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PROBLEM 1

(a) The inequality
¥ <y

holds if and only if
yln(z) =In(2Y) < In(y®) = zIn(y)

since In is strictly increasing, and this holds if and only if

since z and y are positive. This proves (1). Claim (3) follows by interchanging the
roles of x and y.

Claim (2) follows from claims (1) and (3), since 2¥ = y* is false if and only
if 2¥ < y* or ¥ > y*, and f(x) = f(y) is false if and only if f(x) < f(y) or
f(x) > f(y). Alternatively, one can repeat the proof of (1) with equality replacing
inequality.

(b) By the quotient rule,

(1/z) -z —In(x) - 1 1 —In(z)

fi(z) =

T i

since In’(x) = 1/x. Here f/(x) has the same sign as 1 — In(z), since z? is positive.
For z < e we have In(z) < 1, so 1 —In(xz) > 0. For 2 = e we have In(z) = 1, so
1 —In(z) = 0. For x > e we have In(z) > 1, so 1 — In(z) < 0.

The mean value theorem. If f: [a,b] — R is a continuous function with f
differentiable on (a,b), then we can find a ¢ € (a,b) such that

f(b) = f(a) = f'(c)(b—a).
(Implicitly, a < b.)

To show that f is strictly increasing on (0, €], let 0 < a < b < e. We must show
that f(a) < f(b). We apply the mean value theorem to the function f: [a,b] —
R given by f(x) = In(z)/z, which is continuous on [a,b] and differentiable on
(a,b). Hence there exists a ¢ € (a,b) such that f(b) — f(a) = f'(c¢)(b — a). Here
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¢ € (a,b) C (0,e), so f'(¢) > 0. We also know that b — a > 0, so the product
f(b) — f(a) = f'(¢)(b—a) > 0 is positive, and hence f(b) > f(a).

To show that f is strictly decreasing on [e,00), we let e < a < b < oo and
apply the mean value theorem. Hence there exists a ¢ € (a,b) C (e,00) such that
f(b) = f(a) = f'(c)(b—a). Here f'(c) <0 and b—a >0, so f(b) — f(a) < 0 and
f(b) < f(a). Hence f is strictly decreasing on [e, 00).

(c) Since z = 7 is less than y = /10, and f is strictly decreasing on (e, c0), we
know that f(z) > f(y), so that V10 = zv > y* = (v/10)". Hence, 7V10 is the

greater number.

(d) f(e) =1In(e)/e =1/e, while

lim f(z) = lim In(z)/z = xlgglo(l/x)/l lei_)rréo 1/z=0

by I’Hopital’s rule.

The intermediate value theorem. If f: [a,b] — R is continuous, f(a) > 0 and
f(b) <0, then there exists a ¢ € [a,b] such that f(c) = 0. (Implicitly, a <b.)

We first show that f maps (e, 00) into (0, 1/e), so that f((e,00)) C (0,1/e). Let
e < x < oo. Then 1/e = f(e) > f(x) since f is strictly decreasing on e, 00).
Furthermore, In(z) > In(e) =1 > 0 and = > e > 0 are both positive, so f(x) =
In(z)/z > 0 is also positive. This proves that 0 < f(z) < 1/e for all x € (e, 00).

It remains to prove that f maps (e, 00) onto (0,1/e), so that for each t € (0,1/e)
there is some ¢ € (e,00) with f(c¢) = t. For this we will use the intermediate value
theorem, applied to the function f(x) —¢. Some maneuvering is needed to find a
suitable interval [a,b] with f(a) >t > f(b).

First, we let a = e, so that f(a) = f(e) = 1/e > t. To find b, we use that
lim, .~ f(z) = 0. This means that for each € > 0 there is some M(¢€) such that for
all x > M (e) we have |f(x)| < e. We apply this with e = ¢ > 0. Letting b = M(¢),
we get that f(b) < t.

Now f(x) — t defines a continuous function on [a,b], with f(a) — ¢ > 0 and
f(b) —t < 0. By the intermediate value theorem there is a ¢ € [a,b] such that
f(e)—t =0, so that f(c) =t. We cannot have ¢ = a, since f(a) > t, so ¢ € (a,b] C
(e,00). This proves that f maps (e, 00) onto (0,1/e).

(e) f(1) =1In(1)/1 =0/1 = 0. By part (a), the equation z¥ = y* has the same
solutions (z,y) as the equation f(z) = f(y). We first assume that z € (0,1]. Then
f(z) < f(1) = 0, since f is strictly increasing on (0,1] C (0,e]. For all y > 1
we have f(y) > 0, so the equation f(x) = f(y) has no solutions with y > 1. For
y € (0, 1], the only solution to the equation f(z) = f(y) is y = x, since f is strictly
increasing on that interval, and therefore injective (= one-to-one).

Next assume that © = e. The function f is strictly increasing on (0,¢], so
f(y) < f(e) for all y € (0,e). The function f is strictly decreasing on [e, 00), so
f(e) > f(y) for all y € (e,00). Hence there is no other y than y = e such that

f(y) = f(e).

(f) Now assume that x € (1,e). We want to show that the equation f(x) = f(y)
has exactly two solutions: one with y = = and one with y € (e, 00). It is clear that
y = x is one solution, with y € (1,e) C (0,e]. We know that f is strictly increasing
on (0, €], so this will also be the only solution to f(x) = f(y) with y € (0, €].
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It remains to consider y € (e,00). By assumption z € (1,e), so 0 = f(1) <
f(z) < f(e) = 1/e, since f is strictly increasing on (1,e) C (0,e]. By part (d), the
function f maps (e,00) onto the interval (0,1/e), so for each number ¢ € (0,1/e)
there is a ¢ € (e,00) with f(c) = t. We apply this with ¢ = f(z), which we have
seen lies in (0,1/e). We let y = ¢ be the corresponding number in (e,00) with
f(y) = f(c) =t = f(x). This y gives one solution to the equation f(z) = f(y),
with y € (e,00). This is the only such solution, since f is strictly decreasing on
[e, 00).

PROBLEM 11

(a) As rational numbers,

1 10 1
n=503+3) =5

94+10 19

3 6

and

1,19 10 1,19 60
=505 *me) =206 T 1o
1 19-1946-60  361+360 721
T2 6-19 T o2.114 2287

These have decimal expansions

1_69 = 3.166 666 ...

and 721
3162980 ... .
55~ 10

(The rounded answers 3.166 667 and 3.162 281 are also acceptable.)
(b) We compute:

an:%(mn-i—iS) (f+yn \/TOLW)
10 — o2 2
N (\/_Jr +\/_y;;n+\/7yj’yn)
5
— V0 IO )
25(\/_+yn+\/_ Y + \/Eiyn)
2
:%(2\/_+\F+yn)
:er%VTOyilyn'
Alternatively, we need to show that
xnﬂzé(antig) (\/_+yn \/Eli:)-yn)
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is equal to
2

1 y 1 y
VIO4+ = — = Z(2V/10 + ——
+ 2( \/10+yn)

so it suffices to check that

10 Y
VIO +y, + —— =2V10 4+ ———.
V10 +y, V10 +y,

Rearranging, this is equivalent to

2

10 y,% 0
— — — yn
V10 4y, \/m + Yn

which follows from

10 — y2 = (V10 + y,) (V10 — yn) .

Either way, since z,, = v/10 + y,, is positive for all n > 1, and y2 > 0, it follows
that 2 /(v/10 +%,,) > 0. Hence half of this, which is y,,, 1, is also non-negative. We
can rewrite y,4+1 > 0 for all n > 1 as y,, > 0 for all n > 2, which is what we wanted
to prove. It is then clear that z,, = v/10 + y,, > /10 for n > 2.

(c) From x,, > /10 we get 22 > 10 and x,, > 10/z,, for all n > 2. Hence the

mean satisfies 1

Ln+1 = i(xn + -
n

for all n > 2, so (x,)52, is a decreasing sequence.

10 1
_) S i(xn +xn) = Tn

The fundamental axiom of analysis. If a,, € R for each n > 1, A € R and
a1 <as <az <... and a, € A for each n, then there exists an a € R such that
an — a as n — co. (Equivalently: every increasing sequence that is bounded above
converges to a limit.)

The sequence (z,)52, is decreasing and bounded below by 1/10. Hence The

sequence (a,)5%, with a,, = —z,41 for n > 1 is increasing and bounded above by
A = —+/10, hence converges to a limit a as n — oco. Then the sequence (z,,)5%,

converges to the limit —a as n — oo. It follows that the sequence (z,)%2; also
converges to —a, since the question of whether a sequence converges does not depend
on the first finitely many terms of the sequence. (See Exercise 1.7.)

(d) Let r = lim,, o0 #,,. Since each x, > /10 for n > 2, we know that r > 1/10.
Let h(z) = 3(z + (10/z)). This is a continuous function for > 0, hence it is
continuous at r. It follows that the image sequence of h applied to (z,),, with n-th
term 41 = h(x,), converges to h(r). (See Lemma 1.15.) But this is a subsequence
of the original sequence (zy,),, with limit r. Hence these two limits are equal, so

that ) 10
— hr) = = v
r=hr)=5(r+ ")
(See Lemma 1.6(i).)
We can rewrite this as 2r = 7 + (10/7), so r = 10/r and r? = 10. Since r > 0 we

deduce that » = v/10.

(e) If0 <y, <1074 then 0 < 32 < (10792 = 10724, and 2(v/10+y,,) > 2/10 >
1,80 Ypi1 < 10724/1 = 10724,
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ProBLEM 111

(a) By assumption, z;y — z as k — oo, so for each € > 0 there is a natural
number kq(e) such that for all £ > kq(e) we have ||z — z|| < e. In particular, with
e=1,if k > ko = ko(1) we have ||zx —z| < 1, so ||zx] < ||z||+1 for all & > ky. Let

M = max |zg| +1.
1<k<ko

Then ||z;|| < M for all natural numbers j. Letting j — oo, it follows that ||z| < M.
Hence ||y|| < M for all y € E, so E is a bounded set.

(b) Let (x,,)n be a sequence in E, converging to a limit x in R”. We must prove
that x € E.

First proof: Suppose first that there is a y € E such that x,, = y for infinitely
many n. Numbering these n in increasing order as n(1) < n(2) < ..., we get that
(Xn)n has the subsequence (x,;));, constant at y. It follows that the limit x of
(Xn)n is equal to the limit y of (x,(;))j, sox =y € E.

Otherwise, the sequence (x,,), takes each value y € E only finitely many times.
In particular, it takes the value z only finitely many times, so there is some natural
number n(1) such that x,,(;) is not equal to z. There must then be some natural
number k(1) such that

Xn(1) = Zk(1) -
Next, there are only finitely many n such that x,, is equal to the finitely many
values z, z1,...,2,(1). Hence we can find an n(2) > n(1) and a k(2) > k(1) such
that

Xn(2) = Zk(2) -
Continuing by induction, we can for all natural numbers j find an n(j + 1) > n(j)
and a k(j 4+ 1) > k(j) such that

Xn(j+1) = Zk(j+1) -
For there are only finitely many n such that x,, is equal to the finitely many values
Z, Z1,. .. ,Zk(j), S0 we pick n(j + 1) to be one of the infinitely many n for which x,
is equal to a z with k& > k(j). Then we set k(j + 1) equal to this k.

We have now proved that the subsequence (x,(;)); of (Xn)n is equal to the
subsequence (zy(jy); of (zx)x. It follows that the limit x of (x,), and (x,(;); is
equal to the limit of (zy;y);, which is equal to the limit z of (z)x. Hencex =z € I,
as we wanted to prove.

Second proof: If there is a y € F such that x,, = y for infinitely many n, we
argue as above to deduce that x =y € F.

Otherwise, the sequence (x,,), only takes each value in E a finite number of
times, and for the rest of the argument we assume this. We know that z; — z
as k — oo, so for each € > 0 there is a ko(€) such that for each k > ko(e) we
have ||z, — z|| < e. Hence ||z; — z|| > € only for (some of) the finitely many &
with k < ko(€). For each k£ we know that x,, = z, only for finitely many n, hence
there are only finitely many natural numbers n such that ||x,, — z|| > €. Let ng(e)
be greater than all of these natural numbers. Then for all n > ng(e) we have
|xn, — 2z|| < €. Since € > 0 was arbitrary, this proves that x,, — z as n — 00, so
X = z is in F, as required.

(c) Yes, f(F) is closed and bounded in R? by Theorem 4.41.
(d) Yes, f is uniformly continuous by Theorem 4.63.



