MAT3500/4500 Topology
 Autumn 2010
 Solutions to the Mandatory Assignment

(1) The open subsets are $\emptyset,\{\mathbf{n}\},\{\mathbf{s}\},\{\mathbf{n}, \mathbf{s}\},\{\mathbf{e}, \mathbf{n}, \mathbf{s}\},\{\mathbf{n}, \mathbf{w}, \mathbf{s}\}$ and D.
(2) No, D is not Hausdorff. The points e and \mathbf{n} cannot be separated by disjoint neighborhoods. (Don't say that one set is disjoint: a pair of sets can be disjoint!)
(3) Yes, D is compact. It has only finitely many open subsets, so any collection of open sets is already a finite collection. (Be careful with the wording here! Distinguish between a finite covering by subsets and a covering by finite subsets. Also distinguish between a cover and the set it covers.)
(4) No, there is no homeomorphism $D \cong A \times B$ where A and B are 2-point spaces.

Proof 1: The open subsets of $A \times B$ are unions of products $U \times V$ with U open in A and V open in B. The open one-point sets in $A \times B$ cannot be unions of proper, nontrivial subsets, and must therefore be of the form $U \times V$ with U and V open one-point sets. If $D \cong A \times B$, then the number of open one-point sets in D (namely 2) equals the number of open one-point sets in $A \times B$, which equals the product of the number of open one-points sets in A and the number of open one-points sets in B. Since 2 only factors as $2 \cdot 1$ or $1 \cdot 2, A$ must have 2 open points (be discrete) and B must have 1 open point (a Sierpinski topology), or vice versa. In either case $A \times B$ will have 3 open two-point sets, unlike D, which has only 1 open two-point set.
Proof 2: If A has the trivial topology, then the open sets of $A \times B$ are of the form $A \times V$ where V is open in B, so there are at most 4 of these, unlike D which has 7 open subsets. Similarly, B cannot have the trivial topology. If neither A nor B have the trivial topology, then there is an open point $a \in A$ and an open point $b \in B$. Then $\{a\} \times B$ and $A \times\{b\}$ are 2 different open two-point subsets of $A \times B$. Since D only has 1 open two-point subset, it cannot be homeomorphic to $A \times B$.
(Note that the open subsets of $A \times B$ are not in general of the form $U \times V$, but will be unions of such products.)
(5) The closed subsets are $\emptyset,\{\mathbf{e}\},\{\mathbf{w}\},\{\mathbf{e}, \mathbf{w}\},\{\mathbf{e}, \mathbf{n}, \mathbf{w}\},\{\mathbf{e}, \mathbf{w}, \mathbf{s}\}$ and D.
(6) The closures are: $\overline{\{\mathbf{e}\}}=\{\mathbf{e}\}, \overline{\{\mathbf{n}\}}=\{\mathbf{e}, \mathbf{n}, \mathbf{w}\}, \overline{\{\mathbf{w}\}}=\{\mathbf{w}\}$ and $\overline{\{\mathbf{s}\}}=\{\mathbf{e}, \mathbf{w}, \mathbf{s}\}$.
(7) Let $f: D \rightarrow \mathbb{R}$ be a map. Let $a=f(\mathbf{n})$ and $b=f(\mathbf{s})$. Since $\{a\} \subset \mathbb{R}$ is closed, the preimage $f^{-1}(a) \subset D$ is closed and contains $\{\mathbf{n}\}$. Hence it contains the closure $\{\mathbf{e}, \mathbf{n}, \mathbf{w}\}$, so that $f(\mathbf{e})=f(\mathbf{n})=f(\mathbf{w})=a$.
Since $\{b\} \subset \mathbb{R}$ is closed, the preimage $f^{-1}(b) \subset D$ is closed and contains $\{\mathbf{s}\}$. Hence it contains the closure $\{\mathbf{e}, \mathbf{w}, \mathbf{s}\}$, so that $f(\mathbf{e})=f(\mathbf{w})=f(\mathbf{s})=b$. It follows that $a=f(\mathbf{e})=b$ and f is constant.
(8) No. For any map $r: D \rightarrow C \subset \mathbb{R}^{2}$ the components $r_{1}=\pi_{1} \circ r$ and $r_{2}=\pi_{2} \circ r$ are maps $D \rightarrow \mathbb{R}$, hence are constant by the previous problem. Hence r must be constant, so $p \circ r: D \rightarrow D$ is constant, and not equal to the identity map of D.
(9) Yes, p is open. Let $U \subset C$ be open.

If $\mathbf{e} \in p(U)$ then $(x, 0) \in U$ for some $x>0$. Since U is open, we have $(x, y) \in U$ for some $y>0$, as well as for some $y<0$. Hence $\mathbf{n} \in p(U)$ and $\mathbf{s} \in p(U)$, so $\{\mathbf{e}, \mathbf{n}, \mathbf{s}\} \subset U$.
If $\mathbf{w} \in p(U)$ then $(x, 0) \in U$ for some $x<0$. Since U is open, we have $(x, y) \in U$ for some $y>0$, as well as for some $y<0$. Hence $\mathbf{n} \in p(U)$ and $\mathbf{s} \in p(U)$, so $\{\mathbf{n}, \mathbf{w}, \mathbf{s}\} \subset U$.
Since $\{\mathbf{n}\}$ and $\{\mathbf{s}\}$ are open in D, it follows that $p(U)$ contains a neighborhood of each of its points, hence is open.
(10) No, p is not closed. For instance, the singleton set $L=\{(0,1)\} \subset C$ is closed, but its image $p(L)=\{\mathbf{n}\} \subset D$ is not closed. (Do not say that a set is open when you mean to say that it is not closed!)
(11) Yes, D is connected. By (1) and (5) the only subsets that are both open and closed are \emptyset and D itself.
(12) Let $v:[0, \pi] \rightarrow C$ be given by $v(t)=(\cos t, \sin t)$. This is a continuous path from $v(0)=(1,0)$ to $v(\pi)=(-1,0)$. Hence the composite $p \circ v:[0, \pi] \rightarrow D$ is a continuous path from $p(1,0)=\mathbf{e}$ to $p(-1,0)=\mathbf{w}$. Note that $(p \circ v)(t)=\mathbf{n}$ for all $t \in(0, \pi)$.
(13) The composite $p \circ \alpha$ factors as $k \circ p$, with $k: D \rightarrow D$ given by $k(\mathbf{e})=\mathbf{e}, k(\mathbf{n})=\mathbf{s}$, $k(\mathbf{w})=\mathbf{w}$ and $k(\mathbf{s})=\mathbf{n}$. Then k is continuous since $p \circ \alpha$ is continuous and p is a quotient map.
The composite $p \circ \beta$ does not factor through p, since not all points in $p^{-1}(\mathbf{n})=$ $\{(x, y) \mid y>0\}$ have the same image under $p \circ \beta$. For example, $(p \circ \beta)(0,1)=\mathbf{e}$, while $(p \circ \beta)(1,1)=\mathbf{n}$.
(14) A homeomorphism $h: D \rightarrow D$ must take each open point, i.e., \mathbf{n} or \mathbf{s}, to an open point. Similarly, it must take each closed point, i.e., e or \mathbf{w}, to a closed point. The four possible permutations of D satsfying this restriction are
(a) The identity mapping ($\mathbf{e}, \mathbf{n}, \mathbf{w}, \mathbf{s})$ to $(\mathbf{e}, \mathbf{n}, \mathbf{w}, \mathbf{s})$.
(b) The transposition $k=(\mathbf{n s})$ mapping (e, n, w, s) to (e, s, w, n).
(c) The transposition $\ell=(\mathbf{e w})$ mapping $(\mathbf{e}, \mathbf{n}, \mathbf{w}, \mathbf{s})$ to $(\mathbf{w}, \mathbf{n}, \mathbf{e}, \mathbf{s})$.
(d) The permutation $k \circ \ell=(\mathbf{n s})(\mathbf{e w})$ mapping $(\mathbf{e}, \mathbf{n}, \mathbf{w}, \mathbf{s})$ to $(\mathbf{w}, \mathbf{s}, \mathbf{e}, \mathbf{n})$.

We saw in (13) that k is continuous. It is its own inverse, hence is a homeomorphism. The transposition ℓ is also continuous (by a similar argument), and its own inverse, hence a homeomorphism. It follows that the composite $k \circ \ell$ is a homeomorphism. Thus all four of these maps are homeomorphisms.

