
A SIMPLE POINT COUNTING ALGORITHM FOR HESSIAN
ELLIPTIC CURVES IN CHARACTERISTIC THREE

TROND STØLEN GUSTAVSEN AND KRISTIAN RANESTAD

Abstract. Given an ordinary elliptic curve on Hesse form over a finite field

of characteristic three, we give a sequence of elliptic curves which leads to
an effective construction of the canonical lift, and obtain an algorithm for

computing the number of points. Our methods are based on the study of an

explicitly and naturally given 3-isogeny between elliptic curves on Hesse form.

1. Introduction

Following ideas of Satoh, we deduce by elementary methods a simple algorithm
for computing the number of points of an Hessian elliptic curve defined over a finite
field of characteristic three. The algorithm has the same complexity as the AGM
algorithm in characteristic two.

Schoof’s algorithm, see [13], was the first polynomial time algorithm for point
counting on elliptic curves over finite fields. In [11] Satoh introduced a new method
based on the modular polynomial and the canonical lift. Soon after Mestre gave
a more elementary approach, valid in characteristic two, based on the arithmetic-
geometric mean (AGM), see [9].

In this paper we give an AGM-like algorithm in characteristic three that uses
special properties of Hessian elliptic curves. Our work is independent of the paper
[6] of D. Kohel and the thesis [1] of R. Carls, that generalizes both Satoh’s method
and the AGM algorithm. The key to these generalizations are modular curves and
deformations respectively. Our approach is more elementary and gives, like the
AGM-approach, a comparably simpler algorithm. In contrast to the approaches of
Kohel and Carls, it relies completely on elementary calculations.

The Hessian elliptic curves are those which can be given by an equation of the
form x3 + y3 + z3 = dxyz in projective coordinates. The cryptographic features
of Hessian elliptic curves are investigated in several papers, see [5], [14], [15], and
properties of Hessian elliptic curves in characteristic three are investigated in [15].
According to [10] and [4] field arithmetic in characteristic three may be efficiently
implemented in hardware and software, and since our algorithm is relatively easy to
implement, it may contribute to the use of elliptic curves over fields of characteristic
three in cryptography.
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The point counting method that we propose, proceeds by finding a sequence of
elliptic curves in Hesse form over a certain 3-adic ring R leading to an effective
construction of the canonical lift. Using Newton iterations we compute the se-
quence from a recurrence relation in R. Since cubing can be done very efficiently in
characteristic three, the computational cost of the recurrence relation is essentially
two multiplications. Thus our algorithm compares closely to the AGM-algorithm in
characteristic two. Using a proposition of Satoh, we compute the trace of Frobenius
by passing to the formal group. As for the AGM-algorithm this results in a norm
computation.

2. Preliminaries

2.1. Notation. We will denote by Fq the finite field with q = 3n elements. We fix
an unramified extension K over Qp of degree n. The valuation ring of K is denoted
by R. We have R/3R ∼= Fq, and if r ∈ R we will denote by r mod3 the canonical
image in Fq.

The 3-power Frobenius will be denoted by σ : Fq → Fq, and we denote by
Σ : K → K the (little) Frobenius substitution reducing to σ. If E is an elliptic
curve over Fq, we denote by F : E → E the q-Frobenius map given in projective
coordinates as (x, y, z) 7→ (xq, yq, zq). By a slight abuse of notation we will denote
also by σ the 3-Frobenius E → σE given by (x, y, z) 7→ (x3, y3, z3) where σE is
the elliptic curve obtained by applying σ to the coefficients of the defining equation
for E. Similarly, if E is an elliptic curve over K, we will denote by ΣE the elliptic
curve obtained by applying Σ to the coefficients of the defining equation for E , and
using Σ on the coordinates of a point in E , we also get a map E → ΣE which will
be denoted by Σ as well.

2.2. Elliptic curves in Hesse form in characteristic three. We denote by Ed

the curve in P2 given by the equation x3 + y3 + z3 = dxyz. In characteristic three
this curve is a non-singular elliptic curve if d 6= 0. The addition law on E with
O = (1,−1, 0) as the zero element is given as follows. Set P = (x1, y1, z1) and
Q = (x2, y2, z2). Then we have

−P = (y1, x1, z1)

P + Q = (y2
1x2z2 − y2

2x1z1, x
2
1y2z2 − x2

2y1z1, z
2
1y2x2 − z2

2y1x1)(2.1)

[2]P = (y1(z3
1 − x3

1), x1(y3
1 − z3

1), z1(x3
1 − y3

1))(2.2)

In characteristic 3 the relationship to the Weierstrass form is given as follows.

Proposition 1. A non supersingular elliptic curve E over Fq may be written in
Hesse form if and only if it has a non trivial Fq-rational 3-torsion point. If E has
a rational non trivial 3-torsion point, it may be written as Y 2 = X3 + X2 + a6

on affine Weierstrass form and as x3 + y3 + 1 = dxy in affine Hesse form. Here
a6 = −1/d3 (d3 = −1/a6 has a unique solution in Fq). The isomorphism is given
by X 7→ −(1/d)(x + y) and Y 7→ −(1/d)(x− y) and j(E) = −1/a6 = d3.

Proof. See [15, Lemma 1]. �

2.3. Point counting and the canonical lift. Let E be an elliptic curve over Fq.
The number of Fq rational points is given by #E(Fq) = q + 1− t where t = Tr(F )
is the trace of Frobenius. By Hasse’s theorem, |t| ≤ 2

√
q.
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Satoh introduced the idea of computing the number of points of an elliptic curve
over a finite field by lifting the Verschiebung F̂ to R. The canonical lift E of an
ordinary elliptic curve E defined over Fq is an elliptic curve over K satisfying the
properties that (1) the reduction of E (mod 3) is E and (2) that End(E) ∼= End(E).

Deuring [2] has shown that the canonical lift exist and is unique up to isomor-
phism. Denote by F : E → E the lift of F. The idea of Satoh is to compute the
trace by passing to the formal group using the following proposition:

Proposition 2. Let E be an elliptic curve over K and let f ∈ EndK(E) be of degree
d. Denote by τ the formal parameter of E at O and assume that the reduction π(f)
of f modulo 3 is separable and that f(ker π) ⊆ ker π. Let f̂(τ) = cτ + O(τ2) be the
homomorphism induced by f on the formal group E. Then Tr(f) = c + d

c .

However; since the Frobenius endomorphism is inseparable, one cannot apply
the proposition to F directly, but for a non-supersingular elliptic curve, the dual
of Frobenius is separable, and we have that Tr(F ) = Tr(F̂ ) = Tr(F̂).

3. Computing the canonical lift

For d ∈ Fq we denote by E = Ed the corresponding elliptic curve x3 + y3 + z3 =
dxyz in Hesse form. We will assume that d /∈ F32 . In this section we will show how
to obtain the canonical lift from a sequence {Di} solving a particular recurrence
relation in R. To proceed it is convenient to assure that the recurrence relation has
a solution in R :

Lemma 1. Given Di ∈ R lifting d3i

, there exists uniquely a Di+1 ∈ R satisfying

(Di+1 + 6)3 − (D2
i+1 + 3Di+1 + 9)D3

i = 0

and Di+1 mod3 = d3i+1
.

Proof. Let f(z) = (z +6)3− (z2 +3z +9)D3
i . We get f ′(z) = 3(z +6)2 +(2z +3)D3

i .

Let z1 ∈ R be any lift of d3i+1
. Then f(z1)mod 3 = (d3i+1

)3 − (d3i+1
)2(d3i

)3 =
d3i+2 − d2·3i+1+3i+1

= 0mod 3 and f ′(z1) mod 3 = 2d3i+1
(d3i

)3 = 2d2·3i+1 6= 0. By
Hensel’s lemma there exists a unique Di+1 = z∞ ∈ R such that Di+1 mod3 = d3i+1

and f(z∞) = 0 in R. �

In order to define a 3-isogeny EDi+1 → EDi
we consider the map P2

R → P3
R given

by
(x, y, z) 7→ (y2z + z2x + x2y, y2x + z2y + x2z, xyz, x3 + y3 + z3)

where (x, y, z) is sent to the four polynomials u, v, w and t which are invariant
under a cyclic permutation of the variables. Note that

(3.1) u3 + 9w3 − 6uvw + v3 + 3w2t + uvt + wt2 = 0

and that the sub-group Λ = {(1,−1, 0), (0, 1,−1), (−1, 0, 1)} ⊆ E[3] of 3-torsion
points, are mapped to a single point. Assume that x3 + y3 + z3 = Di+1xyz. Then
we have t = Di+1v. Substituting this into (3.1) and using Lemma 1, we get

u3 + v3 +
(

Di+1 + 6
Di

w

)3

− (Di+1 + 6)uvw = 0.

Setting r = Di+1+6
Di

w we get u3 + v3 + r3 = Diuvr. In fact, we have
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Proposition 3. The map above gives a 3-isogeny φi : EDi+1 → EDi
reducing to

the dual σ̂ : Ed3i+1 → Ed3i of the 3-Frobenius over Fq, such that ker φi = Λ.

Proof. From the above we get a map EDi+1 → EDi
given by

(x, y, z) 7→ (y2z + z2x + x2y, y2x + z2y + x2z,
Di+1 + 6

Di
xyz).

Reducing to Fq and composing with the 3-Frobenius we get

(x, y, z) 7→ (y6z3 + z6x3 + x6y3, y6x3 + z6y3 + x6z3, d2·3i

x3y3z3).

On the other hand one calculates from (2.1) and (2.2) that multiplication by 3 is
given by

(x, y, z) 7→ (y6z3 + y3x6 + z6x3, y3z6 + y6x3 + z3x6

xyz
(
x6 + y6 + z6 − y3z3 − y3x3 − z3x3

)
),

To see that these two maps are equal we calculate

d2·3i

x3y3z3 = d2·3i

(xyz)((1/d3i

)(x3 + y3 + z3))2

= xyz(x6 + y6 + z6 + 2y3z3 + 2y3x3 + 2z3x3)

= xyz(x6 + y6 + z6 − x3y3 − x3z3 − y3z3)

Since degree is invariant under reduction it follows that EDi+1 → EDi
has degree

3. Since 3 = deg φi ≥ # ker φi and since Λ ⊆ ker φi, we have kerφi = Λ. �

Let E denote the canonical lift of Ed and denote by E(i) := ΣiE the elliptic curve
obtained by applying Σi to the coefficients of the equation defining E . Note that
E(nk) ∼= E since Σn = id . By the following corollary we can compute the j-invariant
of the canonical lift and its conjugates E(i) to arbitrary precision.

Corollary 1. Assume that d ∈ Fq \ F32 . Then j(EDi
) ≡ j(E(i))mod 3i+1.

Moreover; there exists D∞
i such that j(ED∞i

) = j(E(i)), Di ≡ D∞
i mod3i and

D∞
i = D∞

i mod n.

Proof. Note that j(EDi+1) mod 3 = d3i+1
and that j(EDi

)mod 3 = d3i

. The proof is
by induction. Since the case i = 0 is clear, we assume that j(EDi

) ≡ j(E(i)) mod 3i+1.
From proposition 3 there is a 3-isogeny EDi+1 → EDi

. From Theorem 5.3.5 in [7]
we have Φ3(j(EDi+1), j(EDi)) = 0 where Φ3 is the modular polynomial of degree 3.

We also have Φ3(j(E(i+1)), j(E(i))) = 0. Note that j(EDi+1) ≡ j(E(i+1))mod 3. By
using the Kronecker relation for Φ3 we get ∂Φ3/∂X = X3 − Y mod3, ∂Φ3/∂Y =
Y 3−X mod3, and (∂Φ3/∂X)

(
j(EDi+1), j(EDi

)
)
≡ j(EDi+1)

3−j(EDi
) ≡ (d3i+1

)3−
d3i ≡ (d9)3

i − d3i

mod3. Since we have unique third roots in Fq we have (d9)3
i −

d3i

= 0 if and only if d9 − d = 0 if and only if d ∈ F32 . Thus by assumption,
we have (∂Φ3/∂X)

(
j(EDi+1), j(EDi)

)
6≡ 0 mod 3. On the other hand we have

(∂Φ3/∂Y )
(
j(EDi+1), j(EDi)

)
≡ j(EDi)

3 − j(EDi+1) ≡ (d3i

)3 − d3i+1 ≡ 0 mod 3.
Now Proposition 2 in [17] show that j(EDi+1) ≡ j(Σi+1E) mod 3i+2.

For the second part, we note that for any t ∈ K,

j(Et) =
t3(t3 − 216)3

t9 + 81t6 + 2187t3 + 19683
,

see [3]. From the equation j(Et) = j(E(i)), we get by multiplying with the de-
nominator a polynomial hi(t) ∈ R[t]. We find that h′i(t) = 3t11 mod32 and we get
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h′i(Di+n(k+1)) 6≡ 0 mod 32. Since hi(Di) ≡ 0 mod 3i+1, by Hensel’s lemma (i > 1)
there exists a unique D∞

i such that hi(D∞
i ) = 0 and Di ≡ D∞

i mod3i. We note
that D∞

i = D∞
i mod n since hi(t) = hi mod n(t). �

4. Computing the trace of Frobenius

To find the trace of Frobenius, we consider the canonical lift to R and pass to
the formal group. We will approximate the canonical lift by the EDi

defined in the
previous section, and the lift of the dual of σ will be approximated by EDi+1 → EDi

.
We compute the induced morphism on the formal group up to first order:

Lemma 2. The completion of the local ring of EDi
(over K) in O = (1,−1, 0) is

given as K[[τ ]] where y
x = τ − 1 and z

x = − 3τ
Di

+ O(τ3). The isogeny EDi+1 → EDi

induces K[[τi]]→ K[[τi+1]] given by τi 7→
(
1 + 6

Di+1

)
τi+1 + O(τ2

i+1).

Proof. We substitute y
x = τ − 1 and z

x = −3τ/D in y3

x3 + z3

x3 + 1−D y
x

z
x :

1 + (τ − 1)3 + (−3τ/D)3 −D(τ − 1)(−3τ/D) ≡ 0 mod(τ3).

From the map (see proof of Proposition 3)

(x, y, z) 7→ (y2z + z2x + x2y, y2x + z2y + x2z,
Di+1 + 6

Di
xyz)

we calculate

τi =
y2x + z2y + x2z

y2z + z2x + x2y
+ 1 =

(
y
x

)2 +
(

z
x

)2 y
x + z

x(
y
x

)2 z
x +

(
z
x

)2 + y
x

+ 1

=
(τi+1 − 1)2 + (−3τi+1/Di+1)2(τi+1 − 1) + (−3τi+1/Di+1)
(τi+1 − 1)2(−3τi+1/Di+1) + (−3τi+1/Di+1)2 + (τi+1 − 1)

+ 1

= 1 +
6

Di+1
τi+1 + O(τ2

i+1)

�

Consider the canonical lift E of E = Ed given by x3 + y3 + z3 = dxyz over
Fq where q = 3n and d ∈ Fq \ F32 . To compute the trace of Frobenius Tr(F ), we
consider the dual F̂ , see Section 2.3, as the composition

E = ΣnE → Σn−1E → · · · → Σ2E → ΣE → E .

We can approximate the map Σ̂ : Σi+1E → ΣiE by the map EDi+1+nk
→ EDi+nk

,

where {Di}∞i=0 are in R such that Di mod3 = d3i

, see Lemma 1. By Corollary 1,
Proposition 2 and Lemma 2 we get that (setting k = 1),

Tr(F ) ≡
n∏

i=1

(1 + 6/Di+n) mod q.

From Corollary 1, we also have that ΣiDnk ≡ Di+nk mod qk and we get

Tr(F ) ≡
n∏

i=1

Σi(1 + 6/Dn) ≡ NK/Q3(1 +
6

Dn
) mod q.
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From Hasse’s Theorem, |Tr(F )| ≤ 2
√

q, so this is sufficient to determine Tr(F ). In
fact, it suffice to compute Tr(F ) modulo 3m where m =

⌈
n
2

⌉
+ 2, using

Tr(F ) ≡
n−1∏
i=0

(1 + 6/Di+m) ≡
n−1∏
i=0

Σi(1 + 6/Dm) ≡ NK/Q3(1 +
6

Dm
) mod 3m.

In the next section we consider possible algorithms for counting the number of
points on the elliptic curve using these identities.

5. Algorithm

The observations above leads to the algorithms 1 and 2 which we will explain in
this section.

Algorithm 1 Calculate the trace of Frobenius of a Hessian elliptic curve over Fq

Require: An elliptic curve on Hesse form over Fq given by d ∈ Fq \ F32 , and a lift
D0 ∈ Zq of d.

Ensure: The trace of Frobenius t = #E(Fq)− q + 1.
m←

⌈
n
2

⌉
+ 2

for i = 1 to m do
Di ← NewtonSolve((Di + 6)3 − (D2

i + 3Di + 9)D3
i−1 = 0)mod 3i

end for
t← (1 + 6/Dm)
for i = m + 1 to n + m− 1 do

Di ← NewtonSolve((Di + 6)3 − (D2
i + 3Di + 9)D3

i−1 = 0)mod 3m

t← t · (1 + 6/Di) mod 3m+1

end for
if t > 2

√
3n then

t← t− 3m

end if

Algorithm 2 Calculate the trace of Frobenius of a Hessian elliptic curve over Fq

Require: An elliptic curve on Hesse form over Fq given by d ∈ Fq \ F32 , and a lift
D0 ∈ Zq of d.

Ensure: The trace of Frobenius t = #E(Fq)− q + 1.
m←

⌈
n
2

⌉
+ 2

for i = 1 to m do
Di ← NewtonSolve((Di + 6)3 − (D2

i + 3Di + 9)D3
i−1 = 0)mod 3i

end for
t← NK/Q3(1 + 6/Dm) mod 3m

if t > 2
√

3n then
t← t− 3m

end if
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5.1. Brief explanation of the algorithms. In both algorithms, the operation
NewtonSolve((Di+6)3−(D2

i +3Di+9)D3
i−1 = 0) mod 3i+1 solves the cubic equation

with respect to Di by Newton iterations with the function

f(z) = (z + 6)3 − (z2 + 3z + 9)D3
i−1,

starting with any lifting of di. In the first algorithm we use t ≡
∏n−1

i=0 (1+6/Di+m) mod 3m

and in the second algorithm we use t ≡ NK/Q3(1 + 6
Dm

) mod 3m+1. Since 1 + 6
Dm
∈

1 + 3R in the notation of [12, Section 3], we may use [12, Algorithm 2] to compute
NK/Q3(1 + 6

Dm
) efficiently. This algorithm is based on the identity

NK/Q3(x) = exp(TrK/Q3(log x))

when x ∈ 1 + 3R. Note however that [12, Algorithm 2] is not as efficient in charac-
teristic three as in characteristics two.

5.2. Complexity. Optimally, one needs O(n) multiplications in R in algorithm
1. Each multiplication in R needs O(n2µ) bit operations where µ depends on the
implementation. This gives totally O(n2µ+1) bit operations. See [10] and [4] for
possible values of µ for practical implementations of field arithmetic in characteristic
three. Algorithm 2 has the same total complexity but may be more efficient due
to fast norm computation, see [12]. We remark that taking the third power can
be done very efficiently in characteristic three, so the computational cost of the
recurrence relation in the algorithm is essentially two multiplications.

Thus the computational cost compares very closely to the AGM-algorithm in
characteristic two, if we use field arithmetic optimized for characteristic three, see
[10] and [4].

5.3. Comparison with other algorithms. D. Kohel, see [6], and R. Carls, see
[1], also give p-adic point counting algorithms that generalizes Mestres AGM al-
gorithm. D. Kohel gives an interpretation of the AGM algorithm in characteristic
two and finds generalizations to other low characteristics. He uses modular curves
and consider what he calls an oriented modular correspondence.

R. Carls gives a generalized algebraic geometric mean (GAGM) sequence for
abelian varieties, and he deduce a point counting algorithm for elliptic curves based
on the computation of the GAGM. His algorithm works for ordinary elliptic curves
over fields of characteristic p > 2 and he shows that the algorithm is of the same
complexity as the AGM algorithm in characteristic two.

Kohel’s paper does not give a complexity bound, it seems however that his meth-
ods leads to algorithms in characteristic three of the same complexity as the AGM
algorithm in characteristic two. Thus our algorithm has the same complexity as the
algorithms of Kohel and of Carls. However; our approach differs from the meth-
ods of Kohel and Carls in that it is simpler and more elementary. The recurrence
relation that we use are deduced by simple calculations involving the addition law
on the elliptic curve. The other parts of the algorithm are exactly the same as in
characteristic two. Since Hessian elliptic curves over fields of characteristic three
has gained some interest in elliptic curve cryptography (see [5], [14], [15]), we be-
lieve it is worthwhile to observe that the special properties of the Hesse form in
characteristic three, by elementary considerations, lead to a p-adic point counting
algorithm.

To summarize the comparison with the work of Kohel and Carls, we conclude
that, although their methods are more general, our approach has the advantage
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that it is more elementary. We believe that both the deduction of the algorithm
and the proof of its correctness, it easier to access. We also consider our algorithm
to be easier to implement.

6. An example

To give a simple example, we consider F34 represented as F3[x]/(x4 + x2 + 2),
and consider the curve defined by d = c3 + c + 1, where c is the class of x. We get:

D0 c3 + c + 1
D1 (1 + 2 · 33)c3 + (3 + 2 · 32)c2 + (2 + 3 + 2 · 33)c + (1 + 3 + 2 · 32)
D2 (2 + 3 + 32)c3 + (2 · 3 + 32 + 2 · 33)c2 + (2 + 3 + 32 + 33)c + (1 + 3 + 2 · 32)
D3 (2 + 2 · 3 + 32)c3 + (3 + 32 + 2 · 33)c2 + (1 + 3 + 2 · 32 + 33)c + (1 + 2 · 3)
D4 (1 + 3 + 32 + 33)c3 + (2 · 3 + 32)c2 + (1 + 3 + 32 + 33)c + (1 + 3 + 2 · 32)
D5 (1 + 32 + 2 · 33)c3 + (3 + 32 + 2 · 33)c2 + (2 + 3 + 33)c + (1 + 2 · 3)
D6 (2 + 3 + 32 + 33)c3 + (2 · 3 + 32)c2 + (2 + 3 + 32 + 33)c + (1 + 3 + 2 · 32)
D7 (2 + 2 · 3 + 32)c3 + (3 + 32 + 2 · 33)c2 + (1 + 3 + 2 · 32 + 33)c + (1 + 2 · 3)
D8 (1 + 3 + 32 + 33)c3 + (2 · 3 + 32)c2 + (1 + 3 + 32 + 33)c + (1 + 3 + 2 · 32)

We compute

(1 +
6

D4
)(1 +

6
D5

)(1 +
6

D6
)(1 +

6
D7

)mod q

= 1 + 2 · 3 + 2 · 32 + 2 · 33 mod q

= 79 mod q

From the Theorem of Hasse we conclude that t = 79− 34 = −2. This gives

#E = q + 1− t = 81 + 1− (−2) = 84
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