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Chapter 1

Introduction

Grassmannians and their Schubert cycles are varieties which occur in many different
areas in mathematics. They are fundamental objects in algebraic geometry. When
studying rational varieties, Schubert cycles are frequently encountered, for instance,
every rational scroll is a linear intersection of a Schubert cycle.

In this thesis, we will look for varieties which contain a given Schubert cycle. More
precisely, given a Schubert cycle o, we are looking for varieties Y such that o C Y.
Such a variety Y is said to be apolar to 0. We want the variety Y to have certain nice
properties, in particular, we want ¢ to have codimension one in Y and we want Y to
be arithmetically Cohen-Macaulay.

Every projective variety is defined by an ideal. If R = k[xy, ..., z,] is a polynomial
ring over an algebraically closed field k, let Z(f) denote the zero locus of a homogeneous
polynomial f in R. A variety V in P" is defined as

V:Z(fla"':fr)

where f; € R for all 7, and all f; are homogeneous. The ideal which defines a variety
V' will be denoted I;,. There is an order reversing correspondence between projective
varieties and their ideals: If a variety V is contained in a variety W, the ideal Iy
contains the ideal Iy .

When a variety V is a complete intersection, finding nice apolar varieties is not
so hard: Let Iy be the ideal (fi,..., fr1, f+), and let Iy be the ideal (f1,..., fr 1)
Assume at least one of the f;-s are non-linear, for example, let f, have degree d > 1.
Then W contains V, and W is arithmetically Cohen-Macaulay since any complete
intersection is. Furthermore, V' has codimension one in W, and the degree of W is
less than the degree of V.

Now, let V' be a variety defined by the ideal Iy = (f1,..., f;). Assume all f;
are irreducible. Then V' is contained in all the hypersurfaces S; = Z(f;), and these
hypersurfaces are all arithmetically Cohen-Macaulay. Of course, the codimension of
V in S; is generally big, and often there exist varieties S, such that V' C S C S;.
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Let V be a variety of degree d > 1 in P" and let p be a point in P". Then the union

U(ap)

qev

is the union of all lines joining p to points on V. This union is called the cone over
V' with verter in p, and we denote it C,V. If the point p is not on V, the cone is a
projective variety of dimension dimV + 1 and degree d. If p is a smooth point on V/,
the cone still has dimension dim V' + 1, but the degree is d — 1. If p is a point on V'
with multiplicity m, and if the projection map m, : V' — P* ! is birational onto its
image, the degree of C,V is d — m.

We can define the cone C'V for any linear space L = P". It is done by iteration of
the preceding construction; The cone CV is given by

CrV = CpT+1(Cpr(' o (Cplv) o ))

where pi1,...,p,41 spans L.

Any cone over V' will contain V', and cones are thus apolar varieties for V. As we
have seen, choosing the vertex point wisely, the cones even has lower degree than Y.

In the case when the variety is a curve C' of degree 9, Ciliberto and Harris have
proved ([3]) that if C' is a canonical curve of genus g > 23, general in moduli, then
any irreducible surface of degree d, where § — 1 < d < §, must be a cone over C.

Following is an outline of this thesis. In the first chapter, we fix the notation
and state some necessary results from algebra and basic results about Grassmannians.
We define what we mean by a Schubert cycle, and we state the formulas of Pieri and
Giambelli which enables us to do intersection theory on these cycles. In this thesis,
every time we deal with a cycle, it is a Schubert cycle.

The second chapter is about the tangent spaces of the Grassmannians. If ¢ is a
cycle on a Grassmannian G, let Y, be the union of the tangent spaces along 0. We
define a map 7 which takes a cycle o and maps it to the cycle Y, NG. The linear span
of 7(o) equals the linear span of Y,. We give explicit formulas for the dimension of
the linear span of Y; in the cases when o satisfy some given conditions (propositions
2.10 and 2.11). In any given example, the method can be used to find the linear span
of Y, for any o.

The varieties Y, contains o, and are therefore apolar varieties for Schubert cycles.
In the case of Grassmannians of lines, we find the ideal of Y,, the dimension of Y,
and the codimension of o in Y,. This codimension is almost always greater than one.

A detailed description of the natural habitat of the Grassmannians of lines, can
be found in the third chapter. The Grassmannian of lines in projective n-space is a
variety in the space of skew symmetric (n+1) x (n+ 1) matrices, and they are defined
by the 4-Pfaffians of such a matrix. The matrices have properties which are dependent



of whether n is odd or even, and we treat the two cases separately. We find an explicit
description of the dual variety of Grassmannians of lines (theorems 3.4 and 3.5 ).

After establishing the language of 2-forms and skew matrices, we investigate the
intersection of the Grassmannian with tangent hyperplanes, all tangent at the same
point. We write the intersection as a union of Grassmannians of lines in projective
3-space. Then the intersection locus is contained in the union Y of the linear spans of
the smaller Grassmannians, and Y is therefore an apolar variety for the intersection
locus. Furthermore, the codimension of the intersection locus in Y is one. It turns out
that all the Grassmannians in the union have a point p in common, and that these
apolar varieties are cones over the intersection locus with vertex in p. A Y constructed
in this way, corresponds to a cycle on the Grassmannian of 3-spaces in n-space. This
is the cycle of all 3-spaces which contain the line which corresponds to the common
point p.

Inspired by the promising properties of these apolar varieties, we generalize. Start-
ing with a cycle o on the Grassmannian of 3-spaces in a fixed n-space, let v(o) be the
union of lines in the 3-spaces in 0. The map o — v(o) takes Schubert cycles on the
Grassmannian of 3-spaces in n-space to Schubert cycles on the Grassmannian of lines
in n-space. Let Y, be the union of the linear spans of the Grassmannians of lines in
3-spaces in 0. Then Y, is an apolar variety of v(o). The cycle v(o) is defined by some
linear forms and some forms of degree two, and we find explicitly the quadrics which
are also in the ideal of Y, (proposition 3.10). When o is a linear space, we are able
to fully describe the ideal of Y, (theorem 3.11), and we also find the degree of Y, in
this case (theorem 3.13). The degree is strictly less than the degree of v(o). Also in
the case when o is isomorphic to a Grassmannian of lines in (n — 2)-space, we find
the ideal of Y, explicitly (theorem 3.14). Finally, we see that all the apolar varieties
constructed in this way, are cones and that they are minimal in the sense that there
can be no variety Y; such that v(o) C Yy C Y, (propositions 3.15 and 3.16).

The thesis ends in the fourth chapter with a treatment of the powersum problem
and Grassmannians of lines. Starting with a Grassmannian of lines, we go via a
theorem by Macaulay (theorem 4.3) and get a homogeneous polynomial of a certain
degree. We find this degree (proposition 4.4), and investigate how to write this form
as a sum of powers of linear forms. It reduces to the following problem: How many
tangent hyperplanes, all tangent at the same point, contain a fixed linear space of
dimension one less than the codimension of the Grassmannian? In three examples we
do specific calculations with Chern classes (examples 4.4, 4.5 and 4.6). For general n
we isolate precisely what we need to answer the problem.

This thesis will mostly deal with Grassmannians of lines. Most definitions are
included when needed, and repeated throughout. However, the necessary algebra is
included in the following section only.
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1.1 Preparatory algebra

In this section, we will include some preliminary algebra.

Definition 1.1 (Local ring, from [16]). A ring R is a local ring if it is commutative
and has a unique mazrimal tdeal.

Definition 1.2 (Height of a prime ideal and dimension of a ring, from [5],[11],
[19]). In a ring R, the height of a prime ideal p is the supremum of all integers n such
that there exists a chain

‘pOCPIC.-'C‘pn:‘p

of distinct prime ideals. The dimension of the ring R is the supremum of the heights
of all prime ideals in R. If I is a proper ideal in R, we define the height of I to be the
minimum of the heights of the prime ideals containing I:

height(I) = inf{height(p) | p D I}
The codimension of a prime p is defined to be the dimension of the local ring Ry.

Definition 1.3 (Regular sequence and depth, from [11]). Let R be a ring, and
let M be an R-module. A sequence ri,...,7r of elements in R is called a regular
sequence for M if ry is not a zero divisor in M, and fori=2,...,k, r; is not a zero
divisor in M/(r1,...,ri1)M. If R is a local ring with mazimal ideal m, then the depth
of M 1is the mazimum length of a reqular sequence r1,...,r for M with all r; € m.
The depth of an ideal I in R is the mazimal length of a reqular sequence in I.

Recall that a ring R is Noetherian if every ideal of R is finitely generated, and
that this is equivalent to the ascending chain condition on ideals in R, which says that
every strictly ascending chain of ideals must terminate (see [5] page 27). In particular,
any field is Noetherian (the only ideals are 0 and the whole field). A ring R is Artinian
if every descending chain of ideals must stabilize. That is, if

RoL1oDILbD---

is a descending chain of ideals in R, there exists an integer N such that I,, = I, for
alln > N.

Theorem 1.1. Let R be a commutative Noetherian ring, and let
S = R[x1,...,x,) be a commutative ring, finitely generated over R. Then S is Noethe-
rian. Furthermore, any homomorphic image of a Noetherian ring is Noetherian.

Proof. The first statement is a corollary of the Hilbert basis theorem on page 186-187
in [16], and the second statement is corollary 1.3 on page 28 in [5]. O
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Since the ring R itself is an R-module, the definition of regular sequence and depth
applies to R. We are ready for the important definition of a Cohen-Macaulay ring:

Definition 1.4 (Cohen-Macaulay ring/variety, from [2], [5], [11]). A local
Noetherian ring R is Cohen-Macaulay if the depth of R equals the dimension of R.
A ring R such that depth(m) = codim(m) for every mazimal ideal m of R is called
a Cohen-Macaulay ring. By an arithmetically Cohen-Macaulay (abbreviated ACM)
projective variety, we will mean a projective variety whose homogeneous coordinate
ring is Cohen-Macaulay.

If (R,m) is a local ring, and M is an R-module, the socle of M is defined as the
annihilator in M of the maximal ideal m.

Definition 1.5 (Gorenstein, from [5]). A zero-dimensional local ring (R,m) is
Gorenstein if the socle of R is isomorphic to R/m. A local Cohen-Macaulay ring R is
Gorenstein if there exists a non-zerodivisor r € R such that R/(r) is Gorenstein. A
positively graded Cohen-Macaulay ring R =k & R, & --- is Gorenstein if there erists
a non-zerodivisor v € R such that R/(r) is Gorenstein.

In this thesis, the ring will often be a quotient of a polynomial ring, so we treat
this case in particular.

Lemma 1.2 ([19], 16D). Let R be a Cohen-Macaulay ring. Then the polynomial
ring R[xg,...,z,] is also Cohen-Macaulay. In particular, a polynomial ring over a
field is Cohen-Macaulay.

Lemma 1.3 ([19], 16F). Let R be a Cohen-Macaulay ring and let I = (r1,...,rk)
be an ideal of height k. Then R/I™ is Cohen-Macaulay for every n > 0.

Let T be a polynomial ring over a field (the field will usually be the complex
numbers), and let A be a quotient ring of 7. If T, denotes the d-th graded piece of T,
the socle of A is given by

soc(A)=(0:Ty)={acA|t-a=0Vte T}

Definition 1.6 (Gorenstein ring). A graded Cohen-Macaulay quotient ring of a
polynomial ring over a field is Gorenstein if its socle is generated in only one degree.
By an arithmetically Gorenstein (abbreviated AG) projective variety, we will mean a
projective variety whose coordinate ring is Gorenstein.

Definition 1.7 (Injective object, injective resolution, from [11]). Let A be an
object in an abelian category A. The object A is injective if the functor Hom(-, A) is
eract. An injective resolution of A is a complex I°, defined in degrees 1 > 0, together
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with a morphism € : A — I°, such that I' is an injective object in @ for each i > 0,
and such that the sequence

dO dl .
0= ASIPS T . I"S T .
15 exact.

Lemma 1.4 ([5], Corollary A3.11). If R is any ring, and M is any R-module, then
M has a unique minimal injective resolution.

Now, let M be an R-module, and let I°* be the minimal injective resolution. If
F' is a covariant left exact functor from the category of modules to another abelian
category, applying F' to 0 — M — I*® gives a complex

0= F(M)— FUI° — F(I') - F(I*) — ---

where only 0 — F(M) — F(I°) — F(I') is exact. The i-th cohomology object h*(I®)
of the complex I* is defined to be ker(d’)/im(d"~'). The right derived functors R'F,
i > 0, is defined to be R'F(M) = h*(F(I*)). From the definition of right derived
functors, it follows that R°F ~ F.

If X is a topological space, let I'( X -) be the global section functor. The cohomology
functors H*(X,-) are the right derived functors of I'(X, -). For any sheaf .Z, the groups
H{(X,.Z) are the cohomology groups of Z.

Now, let X be a variety of dimension m in P" and let .#x be its sheaf of ideals.
Let H be the hyperplane defined by a linear form A, and assume H does not contain
any component of X. For a fixed natural number ny, we can define a map

¢ : jx(no -+ 1) — anH(TLO + 1)

Notice that the kernel of ¢ are all elements h - f such that f is in #x(ng). Thus we
have an exact sequence

0— fx(no) — fx(no + 1) — ijH(TL() + 1) —0
where the first map is simply multiplication by h. Applying the functor I'(X, -) to this

exact sequence, we get a long exact sequence in cohomology (see page 637-639 in [5]):

0 =H°(X, #x(ng)) = H' (X, Ix(ng+ 1)) = H (X, Ixnu(ng + 1))
—)HI(X, fx(no)) — HI(X, fx(no + 1)) — HI(X, anH(’I’LO + 1)) —
H*(X, Ix(ng)) — H*(X, Ix(no + 1)) = H*(X, Ixnu(ng +1)) — -+

Now, consider the following lemma:
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Lemma 1.5. A projective variety X of dimension m > 1 is arithmetically Cohen-
Macaulay if and only if H(X, #Zx(j)) = 0 for all 1 <i < m and for all j.

Using this, we get the exact sequence
0 — H°X, #x(ng)) = H'(X, #x(ng +1)) = H' (X, Zxau(ng+1)) = 0
which implies the isomorphism
H°(X, Ixnm(no +1)) = H(X, Ix(ng + 1)) /{h- f|f € H*(X, Fx(no))}

Thus if Ix is generated by the elements gy, ..., g., then Ixny is generated by gq, ..., 9,
where g; = gs modulo A.

Let X and Y be two arithmetically Cohen-Macaulay varieties in P", and assume
that Ix C Iy. Let H be a hyperplane in P". Then it follows from the above discussion
that Ixng C Iyng, and by repeating this, we get that Ixn;, C Iynr for any general
linear space L C P"-

The long exact sequence in cohomology above gives that general linear intersections
of ACM varieties are ACM. In fact, if H is a hyperplane that does not contain any
component of X, the dimension of X N H is less than the dimension of X. Since
all H' (X, #x(j)) in the sequence is zero, H'(X, #xnx(j)) are zero for all 1 < 4 <
dim X — 1. But then lemma 1.5 implies that X N H is ACM.

Theorem 1.6 ([12], theorem 3.1 and corollary 3.2). All Grassmann varieties
have homogeneous coordinate rings which are Gorenstein. Any Schubert subvariety of
a Grassmannian has homogeneous coordinate ring which is Cohen-Macaulay.

To find the tangent space to an affine variety X C A" at a point p, we take all
f in the ideal of X, expand around p and take their linear parts. The tangent space
T,X is the zero locus of these homogeneous linear forms. The tangent cone to X at
p is obtained in the following way ([10], lecture 20): Take all f € Iy, expand around
p, and take their leading terms. The tangent cone T'C,X is defined by these leading
terms. As we have defined it, the tangent cone at p is contained in the tangent space
at p, since the linear parts are among the leading terms in the expansions. Note
that the polynomials that cut out the tangent cone to X at p, does not necessarily
generate the ideal of TC,X. Also not that the dimension of the tangent cone at p is
always the local dimension of X at p. Since the tangent cone is defined by homogeneous
polynomials, there is a projective variety assigned to it, called the projectivized tangent
cone. From now on, when dealing with tangent cones, we will mean the projectivized
ones. Following [10], the tangent cone of X at p is simply the intersection XNE of
the strict transform of X with the exceptional divisor of the blow up of A" at p.
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Proposition 1.7. Let X be an ACM projective variety in P, and let p be a point on
X. Let CpX denote the cone over X with vertex in p. If the ideal of X is generated
by quadrics, and the ideal of the tangent cone TC,X is generated by the leading terms
discussed above, and if the tangent cone TC,X over X in p is ACM, then CpX 1is
ACM.

Proof. Since X is ACM, the length of the resolution of the ideal Iy is equal to the
codimension of X in P". That is, the projective dimension pd(X) is equal to codim(X).
Furthermore, the ideal of C, X is contained in the ideal of X, and therefore pd(C,X)
is less than or equal to pd(X). Let R be the homogeneous polynomial ring of P, and
letm= R, ® Ry @ --- be the homogeneous maximal ideal. The Auslander-Buchsbaum
formula ([5], exercise 19.8) gives that depth(m, Ic,x) > depth(m, Ix). Thus there exist
elements fi, fo, ..., faeptn(x) € msuch that the dimension of C,X N Z(f1, ..., faeptn(x))
is one. We may assume that all f; are linear. This implies that the cone C, X is ACM
if and only if the one dimensional C, X N Z(f1,. .., faeptn(x)) is ACM. Thus we may
reduce to the case when X is a curve. Since the tangent cone T'C,X is ACM, the
tanget cone over the curve is also generated by the leading terms.

From now on, let X be a curve. Let X, denote the image of X after projecting from
p. Blow up P" in p, and let X be the strict transform of X on P*. Let H = 0% (1) and
let E be the exceptional divisor on P*. Then H'(X,.#x(j)) = H'(X,.#5(jH)) and
HY{(X,, #x,(j)) = H(X, #%(j(H — E))). Now, C,X is a cone over X, with vertex in
a point outside the span of X, and they therefore have the same homogeneous ideal.
Lemma 1.5 implies that it is enough to prove that H(X, #;(j(H — E))) = 0 for all
j. Consider the exact sequence

0— I:(i(H—E) > I3(GH — (j — )E) = Ignp((j — 1)h) =0

where h is —F restricted to X. This exact sequence gives a long exact sequence in
cohomology

0— H(X, 75 (j(H — E))) = H'(X, F3(jH — (j — 1)E))
5 HY(X, g ((f — Dh) — H'(X, I3 (i(H ~ B)))
— H'(X, I3 (H ~ (j = VE)) = H'(X, Izp(( = D)) = -+
We want to show that H'(X,.#;(j(H — E))) = 0 by showing that H' (X, #;(jH —
(j —1)E)) = 0 and that 6 is surjective. We do this via the exact sequence
0— Iz(aH — BE) B Fy(aH — (B —1)E) = I5npn((B—1)h) = 0

where 3 < a. To ease the notation, let the cohomology groups be denoted H*(c, 3),
H'(a,8—1) and H* (3 — 1) respectively. We know that H'(a,0) = 0 for all «. When
a = 3 =1 the sequence becomes

0 I3(H-E) S F:(H) - I5p — 0
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Since p is a point on X, H(X, #5.z) = 0, and we already know that H'(1,0) = 0.
Thus H'(1,1) must be zero. When @ = 2 and 3 = 1 the sequence becomes

0—.25(2H — E) 5 74(2H) = I3 — 0
As above H°(X, #5.z) = 0, and H'(2,0) = 0, which forces H'(2,1) to be zero. In
the case a = B = 2, the sequence is
0— .#4(2H —2E) 5 73 (2H — E) — I ,(h) = 0

Since the ideal of the tangent cone is generated by the leading terms in the expansions
around p of elements in the ideal of X, and the ideal of X is generated by quadrics,
the map 6 : H°(2,1) — H°(1) is surjective. Furthermore, the previous case implies
H'(2,1) = 0. This forces H'(2,2) to be zero. Moving on, consider the case o = 3 and
B = 1. The sequence becomes

0— #3(3H — E) 5 74 (3H) — I35 — 0
Again, H*(X, #5,5) = 0, and H'(3,0) = 0, which forces H'(3,1) to be zero. When
a = 3 and [ = 2, the sequence is
0 I5(3H —2E) 5 7.(3H — E) — F5,(h) = 0

The ideal of X is generated by quadrics, so any cubic in the ideal is a quadric multiplied
by a linear form. Thus the map 6 : H°(3,1) — H°(1) is surjective. Furthermore,
H'(3,1) = 0 from the previous case, and this forces H'(3,2) to be zero. In the case
o = (3 = 3, the sequence becomes

0— #5(3H — 3E) 5 #.(3H — 2E) — F4,(2h) = 0

Any quadric in the ideal of the tangent cone comes from a quadric in the ideal of X
singular at p, and therefore the map 6 : H°(3,2) — H°(2) is surjective. Moreover,
H'(3,2) = 0 from the previous case, and thus H'(3,3) = 0. Continuing in this way,
we get that H'(a, ) =0 for all a > 0.

Assume now that « is negative, and consider the exact sequence

0 — Ix(a(H - B)) 'S I3 ((a+1)(H — B)) = Igg_p((a+1)h) =0

For any negative o, H(X, Inw-m((@+1)h)) = 0. When a = —1, H'(X, 7% ((a+
1)(H — E))) = 0, and this forces H' (X, #3(a(H — E))) to be zero. When o = —2,
the sequence becomes

0 — Ig(=2(H — E)) 5" I3(—(H — E)) = Igg_py(—h) = 0

Since H'(X, #¢(—(H — E))) = 0 by the previous case, H'(X, 5 (—2(H — E))) = 0.
Continuing in this way, we see that H'(X, #5(a(H — E))) = 0 for any negative «,
too. 0
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1.2 Fixing the notation

There are a lot of different notations for the Grassmannian, and the one used here is
just one of many. The Grassmannian of (k£ + 1)-dimensional subvector spaces of an
(n + 1)-dimensional vector space V is denoted

Gk+1,n+1) or G(k+1,V™th).

The vector space V will always be C**! for some n. This Grassmannian can be
identified with the Grassmannian of k-dimensional linear subspaces of the projective n-
space P(V). Once and for all, fix the basis {e;}?1]' for V, i.e. e; = (0,...,0,1,0,...,0)
where the 1 is in position number 7. Vectors in V' are denoted v.

If vq,..., vy are independent vectors in V', the (k + 1)-space spanned by them
is denoted (vi,...,Vvgi1), and it is mapped to the point v A - -+ A vy in P(AFFLV).
This map is an embedding and is called the Pliicker embedding. The image of the
Pliicker embedding is the Grassmannian G(k + 1,7 + 1). We may view the Pliicker
embedding in the following way:

If vi,..., Vi1 are independent vectors in V, the subspace UF! = (v, ..., viy1)
is completely described by the (k + 1) x (n + 1) matrix

V11 V12 V13 T Uin+1
M= V21 V22 V23 T UZ,'iz—i—l
V41,1 V41,2 Vk4+13 *°° Vk41p+1
For a sequence I : 1 <143 < --- < 441 < n+ 1, the determinant of the maximal

minor corresponding to columns in [ is called the Pliicker coordinate P;. Since M has
maximal rank, at least one (k + 1) x (k + 1)-minor is non-zero. Moreover, changing
the basis of U*¥*!, we must multiply M on the left by an invertible matrix M’, and P;
is multiplied with det(M").
There are (Zﬁ) such maximal minors, and it makes sense to define a map
Glk+1,n+1) — PGi)?

by sending U*¥*! to the set of Pliicker coordinates
U (Pioogsr, -5 Py )

This presupposes an ordering of the indices I, of course.
A point on G(k + 1,n+ 1) C P(A*1V) = PN~ where N = (ZE) is often called
just p. The k-dimensional linear subspace of P(V) = P" corresponding to the point p

is called ]P”p“. If we are dealing with a particular Grassmannian, we often denote this
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by a G. If there is more than one Grassmannian involved, we usually write them as
above.

The dimension of the Grassmannian G(k + 1,n + 1) is given by the formula
dimGk+1,n+1)=(k+1)(n—k)

Notice that this is exactly the number of squares in a grid system of width (k + 1)
and height (n — k), as in figure 1.1. We will use this image of the Grassmannian
repeatedly throughout this thesis. Following [6] this is a picture of the Chow ring of
the Grassmannian, and we will sometimes refer to this grid system as the Chow ring.

(n — k) boxes

(k 4+ 1) boxes

Figure 1.1: The Grassmannian G(k + 1,n + 1) presented as a grid system

It is a well known fact (see for example [10], lecture 6) that all Grassmannians are
defined as the common zero locus of some forms of degree two. Thus they are projective
varieties. If p;, ;. ,, denotes the (k+ 1)-minor obtained by deleting all columns except
columns number iy t0 i1, the forms defining the Grassmannian G(k + 1,n + 1) is
given by ([15])

k+1

t=1

where ft means that this element is deleted from the sequence.

The Grassmannians are not complete intersections, and the degree is given by the
following formula ([6], page 274)

12!+ - k!(dim(G))!

deg(G(k+1,n+1)) = =Bkt Dl (1.1)

Being varieties, the Grassmannians have subvarieties, some so important they have
their own name. They are called Schubert cycles.
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1.2.1 Schubert cycles

We will now define what we mean by a Schubert cycle. We will give two formulas
which enables us to do intersection theory on these cycles. Moreover, we give formulas
for the degree and dimension of a cycle. A flag in V"*! is a chain of inclusions

F=WCV,C---CV, CVpyy =V

where Vj is a subvector space of V™! of dimension i. For any non-increasing sequence
of numbers
n—k>c>c>>¢q1 >0 (1.2)

let

Ocrocrps =ANEGR+1,n+1) | dim(ANVy_pyimg) >dfori=1,...,k+1}

={PF CcP" | dim(P* NP " *ts") > i —1fori=1,...,k+1} (1.3)
Then o, ,,, is a subvariety of G(k + 1,n + 1), and all subvarieties defined this way
are called Schubert cycles of the Grassmannian.

The notation for a Schubert cycle will vary a little bit. Sometimes they are written
projectively and sometimes not. Also, sometimes indices which are zero will be omit-
ted, sometimes not. However, it is important that a Schubert cycle on G(k+1,n+ 1)
is defined by k£ + 1 indices, and if a cycle on G(k + 1,n + 1) is written with fewer
indices, it will imply that the omitted indices are all zero.

Example 1.1 (G(2,5)). The Grassmannian of two dimensional subvector spaces of a
five dimensional vector space V?° is denoted G(2,5). For a given flag F, consider the
cycle

o10(F) ={A € G(2,5) | dim(ANVs 945 ) >ifori=1,2}
={A € G(2,5) | dim(ANV3) >1and dim(ANVs) > 2}

Notice that the condition dim(A N Vs) > 2 is automatically fulfilled. Alternatively, if
we think of G(2,5) as the set of lines [ in P* and fix the projective flag P(F’) consisting
of a point, a line, a plane and a hyperplane in P*, the cycle oy is the set of lines in P*
which intersect the fixed plane in at least a point.

A slightly more complicated cycle is

o91(F) ={A € G(2,5) | dim(ANV,) > 1 and dim(ANV,) > 2}

Projectively, it is the set of lines in P* which intersect a fixed line in at least a point
and is contained in a fixed P2. A
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The sequence consisting of zeros only is perfectly legal according to equation 1.2.
The corresponding cycle is

o000 F)={A € Glk+1,n+1) | dim(ANV, ) >ifori=1,....k+1}
Projectively,
o000..0(F) = {P* € P" | P* N P" %=1 i at least a P*"*}

But this is automatically fulfilled, so the cycle oqg is the Grassmannian itself. Recall
the picture of the Grassmannian as a (k+ 1) x (n — k) grid system. We have a similar
image for any Schubert cycle: Think of the grid system as k& + 1 columns of height
n — k. Shade a subcolumn of height ¢; in the first column, a subcolumn of height ¢,
in the second column and so on. The result is an image of the cycle o,c,..c,,,- The
image sits inside the original grid system, as it should, since the cycle is a subvariety
of the Grassmannian. The codimension of the cycle o¢,c,..c,,, 18

k41
codim(o,,.. " +1 E c;

i.e. the number of shaded squares in the grid system. Equivalently, the dimension of
any Schubert cycle is equal to the number of unshaded squares:

k+1

dim(c) = (k4 1)(n Zc,

For more on this, see [9], pages 193-211.

Example 1.2 (G(2,5) continued). The cycle o13(F) C G(2,5) has codimension
one in G(2,5), and the cycle o9, (F) has codimension three. Their pictures are shown
in figure 1.2. A

i = %

000 010 021
Figure 1.2: The cycles og9 = G(2,5), 019 and 091 on G(2,5).

The cycles on the form o, are called special Schubert cycles. It would be nice
to know how the Schubert cycles intersect inside the Grassmannian, and in the case
when one is special, we have the following simple lemma:
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Lemma 1.8 (Pieri’s formula, [9], page 203). Ifa = a,0...0, then for any b,

Oa Op = Zoc
where ¢ is such that b; < ¢; < bi—y and > ¢; = a1 + > b;.

Notice that Pieri’s formula implies that when we intersect a special Schubert cycle
with another cycle, the codimension of the intersection is the sum of the codimensions.
The intersection is generally a union of different cycles. Pieri’s formula is so important,
it deserves an example:

Example 1.3. Which lines in P* intersect two given planes? This is exactly the
intersection of two o1¢-s, where the planes are parts of two different flags F' and F” in
P*. Now, Pieri’s formula says that

010(F) - 010(F") = 011 + 090
Figure 1.3 illustrates this intersection. A

H - B = & + F

g10 g10 011 020

Figure 1.3: The intersection (o19)? = 011 + 09.

Pieri’s formula tells us how to intersect two cycles when one of them is special.
This is all we need to know, thanks to the following lemma:

Lemma 1.9 (Giambelli’s formula, [9], page 205). Fvery Schubert cycle can be
written as a polynomial in special Schubert cycles. In fact,

O-Cl 061+1 061+2 .« .. 0-Cl+d—1

0-02—1 0-02 062+1 .. 0-02+d—2

00162...ck+1 = 0-03—2 063—1 0-03 e O-C3+d—3
O-Cd—d—|—1 R O-Cd

where d is the number of non-zero indices.

Example 1.4. The non-special cycle 043 on G(2,7) equals the following polynomial
in special Schubert cycles:

04 O3
02 03

=04 -03 — 05 - 09
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Let o be a Schubert cycle on G(k + 1,7+ 1). We know that o is determined by a
non-increasing sequence of k£ + 1 numbers, 0 < ¢; < n — k. To the cycle

0 = Ocierescipn
where n —k > c¢; > co > -+ > ¢x41 > 0 we can assign a non-decreasing sequence
(ala SR a’k—l—l)

where
a=n—k+(@—-1)—¢

The degree of the Schubert cycle o is given by the formula (see [6] page 274)

deg(0) = 2OV 1o, — ay) (1.4)

al!---akH. *

For any Grassmannian G(k + 1,n + 1), the cycle 0yy..o has codimension one in G,
and its assigned sequence of numbers is

m—k—-1n—-k+1,n—k+2,...,n)

Thus the degree of the special Schubert cycle oy is

B (dim G — 1)! 3l 4! k' (k+1)!
deg(alo)_(n—k—l)!(n—k-i-l)!"'n! 2 2 3 k—1 k
(dim G)!

k+Dn—kn—k—-Dln—k+1)!---nl

B 2-3!---kl(dim G)!
C(n—kn—-k-DI(n—-k+1)---n!
B 23! k!(dim G)!
C(n—k)!(n—k+1)!--n!
Comparing with equation 1.1 gives that the degree of the cycle gyg..¢ is equal to the
degree of the Grassmannian itself. It is thus a hyperplane section on G.

Example 1.5 (The degree of G(2,4)). In this case, the Schubert cycle oy is the
set of lines [ in P® that intersects a fixed line L in at least a point. To find the degree of
G(2,4), we must intersect with a hyperplane dim G(2,4) times, i.e. we must calculate

(010)®? = (010)*:

oto =(010)” - (011 + 020)
=019 - (091 + 091)

:20'22
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The cycle 099 has dimension zero in G(2,4), thus it is a point. This calculation shows
that the intersection of G(2,4) with four hyperplanes is two points, which implies that
the degree of G(2,4) is two. A

Example 1.6 (The degree of G(2,5)). The dimension of G(2,5) is 6, and

0%y =01 - (011 + 020)
20'%0 . (0'21 + J21 + 0'30)
=07y - (2099 + 2031 + 031)
=010 * (2032 + 2032 + 032)
=5033

The cycle o33 is a point on G(2,5), and this implies that the degree of G(2,5) is 5. A

In general, substituting & = 1 into the formula for the degree of G(k + 1,n + 1),
gives

deg(G(2,n+1)) = ~ (2n - 2)

n\n—1

If the sum of the codimensions of two Schubert cycles is bigger than the dimension
of the Grassmannian, the two Schubert cycles will not intersect. In fact, the following
is true (see [9]):

Oa-0p =10 unless a; +by_;; o <n—kforall i

Example 1.7 (G(2,5)). The formula says that the Schubert cycles 0,,,, and op,s,
has non-empty intersection only if

a1+b2§3anda2+b1§3

A

1.3 Some general theory on Grassmannians of lines

The Grassmannian G(2,n + 1) is the Grassmannian of two dimensional subvector
spaces L of a vector space V"1 of dimension n + 1. We can think of the vector space
L as a line in the n-dimensional projective space P(V"*!), and G(2,n + 1) as the
Grassmannian of lines in P(V"*!). The Pliicker embedding is now defined as
P - p(")

1.5
L= <’U1,’U2> = U1 A Ug ( )
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Now let L be a fixed line in P" spanned be the two points (pig,--.,p1,) and
(P20, - - -, Pon ). We can form a 2 x (n + 1) matrix in the following way:

A= (Pr0o Pu1 - Pin
D20 P21 - Pon
The Pliicker coordinates are the (2 x 2)-minors of this matrix.

Example 1.8 (G(2,4)). The matrix A now becomes

Pio P11 P12 Pi3
D20 P21 D22 P23

and the minors are

qo1= Pio Pn 2= Pio P12 3= Do P13
D20 D21 D20 D22 D20 D23
Gro= P11 P12 13— P11 P13 (o3 = P12 P13
D21 D22 P21 P23 P22 P23

A

By construction of the Pliicker coordinates it is easy to see that

qij = — Qji
1.6
i =0 (16)

1.3.1 Quadratic relations

The Pliicker coordinates of points on G(2,n + 1) satisfy the following quadratic rela-
tions, see [15]:

2
Z(_1)/\‘1jokqu0...k;...k2 =0 (1.7)
A=0

where ky means that k is removed from the sequence. Here, jo is any number between
0 and n and kokiko is any sequence of numbers between 0 and n. Written out, the
sum in equation 1.7 becomes

Qjokoqklkz - Qj0k1Qk0k2 + qj0k2qk0k1 = 0 (18)

So, the natural question to ask is “How many quadratic relations does the Pliicker
coordinates satisfy?”, that is, “How many quadratic relations define the Grassmannian
of lines as a subvariety of the big projective space?” We know that j, is any number
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between 0 and n, and the same is true for the k;-s. Therefore, we must pick 4 numbers
out of n+1 possibilities. It is not given a priori that all the numbers must be different,
but by inspection and equation 1.6, we see that the equations are trivially satisfied if
two numbers are equal. Thus, the only sequences that give us independent quadratic
relations are those where none of the numbers are equal, and therefore we have ("f)
independent relations. We have just proved the following lemma:

n+1

4 ) quadratic relations

Lemma 1.10. The Grassmannian of lines in P" is defined by (
as a subvariety of p("3)-1,
Example 1.9 (G(2,4) continued). From lemma 1.10 it follows that there is (§) = 1

equation defining G(2,4). From the proof of the lemma it follows that the equation
is defined by setting jo = 0 and ko, k1, k2 = 1,2,3. Thus, G(2,4) is the zero locus of

Q = 901¢23 — Qo2q13 + Q03q12- A

1.3.2 The points on the Grassmannian of lines as
skew symmetric matrices

In this section, we will explain why we may consider the points in the Pliicker space
of the Grassmannians of lines as skew symmetric matrices. We will also prove that
the intersection of the linear span of a Schubert cycle and G(k + 1,7+ 1) is the cycle
itself.

We know that G(2,n + 1) C P(A’C"™). If e, ..., eny1 is a basis for C*™!, then

{6,’ /\€j|i < j}

if a basis for A2C""'. We know that e; Ae; = —e; Ae; for all 4,7, and e; A e; = 0 for
all 7. It is useful to list these vectors in the following way:

e1Ney egNes egNes ... e1Nepyr
62/\63 62/\64 62/\671—1—1
63/\64 63/\671—1—1

en N\ ept1

If we now define z;; := e; A e;, these basis vectors form the matrix

(0 Ti2 Ti3 T4 " xl,n-{—l\
0 0 g Tos -+ ZTopir
0 0 0 34 -+ Zzpt1
0 0O 0 Tnn+1

\0 0 0 0 - 0
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Since z;; = —x;, this matrix can be expanded to a skew symmetric matrix
( 0 T12 Z13 T4 - $1,n+1\
—T12 0 T23 Tog -+ T2n+1
—Z13 —T23 0 T34 - - T3pt1
—T14 —Toy —x34 0
xn,n—kl
\—$1,n+1 —Topnt1 —T3p41 e 0

Every point p in A2C**! can be written in the form
P = Z aijez- N ej
i<j

and may thus be considered as an (n + 1) x (n + 1) skew symmetric matrix.
Let A = [a;;] be a (r x 1) skew symmetric matrix. Suppose that r is even. We then
define a polynomial Pf(A) in the a;;-s by induction on r:

9. 0 az) _
r=2: Pf (_a12 0 ) = a12

T i8S even, r 2 4: Pf(A) = 2222(—1)ja1ij(A1j)

(1.9)

where A,; is the skew symmetric sub-matrix we get be deleting the first and j-th row
and column in A.

It is well known that a skew symmetric matrix of even dimension generally has
maximal rank. The determinant of such a matrix is the square of a polynomial,
and this polynomial is exactly the maximal Pfaffian. When the dimension is odd,
the Pfaffian is always zero, and thus the matrix has rank at most one less than the
dimension (See [7], appendix D).

Example 1.10. Let A be the matrix

0 T12 T13 T4
—T12 0 Loz T4
—T13 —T23 0 T34
—T14 —Toa —T34 0

Then
Pf(A) :xlsz(Alg) — $13Pf(A13) + .T14Pf(A14)

=T12%34 — T13%24 + T14T23
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If r is odd, we modify the sum in equation 1.9 to Pfaffians of the matrix A;, where
A, is the even-dimensional skew symmetric matrix we get by deleting the j-th row
and column of the matrix A.

The (4x4)—Pfaffians of a skew symmetric matrix is obtained by taking the Pfaffians
of all the (4 x 4) skew symmetric submatrices. Doing this, we see that the (4 x 4)-
Pfaffians give us quadratic relations in the entries, and in one relation each entry
appears at most once. By inspection, we see that these are exactly the same relations
as the Pliicker relations, and thus we may conclude that the Grassmannian of lines in
P" is determined by the (4 x 4)-Pfaffians of the skew symmetric matrix of dimension
n + 1, where the entries are the basis vectors of A2V"*! relative to a fixed basis for
Yyl

There are ("}') Pfaffians which defines the ideal of G(2,n+ 1). They are obtained
by choosing four rows and columns in the matrix of basisvectors for A2V, Let Qi ki
the 4-Pfaffian involving rows and columns number 4, j, k and [. A basis for AV H! is

{esNejNexNe | 1<i<j<k<l<n+1}
This gives an isomorphism

ANV = Teenine)
e; N\ €; NexNe = Qijkl

In this thesis, the quadrics Q;j; will always be the basis for the ideal of
G(2,n+1). Every quadric in the basis of the ideal of G(2,n+1) is a (4 x 4)-Pfaffian.
By itself, such a Pfaffian defines a G(2,4) in G(2,n + 1). Thus every quadric in the
basis of the ideal of G(2,n+ 1) corresponds to a G(2, W*), where W* is an element in
G(4,n + 1) and thus a point in A*V™HL,

When all the (4 x 4)-Pfaffians are zero, the matrix has rank 2. Thus, the points
on the Grassmannian is represented by skew symmetric matrices of rank 2.

Now, let o be a Schubert cycle in G(2,n+ 1). The ideal of G(2,n+ 1) is generated
by the 4-Pfaffians of an (n+ 1) X (n + 1) matrix, i.e of ("}') quadrics. The ideal of o
contains the ideal of G(2,n + 1):

I D Igenryy = (@1, -- -,Q(nf))
The cycle ¢ is defined by two indices:
Ocrey = {P* CP" | PP NP7 D P° and P' C P @}

c1—1

for some fixed partial flag (P"~1~! C P"~2). Choosing coordinates wisely, the P"~
can be represented by a matrix of the form

Pt = (In—01 ‘ 0)
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where [; is the identity matrix of size j. Furthermore, the P" “* can be represented
by a matrix of the form
P = (In—c,41 | 0)

Therefore, an element in 0., ., can be represented by a 2 x (n + 1) matrix of the form

columns number 1,...,n — ¢
ol
1 ¢ ) * - % 0 - 00 --- 0
element in o, : N
T 1
columns number 1,...,n —co + 1

The 2-minors
xi; where j > n —co+ 2

are all zero, and so are the minors
xij wheren —ci+1<i<j<n—cy+1

and therefore, an element in o,,., can be represented by a (n+ 1) x (n+ 1) matrix M
where these entries are zero. The ideal of o.,., is generated by the 4-Pfaffians of the
matrix M. They only involve the non-zero minors, and therefore, the linear span of
Occ, 18 exactly the intersection of the hyperplanes Z(x;;) where Z(f) denotes the zero
locus of the polynomial f, and z;; is as specified above.

Notice that this is also true for general k: If o is a cycle on G = G(k+1,n+1), the
ideal of o contains the ideal of G. The ideal of GG is generated by quadrics. Moreover,
the cycle o is generated by some pieces of a flag, and a point in ¢ can be represented
by a (k+1) x (k+ 1) matrix M of maximal rank. The linear span of o is precisely the
zero locus of the Pliicker coordinates corresponding to (k + 1)-minors of M which are
zero. The ideal of ¢ is defined by the Pliicker relations and these coordinates. Thus
(o) NG(k+1,n+1) is o itself. This proves

Lemma 1.11. For any Schubert cycle o on G(k + 1,n+ 1), let (o) denote the linear
span of o. Then
(oyNGk+1,n+1)=0
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Chapter 2

Tangent spaces of (Grassmannians

As the title says, this chapter is about the tangent spaces of Grassmannians. Given
a linear space L in G = G(k + 1,n + 1), we will investigate the union of the tangent
spaces along L. We then generalize to arbitrary cycles. Furthermore, we define a map
7 from the Chow ring of G to itself. The image of a cycle under 7 is a new cycle, and
the linear span of 7(0) is equal to the linear span of the union of tangent spaces along
0.

2.1 Intersections of tangent spaces

In this section we will describe the tangent space of G(k+1,n+ 1) at a fixed point p.
In particular, we find the cycle on G(k + 1,n + 1) which spans T,G.

Let p be a point on G = G(k + 1, V™). After a suitable choice of coordinates,
we may assume that p corresponds to the subspace (ey, ..., exy1) C VT Assume g
is another point on G, chosen in such a way that IP”; intersects I[I”pc in codimension one,
i.e PENPE = Pk . The union of these two spaces will span a (k + 1)-dimensional
space in P", and we call this Pf . Inside P} there is a one dimensional family of
P*-s which contain the P’;gql. This family forms a line through p on G. By choosing
a different point ¢’, we get a different P*~!, and thus a different line through p on G.
All these lines must lie in the tangent space T,G of G' at the point p.

The P’;-s span the tangent space
The discussion above gives that the cycle
{PF e P | PN IP”; CPF 'Y =0n k1 mk—10

is contained in the tangent space T,G. Now, Pf can be represented by a (k+1) x (n+1)
matrix

Pk = (Ij+1 | 0)

23
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where I; is the identity matrix of size j. Thus any element in o,_g_1,. n—k—1,0 can be
represented by a matrix of the form

* ok x 0 - 0
P* € 0pt—t, kot : - o :
e ’ k ke x 0 -+ 0
e 7
columns number 1,...,k +1

A (k+1) x (k+ 1) minor of this matrix is non-zero if and only if it involves at most
one of the n — k last columns. Thus the number of non-zero Pliicker coordinates is

1+(k;;l)(n—k):l—k(k—i-l)(n—k)

Thus the linear span of this cycle of a projective space of dimension (k + 1)(n — k).
Since the dimension of 7,G is precisely (k + 1)(n — k), the linear span of the cycle
must be equal to 7,G. We have proved the following proposition:

Proposition 2.1. Let p be a point on the Grassmannian G(k+1, V"), The tangent
space T,G of G(k + 1,n+ 1) at p is spanned by all P* C P(V) which intersect IP”; in
codimension one.

Corollary 2.1. The cycle 019..¢ s a tangent hyperplane section on the Grassmannian
Gk+1,n+1).

Proof. Proposition 2.1 says that the tangent space T,G at the point p is spanned by
{Ae Gk+1,n+1) | dim(AN Vi) >k}

where IP”; = P(Vj41). This is recognized as the cycle o,__1,..n—k—1,0, and this cycle
is contained in 019..0(Vk+1). Thus the linear span of the small cycle (i.e the tangent
space) is contained in the linear span of the big cycle (i.e the hyperplane (o1...¢)), and
we are done. O

We have seen that the tangent space at the point IF”pC = P(Vk41) is spanned by the
cycle op—p-1,..n—k—1,0(Vik+1). Lemma 1.11 gives that the intersection of the tangent
space and the Grassmannian is exactly this cycle, i.e

T,GNGk+1,n+1)={(0n—k-1, . ntk-1,0) NGk+1,n+1)=0n k1, nrk-1,0 (2.1)
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2.1.1 The intersection of two tangent spaces

We will now investigate how two tangent spaces may intersect. To illustrate the general
idea, look at the following example:

Example 2.1 (G(3,n+1)). Let p be a fixed point on G(3,7n + 1), corresponding to
the plane IF’% in projective n-space. According to proposition 2.1, the tangent space of
G at the point p is spanned by all P2-s which intersect IP’Z in a line. If p' is another
point on G, the tangent space of G in p' is spanned by all P?-s which intersect ]P’f,, in
a line. Equation 2.1 gives that a point in the triple intersection 7,G N T,yG N G thus
corresponds to a P? which intersect P in a line L; and P%, in a (generally different)
line L. Now, the lines L; and L, are two lines in a P?, and thus they must intersect
in at least a point. It follows that P> intersects P2, in at least a point P.

PZZ)I

L,

Assume the two planes intersect only in the point P. Every time we choose a
line in P2 through P and a line in P%, through P, these lines span a plane, and thus
determine a unique point in T,G N TyG N G. There is a P! of lines in P? through P
and the same is true in lP’f,,. Thus, the triple intersection 7,G N7T,yG NG is isomorphic
to P x PL. A

In the case when G = G(k + 1,n + 1), proposition 2.1 and equation 2.1 says that
a point in the triple intersection 7,G N T,yG N G corresponds to a P¥ which intersects
both P} and P in codimension one. These two P*~'-s are both subsets of the P*, so
they must intersect in a least a P*=2. This shows that IF”; and IF”;, must intersect in at
least a P*~2, and this is non-empty whenever k£ > 2.

Assume now that P; NPk = ]P”;r_]ﬁ,. Every time we choose a P*~! in P} which
contains ]P’];;j, and a P! in IP";, which contains ]P”;a;,, their union will span a P* and
this P* corresponds to a point in T,GNTyG NG. There is a P* of such P*~! in P4 and
t}ie sar?e is true for IF’;;,. Thus the triple intersection 7,G N T,y G N G is isomorphic to
P x P.
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In the case when G = G(2,n + 1), the points in T,G N TyG N G corresponds to
lines which intersect both P, and P, in a point. Fix a point ¢ on P;. There is a P* of
lines though ¢ and a point on P,. There is also a P' of points on P}, so again we get
that the triple intersection 7,G NT,,G N G is isomorphic to P! x P'. This proves

Proposition 2.2. Let G = G(k + 1,n + 1) be the Grassmannian of k-dimensional
linear subspaces of a fixed n-dimensional projective space where k > 2. Let p and p' be
points on G. If ]P”; intersects IP’;, in dimension less than k — 2, the triple intersection
T,GNTyG NG is empty. If IP”; intersects IP”;, in at least dimension k — 2, the triple
intersection T,G NTyG NG is at least a P* x P'. When k = 1, the triple intersection
is a P' x P* as long as P, does not intersect P,. If the two lines intersect, the triple
intersection consists of all lines in the plane they span union all lines in P™ through
the point of intersection. Thus the triple intersection is a plane union a P* ! in this
case.

Let G = G(k+1,n+1) and let p and p’ be points on G. Assume that T,GNT,GNG
is non-empty and minimal. As we saw above, this means that ]P”If and ]P”If, intersect in

a PE%. The linear span of the union P£ UP is a P52, Now look at the set

{P* C P"|P*>2 C P* and P¥ C PX!2

pNp pUp/

Notice that T,G NTyG NG is contained in this set. We can identify this set as the
Schubert cycle

{AeGk+1,n+1)|dim(ANVi_1) >k —1and dim(ANVjy3) > k+ 1}

By inspecting the indices, we see that n+1— (k+1) 4+ (k — 1) — ¢x—1 = k — 1, which
implies that cx,_1 = n—k. We also get that n+1—(k+1)+(k+1) —cx+1 = k+3, which
implies that cx,4+1 = n — k — 2. Thus this is the Schubert cycle o,—k,.. n—kn—k—2n—k—2-
It has dimension (n—k)(k+1)— (n—k)(k—1) —2(n—k—2) = 4, and is isomorphic to
the Grassmannian G(2,4). Every time we fix a flag P*=2 C P**2 in P", we get such a
four dimensional quadric @ on G(k+1,n+1). A picture of the quadric in G is shown
in figure 2.1.

2.2 Tangent spaces along linear subspaces of
Gk+1,n+1)
In this section, we describe the linear subspaces of G(k+1,n+1). We find that there

are two distinct types. Furthermore, we give formulas for the dimension of the linear
span of the union of tangent spaces along linear subspaces.
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kE+1

Figure 2.1: The quadric Q on G with respect to a fixed flag P*=2 C P*+2

Let o be a Schubert cycle on G. We know that o is determined by a non-increasing
sequence of £ 4+ 1 numbers, 0 < ¢; < n — k. Recall that to the cycle
0 = Oc¢ieacs...cht1

where n —k > c¢; > ¢ > --- > ¢xy1 > 0, we can assign a non-decreasing sequence

(ala RN a’k+1)

where
a=n—k+(@—-1)—g¢

The degree of the Schubert cycle o is given by the formula (see equation 1.4)

d1m
deg (0-) ' H - a/'L

ai .a
k+1- i<j

and the dimension of o is

k+1

dim(o) = (k+ 1)(n }:q

Example 2.2. Let o be a cycle of dimension one. Then

0 = On—k,n—k,...n—k,n—k—1 (22)
The assigned sequence is
(0,1,2,3,...,k—1,k+1)
and the degree is

1
deg(0) = yior k—1)!(k+ 1)
=1

@3l (k= D)k +1) ke 2)
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Thus a Schubert cycle of dimension one on G has degree one. A picture of such a
cycle is given in figure 2.2. Since only the upper right corner of the Chow ring is of
importance, the picture only shows this corner. The shading fills the entire rectangle
except the upper right corner box. We draw it this way to save some space, and to
focus the attention on the important part.

Figure 2.2: A Schubert cycle of dimension one on G. It has degree one

All lines on G are Schubert cycles of the type given in equation 2.2. For a fixed
flag F = {V;} = {P% '}, j=1,...,n +1 in P, this cycle is defined as

On—kn—k,.,n—kn—k—1 = {A S G(k‘ +1,n+ 1)| dlm(A N Vk) > k and
dim(A N Vigo) > & + 1}
= {P* C P"|P} " C PF C PiH'}

Proposition 2.1 says that the tangent spaces along this line are spanned by the P*-s
which intersect some P* in the cycle in codimension one. Thus a P¥ which corresponds
to a point ¢ on G which lies in a tangent space along the line, satisfies the following
conditions:

PFNPht =PpF? (23)
k ~ k41 k—1 :

Py NP =P
We will prove later (lemma 2.6) that the opposite is also true, i.e a P* corresponds to
a point on G in some tangent space along the line given by the cycle above if and only
if it satisfies the conditions in equation 2.3. After a suitable choice of coordinates, we
may assume that ]P”f;l is represented by a matrix of the form

Pr ' = (I 0)

where I is the (k x k) identity matrix. Furthermore, I[”’lf,frl is represented by a matrix
of the form

Py = (Iis2| 0)

The conditions in equation 2.3 implies that P* must be represented by a matrix of the
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form
(k+1)x(n+1)
x % *[ 0 0 0 00
PF=| 00 0 00
* * x 0 0 0
* ok * * *
7

columns number (k + 1) and (k + 2)

where the boxed submatrix has dimension k£ x (n+1—k), and a star means we can fill
in whichever complex number we want. Notice that when £ = 1, the first condition of
equation 2.3 har no meaning. Thus, only the two bottom rows of the matrix above is
left.

A (k+1) x (k+ 1)-minor is non-zero if and only if it involves at least k£ — 1 of the
first £ columns and at most one of the last n — 1 — k. The total number of minors not
identically zero is

Sy (k,m) = {(n+1_k)+(’“fl)(l“(n‘k—l)) if k£ 1

("3) — (") =3(n—1) ifk=1

Thus the linear span of the union of the tangent spaces along the line has dimension
Sl (k, 77,) -1. A

This proves

Proposition 2.3. The dimension of the linear span of the union of tangent spaces
along a line on G(k+ 1,n+ 1) is given by

n+1-k)+(f)0+2n—k—-1) -1 ifk#1

Sl(kan)_lz{(n;1)_(n22)_1:3(n_1)_1 ifk=1

Example 2.3. Let o be a Schubert cycle of dimension 2 on GG. There are two possi-
bilities:
0 = On—k,n—k,...n—k,n—k—2
or
0 = On—k,n—k,..n—kyn—k—1,n—k—1

Their pictures are given in figure 2.3. Their assigned sequences are

0,1,2,...,k—1,k+2)



30 CHAPTER 2. TANGENT SPACES OF GRASSMANNIANS

Figure 2.3: Schubert cycles of dimension 2 on G

and

0,1,2,....k—2,k k+1)

and the degrees are one in both cases. Thus Schubert cycles of dimension 2 always
have degree one.

We have seen that there are two types of Schubert planes on the Grassmannian
G. Keeping the fixed flag I’ from above, the plane of type 1 is given by

Un—k,...,n—k:,n—k—Z = {A € G(k + 17 n+ 1)| dlm(A N Vk) Z k
and dim(A N Viys) > k+ 1}
= {P* Cc P"|P5" C P* C P&?}

Proposition 2.1 says that the union of the tangent spaces along this plane is spanned
by all P%-s which intersect some P* in the cycle in codimension one. Such PF-s satisfy
the conditions

P; NPy ' =P ?
I[_pk N Pk+2 _ ]P;k:—l (24)
t P

We will show (lemma 2.6) that the opposite is true, also. Thus, we have that a P*
corresponds to a point on G in some tangent space along the plane given by the cycle
if and only if it satisfies the conditions in equation 2.4.

After a suitable choice of coordinates, we may assume that IPlf{l is represented by
a matrix of the form

P = (k| 0)

and that ]P"I?+2 is represented by a matrix of the form

Py = (Ir+s] 0)
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and P* must be represented by a matrix of the form

(k+1)x(n+1)
ok *x 0 0 00 00
ph _ : : :
= * % 0 00 0 0
x ok ... ... k| x *x x 0 00
11

columns number (k + 1), (k + 2) and (k + 3)

where the boxed submatrix has dimension k£ x (n + 1 — k). When k£ = 1, the first
condition in equation 2.4 has no meaning, and thus lines which span the union of the
tangent spaces along the plane is represented by matrices of the form given by the two
bottom rows of the matrix above.

A (k+1) x (k+ 1)-minor is non-zero if and only if it involves at least k£ — 1 of the
first £ columns and at most one of the last n — 2 — k. The total number of minors not
identically zero is

ooy J =k D)+ (5)(Q) +30m-k-2) ifk#1
Salbn) = {(";1) - (")) =4n—6 if k=1

2
Thus the linear span of the union of the tangent spaces along the plane has dimension
Ss(k,n) — 1.

The plane of type 2 is given by

On—byo—k—k—1n—k—1 = {A € Gk +1,n+ 1)|dim(AN Vj_1) > k-1
and dim(A N Vi) > k+ 1}
= {P* c P"|P5 2 c P¥ c PEF!}

Proposition 2.1 says that the union of the tangent spaces along the plane is spanned
by PF-s which satisfy the following conditions:

k ~ k—2 _ mk—3
b ot 25)
PiNP =P
We will show later (lemma 2.6) that the opposite is also true, i.e. that any P* which
satisfies the conditions in equation 2.5 is in some tangent space along the plane.
After a suitable choice of coordinates, we may assume that IP”;;Q is represented by

a matrix of the form
P2 = (I_4] 0)
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and that P& is represented by a matrix of the form
Pr = (Iks2| 0)

This gives that every P* which satisfies the conditions in equation 2.5 must be repre-
sented by a matrix of the form

\ (k+1)x (n+1)

[« 0000 00
Ph 00 0 00
£ % 0 00

* k... ... k| ok % 0 0 0

Tt
columns number £, (k + 1) and (k + 2)

where the boxed submatrix has dimension £ x (n+ 2 — k).

A (k+1) x (k+ 1)-minor is non-zero if and only if it involves at least k£ — 2 of the
first k — 1 columns, and at most one of the last n —1 — k. The total number of minors
not identically zero is

S2(k,n) = {(g)+3(”_1—k)+ EDO+Qn-1-k) ifk>3

CED) + A -1-k) ik =1or2

Thus the linear span of the union of the tangent spaces along the plane has dimension
S2(k,n)—1. A

To summarize:

Proposition 2.4. Let 0 = 0y, n—kn—k—2 be a plane on G(k + 1,n + 1) isomorphic
to G(2,3). The dimension of the linear span of the union of tangent spaces along o is

—k+1 k N+3n—k—-2) -1 ifk#1
Sy(k,n) —1= (7734-1 +n23+ (5-1) ((5) +3(n ) Zf #
(") - (") —1=4n -7 ifk=1
If o = Opk,..n—kn—k—1n—k—1 1 a plane isomorphic to G(1,3), the dimension of the
linear span of the union of tangent spaces along o is

() +3n—1=k)+ () 1+ () -1-k) -1 k=3

2 — 1 =
SQ(k,’ﬂ) 1 {(l,:ﬁ) + (lc-l|c-2)(n_1_k)_1 ifk=1 or 2
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Example 2.4. There are three possible Schubert cycles of dimension three:

0 = 0pn—k,...n—kn—k—3

0 = On—k,...n—k;n—k—1n—k—1n—k—1

0 = Op—k,...n—knn—k—1n—k—2
Their assigned sequences are

0,1,...,k—1,k+3)

0,1,...,k—3,k—1,k, k+1)

0,1,...,k—2,k, k+2)

and their pictures are shown in figure 2.4. It is easy to see that the degree of the first
two cycles are both 1, while the degree of the third cycle is 2. A

Figure 2.4: Schubert cycles of dimension 3 on GG. The first two have degree 1, and the
last one has degree 2

Proposition 2.5. Any linear space P" lying on the Grassmannian G(k + 1,n+ 1) is
a subgrassmannian of the form G(1,r +1) or G(r,r + 1)

Proof. To prove this, we will use the formula for the degree of a Schubert cycle given
above. We have already seen that the proposition is true when r = 1,2 and 3: Figure
2.2 shows the Chow ring of a line on G. The open spaces is the Chow ring of the
Grassmannian G(1,2), and this proves the proposition when r = 1. Figure 2.3 shows
the Chow ring of the two types of planes on G. The open spaces form the Chow rings
of G(1,3) and G(2,3), and this proves the proposition when r = 2. Figure 2.4 shows
the Chow rings of the three possible types of three dimensional cycles on G. We have
seen that only the two first cycles have degree 1, and the open spaces are the Chow
rings of G(1,3) and G(3,4). Thus the proposition is true when r = 3.
There are five possibilities for a cycle of dimension four:

On—k,...n—k,n—k—4
On—k,...n—k,n—k—1n—k—1n—k—1n—k—1
On—k,...n—k,n—k—1n—k—1,n—k—2
On—k,...n—k,n—k—1,n—k—3

On—k,...n—k,n—k—2,n—k—2
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Figure 2.5: The cycles of dimension 4

Their Chow rings are shown in figure 2.5. The associated sequences are
{0,1,2,...;k—4,k—2,k— 1,k k+1}
{0,1,2,...,k—1,k+ 4}

{0,1,2,...,k—3,k—1,k k+2}
{0,1,2,...,k— 2,k k + 3}
{0,1,2,...,k—2,k+1,k+2}

and the formula for the degree of a Schubert cycle gives that the degrees are respec-

tively 1,1, 3, 3, 2. Thus only the first and second cycles are linear spaces. The unshaded

squares are the Chow rings of G(4,5) and G(1,5), and this proves the proposition when

r = 4. Now, let o be a cycle of dimension greater than four. Then o must either be
on the form

0 = Op—k,..n-kn—k—1,..n—k—1,n—k—(dimo—s+1)
where n — k — 1 occurs s — 1 times (then the sum of the indicesis (s —1)(n—k —1) +
n—k—(dimoc—s+1)+(k+1—3s)(n—k)=(k+1)(n—k)— dimo, so this fits), or
o must contain the quadric Q).
In the first case, the degree of ¢ is

_ (dimo)!
deg(0) = 5 3 = 9) 5= 1) -dimo - (dimo —5) - (dmo —s—1) -2
(dimo —1)----- (dimo — s+ 1)

N (s —1)!
and this expression is equal to one if and only if dimo = s or s = 1. Then o is either
the cycle
0 = On—k,...n—k,n—k—1,...n—k—1

where n — k — 1 occurs s times, or the cycle

0 = Op—k,....n—k,n—k—dimo

These cycles are isomorphic to G(dimo, dimo+1) and G(1, dim 0 +1) respectively. We
know that @ is isomorphic to G(2,4), and thus the linear span of @) is five dimensional.
The cycles of dimension five containing the quadric () are

On—k,...n—k,n—k—2,n—k—3
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and
On—k,...n—kn—k—1,n—k—2,n—k—2

Their associated sequences are
0,1,....k—2,k+1,k+3)

and
0,1,...,k—=3,k—1k+1,k+2)

and the degrees are 5 in both cases. Thus there is no linear space on G which contains
the quadric ). This completes the proof.
]

Now that we know exactly what linear spaces on the Grassmannian looks like, we
will find a formula for the linear span of the union of the tangent spaces along any
r-dimensional linear space on G. This formula will be a function of k£, n and r. The
visual parallel statement to proposition 2.5, says that any linear r-dimensional space
in the Grassmannian must be a cycle of one of the two types shown in figure 2.6.
Notice that there can be no P" of the first type on G(k +1,n+ 1) if r > n — k. Thus
in the following argument, r is always less than or equal to n — k.

G(1,r+1) G(r,r +1)

Figure 2.6: Any linear space on G(k + 1,1 4 1) is a cycle of one of these two types.

A linear r-space G(r,r + 1) ~P" C G(k + 1,n+ 1) can be expressed as the cycle

G(T‘, T+ 1) = U’n—k,...,n—k,n—k—r(F) = {A € G(k +1,n+ 1)| dlm(A N Vk) >k
and dlm(A N Vk+1+r) Z k + 1}
= {P* Cc P"|P5 C P* C P&}

The union of the tangent spaces along this P is spanned by all P¥ which satisfy

Py NPy =P

2.6
Py NPy =PF! (26)
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Lemma 2.6. Let 0cy,,.. ., (F) be a Schubert cycle on G(k +1,n+ 1) for some fized
flag F. Let P* be such that PE NP kHi-cit 5 Pi=2 forj = 1,...,k+ 1. Then there
iS @ POINt P € Oyes,..cnsr (F) such that P* is in the tangent space T,G-

Proof. The cycle o¢,c,, (F) is defined as

~Ck41
Ocrenern(F) = {PF € P* | PEFAPL 4 S Pt fori=1,....k+1}

In particular, a general P£ in the cycle is contained in a fixed P, **' and it intersects
a fixed P"*=¢ in a point g. Now, let P* be such that P* N P; -+~ 5 Pi=2 for
i=1,...,k+ 1. Then P* in general does not intersect P"~*=¢1, and P* N P"~¢+! is in
general a P*~!. The linear span (g, P*~!) is a P*, and this P* is in 0. Furthermore,
the P* we started with intersects (g, P*~!) in codimension one. O

As above we may assume that ]P”f;l is represented by a matrix of the form

P = (I 0)

and that P&t"is represented by a matrix of the form

P]Frr = (Ik+r+1| 0)

Lemma 2.6 implies that a P* is in some tangent space along ¢ if and only if it
satisfies the conditions in equation 2.6. Thus any P¥ on G(k + 1,n + 1) which is in
some tangent space along this linear space, must be represented by a matrix of the
form

(k+1)x (n+1)
* 0 0 0 0 0
P} = 0 0 00
* ok * | % * 0 00
*x b3 *k *k b3
1) )

columns number (k+1),(k+2),...,(k+7r+1)

where the boxed submatrix has dimension £ x (n+ 1 — k).

A (k+ 1) x (k + 1)-minor of this matrix is non-zero if and only if it involves at
least k — 1 of the first k£ columns, and at most one of the n — k — r last columns. The
total number of maximal minors not identically zero is
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1 o+ 1=0)+ (E) ((F) + 0+ —k—r) ifk#1
S’” (k’n’ T) o {((n—l—l) _ (n—l—’r) T

2 2
The union of the tangent spaces along a P" of this type spans a linear space of dimension

SHk,n,r) — 1.
A linear r-space G(1,r +1) ~P" C G(k + 1,n+ 1) can be expressed as the cycle

G(l, T+ 1) = Un—k,...,n—k,n—k—l,...,n—k—1(F)

where n — k — 1 occurs r times. By definition, we have

Un—k,...,n—k,n—k—l,...,n—k—l(F) -
{AeGlk+1,n+1)|dim(ANViy1—r) > k+1—7and dim(AN Vi) > k+1}
={P* CcP"|P} " C P* C P}

The union of the tangent spaces along a linear r-space of this type is spanned by
all P¥ which satisfy

Pk N ]P;k—r _ Pk—r—l
t F
P; NPEH = P!

(2.7)
We may assume that IP”I“,T’" is represented by a matrix of the form

Py = (Iy+1-r| 0)
and that P¥*! is represented by a matrix of the form

Py = (Ixt2| 0)

The conditions given in equation 2.7 and lemma 2.6 then give that any P¥ on G(k +
1,n+ 1) and in some tangent space along this linear space, must be represented by a
matrix of the form
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(k+1)x (n+1)
( 0 00 00 |)
0 0 . 0 0
P = * x 0 0 0
* ok .. ..o okl x ..ox 0 ... 000
o
columns number (k —r +2),...,(k + 2) i.e r + 1 special columns

where the boxed submatrix has dimension & x (n — k +r). The non-zero submatrix of
the boxed matrix has dimension 7 x (r + 1).

A (k+1) x (k+ 1) minor of the above matrix is non-zero if and only if it involves
at least k — r of the first £ — r + 1 columns, and at most one of the n — k — 1 last
columns. The total number of maximal minors not identically zero is

S2(k,n,r) =

(N + D —k=1+ () 0+ (P -k —1)
ifk£1r<k+1

2 4 (M) (n -k —1) itk#£1,r=k+1

k+1 k

Notice that figure 2.6 shows that there can be no P" of this type on G(2,n + 1) when
r > 2. The case r = 2 is treated separately above. To summarize:

Proposition 2.7. Let o be an r-dimensional linear space on G = G(k + 1,n + 1)
isomorphic to G(r,r + 1). Then the dimension of the linear span of the union of
tangent spaces along o s

m+1-k)+ (") () ++)n—k=r) -1 ifk#1
() - (%) -1 ifk=1
If 0 is a linear space isomorphic to G(1,7+ 1), the dimension of the linear span of the
union of tangent spaces along o s

S%(k,n,r) — 1=

(M + D -k-D+ 0+ () -k—1) -1
ifk#1,r<k+1

G+ —k-1) -1 Fhkt1lr—k+1

S}(k,n,r) —1= {
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In the next section we will study two dual filtrations. Of reasons that soon will
become apparent, they are called “vertical” and “horizontal” filtrations.

2.3 The “Spanning-tangent-space”-map

In this section we will define a map from the Chow ring of G to itself. The image of
any cycle o under this map will be the cycle of points on G which spans the union of
the tangent spaces along o.
So fix a flag F' as above, and take any cycle
Ocrcnin =N EG(E+1,n+1)|dim(ANV,_gyi) > i for all i}
={P* CP" | PP NP} st 5 P for all 4}
The union of the tangent spaces along this cycle is spanned by the PF-s which intersect

some element in the cycle in codimension one. Thus the union of tangent spaces is
spanned by P¥-s which satisfy

Py NProbtimat 5 o (2.8)

where i = 1,...,k + 1. Lemma 2.6 implies that any P* which satisfies the conditions
in equation 2.8 is in some tangent space along o. The k-spaces which satisfy the
conditions in equation 2.8 form the cycle

ca={A€eGk+1,n+1)dim(ANVygi1-¢) >i—1fori=1,...,k+ 1}
where a;_1 =¢;—1forv=2,...,k+ 1 and ag41 = 0.
Definition 2.1. The “spanning-tangent-space”-map
7 : { Schubert cycles on G} — { Schubert cycles on G }

maps the cycle 0 = 0, .., to the cycle (o) = Ocy—1,.eni1—1,0- Lhere is a visual way
of looking at this map. Figure 2.7 shows an arbitrary cycle and its tmage under 7.

Proposition 2.8. The linear span of 7(o) equals the linear span of the union of
tangent spaces along o.

Proof. Let Y = UPEU T,G. We have seen that T,G is spanned by all P*-s which
intersect IP”; in codimension one. This linear span is contained in the linear span of
7(0). Thus Y is contained in the linear span of 7(¢). Furthermore, by construction
of 7, the linear span of 7(o) is the smallest linear space which contains Y. Therefore,

{Y) = (r(2))- O
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Figure 2.7: Visualization of the map 7

We can pretend that the bottom left corner of the Chow ring of GG is the origin of
some Cartesian coordinate system. Then the Chow ring itself is an integer grid in the
first quadrant of size (k 4+ 1) x (n — k). The image of any cycle is the picture we get
after moving the origin to the point (1,1), and drawing an integer grid of the same
size with the new origin as the bottom left corner. Figure 2.8 illustrates this idea.

T

Figure 2.8: Alternative visualization of the map 7

Example 2.5. Figure 2.3 shows the two types of Schubert planes on GG. The images
of the two planes under the map 7 are shown in figure 2.9. Notice that both cycles
contain the quadric (), and that they have the same dimension d. What about the
degrees?

The associated sequences to the cycles in figure 2.9 are

(1,2,...,k—1,k+2,n) and (1,2,...,k — 2,k k+ 1,n)

By applying the formula for the degree of a cycle to these sequences, we see that the
degrees are different in general. A

Example 2.6 (Planes on G(3,6)). There are two types of planes on G(3, 6):

o331 and o399
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Figure 2.9: The image of the two types of planes on G' under 7

The images of these two planes under 7 are the cycles
o200 and o119

A simple calculations gives that the degrees of the image cycles are the same, namely
21 in both cases. A

Example 2.7 (Planes on G(3,7)). The images of the two planes
0442 and 0433

under 7 are the cycles
o310 and o299

The degrees of the image cycles are 70 and 56. A

Proposition 2.9. Let P" and P" be the two types of r-planes on G(k+1,n+1). Then
the degrees of the images of these planes under the map T are equal if k+1=n — k.

Proof. We have already seen that the two r-planes are given by

P" = {P* Cc P"|P%t C P C PET)
and .

P = {PF c P"|P% " C P* C PEH)
The space PEF" ¢ P" corresponds to P ¥~ ¢ P, and P% ! C P" corresponds to

. F F
P%~% C P". The conditions
Pit C PR C PEIT

becomes the conditions
P%_k D) ]P;n—k—l D) ]P;;‘—k—r—l

in the dual space, and when k£ + 1 =n — k, these last conditions are exactly the same
conditions defining P" above. Thus P" is the image of P" under the isomorphism

{G(k+1,V**2) FY — {G(k + 1, V*+) [}

and it follows that their images under 7 have the same degree.
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Now, consider a cycle of the form

0 = O¢12c3...c541 (29)

where 2 < ¢y <n—kand1>c¢3 > - > cpr; > 0. For any such cycle, the image
under 7 is the cycle
7'(0) = 010..0 = 01

By definition,
oo={AeGk+1,n+1) | dim(ANV,) >1}
={P"CP" | P NP 1 #£0}
After a suitable choice of coordinates, we may assume that IF"%"“’1 is represented by a

matrix of the form
Pt = (I 0)

and thus any P* in this cycle must be represented by a matrix of the form

(k+1)x(n+1)
* % x| 0 0 00
k*  k * * %k *
Pk: :
*
*
T

column number (n — &k + 1)

where the boxed submatrix has dimension 1x (k+1). There is only one (k+1) x (k+1)-
minor of this matrix which is identically zero (the one involving all the k£ + 1 last
columns). Thus, the linear span of the points in o; has dimension one less than the
Pliicker space.

Now, consider any cycle of the form

0 = 0¢122¢4...cp41 (2-10)
where 2 < ¢y <n—kand1>c¢q4>--->cxyr1 > 0. For any such cycle,
7(0) = o110..0 = 011
By definition

o ={A€Gk+1,n+1)|dim(ANVy k1) > 2}
={P* c P"|P*nPL * > P'}
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After a suitable choice of coordinates, we may assume that ]P”Iffk is represented by a
matrix of the form

Py * = (In-k+1] 0)

and this gives that any element in 0;; must be represented by a matrix of the form

(k+1) % (n+1)
* ok 00 0 0
* ok 00 0 0
P* = x ok * ok ok *
T

column number (n — k + 2)

where the boxed submatrix has dimension 2 x k. A (k + 1) x (k + 1)-minor of this
matrix is identically zero if and only if it involves only one of the n—k+1 first columns.
There are n — k + 1 such minors, and thus the linear span of the points in ;7 is the
intersection of n — k£ + 1 hyperplanes in the Pliicker space. In the next sections, we
will study two filtrations of the Grassmannians.

2.4 Horizontal filtration

Consider a cycle 0 = 0¢,¢,...c;,,, Where 1 > ¢ > -+- > ¢;1 > 0. The image of such
a cycle under the map 7 is the cycle ogg. o, i.e. the whole Grassmannian. The linear
span is thus the Pliicker space itself.

Rule 1 (Rule of horizontal filtration). To the normal intersection rules of Schubert
calculus, we add the following: Filling the Chow ring of G(k + 1,n + 1) is done by
intersecting with the cycle o1 again and again. The rule of horizontal filtration says
that we have to fill a row completely before starting filling a new one.

In this section, we will stay true to this new law, and it will never be violated.
Thus we will always fill the first row completely before starting filling the second, and
so on. The smallest possible cycle of the form specified above is 0111, and the largest
possible cycle contained in this, is the cycle o9, ;. These are shown in figure 2.10.
Both of these are mapped to the Grassmannian itself by 7. Thus the union of the
tangent spaces along oy 1 spans the Pliicker space. Any cycle smaller than oo, 1
(which obey the rule of horizontal filtration) does not have this property.
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o B

011..1 021..1

Figure 2.10: Inclusions satisfying the rule of horizontal filtration

e B

021..1 0221...1

Figure 2.11: Inclusions satisfying the rule of horizontal filtration

The largest cycle contained in o971 is 09211, Which is a cycle of the type specified
in equation 2.9. We have seen that the image under 7 is o7, and if the Pliicker space
is a PV, the linear span of this image has dimension N — 1.

We can continue, and say that the largest cycle contained in 0991, 1 iS 09991...1, Which
is a cycle of the form specified in equation 2.10. We have seen that the image under
T is 011, and that the linear span of the image has dimension N — (n — k + 1).

= B

0221...1 02221...1

Figure 2.12: Inclusions satisfying the rule of horizontal filtration

Assume now that we have come to a stage in the filtration where we have filled up
r + 1 rows and s 4+ 1 boxes in row number r 4+ 2. The situation is illustrated in figure
2.13. The image of this cycle under the map 7 is the cycle

0 = Or41,...,r+1,r,...,7,0
={AeGk+1,n+1)|dimANV_gys—r_1) > s, dim(ANV,_,) >k} (2.11)
= {P* C P"|P* NP F+s=2 5 Pl and PE NPT O PR

where r + 1 occurs s times and r occurs k£ — s times.
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s + 1 boxe

r 4+ 1 rows

Figure 2.13: A random stage in the horizontal filtration

After a suitable choice of coordinates, we may assume that I[”’lf,fk“Ls_r_2 is repre-
sented by a matrix of the form

IP%_IH—S_T_Q = (In—k+s—r—1| 0)
and that P% "' is represented by a matrix of the form
]PTI%:FI = (In—r| 0)

Then any element in the cycle specified in equation 2.11 is represented by a matrix of
the form

(k+1)x(n+1)
[ x| 0 ... 00 0 \
0 0 . 0
]Pk: * * 0 0
* x| % ... x 0 ... 0
P
columns number n —r—k+s,...,n—r

where the boxed submatrix has dimension & x (r+k—s+2), and the non-zero submatrix
of the boxed matrix has dimensions (k — s) X (k — s+ 1).

A (k+1) x (k+1)-minor of this matrix is non-zero if and only if it involves at least
s of the first n — r — k + s — 1 columns, and at most one of the r + 1 last columns.
Thus the number of maximal minors not identically zero is given by the formula

5(7“7 S, ka n)h =

(G () ] O

j=s
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This formula is fairly complicated, and the terms deserve a short explanation. The
matrix can be divided into submatrices of the dimensions indicated below:

sx (r+k—s+2)

(k4 1) zeros only
+ 1)x
m—r—k+s—1) (2.13)
(k—s)x(k—s+1) | (k—s)x(r+1)
arbitrary numbers zeros only

1 % (r+ k — s+ 2) arbitrary numbers

F  special columns .

A non-zero minor must involve at least s of the (n —r — k + s — 1) first columns. So
fixaje{s,...,k+1}. If we pick j of the first (n —r — k + s — 1) columns, we need
to pick k£ + 1 — j of the others. We can either pick all the rest out of the (kK — s+ 1)
special columns, or we can choose k£ — j out of the special ones, and one out of the last
(r +1). All other choices of columns produce a minor which is identically zero. This
explains the formula of equation 2.12.

Example 2.8 (r+1 =n—k—1and s+1=%). Withr+1=n—%k—1 and
s+ 1 = k, we have come to a stage in the filtration where only one box is left to fill.

The picture of the situation is similar to the one in figure 2.2. The formula in equation
2.12 becomes

S(k’”)::il@ (O R R
~(E)[G) () memn]s
() ()+ () o-r-)

=k[l1+2n—k—-1)]+[2+ (n—k—1)]
Fortunately, this coincides with the formula for S;(k,n) given on page 29. A

Proposition 2.10. Let o be a cycle which appears in the horizontal filtration of G(k+
1,n + 1), namely the cycle where r + 1 rows are filled completely and we have filled
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s+ 1 bozxes in row number r + 2. Then the dimension of the linear span of the union
of tangent spaces along o is

S(r,s, k,n),—1=

e (S M ey RS

j=s

Remark: Notice that if we are at a step where r 4+ 1 rows are filled completely,
and no other boxes are filled, we can set s = 0 in the formula. We can do this because
the cycles o,42,41,. r+1,0,..0 a0d Ory1 41, r+1,0,..0 have the same image under 7.

Example 2.9 (k=1). When £ =1, s+ 1 must be either 0 or 1. When s+ 1 =0,
we are at a stage in the filtration where we have filled r + 1 rows completely, and all
other boxes are empty. The image under 7 of such a cycle is the cycle g,9. The next
step in the filtration is keeping r as it was, but setting s = 1. The image under 7 of
this cycle is also 0,9. The next step is increasing r by one, and the image under 7 is
Or4+1,0- Thus when £ = 1, the filtration is proper every other step. What happens to

Or4+1,r4+1 Or42,r+1 Or42,r42 Or43,r+2
0ro 0ro Or41,0 Or41,0

Figure 2.14: Four random steps in the filtration of G(2,n + 1) and their images under
-

the formula? The number s is at most zero, so the upper right submatrix in equation
2.13 is not there in this case. As figure 2.14 shows, the number the formula produces
must be the same whether s +1 =0 or s+ 1 = 1. Thus we can set s = 0 to find the
formula. The “dimension” matrix now becomes

1 x 2 (arbit. numbers) | 1 x (r+1) (zeros only)
1 x (r 4+ 3) arbit. numbers (2.14)

2x(n—r—2)

F 2 special columns .
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and the formula becomes

sem=3 ("7 [(,2) o2 ) o)

J

:[1+2-(r+1)]+(n—r—2)[2+(7“+1)]+(n_;_2>

Notice that S(n — 3,n) = [1 + 2(n — 2)] + [2 + (n — 2)] = 3n — 3 which is the same
result we have on page 32. A

2.5 Vertical filtration

The rule of horizontal filtration states that the boxes must be filled one by one from
left to right, and an entire row must be filled before we can start filling a row at a
higher level. What if we decide to fill the boxes upward instead?

Rule 2 (Rule of vertical filtration). To the normal intersection rules of Schubert
calculus, we add the following: Filling the Chow ring of G(k + 1,n + 1) is done by
intersecting with the cycle o1 again and again. The rule of vertical filtration says that
we have to fill a column completely before starting filling a new one.

In this section, this law will always apply. This will produce a different filtration.
Assume we have reached a step in the filtration where we have filled » + 1 columns
completely and s + 1 boxes in column number r + 2. The situation is illustrated in
figure 2.15.

s+ 1 rows

-
r + 2 columns

Figure 2.15: A random stage in the vertical filtration
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The image of this cycle under the map 7 is the cycle

0 =0pk-1,.,n—k—1,5,0,..0
= {A € G(k + 1, n—+ 1)‘ dlm(A N ‘/:,-4_1) 2 T, dlm(A N Vn—k+r+1—s) Z T+ 1}
= {P* c P"P* NP}, > P! and P* NPLF5 5 P}

where n — k — 1 occurs r times. After a suitable choice of coordinates, we may assume
that P} is represented by a matrix of the form

Pr = (Ir41] 0)
and that P% "7~ is represented by a matrix of the form
P%‘_IH—T_S = (In—k+r+1—8| 0)

Then any element in the cycle o must be represented by a matrix of the form

(k+1)x (n+1)
[ £/ 0 -« 00 0|
: 0 -+ 0
Pk = * * | % * 0 0
* * ok * % *
o
columns number r +2,...,(n —k+7r+1—5)

where the boxed submatrix has dimension 7 x (n — ). The corresponding dimension-
matrix is

rx(n—r)
zeros only
k+1)x(r+1
( ) ) (n —k—s) numbers | (k—r+s) zeros (2.15)

arbit. numbers
(k —r) x (n — r) arbit. numbers

F the special columns -
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A (k+1) x (k+ 1)-minor of the matrix above is non-zero if and only if it involves
at least r out of the (r + 1) first columns, and at most (k — r) of the (k — r + s) last
ones. Thus the number of maximal minors not identically zero is given by the formula

son= (1) (TR (TT7) (2052 e

j=0
The first binomial expression is the number of non-zero minors which involves all the
r 4+ 1 first columns. If we choose r out of the r + 1 first columns, we need to choose
k +1 — r more columns to make a minor. At most k — r of these can be among the
last k — r + s. This proves

Proposition 2.11. Let o be a cycle which appears in the vertical filtration of G(k +
1,n+1), namely the cycle where r+1 columns are filled completely, and we have filled
s 4+ 1 bozxes in columns number r + 2. Then the dimension of the linear span of the

union of tangent spaces along o is
k—r
n—r r+1 k—r+s n—k—s
S k,n),—1= , . -1
(7, 7) (k—r>+( r ) ;( J ) (k+1—T—J>]

Remark: When we are at a stage when r + 1 columns are filled completely,
and no other box is filled, we can set s = 0. This is because 0,_,..n—kp0,.,0 and
On—k,...n—k,1,0,..,0 have the same image under 7.

2.6 Filtration on Grassmannians of lines

We will now apply the filtration technique on Grassmannians of lines in a projective
space.

2.6.1 Horizontal filtration for G(2,n + 1)

Horizontal filtration for Grassmannians of lines is treated in example 2.9 above. From
the matrix in equation 2.14 it is clear that the number of minors not identically zero
is
n—r n24+n—(r?+r
S(r,n)z( 9 >+(n—r)(7"+1): 2( )
As we explained above, the filtration will alternate between proper inclusions and
equalities.

Example 2.10 (G(2,6)). The Grassmannian G(2,6) has dimension 8 inside a P'.
The complete filtration is shown in figure 2.16, where the P*-s indicate the span of the
image under 7. A
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[ [ (M|

[ DR D 1 O D) D) D) D)

"ap i B E E ﬁ ﬂ ﬂ
P14 P14 P14 ]Pa13 IP13 Pll Pll ]PS

Figure 2.16: All the steps in the horizontal filtration of G(2,6) and their images under
.

2.6.2 Vertical filtration for G(2,n + 1)

The formula in equation 2.16 becomes the following in the case £ = 1:

S(s,m) = (T)—i—[(n_;_s>+(s+1)-(n—1—s)

n—1-s5)(n—2-y%)

=n+ 5 +(s+1)(n—1-y5s)
2+ n—-1-5)(n—2—5+25+2)
B 2
_2n4+(n—1-s)(n+s)
B 2
n?+n— (s +s)

2

Thus the linear spans that occur in this filtration will be the same as for the horizontal
filtration.

Example 2.11 (G(2,6)). The complete filtration is shown in figure 2.17. A

R R R R IR R

14 ]P:14 ]P:14 P14 ]P14 ]P)13 ]Pall

Figure 2.17: All the steps in the vertical filtration of G(2,6) and their images under 7

2.7 Apolar varieties of Schubert cycles on

Grassmannians of lines
We have found formulas for the linear span of ¥ when YV = (J,, T,G for a cycle

o € G(2,n + 1) which appears in a filtration. In this section, we will study these
varieties for arbitrary cycles o.
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In section 1.2 we described the points in the Pliicker space of G(2,n + 1) as (n +
1) x (n+1) skew symmetric matrices. The points on the Grassmannian are represented
by matrices of rank two, i.e. matrices for which all 4-Pfaffians are zero. How can we
find the tangent space of G(2,n+ 1) in a point p? Let p be represented by the matrix

(0100 - 0)
-1 000 -~ 0
0000 - 0
\ 0000 - 0

that is, the point p is the point where all coordinates except x5 is zero. This is a point
on the Grassmannian, since the matrix has rank two. The Grassmannian is defined

by equations of the form
> aljwin

where af} = +1 and where the indices 7, j, k and [ are all different numbers between 1
and n 4+ 1. Now, do partial differentiation:

4

85t(af}xijxkl) = af].fij
Evaluating in the point p gives
p 0 ifij # 12
7ij(P) = 0> = {1 ifij =12

When we use partial differentiation and evaluate in p, the only monomials which
survive are the ones which involve the coordinate x15. In the quadrics defining the
Grassmannian, this coordinate occurs only together with coordinates z;; where 4, j ¢
{1,2}. Thus the only partial differentiations which does not evaluate to zero are the
the 0;;-s where i,j ¢ {1,2}. The tangent space is therefore the linear space where
all coordinates which does not have the numbers 1 or 2 in their index are zero. The
points in the tangent space at p is therefore represented by matrices which look like

o)

1 0 =% . *
*x x 0 0 --- 0
00 - 0
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where a star means you can put in any complex number. Notice that this matrix has
rank at most four, since the n — 1 bottom rows can have rank at most two. Thus
every 6-Pfaffian of this matrix is zero. When we discuss wedge product spaces in
detail in chapter 3, it will become apparent that the opposite also is true, i.e. if a
point is represented by a matrix of rank four, it is in some tangent space along the
Grassmannian.

Now, let Y, be the union of the tangent spaces along a Schubert cycle on G(2,n+1),
i.e let

Viorw= U 10 (2.17)

PEO=0cq,cq+1CG

where o, .,+1 is any Schubert cycle. We know that Y N G(2, V") is the cycle o,
and a point in 0., can be represented by a skew symmetric matrix of the form

* 0 -0 x %k ok ee0 %k

0 * = *

M= 0 0 - 0
0 0 - 0

\* x* o x 0 0 --- 0/

where the submatrix of zeros has size (c; + 1) X (¢ + 1), and the skew symmetric
matrix in the upper left corner has size (n — ¢) X (n — ¢3). Since every point in Y is
in some tangent space, they all have rank at most four. Thus the 6-Pfaffians must be
zero. We get the inclusion

Y C Z(xi; wheren+1—c, <i<j<n+1, 6-Pfaffians of M)

Moreover, a point in the zero locus of the 6-Pfaffians of the matrix M and in Z(x;;),
is in some tangent space, and in fact in Y,. Thus the opposite inclusion is true, also.

Example 2.12 (G(2,7)). Consider the cycle o3,. By definition
o3 = {P' CP° | P NPL 5P and P* C P}

for some fixed partial flag P% C P%. The same type of argument as above shows that
a point in this cycle comes from a line in P’ which is spanned by the row vectors in
the following matrix:
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The minors Mlﬁ, M17, MQG, M27, M36, M37, M45, M46, M47, M56, M57 and M67 are all Z€ero,
and the cycle is therefore contained in intersection of the corresponding hyperplanes in
the Pliicker space. Therefore, a point in {(o32) can be represented by a skew-symmetric
matrix of the following form:

(0 * x % % 0 0\
x 0 x x = 0 0
* x 0 x x 0 0
p € (032) : x x + 00 0 0
* x « 0 0 0 O
00 0O0O0O0OTO
\0 0000 0 0

where a star means you can put in any complex number. The image under 7 is the
cycle 019, and the lines in this cycle are all represented by a (2 x 7)-matrix of the form

* x x % x 0 0
p€010:< )

* ok ok ok ok ok ok

The only minor which is identically zero is Mgy, and thus the corresponding (7 x 7)
skew symmetric matrix looks like this:

(0 x ok ok k% *\

* 0 * % % *x %

* x 0 * *x * x

p € {o10) : * x + 0 * * *
* x *x % 0 * x

* *x x * % 0 0
\* x % x % 0 0)

where a star means you can put in any complex number. We have seen that the points
in a tangent space are represented by matrices of rank 4, so any point of this form and
of rank 4 is in some tangent space along 035. Equivalently, any point of this form and
with vanishing 6-Pfaffians, is in some tangent space along 03;. A

If Y, is a variety of the type
Yo'cl,c2+1 = U TPG
peacl,c2+1
what is the dimension of Y,? Consider the incidence

[peo TpG = {(p,q) € 0 % p("s') 1 | ¢ € T,G}

P?(n— 1) 3
1 2

o Y = UpE(T 1,G
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For a fixed point p in o the fiber 7' (p) is given by
n+1Y)__
' (p) = {g e P(3)1 | g € T,G)

But this is the tangent space T,G itself, and thus the fiber over p is a P2®~1). Next,
fix a point ¢ in Y,. The fiber m;'(q) is given by

' (¢) ={p€o|qeT,G}

The point ¢ is a point in Y;, so it is in some tangent space to G(2,n + 1). Thus q is
a point of rank four. Therefore it is a point in the linear span of some G(2,4), i.e in
a P(A2W*). As a point in this P°, how many tangent spaces of G(2,4) is ¢ in? The
G(2,4) is defined by a quadric @, and if ¢ has coordinates qo, . . ., g5, the polar of @ in
q is given by
Py(Q) = 000(Q) + ¢:10:(Q) + - - - + ¢505(Q)

The zero locus of the polar is a hyperplane in P°, and the intersection with G(2,4) is
a family of dimension three. Take any point p in this intersection, and consider the
tangent space of G(2,4) in p. Then

P € Z(Q)N Z(q0Q + ¢101Q + - - - + ¢505Q)

and the tangent space of Z(Q) in p is
Z(Q(p) + (3Q)(p)(zo — po) + -+ - + (95Q) (p) (z5 — p5))

Now, evaluate the polynomial defining the tangent space in ¢:

[Q(P) + (00Q)(p)(zo — po) + - -+ + (05Q) () (x5 — p5)](q) =
= (0v@)(p )( ) -+ (05Q)(p) (g5 — ps)
= QO(aOQ)(p) -+ Q5(65Q)( ) — (Po(00Q)(P) + -+ + p5(05Q) (p))

=0

Thus the point g lies in 7,G(2,4). There was nothing special about p, so ¢ is in a three
dimensional family of tangent spaces. We are in a situation which can be illustrated
as
ge P(N2WH) C P(A2V™HL)
U U
G(2,4) C G(@2,n+1)

We have seen that ¢ is in a three dimensional family of tangent spaces on the small
Grassmannian. But then it is also in a three dimensional family of tangent spaces on
G(2,n+1). On the other hand, if ¢ is in a tangent space for G(2,n + 1), this tangent
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space restricts to a tangent space for G(2,4). Thus ¢ is in a family of tangent spaces
for G(2,n+1) of dimension exactly three. This implies that the fiber dimension for 7
in the incidence above is three, and the dimension of Y, is therefore as in the following
proposition:

Proposition 2.12. The dimension of the union of the tangentspaces along the cycle
Ocyeot1 18 4(n—2) — ¢ — co.

Proof. The union of the tangentspaces along o¢, ¢,+1 is the variety Y,, . ., and
dimY,, . ., =dimog 1 +2(n—1)-3
=2n—-1)—c1—c—14+2(n—-1)—-3
=4(7’L—2)—C1—Cz
This proves the statement. O

The dimension of Y N G(2,n + 1) equals the dimension of o.,, which is equal to
2(n — 1) — ¢9, and the codimension of Y N G in Y is therefore

dimY —dim(Y NG)=4n—2)—c1 —ca—2(n—1) + ¢
=2(n—-3)—¢

The number ¢, is an index for a cycle on G(2,n + 1), and it is therefore less than or
equal to n — 1. The codimension of Y NG in Y, is therefore greater than or equal to
2(n —3) — (n—1) = n — 5. Notice that the codimension is one only when n = 6 and
c; is maximal. In all other cases, the codimension is strictly greater than one.

We have seen that varieties Y, of the from given in equation 2.17 are apolar varieties
of Schubert cycles on G(2,n+1). However, these apolar varieties are not the nicest,
since their dimension generally is too big. In the next chapter, we will find apolar
varieties which are nice.



Chapter 3

2-forms of low rank

In this chapter, we will exclusively deal with Grassmannians of lines. As mentioned
above, a point on such a Grassmannian may be considered as a skew symmetric matrix.
First, we will thoroughly investigate the Pliicker space of Grassmannians of lines.
Next, we use our new knowledge to find good apolar varieties for Schubert cycles on
G(2,n+1).

Recall that for a smooth variety X in P", a hyperplane H in P" is called a tangent
hyperplane to X if it contains a tangent space to X. The locus of tangent hyperplanes
to X is called the dual variety of X, and is denoted X C P.

Theorem 3.1. The dual variety G(2,n + 1) C P(A2C**') of the Grassmannian
G(2,n+ 1) consists of matrices of corank > 2 for n odd and it consists of matrices of
corank > 3 when n is even. Moreover, for n odd, the dual variety is a hypersurface of
degree "TH; for n even it is a subvariety of codimension 3.

For a proof of this theorem, see [20]. We will also give a proof of this theorem later,
when we have established the language of forms.

Let V™! be a vector space of dimension n + 1 over C. Every subvector space
of dimension two is spanned by two independent vectors ui,us € V"l Let G =
G(2,V™1) be the Grassmannian of all two dimensional subvector spaces of V™1, The
Pliicker embedding maps the subspace U = (u1, us) to the point u; A uy € A2V,

3.1 Wedge product spaces

In this section, we will construct a filtration of the Pliicker space of the Grassmannian
of lines. We treat the cases when 7 is odd and when n is even separately. Moreover, we
define what we mean by the support of a point in the Pliicker space, and we construct
a filtration in the dual space.

Let {vi, v, ..., Un, Vny1} be a basis for V™!, The operation A is defined in such
a way that v; Av; = —v; Awv;, and v; Av; = 0. Therefore, a basis for A2V g
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{vi Avj|i < j}. There are (";1) possible ways of choosing v; and v; such that i < j,

and thus the dimension of A2V is ("I1). A general vector v in A2V"*! can be

written
v = E QGij’Ui A (%
1<i<j<n+1 (3.1)
= 2&12?)1 N\ vy + 2&13’01 Nvg+---+ Zan,nan VAN Un+1
Since v; Av; = —v; A v;, we can instead write v as

V= Q1201 A Vg — Q12U A V1 + -+ + A pt1Un A Unt1 — Qppi1Unt1 N Vg

Now the coefficients fit into an (n + 1) X (n + 1) skew symmetric matrix:

/ 0 a1z ai3 e CLl,n+1\
—ai12 0 :
—Q13 0

CLn,n—f—l

\_al,n—f—l o o —Onn+1 0

Thus v € A?V"*! can be represented by a (n + 1) x (n + 1) skew symmetric matrix.
On the other hand, every such matrix represents a vector in A2V"*! so we can say
that the vector v in A2V"*! 4s a (n+1) x (n+1) skew symmetric matrix. The number
n may be either odd or even, and we treat these two cases separately:

The number 7 is odd

If n is an odd number, n + 1 is even. A general skew symmetric matrix of even size
n + 1 has rank n + 1. A matrix has maximal rank if and only if its determinant is
non-zero.

Recall the fact that if M is a skew symmetric matrix of even size 2k x 2k, its
determinant is the square of a polynomial. This polynomial is called the Pfaffian of
M, or the 2k-Pfaffian, and it is denoted Pf(M) or Pfo,(M).

det(M) = Pf(M)?

Since the degree of the determinant is 2k, the degree of the Pfaffian is k. Let M;; be
the skew symmetric submatrix of M obtained by deleting rows and columns number %
and j. Then M;; has maximal rank if and only if its Pfaffian is non-zero. We call this
Pfaffian Pf;;(M), and think of it as a (2k — 2)-Pfaffian of M. Notice that the square
of this Pfaffian is a (2k — 2)-minor of M. If Pf(M) is zero, the matrix M has rank at
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most 2k — 2. If all the (2k — 2)-Pfaffians of M are zero, M has rank at most (2k — 4).
By deleting pairs of rows and columns, we can define Pfaffians of any even size.

The general point in A2V™*! is represented by a skew symmetric matrix of maximal
rank. If n is an odd number, this maximal rank is n+ 1. Some of the points in A2V "*!
are represented by matrices of rank n — 1, and these all have the property that their
(n + 1)-Pfaffian is zero, but not all (n — 1)-Pfaffians are zero. Inside this subset are
the points represented by matrices of rank n — 3. These all have the property that all
their (n — 1)-Pfaffians are zero, but they have at least one (n — 3)-Pfaffian which is
non-zero.

The number n is even

When n is even, n 4+ 1 is an odd number. Since a skew symmetric matrix always has
even rank, such a matrix of odd size must have determinant zero. Thus when n is
even, a general point in A2V is represented by a matrix M of rank n. If M; is the
skew symmetric submatrix obtained by deleting the i-th row and column of M, let
Pf;(M) denote the maximal Pfaffian of M;. Notice that this is an n-Pfaffian. Then
all general points in A2V"*! are represented by matrices with the property that their
determinant is zero, but not all n-Pfaffians are zero. By deleting an odd number of
corresponding rows and columns, we can define Pfaffians of any size also in this case.

The matrices or rank n—2 form a subset inside A2V"*1. These all have the property
that all n-Pfaffians are zero, but there is at least one (n—2)-Pfaffian which is non-zero.
A subset of these matrices are the matrices of rank n — 4. These all have the property
that all the (n — 2)-Pfaffians are zero, but they all have at least one (n — 4)-Pfaffian
which is non-zero.

We are now ready to define the projectivized version of the vector space A2V t1,
A 2-vector in A2V™*! as defined in equation 3.1 is only defined up to multiplication
with a scalar. If U is a two dimensional linear subspace spanned by the vectors u; and
uy, we associate to U the 2-vector u; A us € A2V™ L. If we choose a different basis for
U, the corresponding 2-vector is equal to u; A uy multiplied with the determinant of
the change of basis matrix.

Example 3.1. Let U be spanned by the vectors u; and us. To U we associate the
2-vector uy A us. The vectors v; = 2(ug + ug) and v9 = u; — uy span the same two
dimensional linear space, so v; A vy should define the same 2-vector. Now

v1 Avg = 2(ug + ug) A (up — usg)
= —2u1 A ug + 2us A Uy
= —2U1 N Uy — 2?,1,1 N Uo

= —4U1 N Uo
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and the change of basis matrix is the (2 x 2)-matrix

2 1
2 —1
This matrix has determinant —4. A

Since the elements in A2V *! are only defined up to multiplication with a scalar, the
projectivized version P(A2V"*1) is well defined. This projective space has dimension

(";1) — 1. This gives a well defined map of sets

G(2,v") = P(A2V™H

sending (u1, us) to the point u; Aus as we have seen above. Since (u1, us) is two dimen-
sional, the skew symmetric matrix corresponding to the point u; Auy € P(A2V"T1) has
rank exactly two. Thus the points in P(A?V"!) which lies on the Grassmannian, are
all represented by matrices of rank two. All matrices of rank two have the property
that all their 4-Pfaffians are zero. Thus the Grassmannian is actually a variety in
P(A?V"*1) defined by the vanishing of all 4-Pfaffians of the matrix

( 0 T2 13 < $1,n+1\
—T12 0 .
—T13 0
(3.2)
xn,n—H
K_xl,n—i—l o o —ZTnn+1 0

where z;; is the coordinate in P(A2V"™*!) corresponding to the basisvector v; A v; of
A2V

Now, let X; be the set of all skew symmetric matrices in A2V "*! of rank exactly
1. We have seen that ¢ can be any even number between 0 and n + 1. The matrices
in X; all have the property that their (i + 2)-Pfaffians are zero, and X; is therefore
a variety in P(A?2V""1) defined by the vanishing of all (i 4+ 2)-Pfaffians in the matrix
given in equation 3.2.

When n is odd, we get the following chain of inclusions in P(A?V"11):

G,V =X, cX,C---CX;C---CX, 3CX, 1 CPAV"H (3.3)
and when n is even the chain looks like this:
G(?, Vn+1) =XoCXyC---C Xz Cc:---C Xn_4 C Xn_Q C ]P’(/\QV"“) (34)

In both cases, 7 is an even number. A matrix of rank 7 in A2V"*! comes from a subspace
of dimension ¢ inside V"**!. The family of all such subspaces of V! have dimension
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dim G(i,n + 1). Inside each subspace of dimension i there is a family of dimension
dim P(A%U?) of matrices of rank i. Thus the codimension of X; in P(A2V"*1) is

) .
codimX; = (”; ) 1 [dim G(i,n+1)+ <;) - 1]

(1)

The codimensions are listed below for some choices of i:

(3.5)

n odd codimX; | n even codim.X;
i1=n-—1 1 i=n-—2 3
1=n—3 6 1=n—4 10

t1=n—2>5 15 1=n—06 21

The chains of inclusions of equations 3.3 and 3.4 can now be made even more complete.

Proposition 3.2. Let X; be the set of all skew matrices in A2V™*! of rank i. Then
we have the following filtrations, where the lower index indicates the rank as above,
and the upper index gives the codimension of the variety:

G2,V =X, cXyC---CcXl ,c X!  cP(A’V") nisodd (3.6)

G2, V") =X, C X4 C---C X0, C Xy, CP(A’V™)  niseven (3.7)

We have seen that every point in P(A2V"*1!) is represented by a skew symmetric
matrix of size n+ 1. This matrix can have any even rank between 2 and n+1, and the
points on G(2,V"*!) inside P(A2V"*!) are all represented by matrices of rank two. If
apoint p =3 ;i icni 20i0; Av; € P(A?V™) is represented by a matrix of rank
we will say that the point has rank i or the vector Y, <; icn.1 2a;vi A vj has rank i.
A vector in A2Vt is sometimes called a 2-vector or a 2-form.

We have seen that any element in A?V"*! has rank at most n+ 1. If {vy,...,v,11} is
a basis for V**! let L; be linear forms in these basis vectors. Then a general element
w in A2V™*! can be written as

w:Ll/\L2+L3/\L4++Ln/\Ln+1
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Definition 3.1 (Support). If w has rank i, the linear span (L1, ..., Lyy1) is a linear
subspace of V' of dimension i. We call this linear space the support of w. Similarly,
if we view w as a point in P(A2V™1) | the support of w is a projective space of dimension
i — 1, which we will denote by P or simply |w].

Notice that a point on the Grassmannian G(2,V""!) inside P(A2V"*1) has rank
two, so its support is a projective line. This makes sense, since a point on the Grass-
mannian corresponds to a line in the space P(V"*1). There is a map

0 - /\2vn+1 x /\nflv’n-f-l N /\n+lvn+1 ~ (C

First of all, the (n+1)-th wedge product of a vector space over C of dimension n+1 has
dimension (ZE) =1. If {vy,...v,41} is a basis for V**1 every element in APT!1Y7+1
can be written as av; Avg A-- - Av,, for some a € C. Thus the map 6 above takes the
pair (v;, Av;,, vj, A---Avj,_,) of basis vectors to v;, Avi, Av;, A---Av;,_,) which is either
zero or +v; Avy A -+ - Av,41.The isomorphism A"V "+ ~ C identifies av; A -+ - Avypy
with a.

Now, let w; be elements in A2V™*! and let w! be elements in A"T'V"*!. Then
9
(w1, w] + wsy) = wy A (W] + ws) = w1 Aw; + wy Awy

and
(Wi + wo, w!) ¥ (W1 + wo) Aw) = w1 AWl +ws A

so # is bilinear.

Consider the basis vector v; A vy of A2V A form w’ € A" 1V i5 such that
0(vi Avg,w') = 0 if and only if the basis vector v3A- - -Avy,1 is not involved in w'. Thus
the right kernel of the map is the vector space A" 'Vt /(vg A---Av,,1). This vector
space has dimension (Zj) —1, and we can think of it as a hyperplane in P(A"~1V/"+1).

Similarly, consider the basisvector v; A ---Av,_1 in A1V A 2-form w is such
that @(w,v1 A---Av, 1) = 0 if and only if the basis vector v, A v,,; is not involved in
w. Thus the left kernel of 6 is the vector space A*V"™*!/(v, Av,y1). This vector space
has dimension ("}') — 1, and we can think of it as a hyperplane in P(A2V"+1).

This shows that a point in P(A2V™*1) corresponds to a hyperplane in P(A" 1V "*1)
and a point in P(A" 'V} corresponds to a hyperplane in P(A2V"™*1). Thus the

projective spaces P(A2V"*1) and P(A" V") are naturally dual to each other.
P(APV™) = P(A™ 'V and  P(A™ V) = APV

Let w € A2V™! be an element of even rank i. Then the support |w| is a projective
space of dimension i — 1, denoted P\ !. Remember that every basisvector in A2V
has a line as its support, and the support of w is the linear span of the union of the
supports of the basisvectors involved in the expression of w. Since a projective space
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of dimension ¢z — 1 is spanned by % disjoint lines, the form w can be written as a sum
of 5 forms of rank two, all with disjoint supports.

Ww=w+- - t+wi
2

where all w; have rank two and where ]P’}L,j1 N ]P’i,j2 =0 for all ji, 5> € {1,...,%}. Since
the supports are disjoint, we can change the basis of V" *! in such a way that the w;-s
become basisvectors of A2V,

The discussion above gives that every basisvector in A2V"*! corresponds to a ba-
sisvector in A"~'V"*1. Thus after a suitable change of basis, every w; corresponds to
a basisvector @; € A"V The support of w; is a projective space of dimension
n — 2 which we denote by P 2. This space is the dual of Pl in P" = P(V"*!). The

dual of the union of the lines IP’&,J, is the intersection of the spaces ng_Q:
; . .
ﬂ IP,’}_Z — P%(n—Z)—(%—l)n — Pn—i
@
j=1

This is exactly the dual of P:-1. We can therefore to w associate a (n — 1)-form &
defined as
H=Q 4 4@

(MBS

where none of the @;-s are sums of other (n — 1)-forms, and |w| = ﬂ;j:l|cbj| = |w]|. For
every even 7, an element in w € X; can be associated to a (n—1)-form & using the above
argument. Let X; denote the collection of such (n — 1)-forms. The correspondence
w ¢ & is one to one by construction, so X; has the same codimension in P(A™~'V/7+1)
as X; has in P(A?V"™!). Remember the chain of inclusions in P(A?V"*!) given in
equations 3.6 and 3.7. Using the correspondence we just constructed, we get a similar
chain of inclusions in P(A"~1V"+1) = P(A2V+1):

Proposition 3.3. Let X; be the set of all skew symmetric matrices in A2Vt of
rank i. To an element w € X; we can associate an element @ in APV for which
0| = |wl|. Let X; be the collection of such (n — 1)-forms. Then we have the following
filtrations:

Gn-1,V""Y =X, cX,C---c XS ,c X!  cPA"'V"™) nisodd (3.8)

G(n —1, Vn+1) = Xg - X4 c---C X}L(LL C X272 C IF’(/\"‘1V"+1) n is even (3.9)

Definition 3.2. Let M be a linear space in P(A"V?®) for some natural numbers r < s.
The orthogonal space of M is denoted M+, and is defined as

M+ = {0 e P(NTV¥)|wAw=0 for allw e M}
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Example 3.2 (G(2,8)). Let {v1,...,v3} be a basis for V¥ The Grassmannian
G(2,V?) sits inside P(A?V®), and a general point in the Pliicker space is a 2-form
of rank 8. Inside P(A?V®) the forms of rank 6 form a variety X4 of codimension one.
Every element w in Xg can be written as a sum of three forms of rank two. Inside Xjg
is the variety X, of forms of rank four. All elements here can be written as a sum of
two forms of rank two. Finally, inside X, are the forms of rank two. The collection of
these forms is exactly the Grassmannian G(2,8). Let w; be forms of rank two. The
first row in the following equation gives the chain of inclusions in the Pliicker space
in this case. The second row indicates what a general element in the corresponding
variety looks like. The third row indicates the support of a general element:

G(2,8)% C X$ C Xg C P(A%2V8)
w=w W= w; + ws w=w + ws+ w3 W=w;+--- 4wy
w| =P, w| =B, jw| =P, jw| =P

If w; and wy are two elements in A?V"™! of rank 4, their supports P/, ! and P *
are contained in P(V"*!) = P". Thus they generally intersect in a P2¢=)="_ Suppose
the supports intersects in a P*~'~". Then they are both contained in (P!, P: 1) =
P! C P", and there exists a n-dimensional subvector space W™ C V"*! such that w;

and wo are elements in A2W™.

3.2 The dual variety and families of G(2,4)-s

In this section, we will describe the dual variety of G(2,n + 1). We treat the cases
when n is odd and when n is even separately. Furthermore, we investigate the linear
spaces on the dual variety. Finally, we look for families of G(2,4)-s on G(2,n + 1).

We already know that there are a lot of G(2,4)-s on G, and each G(2,4) has
codimension one in its linear span. Thus, we can set Y = U,cr(G(2,4),), where the
union is over some set I'. Then, GNY = U,crG(2,4),. The subvariety G NY of
G is connected if and only if each G(2,4) in the union intersects some other G(2,4)
non-empty.

So how may two G(2,4)-s intersect? Let G(2,V;') be the Grassmannian of two
dimensional subspaces of the four dimensional vector space V,!. Equivalently, G(2, V}*)
is the Grassmannian of lines in P(V}*) = P3. The Grassmannian G(2,V!) is all the
lines P(V,') = P3. The two Grassmannians of lines intersect if and only if the two
projective spaces P2 and P3 have at least a line in common.
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If they have exactly a line in common, the two vector spaces V,* and V,! have exactly
one two dimensional subspace in common. If w,ws is a basis for this subspace, the
common point is the point w; A wy, and this is also the only common point for the
Pliicker spaces P(A?V}}) and P(A%V3}).

If the projective spaces have a plane in common, the entire P? of lines in this plane
will be in both G(2,4)-s. The Pliicker spaces only have this plane in common. If the
projective spaces coincide, the Grassmannians are equal, of course.

In this section we will look for families of G(2,4)-s on G(2,n + 1) by using what
we have just learned about forms. We will start by investigating the case when Y NG
is the intersection locus of G and some tangent hyperplanes, all tangent at the same
point. Before we do the general case, we look closely at two examples.

Example 3.3 (G(2,7)). The Grassmannian G(2,7) sits inside P(A?V7), and it has
dimension 10 inside this 20-dimensional projective space. Since 7 is an odd number,
the general point in P(A?V7) has rank 6, and then there are only two inclusions in the
chain:

G(2,V") c X2 c P(A*VT)

A general point can be written as the sum of three forms of rank two, while a point
in X, can be written as a sum of two rank two forms. If w; are elements in A2V7 of
rank two, we thus have

we G2,V = w=uw and |w| = PL
we X \G2,V) = w=w+w and |w| = P
wePANVHI\Xy = w=w +wr+ws and |w| = P

Also in the dual space there are only two inclusions:
G(5, V") C X3 c P(A°VT)

If @; are simple 5-forms (i.e. not a sum of two or more), we have

we G5,V = 0= and |0 = P}
e X \GB, V) = O=w +wn and |o| = P?
ePNVHI\Xy = o=w+@e+ws and |0 = PY

Let u and v be vectors in V7, and let p = u A v be a point in G(2,7). The tangent
space T, to G(2,V7) at the point p is spanned by all the lines on G(2,V7) through p,
i.e. all the points on the form u A v’ or u’ Av for vectors ', v’ in V7. A form w € A°V”
is in the orthogonal space to T, if and only if it can be written as

W=uAVvA®D
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where @ is an element in A*(V7/{u,v)). But we have seen that no point in the dual
space has support on a line, and therefore, & can be written as

O=uAvAWA

Every point on the dual variety of G(2, V") corresponds to a hyperplane in P(A2V7)
tangent at some point p € G(2,V7). But if H is a hyperplane tangent at p = u A v
we have the inclusion H D T}, and by the definition of TpL, this implies that the point
[H] in AV lies in T,,". Thus every point on the dual variety lies in the orthogonal of
some tangent space, and the discussion above implies that every such point is in Xj.
On the other hand, every point in X4\ G(5,V7) has support the intersection of two
P-s inside P%, i.e. a plane, so every point & € X, \ G(5,V7) can be written as

where & is an element in A?(V7/(uy,up,u3)). But then @ is in 7" for all points p

corresponding to lines in P2. This shows that the dual variety is equal to X, in this
case. A point @ on the dual variety therefore has support on a plane P2, and the
corresponding hyperplane is tangent at all points coming from lines in this plane.
From equation 3.10 we see that any & = u; A us A ug A @ on the dual variety comes
with a vector space A*V7/(u1, ug, u3), so @ lies in the linear span of a Gpz(2,4). More
specific, @ lies in the linear span of

Gp2(2,4) = {P* CP° =P(V")| P} C P* C P°}

For a form @ € AV, let Hy be the hyperplane in P(A?V7) corresponding to

w. Assume H; is a tangent hyperplane. We will now describe the intersection Hg N
G(2,V7). The definition of Hy gives us that

H,NG©2, V") ={us Aug € N°VT | & Ay Aug = 0}

Since Hj is a tangent hyperplane, & is a point on X,. Thus we can write & as
wo A (w1 + we) where wy € A’V and wy,ws € A2(V7/|wy]) are all simple. Thus the
intersection above can be specified:

HoNG(2, V) = {uy Aug € A2V wo Aug Aug A (wy + wy) = 0}
= {Ul/\UQ € /\2V7| wo/\ul/\’llQ:O}
U {U1 Nug € /\2V7| (w1 + wg) A lewg,ul,UQ) = 0}
={P' CP(V")| P' NP # 0}
UA{P" C Py | (@1 +w2) APy = 0}

<w0 )
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This might need a little explanation: The wedge product wy A u; A ug A (w1 + we) is
zero if wy A uq A ug is zero. If wy A ug A ug is not zero, the support |wy A ug A usgl is
a four dimensional projective space denoted ]P’?WOMM). The other possibility for the
big wedge product wy A uy A ug A (w1 + we) to be zero is that w; + we kills the entire
P?wo’ul’u2>. Once we fix IF"(lwo’Uhuz), a general line inside will have the same property as
the line spanned by u; and u, because a line and a plane inside a P* generally does not
intersect. Since we are looking for families of G(2,4)-s, we can write the intersection

H;NG(2,V7) as
HyNG2, V™) = {PP NP2 # 0} U {P' P! C P* C Pl )

We get exactly the same lines, this is just a way of writing the set of lines so that the
G(2,4)-s are “visible”.

What about the intersection of G(2,n+1) with more than one tangent hyperplane,
all tangent at the same point? For instance, look for families of G(2,4)-s inside three
tangent hyperplanes, all tangent at the same point. We have to inspect the intersection
of G(2,V7) by three such tangent hyperplanes. Let

=g A (W1 +@2)  where @y € A3VT  and @y, we € A2(VT7/|0l),
A (@] + @)  where @) € A3VT  and @f,wh € A2(VT/|wp]),
=@ A (@0 + &) where @f € A3VT and wf, @8 € A2(VT/|0f])
be three points on the dual variety of G(2,V7). If H;, Hy and H» are all tangent at
the point p = u Av € G(2,V7), we must have
Wo=uNvAw
Op=uAvAuw

Oy =uAvAw"

where w, w' and w" are vectors (1-forms). Thus

H@ﬁG(?,Vq) = {Ul/\UQ € /\2‘/7 | ’U,/\U/\’U)/\’Ull/\UIQ/\((Dl—i‘(DQ) :0}
Hy NG, V) ={uj Aub € APV |uhvAw Auj Auby A (0] +@h) = 0}
Hyn NG,V ={u Auy € VT JuAv Aw” Auf Aul A (@F + @) =0}
A P? that appears in all three intersections must be contained in all three
4 4 4
P(“‘:’”:’waul 7'“/2) ’ P(“:"}aw’ 7u11 aul2> and P(“avaw” 5u'1,5u’2,>

Suppose a common P? does not contain the line (u,v). Since all three P*-s obviously
contain the line, this implies that all three P*-s must be equal. Thus all three forms

~ ~ ~ ! ~ 1 ~ N ~ N
w1 + Wa, Wy + Wy and Wy + Wy
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must lie in the orthogonal space of the P*. This orthogonal space has dimension one,
and when we choose random forms, these three will not all lie on a line. Thus such
P3-s can not occur in the intersection

A = H(ZI ﬂ del ﬂ Hd,” ﬂ G(Q, V7)

Thus a common P? must contain the line (u, v). All common P3-s are therefore spanned
by u, v, 21, z; for some vectors z; and 2, and the conditions on a given P? become

UANVAZL ANzg ANw A (W7 + @) =0
UAVAZL A zg Aw' A (0] +ah) =0
uAVAzZ A zg A" A (D] +@05) =0

Since u A v A z1 A 23 is not zero, we must have

21 Nz Aw A (01 +@2) =0
ANz AW A (@] +dh) =0
21 ANz A" A (D] +@5) =0

Thus all the P3-s we get are spanned by u and v and a line (2, z5) where z; and 2z,
are vectors in V7 /{u,v). The conditions above gives us that every P? corresponds to
a point on

G(2, V7/<U,U>)HH1HH20H3 (311)

because wA (@01 +@y), w' A (@] +wh) and w” A (D} +wk) are all 3-forms in V7 /(u, v) which
is a sum of two simple ones. Thus these three forms represents (tangent) hyperplanes.
The vector space V7 /(u,v) has dimension five, and the intersection in equation 3.11
has dimension dim G(2,5) — 3 = 3. From this we get a family of P?>-s of dimension
three.

Now take three points @y, s, @5 € Xy. If the corresponding hyperplanes H;, are
tangent at p € G(2,V7) for i = 1,2, 3, we have

1, 0o, 03 € Ty (3.12)

Since TpL is a linear space, this implies that { A1) + Aoty + A303} C TpL, thus the whole
plane ]P’%w1 0,53 li€S D TpL. We have seen that X, is the dual variety of G(2,V7), and
that the dual variety is the union of all TpL—s where p is a point in G(2,V7). Thus
the plane P?ﬁu,d)z,d!?,) is a plane in X,. Thus if we pick three tangent hyperplanesj all
tangent at thq same point, the plane spanned by their corresponding points in X} is
contained in X;. We may ask if the opposite statement is true:

Question: Is every plane in X, spanned by three points whose corresponding hyper-
planes are all tangent at the same point?
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For the moment, we have no answer to this question, and this may be an interesting
subject for further research.
A

We will now look at the Grassmannian G(2, 8), and see if we can find similar results.

Example 3.4 (G(2,8)). The Grassmannian G(2,V?®) sits inside P(A?V®) and it has
dimension 12 inside this 27-dimensional projective space. Since 8 is an even number,
the general point in P(A?V®) has rank 8. There are three inclusions in the chain:

G(2,V® C XJ c X; C P(A*V?)

A general point can be written as a sum of four 2-forms of rank two, a point in X4 as
a sum of three, and a point on X, can be written as a sum of two. We have

we G(2,V?) = w=uw and |w| =P}
we X \G2,V?) = w=w +w and |w|=P3
we Xg\ Xy = w=w +ws+ws and |w| =P}

weEPNVE\ Xy = w=w +wr+ws+ws and |w|=P]
In the dual space, the chain becomes
G(6,V?®) c X¢ c X§ c P(A°V?®)

If &; are simple 6-forms (i.e. not a sum of two of more), we have

@ € G(5,V?) = 0= and |0| =P}
weXN\GB VS = 0=+ and |@| =P
e X\ Xy = 0= + 0+ Dy and |w| =P}
OWEPNVH\ Xy = =1+ +ws+a, and |0 =0

Let u and v be vectors in V¥ and let p = u A v be a point on G(2,V®). A form
@ € A®V® is in the orthogonal space of the tangent space T, if and only if it can be
written as
O=uAvA@

where & is an element in A*(V®/(u,v)). Thus & is a 4-form in six variables, dual to a
2-form in 6 variables. Such a 2-form has rank at most six, so @ is in general a sum a
three simple 4-forms. So if & is in T;- for some p € G(2,V?), the form is also in Xs.
On the other hand, a point & in Xg \ X, has support on a line ]P’Il), and then @& is in
TPL. This implies that so Xg equals the dual variety.

For a form @ € A®V® let Hy be the corresponding hyperplane in P(A®V®). The
definition of Hy gives that

H;NG(2,V®) = {uy Auy € A*V3| @ Aug Aug = 0}
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Now if Hy, is a tangent hyperplane, we know that & is an element in X4. Such forms
have support on a line, and we have

(I)EX(;\X4:>(I)=LUO/\(LL)1+CUQ+L«)3)

where wy is an element in A2V® or rank two, and wi,wq, w3 € A*(V3/|wp|) are all
simple. If H; is tangent at the point p = u A v, we have:

Hy NG 2,V ={us Aug € N2 VB uAv Aup Aug A (wy + ws + ws) = 0}
={u1 Aug € NPV uAv Auy Augy =0}
U {uy Aug € APV (w1 + wa + ws) APy 41y = 0}
= {P' C P(A*V®)| P' NP}, # 0}
{P' C P | (w1 + wa + w3) AP =0}

(u,v,u1,u2 (u,v,u1,u2)

As in the previous example, this might need an explanation: The wedge product
uAVAup Aug A (W + we + ws) is zero if u A v Augp Augis zero. If uAvAug A ug
is not zero, the union of the lines (u,v) and u; A us is a three dimensional space

denoted ]P’?u v uz) 11 this case, the big wedge product is zero if (w; + wo + ws) is in
3

Cusou1 )y 40€S 1O intersect the line (u,v), and all

(P o))"+ Any general line in P

U,v,u1,U2

such lines (u,u}) give the same P3.
The forms w;,ws and ws are elements in A%(V®/(u,v)), so they do not involve

v and v. Thus (w1 + wy + w3) AuAv # 0. Thus we can think of the statement

(w1 + wg +ws) A P?u’wl’uZ) =0 as (w; +wy + w3) Auy Avp = 0. But this is the same

as saying that the line (uq,v1) is in H(u, 4wytw,), and the lines in this hyperplane is

precisely the intersection

H(w1+w2—|—w3) N G(2: V8/<u7 U))

Also in this case, we want to see what happens if we intersect with more that one
hyperplane, all tangent at the same point. As above, we consider the intersection of
three such hyperplanes:

HyNHy N Hy NG(2,V8)

From the above argument, we see that we obtain a family of P*-s of dimension

dim(Hy; N Hy N Hyr N G2, VE/{(u,v)) =2(8—2—-2) -3 =5

If we take three tangent hyperplanes, all tangent at the same point p, the corre-
sponding 6-forms are all points on TPL. This is a linear space, so the plane spanned by

the three points is also in TpL. This is a plane in Xg. We can ask the same question
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as we did for G(2,V7):

Question: Is every plane in X4 spanned by three points whose corresponding hyper-
planes are all tangent at the same point?

In this case, the answer is “no”: Any plane is spanned by three points @, " and @".
Their supports are lines P}, PL, and P%,. Suppose two supporting lines coincide and
intersect the third in a point. The corresponding situation in the space of 2-forms is
that two supporting P5-s coincide, and the union of all three span a P%. But then
all three 2-forms are in A2W7 for some W7, and therefore any linear combination has
rank at most six. Thus the plane spanned by @,&' and @" is contained in X, and
this is not a plane spanned by points whose corresponding hyperplanes are tangent at
the same point. Furthermore, if the supporting lines all have a point in common, the
supporting P°-s in the space of 2-forms are all contained in a P®. As above, this implies

that the plane is contained in Xg. A

We will now generalize to G(2,n + 1). The number n is either even or odd, and
the two cases will be treated separately.

3.2.1 The dual variety of G(2,n+ 1) when n is even

In this case, n + 1 is an odd number, so an element in A2V"*! has rank less than
or equal to n. The chain of inclusions in P(A2V ") is given in equation 3.7, but we
repeat it here to refresh our memory:

G,V =X,cX,C---CX;C---CX"2,cX?,cPAV™™)  (3.13)

The variety X; is defined by the vanishing of all (i + 2)-Pfaffians.

Let p = uAwv be the point on G(2,n+1) corresponding to the line (u, v) in P(V"*1).
Then the tangent space T, of G(2,n + 1) at p is a linear space, and by definition of
the orthogonal of a linear space,

Ty ={0oeAN" V" GAw=0forall we T,}

The tangent space T}, is spanned by all the lines on G(2,n + 1) through p=uA v, i.e
of all points of the form
uAv or U Aw

for vectors u’,v" € V™*'. Thus for & to be an element in 7", & must be an (n—1)-form
of the type

O=uAvA® where & € A" (V™ /(u, v))
We see that @ is an element on A" *W"~! where W"~! ~ V"*!/(y v). A general
element in A2W"~! has rank n — 2. This implies that @ is an element in X,,_. Thus
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we have the inclusion TpL C X,_o. There is nothing special about the point p, so
the orthogonal of every tangent space along G(2,n + 1) is contained in X, 5. Now, a
general point in X;_, can be written as a sum of 222 simple (n — 1)-forms &;. Thus
any general form in X,,_» has support

D€ Xn_g = 0| = ﬂ P = 22 (n=2)-(258 - )m _ p2

The hyperplane corresponding to @ is tangent at every point corresponding to lines in
PZ. So every general point in X, 5 is in a P? of T;--s. We have proved the theorem

Theorem 3.4. When n is even, the variety X,_y is the dual variety of G(2, V"),
and a general point on the dual variety corresponds to a hyperplane which is tangent
along a plane.

Theorem 3.4 implies that a general point w on the dual variety of the Grassmannian
of lines in a projective space of dimension n can be written as

2

where @y € A’V and @; € A"V /|iy]) are all simple. The quotient V"+! /||
is a vector space of dlmensmn n—2. By a general point we mean a point in X,,_ Q\Xn 4
Let H; be the hyperplane in P(A2V""!) corresponding to the point & on the dual
variety. Then

H,NG(2, V") =
{uy Aug € A2V 0 Auy Auy =0}
= {u; Aug € A2V Wo At Aug A (@1 + -+ + a2 ) = 0}
= {uy Aug € A2V Qg Aug Aug =0}
U {ur Aug € A2V (0 + -+ + Dn n_2) A P2 gy = 0}
= {P' c P(V"*Y)| P' NP2 # 0}
U {Pl - ]P(PZ u1 u2)| (a’l Rl CD”T—Z) A ]P?P%,uhug) = 0}

We will now examine the intersection
A=H, N---NH, NG(2, V")

where « is some natural number and the hyperplanes H;, are all tangent at the same
point. So pick a points @1, . .., T 00 Xp_s \ X,_4, i.e. o general points on the dual



3.2. THE DUAL VARIETY AND FAMILIES OF G(2,4)-S 73

variety. If the hyperplanes Hy, are all tangent at the point p = u A v, the forms &;
can all be written as

@i =uANvAw; A (@Dj1+ - + @) nz2)
where w; is a vector in V™" and @, is an element in A" (V" /(u, v, w,)) for j =
1,..., . Thus the intersection A can be found explicitly:
A=H, N---NHy, NG(2, V"
o
= m{ul/\uQ € /\2Vn+1| ’ll,/\’l)/\’U,1/\U2/\wj/\ ((I)j,1+"'+(;)j7nT—2) :0}

<
Il
—

{us Aug € NPV u Av Auy Aug Awj = 0}

Il
Dk

<.
Il
—

U{'U/l/\'U/QE/\2Vn+1‘ (wj’1+...+wj,n7_2)/\]p4 ):O}

(u,v,wj ;UL ,U2

-

{P* CcP(V")| P NEE, # 0}

7j=1

U{P' C P

U, U,u1,U1 3wJ> |

. - 4
(wj,l + .-+ wj,an) A ]P(u,u,wj JUT,U2) = 0}

Since we are looking for families of G(2,4)-s on G(2,V"*1), we choose to write A as

07
— 1 n+1 1 2
A =({P' c P(V")| P NP2, # 0}
j=1
1 3 4 . . 4
U {]P CP C ]P(uﬂi,ul ;Ulawj)| (wj’l +-t wj,%’z) N P(u,U,Wj,Ul,u2> = O}
The forms @j; + -+ + @) »-2 are elements in APV J(u, v, w5)). A PP can only
occur in the intersection if the P-s have this P? in common. If all the P*-s are
equal, all the forms w;; +---+ d)j,nT—2 are elements in the same A"~*W"~2 (the vector

spaces V"1 /(u,v,w;) are all isomorphic in this case). Thus these are o forms in
(G(n — 4,n — 2)), and since they are a sum of 252 simple forms, they are all general
points in this space. To say that (@;1+---+ a;j,nT_Q) A ]P’Zlu,v,wj ) = 0 equals saying
that all these forms are points on P*, and if we choose our forms randomly, there is
no reason why this should be true for a fixed P*.

If the P*-s intersect in Pi”um’uhul) only, we must have

UNV AU AUy A |:wj/\(d)j’1+"'+a)j’nT—2):| =0forj=1,...,«

We know that the form in the square brackets does not involve u and v, so modulo u,
v we have

Uy A Ug A |:wj/\((z)j’1+“‘+a)j,nT72):| =0 forj=1,...,«a
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Thus every P? in A is spanned by (u,v) and a line (u;,us) in

{ug Aug € A2(V/{u, 0))| uy A ug A [wj/\ (Cvj’1+"'+a)j,nT—2) =0V}
=G(2,n—1)NH N---NH,

where H; is the hyperplane in P(A2Z" 1) corresponding to the point w; A (@;1 + -+ -+
Wjn=2) in P(A"72Z"71) (the vector space Z is isomorphic to V™*!/{u,v)). We get a
family of P3-s if dimension 2(n — 3) — «, and thus a family of G(2,4)-s on G(2, V" *1)
of dimension 2(n — 3) — .

Recall that we are investigating apolar varieties of the form

Y = J(G(2,4),)

y€er

where I is is some family of P3-s. The P?-s in the family obtained here are all the P3-s
in P* which contain the line P} .. Such P3-s make a cycle on G(4, V*t1):

(u,w)
{A € G(4, VTH—I)‘ dlm(A N V2) Z 2} = On—3,n—3,0,0

All lines in P(V™*1) lies in such a P3| because any line in P(V"*!) will, together with
P%um, span such a P?. Intersecting with o hyperplanes, we get that

dim(Y) = (”;1) 1-a

Now, pick o points &1, . .., 0 on Xp_g \ Xn_s. If Hg, are all tangent at the point
p = uAw, the forms @4, ..., J, are all points in TpL. We have previously seen that this
implies that the P*~! in P(A"~1V"*1) spanned by these points is contained in X, _,.
A point & in X,, 4 N T, can we written as

a):u/\v/\(w1+---+a;n774)

where the @; in A"73 (V™! /(y, v)) are all simple . The elements in the wedge product
space A"73(V"™*!/(u,v)) which can be written in this way corresponds to 2-forms in
n — 1 variables of rank n — 4, i.e. second to maximal rank. Thus X,_4 N TpL has
codimension three in T;-. We have

Xy N T," has codimension 3 in T
X, 6NT," has codimension 10 in TF
Xn-sNT;" has codimension 21 in T

)v(n_kﬂTpL has codimension  (*}') in T}t
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where k is an even number. Thus a P* ! in X,,_, spanned by « points whose corre-
sponding hyperplanes are all tangent at the same point, will intersect X,,_; in dimen-

sion a_Hz(n_l)_(k;l)_z(n—nza—l—(’“;l)

So as long as a — 1 > (*,"), such a P* will actually intersect X,,_.

Example 3.5 (G(2,V7)). In the case of G(2,V7), we studied the case when o = 3. A
plane in X, spanned by three points whose corresponding hyperplanes are all tangent

at the same point will not intersect Xy = G (2,V7), since X,N TpL has codimension 3
in TPL. A

3.2.2 The dual variety of G(2,n+ 1) when n is odd

In this case, n + 1 is an even number, so an element in A2V"*! has rank less than or
equal to n + 1. We repeat the chain of inclusions given in equation 3.6:

G2,V =X,cX,c---c XS ,c X} | cP(A*V™!)  nisodd (3.14)

Let p = u A v be the point on G(2,n + 1) corresponding to the line (u, v) in P(V"+1).
Then the tangent space T, of G(2,n + 1) at p is a linear space, and by definition of
the orthogonal of a linear space,

Ty ={we A"V o Aw=0forall w € T,}

The tangent space T}, is spanned by all the lines on G(2,n + 1) through p=uA v, i.e
of all points of the form
uAv  or U Awv

for vectors u',v" € V™*1. Thus for & to be an element in T,;-, & must be an (n—1)-form
of the type
O=uAvA (@) where @ € A"} (V™ /(u, v))

We see that @ is an element on A" *W"~! where W"~! ~ V"t!/(y v). A general
element in A2W"~! has rank n — 1. This implies that & is an element in X,—1. Thus
we have the inclusion TpL C X,_1. There is nothing special about the point p, so
the orthogonal of every tangent space along G(2,n + 1) is contained in X,_1. Now, a
general point in X,,_; can be written as a sum of "T’l simple (n — 1)-forms w;. Thus
for any general form in X,_; we have

nPNQ (1) (=2)~(*721)n _ pl
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The hyperplane corresponding to @ is tangent at the point corresponding to the line
P.. So every general point in X,,_; is in exactly one TpL. We have proved the theorem

Theorem 3.5. When n is odd, the variety X,_, is the dual variety of G(2, V"),
and a general point on the dual variety corresponds to a hyperplane which is tangent
in exactly one point.

Notice that theorem 3.5 implies that a general point @& on the dual variety of
G(2,V™1) can be written as

d)zd)o/\(wl—i-—l—d)n__l)

2

where @y € A2V™! and w; € A"3(V™ ! /|@yp|) are all simple. The quotient V™ /|y
is a vector space of dimension n+1—2 =n — 1. By a general point we mean a point
in X,,_; \ X,_s. Let Hy be the hyperplane in P(A2V"*!) corresponding to the point
w on the dual variety. Then

Ha, N G(2, Vn_H) =
{Ul N U9 € /\2Vn+1| WAUL ANuy = 0}
= {ur Aug € NPV @o Aur Aug A (@1 + -+ + Wos ) = 0}
= {U1 N ug € /\2vn+1| (1)0 ANug N\ ug = 0}
U{us Auz € NV (1 4 -0 @act) AP, ) = 0}
={P' c P(V"!)| P' NP, # 0}
U {Pl C P?P‘_lb;ulau2)| (d}l + e + (I)nT_l) /\ P?P}J,ul,’ua) = 0}
We will now examine the intersection

A=Hy N---NHy, NG2, V"

where « is some natural number and the hyperplanes H;, are all tangent at the same
point. So pick a points @, ..., 0 on X, 1 \ X,_s, i.e. o general points on the dual
variety. If the hyperplanes H;, are all tangent at the point p = u A v, the forms w;
can all be written as

a)j:U/\U/\(a)j,l‘f‘""i‘an,nT—l)

where @;y, is an element in A"3(V"!/(u,v)) for j = 1,...,a and k = 1...., 2%

Notice that IF’}J], is the line (u,v) for all j. Thus the intersection A can be found
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explicitly:

A=Hy N---NH, NG2, V"

o
= ﬂ{U]_/\UQ € N2V U/\’U/\Ul/\'u,g/\(wj,1+"'+a)j,nT—l):0}
=1

<
Il

I
DL

{ur Aug € A2V u Av Aug Auy =0}

<.
Il
—

U{us Aug € A2V (i + -4+ @, a1 ) AP 0
s ],2

(u,v,u1 ;u2> =

= ﬂﬁfﬂ CP(V™) PN (u,v) # 0}

(’LL,’U,’LLl U1

U {Pl c P )| ((Dj,l +-o-t ‘Z)j,"T*l) A P?u,'u,m,uz) = 0}

The intersection is all the lines which is contained in some P?® where the P? contains
(u,v) and is killed by (@j,1 4 -+ - 4 @; 1) for all j.

The forms ;1 +- - +@; =1 are elements in APV [ (u,v)). A P? occurs in the
intersection if it is spanned by (u,v) and a disjoint line (uy, v;) and have the property

U/\U/\Ul/\'UQ/\(wj,1+"'+wj,nT—l> =0forj=1,...,«

We know that the form in the brackets does not involve u and v, so modulo u, v we
have
Uy A Ug A ((I)j,l‘i‘""i‘a)j,nT—l) =0 forj=1,...,«

Thus every P? in A is spanned by (u,v) and a line (uy, us) satisfying

{ur Az € A2(VPH (u, )] ug A g A (a;j,1 Fee +w]7) —0V 4}
=G(2,n—1)NH N---NH,

where H; is the hyperplane in P(A?Z"~*) corresponding to the point (w1 +++; 1)
in P(A"=3Z"~1) (the vector space Z is isomorphic to V"*!/(u,v)). We get a family
of P3-s of dimension 2(n — 3) — a, and thus a family of G(2,4)-s on G(2,V"*!) of
dimension 2(n — 3) — a.

Now, pick o points &1, ..., 0 on X,_1 \ Xp_g. If Hg, are all tangent at the point
p = uAw, the forms @4, ...,w, are all points in TpL. We have previously seen that this
implies that the P*~! in P(A"~1V"*1) spanned by these points is contained in X,,_;.

A point @ in X,,_5 N T;- can we written as

O=uANVA (W + -+ n=s)

2
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where the @; in A"73(V"*1 /(u,v)) are all simple . The elements in the wedge product
space A"73(V"™*! /(u,v)) which can be written in this way corresponds to 2-forms in
n — 1 variables of rank n — 3, i.e. second to maximal rank. Thus X,_3 N TpL has
codimension one in T;~. We have

X3 N T,- has codimension 1 in T
X,5NT, has codimension 6 in T
Xn-sNT;" has codimension 15  in T,

Xpop N T;- has codimension ;) in T}
where k is an odd number. Thus a P*! i X,,_; spanned by « points whose correspond-
ing hyperplanes are all tangent at the same point, will intersect X,,_ in dimension

a—1+2(n—1)—(k;1>_2(n_1):a_1_<k;1)

So as longas o —1 > (kgl), such a P* will actually intersect X,,_p.

Example 3.6 (G(2,V?®)). In the case of G(2,V?), we have examined the case o = 3.
A plane in X; spanned by three points whose corresponding hyperplanes are all tangent
at the same point will intersect X4, since )QOTI,L has codimension 1 in TpL. The plane
will not intersect G'(2,V?®) since G(2,V?®) NT,;" has codimension six in T,". A

We are ready to prove the following proposition:

Proposition 3.6. There ezist P*~'-s in X,_1 which are not spanned by o points whose
corresponding hyperplanes are all tangent at the same point.

Proof. Any P*~! is spanned by o points, &1,...,0,. Their supports are the lines
]P%m ey P}Ja. Suppose all the supports pass through the same point. This translates
to having o forms in A2Vt of rank n — 1 whose supports are all contained in a
P* L. Then all the forms are elements in A2W". Since n is an odd number, any linear
combination has rank at most n — 1. Thus the span of these forms is contained in
X,_1. In the dual space, P* ! = (&, ...,d,) is contained in X,,_;.

O

Recall that we have seen that the hyperplanes of the type (og), are all tangent
hyperplanes. Now that we know exactly what the dual varieties to Grassmannians
of lines are, we may investigate whether all tangent hyperplanes are of this type. In
G(2,n+ 1) the cycle o019 looks like this

010 = {A € G(2,7’L+ 1)| dlm(Aﬂ Vn—l) > 1}
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i.e we have a tangent hyperplane section for each linear subspace of codimension 2.
Furthermore, dimG(n—1,n+1) = 2(n—1), so the family of points on the dual variety
corresponding to tangent hyperplanes of this type, has dimension 2(n — 1). The dual
variety G(2,n + 1) sits inside lf”(n;rl)_l, and theorems 3.4 and 3.5 says that it is either
a hypersurface or a variety of codimension 3. The codimension of the family of points

of the type (o19) on the dual variety is

1 ? —
(n; )_1_1_2(n_1):n 23n when n is odd

and

2 2

Thus when n = 4 the tangent hyperplanes coming from cycles o1y form the whole dual
variety. Furthermore, 2 ;3" > 0 whenever n > 3, and "2%3" — 2 > 0 whenever n > 4,
so for all other Grassmannians of lines, except G(2,5) there are other types of tangent

hyperplanes beside the ones of the type o19. This proves

1 2-3
<n+)_1_3_2(n_1):n " _ 9 when n is even

Proposition 3.7. When n = 4, the cycles o1y form the whole dual variety. These
tangent hyperplanes does not form the whole dual variety for any n > 5.

3.3 Apolar varieties

We have already glanced at varieties of the type

Y = J(G(2,4),)
yET
They have promising properties as candidates for apolar varieties for Grassmannians
of lines. In this section, we will study such Y-s more carefully. In particular, we will
study Y-s parametrized by cycles on G(4,n + 1). We will define a map v from the
Schubert cycles on G(4,n + 1) to the Schubert cycles on G(2,n + 1) where v(o) =
G(2,n+ 1) N (Upae, (G(2,W*))). When o is a linear space, we find the degree of ¥’
and find the ideal of Y explicitly. Finally, we prove that all these Y-s are cones.

The way we constructed Y was by writing the intersection A = H; N ---N Hy, N
G(2,V™!) (where all the H;-s are hyperplanes, tangent at the same point) as a union
of G(2,4)-s. The union is ACM because it is a linear intersection of the Grassmannian,
which is ACM. By construction, all the G(2,4)-s in the union have a point in common,
namely the point of tangency. Call this common point p. The tangent cone at p over
the intersection A is cut out by the leading terms in the ideal of A when expanded
around p. This is a complete intersection, and the tangent cone is therefore ACM and
generated by the leading terms.
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Example 3.7 (G(2,6)). Let p be the point (1,0,...,0). The hyperplanes H! =
Z(z46) and H? = Z(z56) are both tangent at p. When expanded around p (by setting
T12 = 1), the leading terms of the generators in the ideal of H' N H2 N G(2, 6) is

T34, T35, T3, T45, —T14To6 + T16T24, —T15T26 + T16T25

The tangent cone at p has dimension dim G(2,6) — 2 = 6 inside P2, and therefore
it must be a complete intersection. A

Now consider the cone over Hy N---N H, N G(2, V™) with vertex in p. We will
now show that this cone equals the union of the linear spans of the G(2,4)-s.
Let G(2,4), be one of the G(2,4)-s in the union. The cone

CPG(27 4)7

must be contained in the cone over Hy N---N H, N G(2, V™) with vertex in p. Call
this big cone C,. Now, pick a point ¢ in (G(2,4),). The line through p and ¢ is a line
which intersects G(2,4),, and therefore it has two points in common with G(2,4),.
Thus this line is in C,G(2,4),. This gives the inclusion

<G(27 4)’7) C CPG(27 4)’7

But (G(2,4),) and C,G(2,4), both have dimension five, and thus they are equal.
There was nothing special about the chosen G(2,4), so this implies the inclusion

Y = J(G(2,9),) cq,

yer

Moreover, any line in C, is a line through p and some other point on U,erG(2,4),.
Thus any line in C, is in C,G(2,4), for some v € I'. This implies that we also have
the opposite inclusion, and it all summarizes to the equality

Y = U(G(?, 4)y) =Gy

yer

We have proved that the Y-s of the type discussed here are cones, and proposition 1.7
gives that they are ACM.

3.3.1 What about more general unions?

When we consider unions of G(2,4)-s on the Grassmannian G(2,V"*!), we auto-
matically get a set of points on G(4,V™!). To be precise, the particular G(2, W*)
corresponds to the point W* € G(4, V™). Conversely, any set of point on G(4, V1)
gives a union of G(2,4)-s on G(2,V"!). We want to consider the unions of G(2,4)-s
coming from Schubert cycles on G (4, V*t1).
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Example 3.8 (G(2,7)). Consider the Schubert cycle o3291 in G(4, 7). By definition
O3901 = {A € G(4,7) | dim(ANnV;) > 1,dim(ANVy) > 3,dim(ANVs) > 4}
Projectively, the cycle is
03201 = {P* C P® | P) C P® C P}, and P> NP3 D P?}

A line in such a P? is contained in P% and it intersects P% in at least a point. Thus a
line in such a P? is an element in the cycle

{A e G(2,7) | dim(ANV,) > 1,dim(AN V) > 2}
As a cycle, this has indices ¢; and ¢y given by the equalities
7—24+1—c=4and 7—2+2—c, =6

Thus the union of lines in the given P3-s is contained in the cycle g4, on G(2,7). Now,
pick a line in 0y, on G(2,7). The line and P% will span a plane, and this plane together
with a point in P2, spans a P®. This P? contains the point P}, it is contained in P,
and it intersects P%, in a plane. Thus any line in oy; corresponds to a P in g390;. We
have defined a correspondence

{Schubert cycles on G(4,7)} <« {Schubert cycles on G(2,7)}
03221 < 021

Consider an arbitrary cycle o¢,cyese, 00 G(4,7). It is defined as
Ocreseses = AN € G(4,7) | dim(ANVsy_e,) > for all i}

A line in a P2 in this cycle will intersect Vsti_e, in at least dimension ¢ — 2 for all 3.
Thus a line in such a P? is contained in the cycle

{AeG2,7) | dim(AN Vi o) >i—2} (3.15)

Notice that only the indices c3 and ¢4 will matter, as the expression dim(ANVs4_¢,) >
¢ — 2 is meaningful only for ¢ > 3. The expression in equation 3.15 forms the cycle
Oarap O0 G(2,7), where 5+1— (343 —c¢3) =a; and 5+ 2 — (3+4 — ¢4) = ap. That
is, a1 = ¢3 and ay = ¢4. Equation 3.15 can therefore be rewritten as

Ocses = {A € G(2,7) | dim(ANVs_e,) > 1 and dim(ANV7_.,) > 2}

Pick a line L in o, on G(2,7). The line together with a line in P(V;_.,) which
intersects P(V}_,) in a point, will span a P3. This P? is an element in 0., cye5c,- We
have defined a map

v : {Schubert cycles on G(4,7)} — {Schubert cycles on G(2,7)}

Oc¢ies c3c4q — 00364
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Notice that every time we pick a line in P(V5_.,) which intersects P(V,_,, ) in a point, we
will get a P?, and L is in all these P*-s. These lines form the cycle o., ., on G(2,Vs_,,),
and L is therefore in a family of P3-s of dimension 2(3 —¢y) —c¢1 + ¢, = 6 — ¢; — co.
The line L is in a unique P? if and only if ¢; = ¢, = 3. A

- R

03221 021

Figure 3.1: Illustration for example 3.8

We will now generalize this map to arbitrary n. Consider an arbitrary cycle o, cycqcq
on G(4, V™). Tt is defined as

Oerereses = A € G(4, V™) | dim(A € Vy_34i_,) > i for all i}

A line in a P? in this cycle will intersect V, 3,; ., in at least dimension ¢ — 2 for all .
Thus a line in such a P? is contained in the cycle

{Ae G2, V™) | dim(ANV,_34ie) >0 — 2} (3.16)

Again, only the indices c¢3 and ¢4 matter, as the expression in equation 3.16 is mean-
ingful only when 7 > 3. The expression in equation 3.16 forms the cycle 0,4, on
G(2,V"™), wheren—1+1—(n—3+3—c3) =a;and n—1+2—(n—3+4—cy) = ay.
That is, a; = c3 and ay = ¢4. Equation 3.16 can therefore be rewritten as

Ocses = {A € G(2, V™) | dim(ANV, ) >1and dim(ANVpyy o) > 2}

Pick a line L in 0. on G(2,V"™!). Take any line in P(V,_;_.,) which intersects
P(Vy_a_¢,) in a point. The two lines will span a P in 0, cyeses-
The lines in P(V,,_1_.,) which intersects P(V,,_2_,) in a point forms the cycle

{AeG2,n—1—cp) | dim(ANVy_o_g) > 1} =06y,

on G(2,n — 1 — ¢y). Thus the line L lies in a family of P3-s of dimension 2(n — 3 —
c3) —¢1 + ¢y = 2(n — 3) — ¢; — cy. Therefore, the line L is in a unique P? if and only
ifecg =co=n—3.

Definition 3.3. The map
v : {Schubert cycles on G(4,V"™)} — {Schubert cycles on G(2,V" 1)}
1s defined by

V(Ocrescses) = Ocses

The image of v is the union of all cycles 04,4, where 0 < as < a; < n — 3.



3.3. APOLAR VARIETIES 83

n—3 %nl
—
2

Figure 3.2: Illustration of the map v

4

We have seen that any cycle o.,., in the image of v can be written as a union of
G(2,4)-s where a general line lies in only one G(2,4). The cycle o, is determined by
the partial flag (5 '~ C P,™*), and since n — c3 — 1 > 2, there is enough space to
extend the flag to a partial flag of four linear spaces: (Pp°"“ C PR C PR 7% C
P% ). The extended flag defines a cycle 0., ¢cyese, On G(4,n+1). For a general line in
Ocses 10 lie in exactly one P2 from o, c,c,c,, We have seen that ¢; and ¢, must be equal
to n — 3. Thus the extended flag is given by (P% C PL C Pu 17 c P& ). Since
¢1 = ¢y, it is actually only the P} that gives a condition on the P3-s. Precisely, the
cycle of P2-s is given by

On—3,n—3,c3,ca — {]Ps ep” | ]P’};‘ CPPcPr% agnd PPNPr-1 > IP2}

So let 0y cpese, De an arbitrary Schubert cycle on G(4, V"), and consider the union
of the linear spans of the G(2,4)-s coming from this cycle:

y=|J (@ewY)

W4€oeicoeseq

Then
YnGe2n+1)= |J Gew?
W4€0oe coezes

We have found a way of describing this union as a Schubert cycle on G(2,V"**1). If
o is the cycle 0¢cyeseq, the union Y N G(2,n + 1) is the cycle o, on G(2, V™). By
definition, this cycle consists of all the lines [ such that / intersects a fixed IF”Iffc‘**l
in at least a point and such that [ is contained in a fixed P% “*. The P} ' can be
represented by a matrix of the form

P?«“_Cs_l = (In-c0)
and the fixed P can be represented by a matrix of the form

P%_&l = (In+l—04 ‘O)
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Thus a line [ in o, can be represented by a matrix

3.17
by (3.17)
columns number n —c3+1,...,n+ 1 — ¢4 are special

where a star means an arbitrary number. The first row has n — c3 stars, and the
second row has n + 1 — ¢4 stars. Both rows have zeros only on the ¢, last entries, so
any (2 x 2)-minor which involves at least one of the ¢, last columns are zero. Thus the
Pliicker coordinates z;; where j > n + 2 — ¢, are zero. Moreover, any (2 X 2)-minor
which involves two of the special columns is zero. Thus the Pliicker coordinates x;;
where

n—c3+1<i<j<n+1—¢

are also zero.

Example 3.9 (G(2,7) continued). In example 3.8, we considered the cycle o399
and its image under v. An element in 091 on G(2,7) can be represented by a matrix

* * x x 0 0 0
* % x % % *x 0

The (2 X 2)-minors which involve the last column are all zero, and so is the minor
involving columns five and six. Thus the following Pliicker coordinates are all zero:

T17, Tor, T3r, Tar, Ts7, Ter and Tse

Any point on G(2,7) can be represented by a (7 x 7) skew symmetric matrix, and the
above argument shows that a point in 09; can be represented by a skew symmetric
matrix of the form

(0 * x x x *x 0
* 0 x x x x 0
* x 0 x x x 0
* x * 0 x x 0 (3.18)
* * x x 0 0 0
* x x x 0 0 0
\0 00000 0
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In the general case, a line represented by a matrix as in equation 3.17, can also be
represented by an (n + 1) x (n + 1) skew symmetric matrix:

* * * 0 - 0
* 0 0] 0 0
% % % « o - ol o 0 (3.19)
0 00 0 0 0 0 0
\ o000 ---00 --- 00 ---0 )
o 1
columns number n +2 —¢4,...,n+1

The boxed submatrix is a square matrix and it consists of the common entries on rows
and columns number n —c3+1,...,n+ 1 — ¢4.

Next, we need to find the dimension of the linear span of Y N G(2,n + 1). This
dimension equals the number of non-zero minors of the matrix in equation 3.17 minus
one. The number of non-zero minors is exactly equal to the number of non-zero entries
in the matrix in equation 3.19. But the number of non-zero entries 3.19 is the number
of non-zero entries in the first row, plus the number of non-zero entries in the second
row and so on, i.e.

nm—c)+n—ca—1)+--+(n—cs—(n—c3—1))
:(n_c4)+(n—C4—1)+"'+(Cg—C4+1)

ST
_ (m—c)n—ca+1) (cz—ca)(cz—cat1)
2 2
(n—ci)?+ (n—cq) — (c3—ca)? — (ca — cq)

2

This proves

Proposition 3.8. Thus the linear span of

YynG2n+1)= |J GewY

W4€oeepeseq
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WAETE Gpepeses 5 @ Schubert cycle on G(4, V™) is

(n—cy)?+ (n—cy) — (c3—cs)? — (c3 — 1)

dim(Y N G(2,n+1)) = -

-1

=: dync(cs,ca) — 1

We have a cycle o.,., on G(2,n + 1), where ¢; < ¢3 < n — 3. We have seen that
this cycle is a union of G(2,4)-s. In fact, we can write the cycle o, as a union of
G/(2, 4)-s where a general line is in only one G(2, 4), by choosing the cycle 0,33 ¢5.c,s
on G(4,n +1). We defined a variety Y to be the union of the linear spans of these
G(2,4)-s. Since every P° in Y is the linear span of a part of o.,,, every P° in Y must
be contained in the linear span of o, itself. Thus Y is a variety which habitat is a
Pdvne—1

What is the dimension of Y7 We can find the dimension of Y by considering the
incidence

e, (G2, W) ={(¢, W) €Y x 0 | ¢ € (G(2,W*))}

Y = Upsc, (G2 W) o

birational l e

Fix a point Z* in o. The fiber 7, '(Z*) is given by
7 (Z2) ={¢€Y [ € (G(2,2Y)}

Thus the fiber over a fixed point in ¢ is five dimensional. Next, fix a point p in Y.
The fiber 77 *(p) is given by

' (p)={W'eo|pe(G2,W")}

We have previously seen that we can choose the cycle ¢ in such a way that this fiber
consists of exactly one element, by setting ¢; = co = n — 3. This gives

Proposition 3.9. The dimension of Y s

dimY =dim | J (G(2,W*)) = dimo +5
Wieo
=4n—3)—2(n—3)—c3—cs+5
=2n—1)—c3—cs+1
=dim(Y NG(2,n+1)) +1
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We will now describe the ideal of Y. We have seen that the index ¢, gives the
condition that a line in o, is actually contained in a P% “. The P3?-s in the corre-
sponding minimal cycle on G(4,n + 1) are all contained in Py “, too. So we loose
no generality by setting ¢, = 0. To make the notation as simple as possible, we will
from now on write o, instead of o.,9. The corresponding minimal cycle on G(4,n+ 1)
is the cycle 0,,_35,_3.0. From equation 3.19 a line in the cycle o, is represented by a
(n+1) x (n+ 1) matrix of the form

* 0
* * *
(R
columns number n —c+1,...,n+1

The boxed submatrix is a square matrix and it consists of the common entries on rows
and columns number n —c+1,...,n+ 1.

The cycle o, consists of the lines which intersect the fixed P% ! in at least a point.
In particular, the lines contained in this P%°"! is in o,.. All such lines are represented
by 2 X (n + 1)-matrices of the form

where both rows have n — ¢ stars. Thus all Plicker coordinates z;; where j > n—c+1
are zero. We can therefore identify the fixed P}, ¢! as the upper left (n —c¢) X (n —c)
submatrix of the matrix in equation 3.20.

We constructed the corresponding minimal cycle on G(4,n + 1) by choosing a line
Pl in the fixed P "'. Choosing a line in the fixed P% “~' corresponds to choosing
one coordinate in the matrix defining P% ¢! to be different from zero:
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( 01
-1 0
* * *
\ * k% * |0 0
columns number n —c+1,...,n+1

The cycle o, is defined by the 4-Pfaffians of this matrix, and the coordinates which
are zero:
o, = Z(4-Pfaffians ,z;; where n —c+1<i<j<n+1)

Since o, is contained in Y, the ideal of Y must be contained in the ideal of o,:
Iy C (4-Pfaffians ,z;; where n —c+1<i<j<n+1)

We have already seen that Y lives in the linear span of o, so the z;;-s are contained in
Iy. Now, Y = Upugy, 4, 5.(G(2, W*)), so pick one particular Wy € 6,,_3,,3.. Then
P(Wy) is a P* which contains the chosen line Pk, and intersects P*~¢~! in at least a
plane, so the 4-Pfaffian of the matrix in equation 3.21 must involve both the first and
the second rows and columns, and at least three of the first n — ¢ rows and columns
in total. There are

2

such 4-Pfaffians. The (G(2,W})) is contained in Y, so Iy is contained in the ideal
of (G(2,Wy)). The ideal of Y restricted to (G(2, Wy)) must therefore be zero. But
there are points in (G(2, Wy)) which are not in the zero locus of the 4-Pfaffian defining
G(2,Wy), and therefore this 4-Pfaffian can not be in the ideal Iy. In this way, all the
(21 quadrics of this type are excluded from the ideal of Y.

Notice that all the @; quadrics discussed above come from P3-s in the cycle

{(PPCP" | PPDOPpand PNPE ! DP?} =0y 30 3.0

Q1=(n—c—2)(c+1)+(n—c—2)

Every element in the cycle above can be represented by a 4 x (n + 1) matrix of the
form

* x 0 0 00 0
* x 0 0 00 0
* ok ok * 0 0
* k% * % *
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where the third row has n — ¢ stars. There are

<n_;_2>+(n—c—2)(c+1)

non-zero maximal minors in this matrix, and the dimension of the linear span of the
cycle 0,353 .0 is this number minus one.

What about the rest of the quadrics?” We know that there are ("Il) quadrics in
the ideal of o.. Thus we can think of the quadrics as points in the Pliicker space of
a G(4,n + 1). Recall that each quadric corresponds to a point on G(4,n + 1) itself.
We have excluded the quadrics corresponding to points in the cycle o, 3, 3.0 on
G(4,n+1).

Fix a flag F’ where P, is the last column vector in the matrix in equation 3.21,
where P}, is spanned by the last two column vectors of the matrix and so on.

The 4-Pfaffians of the matrix in equation 3.21 coming from P3-s which intersect
P, in at least a line, are not among the excluded ones. There are

= () (%) ()0 (T)

such 4-Pfaffians. Notice that the P3-s which intersect P%, in a plane or a 3-space
gives 4-Pfaffians which are identically zero. The P3-s which intersect PS, in exactly
a line, gives quadrics which are actually the (2 x 2)-minors of the (n — ¢) x (¢ + 1)-
matrix directly above the boxed submatrix. Such minors are called rank four quadrics,
because they only involve four coordinates. A general point in Y lies in exactly one
(G(2,4)), thus a general point lies in a unique P5. A particular P° is defined by only
six coordinates, and they form a rank six quadric which defines the G(2,4). Thus all
the rank four quadrics are identically zero, and each point in Y is contained in the
zero locus defined by them. Thus the rank four quadrics are contained in the ideal of
Y.

These quadrics are parametrized by the P3-s which intersect P¢, in at least a line.
Such P3-s form the cycle

{I['D3 cP | P3 N ]P%v D) I['Dl} = Op—2—¢,n—2—¢,0,0

All elements in this cycle are represented by 4 x (n + 1)-matrices of the form

* ok * 0 0
* % x* 0 0
* % * ok *
* % * ok *

where the two top rows has ¢ + 1 stars. A (4 x 4)-minor is zero if it involves three
or four of the last n — ¢ columns, which implies that the linear span of this cycle has
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() -eon(57) - ()

There are also quadrics parametrized by P3-s which intersect P4, in at least a point
and P?%,? in at least a plane. There are

Q3:2<n_;_2)(c+1)+ (n_§_2>(c+1)+ (n_;_2> (Cgl)
i) e

These P3-s form the cycle

projective dimension

PPcP | PPNP DP and PPNPL? D P’} =03 c110

All elements in this cycle are represented by 4 x (n + 1)-matrices of the form

* % * 0 00
* ok * % * 0 0
* % * % -+ % 0 0
* % * % * ok K

where the top row has ¢ 4+ 1 stars. There are
c+1 c+1 c+1 n—c—2
— 2n—c—2
() (5 o (575 77) w20me)
Fle+1) n—c—2 49 n—c—2
¢ 3 2

non-zero maximal minors of this matrix, and the linear span of this cycle is the number
of non-zero maximal minors minus one.

The quadrics which the ()3 ones have in common with the ()2 ones are in the ideal
of Y, since we have already seen that all the () ones are. The quadrics common to
the two groups come from P?-s in the intersection of the two cycles on G(4,n + 1).
The intersection of the cycles 0,—2_¢n—2-¢0,0 and o,_3-.1,1,0 is given by

{]P’s C P" | P3 N IP%/ D) Pl and Pg N PTP&/_2 D) PQ} = On—2—¢,n—2—¢,1,0

All elements in this cycle are represented by a 4 X (n + 1)-matrix of the form

* % * 0 0 00
* % * 0 0 00
* % * % * 0 0
* % * % * ok %
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where the top two rows have ¢ + 1 stars. The number of non-zero maximal minors of
this matrix is

() (e ()73 oo

The linear span of the intersection of the cycle is this number minus one.
The quadrics among the Q3 ones which are not in the @, ones come from P3-s in
On—3—¢,1,1,0 Which intersect P, in exactly a point. There are

ngz(”_;_2>(c+1)+ (n_§_2>(c+1)

=(n—-k+1) ((2—k)+ (g)) when c=n—Fk

0 when £ =3
=142(n—3) whenk=4
7(n —4) when k =5 and so on
such quadrics. Thus if there exists such quadrics, there are at least 2(n — 3) of them.
These Q)5 quadrics have rank six, but they do not define G(2, 4)-s which appear in
the union which defines Y. Each point in Y N G(2,n + 1) is in the zero locus of these
quadrics. Since the G(2,4)-s does not appear in the union which defines Y, there are

no points in Y which lie in the linear spans of these G(2, 4)-s but not on G(2,4) itself.
Therefore, all these quadrics are elements in the ideal of Y, that is

Proposition 3.10. The )y and Q) quadrics described above are all in the ideal of Y.

The dimension of the union of the cycles 0,,_2_¢n—2-c00 and o,_3_¢1,1,0 18

dim(op—2-cn-2-¢,00U On-3-c,1,1,0) =
(ni—l) _(C+1)<n;c> B <n;c) q
() (3 (D)
+(c+1) [(n—;—?) +2(n_;_2)] —1
(1o (2

()= () e [(75) () - ()]
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Now, consider the number

. . n+1
dim(0y,—2—cn—2-c,0,0 U On—s—c,1,1,0) + dim{0y,_3n-3,c0) — (( 4 ) — 1) (3.22)

This is often a negative number. This implies that the union of the cycles on G(n+1)
not always spans the whole Pliicker space, and we can not guarantee that there are no
other quadrics in the ideal of Y.

The case c=n —3

In the extreme case ¢ = n — 3, the number in equation 3.22 is —1. Thus the three
cycles span the entire space. If we ad another quadric to the ones we know are in the
ideal of Y, the linear span of included ones will intersect the linear span of excluded
ones non-empty. This is a contradiction. Thus the ideal of Y is generated by no more
than the Qs + Q% quadrics discussed above. Notice that, when ¢ = n — 3, the number
Q% is zero.

Recall that the basis for the ideal of G(2,n+1) is the quadrics {Qijri }1<icj<k<i<nt1,
where Qi is the 4-Pfaffian of the skew symmetric matrix of basisvectors for A2V"*!
involving rows and columns number 7, 7, k and /. Recall also that each of these Pfaffians
defines a G(2, W*) where W* is a point on G(4,n+1). Keeping this in mind, we have
proved the following theorem:

Theorem 3.11. Fiz a basis B = (e1,...,e,41) for a vector space V', and fir a
complete flag F : (e1) C (e, es) C {er,ez,e3) C -+ C (e1,---, 1) = VL Let
0 =0n_3n-3n30(F) be a linear space on G(4,n+ 1), and let

Y= |J (G@2,W") c P(APV™)

Wieco

Then Y N G(2,n+ 1) = op_30. Let {Qijm} where 1 <i<j<k<l<n-+1 be the
standard basis for the ideal of G(2,n + 1) with respect to the basis B. Then the ideal
of Y is generated by the quadrics Qi where ijk # 123.

Theorem 3.11 gives that when ¢ = n — 3, the ideal of Y is generated by the @)
quadrics which are (2 x 2)-minors as mentioned above. In this case, we can find the
degree of Y.

We can go back to the general case when the cycle on G(2,n + 1) is 0.4, Where
¢4 may be non-zero. The reason we do this, is to get a formula which always applies.
When ¢3 = n — 3, the variety Y is the zero locus of the (2 x 2)-minors of a (n — ¢3) x
(c3 — ¢4 + 1)-matrix. We may view this matrix as a map

O (1)



3.3. APOLAR VARIETIES 93

where N = dyng — 1. The total Chern class of ﬁ]lf,%\,_c“l is c(ﬁﬂf,%v_cﬁl) =1, and the
total Chern class of O (1) is ¢(Opx (1)) = (1+H)" . Also ¢(Opy(1)— 05 ™)
equals (by definition) c(0Fy(1))/c(O%5 ™). We will use the following formula:

Theorem 3.12 ([6], Thom-Porteous formula). Let M be an (f x e) matriz which
defines a homomorphism of vectorbundles over a purely n-dimensional scheme:
EXLF

where E has rank e and F' has rank f. Let c denote the total Chern class of F—E. Let
k < min(e, f) and assume a variety Y is defined as the zero locus of the (k+1)-minors
of M. Then the degree of Y equals the coefficient of H in the determinant

Cf—k Cfk+1 Cfkt1 " Cfie2k—1
Cfk-1 Cfk Cfpgt1r """ Cfie2k—2
|Cf—k+j—i‘1§i,j§e7k = . . .
Cf—et+t1 Cf—et2 Cf—et3 ~°- Cf—k

In our case, k is always equal to 1, and e = c3 — ¢4+ 1 and f = n—c3. If C' denotes
the total Chern class of &5 (1), where N = dyng — 1 we have

C:1+(n_63>H—|—(n_cs)H2+...+( n—=as >Hn—63—1+Hn—63
1 2 n—c—1

and the degree of Y is equal to the coefficient of H in the determinant

Cn—C3—1 Cn—03 Cn—03+1 et C’Il—C4—2
Cn—C3—2 Cn—C3—1 Cn—C3 et C’Il—C4—3
Cn—263+64 C’n—263+64+1 Cn—203+04+2 T Cn—03—1

This determinant equals

(e e oo o
(nﬁ;:jciQ) Hn—ca—Q (nﬁ;:;cil) Hn—cg—l H" % 0 --- 0
I O A

(3.23)
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This determinant equals §- H® ¢~ 1D(es—¢4) for some number 3, and this £ is the degree
of Y. The number (n — c3 — 1)(c3 — ¢4) is the codimension of ¥ in P n¢ 1 thus the
dimension of Y is

dimY = dyﬁg(Q,n_H) —1- (TL — C3 — 1)(03 — 04)

_ (n —cq) +(”—C4)_2(C3_C4) — (c3 — ) —(n—c5—1)(cs —ey) — 1

=n4+2—-c

when ¢; = n—3. This fits, since the dimension of YNG(2,n+1) is 2(n—1)—(n—3)—cy =
n + 1 — ¢4 in this case.

Example 3.10 (G(2,11)). Consider the cycle o7779 on G(4,11), and let Y be the

variety
y= J (©ew)

Wiearrrs

Then Y is the zero locus of the (2 x 2)-minors of a (3 x 6)-matrix. The degree of YV
equals the coefficient of H in the determinant

3H? H* 0 0 0

3H 3H* H?® 0 0
1 3H 3H?> H?® 0
0 1 3H 3H?* H?
0 0 1 3H 3H?

A simple calculation shows that this determinant is equal to 21H'°, and the degree of
Y is therefore 21. The dimension of YV is 10 A

The coefficient of H™¢3—1){(e3—¢4) ip the determinant in equation 3.23 is the deter-
minant

(ni;36i1) 1 0 0oo0 --- 0
(nﬁ::ig) (niz:il) 1 o0 --- 0
(o) (M) () 10 0 520

(

n—cs
n—2cg+ca

) (

n—cs
n—2cz+ca+1

)

If r =n — c3 and s = c3 — ¢4, this matrix equals

(

n—cs
n—cz—1

)
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(7"12) (ril) 1 0 0 0 0
(ri3) (7-12) (Til) 1 0 --- 0 0
D= (3.25)

(r—§+1) (r—;—|—2) (711) 1
I B ) B (L) (L)

Expanding this matrix on the first row, gives

Ds:< T1>Ds—1_< TQ)D3—2+< T3>Ds—3_< T4>Ds—4
T T T T (326)

e er( g op)perern( )

pi=(,",)=(})
r—1 1
and that
2 2
_ r B T _ 2_7"(7"—1)_7“ +r  (r+1
DQ_(T—I) (r—2>_r 2 2 _<2

Continuing, it is not hard to see that D3 = (T'§2). Now, assume

i1
D, = <T+], )forjzl,...,i
j

Then we can use the sum in equation 3.26 and write D, as

P = -i(_l)iﬂ (r il +j) Dj| + (0™ (7‘ i 1)

Lj=1

- _Zi:(_l)w(r—z'ilﬂ) <T+§' ! 1)] i (_I)M(T —Z— 1)

Lj=1

Notice that

Evaluating this sum in Maple ([18]), gives

p=(757)+ “”mwﬂ—w”( ' )]

141 r—g—1
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and playing with this equation for a while, gives
T+ , r! , r
Di — -1 i+1 -1 1+2
i <i+1)+[( ) (r—i—l)!(i+1)!+( ) (r—i—l)]
r+1 : T : r
— -1 i+1 -1 i+2
(0 E3 [S N) REC VS |
_r+
i+l

We have proved the following theorem:

Theorem 3.13 (The degree of Y). When 0, 3,343, S a Schubert cycle on
G(4,n+1), and Y is a variety given by

Y = U (G(2,WY)

W4€Un—3,n—3,n—3,c4

—e—1
dng=<n 624 )

When Y is the union of the linear spans of some G(2,W*)-s where W* is in a
Schubert cycle 0,3 ,,-3n-3., 00 G(4,n+1), we have seen that Y NG(2,n+1) is equal
to the cycle 0,,_3.,. The degree of this cycle is (see the formula in equation 1.4)

the degree of Y is

deg(YNG(2,n+1)) = H-(n—?—q)
_ (n+1—cy)(n—2-cy)
2

Example 3.11 (G(2,11) continued). The Y defined in example 3.10 has degree 21,
and the degree of o075 on G(2,11) is

9! 9:6
218! 0 2 7

Thus the degree of Y is less than the degree of the Schubert cycle. A
Consider the quotient

degY NG(2,n+1) (n+1—c)(n—2—cy)

degY S (n—1—c)(n—2—rcy)
n+l—cy
n—1—cy

The quotient is strictly bigger than one, which implies that the degree of Y is strictly
less than the degree of Y N G(2,n + 1).
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The case c=0

We have treated the one extreme case when c3 = n— 3. Another extreme case is when
c3 = 0. In this case, the variety Y is given by

y= U (@ewY
W4€on—3,n-3,0,0
The intersection Y N G(2,n + 1) is the cycle oo, i.e the whole G(2,n + 1). The total

number of quadrics in the ideal of G(2,n + 1) is ("}'), and

Ql:(n_2)+<n;2> _ <n;1)

quadrics are excluded from the ideal of Y. All these quadrics come from P3-s which
contain P}. Such P2-s form the cycle 0,3 ,-3,0,0 on G(4,n+1). This cycle is isomorphic
to a G(2,n — 1), and its linear span therefore has dimension (";2) - 1.

In this particular case, there are no quadrics of rank four in the ideal of YNG(2, n+
1), and the number @) is therefore zero.

Let F’' be a flag where P9, is the last column vector in the matrix representing
G(2,n+1), where P}, is spanned by the two last vectors in the matrix and so on. The
quadrics which come from P3-s which intersect P, 2 in at least a plane are not among
the excluded ones. They are in fact included in the ideal of Y, as we saw above. These
P3-s form the cycle

{]P3 e P | P3 N P?;TQ D Hﬂ} = 01110
Each point in this cycle can be represented by a matrix of the form
0 0

*

* ¥ X %
* ¥ ¥ *

* O O

0
0
*

5 n—1 n—1

(5"

non-zero maximal minors for this matrix, and the linear span of o1119 has dimension
one less than the number of non-zero maximal minors. Since

dim{on_s_300) + dim{oy110) — ((" I 1) _ 1)
_ (n;l) _1+2<n;1) . (n;l) L (nl—l) o
- ()= (1) - ()

*
*
*

There are
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The union of excluded quadrics and included quadrics therefore span the whole space,
and we can conclude that the ideal of Y is generated by precisely these quadrics.

Theorem 3.14. Fiz a basis B = (ey,...,eny1) for a vector space V' and fiz a
complete flag F : (e1) C (e1,e2) C (e1,e2,€3) C --+ C (e1,...,enp1) = V"L Let
0= 0On—3n-300(F) be a cycle on G(4,n+ 1), and let

= U«

Wieo
Then Uyae, G(2,W*) = G(2,n +1). Let {Qujm} where 1 <i<j<k<l<n+1 be
the standard basis for the ideal of G(2,n + 1) with respect to the basis B. Then the
ideal of Y is generated by Qijm such that ij # 12.

G(2, W) C PNV

By writing G(2,n+1) as a union of G(2,4)-s in such a way that a general point on
G(2,n+1) lies in exactly one G(2,4), we have constructed a variety Y which contains
G(2,n+ 1), and it has dimension one more than the dimension of G(2,n + 1). Recall
that during the construction, we chose a line P}, in the Pliicker space of G(2,n + 1).
That is, we chose a point pr on G(2,n + 1), and this point is common to all the
G(2,4)-s. Now, let ¢ be a point on G(2,n+1) and let L be the line spanned by pr and
g. Then there is a G(2,4) such that pr and ¢ lies on it, and the line L is contained in
the linear span of it. Thus L is contained in Y. This implies that every line spanned
by pr and another point on G(2,n + 1) is contained in Y, and thus the whole cone
over G(2,n+ 1) with vertex in pg is contained in Y. Since Y and the cone has equal
dimension, they must be equal.

Thus in this case, the variety Y is a cone over G(2,n + 1) with vertex in pg.

Proposition 3.15. Let 0 = 0,_3,-3.0 be a cycle on G(4,n + 1). All the Y-s of the
type
Y= (@@ w?)
Wico
are cones over a point in o.y.

Proof. Tt is not only in the case ¢ = 0 we choose a line in the Pliicker space. In all
cases 0 < ¢ < n — 3 we choose a line P}, in the Pliicker space (or, equivalently, a point
pr on G(2,n+ 1)), and construct a variety Y using this line. A point ¢ in o, comes
from a line Py in P", and this line lies in the P® spanned by P; and Pj. The union
of all lines in this P? is a G(2,4), and the linear span of this G(2,4) is contained in
Y. The line spanned by pr and ¢ is contained in this linear space, and therefore it is
contained in Y. This implies that the entire cone over o, is contained in Y, and since
Y and the cone has equal dimensions, the variety Y is this cone.

In the special case when ¢ = n — 3, the cycle on G(2,n + 1) is

{P' CP" | P' NP% # 0}
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and the cycle on G(4,n + 1) is
On_3n_3n_30 = {P* CP" | P’ D P%}

Thus, in this case, choosing a line P}, inside P% does not give any extra condition on
the P’-s. A particular line P} in 0,_3 on G(2,n + 1) lies in the P° spanned by the
plane P% and the line P; itself. The entire plane of lines in P% is common to all the
G(2,4)-s, and a line spanned by a point in this plane and another point in o,_3 is
contained in Y. This implies that the cone over o,,_3 is contained in Y. Notice that
every cone with vertex in a point in the plane IP’% C 0,_3 is contained in Y. This cone
has the same dimension as Y, and they are therefore equal. O

Recall that the ideal of o, is generated by the 4-Pfaffians of the matrix

(01 )
-1 0
* x 0
0 % --- %
\ * k% * )
T
columns number n —c+1,...,n+1

The cycle o, is defined by the 4-Pfaffians of this matrix, and the coordinates which
are zero:
o, = Z(4-Pfaffians , z;; wheren —c+1<i<j<n+1)

Notice that the generators are expanded around pp by setting x5 = 1. All the 4-
Pfaffians Q12;x where 3 < j < m — ¢ has linear leading terms, and the rest of the
4-Pfaffians has quadratic leading term. The tangent cone is the common zero locus of
these leading terms inside the linear span of o.. Notice that the linear leading terms
are all coordinates z;; where 3 <7 <n—-cand 4 < j <n+1. A consequence of setting
these equal to zero is that all 4-Pfaffians which involve three of these coordinates are
identically zero. Also, the 4-Pfaffians Q135 and Q3 where 4 < j < k <n+1 are
identically zero. Thus the 4-Pfaffians in the ideal of the tangent cone are exactly (125
where n —c+1 < j < k <n+ 1. These quadrics are the (2 x 2) minors of the boxed
2 X (¢4 1) matrix in the upper right corner of the matrix.

We have found that the tangent cone over o, at the point pg is defined by the zero
locus of the minors of a matrix of coordinates. This fits perfectly: The tangent cone
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sits inside the linear span of o, intersected with the linear leading terms. There are

Z?:Jrcarli linear leading terms, and therefore, the tangent cone sits inside a projective

space of dimension

n+1

) Cont+n—-c—-c n?—3n—c2—c
dim{o,) — > i= 5 —1- 5 —2=2(n—-1)

1=c+1

and the Thom-Porteous formula gives that the dimension of the zero locus of the
maximal minors of a 2 x (¢ + 1) matrix has codimension c¢. Thus this zero locus has
dimension 2(n — 1) — ¢ which is equal to the dimension of o.. The ideal generated by
these minors has depth c¢. But then the tangent cone is ACM by [4], corollary 5.4.
Now, propositions 1.7 and 3.15 gives that Y, is ACM in this case.

In the case ¢ = 0, the variety Y, is the entire G(2,n + 1). The ideal of G(2,n + 1)
is generated by all the 4-Pfaffians Q. Expanding these around pr gives ”2%3” +1
linear leading terms, and ("') — 2532 41 quadratic leading terms. The tangent cone
TC,.G(2,n+1) is cut out by these leading terms. In fact, inside the zero locus of the
linear leading terms, the quadratic leading terms are identically zero, and this implies
that the tangent cone is equal to the tangent space in this case. Thus the tangent cone
is a linear space, and a complete intersection. In particular, it is ACM and generated
by the leading terms. Propositions 1.7 and 3.15 gives that Y, is ACM in this case.
Finally,

Proposition 3.16. All these Y-s are minimal, in the sense that there is no variety
Yy such that Y NG(2,n+1) C Y, CY.

Proof. Assume now that there is a variety Y, such that

YNG2,n+1l)CYyCY

Then
Iyne@niy O Iy, O Iy
i.e
(ij, Q2 rank four quadrics , @ + @4 rank six quadrics )
U
Iy,
U

(wij, Q2 + Qf rank four quadrics )

Thus Y, must consist of some of the P°-s but not all. On the other hand, we have
seen that Y N G(2,n + 1) can be written as a union of G(2,4)-s where every line is in
exactly one G(2,4), so a variety which consists of only some of the (G(2,4))-s can not
contain the entire Y N G(2,n + 1). Thus such a Y, can not exist.

U



Chapter 4

Power sums

When dealing with Grassmannians of lines, a lot of interesting questions appear. One
of them is related to the topic of power sums, and this chapter will treat the power sum
problem and Grassmannians of lines. We start by some general theory to establish the
tools we need.

If f is a homogeneous form of degree d in n + 1 variables, we know that f can be
written as a sum of powers of linear forms /;:

f=U++ 410 (4.1)

for r large enough. If Ny is the number of monomials of degree d in n + 1 vari-
ables, consider the d-th Veronese embedding vy : P* — PY~1 A point in P" cor-
responds to a hyperplane in P*, which corresponds to a linear form [ in the coordi-
nate ring Clzo,...,7,]. We can identify v; with the map [ — [¢, and since every
f € Clzg,...,x,]q can be written in the form given in equation 4.1, we know that the
image of the map [ — 14 spans PY~!. Now, if we fix n and d, the number of summands
r will of course vary with f, but for general f we have the following theorem:

Theorem 4.1 (Alexander, Hirschowitz). A general form f of degree d in n + 1

variables, is a sum of r = [L (”:d)]* powers of linear forms, unless

ntl
1 d=2, when r =n+ 1 instead of (”T’LQL or

2d=4andn =2,3,4, when r = 6,10, 15 instead of 5,9, 14 respectively, or
3 d=3 and n =4, when r = 8 instead of 7

Proof. This is a result of Alexander and Hirschowitz [1] combined with Terracinis
Lemma [13]. O

*For any real number a, the notation [a] means the smallest integer bigger than or equal to a.

101
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Now, let f € Clzg,...,z,] be of degree d, and let FF = Z(f) c P . If [ €
Clzg,..., 7)1 T, we have L = Z(I) CP" . By double use of notation, we can say that
L is the point in P* that corresponds to the hyperplane L in P" . We are ready for
the first definition

Definition 4.1. The variety of sums of powers s defined to be the closure

VSP(F,s) = {{L,..., L} € Hilb,(P* )|3\; € C: f = M\I¢ +--- 4 )\, 19}
of the set of powersums representing f in the Hilbert scheme.

From now on, let S =Clxzg,...,z,] and let T = C[0p,...,0,]. We know (see
[21]) that T acts on S by differentiation, and S acts on T in the same way. This
action defines a perfect pairing between forms of degree d and homogeneous differential
operators of order d. In particular, S; and T} are natural dual vector spaces. Therefore,
the projective spaces with coordinate rings S and T are natural dual to each other. We
denote them P and P" . A point a = (ag, . . ., a,) €P" defines a form [, = Do il €
S1, and for a form D € T,

D-l,’fze!(d

(&

)D(a)lg—e

when e < d. In particular,
D-1=0% D(a) =0

Definition 4.2 (Apolar forms). We say that homogeneous forms f € S and D € T
are apolar if f-D=D-f=0

Now, let f € S; and let F = Z(f) CP™ be the corresponding hypersurface . We
define
F-={DeT|D-f=0}

and
AF =T/F+

We also have the notion of apolar schemes:

Definition 4.3 (Apglar schemes). Let F = Z(f) C P™ be a hypersurface of degree
d. A subscheme I’ C P" is called apolar to F if I, C F+ C C[0,,...,0,] =T, where
It is the ideal of T'.

When working with powersum-related problems, the following lemma plays an
important role:

TWe will use this notation for the linear forms in the polynomial ring C[zg,...,2,]. Generally,
Clzo, - - -, Zn]q denotes the d-th graded part
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Lemma 4.2 (Apolarity lemma, [21]). Let l1,...,1l5 be linear forms in S, and let
L; € P" be the corresponding points in the dual space. Then f = M\I% + -+ Aslé for
some \; € C\ {0} if and only if ' = {Ly,...,L,} C P" is apolar to F = Z(f), i.e. if
and only if Ir C F*.

Recall that the socle of A" is (0: Ty) ={D € A¥|D'-D =0 VD' €T} C AF.
In detail

(0:T) ={De A¥|o;D=0 in A" Vi}
={D e T/F*|6;D € F*+ Vi}
={DeT/F*0;D-f=0 Vi}
={DeT/F*D-feC}
={DeT/F*D € f+ or degD = degf = d}
=A%

and this implies that the socle of A is AL and is one dimensional. In particular, A" is
Gorenstein with socle degree d. In fact, A" is an Artinian Gorenstein graded quotient
ring of T, and is called the apolar Artinian Gorenstein ring of F. Thus a form
f € Ry gives us an Artinian Gorenstein graded quotient ring A" = T/F* with socle
degree d. We have the following theorem:

Theorem 4.3 (Macaulay). The map F — A is a bijection between hypersurfaces
F =Z(f) CP" of degree d and graded Artinian Gorenstein quotient rings A =T/I of
T with socle degree d.

Proof. See [17]. O

Let X C P*"*! be an m-dimensional arithmetically Gorenstein variety. Let
S(X) be the homogeneous coordinate ring of X, and let hq, ..., hy,.1 be general linear
forms and set L = Z(hy, ..., hpy1). Then S(X)/(hq, ..., bms1) is Artinian Gorenstein,
and the theorem above says that S(X)/(hy,...,hmy1) is equal to A/ for some T' =
Clzo, ..., 2, and some fr, € T' of degree d equal to the socle degree of the ring (see
14))

The space L is a linear space of dimension (n+m+1)—(m+1) = n, and Fi, = Z(f)
is a hypersurface of degree d in the dual space to L. We say that F is apolar to (the
empty) intersection L N X =: (y,. Thus, L is an n-dimensional linear subspace of
P*+m+1 and we can associate a hypersurface of degree d in a P* to L. Hence, we have
a map

Gn+1l,n+m+2) — Hyy (4.2)
L — FL )
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where I:In,d is the space of hypersurfaces of degree d in P . We want to treat hyper-
surfaces that only differ by a change of coordinates as equal. Thus, we consider H, 4
modulo the action of PGL(n + 1,C) and call it H, 4. We get a rational map

ax: Gn+1l,n+m+2) ———— H,4

I . 7, (4.3)

The map ayx is only defined for those L which are intersections of m + 1 general
hyperplanes in P+,

4.1 Powersums and Grassmannians of lines

Let G(2,n+1) be the Grassmannian of lines in a n-dimensional projective space. Recall
theorem 1.6 of chapter 1, which says: All Grassmannians varieties have homogeneous
coordinate rings which are Gorenstein. Any Schubert subvariety of a Grassmannian
has homogeneous coordinate ring which is Cohen-Macaulay.

Let G = G(2,n+1) C PV, where N = ("}') — 1 and let L C PV be a linear
space such that G(2,n + 1) and L does not intersect. Then the intersection G N L is
empty, but by theorem 4.3 and theorem 1.6, we can associate a form f; to it. From
the apolarity lemma (lemma 4.2) we see that we want to find a variety Y such that
Iynr, C Ignp and such that Y N L is a finite set of points. Recall that the empty
intersection G N L be denoted 0, .

Let the linear span of Y be denoted by (V). If L C (Y) C PV, the intersection
GN(Y) must be non-empty (remember that dim L+dim G = N —1, so if (Y) is strictly
bigger than L, then G and (Y") must intersect). If GN(Y) C Y, then Iy C Ignyy and if
Y is arithmetically Cohen-Macaulay (ACM), this implies that Iy~ C Ignyynr = Iani-
The assumption G N (Y) C Y is true when G N (Y) = GNY, as is the case for the
apolar varieties discussed in the previous chapters.

The intersection Y N L is a finite set of points if

dim L = codimY in (Y)

We found apolar varieties Y for Schubert cycles on G(2,n + 1) which have the
property that Y N G(2,n + 1) has codimension one in Y. For those, we also had the
property that (Y) = (Y N G). Adopting these as nice properties, the intersection is a
finite set of points if

dim L = codim(G(2,n+1)NY)—-1in (Y NG(2,n + 1))
which is equivalent to

codimG(2,n+ 1) in (G(2,n+ 1)) = codim(G(2,n+1)NY) in (Y NG(2,n + 1))
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But then the intersection of Y with G(2,n+ 1) must be proper, which is generally not
the case when Y N G(2,n + 1) is a Schubert cycle.
n+1
We have seen that the Grassmannian G(2,n + 1) is a subvariety of p("s )_1, and
now consider the polynomial rings

S = C[l‘o, ce ’x(n;-l)il] and T= (C[ao, ceey 8(%-1)71]

The ring T acts on S by differentiation as above.

In our case, G(2,n+1) C P(")Lisa variety of dimension 2(n—1), and S(G(2, n+
1)) is its homogeneous coordinate ring. We also have that "2%3" +2(n—1)+1=
(";“1) —1,s0if hy, ..., ho,_1 are general linear forms, theorem 4.3 says that S(G(2,n+

1))/(h, ..., hon_1) is equal to Clzg, ..., 2,2_s, |/ fi for some f, of degree equal to the
2

socle degree of the ring. We also know that there is ("f) quadrics in the ideal fi. In
the following section, we will determine the degree of the polynomial f7.

4.1.1 The socle degree
By using Macaulay 2 ([8]) we get the resolution of the ideal of the Grassmannian:

Example 4.1 (G(2,5)). The Grassmannian G(2, 5) sits inside P? and the codimension
is 3. The resolution of the ideal of G(2,5) is given by

ﬁPQ — ﬁPQ(—Q) — ﬁPQ(—3) — ﬁ]}w(—5)

and the Betti numbers are
1 _ _ _
- - -1
The shift in the last piece is 5. A

Example 4.2 (G(2,6),G(2,7)). From the resolutions of the ideal of G(2,6) we get

the Betti numbers
1 - - -

- 15 3 21 - — —
- — = 21 35 15 -

- - - - - -1

and from the resolution of the ideal of G(2,7) we get the Betti numbers

1 - - - - - - - - - _

— 35 140 189 &4  — S —
- — — 196 735 1080 735 196 — — —
- - - - - — 84 189 140 35 -—

|
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From this we can see that the shift in the last piece of the resolution of G(2,6) is
6+3=9and 10+4 =14 for G(2,7). A

We know that the Grassmannian G(k+1,n+1) sits inside PGi) 1IN = (Zj:),
the resolution looks like

04 Og « Opn—1 < - - < Opn—1(—d) (4.4)
for some d. The length of the resolution (starting counting with a 0 at the first Opn-1)
is equal to the codimension m of G(k + 1,n 4+ 1). We know that J#om(—,wpn~-1) is a
contravariant left exact functor, and applying this to the exact sequence in equation
4.4 gives

0 — Hom(Opn-1,wpn-1) — - - 4 Hom(Opn-1(—d),wpn-1) — cokergp — 0

But coker¢ = &xt™(Og,wpn-1), which is exactly wg. Thus we have

0— %Om(ﬁprl,w[prl) — i) %Om(ﬁprl(—d),w]prl) —wg — 0
It is a well known fact that wpn-1 = Opn-1(—N +1 — 1) = Opn-1(—N), so we have
0— Opyn-1(—N) = - > wg—0

Furthermore, we will prove later (lemma 4.6) that wg = Og(—n — 1), so twisting by
n+ 1 gives
0= Opni(—N+n+1)—-+ = 0z—0 (4.5)

Equations 4.4 and 4.5 are two resolutions of &g, both minimal, and they have the
same Betti numbers. Thus the shift in the last piece must be the same, and we get
the equality
d=N—-n—-1
Observe that (), sits inside P!, and the canonical line bundle on P! is &(—m).
Following the same procedure as above, we get a resolution
04wy, ¢4 O(—m) + 0

We also know that wy, = Og(s) ([5], p 549) where s is the socle degree, so if we twist
by —s, we get a resolution of Og:

0 Og -« O(—m—35)«0 (4.6)

By comparing equation 4.4 and equation 4.6 we see that

d=m+s
Thus if d is the shift in the last piece of the resolution of the ideal of G(k + 1,n + 1)
and m is the codimension of G(k+1,n+1) C P(if1) 1 = PN-1, then
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1.d=N-n—-1
2.s=d—m=N—-n—1—m

where s is the socle degree.
We know that dimG(2,n+ 1) = 2(n — 1), so the codimension m is equal to

1 1
("; )—1—2@—1):@—1—27%2

_n2+n—4n+2

N 2

n’—3n+2

—

_(n=1)(n-2)
2

(")

Proposition 4.4. The socle degree of Clzg, ..., 22_5,]/fF 50 — 2
2

(4.7)

Proof. The discussion above gives that the socle degree is

s=N=n-t-m=("71) = @wrv- (")

:(n—i—21)n Cnt1)— (n — 1)2(n—2)
n+1)(n=2) (n—-1)(n—-2) (4.8)

2 B 2
)
:n2 (n+1—-n+1)

=n—2

4.1.2 The number of summands for a general f

As we saw in proposition 4.4 above, the form f we are considering is a form of degree
. 2 . . . .
n—2in %—f—l variables, i.e f € Clzp,. .., Zn2 3, |n—2 - By the Alexander/Hirschowitz-
2

theorem (theorem 4.1), the number of summands in the power sum presentation of a

general such f is
r= n2—3n ( ’ n2—3n ) (49)
= +1 e
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G2,n+1) |A=25" [ B=n—2]|s=[("7)]
G(2,4) 0 1 1
G(2,5) 2 2 3
G(2,6) 5 3 10
G(2,7) 9 4 72
G(2,8) 14 5 776

Table 4.1: The table shows the expected number of summands r for general f

except when n = 4, then r = ’“Z)%?’" + 1 instead.

We have seen that if there is a variety Y with the properties listed above, we get
an inclusion Iy~ C Ignp, which by the apolarity lemma gives a point in the variety
of power sums for the form f we get from G. Now, we are ready to examine some of
the possible Y-s.

4.1.3 The apolar variety is a cone over X

Let X C P**™*! be a reduced and irreducible m—dimensional non-degenerate variety
of degree 0 > 3, and codimension n + 1 > 2.

Remark:

1 degG(2,n+1)=1(>""%) > 3 when n >4

n—1

2 codimG(Z,n—i—l):(”;1)—1—2(n—1)="2%3"—|—1>2whennz4

Now, let p € X be a general smooth point, and let C,.X be the cone over X with
vertex at p. Since p is a smooth point, C, X has dimension m + 1 and degree § — 1,
and clearly X C CpX.

We will apply this simple construction to describe power sum presentations of
hypersurfaces in the image of the map ax of equation 4.3. Let again X C Prtm+!
be an m—dimensional arithmetically Gorenstein variety of degree . Fix a general
n—dimensional linear subspace L C P**™*+! in particular, fix the hypersurface F}, in
the image of the map ax. Let p be a smooth point on X. We know that LNX =0y,
but since dimC, X +dimL = m+1+n, the intersection LNC}, X is non-empty. In fact,
if the intersection is proper, it is zero dimensional of the same degree as C, X, i.e. of
degree 6 — 1. We may assume that this intersection is proper and smooth for general
L or general p. Thus if ' = LN C,X, then I' is (§ — 1) points and I' D LN X. By the
apolarity lemma, Ir C Fi-. Hence, we get an apolar subscheme of degree § — 1 to F,
i.e. a point in VSP(Fp,d — 1). This proves
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Proposition 4.5 ([14]). Let X C P"*™*! be an m— dimensional arithmetically Goren-
stein variety of degree § and let L C P**™ %L be an n—dimensional linear subspace such
that LN X = (. Let Fy, be the associated apolar hypersurface. Then there is a rational
map X — — — VSP(F,d — 1) defined by p— LN C,X.

The case X = G(2,n+ 1)

n27 n
The Grassmannian G(2,n+ 1) of lines in P" sits inside P2 +2=1D+1 and has degree
%(2:__12) So we fix a linear space of dimension ”2;3”, and pick a point p € G =

G(2,n+1). Then L N C,G is %(27?__12) — 1 points and this is an apolar subscheme to
Fp, in the image of ag. Thus, fr, of degree n — 2 (the socle degree) can be written as a
sum of %(2::12) — 1 powers of linear forms! Also notice that every smooth point on G
(i.e. every point in G, since G is smooth) gives rise to an apolar subscheme. Hence,
fr can be presented as a sum of powers of linear forms in as many ways as there are
points on G. That is, in a 2(n — 1)-dimensional family of ways.

Recall that equation 4.9 gives us the expected r if f; was general. The argument
above, says that the s we are looking for is no bigger than %(2"_2) — 1. Table 4.2

n—1
compares these two numbers for different n.

n | expected r | r from cone argument
4 3 4
Y 10 13
6 72 41
7 771 131

Table 4.2: The table shows the expected r for general f, and the r we get from the
cone argument.

It is not hard to see that when n > 6, the expected r from the Alexander/Hirschowitz
theorem is much larger than the r we get from the cone argument. Can we get an
even better upper bound for r?

4.1.4 The apolar variety is a cone over tangent hyperplane
sections
Let, as before, X € P! be a reduced and irreducible variety. Also, X is non-

degenerate and m-dimensional of degree § and codimension n + 1 > 2. We assume in
addition that X satisfies the following condition (see [14]):
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Condition 1. A general tangent hyperplane section of X has a double point at the
point of tangency, and the projection of the tangent hyperplane section from the point
of tangency is birational

So what does this mean? Let p € X be a general smooth point, and let H, be
a general hyperplane tangent to X at p. Then condition 1 says that the intersection
H, N X has multiplicity 2 in p and the projection

WpinﬂX%Y

is birational. The image of 7, has dimension m — 1 and degree § — 2. Thus, the cone
C,(H, N X) has degree 0 — 2 and dimension m, and it contains H, N X.

Similarly, if H, and H, are two general hyperplanes tangent to X at p, the in-
tersection H, N H, N X has a singularity at p of multiplicity 4, and it is a complete
intersection of two singularities of multiplicity 2. We say that the codimension 2 space
H, N H, is doubly tangent to X at p. Now, assume that the following condition is
satisfied:

Condition 2. The projection of H, N HI’J N X from p is birational

Now, the image of the projection is (m — 2)—dimensional, and of degree 6 — 4.
Thus, the intersection H, N H) N X is contained in the (m — 1)—dimensional cone
Cp(H, N HyN X) of degree d — 4 with vertex in p.

As before, let X C P**™*! be as m—dimensional arithmetically Gorenstein va-
riety of degree §. In addition, assume that Condition 1 is satisfied. Now, fix an
n—dimensional linear subspace L C P**™*1 in particular, fix the hypersurface Fy, in
the image of ax. If L C H, (H, as defined above), there is an m—dimensional variety
Y D H,NX of degree 6 —2. We know from the discussion above that Y is the cone over
H,N X with vertex in p € X, i.e all lines (p, z), where z € H,N X. Since p € H,N X
and z € H, N X, and H, is a hyperplane, the entire line (p, z) sits inside H,. Thus
Y C H, has dimension m, L C H, has dimension n and H, has dimension n + m.
Therefore, LNY # (). In fact, since no lines on Y lies inside L (because then L would
intersect X non-empty, and this is not the case), we know that LNY is 0—dimensional
of degree § — 2. Thus we get a point in V.SP(Fp,d — 2).

Now, let X C P**™+1 he the dual variety of X, i.e. the collection of hyperplanes
tangent in some point p on X. Let X, = {[H] € X : H D L} ¢ X. We get a rational
map (only defined for general tangent hyperplanes)

X, ————= VSP(F,,6—2)
[H] > LNY

In the same way, assume Conditions 1 and 2 are satisfied, and let L C (H,NH,)), where
H, and H} are two general hyperplanes tangent at p. There is an (m — 1) —dimensional
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variety Y O (H,NH,NX) of degree —4. As before, Y is the cone over H,NH,NX with
vertex in p, i.e. all lines (p, z) with x € H,NH,NX. As above, since p,x € H,NH,NX,
the entire line sits inside H, N H;,, and thus Y sits inside H, N H}, and is of dimension
(m — 1). Furthermore, L C H, N H, has dimension n, and since dim(H, N H,) =
n + m — 1, the intersection L N'Y is non-empty. For general L the intersection is
0-dimensional and of degree 6 — 4. Thus, we get a point in VSP(Fy,d — 4).

We know that H, N H), is a codimension 2 space, doubly tangent in p € X. Let
Zx C G(n+m,n+m+2) be the set of codimension 2 spaces, doubly tangent at some
point p € X, and let Z, = {[V] € Zx : V D L} C G(n+m,n+m+ 2). We get a
rational map

ZL - — = VSP(FL,(S—ZI)
V] — LNy

The case X = G(2,n+ 1), continued
We already know that G(2,n + 1) sits inside

n2—3n o
I[]; > +2(n 1)—|—1 —- PN

and that dimG(2,n+ 1) = 2(n —1). Thus, we fix a linear space L of dimension ”2+3"
The dual variety of G(2,n + 1) is defined by

G = {[H] € PY|H is a tangent hyperplane to G(2,n + 1)}

The dual variety consists of all tangent hyperplanes to GG, and we know that it is a
hypersurface of degree three when n + 1 is even, that it has codimension three when
n+1 is odd (see theorems 3.4 and 3.5). By definition, H C PV is a tangent hyperplane,
tangent at the point p € G(2,n + 1) if H D T,G, where T,G is the tangent space to
G(2,n+ 1) at the point p.

Step 1: Fix a point p

Now, fix a point p € G(2,n+1). As the “strategy” above indicates, we are looking for
hyperplanes H such that H D T,G and H D L. Since dim7,G'+dim L = N —1, there
is always one hyperplane which contains them both. The linear space L corresponds
to an orthogonal linear space L~ C PV, and the tangent space at p corresponds to an
orthogonal linear space T,G™ in the same dual space.

Note that the dimensions of L+ and T,G* are given by

dimL* = codimL — 1 =2(n — 1)
n? —3n

dim7,G* = codimT,G — 1 = N — dim7,G — 1 = 5
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Remark: If H; and H, are tangent hyperplanes, both tangent at a point p and both
supsets of L, then every linear combination of them will also satisfy these specifications.
Thus, when we speak of the number of tangent hyperplanes we mean the dimension of
the vector space consisting of such hyperplanes.

We are looking for points [H] such that
[H] € GN L*NT,G*

If [H] € T,G*, then, by duality, H D T,G. Thus, H is a tangent hyperplane, and [H]
therefore automatically is a point on the dual variety. Thus, we can simplify, and say
that we are looking for points [H] such that

[H] € L' NT,G* (4.10)

Step 2: Unfix the point p

Until now, the point p has been a fixed point on the Grassmannian G(2,n + 1). It is
natural to assume that the dimension of the intersection in equation 4.10 may vary
with p. Thus, we now unfix the point p, and define m(p) :=dim(L+ N T,G*), where
p € G(2,n+ 1) is a variable. We know that m(p) > 0 (= 0 in the general case where
the two linear spaces intersect in a point). Our goal is to find the maximal “number
of” hyperplanes which contain both 7,G and L, and the natural way of thinking is
that if the two linear spaces intersect more than in the general case, they are probably
subsets of more hyperplanes. Thus we examine the number m(p).

Reformulation of the problem

We have a linear space A (corresponding to L) of dimension a, and a linear space
B, (corresponding to T,G*) of dimension b. The space B, varies with p, where p is a
point on a variety X of dimension a. The variety X is isomorphic to the Grassmannian
G(2,n + 1), and sits inside a PV (to be correct, we should write PV here) together
with A and B,. The dimensions a and b are such that a +b = N — 1. We know that
A and X are fixed, while B, is variable, parametrized by X. The question we want to
answer is the following:

For oo =1,2,3... does there exist a B, such that dim(B,NA) =« ?

Since B, is a linear space of projective dimension b inside PV, we know that B, €
G(b+1,N+1):= G for all p e X. Furthermore, every B, corresponds to a point p
on X,s0 X C G(b+1,N +1) as a subvariety. To answer the above question, we need
to involve some Schubert calculus.
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Let Vi C Vo, C V3 C -+ C Vygr = CV*! be a flag in CV*L. Now, let A be the
(a + 1)-dimensional piece (remember that A has projective dimension a) of the flag in
CN*!. and define

U, = {A € G|dim(AN A) > o}

Now, U,NX = {T,G(2,n+1)*| dim(T,G(2,n+1)"NL*) > o} in the original problem.
Thus, if U,NX # () there will be a point of the type B, inside U,, and thus the answer

to the above (reformulated) question is “yes”. Our goal is thus to find the maximal «
such that U, N X # (.

Example 4.3 (G(2,5)). We know that G(2,5) sits inside P?, and that dimG(2,5) =
2-(5—2) = 6. Thus, we fix a linear space of dimension 2. Then, dimL' = 6 and
dimT,G* = 2. We wish to examine how dim(L+ N T,G*) varies when we vary the
point p. We now have two linear spaces in P?; A = L+ of dimension 6 and B, = T,G*
of dimension 2. Thus , B, in an element in G(3,10) and a variety X isomorphic
to G(2,5) sits inside G(3,10) as a subvariety. Fix a flag in C'° such that A is the
7—dimensional piece. As above, let

Uy, ={A € G(3,10)| dim(ANV7) > a} (4.11)
where V7 is the 7—dimensional piece of the fixed flag, i.e. V7 is equal to A. Then,

Furthermore, dimG(3,10) = 3- (10 — 3) = 21, while dimX = 6, so the codimension
of X as a subvariety of G(3,10) is 21 — 5 = 15. The cycle o199 is a hyperplane section
in G(3,10), and thus the intersection U; N X is non-empty.

What about the intersection Uy N X? According to equation 4.11, Uy = {A €
G(3,10)| dim(A N Vz) > 2}, which we recognize as the cycle gq99. Thus, Us is a cycle
of codimension 2 + 2 = 4 in G(3,10). Therefore, we may expect that U, intersects X
non-empty.

We continue in the same way, and see that Us = o333. Thus, Us is a cycle of
codimension 9, and we may expect that it does not intersect X.

We have now found that we may expect that there is a point p such that dim(7,G*N
L+) = 2. This is the maximal possible dimension of this intersection (since dim7,G* =
2), so we conclude that o = 2 is the maximal « in this case. Notice: We still need to
figure out how many tangent hyperplanes contain 7,G' and L when the intersection is
this big. A

We now return to our original problem. Remember that we fixed a linear space A
of projective dimension a and we have a variable linear space B, of dimension b (the
dimension b is not dependent of the point p). We fix a flag in CN*! where A is the
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(a 4+ 1)—dimensional piece. We call this piece V1 to use the same notation as in the
example. We will try to describe Uy, Us, ... in terms of cycles in G = G(b+1, N +1).

a=1:

By definition (equation 4.11), U; = {A € G|dim(A N V,41) > 1}. Furthermore,
N—-b+1—-—1=N—->b=a+1 (remember that a + b = N — 1), and therefore, we
recognize U; as the cycle o1¢..9- Thus , U; is a hyperplane section as in the example,
and intersects X non-empty.

a=2:

By definition Uy = {A € G|dim(A N V,4;1) > 2}. To describe this in terms of cycles,
we examine the indices, and find that N — b+ 2 — ¢ = a + 1, which implies that
co=N-b+2—-a—-1=N+1—-(a+b)=N+1— (N —1)=2. This makes the
cycle gg99...9, and thus U, is a cycle of codimension 2 4+ 2 = 4.

Remark: The dimension of the big Grassmannian G(b+ 1, N + 1) = G is dimG =
(b+1)(N —=0b) = (N —a)(N —b). The variety X C G has dimension a, and thus
codimX = (N —a)(N — b) — a. As long as the sum of the codimensions of U, and X
is less than or equal to the dimension of G(b+ 1, N + 1), the intersection U, N X is
expected to be non-empty. That is, as long as

((N—=a)(N —b)) —a+codimU, < (N —a)(N —b)

that is, as long as
codimU, < a (4.12)

the intersection U, N X is expected to be non-empty.
Now, for a general «,

Uy ={A € G|dim(ANV 1) > a}

As above, we want the following equation to be true: N —b+«a —c, = a+ 1, and this
implies that ¢, = N—b+a—a—1=a+1+a—(a+1) = «. This makes the Schubert
cycle 0qa...00..0 Where the last « is index number «. In particular, this means that U,
is a cycle of codimension o - @ = a?. Comparing with equation 4.12, we expect the
following implication to be true:

?<a=UNX#0D (4.13)
Conclusion: We have found that as long as o is less than or equal to a, we may

expect U, to intersect X. To translate this back to our original problem, we see
that as long as o is less than or equal to 2(n — 1) we expect an intersection. We
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still need to prove that there actually is an intersection, and finally, find the number
v of tangent hyperplanes. Then, the discussion above says that we get a point in
VSP(G(2,n+1),L(>7}) = 27).

n\n—1

How many tangent hyperplanes?

Assume U, N X # () when o? < 2(n —1). Then a = |y/2(n — 1)] is the maximal «.
Now, look at

I={(T,G,H,) | (T,GUL)C H,,dim(T,GNL) > a}

The first condition gives that H; is a tangent hyperplane, tangent at p, and that H;
contains L. Thus we have a projection from I to the set of all tangent hyperplanes
of G(2,n + 1) containing L. Furthermore, the second condition gives that we also
have a projection to U, N X (Why? U, N X is precisely the set of tangent spaces to
G(2,n+ 1) such that the vector space dimension of the intersection with L is greater
then or equal to «). To summarize, we have projections

(TG, Hy)| (T,GU L) C H, dim(T,GNL)>a}

/ ]P?a—l

Ht,L (Ua N X)Q(n—l)—a2

First of all, the dimension of U, N X is 2(n — 1) — o2, since the codimension of U,
is @®. To find the dimension of the fibers over U, N X, fix a tangent space T,G
where dim(7,G N L) > «. How many tangent hyperplanes contains L and T,G? We

know that the dimension of L is ”2;3”, and the dimension of T,G is 2(n — 1), and

dim(LUT,QG) = "2+3” +2(n—1) — (o — 1). Furthermore, the dimension of a tangent
hyperplane is @ + 2(n — 1), and thus the fiber is a P*1. There are therefore o
tangent hyperplanes, tangent at the point p which contains L. Thus the v in the

conclusion above is equal to a.

4.1.5 The intersection U, N X

We want to show that the intersection U, N X is non-empty. In a given example, the
intersection can be described in terms of Chern classes. In this section, we will give
the general setting, and do the calculations in three examples.

The Grassmannian G = G(2,n + 1) consists of two dimensional subvector spaces
of a (n + 1)-dimensional vector space. Therefore, it comes with an exact sequence of
vectorbundles:

00U =V Qv =0
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This is called the universal sequence over G. The cohomology ring of the Grassmannian
is generated by the classes of the special Schubert cycles ([9]), and the cycle 0,9 equals
the r-th Chern class of the universal quotient bundle Q™! ([6], section 14.7):

or =, (Q" ) foril<r<n-1
Notice that V™! is a vector bundle over G(2,n + 1):

0=U? =Vl Qv l =0

|

G(2,n+1)

Over a point p € G(2,n + 1) lies the vector space Uﬁ. The tangent bundle T¢; is given
by Hom(U?,Q" ') = Q"' ® (U?)*, where A* indicates the dual of the vector bundle
A. The differentials Qg is the dual of Tg, and this implies that Q¢ = (Q"')* ® U?.

Lemma 4.6. Let G = G(k+1,n+1). For any k, the canonical sheaf wg of G is equal
to Og(—n —1).

Proof. The Grassmannian G(k + 1,n + 1) comes with an exact sequence of vector
bundles
0 — Uk:-|—1 SN Vn+1 N Qn—k -0

The line bundle which embeds G in the Pliicker space is A"~ *Qm"=F (or AFFI(UF+1)*).
As above, Q¢ = (Q"%)* ® U**!, and by definition,

we = /\dimGQG — /\(k+1)(nfk)((ank)* ® Uk+1)
= Og(=(n—k) = (k+1))
= ﬁg(—n - 1)

0

Let Eg be a bundle such that P(Ef) is the variety of tangent spaces to G(2,n+1).
Let H be the line bundle A?(U?)* which embeds G(2,n + 1) in the Pliicker space

n+1

P("3")~L. Then it is well known (see [6]) that Eg fits in the following exact sequence:

The bundle Eg is such that P(EY,) is the variety of tangent spaces to G(2,n + 1).
Thus P(E},) is a collection of P2"~1)_s The bundle E} is a bundle over G(2,n + 1),
where the fiber over a point p € G(2,n + 1) is the tangent space T,G(2,n + 1):



4.1. POWERSUMS AND GRASSMANNIANS OF LINES 117

By By, =T,0@n+1)
S T
G(2,n+1) P

The fibers E, , = T,G(2,n + 1) are contained in P(A*V"*1), and from this we get an
exact sequence
0= EL—= AN V"™ 5 K0

where K is the quotient. We can think of E}; as a subset of G(2(n—1)+1, ("}')) and
use it to put G(2,n + 1) inside the bigger Grassmannian:

G2,n+1) - G2n-1)+1,("")
D — Eg’p

Of course, the bigger Grassmannian comes with an exact sequence of its own, so now
we have two exact sequences:

0= EL— AV 5 K — 0
(4.15)
0 — UHn=D+L 5 A2yt 5 ) — 0

We are trying to answer the question

For @ = 1,2,3,... does there exist a T,G* such that dim(7,G*N L) > a?

where Lt is a fixed linear space in the dual Pliicker space p("3)-1, We have a com-
position of maps

G(2,n+1) .
/ \

G(?(’I’L _ 1) + 1’ /\2vn—|—1) L G(n2;3n + 1’ (/\2vn+1)*) e

where 7(p) = T,G*. The universal sequence on G is
0= QF — (A2V L)y (U2e-DHy
and 7 gives a sequence
0— Eg — (A2V™)* 5 K* =0 (4.16)

To ease the notation, let U* denote (U2™~D+1)* The cycle U, is a cycle on G, and
we want to see if the intersection cycle G(2,n + 1) N U, is different from zero on G.
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2

We have seen that U, is a cycle of codimension o, and Giambelli’s formula (lemma

1.9) gives that

Ca Cat+1 Cat1 - Coa
U Ca—1 Cq Cat+1 *°° Coa—1
« 8 a0:--0
M
o times
C1 Co C3 tee Cq

where ¢; are the Chern classes on the bundle U* on G. The pull-back formula for
Chern classes gives that

T (c(U)NG) = (U ) NY'G
= CZ(K*) NG

If ¢(A) denotes the total Chern class of a vector bundle A, the Whitney sum formula
and equation 4.16 gives that

C(K*) . C(Eg) =1
and using the identity

1

i =L~ @@t —al)+ )+ (@) +ald) - ad) +..)7 -

where A is some vector bundle, we are able to write the Chern classes of K* as
polynomials in the Chern classes of Eg. But Whitney sum and equation 4.14 gives
that

c(Eq) = c(Qa(H)) - c(Oa(H))
=c(Qe(H))- (1 +H)

Altogether, we have
1

c(K*) =
W= et 1 )
Recall that Qg = (Q"1)* ® U?, and the universal bundle on G(2,n + 1) gives that

(@) - e((U)) =1

and thus the Chern classes of U? can be expressed as polynomials in the Chern classes
of (@™ 1)*, and so can the Chern classes of Q. We use this to write the Chern classes
of K* as a polynomial in the Chern classes of (Q"~1)*, and if this polynomial evaluates
to something positive, we know the intersection U, N G(2,n + 1) is non-empty.
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Example 4.4 (G(2,6)). We will now do the calculations on the Grassmannian
G(2,6). In this case, a = |/8] = 2, and

Ca C3
1 Cg

U, =

Let o; and o be Chern roots for U?, i.e. let
c(U?) = (1+a1)(1 + )
Then
aU*)=a+ay=—H and c(U?) =aoay=:1
We need the following formula:

Lemma 4.7 (Formula for Chern roots of tensor product, [17] p37,[6] p54).
If E and F are vector bundles of rank e and f, and the total Chern classes are

e f

o(B)=]]0+=z) and []O+w)

1=1 j=1
the total Chern class of EQ F s
(E®F) =[]0 +=zi+y)
i,J

It follows that the rank of E ® F is e- f. Furthermore, the Chern classes of the dual
bundle E* is given by .
G(E) = (1) (E)

The Chern roots of E* are —x1,...,—Z,.

The lemma implies that the total Chern class of U? ® H is

(UP@H)=(1+a+H)(1+a+H)
:1+(a1+0z2+2H)+(a1a2+a1H+a2H+H2)
and
a(U*®@H)=—-H+2H=H
(U@ H)=t—H*+H*=t

For the following calculations, let ¢(U? ® H) = (1 + v1)(1 + v2). The Chern roots v;
and vy are only temporary, to make the notation easier. Remember that we need to
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find the Chern classes of Qg(H), and we know that Qg(H) = (Q*)* @ U? ® H. We
find the Chern classes of (Q*)*:

1

c((U?)7)

1
Tt H T (4.17)
=1—-(H+t)+H+t)?*—(H+1t)>*+ (H+t)*

=1—H—t+H*+2Ht+t*— H>—3H* —3Ht>? —t3+.-.

c((QY)) =

i.e

e((QY)") = —t+H*
cs((QY)") = 2Ht — H®
For the following calculations, let c((Q*)*) = [];_,(1+¢i). As with the v;-s, the Chern
roots ¢; are temporary, to make the notation easier. We are now ready to find the
Chern classes of Qg(H):
c(Qe(H)) = c((Q") @ U* ® H)
=(1+vi+q)-Q+vi+g)l+va+qg) - (1+vs+aq)

=1 + (22(]1 +4(U1 +’U2)>
(Z q; + 42%% + 72(111)] +6(v; +vg) + 161)102)

i#£] 1,J

+2) ¢y +3Zqzvg +8 ) qgia+12) Qquvk+92%

i#] i#j#k kyitj
+24 Z qiv1v2 + 4(1)1 + v3) + 24vov? + 240,02 +

Now, Y. ¢ = c1((Q%)*) and vy + vy = ¢;(U? ® H), and the linear term of the sum is
e1(Qu(H)) = 2(—H) + 4H = 2H

Continuing writing the terms as polynomials in the elementary symmetric functions
of the ¢;-s and v, and vy, we get that

c(Qg(H)) = 2t + 16 H?
c3(Qg(H)) = 18Ht — 4H?
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Thus
c(Qc(H)) - (1+H)=14+3H+2t+4H”+20tH —4H’ + - - -
R
and
1
c(K*) =
)= e - 1+ 1)
=1-R+R’—R*+---
=1—-3H —2t+5H?>—8tH+ H>+---
This implies that
Cl(K*) = —-3H
co(K*) = =2t + 5H?
c3(K*) = —8tH + H?
and
_ 2 _ 3
U X — ot +5H? —8H+ H

—3H —2t + 5H?
= 44? — 44¢tH? + 28 H*

We need to evaluate this polynomial, by multiplying with H* to find the degree in the
Pliicker space. A similar calculation to the one in equation 4.17 shows that

a(@)=H
02(Q4) —t 4+ H2
c3(Q*) = —2Ht + H?

|

Recall that ¢;(Q*) is exactly the special Schubert cycle o; on G(2,n +1). This implies
that

4% — 44tH? + 28 H* = 4(0? — 03)* — 44(0? — 09)0? + 2807
= —120} + 36030y + 403

Multiplying with H* gives

—120% + 36000y + 4otos
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The degree of G(2,6) is 14, so 0¥ is 14 times the class of a point. Thus this polynomial

equals

— 12 - 14044 + 36080, + 4070,

= — 1680'44 + 360’?(0’3 + 021) -+ 40';1(0'22 + o031 + 0'4)

1680'44 + 3240’44 + 240’44
:1800'44

1680'44 + 360’%(0’4 + 20’31 + 0'22) + 40':1;(20'32 + 20’41)
— 168044 + 3603 (3041 + 3039) + 407 (40 4y + 2033)
168044 + 36072 (6042 + 3033) + 24044

Thus the degree of the intersection U; N X in the Pliicker space is strictly positive,
and we may conclude that this intersection is non-empty. A

Example 4.5 (G(2,7)).

C3
Us = |co
&

Cq
C3
C2

In the case n = 6, we have a = |/10] = 3, and

Cs
Cq
C3

As above, ¢;(U?® H) = H and c,(U?® H) = t, and

5\ * 1
(@) = 7
1
T 1+ H+t
=1—-H—t+H?*+2Ht— H>*+t*—3H* + H*— 3Ht* + 4H* — H> + - .-
and thus
a((@))=-H
(@) =—t+H”
cs((Q%)) = 2Ht — H?
c((Q%)*) =t* —3H*t + H*
cs((Q%)*) = —3Ht* + 4H*t — H®



4.1. POWERSUMS AND GRASSMANNIANS OF LINES 123

For the following calculations, let ¢((Q°)*) = [._,(1 + ¢). Then

c(Qe(H)) = c((Q°) @ U*® H)
= H(1 + v + ¢;)
= 1+2Z%’+5(U1+v2)

+ Zqz + 9Zq,v] +10(v? +v3) + 4Zqij + 251109

] i#]
+10(v? 4 v3) + 16 Zvi qj + 50(vivg + v1v3) + 4 Zviqj
] ]
+16(v1 +v2) Y @iy + 400102 Y ai +2> g +8 > aigia
i#] ? 1#] 1#£J#k
+5(v + vy) + 14(v3 + v3 ZQZ + 50(v3vg + v103) + 25(vi + v3 Z%%
i 1#£]

+ 70(vivy + v1v3) Z ¢ + 6(vi + v3) qu + 100v3v3 + 160,09 qu

+ 7(’(}1 + ’02) Z q?qj + 28(1)1 + ’02) Z 499k —+ 621)11)2 Z q:4;

i£] 1#£j 7k 1£]
Y G +4 ) e +16 > agaa
i#] i#£j#k i£jFkFL
4(v? + v3) Zqz+6 v} + vy) Zqz (V5 + v3) + 9(v? + v3) Zqzq]
i#j
+19(v; + 3 Z%% + 3(v1 + v2 Zqz qj + 12(vy + vy) Z 4 q54n
i#] i#] i#j#k
+2 ) @ +38(wi+03) > agia+8 Y daama
1#j#k 1#£j#k 1#jFkFL
+ 48(v1 + v2) Z 4i9;qkq + 60(v3vy + v1v} Z ¢ + 24v1v; Z 49
i#jERFEL i#]
+ 93(vivy + v1v3 Z ¢iq; + 92v,v, Z ¢:iq;qr + 120070, Z i
i#£]j 1£j#k

+100(viv3 + v3v2) + 25(vivy 4+ vivy) + 24(vivg + v1v3) Z q;
i
+ 32 Z 99k QiGm + ** -
i Ak AlAm
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which gives that

a(Qe(H)) =
co(Qa(H)) = H2 + 3t
cs(Qg(H)) = —4H? + 22Ht
cs(Qg(H)) = —6H* + 6 H?t + 23t*
cs(g(H)) = —18H® — 92H* + 46 H3¢
Furthermore,
c(Qe(H))(1+ H)

=1+4H +3t+7H? + 25tH — 10H* + 23t*> + 28 H*t — 69H* — 24H® 4+ 52H3t + - - -
Setting ¢(Qa(H))(1+ H) — 1 = R, we have
1
c(Qe(H))(1+ H)
=1-R+R’—R*+R*-R° +
=1—4H — 3t+9H? —tH — 8H® — 14¢> + 70tH? — 21 H*
+295¢2H — 414tH? + 124H® + - - -

c(K*) =

This implies that
—tH — 8H3 —14t> + 70tH? — 21 H* 295t’H — 414tH? + 124H°

UsNX =|—-3t+9H? —tH — 8H? —14t% + 70tH? — 21H*

—4H —3t + 9H? —tH — 8H?3

= 776 H® 4+ 1955t"H — 5200tH" + 13617¢t*H® — 12997t* H*
Now, the Chern classes of the bundle Q° are
¢ (Q%) =
c(Q°) = —t + H?
c3(Q%) = —2Ht + H?
cs(Q%) =t* — 3H*t + H*
c5(Q°) = 3Ht* — 4H?t + H®
and these Chern classes are exactly the special Schubert cycles on G(2,7). Thus
TT6H® +1955t"H — 5200tH™ + 13617t* H® — 12997¢*H®
= 77607 + 19550, (07 — 09)* — 520007 (07 — 0)
+ 1361700 (02 — 03)? — 1299703 (07 — 03)?
= —18490} + 91370 0y — 136440°02 + 51770303 + 19550105
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This is a variety of codimension 9 on G(2,7), i.e. a variety of dimension one. We find
its degree by intersecting with o;:

— 184901° 4 91370%0, — 136440%02 + 51770103 + 1955020,

= 77658055 + 913707 (03 + 091) — 136440°% (04 + 031 + 029)
+ 517707 (2051 + 3049 + 033) + 195507 (6053 + 3044)

= —T7658055 + 91370% (04 + 2031 + 029) — 1364407 (05 + 2041 + 2033)
+ 517702 (5055 + 4043) + 1955 - 9055

= —60063055 + 913707 (05 + 3041 + 3039) — 1364407 (3051 + 404 + 20733)
+ 517702 (9053 + 4044)

= —60063055 + 913707 (4051 + 6049 + 3033) — 1364403 (Tos9 + 6043)
+ 5177 - 13055

= 72380355 + 913707 (1005 + 9043) — 1346607 (13053 + 6044)

= 7238035 + 913707 (19053 + 9044) — 13466 - 19035

= —248616055 + 9137 - 280755

= 72200355

A

This type of calculation may be done for any n. Of course, it quickly gets a lot
more complicated.

Example 4.6 (G(2,5)). In this case a = |v/6] = 2. Thus U, is as in the previous
example. Now, the universal quotient * bundle has rank 3, and assuming c((Q?)*) =

IT3-1 (1 + i), we get

(Qe(H)) = H(1 +v; + g;)
= 1,—{— 3(?)1 + UQ) + 2((]1 +q2 + q3)

3 3
+3(0] +03) + 51 +v2) D a) + Y@ +4) qig + e
=1 =1 2]
3 3
+ (0} +v3) + 407 +v3) O @) + 2w + 1) (O @)
=1 =1
3
+ 8(v1 + UZ)(Z 3iqj) + 2 Z 45 + 12010 Z qi
i#] i# i=1
+ 9v1vp(v1 + v2) + 8q1G2g3 + - - -



126 CHAPTER 4. POWER SUMS

Thus
a(Qe(H))=H
2(Qe(H))=H?+1
cs(Qg(H)) = 16tH — TH?
Furthermore,
1
c(K*) = =1—H—t— H*—15Ht +9H?--.
) = e+ B

and from this we get that
Cl(K*) =-H CQ(K*) =—1— H2 Cg(K*) = —15Ht + 9H3
and

Co C3
C1 Co
= (—t— H*?— (—H)(-15Ht + 9H?)
=¢> - 13H?* + 10H*

UsnX =

As in the previous example
al@)=H @)=-t+H (Q°)=-2Ht+H®
and the intersection Uy N X expressed in terms of special Schubert cycles is
(09 — 0%)? +130% (09 — 07) + 1007
= — 20t 4+ 116%09 + 02
Multiplying with o2 gives the degree of Uy N X in the Pliicker space:
—20% + 110f0y + 0202
= — 10033 + 1103 (03 + 091) + 07 (031 + 022)

= — 10033 + ].].033 + 110’%(0’31 + 022) + 20'33
:250'33

A

In the next section, we will study the Grassmannian G(2,5) in more detail.

4.2 The method works for all n > 5

In this section, we will show that the projection of H; N---NHFNG(2,n+1) from p
is birational whenever n > 5.
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4.2.1 The Grassmannian of lines in P*

This section is about G(2,5), and some of the special properties of this particular
Grassmannian.

We know that the cycle 0y is a tangent hyperplane section, and its linear span is
a hyperplane tangent at p, where p is a point on G(2,5) corresponding to a line [, in
the plane P(V3) which determines the cycle. In fact, {(o1g) is tangent along an entire
plane, since 5 is an odd number. The plane is precisely the plane of lines in P(Vj3).
Recall also that G(2,5) is the only Grassmannian of lines for which every point on the
dual variety is of this type.

4.2.2 Powersums and G(2,5)

As we have seen many times before, dim G(2,5) = 2- (5 — 2) = 6, and it sits inside P’
as a subvariety. We fix a linear space L of dimension 2. In the dual space, we thus have
a linear space L' of dimension 6. Inside P? lies the union D of all tangent hyperplanes
to G(2,5). The variety D is called the dual variety of G(2,5) , and D ~ G(3,5).
So, how many tangent hyperplanes contain L? If we translate this to the dual space,
the question becomes: How many points on D lies on L? Or, how many points are
common to D and L+? Remember that we want to figure out how many tangent
hyperplanes, tangent at the same point, contain L.

Powersums as above

A dimension count shows that as long as o < 6 we expect U, to intersect X = G(2,5)
non-empty. The example above shows that the intersection really is non-empty.

This implies that we get a point in VSP(G(2,5),5 — 22) = VSP(G(2,n + 1),1).
We have shown that a form of degree n — 2 =4 — 2 = 2 in 3 variables can be written
as [? where [ is a linear form. This must be wrong. Thus, the conditions for using this
method is not satisfied. So where does this go wrong?

We need to study the intersection Hy, N H; N G(2,5) more carefully. The inter-
section has codimension 2 inside G(2,5), and we know that all tangent hyperplanes
to G(2,5) is of the type (o19(V3)) for some plane V3 in P*. So let I, be the line in P*
corresponding to the point p of tangency. Every tangent hyperplane to G(2,5), tan-
gent at p, comes from a plane containing the line [,. The double tangent hyperplane
section we must study is thus o19(V3) N o19(V3). Remember that o19(V3) are all lines
in P* intersecting a fixed plane P(V3), so

o10(V3) N o1o(V3) = {lines in P* that intersects both P(V3) and P(V;)}
=011 + 02

= {lines [ in P*| I C P*} U {lines [ in P*| I N[, # 0}
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We see that the first part of this intersection is G(2,4), which has degree 2. Since
the degree of G(2,5) is 5, the degree of the second part of the intersection must be 3.
Condition 2 from page 110 says that the projection of o10(V3) No1(V3) from the point
p (coming from the line /,), must be birational.

So take a line in P* from p to a point on G(2,4), not contained in G(2,4). Since
the degree of G(2,4) is 2, a line not contained in the variety can only meet it at two
points (counting with multiplicity). The point p is one of these points, and thus the
line will meet the Grassmannian in only one more point. This shows that projection
from p of the G(2,4)-part of the tangent hyperplanes section is birational. So what
about projection from the other part of the intersection?

The line [, defines the cycle 09, and let I be a line intersecting /,. This is mapped
by the Pliicker embedding to a point p’ € G(2,5), and the one-dimensional family of
lines in the plane (/',{,) through the point I'N{, is mapped to the line (p’, p) in G(2, 5).
For every line " which intersects [, we get a line in G(2, 5) through p. This shows that
this component is a cone of degree 3, and thus projection from p is not birational (the
projection collapses all the lines).

4.2.3 When will the projection go wrong in the general case?

Let H]} N---NH;NG(2,n+1) be a tangent hyperplane section of the Grassmannian
of lines in P", where all the tangent hyperplanes are tangent at the same point p.
When is the projection from p not birational? Suppose one of the components of
the intersection is a smaller Grassmannian, i.e the Grassmannian of lines in a smaller
space than P™. A line from p can only meet this Grassmannian in one other point p/,
because both p and p’ lie on a certain number of quadrics, and a line can only meet a
quadric twice. Thus the projection is birational from components of this type.

Now, assume a line through p and a point p’ in the intersection meets the intersec-
tion in a finite number of additional points. All these points lie on the Grassmannian,
and thus they are common zeros of a certain number of quadrics. Asin the case above,
a line can only meet a quadric twice, and p and p’ are two points. Thus, the line will
not meet the intersection in any other distinct points. We conclude that the projection
will never be m : 1 where m > 1. Thus he projection must collapse lines, and in that
case the intersection is a cone.

We have found that if none of the components in the intersection is a cone, pro-
jecting from the point of tangency will be a birational map.

So when is one of the components in the intersection a cone? A cone in the
Grassmannian comes from (as we have seen above) all lines intersecting a fixed line.
In other words, a cone comes from

{A € G(Q, n—+ 1)| dlm(A N Vé) Z 1} = 0n-2,0
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The dimension of this cycle is 2(n — 1) — (n — 2) = n. Furthermore, we have seen
that a = [4/2(n — 1)] is the maximal number of tangent hyperplanes for G(2,n + 1),
and HyN---N HY N G(2,n + 1) has dimension 2(n — 1) — . To summarize, if one
of the components of the intersection is a cone, it must have dimension n, and the
intersection itself has dimension 2(n—1) —a. If we are able to show that the dimension
of the possibly existing cone is less than the dimension of the intersection, we have in
fact shown that the cone does not exist. Thus we examine the equation

n<2n-1)—« (4.18)

This inequality is false only when n = 2,3 or 4. We have seen that in the case n = 4,
the intersection actually contains a cone, and the cases n = 2 and n = 3 is excluded
from the discussion (see page 108). We have proved

Proposition 4.8. Let « be the largest integer less than or equal to /2(n —1). The
projection of HI} N Hg n---NHFN G(2,n+ 1) from p is birational whenever n > 5.

4.2.4 When is the intersection non-empty?

Assume « is maximal, i.e assume o = |1/2(n — 1)|. Let m + 1 be the codimension of
G(2,n+1) in the Pliicker space PV 1. Recall that L is a linear space of dimension m
in P!, and define

OT = {P’ = H,N---N H, | all H; are tangent at the same point on G(2,n + 1)}
It follows that 8 = N — 1 — a. We can define an incidence

{(L,P?) | P € OT} C Fi(m, B; N — 1)

where Fl(m, B; N — 1) is the flag variety of P™-s in P’-s in the Pliicker space. The flag
variety itself has projections to G(m+1, N) and G(8+ 1, N), and from the incidence,
we have the projections

FI(1n, By N — 1) v PO {(L,P?) | PP € OT}
/ (m+1)(8—m)
G(m+1,N) G(5+1’N)< ............................... oT

inclusion

(,8+2—2n)(N—1—,3)l/7r3
G(2,n+1)

If P? is the intersection of o tangent hyperplanes, all tangent at the point p, the
projection 73 takes P? € OT to the point p. This is well defined as long as n > 5, as
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we have seen above. The fiber over a point ¢ € G(2,n + 1) is
73 (q) = {P? | P’ € OT and P® > T,G}
This is the cycle
{Pﬂ e P! ‘ P > Pﬁi’é;”} = ON—_B-1,...,N——1,0,....0

where N — 3 — 1 occurs 2n — 1 times. Hence, this cycle is isomorphic to the Grass-
mannian G(f + 2 — 2n, N + 1 — 2n). This implies that the fiber dimension of 73 is
(B+2—2n)(N —1— ). The dimension of OT is

dim(OT) = 2(n — 1) + (B +2 — 2n)(N — 1 — §)
The fiber over an element P? in OT is
my () ={L | L Cc P’}

But this is the Grassmannian G(m + 1, 8 + 1) which has dimension (m + 1)(8 — m).
This implies that the dimension of the incidence is

2n—1)+(B+2-2n)(N-1=8)+ (m+1)(8—m)

Using the identities 5 = N —1—aand m+1= N —1—2(n — 1), the dimension of
the incidence is
6n—3—a®— N +2Nn —4n®

The fiber over a point L in G(m + 1, N) is
m (L) = {P? | P > L}
The expected fiber dimension of 7y is
2(n—1)+(84+2-2n)(N —1-p)+(m+1)(B—m) - (m+1)(N —m—1) =2(n—1) —a”

Notice that the intersection U, N X is non-empty precisely when 7 is surjective. And
71 is surjective if there is an element in G(m+1, N) such that 77 ' (L) has the expected
dimension.
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