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§ 0. Introduction.

In [ 2 1 we have defined the topological Hochschild homology . This
is defined for certain functors from finite simplicial sets to simplicial sets. The
most important property of such a functor F is that it allows a product

F(X) NF(Y ) > F (X A Y)

satisfying associativity, and having a unit S° = F( S°) . One particular example
is provided by a ring R. F associates to a simplicial set the free simplicial R-module
generated by it. We denote the corresponding topological Hochschild homology
by THH(R).
In this paper we compute this topological Hochschild homology functor
in the cases R = Z and R = Z/p . There are two different motivations for doing
this calculation. First, there is a map of Dennis trace type

K(R) > THH(R)

so that the computation gives information about the K-theory of the ring. This
will be exploited in [ 3 1 to give new results on K( 7, ).

The second motivation is the relation of the topological Hochschild homology
to the homology of the adjoint representation of GLOo (R).

The map from K-theory to topological Hochschild homology factors over
the so called stable K-theory, denoted K5 [ § J, [ 12 1. Motivated by his
calculus of functors, Goodwillie conjectured the existence of topological
Hochschild homology, and also conjectured that it equals stable K-theory.

This is further discussed in [ 14 J, where in fact there is indicated that the
conjecture is true.

Goodwillie also conjectured that

Tr2i( THH( Z/p) ) =Z/p
m,.., ( THH(Z/p) ) = O
m, ( THH(Z) ) = 0 ; 1>0
T, ( THH(Z) )= Z/i

In this paper we show that the topological Hochschild homology of Z
and of Z/p satisfies Goodwillie's conjecture on homotopy groups.

We also compute the homotopy types of these spaces. They are products
of Eilenberg-MacLane spaces. We also determine the product structure, for a
precise statement, see theorem 1.1.

Assuming the conjecture KS(R) = THH(R), this makes it possible to compute
some homology groups of GLOO (R) with coefficients in the adjoint representation
MOO(R), for the rings above.

Let G denote a simplicial loopspace functor-. Then, there is a simplicial
ring R[G(Sm)], and we can consider the monoid of homotopy invertible matrices
GL over this simplicial ring ( see [ 11 ] ). There are two fibrations
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F > BGLRIG(S™)]) - BGL[R)
A m + A +
F' > BGL(RIG(S™))) > BGL(R)

where the + denotes Quillens plus construction. By definition,the total space and
the base of the last fibration are components of K( R[G(S™)] ) respectively K ( R ).

The stable K-theory is so defined, that F is an approximation to an
m-fold delooping of K°(R) . In particular, this makes K5 into a spectrum in a
canonical way. We compute the stable homotopy of K( RIG(S™)]) relative to
K(R) in two different ways. First note that the fibrations have a section. Since the
total space in the second fibration has a product structure, we have a homotopy
equivalence

F' x KR) = K(RIG(S™])

For the relative stable homotopy we obtain

~

3 ( KRIGS™)T ), K(R) "= Tm (F A K®), )

Since F' is m-connected, this equals the generalized homology of the space K(R)
with coefficients in the spectrum K3(R), for small i. In the limit over m, we obtain
equality.

But the spectrum K5(R) is a module spectrum over R, so it is a product
of Eilenberg-MacLane spectra. The homology with coefficient in this spectrum
iIs a sum of ordinary homology groups, with coefficients in the homotopy groups
of K3(R).

We can compute the relative stable homotopy in a different way, noticing
that since stable homotopy is a homology theory, it does not change under
the plus construction. This means, that we can use the first fibration
to compute it. We obtain a spectral sequence converging to the relative stable
homotopy. In the limit over m, this spectral sequence collapses, and we obtain
a formula

s - m o o
ni+m( BGL(RIG(S™)]1) , BGL(R)) = H, ( GL(R),M(R) )
For details, see [ 5 ] , [11 1,

Combining our two calculations, we get

H (GL®) ,M®)) = 6 H(K®) ; T ¢ KS[R) ) )

i+j=k

In particular, assuming the conjecture that stable K-theory equals topological
Hochschild homology, and recalling that by a computation of Quillen the
higher homology of GL(Z/p) with coefficients in 7./p vanishes, we obtain

0 i odd

Hi (GL(Z/p) , M(Z/p) ) = [ Z/p i even
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Finally, I want to thank I. Madsen for his very careful reading of an earlier
version of this paper, and for pointing out several errors and inaccuracies.
I also thank F. Waldhausen for helpful discussions.

81. We are going to determine the Hochschild homology of the ringfunctors given
by X » Z[X] respectively X = Z/p[X].

Recall from [ 2 ] that if F(-) is a commutative ring functor, then we
can define the topological Hochschild homology THH(F). This is a hyper-T'-space
in the sense of [ 10 ] and [ 15 1. This means that in particular, that
it has a ringstructure up to homotopy. We can also make a ringspace out of F.
Let F denote the infinite loopspace lim Q™F(S™). This can be made into a ring
up to homotopy, and there is a map F -+ THH(F). In particular, the spectrum obtained
from the infinite loopstructure associated to the additive structure in THH(F)
is a module spectrum over F.

It follows that if F is given as F(X)=R[X] for a commutative ring, then THH(F)
is a product of Eilenberg-MacLane spectra. The argument is, that using the unit
map

s® > R[s%]
we can construct a retraction of spectra

Smash product of an Eilenberg Mac-Lane spectrum with any spectrum is
a product of Eilenberg-MacLanespectra. It follows, that THH(R) is a retract
of a product of Eilenberg-Maclane spectra. But then it is a product of
Eilenberg-MacLane spectra itself.

Let K(M,n) denote the Eilenberg-MacLane spectrum of dimension n, which
corresponds to the R-module M. Let [[' denote restricted product.

i=0

(ee]
b) THH(Z) = K(Z0)x [[ K(Z/i, 2i-1)

i=1

c) The map THH( Z,Z ) - THH(Z/p, Z/p) is the product
of the canonical map K(Z,0) - K(Z/p, 0) with the Bockstein maps

K(Z/pi ; 2pi-1) > K(Z/p ; 2pi )
d) We can choose the isomorphism in part a, so that if
L ¢ HACK(Z/p, 21) , 2/p) ¢ HP(THH( Z/p), Z/p)
is the fundamental class, then the coproduct in cohomology ,

given by the product in THH, is computed by the following formula
i

By = Z by @ by(i-p)
j=o
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e) We can chose the isomorphism in part b, so that
if

Ly € AWK Z/1, 2i-1 ), 2/p) € HB™ ( THH( Z4p ) 2/p)

is the fundamental class, then the coproduct is given by
i-1

A topi-1 ~ 1 ‘opi-1 * ‘opi-1 ®1 +p ( Z topj-1 % Lap(i-j)-1 )
J=1

Here $ denotes the Bockstein associated to p.

The proof of theorem 1.1 will occupy the rest of this section. We are going
to compute the spectrum homology of the spectrum of the topological Hochschild
homology. This will be done by spectral sequences. In order to compute the
differentials, and to solve certain extension problems in these spectral sequences,
we will need precise information about the homology of the spectrum. These computations
will be done in §3.

The first remark to be done, is that as THH(R) is a product of Eilenberg-MacLane
spectra, its homotopy type is determined by its homology. Actually, it is even
determined by the homology with coefficients in Z/p for each p, together with
complete knowledge of all higher Bockstein maps.

Each Eilenberg-MacLane spectrum K(Z/p™, m) contributes two summands
in the spectrum homology of the topological Hochschild homology, both isomorpic
to A /() , the dual of the Steenrod algebra at p modulo the Bockstein. One
copy is shifted in dimension by m and one copy by m+1. The two classes
are related by the higher Bockstein associated to pn.

Fix a prime p. From now on, all homology groups are with coefficients
in Z/p. The simplicial structure of topological Hochschild homology provides
us with a spectral sequence converging to its spectrum homology. Let us first
consider the case THH( Z/p ). The E! - term of this spectral sequence is given
by

B, 5 A®P.

The first differential is given by the boundary maps of the simplicial object.
These induce the boundary maps defining ( ordinary ) Hochschild homology H( A )

of A acting on itself. )
It follows, that E® is isomorphic to Hochschild homology of ;4 acting on

itself. Recall from [ 4 1 that for a commutative ring S,
H(S) = Torg ¢ (S,S)

Recall from [ ‘8 ‘] , that

b

Z/2 € E,,...] , deg £ =2 -1 (p=2)

pN
]

Z/pLE ,E,. . 1®Z/p LT 1 ,..] /7%=0

deg§i=2pi~2,deg7i=2pi—1 (p>2)
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The Kiinneth formula applied to the complex defining Tor says that if M1 and
M, are bimodules over the rings R1 respectively R2 then

2

Tor R ® RZ(M1®M2’M1®M2)= Tor Ri(Ml,M1)®Tor Rz( M2®M2)
Let A' be defined by the formula

74!

Av

Then the Kiinneth formula implies that

Z/20E ®1-18F ,E,01-10F,,... 1c A &/ p=2

Z/p[ﬁl®1-1®ﬁ1,..]®/Z/p[To®1—1®1:0,...]C,4 p > 2.

H(AGHA) = A® Ext g (Z/p,2/p)
Using the Kiinneth formula again, we can compute the ﬁ'gt—factor in this tensor
product. We obtain that

z 2 _ . = i— =
H(A)E ATX %, ...17 27=0 ; degh =(1,2-1) (p=2)

> 2 _
H(A) T ADA ,%,,...07/ 2=0 ® I'(y)®T(y,)..
deg X, = (1,2p'-2) ;degy,=(1,2p'-1) (p>2)

The class Yi(a) is represented by 1 ® L®L®...0® 4 ( where the tensor

product has a+1 factors ), and ki by 1 ® g -
The gamma-algebra I' ( a ) is defined as the vectorspace over Z/p with
b??is(%iven by the symbols a(l) ,and equipped with a product given by
1 ) _ (
a =

a i 1+ j ) a (1+J). An exercise in binomial coefficients shows that

rca)=z/pral P 2 (p) 1y (a(pl))p=o

The spectral sequence is slightly different in the cases p = 2 and
p odd . In case p = 2 , the multiplicative generators are all in filtration 1, so
for dimensional reasions, all differentials vanish on them. Since the product is
compatible with the simplicial filtration, this implies that all differentials vanish.
That is, E® = E? in the spectral sequence, as a ring. Passing from E® to
the spectrum homology, we have an extension problem. This problem is resolved
by the following lemma, which we are going to prove in §3.

Lemma 1.2. Let ;‘i e H, (THH(Z/2) ; Z/2 ) represent the permanent cycle

Ai . Then _ _
2 _
CAD7 =y,

T [F{ !

The proof will be given in §3.
The fact that there are no differentials in the spectral sequence, proves

le to a‘ﬁ‘onzere~£aet‘o>, a»n\(i counted 'modulo decomposables.
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that the spectrum homology of THH( Z/2 ) is a free module over A with exactly
one generator in each even degree. It follows that in the product of Eil enberg-
Maclane spectra, homotopy equivalent to THH ( Z/2 ), there is exacly one copy
of each of the spectra K(Z/2,2i) ,i2 0. That is, 1.1. a follows for p = 2.

1.1.d follows for p = 2 from lemma 1.2 . By changing the homotopy equivalence
of THH(Z/2) to the product of Eilenberg—MaCLaneh\‘e spectra, we can arrange that
( )\i )2 = )\i+1 , not only modulo decomposables or up to a constant. 1.1. d follows
now from dualization. In case p is odd, there are nontrivial differentials.

Lemma 1.3. For 1 <i < p-1 the differential di is identically zero, and

(pl) | _ (pi—1) (pi~2) p-
dp-l( e )—ki(yi e "'Yi>

This will be proved in §3. )

The ring E? is in this case generated by the classes >\i and Yi(pl) . Since
the classes >‘i have filtration 1, all differentials di for i > 1 vanish on them. The
first p-1 differentials are therefore determined by lemma 1.3.

We want to compute EP.

We can write the EP™! term as a tensor product:

gP1

P

A1®A2®...
2
where Ai=,4[>\i]/>\i ® I‘(Yi).

The differential dp—1 maps Ai to itself, so we can consider the homology
of Ai with respect to it.

Ai is the direct sum of two copies of A ® T ( Yy ), indexed by 1 and >\i :
The differential maps one of the copies to the other. In each dimension congruent
to 0 modulo 2p the ring A ® T ( Yy ) has one copy of the vectorspace Z/p. The
differential decreases degree by 1. We claim that the differential is injective. This
also proves, by dimension counting, that the kernel consists exactly the
elements of degree less than 2p-1. To check the injectivity, note that it suffices
to prove the nonvanishing of the differential on monomials in the symbols

i
Y, (pl) .

This follows directly from the formula for the differential.

The homology of Ai with respect to dp—1 equals

- p
Bi-A[Yi]/(Yi) .
The Kiinneth formula shows that
p -
E B1 ® B2 ...

This ring has a set of generators in filtration less than or equal to 1. It
follows that all higher differentials are zero. As in the case p = 2, this statement
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proves 1.1 a for odd p. Again, we have a multiplicative extension problem.

Lemma 1.4. Let ;2 j H, ( THH( Z/p ) ; Z/p ) represent the permanent cycle

szj . Then, up to a factor, and modulo decomposables

. P = .
< szj ) = Y2p1+1
The proof will be given in §3.

In the same way as for p = 2, this proves 1.1. d for odd p.

We now turn to the spectrum THH(Z). We fix a prime p. The argument

will be different in the two cases p = 2 and p odd.
As before, we have a spectral sequence with

E2 = H(A)

where ;1 =H, (Z; Z/p) is the spectrum homology of the Eilenberg-Maclane

spectrum of the ring Z. _ .
This is a spectral sequence of algebras over A, which are free as ,4 - modules.

We first treet the case p = 2.
The ring structure of A is known, see [ 9 1.

,4=Z/2[n,E2,§3,.. 1
The ring map Z - Z/2 induces a map ]L—l > ,4 This map is given by

2
n =g

& = & -

There is a spectral sequence\s\ converging to the spectrum homology
with coefficients in Z/2 of THH(Z). Using the reformulation of Hochschild
homology as an Ext, and the Kiinneth formula, we can compute that

2 _ A 2 _
E® = ,4[(33,e4,e8 .1 /7 (e)7=0
The classes e all have filtration 1, so all differentials vanish, and E®
equals E2,
We consider the multiplicative extensions in the E® . We claim, that we

can choose representatives e,i in H, ( THH(Z) ) of the classes e,i » so that they

are related by the extension

N 2
( ezi ) = ezi+1

The class ézi is represented by 1 ® E, « Elzzi_1 . Under the map of spectral
sequences induced by the simplicial map ’
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THH(Z) - THH(Z/2)

this class maps to 1 ® Ei modulo decomposables . Since 1 ® ( decomposable ) is
a boundary in Hochschild homology, this equals the class represented by 1 ® € i

The map of E? terms
2 2
A[ea,e4,e8,...]/(ei) —>,4[u2,u4...]/(ui)

sends e, represented by 1 ® 1 to zero, and e,i touy.

We have already solved the extension problem in THH(Z/2). We know,
that we can choose classes u1 representing u, so that ( u1 )2 = —21 In particular,
H ( THH( Z/2) ) is a po_lynom1al algebra. T}_le image (_)f H( THH(_/Z) ) is a subalgebra,
containing the image of ,4 and t_he image of e, Since e, maps to u, modulo
indecomposables, the image of e, Is algebraic_ally independent of A, and
so algebraically independent of the image of A. It follows, that the image of
H, (THH(Z_)) is a polynomial algebra. On the other hand, the square of <_e3 is either
equal to ne, or zero for dimensional reasons. The first possibility would contradict
that THH(Z) is a product of Eilenberg- MacLane spectra .There would be a nontrivial
k-invariant , since Sq*(e) would have square e4 _ B

It follows , that H ( THH(Z)) contains ;4 ® Z/20 e e, 1/ ( e, )2, Counting
dimensions, we coclude that this is indeed all of the homology. In particular,
we can choose 521 so that

- 2 _ -
(ezi) = e2i+1

We noted above, that THH(Z) is homotopy equivalent to a product of
Eilenberg-Maclane spectra. More precicely,

THH®) = Zx [| K(G, ,i)

i

where G are finite groups. If we only ask for a 2-primary equivalence, we can
assume that the groups G are 2-groups.
The bomology of the Eilenberg-MacLane spectrum K( Z/2", i) is a free module
on two generators over ;4 The E® - term above is also a free module over ,4
It has one generator for every dimension congruent to O or 1 modulo 4. Counting
dimensions, we see that this can only be accounted for by a product
THH(Z) [ x(zst,, ai-1)

i

(9)

We have to determine the numbers li 2 2.

We claim that if i = 2 j , with odd j , then l is at most 2 . Actually, the
homology of K( Z/l , 4i-1 ) occurs in E® as the free module over ,4 generated
by classes in dimenmons 4i-1 and 4i . The generators are classes

of the form ae,e, . . . €,y'yy, respectively ae,y+p , Where a is the unique product
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of multiplicative generators e,r of degree 2i' (j-1). Let s be the number of generators
occuring in this product. Then the two generators have filtration s+i'+1 respectively
s+1.
This means that the fundamental homology class in
H, _ CK( Z/l , 4i-1) , Z/2 )‘higﬁin l_the irr‘l}age of the mapvﬂ{//r
H,,_(Fqppup ) > H,,_ ( THH(Z))
Let le' denote the higher Bockstein, defined inductively on the kernel of
[321._1 . These are the differentials in a spectral sequence converging to the tensor
product of Z/2 with the 2-local homology modulo torsion. If x is a class
in H ( , Z/2), which is the reduction of a class in H.{ - z/25% ) , then x is in
the image of Bor -
The fundamental class is the image of a higher Bockstein.
The nontrivial class in H41( K( Z/l , 4i-1) ) maps through B to it.
sef' eh ) where this higher
Bockstein is defined and nontrivial. This result can be improved, by noticing that
the class of dimension 4i in the Eilenberg-MacLane spectrum has filtration s+1, so

In particular, this shows that there is an element in H, (F

it is not in the image of
H“( FS ) > H4i ( THH(Z) ) .

Combining these two statements, we see that the higher Bockstein |3[ is defined
on a nontrivial element of H ( F  / F ) .

But the quotient Fs+1 " / F " s the suspension of a disjoint union of
smashproducts of Eilenberg- MacLane spectra, so relative to the suspension

of the space of components , its homology with coefficients in the 2-primary N
\V p ST
localization of Z 1s\2 torsion. By induction, the torsion in the homology with ’ \ ‘

/22 - coefficients of Fs+i'+1 / F is at most 2' "'-torsion . But then, the

higher Bockstein operation Bzi'*‘/i is only defined for the trivial element.

(4

It follows that ( dividgs Zi'+1 , which is our claim. The next claim, is that
have an equality li = 2! | This is equivalent to the statement 1.1 a for
2-primary torsion. Recall from [ 2 ] that we have a product of

infinite loop spaces

7./2 2
w: EZ/2 x THH(Z ) - THH(Z)

Let C, = C,( THH(Z) ) be the complex defining spectrum homology. Let
W, be the standard free resolution of Z over the groupring Z[ Z/2 1. This chaincomplex
has one generator e in each dimension, as a chain complex over the groupring.

The map pinduces a map of chain complexes ( for more details on this,
see §2)

b : W, ® C, ® C, > C,

This map is invariant under the action of Z/2.

Let X ¢ C, be a chain, representing a homology class with coefficients in
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7/2". That is, there is a chain )_/ ¢« C, , so that § X = 2r;' . We define the Pontryagin
square ( see [ 6 1)

r r+1
P: Hn( Cp § /2" ) > Hzn( C,;7Zs2 )

«
by the formula P( x ) = p( e0®x®x-2re1®y®x).

Then, if red denotes reduction modulo 2F , red( P(x) ) = x2 .
We can translate this into statements about homology with coefficients
in Z/2 and the higher Bockstein operations as follows:

Byrer (x7) = x By (x) r> 1

g - 31\
- VI { S LV
B, () = Q%8 (x) 4y {x

where Qn(y):uﬂé (e1®y®y).
We want to apply this to the classes éi . In 83, we prove
Lemma 1.5. Q4 (e, )=0.

Moreover, by the argument above, ll < 2, so it has to equal 2. It follows
that BZ ( e, ) = e, . By the formulas above, and by our choice of e,j ,we obtain
inductively that

sz(ezi)=0, j<si-2

that is, B,i-1 is defined on 521 . Using that the higher Bocksteins are derivations,

we obtain that B,i-1 is defined on a class representing the generator in dimension

2 j . Our claim about li follows , finishing the proof of 1.1 b. for 2-primary torsion.
The coproduct formula 1.1. d.follows from our computation of the multiplicative

structure in H, ( THH(Z)). Choose the isomorphism with the product of

Eilenberg-MacLane spectra so, that the generators e. chosen above maps trivially

into all the factprs except one. Then Ly is dual to 53 ( é4 i , and B( Lukzs

is dual to ( e, ' . The formula follows on dualizing.
The case of odd torsion is similar, but involves differentials as an extra

complication. In this case

A =Z/plE E,, .. 1®Z/plT,1,..0/ ()"
and the map A > A is given by Ei > g ;i >
The map of spectral sequences induced by the ring map Z = Z/p is in this
case an inclusion

2 2
ATN G 17 0P8 Ty )8 C ALN D, 1/ (A2 ®T(y ) ®T(y,)®

Since this map is injective, the first nontrivial differential in the spectral
sequence of THH(Z) is determined by the first nontrivial differential in the spectral
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sequence of THH(Z/p). Recall from lemma 1.3 :

() | _ (pi~1) _ (pi~2) p-1
dp—1(Yi )—xi+1 (Yi T o)

In the same way as we did when we discussed the case THH(Z/2), we write
EPT/( THH(@Z/p) = A ® A,
=AUN 17 (2))?
Ai=,¢'1[xi]/(>\i)2®‘r(yi_1) : | i>2 .

Using the Kiinneth formula, and the computation of the homology of A done
above, we obtain that

EP ( THH@Z/p) ) = B,®B,®. ..
where B = A = A[Y ]/(Yi-—i)p'

All algebra generators of EP have filtration 1, so there can be no further
differentials. We now have to solve the extension problems.
In this case, the target of the map

H, ( THH(Z) ) > H, ( THH(Z/p))

is the tensor product of a polynomial algebra with an exterior algebra. In particular,
since the image of Y, has a nontrivial square, not contained in A, it is algebraically
independent of A . Moreover, a class representing )\ has a trivial square for
dimensional reasons. By the same argument as in the case p=2, it follows that

H, (THH@)) = ALX , v, 1/ (%)

Now the rest of the argument that we used in the case p=2 works. There
is a p-primary equivalence

THH@ = Zx[[ K (Z/, , 2pi-1)
i

We have to determine the p-power l . By arguing with the filtration,
we obtain that

p < li 2 pi'+1
where i = jpi (j prime to p ). To conclude the proof of 1.1. b, we have to show
that

l = pi""i

Let p be the product

u, : EZ/p x THH@Z)P > THH(®)
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Let W be the standard free resolution of Z over Z[ Z/p 1, with one generator

is given by the formulas

e in each dimension i . Weae

e, . =(1l+g+...g
. _th
The Pontryagin p~ power
P:H_(THH®);Z/p") - H, ( THH@); z/p"t)

is given by
. B
P(x) = u*<(eo®x..®x)—pj(Zi(ei®x®x..®y®x.. ®x)) .
i=1
In the term indexed by i in the sum, the factor y occurs at the ith place.

If red denotes reduction modulo pr , we have that red ( P( x)) = xP .
In this case, we obtain for homology with coefficients in Z/p

Boi (PG = Ple .

pi-1
As in the case p=2, this implies { = pi'+1 .
§ 2. In this section, we prove lemmas 1.3, 1.4 and 1.5. The method we use, is to
examine the structure on the spectrum homology of THH(R) induced by the
multiplicative structure on THH(R). We define Dyer-Lashof operations on this
spectrum homology, which are related to the multiplicative structure. The
evaluation of these , then gives information on the multiplicative structure of
the space THH(R) . In particular we can compute products of homology classes,
and certain Dyer-Lashof operations. In order to extend the definition of these
to the spectrum homology, we need to specify certain extra data, as will be
explained below. '

In order to compute these operations, and also in order to proove the lemma
on the differentials in the spectral sequence converging to the homology of THH(R) ,
we compare the topological Hochschild homology to the simplicial spectrum Si A R
Recall from [ 2 ] that there is a map of simplicial spectra

xA:SIAR > THH®

Composing with the multiplication map of THH(R), we obtain a map of simplicial
spectra

7./p ’
EZ/p, A (S,/AR)"P > THH(R)

Of course, due to the usual problems with smash products of spectra,
the last statement is not quite true. For our purposes, it is not necessary to pursue
the question whether we can make it precisely true or not, because we can work
-with finite approximations.
Finally, we will also compute the differentials in the spectral sequence converging
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to spectrum homology. This computation will also depend on comparison with
a simpler spectral sequence. The ingredient needed to link the two spectral sequences
is again the map A above.

Let X be a space with a basepoint. We will only be concerned with "nice"
spaces. From now on all spaces will be CW-complexes, for instance realizations
of simplicial sets.

We first describe the homology of the power construction.

Let { X } be a basis of the homology of X with coefficients in Z/p. We
fix a free action of Z/p on Szr—1’ so that the inclusion S?'™! ¢ Szr+1 is equivariant.
Then [ 8 ] the homology of the quotient of the Z/p-action on Sfr_i A XP has
a basis consisting of the classes

[ X0 Xy oo Xip] ; deg = 2 deg Xi1
(21) ei®(xj)p=ei®xj®xj.. ®xj ; OSiSZr—Z,deg=i+pdeg(xj)
{ Xiy o Xgp 0 - xip} ; deg = 2r-1 + 2 deg Xik

with the relations

[Xi1’xiz"' Xip] = [Xiz’xia"xip’Xh]

{xi1 » Xy o e xip} = { Xipr Xigt Xip’ X,

The inclusion s2™! ¢ g2+l preserves the first two types of classes, and
maps
{ Xi, 0 Xip o xip}
to zero, unless i1 = i2 =, .. ip , in which case the class goes to
€ iy ® X, ... X,

We can form the direct limit of all spheres of odd dimension. As a limiting

case we obtain, that 7/

P P
H,(EZ/p, N\ X* ;Z/p)
has a basis consisting of classes

[x , % ,.. x ]
. 1 1
(2.2) [ bR P

ei®(xj)p i20

with relations and degrees as in 2.1.
Now, assume that X is an infinite loop space. Then there is a structure

map Z/p
(23) u: EzZsp, A\ XP » X

IfaeH(X; Z/p), one defines the Dyer-Lashof operation (eg in [ 8 ])
as the image of the class

PeH,  ( & xXP ; z/p)
ei-(p—l)r®a ¢ Py EZ/p, N\ P 5/P
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under the map of homology induced by u .
Now assume that X has two product structure, which are commutative
up to all higher homotopies. Also assum e that for each deloop B™X we have structure
maps
. Ny, \P np
by ¢ EZ, , ACB™)P > B

which are Z_-equivariant with respect to the action permuting factors on the
left side, and permuting desuspension coordinates cyclically right on the right
side.

Also assume that these map are related by commutative diagrams of Z/p
equivariant maps

SP AEZ A (B™OP > EX , A (B X)
\L id/\url \Lid/\u -~

sP A BP x > B(n+1)p X

For instance, this is possible if X arises as a hyper-I'-space in the sense
of [ 15 1.

We now introduce a further structure. The action of ¥ _ on S™P given by
permutation of coordinates, defines a spherical fibration over BY . This fibration
is not trivial, but it is conceivable that it becomes fiberhomotopy trivial after
restricting to a skeleton of BX .

According to [ 1 1], this indeed occurs. Given a natural number m ,
if a sufficiently high power of p divides m , then the vectorbundle defined
by cyclic permutation of the coordinates in R™P is trivial as a vectorbundle on
the r-skeleton (sz)r . We choose a trivialization

ty: (EZ ) AP sP™ 5 gPm
This trivialization can be used to trivialize certain other relevant fibre bundles.
Let BPX be the (mp)-fold deloop of X , considered as a £_-space using the
permutation of the coordinates in groups of p. Similarily, let ¥ act on
the smashproduct (B™X)"P by permutation of the f actors oF the smash product.
The suspension map S'AB™X - B™X induces equivariant maps

S"P A (BTX) > ( B™RX )P
(24)
SOP A BMP y ﬁ'(m+n)p %

These maps induce maps of fibre bundles over BY
A P
Now, let n be divisible by m .
We choose trivializations t'm and t'm of the bundles over ( BS )x~ given
by ( B™X )*P respectively BMPx ,s0 that the trivializations are compatible with
s . ., o~mp
the pairings above. For instance, we can rewrite B'"PX as

oNp g(m+N)p X
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with the appropriate action, and then trivialize this bundle, using t
These trivializations restrict to trivializations of Z/p-bundles.
Combining these trivializations with the structure map, for each n divisible
by m we obtain a map:
n AP t'n-1 Z/p n
f :BzZ/p, /A (B" X) > EZ/p /A (B X)) >

n
7./p ~ t"
> EZ/p, N\ B"PX —R— Bz/p A BPX > BTPX |

Using fm we obtain a Dyer-Lashof operation

~ s

Q:H_, (B"X;Z/p)>H (B™PX ; 2/p)

mp+r+i

by the formula

(25) Q'@ =f_,( ® a®P )

ei-r(p—i)

Since the trivializations are choosen to be compatible with the stabilization
(2.4), the operations also commute with the homology suspension

I r+m
6., + Hy B'X ) > H (B"™™X )

In particular, we can compare them to the usual Dyer-Lashof operations
defined on X, without use of any trivializations. We obtain

~

i - ~i
2.6 Qcm(a)—ch(a)
Finally we obtain an operation defined on
r
EgH*( BPX; Z/p)

by choosing a mutually compatible family of trivializations tpt" , one for each
skeleton of BZ/p.
We now consider the map of simplicial spectra, defined in [ Basics ]

A:S, A R > THH(R)

We want to compute the map obtained from this using the multiplicative
structure on THH(R)

i >
Ex , A (s'xBTR) > Ex__ A" THHR[m]® - THH(®R)[mn]

on the E? - level of the associated spectral sequences. The symbol THH(R)[m]
here means the m-fold delooping of the infinite loopspace THH(R) |, corresponding
to the infinite loopstructure obtained from the additive structure in THH(R) .

In order to do so, we first have to analyze the source of this map, that
is, we have to analyze the simplicial set ( S! )® . We consider this set as the
diagonal of the multisimplicial set obtained by taking product of n copies of the
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standard simplicial S' , the one with two nondegenerate simplices. The symmetric
group Zn acts on this simplicial set by permuting the simplicial directions.
Let “Z,'n be the simplicial space
X
Ex A ((SHPA (BTR)M)

n+

The simplicial filtration on T? = (st )n+ lifts to a filtration
‘Z’oc"l1c . & @ cTn="L'.
This filtration induces a spectral sequence
2
EY;0°0) = Hy, <)

The space T/ ‘Z' can be described in terms of the orbits under Zn of nondegenerate
simplices in the torus T™. It is a wedge of spaces to be described below, and
the components of the wedge are indexed by such orbits.

The wedge component corresponding to a nondegenerate simplex ¢ of ™
is homeomorphic to
| EH+}§SY/\(BmR)m
where r is the dimension of the simplex, and H is its isotropy group.

In particular, if ¢ is in the unique orbit of nondegenerate n-cells, then the
wedge component corresponding to ¢ is equal to

s™ A ( BMR )M

We also consider the more general situation, where ¢ is in the image of
a torus, of dimension possibly less than n. Let

e:0123,...n1>[123,..1i]
be a surjection of sets. Then ¢ defines a diagonal map

L (shHls(st)n

by the formula ¢ ( X, X ) =(x

27" ()’ X+

The image of T will not be invariant under the action of Zn . Let

H=2

X .. 2

X Z LLP—I(i)

o~ o~ 12)

Then H is the isotropy group of c. The normalizer N(H) of H in Z leaves the
torus T' fixed as a set. It acts on the this torus through the map
W(H) = N(H)/H - Zi

The image of this map is the group of permutations, which leave invariant the function
a - cardinality ( «p_1 (a)), defined fora e[ 1,2, ..1].

We can now describe the map o : ‘Z'i - THH(R) on the quotients of the
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filtration induced by the simplicial structure.

Lemma 2.7. The map is given in dimension j on the wedgecomponent corresponding
to the orbit of ¢ in (Sl)n as the following composite:

H .
ESy A SIABMRAB™RA. . .a B™R
Z J/id A u(-P—l(l) A uLP_I(Z) N
j gp‘1(1) m - Z:({_';"1(2)
SIAEZ . yA BTRA...AB (R) A EZ gy A

sl A BI®THImp A pleTH2mp A

l

F, THH(R) / F,_ THH(R)

Proof. We first describe the multiplication map on THH(R) , following [ 2 ].
The simplicial infinite loopspace THH(R) is given so that infinite loopspace in
degree r has a spectrum , which is a realization of the smashproduct of r+l1 copies
of the spectrum R. That is, we can approximate the spectrum by

7
-

Qm(r+1)( BmR Alr+1) )

The simplicial infinite loopspace THH(R)™ is then in degree r approximated by

( Qm(r+1)( BmR/\(r+1) nn

The structure map y is defined degreewise, and in degree r it can be approximated

by
{ Qm(r+1)( BmRA(r+1> ) }n = an(r+1)( BmRAn(r+1) ) an<r+1)( anRArH ).

This spaces involved all carry an Zn - action. Using the trivializations we fixed,

we can arrange that the maps extends to maps of bundels over skeletons of BZn
The map Si /A BPR > THH(R)[m] is degreewise given, up to homotopy

by the inclusion

[r] » (B™R 1L B™R LL.. BTR), » Q"™ ( ™R

Here the component number s in the disjoint sum is included by the adjoint of
the natural S™'( B™R ) = ( BPR )" which includes B™R as factor number
s in the product. The map from Tf /A (B™R )™ to THH( R) is the nth power
of this map. To obtain the map of filtration quotients, we only have to compose
these maps. First we have to identify the subspace of “Z'l / C[Ti_l corresponding
to the simplex ¢ . This will be a subspace of a product of disjoint sums :

( B"R1L... BPR )"
The subspace will be given, by picking one component of each of the factors.
Choose component number one in the first cp_l( 1 ) factors, component number
two in the next cp-l ( 2) factors, and so on. A direct computation of the composite
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restricted to this component then proves the lemma.

Corollar 2.8. Let a « H,( BmR ). The image of ( 6, ®a) represents
(1®a®a®..®a)

in EX(THH(R)). The tensorproduct contains n+1 factors.

Proof. Apply 2.7. The group H is the trivial group, so the composite in 2.7 is just
the homotopy equivalence of S/ /\ ( B™R )" with FiTHH(R)/ Fi_ITHH(R) .

Now we can compute the twisted Dyer-Lashof operations on the spectrum
homology of THH(R) . Let x ¢ lim Hi+m( B™MR ) = A . Then the image of
m

1®x ¢ Hi+m+1( S' x B™R ) in the homology of THH(R) represents the class

1®xe A® A = lim Hii et ¢ F, THHR)[m] / F, THH(R)[m] ). According to
lemma 2.7, we have a commutative diagram

Z id 2
EZpe AT CS, ABTRM™ =222 Es A ( THH(R)[m] ™
1 Zn m )An
S* N\ Ez_, A' (BTR

l

S, /A B™PR > THH(R)[mn]

In particular, we have
Lemma 2.9 . Q' (A (1®x)) = % (18 Q! (x))

The second problem which we have to solve, concerns the differentials
in the spectral sequence. We want to compute
dp(1®x®... ® x )

for certain x « A . The interesting case is when the tensor product contains pi
factors x.

The argument will be slightly different according to whether i = 1 or
i > 1. In both cases, the idea of the proof is to compare THH(R) to the space

i . .
. AP ( ot yp! mp \apl
EZp1+;\(S)+/\(B R) .
As a preliminary, we consider the spectral sequence associated to this space.

Actually, we make an additional simplification. Consider a space X which is a
suspension. We can form the simplicial space

EZ/p, K° ( (s')"P A xP).

Since Si AX>Xisa split surjection up to homotopy, the Zp—equivariant map
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(SI)PA XP > sP A XP
is a surjection, up to Zp—equivariant homotopy. In particular, the class
e, ® (o, ® x)P ¢ H( EZ/p+%<p( St A X)'P)
is the image of the class
e, ® (6 )P ¢ H( szprp( s' A X)'P)
under a homotopy section. We are led to consider the space
Ez/p, AP (SP A XP ).

with the filtration induced by the simplicial structure of sP = gt VANERAN st .
Inside this filtration, we have a shorter filtration, consisting of the
three spaces

x C  EZ/p, §<p( s' AXP) ¢ Ezsp, /Z/<p( sP A XP)

Claim 2.12. The quotient of the two nontrivial spaces is homotopy equivalent to

iy

SRV sf“z/é Xy

The boundary map is induced by the equivariant inclusion
sP™2 ¢ s® = Ez/p

To see this, first check that the cofibre of the map

SP-2 > g°

which collapses the entire (p-2)-sphere to the basepoint, has cofibre equal to
sP72 | Suspending this cofibration, and forming the smashproduct with EZ/p
we obtain a new cofibration

7./p 7/p 7/p -
EZ/p, A\ S' A XP > EZ/p, N SPA'XP > Ez/p, A\ (82 A\'SPTHAXP

The claim follows from this and the observation, that as Z/p act freely
on SP72, the following projection is a Z/p-equivariant homotopy equivalence.

SP™2 x Ez/p » SP72.

We can compute the long exact sequence in homology, belonging to the
filtration determined by 2.12. In the notation of 2.1, the differential

- Z/p 7/p
50 H(S*ASY™ ATXP;z/p) > H,_(S'AEZ/p, A'XP ; Z/p)
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is given by the formula
5(0,® e, ®xP) =6 ® ¢ & xP

In particular, the boundary of the class s?2® P2 xP isc'® L% xP.
Applying the homotopy section, and noting that the simplicial filtration
is a refinement of the short filtration, this shows that in the spectral sequence
belonging to the simplicial structure of

7./p
EZ/p, /N (SHP A X"P

there is a nontrivial differential ,which maps the class in E < projecting to
S, ® e - ® xP into a class projecting to S, ® ep_2 ® xP
The two classes will be given by the two classes

o, ® xP ¢ H(SPAXP)
7./p

p-2 1 p
5, ® ep_2®x « H, (S A EZ/p, \ X* )

Now, let X be an approximation of B™R. The map

7./p 7./p
Ez/p, A ( (sH? A X"P) > EzZ/p, A THH®RP > THH®R)

preserves simplicial filtration, so the classes above will map to two classes in
E?( THH(R) ) which are related through a differential dp .

Applying lemma 2.8, we obtain
Lemma 2.13. Let x « Hn( R; Z/p) . Then we have the relation

d (1®8x®...x)=1® QUPP™M iy,
p-1 &~ p—

Now consider the general case. The symmetric group Zpi has a p-Sylow
subgroup Si(p) C Zpi . This Sylow subgroup is abstractly isomorphic to an iterated
wreath product:

sp) T z/p|zp ... |2/p.

This group acts on Spl by permutation of coordinates. The union of all
fixed point sets of all nontrivial subgroups of Si(p) is a union F_j of ( p'-p+1)-dimensional
spheres . The quotient can, using the case i = 1 treated above, ge described as a
smash product

2 p-2 \api~t
(S™ /A Sy )

where the action of Si(p) is induced from the action of Z/p on B2 N 8P 2
The quotient

S{p) i S.(p) i
BSi(p) A S AXP [/ Esip) A F AXP
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is homeomorpic to
S p ) - i-1
ES;(p ) ' A (S* A\ SPT2)P

where the action on ( S2 A Sp = )/‘p is induced from the action of Z/p on
SA Sp % . The cofibration giving rise to this quotient, corresponds to the short
flltratlon in the case i = 1. _

Alternatively, we can describe this quotient as the iterated power construction

Z Z =
7/, AP (Ez/p, KP ... (s2 A SPT2)AP )AP ) AP
The next lowest quotient in the filtration of
S{p) 4 i
i p p
ESi( p AN ST AKX
induced from the fixed point sets in Spl is the space
7./p o Z/p -
(S'A Ez/p, ATXP ) A ((SEA (SP2AY xPy)aevy
We consider the somewhat more general situation, where we have a cofibration
X =>Y > Z
Then the p-power construction on Y has a filtration through the spaces
7/p p ) )
Ci=((e,y1,y2,...yp)eE/Z/p+/\ Y ;atleastlofyl,yz,..mX}
Lemma 2.14. In this situation, if z ¢ H(Z;Z/p),x=3%8z¢ H (X ; Z/p),
then
Py - p-1
dz(e0®z)—x®z :
Here we have made the identifications
7/p
2 . (C)=H(EZ/p, A" ZP)
p-1
p1¥(C) H(XN\Z )

Proof. Pick a chain z in C,( Y ) which represents z after projection to C_( Z ).
Then, § ( e, (z))=(82 ) ®z P! represents the boundary of e, ® zP in
H( C _ ) The claim follows, after reduction to homology.

W apply 2.14 to the filtration given by the inclusion
S p) i S.(p) i i
ES; (p, ) "AF i AXPT ¢ Es; (p, ) IA "sP' A xP

Inductively in i, each such cofibration arises from the previous one as the

inclusion Cp__1 C Cp . By repeated application of 2.14, the boundary of

D P
e0®(e0...(02®ep_2®x o)
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is given by
p P p-1
(5(o,® ¢, ®x ))® (e, ® (0, @xP) )Pl |
By an application of 2.12 we finally obtain that the boundary equals

p p ) Pt
(61® e, ® x )®V(e0®(62®x ) ) ® .

The rest of the argument is similar to the case | = I. The main difference is that
we have to use lemma 2.7 instead of the special case 2.8.We obtain

Lemma 2.15. Let x « Hn( R Z/p). Let
Yj(x)=1®x®x...®x= s,4pl+1

Then the differential in the spectral Séquence converging to spectrum homology
of topological Hochschild homology is given by

9 (X)) = (18 QPP 6g) (4 )Pt ¢ NPTy )P

We now specialize 2.9 and 2.15 to the cases R = Z/p and R = Z. These applications
depend on the determination of the relevant Dyer-Lashof operations for these
rings. We collect these computations in the next section.

83. In this paragraph we prove the technical lemmas 1.2 to 1.5,

We use the Computations in §2 specialized to the case Z/p. These computations
relate differentials and extension problems in the Spectral sequence converging
to spectrum homology of THH(Z/p) to questions about the map

u: EZ/p x K(Z/p,n )*P = K(Z/p,np )

classifying the cup product.
Recall from §1 the classes T, and Ei . Let n be large enough, so that these
are defined in the homology of K(Z/p, n) .

Lemma 3.1 . If n is large enough ( in dependence of i ), then
u, Ce ® L®...® T ) = ( unit ) §i+1 + ( decomposable ) ; p odd

p-2
fy ( ep_1 ® L®...0 T ) = ( unit ) L ( decomposable ) i p odd
i, ( e ® Ei ® Ei ) = Ei+1 + ( decomposable ) i p=2
Proof. For p odd, let QO =, the Bockstein, Pi the Steenrod powers, R0 =1
and inductively
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pt pl
R =PPR_ - R_P
i i-1
Q,=PP'Q_, - qQ PP

Then Qi is a primitive cohomology operation, dual to T and Ri is a primitive

cohomology operation, dual to Ei .

For p = 2, let MO be the Bockstein, and let inductively

M-SziM Ms2i
i = = = T g

We have to prove that Qi+1 , Ri+1 , and Mi+1 evaluate nontrivially on the classes

(ep_2®ti®...®ti) , (e _1®ti®...®ti)and(e1®E,1®§1)x'espectively.
The case i = O is covered by the calculation of P! = R1 in
7./p

H, (Ez/p, N XP;Z/p)
This calculation is implicit in [ 11 1. For an explicit formula, see [ 8 ]

theorem 9.4.
We claim that the general case reduces to the case i = O by induction. We

prove the statements first in the case n = 1, and then use a product argument
to obtain the case n > 1.
We pass to cohomology. Recall that
H (K(Z/2,1);2/2) = P(1)
H* (K(Z/p,1);Z/p)= A(L)®P (B )

where P() and A() denote an polynomial and an exterior algebra respectively.
We claim inductively in i that the following formulas are valid :

Qi(e0®t®..®t)=(unit)ep_1®Qi_1L® ce Qg

Ri(e0®L®..®L)=(unit)ep_2®Qi_1L® L.Q
0 _ 1

Mi(e QRLO®BL) =e ®Mi_1L® Mi_1L

Q (e’®Bit®..®B1) = 0

0

R (e’°®B1®..0pB1)
To prove these assertions, consider the projection
EZ/p, KP ke z/p , 1), "P > EzZ/p, K2k Z/p, 1) )P
determined by a choice of basepoint. This map is injective on cohomology, so

it suffices to prove our assertions for the source of the map.
In this space, we have a cup product decomposition
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(eP?®Q_t® ...Q_ll,)=(ep—2®1®...®1)(eO®Qi_1L® C..Q L)

1 i—-1
Using the Cartan formula for the primitive operation Qi_1 , and the relation that
i : i
PP (x) = 0 for deg(x) smaller than 2pl , since i > 0, so that PP (1) =0 , we see:

Qi(eo®t®..®L)=(PplQi_l-Qi_lel)(e()@L@..®L) =

= P72
= e ®Qi_1L® "'Q1—1L

This proves the first assertion in the list, since the case i = O is known.

The other assertions follows in the same way.

To get from our assertions about classifying spaces K( Z/p , 1) to the
lemma, we again use the multiplicative structure. There is a map

f: (K(z/p,1 ), ™" A(K(Z/p, 1), )" > K (Z/p, m2n )
classifying the cohomology class
(1L ®1®.. ®t) (B LOBL..®PR L)

This map is injective on cohomology in small dimensions. To see this, recall that
the dual of the Steenrod algebra is generated by classes defined in K( 7Z/p , 1) and
K( Z/p , 2) . Thus, we only have to prove that

Q (e"®a®a®... ®a) = (unit) ep_1®Qi_1a®Qi_1a®..® Q_pa

Pi(eo ®a®a®... ®a) = (unit) eP? ®Qi_1a®Qi_1a®..®Qi_1a

This follows from our formulas for n = 1 and the Cartan formula.
In case p = 2, we note that the map

K(zs2,1) )™M > K(z/2,n)

is injective on homology in small dimensions, and use the Cartan formula.
We can now prove the lemmas in §1.

Proof of 1.2. and 1.4.
According to lemma 2.9 we have

i .
L e (1®E) T =Q° (9 (10E))=p (18Q% (g, ))
[ e (1@t P =Q%® (p (181 ) =g (1®sz’(1j)>

The Lemma 3.1 says that Q?‘l(Ei)=u*(e1®§i®§i)=(unit)Ei+1+decomposables,

and similarily for T, .Since (1 ® Ei ) is a particular choice of a class representing
>\i , Lemmas 1.2 follows. Similarily for 1.4.

Proof of 1.3. This follows from lemma 2.15 , and the computation
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np+p-n-2 - —
Q (Ti)—u.*(ep_2®ti®Ii®...®’ti)—Ki.

Proof of 1.5. This is again lemma 2.9, applied to the case
Q" (9 (1®n)) = ¢ (18 (Q* (1))

Since Q* ( n ) has dimension 6, it is decomposable. It follows that
(1 ® ( QA’( M) ) is trivial.

For later reference, we also note

Lemma 3. 2. Let A S'xZ > THH(Z) be the map of spectra discussed in §2.
Then, the image of the homology class ¢ ® Ei represents

1®E ¢ E*(THH®) ) .
In particular, under the homotqpy equivalence of theorem 1.1, the fundamental
class in cohomology of K( 7/p" 2p' - 1) pulls back to a class evaluating
nontrivially on ¢ ® Ei .

Proof. The first statement is a particular case of 2.7. The second statement follows
from this and from the fact that the 1 ® §; generates E? in this dimension (see
the analysis of the spectral sequence in 81).
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