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In [Segal 1), Graeme Ssgal introduced the concept of a T-space
and proved that a certain homotopy category of T'-spaces is equivalent
to the usual homotopy category of connective Wﬁmndwm. Our main pur-
pose is to show that there is a full-fledged homotopy theory of -
spaces underlying Segal's homotopy category. We do this by glving
'-spaces the structure of a closed model category, l.e. defining
"fibrations," "cofibrations," and "weak equivalences" for I'-spaces so
that quillen's theory of homotopical algebra can be applied. Actually
we glve two such structures (3.5, 5.2) leading to a "strict" and a
"stable" homotopy theory of I-spaces. The former has had applications,
cf. [Friedlander], but the latter is more closely related to the usual
homotopy theory of spectra.

In our work on [-spaces, we have adopted the "chain functor"
viewpoint of [Anderson]. However, we do not require our I’-spaces to
be "special," e¢f. §4, because "special" T-spaces are not closed under
direct 1limit constructions. We have included in §§4,5 an exposition,
and slight generalization, of the Anderson-Segal results on the con-
strueticn of homology theories from I'-cpaces, and on the equivalence
of the homotopy categories of I-spaces and connective spectra.

To set the stage for our work on [-spaces, we have given in §2
an exposition of spectra from the standpoint of homotopical algebra.
We have also included an appendix (§B} on bisimplicial sets, where
we outline some well-known basic results needed in this paper and
prove a rather strong fibration theorem (B.4) for diagonals of

bisimplicial sets., We apply E.4 to prove a generalization of
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Quillen's spectral sequence for a bisimplicial group. In another
appendix (§A), we develop some homotopical algebra which we use to con-
struct our "stable" model categories.

The paper 1s organized as follows:

41. A brief review of homotopical algebra

$2. Closed model category structures for spectra

§3. The strict homotopy theory of r-spaces

§4. The construction of homology theories from I'-spaces

45. The stable homotopy theory of I'-spaces

Appendix A. Proper closed model ecategories

Appendix B, Bisimplicial sets

We work "simplicially" and refer the reader to [May 1] for the

basic facts of simplicial theory.

§1. A brief review of homotoplcal algebra

For convenience we recall some basic notions of homotoplcal alge-

bra ([Quillen 1,2]) used repeatedly in this paper.

Definition 1.1 ([quillen 2, p. 23%3]), A closed model category

consists of a category C together with three classes of maps in C
called fibrations, cofibrations, and weak equivalences, satisfying

CM1 - CM5 below. A map f in C 1s called a trivial cofibration if

f is a caofibration and weak equivalence, and called a trivial fibra-

tion if f is a fibration and weak equivalence,

cMl. € is closed under finite limits and colimits.

oM2. For W-L5 x B35 v in C, if any two of f£,g, and gf are
weak equivalences, then so is the third.

CM3. If f 1is a retract of g and g 1s a weak equivalence,
fibration, or cofibration, then =o is f.

CMi, Given a solid arrow diagram



s:mumH»mwnowkumﬂwosmSQwHm@ﬁpunwﬂuow,d:mUﬁmewwumw
exists if elther 1 or J 1is a weak equlvalence.

CM5. Any map f can be factored as £ = pi and f = qi with 1 a
trivial cofibration, p a fibration, j & cofibration, and q a

trivial fibration.

The above axXioms are egulvalent to the earlier more complicated
oneg in [Quillen 1] and are motivated in part by Example 1.3 below.
They allow one to "do homotopy theory" in C. The homotopy category
Ho€ can be obtain from C by giving formel inverses to the weak
equivalences., More explicitly, the objects of HoC are those of C
and the set of morphisms, HoC(X,Y) = [X,Y], can be obtained as
follows: first choose weak equivalences X' - X and ¥ -+ Y' where X' is
cofibrant (i.e. @ » X' 1s a cofibration where g¢C is initial) and Y’
is fibrant (i.e. ¥' o e is a fibration where e¢( 1s terminal}; then
[X,¥] = [X',¥'] and [X',Y'] = C(X',Y')})/~ where ~ 1is the "homotopy
relation” ([Guillen 1, I.1]). Thus HoC is equivalent to the category
ho€ whose objects are the fibrant-cofibrant objects of € and whose
maps are homotopy classes of maps in & . The homotopy relation is

especially manageable when C is a closed simplicial model category

([Quillen 1, II.2]), i.e. for objects V,We¢C there is a natural sim-
plicial set HOM(V,W) (= mozﬂﬁd.fvu which has the properties of a func-
tion complex with vertices corresponding to the maps V » W in C . For
V cofibrant and W fibrant, one then has [V,W] = aomogﬁﬁ.zw.

It will be convenient to have

Definition 1.2. A closed model category C 1is proper if whenever

a square

- >
i
]

o<

W
B £
is a pushout with 1 a cofibration and f a weak equivalence, then
g 1s a weak equivalence; and whenever the square is a pullback with
J a fibration and g a weak equivalence, then f is a weak equi-
valence.
Some needed results on proper closed model categories are proved

in Appendix A, and we conclude this review with

Example 1.3. Let (s.sets) and (s.sets,) denote the categories of
unpointed and pointed simplicial sets respectively. These are proper
closed simplicial model categories, where the cofibrations are the in-
Jections, the fibrations are the Kan fibrations, the weak equivalences
are the maps whose geometric realizations are homotopy equivalences,
moznm.mmdeHx.wvs conslsts of the maps X x a[n] -+ Y in (s.sets), and
moznm.mmﬁm*uﬁx.mvs consists of ﬂsw maps X A (A[n] U« - Y in
(s.sets,). Note that the Kan complexes are the fibrant objects and
all objects are cofibrant. The associated homotopy categories
Ho(s.sets) and Ho(s.sets,) are equivalent to the unpointed and pointed
homotopy categories of CW complexes respectively. TFor Xe(s.sets,) we

will let m X denote #w_x_ where |X| is the geometric realization of X.

§2. Closed model category structures for spectra

To set the stage for our study of T-spaces, we now discuss spec-
tra from the standpoint of homotopical algebra. Although spectra in
the sense of [Xan] admit a closed model category structure (cf.
[Brown]), these spectra are not very closely related to I-spaces and
don't seem to form a closed simplieial model category. For our pur-

poses the appropriate spectra are old-fashioned ones equipped with a



suitable model category structure. After developing that structure,
we show that it glves a stable homotopy theory equivalent to the usual

Orne.

Definition 2.1. A spectrum X consists of a sequence X Ue(s.5ets,)

for n » 0 end maps qﬁn mw A XS x5+H in (s.sets,), where

gt = aA[11/A[1]e(s.sets,). A map fi X » Y of spectra consists of maps

] xb & Mﬁ Hz Am.mmwmxu WOszomﬁn: ﬁdmﬂtnsﬁH > wuu u WU+HQEN mna

(spectra) denotes the category of spectra.
The sphere spectrum S is the obvious spectrum with

37 = mo = A[0] U %, mH = mH‘ mm = mw A mH. mw = mH A mH A mH.... i

For xmﬁm.mmﬁmu and Mmﬁmmmnawmv‘ X A K 1ls the obvious spectrum
with ﬁx A m xﬂ A K for n > 0; and for X,Ye(spectra), HOM(X,Y) is
the obvious simplicial set whose n-simplices are maps

XA (aA[n] U %) » Y in (spectra).

A map f: X » Y in (spectra) is a strict weak equivalence (resp.

strict fibration) if 1 5 v0 15 a weak equivalence (resp. fibra-

tion) in (s.sets,) for n» 0; and f 1is a strict cofibration if the

induced maps

g PR siar syl
sl

are cofibrations in (s.sets,) for n> 0. (This implies that each

strict

¥ 5 ¥" is a cofibration.) We let { spectra) denote the

category (spectra) equipped with these "strict" classes of maps.

striet

Proposition 2.2. (spectra) is a proper closed simplicial

model category.

The proof is straightforward. Of course the associated homotopy

, striet

category Ho{spectra) is not equivalent to the usuval atable homo-

topy category because it has too many homotopy types.
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To obtaln the usual stable theory, we call g map f: X » Y in

(spectra) a stable weak equivalence if f,: 7,X = 7Y where

m,X = lim 7, X"; and call f a stable cofibration if f is a strict
- n

~

cofibration. Call xmﬁmvadwm, an (}-spectrum if for each n > 0 the

5+u._

geometric realization “mw_ AR _m A x iFIIFIV | X induces

|
__m '. Then choose a functor

a weak homotopy equivalence |X7| - _xb+w
(spectra) » (spectra) and a natural transformation n: 1 » @ such

that nt m - om is a stable weak equivalence and om is an ()-spectrum

for each mmﬁmvaﬂumu. For instance one can let QX be the obvious

spectrum with

()" = 1im sing n _A5+H_

o

where Sing is the singular functor. Now call f: X - Y a stable fibra-

tion if f 1is a strict fibration and for n» 0

X (@F
o _ﬁowvs

R4 b

A (qn)®

is a homotopy filbre square in (s.sets,), cf. A.2. When all the ¥ are
connected this is actually equivalent to saying that f is a strict
fibration with fibre on Q-spectrum. Let ﬁmmedwmvmwwde denote the
category (spectra) equipped with stable weak equivalences, stable
fibrations, and stable cofilbrations.

stable

Theorem 2.3. (spectra) is a proper closed simplicial model

category.

Proof. The usual arguments of stable homotopy theory show that

if
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A P S o homotopy theory equivalent to that for (Kan's spectra) developed in

T 7w [Ken] and [Brown]. Recall that Kan's spectra are like pointed sim-

v v i plicial sets, except that they have simplices in both positive and
5. .

m e w negative degrees, and have operators aH and 8y for all 1 > 0. They

arise as "direct limits" of Xan's prespectra, which are sequences
is a pushout in (spectra} with f,: 7w, A 2 m,C and with each A

n
i m xo‘mp.xm.... in (s.sets,) together with maps sE® - mﬁ+w for n > 0.
a cofibration in {s.sets,}, then g.: #,B = 7,D; and if the square is

~

Here, 5(-) is the "small" suspension functor given in [Kan,2.2]; so
a pullback with g,: m,B & m,D and with each j": ¢" » D" a fibration in
~ e » ~

~

for Ke(s.sets,), the non-basepoint non-degenerate simplices of (5K)4
(s.sets,) then f,: m,A = 7,C. Moreover, a map f: X » Y in (spectra)

correspond to those of xan but have trivial Har faces.

; : i equiva-
g sueblesReRdusLece ALE B om * om e a.helch veals oo It is difflcult to relate our spectra to XKan's in a purely sim-

lence., The result now follows by using Theorem A.T7 and the s impli- 1

pliciel way, because the suspension functors S(-) and S™ A (-) are

) 1
GRaLiL criverion RMTIR) &F [RUHIIAME: TL.2) very different. Thus we will need the intermediate category

defini " tion" d ctuall
Note that our definition of "stable fibration" does not a ¥ (top. spectra) defined as in 2.1, but using pointed topological spaces

3 ti sed model
depend on the choice of Q, because the fibrations in a clo and the topological suspension. We will also need the category (Kan's

b ‘
category are determined by the trivial cofibrations prespectra) defined as in 2.1, but using the "small" suspension functor

5(-) as indicated above. Our categories (top. spectra) and (Kan's
2,4, The stable homotopy category. By 2.5 below,

presepctra) differ from those discussed in [Ken], because we put no

stable .
Ho(spectra) is the usual steble homotopy category; and by model injectivity conditions on the structural maps; but there are still

category theory, it is equivalent to the "concrete" category
stable vwdmuwm

adjolint functors
and
um&mdum i

ho(spectra) of fibrant-cofibrant spectra in (spectra

homotopy classes of maps. DMNote that a spectrum mmﬁmmeﬂwm (spectra) S (top. spectrs)

T
fibrant iff X 4s an n-spectrum with each X" a Xan complex, and X ng

n+l

1s cofibrant iff each g: mH A ol is an injection. Also, 1t is

A 1 s O 1
easy to show that Q Hsﬂznmm an equivalence MMHmMIV (Ken's prespectra) z MMV (Kan's spectra)

—> Ho(p-spectra)

monmmmndwwvmwwdpm = strict

defined as in [Kan, §343,4], where the upper arrows are the left ad-

Joints. In particular, the realization and singular functors induce

vdeHnﬂ

where Ho(Q-spectra is the full subcategory of (-spectra in

oriot adjoint functors between (spectra) and (top. spectra), where the
S8TIYric

Ho(spectra) structural maps are handled using the natural homeomorphism

_mH AK| = _mH_ A |K| for Ke(s.sets,). We define closed model cate-
2.5. Eguivalence of various stable homotopy theories
umﬁmawm

gory structures on (top. spectra) and (Kan's prespectra) by mimicing

stable,

ives a
& the construction of (spectra) ; in the construction for

We wish to show that our model category (spectra
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{top. spectra), we use the standard model category structure on
pointed topological spaces, c.f. [Quillen 1, II.3). The above pairs
of adjoint functors all satisfy the J%@Oﬁ:mmMm of [Quillen 1, I.4,
Th. 3], and thus induce "equivalences of homotopy theories;" in par-
ticular, the four stable homotopy categories are equivalent., We re-
mark that, unlike (spectra) and {top. spectra), the categories (Kan's
prespectra) and {Kan's spectra) do not seem to have reasonable closed

simplicial model category structures. i

3. The strict homotopy theory of I'-spaces.

In this section, we introduce r-spaces and verify that they admit
8 "strict" model category structure simllar to that of spectra. Not
only does this "strict" model category structure admit applications
(ef. [Friedlander]), but also it enables us to subsequently construct
the "stable" model category structure on the category of I'-spaces
(whose homotopy category is the homotopy category of connected
spectra).

We adopt D. Anderson's viewpoint in defining T-spaces., Let ﬁb
denote the category of finite pointed sets and pointed maps; Hb is the
dual of the category considered by G. Segal [Segal 1]. For n > 0, let

nt denote the set [0,1,...,n} with baszepoint 9mn+.

Definition 3.1. Let C be a pointed category with initial-
dmwapﬁwwouumnds.»ﬁnovumndo¢mwmHmmwnSnﬁow»" ﬂo lecow

that A(0") = x. A I-space is a T-object over the category (s.sets,)
of pointed simplicial sets. ﬂom is the category of I'-objects over C.
The reader should consult [Friedlander], [Segal 1] for interesting
examples of I-topological spaces, T-spaces, and P-varieties,
For notational convenience, we shall sometimes view a T'-object
over C as a functor from the full subcategory of ﬂo whose objects

are the sets :+‘ n >» 0. BSuch a functor 1s the restriction of a func-

tor ﬂo - m ﬁamdmwapﬁmu up to canonical equivalence).
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We begin our consideration of ﬂoﬂm.mmdm*vn the category of

T-spaces, by introducing some categorical constructions. TFor

bmﬂoﬁm.mmwm*u and Ke(s.sets,), define AAK ﬂohm.mmdm*w by

(ang) (n*) = a(mhax forn> 0

and define bwnﬂoﬁm.mmdm*u by

a%(

nt) «afnhy® forn> O

If A, mnﬂoﬁm.mmdm*v. we define HOM(A,B)e(s.sets,) by

~ -~

HOM(A,B) = Hom oh

(Aa(a[nl U «),B).
. & o

s.sets,)
Definition 3.2. Let i : T » IO denote the inclusion of the full
subcategory of all finite sets with no more than n non-basepoint
elements. Let
Tt ﬂoﬁm.mmawxu - ﬂwﬁm.mmdmxu
be the n-truncation functor defined by sending A: ﬁo > (s.sets,) to

Aei: 0 » (s.sets,). The left adjoint of T_

0 8]
skyi T (s.sets,) @ I (s.sets,)

is called the n-skeleton functor and is given for baﬁmﬁm.mmwm*u s%

(skyh) (") = colim (k")

W+¢§+

x<n

The right adjoint of es
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t wt ht-forw £
esk: ﬂmﬁm.mmdm*u 5 ﬁoﬁm.mmﬂm*v proposition, whose straig orward proof we omit (the notation of the

1 H

proposition has been chosen to fit the proof of Theorem 3.5).

is called the n-coskeleton functor and ls glven for mnﬂmﬁm.mmwm*v by

Proposition 3.4. For B, XeTp(s.sets,), let Wo_q?t Ty iB + T, X

be a map in ﬁo s.sets,). A map u: B(nT) 4 X s+u in (s.sets)
HHIH * .-‘; *
. + + -
Anmnsmuﬁa ) = WH5+ A(37). determines a prolongation of w _, to u: B » X in ﬂmnm.mmdm*u if and
m=j -
j<n only if W is a Msrwazw<mwpmbw map which fills in the following commu-

tative dlagram in 3 (s.sets,):

We shall frequently commit a slight abuse of notation and let

(sk__1B)(n") » B(n") - (esk__.B)(nh)
sk A csk A denote sk T (A) nmwﬁ.eﬂﬁbu for >nﬁoﬁm.mmdmxv. *n 1. ~ kn 1

1
our construction of the strict model category for I-spaces depends _ (3:th.1) mxsnpmcdawu @ nm:ﬁ-HA¢SIHU
on the following model category structure for G-equivariant homotopy ﬁmwswwmuAd+v > mﬁ5+u - ﬁomWSMmeAs+v
theory for the groups G = Mn (the groups of pointed automorphisms of
b+u. For any group G, we let G(s.sets,) denote the category of ! Proposition 3.4 should motivate the following model category
pointed simplicial sets with left G-action (or, equivalently, of sim- | structure on nonm.mmﬂm*v.
plicial objects over pointed left G-sets). TFor X,YeG(s.sets,),
HOM(X,Y) denotes the simplicial set defined by ! Theorem 3.5. The category of r-spaces becomes a proper closed
. simplicial model category (denoted ﬂoﬁm.mmdm*vmﬂwHOdv. when provided
:ozﬁx.mu: & moamﬁm.mmem*uax>hpmsu U *),Y) with the following additional structure: a map f: w.& wawoﬁm.mmﬁm*u
is called a strict weak equivalence if f(n'): wﬁs+v -+ wﬁd+v is a Amulu
where G acts trivially on A[n] U =. weak equivalence for n» 1; f: m - m is called a strict cofibration

if the induced map

Proposition 3.3. For any G, the category G(s.sets,) 1s a proper

(3.5.1) (skyp B (Y ||

+ +
+ A(M)— B(n")
closed simpliclal model category when provided with the following ﬂmxsquVAﬁ Joee -

additional structure: a G-weak equivalence (respectively, a G-fibra-

is a Mﬂ|¢0&pdwmduos forn> 1; and a map f: A » B is called a strict
tion) 1s a map f: X » Y in G(s.sets,) which is a weak equivalence -

fibration if the induced map
(resp., fibration) in (s.sets,); a G-cofibration is a map f: X » Y in

G(s.sets which is injective and for which G acts freely on the o
( 2 J v (3.5.2) A(nT) — (esk _,4) (nh) + B(n
gimplices not in the image of £, - - (esk,_B) (n") ~
The proof of Proposition 3.3% 1= straight-forward; indeed, this
s R o 5 * 4 is a (2,-) fibration for n > 1.
model category is a case of that defined in millen 1, II.4].
Eory (@ % ] This model category structure is similar to that obtained by
The role of Murmmﬁwqmwwmsnm is revealed by the following
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C. Reedy for zimplicial objects over a closed model category, and our

proof will somewhat resemble his,

&
Proof, Because finite limits, finite ooHHHm&m» and weak equivalences

in ﬂbAm.mmdm*wmdaHow are defined level-wise, CMl and CM2 are immedi-

vmnwuoa

ately verified, Similarly, CM3 for ﬂoﬁm.mmﬂm* follows directly

from CM3 for Mshm.mmem*v for each n > 0.

To prove one half of CM4Y (we omlt the similar proof of the other

half) for ﬁoﬁm.mmdm*vmawwndu let
A—> X
-~ M..Tt
4
(3.5.3) I
/\\\\ hvs
B—> ¥

be a dlagram in ﬂonm.mmwm*vmwwwow such that 1 1is a strict trivial
cofibration and p 1is a strict fibration. A filler u: B » X is con-
structed inductively by finding fillers w,: esw - Hsm for the trunca-
tions Hsﬁu.m.ww of disgram (3.5.3) for n > 1. These truncated fillers
are obtained by applying Propositions 3.3 and 3.4 together with the

facts that ﬁmwslpwuhu+u A 1 v A(m") 5 B(n") 1s trivial Z,-cofibra-
= SK__,A) - s 1
=1.

tion end mns+u = ﬁnmws-wmwﬁn+v ¥(n*) is a (3 -) fibration.

o
Aomﬁul“_.mu {(n") ~
The second fact is immedlate, and the first follows since Amwﬁlpwuﬁs+w$
Amwsuwwvﬁa+u is a trivial cofibration as in the proof of 3.7 below.

To prove one half of CM5 (we omit the similar proof of the other
half), we must factor a map f: A =+ B in ﬂoﬁm.mmdmxu as f = pel where
i 1s a strict trivial cofibration and p is a strict fibration. Sup-

pose inductively that we have a factorization

c

Ll eﬁnHm * Tp-1B ¢ Ty y(s.5ets,)

a3

for some n > 1. Using the closed model category structure on

Mdﬁm.mmdm*u glven by Proposition 3.3, we obtaln a factorizatlon in

; J
MUAm.amﬁm*m

Y

(1,19) (1) Jﬂ:ij_,,nj & kB (esk, 10 (") nt)

B(
+y -
n-1. n)

(sk AnmwﬂlHWVﬁ

of the canonlcal map with g a trivial Msloowwuadeoﬁ and 3 a fibra-
tion. The desired factorization A - m -+ B 1s now obtained by induction
using 3.4 and the following lemma {whose proof is immediate); the map
A - C is a strict trivial cofibration by a patching argument as in the

proof of 3.7 below.
Lemma 3.6. Tor mmnm-uﬁm.mmﬂm*v. let
i + 5 +
Amadnwmwﬁs ) 4 K Aommﬁuwmuﬁﬁ )

be a factorization in MﬂAw.wmﬂm*u of the canonical map. Then C pro-

longs to an object C'ero(s.sets,) with C'(n') = K such that the given

factorization equels the canonical one for C'.

This completes the proof of CM5, and thus of the fact that

ﬁoﬁm.mmdm*vmﬁwHOd is a closed model category. To prove that
ﬁoﬁ umdwwnd

s.sets, is a simplicial closed model category, it suffices

to prove for each fibration p: A - B in ﬁbhm.mmam*u and each cofibra-

tion i: K » L in (s.sets) that the induced map in ﬂoﬁm.mmwm*umﬁwwou
W atty gfiy M
Uh

is a fibration which is trivial whenever either p or 1 is trivial.
This follows easily from the closed model category properties of

(s.zets, ), because the maps of type (3.5.2) associated with u are

given by the maps UH - Um Xi mﬁ in hm.mmdm*w induced by

)
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+
D = A(n") » (esk A} (n") x . B(n') =E.
: 1 AomwSIHmUﬁswt

Finally, to prove that ﬂoﬂm.mwﬁm*vmdwwowv

is a proper simplicial
closed model category, it sufficez to prove the following lemma and
then employ the fact that (s.sets,) is a proper closed model category
(one proceeds level-by-level, since strict weak equivalences are

determined levelwise).

Lemme 3.7. If f: A » B 1s a cofibration (resp., fibration) in

ﬁoﬁm.mmnw*vwnwwoa. then

Amwswvn5+v - hmwdmuh5+u (resp., homwamVﬁz+v > Anmwgwuﬁ5+vu

is & cofibration (resp., fibration) in (s.sets,) for all m,n O,
Proof. We treat the cofibration case and omit the similar proof
of the fibration case. Assuming inductively that
(skp_y8) (n7) » (sic,
+
nmwsmvﬂn ) - AmwamVAs+v is a cofibration. There is a push-out square

1B) (n*) 1s a cofibration, we will show that

*% sky_1A(S) - mwalpwhs+u

|

W '

*% mwswﬁmv -+ mwswmﬁ+u

where S runs through the pointed subsets of 5+ with exactly m non-
basepoint elements. Note that for n < m the sums on the left are
trivial, and for n > m the maps mwauwwﬁmu > mwswﬁmu are equivalent to
the canonical maps mw3|wwh3+u - WAH+V. The fact that

mwawAs+v - mwgmhn+v is a cofibratlion now follows from the following

lemma applied to the natural map from the above push-out square to
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the analogous push-out square for B.

3,8, Reedy's patching lemma ([Reedy]).

Let

=
ol

be a diasgram in a closed model category, e.g. (s.sets,). If mu and
Ay WH B, » B, arc cofibrations (resp. trivial cofibrations), then
1
pm WH »w -+ mm WH wm is a cofibration (resp. trivial cofibration).
£ 1

This follows since the maps

are cofibrations (resp. trivial cofibrations). Of course, there is
also a dual result.

We observe in passing that Theorem 3.5 1s wvalid more generally
for r-objects over certaln other pointed model categorles C besides
(s.sets,). To obtain such a generalization, one must be able to im-
pose a sultable model category structure on the nmﬂmmoww.Mﬁm of left
Mﬁ-ocumnﬁm over C for eachn > 1. In general, this may not be
feasible; however, Iin favorable cases (e.g., when C is Quillen's
model category of pointed topological spaces [Quillen 1, II.3]), zZ.C

has a closed model category structure such that a map f in 2 is a

ne
M5-WWUﬁme05 if end only if f is a fibration in C, and f is a

M51zmmw egquivalence if and only if f 1is a weak equlvalence In C.

{The Mnloowwcwmﬂnosm are then determined by closure, and are
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cofibrations in C}. 1In these favorable cases, one obtains a closed

model category ﬂommﬁﬂunﬂ

a5 in Theorem 3.5.

Finally, we remark that ﬂoﬂm.mmwm*v admits a second reasonable
"stricet" model category structure. This is owﬂmpﬁmg by [Bousfield-
Kan, p. 314] and has weak equivalences (resp. fibrations) given by the
termwise weak equivalences (resp. flbrations). However, our version
seems to be more useful in applications and allows the symmetric

groups to play a more explicit role.

§4., The construction of homology theories from T-spaces

In thls section we give an exposition, and slight generalization,
of some results of [Anderson] and [Segal 1]. In particular, we show
that a I'-space w induces a generallzed homology theory h, (; wv which
can be directly computed when w is "(very) special" by using m as
a chain functor. The constructions and proofs in this section will be
used in §5 to compare TI-spaces wlth spectra and to develop the "stable"
model category structure for [-spaces.

We begin by showing that a I'-space A ﬂo -+ (s.sets,) prolongs
successively to functors m" (sets,) » (s.sets,),

A: (s.sets,) -+ (s.sets,), and A (spectra) - (spectra). For

We(sets,) define A(W)e(s.sets,) by

A(W) = colim A(V).
B Veuw -~

qnﬂo

For Ke(s.sets,) define AKe(s.sets,) by ﬁmmuﬁ = ﬁmmwvs for n > O with
the obvious face and degenerscy operators. Thus wx is the diagonal of
the bisimplicial set ﬁmxru*u cf. Appendix B. In order to prolong w
to spectra, note that for K,Le(s.sets,) there is a natural simplicial
map L A mx - wﬁr A K) sending x A yely, A Ammsuz to the image of y

under the map A(x A _) : bﬁxﬂvs > A(L, A mﬁw. Now for Xe(spectra)

define AXe(spectra) by (AX)" =

458
Finally, for K,Le(s.sets,) and
(AK) AL »

AWWQ AL
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™ with the obvious structural maps

1
_—
L

AfBT &) Al
Xe¢{spectra), there are palrings

A(K A L) ¢(s.sets,]

A(X A L) ¢(spectra)

whose definiticns are now obvious. In particular, A preserves the

simpliclal homotopy relation for maps in (s.sets,) and (spectra).

A T-space A determines a spectrum AS where § 1is the sphere

spectrum, and we let h,(; A) be the associated homology theory, 1l.e.

h, (K3 A) = m,(AS) A K for Ke(s.

-~

h, (K3 A) is given by

sets,). An alternative construction of

Lemma Y4.1. If A is a I-space and Ke(s.sets,), then the map

(AS) A K- A{S A K) is a stable weak equivalence, cf. 2,3, and thus

h, (K; 4) =

colim 7
n

n o
x4n A5 A K).

The proof is in 4.8, To give an even more direct construction of

~

h,(K; A}, we must put conditions on A. A& TP-space A is special if

the obvious map PAQ v W) = AV yx AW 13 a weak equivalence for <.ﬁnﬂo.

This is equivalent to requiring that for n > 1 the map

A(Py) x +ev x Alpy)

is a weak equivalence where Dyt

ATy 5 a1t x oer ¢ a(1h

n* + 1% 1s defined by p;(1) = 1 and

p;(J) =0 for J # 1. TFor A special, moA(1") is an abelian monoid
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with multiplication

(py)s x (P2
a-obﬁ 1) & 4O>:.+H_ AE a_ﬂo_ﬁm

-~

where y: 27 » 1% is defined by w(0) = 0, u(l) = 1, and w(2) = 1. A
r-space w is very special if w is special and ﬁowﬁw+u is an
abelian group.

The following theorem shows that a cmuqu@mowpw r-space can be

used as a chain functor.

Theorem 4.2, (ef. [Anderson, p. 3], [Segal, 1, 1.4]). If A
is a very special T-space and Ke(s.sets,), then A(S A K) is an
Q-spectrum and B, (K3 A) % 7, AK.

This is an easy consequence of 4.1 and

Lemma 4.3. If A is a very special P-space and L < Ke(s.sets,),

then
AL » AK » A(K/L)

is a homotopy fibration, i.e. AK maps by a weak equivalence to the

homotopy theoretic fibre of AX -» A(K/L).
Proof. It suffices to show that the bisimplicial square

ﬁb.._.._tu* 2 Abmﬂx.u_*

~ ~

/_\_ /_..

satisfies the hypotheses of Theorem B.4. The termwise homotopy fibre

square condition follows since A 1is special., The remaining
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conditions follow by B.3.1l, because the maps

#Mﬁw o - dmwﬂﬁz\ﬁ*v*

ﬂmﬁhwm*w*uwwmm - ﬁmﬁbwmu* for t > 1

v \ V/z
aﬂnwnx*\hfv*uwwmm - aowﬁa*\ﬁ*w¢ for t > 1

are fibrations since they are surjective homomorphisms of simplicial
groups.
We now wish to generallze Theorem 4.2 to the case of a I'-space A

which 1s merely specilal. For such A, the map A(K v L) -» AK x AL is

a weak equivalence for K,Le(s.sets,) by B.2. Thus T,AK is an abelian

O
monoid with multiplication given by

Ha

TGAK x TOAK A|m|‘qowﬁm v K) > THAK

where yt K v K » K is the folding map.

Theorem 4.4 (ef. [Segal, 1.%4]). ILet A be a specisl I-space and

Ke(s.sets,). Then A(S A K) is an Q-spectrum above its Oﬂv term and

thus m*ﬁxw A) = q*+wbhmw A K). If ToAK 1s an abelian group, then

A(S A K) is an Q-spectrum end thus h, (X; A) = 7,AK.

-~

1 A K) for

Proof. Let B be the P-space with B(n") = A(n* A s
n>» 0, and note that B 1s very special. Hence BS is an Q1-spectrum

by 4.2, and the first statement follows since BES gives the portion of

A(5 A K) above its 0*" term. The second statement follows similarly

using the r-space C with oﬁ5+w = bA5+ A K.
We now turn to the proof of Lemma 4.1 which asserts that the map
(AS) A K » A(S A K) is a stable weak equivalence. Although our proof

1s somewhat indirect, it allows us to introduce some notions needed
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in §5. It is based on the following general criterion. T(W) = colim T(V)
VeW
émﬂo
Lemma 4.5, In a closed simplicial model category C, e.z.
>
(spectra)S¥8PL® o pap £1 A o B between cofibrant objects is a weak

and where =~ 1is the equivalence relation generated by setting
equivalence {=> f*: HOM(B,X) - HOM(A,X) is a weak equivalence in . i 0 + i,

o5 (X) ~ o*(x) for each o m* » n' in r” and each xeW' A Tm' using
(s.sets) for all fibrant Xe¢C .

+ » + [ o+
WA Tmt <2y A oot > W A o’

Proof. f 1is a weak equivalence (=> f*: [B,X] & [A,X] for all

fibrant XeC <=> £¥: E.x& = [A,%%] for all Ke(s.sets) and fibrant
Thus there is a natural isomorphism
XeC <=> f*: [K,HOM(B,X)] = [K,HOM(A,X)] for all XKe(s.sets,) and

fibrant XeC <=> f*: HOM(B,X) - HOM(A,X) is a weak equivalence for +
’ ! AX % (1] el »ﬁ5+wv\r ¢(spectra)
all fibrant XeC . e o ~ =

To effectively apply 4.5 in our case we need an adjointness
and the lemma follows easily.
lemma. For X,Ye(spectra) define a T-space §(X,Y) by
i sl To prove 4.1 using 4.5, we need a final technical lemma which will

; also be used in §5.
QAM.MVﬁ<u = :ozhmvmoﬁumVﬁm ,Mv

0 v Lemma 4.7. Let f: B » C be a map of I'spaces, and let X be a
for Ver” where X' = X x -++ x Xe(spectra) iz the product of copies of - !

o - - spectrum. Then: .
X indexed by the non-basepoint elements in V.

-~

(1} If f 1is a strict weask equivalence, then so is f,: BX - CX.

Lemma 4.6. For X,Ye(spectra) and bmﬂoﬁm.mmﬁm*u. there is a o %
LA - (ii) If f: B(n") » ¢(n") is an injection for each n » 0, then

natural simplicial isomorphism -
f,t BX » CX is a strict coflbration.

(AX,Y) = HOM

HOM
AmﬁmOdev ey T Am.mm&m*u

(A, 8(X,Y)) {111} If X is strictly cofibrant and g: Y - Z 1is a strict fibra-

tlon of spectra, then g,: #(X,Y) » §(X,2) is a strict fibration.

Proof. For s functor T: Ho - (sets,) with Hﬁo+w = » and

We(sets,), there is a natural isomorphism Proof., Part (i) follows from B.2, and (ii) is reasonably

straightforward. For (iii), it suffices to show that g, has the right
(1L £5+ A e5+v\: |M|v TW 1lifting property for each strict trivial cofibration f: B » C of
20 T-spaces. This follows from 4.6 using (i) and (1i).
where

4.8. Proof of 4.1. By 4.7(i) we can assume A is a strictly
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cofibrant I'-space. To show hbmw A K A(S AK) is a stable weak equi-
valence, it suffices by 4.5, 4.6, and 4.7(ii) to show that the map

&
HOM(&,8(8 A K,X)) = HOM{A(S A K},X)

K,
1)

——> HOM((AS)} A K,X) = HOM(A,8(S,X

is a weak equivalence for each stably fibrant spectrum X. Now §(SAK,X)

Ky

and §(8,X") are strictly fibrant by #.7(11i), and it suffices by the dual

of 4.5 to show that the map #(5 A K,X) - aﬁm‘xmu iz a strict weak
equivalence. This follows by 4.5 since the maps

(S x +++ x 8 AKo (8AK x +++ x (8 A K e(spectra) 378012

are weak equivalence's of cofibrant objects.
We conclude this section by noting that the functor
: (s.sets,) - (s.sets,) has homotopy theoretic significance sven when

is not special.

Proposition 4.9. For bmﬂoAm.mmdm*w. if f1 K » Le(s.sets,) is a

e o

weak equivalence then so is Af: AK - AL. Thus A induces a functor
HoA: Ho(s.sets,) - Ho(s.sets,).

The proof is very similar to that of 4.1,

Corollary 4.10, For Pmﬂoﬁm.mmﬁm*uu if Xe(s.sets,) is n-connected

for some n > C then so is AX.
Proof. This is clear when Ky =« for 1 ¢ n, and the general case

now follows by 4.0.
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85, The stable homotopy theory of I'-spaces

Following Graeme Segal, we will show that the strict homotopy
category of very special I-spaces is equivalent to the stable homotopy
category of connective spectra. Then we will develop a "stable” model
category structure for I'-spaces such that the associated homotopy
category 1s equivalent to that of connective spectra.

By 4.6 there are functors
(-)s: ﬂoﬁm.mmam*u oy (spectra): #(S,-)

with (-)8 left adjoint to #(5,-); indeed, there is a natural isomor-

phism

HOM(AS,X) ~ HOM(A,$(S,X))

-~ e

for a P-space A and spectrum X. By 4.7 and the dual of 4.5,

(-)8 preserves weak equivalences and cofibrations in

ﬂoﬁ wmﬁﬁwnﬁ

s.8ebs, , while 3(8,-) preserves weak equivalences between

qmdwwnw

fibrant objects and fibrations in (spectra . Thus by [gQuillen 1,

I.4], there are induced adjoint functors

hmwwwnﬁ" mOdoﬁm.wmﬂm*vdeHOd — monmbmnﬁwwvmﬂﬁwn&“ wdeHOd
where L5%T1CY(4) - 45 for AeHorP(s.sets,)StiCt ang
RSETICE (%) _ §(5,X') for XeHo(spectra)SPFICt ynere x » X' is a strict

weak equivalence with X' strictly filbrant. Now let

yatrict

strict Onm.mmdm*h

Ho(v.s. I'-spaces) © Hor

vdeHOﬂ strict

Ho(e. Q1-spectra c Ho(spectra}

denote the full subcategorles given by ths very special T'-spaces and



the connectlve Qj-spectra respectively, where a spectrum X is called

connective if ﬂwx = ¢ for 1 < 0.

Theorem 5.1. {cf. [Anderson, pp. 4,5], [Segal 1, 1.4]). The

adjoint functors hmdwpnd and wmﬁwund restrict to adjoint equivalences
hmﬁﬁHOd" Ho(v.s. ﬂamnmammvmdawnﬁ - Ho(e. nnmbmnﬁnmwmwwuna" mmdwwnd.
Ll
Moreover, Ho(c. nrmvmoﬂwmvmdwund is eguivalent to the usual homotopy

category of commective spectra.

Proof. The [first statement is proved by combining the four facts
below, and the last follows from 2.4, If A is a very special
T'-space, then wm is a connective Q-spectrum by 4.2 and 4.10. If m
is a strictly fibrant Q-spectrum, then eﬁm.mu is a very special
r-space by 4.5 since the maps 8§ W i ¥ m - m % *++ x 3 are weak equi-

valences in ﬁmmmoﬁnmvmﬂmwwm

. If m is a very special r-space and

wm - m is a strict weak equivalence with m strictly fibrant, then
the natural map m - mﬁm.mu is a strict weak equivalence, because both
m and mﬁm«mv are very special and the map

ﬂ»muo = wnw+v = aﬂm_MUAH+v = xOmAm.mmam*v

1s a weak equivalence., Similarly, if A - eﬂm.mw is a strict weak
equivalence for some strictly fibrant connective Q-spectrum X, then
the natural map wm - m is a weak equivalence.

We now wish to use our strict homotopy theory of TI-spaces to
bulld a corresponding stable theory, just as we previously used our

strict homotopy theory of spectra to builld a stable theory in 2.3.

Theorem 5.2, The category of I'-spaces becomes a closed
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0 vwﬁmwpmv when provided

slmplicial model category (denoted r(s.sets,

with the following additional structure: a map fi A - mmwoﬁm.mmwmrw

is called a stable weak equivalence if f,: w,AS % w,BS; fi: A 4 B is

called a stable cofibration if it is a strict cofibration; and

3 m -+ B is called a stable fibration if it has the right lifting
property for the stable trivial cofibrations.

Following the proof we will say more about stable fibrations in
5.7T. Our proof will rely on the formal machinery developed in Appen-
dix A. Let Q: (spectra} » (spectra) and m: 1 - Q be such that, for
each spectrum w. Nyt m -» DW is a stable weak egquivalence and am is a
stably fibrant spectrum, cf. §2. Now define
1: 1%(s.sets,) » rO(s.sets,) by TA = $(5,QAS) and let m: 1 - T be the
canonical transformation. Note that for each I-space m‘ ny! w - ew
is a stable weak equivalence and ew 1s strictly fibrant and very
special. Using the terminology of Appendix A, the T-equivalences,

)SErICt re the same as

T-cofibrations, and T-fibrations in ﬂoﬁm.mmam*
the stable weak equivalences, stable cofibrations, stable fibrations,
respectively. Moreover, for n: 1ls» T, the conditions (A.4) and [A.5)
clearly hold although (A.6) doesn't, cf. 5.7. Thus by A.8(i} all the
closed model category axioms hold in ﬂoﬁm.mmdm*umamwww except possibly
for the "trivial cofibration, fibration" part of CM5. To verify an

important case of that part, we use the followilng substitute for (A.6).

Lemma 5.3%. For a pull-back square

i
2

Cane

<

Mg

1 —
L

in ﬁamm.mmﬁm*vu suppose j 1is a strict fibration with X and Y

very special and with
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Ju To prove this (in 5.6) we will first show that the functor

e via
TOA(LY) = TK(s)

"o > ToX(S) = mo¥ (1)

(o]
Tal=){(8): s.8ets,) - (ab. 8.
onto, If k is a stable weak equivalence, tHen so is h. of V,zv i G ( gps.)

a . . has a right adjoint. For an abelian group M, let M be the usual
Proof. TFor Ke{s.sets,] consider the induced square ~

very special r-space such that mﬁﬁvs = M for ﬁnﬂo and n > 0, where
aq is the product of copies of M indexed by the non-basepoint ele-
.\ ments of V. Clearly mm is an Eilenberg-MaclLane spectrum of type
(M,0), and we identify TEMS with M.

Fy

Lemma 5.5. For a I'-space A and an abelian group M, the obvious

; map
of bisimplicial sets. As in the proof of 4.3, X(K.), and Y(K.},
satisfy the 7,-Kan condition and j,: qwxﬁxﬁv* - #Mmﬂm*v* is a fibra-
& = Hom A,M) - Hom ToAS, M)
tion. Thus by B.4 (s.sets,) it (sb. gps.) (022

is a bijection,

A — XK
_ _ Proof. In rO(s.sets,), let B » A be a strict weak equivalence
v v T =
with B strictly cofibrant. In the square
BK — YK -
Hom A,M Hom THAS, M)
is a homotopy fibre square in {s.sets,), and the lemma follows easily. ﬁoﬁm.mmﬁm*u Ax.au 2 (ab. gps.) (Fphs, M)
Fow using 5.3 in place of (A.6), the argument in A.10 shows that
if £1 X » ¥ is & map in 10(s.sets,) with £,: wX(S) - T,¥(S) onto, J J
= ki ik Hom (B,M) - Hom y (TBS,M)
then f can be factored as f = pi where 1 1is a stable trivial cofi- I'(s.sets,) =~ ~ (ab. gps.) o

bration end p 1s a stable fibration. The following lemma will com-

the right map is bijective since #o»m bod #owm. and the left mep is
plete the proof of CM5, and Theorem 5.2 will then follow using the pant e

bljective since
criterion SM7(b) of [Quillen 1, II.Z2].

+

moaﬂm.mmdm*u Amﬁ5+u.mhs+uu = moaﬁmmdm*w m#owﬁs+u.zs )

Lemma 5.4. Each map f: A » B in IO(s.sets,) can be factored as

A 25 ¢ Y5 B where w,t TEAS » T,CS 1S onto end v 1is a stable fi-

s 5 2 s e .

b (m.B(n") ,M* ) = Hom B(n") ,M(n")).
O~ =

ration. bt m.mn...ﬁ_uA

sets,) (s.sets,)
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The lemma now follows since the bottom map of the sguare is a com-

posite of bijectlions

L
Hom(B, M) —=-> w HOM(B, M) 5w HOM(B, #(S,18))

- -

=2

=5 7 HOM(BS, MS) > Hom(TgBS, M)

where 1 holds by 5.1 and the dual of 4.5, and 2 holds since
HOM(ES,MS) is the set of homotopy classes from the connective spec-

m
o] e

stable
trum BS to the Eilenberg-MacLane spectrum MS in (spectra) i

5.6. Proof of 5.4. It will suffice to inductively construct a

descending sequence cf I-spaces

Bs= 0> 02 om D sre D c® 5 .ee

indexed by the ordinal numbers and such that: £(A) < mp for all a3
the inclusion C% |mwv B is a stable fibration for all g; and, for
sufficiently large g, mp = mﬂ+w and f,: THAS - ﬂompm is onto. Given

% c B with £(A) e C%, define ¢! ¢ B by the pull-back

OR+H — ue

(= <
4 b
o — e,
where M® is the image of £, TohS = aOmum and where the bottom map
corresponds via 5.5 to the identity on 4omnm. Note that
O+l € (8 15 a stable fibration because M* S5 (mo0%) 1s one by

an argument using 5.5, and note that £(A) e c®'l. Gciven a limit

ordinal ) and given C® « B with £(A) e c® for all a < ), define
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or c B by Ow

= n % and note that £(A) « C% This completes the
QA? — -

inductive construction of ﬁnpw‘ and the desired propertles are easily
verifiled.

This ccncludes the proof of Theorem 5.2 and we next dlscuss

5.7. Stable fibrations of I-spaces. By A.9, a sufficient condi-

tion for a T-space map f: A4 -+ B to be a stable fibration is that

be a strict filbration and that

A -1 TA
4m _ew
w ¥4
B TB

vmﬂnnoﬁ
% 3

be a homotopy fibre square in ﬂoﬁm.mmdm When

fyi TAAS #omm is onto, this condition is also necessary by the argu-

L ——

ment of A.10; but it is not always necessary. To glve an example,

we first note that an abelian monoid M determines a r-space M with

A4 o 25
M(V), = ¥’ for Ver” and n » 0. Letting M denote the universal

abelian group generated by M, we note that the I'-space map M = M is
a stable weak equivalence, because 7, MS" s 4*Mmu for n» 1 by

[Spanier, Corollary 5.7]. Now let M be the abelian monoid glven by
M = [neZin > 0} u (0')

with the usual addition for the non-negative integers and with
0' +0' =0, 0O' + 0=0', 0' +n=n forn> 1, Note that ¥ = Z, and

let D = {0,0') e M. Using the pull-back square
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m

D—> 0 Thus the stable homotopy category of I'-spaces 1ls equivalent to

the usual connective homotopy category of spectra. Moreover, it i1s

=

T pads
@

N
M —

in Ty(s.sets,), one sees that D —£5> M is a stable fibration although

it doesn't satisfy the sufficient condition mentioned above. Since

ust as
M > Z 1s a stable weak equivalence and D - O is not, thls square also J
shows that (A.6) fails in our T-space context.
For the adjoint functors
in 2.4,

Anvm" ﬂoﬁm.mmdm*g NHHN.ﬁm@modwww" eAmvnv

it is now easy to verify that (-)S preserves weak equivalences and

-

, while §(8,-) preserves weak equi-

valences between flbrant objects and fibrations in ﬁmmeﬁumeﬁdem.

cofibrations in ﬂoﬁm.mmdw*umdwwwm

Thus by [Quillen 1, I.4] there are induced adjoint functors

hm&wdpm demcwm > moﬁmmmndamvmdmch" mmamcwm

t moaoﬁm.mmdm* z

and we let

stable stable

Ho(c.spectra) e Ho(spectra)

denote the full subcategory given by the connective spectra. It is

now easy to prove

stable stable

Theorem 5.,8. The adjoint functors L and R restrict
to adjoint equivalences
Shable. :odoﬁm.mmﬁm*wmamwpm —> Ho(c.spectra)Stable, pstable

easy to show that T dinduces an equivalence

*VmwaHm 5 Ho(v.s. T-spaces)3t¥ict

mOﬂoﬁm.mmﬁm

Q induced an equivalence

stable = Vmawuow

Ho(spectra) —> Ho(Q-spectra
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Appendix A. TFProper closed model categories

In this appendix we outline some formal results on proper closed
model categories (cf. 1.2) which we use in §§2,5 to pass from our
"strict" to our "stable" model category structures on spectra and
r-spaces, Some famlliar examples of proper closed model categories
are the (pointed) simplicial sets, (pointed) topological spaces, and
simplicial groups, all eguipped with the standard model structures
([quillen 1, II.3]); however, as noted in [guillen 2, p. 241], some

closed model categories are not proper.

Our first result may be viewed as a generalization of the factori-

zation axiom CM5 (see 1.1).

Proposition A.1. Let € bve a proper closed model category and
let £: X » Y in €. For each factorization [f] = vu in HoC there is
a factorization f = ji in € such that 1 1is a cofibration, j 1is a
fibration, and the factorization [f] = [j}[i] is equivalent to
[f] = vu in HoC (i.e. there exists an isomorphism w in HoC such

that wu = [1] and [jlw = v.)

Proof. First suppose X 1is cofibrant and ¥ is fibrant. Then
choose & fibrant-cofibrant object We@ and maps X —2> w —E> v in €
such that [f] = [8][a] and such that this factorization is eguivalent
to [f] = vu in Ho€ . Using CM5 and the homotopy extension theorem
([Guillen, HA, Ch. I, p. 1.7]), one then constructs the desired fac-
torization f = ji. 1In the general case, choose weak eguivalences
st X' 5 X and t: ¥ » Y' with X' cofibrant and Y' fibrant., Then apply
the special case to glve a factorization tfs = By where & 18 a co-
fibration, § is a Tibration, and the factorization
[f] = :i-:m::s:mu-uw is equivalent to [f] = vu in HoC . Now,
using the properness of C and £M5, it is not hard to construct the

desired factorization of f.

13

A.2, Homotopy fibre squares. In a proper closed model category

C, a commutative square

is a homotopy fibre square if for some factorization C Imlv w—Ls D

of w with 1 @& weak equivalence and p a fibration, the map

Ao B xp W 1ls a weak eguivalence, This easily implies that for any
factorizatlion B |m1v v-ds Dof v with J a weak equivalence and
g a fibration, the map A » V xp © 1s a weak equivalence. Thus in
our definition we could have replaced "some" by "any" or used v in
place of w. It is not hard to verify the following expected results.

In & commutative diagram

A—> C—> E

I II

v W v
B—>D—7F,

if I eand II are homotopy fibre scguares, so is the combined square
III; and if IT and IIT are homotopy fibre sguares, so is I. If a map
between homotopy fibre sguares has weak equivalences at the three
corners away from the upper left, then it has a weak equivalence at
the upper left. A retract of a homotopy fibre square is a homotopy
fibre square.

Although it does not depend on properness, we also need,

A.%. The model category Ommwwm. Let C be a closed model cate-

gory, and let ﬁmeWm be the category whose objects are the maps in €
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and whose maps are commutative squares in € . A map

f
9]
bo —> By

i

[

W
rH — B

Pairs

from i to J in C will be called a weak equivalence (resp.

fibration) if Ho and WH are weak eguivalences (resp. fibrations), and

. X i o a
a cofibration if fot Ay = By and AwH«u‘. Ay Hkbo By = wH are cofibra
A, + B

tions. (This implies that f , is also a cofibration.) One

1+ A5

DmeHw is a closed model category which is proper

easlily shows that
ir € is proper.
We now develop the machinery which allows us to pass from our
"strict" to our "stable" model category structures on spectra and
r-spaces., Let C be a proper closed model category, let @ C -C
be a functor, and let m: 1 = Q be a natural transformation. A map

f: X » ¥ in C will be called a Q-equivalence L1f Qf: QX » QY is a weak

equivalence, a Q-cofibration if £ is a cofibration, and a Q-fibration

if the filler exists in each commutative diagram

where i 1is a Q-cofibration and Q-equivalence. We wish to show that
D@ is a proper closed model category, where Qm denotes € equipped
with its Q-equivalences, @-cofibrations, and @Q-filbrations. For this

we need:

(AL} If f: X = ¥ is a weak equivalence in €, then so is
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Qf: QX -» QY.

(A.5) For each XeC the maps .\:ﬁﬁﬁaxu GX » QQX are week equi-

valences in C .

(A.6) For a pull-back square

=
I
4

L=

Xy

t <
(R

in C , If J 1is a Q-fibration and k 1is a @-equivalence, then h

is a g-equivalence; and the dual condition holds for & push-out square.

Theorem A.7. Suppose (A.4), (A.5), and (A.6). Then Qs a
proper closed model category. Moreover, a map f: ¥ » Y in C is a

Q-fibration <=> f iz a fibration and

¥ O gx

Qf

W W
v O QY

is a homotopy fibre square in C,
The proof is completed in A.10 after the following lemmas. In

our [-space context, (A.6) does not quite hold and we use these lemmas

directly.

Lemma A.8. Suppose (A.4). Then:

ku ﬁb satisfies CM1-CMY and the "cofibration, trivial fibra-
tion" part of COM5.
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(i) A map f: X » ¥ in € is a trivial fibration in np <=> f is

a trivial fibration in C.
(1i1) If £: X » Y is a fivration in C and both nt X - QX and
A

nt ¥ » QY are weak equivalences, then £ 1% a Q-fibration,

Proof. Statement (i) follows using (1i). 1In (i1), "<=" 1s
clear and "=>" follows by first factoring f as f = ji with 1 a
cofibration and J a trivial fibration, and then noting that f is
a retract of J by a lifting argument using the fact that 1 1is a
G-equivalence. For (iii), it suffices to show that the filler exists

in each commutative sguare

with 1 a trivial cofibration in O@. Viewing this as a map from 1

to £ in €TS8 Lo apply A.1 and A.3 to factor it as

A—> V——7 X

% h f
v v W
B—> W—> Y

mmwamu. Then h 1is a weak

where h 1is lsomorphic to Qi in Ho((C
equivalence, so we apply CM5 to h and use CM! to obtain the desired
filler.

Now, A.8(1ii} easily implies

Lemma A,9. Suppose (A.4) and (A,5)., If f: X » Y is a fibration

in € ana

is a homotopy fibre square, then f 1is a Q-fibration,

A.10. Proof of A,7. We wish to faector a map f: X » ¥ in C as

f = Jji where Jj 1is a Q-fibration and 1 is a g-cofibration and
Q-equivalence., First factor Gf as Qf = vu where u 1is a weak equi-
valence and v 1s a fibration., Then let f = v'u' be the factoriza-
tion of f induced by ft X » QX and n: Y » QY¥; and factor u' as

u' = ki where 1 1is a cofibration and k 1s a trivial fibration.
Then the factorization f = (v'k)i has the desired properties, since
v'k satisfies the hypotheses of A.8(1iii) and 1 1is a g-equivalence
by (A.4)-(A.6). The "<=" part of A.7 is A.9, and the "=>" part
follows by using the above procedure to factor f as f = (v'k)i,

and then noting that f 1is a retract of v'k.

Appendix B. Bisimplicial sets

For convenience we have gathered here various definitions and
results on bisimplicial sets which are used elsewhere in this paper.
Much of this meterial is well-known, and the main innovation is the
fibre square theorem (B.4) for diagonals of bisimplicial sets. As a
consequence of that theorem we deduce a generalization of Quillen's
spectral sequence ([GQuillen 3]).

Let A be the category whose objects are the finite ordered
sets [m] = {0,1,...,m} for m> O, and whose morphisms are the non-

0
3

decreasing maps. A bisimplicial set is a functor bo X A (sets),

and these form a category (bis. sets). One can think of a bisimplicial

set X as a collection of sets xa # for m,n > O together with

El
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horizontal and vertical face and degeneracy operators

n, h Vi g
45 Xon 2 fae1,n? 81 foon 2 fpe,ne 450 fnyn 2 fmyn-1r
i

Eu
mM" xauz - xaﬁﬂ+w for 0O i< mand 0 j m.m‘oismum the horlzontal
and vertical operators commute, and the usual simplicial 1dentities
hold horizontally and vertically.

In practice, many constructions in algebralc topology can be
achieved by first forming an appropriate bisimplicial set and then

applying the diagonal functor %
diag: (bis. sets) - (s.sets)

where diag X is given by the sets kB W for m » O with operators
]
h.v

@H u &Hnw mﬁa 8y = mMmM. ﬁo&mxmamwm.wwwmﬂmhwﬂwmwawwvopmw
sets, there is an obvious bisimpliclal set K x L with

(K X ﬁua\5 = Ky x Ly, and diag(X x 1) = K x L. Many other examples are
given, at least implicitly, in [Artin-Mazur], [Bousfield-Kan, XII],
[Dress], [May 2], [Segal 2], and elsewhere. Most of these examples
lead to interesting homotopy or (co)homology spectral seguences,

The main results for bisimplicial sets involve the relation
between the vertical simplicial terms and the diagonal, i.e. between
the xsu* end diag X. (Of course, there are immediate corollaries with
"vertical" replaced by "horizontal.") To understand these results one
should first note that the construction of diag X is deceptively sim-
ple, and disg X may actually bes viewed as the "total complex" or
"realization" of X. Specifically, let Tot X be the simplicial set

by identifying the

*

obtained from the disjoint union || a[m] x X
> 0 !

with (8«a,x) ealn] x X for each

simplex (a,8%x)ealm] x xa» -

*
8: [m] » [n] in A. DNow the classical Eilenberg-Zilber-Cartier
theorem {[Dold-Puppe, p. 213]) for bisimplicial abelian groups has

the following well-known analogue for bisimplicial sets.
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Proposition B.1l. For a bisimplicial set ¥, there is a natural

simplicial isomorphism y: Tot X = diag X.

Proof. The desired map y¥: Tot X » diag X is induced by the maps

alm] x xs.

il *

-+ diag X sending ﬁmwﬂa.xunpﬁsuﬂ ¥ xsuﬂ to m*xmxa.ﬁ for
8! [n] » [m] in A. One checks explicitly that vy is iso whenever
X = A[m] X aln], i.e. X 1is freely generated by an (m,n)-simplex.
The proposition then follows by a direct limit argument.

In view of B.l, the following fundamental theorem is not sur-

prising.

Theorem B.2. Let f: X - Y be a map of blsimpliclal sets such
that waug“ xs»* > wav* is a weak equivalence for each m > 0. Then
diag(f): dieg X - diag Y is a weak equivalence.

This was proved in [Bousfield-Kan, p. 335], but a more direct
proof using a patching argument is in [Tornehave] and [Reedy].

The diagonal functor not only preserves termwlse weak equivalences
of bisimplicial sets, but also owmmwm% preserves termwise cofibre

squares. To state a similar, but more complicated, result for term-

wise fibre squares, we will need

B.3. The 7,-Kan condition. This is a condition on a bisimplicial

set X which holds automatically when each X is connected, and in

™, *
many other cases., Roughly speaking, it requires that the vertical

homotopy groups of X satisfy Ken's extension condition horizontally.

More precisely, for m,t > 1 and mmx& ~ conslder the homomorphisms
My

afa) 0< id<m

hy
(dg) sz Te(X m-1,%° %4 <

E.*-wu - ﬁﬂﬁx

t

where the homotopy groups of a simplicial set are defined to be those

of 1ts geometric realization. We say X satlsfles the #dnmmw
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condition at mmxs c if for every collectlon of elements
et

h
Y
qumaﬂﬁxa-pw*vupm“_Huo.wn....va.w+H“....s

which satisfy the compatibility condition Auwv*xu = AQWIHW*HH for

i< j, 1#%, J#Kk, there exists an element xem (X,  ,a) such that
£

ﬂawu*x = x; for all i # k. We say X satisfies the w,-Kan condition

if for each m,t > 1 1t satlsfles the w-Kan conditlion at each aeX ..
r

To see that X satisfies the 7, -Kan condition when each LS
; it

connected, one makes the following two observations. First, if

w? then the 4dnxms condition
2

for X at a 1is clearly equivalent to that at b. Second, if

h h
mmxs.o can be expressed as a = S5 * 548 for some eeX

m.v«xﬁ.o are in the same component of xﬂ

0.0’ then X
r

satisfies the ﬁdlmmﬁ condition at & for all t > 1, because any sim-
plicial group satisfies the ordinary Kan condition. Note also that
if ¥,Ye(bis. sets) are related by a termwise weak equivalence X = Y,
then X satisfies the w,-Kan condition if and only if Y does.

It is easy to show that & bisimplicial set X satisfles the
Ty-Kan condition if 1t has a bisimplicial group structure. To give
a more general criterion we use the following notation. For a sim-

plicial set K and t > 1, let ﬂﬁﬁxu denote the set of unpointed

free
homotopy classes of maps from a t-sphere to |K|, and let

gt #ﬁnwiqmm ~+ ToK be the obvious surjection. We call X simple if

each component of |K! is a simple space. It is now an easy exercise

to prove

(B.3.1}). Let X be a bisimpliciel set with X 2imple for

My
m>» 0. Then X =atisfies the m,-Ken condition if and only if the

simplicial map a: ﬁMAxwwwmm - #Mx is a fibration for each t > 1.

To state our fibre square theorem, we recall that a commutative

sguare
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=
\I/
«Q

=

4 W
B—> D

of simplicial sets is a homotopy fibre square (see A.2) if for =some

factorization € —=> W -E> D of w with 1 a weak equivalence and

p & (Kan) fibration, the map A » B xp W is a weak equivalence. Also,

v

for a bisimpliclal set X, we let L

X be the simplicial set with

Vary
(38 = 73Xy,

Theorem B.4, TLet

be a commutative square of bisimpliclal sets such that the terms

v

5 W X and Y form a homotopy fibre square for each
r

my=’ “m,x’ m,*
m>» 0, If X and Y satisfy the w,-Kan condition and if

TgX » Y is a fibration, then

diag V » dlag X

W W
disg W » diag Y

is a homotopy fibre square.

Note that the hypotheses on X and Y hold automatically when
the terms xs.* and KE.* are all connected., Some other interesting,
but more specialized, versions of thls theorem have been proved in

[May 2, $12] and [Segal 2]; and some extensions and applications have
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been obtained by T. Gunnarson in his thesis work. Before starting to
prove B.4, we apply it to generalize Quillen's spectral sequence for

bisimplicial groups [GQuillen 31.

Theorem B.5. Let X be a blsimpllicial set satisfying the 7, .-
Kan condition, and let *nxo.o be a base vertex Assomm degeneracies are
taken as the basepoints of the sets xs.s.w Then there is a first
quadrant spectral sequence mmw~duavm converging to w_, . (dlag X) with
mM‘¢ = awqu. The term mw.d is & set For t + 8 = 0, & group For
t + s =1, end an abelian group for t + s > 2. Convergence has the
obvious meaning, e.g. there is an isomorphism of sets mmwo = ﬂonpmm X

end a short exact sequence 1 5 En , o w,diag X » E . » 1 of groups.
0,1 71 1,0

Proof. By B.2 we can assume each xs § 15 a Kan omplex, and by

E.4 there 1s a homotopy fibre square

m»mmﬁwﬁxv - anmmﬁmdxv

v v
§ ——> dieg( ﬂ..-wuc
drnmomwspwo4

for t > O where mdx is the bisimplicial set given by the t
sections of the terms Ma . (taking P Hx = %), and where F X is the
’ -

fibre of wwx > wdnwx. Let Hmw»du be the associated spectral seqguence
=}

8,07 Tett
diagX -» awmmwdx is iso in dimensions < t and onto elsewhere, and it

\ ~ v 4 -
remains to m:oz.am+ﬁmwwmnwaxu = mgmeX. Since Awﬂxhs.u = forn< t,

there is a natural bisimplicial map F X - ﬁhqﬂxbﬁv where mAqu.ﬁu is

with E awmmﬁmwxv. The convergence result follows since

given by the minimal Eilenberg-Maclane complexes xﬁqus s.ﬂu. By
’

8,2, we now have
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diagF X % 7, diegK(TX,t)

Tatt t 5+t

and the required isomorphism

V. o R
#m+&nHmmmﬁﬁaMadu T omeX
follows for ¢t » 2 from [Dold-Puppe, p. 213], and for t = O trivially.
The remaining case t = 1 will follow by showing ToBG Z 4x|wn for a

simplicial group G, where
BG = diagK(Gy,1),.
The natural principal fibrations
K(G,,0) » L(G,1) » K(G,,1)

with _bﬁns.wv_ = % induce a principal fibration

G = diagK(G,,0), » dlagL(G,,1), - diagk(G,,1l) = BG

and |diegL(G,,1),| = * by an argument using B.2. Thus 7,BG & T, G
To prove B.l we need a model category structure on (bis. sets),

For X,Ye(bis. sets), let HOM(X,Y) be the simpliclal set whose n-sim-

plices are the bisimplicial maps X ® a[n] - Y where

(X @ aln])y, , = X , x aln].

[}

Theorem B.6. The category (bis. sets) is a proper closed sim-

plicial model category when provided with the following sdditional

structure: a map f: X » ¥ in (bis. sets) is called a weak equivalence

if wa~*" HB»* - AS.

f 1is called a cofibration 1f it is injective; and f 1is called a

1s a weak equivalence in (s.sets) for each m > 0;

*
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- ¥ is a fibratlon and for each m > 1 the

fibration if T 0,% 2

0, Xo,»
simplicial square

L

d
Koo = WX

Py M £

W 4 W
¥ g =% MY

[y

induces a fibration X, - ¥ xzsa M X where ﬁmﬂxvﬂ is the set of
(m + 1)-tuples nxo.....xav in X such that dj

m-1,n

b h
and where d: X . - MX is given by d(x) = ﬂuwx....aa
El

m
This theorem follows from [Reedy]; the proof ls simlilar to that

x) .

of 3.5. We remark that 1f f: X » ¥ is a fibration in (bis. sets),

" ! =
then each ws.*. MB.* -+ mB‘* is a fibration in {s.sets), but not con
versely.

Proof of B.4. By CM5 (cf. §1) and B.2, we can suppose that the

given square

Vo X

We——> ¥

is a pull-back with X - Y a fibration and with X,Y fibrant. Since

the diagonal functor preserves pull-backs, B.U follows from

Proposition B.7. Let X,Ye(bls. sets) be fibrant objects satis-
fying the r,-Kan condition, and let ft X » Y be a fibration. If
it ﬁwx - d%ﬁ is a fibration in (s.sets), then so is
diag f: diagX -» diagV.

To prove B.7, we begin by noting that the diagonal functor has a

h
Xy = nu-HxH for 1 < J,
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left adjoint
Lt (s.sets) » (bis.sets)
gilven by

LKy = colim K

([m], [n)»([1],[1]) eaxa *

To construct L(K) more explicitly, we use the bisimplicial mep
o hﬁxv =+ K x K adJjoint to the diasgonal K -+ ¥ x K. Although ¢ 1is

not always injective, we have

Lemma B.8, If K 1s the simplicial set associated with an
ordered simplicial complex (cf. [May 1, 1.4]), then c: L(K) » K x K
is an injection onto the bisimpliclal subset generated by all

(x,%) eK x K.

* * #* *
Proof. Suppose nouxp‘ewxww = nmmxm‘swxmu in K X K where Kys X
are non-degenerate simplices of K and OH.BH‘mm.Sm are maps in 4.
The injectivity of ¢ follows because there exist factorizations
* *
8) = ¥19, 97 = ¥17» 8y = y50, wp = ¥pT In A such that ¥1¥1 = Yo¥Xor
(Take «MXH to be the "largest common face" of x; and x,.) The result
on the image of ¢ 1s obvious.

We next use E.8 to show

Lemma B.9. Let f: X » ¥ be a bisimpliecial fibration such that
w*.s“ xxus - mrva is a Tibration for each n» 0. Then diag f is a
fibration.

Proof. It suffices to show that disg £ has the right lifting
property (RLP) for the meps a¥[n] -S> A[n] withn> 1 and 0 < k < 7,

where pkﬁnu is the simplicial subset of A[n] generated by the faces
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QH for i # k. By adjolntness, it now suffices to show that f has

the RLP for the bisimplicial maps ﬁpwﬁsu -+ La[n] with n > 1 and

0< k< n. Using B.8 we factor these maps ag

ra¥(n] =5 a"[n] x aln] -S> aln] x aln] = Laln]

and we observe that the left map is a trivial cofibration in
AUHm.mmnmu. The result now follows since f, has the RLP for each of
the factor maps.

Continuing with the proof of B.7, we must reformulate B.9 using

"matching" objects. Form> 1, 0< 8y < =+- <8, <my and a bisim-

(81se0vs8,)

plicial set X, let M/ ¥ denote the "matching" simplicial
set whose n-simplices are the r-tuples ﬁxmwv....xmwv in xalw.s such

h h
that awxu = au-px» for each 1 ¢ j in ?p...:muw. Also let

ﬁwH.....mﬁv
d: X > zH X be the simplicial map wlth
m, %
d(x) = Aas xw...‘gs x). It will be convenient to write zwx for
By Br

z%o\....w.....svx.

Lemma B.10. Let f: X » ¥ be a bisimplicial fibratlon such that
the square

HS;* 1.&|V ?ﬁﬁ

H.:wu* TAMH.
A

My % PV ﬁ.&

g

induces a surjection

To¥m,x = Tol¥n,« x,ﬁm zwﬁ
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for m > 1and O < k¢ m. Then diag f is a fibration.

Proof. 8Since f 1is a fibration and
A%[m] x a[0] —=> a[m] x A[O] 1s a cofibration, the map
xﬂ ER 4 'S gmx. is a fibration by SM7 in [Guillen 1, II.2], and
1% m, * ﬁ—w.& e
it is onto d%amﬁw ﬂonsﬁwowswmpm. Hence, X oY
* 5
for n » O, and the result follows from B.9.

-» Y is a fibration
%,

To verlfy the hypotheses of B.1l0 in our situation, we need

Lemma B.1l. Let X be a fibrant bisimplicial set satisfying the

Ty ~-Kan condition, and let a = ﬁwm yevasBy } be a vertex of
1 4

(PR - 15

M, "X where 1< r<m, 0< 8 < +++ < 8. <m Then for t» O

the obvious map

mm“_%.....m.—...w )

#ﬁﬁza X,a) » ﬂﬂﬁxaswu*.mmwv ¥ wae ﬁﬁﬁﬂalw.*.mmwu

is an injection whose image consists of the elements (g seeerug )
1 »

h h
such that ﬁng*;u = ﬁnuuvu*zu for each 1 < J in (sy,0..,8.]. More-

AmH‘...ymHu
over, d: xa ik za X 1s a fibration.
r

Proof. Using SM7 as in B.10, one shows that d 1s a fibration.

Then the lemma follows by induction on r using the fibre squares

ﬁmwu...hmﬂv

ZS X > N_zlu..x.
! !
{8ys0v-s8._4) (Sypeness, o)
\ 3 i 2
ZE 1 r-1 X 5 zaawv Cr-l X

for r > 2,

Finally we can glve
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Proof of B.7. Conslder the square of simpliclal sets

vﬂa\.» |Q.1V ..SWM—UA Lv
i
W

£
_ My, =

W

MB.* Pv ZW.M.N

for m>» 1 and 0 £ k £ m. For each vertex mmma o We show that

4,5 dwﬁma.*.mu - qwngﬁxnumv

is onto by using B.1ll to compute ﬁpnzwm.amv and using #Hlmmv condi-

tion for Y at a. Thus there is an isomorphism

To(¥m, xz”m MX) £ Tolm,e X zwa 4ozwx
0

and we conclude that

is onto by using B.ll in the case t = O and the hypothesls that

ToK » qmm 18 a fibration. Now B.7 follows from B.10.

C.

G.
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Algebraic and Geometric Connecting Homomorphisms

in the Adams Spectral Sequence

R. Bruner

Let E be a commutative ring spectrum such that EE is flat over T E and

such that, for any spectra X and Y, [X,YAE] = mOBH*HAh*M.m”*ﬁ R EE)

.q*m”
(see, e.g., [1, §13 and §16]),

If A=B-+C isa cofiber sequence such that (1} is short exact
(1) clm*_»#m*m&m*o&o
then there is an algebraically defined connecting homomorphism

s+1,t
B Ext™" (M,E,C) + Ext’ D
ELE E,E

(M, m*bv
for any E_E comodule M. When M= E X, these Ext groups are HN terms of
Adams spectral sequences and we may ask:

(a) Does 8 commute with differentials in the Adams spectral sequence ?

(b) Does 8 converge to the homomorphism 6,:[X,€] = [X,ZA] induced

by the geometric connecting map 65:C —+ ZA?

It is possible to answer (b) without answering (a) (see [2, Theorem 1.,7]).
We show here that § induces 8 in the most natural posaible way, answering (a)
and (b) affirmatively,

The canonical Adams resolution of a spectrum Y with respect to E is

defined by requiring that ,mm: - f - m‘m)m be a cofibration for each i > 0.

Lemma: The connecting map 6:C - £A induces a map D of Adams

resolutions with a shift of filtration:

ZA——FA ) ———7A, - ZA;



