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§ O Introduction

In this paper we construct a topological version of Hochschild
homology.

One motivation for doing this, is the relation of K-theory to
ordinary Hochschild homology.

Recall that the Hochschild homology of a bimodule M over a
ring R can be described as the simplicial group HH(R)

[i] — M ® R®?

mr ® r, ® ... ri J =20
dj(m ® r, ® ... ri) = { me ... ® rjrj+1 ® ... r, 0 < j <
rim ® r1 ® ... ® ri_1 J =1
S =
j(m ®r, ® ... ri) mer, ®... rj_1 ® 1 ® rs ® ... r,

This functor satisfies Morita equivalence, i.e. if Mn(R) is

the matrix ring of R , then

R

HH (M (R), M (R)) HH (R,R)

Using Morita equivalence we can define a map from K-theory
i : K(R) —— THH(R)
since there is an inclusion of simplicial objects [ 2]
BGL_(R) —— HH(M_(R),M (R))

TIn his workon. A(X) , Waldhausen discovered a similar map [ 91].
The natural generality of his construction cf. [ 3], is a map

defined for a simplicial group G

iG : A(BG) — Q(ABG+)

where ABG denotes the free loop space. The precise definition
of this map is somewhat complicated.

In order to see that these maps are similar, one needs a



general framework. It is possible to consider the "groupring"
Q[G+] and a ring R as special cases of "rings up to homotopy"
(41, [71].

Goodwillie noted, that in order to define the Hochschild
homology of a ring up to homotopy, one would have to replace the
simplicial group above with a simplicial spectrum, and the tensor
products occuring with smash products at spectra. If we do this
with the ring Z considered as a ring up to homotopy we obtain
a new object, the topological Hochschild homology of 7 .

In this paper the topological Hochschild homology is constructed
for a large class of rings up to homotopy. It is shown that the
map from K-theory is a map of rings up to homotopy. Finally, it
is shown that THH(R) is a cyclic object in the sense of [ 11,

[ 3], and that the map from K-theory to topological Hochschild
homology is - in a weak sense - the inclusion of a trivial cyclic
object.

I want to thank F. Waldhausen for discussions on this subject.

Several. of the crucial ideas in the paper are due to him.



We want to define Hochschild homology of a ringspectrum R .
This should be a spectrum, and in case R 1is commutative, the
Hochschild homology should be a commutative ringspectrum in itself.

The first attempt is to define Hochschild homology as a simplical
spectrum, which in degree 1 1is the smash product of i+1. copies
of R . This is ok in the homotopy category. We obtain a simplical
object, which we want to 1lift to a simplical spectrum.

One problem is that R A R 1is not a spectrum but a bispectrum.
We have to find a way of associating a spectrum to this bispectrum,
so that we have a map R A R - R representing the product, and such
that we. can use this product to construct the simplical object in
question.

It seems reasonable to assume that one can do the construction
for rings up to homotopy in the sense of [61], [7]. I will limit
myself to a more restricted kind of ring.

One special type of ring up to homotopy is a monad [ 4] .

The monads are functors F with two structure maps

1y + X = F(X)

by ¢ FF(X) - F(X)
satisfying appropriate associativity and naturality conditions.
We consider monads which are functors from simplicial sets to
simplicial sets.

We will be concerned with functors satisfying somewhat

conditions.

Definition 1.1. A functor with smash product (FSP) is a functor F

from finite pointed simplicial sets to pointed simplicial sets,

together with two natural transformations



1X : X — F(X)
Uy vy F(X) A F(X) — F(XAY)
7
such that u(uaid) =yu(iday) ,u(1XA1Y) =1XAY , and such that the
limit system
ﬂr(QlF(SlX)) N nr(Ql+1F(Sl+1X))

given by product with 1 1 ¢ S1 aE%S1) stabilizes for every r .

We say that F is coimutative, if tX,Y : F(XAY) -» F(YAX) 1is
the natural transformation induced by the flip map then the
following diagram commutes

F(X) A F(Y) = F(XAY)

le Je
v XY

F(Y)A F(X) —= F(YAX)

Remark: If F is a monad with a certain extra condition, then

it is also an FSP . The condition is that given a simplicial set X,

we can assemble the maps associated to the simplices in X to a
simplicial map
X A FY) — F(XAY)

Then we can define as the composite

e
F(X) A F(Y) » F(XAF(Y)) = FF(XAY) - F (XAY)

Now consider the infinite loopspaces

n+m

lim o F(s™ and 1lim @ (F (S
n n,m

B A F(s™)

We would like to construct an infinite loop map representing the

product

F(s®) a F(s™ - F(s™M

What we can do, is to construct a map

1im e @™ A FE™) » 1im o M5 (8™ A 8
n,m m,n

The right hand side is homotopy equivalent to 1lim Q™ F(s™) ,
m

but not equal. It is not clear that we can choose this equivalence



so that we obtain a simplicial infinite loopspace with

[0] —— 1im o™ F(sh)
n
[1] —— 1im ™D My A F(sh

m,n

F (S

We will avoid this difficulty by constructing a different limit.
Let X be a finite set. Let SX denote the sphere which we
obtain by taking the smash product of copies of S1 indexed by X
Using this sphere, we can define loopspace and suspension functors

oX(-) and =£X(-)

For an FSP F , we obtain a functor QXF(SX) from the category
of finite sets and isomorphisms to the category of simplicial sets
and homotopy-equivalences.

The stabilization map

X

sX A F(-) > F(s¥

) A F(-) = F(s¥A-)
allows us to extend this functor to a functor on finite ordered
sets and order preserving injective maps.

In case F 1is commutative, we can extend the functor to a
functor on finite sets and injective maps.

Let I be one of these last two categories. We consider the

Timiés
lin X g%y A F(sY)
(X,Y)€I
1im oX F(s®) .

Xel

The product map 12 - I given by wu 1is covered by a map of

limit systems using the product

Y X1y

uos F(SX) A F(S7) » F(S ) .
The trouble is, that the index category is not filtering. In
particular, we do not know that the limit has the correct homotopy

type.

However, there is a homotopy version of the limit, which has



the correct properties,
Let € Dbe a category, F : C - simplicial sets a a functor.

We define L,F to be the bisimplicial set

C
[i] » 1L F (source f1)
(£q700.0E;)
where (f1""’fi) runs over composable morphisms
f £,
1 i .
XO — X1 > ... — X, in C

The structure maps of LCF are so defined, that there is a

simplicial map LCF - BC
The degeneracies are given by introducing the identical map in
the index set, and

d 1 F (source f1) - 11 F(source f

e SN (Epy s wu By )

is given by applying

5)

F(f1) : F(source f1) - F(source f2) .

We will need this construction not just for the category of
ordered finite sets, but also for the category of finite sets and
injective maps, and also for products of these with themselves.

We claim, following Illusie [ 5] that in these cases the homo-
topy limit behaves like a limit.

It is convenient +to introduce an abstract notion.

Definition 1.2. A category C(C 1is a good limit category if it has

the following properties.

1° There is an associative product
p:CxC->20 .
2° There are natural éransformations between
p s Cx C->C and
pr; : C x C->2C 1=1y 2 =
3° There is a filtration

Cc=°rCoPF,Cno
o 1

such that u(FiC,FjC) c Fi+jc .



Example 1.3.1. The category I of finite ordered sets and ordered
injective maps is a good index category. u 1is given by concatena-
tion, and FiI is the full subcategory of objects with cardinality

greater or equal to i

Example 1.3.2. The category 1°°™  of finite sets and injective

maps is also a good index category.
This category has an extra structure, a natural transformation
between u(A,B) and u(B,A)

n

If C 1is a good index category, so is C Iteration of u

defines a functor ﬂ : ¢ 5> C . A natural transformation from Fou

to G defines maps

L (G - L (Fou) - L, (F)

e g

Lemma 1.4. If C is a good index category, G : C - simplicial

C

sets a functor, then the inclusion FiC < C induces a homotopy
equivalence

-» L,G

b c

G
FiC
Proof. Let A € FiC . There is a functor A*x: C - C given
by Ax*x(B) = pu(A,B) . This functor raises filtration by i , so in
particular it factors over Fi(C) - C

This functor induces a map

Ak LC(G) - LC(G)

7

since there i1s a natural transformation between A* and the iden-
tity on LC(G) , this map is homotopic to the identity.

By the same argument, the restriction of Ax to LF (C)G'QLF (C)G
i i

is also homotopic to the identity. By the homotopy extension
property, we can extend this homotopy to a homotopy of

Ax*: Lo(G) - LFiC(G)
to a map, which is a retraction

LC (G) - LFiC (G)



Composing homotopies, we see that L (G) 1is a deformation

FiC
retract of LC(G)
Now, let CC be a good index category, G : C - simplicial
sets a functor with the property that
G(F) : G(X) -» G(X")

is a A(i)-equivalence for X , X' c Fi(C)

Theorem 1.5. Let X € Fi(C) . The inclusion of the category
consisting of the identity of X in C(C defines a A (i)-equivalence

G(X) - LC(G)

Proof. By lemma 1.4, it suffices to prove that G(X) - LF (C)(G)
i

is a A (i)-equivalence. Replacing G by a coskeleton of G , we see
that it suffices to prove that if all maps G(f) : G(X) - G(Y)
are homotopy equivalences, then
G(X) - LFiC(G)
is also a homotopy equivalence.

This statement is equivalent to the statement that B(FiC) is

contractible, since we have a fibration
LFiC(G) - BF, (C)
with fibre homotopy equivalent to G(X)

But the product 1y induces an H-space structure on BFiC ’
and by conditions 2° and 3° it is connected. A well  known trick,
using the homotopy equivalence

BF.C x BF,C » BF.C x BF,C
i i i i
(a,b) » (ab,b)
shows that BFiC has a homotopy inverse

By condition 2= ; the following maps are homotopic

pr,,u :BF;C x BF;C - BF,C

Composing with the skew diagonal
(11—1)
_—?)

BF.C BF.C x BF.C
i oA i

we obtain that BFiC is contractible.



Now, let F be an FSP . As above, we obtain a functor

X - QXFSX
; comm . ; .
defined on I or I , according to whether F 1is commutatilve
or not.
Definition 1.6. (F5)° is the simplicial object

X X

Lo (@YX gy AF(s ) AL F(SB D))
i
(Fl)cS:omm is defined for commutative F as the corresponding limit
over (Icomm)l

Products define maps

i

(Fh)®

S () ®
corresponding to all maps [1,...,i] -» [1,...,J] which preserve
the cyclic ordering. In particular, we can define the topological
Hochschild homology of F‘ as the simplicial object
THH (F)
[i] - 7H°

with the usual simplicial structure maps.

If F is commutative, we can replace (Fl)S with (Fl)iomm ’
since the map induced by inclusion I - peorm
i, s i, s
(F7)" » (F )comm

is a homotopy equivalence.

In this paragraph we will examine different structures in THH(F).
In particular, we will show that if F 1is commutative, THH(F) is
a ring up to homotopy, with a cyclic structure compatible with this
ring structure.

Finally, we will construct K-theory of F and show that K(F)



maps to THH(F) respectively maps as a ring up to homotopy, when F is commutative.

We are going to use the theory of hyper-r-spaces [10].

Re call that a r'-space [ 8] is given by a functor from the
category r°P of finite sets to the category of spaces.

Given a T'-space

F : Finite sets - spaces ,

we can construct an infinite loop space. If the T'-space has

the additional property, that the component shift maps

F(X) » F(X) x F(Y) » F(X 117Y)
are homotopy equivalences for each X , then this infinite loop-
space is homotopy equivalent to ZxF (point)

Similarly, a hyper-T-space is a functor

F : %P | r°P 5 spaces
from the category of finite sets of finite sets.

Again we can construct an infinite loop space. In this case
we have a product on this space, making it into a ring up to
homotopy [10].

In order to construct I'-spaces and hyper-T-spaces, it suffices
to construct functors from the isomorphisms in pOP respectively
r°? | r°® ; with certain additional properties.

Let G : S - spaces be a functor from the category of finite
sets and isomorphisms , with an additional natural transformation

6 : G(X) x G(Y) » G(X LY
satisfying commutativity.
Given such a G , we can construct a TI'-space X as

G

X . (C) = il G(A, ) x...x G(A )
{A A_ 1} 1 n
Cprecer Cp
where Ac are finite sets, indexed by the elements Cqre--sCp
i

of C .



For instance, if G 1is the functor which to a finite set
associates the classifying space of its automorphisms, then

X.(C) = 1l BX(f(c,)) x BX(f(c,)) x...BX(f(c_))
G £:CoN 1 2 n

and the associated TI'-space is the group completion of

I B X (i)
i€EN
If G has the property that the component shift maps, given by
points in G(Y)
G(X) - G(X) x G(Y) 3 G(X 1Y)
is a homotopy equivalence for each X , then the T'-space is homo-
topy equivalent to Z x G(point).
In the same way, if we have a product
o G(X) xG(Y) » G(X xY)
which is commutative and distributive over « , then X can be

F

extended to a hyper-T-space.
We now define the K-theory of an FSP, and show that it is a r-space, respec-
tively a hyper-T-space in the commutative case using the theory above. First,

we note that we can form the matrix - FSP :

Definition 2.1. Let F be an FSP , and A a finite set. Then

(MyF) (X) = Map® (A, A AF (X))

The functor M,F(-) 1is an FSP 1in a natural way. 1 is
A MAF

the adjoint of id A1 : A4.AX-+A+_AF(X) and is the composite

X,y
Map®(a, ,A, AF (X)) AMap® (A, ,A AF(Y)) > Map®(A,,A AF(X) AF(Y)

> Mapo(A+,A+AF(XAY))
where the first map is given by

and the second is induced by Hy v -
14

Let F be an FSP . A homotopy unit of F is a map £ : SX-eF(SXL
)

having a homotopy inverse g : SY-aF(S , that is

sX A ¥ A9 p (%) AP (s

Yy ¥ psXasY)



is homotopic to 1 % v
ST AS

Definition 2.2. The monoid of homotopy units of F 1is defined as
F* = LI(homotopy units 1in QTF (S
We can now for any finite set A consider GLA(F) , the monoid
of homotopy units of MA(F)
There are maps

o : GL, (F) x GLB(F) - GL (F)

A

TR GLA(F) X GLB(F) - GL

AllB

A xB(F)
induced by sum resp. product of maps.

o 1s given by the product (f,g) » h where £f,g,h are adjoint

respectively, to

= X X
£ A+ A S = A+ A F(ST)
g : B, A s¥ 5 B, A F(sY)
h = (1dAuX'Y)(fA1 Y) v (ldAuX’Y)(1 XAg)

S

i 1is defined in the case where F 1is commutative, and induced by
the product

(A+AF(X)) A (B AF(Y)) - (AxB) , A F(XAY)
In order that this product induces a product GLA XGLB-—>GLAxB ’
we have to modify the definition of GLA slightly. We replace
LI(homotOpy units of M,F) by the commutative version

A

(homotopy units of M,F)

L A

—~comm
I

These structure maps are commutative, and u 1is distributive
over «

Out of these monoids, we can construct two hyper-T-spaces.

Definition 2.3. K(F) is the hyper-T-space given by the functor
G(a) = BGL, (F)

defined on finite sets and isomorphisms, ordered, respectively

unordered as to whether F is commutative, or not.

The structure maps are the classifying maps Ba and By



Definition 2.4. NCY(F) is the hyper-r-space given by the functor

G(a) = NCY(GLA(F), GL, (F))

the cyclic bar construction [ 9 ] of GLA(F) acting on itself.
Using the same method, we can make THH(F) into a T'-space.
There is a map

M, (F) (X) A M_(F)(Y) -

B (F) (XAY)

MA.I_LB
analogous to o above. In case F 1is commutative, we use the

model constructed using g COHm instead of I . Then we can use

the product on F to construct a map

nos THH(MA(F)) X THH(MB(F)) -» THH (M (F))

AxB

which is commutative, and distributive over «

Lemma 2.5. The T-space THH(M

A(F)) is homotopy equivalent to

THH (M (F) )

Proof. It suffices to show that the inclusions

THH(F) - THH (MA(F))
are equivalences for each nonempty A . This is a version of
Morita equivalence. We follow the argument of [ 9 ].

Let V, and Hy be the FSP A+AF(-) respectively
Mapo(A+,F(—)). There a pairings, representing actions of F and
MA(F) on these, e.qg.

Va (P) A MF(Q) - V, (PAQ)

We can form the bisimplical object

XO_LL...Xi_LLYOJ_L...Yj X X,I

(o o
[i,3] - LIi+1ij+l 9) V, (S JAMAF (S ) A...A
X, ¥ ¥, Vs
M,F (S 1) AH, (S ©)AF (A )A...F(S J)
We claim that the two multiplication maps
Xo X1 YO Xo'LL"'Yo
VA(S ) A MAF(S ) A .. HA(S ) = F(S )
o Y1 XO Yoil...Xo
H(S 7) A F(Ss ") A owws VA(S ) - MAF(S )

induce homotopy equivalences to THH(MAF) respectively THH(F)



This is equivalent to the statement that the objects

XoJ‘L"'Xi+1 Xo X1 Xi+1
[i] & LIi+2 Q VA(S ) AF(S ) A ... HA(S )
[i] » L g & TR (5°) awm F(SX1) v, (s *tT,
TR 42 A A Aoeee Vp
. X X : X X
are equivalent to L_ Q@ M, (S”) respectively L_ Q° F(S%)
I A P I

Now, consider the special case A=point. We can replace the limit
by the corresponding limit over the subcategory of Il+2 consisting
of tuples of sets with more then N elements.

Then the multiplication map in degree [i] <can be described as

X -LL--.X'.I_
Q 0 1+l applied to the product

X X Xoll . ..X:
F(s O01...F(s Ty 5 opesO L2

)

It follows that multiplication induces a homotopy equivalence.

The general case reduces to this, by rewriting for instance

2> & Eg Kiv]
HA(S ) A MA(S ) A ... MA(S ) A VA(S )
as a subspace of
Ali] Ali] X Xi 41
A, A Hom(A+ , F(S 7) A ... F(S ))

and noting that the inclusion of this subspace is highly connected.

The TI'-space THH(F) has a cyclic structure in the sense of
[3]. If F is commutative, then the hyper-T-space THH(F) has a
cyclic structure.

The same statements are true for the (hyper-)T-space NCY (F) .

The inclusion

GL, (F) - Ly ¥ MA(F)(SX)
defines a map of (hyper-)T-spaces compatible with the cyclic
structure:
NY (F) - THH(F)
We finally examine the relation between K(F) and NCY(F) .
Let X be a monoid, NCY(X,X) the cyclic barconstruction of X

acting on itself. This is again a cyclic object.

If X 1is a group, we can include BX in NCY(X,X) as the



cyclic subobject consisting in degree n of
{(xo,...,xn)E(Ncy)n |X0x1...xn=1}

The isomorphism to the standard barconstruction is given by
projection onto the last n coordinates.

This object is not equivalent to the constant cyclic object BX
In order to relate NCY(X,X) to this constant object, we replace X
by an equivalent category.

In fact, for any category C(C , we can define Ncy(C,C) as the
simplicial set

n+1

[n] - {(fo,...,fn)E(Morph C) : fi and fi+ composablel

1
£f and £ composablef
n o

It is clear that a functor C -» D induces a map

NCY (¢,c) - nCY (D,D)

It is not true that a natural transformation induces a homotopy.

Remark 2.6. If F,G:C » D are naturally equivalent through iso-
morphisms, then the induced maps are homotopic after realization.
To see this, consider the category I with two object and

exactly one isomorphism between them. The natural equivalence
defines a functor

I xC=->17D
inducing

N°Y (IxC,IxC) - N°Y (DxD)
The simplicial set NCY (1xC,IxC) is isomorphic to the diagonal
of the bisimplicial setw
N°Y (1,1) x N (c,0)

A path in INCY(I,I)| between iEs two zero simplices defines a
homotopy between NCY(F) and NCY(G)
This path is given by

(£,£ 1) € NCY(I,I)1 )



16

In particular, the remark shows that equivalent categories have
C
homotopy equivalent realizations |N y(C,C)]

The application is to a certain bicategory.

Let Sqg(C) Dbe the bicategory consisting of commutative diagrams
in C
X ->Y
b
Z »> T
[11] . There are two ways of forming a nerve in this bicate-

gory, yielding two different (but abstractly isomorphic) simplicial
categories. Let us denote them by Nerve,(Sq¢() and Nerve, (SC)
There is an inclusion of C 1in the simplicial category
Nerve1 Sqg(C)
In case all morphisms in C are isomorphisms, this inclusion
is an equivalence of categories in each degree.
There is also an inclusion of the simplicial set BC as the

objects of the simplicial category Nerve, Sq(C) .

Lemma 2.7. If all morphisms of C(C are isomorphisms, then the two
maps

Nerve(C) = Nerve1(Sq(C)) »> Nerve, NerveZ(Sq(C))

Nerve(C) - Nerve,(sq(C)) - Nerve, Nervel(Sq(C))

are homotopic.

Proof. We can explicitely write down a binatural transformation

between the functors

id £
—3 ______‘)

£ fl 1E: Ew idi -Lid
—_— SO
id £

as follows:



id
————
:;E\u c u4§
—f
f o f ?id id f
1/
P ’d

Pk NG
i 7

We can now for any monoid X consider the diagram

BX
1
N (x,x) L NCY(Nervelsq(x),Nervelsq(X))
where i 1is the inclusion of the objects. Then i 1is a map of
cyclic objects, where BX has the trivial cyclic structure.

In case X 1is a group, then £ 1is a homotopy equivalence. It
follows, that if X 1is equivalent as a monoid to a group, then
f 1is a h.e.. This again is equivalent to the statement that
T%(X) is a group.

In order to apply this to the TI'-spaces above, we note that the
construction C - Nervelsq(S) commutes with products, so we can
form the (hyper-)-T-space NCY(Nervelsq(F)) .

There is a diagram of TI'-spaces and cyclic maps

K(F)
1)

N (r) L5 NCY (Nerve sq(F))

|

THH (F)

Since TBGLA(F) = lim m F(s™) is a group, f 1is a homotopy
n
equivalence.



In this paragraph, we will make miscellanous remarks on the
constructions we made.

In particular, we will use the cyclic structure to define a map
st x lim @" F(s") - THH(F)
n
This map will be essential in a later paper, where we compute

the homotopy type of THH(F) ., in certain cases.
The first remark is that in some cases our constructions agree

with known concepts.

Example 3.1. Let F(U) = U . Then
K(F) = A(*)
See [ 4]. Slightly more generally, let X be a simplicial set, and
G(X) the loopgroup of X , then
the functor
F(U) = U A G(X)+
is a FSP satisfying the stability condition. We have
K(F) = A(X) .
The topological Hochschild homology is given by the simplicial

object
X 1...X, XO.LL...X.

O 1 1

Q s (G (x) !

+

[i] > L ;44 )

I

with the usual structure maps, modelled on Hochschild homology.
This can be rewritten as the diagonal of a bisimplicial set

whose realization in one simplicial direction 1is
XOJ_L.. .Xi XO.LL. s .Xi
[i] - LIi+1 Q > (AX,)
All structure maps in this object are homotopy equivalences,

SO

THH(F) =~ lim Q" Sn(AX+) = Q(AX,)
n



There is a map
A(X) > Q(AX,)
defined as in [3].
I claim that this map agrees with the map
K(F) - THH(F)
This follows from the fact that lemma 2.7 provides a homotopy
commutative diagram

K(F) —— Ncy(Nerve

SqF)
T 1
n°Y ()
where K(F) - NCY(F) is given by the inclusion

BGLA(F) - A BGLA(F)
followed by the identification
A BGL, (F) =~ N°Y(F)
It is not difficult to check that this map followed by
N (F) - THH(F)

agrees with the map of Waldhausen.
It is possible to define a stable version of K(F)

Dafinition 3.2.
KS(F) is the limit of Qme , where Xm is the T'-space

A > Fibre(NCY(GLA(F);MAF(sm)j > BGL, (F))

The map K(F) -» THH(F) factors over KS(F) .

Finally, consider the space

Then F 1is a (hyper)-Tr-space. We say that F 1is the underlying
I'-space of the FSP F(-) .

We can define a map

1

A : S x F - THH(F) .



- 20 -

There is a simplicial model of S1 as
[i] - {O0,1,...,1}

with the usual cyclic structure maps , e.g.

j J <k
dk(]) = { k < i
=1 3 > k
a f j J < i
. (3) =
* Lo i =k

We can define A in degree i as

i X dlow X X X,
1w L. %5 - L. (2 © T(F(S ®) A...A F(S Y))
it I i+1
Jj=0 I
: : th . th
by including the k summand in the Kk factor.

By smashing with the identity on A , we obtain maps
S’I x F - S1 X MAF - THH(MA(F))

These maps combine to a map of (hyper)-Ir-spaces parametrized

by S1 .
We note that the composite

1

s! x BcL (F) > S x F -2 THH(F)

1

factors over the map

s « BGL, (F) - NCY (F*,F*)

given in degree 1 Dby sending the kth summand in

i
k%o LI(homot0py units in QXF(SX)) to the factor in
1 X X
kﬁ L. (homotopy units in Q“F(S")) .
=0 1
In other words, we have a commutative diagram

S1 x F¥ —— S1 x F

! Y
ABEF* THH (F) .

This is even a diagram of (parametrized) I'-spaces.
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