
MAT3500/4500 Topology
Autumn 2010

Solutions to the Mandatory Assignment

(1) The open subsets are ∅, {n}, {s}, {n, s}, {e,n, s}, {n,w, s} and D.

(2) No, D is not Hausdorff. The points e and n cannot be separated by disjoint neigh-
borhoods. (Don’t say that one set is disjoint: a pair of sets can be disjoint!)

(3) Yes, D is compact. It has only finitely many open subsets, so any collection of open
sets is already a finite collection. (Be careful with the wording here! Distinguish
between a finite covering by subsets and a covering by finite subsets. Also distinguish
between a cover and the set it covers.)

(4) No, there is no homeomorphism D ∼= A × B where A and B are 2-point spaces.

Proof 1: The open subsets of A × B are unions of products U × V with U open in
A and V open in B. The open one-point sets in A × B cannot be unions of proper,
nontrivial subsets, and must therefore be of the form U × V with U and V open
one-point sets. If D ∼= A×B, then the number of open one-point sets in D (namely
2) equals the number of open one-point sets in A × B, which equals the product of
the number of open one-points sets in A and the number of open one-points sets in
B. Since 2 only factors as 2 · 1 or 1 · 2, A must have 2 open points (be discrete) and
B must have 1 open point (a Sierpinski topology), or vice versa. In either case A×B

will have 3 open two-point sets, unlike D, which has only 1 open two-point set.

Proof 2: If A has the trivial topology, then the open sets of A × B are of the form
A × V where V is open in B, so there are at most 4 of these, unlike D which has 7
open subsets. Similarly, B cannot have the trivial topology. If neither A nor B have
the trivial topology, then there is an open point a ∈ A and an open point b ∈ B.
Then {a} ×B and A×{b} are 2 different open two-point subsets of A×B. Since D

only has 1 open two-point subset, it cannot be homeomorphic to A × B.

(Note that the open subsets of A ×B are not in general of the form U × V , but will
be unions of such products.)

(5) The closed subsets are ∅, {e}, {w}, {e,w}, {e,n,w}, {e,w, s} and D.

(6) The closures are: {e} = {e}, {n} = {e,n,w}, {w} = {w} and {s} = {e,w, s}.
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(7) Let f : D → R be a map. Let a = f(n) and b = f(s). Since {a} ⊂ R is closed,
the preimage f−1(a) ⊂ D is closed and contains {n}. Hence it contains the closure
{e,n,w}, so that f(e) = f(n) = f(w) = a.

Since {b} ⊂ R is closed, the preimage f−1(b) ⊂ D is closed and contains {s}. Hence
it contains the closure {e,w, s}, so that f(e) = f(w) = f(s) = b. It follows that
a = f(e) = b and f is constant.

(8) No. For any map r : D → C ⊂ R
2 the components r1 = π1 ◦ r and r2 = π2 ◦ r

are maps D → R, hence are constant by the previous problem. Hence r must be
constant, so p ◦ r : D → D is constant, and not equal to the identity map of D.

(9) Yes, p is open. Let U ⊂ C be open.

If e ∈ p(U) then (x, 0) ∈ U for some x > 0. Since U is open, we have (x, y) ∈ U

for some y > 0, as well as for some y < 0. Hence n ∈ p(U) and s ∈ p(U), so
{e,n, s} ⊂ U .

If w ∈ p(U) then (x, 0) ∈ U for some x < 0. Since U is open, we have (x, y) ∈ U

for some y > 0, as well as for some y < 0. Hence n ∈ p(U) and s ∈ p(U), so
{n,w, s} ⊂ U .

Since {n} and {s} are open in D, it follows that p(U) contains a neighborhood of
each of its points, hence is open.

(10) No, p is not closed. For instance, the singleton set L = {(0, 1)} ⊂ C is closed, but its
image p(L) = {n} ⊂ D is not closed. (Do not say that a set is open when you mean
to say that it is not closed!)

(11) Yes, D is connected. By (1) and (5) the only subsets that are both open and closed
are ∅ and D itself.

(12) Let v : [0, π] → C be given by v(t) = (cos t, sin t). This is a continuous path from
v(0) = (1, 0) to v(π) = (−1, 0). Hence the composite p◦v : [0, π] → D is a continuous
path from p(1, 0) = e to p(−1, 0) = w. Note that (p ◦ v)(t) = n for all t ∈ (0, π).

(13) The composite p ◦ α factors as k ◦ p, with k : D → D given by k(e) = e, k(n) = s,
k(w) = w and k(s) = n. Then k is continuous since p ◦ α is continuous and p is a
quotient map.

The composite p ◦ β does not factor through p, since not all points in p−1(n) =
{(x, y) | y > 0} have the same image under p ◦ β. For example, (p ◦ β)(0, 1) = e,
while (p ◦ β)(1, 1) = n.

(14) A homeomorphism h : D → D must take each open point, i.e., n or s, to an open
point. Similarly, it must take each closed point, i.e., e or w, to a closed point. The
four possible permutations of D satsfying this restriction are

(a) The identity mapping (e,n,w, s) to (e,n,w, s).

(b) The transposition k = (ns) mapping (e,n,w, s) to (e, s,w,n).

(c) The transposition ℓ = (ew) mapping (e,n,w, s) to (w,n, e, s).
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(d) The permutation k ◦ ℓ = (ns)(ew) mapping (e,n,w, s) to (w, s, e,n).

We saw in (13) that k is continuous. It is its own inverse, hence is a homeomorphism.
The transposition ℓ is also continuous (by a similar argument), and its own inverse,
hence a homeomorphism. It follows that the composite k ◦ ℓ is a homeomorphism.
Thus all four of these maps are homeomorphisms.
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