
The Additivity Theorem in K-theory

KEVIN CHARLES JONES, YOUNGSOO KIM,
ANDREA H. MHOON, REKHA SANTHANAM,
BARRY J. WALKER and DANIEL R. GRAYSON
University of Illinois at Urbana-Champaign, IL, USA. e-mail: kcjones@students.uiuc.edu,

ykim33; mhoon; rekha; bjwalker; dan@math.uiuc.edu

(Received: February 2004)

Abstract. We present a method for converting Theorem B style proofs in algebraic K-theory

to Theorem A style proofs and apply it to the additivity theorem.

Mathematics Subject Classification: 19D06.

Key words: additivity theorem, theorem A style, theorem B style

1. Introduction

The additivity theorem is a central theorem in K-theory. It was originally
proved by Quillen [5] for exact categories using the Q-construction. Later,
Waldhausen [7] proved it again using the S-construction, generalizing it to
apply to categories with cofibrations and weak equivalences.

McCarthy proved an analogue of the additivity theorem in the context of
cyclic homology [4, Theorem 3.5.1]. It was not straightforward for McCarthy
to transfer the proofs of Quillen and Waldhausen to this setting because they
used Quillen’s Theorem B [5], so he had to devise a new proof of the addi-
tivity theorem, presented separately in [4]. For him, the crucial difference in
style between the two proofs is that the proofs of Quillen and Waldhausen
are Theorem B style proofs, whereas the new proof was a Theorem A style
proof.

A Theorem A style proof is one that uses the realization lemma [6, Lemma
5.1], or one of the theorems close to being logically equivalent to it, such as
Quillen’s [5, Theorem A], Waldhausen’s [7, Lemma 1.4.A], Gillet-Grayson’s
[1, Theorem A0], or McCarthy’s [4, Proposition 3.4.5]. The hypothesis of all
these theorems is that some naive combinatorial approximations to the
homotopy fibers of a map are all contractible, and the result is that the map is
a homotopy equivalence.

A Theorem B style proof is one that uses the fibration lemma [6, Lemma
5.2], or one of the theorems close to being logically equivalent to it, such as
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Quillen’s [5, Theorem B], Waldhausen’s [7, Lemma 1.4.B], or
Gillet-Grayson’s [1, Theorem B0]. The hypothesis of all these theorems is that
the base change maps between naive combinatorial approximations to the
homotopy fibers of a map are all homotopy equivalences, and the result is a
fibration sequence incorporating the map.

In this paper, we add a theorem (Theorem Â of Section 2) to the list of
theorems usable in a Theorem A style proof that makes it easy to convert
Waldhausen’s proof [7, Theorem 1.4.2] of the additivity theorem from a
Theorem B style proof to a Theorem A style proof. We also introduce a

simplicial version of it (Theorem Â
0
of section 3) that can be used to convert

the proof of additivity in [3, Theorem 5.1.2], which in turn, is based on
Waldhausen’s proof.

NOTATION. The nerve of a category C will be denoted by NC. Given a
functor C!g D of small categories, we will use g (an abuse of notation) for
the induced map of simplical sets NC!g ND. For C 2 NpC and 0OiOp, the i-
th vertex is denoted by Ci, so that C will represent a chain
C0 ! C1 ! � � � ! Cp of objects and morphisms of C. Let D denote the
category of finite nonempty ordered sets, let ½n� 2 D denote the ordered set
f0 < 1 < � � � < ng, and let Dn be the simplicial set represented by ½n�. We use �
to mean any simplex of D0. For simplicial sets S and T, the external product
S�T is the bisimplicial set defined by ðS�TÞp;q ¼ Sp � Tq. By Yoneda’s
lemma, we may identify a simplex t 2 Tn with a map t : Dn ! T; for an arrow
i : ½m� ! ½n� the simplex i�ðtÞ will be identified with the composite map
ti : Dm ! T, so we will usually write ti for i�ðtÞ.

2. Converting Waldhausen’s Proof

In this section, we show how to convert Waldhausen’s proof of the additivity
theorem to a Theorem A style proof.

Given a functor C!g E of small categories and an object E of E, we write
g=E for the category [5, p. 93] with objects ðC; gC!e EÞ, where C is an object
of C and gC!e E is an arrow in E; an arrow is a map C! C0 making the
evident triangle commute. Analogously, Eng will be a category with objects
ðE!e gC;CÞ: The projection functor ðC; gC!e EÞ 7!C will be denoted by
g=E!p C.

THEOREM Â. Let D f C!g E be functors of small categories. If the com-
posite functor fp : g=E! D is a homotopy equivalence for each object E 2 E
then the functor ðf; gÞ : C! D� E is a homotopy equivalence.

Proof. Our proof is modeled on Quillen’s proof of Theorem A [5, p. 95],
which amounts to the special case where D is trivial.
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It will suffice to show that the map of bisimplicial sets

ðf; gÞ�1 : NC�D0 �! ðND�NEÞ�D0

ðC; �Þ # ½ðfC; gCÞ; ��
is a homotopy equivalence.

First, we define bisimplicial sets Xg and Y, analogous to those introduced
by Quillen, as follows, where p; q 2 N, with the evident face and degeneracy
maps.

Xg
pq :¼ fðC; e;EÞjC 2 NpC;E 2 NqE; e 2 HomEðgCp;E0Þg

Ypq :¼ fðD;E0; e;EÞjD 2 NpD;E0 2 NpE;E 2 NqE; e 2 HomEðE0p;E0Þg
Consider the following commutative diagram.

The maps are given by these formulas.

gðC; e;EÞ ¼ðC; �Þ
bðC; e;EÞ ¼ðfC; gC; e;EÞ
aðC; e;EÞ ¼ðfC;EÞ

dðD;E0; e;EÞ ¼½ðD;E0Þ; ��
cðD;E0; e;EÞ ¼ðD;EÞ

It will be enough to show that a; c; g; d are homotopy equivalences. Here is
the argument for a and c. Fix q and consider the following diagram of
simplicial sets, where h and k are defined to make the diagram commute.

Xg
�q �������������������!ffi ‘

E2NqE

Nðg=E0Þ
???ya�q

???yh
ðND�NEÞ�q ��������������!ffi

ND�NqEx???c�q
x???k

Y�q ��������������!ffi ‘
E2NqE

ðND�Nð1E=E0ÞÞ

ð1Þ

Here the horizontal arrows are the obvious isomorphisms of simplicial sets.
We point out that h is a disjoint union of homotopy equivalences induced by

composite functors g=E0!
p
C!f D, each of which is a homotopy equivalence

by hypothesis, and k is a disjoint union of nerves of maps of the form
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D� ð1E=E0Þ ! D, each of which is a homotopy equivalence because 1E=E0 is
always contractible. Hence a�q and c�q are homotopy equivalences for each q.
From the realization lemma [6, Lemma 5.1], it then follows that a and c are
homotopy equivalences.

The arguments for g and d are similar. Fix p instead of q and consider the
following isomorphisms.

Xg
p� !

ffi ‘
gC2NpC

NðgCpn1EÞ;

Yp� !
ffi ‘

E
0 2NpE

½ND�NðE0pn1EÞ�

The crucial point is that gCpn1E and E
0
pn1E are always contractible. h

Now we rewrite Theorem Â so it can be applied to simplicial sets. Let
f : X! Y be a map of simplicial sets. For any y 2 Yn the simplicial set f=ðn; yÞ
is defined by Waldhausen [7, 1.4] as the following pullback.

f=ðn; yÞ �!p X???y
???yf

Dn ����!y Y

ð2Þ

In [7, p. 337] Waldhausen’s lemma 1.4 A states that if f=ðn; yÞ is contractible
for every ðn; yÞ then f is a homotopy equivalence; lemma 1.4 B states that if
for every i : ½m� ! ½n�, and every y 2 Yn, the induced map f=½m; i�ðyÞ� !
f=ðn; yÞ is a homotopy equivalence then for every ðn; yÞ the diagram (2) is
homotopy cartesian. These results are derived from Quillen’s theorems A and
B, respectively, using the simplex category of a simplicial set, which is defined
as follows.

DEFINITION 2.1 For any simplicial set Y, define the category SimpðYÞ
with objects ðn; yÞ where n 2 N and y 2 Yn, and with morphisms
ðn; yÞ ! ðn0; y0Þ given by commutative diagrams of the following form.

LEMMA 2.2 If X is a simplicial set, then there is a natural homotopy equiv-
alence X � N SimpðXÞ.
Proof. There is a proof in [7, p. 359]; this proof is extracted from [2, IV,

section 5.1]. We identify a p-simplex of N SimpðXÞ with a diagram
Dn0 ! � � � ! Dnp ! X and we identify a q-simplex of X with a map Dq ! X.
To interpolate between these two spaces, we introduce the bisimplicial set V
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whose ðp; qÞ-simplices are the diagrams of the form Dq ! Dn0 ! � � � ! Dnp !
X. There are evident forgetful mapsNp SimpðXÞ  

Lp;q

Vp;q !
Mp;q

Xq which yield
maps N SimpðXÞ�D0 L V!M D0

�X of bisimplicial sets.
Fixing p, the simplicial set Vp� is isomorphic to a disjoint union, indexed by

the simplices Dn0 ! � � � ! Dnp ! X of N SimpðXÞ, of simplicial sets Dn0 . The
map Lp� is similarly a disjoint union of maps of the form Dn0 ! D0, and is
thus a homotopy equivalence.

Fix q. For any x 2 Xq, let Gx be the category whose objects are those pairs
of arrows Dq ! Dn ! X whose composite is x; arrows between Dq ! Dn ! X
and Dq ! Dn0 ! X are commutative diagrams of the following form.

Then V�q is isomorphic to a disjoint union, indexed by simplices x 2 Xq, of
simplicial sets NGx. Now NGx has an initial object, namely Dq!1 Dq!x X, and
hence is contractible. The mapM�q is a disjoint union of the maps of the form
NGx ! D0, and thus M�q is a homotopy equivalence.

In both cases, we conclude that L and M are homotopy equivalences by
the realization lemma [6, Lemma 5.1 ]. h

THEOREM Â*. Let ðf; gÞ : X �! Y� T be a map of simplicial sets. If the

composite f=ðn; yÞ!p X!g T is a homotopy equivalence for all n 2 N and for all
y 2 Yn then ðf; gÞ is a homotopy equivalence.

Proof. We observe that Simp½f=ðn; yÞ� is naturally isomorphic to
SimpðfÞ=ðn; yÞ for any y 2 Yn. This is easy to see since the objects in both
categories are essentially commutative diagrams of the form

and morphisms are essentially commutative diagrams of the following form.
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Applying the above observation and Lemma 2.2 we see that

SimpðfÞ=ðn; yÞ ��������������!SimpðgÞ�SimpðpÞ
SimpðTÞ

is a homotopy equivalence.
Now apply Theorem Â to the functor

SimpðXÞ ��������������!Simp(f);Simp(g)½ �
SimpðYÞ � SimpðTÞ

to conclude that ½SimpðfÞ;SimpðgÞ� is a homotopy equivalence.
Finally, from lemma 2.2 and the natural isomorphism SimpðY� TÞ ffi

SimpðYÞ � SimpðTÞ we see that ðf; gÞ is a homotopy equivalence. h

With the preliminaries done, we now prove the additivity theorem using
Theorem Â�, thus converting the proof to a Theorem A style proof.

Let C be a category with cofibrations and weak equivalences [7, 1.2], E be
the category of cofibration sequences of C, and ? be a chosen initial and final
object of C. We use the notation S:C for Waldhausen’s S-construction and
S:C for the associated simplicial category with cofibrations and weak equi-
valences [7, 1.3]. We will use wSnC to denote the category of weak equiva-
lences of SnC and likewise for wSnE.

THEOREM 2.3. [Additivity Theorem (7, Theorem 1.4.2)]. The map
wS:E!s;q wS:C� wS:C that sends the cofibration sequence ðA�C�BÞ to
ðA;BÞ is a homotopy equivalence.

Waldhausen deduces this theorem from the following lemma.

LEMMA 2.4. [7, Lemma 1.4.3] The map S:E!s;q S:C� S:C of simplicial sets
is a homotopy equivalence.

Proof. In order to apply Theorem Â�, we will need to verify that for all n in
N and for all A0 in SnC the map s=ðn;A0Þ!qp S:C is a homotopy equivalence.
However, in Waldhausen’s proof of the Sublemma to Lemma 1.4.3 in [7, 1.4]
he shows that qp has a simplicial homotopy inverse. One needs to observe
only that the map he calls p is our qp and the map he calls f is our s. h

3. Converting A Simplicial Proof

In this section, we show how to convert the proof of the additivity theorem
found in [3] to a Theorem A style proof. We begin by reviewing the naive
homotopy fibers introduced in [1].

Let T be a simplicial set, and suppose t0 2 Tp and t 2 Tq. The notation
u : t0V t means u 2 Tpþqþ1 and ui ¼ t0 and uj ¼ t, where i is the map induced
by the order-preserving map ½p� ! ½pþ qþ 1� which sends ½p� onto the first
pþ 1 elements of ½pþ qþ 1� and j is the map induced by the map
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½q� ! ½pþ qþ 1� which sends ½q� onto the last qþ 1 elements. We illustrate
the meaning of u : t0V t diagrammatically, as follows.

ð3Þ

We use this notation to rephrase the definitions in [1, Section 1, p. 577].

DEFINITION 3.1. For a map g : X! T of simplicial sets and a simplex t of
T, the naive homotopy fiber gjt is a simplicial set defined by

ðgjtÞn ¼ fðx; u : gxV tÞ j x 2 Xng
with the evident face and degeneracy maps. We can also define tjg dually by

ðtjgÞn ¼ fðu : tV gx; xÞ j x 2 Xng:
IfX andT happen tobenerves of categories, then the simplex u : tV gx gives

rise to a collectionof arrows ti ! gxj, which ournotation is intended to suggest.
There is a projection map p : gjt! X defined by pðx; u : gxV tÞ ¼ x.

Letting t vary leads to a bisimplicial set gjT defined as follows.

DEFINITION 3.2 For a map g : X! T of simplicial sets, define the
bisimplicial set gjT by

ðgjTÞp;q ¼ fðx; u : gxV tÞ j x 2 Xp; t 2 Tqg:
In case X ¼ T and g ¼ 1T, we will write Tjt for 1Tjt and TjT for 1TjT. The

following theorem is a generalization ofTheorem Â that handles simplicial sets.

THEOREM Â
0
Let f : X! Y and g : X! T be maps of simplicial sets. If, for

any simplex t of T, the composite map wt : ðgjtÞ!
p
X!f Y is a homotopy

equivalence, then ðf; gÞ : X! Y� T is a homotopy equivalence. The same
conclusion holds if gjt is replaced by tjg in the hypothesis.

Proof. We prove just the first part. The proof is completely analogous to
the proof of Theorem Â. Define the bisimplicial set W by

Wp;q ¼ fðy; u : t0V tÞ j y 2 Yp; t
0 2 Tp; and t 2 Tqg:

The face and degeneracy maps are defined so that W ffi ðY�D0Þ � ðTjTÞ.
We have a commutative diagram
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where the maps are defined as follows.

gðx; u : gxV tÞ ¼ðx; �Þ
aðx; u : gxV tÞ ¼ðfx; tÞ
bðx; u : gxV tÞ ¼ðfx; u : gxV tÞ
cðy; u : t0V tÞ ¼ðy; tÞ
dðy; u : t0V tÞ ¼½ðy; t0Þ; ��

Once we show that a; c; d and g are homotopy equivalences it follows that
ðf; gÞ is a homotopy equivalence, by commutativity of the diagram. We shall
show that each map is a homotopy equivalence by applying the realization
lemma [6, Lemma 5.1].

Fixing q, we have the following commutative diagram of simplicial sets.

ðgjTÞ�q ����!a�q ðY�TÞ�q
ffi

???y
???y ffi

‘
t2Tq

ðgjtÞ ����!
‘

wt ‘
t2Tq

Y

The vertical maps are the obvious isomorphisms of simplicial sets. The
bottom map is a disjoint union of homotopy equivalences, by hypothesis, so
a�q is a homotopy equivalence. By the realization lemma, a is a homotopy
equivalence.

Similarly c; d and g are shown to be homotopy equivalences by the fol-
lowing diagrams.

W�q ���������!c�q ðY�TÞ�q
ffi

???y
???y ffi‘

t2Tq

Y� ðTjtÞ����!‘
t2Tq

Y

Wp� ����!dp� ððY� TÞ�D0Þp�
ffi

???y
???y ffi‘

y2Yp

t02Tp

ðt0jTÞ������! ‘
y2Yp

t02Tp

D0

ðgjTÞp� ����!
gp� ðX�D0Þp�

ffi
???y

???y ffi‘
x2Xp

ðgxjTÞ����! ‘
x2Xp

D0

The bottom maps are homotopy equivalences because Tjt; t0jT, and gxjT are
contractible [1, Lemma 1.4]. This completes the proof. h
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Now we wish to provide another Theorem A style proof of additivity

using the naive homotopy fibers introduced in 3.1. We use Theorem Â
0
to

convert the Theorem B style proof in [3], which is in turn based on
Waldhausen’s proof in [7].

For the rest of this section, M will be a small exact category with a chosen
zero object 0. Let KðMÞ denote a space whose homotopy groups are the
K-groups, for example, KðMÞ ¼ XjS:Mj. Let E be the category whose ob-
jects are the short exact sequences E : 0!M! N! P! 0 of objects in M.
Define s, t, and q : E!M to be the exact functors sending E to M, N, and P,
respectively.

THEOREM 3.3 (Additivity Theorem). The map KðEÞ !ðs;qÞKðMÞ � KðMÞ is
a homotopy equivalence.

Proof. It is enough to show that the induced map S:E !ðs;qÞS:M2 is a
homotopy equivalence. We review some of the details of the proof in [3].

For a fixed mP0, consider M 2 SmM. For nP0, an n-simplex of (MjS:q)
is a pair ðP;EÞ where P is an ðmþ nþ 1Þ-simplex of S:M, E is an n-simplex
of S:E, and they are related by P : MV qE. An equivalent condition is
Pi ¼M and Pj ¼ qE, where i and j are analogous to the maps given in
diagram (3). Consider the map p : Dmþnþ1 ! Dm sending all vertices coming
from Dn to the top element of Dm while acting as the identity on vertices
f0; :::;mg coming from Dm. Consider also the exact functor l : M! E
sending N to 0! N!1 N! 0! 0. Now define a map UM : S:M! ðMjS:qÞ
by sending N 2 SnM to ðMp; lNÞ. Note that qlN ¼ 0, so to check that UMðNÞ
is in ðMjS:qÞn, we need to check that Mpj ¼ 0, and this follows from the fact
that pj factors through a one element set, together with the remark that the
only 0-simplex of S:M is 0. Next, define p : ðMjS:qÞ ! S:E by sending ðP;EÞ
to E and WM : ðMjS:qÞ ! S:M to be S:s � p. The maps we’ve just defined fit
into the following diagram.

The maps WM and UM are simplicial homotopy inverses. Indeed, one can see
by inspection that WM � UM is the identity, so we will construct a simplicial
homotopy from UM �WM to 1MjS:q, as a map H : D1 � ðMjS:qÞ ! ðMjS:qÞ as
in [3]. Observe that ðUM �WMÞðP;EÞ ¼ UMðsEÞ ¼ ðMp; lsEÞ ¼ ðPip; lsEÞ.
Suppose ½s; ðP;EÞ� 2 D1

n � ðMjS:qÞn. We want the first component of
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H½s; ðP;EÞ� to interpolate between P and Pip. We first must make an order-
preserving map hs : D

mþnþ1 ! Dmþnþ1 which interpolates between 1 and ip.
The map hs is defined on vertices in the following way:

hsðaÞ ¼
a : a 2 ½m�
a : a ¼ mþ 1þ b; b 2 ½n�; sðbÞ ¼ 1
m : a ¼ mþ 1þ b; b 2 ½n�; sðbÞ ¼ 0

:

8<
:

Note that h0 ¼ ip and h1 ¼ 1, so we can now set Ps ¼ Phs. Also, hsi ¼ i, so
Psi ¼M, which is necessary for Ps to be the first component of an element of
MjS:q.

Next, we need to construct the second component, Es. Note that for all
a 2 ½mþ nþ 1�, hsðaÞOa. So there is a natural transformation hs ! 1, which
induces a map Psj ¼ Phsj! Pj ¼ qE. Identifying E with the exact sequence
0! sE! tE! qE! 0, we can now form the pullback of that sequence
along the induced map.

Es : 0����!sEs ¼ sE����!tEs����!Psj ¼ qEs����!0???????y
1

???????y

???????y
E : 0���������!sE������!tE������!qE������!0

As suggested by our notation, Es is defined to be this pullback. By definition,
Psj ¼ qEs, and since we already know that Psi ¼M, the pair ðP;EÞ is an
element of MjS:q. It is shown in [3] that this is indeed a simplicial homotopy,

and so we can now apply Theorem Â0 to WM ¼ S:s � p, which shows that the

map S:E !ðs;qÞS:M2 is a homotopy equivalence. h
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