣∣ i, j = 1, . . . , r − 1
})
.

Then the following statements are equivalent.

(a) J ⊆ annR f .

(b) There exists g ∈ Rd such that ∂ig = ∂i+1f for all i = 1, . . . , r − 1.
This g is unique modulo 〈x(d)

r 〉.

(c) There exists h ∈ Rd such that ∂ih = ∂i−1f for all i = 2, . . . , r.
This h is unique modulo 〈x(d)

1 〉.

(d) f is a linear combination of the terms in (x1 + tx2 + · · ·+ tr−1xr)
(d).

(e) f is a linear combination of the terms in (xr + txr−1 + · · ·+ tr−1x1)
(d).

Furthermore, if n ≥ 2, then f1, . . . , fn ∈ Rd satisfy ∂ifj+1 = ∂i+1fj for all 1 ≤
i < s and 1 ≤ j < n if and only if f1, . . . , fn are n consecutive terms in ct(xr +

txr−1 + · · ·+ tr−1x1)
(d) for some ct ∈ k[t].

Remark 4.22: For any α = (α1, . . . , αr) ∈ Nr
0 de�ne σ(α) =

∑r
i=1(r − i)αi. Let

|α| =
∑r

i=1 αi and m = max{σ(α) |
∑r

i=1 αi = d} = (r − 1)d, and de�ne
gdk =

∑
|α|=d
σ(α)=k

x(α) ∈ Rd

for all 0 ≤ k ≤ m. Clearly, gd0, . . . , gdm are linearly independent, and(
xr + txr−1 + · · ·+ tr−1x1

)(d)
=

m∑
k=0

tkgdk.

Thus {gdk} are the terms we speak of in lemma 4.21e. The lemma implies that
J⊥d = {f ∈ Rd | J ⊆ annR f} = 〈gd0, . . . , gdm〉, hence dimk(R/J)d = m+ 1 for all
d ≥ 0.

Proof of lemma 4.21: The implications (b) ⇒ (a), (c) ⇒ (a) and (d) ⇒ (a) are
all obvious. Furthermore, (d) ⇔ (e), because the two expansions have the same
terms, just in opposite order, since(

xr + txr−1 + · · ·+ tr−1x1

)(d)
= t(r−1)d

(
x1 + 1

t
x2 + · · ·+ (1

t
)r−1xr

)(d)
.
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To prove (a) ⇒ (b), assume that J ⊆ annR f . For any i = 1, . . . , r let ei ∈ kr
be the ith unit vector, i.e. (ei)j = 1 if j = i, and (ei)j = 0 otherwise. In particular,
α = (α1, . . . , αr) =

∑r
i=1 αiei. For any α such that |α| = d, let

gα =

∂α−ei+ei+1(f), if αi > 0 for some i < r,
0, if αr = d.

This is well de�ned since J ⊆ annR f . Note that gα is an element of k. De�ne
a polynomial g ∈ Rd by g =

∑
|α|=d gαx

(α). It follows that ∂ig = ∂i+1f for all
i < r. Indeed, for all |α| = d − 1 we get ∂α∂ig = gα+ei

= ∂α+ei+1f = ∂α∂i+1f .
Obviously, if both g and g′ satisfy (b), then ∂ig′ = ∂i+1f = ∂ig for all i < r, hence
g′ − g ∈ 〈x(d)

r 〉. This proves (a) ⇒ (b). Moreover, we obtain a proof of (a) ⇒ (c)
by renaming the variables (x1, . . . , xr) 7→ (xr, . . . , x1).

Note that (a) ⇒ (e) follows from (a) ⇒ (b) and the last statement. Thus we
are done when we prove the last statement. One implication is obvious. To prove
the other, let n ≥ 2 and assume that f1, . . . , fn ∈ Rd satisfy ∂ifj+1 = ∂i+1fj for
all 1 ≤ i < s and 1 ≤ j < n. In particular, J ⊆ annR(fi) for all i. From what
we have already proven, we may for k > n inductively choose fk ∈ Rd such that
∂ifj+1 = ∂i+1fj for all i < r and ∂dr (fk) = 0, and similarly for k ≤ 0, except then
∂d1(fk) = 0. For all α = (α1, . . . αr), αi ≥ 0, let σ(α) =

∑r
i=1(r − i)αi. Since

∂i(fk) = ∂r(fk−(r−i)), it follows that ∂α(fk) = ∂dr (fk−σ(α)) for all k. Obviously,
max{σ(α) |

∑r
i=1 αi = N} = (r−1) ·N . If k > n+(r−1)N , then for all |α| ≥ N

we have ∂α(fk) = ∂dr (fk−σ(α)) = 0, hence fk = 0. Similarly, fk = 0 for all k � 0.
Pick a, b ≥ 0 such that f−a, fb 6= 0 and f−a−1 = fb+1 = 0. (In fact, f−a = c1x

(d)
r

and fb = c2x
(d)
1 .) De�ne ft =

∑a+b
k=0 t

kfk−a ∈ Rd[t]. It follows for all i < r that

(∂i − t∂i+1)(ft) = ∂ift − t∂i+1ft =
a+b∑
k=0

tk∂ifk−a − t
a+b∑
k=0

tk∂i+1fk−a

=
∑
k∈Z

tk∂ifk−a −
∑
k∈Z

tk+1∂ifk−a+1 = 0.

Thus annR(t)(ft) ⊇ (∂1 − t∂2, . . . , ∂r−1 − t∂r, ∂
d+1
r ). Note that

annR(t)

(
(xr + · · ·+ tr−1x1)

(d)
)

=
(
∂1 − t∂2, . . . , ∂r−1 − t∂r, ∂

d+1
r

)
.

By lemma 1.4 there exists ct ∈ k(t) such that ft = ct(xr + · · ·+ tr−1x1)
(d). Since

ft ∈ Rd[t], it follows that ct = ∂drft ∈ k[t], �nishing the proof. �
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Remark 4.23: By remark 4.18 and lemma 4.21, the polynomials h1, . . . , hr−1

in proposition 4.17 must be r − 1 consecutive terms in ct
(∑s−1

k=0 t
kxs−k

)
(d−2) for

some ct ∈ k[t]. We also need hi = 0 for all i < s− 1 and hs−1, . . . , hs+q+1 linearly
independent. Since there are (d − 2)(s − 1) + 1 linearly independent terms in(∑s−1

k=0 t
kxs−k

)
(d−2), those conditions can be met if and only if

q + 2 ≤ (d− 2)(s− 1).

In particular, it is possible to construct such examples with q = 1 as long
as (d − 2)(s − 1) ≥ 3, i.e. s ≥ 4 when d = 3, s ≥ 3 when d = 4, and s ≥ 2

when d ≥ 5. This is what we did in examples 4.15 and 4.16. We may now also
construct examples having q > 1.
Remark 4.24: We started this chapter with the following question 4.1. Given
a polynomial f ∈ Rd, d ≥ 3, is it possible to �nd ft ∈ Rd[t1, . . . , tn] such that
f0 = f and ft splits regularly dimkMf − 1 times over k(t1, . . . , tn)? When r ≤ 4

we proved in theorem 4.9 that this is always possible. When r ≥ 5 and d ≥ 5, or
r ≥ 7 and d = 4, or r ≥ 9 and d = 3, we have found examples that this is not
always possible. This leaves only the six pairs

(r, d) ∈
{
(5, 3), (6, 3), (7, 3), (8, 3), (5, 4), (6, 4)

}
.

We end this chapter with the following example. It is basically the �rst
degenerate splitting example we ever considered, and theorem 4.5 was formulated
and proven with this example as a model.
Example 4.25: Let A ∈ Matk(r, r) be the fundamental Jordan block, i.e.

Aij =

1, if j = i+ 1,
0, otherwise.

Let the ideal J ⊆ R be de�ned as in lemma 4.21, and let

I = I2(∂ A∂) = I2
(
∂1 ∂2 ... ∂r−1 ∂r

∂2 ∂3 ... ∂r 0

)
= J + ∂r · (∂2, . . . ∂r).

For all d ≥ 0 and k = 0, . . . , (r − 1)d, de�ne hdk ∈ Rd by
(
x1 + tx2 + · · ·+ tr−1xr

)(d)
=

(r−1)d∑
k=0

tkhdk. (4.2)
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If we let τ(α) =
∑r

i=1(i− 1)αi, then this simply means that

hdk =
∑
|α|=d
τ(α)=k

x(α).

Note that ∂ihdk = hd−1,k−i+1 for all i = 1, . . . , r. Let f ∈ Rd. It follows from
lemma 4.21 that I ⊆ annR f if and only if f ∈ 〈hd0, . . . , hd,r−1〉. This implies that

I⊥d =
{
f ∈ Rd

∣∣ I ⊆ annR f
}

= 〈hd0, . . . , hd,r−1〉,

and therefore dimk(R/I)d = r for all d > 0. Note that ∂r(hdk) = 0 for all k < r−1,
thus annR(f)1 6= 0 if f ∈ 〈hd0, . . . , hd,r−2〉.

Let d ≥ 3 and f = hd,r−1. Clearly annR(f)1 = 0, hence proposition 2.21
implies that Mf is a commutative k-algebra. Since A ∈Mf , it follows by lemma
4.8c that Mf = k[A]. Let us prove that

annR f = I + ∂d−1
1 · (∂1, . . . , ∂r−1). (4.3)

Since ∂ihdk = hd−1,k−i+1, it follows that ∂d−2
1 ∂if = h1,r−i = xr+1−i for all i =

1, . . . , r. These are linearly independent, and it follows that {∂k1∂if}ri=1 are
linearly independent for all 0 ≤ k ≤ d − 2. Hence for all 0 < e < d we
get dimk(R/ annR f)e ≥ r = dimk(R/I)e. Since I ⊆ annR f , it follows that
annR(f)e = Ie for all e < d and H(R/ annR f) = (1, r, r, . . . , r, 1). In degree d
annR f needs r − 1 extra generators. Since ∂d−1

1 ∂if = 0 for all i < r, equation
(4.3) follows. Note that annR f is generated in degree two and d only.

Equation (4.2) can be used to de�ne a degenerate splitting of length r of f .
Indeed, substituting k + 1 for r, the equation may be rewritten as

hdk +
∑
i>k

ti−khdi = t−k
((
x1 + tx2 + · · ·+ tkxk+1

)(d) −∑
i<k

tihdi

)
.

Since hdi ∈ k[x1, . . . , xk]
DP for all i < k, we may proceed carefully by induction

and prove that there exists a polynomial h′t ∈ k[t1, . . . , tk][x1, . . . , xk+1]
DP such

that h′0 = hdk and h′t splits k times inside k(t1, . . . , tk)[x1, . . . , xk+1]
DP . In par-

ticular, there exists ft ∈ Rd[t1, . . . , tr−1] such that f0 = f and ft splits r − 1

times over k(t1, . . . , tr−1), which is also what theorem 4.5 guarantees. In fact, the
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degenerate splitting ft we get from equation (4.2) is essentially the same as the
one theorem 4.5 gives us, since Ak∂f = ∂hd,r−k−1 for all k.

Note that ft ∼ x(d)
1 + · · ·+ x(d)

r , thus this example is an extremal case. Other
examples of f ∈ Rd such that Mf = k[A] and A is in Jordan normal form can be
constructed from this one.



Chapter 5

Generalizations

A central object in this paper has been Mf , the matrix algebra that we have
associated to any f ∈ Rd. In this chapter we consider how to generalize the con-
struction of Mf and some of the results in section 2.2. In fact, we will de�ne two
di�erent generalizations of Mf , and both give is new algebras. Indeed, we show
that both M̂ f =

(
⊕d−3
e=0 M

f
e

)
⊕
(
⊕e≥d−2 MatRe(r, r)

), where M f
e is de�ned below,

and Mf,D = {A ∈ Matk(N,N) | I2(D AD) ⊆ annR f} are (non-commutative)
k-algebras, see propositions 5.5 and 5.11.

We start by de�ning a k-vector space M f
e that generalizes Mf in the sense

that M f
0 = Mf .

De�nition 5.1: Let d ≥ 0 and f ∈ Rd. For all e ≥ 0 de�ne M f
e by

M f
e = {A ∈ MatRe(r, r) | I2(∂ A∂) ⊆ annR f}.

Lemmas 2.12 and 2.13 were important tools in the study ofMf . They provided
a connection between Mf and polynomials g ∈ Rd that we later used to �nd reg-
ular and degenerate splittings of f . Lemma 5.2 updates both lemmas, connecting
M f

e to polynomials g ∈ Rd−e that are related to f .
Lemma 5.2: Suppose d ≥ e ≥ 0 and f ∈ Rd.

(a) Let A ∈ MatRe(r, r). The following are equivalent.

(i) I2(∂ A∂) ⊆ annR f .

(ii) A∂∂Tf is a symmetric matrix.

107
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(iii) There exists g ∈ Rd−e such that ∂g = A∂f .

Furthermore, this g is unique if e < d.

(b) Let g ∈ Rd−e. The following are equivalent.

(i) There exists A ∈ MatRe(r, r) such that ∂g = A∂f .

(ii) R1(g) ⊆ Re+1(f).

(iii) annR(f)d−e−1 ⊆ annR(g)d−e−1.

Proof: The proof of the equivalences in (a) is an exact copy of the proof of lemma
2.13, and the uniqueness of g is obvious. To prove (b), the existence of an A such
that ∂g = A∂f simply means that R1(g) ⊆ Re+1(f). By duality this is equivalent
to annR(g)d−e−1 = R1(g)

⊥ ⊇ Re+1(f)⊥ = annR(f)d−e−1. �

De�nition 5.3: If d > e ≥ 0 and f ∈ Rd, let

γfe : M f
e → Rd−e

be the k-linear map de�ned by sending a matrix A ∈M f
e to the unique polynomial

g ∈ Rd−e satisfying ∂g = A∂f , cf. lemma 5.2a.

γfe is indeed a map of k-vector spaces since ∂g = A∂f is k-linear in both
A and g. In chapters 3 and 4 we used elements in the image of γf = γf0 to
produce regular and degenerate splittings of f . Even though we do not �nd such
an explicit use of the polynomials in im γfe when e > 0, we are still interested in
its image. We start by calculating the kernel and image of γfe .

Lemma 5.4: Suppose d > e ≥ 0 and f ∈ Rd. Then

im γfe = (mR annR f)⊥d−e,

ker γfe = {A ∈ MatRe(r, r) |A∂f = 0}.

Moreover, if we let β1j be the minimal number of generators of annR(f) of degree
j, then

dimk im γfe = dimk(R/ ann f)d−e + β1,d−e,

dimk ker γfe = re ·
(
r−1+e
e+1

)
+ r · dimk ann(f)e+1.
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Proof: By lemma 5.2b, im γfe = {g ∈ Rd−e | annR(f)d−e−1 ⊆ annR(g)d−e−1}.
Since annR g is determined by its degree d − e piece by lemma 1.2a, it follows
that im γfe = (R1 · annR(f)d−e−1)

⊥ = (mR annR f)⊥d−e. Evidently, R1 annR fd−e−1

is a k-vector subspace of annR(f)d−e of codimension β1,d−e. Hence

dimk im γfe = codimk(R1 · annR(f)d−e−1) = dimk(R/ ann f)d−e + β1,d−e.

Since ∂γfe (A) = A∂f , we get ker γfe = {A ∈ MatRe(r, r) |A∂f = 0}. If we let
Ve = {D = [D1 . . . Dr]

T ∈ Rr
e |
∑

iDi∂i ∈ ann(f)e+1}, we see that dimk ker γfe =

r · dimk Ve. We note that Ve is the kernel of the map Rr
e → Rd−e−1 given by

D 7→
∑

iDi∂i(f). This map is the composition Rr
e → Re+1 → Rd−e−1, and its

image is Re+1(f) since Rr
e → Re+1 is surjective. It follows that

dimk Ve = r ·
(
r−1+e
e

)
− dimk Re+1(f) = e ·

(
r−1+e
e+1

)
+ dimk ann(f)e+1. �

The �rst signi�cant property that Mf possesses is that it is closed under
matrix multiplication when d ≥ 3. Our de�nition ofM f

e allows us to transfer this
to M f = ⊕e≥0M

f
e , with a similar restriction. The following proposition should

therefore come as no surprise.
Proposition 5.5: Suppose a+ b ≤ d− 3. Matrix multiplication de�nes a map

M f
a ×M f

b →M f
a+b,

and all commutators belong to ker γfa+b. In particular, the augmentation

M̂ f =

(
d−3
⊕
e=0

M f
e

)
⊕
(

⊕
e≥d−2

MatRe(r, r)

)
is a (non-commutative) graded k-algebra with unity.

Proof: The proof of proposition 2.21 generalizes immediately. �

Since M f
e = MatRe(r, r) for all e ≥ d − 1, we see that M̂ f di�ers from M f

only in degree d − 2. It is interesting that the image of the multiplication map
M f

a ×M f
b → MatRa+b

(r, r) is generally not contained in M f
a+b if a + b = d − 2.

An easy example is r = 2 and f = x(2)
1 + x(2)

2 ∈ R2. Then ∂∂Tf = I, thus M f
0

consists of all symmetric matrices. But the product of two symmetric matrices
is not symmetric, unless they commute.
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We now want to study im γfe in more detail. To help us do that we de�ne the
following graded R-modules.
De�nition 5.6: If f ∈ Rd, let F f = ⊕e F

f
e and Gf = ⊕eG

f
e where

F f
e = {g ∈ Rd−e | ann(f)k ⊆ ann(g)k ∀ k ≤ d− e},

Gf
e = {g ∈ Rd−e | ann(f)k ⊆ ann(g)k ∀ k < d− e}.

In the following we will often drop the superscripts (f ). Obviously, Gd = k

and Ge = Fe = 0 for all e > d. Note that Ge = {g ∈ Rd−e | annR(f)d−e−1 ⊆
annR(g)d−e−1} for all e by lemma 1.2a. In particular, lemma 5.2b implies that

Ge = im γfe for all 0 ≤ e < d.

The next lemma summarizes some nice properties of F and G.
Lemma 5.7: Suppose f ∈ Rd. Then the following are true.

(a) G = {g ∈ R | ∂ig ∈ F ∀ i} ⊇ F = R(f),

(b) dimk(G/F )e = β1,d−e for all e, and

(c) G∼= Homk(R/mR annR f, k).

In particular, G is a graded canonical module for R/mR annR f , and we can get a
free resolution of G (as a graded R-module) by computing one for R/mR annR f

and dualizing.

Proof: Recall that Re(f)⊥ = annR(f)d−e by lemma 1.2b. Dualizing this equation
gives Re(f) = {g ∈ Rd−e |Dg = 0 ∀ D ∈ annR(f)d−e}, which equals Fe by
lemma 1.2a. Combining this with lemma 5.2b, we get Ge = {g ∈ Rd−e |R1(g) ⊆
Re+1(f) = Fe+1}. This proves (a).

(b) follows from lemma 5.4 if 0 ≤ e < d, and it is trivial otherwise.
Before we prove (c), we want to say something about dualizing F . Note that

Re = Homk(Re, k) since R by de�nition is the graded dual of R. This implies
Re = Homk(Re, k). Since Fd−e ⊆ Re, the map Re → Homk(Fd−e, k) is clearly
surjective, and its kernel is {D ∈ Re |D(g) = 0 ∀ g ∈ Fd−e} = F⊥

d−e = annR(f)e.
Thus Homk(Fd−e, k)∼=(R/ annR f)e, and therefore Homk(F, k)∼=R/ annR f . This
explains why F ∗∼=F , which is the Gorenstein property of F .



5 Generalizations 111

Turning to G, the map Re → Homk(Gd−e, k) is surjective as above. Its ker-
nel is {D ∈ Re |D(g) = 0 ∀ g ∈ Gd−e} = G⊥

d−e, and G⊥
d−e = (mR annR f)e by

lemma 5.4. This shows that Homk(G, k)∼=R/mR annR f , proving (c). The last
statements follow since R/mR annR f is Artinian. �

Since F = R(f), multiplication in R induces a ring structure on F given by
D(f) ? E(f) = DE(f). For all a, b such that a + b 6= d, we can extend ? to a
bilinear map Fa × Gb → Ga+b by D(f) ? g = D(g). This is well de�ned because
a 6= d − b implies annR(f)a ⊆ annR(g)a. The equation D(f) ? g = D(g) is not
well de�ned when a = d− b and g ∈ Gb \ Fb, thus G is not quite an F -module.

In order to extend the multiplication to all of G, we need an even larger
restriction on the degrees, as seen in the following proposition. Note that M f

contains R · I = {D · I |D ∈ R}, the subalgebra consisting of all multiples of the
identity matrix. Clearly, if D ∈ Re, then γfe (D · I) = D(f). Thus γfe : M f

e → Ge

maps Re · I onto Fe.
Proposition 5.8: γ = ⊕e γe induces a multiplication ? : Ga × Gb → Ga+b for
a+ b ≤ d− 3 that is associative, commutative and k-bilinear. f ∈ G0 acts as the
identity. Furthermore, D(f) ? h = D(h) for all D ∈ Ra and h ∈ Gb.

Proof: Given g ∈ Ga and h ∈ Gb, we can �nd A ∈ Ma and B ∈ Mb such that
g = γa(A) and h = γb(B) since Ge = im γe. Since a + b ≤ d − 3 it follows from
proposition 5.5 that AB ∈Ma+b and BA∂f = AB∂f . We de�ne g ? h to be

g ? h = γa+b(AB) ∈ Ga+b.

First we prove that this is well de�ned. Assume that γa(A′) = γa(A) and
γb(B

′) = γb(B). Then A′∂f = A∂f and B′∂f = B∂f , and therefore

∂
(
γa+b(A

′B′)
)

= A′B′∂f = A′B∂f

= BA′∂f = BA∂f = AB∂f = ∂
(
γa+b(AB)

)
.

Hence γa+b(A′B′) = γa+b(AB).
Now, AB∂f = BA∂f is equivalent to γa+b(AB) = γa+b(BA), which implies

g?h = h?g. Associativity follows from associativity of matrix multiplication, and
the bilinearity is obvious. Furthermore, from f = γ0(I) it follows that f ? g = g



112 5 Generalizations

for all g ∈ Ga, a ≤ d − 3. Finally, if D ∈ Ra, then D(f) = γa(D · I). Hence
D(f) ? h = γa(D · I) ? γb(B) = γa+b(D ·B) = D(h). �

The last statement, D(f) ? h = D(h), says that ? restricts to the �module�
action Fa ×Gb → Ga+b, but with the stronger requirement a+ b ≤ d− 3. Let us
extend the multiplication ? : Ga×Gb → Ga+b by zero if a+ b ≥ d−2. We do this
to get an algebra, but note that ? no longer restricts to D(f) ? E(f) = DE(f)

on F when a+ b ≥ d− 2.

Corollary 5.9: The truncation G̃ = ⊕d−3
e=0 Ge is a commutative k-algebra.

Proof: This is immediate from proposition 5.8. �

Remark 5.10: Proposition 5.8 implies in particular that Ge is a module over
G0 for all e ≤ d − 3. We �rst discovered this the following way. Let N =(
r+e
e+1

), and �x a basis {D1, . . . , DN} be for Re+1. De�ne D = [D1, · · · , DN ]T and
M ′

e = {A ∈ Matk(r,N) | I2(∂ AD) ⊆ ann f}. Just slightly modifying ideas in this
chapter, it is easy to see that there is a surjective mapM ′

e → Ge, and that matrix
multiplication M ′

0×M ′
e →M ′

e induces the same module action G0×Ge → Ge as
above.

There are other ways, in addition toM f , to generalize the construction ofMf .
We feel the following is worth mentioning. Fix some e ≥ 1, and letN = dimk Re =(
r−1+e
e

). Choose a basis D = {D1, . . . , DN} for Re, and let D = [D1 . . . DN ]T. For
any d ≥ 0 and f ∈ Rd, we de�ne

Mf,D = {A ∈ Matk(N,N) | I2(D AD) ⊆ annR f}.

Mf,D is clearly a k-vector space containing the identity matrix. We note that
Mf,∂ = Mf , thus this is another generalization of Mf . However, one of the basic
lemmas we used to study Mf , lemma 2.13, does not generalize to Mf,D when
e ≥ 2. That is, I2(D AD) ⊆ ann f does not imply that there exists g ∈ Rd such
that Dg = ADf . The converse implication is obviously still true. On the other
hand, lemma 2.12 generalizes, i.e. ann(f)d−e ⊆ ann(g)d−e if and only if there
exists A ∈ Matk(N,N) such that Dg = ADf . But the reason for including Mf,D

here, is that proposition 2.21 generalizes.
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Proposition 5.11: Suppose e ≥ 1 and d ≥ 3e. Let f ∈ Rd. Then Mf,D is
closed under matrix multiplication. If furthermore ann(f)e = 0, then Mf,D is a
commutative k-algebra.

Proof: Pick A,B ∈Mf,D. Note that for all i, j, k the 3× 3 minor∣∣∣∣∣∣∣∣
Di (AD)i (BD)i

Dj (AD)j (BD)j

Dk (AD)k (BD)k

∣∣∣∣∣∣∣∣
belongs to ann(f)3e by expansion along the third column. Expanding along the
third row proves that

Dk ·

∣∣∣∣∣(AD)i (BD)i

(AD)j (BD)j

∣∣∣∣∣ ∈ ann(f)3e

for all i, j and k. Since d ≥ 3e it follows that I2(AD BD) ⊆ ann f . Hence
(AD)(BD)T(f) = ADDT(f)BT is symmetric, and therefore

ABDDT(f) = ADDT(f)BT = BDDT(f)AT = DDT(f)BTAT = DDT(f)(AB)T.

This means that AB ∈Mf,D. Moreover,

ABDDT(f) = DDT(f)BTAT = BDDT(f)AT = BADDT(f),

which implies that (AB −BA)Df = 0. If ann(f)e = 0, then AB = BA. �
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