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Introduction

The importance of a scientific theory can often be measured by its relations to other
research areas. In view of this, there is no doubt that the emerging field of tropical
geometry very much deserves its recent popularity. Tropical geometry appears in the
intersection of a varied bouquet of mathematical areas, both pure and applied. It
has provided new insight in old problems, and it stands out as a natural working
environment for new research in fields such as enumerative geometry ([13], [7], [8],
[16]), real geometry ([22]), secant varieties ([4]), statistics ([17]), mirror symmetry ([2],
[9]) and phylogenetics ([19], [18]).

The first appearance of tropical varieties came in 1971, under the name of “loga-
rithmic limit-sets” of complex algebraic varieties ([1]). The modern formulation of
this uses the concept of amoebas, introduced by Gelfand, Kapranov and Zelevinsky in
their book [2]. The amoeba of an algebraic variety in complex n-space is the image
of the variety when taking the logarithms of the absolute value of each coordinate. In
particular, the amoeba is a subset of real n-space. Letting the base of the logarithm
tend to infinity, the amoeba shrinks to its “spine”, a polyhedral complex which we now
call a tropical variety.

To avoid limits in the above construction, one can replace the ground field C by
an algebraically closed field with a non-Archimedean valuation, for example the field
of Puiseux series with complex coefficients. The topological closure of the valuation
of an algebraic variety defined over such a field is a non-Archimedean amoeba, com-
monly called the tropicalization of the original variety. This algebraic approach to
tropical varieties is used by many authors. It turns out that a tropicalized variety can
be interpreted as the Gröbner fan of a homogeneous polynomial ideal. Thus many
computations lend themselves to well-developed algebraic techniques.

An ongoing project of Mikhalkin ([12]) takes a different view on tropical varieties.
He aims to build a theory of tropical algebraic geometry completely from scratch, in
parallel to algebraic geometry.

The underlying idea motivating much of the existing tropical geometry is the fol-
lowing: Given a problem involving algebraic geometry, tropicalization might lead to an
easier problem, due to the piecewise linear nature of tropical geometry. Of course, this
simplification does not come for free: Upon solving the tropical problem, one must then
show that the result allows a “lifting” back to the algebraic setting. Understanding
such liftings is an active research area (see e.g. [10] and [20]), and there are many open
problems.
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The prime example of how this idea works - in fact, the example that really sparked
off the interest in tropical geometry - is Mikhalkin’s Correspondence Theorem ([13]).
It states that the number Ng,d of plane complex curves of genus g and degree d through
3d + g − 1 points in general position, equals the number of tropical plane curves with
similar properties. The latter can be counted through combinatorial methods, hence
the Correspondence Theorem gives a new formula for Ng,d, as an alternative to the
algorithmic solution found by Caporaso and Harris in 1998 ([3]).

While Mikhalkin’s Correspondence Theorem gave important new insight, it did not
solve any open problems of classical geometry. However, several similar correspondence
theorems have since followed, doing exactly that. We mention here the computation of
Zeuthen numbers in enumerative geometry (see [14, Remark 7.2]), and the Welschinger
invariants in real geometry ([22]), for which there were no known formulas prior to
tropical geometry.

A well known tropical geometer once described the technique of tropicalization as
“a train going from the world of algebraic geometry, to the world of tropical geometry”.
Continuing this metaphor, we suggest that there are two ways of enjoying the trip. The
first is to travel as tourists: You bring everything you need from home, but take full
advantage of the friendly environment. (Alas, the train going back has broken down,
so you have to walk all the way home, carrying your souvenirs. This, of course, refers
to the “lifting” process.)

Alternatively, you can travel light, and let yourself be swept away to explore the
new world. You might lose track from time to time, and even forget the purpose of the
whole trip. But hopefully, when eventually returning home, it is with more fundamental
knowledge than that obtained by the tourist. This is the philosophy followed in this
dissertation. In other words, instead of viewing the objects of tropical geometry solely
as the result of tropicalization, they are studied for their own sake, without concern of
liftings.

This point of view has important consequences for the mathematical methods em-
ployed. When seeing tropical varieties as tropicalizations of algebraic varieties, the
main focus lies on algebraic techniques. While this certainly has proved to be effective
in many cases, it is in some sense unsatisfactory. Whatever definition one uses of trop-
ical varieties, they turn out as polyhedral complexes in real Euclidean space. When
trying to learn their secrets, it is of great interest to see how far one can get using their
own language, which is based on real convex geometry, polytopes and combinatorics.

The starting point for much of the material in this dissertation came in 2000,
when Kapranov showed that non-Archimedean amoebas of algebraic hypersurfaces has
a simple description in terms of what we now call tropical polynomials, highlighting
the geometric aspects of tropical geometry. A tropical polynomial is a real Laurent
polynomial where the operation of addition is exchanged with taking the maximum,
and multiplication is exchanged with addition. It can be regarded as a real, convex,
piecewise-linear function with integer slopes. Kapranov showed that a subset of real
n-space is the non-Archimedean amoeba of a hypersurface if and only if it is the non-
linear locus of a tropical polynomial (see [11], and also [5]). This latter description
is what we will take as our definition of tropical hypersurfaces. It is not hard to see
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that a tropical hypersurface is a polyhedral complex of codimension one, and many
interesting geometric properties follow.

A fundamental concept of tropical geometry is the duality between the cells of the
tropical hypersurface associated to a tropical polynomial, and the elements of a certain
subdivision of the Newton polytope of the polynomial. Because of this, many aspects of
tropical hypersurfaces are best studied through the theory of convex lattice polytopes
and their subdivisions. A tropical hypersurface is smooth if the dual subdivision is
elementary (unimodular).

A sometimes confusing issue at this early stage of tropical geometry, is the lack of
uniform terminology in the existing literature, and differing definitions of basic con-
cepts. An illustrating example is the definition of the degree of a tropical hypersurface.
Let us denote by Γn

d the n-dimensional simplex in real n-space spanned by the origin
and the standard basis vectors scaled by the factor d. According to different authors,
a tropical hypersurface1 has degree d if i) the support set of the defining polynomial
is exactly the set of lattice points in Γn

d (used e.g. in [21]), ii) the convex hull of the
support set is Γn

d (used e.g. in [6] and [13]), iii) the convex hull of the support set
fits inside Γn

d , but not inside Γn
d+1

(equivalent to the definition in [15]). The defini-
tions according to i), ii) and iii) are increasingly inclusive. Hence in this case, and
several others, the preference of either definition is mostly a matter of scope, rather
than choosing among conflicting schools. Also for the papers in this dissertation, some
definitions differ slightly in generality. In particular, the varying of definition of degree
is essential for the stated results.

As a real traveler finds comfort in things and places reminding of home, it is an
unavoidable impulse for a tropical geometer to look for analogies between tropical
geometry and classical geometry. And there is indeed a lot to be found. Tropical
varieties, though different in looks, have properties which are remarkable similar to
those of algebraic varieties. Even more fascinating is the fact that these similarities
often come with a “twist”. For example, through two general points in real n-space
there is a unique tropical line. But for special pairs of points, there are infinitely many
tropical lines containing them. In these cases we say that the tropical lines form a
two-point family.

Another example of an analogy with a twist is given by Bezout’s Theorem. This
holds for tropical plane curves - but only if the definition of degree is well chosen (see
Section 4 of the first paper of this dissertation).

The main theme of this dissertation is to find tropical analogues of well known
results of classical geometry, and to prove these analogues by elementary methods.
Our arguments are geometric and combinatorial, and rarely require heavy theory. The
dissertation consists of five papers. In each of these, we study a specific subject of
tropical geometry with clear analogies to complex algebraic geometry.

The subject of the first paper is tropical elliptic plane curves. These are smooth
tropical plane curves of degree 3 and genus 1. Here we use alternative iii) above (the
least restrictive). Mimicking the setup in classical algebraic geometry, we define the

1In the following cited articles, only the case n = 2 (i.e., tropical plane curves) is considered.
However, the generalization to higher dimensions is immediate.
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Jacobian as an abelian group associated to a tropical curve. Unlike in the classical
case, the Jacobian of a tropical elliptic curve is not equal as a set to the curve itself,
but to a smaller part of it, namely the curve’s unique cycle. We show that the induced
group structure on the cycle is isomorphic to the circle group. Moreover, the group
operation has a geometric interpretation similar to the classical picture.

Moving up one step dimension-wise, papers two and three study tropical surfaces
in real three-space, and the tropical lines contained in these. The definition of degree
used here is alternative ii) above. In the first of these two papers, the emphasis is on
tropical surfaces with infinitely many tropical lines. In analogy to the classical fact
that any smooth quadric surface has two rulings of lines, we prove that for any point
on the unique compact 2-cell of a smooth tropical quadric surface, the surface contains
two tropical lines passing through the point. We also show that there exist smooth
tropical surfaces of arbitrary degree containing infinitely many tropical lines. However,
this can only happen when the lines form two-point families.

The third paper is a self-contained continuation of the previous. Here, we explain a
specific method for counting the number of tropical lines on smooth tropical surfaces of
degree at least three. We obtain an upper bound for the number of tropical lines on a
general tropical surface with a given subdivision, by counting certain subcomplexes of
the subdivision. (The concept of generality here refers to the Euclidean topology on the
parameter cone of tropical surfaces associated to a given subdivision.) If the general
surface has infinitely many tropical lines, this information can also be extracted from
the subdivision. As a concrete example, we offer a subdivision for which the associated
tropical surfaces are smooth cubics with exactly 27 tropical lines in the general case,
and always at least 27 tropical lines. We also give examples of smooth tropical surfaces
of arbitrary degree greater than three containing no tropical lines.

In the fourth paper we study transversal intersections of tropical hypersurfaces in
arbitrary dimension. If such an intersection is one-dimensional, we call it a tropical
complete intersection curve. We calculate the number of vertices (counting multipli-
cities) of such a curve, as a function of the degrees of the intersecting tropical hyper-
surfaces. If the curve is smooth and connected, this allows us to compute the curve’s
genus. The obtained formula coincides with the genus formula for complete intersection
curves in complex projective space.

The fifth paper is a short note, containing a single, surprising theorem. The starting
point is the classical Fano’s axiom of plane geometry, which states that there are no
quadrangles with the property that its three diagonal points (i.e., the intersection points
of opposite sides) are collinear. For example, this is known to hold in projective planes
over any field of characteristic different from two. In the tropical plane, however, the
situation is completely opposite: For every plane tropical quadrangle, its three diagonal
points are tropically collinear.
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The group law on a tropical elliptic curve

Magnus Dehli Vigeland∗

Abstract

In analogy with the classical group law on a plane cubic curve, we define a

group law on a smooth plane tropical cubic curve. We show that the resulting

group is isomorphic to S1.

1 Introduction

Tropical geometry is a recent, but rapidly growing field of research in mathematics,
in which one seeks to establish connections between complex algebraic geometry and
the combinatorics of certain piecewise linear objects, called tropical varieties. Such
connections has led to new insight in various areas, like enumerative geometry [3],
mirror symmetry [1] and statistics [5].

A favorite subject among many tropical geometers is the study of plane tropical
curves, and their many fascinating similarities with classical plane algebraic curves.
The purpose of this paper is to give a contribution to the list of such analogies by - in
a way resembling the classical case - defining a group law on a smooth plane tropical
cubic curve.

We define the Jacobian as an abelian group associated to a tropical curve. Unlike
the classical situation, the Jacobian of a tropical elliptic curve C is not equal as a set
to the curve itself, but to a smaller part of it, namely the curve’s unique cycle C. For
P, Q ∈ C we define dC(P, Q) to be the displacement from P to Q with respect to the
Z-metric on C (and a chosen orientation of C). This plays a crucial role in the main
results, which can be summarized as follows:

Theorem 1.1. Let C be a tropical elliptic curve, and let C be its unique cycle. Let O
be a point on C.

a) We have a bijection of sets C −→ Jac(C), given by P 7−→ P −O.

b) The induced group law on C satisfies the relation

dC(O, P + Q) = dC(O, P ) + dC(O, Q).

c) As a group, C is isomorphic to the circle group S1.

∗Department of Mathematics, University of Oslo, Norway. Email : magnusv@math.uio.no
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THE GROUP LAW ON A TROPICAL ELLIPTIC CURVE

2 Preliminaries

Let Rtr := (R,⊕,⊙) be the tropical semiring, where the binary operations are defined
by a ⊕ b := max{a, b} and a ⊙ b := a + b. The multiplicative identity element of
Rtr is 0, while there is no additive identity (since −∞ is not included as an element in
Rtr).

Remark 2.1. The operations ⊕ and ⊙ can be extended to R
n as follows:

(a1, . . . , an) ⊕ (b1, . . . , bn) := (max{a1, b1}, . . . , max{an, bn}), and

λ ⊙ (a1, . . . , an) := (λ + a1, . . . , λ + an), for λ ∈ R.

Moreover, we can define tropical projective n-space by setting P
n
tr := R

n+1
/
∼ , where

x ∼ y ⇐⇒ x = λ ⊙ y for some λ ∈ R. Note that unlike the classical situation, P
n
tr

does not have more points than R
n. For example, every equivalence class in P

n
tr has a

representative in R
n+1 with 0 as the last coordinate.

Let A ⊆ Z
n be a finite set of vectors a = (a1, . . . , an). A tropical (Laurent)

polynomial in indeterminates x1, . . . , xn, with support A, is an expression of the form

f =
⊕

a∈A

λa ⊙ xa1

1 ⊙ · · · ⊙ xan

n = max
a∈A

{. . . , λa +

n∑

i=1

aixi, . . .},

where each λa ∈ Rtr. The convex hull of A is called the Newton polytope of f and is
denoted by ∆. When in danger of ambiguity, we use indices to indicate the polynomial,
as in Af and ∆f .

Notice that as a function R
n → R, f is convex and piecewise linear.

Definition 2.2. The tropical hypersurface V (f) defined by f is the set of points in R
n

where the function f : R
n → R is not linear.

Remark 2.3. Note that if f consists of a single monomial, V (f) is the empty set.

Remark 2.4. Different tropical polynomials can define the same tropical variety. In
particular, it is easy to see that if g = f ⊙ m, where m = xayb is a tropical monomial,
then V (g) = V (f). Note that in this case Ag (resp. ∆g) is a translation of Af (resp.
∆f ) by the vector (a, b).

3 Tropical curves

We now focus our attention to tropical hypersurfaces in R
2:

Definition 3.1. Let f(x, y) be a tropical polynomial in two indeterminates. The
tropical hypersurface V (f) ⊆ R

2 is called a tropical curve in R
2.

We recall some basic properties of tropical curves. For proofs and more details, see
[6, Section 3], or [3, Sections 1-3] for a more exhaustive approach.

8



3 TROPICAL CURVES

Given a tropical polynomial f , we can associate a lattice subdivision of the Newton
polygon ∆ of f in the following way: Let ∆̂ be the convex hull of the set {(a, b, λabc)} ⊆
R

2 × R, where (a, b) runs through A. Then define Subdivf to be the image under the

projection to R
2 of the top facets of ∆̂, i.e., the facets whose outer normal unit vector

has positive last coordinate.

The subdivision Subdivf is in a natural way dual to the tropical variety V (f). In
particular, each edge of V (f) corresponds to an edge of Subdivf , and corresponding
edges are perpendicular to each other. The unbounded rays in V (f) correspond to the
edges of ∂∆. (Cf. [6, Proposition 3.5] and [3, Proposition 3.11].)

Let E be an edge of a tropical curve C = V (f), and let E∨ be the corresponding
edge in Subdivf . We define the weight of E to be the lattice length of E∨, i.e. 1 +
♯{interior lattice points of E∨}.

Lemma 3.2. For any node V of a tropical curve, the following balancing condition
holds: Let E1, . . . , En be the edges adjacent to V . For each i = 1, . . . , n let mi be the
weight of Ei, and vi the primitive integer vector pointing into Ei from V . Then

(1) m1v1 + · · ·+ mnvn = 0,

where 0 = (0, 0) ∈ R
2.

The balancing condition characterizes tropical curves: Assume C is a 1-dimen-
sional polyhedral complex in R

2, consisting of rays and line segments with rational
slopes, each assigned some positive integral weight. Then C = V (f) for some tropical
polynomial f if and only if (1) is satisfied at every vertex of C.

Next we define the degree of a tropical curve. For each d ∈ N0, let Γd be the
triangle with vertices (0, 0), (d, 0), (0, d). (When d = 0 we get the degenerated triangle
Γ0 = {(0, 0)}.)

Definition 3.3. Let C = V (f) be a tropical curve in R
2, and let ∆ be the Newton

polygon of f . If ∆ fits inside Γd, but not inside Γd−1, then C has degree d. If ∆ = Γd,
we say that C has degree d with full support.

Remark 3.4. There seems to be no clear consensus in the literature on how to define
the degree of a tropical curve. Definition 3.3 differs slightly from the ones in [6] and
[3], but serves the purpose of this paper better. In particular, as we will see in the
next section, Definition 3.3 gives room for an extended version of the tropical Bezout’s
theorem compared to that in [6].

Example 3.5. A tropical line is a tropical curve of degree 1 with full support. For
instance, if f = ax⊕by⊕c, then the tropical line L = V (f) consists of three unbounded
rays, emanating from the “center” (c − a, c − b) in the directions (−1, 0), (0,−1) and
(1, 1) respectively.

Example 3.6. If f is any monomial, then ∆ consists of a single point. Hence V (f) has
degree 0. This is appropriate since V (f) is an empty set. (Cf. Remark 2.3.)

9
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Figure 1: A tropical curve and its associated subdivision. The subdivision shows that
the curve is smooth of degree 3 and genus 1.

A vertex V of a tropical curve is called 3-valent if V has exactly 3 adjacent edges.
Furthermore, if these edges have weights m1, m2, m3 and primitive integer direction
vectors u = (u0, u1), v = (v0, v1), w = (w0, w1) respectively, we define the multiplicity
of V to be the absolute value of the number

m1m2

∣∣∣∣
u0 u1

v0 v1

∣∣∣∣ = m2m3

∣∣∣∣
v0 v1

w0 w1

∣∣∣∣ = m1m3

∣∣∣∣
w0 w1

u0 u1

∣∣∣∣ .

Definition 3.7. A tropical curve is called smooth if every vertex is 3-valent and has
multiplicity 1.

Notice that in a smooth tropical curve, every edge has weight 1.

Definition 3.8. The genus of a smooth tropical curve C = V (f) is the number of
vertices of Subdivf in the interior of the Newton polygon ∆f .

Figure 1 shows a smooth curve of degree 3 and genus 1, and its associated subdivi-
sion.

3.1 The Z-metric

Let C ⊆ R
2 be a smooth tropical curve. If E is any edge of C, we define a metric on

E called the Z-metric, in the following way. For any two points x, y ∈ E, we set their
distance in the Z-metric to be the number ‖x−y‖

‖v‖
, where ‖·‖ denotes the Euclidean

norm, and v is a primitive integral direction vector of E. In particular, if E is a
bounded edge, we define its lattice length, l(E), to be the distance (in the Z-metric)
between its endpoints. Note that if both endpoints of E have integral coordinates,
then l(E) = 1 + ♯{interior lattice points on E}.

Remark 3.9. By identifying each edge E of C with the real interval [0, l(E)] (or [0,∞)
if E is unbounded), C can be thought of as a “metric graph with possibly unbounded
edges”. This is equivalent to giving C a Z-affine structure, or tropical structure as
described e.g. in [4].

10



4 INTERSECTIONS OF TROPICAL CURVES

4 Intersections of tropical curves

We say that two tropical curves C and D intersect transversally if no vertex of C lies on
D and vice versa. In a transversal intersection we define intersection multiplicities as
follows: Let P be an intersection point of C and D, where the two edges meeting have
weights m1 and m2, and primitive direction vectors (v0, v1) and (w0, w1) respectively.
The intersection multiplicity multP (C ∩ D) is then the absolute value of

m1m2

∣∣∣∣
v0 v1

w0 w1

∣∣∣∣ .

Non-transversal intersections are dealt with in the following way: For any intersect-
ing tropical curves C and D, let Cε and Dε be nearby translations of C and D such
that Cε and Dε intersect transversally. We then have ([6, Theorem 4.3]):

Theorem-Definition 4.1. Let the stable intersection of C and D, denoted C ∩st D,
be defined by

C ∩st D = lim
ε→0

(Cε ∩ Dε).

This limit is independent of the choice of perturbations, and is a well-defined subset of
points with multiplicities in C ∩ D.

Theorem 4.2 (Tropical Bezout). Assume C and D are tropical curves of degrees
c and d respectively. If both curves have full support, then their stable intersection
consists of cd points, counting multiplicities.

Proof. See [6, Theorem 4.2 and Corollary 4.4]. The idea is to show that the number of
(stable) intersection points is invariant under translations of the curves. Thus we can
arrange the two curves such that for each of them, the intersection points lie on the
unbounded rays in one of the three coordinate directions. It is then trivial to check
that ♯(C ∩st D) = cd.

There is also a tropical version of Bernstein’s Theorem: Recall that the mixed area of
two convex polygons R and S is defined as the number Area(R+S)−Area(R)−Area(S),
where R + S is the Minkowski sum of R and S.

Theorem 4.3 (Tropical Bernstein). Let C = V (f) and D = V (g) be any tropical
curves intersecting transversally, with Newton polygons ∆f and ∆g respectively. Then
the number of intersection points, counting multiplicities, equals the mixed area of ∆f

and ∆g.

Proof. See [7, Theorem 9.5].

Although perhaps not as enlightening as the homotopy argument given in [6], one
can prove Theorem 4.2 as a special case of Theorem 4.3. In fact, we can get a stronger
result:

Theorem 4.4 (Strong version of Tropical Bezout). Assume C and D are tropical
curves of degrees c and d respectively. If at least one of the curves have full support,
then their stable intersection consists of cd points, counting multiplicities.

11



THE GROUP LAW ON A TROPICAL ELLIPTIC CURVE

Proof. Because of Theorem-Definition 4.1 we can assume that the intersection is trans-
versal. Note that for any positive integers c and d, we have the Minkowski sum Γc+Γd =
Γc+d. Hence the mixed area of Γc + Γd equals 1

2
(c + d)2 − 1

2
c2 − 1

2
d2 = cd. This proves

Theorem 4.2.
Suppose now C has full support, i.e. ∆f = Γc, and that ∆g is a convex polygon of

the form ΓdrQ, where Q ⊆ Γd is a lattice polygon containing exactly one of the corners
of Γd, say (d, 0). Then Area(∆f +∆g) = Area(Γc+(ΓdrQ)) = Area(Γc+Γd)−Area(Q).
Thus the mixed area of ∆f and ∆g is

Area(∆f + ∆g) − Area(∆f) − Area(∆g) =

(Area(Γc + Γd)) − Area(Q) − Area(Γd) − (Area(Γd) − Area(Q)) = cd.

The same argument shows that we can do the same at the other corners, without
changing the mixed area. In this way we can form any Newton polygon ∆g associated
to a tropical curve of degree d. Hence ♯(C ∩st D) = cd for any tropical curve D of
degree d.

Remark 4.5. If neither of the two curves have full support, the theorem will not hold
in general. For example, if C and D are the quadric curves given by C = V (x2 ⊕ y)
and D = V (x⊕ y2), then C ∩D consists of a single point with multiplicity 3. Another
example is given by the non-intersecting lines V (0 ⊕ x) and V (1 ⊕ x).

An important special case of Theorem 4.4 is the following corollary:

Corollary 4.6. Let D be any tropical curve of degree d. Then any tropical line meets
D stably in exactly d points, counting multiplicities.

5 Divisors on smooth tropical curves

Let C be a smooth tropical curve in R
2.

Definition 5.1. We define the group of divisors on C, Div(C), to be the free abelian
group generated by the points on C. A divisor D on C is an element of Div(C), i.e. a
finite formal sum of the form D =

∑
µPP .

The number
∑

µP is as usual called the degree of D. Observe that the elements of
degree 0 in Div(C) form a group, denoted by Div0(C).

To define principle divisors, we must first define rational functions. By a tropical
rational function h : R

2 → R we mean a function of the form h = f − g, where f and
g are tropical polynomials with equal Newton polygons.

Definition 5.2. Given a tropical polynomial f , we define the divisor div(f) ∈ Div(C)
as the formal sum of points in C ∩st V (f), counted with their respective intersection
multiplicities. Furthermore, if h = f − g is a tropical rational function on R

2, we
set div(h) := div(f) − div(g). A divisor D ∈ Div(C) is called a principal divisor if
D = div(h) for some tropical rational function h.

12



5 DIVISORS ON SMOOTH TROPICAL CURVES

It follows from Theorem 4.3 that any principal divisor on C has degree 0.

Remark 5.3. Suppose the Newton polygons of f and g differ by a translation. Then
we would still have div(f) − div(g) ∈ Div0(C), because of Theorem 4.3. In fact,
div(f)−div(g) is a principle divisor. Indeed, if (a, b) is the translation vector from ∆f

to ∆g, let m = xayb be the corresponding tropical monomial. Since V (f) = V (f ⊙ m)
(by Remark 2.4) it follows that div(f)−div(g) = div(h), where h is the tropical rational
function (f ⊙ m) − g.

Definition 5.4. Two divisors D1 and D2 are linearly equivalent, denoted as D1 ∼ D2,
if D1 − D2 is principal.

Linear equivalence is an equivalence relation, and as in the classical case one can
show that it restricts to an equivalence relation on the subgroup Div0(C). Hence we
can make the following definition:

Definition 5.5. The group Div0(C)/∼ is called the Jacobian of C, Jac(C).

5.1 A formula for the divisor of a tropical rational function

The purpose of this section is to develop a formula for the divisor of a tropical rational
function h : R

2 → R, using only the properties of h restricted to C. We begin with
some easy observations:

Lemma 5.6. Let h : R
2 → R be a tropical rational function, and C ⊆ R

2 a tropical
curve. The restriction of h to C is then

a) continuous on C,

b) piecewise linear on each edge of C, with integer slopes (with respect to the Z-
metric on the edge),

c) eventually constant on each unbounded ray of C.

Proof. a) Note that h is the difference of tropical polynomials, which are continuous.

b) It is enough to prove this for tropical polynomials. Let E be an edge of C, with
primitive integer direction vector v, and let f(x) = maxa∈A{αa + a · x} be a tropical
polynomial function. Clearly, f |E is piecewise linear on E. Furthermore, consider any
point P ∈ E such that f is linear in an open interval I ⊆ E containing P . Then
f(x) = αa +a ·x for all x ∈ I, for some a ∈ A, and the slope of f at P in the direction
of v (w.r.t the Z-metric on E), is f(P + v) − f(P ) = a · v ∈ Z.

c) Suppose h(x) = f(x) − g(x), where f(x) = maxa∈Af
{αa + a · x} and g(x) =

maxb∈Ag
{βb + b · x} are tropical polynomials with ∆f = ∆g. Let ℓ = {V + tu | t ≥ 0}

be an unbounded ray of C, starting at the vertex V and with primitive direction
vector u. Then f(V + tu) = maxa∈Af

{αa + a · V + t(a · u)}. For all t >> 0 this
maximum is achieved for some a = aℓ with the property that aℓ · u ≥ a · u for all
a ∈ Af . In particular this implies that aℓ ∈ ∂∆f . Similarly, when t >> 0, we have
g(V + tu) = βbℓ

+ bℓ · V + t(bℓ · u), for some bℓ ∈ ∂∆g such that bℓ · u ≥ b · u for
all b ∈ Ag. Since ∆f = ∆g this implies that aℓ · u = bℓ · u, and we conclude that for
t >> 0 we have h(V + tu) = αaℓ

− βbℓ
+ (aℓ − bℓ) · V , which is constant.

13



THE GROUP LAW ON A TROPICAL ELLIPTIC CURVE

For any function r : C → R satisfying a) and b) above, we associate to each point
P ∈ C an integer ordP (r) as follows: If P is a vertex of C, then ordP (r) is the sum of
the outgoing slopes of r along the edges adjacent to P . If P ∈ C is not a vertex, we use
the same definition, after first having inserted a (2-valent) vertex at P (but otherwise
keeping C unchanged).

We say that r is locally linear at P ∈ C if there exists an open neighborhood U ⊆ R
2

containing P , and an affine-linear function s : R
2 → R such that r|C∩U = s|C∩U . It is

easy to see that ordP (r) = 0 if r is locally linear at P . Note however, that the converse
is not true if P is a vertex of C.

We are now ready to prove the following:

Lemma 5.7. For any tropical rational function h : R
2 → R we have

div(h) =
∑

P∈C

ordP (h|C) P .

Proof. Let f = maxa∈Af
{αa + a · x} be a tropical polynomial, and let f := f |C . It is

clear that f is locally linear at any P ∈ C r(C∩st V (f)), and therefore ordP (f) = 0 for
such P . We show below that for each P ∈ C ∩st V (f), the intersection multiplicity at
P equals ordP (f). This implies div(f) =

∑
P∈C ordP (f) P . By the obvious extension

from tropical polynomials to tropical rational functions, the lemma follows from this.
Consider first the case where P is a transversal intersection point, between an edge

EC of C and an edge Ef of V (f). We can choose primitive direction vectors v = (v1, v2)
and u = (u1, u2) of EC and Ef respectively, such that if m is the weight of Ef , the
intersection multiplicity is multP (C ∩ V (f)) = m(v1u2 − v2u1).

To find ordP (f), suppose a, b ∈ Af are such that f equals αa +a ·x on one side of
P , and αb + b ·x on the other side. Then b−a is orthogonal to Ef . Moreover, by the
definition of weight, we have (possibly after swapping a and b) that b−a = m(u2,−u1).
This implies that ordP (f) = v · b + (−v) · a = v · (b − a) = m(v1u2 − v2u1), which
equals the intersection multiplicity found above.

Next, suppose P ∈ C ∩st V (f) is a non-transversal intersection point, i.e., that P is
a vertex of either C or V (f). In either case, consider fε = maxa∈Af

{αǫ
a + a · x} such

that V (fε) is a small translation of V (f) intersecting C transversally, and P /∈ V (fε).
Let P1, . . . , Pk ∈ C∩V (fε) be the intersection points close to P (i.e. the points tending
to P when fε → f). Then we have

(2) multP (C ∩st V (f)) =

k∑

i=1

multPi
(C ∩ V (fε)).

We proceed to show that ordP (f) shows a similar, stable behavior. Let ℓ1, . . . , ℓs be
the edges of C emanating from P , with primitive direction vectors v1, . . . , vs. (If P is
not a vertex of C, we insert a vertex at P , making s = 2, and v1 = −v2.) Furthermore,
let a1, . . . , as ∈ Af be such that for x ∈ ℓi close to P , we have f(x) = λai

+ ai · x. In
particular, with this notation, we have ordP (f) =

∑s

i=1
ai · vi.

Because P /∈ V (fε), fε is locally linear at P , and we can assume w.l.o.g. that
fε(x) = αε

a1
+ a1 · x in a neighborhood of P . For j = 1, . . . , s, let Bj ⊆ {P1, . . . , Pk}

14



6 TROPICAL ELLIPTIC CURVES

be the subset whose elements lies on ℓj . It is not hard to see that if Bj 6= ∅, then∑
Q∈Bj

ordQ(f ε) = aj · vj − a1 · vj. Hence,

(3)
k∑

i=1

ordPi
(f ε) =

∑

Bj 6=∅

(aj · vj − a1 · vj) =
∑

Bj 6=∅

aj · vj +
∑

Bj=∅

a1 · vj = ordP (f),

where in the second to last transition we used the balancing condition, and in the final
transition the easily proved observation that if Bj = ∅ then aj = a1.

From (2) and (3) we deduce that multP (C ∩st V (f) = ordP (f) also when P is
non-transversal, and hence that div(f) =

∑
ordP (f)P . This proves the lemma.

Remark 5.8. A consequence of the above two lemmas is that our definitions of tropical
rational functions and their divisors are in agreement with those used by Gathmann
and Kerber in [2]. The set R = {h|C | h is a tropical rational function} is a subset of
what they call rational functions on C, i.e. functions r : C → R which satisfy parts a)
and b) of Lemma 5.6. Moreover, Lemma 5.7 implies that for any function in R, the
definition of its associated divisor given in [2] is equivalent to our Definition 5.2. In
particular, the endpoints at infinity of unbounded rays (these are included as part of
the curve in [2]) are avoided because of Lemma 5.6c).

6 Tropical elliptic curves

In the remainder of the paper C will denote a tropical elliptic curve, by which we mean
a smooth tropical curve of degree 3 and genus 1. We assume that C = V (f), where
f(x, y) has Newton polygon ∆f ⊆ Γ3. Since (1, 1) is the only lattice point in the
interior of Γ3, the definition of genus requires that (1, 1) is a vertex of Subdivf lying
in the interior of ∆f . Hence C contains a unique cycle, which we will denote by C.
Finally, each connected component of C r C is called a tentacle of C.

6.1 An explicit homeomorphism C → S1

Obviously, as a topological space, C is homeomorphic to the circle group S1. We will
now construct one such homeomorphism, based on the Z-metric on the edges of C.

Choose any fixed point O ∈ C. Let V1, . . . , Vn be the vertices of C in counter-
clockwise direction, such that if O is a vertex then V1 = O, otherwise O lies between
V1 and Vn. Let E1, . . . , En be the edges of C, such that E1 = V1V2 and so on. Recall
that for each i, l(Ei) denotes the length of Ei in the Z-metric on Ei. Let l be the cycle
length of C, i.e., l = l(E1) + · · · + l(En).

We now define a homeomorphism µ : C −→ R/lZ ≈ S1, linear in the Euclidean
metric of each edge Ei. It is then enough to specify the images in R/lZ of the points
O, V1, . . . , Vn, which we do recursively:

µ(O) = 0

µ(V1) = l(OV1)

µ(Vi+1) = µ(Vi) + l(Ei), i = 1, . . . , n − 1.

(4)
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L1 L2

Q P

RR

ℓ2

ℓ3
S S

QP

ℓ1

Figure 2: Sufficiently close points P and Q on ℓ1 are linearly equivalent.

Finally, identifying R/lZ with the interval [0, l), we define the (signed) displacement
function dC : C × C → R by the formula

(5) dC(P, Q) = µ(Q) − µ(P ).

Note that dC(Q, P ) = −dC(P, Q) for any P, Q ∈ C . Moreover, for any three points
P, Q, R ∈ C we have dC(P, Q) + dC(Q, R) = dC(P, R).

6.2 When are two points on C linearly equivalent?

In this section we give two propositions, which together give a complete answer to the
question in the title. Namely, we prove that any two points on the same tentacle are
linearly equivalent, while two distinct points on C are never linearly equivalent.

Proposition 6.1. Let P and Q be points on the same tentacle of C. Then P ∼ Q.

Proof. We begin by showing that the points on any unbounded ray are equivalent.
By symmetry, it is enough to prove this for the rays that are unbounded in, say, the
x-coordinate. Figure 2 shows a typical situation with three such rays, ℓ1, ℓ2 and ℓ3.

The following argument shows that any two sufficiently close points P and Q on
ℓ1 are equivalent: Assume P is further away from C than Q. Let h = f1 − f2 be the
tropical rational function where f1 and f2 are tropical linear polynomials such that
L1 = V (f1) is the tropical line with center in P , and L2 = V (f2) is the line passing
through Q and with center on the ray of L1 with direction vector (1, 1). Denote this
ray by ρ. Then div(f1) = P +R+S, where R and S lies on ρ, and div(f2) = Q+R+S
(as long as P and Q are close enough). It follows that div(h) = P −Q, in other words
P ∼ Q.

To show that any two points P and Q on ℓ1 are equivalent, we can choose a finite
sequence of points P = P1, P2, . . . , Pm = Q on ℓ1 such that each pair (Pi, Pi+1) is close
enough for the above technique to work. Then P = P1 ∼ · · · ∼ Pm = Q.

A similar argument shows that the points on ℓ2 are equivalent. The idea is sketched
in Figure 3. To show that P and Q are equivalent, take the tropical line L1 with center

16



6 TROPICAL ELLIPTIC CURVES

R

P ′

Q

Q′

P

ℓ3

ℓ2

ℓ1

Figure 3: P ∼ Q on ℓ2.

ℓ2

ℓ1

P

Q

ℓ3

Figure 4: P ∼ Q on ℓ3.

in P and slide it along the ray with direction (1, 1) (i.e. keeping R as intersection
point with C) until it passes through Q. With the notation on Figure 3, we see that
P + P ′ + R ∼ Q + Q′ + R. But P ′ ∼ Q′, since they are on ℓ1, thus P ∼ Q.

The same technique works for ℓ3 (see Figure 4) and also for the bounded line
segments of the tentacles. Any tentacle of a tropical elliptic curve can be handled in
this way.

Proposition 6.2. If P, Q ∈ C and P ∼ Q, then P = Q.

Proof. Suppose otherwise that P 6= Q, and that there exists a tropical rational function
h such that div(h) = P − Q. We will apply Lemma 5.7 to show that this leads to a
contradiction.

Let h = h|C . As a first observation, note that h is constant on each tentacle of
C. Indeed, this follows from Lemma 5.6c) and the fact that ordR(h) = 0 for all points
R ∈ C rC . (Note in particular that if h is constant on two edges adjacent to a 3-valent
vertex V , then ordV (h) = 0 implies that h is constant on the third edge as well.)

Now, let c1 and c2 be the two directed polygonal arcs of C from P to Q. We claim
that for each i = 1, 2, h has constant slope along ci, w.r.t. the Z-metric. To see this,
observe that h is clearly linear along any edge of ci. Furthermore, suppose two edges of
ci intersect in a vertex V ∈ C, and that the slopes of h along these edges (directed from
P to Q) are s1 and s2. Because h is constant on the tentacle adjacent to V , ordV (h)
is of the form ±(s1 − s2 + 0). This equals 0, hence s1 = s2. This proves the claim.

QP

slope = s

slope = 1 − s

Figure 5: Slope properties of a function h satisfying div(h) = P − Q.
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Since ordP (h) = 1, the slopes of h along the paths c1 and c2 must be s and 1 − s for
some s ∈ Z. But this contradicts the assumption of continuity of h at Q, since for any
choice of s, one of the numbers s and 1− s is positive, while the other is non-positive.
(See Figure 5.)

6.3 The group law

In this final section we will show that the Jacobian Jac(C) is set-theoretically equal
to C, and describe the resulting group structure on C. A crucial step towards this
goal is to determine when divisors of the form P + Q are linearly equivalent. When
trying to imitate the techniques from the classical case, we stumble across the following
problem: Given two points P and Q on C , we cannot always find a tropical line L that
intersects C stably in P and Q. (Recall that a stable intersection is defined as a limit
of transversal intersections.) If there exists such a tropical line, we call (P, Q) a good
pair.

We fix the notation p1 = (−1, 0), p2 = (0,−1) and p3 = (1, 1) for the primitive
integer direction vectors of a tropical line.

Lemma 6.3. Let P, Q, P ′, Q′ be any points on C. Then

P + Q ∼ P ′ + Q′ ⇐⇒ dC(P, P ′) = −dC(Q, Q′).

Proof. We proceed in two steps. First, we prove the result when (P, Q) and (P ′, Q′)
are good pairs. Using this, we then generalize to any pairs.

• Step 1. Assume (P, Q) and (P ′, Q′) are good pairs, and that P + Q ∼ P ′ + Q′.
Then there exists (unique) tropical lines L and L′, and a point R ∈ C such that
L∩st C = P +Q+R and L′∩st C = P ′ +Q′ +R. (Note that the existence of R follows
from Proposition 6.2.) Consider a homotopy Lt of lines containing R such that L0 = L
and L1 = L′. It is enough to consider the case where P and P ′ are on the same edge,
Q and Q′ are on the same edge, and L′ is a parallel displacement of L along one of
the axes. Indeed, in more complex cases, the homotopy can be broken down into parts
with the above properties.

Let vP and vQ be primitive integer direction vectors of the edges of C containing
P, P ′ and Q, Q′ respectively, and assume that L′ equals the shifting of L δ units in the
direction of, say, p1 (see Figure 6). Then from the general formula for (non-orthogonal)
vector projection (Figure 7), we find the displacements of P and Q:

PP ′ =
‖p2 × δp1‖

‖p2 × vP‖
vP = δvP =⇒ |dC(P, P ′)| =

‖δvP‖

‖vP‖
= δ,

QQ′ =
‖p3 × δp1‖

‖p3 × vQ‖
vQ = δvQ =⇒ |dC(Q, Q′)| =

‖δvQ‖

‖vQ‖
= δ.

(6)

(Notice that both the denominators above equals 1, since the intersections at hand
have multiplicity 1.) According to the orientation of C , P and Q are moved in opposite
direction. Hence dC(P, P ′) = −dC(Q, Q′) as claimed.
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Figure 6: Illustrating Step 1.

w

‖w × v‖

‖w × b‖
b

v

b

Figure 7: Non-orthogonal projection

The implication ⇐ follows by a similar argument.

• Step 2. Now assume (P, Q) is not a good pair. Let L1 and L2 be tropical
lines through P and Q respectively, and let R1, S1, R2, S2 be the other intersection
points. The idea is to move L1 and L2 into new lines L′

1 and L′
2 in such a way that

R1, S1, R2, S2 are preserved as intersection points. P and Q will not be preserved; they
will move to new points P ′ and Q′. (See Figure 8.) By construction, these points
satisfy P ′ + Q′ ∼ P + Q. Using our results in Step 1 on each of the lines L1 and L2, it
follows that dC(P, P ′) = −dC(Q, Q′). Conversely, it is not hard to see that in this way
one can reach any nearby pair (P ′, Q′) satisfying dC(P, P ′) = −dC(Q, Q′).

Finally, by choosing L1 and L2 in the right way, (P ′, Q′) will form a good pair.
Since we proved in Step 1 that the lemma is true for good pairs, it then follows that
the lemma holds for any pairs (P, Q) and (P ′, Q′).

P

Q

P ′

Q′

Figure 8: Moving a bad pair (P, Q).

Proposition 6.4. For any fixed point O ∈ C, the map τO : C → Jac(C) given by
P 7→ P −O is a bijection of sets.

Proof. Injectivity follows immediately from Lemma 6.3, since

P −O ∼ Q −O =⇒ P + O ∼ Q + O =⇒ dC(P, Q) = 0 =⇒ P = Q.
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To prove surjectivity, let D be any divisor of degree 0 . We must show that there
exists P ∈ C such that D ∼ P −O. Assume first that D = P1−Q1, where P1, Q1 ∈ C.
Choose P such that dC(P, P1) = dC(O, Q1), then Lemma 6.3 gives P + Q1 ∼ P1 + O.
Thus we have D = P1 − Q1 ∼ P −O.

Now assume D = D1 −D2, where D1 = P1 + · · ·+Pn and D2 = Q1 · · ·+Qn are any
effective divisors of degree n > 1. Let P12 and Q12 be points such that P1+P2 ∼ O+P12

and Q1 + Q2 ∼ O + Q12. Then

D ∼ O + P12 + · · ·+ Pn − (O + Q12 + · · · + Qn) = P12 + · · ·+ Pn − (Q12 + · · ·+ Qn).

Hence D ∼ D′
1 − D′

2, where D1 and D2 are effective of degree n − 1. This way we can
reduce to the case n = 1, which we already proved.

Because of Proposition 6.4, C has a natural group structure:

Definition 6.5. Define (C,O) to be the group consisting of points on C, with the
group structure induced from Jac(C) such that the bijection τO is an isomorphism of
groups.

The next theorem and its corollary are the main results of this paper.

Theorem 6.6. Let P and Q be any points on C, and let + denote addition in the
group (C,O). Then the point P + Q satisfies the relation

dC(O, P + Q) = dC(O, P ) + dC(O, Q).

Proof. Because τO is a group isomorphism, the following equalities hold in Jac(C):

(P + Q) −O = τO(P + Q) = τO(P ) + τO(Q) = P −O + Q −O.

Thus in Jac(C) we have (P +Q)+O = P +Q. This means that the divisors (P +Q)+O
and P + Q are equivalent, which by Lemma 6.3 implies the relation

dC(P, P + Q) = dC(O, Q).

Adding dC(O, P ) on each side then gives dC(O, P + Q) = dC(O, P ) + dC(O, Q) as
wanted.

Remark 6.7. We can describe the group law geometrically just as in the classical case of
elliptic curves: To add P and Q we do the following. If (P, Q) is a good pair, consider
the tropical line L through P and Q, and let R be the third intersection point of L
and C. Now if (R,O) is a good pair, let L′ be the through R and O. Then P + Q is
the third intersection point of L′ and C. (See Figure 9 for an example.)

If any of the pairs (P, Q) and (R,O) fail to be good, then move the two points
involved equally far (in the Z-metric) in opposite directions until they form a good
pair, and use this new pair as described above.

Corollary 6.8. The map µ : (C,O) −→ R/lZ ≈ S1 defined in (4) is a group iso-
morphism.
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P

Q
P + Q

O
R

P

Q
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Figure 9: Adding points on a tropical elliptic curve.

Proof. It follows from the relation (5) that for any P we have µ(P ) = dC(O, P ). Thus

µ(P + Q) = dC(O, P + Q) = dC(O, P ) + dC(O, Q) = µ(P ) + µ(Q).
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Smooth tropical surfaces with infinitely many

tropical lines

Magnus Dehli Vigeland∗

Abstract

We study the tropical lines contained in smooth tropical surfaces in R
3. On

smooth tropical quadric surfaces we find two one-dimensional families of tropical
lines, like in classical algebraic geometry. Unlike the classical case, however, there
exist smooth tropical surfaces of any degree with infinitely many tropical lines.

1 Introduction

Tropical geometry has during the last few years become an increasingly popular field of
mathematics. This is not least due to the many fascinating similarities with classical
geometry. In this paper we examine tropical analogues of the following well-known
results in classical algebraic geometry:

(I) Any smooth quadric surface has two rulings of lines,

(II) Any smooth surface of degree greater than two, has at most finitely many lines.

While a lot of work has been done lately on tropical plane curves, comparatively
little is known in higher dimensions. The usual way of defining a tropical variety is
as the tropicalization of an algebraic variety defined over an algebraically closed field
with a non-Archimedean valuation (see e.g. [3]). In the case of hypersurfaces, however,
a more inviting, geometric definition is possible. For example, a tropical surface in
R

3 is precisely the non-linear locus of a continuous convex piecewise linear function
f : R

3 → R with rational slopes. It is an unbounded two-dimensional polyhedral com-
plex, with zero tension at each 1-cell. Furthermore, it is dual to a regular subdivision of
the Newton polytope of f (when f is regarded as a tropical polynomial). The tropical
surface is smooth if this subdivision is an elementary (unimodular) triangulation.

Tropical varieties of higher codimension are in general more difficult to grasp. How-
ever, the only such varieties we are interested in here, are tropical lines in R

3. These
were given an explicit geometric description in [3], on which we base our definition. As
an analogue of (I) above, we prove that:

∗Department of Mathematics, University of Oslo, Norway. Email : magnusv@math.uio.no
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SMOOTH TROPICAL SURFACES WITH INFINITELY MANY TROPICAL LINES

Theorem. Any smooth tropical quadric surface X has a unique compact 2-cell X. For
any point p ∈ X, there exist two tropical lines on X containing p.

While in classical geometry, any two distinct points in R
3 lie on a unique line, this

is only true generically for tropical lines. In fact, for special choices of p, q ∈ R
3 there

are infinitely many tropical lines containing p and q. We show that such families of
tropical lines can also exist on a smooth tropical surface. As a consequence, we get the
following result, in contrast to (II) above:

Theorem. There exist tropical surfaces of any degree, with infinitely many tropical
lines.

The paper is organized as follows: In sections 2 and 3 we give some necessary
background on convex geometry and tropical geometry, respectively. In particular, the
concept of a two-point family of tropical lines in R

3 is defined in Section 3.3. Then
follows two technical sections, 4 and 5. The former of these deals with constructions of
regular elementary triangulations, while the latter contains an analysis of certain lattice
polytopes. In Section 6 we explore the general properties of tropical lines contained
in smooth tropical surfaces, and in Section 7 we use these to study tropical lines on
quadric surfaces. Section 8 concerns two-point families of tropical lines on smooth
tropical surfaces. Finally, Section 9 contains our results for tropical surfaces of higher
degrees.

2 Lattice polytopes and subdivisions

2.1 Convex polyhedra and polytopes

A convex polyhedron in R
n is the intersection of finitely many closed halfspaces. A

cone is a convex polyhedron, all of whose defining hyperplanes contain the origin. A
convex polytope is a bounded convex polyhedron. Equivalently, a convex polytope can
be defined as the convex hull of a finite set of points in R

n. Throughout this paper,
all polyhedra and polytopes will be assumed to be convex unless explicitly stated
otherwise.

For any polyhedron ∆ ⊆ R
n we denote its affine hull by Aff(∆), and its relative

interior (as a subset of Aff(∆)) by int(∆). The dimension of ∆ is defined as dim Aff(∆).
By convention, dim ∅ = −1. A face of ∆ is a polyhedron of the form ∆∩H , where H is
a hyperplane such that ∆ is entirely contained in one of the closed halfspaces defined
by H . In particular, the empty set is considered a face of ∆. Faces of dimensions 0, 1
and n − 1 are called vertices, edges and facets of ∆, respectively. If ∆ is a polytope,
then the vertices of ∆ form the minimal set A such that ∆ = conv(A).

Let F be a facet of a polyhedron ∆ ⊆ R
n, where dim ∆ ≤ n. A vector v is pointing

inwards (resp. pointing outwards) from F relative to ∆ if, for some positive constant t,
the vector tv (resp. −tv) starts in F and ends in ∆ r F . If in addition v is orthogonal
to F , v is an inward normal vector (resp. outward normal vector) of F relative to ∆.
Using the notation 〈 , 〉 for the Euclidean inner product, a straightforward consequence
of these definitions is:
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2 LATTICE POLYTOPES AND SUBDIVISIONS

Lemma 2.1. A vector v is an inward (resp. outward) normal vector of F relative to
∆, if and only if 〈u, v〉 > 0 (resp. 〈u, v〉 < 0) for all vectors u pointing inwards from
F relative to ∆.

If all the vertices of ∆ are contained in Z
n, we call ∆ a lattice polyhedron, or lattice

polytope if it is bounded. A lattice polytope in R
n is primitive if it contains no lattice

points other than its vertices. It is elementary (or unimodular) if it is n-dimensional
and its volume is 1

n!
. Obviously, every elementary polytope is also primitive, while the

other implication is not true in general. For instance, the unit square in R
2 is primitive,

but not elementary.
Most of the polytopes we are interested in will be simplices, i.e., the convex hull of

n + 1 affinely independent points. In R
2, the primitive simplices are precisely the ele-

mentary ones, namely the lattice triangles of area 1
2
. (This is an immediate consequence

of Pick’s theorem.) In higher dimensions, the situation is very different: There is no
upper limit for the volume of an primitive simplex in R

n, when n ≥ 3. The standard
example of this is the following: Let p, q ∈ N be relatively prime, with p < q, and let
Tp,q be the tetrahedron with vertices in (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, p, q). Then
Tp,q is an primitive simplex of volume q

6
.

2.2 Polyhedral complexes and subdivisions

A (finite) polyhedral complex in R
n is a finite collection X of convex polyhedra, called

cells, such that

• if C ∈ X, then all faces of C are in X, and

• if C, C ′ ∈ X, then C ∩ C ′ is a face of both C and C ′.

The d-dimensional elements of X are called the d-cells of X. The dimension of X
itself is defined as max{dim C | C ∈ X}. Furthermore, if all the maximal cells (w.r.t.
inclusion) have the same dimension, we say that X is of pure dimension.

A polyhedral complex, all of whose cells are cones, is a fan.
A subdivision of a polytope ∆ is a polyhedral complex S such that |S| = ∆, where

|S| denotes the union of all the elements of S. It follows that S is of pure dimension
dim ∆. If all the maximal elements of S are simplices, we call S a triangulation. If S
and S ′ are subdivisions of the same polytope, we say that S ′ is a refinement of S if for
all C ′ ∈ S ′ there is a C ∈ S such that C ′ ⊆ C.

If ∆ is a lattice polytope, we can consider lattice subdivisions of ∆, i.e., subdivisions
in which every element is a lattice polytope. In particular, a lattice subdivision is prim-
itive (resp. elementary) if all its maximal elements are primitive (resp. elementary).
We write down some noteworthy properties of these subdivisions:

• Every elementary subdivision is necessarily a triangulation, and also primitive.

• In a primitive subdivision, all elements (not only the maximal) are primitive.

• For any lattice polytope, its lattice subdivisions with no non-trivial refinements
are precisely its primitive triangulations.

25



SMOOTH TROPICAL SURFACES WITH INFINITELY MANY TROPICAL LINES

2.3 Regular subdivisions and the secondary fan

Let ∆ = conv(A) where A is a finite set of points in R
n. Any function α : A → R will

induce a lattice subdivision of ∆ in the following way. Consider the polytope

conv({(v, α(v)) | v ∈ A}) ∈ R
n+1.

Projecting the top faces of this polytope to R
n, forgetting the last coordinate, gives a

collection of subpolytopes of ∆. They form a subdivision Sα of ∆. The function α is
called a lifting function associated to Sα.

Definition 2.2. A lattice subdivision S of conv(A) is regular if S = Sα for some
α : A → R.

The set of regular subdivisions of conv(A) has an interesting geometric structure,
as observed by Gelfand, Kapranov and Zelevinsky in [2]. Suppose A ⊆ R

n consists of
k points. For a fixed ordering of the points in A, the space R

A ≃ R
k is a parameter

space for all functions α : A → R. For a given given regular subdivision S of conv(A),
let K(S) be the set of all functions α ∈ R

A which induce S. The following is proved
in [2, Chapter 7]:

Proposition 2.3. Let S and S ′ be any regular subdivisions of conv(A). Then:

a) K(S) is a cone in R
A.

b) S ′ is a refinement of S if and only if K(S) is a face of K(S ′).

c) The cones {K(S) | S is a regular subdivision of conv(A)} form a fan, Φ(A), in
R

A.

The fan Φ(A) is called the secondary fan of A. Proposition 2.3b) shows that a
subdivision corresponding to a maximal cone of Φ(A) can have no refinements. Hence
the maximal cones correspond precisely to the primitive regular lattice triangulations
of conv(A).

3 Basic tropical geometry

3.1 Tropical hypersurfaces

The purpose of this section is to recall the basics about tropical hypersurfaces and their
dual subdivisions. Good references for proofs and details are [3], [4], and [1].

We work over the tropical semiring Rtr := (R, max, +). Note that some authors
use min instead of max in the definition of the tropical semiring. This gives a semiring
isomorphic to Rtr. Most statements of tropical geometry are independent of this choice,
but sometimes care has to be taken (cf. Lemma 3.3).

To simplify the reading of tropical expressions, we adopt the following conven-
tion: If a expression is written in quotation marks, all arithmetic operations should
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3 BASIC TROPICAL GEOMETRY

be interpreted as tropical. Hence, if x, y ∈ R and k ∈ N0 we have for example
“x + y” = max{x, y}, “xy” = x + y and “xk ” = kx.

A tropical monomial in n variables is an expression of the form “xa1

1 · · ·xan
n ”, or

in vector notation, “xa ”, where x = (x1, . . . , xn) ∈ R
n and a = (a1, . . . , an) ∈ N

n
0 .

Note that “xa ” = 〈a, x〉, the Euclidean inner product of a and x in R
n. A tropical

polynomial is a tropical linear combination of tropical monomials, i.e.

(1) f(x) = “
∑

a∈A

λax
a ” = max

a∈A
{λa + 〈a, x〉},

where A is a finite subset of N
n
0 , and λa ∈ R for each a ∈ A. From the rightmost

expression in (1) we see that as a function R
n → R, f is concave and piecewise linear.

The tropical hypersurface Vtr(f) ⊆ R
n is defined to be the non-linear locus of f : R

n →
R. Equivalently, it is the set of points x ∈ R

n where the maximum in (1) is attained
at least twice.

It is well known (see e.g. [3] and [4]) that Vtr(f) is a connected polyhedral complex
of pure dimension n− 1. As a subset of R

n, Vtr(f) is unbounded, although some of its
cells may be bounded.

We next describe the very useful duality between a tropical hypersurface Vtr(f) and
a certain lattice subdivision. With f as in (1), we define the Newton polytope of f to
be the convex hull of the exponent vectors, i.e., the lattice polytope conv(A) ⊆ R

n. As
explained in Section 2.3, the map a 7→ λa induces a regular subdivision of the Newton
polytope conv(A); we denote this subdivision by Subdiv(f).

Any element ∆ ∈ Subdiv(f) of dimension at least 1, corresponds in a natural way
to a subset ∆∨ ⊆ Vtr(f). Namely, if the vertices of ∆ are a1, . . . , ar, then ∆∨ is the
solution set of the equalities and inequalities

(2) λa1
+ a1x = · · · = λar

+ 〈ar, x〉 ≥ λb + 〈b, x〉, for all b ∈ A r {a1, . . . , ar}.

That ∆∨ ⊆ Vtr(f) follows immediately from the definition of Vtr(f), once we observe
that r ≥ 2 (this is implied by the assumption dim ∆ ≥ 1). In fact, ∆∨ is a closed cell
of Vtr(f). Moreover, we have the following theorem (see [4]):

Theorem 3.1. The association ∆ 7→ ∆∨ gives a one-to-one correspondence between
the k-cells of Subdiv(f) and the (n − k)-cells of Vtr(f), for each k = 1, 2, . . . , n. Fur-
thermore, for any cells ∆, Λ ∈ Subdiv(f) of dimensions at least 1, we have that

i) If ∆ is a face of Λ, then Λ∨ is a face of ∆∨ in Vtr(f).

ii) The affine-linear subspaces Aff(∆) and Aff(∆∨) are orthogonal in R
n.

iii) ∆∨ is an unbounded cell of Vtr(f) if and only if ∆ is contained in a facet of the
Newton polytope of f .

If C is a cell of Vtr(f), we denote its corresponding cell in Subdiv(f) by C∨. The
cells C and C∨ are said to be dual to each other.

Theorem 3.1 is independent of the choice of max or min as the tropical addition.
However, the following lemma is not (cf. Remark 3.3 below). For lack of reference, we
include a proof.
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Lemma 3.2. a) Let X ⊆ R
2 be a tropical curve, and E ∈ X a vertex. If C is an

edge of X adjacent to E, then the outgoing direction vector of C from E is an
outward normal vector of C∨ relative to E∨.

b) Let X be a tropical hypersurface in R
n, where n ≥ 2, and let C ⊆ X be a (n−1)-

cell adjacent to a (n− 2)-cell E. If v is an inward normal vector of E relative to
C, then v is an outward normal vector of C∨ relative to E∨.

Proof. a) Let X be defined by the polynomial f = “
∑

a∈A λax
a ” = maxa∈A{λa +

〈a, x〉}, where A ⊆ Z
2 is finite. Let E be a vertex of X, and C an edge of X adjacent

to E. We consider first the case where C is bounded. Then C has a second endpoint

F , and
−→
EF is a direction vector of C pointing away from E. Dually, C∨ is the common

edge of the polygons E∨ and F∨. Since we already know (by Theorem 3.1) that
−→
EF is

orthogonal to C∨, Lemma 2.1 implies that all we have to do is to show that 〈u,
−→
EF 〉 < 0

for some vector u pointing inwards from C∨ relative to E∨.
Let V(E∨) = {a1, a2, . . . , ar} be the vertices of E∨, named such that C∨ = a1a2.

Then u = −−→a2a3 points inwards from C∨ relative to E∨. We claim that 〈−−→a2a3,
−→
EF 〉 < 0.

To prove this, observe that the vertex E satisfies the system of (in)equalities

(3) λa1
+ 〈a1, E〉 = λa2

+ 〈a2, E〉 = · · · = λar
+ 〈ar, E〉 > λb + 〈b, E〉,

for all b ∈ A r V(E∨). Similarly, F satisfies the relations

(4) λa1
+ 〈a1, F 〉 = λa2

+ 〈a2, F 〉 = · · · = λc + 〈c, F 〉 = · · · > λd + 〈d, F 〉,

for all c ∈ V(F∨) and d ∈ ArV(F∨). Now, in particular, (3) gives 〈a2, E〉− 〈a3, E〉 =
λa3

−λa2
, while (4) implies (setting d = a3) that 〈a2, F 〉−〈a3, F 〉 > λa3

−λa2
. Combining

this, we find:

〈−−→a2a3,
−→
EF 〉 = 〈a3 − a2, F − E〉 = 〈a3, F 〉 − 〈a2, F 〉 + 〈a2, E〉 − 〈a3, E〉

< λa2
− λa3

+ λa3
− λa2

= 0.

This proves the claim, and therefore that
−→
EF is an outer normal vector of C∨ relative

to E∨.
Finally we consider the case when C is unbounded. If C is unbounded, then C∨ ⊆

∂(∆f ), where ∆f is the Newton polytope of f . Let f ′ = “f +λbx
b”, where the exponent

vector b ∈ Z
2 is chosen outside of ∆f in such a way that C∨ is not in the boundary

of ∆f ′ . If the coefficient λb is set low enough, all elements of Subdiv(f) will remain
unchanged in Subdiv(f ′). Furthermore, all vertices of X, and all direction vectors of
the edges of X, remain unchanged in Vtr(f

′). In particular, E is a vertex of Vtr(f
′),

and its adjacent edge whose dual is C∨, has the same direction vector as C. Since C∨

is not in the boundary, we have reduced the problem to the bounded case above. This
proves the lemma.

b) Let π be the orthogonal projection of R
n from Aff(E) to Aff(E∨) ≃ R

2. If
C1, . . . , Cr are the (n − 1)-cells adjacent to E, then π(C1), . . . , π(Cr) are mapped to
rays or line segments in Aff(E∨), with π(E) as their common endpoint. Furthermore,
if v is an inward normal vector of E relative to Ci, then v is a direction vector of π(Ci)
pointing away from π(E). The lemma now follows from the argument in a).
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Remark 3.3. For readers used to working over the semiring (R, min, +) instead of
(R, max, +), note that when using min, the result of Lemma 3.2 changes: The vector
v is then an inward normal vector of C∨ relative to E∨.

3.2 Tropical surfaces in R
3

A tropical hypersurfaces in R
3 will be called simply a tropical surface. We will usually

restrict our attention to those covered by the following definition:

Definition 3.4. Let X = Vtr(f) be a tropical surface, and let δ ∈ N. We say that the
degree of X is δ if the Newton polytope of f is the simplex

Γδ := conv({(0, 0, 0), (δ, 0, 0), (0, δ, 0), (0, 0, δ)}).

If Subdiv(f) is an elementary (unimodular) triangulation of Γδ, then X is smooth.

Remark 3.5. We will frequently talk about a tropical surface X of degree δ without
referring to any defining tropical polynomial. It is then to be understood that X =
Vtr(f) for some f with Newton polytope Γδ. In this setting, the notation SubdivX

refers to Subdiv(f).

Let us note some immediate consequences of Definition 3.4. For example, since
any elementary triangulation of Γδ has δ3 maximal elements, X must have δ3 vertices.
Furthermore, any 1-cell E ⊆ X has exactly 3 adjacent 2-cells, namely those dual to
the sides of the triangle E∨. This last property makes it particularly easy to state
and prove the so-called balancing property, or zero-tension property for smooth tropical
surfaces. (A generalization of this holds for any tropical hypersurface. However, this
involves assigning an integral weight to each maximal cell of X, a concept we will not
need here.)

Lemma 3.6 (Balancing property for smooth tropical surfaces). For any 1-
cell E of a smooth tropical surface X, consider the 2-cells C1, C2, C3 adjacent to E.
Choosing an orientation around E, each Ci has a unique primitive normal vector vi

compatible with this orientation. Then v1 + v2 + v3 = 0.

Proof. As explained above, C∨
1 , C∨

2 and C∨
3 are the sides of the triangle E∨. Theorem

3.1 implies that C∨
i is parallel to vi for each i = 1, 2, 3. In fact, since C∨

i is primitive,
it must also have the same length as (the primitive) vector vi. The vectors forming
the sides of any polygon (following a given orientation), sum to zero, thus the lemma
is proved.

Note that when dim E = 1, Theorem 3.1 guarantees that dimE∨ = 2; in particular
E∨ is non-degenerate. This implies that no two of the vectors v1, v2, v3 in Lemma 3.6
are parallel. Thus:

Lemma 3.7. Let C1, C2, C3 be the adjacent 2-cells to a 1-cell of a smooth tropical
surface. Then C1, C2, C3 span different planes in R

3.
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We conclude these introductory remarks on tropical surfaces with a description of
some important group actions. Let S4 be the group of permutations of four elements,
so that S4 is the symmetry group of the simplex Γδ. In the obvious way this gives an
action of S4 on the set of subdivisions of Γδ.

We can also define an action of S4 on the set of tropical surfaces of degree δ. Let
X = Vtr(f), where f(x1, x2, x3) = “

∑

a∈Γδ
λax

a1

1 xa2

2 xa3

3 ”. For a given permutation
σ ∈ S4, we define σ(X) as follows. First, homogenize f , giving a polynomial in four
variables:

fhom(x1, x2, x3, x4) = “
∑

a∈Γδ

λax
a1

1 xa2

2 xa3

3 xδ−a1−a2−a3

4 ”.

Now σ acts on fhom in the obvious way by permuting the variables, giving a new trop-
ical polynomial σ(fhom). Dehomogenizing again, we set σ(f) := σ(fhom)(x1, x2, x3, 0).
(Note that 0 is the multiplicative identity element of Rtr.) Finally, we define σ(X)
to be the surface Vtr(σ(f)). Clearly, σ(X) is still of degree δ. The resulting ac-
tion is compatible with the action of S4 on the subdivisions of Γδ. In other words,
Subdivσ(X) = σ(SubdivX).

3.3 Tropical lines in R
3

Let L be an unrooted tree with five edges, and six vertices, two of which are 3-valent
and the rest 1-valent. We define a tropical line in R

3 to be any realization of L in R
3

such that

• the realization is a polyhedral complex, with four unbounded rays (the 1-valent
vertices of L are pushed to infinity),

• the unbounded rays have direction vectors −e1, −e2, −e3, e1 + e2 + e3,

• The realization is balanced at each vertex, i.e., the primitive integer vectors in
the directions of all outgoing edges adjacent to a given vertex, sum to zero.

If the bounded edge has length zero, the tropical line is called degenerate. For non-
degenerate tropical lines, there are three combinatorial types, shown in Figure 1. From
left to right we denote these combinatorial types by (12)(34), (13)(24) and (14)(23),
respectively, so that each pair of digits indicate the directions of two adjacent rays.
Likewise, the combinatorial type of a degenerate tropical line is written (1234).

e1 + e2

−e1

e1 + e2 + e3−e2

e1 + e3

−e1 −e2

e1 + e2 + e3−e3

e2 + e3

−e2 −e1

e1 + e2 + e3−e3

−e3

Figure 1: The combinatorial types of tropical lines in R
3.
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Remark 3.8. This definition is equivalent to the more standard algebraic definition of
tropical lines in R

3. See [3, Examples 2.8 and 3.8].

The Tropical Grassmannian, Gtr(1, 3), is the space of all tropical lines in R
3. It is

a polyhedral fan in R
4 consisting of three 4-dimensional cones, one for each combinat-

orial type. These cones are glued along their common lineality space of dimension 3
(corresponding to rigid translations in R

3).

Remark 3.9. One can define tropical lines in R
n and their Grassmannians for any n ≥ 2.

A detailed description of these spaces are given in [5].

In classical geometry, any two distinct points lie on a unique line. When we turn to
tropical lines, this is true only for generic points. In fact, for special choices of points
P and Q there are infinitely many tropical lines passing through P and Q. The precise
statement is as follows:

Lemma 3.10. Let P, Q ∈ R
3. There exist infinitely many tropical lines containing P

and Q if and only if the coordinate vector Q − P contains either a zero, or two equal
coordinates. In all other cases, P and Q lie on a unique tropical line.

An infinite collection of tropical lines in R
3, is called a two-point family if there exist

two points lying on all tropical lines in the collection. Using Lemma 3.10 it is not hard
to see that the tropical lines of any two-point family have in fact a one-dimensional
common intersection.

4 Constructing regular elementary triangulations

The aim of this section is to prove a precise version of the following: If ∆ is a sufficiently
nice polytope contained in Γδ, and ∆ admits a regular, elementary triangulation (or
RE-triangulation for short), then this can be extended to a RE-triangulation of Γδ.
This fact and the lemmas building up to its proof are useful for proving existence of
smooth tropical surfaces with particular properties.

We start with an easy observation, which we state in some generality for later
convenience:

Lemma 4.1. Suppose ∆ ⊆ R
n is a n-dimensional lattice polytope, F1, F2 ⊆ ∆ are

disjoint closed faces of ∆, and αj : Fj → R is a lifting function for each j = 1, 2, such
that the following properties are fulfilled:

i) ∆ = conv(F1 ∪ F2),

ii) dim(F1) + dim(F2) = n − 1,

iii) ∆ contains no lattice points outside F1 and F2,

iv) αj induces an primitive triangulation of Fj, with Nj maximal elements.
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Then α : ∆ ∩ Z
n → R, defined by α(v) := αj(v) if v ∈ Fj, induces an primitive

triangulation of ∆. This triangulation has N1 ·N2 maximal elements, each of which is
of the form conv(Λ1 ∪ Λ2), where Λi ⊆ Fj is a maximal element of the triangulation
induced by αj.

Proof. For each j = 1, 2, pick an arbitrary maximal element Λj ⊆ Fj of the trian-
gulation induced by αj , and let Ω = conv(Λ1 ∪ Λ2). Then Ω is the convex hull of
dim(F1)+1+dim(F2)+1) = n+1 lattice points, and is an primitive simplex contained
in ∆. All we have to prove is that Ω is in the subdivision induced by α. To show this,
it is enough to check that

(5) α(v) < Affα,Ω(v),

for all v ∈ (∆ ∩ Z
n) r Ω, where Affα,Ω is the unique affine function extending α|Ω

to all of R
n. Suppose v ∈ Fj. Then v lies in the affine hull of Λj , which implies

Affα,Ω(v) = Affαj ,Λj
(v). Hence (5) is equivalent to αj(v) < Affαj ,Λj

(v). But this
follows from the fact that Λj is an element of the subdivision induced by αj .

Lemma 4.2. Let ∆1 and ∆2 be lattice polytopes such that ∆1 ∪ ∆2 is convex, and
F := ∆1 ∩ ∆2 is a facet of both. Let S1 and S2 be regular subdivisions of ∆1 and ∆2

respectively, such that the induced subdivisions on F are equal. Suppose furthermore
that S1 and S2 have associated lifting functions α1 and α2 that are equal on F . Then
S1 ∪ S2 is a regular subdivision of ∆1 ∪ ∆2.

Proof. Let L(x) = 0 be the equation of the affine hyperplane spanned by F , and
consider the lifting function α : ∆1 ∪ ∆2 → R defined for any λ ∈ R by

α(v) :=

{

α1(v) if v ∈ ∆1,

α2(v) − λL(v) if v ∈ ∆2.

For λ large enough, α is convex at every point of F , and the induced subdivisions on
∆1 and ∆2 will be T1 and T2 respectively.

Zooming in to R
3, we now prove an auxiliary result:

Lemma 4.3. Let d > e be natural numbers, and define the triangles T0, T1 ⊆ R
3 by

T0 = conv({(0, 0, 0), (d, 0, 0), (0, d, 0)}),

T1 = conv({(0, 0, 1), (e, 0, 1), (0, e, 1)}).

Let Ti be any RE-triangulation of Ti, i = 0, 1. Then there exists a RE-triangulation T
of the polytope ∆ = conv(T0 ∪ T1) such that T |Ti

= Ti for i = 0, 1.

Proof. The strategy is as follows: We decompose ∆ into three tetrahedra, find RE-
triangulations of each of them, and show that these fit together to form a RE-trian-
gulation of ∆. For i = 0, 1, let αi : Ti → R be a lifting function associated to Ti, and
let α : ∆ → R be defined by α(v) = αi(v) if v ∈ Ti.

32



4 CONSTRUCTING REGULAR ELEMENTARY TRIANGULATIONS

The decomposition of a triangular prism into three tetrahedra is well known: Let

∆0 = conv(T0 ∪ {(0, 0, 1)}),

∆1 = conv(T1 ∪ {(d, 0, 0)}),

∆2 = ∆ r (∆0 ∪ ∆1) = conv({(d, 0, 0), (0, d, 0), (0, 0, 1), (0, e, 1)}).

Now we apply Lemma 4.1 three times: On ∆0 (with F1 = T0 and F2 = (0, 0, 1)), on
∆1 (with F1 = T1 and F2 = (d, 0, 0)),) and finally on ∆2 (with F1 = [(d, 0, 0), (0, d, 0)]
and F2 = [(0, 0, 1), (0, e, 1)]). In each case it follows that α restricted to ∆i induces an
primitive triangulation Ti on ∆i. T0 and T1 are obviously elementary: Their maximal
elements are tetrahedra with base area 1

2
and height 1. To see that T2 is elementary, note

that T2 has de maximal elements, since the faces [(d, 0, 0), (0, d, 0)] and [(0, 0, 1), (0, e, 1)]
are triangulated into d and e pieces respectively (cf. condition iv) of Lemma 4.1). On
the other hand, vol(∆2) = 1

6
de, so T2 must be elementary.

Now use Lemma 4.2 twice: First let ∆′ = ∆0 ∪ ∆2. Obviously, since T0 and T2

come from the same lifting function, they induce the same triangulation on ∆0 ∩ ∆2.
Thus, the lemma guarantees that T0 ∪ T2 is a RE-triangulation on ∆′. Also, as seen
in the proof of the lemma, we can find an associated lifting function which is equal to
α on ∆2. But then we can use Lemma 4.2 again, on ∆ = ∆′ ∪ ∆1. We conclude that
T0 ∪ T1 ∪ T2 is a RE-triangulation of ∆.

Corollary 4.4. Let Γ ⊆ R
3 be a lattice polytope congruent to Γδ for some δ. Then any

RE-triangulation of one of it’s facets can be extended to a RE-triangulation of Γ.

Proof. After translating and rotating, we can assume that Γ = Γδ, and that the tri-
angulated facet is the one at the bottom, i.e., T0 in the above lemma. Now choose
any RE-triangulation of each triangle Tk := conv{(0, 0, k), (δ − k, 0, k), (0, δ − k, k)},
k = 1, . . . , δ. The lemma then implies that each layer (of height 1) conv{Tk−1, Tk} has
a RE-triangulation extending these. Finally we can glue these together one by one, as
in Lemma 4.2.

To simplify the statement of the main result in this section, we introduce the fol-
lowing notion: We say that a lattice polytope ∆ ⊆ Γδ is a truncated version of Γδ, if
∆ results from chopping off one or several corners of Γδ such that i) each chopped off
piece is congruent to Γs for some s < δ, and ii) any two chopped off pieces have disjoint
interiors.

Proposition 4.5. Let ∆ be a truncated version of Γδ for some δ ∈ N. If T is a
RE-triangulation of ∆, then T can be extended to a RE-triangulation of Γδ.

Proof. Each “missing piece” is a tetrahedron congruent to Γs for some integer s < δ,
with a RE-triangulation (induced by T ) on one of its facets. Hence, by Corollary 4.4,
each missing piece has a RE-triangulation that fits. By Lemma 4.2, we can glue these
triangulations onto T one by one, making a RE-triangulation of Γδ.
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5 Polytopes with exits in Γδ

Let ω1, ω2, ω3, ω4 be the vectors −e1,−e2,−e3 and e1 + e2 + e3, respectively. For any
δ ∈ N, and each i = 1, 2, 3, 4, let Fi be the facet of Γδ with ωi as an outwards normal
vector. For any p ∈ R

n, let ℓp,i be the unbounded ray emanating from p in the
direction of ωi. Hence any tropical line in R

3 with vertices v1 and v2, contain the
rays ℓv1,i1 , ℓv1,i2 , ℓv2,i3, ℓv2,i4 for some permutation (i1, i2, i3, i4) of (1, 2, 3, 4). The central
theme of this paper is to examine under what conditions a tropical line can be contained
in a tropical surface. A simple, but crucial observation is the following:

Lemma 5.1. Let C be a (closed) 2-cell of a tropical surface. Then,

ℓp,i ⊆ C for any point p ∈ C ⇐⇒ C∨ is contained in Fi.

Motivated by this lemma, we make the following definition:

Definition 5.2. Let ∆ be a lattice polytope contained in Γδ. We say that ∆ has an
exit in the direction of ωi if dim(∆ ∩ Fi) ≥ 1. If ∆ has exits in the directions of k of
the ωi’s, we say that ∆ has k exits.

It is a fun task to establish how many exits different types of subpolytopes of Γδ

can have. We leave the proof of this lemma to the reader:

Lemma 5.3. If δ ≥ 2, then a primitive triangle in Γδ can have at most 3 exits.

The case of tetrahedra with 4 exits in Γδ is an interesting one, which will be import-
ant for us towards the end of the paper. Let Tδ be the set of all such tetrahedra. We
proceed to give a classification of the elements of Tδ, and analyze under what conditions
they can be elementary.

For any lattice tetrahedron Ω ⊆ Γδ we define its facet distribution Fac(Ω) to be the
unordered collection of four (possibly empty) subsets of [4] := {1, 2, 3, 4} obtained in the
following way: For each vertex of Ω take the set of indices i of the facets Fi containing
that vertex. For example, if Ω′ ⊆ Γ2 has vertices (0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), then
Fac(Ω′) = {{1, 2, 3}, {1, 2}, {3, 4}, {1, 4}}.

A collection of four subsets of [4] is called a four-exit distribution (FED) if each
i ∈ [4] appears in exactly two of the subsets. Clearly, Ω has four exits if and only if
Fac(Ω) contains a FED. (A collection {J1, J2, J3, J4} is contained in another collection
{J ′

1, J
′
2, J

′
3, J

′
4} if (possibly after renumerating) Ji ⊆ J ′

i, for all i = 1, . . . , 4.) For
example, with Ω′ as above, Fac(Ω′) contains two FEDs: {{1, 2, 3}, {1, 2}, {3, 4}, {4}}
and {{2, 3}, {1, 2}, {3, 4}, {1, 4}}.

Let F be the set of all FEDs, and consider the incidence relation

Q ⊆ Tδ ×F , Q := {(Ω, c) | c is contained in Fac(Ω)}.

Let π1 and π2 be the projections from Q to Tδ and F respectively. Then π1 is obviously
surjective, but not injective (for example, the last paragraph shows that π−1

1 (Ω′) con-
sists of two elements). Note that the group S4 acts on Tδ (induced by the symmetry
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action on Γδ), on F (in the obvious way), and on Q (letting σ(Ω, c) = (σ(Ω), σ(c))).
Hence we can consider the quotient incidence

Q̃ := Q/S4 ⊆ Tδ/S4 ×F/S4,

with the projections π̃1 and π̃2. We claim that the image of Q̃ under π̃2 has exactly six
elements, namely the equivalence classes of the following FEDs:

(6)

c1 = {{1, 2, 3}, {1, 2, 4}, {3}, {4}}, c4 = {{1, 2, 3}, {1, 2}, {3, 4}, {4}},

c2 = {{1, 2, 3}, {1, 2, 4}, {3, 4}, { }}, c5 = {{1, 2, 3}, {1, 4}, {2, 4}, {3}},

c3 = {{1, 2}, {1, 2}, {3, 4}, {3, 4}}, c6 = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}.

The proof of this claim is a matter of simple case checking: One finds that the set
F/S4 has 11 elements. In addition to the six given in (6) there are four elements
represented by FEDs of the form {{1, 2, 3, 4}, {..}, {..}, {..}}. These cannot be in the
image of π̃2, since no vertex lies on all four facets. Finally there is the equivalence class
of {1, 2, 3}, {1, 2, 3}, {4}, {4}, which corresponds to a degenerate tetrahedron.

Now, for δ ∈ N, and each j = 1 . . . , 6, we define the following subsets of Tδ:

Gj
δ := {Ω ∈ Tδ | Ω̃ ∈ π̃1(π̃

−1
2 (cj))}

E j
δ := {Ω ∈ Gj

δ | Ω is elementary}.
(7)

(Here, Ω̃ denotes the image of Ω in Tδ/S4.) Note that for a fixed δ, the subsets Gj
δ

cover Tδ, but may overlap. For instance, our running example Ω′ lies in G4
2 ∩ G6

2 .
In the particular case δ = 1, we have trivially that for all j = 1, . . . , 6, the sets Gj

1

and E j
1 both consist of the single tetrahedron Γ1. For higher values of δ, we have the

following results for the subsets E j
δ :

Proposition 5.4. Let δ ≥ 2 be a natural number. Then

a) E1
δ = E2

δ = E3
δ = ∅.

b) E4
δ ∩ E5

δ 6= ∅.

c) E5
δ r (E4

δ ∪ E6
δ ) = ∅.

d) E6
δ r (E4

δ ∪ E5
δ ) = ∅ ⇐⇒ either δ = 3, or δ is even and contained in a certain

sequence, starting with 2, 4, 6, 8, 14, 16, 18, 20, 26, 30, 56, 76, . . . .

Proof. a) Any tetrahedron Ω in G1
δ or G2

δ contains a complete edge of Γδ. Such an edge
is not primitive when δ > 1, hence Ω cannot be elementary.

If Ω ∈ G3
δ , then (modulo the action of S4) the vertices of Ω are of the form

(0, 0, a), (0, 0, b), (c, δ − c, 0), (d, δ − d, 0). Its volume is

∣

∣

∣

1

6

˛

˛

˛

˛

˛

˛

˛

˛

0 0 a 1
0 0 b 1
c δ − c 0 1
d δ − d 0 1

˛

˛

˛

˛

˛

˛

˛

˛

∣

∣

∣
= |

1

6
δ(a − b)(c − d)|,

which is either equal to 0 or ≥ δ
6
. Hence Ω cannot be elementary when δ > 1.
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b) Given any natural number δ, let Ω be the convex hull of (0, 0, 0), (1, 0, 0), (δ−1, 0, 1)
and (0, 1, δ − 1). Then Ω ∈ G4

δ ∩ G5
δ . Also, vol(Ω) = 1

6
, so Ω is elementary.

c) Any Ω ∈ G5
δ has (modulo S4) vertices with coordinates (0, 0, 0), (δ−a, 0, a), (0, b, δ−

b), and (c, d, 0), where a, b, c, d are natural numbers such that 0 ≤ a, b, c, d ≤ δ and
c + d ≤ δ. Furthermore, if Ω /∈ Gj

δ for all j 6= 5, then all these inequalities are strict. If
Ω is elementary, we must have vol(Ω) = 1

6
, which is implies that

(8) 6 vol(Ω) =
∣

∣

∣

˛

˛

˛

˛

˛

˛

δ − a 0 a

0 b δ − b

c d 0

˛

˛

˛

˛

˛

˛

∣

∣

∣
= |abc + (δ − a)(δ − b)d|

is equal to 1. This is impossible when δ ≥ 2, as shown in Lemma 5.5 below.

d) The vertices of Ω ∈ G6
δ r(G1

δ ∪G2
δ ∪G3

δ ∪G4
δ ∪G5

δ ) are (modulo S4) of the form (a, 0, 0),
(0, b, 0), (0, c, δ − c), and (d, 0, δ − d), where 1 ≤ a, b, c, d ≤ δ − 1. We find

6 vol(Ω) = |ac(δ − b − d) − bd(δ − a − c)| =: f(δ, a, b, c, d).

When δ = 3, it is straightforward to check by hand that the equation f(δ, a, b, c, d) = 1
has no solutions in the required domain. However, if δ = 2n + 1 for any n ≥ 2,
then (a, b, c, d) = (n − 1, n, n + 1, n) is a solution, since f(2n + 1, n − 1, n, n, n + 1) =
|(n − 1)(n + 1) − n2| = 1.

When δ is even we do not have any general results. A computer search shows that
the equation f(δ, a, b, c, d) = 1 has solutions (in the allowable domain) for all δ less
than 1000 except for δ ∈ {2, 4, 6, 8, 14, 16, 18, 20, 26, 30, 56, 76}. It would be interesting
to know whether more exceptions exist.

Lemma 5.5. The equation

abc + (δ − a)(δ − b)d = ±1

has no integer solutions in the domain 1 ≤ a, b ≤ δ − 1, c, d 6= 0.

Proof. Keep c, d ∈ Z r {0} and δ ∈ N fixed, and let ǫ be either 1 or −1. Then the
equation cxy + d(δ − x)(δ − y) = ǫ describes a hyperbola C intersecting the x-axis
in x∗ = (δ − ǫ

dδ
, 0) and the y-axis in y∗ = (0, δ − ǫ

dδ
). Observe that δ − ǫ

dδ
is strictly

bigger than δ − 1, and furthermore that the slope y′(x) = d(δ−y)−cy

cx−d(δ−x)
is positive at both

x∗ and y∗. It follows that C never meets the square 1 ≤ x, y ≤ δ − 1. This proves the
lemma.

6 Properties of tropical lines on tropical surfaces

From now on, unless explicitly stated otherwise, X will always be a smooth tropical
surface of degree δ in R

3, and L a tropical line in R
3. We fix the notation ℓ1, . . . , ℓ4 for

the unbounded rays of L in the directions −e1,−e2,−e3 and e1 + e2 + e3, respectively,
and ℓ5 the bounded line segment.

Any tropical surface X induces a map cX from the underlying point set of X to
the set of cells of X, mapping a point on X to the minimal cell (w.r.t. inclusion) on
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X containing it. In particular we introduce the following notion: If v is a vertex of
L ⊆ X, and dim cX(v) = k, we say that v is a k-vertex of L (on X).

An important concept for us is the possibility of a line segment on X to pass from
one cell to another. When X is smooth, it turns out that this can only happen in
one specific way, making life a lot simpler for us. We prove this after giving a precise
definition:

Definition 6.1. Let X be a tropical surface (not necessarily smooth), and let ℓ ⊆ X
be a ray or line segment. Let CX(ℓ) be the set

CX(ℓ) := {cX(p) | p ∈ ℓ, and cX(q) = cX(p) for all q ∈ ℓ sufficiently close to p.}.

If |CX(ℓ)| ≥ 2, then we say that ℓ is trespassing on X.

Note that CX(ℓ) consists of the cells C ⊆ X which satisfy dim(int(C) ∩ ℓ) ≥ 1.
Thus Definition 6.1 corresponds well to the intuitive concept of “passing from one cell
to another”.

Lemma 6.2. Suppose X is smooth, ℓ ⊆ X a trespassing line segment, and C, C ′ ⊆ X
cells such that

CX(ℓ) = {C, C ′}.

Then C and C ′ are maximal cells of X whose intersection is a vertex of X.

Proof. Let E = C ∩ C ′, and let v be a direction vector of ℓ. Clearly, dim E is either 1
or 0. If E is a 1-cell, then C and C ′ are 2-cells adjacent to E. But since X is smooth,
Lemma 3.7 implies that ℓ cannot intersect the interiors of both C and C ′, contradicting
that CX(ℓ) = {C, C ′}.

Hence dim E = 0, i.e., E is a vertex of X. Since X is smooth, E∨ is a tetrahedron
in SubdivX . Now, if dim C = dim C ′ = 1, then both C and C ′ are parallel to v,
implying that E∨ has two parallel facets (C∨ and C ′∨). This contradicts that E∨ is
a tetrahedron. The case where dim C = 1 and dim C ′ = 2 (or vice versa) is also
impossible. Here, C∨ and C ′∨ would be, respectively, a facet and an edge of E∨, where
v is the normal vector of C∨ and v also is normal to C ′∨ (since C ′∨ is normal to C ′

which contains ℓ). This would lead to E∨ being degenerate. The only possibility left
is that dim C = dim C ′ = 2, in other words that C and C ′ are both maximal. This
proves the lemma.

In the following, we will call a tropical line L trespassing on X, if L ⊆ X, and at
least one of the edges of L is trespassing. Obviously, Lemma 6.2 implies that:

Corollary 6.3. Any trespassing tropical line on X contains a vertex of X.

Proof. By definition, a trespassing tropical line on X has a trespassing edge (either a
ray or a line segment). Then we can find a line segment ℓ contained in this edge, such
that |CX(ℓ)| = 2. By Lemma 6.2, ℓ contains a vertex of X.

Lemma 6.4. Suppose L ⊆ X is non-degenerate, and that L has a 1-vertex v on X.
Let E = cX(v). Then we have:
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a) E contains no other points of L.

b) The edges of the triangle E∨ ⊆ SubdivX are orthogonal to the vectors ωi, ωj and
ωi + ωj (in some order), where ωi and ωj are the directions of the unbounded
edges of L adjacent to v.

Proof. a) Since L is non-degenerate, v has exactly three adjacent edges. Let m1, m2, m3

be the intersections of these with a neighborhood of v, small enough so that each mi

is contained in a closed cell of X. It is sufficient to prove that none of these segments
are contained in E. Assume otherwise that m1 ⊆ E. Since v ∈ int(E), the only other
cells of X meeting v are the three (since X is smooth) 2-cells adjacent to E. Hence
m2 ⊆ C and m3 ⊆ C ′, where C and C ′ are 2-cells adjacent to E. We must have
C 6= C ′, otherwise L cannot be balanced at v. But then, since X is smooth, C and
C ′ span different planes in R

3 (see Lemma 3.7). This again contradicts the balancing
property of L at v. Indeed, balance at v immediately implies that the plane spanned
by m1 and m2 equals the plane spanned by m1 and m3.
b) Follows from a) and Lemma 3.7.

Corollary 6.5. Let v1 and v2 be the (possibly coinciding) vertices of L ⊆ X, and let
Vi = cX(vi) for i = 1, 2. Then L is degenerate if and only if V1 = V2.

Proof. One implication is true by definition. For the other implication, suppose V1 =
V2 =: V . If dim V = 0, then L is clearly degenerate. If dim V = 1, then we must have
v1 = v2 (indeed, v1 6= v2 would contradict Lemma 6.4a)), thus L is degenerate. Finally,
dim V cannot be 2, as this would imply the absurdity that V spans R

3.

We are now ready to prove the following proposition:

Proposition 6.6. If deg X ≥ 3, then any tropical line L ⊆ X passes through at least
one vertex of X.

Proof. Suppose L ∩ X0 = ∅. By Corollary 6.3, L must be non-trespassing. Also, L
cannot be degenerate. Indeed, if it were, let v be its vertex. Then cX(v)∨ would have
to be a primitive triangle in Γδ with four exits, contradicting Lemma 5.3. For non-
degenerate tropical lines, it is easy to rule out all cases except for one, namely when
both of L’s vertices are 1-vertices (necessarily on different edges on X), as suggested
to the left in Figure 2. We can assume w.l.o.g. that the combinatorial type L is
((1, 2), (3, 4)). Applying Lemma 6.4b), it is clear that SubdivX contains two triangles
with a common edge, with exits as shown to the right in Figure 2. The points A, B, C, D
lie on F14, F23, F12, F34 respectively, and the middle edge AB is orthogonal to e1 + e2.
It follows that the points are situated as in Figure 3, with coordinates of the form
A = (a, 0, 0), B = (0, a, δ − a), C = (0, 0, c) and D = (d, δ − d, 0). Since X is smooth,
the triangles ABC and ABD must be facets of some elementary tetrahedra ABCP
and ABDQ. Setting P = (p1, p2, p3) and Q = (q1, q2, q3) we find that

6 vol(ABCP ) =

∣

∣

∣

∣

˛

˛

˛

˛

˛

˛

˛

˛

a 0 0 1
0 a δ − a 1
0 0 c 1
p1 p2 p3 1

˛

˛

˛

˛

˛

˛

˛

˛

∣

∣

∣

∣

= |a(ac + δp2 − ap2 − ap3 − c2 − cp1)|,
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3

DC

B

A

4

1

242

1 3

Figure 2: A tropical line not containing any vertices of X.

A

C

D

B

Figure 3: Positions of
A, B, C, D ∈ Γδ.

implying that a = 1, and similarly that

6 vol(ABDQ) =

∣

∣

∣

∣

˛

˛

˛

˛

˛

˛

˛

˛

a 0 0 1
0 a δ − a 1
d δ − d 0 1
q1 q2 q3 1

˛

˛

˛

˛

˛

˛

˛

˛

∣

∣

∣

∣

= |(δ − a)(da − δa + aq2 + aq3 + δq1 − dq2 − dq1)|,

necessitating δ − a = 1. Hence we conclude that δ = 2, as claimed.

7 Tropical lines on smooth tropical quadric surfaces

The aim of this section is to prove a tropical analogue of the following famous theorem
in classical geometry: A smooth algebraic surface of degree two has two rulings of lines.

We begin by describing the compact maximal cells of a smooth tropical quadric. It
turns out that there is always exactly one such cell:

Proposition 7.1. A smooth tropical quadric surface has a unique compact 2-cell. This
cell has a normal vector of the form −ei + ej + ek, for some permutation (i, j, k) of the
numbers (1, 2, 3).

Proof. Let X be the smooth quadric. A compact 2-cell of X corresponds to a 1-cell in
SubdivX in the interior of the Newton polytope Γ2. Such 1-cells will in the following
be called diagonals.

The only possible diagonals in Γ2 are the line segments (see Figure 4)

(9) PP ′ = (1, 0, 0), (0, 1, 1), QQ′ = (1, 0, 1), (0, 1, 0) and RR′ = (0, 0, 1), (1, 1, 0).

O

P ′

R′

R

P

Q

X

Y

Z

Q′

Figure 4: The lattice points in Γ2.

I) II)

Figure 5: The two unique elementary triangu-
lations of a lattice triangle with side length 2.
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Q

O P

P ′

Q′

R′Z

Q′Q′

P ′

P ′

R

?

P ′ Z

Q′

P

Q

X

Y

Q′

R

R

Figure 6: Induced subdivisions on three facets of Γ2. A letter inside a triangle in-
dicates the fourth point in the corresponding tetrahedron. The points X, Y, Z, O are
(2, 0, 0), (0, 2, 0), (0, 0, 2), (0, 0, 0) respectively.
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3, so at most one of them can be in SubdivX .
This proves uniqueness. To complete the proof we must show that SubdivX contains
at least one diagonal. (The final statement in the proposition follows trivially from the
direction vectors of the diagonals in (9).)

Since X is smooth, SubdivX is an elementary triangulation of Γ2. In particular,
the induced subdivisions of the four facets of Γ2 are also elementary triangulations.
Up to symmetry, there are only two possibilities for these triangulations, shown as I
and II in Figure 5. Suppose the triangulation of the bottom facet is of type I. Then,
in particular, it contains the triangle △PQR as an element. Let T ∈ SubdivX be the
(unique) elementary tetrahedron having this triangle as a facet. For T to have volume
1
6
, its height must be 1, so the fourth vertex is either P ′, Q′ or R′. In either case, T

contains one of the diagonals (9) as an edge.

The same argument can be used on the three other facets of Γ2, so we are left with
the case where all the subdivisions induced on the facets are of type II (cf. Figure 5).
Suppose this is the case, and that SubdivX contains no diagonals. We will show that
this leads to a contradiction.

Figure 6 shows three of the facets of Γ2 folded out. Starting from the bottom facet
OXY (drawn in bold lines in Figure 6), we can assume (after a rotation if necessary)
that its induced subdivision is as in Figure 6. Now, since SubdivX contains neither
PP ′, QQ′ nor RR′, the tetrahedron containing OPR as a facet, must have Q′ as
its fourth vertex. Similarly, the other three tetrahedra on the bottom of SubdivX

are uniquely determined. This in turn determines the subdivision of the facet OY Z,
and the corresponding closest tetrahedra (see Figure 6). In particular, it follows that
P ′Q′ ∈ SubdivX . But turning to the facet XY Z, we see that this is impossible. Indeed,
we already know that P ′R and Q′R are in SubdivX . Together with P ′Q′, this implies
that the induced subdivision of XY Z is of type I, violating the assumption.

Let X denote the compact 2-cell of X found in Proposition 7.1. Our main result
about tropical lines on tropical quadrics is the following:
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7 TROPICAL LINES ON SMOOTH TROPICAL QUADRIC SURFACES

Figure 7: A smooth tropical quadric surface X, with two tropical lines passing through
a point in X.

Theorem 7.2. For each point p ∈ X there exist two distinct tropical lines on X passing
through p.

Proof. We can assume (using if necessary the action of S4) that X has a normal vector
−e1 + e2 + e3, i.e., that the edge in SubdivX corresponding to X is PP ′ (see Figure 4).
Let p be any point on X, and consider the line given by p + t(e1 + e2), t ∈ R. Let L−

and L+ be the rays where t ≤ 0 and t ≥ 0 respectively, and let p−, p+ be the points on
the boundary of X where L− and L+ leave X. We will show that the tropical line Lp

with vertices p− and p+, lie on X.
Let E− := cX(p−) and E+ := cX(p+). If E− (resp. E+) is a vertex, redefine it to

be any adjacent edge (of X) not parallel to v. To prove that Lp ⊆ X, it is enough
(by Lemma 5.1) to show that the triangle (E−)∨ ∈ SubdivX has exits in the directions
ω1, ω2, and that (E+)∨ has exits in the directions ω3, ω4.

The boundary of X is made up precisely by the 1-cells of X whose dual triangles
in SubdivX has PP ′ as one edge. In particular there are lattice points A, B ∈ Γ2 such
that (E−)∨ = △APP ′ and (E+)∨ = △BPP ′. We claim that

(10) A and B lies on the edges F12 and F34 respectively.

If this claim is true, it follows immediately that the triangles △APP ′ and △BPP ′

have the required exits, and therefore that Lp ⊆ X. To prove the claim, we utilize
Lemma 7.3 below. By the construction of E−, it is clear that the vector e1 + e2 points
inwards from E− into X. The lemma then implies that 〈e1 +e2, u〉 < 0 for all vectors u
pointing inwards from PP ′ into △APP ′. In particular, choosing u as the vector from
P to A = (a1, a2, a3), this gives a1 + a2 < 1. The only lattice points in Γ2 satisfying
this are those on F12, so A ∈ F12. That B ∈ F34 follows similarly. This proves the
claim, and we conclude that Lp ⊆ X.

Next, consider the affine line p + t(e1 + e3), t ∈ R. The points where this line
leaves X are again the vertices of a tropical line, L′

p, which we claim is contained
in X. Indeed, this follows after swapping the coordinates e2 and e3 (i.e., letting the
transposition σ = (23) ∈ S4 act on X), and repeating the above proof word for word.
Figure 7 shows Lp and L′

p in a typical situation.
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Figure 8: Illustration of Lemma 7.3.

Lemma 7.3. Let E be an edge of a 2-cell C on a tropical surface. For any vector v
pointing inwards from E into C, and any vector u pointing inwards from C∨ into E∨,
we have

〈v, u〉 < 0.

Proof. Let n be the unit inwards normal vector of E relative to C. By Lemma 3.2, n
is an outwards normal vector of C∨ relative to E∨. In particular, we have 〈v, n〉 > 0
and 〈u, n〉 < 0. (See Figure 8.)

For v = n, the lemma is clearly true, so assume v 6= n. The vector product v × n is
then a normal vector of C, and therefore a direction vector of C∨. Hence u × (v × n)
is a normal vector of E∨, i.e., it is a direction vector of E. But since n is a normal
vector of E, this implies that 〈u × (v × n), n〉 = 0. Expanding this, using the familiar
formula a × (b × c) = 〈a, c〉b − 〈a, b〉c, we find that

〈u, n〉〈v, n〉 = 〈u, v〉〈n, n〉 = 〈u, v〉.

(In the last step we used that |n| = 1.) The lemma follows from this, since 〈u, n〉 < 0
and 〈v, n〉 > 0.

8 Two-point families on X

To any L ⊆ X, with edges ℓ1, . . . , ℓ5, we can associate a set of data, DX(L) =
{V1, V2, C1, C2, . . . , C5, κ}, where,

• Vi = cX(vi), where v1, v2 are the (possibly coinciding) vertices of L.

• Ci is the set CX(ℓi) (cf. Definition 6.1).

• κ is the combinatorial type of L.

Recall in particular that ℓi is trespassing on X if and only if |Ci| ≥ 2.
One might wonder if different tropical lines on X can have the same set of data. It

is not hard to imagine an example giving an affirmative answer, e.g. as in Figure 9.
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8 TWO-POINT FAMILIES ON X

In this Figure one of the vertices of the tropical line can be moved along the middle
segment, creating infinitely many tropical lines with the same set of data. Clearly,
the collection of all these tropical lines is a two-point family. As we will show in the
remainder of this section, this is not a coincidence.

Figure 9: A two-point family of tropical lines on a tropical surface.

By a perturbation of a point p ∈ R
3 we mean a continuous map µ : [0, 1) → R

3,
possibly constant, such that µ(0) = p.

Definition 8.1. A tropical line L ⊆ X can be perturbed on X if there exist perturb-
ations µ1 and µ2 - not both constant - of the vertices of L such that for all t ∈ [0, 1),
µ1(t) and µ2(t) are the vertices of a tropical line Lt ⊆ X. In this case, we call the map
[0, 1) → Gtr(1, 3) given by t 7→ Lt a perturbation of L on X.

If L is degenerate, we think of L as having two coinciding vertices. Thus Definition
8.1 allows perturbations of L where the vertices are separated, creating non-degenerate
tropical lines.

By a two-point family of tropical lines on X, or simply a two-point family on X, we
mean a two-point family of tropical lines, all of which are contained in X. A two-point
family on X is maximal (on X) if it not contained in any strictly larger two-point
family on X. A tropical line on X is isolated if it does not belong to any two-point
family on X.

Special perturbations, as the one in Figure 9, give rise to two-point families on X.
We state a straightforward generalization of this example in the following lemma, for
later reference. Note that if µ is a perturbation of L on X, we say that the vertex vi is
perturbed along an edge of L, if im(µi) ⊆ Aff(ℓ) for some edge ℓ ⊆ L (cf. the notation
in Definition 8.1).

Lemma 8.2. If a non-degenerate L ⊆ X has a perturbation on X where at least one
of the vertices is perturbed along an edge of L, then L belongs to a two-point family on
X.

Proposition 8.3. Let L be a tropical line on a smooth tropical surface X, where
deg X ≥ 3. If L is isolated, then L is uniquely determined by DX(L).

Proof. Let D = DX(L) = {V1, V2, C1, C2, . . . , C5, κ} be a given set of data. We will
identify all situations where L is not uniquely determined by D, and show that Lemma
8.2 applies in each of these cases.
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We first consider the case where κ 6= (1234), meaning that L is non-degenerate.
The following observations will be used frequently:

A) L is determined by (the positions of) its two vertices.

B) The direction vector of the bounded segment ℓ5 is determined by κ.

C) If |Cj| ≥ 2, then Aff(ℓj) is determined by the elements of Cj (and the index j).

D) If dim Vi = 1, and Aff(ℓj) is known for any edge ℓj adjacent to vi, then vi is
determined.

Of these, A) and B) are clear, C) is a consequence of Lemma 6.2, and D) follows from
Lemma 6.4a).

Now, assume that V1 and V2 are ordered so that dim V1 ≤ dim V2. Under this
assumption, we examine the uniqueness of L for different sets of data, according to the
pair (dim V1, dim V2):

• (dim V1, dim V2) = (0, 0): Obviously, by A), L is determined.
• (dim V1, dim V2) = (0, 1): In this case Aff(ℓ5) is determined by V1 and κ (cf. B)).

Hence v2 is determined (by D)). Since v1 = V1, it follows that L is determined.
• (dim V1, dim V2) = (0, 2): Again, v1 and Aff(ℓ5) are determined by V1 and κ.

Write κ = ((a, b), (c, d)), and consider first the case where either |Cc| ≥ 2 or |Cd| ≥ 2.
We can assume the former. Then Aff(ℓc) is determined, which again determines v2 =
Aff(ℓ5) ∩ Aff(ℓc). Thus, in this case L is determined.

Otherwise, we have Cc = Cd = V2. In this situation L is not uniquely determined
by D, as v2 can be perturbed to anywhere in the intersection of Aff(ℓ5) and V2 without
changing D.

• (dim V1, dim V2) = (1, 1): Observe first that we must have |Ci| ≥ 2 for some i.
(Otherwise L is not trespassing, and since none of its vertices are vertices of X, this
would contradict Proposition 6.6.) Hence Aff(ℓi) is determined for some i. If i = 5,
then (by D)) both v1 and v2 are determined by this. If i 6= 5, then in the first place
only the endpoint of ℓi is determined. But this together with κ determines Aff(ℓ5), and
thus both vertices. Hence, in any case, L is determined.

• (dim V1, dim V2) = (1, 2): Let κ = ((a, b), (c, d)). We consider five cases:
i) |Cj | ≥ 2 for both j = c, d. Then Aff(ℓc) and Aff(ℓd) are determined, and therefore

also v2 = Aff(ℓc) ∩ Aff(ℓd). This and κ determines Aff(ℓ5), which in turn (by D))
determines v1. Hence L is determined.

ii) |Cj | ≥ 2 for exactly one index j ∈ {c, d} (assume d), and also for at least one
index j ∈ {a, b, 5}. This last condition determines Aff(ℓ5), either directly (if j = 5) or
via v1 and κ. Thus v2 = Aff(ℓd) ∩ Aff(ℓ5) is determined, and therefore L as well.

iii) |Cj| ≥ 2 for exactly one index j ∈ {c, d} (assume d), and for no other indices j.
In this case v2 can be perturbed along ℓd without changing D, so L is not determined
by D. (The perturbation of v1 (along V1) will be determined by the perturbation of
v2.)

iv) |Cj | ≥ 2 for no j ∈ {c, d}, but at least one j ∈ {a, b, 5}. As in ii) above, the last
condition determines Aff(ℓ5) and therefore v1. The vertex v2 can be perturbed along
ℓ5, so L is not determined.
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9 TROPICAL LINES ON HIGHER DEGREE TROPICAL SURFACES

v) |Cj| = 1 for all j ∈ {1, 2, 3, 4, 5}. This is not possible when deg X ≥ 3. In fact,
it follows from Lemma 5.3 that deg X = 1. Indeed, since no edge of L is trespassing,
the triangle V ∨

1 must have four exits in Γdeg X .

• (dim V1, dim V2) = (2, 2): Note first that V1 6= V2, since L spans R
3. Hence |C5| ≥

2, determining Aff(ℓ5). Now, for both i = 1, 2 we have: If any adjacent unbounded
edge of vi is trespassing, then vi is determined. If not, vi can be perturbed along ℓ5

keeping D unchanged.

Going through the above list, we see that in each case where L is not uniquely
determined by D, L has a perturbation where a vertex is perturbed along an edge of
X. Hence, by Lemma 8.2, L belongs to a two-point family on X.

Finally, suppose κ = (1234), so L is degenerate. We show that in this case, L is
determined by D. Corollary 6.5 (and its proof) tells us that V1 = V2 := V where dim V
is either 0 or 1. In the first case, L is obviously uniquely determined. If dim V = 1
then |Cj | ≥ 2 for some j ∈ {1, 2, 3, 4}, otherwise L would contain no vertex of X,
contradicting Proposition 6.6. Hence Aff(ℓj) is determined. We claim that V1 6⊆
Aff(ℓj). Note that this would determine v1 = v2 = Aff(ℓj) ∩ V1, and therefore also L.
To prove the claim, note that if V1 ⊆ Aff(ℓj), then V1 ∈ Cj . This is impossible, since
any element of Cj must be of dimension 2 (cf. Lemma 6.2). This concludes the proof
of the proposition.

9 Tropical lines on higher degree tropical surfaces

In this section we present our main results about tropical lines on smooth tropical
surfaces of degree greater than two. The proofs rest heavily on what we have done so
far. The first is indeed a corollary of Proposition 8.3:

Corollary 9.1. Let X be a smooth tropical surface where deg X ≥ 3. Then X contains
at most finitely many isolated tropical lines. Furthermore, X contains at most finitely
many maximal two-point families.

Proof. The first statement is immediate from Proposition 8.3, since there are only
finitely many possible sets of data DX(L). For the last statement, observe that any
two-point family contains a non-degenerate tropical line. Going through the proof of
Proposition 8.3, we see that if D is the data set of is a non-degenerate tropical line, then
there can be at most one maximal two-point family containing tropical lines with data
set D. Hence there are at most finitely many maximal two-point families on X.

The next theorem show that two-point families exist on smooth tropical surfaces of
any degree.

Theorem 9.2. For any integer δ, there exists a full dimensional cone in Φ(Γδ) in
which each point corresponds to a smooth tropical surface containing a two-point family
of tropical lines. In particular, there exist smooth tropical surfaces of degree δ with
infinitely many tropical lines.
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Proof. According to Proposition 5.4b) there exists an elementary tetrahedron with four
exits Γδ. An example of such a tetrahedron is (see Figure 10)

Ω := conv({(0, 0, 0), (0, 0, 1), (δ − 1, 1, 0), (1, 0, δ − 1)}).

Assume for the moment that there exists a smooth tropical surface X such that
SubdivX contains Ω. Then Lemma 5.1 implies the vertex v := Ω∨ ∈ X is the cen-
ter of degenerate tropical line L ⊆ X. We claim that L belongs to a two-point family
on X. Indeed, this also follows from Lemma 5.1: Let C ⊆ X be the cell dual to
the line segment in SubdivX with vertices (0, 0, 0) and (0, 0, 1). Then for any point
p(t) = v + t(−e1 − e2), where t > 0, the line segment with endpoints v and p(t) is
contained in C. Let Lt be the tropical line with vertices v and p(t). Lemma 5.1 guar-
antees that the rays starting in p(t) in the directions −e1 and −e2 are contained in C.
Hence Lt ⊆ X. Clearly, the lines Lt form a two-point family on X, thus the claim is
true. (See Figure 11.)

What remains to prove is the existence of a RE-triangulation of Γδ containing Ω.
Using the techniques in Section 4, it is not hard to construct such a triangulation. For
example, consider the polytope

∆ = conv({(0, 0, 0), (δ, 0, 0), (δ − 1, 1, 0), (0, 1, 0), (0, 1, δ − 1), (0, 0, δ)}).

Then ∆ is a truncated version of Γδ, so by Proposition 4.5 it is enough to construct a
RE-triangulation of ∆ which contains Ω. Write ∆ = Ω ∪ ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4, where

∆1 = conv({(0, 0, 0), (δ, 0, 0), (δ − 1, 1, 0), (1, 0, δ − 1)})

∆2 = conv({(0, 0, 1), (δ − 1, 1, 0), (1, 0, δ − 1), (0, 0, δ)})

∆3 = conv({(0, 0, 0), (δ − 1, 1, 0), (0, 1, 0), (0, 0, δ)})

∆4 = conv({(δ − 1, 1, 0), (0, 1, 0), (0, 1, δ − 1), (0, 0, δ)})

Repeated use of Lemma 4.1 gives a RE-triangulation of each of these (for ∆1 and
∆4 choose any RE-triangulation of the facets conv({(0, 0, 0), (δ, 0, 0), (1, 0, δ− 1)}) and
conv({(δ − 1, 1, 0), (0, 1, 0), (0, 1, δ− 1)}) respectively). Finally, it is easy to check that
these triangulations patch together to a RE-triangulation of ∆, using Lemma 4.2.

In light of the above theorem, one might ask whether there exist tropical surfaces of
high degree containing an isolated degenerate tropical line L. If we add the requirement
that L is non-trespassing on X, we can give the following partial answer:

Proposition 9.3. Let δ ∈ N. There exists a smooth tropical surface X of degree δ
containing an isolated, non-trespassing, degenerate tropical line, if and only if δ is

• an odd number greater than 3, or

• an even number except 2, 4, 6, 8, 14, 16, 18, 20, 26, 30, 56, 76,...

Proof. We know that the vertex of such a line must be a vertex of X, corresponding
to an elementary tetrahedron Ω ∈ SubdivX with four exits. Furthermore, no edge of Ω
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Figure 10: A tetrahedron with four exits
in Γδ.

Figure 11: The degenerated tropical line
corresponding to the tetrahedron in Fig-
ure 10 belongs to a two-point family

can have more than one exit. Indeed, an edge with exits ωi and ωj will be orthogonal
to the vector ωi + ωj , implying (as in the proof of Theorem 9.2) that L belongs to a
two-point family.

From the classification in (6) of tetrahedra with four exits in Γδ, we observe the
following: A tetrahedron with four exits, in which no edge has more than one exit,
must belong either exclusively to the subset G5

δ , or exclusively to the subset G6
δ . The

result then follows from Proposition 5.4c) and d). As we remarked in that proposition,
we do not know how (or if) the list of even degrees continues.

Both Theorem 9.2 and Proposition 9.3 show that there exist plenty of tropical
surfaces of arbitrarily high degree containing tropical lines. It is natural to wonder
whether there also exist smooth tropical surfaces containing no tropical lines, isolated
or not. This is indeed true in all degrees greater than three, as we prove in [6]. In that
paper we present a classification of tropical lines on general smooth tropical surfaces,
and propose a method for counting the isolated tropical lines on such surfaces.
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Tropical lines on smooth tropical surfaces

Magnus Dehli Vigeland∗

Abstract

Given a tropical line L on a tropical surface X, we define its combinatorial
position on X to be a certain decorated graph, showing the relative positions of
vertices of X on L, and how the vertices of L are positioned on X. We classify
all possible combinatorial positions of a tropical line on general smooth tropical
surfaces of any degree. This classification allows one to give an upper bound for
the number of tropical lines on a general smooth tropical surface of degree ≥ 3
with a given subdivision. As a concrete example, we offer a subdivision for which
the associated tropical surfaces are smooth cubics with exactly 27 tropical lines
in the general case, and always at least 27 tropical lines. We also give examples
of smooth tropical surfaces of arbitrary degree > 3 containing no tropical lines.

1 Introduction

A celebrated theorem in classical geometry states that any smooth algebraic cubic sur-
face in complex projective three-space contains exactly 27 distinct lines. This was first
established in 1849 in a correspondence between Arthur Cayley and George Salmon.

Since the appearance of tropical geometry a few years ago, it has been a recurring
question whether there is a tropical analogue of this result. It is a common opinion
among tropical geometers that this is indeed the case. Explicit examples of smooth
tropical surfaces with 27 distinct tropical lines have been found by Mikhalkin and by
Gross [5].

However, nothing on the subject has been published as yet. Furthermore, it is far
from obvious what the correct formulation of the tropical analogue should be. For
example, in [7] we showed that there exist smooth tropical cubic surfaces containing
infinitely many tropical lines.

The purpose of this paper is to give a systematic approach to the subject of tropical
lines on smooth tropical surfaces of arbitrary degree. As it turns out, this allows us to
give a partial answer to the above questions.

Tropical surfaces in R
3 are unbounded polyhedral cell complexes of dimension 2 with

certain properties. Most importantly, each tropical surface is dual to a regular lattice
subdivision of a lattice polytope in R

3. We say that the tropical surface is smooth of

∗Department of Mathematics, University of Oslo, Norway. Email : magnusv@math.uio.no
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Figure 1: The underlying graph of a
tropical line in R

3.
Figure 2: Example of the combinatorial
position of a tropical line L ⊆ X.

degree δ, if the dual subdivision is an elementary (unimodular) triangulation of the
polytope Γδ = conv({(0, 0, 0), (δ, 0, 0), (0, δ, 0), (0, 0, δ)}).

A large portion of our results hold only for general smooth tropical surfaces. The
concept of generality used here should be noted: The parameter spaces of tropical
surfaces are cones (or, more generally, fans) in some large Euclidean space. When
we speak about general tropical surfaces with a given dual subdivision, we mean the
surfaces corresponding to points in some open dense subset (in the Euclidean topology)
of the parameter cone.

One can show that the general intersection of two tropical planes (i.e., tropical
surfaces of degree 1), is an unbounded one-dimensional polyhedral cell complex, called
a tropical line. Its underlying topological space is homeomorphic to the graph in Figure
1, with its 1-valent vertices removed.

The main core of this paper is an analysis of the different ways in which a tropical
line L can lie on a smooth tropical surface X. A crucial concept in our arguments is the
notion of the combinatorial position of L on X. This is a decoration of the underlying
graph of L, displaying the relative positions of vertices of X on L, and vertices of L on
X (see Figure 2 for a typical example). We are able to show that for a general smooth
X, only 17 such combinatorial positions are possible. Moreover, only nine of these can
occur if X has degree greater than two.

Let X be a tropical surface, and S its associated subdivision. The elements of S
dual to the cells of X intersecting L, form a subcomplex called a line subcomplex. In
most cases, the cell structure of this subcomplex is determined by the combinatorial
position of L. Hence, by counting subcomplexes of S, we obtain an upper bound for
the number of tropical lines on X.

As an application of the above technique we provide examples of general smooth
tropical surfaces of arbitrary degree greater than 3, containing no tropical lines (see
Proposition 6.4). This complements a result in [7], where we found general smooth
tropical surfaces of arbitrary degree containing infinitely many tropical lines.

In the final section of this paper we consider smooth tropical cubic surfaces. For
the subdivision Sα,3, shown in Figure 18, we prove:

Theorem 7.1.

a) A general tropical surface with subdivision Sα,3 contains exactly 27 tropical lines.

b) Any tropical surface with subdivision Sα,3 contains at least 27 tropical lines.

c) There exist tropical surfaces with subdivision Sα,3 containing infinitely many trop-
ical lines.
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2 PRELIMINARIES

2 Preliminaries

2.1 Convex polyhedra and polytopes

A convex polyhedron in R
n is the intersection of finitely many closed halfspaces. A

cone is a convex polyhedron, all of whose defining hyperplanes contain the origin. A
convex polytope is a bounded convex polyhedron. Equivalently, a convex polytope can
be defined as the convex hull of a finite set of points in R

n. Throughout this paper,
all polyhedra and polytopes will be assumed to be convex unless explicitly stated
otherwise.

For any polyhedron ∆ ⊆ R
n we denote its affine hull by Aff(∆), and its relative

interior (as a subset of Aff(∆)) by int(∆). The dimension of ∆ is defined as dim Aff(∆).
By convention, dim ∅ = −1. A face of ∆ is a polyhedron of the form ∆∩H , where H is
a hyperplane such that ∆ is entirely contained in one of the closed halfspaces defined
by H . In particular, the empty set is considered a face of ∆. Faces of dimensions 0, 1
and n − 1 are called vertices, edges and facets of ∆, respectively. If ∆ is a polytope,
then the vertices of ∆ form the minimal set A such that ∆ = conv(A).

A lattice polytope in R
n is a polytope of the form ∆ = conv(A), where A is a finite

subset of Z
n. We say that ∆ is elementary, or unimodular, if it is n-dimensional and

its volume is 1
n!

. It is easy to see that a necessary condition for ∆ to be elementary is
that it is a simplex, that is, the convex hull of n + 1 affinely independent points.

2.2 Polyhedral complexes and subdivisions

A (finite) polyhedral complex in R
n is a finite collection X of convex polyhedra, called

cells, such that

• if C ∈ X, then all faces of C are in X, and

• if C, C ′ ∈ X, then C ∩ C ′ is a face of both C and C ′.

The d-dimensional elements of X are called the d-cells of X. The dimension of X

itself is defined as max{dim C | C ∈ X}. Furthermore, if all the maximal cells (w.r.t.
inclusion) have the same dimension, we say that X is of pure dimension.

A polyhedral complex, all of whose cells are cones, is a fan.
A subdivision of a polytope ∆ is a polyhedral complex S such that |S| = ∆, where

|S| denotes the union of all the elements of S. It follows that S is of pure dimension
dim ∆. If all the maximal elements of S are simplices, we call S a triangulation.

If ∆ is a lattice polytope, we can consider lattice subdivisions of ∆, i.e., subdivisions
in which every element is a lattice polytope. In particular, a lattice subdivision is an
elementary triangulation if all its maximal elements are elementary simplices.

2.3 Regular subdivisions and their secondary cones

Let A ⊆ R
n be a finite set of points, and let ∆ = conv(A). For any function α : A → R

we consider the lifted polytope

∆̃ = conv({(v, α(v)) | v ∈ A}) ⊆ R
n × R ∼= R

n+1.
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Projecting the top faces of ∆̃ to R
n by forgetting the last coordinate, gives a collection

of sub-polytopes of ∆. They form a subdivision Sα of ∆, called the regular (or coherent)
subdivision induced by α. The function α is called a lifting function associated to Sα.
Note that if A ⊆ Z

n, then Sα is a lattice subdivision of ∆. Most of the subdivisions we
will encounter in this paper, are regular elementary triangulations, or RE-triangulations
for short.

Fixing an order of the elements of A, there is a natural 1-1 correspondence between
the set of functions α : A → R and R

N , where N = |A|. Hence, for any regular
subdivision S of conv(A), we can regard the set

K(S) := {α : A → R | Sα = S}

as a subset of R
N . The following was observed in [2, Chapter 7]:

Proposition 2.1. K(S) is an open cone in R
N . If S is an RE-triangulation, then

dim K(S) = N .

The cone K(S) is called the secondary cone associated to S.

2.3.1 Example

For δ ∈ N, let Aδ to be the set of lattice points contained in the simplex

Γδ := conv({(0, 0, 0), (δ, 0, 0), (0, δ, 0), (0, 0, δ)}).

The number of points in Aδ is
(

δ+3
3

)
, the (δ−1)’th tetrahedral number. Let α : R

3 → R

be the polynomial function given by

(1) α(x, y, z) = −2x2 − 2y2 − 2z2 − xy − 2xz − 2yz.

For any given δ, the restriction of α to Aδ induces - as explained above - a regular
subdivision of Γδ. We denote this subdivision by Sα,δ.

Proposition 2.2. For any δ ∈ N, Sα,δ is an RE-triangulation of Γδ.

Proof. We introduce the following six families of elementary tetrahedra in R
3: For each

lattice point P = (p, q, r) ∈ Z
3, let

∆1
P = conv{(p, q, r), (p + 1, q, r), (p, q + 1, r), (p, q, r + 1)}

∆2
P = conv{(p + 1, q + 1, r), (p + 1, q, r), (p, q + 1, r), (p, q, r + 1)}

∆3
P = conv{(p + 1, q, r), (p + 1, q + 1, r), (p, q, r + 1), (p + 1, q, r + 1)}

∆4
P = conv{(p, q + 1, r), (p + 1, q + 1, r), (p, q, r + 1), (p, q + 1, r + 1)}

∆5
P = conv{(p + 1, q + 1, r), (p + 1, q, r + 1), (p, q + 1, r + 1), (p, q, r + 1)}

∆6
P = conv{(p + 1, q + 1, r), (p + 1, q, r + 1), (p, q + 1, r + 1), (p + 1, q + 1, r + 1)}

The tetrahedra ∆1
P , . . . , ∆6

P have disjoint interiors, and they form a subdivision of the
unit cube with diagonal (p, q, r)(p + 1, q + 1, r + 1), shown in Figure 3. In particular,
the set {∆i

P}i=1,...,6;P∈Z3 is a covering of R
3.
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Figure 3: The subdivision of the unit cube
induced by α.
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Figure 4: The ellipsoid Q1.

To prove the proposition, it is enough to show that for any δ, each maximal element
of Sα,δ equals ∆i

P for some 1 ≤ i ≤ 6 and P ∈ N
3
0. Equivalently, it suffices to prove

that any tetrahedron of the form ∆i
P is a maximal element of Sα,δ, for all δ such that

∆i
P ⊆ Γδ.

Let P = (p, q, r) be any point in N
3
0, and consider the lifting (by α) of the tetra-

hedron ∆1
P . The affine hull of the resulting polytope T̃ 1

P is an affine hyperplane in R
4,

namely the graph of the function

β(x, y, z) = 2p+2q+2r−α(p, q, r)−(4p+q+2r+2)x−(p+4q+2r+2)y−(2p+2q+4r+2)z.

(Proof: It is easy to check that the functions β and α are equal on the vertices of ∆1
P .)

We claim that the difference γ := β − α is strictly positive at all lattice points
(x, y, z) ∈ Z

3
r ∆1

P . Note that correctness of this claim implies that T̃ 1
P is a top facet

of Ãδ, and therefore that ∆1
P ∈ Sα,δ (assuming δ big enough). To prove the claim,

observe that the subset {(x, y, z) | γ(x, y, z) ≤ 0} is a solid ellipsoid circumscribing ∆1
P .

Translating such that P 7→ (0, 0, 0), we get the ellipsoid Q1 with equation γ(x + p, y +
q, z + r) = 0, or

2x2 + 2y2 + 2z2 + xy + 2xz + 2yz − 2x − 2y − 2z = 0.

The ellipsoid Q1 is shown in Figure 4. It is clear that is contains no lattice points other
than the vertices of ∆1

(0,0,0). This proves the claim.
The five remaining cases are treated similarly. More precisely, for each i = 2, . . . , 6,

the problem of proving that ∆i
P ∈ Sα,δ reduces to that of showing that a certain

ellipsoid, Qi, contains no lattice points outside ∆i
(0,0,0). This is a trivial task, once one

calculates the equations of these ellipsoids:

Q2 : 2x2 + 2y2 + 2z2 + xy + 2xz + 2yz − 3x − 3y − 3z + 1 = 0

Q3 : 2x2 + 2y2 + 2z2 + xy + 2xz + 2yz − 4x − 3y − 4z + 2 = 0

Q4 : 2x2 + 2y2 + 2z2 + xy + 2xz + 2yz − 3x − 4y − 4z + 2 = 0

Q5 : 2x2 + 2y2 + 2z2 + xy + 2xz + 2yz − 4x − 4y − 5z + 3 = 0

Q6 : 2x2 + 2y2 + 2z2 + xy + 2xz + 2yz − 5x − 6z − 5y + 5 = 0
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We conclude that any tetrahedron of the form ∆i
P contained in Γδ, is a maximal element

of Sα,δ. Since the ∆i
P ’s are elementary, have disjoint interiors and cover R

3, this proves
that Sα,δ is elementary.

3 Tropical surfaces and tropical lines in R
3

We begin by going through the basic definitions and our notation concerning tropical
surfaces in R

3. Note that these concepts can be immediately generalized to hypersur-
faces in R

n. (See [3], [4], and [1]).
We work over the tropical semiring Rtr := (R, max, +). To simplify the reading of

tropical expressions, we adopt the following convention: If an expression is written in
quotation marks, all arithmetic operations should be interpreted as tropical. Hence,
if x, y ∈ R and k ∈ N0 we have for example “x + y” = max(x, y), “xy” = x + y and
“xk ” = kx.

A tropical polynomial in indeterminates x1, x2, x3 is an expression of the form

(2) f(x1, x2, x3) = “
∑

(a1,a2,a3)∈A

λa1a2a3
xa1

1 xa2

2 xa3

3 ”

where the support A is a finite subset of Z
3, and the coefficients λa1a2a3

are real num-
bers. We can write the expression for f more compactly using vector notation, with
x = (x1, x2, x3) and a = (a1, a2, a3), as f(x) = “

∑
a∈A λax

a ”. Translating to classical
arithmetic, we see that f is the maximum of a finite number of affine-linear expressions
with integral coefficients (except for the constant terms). Hence, f : R

3 → R is a con-
vex, piecewise linear function with rational slopes. The non-linear locus of f , denoted
Vtr(f), is called the tropical surface associated to f . It is well known (see e.g. [3] and
[4]) that Vtr(f) is a connected polyhedral complex of pure dimension 2, some of whose
cells are unbounded in R

3.

Definition 3.1. Let δ ∈ N. A tropical surface of degree δ is a subset of R
3 of the form

Vtr(f), where f is a tropical polynomial whose support is the set Aδ defined in Section
2.3.1

3.1 Duality

Many of the techniques used in this paper rest on the duality - detailed below - between
cells in a tropical surface of degree δ and in its subdivision of Γδ.

Let X be a tropical surface of degree δ. Writing Aδ := Γδ ∩ Z
3, this means (by

Definition 3.1) that X is of the form X = Vtr(f), for some tropical polynomial f(x) =
“
∑

a∈Aδ
λax

a ”. As explained in Section 2.3, the function a 7→ λa induces a regular
lattice subdivision of Γδ. We denote this by Subdiv(f). Any element ∆ ∈ Subdiv(f)
of dimension at least 1, corresponds in a natural way to a cell ∆∨ ⊆ Vtr(f). Namely,
if the vertices of ∆ are a1, . . . , ar, then ∆∨ is the solution set of the equalities and
inequalities

(3) λa1
+ 〈a1, x〉 = · · · = λar

+ 〈ar, x〉 ≥ λb + 〈b, x〉, for all b ∈ Aδ r {a1, . . . , ar}.
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(Here, 〈 , 〉 denotes the Euclidean inner product on R
3.) Moreover, we have the fol-

lowing theorem (see [4, Proposition 3.11]):

Theorem 3.2. The association ∆ 7→ ∆∨ gives a one-to-one correspondence between the
k-cells of Subdiv(f) and the (n − k)-cells of Vtr(f), for each k = 1, 2, 3. Furthermore,
for any cells ∆, Λ ∈ Subdiv(f) of dimensions at least 1, we have that

i) If ∆ is a face of Λ, then Λ∨ is a face of ∆∨ in Vtr(f).

ii) The affine-linear subspaces Aff(∆) and Aff(∆∨) are orthogonal in R
3.

iii) ∆ ⊆ ∂(Γδ) if and only if ∆∨ is an unbounded cell of Vtr(f).

If C is a cell of Vtr(f), we denote its corresponding cell in Subdiv(f) by C∨. The
cells C and C∨ are said to be dual to each other.

Definition 3.3. We say that Vtr(f) is a smooth tropical surface if Subdiv(f) is an
elementary (unimodular) triangulation.

For example, let fδ(x) = “
∑

a∈Aδ
α(a)xa ”, where α is the lifting function defined

in (1). Then according to Definitions 3.1 and 3.3, the tropical surface Vtr(fδ) is smooth
of degree δ.

3.2 Tropical lines in R
3

Let L be an unrooted tree with five edges, and six vertices, two of which are 3-valent
and the rest 1-valent. We define a tropical line in R

3 to be any realization of L in R
3

such that

• the realization is a polyhedral complex, with four unbounded rays (the 1-valent
vertices of L are pushed to infinity),

• the unbounded rays have direction vectors −e1, −e2, −e3, e1 + e2 + e3,

• The realization is balanced at each vertex, i.e., the primitive integer vectors in
the directions of all outgoing edges adjacent to a given vertex, sum to zero.

If the bounded edge has length zero, the tropical line is called degenerate. For non-
degenerate tropical lines, there are three combinatorial types of tropical lines in R

3, as
shown in Figure 5. The combinatorial types of the lines in Figure 5, from left to right,
are denoted by ((12)(34)), ((13)(24)) and ((14)(23)). Each innermost pair of digits
indicate the directions of two adjacent rays.

Remark 3.4. This definition is equivalent to the more standard algebraic definition of
tropical lines in R

3. See [3, Examples 2.8 and 3.8].

In classical geometry, any two distinct points lie on a unique line. When we turn to
tropical lines, this is true only for generic points. In fact, for special choices of points
P and Q there are infinitely many tropical lines passing through P and Q. The precise
statement is as follows:
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e1 + e2

−e1

e1 + e2 + e3−e2

e1 + e3

−e1 −e2

e1 + e2 + e3−e3

e2 + e3

−e2 −e1

e1 + e2 + e3−e3

−e3

Figure 5: The combinatorial types of tropical lines in R
3.

Lemma 3.5. Let P, Q ∈ R
3. There exist infinitely many tropical lines containing P

and Q if and only if one of the coordinates of the vector Q−P is zero, or two of them
coincide. In all other cases, P and Q lie on a unique line.

Definition 3.6. An infinite collection of tropical lines in R
3, is called a two-point

family if there exist two points lying on all lines in the collection.

3.3 Group actions of S4

The group of permutations of four elements, S4, acts naturally on many of the spaces
involved with tropical surfaces. Firstly, observe that S4 is the symmetry group of the
simplex Γδ ⊆ R

∨. This induces an action of the set of lattice points Aδ = Γδ ∩ Z
3 (in

fact on all of Z
3), described explicitly as follows: Let σ ∈ S4 be a permutation of four

elements. For any a = (a1, a2, a3) ∈ Aδ, let ahom := (a1, a2, a3, δ − a1 − a2 − a3). We
define σ(a) to be the point in A whose coordinates are the first three coordinates of
σ(ahom). Obviously, this action of S4 on Aδ also induce an action of S4 on the set of
subdivisions of Γδ.

Secondly, S4 acts on the set of tropical surfaces of degree δ. Let X = Vtr(f), where
f(x) = “

∑
a∈Aδ

λax
a ”. For a given σ ∈ S4, we define σ(X) to be the surface Vtr(σ(f)),

where σ(f) = “
∑

a∈Aδ
λax

σ(a) ” Clearly, σ(X) is still of degree δ, and the resulting
action is compatible with the action of S4 on the subdivisions of Γδ. In other words,
Subdivσ(X) = σ(SubdivX).

4 Properties of tropical lines on tropical surfaces

4.1 Notation

The topic of this paper is to study tropical lines contained in tropical surfaces. It
is important to note that ’containment’ here is meant purely set-theoretically. For
notational convenience, we fix the following: The symbols X and L will always refer
to the underlying point set in R

3 of a tropical surface of degree δ, and a tropical line,
respectively. The associated polyhedral cell complexes are denoted by Complex(X)
and Complex(L) respectively. Hence in particular, the statement L ⊆ X means that
L is contained in X as subsets of R

3. There is a natural map cX : X → Complex(X),
taking a point p ∈ X to the minimal cell of X containing p.

Furthermore, for the remaining part of the paper we fix the following notation:
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• For δ ∈ N, Γδ is the simplex with vertices (0, 0, 0), (δ, 0, 0), (0, δ, 0), (0, 0, δ), and
Aδ := Γδ ∩ Z

3.

• The vectors −e1, −e2, −e3 and e1+e2+e3 are denoted ω1, . . . , ω4. The coordinate
variables in R

3 are x1, x2, x3, and we set x4 := δ − x1 − x2 − x3.

• If ℓ is the equation of a plane in R
3, then Pl denotes this plane.

• For a fixed δ ∈ N, Fi is the facet of Γδ with outer normal vector ωi, i = 1, . . . , 4.
(Note that Fi is contained in the plane Pxi=0.) Moreover, for distinct i, j ∈
{1, . . . , 4} we set Fij := Fi ∩ Fj .

• If X is a tropical surface of degree δ, then we set SubdivX := Subdiv(f), where
f is any tropical polynomial with support Aδ, such that X = Vtr(f). (It is easy
to see that Subdiv(f) is the same for all such f , so SubdivX is well defined.)

• If α ∈ K(S), where S is a regular subdivision of Γδ, then Xα is the associated
tropical surface. More precisely, Xα = Vtr(f), where

f(x) = “
∑

a∈Aδ

α(a)xa ”.

4.2 Trespassing line segments on X

In [7] we introduced the notion of trespassing line segments on X. If ℓ ⊆ X is any ray
or line segment, we say that ℓ is trespassing on X if there exist distinct cells C, C ′ ⊆ X

such that

(4) dim(int(C) ∩ ℓ) = dim(int(C ′) ∩ ℓ) = 1.

Alternatively, ℓ is trespassing on X if it is not contained in the closure of any single
cell of X. For smooth X, trespassing can happen essentially in one way only, as shown
in [7, Lemma 6.2]:

Lemma 4.1. Let ℓ ⊆ X, where ℓ is a line segment and X is smooth. If C, C ′ ⊆ X are
any cells satisfying (4) and such that ℓ ⊆ C ∪ C ′, then C and C ′ are maximal cells of
X whose intersection is a vertex V of X.

An immediate consequence of this is that C∨ and (C ′)∨ are opposite edges of the
tetrahedron V ∨. The following converse to Lemma 4.1 is straightforward:

Lemma 4.2. Let Λ and Λ′ be opposite edges of a tetrahedron ∆ ∈ SubdivX . Then
there is a trespassing line segment on X passing through the vertex ∆∨ ∈ X, and which
is orthogonal to both Λ and Λ′.

We recall one more result from [7], again valid for smooth X (cf. [7, Lemma 6.4]):

Lemma 4.3. Suppose L ⊆ X is non-degenerate, and that the vertex v of L lies in the
interior of a 1-cell E of X. Then L ∩E = {v}, and the three edges of L adjacent to v

start off in different 2-cells of X adjacent to E.

The last statement of Lemma 4.3 can be reformulated “dually” as follows: Suppose
ωi and ωj are the direction vectors of the unbounded edges of L emanating from v.
Then the edges of the triangle E∨ are orthogonal to ωi, ωj and ωi + ωj respectively.
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Figure 6: Underlying graphs
of tropical lines in R

3.

= = =

Figure 7: Four combinatorial positions, three of which
are equal.

4.3 The combinatorial position of L ⊆ X

We now describe a way of displaying the essential information of how a tropical line
lies on a tropical surfaces.

For any tropical line L ⊆ R
3, the underlying graph of L is one of the two shown in

Figure 6, dependent on whether L is degenerate or not. A decoration of either of these
consists of a finite number of dots (possibly none) on each edge, and at each vertex
either a dot, a vertical line segment, or nothing. Note that we consider the graphs
without metrics, so moving an edge-dot along its edge does not change the decoration.
Also, two decorations C and C′ (of the same graph) are said to be equal if there is an
automorphism of the graph taking C to C′. See Figure 7 for examples.

Definition 4.4. Let X be a tropical surface. The combinatorial position of L on X is
the following decoration of the underlying graph of L:

• If an edge of L passes through k vertices of X, the corresponding edge of the
underlying graph has k dots.

• For each vertex v of L, the corresponding vertex of the graph has a dot if
dim cX(v) = 0, and a vertical line segment if dim cX(v) = 1.

Remark 4.5. There is nothing special about the graphs of Figure 6 in this context.
Thus, using the same definition, one can speak of the combinatorial position of any
connected one-dimensional polyhedral complex contained pointwise in X.

4.4 Line subcomplexes of SubdivX

Recall from Section 4.1 the map cX : X → Complex(X), taking a point p ∈ X to the
minimal cell of X containing p. Combining cX with dualization, we get the map

c∨X : X −→ SubdivX

p 7−→ cX(p)∨.
(5)

If Y ⊆ X is any subset, we set

c∨X(Y ) :=
⋃

y∈Y

c∨X(y).

Note that if Y is connected, then c∨X(Y ) is a connected subcomplex of SubdivX .
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Figure 8: Two combinatorial positions giving the same line subcomplex structure, but
with different sets of required exits (indicated by bold lines). The exits are determined
using Lemmas 4.1 and 4.3.

Definition 4.6. Let S be a regular subdivision of Γδ. A subcomplex R ⊆ S is called
a line subcomplex if there exists a tropical surface X and a tropical line L ⊆ X such
that SubdivX = S, and c∨X(L) = R.

Conversely, suppose R ⊆ S is a line subcomplex. Then if X ′ is any tropical surface
with SubdivX′ = S, we say that R is realized on X ′ if there is a tropical line L ⊆ X ′

such that c∨X′(L) = R.

Because tropical lines in R
3 are unbounded, any line subcomplex in SubdivX contain

cells dual to unbounded cells of X. Recall from Theorem 3.2c) that such cells of
SubdivX lie in the boundary of the Newton polytope Γδ. This motivates the concept
of subpolytopes with exits in Γδ, introduced in [7]:

Definition 4.7. Let ∆ be a lattice polytope (of dimension 1,2 or 3) contained in Γδ.
We say that ∆ has an exit in the direction of ωi if at least one edge of ∆ lies in Fi. If
∆ has exits in the directions of k of the ωi’s, we say that ∆ has k exits.

The relevance of this definition should be clear from the following observation: Let
C be any cell of X, and let p ∈ C be an arbitrary point. Then C contains the ray with
starting point p and direction ωi, if and only if C∨ has an exit in direction ωi.

When X is smooth, the cell structure of a line subcomplex c∨X(L) is in many cases
uniquely determined by the combinatorial position of L on X. Moreover, using Lemmas
4.1 and 4.3, we can often describe explicitly the exits required of the edges of c∨X(L).
For example, the two rightmost combinatorial positions in Figure 7 imply the same
cell structure of c∨X(L), but with different exit properties (see Figure 8).

Remark 4.8. A line subcomplex often has more exits than those required by the com-
binatorial position. Hence it is usually more difficult to reverse the process described
in the last paragraph, i.e., to determine the combinatorial position of L on X, given a
line subcomplex c∨X(L) ⊆ SubdivX .

We conclude this section by mentioning one case where the cell structure of c∨X(L) is
not determined by the combinatorial position of L on X. Namely, when both vertices
of L are vertices of X, and the middle edge of L is not trespassing. In this case, the
middle edge of L may or may not be an edge of X, giving different structures of c∨X(L).
(See Figure 9.) The two tetrahedra P ∨ and Q∨ have a common facet if PQ is an edge
of X (case i), but only an edge in common otherwise (i.e., if PQ goes across a 2-cell of
X). Note that if the middle edge were trespassing, there would be no ambiguity: By
Lemma 4.1, no point of PQ could then be in the interior of a 1-cell of X.
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P Q
i) or ii)

Figure 9: A combinatorial position giving two possible line subcomplexes, depending
on whether PQ is a 1-cell of X (case i) of not (case i).

4.5 Deformations and specializations

Let S be a given subdivision of Γδ, and let K = K(S) be the corresponding secondary
cone. We define the incidence XS ⊆ K × R

3 by

XS := {(α, x) | x ∈ Xα)} ⊆ K × R
3.

Using the Euclidean metrics on K and R
3, we give XS the topology induced by the

product topology on K ×R
3. This makes the projections on K and R

3, denoted by p1

and p2 respectively, continuous. Note that for any α ∈ K, p2(p
−1
1 (α)) is the tropical

surface Xα.

Definition 4.9. A family of tropical lines associated to S is a subset L ⊆ XS satisfying
the following conditions:

• For any α ∈ K, p2(p
−1
1 (α) ∩ L) is a tropical line Lα ⊆ Xα.

• The projections from L to K and R
3 are continuous.

Definition 4.10. A deformation of L ⊆ Xα is a family L of tropical lines associated
to S, such that

• p1(L) contains α, and is homeomorphic to an interval,

• for any two points β 6= γ in p1(L), we have Xβ 6= Xγ.

Note that a deformation of L ⊆ X can be thought of as a map t 7→ (Lt, Xt), where
t runs through some interval I ⊆ R containing 0, and where (L, X) = (L0, X0). In
particular, 0 can be an endpoint of I, as in I = [0, 1).

Definition 4.11. Let L be a tropical line with combinatorial position C on X. We say
that L deforms into combinatorial position C′, if there exist a deformation t 7→ (Lt, Xt)
of L ⊆ X such that for all t ∈ I r {0}, the combinatorial position of Lt on Xt is C′.

The following lemma gives a simple property of deformations, namely that one
cannot deform a tropical line away from a vertex through which it is trespassing.

Lemma 4.12. Suppose L ⊆ X has a trespassing edge ℓ, passing through the vertex
∆∨ ∈ X, where ∆ is a tetrahedron in SubdivX. If t 7→ (Lt, Xt), t ∈ I, is any deforma-
tion of L ⊆ X, let ℓt be the edge of Lt parallel to ℓ. Then for small t, ℓt is trespassing
through ∆∨ ∈ Xt.
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Proof. Since ℓ is trespassing through ∆∨ ∈ X, Lemma 4.1 gives that dim(ℓ∩int(Λ∨
1 )) =

dim(ℓ ∩ int(Λ∨
2 )) = 1, for some pair of opposite edges Λ1, Λ2 of ∆. By continuity of

the deformation, this implies that dim(ℓt ∩ int(Λ∨
1 )) = dim(ℓt ∩ int(Λ∨

2 )) = 1 for small
enough t. Hence ℓt is trespassing through ∆∨.

Remark 4.13. Note that the proof of Lemma 4.12 rests on Lemma 4.1, which requires
X to be smooth. In fact, it is not hard to produce examples of non-smooth X where
one can deform away from trespassed vertices.

Related to deformations is the concept of specialization:

Definition 4.14. Let t 7→ (Lt, Xt) be a deformation of L0 ⊆ X0, where t ∈ [0, 1]. We
say that L0 ⊆ X0 specializes to L1 ⊆ X1 if the combinatorial position of Lt ⊆ Xt is
constant for all t ∈ [0, 1) but differs for t = 1.

5 Classification of combinatorial positions

Let δ ∈ N be fixed, and let S be an RE-triangulation of Γδ. By Proposition 2.1, the
secondary cone K(S) has dimension N in R

N , where N = |Aδ| =
(

δ+3
3

)
. Recall that

each α ∈ K(S) corresponds to a smooth tropical surface Xα with subdivision S.

Definition 5.1. We say that a property Π holds for general tropical surfaces with
subdivision S if Π holds for Xα for every α in some open, dense subset of K(S).

More generally, Π holds for general smooth tropical surfaces of degree δ if Π holds
for general tropical surface with subdivision S, for all RE-triangulations S of Γδ.

Finally, Π holds for general smooth tropical surfaces if Π holds for general smooth
tropical surfaces of degree δ, for all δ ∈ N.

The next lemma gives an important example of a property held by general smooth
tropical surfaces (in all degrees).

Lemma 5.2. A general smooth X contains no doubly trespassing line segments.

Proof. Let X = Vtr(f) be a tropical surface, given by a tropical polynomial f =
“
∑

λax
a ”, and suppose ℓ ⊆ X is a line segment containing two vertices of X, say P

and Q, in its relative interior. We will show that this implies a linear relation between
the coefficients λa.

The situation is shown in Figure 10. From Lemma 4.1, it follows that SubdivX

contains three 1-cells AB, CD, EF such that ℓ ⊆ (AB)∨ ∪ (CD)∨ ∪ (EF )∨, and such
that P ∨ = ABCD and Q∨ = CDEF . Obviously, a necessary condition for this to
happen is that ℓ is parallel to both vectors products ~AB × ~CD and ~CD × ~EF .

Since ℓ is contained in each of the planes spanned by (AB)∨, (CD)∨ and (EF )∨,
any point p = (p1, p2, p3) ∈ ℓ satisfies the defining equations of these planes:

λA + 〈A, x〉 = λB + 〈B, x〉

λC + 〈C, x〉 = λD + 〈D, x〉

λE + 〈E, x〉 = λF + 〈B, x〉

(6)
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B P∨

ℓ P Q

D

E

F

C

Q∨

A

(CD)∨(AB)∨ (EF )∨

Figure 10: A doubly trespassing line, and the dual configuration.

Substituting p for x, this amounts to the matrix equation

(7) M
(
p

1

)
= 0, where M =

(
~AB λB−λA

~CD λD−λC

~EF λF−λE

)
=

(
B1−A1 B2−A2 B3−A3 λB−λA

D1−C1 D2−C2 D3−C3 λD−λC

F1−E1 F2−E2 F3−E3 λF−λE

)
.

Since (7) holds for all p ∈ ℓ, the nullity of M must be at least 2, i.e., rankM ≤ 2.

In fact, rank M = 2, since the vectors ~AB, ~CD, ~EF are not parallel. Therefore there is
a linear relation between λA, . . . , λF . Note that this relation gives a hyperplane section
of the secondary cone K(SubdivX) containing the point corresponding to X.

To prove the lemma, let S be any RE-triangulation of Γδ, for any δ. In S, we look
for all pairs of tetrahedra with a common edge, and such that (with the notation of

Figure 10) ~AB × ~CD ‖ ~CD × ~EF . Clearly there are at most finitely many such pairs.
As seen above, each such pair gives rise to a hyperplane section of K(S), and any
surface containing a doubly trespassing line, corresponds to a point on one of these
hyperplanes. Since the complement of the union of the hyperplanes is open and dense,
the lemma follows.

The above lemma greatly limits the number of ways in which a tropical line can lie
on a general smooth tropical surface. In particular, the lemma says that for general
X, each of the five edges of L ⊆ X contains at most one vertex of X in its relative
interior. An immediate implication of this is the following interesting result: There
exists a finite list of combinatorial positions, such that for a general smooth X (of any
degree), the combinatorial position of any tropical line on X is in the list.

However, there are some combinatorial positions of L that do not occur on general
X, but which are not excluded by Lemma 5.2. Many of these can be identified using
the lemma to follow.

By a 3-star on X we mean the union of 3 line segments on X, no two parallel,
with a common endpoint called the center of the 3-star. If Y is a 3-star on X with
center v, we say that Y is special if the number of trespassing edges of Y is exactly
dim cX(v) + 1. Obviously, there are three possible combinatorial positions of a special
3-star on X (cf. Remark 4.5), as shown in Figure 11.

Lemma 5.3. A general smooth X contains no special 3-stars.

Proof. Let X = Vtr(f) be smooth of some arbitrary degree δ, where f = “
∑

λax
a ”.

For any 3-star Y ⊆ X, we consider the 3-star subcomplex c∨X(Y ) in SubdivX . (Cf. the
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vv
i) ii)

v
iii)

Figure 11: Special 3-stars on X, where dim cX(v) equals i) 2, ii) 1, and iii) 0.

definition of line subcomplexes in Section 4.4.) For the three special 3-stars in Figure
11, the structures of the corresponding 3-star subcomplexes are depicted in Figure 12.
We claim that given any special 3-star subcomplex R ⊆ SubdivX , it is realized as a
3-star on X only if the coefficients λa satisfy a linear condition, dependent of R. To
show this, the idea is to find in each case the equations v must satisfy and arrange
them in a matrix form, similar to (7). For example, in case i), we see that v lies on
each of the planes spanned by (AB)∨, (CD)∨, (EF )∨ and (GH)∨. Writing out the
corresponding equations, we obtain

(8)




~AB λB − λA

~CD λD − λC

~EF λF − λE

~GH λH − λG




(
v

1

)
= 0.

Observe that the leftmost matrix in (8) is a 4 × 4-matrix; let us call it M . Since the
null-space of M is non-trivial (it contains (v, 1)T ), we must have det M = 0, giving a
linear relation in the λ’s. Note that this would reduce to the trivial condition 0 = 0 if
rank M ≤ 2. However, it is easy to see that in our case ~AB, ~CD, ~EF , ~GH span all of
R

3, so rankM = 3. This proves the claim in case i).
The cases ii) and iii) are done in the same way, but with the matrix M exchanged

with

ii) M ′ =




~AB λB − λA

~AC λC − λA

~DE λE − λD

~FG λG − λF


 , iii) M ′′ =




~AB λB − λA

~AC λC − λA

~AD λD − λA

~EF λF − λE


 .

It is now straightforward to show that a general smooth X contains no special 3-
stars. Indeed, let S be any elementary subdivision of Γδ, and α a point in the parameter
cone K(S). Then as we have seen, any 3-star subcomplex in S like those in Figure 12
can be realized on Xα only if α lies on a certain hyperplane. Moreover, S contains at
most finitely many of the 3-star subcomplexes in Figure 12. Hence for any α in the
complement of a finite union of hyperplanes, Xα contains no special 3-stars.

F

A
C

E
B

D H

G

i) ii)

B

C

E
F

F

A

B

C

iii)
D

A

G

D E

Figure 12: Configurations in SubdivX implied by the 3-stars in Figure 11.
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Figure 13: Lemma 5.5a). Figure 14: Lemma 5.5b).

Corollary 5.4. On a general smooth tropical surface X, any vertex v of a tropical line
L ⊆ X satisfies

(9) ♯{trespassing edges of L adjacent to v} ≤ dim cX(v).

Proof. It is easy to see that if v is any vertex of a tropical line L ⊆ X, for which (9) is
not satisfied, then v is the center vertex of a special 3-star. The result therefore follows
from Lemma 5.3.

By the help of Corollary 5.4 it is straightforward to construct a list containing all
possible combinatorial positions of a non-degenerate tropical line on a general smooth
tropical surface. The result is shown in Table 1.

Note that we do not claim that all the entries of Table 1 actually occur on gen-
eral smooth surfaces. For starters, the following combinatorial positions are clearly
impossible on any tropical surface:

In each case, the middle segment of L is contained in a 2-cell of X. But the part of L

contained in this cell spans R
3, which is a contradiction.

Furthermore, we have the following lemma:

Lemma 5.5.

a) A general smooth X has no tropical lines with the combinatorial positions shown
in Figure 13.

b) A general smooth X has no tropical line such that i) its combinatorial position is
the one in Figure 14 and ii) its middle segment goes across a 2-cell of X.

Proof. a) The idea is basically the same in in the proofs of Lemma 5.2 and Lemma
5.3. Each case implies some linear relation between the coefficients λa of the poly-
nomial defining X. We sketch the argument for the leftmost combinatorial position:
Observe that if L has this combinatorial position, then the line subcomplex of L is
homeomorphic to case i) of Figure 12. Let v1 be the vertex of L which is also a ver-
tex of X; assume this is dual to the tetrahedron ABGH . Then, by the definition of
duality, v1 is uniquely determined by λA, λB, λG and λH . (In fact, the coordinates of
v1 are linear forms in these λ’s.) Similarly, the other vertex of L, v2, is determined
by λA, λB, λC , λD, λE and λF (this corresponds to solving the equation (8), but with
the last row removed.) Finally, since v1v2 is the middle segment of a tropical line, it
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Table 1: Combinatorial positions of tropical lines on a general smooth X. Gray=nonexistent or non-general; dash=non-
compatible 3-stars.
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has a prescribed direction. This forces a linear relation between the coefficients. The
remaining three cases of the above claim are done similarly.

b) This combinatorial position was discussed in the last paragraph of Section 4.4. If
the middle segment of L goes across a 2-cell of X, the line subcomplex is homeomorphic
to case ii) of Figure 9. In this case the argument sketched in a) applies again: Each
vertex of L is determined by the λ’s, and the direction vector of the middle segment
implies a linear relation between these.

Note that this argument does not apply if the middle segment of L is a 1-cell of X:
In this case the direction of the middle segment is encoded in the line subcomplex as a
normal vector of the common facet of the two tetrahedra (cf. case i) of Figure 9).

5.1 The classification theorem

In the last section we identified 10 entries of Table 1 that were either impossible on any
tropical surface X, or non-general, meaning that they do not occur on general smooth
X. In this section we analyze the remaining 17 combinatorial positions. The main
result is the following classification:

Theorem 5.6. For a general smooth tropical surface X, the combinatorial position of
any non-degenerate tropical line on X is one of the 17 listed in Table 2. Moreover, we
have:

a) 14 of the combinatorial positions occur only of surfaces of a particular degree:

• 1A and 1B occur only on surfaces of degree 1.

• 2A, 2B, 2C, 2D, 2E and 2F occur only on surfaces of degree 2.

• 3A, 3B, 3C, 3D, 3E and 3F occur only on surfaces of degree 3.

b) 3 of the combinatorial positions occur on surfaces of arbitrary degree. More precisely:

• 3G and 3H occur on surfaces of any degree δ ≥ 2.

• 3I occur on surfaces of any degree δ ≥ 1.

The 17 combinatorial positions mentioned in Theorem 5.6 are called general com-
binatorial positions.

Proof. The proof of Theorem 5.6 will occupy most of this section. To avoid repeating
ourselves too much, we start by giving some auxiliary observations about tropical half
lines on X, which will apply frequently. A tropical half line in R

3 is the remaining part
of a non-degenerate tropical line, after removing two adjacent rays. Figure 15 shows
tropical half lines on X in different positions.

For a tropical half line H , let Hb be its bounded segment. Note that if Hb ⊆ X

is non-trespassing, then there is a unique cell of X, denoted Cb, containing Hb. The
following lemma gives information on the position of the dual cell (Cb)∨ ⊆ SubdivX .
As always, X is assumed to be smooth of some fixed degree δ.
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1A

2A

1B

2D

2B 2C

2F2E

3A 3B 3C

3E3D

Only deg X = 1

Only deg X = 2

Only deg X = 3
3F

3G 3H

Any deg X ≥ 2

3I
Any deg X ≥ 1

Table 2: The 17 general combinatorial positions.

Lemma 5.7. Let H ⊆ X be a tropical half line with unbounded rays in the directions
ωi and ωj, such that Hb is non-trespassing and contained in a cell Cb of X. Then
(Cb)∨ is contained in a plane with equation xi + xj = K for some K ∈ N0.

Proof. Recall that any vector contained in Cb is orthogonal to (Cb)∨. In the case where
i, j 6= 4, this immediately proves the assertion, since by assumption Cb contains the
vector −ωi − ωj = ei + ej . For the remaining case, suppose j = 4, and let (i, i′, i′′) be
any permutation of (1, 2, 3). Then Cb contains the vector ωi + ω4 = ei′ + ei′′ , so (Cb)∨

lies in a plane with equation xi′ + xi′′ = constant. This is equivalent to the statement
in the lemma, since xi + x4 = K ⇐⇒ xi′ + xi′′ = δ − K.

Lemma 5.8. Let H be as in Lemma 5.7, and suppose in addition that dim cX(v) ≥ k,
where v is the vertex of H, and k is the number of unbounded rays of H which are
trespassing on X. If either

• dim cX(v) > 0, or

• dim cX(v) = 0 and dim Cb = 1,

then (Cb)∨ lies in the plane with equation xi + xj = dim Cb − dim cX(v) + k.
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ω1
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ω1
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iii)
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iv)

ω1

ω2

v)
E

Figure 15: Tropical half lines on X, with varying values of dim cX(v) and numbers of
trespassing rays.

Remark 5.9. Lemma 5.8 implies in particular that in the cases mentioned, the integer
K in Lemma 5.7 is dependent only of dim Cb, dim cX(v) and k. As we will see, this
does no longer hold if dim cX(v) = 0 and dim Cb = 2 (the only case not covered by the
lemma), and this fact is what allows the positions 3G and 3H to occur on surfaces of
arbitrarily high degree.

Proof. By symmetry we can assume that i = 1 and j = 2, so by Lemma 5.7, (Cb)∨ lies
in a plane given by x1 +x2 = K for some K. Suppose first dim cX(v) > 0. It is easy to
see that it suffices to consider the five cases shown in Figure 15. Note that in all these
cases, dim Cb = 2.

In case i), dim cX(v) = 1 and k = 0, so we must show that K = 2 + 0 − 1 = 1. We
see that the triangle E∨ has one edge on F1, another edge on F2, while its last edge is
(Cb)∨. Hence the vertices of E∨ are of the form (0, 0, a), (0, K, b) and (K, 0, c), where
a, b, c ∈ N0. Let P = (p, q, r) be the fourth vertex of a tetrahedron in SubdivX having
E∨ as a facet. A standard calculation shows that the volume of this tetrahedron is
divisible by K. Hence unimodularity of SubdivX implies K = 1, as wanted.

In ii), we must show that K = 2. Here, E∨ has one edge in F1, another in the plane
x2 = 1, and the third is (Cb)∨. Thus the vertices of E∨ are (0, 1, a), (0, K, b), (K−1, 1, c)
for some a, b, c ∈ N0. A volume calculation shows that any integral tetrahedron having
E∨ as facet, has a volume divisible by K − 1. Thus K = 2.

In iii) we must show K = 0. It is clear that (Cb)∨ lies in both facets F1 and F2,
and therefore in the edge F12 of Γδ. Since F12 is contained in the plane x1 + x2 = 0,
we are done.

In iv) we find similarly that (Cb)∨ lies in the intersection of F1 (where x1 = 0) and
the plane given by x2 = 1. In particular, (Cb)∨ lies in the plane where x1 + x2 = 1, as
claimed in the lemma.

Finally, in case v) (Cb)∨ lies in the intersection of the planes with equations x1 = 1
and x2 = 1. In particular, this means x1 + x2 = 2, which is again what we needed to
prove.

It remains to treat the case where dim cX(v) = 0 and dim Cb = 1. In other words,
v is a vertex of X and Hb is contained in an edge Cb of X. Dually, (Cb)∨ is a triangle
ABC ∈ SubdivX , and v∨ is a tetrahedron having (Cb)∨ as a facet, i.e. v∨ = ABCD for
some integral point D. By Lemma 5.7, ABC lies in a plane with equation x1 +x2 = K,
and by obvious volume considerations, D must then lie in a plane given by x1 + x2 =
K ± 1. We have to prove that K = 1.

Observe that ABCD has exits in both directions ω1 and ω2, since H has no tres-
passing rays (recall the assumption k ≤ dim cX(v)). Now, if the triangle ABC has
exits in neither of the two directions, then we must have D ∈ F12, implying K = 1.
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If ABC has an exit in exactly one of the two directions, say ω1, then we must have
(possibly after renaming) that AB ⊆ F1 and CD ⊆ F2. Writing out what this means
for the coordinates of A, B, C and D, a volume calculation of ABCD shows that
unimodularity again implies K = 1. Note that ABC (being a non-degenerate triangle
contained in the plane of the form x1 + x2 = K) cannot have exits in both directions
ω1 and ω2. Hence we have covered all cases.

This concludes the proof of the lemma.

After this preparatory work, we turn to the proof of part a) of Theorem 5.6:

Proof of Theorem 5.6a). We examine the combinatorial positions individually:

• Position 1A: Suppose L ⊆ X, where X has degree δ, and L has combinatorial
position 3A on X. We can assume w.l.o.g. that L has combinatorial type ((12)(34)),
so the situation is as follows:

2

1

4

3

Regard L as the union of two tropical half lines on X, sharing the same bounded
segment. Let Cb be the 2-cell of X containing this bounded segment. Applying Lemma
5.8 to the half line on the left (i.e. the one with rays 1 and 2) it follows that (Cb)∨ lies
in the plane with equation x1 + x2 = 1. On the other hand, the same lemma applied
to the other half line implies that (Cb)∨ lies in the plane with equation x3 + x4 = 0,
i.e. x1 + x2 = δ. We conclude that δ = 1.

• An analogue argument works in all cases mentioned in part a) where the middle
segment of L is not trespassing on X, i.e. positions 2A, 2B, 2D, 2F , 3A, 3D and 3E.
Note in particular that in case 2F , we have dim Cb = 1 by Lemma 5.5b), so Lemma
5.8 applies.

• Position 1B: Again we assume that L has combinatorial type ((12)(34)):

V

2 4

1 3

This time we regard L as the union of two tropical half lines on X, intersecting in the
point V only. Let Cb

1 be the 2-cell containing the bounded segment of the half line
with rays 1 and 2, and similarly Cb

2 the 2-cell containing the bounded segment of the
other half line. Now we apply Lemma 5.8 twice, to find that (Cb

1)
∨ and (Cb

2)
∨ lie in the

planes with equations x1 + x2 = 0, and x1 + x2 = δ respectively. But (Cb
1)

∨ and (Cb
2)

∨

are opposite edges of the unimodular tetrahedron V ∨. This is only possibly if δ = 1.

• An analogue argument works in all cases mentioned in part a) where the middle
segment is trespassing, i.e. the positions 2C, 2E, 3B, 3C and 3F .

In Table 3 we have summarized the cell structures of the line subcomplexes asso-
ciated to the combinatorial positions 3A, . . . , 3I, including the additional information
provided by Lemma 5.8.

We make the following definition:
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AC ⊆ Fk, EF ⊆ Fl.

Exits: AB ⊆ Fi, BD ⊆ Fj ,

AD ⊆ Pxi+xj=1, CD ⊆ Pxl=1.

Exits: AB ⊆ Fi, AC ⊆ Fj ,

DF ⊆ Fk, EF ⊆ Fl.

BC ⊆ Pxi+xj=1, ED ⊆ Pxi+xj=2.

DE ⊆ Fk, FG ⊆ Fl.

Exits: AB ⊆ Fi, AC ⊆ Fj ,

AD ⊆ Pxi+xj=1,

DE ⊆ Pxi+xj=2 ∩ Fk.

DE ⊆ Fk, FG ⊆ Fl.

Exits: CE ⊆ Fi, AB ⊆ Fj ,

CD ⊆ Pxj=1,

DE ⊆ Pxi+xj=2 ∩ Fk.

DE ⊆ Fk, FG ⊆ Fl.

Exits: AB ⊆ Fi, AC ⊆ Fj ,

BC ⊆ Pxk=1 ∩ Pxl=1.

EF ⊆ Fk, GH ⊆ Fl.

Exits: CD ⊆ Fi, AB ⊆ Fj ,

CD ⊆ Pxi+xj=1 ∩ Fi,

EF ⊆ Pxi+xj=2 ∩ Fk.

ABCD has edges also in Fi and Fj .

CD ⊆ Pxl=1 ∩ Fk.

Exits: CD ⊆ Fk, EF ⊆ Fl,

Exits: CD ⊆ Fk ∩ Fl,

(In particular, ABCD has four exits.)

ABCD has edges also in Fi and Fj .
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Necessary conditionslex c∨X(L) ⊆ SubdivX
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ABCD has edges also in Fi and Fj .

Exits: CE ⊆ Fk, DE ⊆ Fl,

CD ⊆ Pxk+xl=1.

i

j

k

l

C

D

A

B

E

F3G

3H

j l D
A

C

3I

ki

Table 3: Cell structures of all line subcomplexes in SubdivX for general smooth X of
degree δ ≥ 3. For positions 3A, . . . , 3F we have δ = 3. The bold lines indicate edges
with required exits.
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Figure 16: Line subcomplexes in Γ4 associated to tropical lines in position 3G, 3H and
3I, respectively.

Definition 5.10. A lattice complex contained in Γδ is said to be of type 3A (resp.
3B, . . . ) if it has the same cell structure as the line subcomplex given in Table 3 for
position 3A (resp. 3B, . . . ), and it meets the associated conditions given in Table 3.

It should be noted that the conditions given in Table 3 are only necessary conditions:
If S is an RE-triangulation of Γδ, then a subcomplex of S of a given type is not
necessarily a line subcomplex in S.

We apply this terminology in the proof of the remaining part of Theorem 5.6:

Proof of Theorem 5.6b). As usual, let δ be the degree of X.
• Position 3G: Assume δ ≥ 2 (this is clearly necessary for L ⊆ X to have combinatorial
position 3G), and consider the complex RG with maximal elements ∆1 = ABCD and
∆2 = CDEF , where A = (0, 0, 1), B = (0, 1, 1), C = (δ − 1, 0, 0), D = (δ − 2, 1, 0), E =
(δ − 1, 1, 0), F = (δ − 1, 0, 1). The leftmost picture of Figure 16 shows RG for δ = 4; it
is clear that RG is of type 3G.

We claim that if SubdivX contains RG, then X contains a line with combinatorial
position 3G. Indeed, this can be checked directly by examining the shape of the 2-cell
of X dual to the edge CD. Furthermore, by applying the techniques described in [7,
Section 4], one can construct RE-triangulations of Γδ containing RG, for all δ ≥ 2.
This proves the assertion in Theorem 5.6b) concerning position 3G.

• Position 3H : Let RH be the complex with maximal elements the tetrahedron ABCD

and the triangle CDE, where

A = (0, 0, 1), B = (0, 1, 2), C = (δ − 1, 0, 0), D = (δ − 2, 1, 1), E = (δ− 1, 1, 0).

(See Figure 16, middle picture.) Then RH is of type 3H . Suppose S is an RE-
triangulation of Γδ containing RH . By examining the shape of the 2-cell (CD)∨, one
can see that RH is a line subcomplex in S, realizable on Xα for all α in some open,
full-dimensional cone in K(S). Finally, as above, one can construct RE-triangulations
of Γδ containing RH , for all δ ≥ 2.

• Position 3I: Consider the tetrahedron ∆ with vertices (0, 0, 0), (0, 0, 1), (1, 0, δ − 1)
and (δ − 1, 1, 0), shown to the left in Figure 16 for δ = 4. Clearly, ∆ is a complex of
type 3I. In the proof of [7, Theorem 9.2] we showed that if ∆ ∈ SubdivX , then X has
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a tropical line with combinatorial position 3I. Moreover, we showed that for all δ ∈ N

there exists an RE-triangulation of Γδ which contains ∆.

This concludes the proof of Theorem 5.6.

We conclude this section with a result important for the next section.

Proposition 5.11. Let X be a smooth tropical surface of degree at least 3.

a) If X contains a tropical line with combinatorial position 3I, then X contains a
two-point family of tropical lines.

b) Suppose L ⊆ X has general combinatorial position other than 3I. If L′ ⊆ X is
any tropical line, we have

c∨X(L′) = c∨X(L) =⇒ L′ = L.

Alternatively, b) can be formulated as follows: Let R be a subcomplex of SubdivX

of type either 3A, 3B, 3C, 3D, 3E, 3F, 3G or 3H . Then there is either none or exactly
one tropical line on X with line subcomplex R.

Proof. a) This follows from the convexity of the cells of X: Suppose L ⊆ X has
combinatorial position 3I, with vertices v1 and v2, where C := cX(v2) has dimension
2. If ~u is the vector from v1 to v2, then convexity of C implies that the tropical line Lt

with vertices v1 and vt := v1 + t~u lies on X for all t ≥ 0. Let V is the common vertex
of L and X, and let C be the cell of X holding the other vertex of L.

b) This is a consequence of [7, Proposition 8.3], which states that if deg X ≥ 3, then
any L ⊆ X not belonging to a two-point family on X is uniquely determined by its
set of data, DX(L), introduced in [7]. The main difference between c∨X(L) and DX(L)
is that the latter includes the combinatorial type of L. However, one can check that if
L ⊆ X has any general combinatorial position (and deg X ≥ 3), then its combinatorial
type - and thus DX(L) - is uniquely determined by c∨X(L) and X.

To prove the lemma, we argue as follows: Let L be as in the statement, and suppose
c∨X(L′) = c∨X(L) for some L′ ⊆ X. This implies that DX(L) = DX(L′), and thus, by [7,
Proposition 8.3], that either L = L′, or that L belong to a two-point family on X. It
is straightforward to check that the latter possibility cannot happen (see the proof [7,
Proposition 8.3] for details).

6 Counting tropical lines on tropical surfaces

The classification in the previous section can be used to count tropical lines on smooth
tropical surfaces. More precisely, let X be any smooth tropical surface of degree ≥ 3.
First, check whether SubdivX contains a subcomplex of type 3I, i.e., a tetrahedron with
four exits. If it does, then by Proposition 5.11a) X contains infinitely many tropical
lines.
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Suppose SubdivX contains no subcomplexes of type 3I. Then Proposition 5.11b)
implies that for any general combinatorial position P, there is an injection of sets

{tropical lines on X with combinatorial position P}

↓ c∨X

{subcomplexes of SubdivX of type P}.

Since on a general smooth X, every tropical line has general combinatorial position
(Theorem 5.6), we have:

Proposition 6.1. Let S be an RE-triangulation of Γδ without subcomplexes of type
3I, where δ ≥ 3. If X is a general smooth tropical surface with subdivision S, then

♯{tropical lines on X} ≤ ♯{subcomplexes of S of general type}.

Remark 6.2. Proposition 6.1 gives an computationally accessible upper bound for the
number of tropical lines on a general tropical surface with given subdivision. Namely, if
S is a subdivision of Γδ, its subcomplexes of general type can be found in the following
easily programmable way: For each type, identify all subcomplexes in S with the cell
structure associated to that type, as given in Table 3. Thereafter, check which of these
satisfy the associated conditions (in the rightmost column of Table 3).

The upper bound given in Proposition 6.1 is not sharp in general. However, in
concrete examples, it is often fairly easy to improve the inequality, or even find the
exact number of tropical lines. We give a detailed example of this in Section 7, where
we analyze the subdivision Sα,3. However, we first look at tropical surfaces without
any tropical lines.

6.1 Tropical surfaces with no tropical lines

In classical geometry, it is well known that a general smooth algebraic surface of degree
higher than 3 in projective three-space contains no lines. (See [6, p. 28] for an early
reference.)

As shown in [7], this statement fails to hold for tropical surfaces. To restate the
result precisely, recall our notion of generality for smooth tropical surfaces of degree
δ: For a general such surface to have a certain property, we require that for each RE-
triangulation S of Γδ there is an open dense subset U ⊆ K(S) such that for all α ∈ U ,
Xα has the property. In [7, Theorem 9.2] we showed that

Theorem 6.3. For any δ ∈ N there exists an RE-triangulation S of Γδ such that Xα

contains infinitely many tropical lines for all α ∈ K(S).

We will now prove a theorem to the converse effect: There exist RE-triangulations
of Γδ for arbitrary δ ≥ 4, for which a general surface contains no tropical lines.

Recall the RE-triangulation Sα,δ of Γδ, defined in Section 2.3.1 as the subdivision
induced by the lifting function α(a, b, c) = −2a2 − 2b2 − 2c2 − ab − 2ac − 2bc. (Figure
17 shows Sα,4 and one of its associated tropical surfaces.)
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Figure 17: A quartic subdivision (left) whose general tropical surface (right) has no
tropical lines.

Proposition 6.4. Let δ ≥ 4. A general tropical surface with subdivision Sα,δ contains
no tropical lines.

Proof. Let X be a general tropical surface with subdivision Sα,δ. Since we assume
deg X ≥ 4, Theorem 5.6 guarantees that any tropical line on X has combinatorial
position either 3G, 3H or 3I. Hence to prove the proposition it is enough to show
that Sα,δ has no subcomplexes of types 3G, 3H, 3I. Combining the description of the
maximal elements of Sα,δ (Section 2.3.1) with the information given in Table 3, this is
a simple exercise.

7 Tropical lines on smooth tropical cubic surfaces.

We start this section by giving two conjectures concerning tropical lines on smooth
tropical cubic (i.e. degree 3) surfaces. Subsequently, we examine one specific subdivi-
sion, and show that the first conjecture hold for the tropical cubics associated to this
subdivision.

Conjecture 1. A general smooth tropical cubic surface contains exactly 27 tropical
lines.

Extending to all smooth tropical cubics, we conjecture the following:

Conjecture 2. For a smooth tropical surface X, let f be the number of two-point
families on X, and i the number of tropical lines on X not part of any two-point family
on X. Then we have

f + i = 27.

In particular, X contains either 27 or infinitely many tropical lines.
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Figure 18: The subdivision Sα,3, invariant under involutions (12), (34) and (13)(24).

7.1 An example

In this section we will analyze the RE-triangulation Sα,3 (shown in Figure 18), which
was defined in Section 2.3.1. The aim is to prove the following theorem:

Theorem 7.1.

a) A general tropical surface with subdivision Sα,3 contains exactly 27 tropical lines.

b) Any tropical surface with subdivision Sα,3 contains at least 27 tropical lines.

c) There exist tropical surfaces with subdivision Sα,3 containing infinitely many trop-
ical lines.

We will show this through a series of lemmas, looking at how many lines X has
in the different general combinatorial positions. We will frequently use that Sα,3 is
invariant under the subgroup G ⊆ S4 generated by the three involutions (12), (34) and
(13)(24). In particular, |G| = 8.

Some local notation used in this section: The elements of A3 will be denoted
A000, A100, . . . , A003, where the indices indicates the coordinates of the lattice points.
Furthermore, X is assumed to be a tropical surface with subdivision Sα,3. Thus X

corresponds to a point (λ000, λ100, . . . , λ003) in the secondary cone K(Sα,3), where the
ordering is chosen such that λijk is the lifting value of Aijk. In other words, X = Vtr(f),
where

f(x1, x2, x3) = “
∑

(i,j,k)∈A3

λijkxi
1x

j
2x

k
3 ”.

Lemma 7.2. X has no tropical lines in either of the combinatorial positions 3C, 3G,
3H or 3I.

Proof. It is enough to observe that Sα,3 has no subcomplexes of types 3C, 3G, 3H
or 3I. This is a straight-forward (although somewhat tedious if done by hand) check,
using the cell structures given in Table 3.

Lemma 7.3.

a) A general X has exactly 12 tropical lines with combinatorial position 3A or 3D.
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R3A R3D R′
3D

Figure 19: Subcomplexes in Sα,3 of types 3A and 3D

b) Exactly 4 of the tropical lines in a) specialize to a two-point family.

c) Any X has exactly 12 tropical lines which deforms into combinatorial position 3A
or 3D. Neither of these deforms into any other general combinatorial position.

Proof. a) Consider the three subcomplexes R3A,R3D,R′
3D ⊆ Sα,3 shown in Figure 19.

In Sα,3 we find a total of eight subcomplexes of type 3A; these are all equivalent modulo
G to R3A. Furthermore, there are 12 subcomplexes of type 3D. Of these, eight are
equivalent to R3D, while the remaining four are equivalent to R′

3D.

Let h1 = λ210 + λ002 − λ201 − λ011, and h2 = 2λ210 − 2λ120 + λ020 − λ200. We claim
that:

i) h1 >0 ⇐⇒ R3A is uniquely realized on X as a tropical line with comb. pos. 3A,

ii) h1 <0 ⇐⇒ R3D is uniquely realized on X as a tropical line with comb. pos. 3D,

iii) h2 6=0 ⇐⇒ R′
3D is uniquely realized on X as a tropical line with comb. pos. 3D.

ω1

ω2

ω2

−e1

e2
+

e3

e1

e3

−e
2

e
1 +

e
3

e
1 +

e
3

P

Q

(A101A201)
∨

Q′

Q′′

−e3

−e
2

(A101A210)
∨

ω3

R

R′
e2

+
e3

ℓ1

ω3

(A101A111)
∨

Figure 20: If the ray ℓ1 meets the interior of the segment QQ′′ (resp. the interior of
QQ′), it can be extended uniquely to a tropical line on X with combinatorial position
3A (resp. 3D).
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b

−e1 − e3

e2
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e2 + e3

Figure 21: A tropical line whose line subcomplex is R′
3D.

To prove claims i) and ii) we sketch the 2-cells of X dual to the three edges A101A111,
A101A201 and A101A210 (see Figure 20). In the figure, P and Q are the points dual to
the tetrahedra A002A101A111A011 and A101A111A201A210 respectively. By Lemma 4.2, X

contains a line segment trespassing through P , with direction vector ω1. This segment
can be extended uniquely to a ray ℓ1 ⊆ X, starting somewhere on the polygonal arc
Q′QQ′′.

A calculation shows that the coordinates of P and Q are

P = (λ011 − λ111, λ101 − λ111, λ101 − λ111 + λ011 − λ002)

Q = (λ101 − λ201, λ101 − λ111, λ101 − λ201 + λ210 − λ111).

In particular, Q3 − P3 = h1. Suppose first that h1 > 0. Then Q3 > P3, so ℓ1 starts in
the interior of QQ′′. Observe that (QQ′′)∨ = A101A111A210 has an exit in the direction
ω4, and that (RR′)∨ = A101A200A210 has exits in both directions ω2 and ω3. Hence it is
evident from Figure 20 that if h1 > 0, then ℓ1 can be extended uniquely to a tropical
line L ⊆ X of combinatorial type ((23)(14)), with one vertex in each of int(QQ′′) and
int(RR′). Clearly, L has combinatorial position 3A, and c∨X(L) = R3A, so claim i) is
proved.

Similarly, if h1 < 0, then ℓ1 starts in int(QQ′). From the facts that (QQ′)∨ =
A101A111A201 has an exit in the direction ω4, and that the vertex R allows a trespassing
ray with direction ω3 (cf. Lemma 4.2), we see that ℓ1 can be extended uniquely to a
tropical line on X of combinatorial type ((23)(14)), with one vertex in int(QQ′) and
the other in the interior of the 2-cell (A101A201)

∨. The combinatorial position of this
line is 3D, and the associated line subcomplex in SubdivX is precisely R3D. Thus claim
ii) is proved.

For claim iii) we refer to Figure 21, showing the 2-cells dual to the edges A110A210

and A110A120. If the side lengths a + b 6= c + d then X contains a unique tropical
line L containing the vertices S, T ∈ X: If a + b < c + d, as in Figure 21, then L has
combinatorial type ((13)(24)) and one vertex in int((A110A120)

∨). If a + b > c + d then
L has combinatorial type ((14)(23)) and one vertex in int((A110A210)

∨). In both cases,
L has one vertex on the edge (A110A210A120)

∨) joining the two 2-cells. Clearly, L has
combinatorial position 3D, and c∨X(L) = R′

3D. Furthermore, calculating the vertex
coordinates, one finds that a + b − c − d = h2. This proves claim iii).

Observe that claim i) remains valid if we exchange h1 and R3A by σ(h1) and σ(R3A),
where σ is any element of G ⊆ S4, and similarly for the claims ii) and iii). From this we
conclude two things. Firstly, if α lies away from the hyperplanes given by σ(h1) = 0, for
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all σ ∈ G, then the 16 subcomplexes in the orbits of R3A and R3D give rise to exactly
8 tropical lines on Xα. Secondly, if α lies away from the hyperplanes σ(h2) = 0, for all
σ ∈ G, then the four subcomplexes in the orbit if R′

3D give rise to exactly four tropical
lines on Xα. Hence, a general X with subdivision Sα,3 has exactly 8 + 4 = 12 tropical
lines with combinatorial position either 3A or 3D.

b) Let us first analyze the cases h1 = 0 and h2 = 0. If h1 = 0, then X contains the
tropical line with vertices Q and R (see Figure 20). It has non-general combinatorial
position, and it does not belong to any two-point family on X.

Next, suppose h2 = 0. In this case a + b = c + d (cf. Figure 21), and the lines
through S and T with direction vectors e2 and e1 respectively, meet in the point
v := S + (0, a + b, 0) = T + (c + d, 0, 0) on the 1-cell dual to the triangle A210A120A110.
Since this triangle has exits in both directions ω3 and ω4, it follows that X contains
the degenerate tropical line with vertex v. In fact, it is easy to see that for all t ≥ 0,
the tropical line with vertices v and v + t(e1 + e2) lies on X. Hence X contains the
complete two-point family of tropical lines passing through S and T .

Now for the specializations. As seen in a) the 12 tropical lines in question come
in two groups, 8 associated to R3A or R3D, and 4 associated to R′

3D. Suppose X is
general, and that L ⊆ X is in the first group. We can assume that c∨X(L) equals either
R3A or R3D. Any perturbation of X which keeps h1 6= 0, induces a deformation of
L ⊆ X that preserves the combinatorial position of L. Hence to obtain a specialization
of L, we must let h1 → 0. As observed above, this results in a specialization of L to
an isolated tropical line.

Next, let (on a general X) L be in the last group, i.e., we can assume L to be the
realization of R′

3D. Choose any perturbation of X such that h2 → 0. As shown above,
this will induce a specialization of L to a degenerate tropical line which belongs to a
two-point family on X.

c) On general X, the 12 tropical lines are of course those found in a); these clearly
satisfy the requirements. If X is non-general, then either σ(h1) = 0 or σ(h2) = 0
for some σ ∈ G. Suppose the former. It is enough to consider the case h1 = 0, in
which X contains the tropical line L0 with vertices Q and R. As seen in b), L0 is the
unique specialization of any realization of R3A or R3D. In particular, it deforms into
combinatorial positions 3A and 3D.

We claim that L0 cannot be deformed into any combinatorial position other than
3A and 3D. Let X0 := X, and consider any deformation t 7→ (Lt, Xt) of L0 ⊆ X0

into some general combinatorial position C. For each t, let Pt ∈ Xt be the vertex
corresponding to P ∈ X0. Then we know, by Lemma 4.12, that the ω1-ray of Lt is
trespassing through Pt for each t. But this, together with the assumption that the
combinatorial position C of Lt is general, implies that C equals either 3A or 3D. (This
follows from our discussion in a), in particular Figure 20.)

Finally, suppose σ(h2) = 0; as before it is enough to consider the case h2 = 0. Then
X contains the two-point family of tropical lines passing through S and T (cf. Figure
21). Let Ldeg be the degenerate member of this two-point family. Clearly, Ldeg deforms
into combinatorial position 3D (it is the unique specialization of any realization of
R′

3D), and it is easy to see that it does not deform into any other general combinatorial
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Figure 22: The tetrahedron T common to all subcomplexes of type 3B.

position. As for the non-degenerate tropical lines in the two-point family, none of them
have general combinatorial position, nor can any of them be deformed into any general
combinatorial position.

We conclude that the 12 tropical lines found in a) all have unique (and distinct)
specializations, which satisfy the requirements given in the lemma. This completes the
proof.

Lemma 7.4.

a) A general X has exactly 3 tropical lines with combinatorial position 3B.

b) Each of the tropical lines in a) specialize to a two-point family.

c) Any X has exactly 3 tropical lines which deforms into combinatorial position 3B.
Neither of these deforms into any other general combinatorial position.

Proof. a) There are 12 subcomplexes of type 3B in Sα,3. All of these contain the
tetrahedron T , shown in Figure 22, with vertices A110, A101, A011 and A111. Using
Lemma 4.2 we see that the dual vertex T∨ ∈ X allows trespassing line segments in
three directions simultaneously: e1 + e2, e1 + e3 and e2 + e3. Drawing the shapes of
the 2-cells adjacent to T∨, one sees immediately that each of these trespassing line
segments can be extended to a tropical line on X. For general X, each extension is
unique on X, and the three resulting tropical lines all have combinatorial position 3B.

b) Non-generality in this case means that at least one of the three trespassing line
segments in a) meets a second vertex of X. One can check that this always allows for
a second trespassing, resulting in a two-point family on X. It is even possible for the
lines segment to meet a third vertex of X, giving rise to a 2-dimensional two-point
family on X. Any of the tropical lines in a) specializes to both a 1-dimensional and
2-dimensional family obtained in this way.

c) For any of the two-point families described in b), none of its members has general
combinatorial position. Using arguments similar to those in the proof of Lemma 7.3,
it is not hard to show that there is exactly one tropical line in the family that can be
deformed into some general combinatorial position, which must be 3B. The truth of
the statement follows from this.
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Figure 23: Subcomplexes R3E (to the left) and R′
3E (to the right).

Lemma 7.5.
a) A general X has exactly 4 tropical lines with combinatorial position 3E.

b) Each of the tropical lines in b) specialize to a two-point family.

c) Any X has exactly 4 tropical lines which deforms into combinatorial position 3E.
Neither of these deforms into any other general combinatorial position.

Proof. There are 8 subcomplexes of type 3E in Sα,3, all equivalent modulo G. These 8
can be divided into 4 pairs, such that the subcomplexes in each pair contain the same
tetrahedra. One of these pairs, R3E and R′

3E , is shown in Figure 23.
We claim that a general X contains exactly one tropical line L with line subcomplex

either R3E or R′
3E . To prove this, we refer to Figure 24, which shows the 2-cell

dual to A111A101. The cell is a parallel hexagon whose edge directions are given in
the figure. The vertices P and Q are the duals of the tetrahedra A111A101A110A210

and A111A101A011A001, allowing (by Lemma 4.2) trespassing in directions ω3 and ω1

respectively. Let L be the tropical line with vertices v1 = P + (a, 0, 0) and v2 =
v1 + (min(b, c), 0, min(b, c)). Observe that v2 lies either on the edge RR′ (if c ≤ b) or
on the edge RR′′ (if b ≤ c). Hence, since both (RR′)∨ = A111A101A201 and (RR′′)∨ =
A111A101A102 has exits in directions ω2 and ω4, this ensures that L ⊆ X. For a general
X, we can assume b 6= c. If c < b (as shown in Figure 24), we have v2 ∈ int(RR′),
giving c∨X(L) = R3E . If b < c, then v2 ∈ int(RR′′), and c∨X(L) = R′

3E . In either case
it is clear that L is the only tropical line on X passing through P and Q. This proves
the claim.

Finally, the same argument applies to the three other pairs of subcomplexes, giving
a total of 4 lines with combinatorial position 3E.

Parts b) and c) are proved in a similar fashion as in the corresponding parts of
Lemma 7.3.

Lemma 7.6. Any X has exactly 8 tropical lines with combinatorial position 3F .
Neither of these specialize into any other combinatorial position.

Proof. Modulo G, the only subcomplexes of type 3F in Sα,3 are R3F and R′
3F , shown

in Figure 25. Both have orbits of length 4 under the action of G.
It is not hard to see that any X contains exactly one tropical line with line sub-

complex R3F . Indeed, Figure 26 shows how to construct such a tropical line. For
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Figure 24: A tropical line on X with combinatorial position 3E.

uniqueness we can e.g. apply Lemma 3.5: Denoting the side lengths by a, b, c, d, as in-
dicated, we find that ~PR = (0, a, a)+(0, b, 0)+(−c, 0, 0)+(0, d, d) = (−c, a+b+d, a+d).
Since a, b, c, d are strictly positive, the lemma implies that there is a unique tropical
line through P and R, and, a fortiori, that there is a unique line on X with associated
line subcomplex R3F .

The same argument applies to the subcomplexes in the orbit of R3F . Similarly,
by studying the 2-cells dual to A111A102 and A101A201, one can show that X always
contains exactly one tropical line with R′

3F as its line subcomplex. Hence we have a
total of 8 tropical lines with combinatorial position 3F .

The lemmas 7.2 through 7.6 provide everything needed to prove Theorem 7.1.

Proof of Theorem 7.1. a) To sum up, we have on a general X, 12 tropical lines with
combinatorial position 3A or 3D, 3 with 3B, 4 with 3E, 8 with 3F and none with 3C,
3G, 3H or 3I. No tropical line can have more than one combinatorial position on X,
hence the total number of lines is exactly 12 + 3 + 4 + 8 = 27.

b) Part c) of the lemmas 7.3 through 7.5, and Lemma 7.6 identifies, on any X, four
sets of tropical lines. Moreover, it follows from the same results that these four sets
are mutually disjoint, and contains altogether 27 tropical lines.

c) As shown in part b) of the lemmas 7.3 through 7.5 there exist tropical surfaces X

with subdivision Sα,3, which contains one or more two-point families of tropical lines.
In particular, such X has infinitely many tropical lines.

Figure 25: Subcomplexes R3F (to the left) and R′
3F (to the right).
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Figure 26: A tropical line on X with combinatorial position 3F .

7.2 Comments

In principle, Conjecture 1 could be proved by subjecting every RE-subdivision of Γ3 (up
to the action of S4) to an analysis similar to that in the proof of Theorem 7.1. It is not
known to the author how many such subdivisions exist. Using computer-randomized
lifting functions we generated over 5000 RE-subdivisions of Γ3, but the actual number
is presumably a lot larger. For each subdivision, we calculated the total number of
subcomplexes of types 3A, . . . , 3I. The resulting numbers ranged between 27 and 110.
(For the subdivision Sα,3 examined in Section 7.1, the corresponding number is 48.)

Going through the proofs of part b) of Lemmas 7.3 - 7.6, we see a clear pattern: Let
L be any of the 27 tropical lines on a general X with subdivision Sα,3. When we pass
to a non-general surface, then L specializes to either a unique tropical line, or a unique
two-point family. This is almost enough to prove Conjecture 2 for the subdivision Sα,3.
To complete the proof, one has to show in addition that it is impossible for any X to
have an isolated tropical line which is not the specialization of any of the 27 general
lines. It seems probable that this could be tackled by a case study of combinatorial
positions, but we leave this for future research.

Finally we are tempted to pose the following question, on whose answer we dare
not speculate:

Question. Does there exist an RE-triangulation of Γ3, for which any associated tropical
surface contains exactly 27 tropical lines?
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this paper.
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Tropical complete intersection curves

Magnus Dehli Vigeland∗

Abstract

A tropical complete intersection curve C ⊆ R
n+1 is a transversal intersection

of n smooth tropical hypersurfaces. We give a formula for the number of vertices
of C given by the degrees of the tropical hypersurfaces. We also compute the
genus of C (defined as the number of independent cycles of C) when C is smooth
and connected.

1 Notation and definitions

We work over the tropical semifield Rtr = (R,⊕,⊙) = (R, max, +). A tropical (Laurent)
polynomial in variables x1, . . . , xm is an expression of the form

(1) f =
⊕

a=(a1,...,am)∈A

λa xa1
1 · · ·xam

m = max
a∈A

{λa + a1x1 + · · · + amxm},

where the coefficients λa are real numbers, and the support set A is a finite subset
of Z

m. (In the middle expression of (1), all products and powers are tropical.) The
convex hull of A in R

m is called the Newton polytope of f , denoted ∆f .
Any tropical polynomial f induces a regular lattice subdivision of ∆f in the follow-

ing way: With f as in (1), let the lifted Newton polytope ∆̃f be the polyhedron defined
as

∆̃f := conv({(a, t) | a ∈ A, t ≤ λa}) ⊆ ∆f × R ⊆ R
m × R

Furthermore, we define the top complex Tf to be the complex whose maximal cells
are the bounded facets of ∆̃f . Projecting the cells of Tf to R

m by deleting the last
coordinate gives a collection of lattice polytopes contained in ∆f , forming a regular
subdivision of ∆f . We denote this subdivision by Subdiv(f).

1.1 Tropical hypersurfaces

Note that any tropical polynomial f(x1, . . . , xm) is a convex, piecewise linear function
f : R

m → R.

Definition 1.1. Let f : R
m → R be a tropical polynomial. The tropical hypersurface

Vtr(f) associated to f is the non-linear locus of f .
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It is well known that for any tropical polynomial f , Vtr(f) is a finite connected poly-
hedral cell complex in R

m of pure dimension m−1, some of whose cells are unbounded.
Furthermore, Vtr(f) is in a certain sense dual to Subdiv(f): There is a one-one cor-
respondence between the k-cells of Vtr(f) and the (m − k)-cells of Subdiv(f). A cell
C of Vtr(f) is unbounded if and only if its dual C∨ ∈ Subdiv(f) is contained in the
boundary of ∆f .

Let m ∈ N, and let e1, . . . , em denote the standard basis of R
m. For any d ∈ N0,

we define the simplex Γm
d := conv{0, de1, . . . , dem} ⊆ R

m, where 0 denotes the origin
of R

m. For example, Γ2
3 is the triangle in R

2 with vertices (0, 0), (3, 0) and (0, 3). Note
that the volume of Γm

d is given by

(2) vol(Γm
d ) =

1

m!
dm.

Definition 1.2. A tropical hypersurface X = Vtr(f) ⊆ R
m is smooth if every maximal

cell of Subdiv(f) is a simplex of volume 1
m!

. If in addition we have ∆f = Γm
d for some

d ∈ N, we say that X is smooth of degree d.

1.2 Minkowski sums and mixed subdivisions

The set Km of all convex sets in R
m has a natural structure of a semiring, as follows:

If K1 and K2 are convex sets, we define binary operators ⊕ and ⊙ by

K1 ⊕ K2 := conv(K1 ∪ K2)(3)

K1 ⊙ K2 := K1 + K2.(4)

The operator + in (4) is the Minkowski sum, defined for any two subsets A, B ⊆ R
m

by A + B := {a + b | a ∈ A, b ∈ B}. The Minkowski sum of two convex sets are again
convex, so (4) is well defined. Furthermore, it is easy to see that ⊙ distributes over ⊕,
and it follows that Km is indeed a semiring.

Lemma 1.3. Let Rtr[x1, . . . , xm] be the semiring of tropical polynomials in n variables.
The map Rtr[x1, . . . , xm] → Km+1 defined by f 7→ ∆̃f , is a homomorphism of semirings.

Proof. This is a straightforward exercise. The key ingredients are the identities

conv(A ∪ B) = conv(conv(A) ∪ conv(B)) and

conv(A + B) = conv(A) + conv(B),

which hold for any (not necessarily convex) subsets A, B ⊆ R
m.

Let f1, . . . , fn be tropical polynomials, and set f := f1⊙· · ·⊙fn. As a consequence
of Lemma 1.3, we find that Subdiv(f) is the subdivision of ∆f = ∆f1 + · · · + ∆fn

obtained by projecting the top complex of ∆̃f = ∆̃f1 + · · ·+ ∆̃fn
⊆ R

m × R to R
m by

deleting the last coordinate.
For any cell Λ ∈ Subdiv(f), the lifted cell Λ̃ ∈ Tf can be written uniquely as a

Minkowski sum Λ̃ = Λ̃1 + · · ·+ Λ̃n, where Λ̃i ∈ Tfi
for each i. Projecting each term to

R
m gives a representation of Λ as a Minkowski sum Λ = Λ1 + · · ·+Λn. The subdivision

Subdiv(f), together with the associated Minkowski sum representation of each cell, is
called the regular mixed subdivision of ∆f induced by f1, . . . , fn.
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Remark 1.4. Note that the representation of Λ as a Minkowski sum of cells of the
Subdiv(fi)’ s is not unique in general. Following [1], we call the representation obtained
from the lifted Newton polytopes as described above, the privileged representation of
Λ.

Definition 1.5. The mixed cells of the mixed subdivision are the cells with privileged
representation Λ = Λ1 + · · · + Λn, where dim Λi ≥ 1 for all i = 1, . . . , n.

2 Intersections of tropical hypersurfaces

In this section we go through some basic properties and definitions regarding unions
and intersections of tropical hypersurfaces. Most of the material here also appear in
the recent article [1].

We begin by observing that any union of tropical hypersurfaces is itself a tropical
hypersurface. This follows by inductive use of the following lemma:

Lemma 2.1. If X and Y are tropical hypersurfaces in R
m, and f, g are tropical poly-

nomials such that X = Vtr(f) and Y = Vtr(g), then X ∪ Y = Vtr(f ⊙ g).

Proof. By definition, Vtr(f ⊙ g) is the non-linear locus of the function f ⊙ g = f + g.
Since f and g are both convex and piecewise linear, this is exactly the union of the
non-linear loci of f and g respectively.

Remark 2.2. Let U = X1∪· · ·∪Xn, where Xi = Vtr(gi) ⊆ R
m is a tropical hypersurface

for each i. We denote by SubdivU the mixed subdivision of ∆g1 + · · ·+∆gn
induced by

g1, . . . , gn. It follows from Lemma 2.1 and the discussion in Section 1.2 that SubdivU

is dual to U in the sense explained in Section 1.1.

Moving on to intersections, we will only consider smooth hypersurfaces. Let I be
the intersection of smooth tropical hypersurfaces X1, . . . , Xn ⊆ R

m, where n ≤ m.
As a first observation, notice that I is a polyhedral complex, since the Xi’s are. The
intersection is proper if dim(I) = m − n.

Let C be a non-empty cell of I. Then C can be written uniquely as C = C1∩· · ·∩Cn,
where for each i, Ci is a cell of Xi containing C in its relative interior. (The relative
interior of a point must here be taken to be the point itself.)

Regarding C as a cell of the union U = X1 ∪ · · · ∪ Xn, we consider the dual cell
C∨ ∈ SubdivU (cf. Remark 2.2). From Section 1.2, we know that C∨ has a privileged
representation as a Minkowski sum of cells of the subdivisions dual to the Xi’s. It is
not hard to see that this representation is precisely C∨ = C∨

1 + · · ·+C∨
n . In particular,

since dim Ci ≤ m − 1, and therefore dim C∨
i ≥ 1, for each i, C∨ is a mixed cell of

SubdivU .

Definition 2.3. With the notation as above, the intersection X1∩· · ·∩Xn is transversal
along C if

(5) dim C∨ = dim C∨
1 + · · · + dim C∨

n .
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Figure 1: Tropical planes intersecting in
a tropical line.

Figure 2: A proper intersection which is
not transversal.

More generally, the intersection X1 ∩ · · ·∩Xn is said to be transversal if for any subset
J ⊆ {1, . . . , n} (of size at least two), the intersection

⋂

i∈J Xi is proper and transversal
along each cell.

Remark 2.4. Definition 2.3 implies that if smooth tropical hypersurfaces X1, . . . , Xn

intersect transversely, then SubdivU is a tight coherent mixed subdivision (see e.g. [5]).

Recall from standard theory that the k-skeleton X(k) of a polyhedral complex X,
is the subcomplex consisting of all cells of dimension less or equal to k. It is not
hard to see from Definition 2.3 that if X and Y are tropical hypersurfaces intersecting
transversely in R

n, then

(6) X(j) ∩ Y (k) = ∅

for all nonnegative integers j, k such that j + k < n. More generally, we find that:

Lemma 2.5. Suppose X1, . . . , Xn intersect transversally, and let IJ =
⋂

i∈J Xi, where
J is a subset of {1, 2, . . . , n}. For each s /∈ J we have

I
(j)
J ∩ X(k)

s = ∅,

for all j, k such that j + k < n.

Example 2.6. Figure 1 shows a tropical line in R
3 as the transversal intersection of two

tropical planes (i.e., tropical hypersurfaces of degree 1).

Example 2.7. Figure 2 shows an intersection in R
3 which is proper, but not transversal.

The surfaces are X = Vtr(0x⊕0y⊕0) and Y = Vtr(0xy⊕0z⊕0xyz). (Since the “spines”
meet in a point, the intersection is not transversal.)

2.1 Intersection multiplicities

Let X1, . . . , Xn ⊆ R
m be smooth tropical hypersurfaces such that the intersection

I = X1 ∩ · · · ∩ Xn is transversal. Let U = X1 ∪ · · · ∪ Xn and denote by SubdivU the
mixed subdivision associated to U . In [1, Definition 4.3], a general formula is given
for the intersection multiplicity at each cell of I. For our purposes, two special cases
suffice. If P ∈ I(0), let P ∨ be the associated dual cell in SubdivU .
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3 TROPICAL COMPLETE INTERSECTION CURVES

Definition 2.8. Suppose n = m, so I consists of finitely many points. The intersection
multiplicity at a point P ∈ I is defined by mP = vol(P ∨).

Remark 2.9. This generalizes the standard definition of intersection multiplicities of
tropical plane curves.

Definition 2.10. Suppose n = m − 1, so I is one-dimensional. The intersection
multiplicity at a vertex P ∈ I is defined by mP = 2 vol(P ∨).

Remark 2.11. It follows from the definition of transversality that P ∨ has a privileged
representation of the form P ∨ = Λ1 + · · · + Λn−1 + ∆, where each Λi is a primitive
lattice interval, and ∆ is a primitive lattice triangle. It follows from this that vol(P ∨)
is always a positive multiple of 1

2
.

2.2 Tropical versions of Bernstein’s Theorem and Bezout’s

Theorem

Given polytopes ∆1, . . . , ∆m in R
m, we consider the map γ : (R≥0)

m → R defined
by (λ1, . . . , λm) 7→ vol(λ1∆1 + · · · + λm∆m). One can show that γ is given by a
homogeneous polynomial in λ1, . . . , λm of degree m. We define the mixed volume of
∆1, . . . , ∆m to be the coefficient of λ1λ2 · · ·λm in the polynomial expression for γ. The
following tropical version of Bernstein’s Theorem is proved in [1, Corollary 4.7]:

Theorem 2.12. Suppose tropical hypersurfaces X1, . . . , Xm ⊆ R
m with Newton poly-

topes ∆1, . . . , ∆m intersect in finitely many points. Then the total number of intersec-
tion points counted with multiplicities is equal to the mixed volume of ∆1, . . . , ∆m.

As a special case of this we get a tropical version of Bezout’s Theorem:

Corollary 2.13. Suppose the tropical hypersurfaces X1, . . . , Xm ⊆ R
m have degrees

d1, . . . , dm, and intersect in finitely many points. Then the number of intersection
points counting multiplicities is d1 · · ·dm.

Proof. By Theorem 2.12, the number of intersection points, counting multiplicities, is
the coefficient of λ1λ2 · · ·λm in

vol(λ1Γ
m
d1

+ · · · + λmΓm
dm

) = vol(Γm
λ1d1+···+λmdm

) =
1

m!
(λ1d1 + · · · + λmdm)m.

By the multinomial theorem, the wanted coefficient is d1 · · · dm, as claimed.

3 Tropical complete intersection curves

A tropical complete intersection curve C is a transversal intersection of n smooth trop-
ical hypersurfaces X1, . . . , Xn ⊆ R

n+1, for some n ≥ 2. It is a one-dimensional poly-
hedral complex, some of whose edges are unbounded. We say that C is smooth if the
intersection multiplicity is 1 at each vertex (cf. Definition 2.10).

Recall that any cell C of C is also a cell of the tropical hypersurface U = X1∪· · ·∪Xn.
In particular, the notation C∨ always refers to the cell of SubdivU dual to C ⊆ U .
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Lemma 3.1. Each vertex of C has valence 3.

Proof. If P is a vertex of C, then by Remark 2.11, P ∨ has a privileged representation
P ∨ = Λ1 + · · ·+ Λn−1 + ∆, where each Λi is a primitive interval, and ∆ is a primitive
lattice triangle. If E is any edge of C adjacent to P , then E∨ must be a mixed cell
of SubdivU which is also a facet of P ∨. This means that E∨ = Λ1 + · · · + Λn−1 + ∆′,
where ∆′ is a side of ∆. Hence there are exactly 3 such adjacent edges - one for each
side of ∆.

Our first goal is to calculate the number of vertices of C. Before stating the general
formula, let us discuss the easiest case as a warm up example:

3.1 Example: Complete intersections in R
3

Let C = X ∩ Y ⊆ R
3 be a tropical complete intersection curve, where X = Vtr(f) and

Y = Vtr(g) are smooth tropical surfaces of degrees d and e respectively.

Theorem 3.2. The number of vertices of C, counting multiplicities, is de(d + e).

Proof. The idea is to look at all the vertices of the union X ∪ Y , and their dual
polytopes in the subdivision corresponding to X ∪ Y . Since the intersection of X and
Y is transversal, we can write the set of vertices of X ∪ Y as a disjoint union,

(7) (X ∪ Y )(0) = X(0) ⊔ Y (0) ⊔ (X ∩ Y )(0).

Now, any element P ∈ (X ∪ Y )(0) corresponds to a maximal cell P ∨ in Subdiv(f ⊙ g).
The privileged representation of P ∨ is of one of the following forms:

• P ∨ = (3-cell of Subdiv(f)) + (0-cell of Subdiv(g)) =⇒ P ∈ X(0).

• P ∨ = (0-cell of Subdiv(f)) + (3-cell of Subdiv(g)) =⇒ P ∈ Y (0).

• P ∨ = (2-cell of Subdiv(f)) + (1-cell of Subdiv(g)) or
P ∨ = (1-cell of Subdiv(f)) + (2-cell of Subdiv(g)) =⇒ P ∈ (X ∩ Y )(0).

Hence, dualizing (7) and taking volumes, we get the relation

(8)
∑

P∈(X∪Y )(0)

vol(P ∨) =
∑

P∈X(0)

vol(P ∨) +
∑

P∈Y (0)

vol(P ∨) +
∑

P∈(X∩Y )(0)

vol(P ∨).

Now, if P ∈ (X ∩ Y )(0), the volume of P ∨ is 1
2
mP (by definition of intersection

multiplicity). Hence, (8) gives

vol(∆f⊙g) = vol(∆f ) + vol(∆g) +
∑

P∈(X∩Y )(0)

1

2
mP .

Since ∆f = Γ3
d, ∆g = Γ3

e, and ∆f⊙g = Γ3
d + Γ3

e = Γ3
d+e, we find that

∑

P∈(X∩Y )(0)

mP = 2
[(d + e)3

6
−

d3

6
−

e3

6

]

= de(d + e).
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3.2 The number of vertices in the general case

In this section we prove the following generalization of Theorem 3.2:

Theorem 3.3. Let C = X1 ∩ · · · ∩ Xn be a tropical complete intersection curve in
R

n+1, where X1, . . . , Xn are smooth of degrees d1, . . . , dn. The number of vertices of C,
counting multiplicities, is

∑

P∈C(0)

mP = d1d2 · · · dn(d1 + d2 + · · · + dn).

To prove Theorem 3.3, we will use the same setup as in the previous section. Note
that in the proof of the case n = 3, the relation (7) is the key giving us control over
(X ∩ Y )(0). So as an auxiliary lemma, we first state and prove a generalization of this.

To simplify the writing, we introduce the following notation: Let [n] = {1, 2, . . . , n}.
For any nonempty subset J = {j1, . . . , jk} ⊆ [n], we put

UJ := Xji
∪ · · · ∪ Xjk

,

IJ := Xji
∩ · · · ∩ Xjk

.
(9)

In the special case J = [n], we simply write U and I, i.e. U := U[n] and I = C = I[n].

By the assumption of transversality, we have I
(0)

J ∩ I
(0)

K = ∅ whenever J, K ⊆ [n]
are distinct nonempty subsets. Thus we can split the 0-cells of U = X1 ∪ · · · ∪Xn into
a disjoint union:

U (0) =
⊔

J⊆[n]

I
(0)

J .

Similarly, for any nonempty subset J ⊆ [n], we get

(10) U
(0)

J =
⊔

J ′⊆J

I
(0)

J ′ .

Lemma 3.4. For a transversal intersection of tropical hypersurfaces X1, . . . , Xn, we
have:

(11) I(0) ⊔
⊔

|J |=n−1

U
(0)

J ⊔
⊔

|J |=n−3

U
(0)

J ⊔ · · · = U (0) ⊔
⊔

|J |=n−2

U
(0)

J ⊔
⊔

|J |=n−4

U
(0)

J ⊔ · · · .

Proof. By applying (10) to every set U
(0)

J in (11), we see that the following expression
is equivalent to (11):

(12) I(0) ⊔
⊔

|J |=n−1
J ′⊆J

I
(0)

J ′ ⊔
⊔

|J |=n−3
J ′⊆J

I
(0)

J ′ ⊔ · · · =
⊔

J ′⊆[n]

I
(0)

J ′ ⊔
⊔

|J |=n−2
J ′⊆J

I
(0)

J ′ ⊔
⊔

|J |=n−4
J ′⊆J

I
(0)

J ′ ⊔ · · · .

We claim that for each fixed subset J ′ ⊆ [n], the set I
(0)

J ′ appears equally many times
on each side of (12). By inspection, this is true for J ′ = [n]. Assume now |J ′| = k < n.
Then for any integer s with k ≤ s ≤ n, there are exactly

(

n−k

s−k

)

sets J ⊆ [n] containing
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J ′ such that |J | = s. Hence, the number of times I
(0)

J ′ appears on the left side of (12) is
(

n−k

n−1−k

)

+
(

n−k

n−3−k

)

+· · · =
(

n−k

1

)

+
(

n−k

3

)

+· · · = 2n−k−1, while the number of appearances

on the right side is
(

n−k

n−k

)

+
(

n−k

n−2−k

)

+ · · · =
(

n−k

0

)

+
(

n−k

2

)

+ · · · = 2n−k−1. This proves
the claim, and the lemma follows.

Proof of Theorem 3.3. Suppose C and X1, . . . , Xn are as in the statement of the the-
orem. We assume that for each i, Xi has degree di, so the associated Newton polytope
is the simplex Γn+1

di
. Let U denote the union X1∪· · ·∪Xn, and SubdivU the associated

subdivision of Γn+1
d1+···+dn

.
For each nonempty J = {j1, . . . , jk} ⊆ [n], let UJ and IJ be as in (9). In particular,

UJ is a tropical hypersurface (set-theoretically contained in U) with an associated
subdivision SubdivUJ

of the simplex ∆J := Γn+1
dj1

+···+djk

.

Each vertex of UJ is also a vertex of U , and therefore corresponds to a maximal
cell of SubdivU . Let SJ be the set of maximal cells of SubdivU corresponding to the
vertices of UJ . By transversality, the elements of SJ are simply translations of the
maximal cells of SubdivUJ

. Hence the total volume of the cells of SJ , denoted vol(SJ),
is

vol(SJ) =
∑

P∈U
(0)

J

vol(P ∨) = vol(∆J) =
1

(n + 1)!
(dj1 + · · ·+ djk

)n+1.

Now we turn to Lemma 3.4. Dualizing (11), we find that

(13)
∑

P∈I(0)

vol(P ∨) +
∑

|J |=n−1

vol(SJ) + · · · = vol(S) +
∑

|J |=n−2

vol(SJ) + · · ·

By the definition of intersection multiplicity, the dual P ∨ ∈ SubdivU of a vertex P ∈ I(0)

has volume 1
2
mP . It follows that

∑

P∈I(0)

1

2
mP =

1

(n + 1)!

∑

{ji,...,jk}⊆[n]

(−1)n−k(dj1 + · · ·+ djk
)n+1,

which after some elementary manipulation reduces to
∑

P∈I(0)

mP = d1d2 · · · dn(d1 + d2 + · · ·+ dn).

3.3 The genus of tropical complete intersection curves

Definition 3.5. The genus g = g(C) of a tropical complete intersection curve C is the
first Betti number of C, i.e., the number of independent cycles of C.

Lemma 3.6. For a connected tropical complete intersection curve C, we have

2g(C) − 2 = v − x,

where v is the number of vertices, and x the numbers unbounded edges of C.
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For the proof, recall that a graph is called 3-valent if every vertex has 3 adjacent
edges. Furthermore, we apply the following terminology: A one-dimensional polyhedral
complex in R

m with unbounded edges is regarded as a graph, where the 1-valent vertices
have been removed. For example, a tropical line in R

3 is considered a 3-valent graph
with 2 vertices and 5 edges.

Proof. By Lemma 3.1, C is 3-valent. Since C is connected, it has a spanning tree T ,
such that CrT consists of g edges. While T is not 3-valent, we can construct a 3-valent
tree T ′ from T by adding unbounded edges wherever necessary. Clearly, we must add
exactly 2g such edges. Thus if C has v vertices and e edges, T ′ has v vertices and e+ g
edges. Since T ′ is 3-valent, it is easy to see (for example by induction) that the number
of edges is one more that twice the number of vertices, i.e.,

(14) e + g − 1 = 2v.

On the other hand, since C is 3-valent, we must have e = 1
2
(3v + x). Combining this

with (14) gives the wanted result.

Lemma 3.7. Let C be the transversal intersection of X1, . . . , Xn ⊆ R
n+1, where each

Xi = Vtr(fi) is a smooth tropical hypersurface of degree di. If C is smooth, the number
of unbounded edges of C is x = (n + 2)d1 · · · dn.

Proof. Let U = X1 ∪ · · · ∪ Xn, and let SubdivU be the associated subdivision of the
simplex Γ := Γn+1

d1+···+dn
. The unbounded edges of C are then in one-one correspondence

with the mixed n-cells of SubdivU contained in the boundary of Γ. To prove the lemma,
it therefore suffices to show that there are exactly d1 · · ·dn mixed n-cells in each of the
n + 2 facets of Γ. We do this below for the facet Γ′ with e1 = (1, 0, . . . , 0) as an inner
normal vector; the others follow similarly.

For each i = 1, . . . , n let Si be the subdivision induced by Subdiv(fi) on the facet
of Γn+1

di
with e1 as an inner normal vector. We can then regard Si as the subdivision

associated to the tropical hypersurface X ′
i := Vtr(f

′
i) ⊆ R

n, where f ′
i is the tropical

polynomial obtained from fi by removing all terms containing x1. Furthermore, X ′
i is

homeomorphic to the intersection Xi ∩ H , where H is any (classical) hyperplane with
equation x1 = k and k << 0. Note that deg X ′

i = deg Xi = di.
Let S be the subdivision of Γ′ induced by SubdivU . As above, we regard S as the

subdivision associated to the union X ′
1 ∪ · · · ∪ X ′

n ⊆ R
n. Thus, the (finitely many)

points in the intersection I := X ′
1∩· · ·∩X ′

n are precisely the duals of the mixed n-cells
of S. We know from Theorem 2.13 that the number of points in I is d1 · · · dn when
counting with intersection multiplicities; in other words (by Definition 2.8) we have
∑

Q∈I vol(Q∨) = d1 · · · dn.
All that remains is to show that if Q ∈ I, then vol(Q∨) = 1. This is where

smoothness of C comes in: Let P be the vertex of C such that Q∨ is a facet of P ∨ ∈
SubdivU . Writing (as in Remark 2.11) P ∨ = Λ1 + · · · + Λn−1 + ∆, where the Λi’s are
primitive intervals and ∆ a primitive triangle, we must have Q∨ = Λ1 + · · ·+Λn−1+∆′,
where ∆′ is a side in ∆. Since vol(P ∨) = 1

2
(by smoothness), it follows from this that

vol(Q∨) = 1.
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Figure 3: A tropical quadric surface in R
3.

Theorem 3.8. Let C be the transversal intersection of n smooth tropical hypersurfaces
in R

n+1 of degrees d1, . . . , dn. If C is smooth and connected, the genus g of C is given
by

(15) 2g − 2 = d1 · · · dn(d1 + · · ·+ dn − (n + 2)).

Proof. Since C is smooth, it has exactly v = d1d2 · · · dn(d1 + d2 + · · ·+ dn) vertices (by
Theorem 3.3) and x = (n + 2)d1 · · · dn unbounded edges (by Lemma 3.7). Combined
with Lemma 3.6, this proves the theorem.

Remark 3.9. In complex projective space it is well known that any complete intersection
curve is connected. This follows from standard cohomological arguments (see also [4,
Section 3.4.6] for a direct geometric argument due to Serre). In the tropical setting, it
is known that any transversal intersection of tropical hyperplanes is a tropical variety,
i.e., the tropicalization of an algebraic variety defined over the field of Puiseux series
([2, Section 3, and Lemma 1.2 for the relation to Puiseux series]). Furthermore, if a
tropical variety is the tropicalization of an irreducible variety, then it is connected ([3,
Theorem 2.2.7]). This suggests that - at least in the general case - a tropical complete
intersection curve is connected. However, to the author’s knowledge, this has not been
proved.

Remark 3.10. The formula (15) coincides with the genus formula for a smooth complete
intersection in P

n+1
C

of n hypersurfaces of degrees d1, . . . , dn.

4 Example: Tropical elliptic curves in R
3

By a tropical quadric surface in R
3, we mean a smooth tropical hypersurface of degree

2. In this section we take a closer look at intersections of tropical quadric surfaces in
R

3, i.e., smooth tropical hypersurfaces in R
3 of degree 2. Figure 4 shows a typical

tropical quadric surface.
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Figure 4: The subdivision Subdiv(f). Figure 5: The subdivision Subdiv(g).

Let C be a smooth, connected complete intersection curve of two tropical quadric
surfaces in R

3. We call C a tropical elliptic curve. The name is justified by Theorem
3.8, which tells us the the genus g of C satisfies 2g−2 = 2 ·2 · (2+2−4), that is, g = 1.
In particular, C contains a unique cycle.

Since C is smooth, it has exactly 2 · 2 · (2 + 2) = 16 vertices, by Theorem 3.3. We
divide these into two categories: Those on the cycle (called internal vertices), and the
rest (external vertices). Clearly, C has at least 3 internal vertices. But what is the
maximum number of internal vertices? As the following example shows, all 16 vertices
can be internal:

Example 4.1. Let Q1 = Vtr(f) and Q2 = Vtr(g), where

f(x, y, z) = (−6)⊕13x⊕(−3)y⊕(−4)z⊕10x2⊕2xy⊕4xz⊕(−9)y2⊕5yz⊕(−9)z2,

and

g(x, y, z) = (−15) ⊕ (−10)x ⊕ (−4)y ⊕ 2z ⊕ (−7)x2 ⊕ (−2)xy

⊕ 0xz ⊕ 2y2 ⊕ 15yz ⊕ (−1)z2.

Figures 4 and 5 show the subdivisions of Γ3
2 induced by f and g respectively.

The intersection curve C = Q1 ∩ Q2 has genus 1 and 16 internal vertices. Figure
6 shows the the two quadrics intersecting. In Figure 7 we see the intersection curve
alone from a different angle, clearly showing the cycle with all its 16 vertices.

Remark 4.2. A computer search shows that for every integer m, with 3 ≤ m ≤ 16,
there exist two tropical quadric surfaces in R

3 intersecting transversally in a tropical
elliptic curve with m internal vertices.

Acknowledgements. I would like to thank my supervisor Kristian Ranestad for his
constant support. I am also grateful to Bernd Sturmfels for valuable discussions about
the material of this paper, and for posing the problem of how many internal vertices a
tropical elliptic curve can have.
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A Fano theorem in tropical geometry

Magnus Dehli Vigeland∗

Abstract

Given a quadrangle in a projective plane over a field of characteristic other

than 2, it is well known that the three diagonal points, i.e., the intersection

points of opposite sides, are never collinear. We show that in the tropical plane

the complete opposite is true: For any four points in the tropical plane, the three

diagonal points are tropically collinear.

1 Introduction

We define a Fano quadrangle to be any set of four points a, b, c, d, no three on a line,
such that the diagonal points p := ab∩cd, q := ac∩ bd and r := ad∩ bc are well defined
and collinear.

Fano’s axiom. There exists no Fano quadrangles.

If K is any field of characteristic different from 2, then Fano’s axiom holds in
the projective plane P

2
K . In fact, it is commonly included as an axiom for projective

geometry (see e.g. [1, p. 231]).
Fano’s axiom does not hold in P

2
K if K has characteristic 2. For example, if K is

the finite field of two elements, the resulting projective plane is commonly called the
Fano plane. It is straightforward to show that any set of four points in the Fano plane,
no three on a line, is a Fano quadrangle.

In this note, we show that Fano’s axiom does not hold in the tropical plane. In fact,
every quadrangle in the tropical plane is a (tropical equivalent of a) Fano quadrangle.

2 The tropical projective plane

We work over the tropical semiring (R,⊕,⊙), where the binary operations are given
by x ⊕ y = max{x, y} and x ⊙ y = x + y. The tropical projective plane TP

2 is defined
as R

3/ ∼, where (a, b, c) ∼ (a′, b′, c′) if and only if there exists k ∈ R such that
(a′, b′, c′) = (a ⊙ k, b ⊙ k, c ⊙ k).

∗Department of Mathematics, University of Oslo, Norway. Email : magnusv@math.uio.no
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Remark 2.1. Note that TP
2 is not a compactification of R

2. In fact, we do not get
any new points compared to R

2, since any point in TP
2 has a unique representative

of the form (a, b, 0). However, working projectively gives a nice symmetrization of the
variables, well suited to the presentation of the material in this note.

A tropical linear form in x, y, z is an expression of the form f = a⊙x⊕b⊙y⊕c⊙z =
max{x+a, y+b, z+c}, where a, b, c ∈ TP

2. The tropical line Vtr(f) ⊆ TP
2 is defined as

the set of points (x, y, z) ∈ TP
2 where the maximum in the expression for f is attained

at least twice. In other words, we have

(1) Vtr(f) = { (x, y, z) ∈ TP
2 | x + a = y + b ≥ z + c or

y + b = z + c ≥ x + a or x + a = z + c ≥ y + b}.

Note that there is a duality between points and tropical lines in TP
2, such that a point

(a, b, c) ∈ TP
2 corresponds to the tropical line Vtr(a⊙x⊕ b⊙ y⊕ c⊙ z), and vice versa.

It is easy to see (e.g. using (1)) that this is well defined.

2.1 Stable joins and intersections

Definition 2.2. The tropical determinant of a n×n matrix M = (aij) with coefficients
in R, is defined by the formula

|M |t :=
⊕

σ∈Sn

a1σ(1) ⊙ · · · ⊙ anσ(n) = max
σ∈Sn

{a1σ(1) + · · ·+ anσ(n)}.

Here, Sn denotes the symmetric group of permutations of n elements. We say that M
is tropically singular if, in the expression for |M |t, the maximum is attained at least
twice.

Given any two (not necessarily distinct) points p = (p1, p2, p3) and q = (q1, q2, q3)
in TP

2, we define u ∈ TP
2 by

(2) u = (u1, u2, u3) =
( ∣

∣

p2 p3

q2 q3

∣

∣

t
,
∣

∣

p1 p3

q1 q3

∣

∣

t
,
∣

∣

p1 p2

q1 q2

∣

∣

t

)

.

Definition 2.3. The stable join p ∨ q of p and q is the tropical line associated to the
tropical linear form with coefficients (u1, u2, u3).

For general points p, q ∈ TP
2, the stable join p ∨ q is the unique tropical line

containing them. For special choices of p and q however, there are infinitely many
tropical lines passing through p and q. Among these, the stable join p∨ q is the unique
one such that for any generic perturbations ps → p and qs → q of p and q we have
ps ∨ qs → p ∨ q.

We define similarly the stable intersection of two tropical lines: If L1 and L2 are
the tropical lines associated to the tropical linear forms with coefficients (p1, p2, p3) and
(q1, q2, q3) respectively, their stable intersection L1 ∧L2 is the point u defined as in (2).

Definition 2.4. Three points a, b, c ∈ TP
2 are said to be tropically collinear if there

exists a tropical line containing them.
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3 A TROPICAL FANO THEOREM

Lemma 2.5. Three points a, b, c ∈ TP
2 are collinear if and only if the matrix with

a, b, c as row vectors is tropically singular.

Proof. See [2, Lemma 5.1] for a proof involving lifting the entries of the matrix to the
field of Puiseux-series. Alternatively, one can prove Lemma 2.5 directly by simple case
study.

3 A tropical Fano theorem

A collection of four points a, b, c, d ∈ TP
2, not necessarily distinct, is called a tropical

Fano quadrangle if the points

p := (a ∨ b) ∧ (c ∨ d),

q := (a ∨ c) ∧ (b ∨ d),

r := (a ∨ d) ∧ (b ∨ c)

(3)

are tropically collinear.

Theorem 3.1. Any collection of four points in TP
2 is a tropical Fano quadrangle.

Proof. Let a, b, c, d ∈ TP
2 be arbitrary points, not necessarily distinct, and let p =

(p1, p2, p3), q = (q1, q2, q3) and r = (r1, r2, r3) be as in (3). We must prove that the
matrix

(4) M =





p1 p2 p3

q1 q2 q3

r1 r2 r3





is tropically singular. Note that each entry of M is the maximum of 8 linear forms,
each consisting of 4 terms. For instance,

p1 =
∣

∣

a1 a3

b1 b3

∣

∣

t
⊙

∣

∣

c1 c2
d1 d2

∣

∣

t
⊕

∣

∣

a1 a2

b1 b2

∣

∣

t
⊙

∣

∣

c1 c3
d1 d3

∣

∣

t
= max

(i,j,k,l)∈A
{ai + bj + ck + dl},

where A is the set
{

(i, j, k, l) | {{i, j}, {k, l}} = {{1, 2}, {1, 3}}
}

.
Let S3 be the group of permutations of three letters. For each permutation σ ∈ S3,

let Mσ be the set of all linear forms appearing in the formal expression for the product
pσ(1) ⊙ qσ(2) ⊙ rσ(3), after expanding as much as possible. Each set Mσ has at most
8 · 8 · 8 = 512 elements, all linear forms corresponding to tropical monomials of degree
12. By construction, the value of pσ(1) ⊙ qσ(2) ⊙ rσ(3) is max(Mσ).

Now, we claim that for any element τ ∈ S3, we have the inclusion

(5) Mτ ⊆
⋃

σ∈S3rτ

Mσ.

The verification of this claim is straightforward, but tedious to do by hand. We used
computer software to compute the sets Mσ explicitly and check (5) in each case.
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The theorem now follows easily. Indeed, if the matrix M were tropically non-
singular, there would be some element τ ∈ S3 such that

pτ(1) ⊙ qτ(2) ⊙ rτ(3) > pσ(1) ⊙ qσ(2) ⊙ rσ(3), ∀σ ∈ S3 r τ.

This is equivalent to the statement

(6) max(Mτ ) > max(Mσ), ∀σ ∈ S3 r τ.

But because of (5), every monomial in Mτ also appears in Mσ for some σ 6= τ . Hence,
(6) cannot be true.

Remark 3.2. L. F. Tabera found an elegant proof of Theorem 3.1, without need of
computers. His idea is to lift the configuration of points to a plane over a power series
field of characteristic 2. See [3] for details.
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