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MANDATORY ASSIGNMENT II

PROPOSED SOLUTIONS

John Rognes

Problem I

(a) Let g(x) = ‖x‖2 = x · x. By the scalar product rule (Exercise 6.26(ii))

Dg(x)(h) = h · x + x · h = 2(x · h) .

By the chain rule (Lemma 6.19 or Exercise 6.26(v))

D(1/g)(x)(h) = −Dg(x)(h)/g(x)2 = −2(x · h)/g(x)2 .

By the product rule applied to f(x) = x(1/g(x)) (Exercise 6.26(iii))

Df(x)(h) = h(1/g(x)) + x(−2(x · h)/g(x)2)

=
1

‖x‖2
h − 2

x · h

‖x‖4
x =

1

‖x‖2

(

h − 2
x · h

‖x‖2
x

)

.

(b) The j-th partial derivative of f at x is

Df(x)(ej) =
1

‖x‖2

(

ej − 2
x · ej

‖x‖2
x

)

=
1

‖x‖2

(

ej − 2
xj

‖x‖2
x

)

.

where ej is the j-th standard basis vector in R
m. Its i-th coordinate is

fi,j(x) =
1

‖x‖2

(

(ej)i − 2
xj

‖x‖2
xi

)

=
1

‖x‖2

(

δij − 2
xixj

‖x‖2

)

where δij = 1 if i = j and δij = 0 if i 6= j.

(c) We compute:

α(h) · α(k) =
1

‖x‖2

(

h − 2
x · h

‖x‖2
x

)

·
1

‖x‖2

(

k − 2
x · k

‖x‖2
x

)

=
1

‖x‖4

(

h · k − 2
x · k

‖x‖2
x · h − 2

x · h

‖x‖2
x · k + 4

x · h

‖x‖2

x · k

‖x‖2
x · x

)

=
1

‖x‖4

(

h · k − 4
(x · k)(x · h)

‖x‖2
+ 4

(x · h)(x · k)

‖x‖2

)

=
1

‖x‖4
h · k .
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(d) For each h ∈ R
m we have

‖α(h)‖2 = α(h) · α(h) =
1

‖x‖4
h · h =

1

‖x‖4
‖h‖2

so

‖α(h)‖ =
1

‖x‖2
‖h‖ .

Hence ‖α(h)‖/‖h‖ = 1/‖x‖2 for all h 6= 0, and ‖Df(x)‖ = ‖α‖, the supremum of
these numbers, equals their common value 1/‖x‖2.

(e) We apply the mean value inequality (Theorem 6.27) to f : E → R
m. Clearly

E is open and f is differentiable. By assumption, ‖x‖ ≥ R for all x on the line
segment joining a and b, so ‖Df(x)‖ = 1/‖x‖2 ≤ 1/R2 for these x. Hence

‖f(a) − f(b)‖ ≤ (1/R2)‖a − b‖ .

Substituting f(a) = a/‖a‖2 and f(b) = b/‖b‖2 we get the desired result.

Problem II

(a) Clearly |f(x)| ≤ 1 for all x ∈ [0, 1], so f is bounded. The function f is not
continuous at x = 0, since we have f(y) = 1 for y = 1/(2πn+π/2) arbitrarily close
to 0, but f(0) 6= 1.

(b) We show that for each ǫ > 0 there is a dissection D of [0, 1] such that
S(f,D) − s(f,D) < ǫ. Choose a c ∈ (0, 1) with 2c < ǫ/2. Let f1 = f |[0, c] denote
the restriction of f to [0, c], and let f2 = f |[c, 1] denote the restriction of f to [c, 1].
Let D1 = {0 < c} be the “trivial” dissection of [0, c]. Then

sup{f(t) | 0 ≤ t ≤ c} = 1

inf{f(t) | 0 ≤ t ≤ c} = −1

so
S(f1,D1) − s(f1,D1) = c − (−c) = 2c < ǫ/2 .

The function f2 : [c, 1] → R is continuous, hence Riemann integrable by Theo-
rem 8.32. Hence there exists a dissection D2 = {c = x0 < x1 < · · · < xn = 1} of
[c, 1] such that

S(f2,D2) − s(f2,D2) < ǫ/2

by Lemma 8.13(i). We let

D = D1 ∪ D2 = {0 < c = x0 < x1 < · · · < xn = 1}

be the combined dissection of [0, 1]. Then

S(f,D) = S(f1,D1) + S(f2,D2)

s(f,D) = s(f1,D1) + s(f2,D2)

so

S(f,D)−s(f,D) = (S(f1,D1)−s(f1,D1))+(S(f2,D2)−s(f2,D2)) < ǫ/2+ǫ/2 = ǫ .

Hence f is Riemann integrable, by Lemma 8.13(i).

(c) Yes. The argument given in (b) generalizes to such g. If |g(x)| ≤ K for all
x ∈ [a, b], we choose c ∈ (a, b) such that 2K(c − a) < ǫ/2. The rest of the proof
then goes through as above.


