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MANDATORY ASSIGNMENT I

PROPOSED SOLUTIONS

John Rognes

Problem I

(a) The inequality
xy < yx

holds if and only if
y ln(x) = ln(xy) < ln(yx) = x ln(y)

since ln is strictly increasing, and this holds if and only if

f(x) =
ln(x)

x
<

ln(y)

y
= f(y)

since x and y are positive. This proves (1). Claim (3) follows by interchanging the
roles of x and y.

Claim (2) follows from claims (1) and (3), since xy = yx is false if and only
if xy < yx or xy > yx, and f(x) = f(y) is false if and only if f(x) < f(y) or
f(x) > f(y). Alternatively, one can repeat the proof of (1) with equality replacing
inequality.

(b) By the quotient rule,

f ′(x) =
(1/x) · x − ln(x) · 1

x2
=

1 − ln(x)

x2

since ln′(x) = 1/x. Here f ′(x) has the same sign as 1 − ln(x), since x2 is positive.
For x < e we have ln(x) < 1, so 1 − ln(x) > 0. For x = e we have ln(x) = 1, so
1 − ln(x) = 0. For x > e we have ln(x) > 1, so 1 − ln(x) < 0.

The mean value theorem. If f : [a, b] → R is a continuous function with f
differentiable on (a, b), then we can find a c ∈ (a, b) such that

f(b) − f(a) = f ′(c)(b − a) .

(Implicitly, a < b.)

To show that f is strictly increasing on (0, e], let 0 < a < b ≤ e. We must show
that f(a) < f(b). We apply the mean value theorem to the function f : [a, b] →
R given by f(x) = ln(x)/x, which is continuous on [a, b] and differentiable on
(a, b). Hence there exists a c ∈ (a, b) such that f(b) − f(a) = f ′(c)(b − a). Here
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c ∈ (a, b) ⊂ (0, e), so f ′(c) > 0. We also know that b − a > 0, so the product
f(b) − f(a) = f ′(c)(b − a) > 0 is positive, and hence f(b) > f(a).

To show that f is strictly decreasing on [e,∞), we let e ≤ a < b < ∞ and
apply the mean value theorem. Hence there exists a c ∈ (a, b) ⊂ (e,∞) such that
f(b) − f(a) = f ′(c)(b − a). Here f ′(c) < 0 and b − a > 0, so f(b) − f(a) < 0 and
f(b) < f(a). Hence f is strictly decreasing on [e,∞).

(c) Since x = π is less than y =
√

10, and f is strictly decreasing on (e,∞), we

know that f(x) > f(y), so that π
√

10 = xy > yx = (
√

10)π. Hence, π
√

10 is the
greater number.

(d) f(e) = ln(e)/e = 1/e, while

lim
x→∞

f(x) = lim
x→∞

ln(x)/x = lim
x→∞

(1/x)/1 = lim
x→∞

1/x = 0

by l’Hôpital’s rule.

The intermediate value theorem. If f : [a, b] → R is continuous, f(a) ≥ 0 and
f(b) ≤ 0, then there exists a c ∈ [a, b] such that f(c) = 0. (Implicitly, a ≤ b.)

We first show that f maps (e,∞) into (0, 1/e), so that f((e,∞)) ⊆ (0, 1/e). Let
e < x < ∞. Then 1/e = f(e) > f(x) since f is strictly decreasing on [e,∞).
Furthermore, ln(x) > ln(e) = 1 > 0 and x > e > 0 are both positive, so f(x) =
ln(x)/x > 0 is also positive. This proves that 0 < f(x) < 1/e for all x ∈ (e,∞).

It remains to prove that f maps (e,∞) onto (0, 1/e), so that for each t ∈ (0, 1/e)
there is some c ∈ (e,∞) with f(c) = t. For this we will use the intermediate value
theorem, applied to the function f(x) − t. Some maneuvering is needed to find a
suitable interval [a, b] with f(a) > t > f(b).

First, we let a = e, so that f(a) = f(e) = 1/e > t. To find b, we use that
limx→∞ f(x) = 0. This means that for each ǫ > 0 there is some M(ǫ) such that for
all x ≥ M(ǫ) we have |f(x)| < ǫ. We apply this with ǫ = t > 0. Letting b = M(t),
we get that f(b) < t.

Now f(x) − t defines a continuous function on [a, b], with f(a) − t > 0 and
f(b) − t < 0. By the intermediate value theorem there is a c ∈ [a, b] such that
f(c)− t = 0, so that f(c) = t. We cannot have c = a, since f(a) > t, so c ∈ (a, b] ⊂
(e,∞). This proves that f maps (e,∞) onto (0, 1/e).

(e) f(1) = ln(1)/1 = 0/1 = 0. By part (a), the equation xy = yx has the same
solutions (x, y) as the equation f(x) = f(y). We first assume that x ∈ (0, 1]. Then
f(x) ≤ f(1) = 0, since f is strictly increasing on (0, 1] ⊂ (0, e]. For all y > 1
we have f(y) > 0, so the equation f(x) = f(y) has no solutions with y > 1. For
y ∈ (0, 1], the only solution to the equation f(x) = f(y) is y = x, since f is strictly
increasing on that interval, and therefore injective (= one-to-one).

Next assume that x = e. The function f is strictly increasing on (0, e], so
f(y) < f(e) for all y ∈ (0, e). The function f is strictly decreasing on [e,∞), so
f(e) > f(y) for all y ∈ (e,∞). Hence there is no other y than y = e such that
f(y) = f(e).

(f) Now assume that x ∈ (1, e). We want to show that the equation f(x) = f(y)
has exactly two solutions: one with y = x and one with y ∈ (e,∞). It is clear that
y = x is one solution, with y ∈ (1, e) ⊂ (0, e]. We know that f is strictly increasing
on (0, e], so this will also be the only solution to f(x) = f(y) with y ∈ (0, e].
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It remains to consider y ∈ (e,∞). By assumption x ∈ (1, e), so 0 = f(1) <
f(x) < f(e) = 1/e, since f is strictly increasing on (1, e) ⊂ (0, e]. By part (d), the
function f maps (e,∞) onto the interval (0, 1/e), so for each number t ∈ (0, 1/e)
there is a c ∈ (e,∞) with f(c) = t. We apply this with t = f(x), which we have
seen lies in (0, 1/e). We let y = c be the corresponding number in (e,∞) with
f(y) = f(c) = t = f(x). This y gives one solution to the equation f(x) = f(y),
with y ∈ (e,∞). This is the only such solution, since f is strictly decreasing on
[e,∞).

Problem II

(a) As rational numbers,

x2 =
1

2

(

3 +
10

3

)

=
1

2
· 9 + 10

3
=

19

6

and

x3 =
1

2

(19

6
+

10

(19/6)

)

=
1

2

(19

6
+

60

19

)

=
1

2
· 19 · 19 + 6 · 60

6 · 19
=

361 + 360

2 · 114
=

721

228
.

These have decimal expansions

19

6
= 3.166 666 . . .

and
721

228
= 3.162 280 . . . .

(The rounded answers 3.166 667 and 3.162 281 are also acceptable.)

(b) We compute:

xn+1 =
1

2

(

xn +
10

xn

)

=
1

2

(
√

10 + yn +
10√

10 + yn

)

=
1

2

(
√

10 + yn +
10 − y2

n√
10 + yn

+
y2

n√
10 + yn

)

=
1

2

(
√

10 + yn +
(
√

10 + yn)(
√

10 − yn)√
10 + yn

+
y2

n√
10 + yn

)

=
1

2

(
√

10 + yn +
√

10 − yn +
y2

n√
10 + yn

)

=
1

2

(

2
√

10 +
y2

n√
10 + yn

)

=
√

10 +
1

2
· y2

n√
10 + yn

.

Alternatively, we need to show that

xn+1 =
1

2

(

xn +
10

xn

)

=
1

2

(
√

10 + yn +
10√

10 + yn

)



4 JOHN ROGNES

is equal to
√

10 +
1

2
· y2

n√
10 + yn

=
1

2

(

2
√

10 +
y2

n√
10 + yn

)

so it suffices to check that

√
10 + yn +

10√
10 + yn

= 2
√

10 +
y2

n√
10 + yn

.

Rearranging, this is equivalent to

10√
10 + yn

− y2
n√

10 + yn

=
√

10 − yn

which follows from
10 − y2

n = (
√

10 + yn)(
√

10 − yn) .

Either way, since xn =
√

10 + yn is positive for all n ≥ 1, and y2
n ≥ 0, it follows

that y2
n/(

√
10+yn) ≥ 0. Hence half of this, which is yn+1, is also non-negative. We

can rewrite yn+1 ≥ 0 for all n ≥ 1 as yn ≥ 0 for all n ≥ 2, which is what we wanted
to prove. It is then clear that xn =

√
10 + yn ≥

√
10 for n ≥ 2.

(c) From xn ≥
√

10 we get x2
n ≥ 10 and xn ≥ 10/xn, for all n ≥ 2. Hence the

mean satisfies

xn+1 =
1

2

(

xn +
10

xn

)

≤ 1

2
(xn + xn) = xn

for all n ≥ 2, so (xn)∞n=2 is a decreasing sequence.

The fundamental axiom of analysis. If an ∈ R for each n ≥ 1, A ∈ R and
a1 ≤ a2 ≤ a3 ≤ . . . and an ∈ A for each n, then there exists an a ∈ R such that
an → a as n → ∞. (Equivalently: every increasing sequence that is bounded above
converges to a limit.)

The sequence (xn)∞n=2 is decreasing and bounded below by
√

10. Hence The
sequence (an)∞n=1 with an = −xn+1 for n ≥ 1 is increasing and bounded above by

A = −
√

10, hence converges to a limit a as n → ∞. Then the sequence (xn)∞n=2

converges to the limit −a as n → ∞. It follows that the sequence (xn)∞n=1 also
converges to −a, since the question of whether a sequence converges does not depend
on the first finitely many terms of the sequence. (See Exercise 1.7.)

(d) Let r = limn→∞ xn. Since each xn ≥
√

10 for n ≥ 2, we know that r ≥
√

10.
Let h(x) = 1

2 (x + (10/x)). This is a continuous function for x > 0, hence it is
continuous at r. It follows that the image sequence of h applied to (xn)n, with n-th
term xn+1 = h(xn), converges to h(r). (See Lemma 1.15.) But this is a subsequence
of the original sequence (xn)n, with limit r. Hence these two limits are equal, so
that

r = h(r) =
1

2

(

r +
10

r

)

(See Lemma 1.6(i).)
We can rewrite this as 2r = r + (10/r), so r = 10/r and r2 = 10. Since r > 0 we

deduce that r =
√

10.

(e) If 0 ≤ yn < 10−d then 0 ≤ y2
n < (10−d)2 = 10−2d, and 2(

√
10+yn) ≥ 2

√
10 ≥

1, so yn+1 < 10−2d/1 = 10−2d.
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Problem III

(a) By assumption, zk → z as k → ∞, so for each ǫ > 0 there is a natural
number k0(ǫ) such that for all k ≥ k0(ǫ) we have ‖zk − z‖ < ǫ. In particular, with
ǫ = 1, if k ≥ k0 = k0(1) we have ‖zk − z‖ ≤ 1, so ‖zk‖ ≤ ‖z‖+1 for all k ≥ k0. Let

M = max
1≤k≤k0

‖zk‖ + 1 .

Then ‖zj‖ ≤ M for all natural numbers j. Letting j → ∞, it follows that ‖z‖ ≤ M .
Hence ‖y‖ ≤ M for all y ∈ E, so E is a bounded set.

(b) Let (xn)n be a sequence in E, converging to a limit x in R
m. We must prove

that x ∈ E.
First proof: Suppose first that there is a y ∈ E such that xn = y for infinitely

many n. Numbering these n in increasing order as n(1) < n(2) < . . . , we get that
(xn)n has the subsequence (xn(j))j , constant at y. It follows that the limit x of
(xn)n is equal to the limit y of (xn(j))j , so x = y ∈ E.

Otherwise, the sequence (xn)n takes each value y ∈ E only finitely many times.
In particular, it takes the value z only finitely many times, so there is some natural
number n(1) such that xn(1) is not equal to z. There must then be some natural
number k(1) such that

xn(1) = zk(1) .

Next, there are only finitely many n such that xn is equal to the finitely many
values z, z1, . . . , zk(1). Hence we can find an n(2) > n(1) and a k(2) > k(1) such
that

xn(2) = zk(2) .

Continuing by induction, we can for all natural numbers j find an n(j + 1) > n(j)
and a k(j + 1) > k(j) such that

xn(j+1) = zk(j+1) .

For there are only finitely many n such that xn is equal to the finitely many values
z, z1, . . . , zk(j), so we pick n(j + 1) to be one of the infinitely many n for which xn

is equal to a zk with k > k(j). Then we set k(j + 1) equal to this k.
We have now proved that the subsequence (xn(j))j of (xn)n is equal to the

subsequence (zk(j))j of (zk)k. It follows that the limit x of (xn)n and (xn(j))j is
equal to the limit of (zk(j))j , which is equal to the limit z of (zk)k. Hence x = z ∈ E,
as we wanted to prove.

Second proof: If there is a y ∈ E such that xn = y for infinitely many n, we
argue as above to deduce that x = y ∈ E.

Otherwise, the sequence (xn)n only takes each value in E a finite number of
times, and for the rest of the argument we assume this. We know that zk → z

as k → ∞, so for each ǫ > 0 there is a k0(ǫ) such that for each k ≥ k0(ǫ) we
have ‖zk − z‖ < ǫ. Hence ‖zk − z‖ ≥ ǫ only for (some of) the finitely many k
with k < k0(ǫ). For each k we know that xn = zk only for finitely many n, hence
there are only finitely many natural numbers n such that ‖xn − z‖ ≥ ǫ. Let n0(ǫ)
be greater than all of these natural numbers. Then for all n ≥ n0(ǫ) we have
‖xn − z‖ < ǫ. Since ǫ > 0 was arbitrary, this proves that xn → z as n → ∞, so
x = z is in E, as required.

(c) Yes, f(E) is closed and bounded in R
p by Theorem 4.41.

(d) Yes, f is uniformly continuous by Theorem 4.63.


