MAT1300

MANDATORY ASSIGNMENT I
 PROPOSED SOLUTIONS

John Rognes

Problem I

(a) The inequality

$$
x^{y}<y^{x}
$$

holds if and only if

$$
y \ln (x)=\ln \left(x^{y}\right)<\ln \left(y^{x}\right)=x \ln (y)
$$

since \ln is strictly increasing, and this holds if and only if

$$
f(x)=\frac{\ln (x)}{x}<\frac{\ln (y)}{y}=f(y)
$$

since x and y are positive. This proves (1). Claim (3) follows by interchanging the roles of x and y.

Claim (2) follows from claims (1) and (3), since $x^{y}=y^{x}$ is false if and only if $x^{y}<y^{x}$ or $x^{y}>y^{x}$, and $f(x)=f(y)$ is false if and only if $f(x)<f(y)$ or $f(x)>f(y)$. Alternatively, one can repeat the proof of (1) with equality replacing inequality.
(b) By the quotient rule,

$$
f^{\prime}(x)=\frac{(1 / x) \cdot x-\ln (x) \cdot 1}{x^{2}}=\frac{1-\ln (x)}{x^{2}}
$$

since $\ln ^{\prime}(x)=1 / x$. Here $f^{\prime}(x)$ has the same sign as $1-\ln (x)$, since x^{2} is positive. For $x<e$ we have $\ln (x)<1$, so $1-\ln (x)>0$. For $x=e$ we have $\ln (x)=1$, so $1-\ln (x)=0$. For $x>e$ we have $\ln (x)>1$, so $1-\ln (x)<0$.
The mean value theorem. If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function with f differentiable on (a, b), then we can find $a c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

(Implicitly, $a<b$.)
To show that f is strictly increasing on $(0, e]$, let $0<a<b \leq e$. We must show that $f(a)<f(b)$. We apply the mean value theorem to the function $f:[a, b] \rightarrow$ \mathbb{R} given by $f(x)=\ln (x) / x$, which is continuous on $[a, b]$ and differentiable on (a, b). Hence there exists a $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$. Here
$c \in(a, b) \subset(0, e)$, so $f^{\prime}(c)>0$. We also know that $b-a>0$, so the product $f(b)-f(a)=f^{\prime}(c)(b-a)>0$ is positive, and hence $f(b)>f(a)$.

To show that f is strictly decreasing on $[e, \infty)$, we let $e \leq a<b<\infty$ and apply the mean value theorem. Hence there exists a $c \in(a, b) \subset(e, \infty)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$. Here $f^{\prime}(c)<0$ and $b-a>0$, so $f(b)-f(a)<0$ and $f(b)<f(a)$. Hence f is strictly decreasing on $[e, \infty)$.
(c) Since $x=\pi$ is less than $y=\sqrt{10}$, and f is strictly decreasing on (e, ∞), we know that $f(x)>f(y)$, so that $\pi^{\sqrt{10}}=x^{y}>y^{x}=(\sqrt{10})^{\pi}$. Hence, $\pi^{\sqrt{10}}$ is the greater number.
(d) $f(e)=\ln (e) / e=1 / e$, while

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \ln (x) / x=\lim _{x \rightarrow \infty}(1 / x) / 1=\lim _{x \rightarrow \infty} 1 / x=0
$$

by l'Hôpital's rule.
The intermediate value theorem. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, $f(a) \geq 0$ and $f(b) \leq 0$, then there exists $a c \in[a, b]$ such that $f(c)=0$. (Implicitly, $a \leq b$.)

We first show that f maps (e, ∞) into $(0,1 / e)$, so that $f((e, \infty)) \subseteq(0,1 / e)$. Let $e<x<\infty$. Then $1 / e=f(e)>f(x)$ since f is strictly decreasing on $[e, \infty)$. Furthermore, $\ln (x)>\ln (e)=1>0$ and $x>e>0$ are both positive, so $f(x)=$ $\ln (x) / x>0$ is also positive. This proves that $0<f(x)<1 / e$ for all $x \in(e, \infty)$.

It remains to prove that f maps (e, ∞) onto $(0,1 / e)$, so that for each $t \in(0,1 / e)$ there is some $c \in(e, \infty)$ with $f(c)=t$. For this we will use the intermediate value theorem, applied to the function $f(x)-t$. Some maneuvering is needed to find a suitable interval $[a, b]$ with $f(a)>t>f(b)$.

First, we let $a=e$, so that $f(a)=f(e)=1 / e>t$. To find b, we use that $\lim _{x \rightarrow \infty} f(x)=0$. This means that for each $\epsilon>0$ there is some $M(\epsilon)$ such that for all $x \geq M(\epsilon)$ we have $|f(x)|<\epsilon$. We apply this with $\epsilon=t>0$. Letting $b=M(t)$, we get that $f(b)<t$.

Now $f(x)-t$ defines a continuous function on $[a, b]$, with $f(a)-t>0$ and $f(b)-t<0$. By the intermediate value theorem there is a $c \in[a, b]$ such that $f(c)-t=0$, so that $f(c)=t$. We cannot have $c=a$, since $f(a)>t$, so $c \in(a, b] \subset$ (e, ∞). This proves that f maps (e, ∞) onto $(0,1 / e)$.
(e) $f(1)=\ln (1) / 1=0 / 1=0$. By part (a), the equation $x^{y}=y^{x}$ has the same solutions (x, y) as the equation $f(x)=f(y)$. We first assume that $x \in(0,1]$. Then $f(x) \leq f(1)=0$, since f is strictly increasing on $(0,1] \subset(0, e]$. For all $y>1$ we have $f(y)>0$, so the equation $f(x)=f(y)$ has no solutions with $y>1$. For $y \in(0,1]$, the only solution to the equation $f(x)=f(y)$ is $y=x$, since f is strictly increasing on that interval, and therefore injective ($=$ one-to-one).

Next assume that $x=e$. The function f is strictly increasing on ($0, e]$, so $f(y)<f(e)$ for all $y \in(0, e)$. The function f is strictly decreasing on $[e, \infty)$, so $f(e)>f(y)$ for all $y \in(e, \infty)$. Hence there is no other y than $y=e$ such that $f(y)=f(e)$.
(f) Now assume that $x \in(1, e)$. We want to show that the equation $f(x)=f(y)$ has exactly two solutions: one with $y=x$ and one with $y \in(e, \infty)$. It is clear that $y=x$ is one solution, with $y \in(1, e) \subset(0, e]$. We know that f is strictly increasing on $(0, e]$, so this will also be the only solution to $f(x)=f(y)$ with $y \in(0, e]$.

It remains to consider $y \in(e, \infty)$. By assumption $x \in(1, e)$, so $0=f(1)<$ $f(x)<f(e)=1 / e$, since f is strictly increasing on $(1, e) \subset(0, e]$. By part (d), the function f maps (e, ∞) onto the interval $(0,1 / e)$, so for each number $t \in(0,1 / e)$ there is a $c \in(e, \infty)$ with $f(c)=t$. We apply this with $t=f(x)$, which we have seen lies in $(0,1 / e)$. We let $y=c$ be the corresponding number in (e, ∞) with $f(y)=f(c)=t=f(x)$. This y gives one solution to the equation $f(x)=f(y)$, with $y \in(e, \infty)$. This is the only such solution, since f is strictly decreasing on $[e, \infty)$.

Problem II

(a) As rational numbers,

$$
x_{2}=\frac{1}{2}\left(3+\frac{10}{3}\right)=\frac{1}{2} \cdot \frac{9+10}{3}=\frac{19}{6}
$$

and

$$
\begin{aligned}
x_{3} & =\frac{1}{2}\left(\frac{19}{6}+\frac{10}{(19 / 6)}\right)=\frac{1}{2}\left(\frac{19}{6}+\frac{60}{19}\right) \\
& =\frac{1}{2} \cdot \frac{19 \cdot 19+6 \cdot 60}{6 \cdot 19}=\frac{361+360}{2 \cdot 114}=\frac{721}{228} .
\end{aligned}
$$

These have decimal expansions

$$
\frac{19}{6}=3.166666 \ldots
$$

and

$$
\frac{721}{228}=3.162280 \ldots
$$

(The rounded answers 3.166667 and 3.162281 are also acceptable.)
(b) We compute:

$$
\begin{aligned}
x_{n+1} & =\frac{1}{2}\left(x_{n}+\frac{10}{x_{n}}\right)=\frac{1}{2}\left(\sqrt{10}+y_{n}+\frac{10}{\sqrt{10}+y_{n}}\right) \\
& =\frac{1}{2}\left(\sqrt{10}+y_{n}+\frac{10-y_{n}^{2}}{\sqrt{10}+y_{n}}+\frac{y_{n}^{2}}{\sqrt{10}+y_{n}}\right) \\
& =\frac{1}{2}\left(\sqrt{10}+y_{n}+\frac{\left(\sqrt{10}+y_{n}\right)\left(\sqrt{10}-y_{n}\right)}{\sqrt{10}+y_{n}}+\frac{y_{n}^{2}}{\sqrt{10}+y_{n}}\right) \\
& =\frac{1}{2}\left(\sqrt{10}+y_{n}+\sqrt{10}-y_{n}+\frac{y_{n}^{2}}{\sqrt{10}+y_{n}}\right) \\
& =\frac{1}{2}\left(2 \sqrt{10}+\frac{y_{n}^{2}}{\sqrt{10}+y_{n}}\right) \\
& =\sqrt{10}+\frac{1}{2} \cdot \frac{y_{n}^{2}}{\sqrt{10}+y_{n}} .
\end{aligned}
$$

Alternatively, we need to show that

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{10}{x_{n}}\right)=\frac{1}{2}\left(\sqrt{10}+y_{n}+\frac{10}{\sqrt{10}+y_{n}}\right)
$$

is equal to

$$
\sqrt{10}+\frac{1}{2} \cdot \frac{y_{n}^{2}}{\sqrt{10}+y_{n}}=\frac{1}{2}\left(2 \sqrt{10}+\frac{y_{n}^{2}}{\sqrt{10}+y_{n}}\right)
$$

so it suffices to check that

$$
\sqrt{10}+y_{n}+\frac{10}{\sqrt{10}+y_{n}}=2 \sqrt{10}+\frac{y_{n}^{2}}{\sqrt{10}+y_{n}}
$$

Rearranging, this is equivalent to

$$
\frac{10}{\sqrt{10}+y_{n}}-\frac{y_{n}^{2}}{\sqrt{10}+y_{n}}=\sqrt{10}-y_{n}
$$

which follows from

$$
10-y_{n}^{2}=\left(\sqrt{10}+y_{n}\right)\left(\sqrt{10}-y_{n}\right) .
$$

Either way, since $x_{n}=\sqrt{10}+y_{n}$ is positive for all $n \geq 1$, and $y_{n}^{2} \geq 0$, it follows that $y_{n}^{2} /\left(\sqrt{10}+y_{n}\right) \geq 0$. Hence half of this, which is y_{n+1}, is also non-negative. We can rewrite $y_{n+1} \geq 0$ for all $n \geq 1$ as $y_{n} \geq 0$ for all $n \geq 2$, which is what we wanted to prove. It is then clear that $x_{n}=\sqrt{10}+y_{n} \geq \sqrt{10}$ for $n \geq 2$.
(c) From $x_{n} \geq \sqrt{10}$ we get $x_{n}^{2} \geq 10$ and $x_{n} \geq 10 / x_{n}$, for all $n \geq 2$. Hence the mean satisfies

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{10}{x_{n}}\right) \leq \frac{1}{2}\left(x_{n}+x_{n}\right)=x_{n}
$$

for all $n \geq 2$, so $\left(x_{n}\right)_{n=2}^{\infty}$ is a decreasing sequence.
The fundamental axiom of analysis. If $a_{n} \in \mathbb{R}$ for each $n \geq 1, A \in \mathbb{R}$ and $a_{1} \leq a_{2} \leq a_{3} \leq \ldots$ and $a_{n} \in A$ for each n, then there exists an $a \in \mathbb{R}$ such that $a_{n} \rightarrow a$ as $n \rightarrow \infty$. (Equivalently: every increasing sequence that is bounded above converges to a limit.)

The sequence $\left(x_{n}\right)_{n=2}^{\infty}$ is decreasing and bounded below by $\sqrt{10}$. Hence The sequence $\left(a_{n}\right)_{n=1}^{\infty}$ with $a_{n}=-x_{n+1}$ for $n \geq 1$ is increasing and bounded above by $A=-\sqrt{10}$, hence converges to a limit a as $n \rightarrow \infty$. Then the sequence $\left(x_{n}\right)_{n=2}^{\infty}$ converges to the limit $-a$ as $n \rightarrow \infty$. It follows that the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ also converges to $-a$, since the question of whether a sequence converges does not depend on the first finitely many terms of the sequence. (See Exercise 1.7.)
(d) Let $r=\lim _{n \rightarrow \infty} x_{n}$. Since each $x_{n} \geq \sqrt{10}$ for $n \geq 2$, we know that $r \geq \sqrt{10}$. Let $h(x)=\frac{1}{2}(x+(10 / x))$. This is a continuous function for $x>0$, hence it is continuous at r. It follows that the image sequence of h applied to $\left(x_{n}\right)_{n}$, with n-th term $x_{n+1}=h\left(x_{n}\right)$, converges to $h(r)$. (See Lemma 1.15.) But this is a subsequence of the original sequence $\left(x_{n}\right)_{n}$, with limit r. Hence these two limits are equal, so that

$$
r=h(r)=\frac{1}{2}\left(r+\frac{10}{r}\right)
$$

(See Lemma 1.6(i).)
We can rewrite this as $2 r=r+(10 / r)$, so $r=10 / r$ and $r^{2}=10$. Since $r>0$ we deduce that $r=\sqrt{10}$.
(e) If $0 \leq y_{n}<10^{-d}$ then $0 \leq y_{n}^{2}<\left(10^{-d}\right)^{2}=10^{-2 d}$, and $2\left(\sqrt{10}+y_{n}\right) \geq 2 \sqrt{10} \geq$ 1 , so $y_{n+1}<10^{-2 d} / 1=10^{-2 d}$.

Problem III

(a) By assumption, $\mathbf{z}_{k} \rightarrow \mathbf{z}$ as $k \rightarrow \infty$, so for each $\epsilon>0$ there is a natural number $k_{0}(\epsilon)$ such that for all $k \geq k_{0}(\epsilon)$ we have $\left\|\mathbf{z}_{k}-\mathbf{z}\right\|<\epsilon$. In particular, with $\epsilon=1$, if $k \geq k_{0}=k_{0}(1)$ we have $\left\|\mathbf{z}_{k}-\mathbf{z}\right\| \leq 1$, so $\left\|\mathbf{z}_{k}\right\| \leq\|\mathbf{z}\|+1$ for all $k \geq k_{0}$. Let

$$
M=\max _{1 \leq k \leq k_{0}}\left\|\mathbf{z}_{k}\right\|+1
$$

Then $\left\|\mathbf{z}_{j}\right\| \leq M$ for all natural numbers j. Letting $j \rightarrow \infty$, it follows that $\|\mathbf{z}\| \leq M$. Hence $\|\mathbf{y}\| \leq M$ for all $\mathbf{y} \in E$, so E is a bounded set.
(b) Let $\left(\mathbf{x}_{n}\right)_{n}$ be a sequence in E, converging to a limit \mathbf{x} in \mathbb{R}^{m}. We must prove that $\mathbf{x} \in E$.

First proof: Suppose first that there is a $\mathbf{y} \in E$ such that $\mathbf{x}_{n}=\mathbf{y}$ for infinitely many n. Numbering these n in increasing order as $n(1)<n(2)<\ldots$, we get that $\left(\mathbf{x}_{n}\right)_{n}$ has the subsequence $\left(\mathbf{x}_{n(j)}\right)_{j}$, constant at \mathbf{y}. It follows that the limit \mathbf{x} of $\left(\mathbf{x}_{n}\right)_{n}$ is equal to the limit \mathbf{y} of $\left(\mathbf{x}_{n(j)}\right)_{j}$, so $\mathbf{x}=\mathbf{y} \in E$.

Otherwise, the sequence $\left(\mathbf{x}_{n}\right)_{n}$ takes each value $\mathbf{y} \in E$ only finitely many times. In particular, it takes the value \mathbf{z} only finitely many times, so there is some natural number $n(1)$ such that $\mathbf{x}_{n(1)}$ is not equal to \mathbf{z}. There must then be some natural number $k(1)$ such that

$$
\mathbf{x}_{n(1)}=\mathbf{z}_{k(1)} .
$$

Next, there are only finitely many n such that \mathbf{x}_{n} is equal to the finitely many values $\mathbf{z}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{k(1)}$. Hence we can find an $n(2)>n(1)$ and a $k(2)>k(1)$ such that

$$
\mathbf{x}_{n(2)}=\mathbf{z}_{k(2)} .
$$

Continuing by induction, we can for all natural numbers j find an $n(j+1)>n(j)$ and a $k(j+1)>k(j)$ such that

$$
\mathbf{x}_{n(j+1)}=\mathbf{z}_{k(j+1)} .
$$

For there are only finitely many n such that \mathbf{x}_{n} is equal to the finitely many values $\mathbf{z}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{k(j)}$, so we pick $n(j+1)$ to be one of the infinitely many n for which \mathbf{x}_{n} is equal to a \mathbf{z}_{k} with $k>k(j)$. Then we set $k(j+1)$ equal to this k.

We have now proved that the subsequence $\left(\mathbf{x}_{n(j)}\right)_{j}$ of $\left(\mathbf{x}_{n}\right)_{n}$ is equal to the subsequence $\left(\mathbf{z}_{k(j)}\right)_{j}$ of $\left(\mathbf{z}_{k}\right)_{k}$. It follows that the limit \mathbf{x} of $\left(\mathbf{x}_{n}\right)_{n}$ and $\left(\mathbf{x}_{n(j)}\right)_{j}$ is equal to the limit of $\left(\mathbf{z}_{k(j)}\right)_{j}$, which is equal to the limit \mathbf{z} of $\left(\mathbf{z}_{k}\right)_{k}$. Hence $\mathbf{x}=\mathbf{z} \in E$, as we wanted to prove.

Second proof: If there is a $\mathbf{y} \in E$ such that $\mathbf{x}_{n}=\mathbf{y}$ for infinitely many n, we argue as above to deduce that $\mathbf{x}=\mathbf{y} \in E$.

Otherwise, the sequence $\left(\mathbf{x}_{n}\right)_{n}$ only takes each value in E a finite number of times, and for the rest of the argument we assume this. We know that $\mathbf{z}_{k} \rightarrow \mathbf{z}$ as $k \rightarrow \infty$, so for each $\epsilon>0$ there is a $k_{0}(\epsilon)$ such that for each $k \geq k_{0}(\epsilon)$ we have $\left\|\mathbf{z}_{k}-\mathbf{z}\right\|<\epsilon$. Hence $\left\|\mathbf{z}_{k}-\mathbf{z}\right\| \geq \epsilon$ only for (some of) the finitely many k with $k<k_{0}(\epsilon)$. For each k we know that $\mathbf{x}_{n}=\mathbf{z}_{k}$ only for finitely many n, hence there are only finitely many natural numbers n such that $\left\|\mathbf{x}_{n}-\mathbf{z}\right\| \geq \epsilon$. Let $n_{0}(\epsilon)$ be greater than all of these natural numbers. Then for all $n \geq n_{0}(\epsilon)$ we have $\left\|\mathbf{x}_{n}-\mathbf{z}\right\|<\epsilon$. Since $\epsilon>0$ was arbitrary, this proves that $\mathbf{x}_{n} \rightarrow \mathbf{z}$ as $n \rightarrow \infty$, so $\mathbf{x}=\mathbf{z}$ is in E, as required.
(c) Yes, $\mathbf{f}(E)$ is closed and bounded in \mathbb{R}^{p} by Theorem 4.41.
(d) Yes, \mathbf{f} is uniformly continuous by Theorem 4.63.

