MAT1300

MANDATORY ASSIGNMENT II
 PROPOSED SOLUTIONS

John Rognes

Problem I

(a) Let $g(\mathbf{x})=\|\mathbf{x}\|^{2}=\mathbf{x} \cdot \mathbf{x}$. By the scalar product rule (Exercise 6.26(ii))

$$
D g(\mathbf{x})(\mathbf{h})=\mathbf{h} \cdot \mathbf{x}+\mathbf{x} \cdot \mathbf{h}=2(\mathbf{x} \cdot \mathbf{h}) .
$$

By the chain rule (Lemma 6.19 or Exercise $6.26(\mathrm{v})$)

$$
D(1 / g)(\mathbf{x})(\mathbf{h})=-D g(\mathbf{x})(\mathbf{h}) / g(\mathbf{x})^{2}=-2(\mathbf{x} \cdot \mathbf{h}) / g(\mathbf{x})^{2}
$$

By the product rule applied to $\mathbf{f}(\mathbf{x})=\mathbf{x}(1 / g(\mathbf{x}))$ (Exercise 6.26(iii))

$$
\begin{aligned}
D \mathbf{f}(\mathbf{x})(\mathbf{h}) & =\mathbf{h}(1 / g(\mathbf{x}))+\mathbf{x}\left(-2(\mathbf{x} \cdot \mathbf{h}) / g(\mathbf{x})^{2}\right) \\
& =\frac{1}{\|\mathbf{x}\|^{2}} \mathbf{h}-2 \frac{\mathbf{x} \cdot \mathbf{h}}{\|\mathbf{x}\|^{4}} \mathbf{x}=\frac{1}{\|\mathbf{x}\|^{2}}\left(\mathbf{h}-2 \frac{\mathbf{x} \cdot \mathbf{h}}{\|\mathbf{x}\|^{2}} \mathbf{x}\right) .
\end{aligned}
$$

(b) The j-th partial derivative of \mathbf{f} at \mathbf{x} is

$$
\begin{aligned}
D \mathbf{f}(\mathbf{x})\left(\mathbf{e}_{j}\right) & =\frac{1}{\|\mathbf{x}\|^{2}}\left(\mathbf{e}_{j}-2 \frac{\mathbf{x} \cdot \mathbf{e}_{j}}{\|\mathbf{x}\|^{2}} \mathbf{x}\right) \\
& =\frac{1}{\|\mathbf{x}\|^{2}}\left(\mathbf{e}_{j}-2 \frac{x_{j}}{\|\mathbf{x}\|^{2}} \mathbf{x}\right)
\end{aligned}
$$

where \mathbf{e}_{j} is the j-th standard basis vector in \mathbb{R}^{m}. Its i-th coordinate is

$$
\begin{aligned}
\mathbf{f}_{i, j}(\mathbf{x}) & =\frac{1}{\|\mathbf{x}\|^{2}}\left(\left(\mathbf{e}_{j}\right)_{i}-2 \frac{x_{j}}{\|\mathbf{x}\|^{2}} x_{i}\right) \\
& =\frac{1}{\|\mathbf{x}\|^{2}}\left(\delta_{i j}-2 \frac{x_{i} x_{j}}{\|\mathbf{x}\|^{2}}\right)
\end{aligned}
$$

where $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$.
(c) We compute:

$$
\begin{aligned}
\alpha(\mathbf{h}) \cdot \alpha(\mathbf{k}) & =\frac{1}{\|\mathbf{x}\|^{2}}\left(\mathbf{h}-2 \frac{\mathbf{x} \cdot \mathbf{h}}{\|\mathbf{x}\|^{2}} \mathbf{x}\right) \cdot \frac{1}{\|\mathbf{x}\|^{2}}\left(\mathbf{k}-2 \frac{\mathbf{x} \cdot \mathbf{k}}{\|\mathbf{x}\|^{2}} \mathbf{x}\right) \\
& =\frac{1}{\|\mathbf{x}\|^{4}}\left(\mathbf{h} \cdot \mathbf{k}-2 \frac{\mathbf{x} \cdot \mathbf{k}}{\|\mathbf{x}\|^{2}} \mathbf{x} \cdot \mathbf{h}-2 \frac{\mathbf{x} \cdot \mathbf{h}}{\|\mathbf{x}\|^{2}} \mathbf{x} \cdot \mathbf{k}+4 \frac{\mathbf{x} \cdot \mathbf{h}}{\|\mathbf{x}\|^{2}} \frac{\mathbf{x} \cdot \mathbf{k}}{\|\mathbf{x}\|^{2}} \mathbf{x} \cdot \mathbf{x}\right) \\
& =\frac{1}{\|\mathbf{x}\|^{4}}\left(\mathbf{h} \cdot \mathbf{k}-4 \frac{(\mathbf{x} \cdot \mathbf{k})(\mathbf{x} \cdot \mathbf{h})}{\|\mathbf{x}\|^{2}}+4 \frac{(\mathbf{x} \cdot \mathbf{h})(\mathbf{x} \cdot \mathbf{k})}{\|\mathbf{x}\|^{2}}\right) \\
& =\frac{1}{\|\mathbf{x}\|^{4}} \mathbf{h} \cdot \mathbf{k} .
\end{aligned}
$$

(d) For each $\mathbf{h} \in \mathbb{R}^{m}$ we have

$$
\|\alpha(\mathbf{h})\|^{2}=\alpha(\mathbf{h}) \cdot \alpha(\mathbf{h})=\frac{1}{\|\mathbf{x}\|^{4}} \mathbf{h} \cdot \mathbf{h}=\frac{1}{\|\mathbf{x}\|^{4}}\|\mathbf{h}\|^{2}
$$

so

$$
\|\alpha(\mathbf{h})\|=\frac{1}{\|\mathbf{x}\|^{2}}\|\mathbf{h}\|
$$

Hence $\|\alpha(\mathbf{h})\| /\|\mathbf{h}\|=1 /\|\mathbf{x}\|^{2}$ for all $\mathbf{h} \neq \mathbf{0}$, and $\|D \mathbf{f}(\mathbf{x})\|=\|\alpha\|$, the supremum of these numbers, equals their common value $1 /\|\mathbf{x}\|^{2}$.
(e) We apply the mean value inequality (Theorem 6.27) to $\mathbf{f}: E \rightarrow \mathbb{R}^{m}$. Clearly E is open and \mathbf{f} is differentiable. By assumption, $\|\mathbf{x}\| \geq R$ for all \mathbf{x} on the line segment joining \mathbf{a} and \mathbf{b}, so $\|D \mathbf{f}(\mathbf{x})\|=1 /\|\mathbf{x}\|^{2} \leq 1 / R^{2}$ for these \mathbf{x}. Hence

$$
\|\mathbf{f}(\mathbf{a})-\mathbf{f}(\mathbf{b})\| \leq\left(1 / R^{2}\right)\|\mathbf{a}-\mathbf{b}\|
$$

Substituting $\mathbf{f}(\mathbf{a})=\mathbf{a} /\|\mathbf{a}\|^{2}$ and $\mathbf{f}(\mathbf{b})=\mathbf{b} /\|\mathbf{b}\|^{2}$ we get the desired result.

Problem II

(a) Clearly $|f(x)| \leq 1$ for all $x \in[0,1]$, so f is bounded. The function f is not continuous at $x=0$, since we have $f(y)=1$ for $y=1 /(2 \pi n+\pi / 2)$ arbitrarily close to 0 , but $f(0) \neq 1$.
(b) We show that for each $\epsilon>0$ there is a dissection \mathcal{D} of $[0,1]$ such that $S(f, \mathcal{D})-s(f, \mathcal{D})<\epsilon$. Choose a $c \in(0,1)$ with $2 c<\epsilon / 2$. Let $f_{1}=f \mid[0, c]$ denote the restriction of f to $[0, c]$, and let $f_{2}=f \mid[c, 1]$ denote the restriction of f to $[c, 1]$. Let $\mathcal{D}_{1}=\{0<c\}$ be the "trivial" dissection of $[0, c]$. Then

$$
\begin{aligned}
\sup \{f(t) \mid 0 & \leq t \leq c\} \\
\inf \{f(t) \mid 0 & \leq t \leq c\}
\end{aligned}=-1 .
$$

so

$$
S\left(f_{1}, \mathcal{D}_{1}\right)-s\left(f_{1}, \mathcal{D}_{1}\right)=c-(-c)=2 c<\epsilon / 2
$$

The function $f_{2}:[c, 1] \rightarrow \mathbb{R}$ is continuous, hence Riemann integrable by Theorem 8.32. Hence there exists a dissection $\mathcal{D}_{2}=\left\{c=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$ of [$c, 1]$ such that

$$
S\left(f_{2}, \mathcal{D}_{2}\right)-s\left(f_{2}, \mathcal{D}_{2}\right)<\epsilon / 2
$$

by Lemma 8.13(i). We let

$$
\mathcal{D}=\mathcal{D}_{1} \cup \mathcal{D}_{2}=\left\{0<c=x_{0}<x_{1}<\cdots<x_{n}=1\right\}
$$

be the combined dissection of $[0,1]$. Then

$$
\begin{aligned}
S(f, \mathcal{D}) & =S\left(f_{1}, \mathcal{D}_{1}\right)+S\left(f_{2}, \mathcal{D}_{2}\right) \\
s(f, \mathcal{D}) & =s\left(f_{1}, \mathcal{D}_{1}\right)+s\left(f_{2}, \mathcal{D}_{2}\right)
\end{aligned}
$$

so
$S(f, \mathcal{D})-s(f, \mathcal{D})=\left(S\left(f_{1}, \mathcal{D}_{1}\right)-s\left(f_{1}, \mathcal{D}_{1}\right)\right)+\left(S\left(f_{2}, \mathcal{D}_{2}\right)-s\left(f_{2}, \mathcal{D}_{2}\right)\right)<\epsilon / 2+\epsilon / 2=\epsilon$.
Hence f is Riemann integrable, by Lemma 8.13(i).
(c) Yes. The argument given in (b) generalizes to such g. If $|g(x)| \leq K$ for all $x \in[a, b]$, we choose $c \in(a, b)$ such that $2 K(c-a)<\epsilon / 2$. The rest of the proof then goes through as above.

