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0 Introduction

The classification of smooth surfaces with small invariants has received renewed interest in
recent years. This is primarily due to the finer study of the adjunction mapping by Reider,
Sommese and Van de Ven, which provides an effective tool in the case of rational and
birationally ruled surfaces. In the special case of surfaces in P4, where smoothness imposes
additional relations among the invariants of the surface, an almost complete classification
of smooth surfaces of degree less than ten has been worked out (see list and references
below). This paper is the result of an attempt to give a classification of smooth surfaces

of degree 10 in P*.

Some surfaces of degree 10 are well-known; namely the abelian surface, and surfaces linked
to smooth surfaces of a lower degree, in particular the complete intersection of a quadric
and a quintic hypersurface. The main result of this paper is the description of the following
list of surfaces.

A) Given nine points z1,...,29 in general position in F., e < 2, one can choose three
points y1, Y2, ys such that if

m: S — F,

is the blowing-up of F, in the points z1,..., 29, y1,y2,ys and Ey,..., FEg, Fy, F5, F3 are
the exceptional divisors and B (resp. F) is a section with selfintersection e (resp. a ruling),
then the linear system

9
|Hs| = |87"B + (10 — de)n*F — Y _4F; — 2F; — F, — F3
i=1

is very ample and embeds S as a surface of degree 10 in P%. The points y; are chosen such
that there are two curves

9
C=4B+(5-2e)F - ) 2u

i=1

and
9

D=6B+(7—3¢)F — > 3a

i=1
which have a common tangent at a point y;, and a transversal intersection at points ys

and ys.

B) Given twelve points z1,...,Z12 in general position in P2 one can choose six other
points y1,...,ys such that if

7:S — P?



is the blowing-up of P? in the points z1,...,219, ¥1,...,¥s and Eq,..., E1s, Fi,..., Fg
are the exceptional divisors then the linear system

12 6
|Hs| = |87%1 = 2E; — Y Fj|
=1 7j=1

is very ample and embeds S as a surface of degree 10 in P%. We may describe the choice
of the points y; as follows. The linear system

12
|D| = [4n*l =) Ej
i=1

of curves on S defines a morphism ¢p of degree four onto P2. The images of the F;
are three points n;, such that n1 = pp(F1) = ¢p(F2) and ny = pp(F3) = ¢p(F4) and
n3 = ¢p(F5) = ¢p(Fs). Furthermore, there is a curve L € |7*l| which does not meet any
of the Fj, but whose image ¢p(L) C P? has three nodes at the points n;.

C) Given a cubic hypersurface in P* with an isolated quadratic singularity at a point z
and a smooth quadric hypersurface which meets this singularity such that their complete
intersection Sy has a quadratic singularity at z and is smooth elsewhere. Let H be a
general hyperplane section of Sy and let IT be a plane in P* which is tangent to H in three
distinct points y1,ys2, ys. Let

TS — So

be the blowing-up of Sy in the point z and the points y;, with exceptional divisors A and
E; respectively. If Cy denotes the total transform of a hyperplane section of Sy on S, then
the linear system

3
|H| =2Co — A=) 2K

i=1
on S is very ample and embeds S as a smooth surface of degree 10 in P*.

D) Let C be a plane cubic curve which meets the six nodes of four lines in the plane. Let
T C P3 be a cone over (' with vertex at a point p. Let D be an irreducible curve on T
which has six branches through p, which are tangent to the lines connecting p and the six
nodes of the four lines in the plane. Outside p, D meets any line of the ruling only once.
Let

m:V = P3

be the blowing-up of P3, first in the point p, and secondly in the strict transform of the
curve D. The strict transform on V of quartic surfaces in P2 with triple point at the point
p and which contains the curve D, form a linear system |X| of divisors on V' of degree
7 and projective dimension 6. Let Sy denote the strict transform on V' of a surface of
degree 7 in P3 with quartuple point at the point p, with D as a double curve, and which is
smooth elsewhere. The linear system |X| has degree 13 on Sy and maps Sy onto a smooth
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surface S; in P%. The surface S; has a twodimensional family of trisecants, coming from
the lines in P3 through the point p. Projecting S; from a general trisecant, we get an
elliptic smooth surface S of degree 10 in P* with three (—1)-lines and numerical invariants
pg =1land ¢ =0 and K* = 3.

E) There is a minimal smooth surface S with numerical invariants p, =2, ¢ =0, K* =3
and exactly one irreducible (—2)-curve A, for which the linear system

|H| = 2K — A]

is very ample and embeds S as a smooth surface of degree 10 in P*.

F) Let T be the union of a smooth quartic Del Pezzo surface 77 and a smooth quadric
surface T5, in the following way: Let Ej + E5 + Fy + F3 be one of the hyperplane sections
of T which consists of 4 exceptional lines, such that F; - E5 = F} - Fo = 0. Next let
T5 be a smooth quadric surface in the corresponding hyperplane such that F; and Fs are
members of one of the rulings of T5. Then 7' is linked to a smooth surface S of degree 10
and m = 10 in the intersection of two quartic hypersurfaces, and S is an elliptic surface
with two exceptional lines and invariants p; = 2, ¢ = 0 and K? = —2.

G) There is a minimal smooth surface S with numerical invariants p; =3, ¢ =0, K* =4
and exactly three irreducible (—2)-curves A;, As, As, for which the linear system

|H| = 2K — A} — Ay — Aj|
is very ample and embeds S as a smooth surface of degree 10 in P*.

In terms of a classification I give the following result:

Theorem 0.1. If S is a smooth surface of degree 10 in P* and m denotes the genus of a
general hyperplane section, then

m = 6 and S is abelian or hyperelliptic, or

m = 8 and S is an Enriques surface with four (—1)-lines or a rational surface of type A, or

m = 9 and S is a rational surface (type B is an example), a K3-surface (type C is an
example), an elliptic surface (type D is an example), or a surface of type E, or

m =10 and S is an elliptic surface (type F is an example) or a surface of type G, or

m =11 and S is linked to an elliptic quintic scroll (S lies on a cubic hypersurface) or S is
linked to a Bordiga surface (S does not lie on a cubic hypersurface), or

m =12 and S is linked to a degenerate quadric surface, or

m = 16 and S is a complete intersection of a quadric and a quintic hypersurtface.

Remark. 1 have not been able to give examples, or give proofs that they do not exist, of
hyperelliptic surfaces with m = 6, or Enriques surfaces with = = 8.

At this point it may be appropriate to recall the list of nondegenerate smooth surfaces S in
P* with degree less than 10. The classification in terms of numerical invariants is, as far as
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I know, not complete, since there is a regular elliptic surface of degree 9 for which I do not
know of any proof of existence. I list the surfaces in terms of their degree d and the genus
7 of a general hyperplane section. Instead of giving explicit information on the very ample
linear system on S, I indicate some known facts on postulation. For further information
on surfaces of degree less than 7, see Roth ([Rol]). For degree 7 and 8, see Okonek ([O1]
and [02]) or Ionescu ([Io]), supplemented by Alexander ([A1]). For degree 9, I know of no
general reference, the rational case is taken care of by Alexander [Al] and [A2], while the
nonrational case has been worked out in collaboration with Aure. A construction of some
of the surfaces of degree 9 will be indicated below.

If d < 3, then S is degenerate.

If d =3, then # = 0 and S is a rational cubic scroll, cut out by a net of quadric hypersur-
faces.

If d =4, then 7 =0 and S is a Veronese surface projected from P?, it is not contained in
any quadric, but is cut out by cubic hypersurfaces,
or m = 1 and S is a Del Pezzo surface, a complete intersection of two quadric
hypersurfaces.

If d =5, then m = 1 and S is an elliptic scroll, it is not contained in any quadric hyper-
surfaces, but is cut out by cubic hypersurfaces,
or m = 2 and S is rational, it is linked to a plane in the complete intersection of
a quadric and a cubic hypersurface.

If d =6, then m = 3 and S is a Bordiga surface, it is rational and linked to a cubic scroll
in the complete intersection of two cubic hypersurfaces,
or = 4 and S is a minimal K3—surface, it is the complete intersection of a
quadric and a cubic hypersurface.

If d =7, then m = 4 and § is a rational surface, it is linked to an elliptic quintic scroll in
the complete intersection of a cubic and a quartic hypersurface,
or m =5 and S i1s a nonminimal K3—surface, it is linked to a degenerate quadric
surface in the complete intersection of two cubic hypersurfaces,
or m = 6 and S is a regular elliptic surface, it is linked to a plane in the complete
intersection of a quadric and a cubic hypersurface.

If d =8, then m =5 and S is rational, it does not lie on any cubic hypersurface,
or m = 6 and S is rational, it is linked to a Veronese surface in the complete
intersection of a cubic and a quartic hypersurface,
or S is a nonminimal K 3—surface, it is linked to the rational one in the complete
intersection of two quartic hypersurfaces,
or m =7 and S is a regular elliptic surface, it is linked to a plane in the complete
intersection of two cubic hypersurfaces,
or m =9 and S is of general type, it is the complete intersection of a quadric and
a cubic hypersurface.

If d =9, then m =6 and S is rational, or a nonminimal Enriques surface,
or m =7 and S is a rational surface, it lies on a net of quartic hypersurfaces,
or S may be a regular elliptic surface,
or m = 8 and S is a nonminimal K 3—surface, it does not lie on any cubic hyper-
surface,



or S is of general type, it does not lie on any cubic hypersurface either,

or m = 9 and S is of general type, it is linked to a rational cubic scroll in the

complete intersection of a cubic and a quartic hypersurface,

or m = 10 and S is of general type, it is the complete intersection of two cubic

hypersurfaces,

or m = 12 and S is of general type, it is linked to a plane in the complete
intersection of a quadric and a quintic hypersurface.

The nonminimal Enriques surface with # = 6 is the projection of a minimal smooth
Enriques surface of degree 10 in P® from a general point on the surface. Enriques surfaces
of degree 10 in P® are well-known, in fact any Enriques surface has a linear system of degree
10 and projective dimension 5 without basepoints (see Cossec [Col), for very ampleness it
suffices to require that any elliptic curve on the surface has degree at least 3 with respect
to the linear system, and that there are no (—2)-curves on it.

To get the rational surface S with m = 7 one may construct a surface 7' of degree 7 and
with (7)) = 3, such that S is linked to T in the complete intersection of two quartic
hypersurfaces, as follows. Let Ty be a Del Pezzo cubic surface in a hyperplane Hy of P4,
Let Ly, Ls and L3 be three skew lines on Ty and let Ly be a line meeting all three L;, but
not contained in Ty. Let Py be a plane through Ly not contained in Hy, and let p1, ps and
ps be three noncolinear points in Py away from L. The lines L; and the points p; span
three planes which we denote by P;, 1 = 1,2,3. If

T=TyUPyUP UP,U Ps,

then one may show that 7" is cut out by quartic hypersurfaces, and is linked to a smooth
rational surface S in the complete intersection of two quartic hypersurfaces. Furthermore,
one may show that the union of the planes Py, P, and P3 will be the union of 5-secants
meeting S, and that

PyUPLUPyU Ps

is contained in any quartic hypersurface which contains S. Intrinsically, the linear system
of hyperplane sections is given by

6 9 15
H=9r"1-> 3E; - 2B;— Y  FE.
i=1 i=7 k=10

If 7 : S — P? is the blowdown map, and z; = m(F;), then the z1,...,z¢ are in general
position, while there is a pencil of curves

6 9 15
DEGI—ZQJL’Z'—ZI‘J'— Zl‘k
i=1 =7 k=10
which all have a common tangent at the points z7,zs, z9 ([A2]).
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To get the elliptic surface S with m = 7 one may construct a surface T of degree 7 and
with (7)) = 3, such that S is linked to T in the complete intersection of two quartic
hypersurfaces, as follows. Let Hi, Ho, Hz be three hyperplanes in P*, whose intersection is
aline L. Let L;, i = 1,23, be lines in the planes H; N Hy, where {i,j,k} = {1,2,3}, such
that no two of the lines L; meet. Furthermore, let P be a plane which does not meet any
of the lines L, L1, Ly, L3, and let N; = PN H; for i = 1,2,3. If Q; is the quadric surface
in H; which contains N;, Lj, Lp where {1, ,k} = {1,2,3}, then we set

T=PUQRi1UQ2UQs.

One may show that 7" is contained in a cubic hypersurface, and that it is cut out by quartic
hypersurfaces. Using Proposition 0.14 we get that T is linked to a smooth surface S in
the complete intersection of two quartic hypersurfaces. Furthermore P N S will contain a
canonical curve on S as the one-dimensional part, while Q1 U Q)2 U @3 will be the union of
the 5-secant lines to the surface S (cf. the secant formulas above).

To get a surface S of general type with # = 8 we may similarly construct a surface
T of degree 7, such that S is linked to T in the complete intersection of two quartic
hypersurfaces. In fact, let Ty be a Del Pezzo cubic surface in a hyperplane Hy in P*. Let
L be a line on Ty, and let A be a smooth conic on T; which does not meet L. Let Lg be a
line in the plane of A, not contained in Ty and which meets L, and let Py be a plane which
meets Hy along Lg. We denote the hyperplane spanned by A and Py by Hg. Let @) be
a smooth quadric in Hg through the conic A, and let p be a point on Py away from the
conic () N Py and the line Ly. The line L together with the point p spans a plane which
we denote by P. If
T=Ty,UQUPU Py,

then one may show that T is cut out by quartic hypersurfaces, and that 7' is linked to a
smooth surface S of general type in the complete intersection of two quartic hypersurfaces.
Furthermore, one may show that the plane P will be the union of 5-secants meeting S,
and that the union of the planes P U Py is contained in any quartic hypersurface which
contains S.

For the nonminimal K3—surface there is a classical construction with the grassmanian GG
of lines in P®. Let V be the threefold in P® which is the union of the lines corresponding
to a general member of the equivalence class of H®, where H is a Pliicker divisor. Then

V' is known to be smooth, its general hyperplane section is a K 3—surface of degree 9 with
five (—1)-lines.

Remark. The constructions above should be considered as examples, for the uniqueness
of these constructions I know of no proof except for the rational surface.

Now, any smooth surface in P*, except for the Veronese surfaces, are linearly normal.
This is a theorem of Severi. Therefore, by the Riemann-Roch theorem, h'(Os(H)) is
determined by the degree d, the genus m and the Euler characteristic x(Og). We will call
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h'(Os(H)) the speciality of |H| on S, and we will say that a linear system of curves |H |
is special if h'(Og(H)) > 0. We will also say that a surface S in P* is special if the
linear system of hyperplane sections is special. In our list of surfaces of degree d < 10
this speciality vanishes in most cases, but for the degrees 8, 9 and 10 there are examples
of special surfaces. In fact the rational surfaces of degree 8 and m = 6, of degree 9 and
7 = 7 and of degree 10 and 7 = 8 all have speciality h'(Os(H)) = 1, while the rational
surfaces of degree 10 and m = 9 have speciality h'(Og(H)) = 2. The speciality in these
cases are all reflected in the special position of the assigned basepoints of the very ample
linear system. A curious fact is that in the cases with speciality one the assigned baselocus
always has support on a complete intersection. The special nonrational surfaces in the list
are the nonminimal K3—surface of degree 9 and m = 8, the nonminimal K3—surface of
degree 10 and m = 9, the nonminimal regular elliptic surface of degree 10 and 7 = 9 and
the nonminimal regular elliptic surface of degree 10 and m = 10. Note that these examples
are also all nonminimal, and that the speciality is reflected in the special position of the
(—1)-curves.

Historical note

The study of special linear systems on a surface goes back at least to Castelnuovo. In an
article ([Ca]) where he studies linear systems of curves on P2, he shows that if

k
D] = |al = biz]
i=1

is the complete linear system of curves of degree a with multiplicities b; at the points
z;, and |D| does not have any nonassigned basepoints, then |D| is special only if & > 9.
Equality holds only if @ = 3by = ... = 3bg > 0. A related open problem is to find a
minimal k such that |D| is special and very ample.

The study of smooth surfaces in P* also goes back to the Italians at the turn of the
century, treating the surfaces of degree less than 7, or of genus m < 3. For d > 7 there are
contributions by Commessati and Roth. Roth shows that any surface of degree d < 10,
except for the abelian surfaces of degree 10, is regular or birationally ruled [Rol]. He refers
to Commessati for the abelian surfaces, and he gives some bounds for the arithmetic genus
Pa(S) = x(S) — 1 of smooth surfaces given the degree and genus m. He also presents a list
of surfaces with m < 6, which is incomplete since he misses the nonspecial rational surface
of degree 9 in P%. To produce the list, he uses the adjunction mapping to get surfaces
with smaller invariants that he knows already.

It is this technique that has been taken up in recent years, after Sommeses study of the
adjunction mapping, in a revival in the study of surfaces with small invariants.



Notations and basic results

We use standard notations and basic results as given for instance in [Ha] and [BPV]. For
the invariants of a smooth surface S in P* we use the following shorthand notation:

m = m(S) is the genus of a general hyperplane section
pg = pg(S) = h°(Os(K)) is the geometric genus of S
g = q(S) is the irregularity of S

X = x(5) =x(Os)

p(C) is the arithmetic genus of a curve C on S

g(C) is the geometric genus of a smooth curve C'.

The minimal models for the rational surfaces are P? and F., where F. is a Hirzebruch
surface with e > 0. The class of a line in P? will be denoted by I, while B (resp. F) will
be the class of a section on F. with selfintersection B? = e (resp. a fiber in the ruling),
whenever F, is the minimal model involved.

In a blowing-up situation we will use the same notation for a divisor downstairs and its
total transform upstairs. A rational curve C' (p(C) = 0)) with selfintersection C? = —1
will be called a (—1)-curve, similarly if C? = —2 we call it a (—2)-curve. A (—1)-line is a
(—1)-curve of degree one with respect to a given very ample linear system on the surface.

Whenever we have a nonempty linear system |C'| on a surface S, we will denote the rational
map which it determines by ¢o. We will, by abuse of standard notation, denote by
|C' — p| the linear subsystem of curves C' in |C| which contains the point p in S. We work
throughout over an algebraically closed field of characteristic zero.

Let S be a smooth surface, and let Div(S) be the set of linear equivalence classes of
divisors on S. There is a bilinear map from Div(S) x Div(S) to the integers which defines
an intersection number C - D between divisors on S. We set D? = D - D. If K is the
canonical divisor on S and C'is a curve on S, then the arithmetic genus p(C') is given by

the
Adjunction formula 0.2. 2p(C)-2=C?+C - K.
Proof. See [Ha Prop. 1.5].0

The adjunction formula actually gives a canonical divisor on the curve C"
Ko = (C + I&’)|C.

The corresponding sheaf we = O¢(C + K) is a dualizing sheaf on S, so that we may use
Riemann-Roch and Serre duality on C as if C' was a smooth curve (see Mumford [Mu]).
For curves C, D and C'U D on S the adjunction formula immediately gives the following
addition formula for the arithmetic genus of curves on a smooth surface.

(0.3.) p(CUD)=p(C)+p(D)+C-D—1.
To find the number of curves linearly equivalent to C' we may use the
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Theorem (Riemann-Roch) 0.4.
. 1 .
X(0s(C)) = k°(0s(C)) = k(05 (C)) + h°(Os (K = C)) = 5(C* = O+ K) + x(5).
Proof. See [Ha Th.1.6].0
If H is an ample divisor on S, then one may get a bound on the self intersection C? of C

in terms of H - C' and H? using the

Hodge index theorem 0.5. If H is an ample divisor on S and D is a divisor on D such
that H-D =0, then D> < 0 or D = 0.

Proof. See [Ha Th.1.9].
In fact we get the following

Corollary 0.6. Let H be a very ample divisor on a surface S. If C' is a divisor on S then

(#-C)?

2
C* <

Proof. Apply the index theorem to C' — (%—'QC)H.D
When using this corollary, I refer to the index theorem throughout this paper.
For smooth surfaces in P* with normal bundle Ng there is the relation,

(0.7.) d* —co(Ns) =d* —10d — 5H - K — 2K? 4 12x(S) = 0,

which expresses the fact that S has no double points. I therefore refer to this relation as
the double point formula.
The first major theorem on smooth surfaces in P4 is the

Theorem (Severi) 0.8. All smooth surfaces in P*, except for the Veronese surfaces, are
linearly normal.

Proof. See [Se|.O

Some classical numerical formulas for multisecant lines to a smooth surface in P? has
recently been studied again by Le Barz:

0.9. Secant Formulas (see [LB]).

Let S be a smooth surface of degree d in P* with invariants 7 and y. Then the number of
trisecants to S which meets a general point is:

t= (dgl)—ﬁ(d—3)—|—2x—2.

= (%)

10
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and .
h = 5(3(3 —d+2)—3t).

The number of 4-secants to S which meets a general line is:

N4:2<Z> —|—t(d—3)—|—h—s<d;2>.

The number of 5-secants to S which meets a general plane is:

24
. %(d —2)(d — 4)(d — 21) + h(d — 8) + st — 3t(d — 3)

Ns =—d(d — 3)(d — 4)(d® — 15d + 2) — (;) (d—4)

The number of 6-secants to S is:

1
Ng = — o7 d(d = 4)(d = 5)(d’ + 30d" — 577d + 786)

+5(2 (Z) + 2<§> — 45 (Z) +148d — 317)
- % (;) (d? — 27d + 120) — 2<§)

+ h(s — 8d + 56) + 1(9d — 35 — 28) + (;) —ZCZZZ),

i=1

where L;,i = 1,...,p are the lines contained in S and l;,7 = 1,...,p are their respective
selfintersection.

On the structure of the adjunction mapping we will use the following

Theorem (Sommese, Van de Ven) 0.10. Let S be a smooth surface with a very ample
divisor H and a canonical divisor K. Then

1) |H+ K
2) |H 4+ K| # 0 only if |H + K| has no basepoints.

In the latter case we have furthermore that

A) (H + K)? = 0 if and only if S is ruled in conics,

B) (H + K)? > 0 only if the map pgik defined by |H + K

(—1)-lines on S except for the following four cases:

i) S is P? blown up in 7 points and H = 6] — 22'7:1 2F;.

ii) S is P? blown up in 8 points and H = 6] — 22'7:1 2F; — Ejs.
iii) S is P? blown up in 8 points and H = 9] — Zle 3F;.

= () if and only if S is a scroll or a Veronese surface,

is the blowing-down of
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iv) S = P(F) where E is an indecomposable rank 2 bundle on an elliptic curve, and
H = 3B where B is an effective divisor with B2 =1 on S.

Proof. For a proof see [SV].O

Methods

The general procedure in working out the classification of this paper has been first to use the
double point formula, the Severi theorem and the index theorem to get a finite list of sets
of invariants admissable for a smooth surface. Next, if S has no effective pluricanonical
divisors, then we may use the adjunction mapping (several times if necessary) to get
surfaces with smaller invariants that we already know, from which we may reconstruct S
and the very ample linear system |H|. If S has effective pluricanonical divisors, then we
study these to eliminate among the sets of admissable invariants, and to describe the linear
system |H| on S.

The next step is to find reducible hyperplane sections on S. For elimination we try to find
components with an arithmetic genus too high for their degree. We use the following

Lemma 0.11. Let C be a curve of degree d and arithmetic genus p on a smooth surface
in P%.
If d < 3, then p <1 with equality only if C' is a plane cubic curve.
Ifd =4, then p <1 or p=3 and C' is a plane quartic curve.
Ifd =5, then p <3 or p==6 and C' is a plane sextic curve.
If p =3 then C' is the union of a plane quartic curve and a line which meets the
plane quartic in a point.
Ifd =6, then p <6 or p=10 and C is a plane sextic curve.
If p =6 then C' decomposes into a plane quintic curve and a line which meet in
a point.
If p =5 then C decomposes into a plane quintic and a line which do not meet.
Ifd =7, then p < 6 unless C' is a plane curve,
or C decomposes into a plane sextic curve and a line which meet in a point
(p = 10) or which do not meet (p =9),
or C' decomposes into a plane quintic curve and a plane conic which meet along
a scheme of length two (p = 7).

Proof. Straightforward using Castelnuovos bound for irreducible curves [Ha Th. 6.4], and
the addition formula 0.3.0

For the special linear systems |H | we find curves C' on S to which |H| restricts to a special
linear series. We study the linear series d¢ dual to [H|¢|, and try to lift it to a special
linear system of curves on S. This has been done successfully by Saint-Donat and Reid (see
[SD], [R2]), to study projective embeddings of minimal K 3-surfaces and to study regular
surfaces with curves with special pencils of divisors. A special case is illustrated in the
following lemma, where the trivial linear series on a curve in |C| is lifted to a curve on the
surface, as soon as the linear system |C| is special.
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Lemma 0.12. Let m: S — P? be the morphism obtained by blowing up 12 points (some
possibly infinitely close) in P?. Denote the exceptional divisors by E1, ..., E13 and consider
the linear system

12
O] = [4n*1 = > ]
i=1

on S.

If dim|C| > 3 and |C| has a fixed curve, then there is a curve I' = 7% — 22:1 E;, or
I'=2n* — 11CO=1 E;, on S, which is part of the fixed curve of |C].

If dim|C| > 3 and |C| has no fixed curve, then dim|C| = 3 and |C| has no basepoints.
Furthermore there is a curve I' = 37*] — leil E;onS.

If dim|C| = 2 and |C| has a fixed curve, then there is a curve I' = 7% — 22:1 E;, or
I =27* — 22:1 E;, orT =3r*l — leil E; on S, which is part of the fixed curve of
.

If |dl1L|C'| = 2 and |C| has no fixed curve, then |C| has at the most one basepoint.

Proof. By Riemann-Roch we have dim|C| > 2. Assume first that |C| has a fixed curve,
and denote it by I'y. Let
D=C — Fo.

Thus we assume that |D| has no fixed curve, and we may set
12
D=oar*l-Y BE; with a>1 and f; >0.
i=1

If & =1, then clearly all §; = 0 and dim|D| = 2. If a = 2, then to get dim|D| = 2 at the
most three of the 3; > 0, and to get dim|D| > 3 at the most two of the 8; > 0. If a = 3,
then to get dim|D| = 2 at the most seven of the §; > 0, and to get dim|D| > 3 at the most
six of the B; > 0. If = 4, then I'y must be supported on the exceptional set on S. But
(C —E; — E'j)2 < 0 when 1 < <j <12, s0 Ty = E; and |D| must have one basepoint
and be composed with a pencil (if |D| is basepointfree, then D would be rational, which
is absurd). Since dim|D| > 2 and S is rational, D must be a multiple divisor, which it
clearly is not.

Secondly, we assume that |C'| has no fixed curve, and let C' be a general member of |C/|.

If dim|C| > 3, then dim|Cj¢| > 2. But since C has arithmetic genus three and C? = 4,
we get that dim|C|¢| < 2. Thus dim|C|¢| = 2 and dim|C| = 3 and [C|¢| is the canonical
series on (', that is

|C|C| = |[(c| = |(C+ [(S)|C| = |7T*l|.
In particular |C| has no basepoints. If we consider the exact sequence
0— Os(—C — [(S) — Os(—[(s) — Oc(c— (C + [(c)) — 0

and 1ts associated cohomology, then since the last sheaf is trivial from the above, we get
that
h°(Os(=Ks))=1 ifandonlyif  h'(Os(—C — Ks)) = 0.

13



But this is clearly so since —C' — Kg = —n*[. Thus

12
| = Ks|=3n"1- Y Ei| #0.

i=1

If dim|C| = 2, and |C]| has more than one basepoint, then there are at the most three
basepoints since |C'| cannot be composed with a pencil by an argument like the above. If it
has three basepoints then C' would be rational, which is absurd. If |C'| has two basepoints,
then |C|¢| would show that C' is a hyperelliptic curve, which it clearly is not.O

For proofs of existence I try to find plane curves on S to be able to use the following
lemma, which was communicated to me by Alexander.

Lemma 0.13. If H has a decomposition
H=C+D,

where C' and D are curves on S, such that dim|C| > 1, and if the restriction maps
HO(O(S)H) — HY(O(D)H) and HP(O(S)H) — HY(O(C)H) are surjective, and |H|
restricts to very ample linear systems on D and on every C' in |C|, then |H| is very ample

on S.

Proof. We use the decomposition H = C' + D to show that |H| separates points and
tangent directions on S. Let p and ¢ be two, possibly infinitely close, points on S. By the
assumptions of the lemma we may assume that p + ¢ is not contained in D or any C. In
particular we may assume that p 4+ ¢ does not meet the baselocus of |C|. If D contains p,
then we can find a curve €' which does not meet p + ¢ such that C'4+ D separates p and q.
If D does not meet p + ¢, then we can find a curve C' which contains one of the points p
or ¢, such that C' 4+ D separates p and ¢. O

Another way to get a proof of existence will be to use the

Proposition 0.14. If T is a local complete intersection surface in P*, which scheme-
theoretically is cut out by hypersurfaces of degree d, then T is linked to a smooth surface
S in the complete intersection of two hypersurfaces of degree d.

For a proof see [PS Proposition 4.1.].
Remark (Peskine, private communication). A slight modification of the conditions of this
proposition is allowable, without changing the conclusion. Namely, at a finite set of points

T need not be a local complete intersection. It suffices that it is locally Cohen-Macaulay,
and that the tangent cone at that point is linked to a plane in a complete intersection.
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1 A rational surface with = = 8

Theorem A. Given nine points z1,...,29 in general position in F., e < 2. One can
choose three points y1,y2, y3 such that if

T: S5 — F,

is the morphism obtained by blowing up the points zi1,...,29, y1,¥2,ys in F., and
Er,...,Eq, F1, Fs, F3 are the exceptional divisors and B (resp. F') is a section with selfin-
tersetion e (resp. a ruling), then the linear system

9
|Hs| = |87"B + (10 — de)n*F — Y " 4F; — 2Fy — F, — P
i=1

is very ample and embeds S as a surface of degree 10 in P*.

Proof. We start by choosing nine points z1, ..., zg in general position in F., e < 2, in the
sense that if m : S — F¢ is the morphism obtained by blowing up the points z1,...,z9 in
F. with exceptional divisors F1, ..., Eg, and B (resp. F') also denote the total transform
of B (resp. F') on S1, then the following conditions holds:

i) No two points z; are infinitely close.

) Fore=1or 2, h°(Os,(B—eF —E;))=0,1<i<09.

) h°(Os,(F — E; — Ej)) =0,for 1 <i<j<0.

) hO(Os,(B=YST B ) =0,for 1 <iy <...<ieys <09

v) ho((’)sl(B +F - 2”4 Ei))=0,for 1 <iy < ...<ieps <9.
) h(Os,(B+2F - Y510 B, )) =0, for 1 <i; < ...<iep2 <09
) h°(Os,(
) (

11

h9 Os, (2B (1—6)F Zk 1 ,k)):O,for1§i1<...<i6§9.

2B+(2—e)F —2FE; — Ek:l E;j))=0for1<i<9and1<i <...<ig <9,

_|_
h0(051 +
i % .

ix) h%(O0s,(2B + (2 —e)F — ZZ LE)) =

x) h%(Os, (4B + (4 —2¢)F — 35, E))
,Z)

Lemma 1.1. All the conditions i), .
points x1,...,%g.

are open nonempty conditions for the choice of

Proof. The conditions can in all cases be translated into conditions concerning linear
systems of curves on P2, where the statement follows from a result of Hirschowitz (see
[Hi]), which says that if 71 : S — P? is the blowing-up of P2 in r + s points in general
position, with exceptional divisors F;, and 37 + s > h%(Opz(nl)), then the linear system

|nmil — zT:QEZ- - ZS:EJ|
i=1 =1
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is empty, unlessn =r =2 and s =0 or n =4, r =5 and s = 0. As an example, in case
e = 1, the condition x) is equivalent to

10
6751~ " 2E;| =0,
i=1

and this follows immediately from the result of Hirschowitz.O

On S; we study two linear systems of curves:
9
O] = [4B + (5 — 2¢)F — Y 2|
i=1

and
9

|D| = 6B + (7T —3e)F — > 3E].

i=1

Lemma 1.2. h%(Og, (C)) = 3, h%(Os, (D)) = 2 and |C| and | D| have only finitely many

reducible curves.

Proof. The proof has three steps. The first step is to show that the linear systems have
no fixed curves, the second step is to show that the dimensions are the given ones, and
the last step is to show that no subpencil of |C| has a fixed curve. The first and the last
step amounts to checking possible fixed curves against the conditions i),...,z), and is
straightforward.

We use the first step to show the second one as follows: By Riemann-Roch we get that
h°(Os,(C)) > 3. Assume that h°(Og, (C)) > 4, then |C| defines a rational map

oo S —->P3

with isolated basepoints at the most. C' is not a multiple divisor, so ¢¢(S1) is a surface.
Since C? = 4, we may therefore assume that a general curve C in |C] is smooth, it has
genus gc = 3. Now

hO(Osl(C)) >4 implies that hO(OC(C)) >3,

but degOc(C) = C? = 4, so Oc(C) must be special, in fact we must have equality and
that
Oc(C) =Wwc = Oc(c + I(Sl),

where
9

Ks, =—2B+ (e —2)F + Y Ei.

i=1
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Consider the exact sequence
0 — Ogs,(—Ks, —C) — Og,(—Ks,) — O¢c(C - (C+ Ks,)) — 0.
We take cohomology to get
R°(Os,(—=Ks,)) =1  ifandonlyif  h'(Os,(~Ks, —C))=0.

But h'(Os, (- Ks, — C)) = h'(0s,(C +2Ks,)) = k1 (Os, (F)) = 0, so we get

h%(0s,(=Ks,)) = h°(0s,(2B + (2— e)F = Y " Ei)) = 1,

i=1
which contradicts condition iz). Therefore h°(Og, (C)) = 3.
To show that h%(Os, (D)) = 2, we first get from Riemann-Roch that h%(Og, (D)) > 2.

Next, we consider the exact sequence
0 — Os,(—Ks,) — Os,(D) — O¢(D) — 0.
Since, from the above argument, h°(Os, (—Ks,)) = h*(Os,(—Ks,)) = 0 we get that
h?(0s,(D)) = h*(Oc(D)).

We may assume, since C? = 4, that the general C in |C| is smooth of genus gc = 3. Now
degOc(D) = D -C =4, so if h®(Og, (D)) > 3, then we have equality and that

Oc(D) =we = Oc(C + Kg,).
Note that €' = D + K, as we consider the exact sequence
0 — Og,(—2Ks, —C) — 0s,(—2Ks,) — O¢c(D—-C - Ks,) — 0.
We take cohomology to get
h°(0s,(—2Ks,)) =1  ifandonlyif  h'(Os,(~2Ks, — C)) = 0.

But h(01(S1))—2Ks, — C = h'(Os,(—=F)) = 0, so we get
9
h%(Os,(—2Ks,)) = h°(Os,(4B + (4 — 2e)F — Y "2E;)) =1
i=1

which contradicts condition #).0

Among the curves in |C] and |D| we want to find a smooth curve Cp in |C] and a smooth
curve Dy in |D| such that

18



1) Cp and Dy intersect and have a common tangent direction p’ at a point p
2) |C — p| has no reducible elements

3) p is not a basepoint for |D|

4) (Co—p)N(Dy —p) is reduced

5) |C — p| is a pencil with basepoints away from Dy

6) Co and Dg are not hyperelliptic.

Given such a choice of curves Cy and Dy we set
CoNDo=p+p +q+qz.

Then mi(p), m1(gq1) and m1(g2) are, respectively, the points y1, y2 and y3 in F. which we
choose to get S.
To see that we can make this choice of curves Cy and Dy, we consider the incidence

[C5’1><|D|><|C|

given by

I ={px D xC| Dand C has a common tangent at p}.
Lemma 1.3. The conditions 1),...,6) are nonempty and open in I for the choice of curves
CO and Do.

Proof. By Lemma 1.2 the conditions 2) and 3) are clearly satisfied for a general choice of
p. For the other conditions, we consider the following bad subsets of I.

Hype = {p x D x C € I | C is hyperelliptic}.

Hypp = {p x D x C € I | D is hyperelliptic}.
Bas = {p x D x C € I | |C — p| has basepoints on D}.
Iso={pxDxCel|(C—-p)n(D —p)isnot reduced}.

It suffices to show that I is at least one-dimensional and that the bad subsets all have
positive codimensions.

From Lemma 1.2 we get immediately that I is at least two-dimensional, so we check the
codimension of the bad subsets. To see that Hyp~ has a positive codimension we consider
the linear system

9
C+ Ks,|= 2B+ (3—¢€)F — Y Eil.
i=1

From the exact sequence
0— (/)51([(51) — OSI(C—I—[(SI) — Oc(C—I—K’Sl) — 0

we see, taking cohomology, that h°(Og, (C'+ Ks,)) = 3. Thus |C + K, | defines a rational
map
potKs,  Si-->P?,
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which is in fact basepointfree since it has no basepoints on any irreducible curve C' in |C].
We get degpcyrs, = (C+ Ks,)? = 3. If C is hyperelliptic, then pcix, (C) is a conic Q
in P2. Now

Porrs, (Q) =2(C+ Ks,) = C+ T,

since C'+ 2Kg, = F. On the other hand

h%(Os,(C + Ks, — F)) = h°(Os,(2B + (2 — ) F — zngi)) =0

i=1

by condition iz), so pcyks, (F) is a conic for every member F of |F|. Thus every F
corresponds to a hyperelliptic C' giving a rational pencil Pc of such curves C. Let D
in |D| be a smooth curve and let ¢ be a general point on D. Then there is a curve C
in |C| which is tangent to D at ¢. If this curve Cj is in P¢ for every ¢ in D, then the
restriction Pe|p is ramified everywhere, which is absurd. Therefore, Hyp has a positive
codimension.

To see that Hypp has a positive codimension, we similarly consider the map
@Ye Sl———>P2

defined by |C| = |D + Kgs,|. Here degpc < C? = 4. If D in |D| is hyperelliptic, then
@oc(D) is a conic @ in P2. So if all D in |D| are hyperelliptic, then there is a linear pencil
Pg of corresponding conics in P2 By Lemma 1.2, ¢ is a finite map, so if Zg is the
invers image of the basepoints of Pg, then every D meets Zg in a scheme of length 8.
This contradicts Lemma 1.2 which says that for any two distincet curves Dy and Ds in | D|
we have the length(D; N D3) = D? = 4. Therefore, we may conclude that Hypy, is of a
positive codimension. This argument also yields that Bas has positive codimension since if
|C' — p| has basepoints on D for every p in D, then ¢¢|p must be of degree 2 which means
that D is hyperelliptic.

To see that Iso has a positive codimension, we again consider the map ¢ : S;-->P2. By
the above, (D) is a smooth plane quartic curve for a general D in |D|. If (C'—p)N(D—p)
is nonreduced, then I = ¢ (C') is a bitangent or a flextangent of ¢ (D). Since the number
of such tangents is finite, we conclude that also Iso has a positive codimension.O

Now let Cf and Df be curves satisfying the conditions 1) through 6). Then we set
ConDy=p+p +a1+ e
and blow up the points p,¢q; and g2 in S; to get S with exceptional curves Fyg, F11 and

E15. We denote the blowing-up map by 7, and the composition m o m5 : S — P2 by .
We need to name some more curves on S. Let

|C1] = |C — E1o
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and

Co=C—-LEig—FEi1 —Ei2=01 — B — Eha.

Thus we denote the strict transform of Cf on S by Cj. Similarly we denote the strict
transform of Dfj on S by Dy. Finally we get the system |Hg| of the theorem:

9
|Hs| = |2C) — E1y — E1a| = |C1 + Co| = [8B + (10 —4e)F — > 4F; — 2Fy0 — E1y — Eysl.

i=1

Lemma 1.4. dim|Hg| =4.

Proof. Consider the exact sequence
0— (’)5((]1) — Os(Hs) — OCO(HS) — 0.

Taking cohomology and noting that h°(Os(C1)) = 2 we have that and h'(Os(C1)) = 0,
and hence we get that

h?(Os(Hs)) = h*(Oco(Hs)) + 2.
Let p’ = Co N E1g = Do N Eqg, thus p’ is the tangent direction of Cf at p. Then since
Ci1 = Do+ Ks — Fig and (Dg)|c, = p’ on Cq we get
Hg\c, = (Co+ Ks + Do — EIO)ICO = (Co+ Ks + D0)|CO —p' =(Co+ [(S)|Co’

where
12

Ks=-2B+(e—2)F + Y E;.

i=1

Thus hO(OS(Hs)) = hO(OCO(CO + Ifs)) +2=5.0
To show that Hg is very ample on S, we first consider the restriction maps
HY(O(S)Hs) — H°(O(Co)Hs)

and

H(O(0)S)Hs — H°(O(C1)Hs).

The first one is surjective since h*(Os(C1)) = 0, while the surjectivity of the second map
is shown in the proof of the following lemma.

Lemma 1.5. Hsc, is very ample and Hg|¢, is very ample for every curve Cy in |Cy].

Proof. The first statement is seen from the proof of Lemma 1.4. In fact we showed that
Hs|c, = Kc,, which is very ample since (g is not hyperelliptic.

For the second statement of the lemma we first consider the exact sequence
0— 05(00) — Os(Hs) — Ocl(Hs) — 0
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for a curve C; # Co + E11 + E12 in |Cy]. Taking cohomology and noting that we have
hl(OS(Co)) = hl(OS(Hs)) =1 and degHS|Cl = H5-01 = 6, we get that hl(OCl (Hs)) =0

and that the restriction map
H°(O(S)Hs) — HY(O(C1)Hs)
is onto. Furthermore Hg|¢, is very ample unless there are points ¢ and ¢’ on C} such that
h(Oc,(Hs —q—1q')) = h°(Oc,(Hs)) —1 =3,
which means that

HS|Cl —q— q/ = I{Cl = (Cl + [{S)|Cl-
In this case let ¢; = C1 N E1g, and let Dy = D — E1g —q; — q — q'. Then

(Dt +C1+ Kg — E1 — E12)|Cl = (D — 2B 0+ Ch + [(S)|Cl —q— q/ = H5|Cl —q— q/,
so Dy|¢, 1s trivial. Consider now the exact sequence
0— Os(Dy—C1) — Os(Dy) — O¢, (D) — 0.

We take cohomology to get h®(Og(D;)) = 1 if and only if h!(Og(D; — C1)) = 0. But

hl(OS(Dt—Cl)) = hl((’)g(—KS—I-Em—I-EM—I-Elg)) = hl(OS(QB—I-(Q—e)F—ZEi)) =0

i=1

by Riemann-Roch and the condition iz) on the choice of points #;. Thus D; must be an
effective curve on S. This contradicts condition 4) for the choice of Cy.

Secondly, if C; = Cy+ E11 + E12, then we first note that |H| separates points and tangents
on Cy. If |H| does not separate points on Fy1, then Ey; is mapped onto a point in the plane
of Cy by ¢g. This means that EFy; is a fixed curve for |Cy]|, which contradicts condition
3) for the choice of curves Cy and Dg. Similarly, E15 is mapped isomorphically into P4.
Thus we are left with two cases: a) t1€E1; and taeE12 and t1 4 t2 does not meet Cp,and
b) t1€E11 and tQGCQ.

In case b), if ¢; and £ are not separated by |H|, then E1; would be mapped onto a line in
the plane of Cy and thus be a fixed curve for the pencil C, which is impossible like above.
In case a), if the points ¢; and t5 are not seperated by |H|, then E1; + E12 is mapped onto
a plane conic by ¢g. Using the same argument as in the proof of Lemma 0.13, we would
get that S has only one double point in P*. This contradicts the double point formula, so
the lemma follows. O

The very ampleness of Hg on S now follows from Lemma 0.13, as shown in the last part
of the proof of Lemma 1.5.00

Postulation. J. Alexander has shown the following
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Proposition 1.6. For a general choice of curves Cy and Dg, the surface is not contained
in a quartic hypersurface.

Proof. Alexanders argument goes as follows. Assume that V is a quartic hypersurface
containing S and let Hy be the hyperplane whose section of S is 2Cy + E11 + Ei2. Let Py
be the plane of Cy. The residual pencil |Cy| has three basepoints p1,p2,ps in the plane
Py, which in fact are three points on Cy since Cy + F11 + E12 € |C1|. The points py, p2, ps
are clairly singular points of V', so for degree reasons only Py C V5. On the other hand
this means that V' N Hy contains Py with multiplicity two, so that V' is in fact singular
along a cubic curve in Py, or singular along the whole plane Py. In the first case let V' be
singular along the cubic curve A in Py. Now the general C'; lies on a cubic surface residual
to Py in VN He,. This cubic surface meets Py along A. Now the curve (' is tangent
to Py at the points p1, ps, ps and the tangent directions in Py sweep out the first order
neighbourhoods of the points pq, ps, ps. Therefore A must be singular at py,ps2, ps, i.e. A
consists of three lines. In Py there is one more singular point of V' that we know, namely
the point p’ = Cy N Dg, because the plane of Dy is also contained in V; for reasons similar
to the ones for Py, and this plane meets Py in a point. For a general choice of curves Cj
and Dy this point p’ does not lie on any of the lines of A. Therefore V' must be singular
along all of Py. In this case the general curve () is contained in a quadric. Since it is
of degree 6 and genus 3 it is hyperelliptic. But then the special curve Cy would also be
hyperelliptic which it is not.0
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2 A rational surface with m = 9

Theorem B. Given twelve points z1,...,x 12 in general position in P2. One can choose
six other points y1,...,Yys such that if

:5 — P?

is the blowing-up of P? in the points x1,...,%13, Y1,...,Ys and Ey1,...,E15, Fi,..., Fg
are the exceptional divisors, then the linear system

12 6
|Hs| = |87*1 =) 2E; — Y Fj|
=1 7j=1

is very ample and embeds S as a surface of degree 10 in P*.

Proof. The proof has three parts. First, we specify the choice of points z; and y; in PZ.
Secondly, we show that the given choice of points implies that dim|Hg| = 4, and thirdly
we show that |Hg| is very ample.

Part 1. We start by choosing twelve points z1, ..., 215 in P? which are in general position
in the following sense. If m; : S; — P? is the blowing-up of P? in the points z1,..., 12
with exceptional divisors F1,..., Eys, then

1) No two of the points z; are infinitely close
No three of the points z; are on a line
No six of the points x; are on a conic
No ten of the points z; are on a cubic

)

)

) 8
v) 1375l —2E;, — >, _5 Ei | =0 for any {i1,...,ig} C{1,...,12}

) |67yl — 22:1 2F;, — ’1€2:9 Ej.| = 0 for any permutation (i1,...,i12) of (1,...,12)

) [7mil = 3202, 2B = 0

) The linear system |47l — Zzlil E;| has projective dimension two and is basepointfree.
ix) dimldr*l — S22 By — E;j| =0 for 1 < j < 12.
Lemma 2.1. The conditions i),...,ix) are satisfied for a general choice of twelve points.

Proof. For the first four conditions this fact is well-known. That the conditions v), vi),
vii) and ix) are satisfied for a general choice of twelve points, follows from a result of
Hirschowitz (see [Hi]), which says that if 7 : S — P? is the blowing-up of P? in r + s
points in general position, with exceptional divisors F;, and 3r + s > h%(Opz(nl)), then

|7’L7l'rl — ZTZQEZ' — ZS:EJ|
i=1 =1

is empty. For a set of points z1, ..., 212 satisfying condition viii), we can take as the twelve
points that we blow up the set of points linked to four points in the complete intersection

the linear system

of two quartic curves in P2.00
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To proceed with the proof of the theorem we now let
12
F=dnjl =) Ej
i=1

and let
wp S — P?

be the map defined by |F|. This map has degree
degpp = F? = 4,

Lemma 2.2. The map ¢F is finite.

Proof. This follows from the above conditions on the choice of points z;, ¢ = 1,..,12, since
otherwise a curve C' would be contracted by ¢p, i.e dim|F — C| = 1. Any choice of curve
C would contradict one of the above conditions.O

Thus each fibre of ¢p consists of the basepoints of a subpencil of |F|.

Next, choose a smooth curve Lg in the linear system |77/| on Si, which is general in the
sense that

1) ¢F|L, is birational

2) ¢r(Lo) has three distincet nodes ny,ns and ns

3) go}l(ni) is reduced for i=1, 2, 3

4) The nodes n; do not lie on any of the lines pr(E;).

Lemma 2.3. The conditions 1),...,4) are satisfied for a general choice of Ly in |m{l|.

Proof. The first one of these conditions is automatically satisfied in view of the above
conditions iv) and v). For the second condition we see that ¢r(Lg) has cusps only if
Lg is tangent to the branch curve of pp. It has a triple point only if Ly contains three
basepoints of a subpencil of |F|, which cannot be the case for every line Lg. Thus 2) is an
open condition on Lg. To see that condition 2) is not empty on |r7l|, let

L =(ril— Ey — E3) + E1 + Es,

then ¢p (L) has acquired three distinct nodes.

The set of curves Lo which does not satisfy condition 3), has codimension one. In fact,
they correspond to the set of curves ¢r(Lg), whose nodes lie on the ramification curve of
or, and since to each point p € P? there correspond at the most six lines Lq through pairs
of points of gp}l(p), this set has dimension one. Similarly, the set of curves that does not
satisfy the fourth condition also has codimension one. So the lemma follows.O

We proceed to name the points of go;,l(ni) t=1,2,3 on S1: By construction two points
of go;l(nl) lies on Lg. Denote them by ¢; and ¢, and denote the other two by p; and ps.
Similarly, let go}l(ng) = p3 + P4 + q3 + g4, where g3 and ¢4 lie on Ly, and let go;l(ng) =
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ps + ps + ¢5 + g6, where ¢5 and ¢g lie on Lg. The points pq, ..., ps, which we may assume

are disjoint from the exceptional curves E, ..., F19, are the points that we blow up to get
S. Let

mo - S — Sl
be this blowing-up map, and let Fy, ..., Fg be the exceptional divisors. If we set 7 = m0oms,

then the points y; of the theorem are the points m1(p;) ¢ =1,...,6.

Part 2. We start this part by describing some linear systems of curves on S. First consider
the above maps ¢ and m. The three nodes ni,ns and ng of pr(Lg) define a triangle in
P2. The inverse images under @r of the edges of the triangle are curves on S. If we let
Li; be the edge through n; and n;, 1 <1 < j < 3, then we set

Fly = 05" (Lij).-

The strict transforms of the curves FZ'J on S will be denoted F;;. Thus as divisors on S we
have

FlgETFEF—Fg—F4—F5—F6,
FlgEﬂ';F—Fl—FQ—F%—FG

and

F23E7T§F—F1—F2—F3—F4.

The pencils of lines through the nodes n; correspond similarly to pencils of curves on S;
whose general member we denote by ka, where {7,7,k} = {1,2,3}. Their strict transforms
on S will be denoted by FJ*, thus as divisors on S we have

FY2=niF - F — Py,

FB¥ =riF —F3—F,

and
F® =nriF — F5 — Fs.
Note that
Fio4+ F2 = Fi34+ FP =Fos + F® = Hy
on S.

For part 3 we will need another system of curves also: Let mg : Sg — S be the blowing-up
of S in the points ¢1,...,¢s with exceptional divisors G1,...,Ge, and let D = nfHg —
Z?:l G;. Thus |D| corresponds to the linear subsystem of curves in |Hg| on S which is
generated by the three curves

Fio+ F'? and Fis+ F3 and Fys+ F3.

Since these curves are linearly independent we get that dim|D| = 2. In fact |D| corresponds
via the map ¢p o Ty 0 Ty to the conics in P? through the nodes ni,ns, and n3. Thus the
rational map

¢p : So-->P?
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is a morphism and factors into ¢g o m3 0 mg composed with a Cremona transformation. We
have the following commutative diagram

So% s = 8 L P?
ep] N\ er]

7 11
P27 I P2

where " : T — P? is the blowing up of the nodes n;, i =1,2,3, and ' : T — P? is the
blowing up of the points ¢p (Fj;). Thus the triangle defined by the nodes n; is transformed
via T into a triangle whose edges are e;; = ¢p(F; + F; + Gi + G;).

We proceed to show

Lemma 2.4. dim|Hg|=4.

Proof. Consider the linear system of curves |275F| on S. It is basepointfree, since |F| is
basepointfree, and defines a map
PaF . S — PS.

To get dim|Hg| = 4 we need to show that

Z =A{p2r(F1),...,p2r(Fe)}

only spans a P3 in P8, We will prove the following
Claim. pap(Fs),...,p2r(Fs)} spans a P? in P8 and similarly for

{p2r (1), p2r(F2), p2r(F5), p2r (F6) }

and

{p2r(F1),. .., p2r (Fa)}.

If this claim holds, then we have three planes I1;5,11;3 and II53 in P® each containing four
points among the pap(F;), ¢=1,...,6. The planes must meet pairwise in lines, so their
union is contained in a P3. The points par (F};) are contained in these lines, so the lemma
follows if the claim holds.

Proof of the claim: Consider the linear system of curves
|H12| = |27T§F — Fg — ... F6|

on S. For the claim we need to show that dim|H12| = 5. For this consider the exact
sequence

0— Os(le—Flz) — Os(ng) — OFIQ(HH) — 0

of sheaves on S. Note that His— Fio = 73 F, so taking cohomology we get that dim|H12| =
5 if and only if dim|H12|F12| = 2. But Hi2- F12 = 4, so this is equivalent to Hizp,, = KF,,.
To see that |H12|F12| is the canonical linear series on Fo, we use the fact that the canonical
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linear series is equal to the series |75 Lo|p,,|. Since Lo contains the points ¢1,...,¢s, and

His=F134+F?on S, we get
H12|F12 = (F13 + F23)|F12 =q3+...+¢qs = W§L0|F12.
Therefore the claim holds and the lemma follows.O

Part 3. For very ampleness on .S we study the restrictions ¢ |p,, and pq i for Fi ¢ |Fi|,

to get information on the double point locus of g : S — P%. If we consider the exact
sequences

0— Os(Fm) — OS(Hs) — OFu(Hs) —>0,
0— Os(Flz) — Os(Hs) — OFH(HS) — 0

and their cohomology, then we see that the restriction maps
H°(Os(Hs)) = H°(Op2(Hg))  and  H°(Os(Hs)) — H°(Op,,(Hs))

are both surjective. In fact, by Lemma 2.4 and by Riemann-Roch we see that the sequences
are exact after taking H', therefore also on global sections. Thus ©H|F,, is an isomorphism
if the following lemma holds.

Lemma 2.5. Hg|p,, is very ample.

Proof. To see that the divisor Hg|p,, is very ample we recall from the proof of the above
claim that H12|F12 1s the canonical divisor on Fijs. But H12|F12 = H5|F12, SO H5|F12 is very
ample since Fyo 2 mi(ma(Fi2)) and therefore not hyperelliptic.O

The same argument works of course for ¢p |p,, and ¢n |p,,. Unfortunately, we cannot give

a direct proof that Hg gz is very ample for every F12in |F'2|. But

Lemma 2.6. Let F'?2 ¢ |[F'2|. Then
og : F1? —» p*

has at the most one double point.

Proof. For this we first note that the only reducible curves of |F| on S; are the curves
(F—E;)+E;, t=1,...,12. Thus by condition iv) on the choice of Lg, the only reducible

curves of |F12| are the two curves
i3+ Fs + Fs and Fo3 4+ F3 + Fy.

Thus we have two cases to check.

First, if F'2 is irreducible, then
o F'? - P*
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is birational, since H - F'?2 = 6 and F'? is nonhyperelliptic. Thus degprF'? = 6 and
pler (F'2)) < 4. Since F'? has arithmetic genus p(F12?) = 3, the lemma follows in this
case.

Secondly, if F12 = Fi3 + Fy + Fs, then we know from the above that
PHs |y, and PHs|F, and PHs|Fy

are isomorphisms. (The two last ones are isomorphisms since ¢p|p, and ¥D|F, are iso-
morphisms.) The two lines @i (F5) and ¢g(Fs) have at the most one point in common
since PHs|Fy, is an isomorphism. Thus we are left with the case that a point ¢1eF3 and a
point t2eF5 not in Fis are mapped onto the same point by ¢r. But we can find a curve
F13in |F13| which does not contain ts, such that Hg = Fi3 + F'3 separates t; and ts, so
the lemma follows also in this case. The curve Fsg + F3 + F is treated in the same way.O

We go on to study the double point locus of the morphism
YH S — P4.

We will show that it is finite, and then conclude from the double point formula that it is
empty.

Lemma 2.7. The morphism ¢y : S — P* is finite and birational.

Proof. We have from Lemma 2.2. that ¢p : S; — P? is a finite morphism. Since ¢p
factors into g o my 0 my composed with a Cremona transformation with basepoints at the
nodes ny,no and ng, we get that ¢p contracts only the curves 7'I'0_1(F12), 7r0_1(F13) and
75 '(Fa3). But the linear system | D| corresponds to a linear subsystem of |H|, and PH|F,,
is an isomorphism for 1 <1 < j < 3, so we may conclude that ¢z is finite. It is birational
since it is birational when restricted to the special hyperplane sections Fis + F''2 above.O

Lemma 2.8. ¢y has no double curve.

Proof. If B is the double curve for ¢g, then clearly By = 7r0_1(B) is double for the map
¢p. By Lemma 2.6 we have that PH|p12 has at the most one double point, so ¢p(By)

must have degree at the most one. Since ¢p is finite outside the curves 71'0_1(FZ-]-), we get
that ¢p(Bg) has at least degree one. Thus the degree of ¢p(Bg) is one, and By C Dy for
a curve Do € |D]. Now, ¢p|p, must have degree two since otherwise ¢ g g2 would have
at least two double points. So By must be a proper component of Dy. On the other hand
the conditions i),...,vii) of Lemma 2.1 does not give room for any decompositions of Dy
which satisfies this condition on By, so the lemma follows.O

We conclude by the double point formula that ¢z : S — P* is an isomorphism.O

Postulation
We give the following result on the postulation of S.
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Proposition 2.9. The surface S is linked to the union of two twisted cubic surfaces T
and U in two quartic hypersurtfaces.

Proof. Associated with S there are the three planes II;; of the curves Fj;, and their
common line, the 6-secant line L. Let

T = ng U H34 UH56.

Then T is the union of 5-secants to S, and is therefore contained in any quartic hypersurface
which contains S.

Next, consider the linear subsystem of hyperplane sections which correspond to the hy-
perplanes of P? that contains L. Recall the blowing-up m : So — S of S in the points
LNS. We denote the exceptional divisors by GG1,...,Ge. If D denotes the strict trans-
forms D = n§H — Z?zl Gi on Sp, then | D| defines a map p : So — P? which is of degree

four. Recall, from the construction of S, the curve Ly = 7% — Z?:l G; on Sy, where
T = m o0 My 0 Mg. Ly is mapped isomorphically to a plane conic by ¢p, since D - Ly = 2
and |D — Li| = () by Lemma 2.1. Therefore, there is a curve

CO =2D — Ll
on Sp. Denote by C' the image of Cy on S. Then C has arithmetic genus 13 and degree
H-C=12o0n S.
Lemma 2.10. C lies on a rational cubic scroll which contains L as a section.

Proof. The idea is to show that C' lies on three linearly independent quadric hypersurfaces.
These three quadrics define a surface, call it U, since C has degree larger than 8. A careful
argument will show that the surface U must be smooth.

First, consider the exact sequence
0— Zc(2) — Ops(2) — O¢(2) — 0

of sheaves on P%. If we take cohomology and use Riemann-Roch on C, we get that
h%(Zc(2)) > 2. Compare this with the cohomology of the exact sequence of sheaves of
ideals

0— Ic(l) — 10(2) — IC(']H(Z) — 0

on P%. Since h°(Z¢ (1)) = 0 we get that
RO(Tean (2)) > RO(Te(2) > 2,

for any hyperplane section H. Let Doy = mo(D) for a general D € |D|. Then Dy meets C
in six points on L, and in six points z1,...,2¢ on S outside L.
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Lemma 2.11. The points x; lie on the union of two lines L1 and Lo which both meet L.

Proof. If we work for a moment on Sy, then, since ¢p restricts to a map of degree three
on Cy, we may group the z; on S into two sets such that say z1, z2,z3 span a plane which
contains L, and x4, z5, z¢ span another plane which contains L. Since ¢p(Cy) is a conic,
we get that 1 + z2 + z3 and z4 + x5 + 26 belong to the same linear series as divisors on
C. Now, LU{z1,...,zs} is contained in two quadrics, so we get that either {z1, 22,23} or
{z4, 25,26} is contained in a line. Since, as divisors on C, they belong to the same linear
series, they must both be contained in lines.O

Varying the divisor D, we see that the lines L1 and L2 are members of a ruling of U. This
is the ruling of a smooth surface U, since L1 and Ls cannot meet. U contains the curves
C and L, and L meets each member of the ruling.0

The scroll U is rational and has a hyperplane divisor Hyy = 2 — E on a P? blown up in one
point. The line L equals on U the exceptional divisor F, while C' meets L in six points, so

C-FE =6. Since H - C' =12, we get that
C=9-6F.

Any conic [ on U meets C' in nine points, therefore any quartic that contains S must also
contain U.

Now, to show that S actually lies on two quartic hypersurfaces, we study more closely
some cohomology groups. Let II be a general plane which contains the line L, let H be a
general hyperplane which contains II, and consider the exact sequence of sheaves of ideals

0 — Zsne(3) — Zsnua(4) — Zsan(4) — 0.
We take cohomology and get that h!(Zsam(4)) = 1 since S N II contains six colinear points.

Now, Osnm (2) is nonspecial, so we get that h%(Zsng (2)) = 0, and therefore, from the exact
cohomology sequence, that h!(Zsng(4)) > 1.

If we compare this with the cohomology of the exact sequence
0— 15(3) — 15(4) — ISnH(4) — 0,

we get that h'(Zs(4)) > 1 as soon as h?(Zs(3)) = 0.
Lemma 2.12. h*(Z5(3)) =0

Proof. For this we consider the cohomology of the exact sequence of sheaves of ideals
0 — Zs5(2) — Zs(3) — Zsnm(3) — 0.
Since h?(Zsng (3)) = 0 from the nonspeciality of Ognp(3), it suffices to show that
K(Ts(2)) = 0
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which is equivalent to

R (Os(2H)) = 0.
This is checked via cohomology of the exact sequence
0— Os(l) — Os(2H) — O¢c(2H) — 0
to be equivalent to At (Oc(2H)) = 0. Now degO¢(2H) = 24 and p(C) = 13, so
W(Oc(2M) #0
only if
Oc(?H) = wWc.

We will see that this cannot be the case by arguing on U.
Recall that C' =9/ — 6F on U, thus

Oc(2H) = O¢(4l — 2E)
and
wWo = Oc(C + [(U) = 00(61 — 5E)
Thus we = O¢(2H) if and only if Oc = O¢ (2l — 3E). Consider the exact sequence

0— Opy(=Tl4+3E) — Opy(2l —3F) — O¢(2l —3E) — 0
of sheaves on U. If we take cohomology, then we have
R(Op (20 — 3E)) = 0.

Therefore, h%(O¢(201—-3E)) = 1 only if A} (Oy (—7I+3E)) = 1. But this is clearly impossible

since any curve in |7/ — 3E] is connected. O

From the lemma we get that h'(Zs(4)) > 1. If we consider the cohomology of the exact
sequence
0— 15(3) — 15(4) — ISnH(4) — 0

of sheaves of ideals, then we have that h?(Zsng (4H)) = 0 since Ogng (4H) is nonspecial.
Thus the lemma also implies that h?(Zg(4)) = 0. Since x(Zs(4)) = 1, this implies that
h°(Zs(4)) > 2 and the proposition follows.O

Remark. Starting with two twisted cubic surfaces 7" and U, such that 7T is the union of
three planes through a common line L, and U is a smooth scroll with L as a section with
selfintersection L? = —1 in U, such that U meets T only along L, then one may show that
T UU is cut out by quartic hypersurfaces and is linked to a smooth rational surface S
with 7(S) = 9. This gives an alternative proof of the existence of S. The proposition also
shows that the quartics containing S are singular along the line L.
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3 A K3-surface with 1 = 9

Let V3 be a cubic hypersurface in P* with exactly one isolated quadratic singularity at a
point z, and let V5 be a smooth quadric hypersurface which meets the double point of Vs
such that the complete intersection Sg = Vo N V3 has a quadratic singularity at z and is
smooth elsewhere. Let

m: X — P*

be the blowing-up of P# in the point z, and let S; be the strict transform of Sy on X with
a curve Ag lying over the point z. Then S; is smooth, and the curve Aq is an irreducible
rational curve with selfintersection A2 = —2. Next, let H be a general hyperplane section
of Sy, and let II be a plane in P* which is tangent to H in three distinct points y1, y2, s,
more specifically we require that the intersections Vo N II and V3 N 1I are, respectively, an
irreducible plane conic and a plane cubic curve which both go through and have a common
tangent at the points y1,y2,ys3. Denote the preimage of the points y1,y2,ys on Sy also
by v1,¥2,¥s, and blow them up with a map m : S — Sy to get a smooth surface S with
exceptional divisors F1, Fs, E3.

On S we let Cy denote the pullback (total transform) of the hyperplane divisor on Sp, and
let A denote the total transform of Ay lying over the node z on Sy. Consider the linear
system of curves

3
|H|=[2Co — A= 2E|]
i=1

on S.

Proposition 3.1. The above data V>, V3 and I can be chosen such that the linear system
of curves |H| on S is very ample and embeds S as a surface of degree 10 in P,

Proof. The proof amounts to exploiting a decomposition of the divisor H. Consider the
linear systems of curves

3
C=Co— ) Eil
i=1
and
D =|C — Al

on S. First we note that we have a decomposition H = C' + D, next one sees immediately
from the construction that |C] is a pencil of curves S, while |D| contains exactly one curve,
call it D, namely the strict transform of the hyperplane section of Sy which contains the
points y1,y2,ys and z.

We will study the requirement that the linear series |H|¢| for every curve C' € |C| and
|H|p| are very ample.

Since H - C = 6 and p(C) = 4, we see that for this to be true, |H|¢| must be the canonical
linear series on C'. It is to get this that we need the special choice of the points y1,y2, ys.
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Namely, for a general curve C' € |C] the divisor (y1 + y2 + y3) = (Z?Il Eji)|c is a theta-
characteristic on C. To use this fact, we do the following: On S we see that |Cp| is the
adjoint linear system to C, therefore

3
|Hicl = 1(2C0 — A=) 2Ei)c| =

i=1

Kc| = [Coc|

if and only if
3
(Co = A)jel = 1) 2Ei)cl-
i=1

But the latter holds, since A does not meet C' at all, so |Cy — A| restricts to the canonical
linear series on ', while |(Z?:1 E;)|c| is a thetacharacteristic.

Now we consider the exact sequences

0— Os(D) — Os(H) — O¢(H) —0
and

0— Os(C) — Os(H) — Op(H) —0
of sheaves on S.

If we take cohomology in the first sequence, we have from the above that h%(Og(D)) = 1,
so we get by duality and Riemann-Roch that

W(Os(D)) = h(Os(D)) = 0.
Therefore
W(Oc(H)) = K (Oc(Kc)) = 1
implies that h'(Os(H)) = 1 and, by Riemann-Roch again, that h°(Os(H)) = 5.

If we take cohomology in the second sequence, we similarly have that
h(Os(C)) = h¥(Os(C)) = 0.

Thus h!'(Os(H)) = 1 implies that h'(Op(H)) = 1 and h°(Op(H)) = 3. Since p(D) = 3
and H - D = 4, we get that |H|p] is the canonical linear series on D. Note also that the
restriction maps

H°(O(S)H) — H°(O(C)H)

and

H°(O(S)H) — H°(O(D)H)
are both surjective.

We continue with a more detailed study of the linear series |H|p| and |H|¢|. Let g :
S-->P* denote the rational map defined by the linear system |H|.
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Lemma 3.2. g restricts to an embedding of the curve D + A on S.

Proof. First we check that D is not hyperelliptic. As noted above, D is the strict transform
on S of the hyperplane section, call it Lg, of Sy which contains the points y1,y2,ys and
z. Since Ly has a double point at z, we see that the canonical morphism defined by the
canonical linear series on D is the projection of Ly from the point x into a plane. Thus D
is hyperelliptic if and only if this map is 2 to 1, or geometrically, any line in P* through
z which meets Lg in a point away from z will meet Lg in two (possibly infinitely close)
points away from z. But by Bezout and our choice of V5 and V3, this means that any such
line is contained in the surface Sy, which is absurd. Therefore the above considerations
show that ¢ embeds the curve D.

To see that g embeds the curve A, we recall that A is a smooth rational curve. Therefore,
since H - A = 2, it is enough to show that the restriction map

HY(O(S)H) — HY(O(A)H)
is surjective. For this we consider the exact sequence
0— Os(2D) — Og(H) — Oa(H) —0

of sheaves on S. If we take cohomology, we get that h!(Os(H)) = 0 and from the above
that h'(Os(H)) = 1. Thus we get the wanted surjectivity if h'(Og(2D)) = 1. In fact it
suffices to show that h'(Og(2D)) < 1. We get this by considering the exact sequence

0 — Os(D) — 0Og5(2D) — Op(2D) — 0

of sheaves on S. If we take cohomology here, we recall from the above that h'(Og(D)) =
h?(Os(D)) = 0. Therefore

RY(Os(2D)) = h'(Op(2D)).

Again since D is not hyperelliptic and (2D) - D = 2, we know that h'(Op(2D)) < 1, so
hl((’)s(?D)) <1 and HO((’)(S)H) — HO(O(A)H) is surjective.

To complete the proof of the lemma, we need to see that |H| separates any two points
p€ D\ Aand g € A\ D. If we assume to the contrary that p and ¢ are mapped to
the same point by ¢g, then since D - A = 2 and A is embedded as a smooth conic, A
must be mapped into the plane of ¢g (D). But this would imply that the residual curve
D= H —(D+ A) moves in a pencil, which contradicts the above.O

To complete the proof of the proposition, we need to check that |H|c| is a very ample
linear series on every curve C' € |C|. The lemma takes care of the curve C' = D + A. For
the rest of the curves we simply recall the equalities

3
(C+ D)je| = 2Cic| = (205 — 3 2Ei)ic| = [Cocl.

i=1
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Since Cj is the pullback of the hyperplane divisor on Sy, and 7 : S — Sy restricts to an
isomorphism on every C' # D + A, we are done.O

Postulation
It #: Wy — V5 is the blowing-up of V5 in the points y,y2,y3 and z, and S is the
strict transform of Sy on W, then the embedding ¢g : S — P* extends to a birational

morphism on Ws. One may show that the image of W5 in P* is a quartic hypersurface
with multiplicity two along the plane of the curve D.
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4  An elliptic surface with = = 9

Proposition 4.1. There is a smooth elliptic surface of Kodaira dimension 1, of degree 10
and with 7 = 9 in P*.

Proof. The proof has three parts. First, we construct a rational threefold Wy of degree
7 in P® whose general hyperplane section is a Bordiga surface. Secondly, we describe a
smooth regular elliptic surface Sg on Wy of degree 13 with x(Os,) = 2, and at last we find
a line L in P® such that the projection of Sy from L is a smooth surface of degree 10 in

P4
For the first part we study the composition of two blowing-up maps
W —V — P3,

where the first map, my : V — P3, is the blowing-up in a point p with exceptional divisor
Ey, and the second map, mw : W — V| is the blowing-up along a smooth curve Cy on V
with exceptional divisor Sy on W. Let h denote a general hyperplane in P3, and as usual
in a blowing-up situation, we use the same notation for its total transform on V' and W.

To specify the point p and the curve Cy, we consider a cubic surface S3 in P3. The surface
Ss 1s a cone over a smooth plane cubic curve with vertex in p. For later use we need to
specify the plane cubic curve; it must contain the six points of intersection, p1, ..., pg, of
four general lines in the plane.

Let Sy be the strict transform of S3 on V. Then S3y is smooth with a morphism
ps 1S3 v —+ Cs
which defines the ruling of S5y over an elliptic curve Cs. The Picard group of S3 v is
Pic(S3v) =< Os, . (B) > ©ps(Pic(Cs)),

where B = S3 v N Ey. If Fy,..., Fs are the members of the ruling which meets the points
Pi,---,Ps, then we denote the points F; N B for ¢ = 1,...,6 by ¢1,...,¢9s. The map of
Ssv into P? is defined by a linear system |B + aF|, where oF is the pullback to S5y of
a divisor of degree 3 on C's. Now, consider the linear system of curves |B 4+ BF|, where

ﬁFEFl—I——I—FG—I—OfF
Lemma 4.2. |B + BF| contains a smooth curve which meets B in the points q1,.. ., gs.

Proof. We blow up the points ¢;, to get S§,, with exceptional curves Ej, for i = 1,...,6.
If we use the same notation for curves on Ss v as for their total transform on S5 ., then
we are looking for a smooth curve in the linear system

6
|D| = |B+8F = Ei

i=1
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on Sty. If By =B — E?Il E;, then it follows from the choice of points ¢; that |D)p,| is
trivial, hence has no basepoints on By. On the other hand BF' clearly has no basepoints
on S% -, so |D| has no basepoints on S, as soon as the restriction map

HY(O(S5,)D) — H’(O(Bo) D)

is surjective. But this holds since the cokernel of this map injects into H(O(S% 1 )8F),
which is trivial. The lemma now follows using Bertinis theorem.O

Let Cy € |B + BF| be such a curve. We blow up V along Cy to get W, with exceptional
divisor Syr. We let S3 w and Eyw denote the strict transforms of Sz v and Ey, respectively,
on W. Then S3 w belongs to the linear system |3h — Sw —3Eyw | of divisors on W. Consider
the linear system

| = |h + Ssw| = |4h — Sw — 3Ew|
of divisors on W.
Lemma 4.3. |d| is a basepointfree linear system of projective dimension dim|d| = 6.

Proof. Since d = h+ S3w, we get that |d| has no basepoints outside S5y . Restricting it
to S3w, we get
d|53,W = (40! — ﬁ)F,

so that |d|g, ., | has no basepoints. But the restriction map

H°(O(W)d) — H°(O(S3,w)d)
is surjective; its cokernel is contained in H!(O(W)h), which is trivial. Thus we get that |d|
has no basepoints on S w either. Furthermore we get the dimension of |d| if we consider
the global section of the exact sequence

0 — Ow(h) — Ow(d) — Os,(d) —0

of sheaves on W.O
We may now describe the morphism

god:W—>P6

defined by |d|. We have just seen that the restriction of |d| to Sz w is |(4a— 3)F|, therefore
Sz w is mapped to a plane cubic curve, call it C3, by 4. The restriction of |d| to Ew is a

linear system of cubic curves with assigned basepoints at ¢1, ..., ¢s. Now the configuration
of points ¢; on Ey corresponds to the configuration of points p;, such that the ¢; are
the points of intersection of four lines L ,..., L} in the plane Ey. The strict transforms

Lq,...,Ls on W of these four lines are clearly collapsed by ¢4, so that ¢; maps Ew onto a
cubic surface with four double points. Note that C5 is a plane section of this cubic surface.
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Let h € |h| be the strict transform on W of a general plane in P3. Then |d| restricts to h
as the linear system of quartic curves with assigned basepoints at the points of intersection
of mw (h) and the curve Cy in V. Thus ¢4(h) is a Bordiga surface of degree 7.

If hy € |h — Ew| is the strict transform on W of a general plane in P? through p, then |d|
restricts to hy, as a linear system of quartic plane curves with an assigned triple basepoint
at p and with three assigned basepoints at the points of intersection of 7y (hy) and Cy.
Therefore p4(hy) is a rational normal scroll of degree 4. The surface Sw is mapped to a
scroll of degree 12 since the strict transform of a general plane in P3 meets Sy in nine
exceptional curves which are mapped onto lines by ¢d, and S3w meets S in a curve
which is a section of the morphism

Ps O mTw : Sg}W — Cg.

Lemma 4.4. The morphism @q4 : W — Wy C P contracts S3w to a plane cubic curve,
it contracts the four lines L1,...,L4 on Ew and it is an isomorphism elsewhere.

Proof. It remains to show the last part, and for this we check the restriction of the
morphism to any member of |h|. If A € |h| does not come from a plane in P2 through p,
then, as we noted above, we may write

9
dp=4->
i=1

where [ is the pullback to h of a line and the E; are the exceptional curves lying over
hnCy C V. And if h, € |h — Ew]|, then we may write

4
dp, =4l —3E, - > E;,

i=2

where [ is the pullback of a line, F; is the exceptional curve lying over p and Fs, E3, Fy
are the exceptional curves which lie over the points h, N Cy C V.

Now, the curve my (Cy ) C P2 has no 4-secant line and no 7-secant conic, which does not
go through the point p, therefore it is straightforward to check that any curve which is
contracted by pq|p or Pdip, has support on the exceptional curves on h and h,. Now,
any singularity on ¢4(hp) comes from the contraction of a curve, since p4(hy) is a rational
normal scroll. Therefore, the only scrolls that are singular are the four scrolls which meet
Ew along the lines L;. It is less obvious but may still be shown using an argument similar
to that of the proof of Lemma 0.12, that any singularity on ¢g4(h) also arises from the
contraction of curves on h.

Now we may use members of |h| to separate any two points and tangent directions outside
S3w and Ey. A point on S3w is seperated from any point ¢ outside of S3 17, since we
may find an h which does not meet ¢. A point on Eyw is separated from one outside of
Ew by a similar argument.O
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Next, we find a smooth elliptic surface on W which is mapped onto a surface of degree 13
in P®. For this, consider the linear system of divisors

|E| = |7h — 25w — 4Ew| = |d—|— SgyW + QE[/V|
on W. We calculate some relevant cohomology for this linear system. First, observe that
Y\Ew = L1+ La+ Lz + La,

and that
E|53,W = h|53,W =B+ afF.

Thus, when we consider the cohomology of the following exact sequences

0 — Ow(h) — Ow(d) — Os, 4 (d) —0, (1)

0 — Ow(d+ Ew) — Ow(d+2Ew) — Opgy,(d+2Ew) — 0, (2)
0 — Ow(d) — Ow(d+ Ew) — Og,(d+ Ew) — 0, (3)
0— Ow(E—Ew) — Ow(E) — Opgy(X) —0, (4)

0 — Ow(d+ Ew) — Ow(X — Ew) — Os, (aF) — 0, (5)
0 — Ow(d+2Ew) — Ow(X) — Os, w(B+alf) —0 (6)

of sheaves on W, then we may set up the following tables for the cohomology of sheaves

on W:
(h) O

h° 4 7 7 0 7
ht 0 0 0 3 0
h? 0 0 0 0 0
h3 0 0 0 0 0
and
Ow (X — Ew) Opy(Z) Ow(3Z)
h° 10 1 11
h! 0 4
h? 0 0 0
h3 0 0 0
We are now ready to look for a smooth surface Sy € |Z].
Lemma 4.5. The base locus of |X| consists of the curves Ly,...,Ls on Ew, and the

general member of |X| is smooth.

Proof. Clearly, there are no basepoints outside S3 w and Eywr. The restriction
X5, | = |B+ aF]
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has no basepoints, so |X| has no basepoints on Sz w as soon as the restriction map
H(O(W)Z) — H(O(S3,w)T)

is surjective. But this is clear from the above table and the long exact sequence of coho-
mology associated with the exact sequence (6). The restriction Yigw = L1+ Lo+ L3+ La,
so the first part of the lemma follows.

The last part of the lemma now follows from the Bertini theorem, since the baselocus of
|¥] is a smooth curve. O

We may now choose a smooth member S; € |X|, and doing so we make sure that
(51 N S3jw) N (51 N Ew) = ().

By the above Lemma 4.4, it is easy to see that Sy = ¢4(S1) is smooth outside the image
of the curves L;. This could also be shown using Lemma 0.13, since C3 lies on Sy and the
residual curves C1 = (d — S3,W)|51 are canomnical curves.

The canonical divisor of S; is given by adjunction:
Kw = —4h + 2Ew + Sw
SO
Ks, = (Kw + S1)s, = (Ssw + Ew)js, =(S1 N Ssw) + L1+ Lo+ L3 + L.
Therefore L1 4 ...+ L4 belongs to a canonical divisor of S;. Now if 1 < ¢ < 4, then
Ks, - Li = L?

since L; does not meet any of the other components of Kg,. Thus, the curves L;, 1 =
1,...,4, are (—1)-curves on Sy which are blown down on Sp.

The degree of Sy is
degSgy =d*- % :d3-|-d2'53,w +2d2-EW =13.

The projection into P* is the projection from the image in P® of the strict transform of a
general line Lg in P3 which meets the point p. This image is a line L in P® which meets
So in exactly 3 points. To show that S is smooth it suffices by Lemma 0.4 to show that
the strict transform h, on W of any plane through Lo is mapped smoothly into P*. But
this is straightforward to check, since they are the projections of smooth rational scrolls
from a member of the ruling.

For the invariants of S we work on W and use the exact sequences
0— Ow(ffw) — Ow(S'g,}W —I—Ew) — 051([{51) — 0
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and

0— Ow(Ew) — Ow(Sg,yw—l—Ew) — 053’W(S3,W‘|‘EW) — 0

of sheaves on W. From the last sequence we get that x(Ow (Ss,w + Ew)) = 1, so applying
this to the first sequence we get that x(Os,) = 2. In particular since h'(Ow (Ew)) = 0
and

ho(oss,W(S&W + EW)) = h0(053,w((3a - ﬁ)F)) =0,
we get that hO(OW(S;J,,W + Ew)) = 1 and thus

py(S) = h°(Os, (Ks,)) = 1.0

Postulation

Projecting Wy from the line L we get a hypersurface in P* of degree 4 with a double plane.
The double plane is the image of Ey in P*.
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5 A surface of general type with 7 = 9

We will construct a smooth surface S with numerical invariants p, = 2, ¢ = 0, K? = 3,
and a linear system of curves |H| on S such that |H| is very ample on S and embeds S
as a smooth surface of degree 10 in P* with 7 = 9. Miles Reid gives, in [R1], equations
of surfaces of the above invariants for which the linear system |[2K | is very ample and for
which there i1s additionally a Zs—action. Dropping the group action, a modification of his
argument gives the following:

Proposition 5.1. There is a minimal smooth surface S with numerical invariants py = 2,
g =0, K? = 3 and exactly one irreducible (—2)-curve A, for which the bicanonical linear
system |2K| defines a birational morphism ok : S — P® which contracts the curve A and
is an isomorphism elsewhere. Furthermore, the linear system

H| = 2K — A]

is very ample and embeds S in P* as a smooth surface of degree 10.

Proof. We first describe the construction geometrically. Let S; be the image @ox (S) with
a node p = pag(A). Then S lies on a hyperquadric @ of rank 3 in P®. Let X be the
natural desingularization of ). Then

X = P(E) = P(OPI (2) ) OPI ) OPI @ OPI).

Let p : X — @ be the desingularization map. On X there is a divisor corresponding to
the section of the bundle £ @ Opi1(—2), call it B, and let F' denote a fiber of the natural
projection m : X — P!. B is contracted to the vertex plane of Q) by p, in fact the map p is
defined by the linear system of divisors | B+2F|. We will construct a surface Sz on X which
is mapped onto S; in @ by p. In fact there are two irreducible divisors Dy € |2B + 6F|
and Dy € |3B 4 6F| such that Dj is smooth, and D5 satisfies the following:

1) Ds has a double point pg € Dy \ B

2) DanN Dy = S+ Qo+ Q1 + Q2 where Q;, ¢ = 0, 1, 2, are fibers of the projection
T D1 — ].:)1

3) Ss is tangent to B along three lines Lo, L1 and Lo

4) S is smooth except at the point pg, where it has a quadratic singularity.

For this we give equations f,¢g and h for the divisors D; and D, and a divisor D3 on
X which contains Sa, together with a relation between these equations. We use the fol-
lowing coordinates on X. Let ¢ be the generator of H(O(X)B), let z1,z2 be a basis of
HY(O(X)F) and let yo,y1, y2 be sections of H*(O(X)B + 2F) which form a basis together
with t2? tz1zq,t22. Thus a basis for H*(O(X)nB 4+ mF) is given by monomials

d r s, a,b c
1721590 Y1 Yz
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with a +b+c+d =nand 2(a+ b+ ¢) +r+ s = m. Consider the following sections
f €HY(O(X)2B +6F), g € H(O(X)3B + 6F) and h € H*(O(X)3B + 7F).

and

F=(z1+ z2)z1y0y1 + (21 + 22)T2yoy2 + T122Y1Y2
+t(z1 + Jﬂz)zxg(aoyo + ary1 + a2y2) + t2(581 + xz)zéﬂg(m — z2)(asz1 + aszs)
+t(z1 + 22)223(boyo + biyr + boys) + 12(x1 + x2)?22(x1 — 22)(bsx1 + baxo)
—I—txfﬁg(coyo + c1y1 + ca2y2) + tzxfﬁg(m — z2)(c3z1 + ca29),

9 =YoY1 Y2
+t(b1z1 4 asza)(z1 + z2)y1y2 + t(bo(z1 + 22) + caz2)Z1Y0Y2
+t(ciz1 + ag(z1 + z2))z2y0y1
+eotzizoyp + art(zy + 22)22y? + bot(x1 + 22)21 Y5
—I—tz(m + zo)za(21 — 22)(asz1 + asz2)ys
—I—tz(m + zo)z1(z1 — 22)(b3zy + baza)ys + t21‘1$2(5€1 — z2)(e3x1 + caz2)yo
—I—tz(m + zo)z1za(z1 — 22)(aoyo + @1y1 + a2ys + t(x1 — z2)(frz1 + Faz2))

h=(21+z2)yo(yi +v3) + 21y1(yp +v2) + 2292(yg + 1)
+t[(ag — bo)(x1 + x2)*xa + (co — bo)z 2o
+(ag — co)(z1 + 22)23 + (ba — c2)(x1 + z2)x%|yoy2
+t[(bo — ao)(z1 + x2)*x1 + (co — ag)z123
+(ay —c1)(z1 + 22)23 + (b1 — c1)(z1 + z2)2i]yomn
+t[(ea — az)z123 + (be — az)(z1 + z2)%zy
+(e1 —by)zizs + (a1 — by)(z1 + z2) z2]y1ye
+t[(ag — co)(z1 + z2)a3 + (bo — co)(1 + z2)z{]yg
+t[(b1 — a1)(z1 + 22)° 21 + (e1 — ar)z1 23]y
+t[(az — ba)(21 + 22) 22 + (c2 — ba)rizs)]ys
12 (21 4 22) (21 — 22)[27((as21 + aaz2) — (c321 + caz2))
—I—xg((b:wl + bazo) — (eaz1 + caz2))]yo
42 ri(zy —z2)[(21 + 582)2((53581 + bazs) — (azzy + asz2))
—I—J?%((Csm + c4z2) — (aszy + asz2))|yr
+t2xq(zy — x2)[(x1 + 2)*((asz1 + aaxs) — (bazy + bazs))
+z?((c3zy + cara) — (bazy + baza))]ye
—t?[((z1 4 22)°2t + (21 + 22)725 + 2123) (21 — 22)
(aoyo + a1yr + asys + t(z1 — z2)(frz1 + Paz2))].
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There is the following relation between these sections:
(1 4 z2)z122h =
((z1 + z2)z1ys + T122y0 + (21 + Z2)z2yr) f— (21 + 22)%27 + (21 + z2)°25 + 2i23)9g.

Now Qg,()1 and ()9 are defined by f = 21+ 22 =0 and f =21y =0and f =25 =0
respectively. It is easy to check that ¢ = 0 on @Q;, 0 < i < 2, thus {f = ¢ = 0} =
S24+Qo+Q1+Q2. Similarly we get {f = h =0} = So4+Qp, +Qp, +Qp, +Qp,, where the Qp,,
1 <4 <4, are the fibres of 7 : Dy — P! over the zeros of (z1+x2)?z?+ (21 +22)* 23+ 2223
Sy meets B along the lines L; = {t = y; = yx = 0} where {7,j,k} = {0,1,2}. Let
po={z1 —z2=yo=y1 = y2 = 0}.

Lemma 5.2. For general values of the parameters, Ss has a quadratic singularity at pg
and is smooth elsewhere. Furthermore the curve So N Fy,, =;,) does not lie on any singular
quadric with vertex at pg.

Proof. First we use Bertinis theorem to note that D; is nonsingular away from B, and
that Ds is singular only at py away from B, for general values of the parameters. This is
so since the parameters make Dy and Dy move in linear systems with basepoints only in
B and pg. Thus, for general values of the parameters, the linear system |Ds| restricted to
D1 has basepoints only on t(z1 + z3)z122(21 — z2) = 0. Therefore, using Bertini again,
the first part of the lemma follows if we prove the following four statements for general
values of the parameters:

1) Sy is smooth along B

2) S is smooth along (21 + z2)z129 =0
3) S is smooth along 1 = z2 except at pg
4) S, has a quadratic singularity at py.

For 1) we check Dy N DN B = {f =g =1t =0} = Lo+ L1 + La. For a point
(z1,22,t,90,y1,Y2) = (£1,22,0,0,0,1) on Ly we set up a table of partial derivatives with
respect to xl)xzatayO)ylayQ-

f g h
t as(z1 + x2)%22 bo(z1 + z2)z1 (a2 — bo)(z1 + 22)% 2o
+bo(zy + 22)% 2% + coxind +(ca — ba)zizs
T 0 0 0
9 0 0 0
Yo (21 + z2)zo 0 1+ x2
Y1 1T 0 zy
us 0 0 0.

We see that D; is nonsingular as soon as asbaca # 0. For S; we need to check that the
tangent spaces of D1 and D5 or, alternatively, D; and Ds = {h = 0} meet properly. For
this we see that %tg%f = by(z1 + z2)zizs # 0 unless z1z(z1 + z2) = 0, but in any of those
three points there is a nonvanishing minor in the matrix

( a(f,h) )

8(t) yO)yl)
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Similarly, we see that Sy is smooth along the lines Ly and L; whenever agbgcg # 0 and
aq b161 7§ 0.

For 2) we see that the linear system |Ds| restricted to Dy as basepoints only on ((z1 +
z9)?x2 4+ (21 +29)?23+ 2322) (21 — 22) = 0, therefore we may use Bertini again to conclude

that Ss is smooth along (z1 + z2)z122 = 0.

For 3) we consider the matrix of partial derivatives

df  dg
dﬂl dﬂl

of 9y

85 b
— o 99
M=1 @& @
of g

dyl dyl
of b9

dyg dy2

at a point s = (z,t,y0, Y1, Y2):

z(3yoy1 + Yoy2 + v1y2)+ 26223 (aoyo + a1y1 + asys) + \

M(s) = 222 (y1 + y2) + ... Yiya + ...
z*(2y0 + y2) + - .- Yoy2 + .-
\ 22(2y0 +y1) + - .. Yoy1 + - .. /
where ... only involves terms with parameters different from ag, a; and as as coefficients.

Lemma 5.3. The 2 x 2-minors of M(s) vanish simultaneously only in pg = {z1 — z2 =
Yo = y1 = y2 = 0} for general values of the parameters.

Proof. Since the statement is an open condition, it suffices to show that it is satisfied for
some selected values of the parameters. Thus if we set all the parameters, except aqg, a;
and as, equal to 0, then we get the following matrix.

z(3yoyr + Yoz + v1y2) 2223 (aoyo + a1y1 + asys)

0 0
My(s) = 22%(y1 + y2) Y12
22(2yo + y2) Yoy2
2%(2y0 + y1) Yoy

If g = a1 = as = 0, then it is easy to see that the 2 x 2-minors of this matrix vanish
simultaneously only when yo =41 =0, yo = y2 =0, y1 = y2 = 0 or £ = 0. We check these
loci separately, starting with {yo = y; = 0}. First we note that 2 # 0 on X.
Next we set all the parameters except ay equal to 0. Then we have the minor

of dg  Of 9y

L2 L —dant?2iyi 4.
dyo dy.  dys dyo ? Y2
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where ... involves terms with yg and y;. This minor vanishes only when ¢ = 0, or when
y? = 0. The locus t = 0 is taken care of above, so set-theoretically we are left with the
point pg. A similar argument for the loci y1 = y2 = 0 and yo = y2 = 0 proves the lemma.O

From Lemma 5.3 we see that 3) follows.

For 4) we consider the image S; = p(S2) in P°. We use the basis

(yo,y1,y2,t(z1 — $2)2,t(x1 + z9)(z1 — z2),t(z1 + :E2)2) = (z0, 21, 22, 23, 24, 25)

of HY(O(X)B + 2F) as coordinates of the P°. We will work locally at p = (0,0,0,0,0,1),
so we set z5 # 0 and use local coordinates
(ZO,Zl,ZQaZf};Z‘l) = (Z_O; Z_la 2_2; 2_3; 2_4)
25 2y R 25 2§
We choose polynomials in the Z; which restrict to f and g on X and denote them by f;
and g;. The quadric cone @ is given by ¢; = Z3 — Z? = 0. By [Lo Prop. 4.2] pis a
quadratic singularity on Sy if the 3 x 3-minors of the matrix

together with the equations fi, g1 and ¢; generate the maximal ideal of p = (0,0,0,0,0)
in AS.

Lemma 5.4. For general values of the parameters, the 3 X 3-minors of the matrix

) ) )
J:(dél,- dgl,- dgl,-)

together with the equations fi1,g1 and q1 generate the maximal ideal of p = (0,0,0,0,0).

Proof. Since the statement is an open condition on the parameters, it suffices to check
that it holds for some selected values of the parameters. If we set all the parameters except
ai,bs,co and (s equal to 0, and calculate the matrix, we get

/ico—l—... %CoZQ—I—... 0 \
ial—l—... a1z, + ... 0
J(p) =] 3ba+... baZo + ... 0
B2 74+ ... 1

\ —1B273 + 38204+ ... 224/

In the first column (...) involves terms vanishing at p, while (...) in the second column
involves terms vanishing to the second order at p. We choose three linearly independent
minors, say Jss, Jos and Ji3, where J;; is the 3 x 3-minor given by deleting the i-th and
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the j-th row in J(p). Let j;; be the linear part of J;;, and let fig and ¢i0 be the linear
part of f; and ¢; respectively. Then we get

j35 CoQq —260(11 0 0 0 Zo
j25 bgCo 0 —260b2 0 0 Zl
ns | = 0 0 0 aifa —2a102 Za2 |,
f10 Cq 4Cl1 452 0 0 Zg
q10 0 0 0 1 0 7

which shows that the linear forms jss, j2s, j13, fio and ¢10 span the vector space generated
by the Z; for general values of aj,bs,co and Fs2, so Lemma 5.4 follows.O

For the last part of Lemma 5.2 we go back to X and simply note that Fi, —,,; = {f =
r1 — 3 = 0} is smooth at po for general values of the parameters, and that S N Fig, =z}
is the complete intersection {f =g = z; — 2z, = 0}.0

We calculate the invariants of S». By adjunction on X we get that
Kp, = (Kx + Di1)p, = ((—4B —8F) + (2B +6F))|p, = (—2B — 2F)|p,
thus by adjunction again on D we get
Ks, = (Kp, + S2)js, = ((—2B = 2F) + (3B +6F) — Qo — Q1 — Q2)|5, = (B + F)s,.

Now |B + F| has B as a fixed component and F' as a moving part. Calculating on X, one
may show that the three lines L; are (—1)-curves on Ss. The map p : X — @ restricts
to the blowing-down of these lines on Ss. Let S; = p(S2). Then one gets the following
invariants for Sy:

The double point of S is the point pg = {#1—22 = yo = y1 = y2 = 0}, and p = p(po) € Si.
If we let
T:Y = Q

be the blowing-up of ) at p, and S is the strict transform of S; on Y with exceptional
divisor A lying over p, then S is as described in the first part of the proposition.

Consider now the linear system
|H| = |2K — A
on S. It has dimension

h?(Os(H)) =5,

since it defines the projection of S1 = a2k (S) from the point p = par (A). Furthermore
we have a decomposition

H=C+D,

where D is the only curve in the linear system |K — A| and C is a canonical curve. We
are in a situation similar to the one of the above K 3-surface and proceed along the same
lines. In this case we argue by the following lemmas.
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Lemma 5.5. Every canonical curve C' € |K| except for the curve D + A is canonically

embedded by |H|.

Proof. From the proposition we argue directly by studying the image S; of S in P® under
the map @2x. In fact every canonical curve C' is mapped into a P3 in P®, and the image
of S lies on a singular hyperquadric ), a cone over a plane conic with vertex a P2, such
that the P3s of the canonical curves is the pencil of P3s of the hyperquadric Q. Let p € P>
be the image of the curve A. Then ¢g : S — P* is the projection of S; from the point
p € S1. Since p is not contained in any of the P3s of the curves @25 (C) except for the
one of pai (D), this projection restricts to an isomorphism on these curves which is the
statement of the lemma.O

Lemma 5.6. The curve D + A is embedded by |H|.

Proof. We follow the argument of the previous lemma. Since D-A = (K — A)- A = 2 and
D has arithmetic genus 3, we see that pax (D) has arithmetic genus 4 and has a node at p.
Projecting from p we get a plane quartic curve unless D is hyperelliptic. This is assured
as soon as pax (D) is the complete intersection of a smooth quadric and a cubic in the P3
of par (D). Furthermore H - A = 2 and the restriction map

H°(O(S)H) — H°(O(A)H)

is onto as soon as p is not in the vertex of (). Thus A and D are embedded as plane curves
by ¢z, which spans a hyperplane in P*. The lemma follows since A is an irreducible conic

and D-A=2.0

The very ampleness of |H| on S now follows from Lemma 0.13. This concludes the proof
of Proposition 5.1.0

Postulation

Projecting from p, @ is mapped birationally onto P%. The divisors D; and Dy on X are
projected, via p, onto hypersurfaces which we denote by V; and V5 respectively. Both
p(D1) and p(Ds) have degree 6 as varieties in P®, but only p(Ds) is singular at p, so Va
is a quartic hypersurface, while V; is a quintic hypersurface containing S. One may show
that the plane that contains the curve D has multiplicity one on V5 and multiplicity three
on V.
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6 An elliptic surface with = = 10

Proposition 6.1. There is an elliptic surface blown up in 2 points, with invariants p; = 2,
¢ =0 and K? = —2, which is embedded in P* as a smooth surface of degree 10 and m = 10
such that the exceptional curves are embedded as lines.

Proof. We will show this by a linkage argument. The first step is to construct a local
complete intersection surface T of degree 6 and m = 2 which is cut out by quartics. By
Proposition 0.14, we get that 7" is linked to a smooth surface S of degree 10 and 7 = 10 in
the intersection of two quartic hypersurfaces. The other invariants of S will follow from a
more detailed study of this linkage.

T is the union of a smooth del Pezzo surface T} of degree 4 and a smooth quadric surface
T5, in the following way: Let Ey + E5 + Fy + F5 be one of the hyperplane sections of T}
which consists of four exceptional lines, such that Ey - Fs = Fy - F5 = 0. Next, let T5 be a
smooth quadric in the corresponding hyperplane such that F; and F5 are members of one
of the rulings of 7T, and F; and E> meet T5 transversally.

Lemma 6.2. T'= T} UT} is cut out by quartic hypersurfaces, and is linked to a smooth
surface S in the complete intersection of two hyperquartics.

Proof. For the first part of the lemma we consider the exact sequence
0— ITI (3) — IT(4) — ITnH2 (4) — 0

of sheaves of ideals on P*, where Hs is the hyperplane of 7. This sequence remains exact
after taking global sections, since h'(Zr,(3)) = 0. Therefore it suffices to check whether
T N Hy is cut out by quartics, and 7} is cut out by cubics. The latter is clear since 7T}
is a complete intersection of two hyperquadrics, while T'N Hs is the union of 75 and the

lines Fy and FEs, so it is clearly cut out by the unions of T5 and the quadrics which define
Ey U Es.

For the second part of the lemma one may show that 7T is locally a complete intersection
and then use Proposition 0.14. to conclude the lemma. Instead we will focus on the bad
locus, the lines F} and Fs where T} and T intersect, and work out the linkage directly.
We consider the blowing-up

W — P?

of P* along the line Fy, with exceptional divisor
E~P(30p:1) = P! x P2

If a hypersurface V of degree v contains the line F} with multiplicity m, then the strict
transform of V on W will meet F along a divisor of E which corresponds to a section

f : OPI — Symm(?)(’)pl(—l)) & OPI (’U)
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If we let B be a divisor of E corresponding to a section of (30p1(1)), and F corresponds
to a fiber of the projection g : £ — P!, then the divisor

{f=0}=mB+ (v—2m)F.

The strict transform of T} will therefore meet E along a curve which is equivalent to B - B
as a cycle on E, while the strict transform of 75 will meet E along a curve equivalent to
B- (B — F)on E. Thus the strict transform of 7" on W meets E along a curve equivalent
to B- (2B — F).

If we perform a similar blowing-up of W along the 7~!(Fy), we get similar intersections
on the new exceptional divisor Fy. To avoid chaotic notation we use the same for divisors
on F and Fy. Now the quartic hypersurface V' which corresponds to a general section of
H%(Z(T)4), has multiplicity one along the lines F; and Fs, since this is true for the general
section of HY(Z(T N H)4). Thus the strict transform of V meets F and Fy along a divisor
equivalent to B + 2F. Linking T to a surface S in the complete intersection of quartics,
we use V and a quartic hypersurface V/ which corresponds to a section of H®(Z(7)4) with
multiplicity two along the lines F; and Fy. The strict transform of V/ meets E and FEy
along divisors equivalent to 2B. A Bertini argument shows that for a general choice of V
and V’, the surface S residual to T in V NV’ is smooth.O

Remark. The strict transform of S on W meets £ and Ejy in curves equivalent to (2B -
(B+2F)—B-(2B—F))=5B-F. These curves are blown down on S. Thus the lines Fy

and F5 are H-secants to S.

A general hyperplane section Hp of T has the decomposition Hy = Hp, + Hrp, such that
Hr, N Hr, is two closed points. Therefore, Hr has arithmetic genus 7(T) = p(Hr,) +
p(Hr,) + 1 = 2. By the formulas for linkage of curves [PS], 7(S) = 10. We find further

invariants of S by studying this linkage more closely.

Let X denote the complete intersection of the two hyperquartics, and consider the coho-
mology associated with the liaison exact sequence

0 — Os(K) — Ox(3) — Or(3) —0

of sheaves on X. Note that 7' lies on a pencil of reducible hypercubics, and that the
restriction map H°(O(X)3) — H°(O(T)3) is onto. Therefore S is regular and has py, = 2.
We get that K2 = —2 by the double point formula for smooth surfaces in P4,

To show that S is elliptic, we find the curves of intersection: C'= SNT, C; = T1N(SUT)
and Cy = T2 N (S UTY). By the liaison exact sequences

0— Os(K) — 0s(3) — 0O¢(3) — 0,

0— OTl([{Tl) — OT1(3) — 001(3) — 0

and
0— OTQ(JKTQ) — OT2(3) — 002(3) — 0
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we get that Oy = 3Hp, — Kp, = 4Hp, on T, Cs = 3Hp, — Kp, = 5Hp, on Ty and
C=C1+Cy—2(F +F3)=3H— K on S. Thus C is the union of a curve A on T} and a
curve B on Th, where A = 4Hp, — F) — Fy and B is of type (3,5) on T5. Now, restricting
the pencil of quartics to the hyperplane Hs of T5 we see that it has the quadric defining 7%
as a fixed component, and that the moving part is the quadrics defining Fy + Fs 4+ G1 + Ga,
where (1 and (G2 are skew lines meeting both £y and F2. Thus SN Hp, = B+ G1 + G,

and

A=3H—-K-B=2H - K+ G+ Gs.

Since the curve (G1 + G2 does not lie on T, it must be a component of some canonical
divisor. Thus we have effective divisors

K —(G1+Gy) =2H — A.

We get that the restriction to S of the pencil of quadrics defining 75 is a pencil with the
curve A + (G + (G5 as a fixed part, and a moving part which is the moving part of |K|. In
fact G1+ Go must be the fixed part of | K|. Since K2 = —2, they are (the only) (—1)-curves
on S. The moving part of |K| is a pencil of elliptic curves, since (K — (G1 + G2))? = 0.0

Remark. Since, according to the secant formulas 0.2., there are two 5-secants to S which
meet a general plane in P*, and B = Ty, N S is of type (3,5) on T, we may characterize T5
as the union of the 5-secants to S. Therefore, any quartic hypersurface containing S must
also contain 75.

Postulation

Let TO = S U TQ.
Proposition 6.3. h°(Zs(4)) = h°(Zr,(4)) = 3.

Proof. We let () denote the complete intersection of two quartic hypersurfaces containing
S, and consider the cohomology associated with the liaison exact sequence

0— Op,(H+K) — Og(4H) — Op,(4H) — 0

of sheaves on ). Since T; is a Del Pezzo surface, we get that Or, (H + K) = Or,. Thus
we get that h(Or,(4H)) = 67, and that the map

H(O(Q)4H) — H°(O(Tp)4H)

is onto. Therefore h®(Z7,(4H)) = 3. But we have already seen that any quartic containing
S, must contain Tp, so the proposition follows.O

52



7 A surface of general type with 7 = 10

We will construct a smooth surface S with numerical invariants p, = 3, ¢ = 0, K% = 4, and
a linear system of curves |H | on S such that |H| is very ample and embeds S as a smooth
surface of degree 10 in P* with 7 = 10. Via the bicanonical linear system |2K |, a surface
So of the above invariants is realized as the complete intersection on the four-dimensional
cone over a Veronese surface in P7. Projecting from three linearly independent singular
points on Sy, we get a surface S in P* with the right invariants. We want to show that S
can be realized as a smooth surface. The tricky part is to impose exactly three quadratic
singularities on the surface Sy such that the projection from these points into P* is an

embedding.

Proposition 7.1. There is a minimal smooth surface S with numerical invariants py = 3,
q = 0, K? = 4 and exactly three irreducible (—2)-curves Ay, Ay and As, for which the
bicanonical linear system |2K | defines a birational morphism

QOQK:S—>P7

which contracts the curves A; and is an isomorphism elsewhere.

Furthermore the linear system
|H| = |2IX’ — Al — AQ —A3|

is very ample and embeds S as a smooth surface of degree 10 in P*.

Proof. For the last part we note that H has decompositions
H=0;+D;,

where C; = K — A; and D; = K — A; — A with {i,j,k} = {1,2,3}. We get that
(Cz + [\’)|CZ = (2[( — Ai)|C’i7 and that (l)Z + A’)|D, = (2[( — Aj — Ak)|Dz Thus, on the
general member of |C;|, and on the curve D;, |H| will be restricted to the canonical linear
series. For the very ampleness of |H|, it is therefore necessary that neither the general
member of |C;| nor the curves D;, where i = 1,2, 3, are hyperelliptic. We will take careful
notice of this in the first part, where we start by describing the construction geometrically.

Let S be the image @ox(S) with three nodes p; = pag(A;) for i = 1,2,3. Then S;
lies on a fourdimensional cone X over a Veronese surface in P7. Let Xy be the natural
desingularization of X. Then

Xo = P(E) = P(Op:(2) & Op: @ Ops).

Let p : Xo — X be the desingularization map. On Xy there is a divisor corresponding
to the section of the bundle F' ®@ Opz(—2), call it By, and let F' denote the pullback of
a line by the natural projection 7 : Xo — P2. By is contracted to the vertex line of X
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by p, in fact the map p is defined by the linear system of divisors |B| = |By + 2F|. On
X we have a canonical divisor Kg = —3B — F and intersections B* =4 and B® - F = 2
and B? - F? = 1. For two general members (G and G3 of |2B)|, the complete intersection
G1 N Go is a smooth surface ¥. By adjunction, B — F' restricts to the canonical divisor
Ksx on 3. Thus X is a regular surface with x(¥) = 4 and K& = 4. Since B> - By = 0, ¥
is embedded by p in P7 as the complete intersection of X and two quadric hypersurfaces

(1 and Q.

For the construction I give equations for X and the quadric hypersurfaces )1 and @2, such
that the following conditions hold for S1 = X N Q1 N Qs:

1) S; does not meet the vertex line X
2) S; has exactly three linearly independent isolated quadratic singularities, and is smooth
elsewhere.

Let 2o, ..., 27 be a basis for H*(O(P")1). Then we can define X as the subvariety where

the matrix
Z5 22 23
MX = 4 z6 z4
23 24 27

has rank one.

For () and @2, consider the following sections of HO(O(P7)2):

F=2z(fo+ho)+ z1(fr + h1) + z2(f2 + h2) + 23(f3 + ha) + za(fa + ha)

and

g = zo(go + ho) + z1(g1 + h1) + 22(g2 + h2) + 23(93 + h3) + z4(ga + ha),
where the f;, g; and h; are linear forms for ¢ = 0, ..,4 such that:

fo, f1, 90,91 involves only zq, .., z4, while hqg, hy involves only zs, z¢, 27.

f2, g2 involves only zq, .., z4 and z7, while hs involves only zs, z¢.

f3, 93 involves only zg, .., z4 and zg, while hgz involves only zs, z7.

fa, 94 involves only zq, .., z4 and z5, while h4 involves only zg, 27.

Let Q1 = {f =0} and Q2 = {g = 0}, and note that S; = X N Q1 N Q2 contains the points
pm={z0=..=2=0},pp={z0=..=zs =27 =0} and ps = {20 = .. = 24 = 26 = 27 =
0}.

Lemma 7.2. For a general choice of forms f;, g;, h;, S1 has isolated quadratic singularities
at the points py, p2, ps, and is smooth elsewhere.

Proof. First of all we see that if we fix f and let the parameters of g vary, then the
corresponding )2 vary with basepoints only in the plane {z0 = .. =24 =0} on Q1 = {f =
0}. But X meets this plane only in the points pi,ps,ps, so this means, by the Bertini
theorem, that for general linear forms f;, g;, h;, S1 is smooth away from these points.

Now, for the point p;, we consider the minors
M2 = 2227 — 23%4,
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2
Moo = 257 — Z3

and
2
Mi11 = 2627 — 24

of Mx together with f and g. We set up a table of the partial derivatives of these equations
evaluated at pq:
miz m22 mu f g

Z0 0 0 0 ho ho
zZ1 0 0 0 h1 h1
2 1 0 0 fo g
zZ3 0 0 0 h3 h3
zZ4 0 0 0 h4 h4
25 0 1 0 0 0
26 0 0 1 0 0

Clearly the minors mys, mss and my; define X locally at p;, while S7 is singular at p;.
To see that S; has a quadratic singularity at the point pi, it is enough to check that the
maximal minors of the above table considered as a matrix, together with the equations
mi2, Mag, M1, f and g generate the maximal ideal which defines p; (see [Lo Prop. 4.4]).
This is now straightforward. The points ps and p3 are checked in the same manner as the
point p1.0

We will now make use of Lemma 0.13 to show that if we project Sy from the plane spanned
by the points p1,ps2, ps, that is from the plane {zg = .. = z5 = 0}, then we get a smooth
surface of degree 10 in P%. For this let S be the strict transform of S; when we blow
up P7 in the points p;. Then S meets the exceptional divisors in (—2)-curves, which we
denote by A1, Ay and Aj respectively. A hyperplane section of S; is a bicanonical divisor,
therefore the pullback to S of a hyperplane section of S; is a bicanonical divisor on S. Let

HEQ[(—Al—AQ—Ag.

Then |H| defines a map of S into P*. That it in fact is a morphism, follows from the fact
that S7 meets the plane spanned by the points p; schemetheoretically in those points only.
Now H has the decompositions H = C; + D;, where C; = K — A; and D; = K — Aj; — Ay
with {7,7,k} = {1,2,3}. As we exploit this decomposition, we bear in mind the geometric
setting of the surface Sy in Xg. A canonical divisor on Sy is the restriction of a divisor
B — F on Xg. Viathe map p: Xg =+ X C P7 we see that the image of B — F = By + F
on X is a threedimensional quadric of rank three. It spans a P*%, so any canonical curve
on S is in this way the complete intersection of three quadrics in P4, such that at least
one of the quadrics has rank three. With the above equations for S;, we can now give
the explicit equations for the canonical curves on Sy corresponding to the curves D; on S.
Thus the curve on S; whose strict transform on S is Ds, is defined by the equations

22223225:0,
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2627 — zi =0
and
f=g9g=0.
We use this explicit description to prove

Lemma 7.3. |H| restricts to a very ample linear series on the curves D;, for i = 1,2 3.

Proof. First we show that | H | restricts to the canonical linear series on the curves D;. But
OD;‘(A’DZ') = ODZ([{‘I_DZ) = OD,(H‘|‘AZ)7 and OD,(AZ) >~ Op,, so OD;(A’DZ) = OD,(H)
Thus we are left to show that the curves D; are not hyperelliptic.

Let Dj denote the canonical curve on Sy whose strict transform on S is Ds. Then Dj is the
curve cut out by the equations given above. We may assume, by the Bertini theorem, that
Dj is an irreducible curve with singularities only in the points p; and ps. The restriction
of |H| to D3 corresponds to hyperplane sections of Dj which contains the line L joining
the points p; and ps. A general hyperplane section of this kind consists of four distinct
points outside p; and ps, so Ds is hyperelliptic only if none of the six secants which join
these four points meet the line L.

Now look at the equations for Dj:
Z9 = 23 = Zy = 0,

2526 — zz =0,
F=z(fo+ho)+2z1(fi + h1)+ za(fa+ ha) =0

and

g = z0(go + ho) + z1(g1 + h1) + z4(ga + ha) = 0.

We study a special hyperplane section, namely z4 = 0. Then we see that the restrictions of
the equations f = 0 and g = 0 coincides with the restrictions of two minors of the matrix

zo —fi—h1 —g1—M
21 fo+ho go+ho )
But for general linear forms f;, g;, h; these two minors define the union of a twisted cubic

curve and the line L, such that L is a secant of the twisted cubic curve. Since no two
secants of a twisted cubic curve are coplanar, the lemma follows.O

Lemma 7.4. |H | restricts to a very ample linear series on every curve of the linear systems

|C;|, for i =1,2,3.

Proof. We treat the linear system of curves |C1|. The other two are treated similarly. Let
|C1| denote the linear system of canonical curves on S; which meet p;. The linear system
|H| corresponds to hyperplanes which contain all three points p1, pa, ps. Let C] € |C]| and
let Cy be its strict transform on S. Unless (] meets ps or ps, the linear series |H|¢,| on
(' fails to be very ample only if C has a trisecant line L through p;, that is a line which
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meets C] in a scheme of length three. But S is cut out by quadrics, so the line would be
contained in S, and likewise also in X. Now, any line in X meets the vertex of X, since
a Veronese surface does not contain lines. On the other hand S; does not meet the vertex
of X, so we have reached a contradiction.

For the curves in |C]| which does meet ps or ps, we need another argument. These curves
correspond to the curves Dy + Az and D3 + A on S. We have already seen, in the above
lemma, that |H| restricts to a very ample linear series on Dy and Ds. The curves A; are
smooth rational curves and H - A; = 2, so |H\,,| is also very ample, for i = 1,2,3. To
finish the proof, we consider the cohomology associated with the exact sequences

0— Os(H— A1) — Og(H) — Oa,(H) — 0,

0— Os(D;) — Os(H) — O¢,(H) — 0,
0— Os(CZ) — Os(H) — OD,(H) —>0,

and

0— Os(Dg) — OS(D2+D3) — ODQ(D2+D3) — 0

of sheaves on S. From our construction we have that h%(Os(H)) = 5 and h'(Os(H)) =
0, and similarly that h°(Os(D;)) = h*(Os(D;)) = 1 and h'(Os(D;)) = 0, and that
h°(Os(Cy)) = 2 and h1(Os(C;)) = 0 for i = 1,2,3. Therefore the restriction maps

HY(O(S)H) — H(O(Cy)H),

H°(O(S)H) — H°(O(D;)H)
and
H°(O(S)Ds + D3) — H°(O(D3) D3 + D3)
are all surjective. We want to show
Lemma 7.5. h°(Os(Ds + D3)) = 2.

Proof. Since clearly h?(Og(Ds+ D3)) = 0 and h?(Os(D3)) = 1 we get from the last exact
sequence above that h'(Op,(Ds + D3)) > 1. But Dy (D5 + D3) = 2 and we have already

seen that Ds is not hyperelliptic, so we have equality; h'(Op,(Ds + D3)) = 1. Therefore
h(Os(Dy + D3)) = 0 and h%(Og(D;y + Ds)) = 2.0

It now follows, when we note that H — A; = Ds 4+ Ds, that the restriction map
H°(O(S)H) — H°(O(A)H)

is also surjective. We put this together to conclude the proof of Lemma 7.4. If o : S — P*
denotes the map defined by |H |, then we have that the image of D5 is a plane quartic, and
the image of A; is an irreducible plane conic. Now Dy - A1 = 2, so if |H| is not very ample
on Dy 4 Ay, then the image of Ds 4+ A; 1s a plane curve. But this contradicts the fact that
h°(Os(D1)) = h°(Os(H — Dy — A1)) = 1, so the lemma follows.O
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In the course of the proof of Lemma 7.4, we showed that all the conditions of Lemma 0.13
are satisfied, so we may conclude that |H| is very ample on S. This ends the proof of the
proposition.[]

7.6 Postulation

We take a closer look at the geometry of S. On S there are three quartic plane curves D;,
t =1,2,3. Since D; - D; = 2 when i # j, we see that the planes II; of the three curves
meet in lines. In fact since the union of the three curves are not contained in a hyperplane,
these planes must have a line, call it L, in common, which in turn is a 6-secant line for the
surface S. This fits with the formula of Le Barz for the number of 6-secant lines to the
surface S. Furthermore, since S meets each of the planes II; in two points on L outside the
curve D; for 1 = 1,23, we get that each plane II; has two pencils of 5-secant lines for S.
Altogether we have counted six 5-secant lines to S which meet a general plane in P%. This
fits with the corresponding formula of Le Barz. Anyway, the planes must be contained in
any quartic hypersurface which contains S. Let Ty = S UII; U I, U II3.

Proposition 7.7. h%(Zs(4)) = h°(Zr,(4)) = 3.

Proof. We first describe the net of quartics which contain 7y. For this we analyze the
projection map

px : X-->P*

from the points p1,p2,ps on X. If 7 : Y — X is the blowing-up of X in the points p; with
exceptional divisors F1, 5 and F3, then px extends to a morphism

py Y = P*

defined by the linear system

3
W= 1B-3"F
i=1

of divisors on Y (as before we keep the notation B and F' for the pullbacks to Y of the
divisors B and F on X).

The general member F' € |F| is a threedimensional quadric in X, therefore the divisor
Fpy =F —-E —FE;, for 1 < i < j < 3,is mapped by py onto the plane II; where
{1,7,k} = {1,2,3}. So we are interested in members of the linear system

3 3
[4h — 3F + Y "2E;| = [4B —3F — Y 2|

i=1 i=1
which contains the strict transform S of S; on Y.

Now, let ¥ € |2B — E?zl E;| be the strict transform on Y of a divisor in |2B| on X which
contains S;. Then

3
S = (QB — ZQEZ')m
i=1
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as divisors on X, so
3
Os(4B —3F — ) 2E; — S) & Ox(2B — 3F).
i=1
If we consider the cohomology associated with the exact sequence
3

0— Oy(—3F+>» E;) — Oy(2B—3F) — Og(2B—3F) —0
i=1
of sheaves on Y, then we get that
H°(O(Y)2B — 3F) 2 H°(O(X)2B — 3F).
But h°(Oy (2B — 3F)) = h°(Oy (F)) = 3, so we get a net of quartics which contain Tj.

This argument does not show that there does not exist any other quartic which contain S
in P*. To show this we will use an argument via linkage. The linkage that we will describe,
could in fact give a quick direct proof of existence as well, arguing as in the above chapter

6.

Now, by the secant formula of Le Barz (see 0.2), there are 36 4-secants to S which meet
a general line in P*. Therefore S cannot lie on any cubic hypersurface, as any 4-secant
line would be contained in the cubic hypersurface, while no cubic hypersurface contains
as many as 12 lines through a general point. Thus S is linked to a surface 7" in the
intersection of two quartic hypersurfaces. We know already that 7' contains the planes II;
as components, so let 77 be the residual component

T=1I, Ull, UIls U Tj.
Thus T} has degree three. If we consider the liaison exact sequence
0— Os([() — 05(3H) — OS(‘]T(?)H) — 0
we see that
SQTE?)H—[{EH—I—Dl—I—DQ—I—DgEH+(H1QS)—|—(H2QS)—|—(H3QS)

on S. Hence T1 NS = H on S, and 71 must be contained in a hyperplane. Now 73 N (S U
Iy UIly, Ully) = 3Hy, — Ky, = 4Hr,. So Th N S is linked to a curve Cy of degree two
in the intersection of a quartic and a cubic suface. By the liaison formulas (see [PS]) we
get that Cj has arithmetic genus p(Cy) = —2, which means that Cj is the doubling of a

line F in the cubic surface T}. In fact this line F' must coincide with the line L, since its
doubling Cy 1s contained in 1Ty U II5 U II3.

To conclude the proof of the proposition, we let ) denote the complete intersection of two
quartic hypersurfaces containing S, and consider the liaison exact sequence

0— On(H+K) — Og(4H) — Orp,(4H) — 0

of sheaves on Q. Since T} is a cubic surface in P3, we get that O, (H + K) = Or,. Thus,
taking cohomology, we get that h°(Or,(4H)) = 67, and that the map

H°(O(Q)4H) — H°(O(Ty)4H)

is onto. Therefore h®(Zr,(4H)) = 3. But we have already seen that any quartic that
contains S, must also contain all of Ty, so the proposition follows.O
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8 Classification of rational surfaces

of degree 10

Theorem 8.1. If S is a smooth rational surface of degree 10 in P*, then S is of type A
or B, or =9 and

4 11 18
H=9l-Y 3E—Y 2E; - Y Ej,
i=1 7j=5

k=12
where [ is the pullback of a line from P? and the E; are (—1)-curves on S.

Proof. The idea is to use Sommese and Van de Ven‘s results, Theorem 0.10, on the
adjunction mapping to generate candidates for smooth surfaces in P*, and then to rule
out all but those described above.

Throughout this section we by S denote a smooth rational surface of degree 10 in P%. The
double point formula (0.7) now takes the form

(A) 5H- K +2K* =12.

The theorem of Severi (0.8) and Riemann-Roch (0.4) says that 5—h!(Og(H)) = 6— %H-K,

(B) H- K =2h'(0s(H)) + 2.

Combining (A) and (B) we get

(C) K?=1-5r"(0s(H))
and
(D) m="T7+h'(Os(H)).

Lemma 8.2. S is not a scroll or ruled in conics.

Proof. If S is a scroll, then S is minimal so K2 = 8 which contradicts (C). If S is ruled in
conics, then by Theorem 0.10, (B) and (C), (H + K)? = 15 — h'(Og(H)) = 0, and thus
by (D), m = 22. But then a general hyperplane section is a smooth curve of degree 10 and
genus 22, which is impossible by the Castelnuovo bound [Ha Th. 6.4.].0

We proceed to bound the speciality h'(Og(H)). For this we need a lemma which we will
also use later.
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Lemma 8.3. Let S be a rational surface, and H a very ample divisor on S. If K? > 0,
then H - K < —2.

Proof. Riemann-Roch says that
RY(Os(—K)) =1+ K* + h'(Os(-K)) > 1.

Let C be a member of the linear system | — K|. Then C has arithmetic genus 1, so since
H is very ample we get that H-C' = —H - K > 2.0

The lemma combined with (B) and (C) gives
R (Os(H)) >0,

since h'(Og(H)) = 0 implies that K? = 1 and H - K = 2. On the other hand we get
from Theorem 0.10 and lemma 8.2 that |H 4+ K| defines a birational morphism of S onto a
surface S7 of degree (H + K)? in P™"!. Since S; is nondegenerate, we get the inequality

(H+K)Y?>m—2
which combine with (B),(C) and (D) to imply that

R (Os(H)) < 5.

From here we treat the different possible values of h'(Os(H)) case by case. In each case
we will be looking for reducible hyperplane sections with components that have arithmetic
genus too high for their degree.

Proposition 8.5. If S is a smooth rational surface of degree 10 in P*, then h'(Og(H)) #
3,4,5.
Proof. Let Sy be the image of S by the morphism defined by |H + K|. Let K; be its

canonical divisor and m; the genus of its hyperplane section H;. By Theorem 0.10 we get

that S; C P, h = h'(Os(H)) + 6, with
degSy = (H + K)* = 15— h'(Os(H))

and

1 1
m o= SH(Hy 4 Kr) + 1= S(H + K)(H +2K) +1=10 - 20} (Os ().

If h'(Os(H)) = 5, then S; is of minimal degree 10 in P!, so S; is a scroll. Therefore S is
ruled in some possibly singular, twisted cubic curves. Let F' be a fibre of the ruling. Then
F is part of a hyperplane section H of S. Let C' be the residual curve. Then C has degree
7 and arithmetic genus

1
p(C) = §(CQ—I—C’-K)—I—1: 10.
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By Lemma 0.11 C' decomposes into a plane sextic curve, call it F. and a line L such that
E-L=1.1If L? > 0, then S would be a scroll or P2, so we may assume that L? < —1.
Thus C? = (E+ L)? = 4 implies that E? > 3. The index theorem applies to E to see that
E? = 3 and therefore L? = —1. Now (L + F)? = (H — E)? = 1 implies that L- F =1, so
L is an exceptional line on S, which is also a section of S as a ruled surface. By Theorem
0.10, L is blown down on Sp, but S is a smooth scroll which spans P'1, so this is absurd.

If h1(Og(H)) = 4, then S; is of degree 11 in P!°. Since 7y = 2, S; must be ruled in conics,
and thus S is ruled in rational quartic curves. We get that (H; + Kl)z = -7+ Kf =0
and therefore K2 = 7. Since

K?=-19< K},

there are exceptional lines on S. They must be components of fibres in the ruling, so there
are twisted cubic curves residual to each line in a fiber. Let E be such a curve. We have
H-E=3,E?=—1and p(E) = 0. E is part of a hyperplane section H of S. Let C be
the residual curve C' = H — E. Then degC = H - C = 7 and p(C) = 8, which is impossible
by Lemma 0.11.

If h'(Os(H)) = 3, then S; is of degree 12 in P° and m; = 4. Since S; is not a scroll,
we know by Theorem 0.10 that |H; + K| defines a morphism of S into P3. Let ¥ be
the image of S7. Since S is rational, we now have three cases: Either i) ¥ is a Del Pezzo
surface, or ii) ¥ is a quadric, or iii) ¥ is a curve.

In case i) we get that (H; + K1)* = K = 3. Since K = —14, we can reproduce H from
Hy and Hy:

6
Hg =3l - ZE,
i=1

6
H, =6l — ZQE,-.
=1

6 23
H=9l-Y 3E-)Y Ej.
i=1 =7

Now let Cy =21 — Z?:l E;, then H - Cy = 3, so Cj is contained in a hyperplane section H
of S. Let C' = H — (Y, then

5 23
C=7-> 2F 3B~ Y Ej
i=1 =7

degC = 7 and p(C) = 7. By Lemma 0.11, C' decomposes into a plane quintic, call it E,
and a plane conic, call it @, such that F-Q = 2. Now Q2 > 0 would imply that S is ruled
in conics or is isomorphic to P?, so we may assume that Q? < —1. Therefore

C*=(E+Q)* =3 implies that E*=—-1—-Q?>0.
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The index theorem applies to £ to get £? < 2, and therefore Q? > —3. So we need to
consider =3 < Q? < — 1.

First note that
(@+Co)’=(H-E)?=E"=-1-@°

which implies that Q - Co = —Q?, and that E -1 > 5 since p(E) = 6. Thus since C -1 =7
we get that @) - < 2. Now we may write

23
Q=al-> piE  with 0<a<28>-1
i=1

If Q? = —1, we get that Q - Cq = 1, implying 2o — Z?:l G; = 1 and therefore a > 1 or
B; = —1 for some i. In the latter case H - () = 2 implies that 3, = 1 for some 7 < k < 23
and Q? = —2, which is a contradiction. In case a > 1 we may write

5
Q=1-E—E or Q=2-)Y F,
k=1

since Q? = —1. In either case H - () = 2 is impossible.
If Q2 = —2 or Q? = —3, then we argue similarly to get contradictions.

In case ii) we get

(Hy+ K,)? = K =2.

Since K2 = —14, we again reproduce H from H; and Hy:

Hy=F+G (F,G are the rulings of the quadric ¥).

6
H, E3F+3G—ZE,-.

i=1
6 22
H=5F+5G - 2Ei—» Ej.
i=1 =7

Now let Cy = G — Eg, then H - Cy = 3, so (Y is contained in a hyperplane section H of S.
Let C = H — Cy, thus

5 22
C=5F+4G - 2E;— Y E,
j=6

i=1

degC =7 and p(C) = 7. As above we may write C' = F + @, where E is a plane quintic,
@ is a plane conic and F - ) = 2. Again we may assume that Q2 < —1, therefore

C*=(E+Q)* =3 implies that E*=—-1—-Q?>0.
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E? < 2 by the index theorem, so we need to check —3 < @Q? < —1. This is done like in
case 1).

In case iii) we get that (H;+ K1)? = K2 = 0, therefore S; is ruled in conics with 8 singular
fibres in the ruling. Let F. be the relative minimal model of S;. Then F, has a section
B with minimal nonnegative selfintersection e > 0, and a ruling F'. Thus we may write,

pulling back B and F' to Sy,

8
H1523—|-aF—ZEi

i=1

where a = 5 — e since h®(Os, (H1)) = h°(Sym?(Op1(e) & Op1) @ Opi(a)) — 8 = 10. Thus

8 22
H=4B+(7—2e)F - Y 2E;— Y FEj.
i=1 7=9

Now let Cy = F — Ey. Then H - Cy = 3, so (Y is contained in a hyperplane section H of
S. Let C' = H — (Cj, then C has degree 7 and arithmetic genus 7. A procedure like the

above case 1) leads to a contradiction, which finishes the proof of the proposition.O

Remark. The formula for the number of 5-secants of a surface which meet a general plane
in P* (see section 0.3), gives a negative number in the cases h'(Ogs(H)) > 2. This fits
well with our proof, where we are left to consider the existence of plane curves of degree
at least 5 on S.

The course of the proof indicates the procedure that we will follow in the remaining cases,

h'(Os(H)) =2 and h'(Os(H)) = 1.
Proposition 8.6. IfS is a smooth rational surface of degree 10 in P* with h'(Os(H)) = 2,

then
12 18
H=81-Y 2E,—) E
i=1

7=13

and S is of the kind described in Theorem A, or

4 11 18
H=9l-Y 3E—Y 2E;— Y E.
i=1 7j=5

k=12

Proof. The proof has two parts. In the first part we produce a number of possible can-
didates using Theorem 0.10, and in the second part we show that all candidates except
those described in the proposition are impossible.

Part 1. With h'(Os(H)) = 2 we get the following invariants for S, S; and %, where S; is
the image of S under the adjunction map and ¥ is the image of S; under the adjunction

map defined by |H1 + K.
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S c p? H? =10 H-K=6 K?=-9 T=09
Sy C P8 H? =13 Hi-Ki=-3 Ki=-9+a ™ =6
Y CcP? H%:a—Q Hg-Kz:a—12K%:—9—|—a—|—b7rg:a—6,

where a and b are nonnegative integers, and where the invariants for ¥ only make sense
when ¥ is a surface. Now ¥ is either a curve, in which case a = 2, or ¥ is a surface, which
implies that a > 6. On the other hand a < 10, since @ > 10 implies that K& > 0 and
Hy - Ky > —2, which is impossible by Lemma 8.3. So we need to consider a = 2 and
6 <a<09.

If a = 2, then S; is ruled in conics. K? = —7 so therefore S; has 15 singular fibres, and

we may think of S; as the projection of a conic bundle S} in P2?? from a P'* spanned by
15 points on S7. If we write

Si = P(OPI (6) 5] OPI) = Fe

and denote a section with selfintersection e > 0 by B and a fiber of the ruling by F', then
we may write

15
Hy=2B+(7T—e)F —) E; with e<7,
i=1
since
h?(Os:(H)) = h°(Sym®(Opi(e) & Op1) @ Opa (T —€)) = 3e + 3+ 3(7T —e) = 24.

Since K1 = —2B + (e — 2)F + leil E;, we get

15 17
H=4B+(9-2e)F - ) 2E; - Y Ej.
i=1

j=16

If @ = 6, then X is either a scroll or a Veronese surface.

If ¥ is a scroll, say ¥ = F, with e > 0, then we get that
1 .
HEEB—I—(2—§€)F with e=0or 2.

Furthermore Ky = —2B + (e — 2)F, so we may reproduce Hy and H.

11
3
H =3B+ (4— §e)F—;E,-.
5 11 17
H=5B+(6-e)F - ;QE —J;2Ej.
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If ¥ is a Veronese surface, we get

Hy =21 (where [ is a line in P?),

12
Hy =5l — Z E;
=1
and

12 18
H=8l-> 2E - Ej
i=1

j=13

If a =7, then X is a Del Pezzo surface, so we get

4
Hg =3l - ZEi’
i=1

4 11
Hy=6l-) 2B, — ) FEj
i=1 7j=5

and
4 11 18
H=9l-Y 3E—Y 2E; - Y Ej.
i=1 j=5 k=12

If a = 8, then ¥ is of degree 6 in P® with g = 2. Thus ¥ is ruled in conics and
(Hs + Kx)? = 0, which implies that b = 3. So K& = 2 and X has 6 singular fibers. Using

the above notation, we get

6
Hy=2B+((B3-¢)F - F  with e<3,
i=1
since h?(Ox(Hs)) = h°(Sym? (Op:1(e)®0p1)@0p1(3—e))—6 = (3e+3+3(3—¢€))—6 = 6.
We reproduce H; and H.

i=1

6 9
Hy=4B +(5—2e)F — ) 2E; — Y Ej.
=7

6 9 17
H=6B+(7T—3e)F - 3E;—» 2E;— » .
i=1 =7 k=10

If a = 9, then ¥ is of degree 7 in P5 with 7y = 3. We use |Hy + Kx| to map ¥ into
P2. By Theorem 0.10 we have three cases. Either we are in the exceptional case 4) of the

theorem and .

Hy =6l - 2F; — Es,

i=1
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or |Hy + Ky| defines a birational morphism, which means that

Hg = 4] —za:Ei
i=1

where a = 9 since ¥ is nonspecial, or thirdly ¥ is mapped onto a curve, which means that
Y} is ruled in conics.

In the first case we get

7
Hy=9l-) 3EF; —2Fs — Fy
i=1
and
=120 — Z4E — 3Fs — 2Fg — ZE
j=10
In the second case we get
9
Hy=171-) 2E;
i=1
and
9 18
H=10l-) 3E;— Y Ej
i=1 j=10

In the third case we get (Hyx —I—KE)2 =4a+b—35=1+b =0, which is absurd since b > 0.

Thus we have established the following list of candidates.

15 1
1) H=4B+(9-2e)F =) 2F;— Y E; e<T.
i=1 j=16
5 11
2) HE5B—|—(6—§e)F—22Ei—ZEj e=0or2.
i=1 j=12

4
4) H=9l-> 3 - ZQE—ZEk
i=1

k=12

5) HEGB—I—(T—B@)F—ZSE ZQE—ZEk e < 3.

k=10

6) H =12l - Z4E—3Eg—2Eg—ZE
7j=10

7) HElOl—Z3EZ-—ZE]-.
i=1

7j=10
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Part 2. We go on to study these candidates, excluding all but 3) and 4).

In case 1) we will study the linear systems of curves

15
|Cj|:|23+(4_e)F_ZEi‘|‘Ej| for 1<j<15

i=1

on S . By Riemann-Roch we have that dim|2B + (4 — e)F| = 14, so the linear systems
|C;| are all nonempty. We get H - C; = 6 and p(C;) = 3 for a curve Cj in |C}|. The curve
C; may or may not be contained in a hyperplane section. Let us first assume that it is not
contained in a hyperplane. Then by Lemma 0.11. C}; must be reducible with components
C; = A+ FE, where A is a plane quartic curve and F is two skew lines or a conic, such
that each line (resp. the conic) meets A in one point.

Claim.

15
A=Cj—FEe—FEir  or A=Cj—Ej=2B+(4—¢)F - > E;
i=1

Proof of the claim. By the index theorem A? < 1, so Cj? = (A + E)? = 2 implies that
E?>1-— 2(A-F) > —3. If Eis two skew lines L1 and Lo, then we may assume as before
that L? < —1, so in this case we get that L7 = —1 and L2 = —1 or —2. Now one may
check that the only possibility for L1 and Ls is that they are the lines Fig and Fy7. If E
is a conic, then E? > 1 —2(A - F) = —1, but as before we may assume that E? < —1, so
E? = —1 and F must be the conic E;.O0

If C; is contained in a hyperplane section H, then H — C; is a plane quartic curve and
thus C; moves in a pencil. Therefore we would find a curve A’ = C; — E; on S which is
again a plane quartic, so we may summarize the above in the following:

On S there is either a plane quartic curve
15
A=2B+(4d—€)F - ) E,
i=1

or there are, for each 1 < j < 15, a plane quartic curve

15
Aj=2B+ (4—e)F =Y E;i+ Ej — Eig— Eyr.

i=1

We proceed by showing that the second case implies the first. For this let

15
G| = |H — Aj| = 2B+ (5 — e)F = > E; — Ej|

i=1
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be the pencil residual to A;. Since it is a pencil, we may find a curve
Dj = C; — E16

on S. Now D; has degree 5 and arithmetic genus 3, so it decomposes by Lemma 0.11 into
a plane quartic curve GG and a line I with G- L = 1. By the index theorem G2 <1 so

L*=D; -2(G-L)-G* > -2.

As before we may assume that L2 < —1, so we get that L? = —1 and D;-L = 0 or L? = —2
and Dj - L = —1.

In the first case I = Fi7 since Fy7 is the only exceptional line on S which does not meet
D;. Thus G = C']'- — FE16 — E17 1s a plane quartic on S. The residual pencil

15
|H —G|=[2B+ (4—e)F = > E; + Ej
i=1
will contain a reducible curve with components A and Ej;, where A is the plane quartic

that we are looking for.

In the other case, that is if L? = —2, then D; - L = —1 implies that —1 < L - C']'- =
—14+ L -FEig<0since 0 < L-FE16 <1. Again we have two subcases.

If L-FEi6 =0, that is when L - C;— = —1, then L must be a fixed curve of the pencil |C’;-|, SO
L must lie in the plane of A; and therefore I - A; = 4. But then H - L = (C; + Aj)-L =3,

which is absurd since L is a line.

If L-FEig =1, that is when L - C';- =0, we set

15
LECLB—I—[)F—ZOZiEi—Em_al?El?; a,b>0, a; > -1
i=1
We have
15
L-Dj:5a—|—2b—ae—Zai—aj—1:—1
i=1
and
15
L-Aj=L-(H-Cj)=4a+2b—ae—Y oj+a;—1—ar=1,
=1

which yields the relation
—a+ 2a; — a7 = 2.

Thus a; > 0 and therefore also @ > 0 or b > 0. If a > 0, then o > 2, s0 (L + E;)* > 1
which contradicts the index theorem. If @ = 0 and b > 0, then, since L is irreducible, we

have b = 1. From this follows that L = F — E; — E16. But then

15
G=D;—L=2B+(4—¢e)F - Ei=A
i=1
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To show that the existence of a curve A on S leads to a contradiction, we study the residual
pencil

17
D] =|H - Al=12B+(5-€e)F =Y Ei
i=1

First of all since D - A = 3, | D| has no fixed component since it would lie in the plane of
A. Furthermore D? = 3, so a general D is smooth, of degree 6 and genus 4. Thus D is
canonically embedded on S in P*. But D is hyperelliptic since it is a bisection on S, so
the canonical series on D is not very ample. This is the contradiction we desire, which
concludes case 1).

In case 2) we study curves in the linear system
11
ICl=12B+ (3—¢€)F =) Eil.
i=1

Since dim|2B + (3 — e) F'|=11, we can find a curve C in |C/|. It has degree 5 and arithmetic
genus 2. If ¢ is not contained in a hyperplane, then it must be the union of a plane
quartic A and a line L not meeting the plane of A. By the index theorem A? < 1, so we
get L2 =1 — A? > 0, which is impossible by Riemann-Roch. Therefore C' is contained in a
hyperplane section H with a residual curve C1 = H — C' of degree 5 and arithmetic genus
4. This is impossible by Lemma 0.11.

In case 3) we want to show that if

12 6
H=8l-Y 2B-) F;
i=1 j=1

is the hyperplane section of a smooth surface in P*, then the surface S can be constructed
as described in the proof of Theorem B.

Let

12

C =4 - ZE,’,
i=1
6
C,'j EC_ZFk —I—FZ’—I—FJ'
k=1

and

CP=H-Cy for 1<i<j<6.

Now h%(Os(C%)) > 0, so there is a curve C in |C%|. It has degree 6 and arithmetic
genus 3, so as a curve on S it either spans a P3, in which case there is a residual plane
quartic curve Cj; = H — C% and h°(Og(C%¥)) = 2, or C% is reducible, that is C*/ is the
union of a plane quartic A and two skew lines L; and Lo, with A- Ly = A-Ls =1, or a
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conic ), with A - ) = 1. One may now check that in the latter case A = C; for some s,
and Li and Ls are lines F} and Fj.

These two possibilities for each C'* fit together only if say
Ci2, (34 and Cse
are plane quartics and
G2, |C*] and  |C*
are their respective residual pencils.

Now C5-Csy = C15-Cs6 = C34-Cs6 = 2, so the planes of C15, (34 and Csg meet pairwise
in lines. Since the three planes span all of P*, they must intersect in a common line L,
which 1s now a 6-secant for the surface S unless L lies on S.

To see that L cannot lie on S, we first note that if L is a fixed curve for the pencil |C!2],
then L - C13 = 4. Therefore

L-H=L-2C13+L-(Fs+Fy+Fs+Fs—F —F,) =8—L-(Fs+ Fy+Fs+ Fs— Fy — Fy) = 1.

But L (Fs3+4 F4+ F5 + Fs — Fy — F2) = 7 is clearly impossible, as long as L is a line.
Similarly L cannot be a fixed curve for any of the pencils |C3*| and |C®®|. So if L lies on
S, then L is a component of the curves Cj; and L - (Cj; — L) = 3. In this case we get
p(Cij—L) =1,s0!-(Cj; —L) > 3 and therefore [- L < 1. On the other hand if {- L = 0, then
L has support on the exceptional curves. Thus L equals some F or some F, — F;. Both
cases contradicts the assumption that L - (Cj; — L) = 3 for any {ij} € {{12},{34}, {56}}.

Therefore, [ - L = 1 and we may write

12 6
L=1-)Y ol = BiF;,
i=1 i=1
where 0 < a; <1 and 0 < §; < 1. We get the relations

L-(Cij—L)=3—-0i—B; =3
for any {ij} € {{12},{34},{56}}, so Bi =0 for i =1,...,6. But we also have the relation

12
H-L=8-) 2a;=1,

i=1
which is now impossible. Thus L cannot be contained in S.

Let SNL 2O q1+...4+¢gssuchthat C1aNL =¢3+¢qa+¢5+¢s, C3aNL =q1+q2+¢5+¢s
and Cs6 N L = q1 + g2 + g3 + q4. Since C72 is a plane quartic curve on S, that is

Oc,,(H) 2 we,, = Oc,,(1),
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we see that the colinear points g3, ....,¢s all lie on a curve Ly = [. But we get the same
for C34 and Csg, so this means that all the points ¢; lie on Lg. The rest now follows from
the proof of Theorem B.

In case 5) let Co =2B+(2—¢)F — Zle E;, then h°(Os(Cy)) > 1 by Riemann-Roch and
H - Co =4 and p(Cy) = 1. The curve () is therefore part of a hyperplane section with a
residual curve C' = H — (Cy. Now C has degree 6 and arithmetic genus 5, so C' must, by
Lemma 0.11, be the union of a plane quintic curve A and a line L which does not meet A.
We get

C*'=(A+L)7?*=A"+1"=2.

Since we may assume that L? < —1, we get thet A? > 3, which contradicts the index
theorem.

In case 6) we start off noting that there is a curve

9
Co=3l-) E
i=1

on S. It has degree 3 and arithmetic genus 1, so it is a plane cubic curve on S. We will
study the residual pencil of curves

|D| = |H = Col.

This pencil may have a fixed curve in the plane of Cy, and since D - Cy = 3, this fixed
curve must be a line, call it L. If we set

18
L=al =) BiFi, >0, > -1,
i=1

we get the relations

7 18
H-L=120—) 40— 38— 20— Y _ B =1

i=1 7j=10

and -
Co-L=3a~) Bi—fs—pPo=3
i=1
Thus
18
Bs + 208 — Y B = —11.
j=10

But §; <1 for 10 < j < 18, so we get that §y = —1 and §; = 1 for 10 < j < 18, which
contradicts H - L = 1. Therefore |D| does not have a fixed curve.

72



Now since D is not a multiple divisor on S, we can assume that the general curve D in |D|
is irreducible. It has degree 7 and arithmetic genus 6, so it is of type (3,4) on a quadric
surface, and |H| restricts to a special linear series on D. S is rational, so there is an
isomorphism H°(O(S)D + K) = H°(O(D)Kp). Therefore we may write

|H|p| = |Kp —dp| =[(D+ K)|p — dp|

where dp is a divisor of degree 3 on D. Note that dp moves in a pencil on D, so our choice
of divisor dp is in no way canonical. We now blow up S in the points of dp to get a surface
So with exceptional divisors Ay, As and As, and study the linear system

|B|=|D+ K — A1 — As — As]
on So. If D' is the strict transform of D on Sp, then by the above we know that |Hp/| =
|B|p’|, so dim|B|=3 and | B| defines a rational map ¢p : So-->P?.
Claim. Any fixed component of |B| has support on the Ej;, 9 < j < 18.
Proof of the claim. Consider the morphism

QDH+2K:S—>ECP5

defined by |D + K| = |6] — 23:1 2E; — Eg|. Then Z = 1ok (dp) C X is supported on
a line L in P since there is a threedimensional subsystem of |D + K| whose members all
vanish on Z. This line L must support the image of the fixed component of |B|. Since
YH+y2K 18 a composition of adjunction mappings, we see from Theorem 0.10 that for the
claim it is enough to show that L does not lie on X. If it did, then we could write

8
L=al =) BB, a>0, §> -1,

i=1
such that :
(D+K)-L=6a—Y 26 —fs=1,
i=1
and
7
D-L=9a—-)Y 38 —28=3 (since DNL=7%).
i=1

But these two equations yield fg = —3, which is impossible.O

Since all the curves F;, 9 < i < 18, meet D, a fixed curve of |B| can only occur when dp
has support on one of these curves. For our purpose we may assume that dp is chosen
without support on the exceptional curves.

Now if B is a general member of |B|, then we may assume that B is irreducible. Since
B? = 4, p(B) = 3 and dim|B|g| = 2, ¢p restricts to the canonical map on B. In particular,
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for reasons of degree only, | B| is basepointfree. Thus |B|g| = |B+ Ks,|B|, and considering
the exact sequence

0— OSO(—[(SO—B) — (/)50(—[(50) — OB(_I(SO) — 0

we get that Op(—Ks,) & Op. We take cohomology to see that h®(Og,(—Ko)) = 1 if
and only if h'(Og,(~Ks, — B)) = h'(Os, (=3l + 22.721 E;)) = 0. But this is so unless
dim|3! — 22:1 E;| > 3, which would imply the absurdity that there is a curve in the
system |{| which meets at least five of the E;. Thus for each ép we get a curve C = — Ky =
3l — E?zl E; — Ay — Ay — Az on Sp. Using different Ds and different choices of dp, we

may conclude that there is a curve C; = 3] — Zgl E; on S. But (4 has degree 2 and
arithmetic genus 1, so this is impossible.

In case 7) we follow a track very similar to the one of case 6). Let Cy = 31 — Z?:l E;, then
Cy has degree 3 and arithmetic genus 1, so it is a plane cubic curve on S. We will study

the residual pencil |C| = |H — Cy| = |7l — Z?:1 2E; — Z;im E;|. We first show
Lemma 8.9. |C] has only isolated basepoints.
Proof. A fixed curve T of |C'| must lie in the plane of Cy. SinceI'-Cy < C-Cy =3, T

must be a line on S. We may write
18
T=al-Y BiF
i=1

with a > 0 and 3; > —1, and get the relations

9 18
T-H=10a—-) 36— Y B =1

i=1 7=10

and

9
I-Co=3a—)Y Bi=3.
i=1

These relations combine to give
18
a4+ 8= Z /Bj.
j=10
The three relations imply, since clearly 3; < 1 for 10 < j < 18, that I' = [ — Z;im E;.
Thus

9
ID|=|H —T| =9 — ) 3Ej|
i=1

is a net of elliptic curves with possible basepoints only on I'. Since D? = 0, there are no
basepoints and |D| is composed of a rational pencil (rational since I' dominates the base).
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We may write D = nF', where F is elliptic and n > 2, so from the class of D on S we see
that n =3 and F =3[ — E?Il E;. Since F' moves in a pencil, we can find a curve

10
Cle—EmE3l—ZEZ-

i=1
on S. But then ) has degree 2 and arithmetic genus 1 on S, which is impossible.O
From the lemma we may assume that the general member C' of |C| is irreducible. Since

the degree of C' is 7 and the arithmetic genus is 6, C' must be of type (3,4) on a quadric
surface and |H|c| must be a special linear series on C'. We can therefore write

|H|C| = |[X’C —(5c| = |(C—|—[\’)|C —(5c|

where d¢ is a divisor of degree 3 on C'. If we blow up S in the points of d¢, we get a surface
So with exceptional divisors which we denote by A1, A, and As. Since Sy is rational, there
is an isomorphism

HY(O(S0)C" + K, — A] — Ay — A3) 2 HY(O(C")Ker — 6¢r)

where C’ is the strict transform of C on Sy. Thus

9
Bl = |C" + K5, — A1 — Az — Ag| = |4l = ) Fi — Ay — Ay — A

i=1

is a threedimensional linear system of curves on Sy which restricts like | H| to C'. Comparing
this with Lemma 0.12, we get that, for a general choice of J¢, the linear system |B| has
no fixed curve, and there is a curve

9
ClE3l—ZEZ'ECO

i=1

on S such that €] contains the points of do. d¢ moves in a pencil on C, so therefore C
must move in a pencil on S. But that means that we can find a curve

10
CHECl—EloE?)l—ZEi

i=1
on S, which has degree 2 and arithmetic genus 1. This is impossible.O

Proposition 8.10. If S is a smooth rational surface of degree 10 in P* with hyperplane
section H and h'(Og(H)) = 1, then S must be of the kind described in theorem A.

Proof. We follow the same procedure as in the proof of Proposition 8.5. Using the results
of Sommese and Van de Ven (Theorem 0.10), we establish a list of candidates which we
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thereafter treat one by one. If we denote the images of S by the (iterated) adjunction
mappings by S;, and denote their respective hyperplane sections, canonical divisors and
genus of H; (when these have meaning) by H;, K; and m;, we get the following invariants:

ScP* H?=10 H-K=4 K? =4 m=38
S CcP? H?=14 Hi-K1=0 Ki=-4+a m =8
SeCP” HZ=10+a Hy -Ky=a—4 K2=—-4+a+b T =4+a

SsCP3t*H2=4a4+b—2H3-K3=2a+b—-8 K:=-4+a+b+c m3=3a+b—4

where a, b, ¢ are nonnegative integers.

Now Sj is either a curve, in which case HZ = 0, that is a = 0 and b = 2, or S3 is a surface.
By Lemma 8.3 we need to consider 0 < a < 3.

If a = 0, then S3 is a curve, as observed above, if b = 2, or S3 is a smooth surface in P3.
If S5 is a curve, then Ss is ruled in conics with 10 singular fibers since K2 = —2. We may
write, using notation as before,

10
Hy=2B+(5—e)F - ) E; with e<5
i=1

h%(Os,(Hs)) = h°(Sym?*(Opi(e) G Op1) @ Op1(5—€)) —10 =3(e+ 1+ (5 —¢)) — 10 = 8.

Thus we can reproduce Hi and H:

10 12
Hy=4B+ (7—2)F - Y 2E; - Y E;
i=1

j=11
and
10 12
H=6B+(9-3¢)F —) 3E;— Y 2E;  with e<5.
i=1 j=11

If S is a smooth surface in P3, then, since S3 is rational, we have either Hz = B 4+ F and
b=4,e=0,or H3£3I—Z?:1Ei and b = 5, thus we get

8 8 12
Hy=3B+3F—Y E; and Hy=5B+5F ) 2E; —» E,
7=9

i=1 i=1

and

8 12
H=T7B+7F Y 3E;—Y 2E;  with e=0,
7i=9

i=1
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or

6 8 6 8 13
Hy=6l—Y 2F;—» E; and Hy=9-Y 3F;—Y 2F; - Ej
j=7 j=7 k=9

i=1 i=1

and

6 8 13
H=120-) 4F;— ) 3E; - > 2F.
i=1 =7 k=9

If @ = 1, then S3 is a smooth surface in P* of degree Hg =b+2, H3- K3 = b—6 and
K2 =1b+c—3. By Lemma 8.3 we get that b < 3, and since S is nondegenerate, b > 1.

In case b =1 we get H3 = 2] — F; and thus

11 11
Hy =50 — 28, —ZEZ- and H, =8l —3F; —ZQE,- — Eis
=2 =2

and
11

H=11] - 4E1 — Z?)Ez — 2E12 — E13.

=2

In case b =2 we get Hz = 3| — E?zl E;, and thus

5 10 5 10 12
Hy=6l-Y 2F;—) FE; and Hy=9l—-)» 3E—Y 2E;— Y F
i=1 7=6 i=1 7j=6 k=11
and
5 10 12
H=120-) 4F;—) 3E; - Y 2F; — Fis.
i=1 7j=6 k=11
In case b =3 we get H3 =4l — 2F; — E?:z FE; and thus
8 8 12
Hy=7-3E —» 2F—FEy and Hy=10l—-4F —» 3E; —2Fs— Y F;
1=2 1=2 7=10
and
8 12
H=13l-5E, — Y 4F; —3Es— Y 2F; — Fis.
1=2 7=10

If a = 2, then S3 is a smooth surface in P® of degree H2Z = 6 +b. Furthermore we get that
Hz - K3 =b—4and Kg =b+c—2and m3 = b+ 2. By Lemma 8.3 we get that 6 = 0 or 1.
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If b = 0, then m3 = 2, so S is ruled in conics. Thus (H3z+K3)? = c—4=0and K3 = c—2 =
2 and Ss has 6 singular fibers. We may write H3 = 2B+ (3—e)F —Z?Il E; with e < 3,

hO(Os.,(H3z)) = h°(Sym?*(Opi(e) & Op1) @ Op1(3 —€)) =6 =3(e+1+(3—¢)) —6=6.

We calculate Hy, H; and H:

6 10
Hy=4B + (5—2e)F — ) 2E; — > [,
=7

i=1

6 10
Hy=6B+ (7—3e)F — ) 3E;—» 2F;
i=1 =7

and

6 10 12
H=8B+(9—4e)F — ) 4E;—» 3E;— »
=1 =7 k=11

If b =1, then 73 = 3 and (H3 + K3)? = c¢. By Theorem 0.10 we have 0 < ¢ < 2. If ¢ = 0
then Ss is ruled in conics with 9 singular fibers. We may write Hs = 2B + (4 — e)F —
E?zl E;, e <4, since

h°(Os,(H3)) = h°(Sym*(Opi(e) © Op1) @ Opi1(4 —€)) —9=3(e + 1+ (4 —€)) —9=6.

We can calculate Ho, Hy and H:

9 9
Hy=4B+ (6—2¢)F — ) 2E; and Hy=6B+(8—3¢)F — Y 3E; — Ex

i=1 i=1

and

9 12
H=8B+ (10 —4e)F — Y 4E; —2F10— Y _ Ej.

i=1 j=11
If c=1, then H3+ K3 =1[ and thus Hs = 4l — Z?:l E;. We get

9 9
HgE?l—ZQEZ-—Elo and leml—ZgE,-—zEm—En

i=1 i=1

and

9 13
H =13l 4F; —3E1 0 — 2En — » | Ej.
i=1 j=12
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If ¢ =2, then H3 = 6l — 22.721 2F; — Eg, so we get

7 10 7 10
Hy=9l-Y 3E;—2Fs— Y E; and Hy=121—» 4F;—3Es—» 2F; — Ey
i=1 7i=9

i=1 §=9

and

7 10 13
H=15l-Y 5F;—4Es— Y 3E; —2F11 — »  Fx.
i=1 j=9 k=12

If @ = 3, then S3 is a smooth surface in P® of degree H32 =10+ b with H3- K3 =b—2
and Kg =b+4+c—1and 73 = b+ 5. By Lemma 8.3 we get b = ¢ = 0, thus ([-Ar’;:,—l—Kg)2 =5
and m3 = 5, so Hs+ Ks =4l — 2F; — Z;S:Q FE;. We may reproduce Hs, Ho, Hy and H:

8 10
Hy=17l-3E - 2F - Y Fj,
7=9

=2

8 10
Hy =10l —4E, — Y 3E;— Y 2E;,
i=9

=2

8 10
Hy =131 —5E, — Y 4E;— ) 3E;
i=9

i=2

and

8 10 13
H=16l-6E, — Y 5F;—Y 4F; — Y  Ej.
7=9

1=2 k=11

We have established the following list of candidates:

10 12
1) H=6B+(9-3e)F - 3E— Y 2E;  with e<35.
i=1 j=11

i=1

8 12
2) H=TB+TF-—) 3E;—» 2B  with e=0.
i=9

6 8 13
3) H=120—) 4E;—» 3E;— Y 2.
i=1 i=7 k=9

11
4)  H=11U-4E - 3F; —2E; — Fis.
=2
5 10 12
5)  H=120—) 4E;—» 3Ej— » 2F; — Fus.
i=1 7j=6 k=11
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8 12
6) H=131—5E — Y 4E;—3Fs— » 2E; — Eus.

1=2 7j=10
6 10 12
) H=8B+(9—4e)F — > 4, - 3E;— >  E.
i=1 =7 k=11

9 12
8) H=8B+(10—4e)F — > 4F; —2F10— Y  Ej.

i=1 =11

9 13
9) H=13l—) 4F; —3F0—2En - »_ Fj.

i=1 7=12

7 10 13
10)  H=15—) 5E —4FEs—» 3E; —2En — Y By
i=1 7=9 k=12

8 10 13
11)  H=16l-6E; — ) 5E;—» 4E;— Y  Fj.
7j=9

1=2 k=11

Next we go case by case and show that only case 8), with e < 3, is possible.

In case 1) let

11
C=2B+(3-¢€)F ) Ei
i=1
Then h°(0Os(C)) > 1, H - C = 4 and p(C) = 2, which is impossible by Lemma 0.11.

In case 2) let
11

0523+3F—ZE1-.

i=1

Then h°(Os(C)) > 1, H-C = 5 and p(C) = 2. If C spans all of P* then C is the
union of a plane quartic curve A and a line . which does not meet the plane of A. We
can assume that L? < —1 and get A2 = C? — L? > 2, but this contradicts the index
theorem, so C' must be part of a hyperplane section. The residual curve Co = H — C
has degree 5 and arithmetic genus 3, so it is the union of a plane quartic curve Ay and
a line Lo, which meets Ag in one point. We may again assume that L2 < —1 and get
A2=C2—-L%—-2=—-1-L?>0. The index theorem implies that A2 < 1, so we need to
check the two cases LZ = —1 and L2 = —2. Since K? = K, there are no exceptional lines
on S, so we are left to check Lg =—-2. Now Lgisalineon S,so Lg- B <1land Ly-F < 1.
Using this, one may check that we get a few possible divisor classes for Ly on S, none of
which matches the invariants of Lg.
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In case 3) let
7 13
C=6l-> 2B -Y Fj
=1 7j=8

Then h°(Os(C)) > 1, H-C =5 and p(C) = 3, so C must be the union of a plane quartic
curve A and a line L which meets A in a point. We may assume that L2 < —1, so we get
that A2 = (C? — L2 —2 = —L? > 1. On the other hand the index theorem implies that
A? <1, so L must be an exceptional line on S. This is contradicted by Theorem 0.10 and
the fact that K? = K2,

In case 4) let
12
C=4l-2E - FEi
1=2
Then h°(Og(C)) > 1, H-C = 4 and p(C) = 2, which is impossible by Lemma 0.11.
In case b) let

12
C =4l —2F, —ZE
1=2

Then h°(Os(C)) > 1, H-C = 5 and p(C) = 2, so we proceed as in case 2). Since S
contains an exceptional line, there is one more subcase than in case 2) to check, but like
the other cases it is straightforward to rule it out.

In case 6) let

12
C=4l-2E - FEi
i=2

Then h°(Os(C)) > 1, H-C =5 and p(C') = 2. From here on an argument just like the

one for case 2) and 5) will rule out this case too.

In case 7) let

7 10
C=4B+(4—2e)F - ) 2F;— Y Ej.
i=1 7=8

Then h°(Og(C)) > 1, H-C =5 and p(C) = 2, so we use the same argument as above to
rule out this case too.

In case 8) we want to show that S has to be of the kind described in theorem B. Let

9
C=4B+ (5—2¢)F — Y 2E; — Eio — Eu1.

i=1
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Then h°(Os(C)) > 1, H-C =5 and p(C) = 3. Thus C must be the union of a plane
quartic curve A and a line L such that A-L = 1. An argument like the one for case 2)
shows that this is possible only if L = F15 and

9
AE4B—|—(5—2€)F—22E1 _EIO_EII —Elg.

i=1

Since A is a plane quartic curve on S, we get that Eyg cannot be a component of A. Let
g = ANE1o and blow up S in ¢ to get Sy with exceptional divisor Fy. Let Hy = H+ E10— Eo
on Sp. Then, if we let A’ be the strict transform of A on Sy, we get that

|H0|A’| = |H|AI| = |[\’A’| = |(A/ +I{SO)|A’|-
Consider the exact sequence
0— OSO(H()—QAI—[(SO) — OSO(H()—AI—[(SO) — OA/(HO—A/—[(SO) — 0.

From the above equalities O g/ (Ho—A'— Kg,) = O+, on the other hand, by Riemann-Roch,
we get that
h°(Os,(Ho — 24" — Ks,)) = h'(Os,(Ho — 2A' — Ks,)),

so taking cohomology of the exact sequence we see that
R°(Os,(Ho — A" — Ks,)) > 1.

Thus there is a curve
9
Do=Hy— A — Ks, =6B+ (7—3e)F — Y 3E; — Erg — Bg — E11 — By

i=1

on Sy, and S is of the kind described in theorem B (if e = 3 then H - (B —eF') < 0, which

is impossible, so e < 2).

In case 9) let
10

CE?I—?)El —ZQEZ —E11 —Elg.

i=2

Then h°(Os(C)) > 1, H-C = 6 and p(C) = 3. If C spans all of P* then C is the
union of a plane quartic curve A and two skew lines Ly and Ly or a conic (), such that
Li-A=1s-A=1or Q- A=1 We may assume, like before, that L? < —1 (resp.
Q? < —1), therefore we get that

A2 =C?—4—-TL3-12>0 (resp. A2=C?-2-Q*>0).

On the other hand, the index theorem implies that A% < 1, so we get three cases: L7 =
L2= -1land A2=0; L2 =—-1,L2= 2and A2 =1, and Q? = —1 and A? = 1. Tt is
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straightforward to check that no divisor classes on S fit together to match these invariants.
Thus we may assume that C'is contained in a hyperplane. The residual curve Cy = H — C
has degree 4 and arithmetic genus 2, which is again impossible by Lemma 0.11.

In case 10) let
8 11
C =6l _ZQEi _ZEj'
i=1 7i=9
Then h°(Og(C)) > 1, H-C = 4 and p(C) = 2, which is impossible.
In case 11) let
8 10
C=91-> 3E—Y 28 — F.
i=1 7=9
Then h°(Os(C)) > 1, H-C = 4 and p(C) = 2, which is impossible.

This concludes the proof of Proposition 8.10 and of Theorem 8.1.0
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9 Classification of nonrational

surfaces of degree 10
(proof of Theorem 0.1)

Asin the above rational case, we start by recalling the basic relations between the invariants
of a smooth surface S of degree 10 in P*. The first relation, the double point formula (0.7),
takes the form

5m+ K2 —6y—30=0.

The second relation is given by the Severi theorem (0.8) and takes the form
T=6+x+h'(Os(H)) - h°(Os(K — H)).

In addition to these relations, there is an inequality among the invariants which is given
by the results on the adjunction mapping that we have summarized in Theorem 0.10. In
fact, since the scrolls in P* are classified (see [Au],[La]) and are of degree 3 and 5, these
results provide the inequality (H + K)? > 0 with equality only if S is ruled in conics. For
degS = 10, we get

dm — 14+ K* > 0.

We also get that |H + K| defines a map
$H+K S —P"
where n = hO(OS(H + K))—1=m—2+4x. Together with the index theorem these relations

are effective in proving

Proposition 9.1. If S is a smooth surface of degree 10 in P* with m < 6, then ™ = 6 and
S is an abelian surface.

Proof. We start with the smallest values of m. If 7 < 4, then K2 > —2, so x > 0, since
K? < 8y when x < 0. But H - K < —4 so that h°(Og(K — H)) = 0, hence the Severi
theorem implies that @ > 6 + y > 6. This is absurd.

If 5 <m <6, then the index theorem implies that

. )2
K2 < (H-K)

1.
= 10 <

On the other hand the double point formula implies that
K? =6y +30—57 > 6y.

Therefore y < 0. Strict inequality here means that S is birationally ruled, which in
turn means that K2 < 8y. This contradicts the above, so we get that Yy = 0, K? = 0,
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H-K =0, and m = 6. We proceed now to use the full force of Theorem 0.10 on the
adjunction mapping. We get that

(H+ K)*=H?=10.

Thus we are in case B) of Theorem 0.10. Since S is minimal (K? = 0) and we are not
in any of the exceptional cases, ¢k : S — P* is an isomorphism onto its image. By
iteration we see that S cannot be a ruled surface. Therefore, by the Enriques-Kodaira
classification, S is abelian or hyperelliptic. Now a result of Roth shows that S cannot be
hyperelliptic either [Ro2 p.170-172], so S must be abelian. O

Lemma 9.2 (Roth). If H is a very ample divisor on hyperelliptic surface, then H? > 18.

Proof. A hyperelliptic surface is the quotient of the product of two elliptic curves with a
group G of order 2,3,4,6.8 or 9, such that the quotient has one rational elliptic fibration
and one elliptic fibration over an elliuptic curve. From the invariants of the surface we get
that the Picard group is of rank 2 (see BPV V.5.). So at least over the rational numbers
it is generated by the fibers of the two elliptic fibrations on S. Let A be a member of the
rational one, and let B be a member of the elliptic one. Thus we may write H = aA+ bB,
where a and b are rational numbers. Now the fibration of B has isomorphic smooth fibers
so we may assume that b is an integer, while the fibration of A has a double, a triple,
a quartuple fibre or a fibre of multiplisity 6 (see BPV V.5.), so we may assume that
2a,3a,4a,or 6a is an integer. Now A2 = B? = 0, while A- B = v where v is the order of the
group GG. Now for H to be very ample we must have H - A =bv > 3vand H-B =av > 3,
since B and any reduced fiber in the firation of A are elliptic curves. We combine this to
get H? = 2abv > 18.0

Proposition 9.3. There are no smooth surfaces S of degree 10 with # = 7 in P*.

Proof. We calculate the invariants of S. Since H - K = 2, we get that K2 < % by the
index theorem. Thus
K? <.

Since (H + K)? > 0, we get K? > —14. The double point formula says in this case that
6x = 54 K2. Thus we get the inequalities

—9<6x <5
which means that y = —1 or x = 0.

If x = —1, then K? = —11, (H + K)? = 3 and h°(Os(H + K)) = m — 1 + x = 5. This
means, by Theorem 0.10, that g1k (S) is a surface of degree 3 in P*, which is impossible
since Yy = —1.

If x =0, then K? = -5, (H + K)? = 9 and h°(Os(H + K)) = 7 — 1+ x = 6. This
means, by Theorem 0.10, that S; = ¢g4k (S) is a smooth surface of degree 9 in P5. Since
K? = —5, S must have five (—1)-curves. Therefore H - K = 2 means that S must be
birationally ruled. In fact it must be ruled over an elliptic curve since x = 0, so we may
conclude the proof of the proposition with
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Lemma 9.4. There are no smooth surfaces S of degree 10 with # = 7 in P* which are
birationally ruled over an elliptic curve.

Proof. By considering the adjunction on S1 = ¢gyr (S) we will see that there are two
possibilities for S and that both of them lead to a contradiction.

The invariants of S; in P® are:
H=9, H -Ki=H+K)-K=-3, m =4 and K{=K?+a,

where a is the number of (—1)-lines on S. Thus h%(Os, (H1 + K1)) = m1 — 1+ x = 3, which
means that |1 + K| defines a map

YH,+K, : Sl — PE.

The image of this map is either P? | in which case we are in the exceptional case iv) of
Theorem 0.10, or the image is a curve, in which case S; is ruled in conics. Let, in both
cases,

p:S—C.
denote the morphism which defines the ruling of S.

In the first case we get (Hy + K1)? = 3, hence K = 0, so S has five (—1)-lines and
S1 i1s minimal. If we let B denote a section on the ruled surface S; with the minimal
selfintersection B2 = 1, then K; = —2B + kF, where &F is the pullback by p of a certain
divisor of degree one on C,, and H; = H + K = 3B, and thus

5
H=5B—kF-) I,
i=1
where E;, i =1,...,5 are the exceptional lines on S. Now any general member B € |B| is

an irreducible elliptic curve of degree H - B = 4 on S, so it spans only a hyperplane in P*.
Hence there is a residual curve

C=H-B

on S. (' has arithmetic genus 4 and degree H - C' = 6. Consider the exact sequence
0— Os(B) — Og(H) — O¢(H) — 0

of sheaves on S. If we take global sections, we have that h°(Os(B)) = 2. Thus C must be
a plane curve in P*. Given the degree and arithmetic genus of C, this means that PH|C
cannot be an isomorphism.

In the second case we get (H; + Kl)z = 0, hence Klz = —3 and S; is ruled in conics with
three singular fibres. If we let B denote a section on the ruled surface S; with the minimal
selfintersection B? = e < 1, then K, = —2B + €F + Z?:1 FE;, where €F' is the pullback to
S1 of a divisor of degree e on (.. We may set

3
Hy+» Ei=2B+aF,

i=1
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where aF is, say, the pullback from a divisor on C, of degree a. Since H? = 9, we get
(2B + aF)2 = 4de 4+ 4a = 12 and therefore that a = 3 — e. Thus

3
Hy=2B+aF - ) E,
i=1
and
3
H=4B+ (a —€)F — ) 2E; — B4 — Es.
i=1
Now B has arithmetic genus 1 on S and degree H - B = 3 + 2e, thuse =0 or e = 1.

If e = 0, then consider the linear system of curves |2B+7F| on S, where 7F is the pullback
of a divisor of degree two on (. By the Riemann-Roch theorem, it has dimension

dim|2B + 7F| > x(Os(2B+ 7F)) — 1 =5,

so there is a curve D =2B + 7 F — Z?zl E; on S. It has arithmetic genus p(D) = 3 and
degree H - D = 6, so it spans only a hyperplane in P% unless D is the union of a plane
quartic A and two skew lines Ly and Ls, or D is the union of a plane quartic A and a
conic @ such that each line (resp. the conic) meets A in one point. Now D? = 3 and
A? <1 by the index theorem, so L? + L2 > —2 (resp. Q% > 0). But this means that L;,
i=1,2, are (—1)-lines on S (resp. S is ruled in conics), which is absurd. Thus D spans a
hyperplane, and there is a residual curve C = H — D on S. This curve C' has arithmetic
genus p(C) = 2 and degree H - C' = 4, which is again impossible.

If e = 1, then consider the linear system of curves |2B+4 ¢ F'| on S, where o F is the pullback
of a divisor of degree one on C.. It has dimension

dim]2B+ oF| > x(Os(2B+0F))—1=5

so there is a curve D = 2B + o F — E?zl E; on S. It has arithmetic genus p(D) = 3 and
degree H - D = 6. An argument like the one for the case e = 0 shows that this case also is
impossible.O

Proposition 9.5. If S is a smooth surface of degree 10 in P* with m = 8, then S is
rational or an Enriques surface with four (—1)-lines.

Proof. We calculate the invariants of S. Since H - K = 4, we get that K? < % by the
index theorem. Thus
K?<1.

By Theorem 0.10., (H 4+ K)? > 0, thus K2 > —18. The double point formula says in this
case that

6y = 10 + K 2.

Thus we get the inequalities
—8<6x <11
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which means that
-1<x<1.

If y = —1, then K? = —16, (H + K)? = 2 and h°(Os(H + K)) = 7= — 1+ x = 6.
Therefore, by Theorem 0.10, ¢4k (S) is a nondegenerate surface of degree 2 in P°, which
is impossible.

If x =0, then K? = —10, (H + K)? = 8 and h°(Os(H + K)) = m — 1+ x = 7. This
means, by Theorem 0.10, that S; = pg1x(S) is a smooth surface of degree 8 in P®. We
calculate some further invariants of S and get

Hy - (H +K\)=(H+K)-(H+2K)=2.

Thus m = 2, h°(Os, (H1 + K1)) = m — 1+ x =1 and (H; + K1)? = 0, which means that
K% = 4. This is clearly impossible since y = 0.

If y = 1, then K? = —4. Therefore S must have at least four (—1)-curves. If S is
nonrational, then h°(Og(2K)) # 0. Therefore H-2K = 8 means that S must be a rational
surface or an Enriques surface with four exceptional lines.O

Proposition 9.6. If S is a smooth surface of degree 10 in P* with m = 9, then S is a
rational surface, a nonminimal K 3—surface, a regular elliptic surface with y = 2 and three
(—1)-lines or a minimal surface of general type with K* = 3,p, = 2,q = 0, and exactly
one (—2)-curve A such that S is embedded in P* by the linear system [2K — A|.

Proof. We calculate the invariants of S. Since H-K = 6, we get that K2 < % by the index
theorem. Thus K? < 3. On the other hand Theorem 0.10 implies that (H 4+ K)? > 0, which
means that K2 > —22. The double point formula says in this case that 6y = 15 + K2.
Thus we get the inequalities

—7<6x <18

which means that —1 < y < 3.

If y = —1, then K? = =21, (H+ K)?> =1 and h°(Og(H + K)) =7 — 1+ x = 7. This
means, by Theorem 0.10, that g1k (S) is a nondegenerate surface of degree 1 in P®,
which 1s absurd.

If x =0, then K? = 15, (H + K)? = 7 and h°(Os(H + K)) = 7 — 1+ x = 8. This
means, by Theorem 0.10, that S; = @r+x(S) is a smooth surface of degree 7 in P7. We
calculate some further invariants of S and get

H-(Hi+ Ki)=(H+K)-(H+2K)=-2.
Thus m = 0 and S is rational, which contradicts the assumption that y = 0.
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If x =1, then K? = —9. Therefore S must have at least nine (—1)-curves which appear

as fixed curves in |2K | whenever this linear system is nonempty. If S is nonrational, then
h°(Os(2K)) # 0. Therefore H - 2K = 12 < 18 means that S must be a rational surface.

If x =2, then K? = -3, (H +K)? =19 and h°(Os(H + K)) = 7 — 1 + x = 9. Therefore
S must have at least three (—1)-curves. Let Sy denote the minimal model of S, and let
Ky denote its canonical divisor.

If S is of general type, then |Kp| is nonempty. Since p(Kq) = KZ + 1 > 2, we must have
that H - Ko > 4, which means that H - (K — Kg) < 2. But this is impossible since K — K
is the sum of the (—1)-curves on S.

If Sy is elliptic and K is nontrivial, then, since p(Ky) = 1, we must have H - Kg > 3,
hence H - (K — Ky) < 3. Thus S has three (—1)-lines, and | K| contains an elliptic curve of
degree 3 on S. If Ky moves in a pencil, then we can find an elliptic curve C' = Kq — E; on
S, where E; is one of the exceptional lines. But then C' would have degree 2 on S, which
is impossible. Therefore p, = h°(Os(K)) = h°(Os(Ky)) = 1, and S is regular (¢ = 0).

If Ky is trivial, then S is birational to a K3—surface.

If Yy = 3, then K? = 3. As above, let Sy denote the minimal model of S, and let K¢ denote
its canonical divisor. If S is nonminimal, then H - Ko < 6 while p(Ky) > 4. As in the
above case, this leads immediately to a contradiction, so S is minimal. To see that S is
regular we assume it is not. Thus p; = h°(Os(K)) > 3. Now, any curve K € |K| has
arithmetic genus 4 and degree H - K = 6, which means that it is contained in a hyperplane

in P%. The residual curve C' = H — K has degree 4 but is mapped into a line by ¢ since
h%(Os(H — C)) = h°(Os(K)) > 3. This contradicts the very ampleness of |H|.

For the last statement of the proposition, we first study the pencil of canonical curves |K]|.
Now, H-K =6 and p(K) = K2 +1 = 4, so a general integral curve in the pencil must be
canonically embedded by |H|. Thus, if K is a general canonical curve and we consider the
cohomology of the exact sequence

0— Os(K—H) — Os5(2K — H) — Og(2K —H) — 0

of sheaves on S, then we must have that h°(Ox(2K — H)) = 1. On the other hand
h'(Os(K — H)) = h'(Os(H)) = 0 by the Severi theorem and Riemann-Roch, so we get
that h°(Os(2K — H)) = 1. Let A be the curve of |2K — H|. Then H-A=2and K-A =0
and A2 = —2, so A is a (possibly reducible) (—2)-curve of degree two on S.0O

In the case of an elliptic surface we show

Proposition 9.7. If S is a smooth elliptic surface of degree 10 and m = 9 in P* and with
a smooth canonical curve, then S is of the kind described in chapter 4.

Proof. We have seen already that such a surface S would have a canonical divisor

3
KEC—I—ZEZ-

i=1

89



where C'is an elliptic curve of degree 3, i.e. a plane cubic curve, and the E; are (—1)-lines
on S in the embedding in P*. By assumption C is a smooth curve, but we will not use
this until the last part of the proof. Let H denote a hyperplane section of S, and let

3
Hi=H —|—ZE
i=1

There is a pencil of curves

D] = [H = C]
on S.
Lemma 9.8. |D| has no fixed component.

Proof. A fixed component of |D| would be contained in the plane of C'. Since D -C = 3,
this fixed component would be a line, call it L. Thus L-C =3 and L-2C =6 = H - 2C.
But |2C] is a pencil of elliptic curves whose general member is irreducible, so L would be
a 6-secant to such a curve, which is absurd.O

Thus the general member of D € |D| is irreducible. It has degree H - D = 7 and arithmetic
genus p(D) = 6, so it is linked to a line in the complete intersection of a quadric and a
cubic surface. One of the rulings on the quadric surface will sweep out a g on D, i.e. D
is trigonal. Since C'- F; =0 for 1 = 1,2,3, we get that D - E; = H - E; = 1. Consider the

adjoint linear system

3 3
:|D‘|‘C+ZEi|: |H‘|‘ZEi|: | H1|

i=1 i=1

D+ K

of curves on S. If we consider the cohomology associated with the exact sequence
0— Og(K) — Og(H1) — Op(H1) —0
of sheaves of S, then we have that h'(Os(K)) = 0. Therefore the sequence
0 — HY(O(S)K) — H°(O(S)H1) — HY(O(D)H,) — 0

of global sections is exact, and |H1| restricts surjectively to the canonical linear series on

D.
Now h°(Og(H1)) = 7, so we may consider the map
$H, : S — P6

defined by |H1|. This map is in fact a morphism; it contracts the (—1)-curves E; and
restricts to an isomorphism outside the E;. We denote the image of S in P® by S;. Let
us put z; = ¢g,(F;) for i = 1,2, 3. Since H = Hy — 2?21 E;, the points z; must be
colinear; the embedding of S in P* is simply the projection of S; from the linear span of
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the three points z;. Let us denote the line spanned by z1,29 and z3 by L. We denote
the image of C' on S; by (7, and similarly we denote the image of D on S; by D;. The
curve (] is a plane cubic curve on S;. We denote the plane of C; by II. Now the linear
system |Dy| = |H1 — C1| of curves on S; has projective dimension dim|D;| = 3. Denote the
subpencil of |D;| which corresponds to the pencil |D| on S by P;i.e. the pencil of curves
in |D;| which meet the points z;. Note that the general member D, € P is an irreducible
canonical curve in a hyperplane of P®. It is trigonal, so it is contained in a rational normal
scroll whose ruling restricts to the g3 on D,. The line L must be a member of this ruling.
L cannot meet any other member of the ruling, in which case the projection of D, from
the line L into P3 would be three to one, therefore the scroll must be smooth. We denote
this rational normal scroll by Sp.

Although all of the curves in P are trigonal, this is not nessecarily the case for all the
curves in |Di|. But |D;| contains at least a net of trigonal curves. To see this, consider
the base locus Z, C 51 of the pencil P. We may write Z, = Z 4+ 71, where Zp, is of length
three and is contained in L, while Z is of length four and has support outside L. For a
general member D, € P, the scheme Z is a divisor which by duality on D, spans a P?3
together with the plane II. In fact

Z—I—(HQDP)E[{DP—ZL

as divisors on D,. We denote this P? C P® by V,. Now there is a net of curves D in | D]
which contain 7, and, by duality again, all of these curves are trigonal. We denote this net
by N. As above, we may, to every member D of N/, find a scroll Sp whose ruling restricts
to the trigonal linear series on D.

The proof is now based on a study of S; together with the following objects. First, a
variety Vi which we define as the intersection of the quadric hypersurfaces which contain
S1, and a variety V which is the irreducible component of V4 which contains S;. Secondly,
the net of rational normal scrolls {Sp|D € N'}. Thirdly, the projection

projr : P6-->P3
from the plane IT in P%, and at last the projection
projr. : pPé-->p?

from the line L in P, which restricts to the embedding of S in P* on 5;.
First let us find the possibilities for V4.

Lemma 9.9. h%(Zs,(2)) > 3; i.e. Vp is cut out by at least three linearly independent
quadric hypersurfaces.

Proof. Consider the cohomology associated with the exact sequence
0 — Os,(Hi) — 0Os,(2H1) — O, (2H1) — 0
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of sheaves on S; for a general smooth member H; of |H;|. Since H; has genus nine and
H% =13, we get that h°(Og,(2H1)) = 25. Now h%(Ops(2)) = 28, so taking global sections

in the exact sequence
0— Igl (2) — Ops(?) — Osl (2H1) — 0
of sheaves on P® we see that hO(Isl (2)) > 3.0

Note that, as we have defined V}, it is not necessarily irreducible, and that both the plane
IT and the scrolls Sp are contained in Vj; they are all swept out by trisecants to S;. Thus
Vi 1s at least threedimensional. On the other hand V4 is at the most fourdimensional since
it is contained in two linearly independent quadric hypersurfaces.

Lemma 9.10. dimV; < 4.

Proof. If Vy is fourdimensional, then it is at least of degree three. On the other hand
since it is contained in three linearly independent quadrics, it at the most of degree three,
so degVpy = 3 and Vj is irreducible. Codimension two varieties of degree three are well
understood. They are ruled by a pencil of linear spaces of codimension three. In our case
Vo is ruled by a pencil of P3s. This pencil must clearly restrict to the ruling of the scrolls
Sp. Thus L is contained in one of the P3s. On the other hand these P3s must sweep out
a pencil of curves on Sy. Projecting from L, we see that the member of this pencil which
belongs to the P2 of L, is mapped onto a line. Thus the curves of the pencil must all be
rational, which is absurd for an elliptic surface of Kodaira dimension 1.0

Thus Vj and V' are threedimensional and are contained in the complete intersection of three
quadric hypersurfaces. Since the family of scrolls Sp sweep out a net of curves on 51, we
get that V must contain the scrolls Sp. In fact the scrolls Sp are parts of hyperplane
sections of V: The net A of divisors on S is the restriction to S; of the net of hyperplanes
which contains the linear space V,. The restriction of the same net to V' has the scrolls
Sp as members of the moving part, since the general such member must be irreducible.
The fixed part of this net is V N V}.

Lemma 9.11. V NV, is a cubic surface.

Proof. Let D, be a general irreducible member of N, and let Sp be the corresponding
scroll. 'We will first show that Sp NV}, is a twisted cubic curve. For this consider the
intersection

ZD:Dpﬂ%:(mecl)UZ,

where Z is the baselocus of the net A as above. This intersection is a scheme of length
seven on the curve D,. On the other hand we have that

ZDCSDOV;,,

where Sp is a scroll of degree 4. Therefore Sp NV}, contains a curve. The possibilities for
such a curve are: 1) a line L with L2 < 0, 2) a plane conic @ with Q? = 0, 3) two skew
lines Ly + Loy with (L1 + L3)? = 0 and 4) a twisted cubic curve C with C? = 2. In the
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first case we get that (Hp — L)? < 2, where Hp is a hyperplane section of Sp, so that Zp
meets L in a scheme of length at least five, which is absurd. In the second case we get
that (Hp — Q)? = 0, so that Zp is contained in @), which is absurd since Zp spans V. In
the third case we get that (Hp — (L1 + Lg))2 = 0, so that one of the lines meet Zp in a
scheme of length at least four. This is also absurd since the lines L; and L are trisecants
to Dp. Thus Sp NV, is a twisted cubic curve.

Thus we have a net of twisted cubic curves on V NV,. If we consider the restriction of the
surjective map

HO(O(Sl)Dl) — HO(O(Cl)Dl)

of global sections of sheaves on S; to the net A, then we see that A has at the most one
basepoint on Cy. Therefore the net of twisted cubic curves has at the most one basepoint
on (1, so they sweep out a surface which contains C; and meets the plane of C properly.
This surface, which we denote by 7', therefore has degree at least 3, and is contained in
the intersection V N V.

To see that deg? = 3 and that T'=V N V,, we go back to V5. Since we already have that
Vo is cut out by quadrics, we get that V}, is a component of V. Thus degV’ < 7. But
degV = degSp + degT > 7, so we get equality and deg”' =3 and T'=V NV,.0

Now, consider the projection projg : P6--=P3. The restriction to S; of this map is the
map
¢p, : S1-->P3

defined by the linear system of curves | Dy |. We study this map. Consider the cohomology
associated with the exact sequence

0— Osl(Dl — Cl) — Osl(Dl) — Ocl(Dl) — 0
of sheaves on S1. Now, Dy — (1 = Hy — 2C4, and 2C ] moves in a pencil whose general
member is a smooth elliptic curve of degree Hy - 2C7 = 6. Thus any member of the pencil
|2C1 | spans at the most a hyperplane in P®. The residual curves move in the linear system
|F| = |D; — Cy| on S;. We get that h°(Os,(F)) > 1. Let E denote a general smooth
member of |2C1[, and let F be a member of |F|. If E does not span a hyperplane in P¢,
then, since £+ F = Hy, we get that N F spans at the most a P3. But £-F =6 = H,-E
and E N F is a scheme of finite length, so this is absurd. Thus h%(Os, (F)) = 1 and C} is

mapped onto a plane cubic curve by ¢p,. In particular |D;| has no basepoints on Cf.

Since (1 is a canonical divisor on S1, we see that | D] = |F' + C1] restricts to the canonical
linear series on F'. From the global sections of the exact sequence

0— 0g,(C1) — Os,(D1) — Op(D1) —0

of sheaves on S1, we get that ¢p, restricts to the canonical map on F. |Dj| has therefore
no basepoints on F. If we combine this with the above, we see that |D;| has no basepoints

on Cy + F = Dy.
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Now D7 = 7, so the image
Y = ¢p, (1)

is a surface of degree seven in P2, The image of a curve D, of the net A" must be a plane
curve of degree seven, and therefore the image of the scroll Sp by the projection projm is
a plane in P3. The baselocus Z of N is mapped onto a point

q=¢p,(Z).

Therefore ¢p, (Dp) acquires a quartuple point at ¢. Additionally, ¢p, (D)) acquires three
double points from the members of the ruling of Sp which meets ;. That there are no
other singularities can be checked by the genus formula of a plane curve.

Now we may sum up to conclude that the rational map
proji : P-->P3

restricts to a generically finite map on V. Since V' is contained in the complete intersection
of three quadrics, it is not hard to see that the map projg must be birational. In fact, if
P is a P23 C P® which contains the plane II, then the three quadrics will restrict to P as
the union of II and three other planes. If the intersection of the other planes is finite, then
it is one point.

The family of scrolls {Sp} is mapped onto the net of planes through the point

q=¢p,(Z),

and the net of curves N is mapped onto curves of degree seven in these planes with a
quartuple point at the point ¢ and three double points outside g.

The image Cy = ¢p, (C1) of the curve C; is a plane cubic curve; it lies on a cubic scroll
with vertex at ¢, which we denote by S3. This scroll is the image in P? of the exceptional
divisor we get by blowing up V along C}.

If we study the inverse rational map
p:P3-—>V C PS,

then we see that the restriction of p to the plane projm(Sp) is a linear system of plane
quartic curves with a triple point at ¢ and three simple points outside ¢ as assigned
basepoints, since the curve D, is canonically embedded in Sp. Therefore p is defined by
a linear system |dg| of quartic surfaces with a triple point as assigned basepoint at ¢, and
with an assigned basecurve which meets a general plane through ¢ in three points outside
q. We denote this basecurve by Cp.

If
7:U = Uy — P3
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is the composition of blowing up first ¢ to get Uy and then the strict transform of C'g on
Uy to get U, and we let I, o be the exceptional divisor on Uy and we let F,;, and Ep be
the strict transforms of the exceptional divisors on U, then p extends to a morphism

pv U —=V C Pé
which is defined by the linear system
|d| = |n*dy — 3E4 — Ep|
of divisors on U. The canonical divisor on U is

Ky = —n*dy + 2Eq + Ep.

The image of E, by the map py is the cubic surface T. Now, F, is the projective plane
E4 0 blown up in the points ¢;, 1 = 1,...,n of the intersection with the strict transform of
Cp on Uy. The restriction to E, of the linear system |d| is the linear system of plane cubic
curves on F, o with assigned basepoints at these points of intersection. Therefore T is a
Del Pezzo surface, n = 6, and Cp has six branches at ¢. This means that C'g is a curve of
degree nine in P3.

Going back to the original description of the variety
vV c P

we now get that if Sp is the scroll of a general D in A/, then Sp UT is a hyperplane section
of V with at the most isolated singularities on 7 beside the intersection Sp N7T. Therefore,
by an argument analogous to that of the proof of Lemma 0.13, a general hyperplane section
Hy of V is a smooth surface of degree 7. A calculation on Sp U T shows that the genus
of a general hyperplane section of Hy is three. Using the adjunction mapping on Hy, we
get, by Theorem 0.10, that Hy is a Bordiga surface, i.e. it is the rational surface defined
by plane quartic curves with nine assigned basepoints.

We may use this in our further study of the map p.

If we denote the strict transform on U of S3 by Sz, then we may consider the exact
sequence

0— OU(d—Sg,}U) — OU(d) — OS;),,U(d) — 0

of sheaves on U. We now know that the linear system |d—.Ss 17| consists of strict transforms
of planes which are mapped into P® as Bordiga surfaces, therefore the basecurve Cg must
be contained in Ss.

Collecting our information on ¢p, (D1), for D1 € N, we get that the surface ¥ = ¢p, (S1)
must have a quartuple point at ¢ and must have C'g as a double curve. If ¥y is the strict
transform of ¥ on U, then Yy must meet F, in a curve which is the strict transform of a
quartic curve with double point at the points ¢;, ¢ = 1,...,6 on ;. Thus the points ¢;
lie on a conic or are the points of intersection of four lines in the plane F,, where no three
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lines meet in a point. We conclude the proof of the proposition by showing that the first
of these cases is impossible if ' is smooth.

The strict transform S3p, of S3 on U is then a smooth elliptic scroll. We denote the
elliptic curve lying over ¢ by B and let B + aF be the class of a hyperplane section. Let
F; denote the member of the ruling of S3y, which meets B in ¢; for i = 1,...,6, and let
Cp = B+ BF, where fF - B = 9. Then, since Cp meets B in exactly the points ¢;, we
must have Cgp — F] — ... — Fg = B+ oaF. Thus

s, | = [4aF — BF].

Now, if the points ¢; lie on a conic, then |4aF — BF| = |aF|. Going back to Sy, this would
mean that Oc,(D1) = O¢,(H1), i.e. that O¢, (C1) is trivial. But if we consider the exact
sequence

0— Os, — 0g,(C1) — Oc,(C1) —0

of sheaves on S, then, taking global sections, we would get that S; is irregular, which is
impossible.

This finishes the proof of Proposition 9.7.0

Proposition 9.12. If S is a smooth surface of degree 10 with m = 10 in P4, then S is a
regular elliptic surface with two (—1)-lines and py = 2, or S is a minimal regular surface of

general type with three (—2)-curves A, As and Az embedded as conics and p, = 3, such
that S is embedded by the linear system |2K — A; — Ay — Az| in P4

Proof. We calculate the invariants of S. Since H-K = 8, we get that K? < % by the index
theorem. Thus K? < 6. On the other hand, Theorem 0.10 implies that (H + K)? > 0,
which means that K2 > —26. The double point formula says in this case that 6y = 20+ K 2.
Thus we get the inequalities

—6 <6y <26

which means that —1 < y < 4.
If y =—1, then K? = —26, (H + K)?> =0 and h°(Os(H + K)) = 7 — 1 + x = 8. Hence,
S is ruled in comnics.

Lemma 9.13. There are no smooth surfaces S of degree 10 with m = 10 in P* which are
ruled in conics.

Proof. We have just seen that S must have the following invariants:
x=-1, K*=-26.

Let V denote the hypersurface which is the union of the planes of the conic fibers of S.
Now, by a result of C. Segre, (see [GP2]) there is the following relation between the degree
0 and genus ¢ of the scroll V' N H and the degree d and genus 7 of SN H, where H is a
general hyperplane:

2r —2=2d — 2§ 4+ 2(29 — 2).
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By the genus of the scroll V' N H we mean the genus of the corresponding curve of lines in
the Grassmannian of lines in P3. With ¢ = 2, 7 = 10 and d = 10, we get § = 3. But there
are no scrolls of genus 2 and degree 3, so we have a contradiction.O

If x =0, then K? = —20, (H+ K)? = 6 and h°(Os(H + K)) = m— 1+ x = 9. This means,
by the above Theorem 0.10, that S1 = pr4+x(S) is a nondegenerate surface of degree 6 in
P38, which is impossible.

If x = 1, then K? = —14. Therefore S must have at least fourteen (—1)-curves, which
appear as fixed curves of |2K | as soon as this linear system is nonempty. If S is nonrational,

then h°(Os(2K)) # 0. Therefore H - 2K = 16 < 28, means that S must be a rational

surface. This was ruled out in chapter 8.

If x = 2, then K2 = —8. Therefore S must have at least eight (—1)-curves. Since there
is an effective canonical divisor K on S and H - K = 8, K must be the sum of eight
exceptional lines and S must be birational to a K 3-surface.

Lemma 9.14. There are no smooth surfaces S of degree 10 with m = 10 in P* which are
birationally K 3.

Proof. Since H - K = 8 and K? = —8, there must be eight (—1)-lines on S. The formula
for the number of 6-secant lines to S gives the number —1 in this case. Therefore S must
have infinitely many 6-secant lines. We need only one such line for our argument. The
hyperplanes which contains a 6-secant line, induce a gi on a hyperplane section Hy which
has this 6-secant. We want to use an idea of Saint-Donat and Reid (see [SD] and [R2])
to show that this gi must be swept out by a pencil of curves on S. This will lead to a
contradiction.

We fix a smooth hyperplane section H which has a 6-secant line, and denote the g} on H
swept out by the hyperplanes containing this line by |§|. Now let S; = oy (S) C P1°,
and denote the image of H on S; by Hi. Then PH+K |H, is an isomorphism, so we may
work with |4] as a linear series on H;. Let §p be a general member of [§|. Then we may
assume that §p consists of 4 distinct closed points, call them z1,...,24. Let m: Sp — 53
be the blowing-up of S; in these four points. Denote the exceptional divisors by E1, ..., F4
respectively and denote the total transform of H1 by Hg. Let us denote the strict transform
of Hy on Sy by C, such that C = Hgy — Z?zl E;. Then h°(Og,(8)) = 2 implies that
hO(OC(ijl E;)) = 2. Consider the cohomology of the exact sequence

4 4 4
0— OSO(_HO—I_ZQEi) — OSo(ZEi) — Oc(ZEZ) — 0

i=1 i=1 i=1
of sheaves on Sg. Since h°(Og, (Z?:l E;)) =1, we get that

4
h'(Os,(—Ho + Y 2E;)) = 1.
i=1
This means that any curve in the linear system |Hg — 2?21 2F;| must decompose into

disjoint curves or be nonreduced. Since we are on a K 3-surface, this will lead to the
desired result.
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Lemma 9.15. h%(Os,(Ho — E?Il 2F;)) > 1.

Proof. We will work on S; C P19, Then H; is canonically embedded in S as a hyperplane
section. The divisor dg = 1 + ... + x4 is a member of a gi on Hy, therefore the points
Z1,...,24 only span a P? in P!%, Thus if the g} has no base points, then a divisor in the
linear series |26| only spans a P® in P10, (In case the g; has base points, then a divisor in
the linear series |26] would at the most span a P*.) This means that

h®(Om,(Km, —28)) = h°(Oc(Ho — iQEi)) > 4.

i=1
Consider the cohomology of the exact sequence
4 4 4
0— OSo(_ZEi) — OSO(HO_ZQEi) — OC(HO_ZQEi) — 0
i=1 i=1 i=1

of sheaves on S;. Now hl(OSO(—Zfl 1 Ei)) = 3, therefore h°(Oc(Ho — Z?:l 2E;)) > 4

1=

implies that h°(Os,(Ho — Z?:l 2F;)) > 1.0

Let Ay be a member of |Hg — Z?:l 2FE;|, and denote its image on S; by Aj.

Lemma 9.16. A; has a decomposition
A=A+ A

such that A meets all the points z;, i = 1,...,4, of dg and p(A) = 1 or p(A) = 2.
Furthermore, Hy - A =4 if A is elliptic, and H1 - A <6 if p(A) = 2.

Proof. Apply the argument of the proof of Lemma 3 in [R2].0

We use Lemma 9.16 to conclude the proof of Lemma 9.14. If p(A) = 1, then A moves in
a pencil. If we denote also the total transform of A on S by A, then we can find a curve
D; = A — F; on S, where F; is an exceptional line on S. D; must be a plane cubic curve
in S. The residual curve H — D; moves in a pencil, has degree 7 and arithmetic genus 7.
This is impossible by Lemma 0.11.

If p(A) = 2, then h%(Os,(A)) = 3. As above, we think of |A| as a linear system of curves
on S. Thus there is a curve D = A — F; — F;, where F; and F; are exceptional lines on
S. D has at the most degree 4 and arithmetic genus 2 on S. This is also impossible by
Lemma 0.11.0

If x = 3, then K? = —2. Therefore S must have at least two (—1)-curves. We can use the
fact that H - K = 8 to show

98



Lemma 9.17. S is a regular surface (¢(S) = 0).

Proof. If S is irregular then py(S) > 3. Thus we may find a curve D = K —2E; —2F5 on
S, where Ey and Es are (—1)-curves on S. We get that H - D <4 while D has arithmetic
genus p(D) > 1. Thus D has arithmetic genus 1 or 3.

If p(D) = 3, then the minimal model Sy of S has K2 = 2, which means that S has four
(—1)-curves. Hence there is a curve Dy = K — 2Ey — 2Fy — E3 — E4 on S of degree
H - Dy <2 and p(Dg) = 3. This is impossible.

If p(D) = 1, then the minimal model Sy of S is an elliptic surface. The canonical linear
system |Kp| on Sy has a moving part |M| without basepoints. Since py(Sy) = 3, any
member of this moving part must decompose into several elliptic curves. Thus the above
curve D must also decompose into several elliptic curves. Since D has at the most degree
4, this is impossible. O

As we go on we let Sy be the minimal model of S with canonical divisor Ky. Then Sy is
a minimal elliptic surface, or a surface of general type.

If Sg is of general type, then KZ = 1 (or K¢ > 2). Hence a canonical curve Kg has
arithmetic genus p(Kg) = 2 (resp. p(Ko) > 3). On the other hand S must have three
(resp. at least four) (—1)-curves. Thus there is a curve D = K — 2E; — F3 — E3 (resp.
D=K-2F) — Es— Es—E4)onS. Now D has degree H - D <4 (resp. H-D <3) and
arithmetic genus p(D) = 2 (resp. p(D) > 3). This is impossible, so S must be an elliptic
surface.

We go on to show that the two exceptional curves on S, call them F; and FE5, are lines.
Now, |K| is a pencil of curves on S with E 4 E5 as a fixed part. In fact, by the formulas for
the canonical divisor on an elliptic surface (see [BPV]), any member of |K —E1—Es| = |F| is
the sum of elliptic curves. Since p; = 2, the moving part of |F'| defines an elliptic fibration
on S, such that the fixed part of |F| is a sum of multiple fibres of this fibration. But
H-F=H- (K- FE — FE3) <6, so |F| can have no fixed part and the general member is
an irreducible elliptic curve.

Assume that E; has degree at least 2, i.e. H - FE; > 2. Then H - F < 5 and there are
curves C; = F — E; on S, for i = 1, 2, with arithmetic genus p(C;) = 1 and degrees
H-Cy=8-2H-E1)—H-FEyand H-Cy =8—H-E; —2(H-E5). Hence H - E5 =1 and
H - Fy = 2. Now, (5 has degree 4, so it is contained in a hyperplane. The residual curve
D = H —() has degree 6 and arithmetic genus 5. This is only possible if D decomposes into
a plane quintic curve A and a line B which does not meet A. We have D? = A2 + B? =1,
and B? < —2 since E; and E are the only (—1)-curves on S. Hence A? > 3, which is
impossible by the index theorem (H - A = 5 implies that A% < 2).

If x = 4, then K? = 4, so S is of general type. We first show that S is minimal and regular.

Assume that S is not minimal, and let £ be a (—1)-curve on S. Then, since p, =
h°(Os(K)) > 3, there is a curve C = K — 2F on S of degree H - C < 6 and C? = 4. But

this contradicts the index theorem, so S must be minimal.
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Now consider a general member Cx € |K|. Since H -Cx =8 and p(Cx) = K2+1 =5, we
want to check whether [H|¢ | is the canonical linear series on Ck. If it is not, then, by the
Riemann-Roch theorem, Ck spans only a hyperplane in P*. But p, = h°(Og(K)) > 3, so
the residual curve D = H — Ck has degree H - D = 2 and is contained in a line, which
is absurd. Therefore Ck is canonically embedded in P* by |H|cy |- We use this to get
a more intrinsic description of the linear system of curves |H|. Consider the cohomology
assosiated to the exact sequence

0— Og(K —H) — Os(2K —H) — O¢, (2K — H) — 0

of sheaves on S. By the Severi theorem and the Riemann-Roch theorem h'(Og(K — H)) =
h1(Os(H)) = 0 and h°(Os(K — H)) = 0, and by the above O¢y (2K) = O¢, (H), so
h%(Ocy (2K — H)) = 1. Therefore h°(Os(2K — H)) = 1. Let A be the curve in 2K — H|.
Since K - A = 0, A must be the union of (—2)-curves on S. Now A? = —6 and p(A4) = -2,
so A must be the union of three numerically disjoint (—2)-curves which we denote by
A1, As and As. Thus A;-A=A; - (2K —H)= —-2fori=1,2,3. But K- A; =0, so we
get that H - A; = 2, which means that the (—2)-curves A;, As and As are embedded as
conics in P%.

If S is irregular, then p, = h°(Os(K)) > 4, so there is a curve
CEIX’—AEIX’—Al —AQ—A3

on S. It has degree H - C = 2 and arithmetic genus p(C) = 2, which is impossible.
Therefore S is a regular surface embedded by the linear system

2K — A — As — A3,
in P4
This concludes the proof of Proposition 9.12.0

Proposition 9.18. If S is a smooth surface of degree 10 in P* with m = 11, then S is
either

A) contained in a cubic hypersurface, in which case S is linked to an elliptic scroll in the
intersection of a cubic and a quintic hypersurface,

or

B) S is not contained in any cubic hypersurface, in which case S is linked to a Bordiga
surface in the intersection of two quartic hypersurfaces.

Proof. The first step is to get the right invarants.

Lemma 9.19. If'S is linked to a Bordiga surface in the intersection of two quartic hyper-
surfaces, then S has the invariants p; = 4, K =5 and ¢ = 0.

Proof. Since a Bordiga surface is projective Cohen-Macaulay, so is S. In fact the ideal of
S is generated by the maximal minors of a 4 x 5—matrix with linear entries. Thus we get
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g = 0 and p; = 4 from the resolution of the ideal of S. We get K? = 5 from the double
point formula.O

Lemma 9.20. IfS islinked to an elliptic scroll T' in the intersection of a cubic and quintic
hypersurface, then S has the invariants p; = 4, K? =5 and q = 0.

Proof. From the cohomology of the liaison exact sequence
0— Os(K) — Oy(3H) — Or(3H) — 0

where U is the complete intersection of a cubic and a quintic hypersurface, we immediately
get that py(S) = 4 and ¢ = 0. From the double point formula we then get that K* = 5.0

Lemma 9.21. If S is a smooth surface of degree 10 in P* with m = 11, then S has the
invariants p; =4, K? =5 and ¢ = 0.

Proof. We calculate the possible range of the invariants of S. Since H - K = 10, we get
that K2 < % by the index theorem. Thus

K? < 10.

Since (H + K)? > 0, we get K? > —30. The double point formula says in this case that
6x = 25 + K2. Thus we get the inequalities

which means that

If y =0, then K2 = —25, (H+K)? = 5and h°(Os(H + K)) = 7—1+x = 10. This means,
by Theorem 0.10, that gk (S) is a nondegenerate surface of degree 5 in P, which is
impossible.

If x = 1, then K? = —19. Therefore S must have at least nineteen (—1)-curves which, with
multiplicity two, appear as fixed curves of |2K| whenever this linear system is nonempty.

If S is nonrational, then h°(Og(2K)) # 0. Therefore H -2K = 20 < 38 means that S must

be rational. This again was ruled out in chapter 8.

If x =2, then K? = —13 and p; > 1. Hence S has a canonical curve with at least 13
components. But H - K = 10, so this is impossible.

If x = 3, then K? = —7 and p, > 2. Hence S has a canonical curve with at least 8
components, seven of which must be rational curves. Let Ky be the pullback to S of a
canonical curve on the minimal model Sy of S. Then H - Ky < 3, while K has arithmetic
genus p(Kg) > 1. Since Ky moves in a pencil, there is a curve C' = Kq — F, where E is a

(=1)-curve on S. Thus H - C < 2 and p(C') = 1. This is impossible.
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If x =4, then K? = —1 and p; > 3. Hence S has a (—1)-curve E which is part of any
canonical curve on S. Let Sy, with canonical divisor Ky, denote the minimal model of S.
By abuse of notation we will denote also the pullback of Ky to S by Kg. Now, Sy is either
an elliptic surface or of general type.

If Sp 1s elliptic, then Ky is numerically equivalent to nF + Zle F;,n>1k >0, where I
is a fibre of an elliptic fibration, and the F; are reduced parts of not neccessarily distinct
multiple fibres. Since H- Ko = H-(K—FE)<9and H-F > H-F;, we get that n =2,k =0
and H - F < 4. Hence H - E > 2. Since there is a curve C' = F — FE, with H - C' < 2 and

p(C) =1 on S, we have reached a contradiction to the smoothness of S.

If S is of general type, then by Noethers inequality ([BPV])
K§>2p, —4>2.

Thus S has at least three (—1)-curves E; and H - Ko < 7 and p(Kpy) > 3. Since pgy > 3, we
can find a curve C' = Ky — Ey — FEs on S. It has degree H - C' < 5 and arithmetic genus
p(C) > 3. Hence C must have arithmetic genus 3, and K2 = p(Ko) — 1 = p(C) — 1 = 2.
We get

CEI{()—El—EgE[(—2E1—2E2—E3

and H -C =4 or 5.

If C' has degree 5, then there is a residual curve D = H — C of degree 5. But D would
have arithmetic genus p(D) = 4, which is impossible by Lemma 0.11.

If C has degree 4, then H - E3 = 2. But if we consider the curve Cy = Kg— E1 — E3 instead
of C, then we get a contradiction in this case also, since H - €1 = 3 while p(C;) = 3.

If y =5, then K2 = 5. We first show that S is minimal. If S is not minimal, then we let
So be the minimal model and let Kg be the pullback of a canonical curve on Sy to S. Let
E be a (—1)-curve on S. Now, K2 > 6, so p(Ko) = K2+ 1 > 7. There is on S a curve
C = Ko — E of degree H - C < 8 and arithmetic genus p(C') = p(Kg) > 7. Since C? = 5,
we must, by the index theorem, have H - C' = 8 and KZ = 6.

Now, py > 4, so we may find a curve Cy = Ko —2F on S. This curve has degree H-Cy =7
and arithmetic genus p(Cp) = 6. If we follow the proof of Lemma 3.4, it is straightforward
to see that () spans only a hyperplane in P* unless it contains a plane quintic curve B
as a component. In that case, Cy = A + B, where A- B = 1 and A is a plane conic
curve, or A- B = 2 and A is the union of two skew lines. In the first case, 42 < —2, so
B? = C2 — A? — 2 > 2. But B? <2 by the index theorem, so we get equality. This leads
to a contradiction, since any curve D in the pencil |H — B| has degree 5 and genus p(3).
In fact D must be reducible with a component in the plane of B, while D - B = 3. In the
second case we get A? < —4, so B2 = C2 — A% — 4 > 2, thus again we get B? = 2, and a
contradiction like the one above. Thus Cj spans only a hyperplane in P*.

Since Cy - £ = 2, even C' = Cy 4+ E is contained in a hyperplane. On the other hand
h°(Os(C)) > pg — 1 > 3 implies that the residual curve D = H — C must be a line. This
is absurd, since H - D > 2. We conclude that S is minimal.
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Now, p(K) = 6 and H - K = 10, so h°(Os(K — H)) = h*(Og(H)) = 0. From Riemann-
Roch and Severis theorem, we get that h'(Og(H)) = 0. By the Castelnuovo bound, a
curve of degree 10 and genus 11 can only span a P? thus h°(Og(H)) = 4. If we collect
these facts and compare them with the cohomology of the exact sequence

0— Os — Og(H) — Og(H) — 0,

we get that ¢ = 0.0

We are left with the two cases a) S lies on a cubic hypersurface, and b) S does not lie on
any cubic hypersurface.

In case a) we denote the cubic hypersurface which contains S by V. A result of Aure
([Au Lemmas 2.1.6 and 3.1.19]) shows that V' cannot be a cone or have a double plane.
Therefore V' must be normal, and a general hyperplane section Hy is a Del Pezzo surface
or the cone over a nonsingular plane cubic curve.

Now, let H denote a general hyperplane in P*, and let II denote a general plane in H. Let
Zv,s denote the sheaf of ideals defining S on V, and similarly let Ty, s, (resp. Zvy sy)
denote the sheaf of ideals defining SN H on VN H (resp. SN on V NII).

Consider the cohomology of the exact sequence
0— IVH,SH(4) — IVH,SH(5) — IVn,Sn(5) — 0

of sheaves on VN H. Now, VNIl is a plane cubic curve and Zy;; s (5) is an invertible sheaf
of degree 5 on it. Hence h®(Zvy s,(5)) = 5. On the other hand, from the cohomology of
the exact sequence

0 — Tvy,s54(5) — Ovar(d) — Osnr(d) — 0,
we get that h%(Zv,, s, (5)) > 6 since h?(Ovam (5)) = 46 and h°(Osam (5)) = 40. Therefore
K (Iv,, s, (4)) > 1,
and S N H is contained in a quartic surface. Since degS N H = 10, we may even assume

that S N H lies on an irreducible quartic surface.

Since S N H lies on an irreducible cubic surface and on an irreducible quartic surface in
H., we may link SN H to a curve C' in the intersection of these two surfaces. Then C' has
degree 2 and arithmetic genus p(Cy) = —1. Thus Cj is the union of two skew lines on
VN H,and VN H must be a Del Pezzo surface.

The linkage of SN H and C in H cannot be lifted to P*, since in that case S would be
linked to the union U of two planes which spans P* in the complete intersection of V
and a quartic hypersurface, and U is not locally Cohen-Macaulay. (Being locally Cohen-
Macaulay is preserved by linkage.) Therefore h°(Zy, s(4)) = 0.
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Let T be the desingularization of V N H. We denote by Hr the pullback of a hyperplane
section of Hy to T. If we let Dg denote the pullback of SN H to T, we get

D554HT—L1—L2

where L; and Ls are the pullbacks of two the skew lines in Cy. Thus Dy is residual to a
curve Cg = Hp + L1 + Ly in 5H7p, which has degree Hy - C'r = 5 and arithmetic genus
p(CE) = 1.

Now, going back to S and V', we consider the map
p: HY(Z(S)5) — HY(Z(V, S)5).

The kernel of this map is H*(O(P*)2). Since, by Riemann-Roch, h%(Zs(5)) > 21, we get
that h°(Zy s(5)) > 6. This means that S lies on an irreducible quintic hypersurface W.
Hence S is linked to a surface S” of degree 5 in the complete intersection V N W. If we
cut down to H, we see that S’ N H has arithmetic genus 1 and is isomorphic to a curve
linearly equivalent to Cg on T.

Lemma 9.22. S’ is smooth for a general choice of W.

Proof. Consider the cohomology of the exact sequences
0— 15(4) — 15(5) — ISnH(5) —>0,

0 — Opa(l) — Zs(4) — Zsv(4) —0

of sheaves of ideals on P?. For the latter we already have that h°(Zs v (4)) = 0, therefore
h°(Zs(4)) = 5, and by Riemann-Roch h'(Zs(4)) = 0. Therefore, taking global sections in

the first sequence, we get that the restriction map
H°(Z(S)5) — H°(Z(S N H)5)

is onto. Thus, we may, by the Bertini theorem, choose W such that Cg is smooth and S’
is normal. To conclude the proof of the lemma, we refer to an argument of Aure (see [Au
page 23|) which shows that if S’ is a normal surface of degree five and 7 = 1, then S’ is a
smooth elliptic scroll.00

In case b) we use the fact that h%(Zs(4)) > 5. If we cut to a general plane I in P*, we get a
linear system, call it |C'|, of quartic plane curves through 10 points whose general member
is irreducible. The projective dimension of |C| is at least 4, in fact, by an argument similar
to that of the proof of Lemma 0.12, one may show that |C| can have no more than 10
basepoints and that the dimension is equal to 4. Thus the linear system |V| of quartic
hypersurfaces that contains S has no base locus of codimension two outside of S. By
Bertini a general subpencil of |V| cuts out an irreducible surface T' linked to S. The
general hyperplane section Hp of T is an irreducible curve of degree 6 and arithmetic
genus 3 which is not contained in any quadric surface. Therefore Hr is projective Cohen-
Macaulay and the ideal of Hp is generated by the maximal minors of a 3 x 4-matrix.

104



Since Hr is projective Cohen-Macaulay, so is T and S. Hence T is a Bordiga surface and
Proposition 9.17 follows.O

Remark. Surfaces of the above type A) may be realized on a Segre cubic hypersurface.
This is a rational threefold whose desingularization V' is isomorphic to P2 blown up in five
points, p1,. .., ps, in general position. The morphism to P* is given by quadrics through the
five points. The Segre cubic has 10 quadratic singularities; the images of the lines through
any two of the points p;. Consider a quintic hypersurface Sy with quadratic singularities
in the five points p1,...,ps, and nonsingular elsewhere. Then the strict transform S; of
Sp on V is nonsingular with five (—2)-curves, call them A;, lying over the points p;. The
image S of S1 in P* is in fact isomorphic to S;. Since Sy is the canonical image of S, we

get that
5

Hs =2Kg — ZAZ-.

i=1
We conclude the proof of Theorem 0.1 with

Proposition 9.23. If S is a smooth surface of degree 10 in P* with # > 12, then m = 12
and S is linked to a quadric in the intersection of a cubic and a quartic hypersurface, or
m = 16 and S is the complete intersection of a quadric and a quintic hypersurtface.

Proof. Let H be a general smooth hyperplane section of S. A theorem of Gruson and
Peskine (see [GP1]) says that if 7 > 12, then H lies on a quadric hypersurface. If we
consider the cohomology of the exact sequence

0— Is(l) — 15(2) — IH(Q) — 0
of sheaves of ideals on P*, then we may conclude, from the Severi theorem, that
h°(Zs(2)) = h°(Zu(2)).

Therefore, S must lie on a quadric. Smooth surfaces on quadrics are either complete
intersections or linked to a plane (see for instance [Au, Proposition 1.3.1]), so the latter
part of the proposition follows.

Now, the theorem of Gruson and Peskine says furthermore that if 7 = 12, then H is linked
to a conic in the complete intersection of a cubic and a quartic hypersurface. It therefore
remains to show that this linkage lifts to P*. Now, H is projective Cohen-Macaulay, so
hi(Zg(n)) = 0 for i > 0 and all n. The cohomology of the exact sequences

0— Zs(n) — Zs(n+1) — Ig(n+1) — 0

shows by induction that hi(Zs(n)) = 0 for i > 0 and all n. Thus we may lift the linkage,
and the proposition follows.O

This completes the proof of Theorem 0.1.
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