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1. Introduction

The additivity theorem is a central theorem in K-theory. It was originally
proved by Quillen [5] for exact categories using the Q-construction. Later,
Waldhausen [7] proved it again using the S-construction, generalizing it to
apply to categories with cofibrations and weak equivalences.

McCarthy proved an analogue of the additivity theorem in the context of
cyclic homology [4, Theorem 3.5.1]. It was not straightforward for McCarthy
to transfer the proofs of Quillen and Waldhausen to this setting because they
used Quillen’s Theorem B [5], so he had to devise a new proof of the addi-
tivity theorem, presented separately in [4]. For him, the crucial difference in
style between the two proofs is that the proofs of Quillen and Waldhausen
are Theorem B style proofs, whereas the new proof was a Theorem A style
proof.

A Theorem A style proof is one that uses the realization lemma [6, Lemma
5.1], or one of the theorems close to being logically equivalent to it, such as
Quillen’s [5, Theorem A], Waldhausen’s [7, Lemma 1.4.A], Gillet-Grayson’s
[1, Theorem A’], or McCarthy’s [4, Proposition 3.4.5]. The hypothesis of all
these theorems is that some naive combinatorial approximations to the
homotopy fibers of a map are all contractible, and the result is that the map is
a homotopy equivalence.

A Theorem B style proof is one that uses the fibration lemma [6, Lemma
5.2], or one of the theorems close to being logically equivalent to it, such as
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Quillen’s [5, Theorem B], Waldhausen’s [7, Lemma 1.4.B], or
Gillet-Grayson’s [1, Theorem B']. The hypothesis of all these theorems is that
the base change maps between naive combinatorial approximations to the
homotopy fibers of a map are all homotopy equivalences, and the result is a
fibration sequence incorporating the map.

In this paper, we add a theorem (Theorem A of Section 2) to the list of
theorems usable in a Theorem A style proof that makes it easy to convert
Waldhausen’s proof [7, Theorem 1.4.2] of the additivity theorem from a
Theorem B style proof to a Theorem A style proof. We also introduce a

simplicial version of it (Theorem A’ of section 3) that can be used to convert
the proof of additivity in [3, Theorem 5.1.2], which in turn, is based on
Waldhausen’s proof.

NotaTioN. The nerve of a category % will be denoted by N%. Given a
functor € = @ of small categories, we will use g (an abuse of notation) for
the induced map of simplical sets N £ N2.For C e N,% and 0<i<p, the i-
th vertex is denoted by C; so that C will represent a chain
Co— C; — --- — C, of objects and morphisms of %. Let A denote the
category of finite nonempty ordered sets, let [#] € A denote the ordered set
{0 <1< --- < n}, and let A" be the simplicial set represented by [1]. We use *
to mean any simplex of A’. For simplicial sets S and 7, the external product
ST is the bisimplicial set defined by (SXT),, =S, x T,. By Yoneda’s
lemma, we may identify a simplex ¢ € T, with a map 7: A" — T; for an arrow
i: [m] — [n] the simplex i*(¢) will be identified with the composite map
ti: A" — T, so we will usually write ¢ for i*(7).

2. Converting Waldhausen’s Proof

In this section, we show how to convert Waldhausen’s proof of the additivity
theorem to a Theorem A style proof.

Given a functor 4 -5 & of small categories and an object E of &, we write
g/ E for the category [5, p. 93] with objects (C, gCS E), where C is an object
of ¢ and gC-5 E is an arrow in &; an arrow is a map C — C’ making the
evident triangle commute. Analogously, E\g will be a category with objects
(EigC, C). The projection functor (C, gCS E)— C will be denoted by
g/ES%.

THEOREM A. Let 9 ifg L, & be functors of small categories. If the com-
posite functor fr: g/E — 9 is a homotopy equivalence for each object E € &
then the functor (f,g): € — 2 X & is a homotopy equivalence.

Proof. Our proof is modeled on Quillen’s proof of Theorem A [5, p. 95],
which amounts to the special case where & is trivial.
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It will suffice to show that the map of bisimplicial sets
(fig) Rl : NERA" — (N x NE)RA°
(Cx) [(/C,£C), #]
is a homotopy equivalence.

First, we define bisimplicial sets X¥ and Y, analogous to those introduced
by Quillen, as follows, where p, ¢ € N, with the evident face and degeneracy
maps.

X5, ={(C,e,E)|C € Ny%,E € Ny&,e € Homg(gC), Eo)}
Y,y :={(D,E,e,E)|D € N,9,E € Ny&,E € Ny&,e € Homg(E,, Eo)}

Consider the following commutative diagram.

NCXA? ~—— X9

j(f,g)m jﬂ\

(NDx NE)RA <"y T =~ NDR NE
The maps are given by these formulas.
n(C,e, E) =(C, %)
p(C,e, E) =(fC,gC,e, E)
a(C,e, E) =(fC, E)
0(D,E e, E) =|[(D,E), %]
(D, E',e,E) =(D, E)
It will be enough to show that «,y,#,0 are homotopy equivalences. Here is

the argument for « and y. Fix ¢ and consider the following diagram of
simplicial sets, where s and k are defined to make the diagram commute.

IR

v I N(g/En)
EeN,&
&g '
(N@&N@@)-q o NQXNq@@ (1)
- §
Y, = [I (N7 x N(ls/Ep))
EeN,&

Here the horizontal arrows are the obvious isomorphisms of simplicial sets.
We point out that / is a disjoint union of homotopy equivalences induced by
composite functors g/ Ey SN EA 2, each of which is a homotopy equivalence
by hypothesis, and k is a disjoint union of nerves of maps of the form
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9 x (1g/Ey) — 2, each of which is a homotopy equivalence because 14/ Ej is
always contractible. Hence o, and y., are homotopy equivalences for each g.
From the realization lemma [6, Lemma 5.1], it then follows that « and y are
homotopy equivalences.

The arguments for 1 and ¢ are similar. Fix p instead of ¢ and consider the
following isomorphisms.

Xio= 11 NG\,
gCeN,%
Y, = I [NZxN(E\ls)]
E'eN,&
The crucial point is that gC,\1, and E})\l ¢ are always contractible. O

Now we rewrite Theorem A so it can be applied to simplicial sets. Let
f: X — Y be amap of simplicial sets. For any y € Y, the simplicial set f/(n, y)
is defined by Waldhausen [7, 1.4] as the following pullback.

f(ny)—>X
Jf )
AN

In [7, p. 337] Waldhausen’s lemma 1.4 A states that if f/(n, y) is contractible
for every (n,y) then f'is a homotopy equivalence; lemma 1.4 B states that if
for every i: [m] — [n], and every y € Y, the induced map f/[m,i*(y)] —
f/(n,y) is a homotopy equivalence then for every (n,y) the diagram (2) is
homotopy cartesian. These results are derived from Quillen’s theorems A and
B, respectively, using the simplex category of a simplicial set, which is defined
as follows.

DEFINITION 2.1 For any simplicial set Y, define the category Simp(Y)
with objects (n,y) where n€N and y€Y,, and with morphisms
(n,y) — (#,)") given by commutative diagrams of the following form.

An—>An’
Y

LEMMA 2.2 If X is a simplicial set, then there is a natural homotopy equiv-
alence X ~ N Simp(X).

Proof. There is a proof in [7, p. 359]; this proof is extracted from [2, IV,
section 5.1]. We identify a p-simplex of NSimp(X) with a diagram
A" — ... — A" — X and we identify a g-simplex of X with a map A7 — X.
To interpolate between these two spaces, we introduce the bisimplicial set
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whose (p, g)-simplices are the diagrams of the form A? — A”O = A —

1’ q 17 q

X. There are evident forgetful maps N, Simp(X) — V,, — X, which yield
maps N Simp(X) K A° £ 1 % A5 X of bisimplicial sets.

Fixing p, the simplicial set V), is isomorphic to a disjoint union, indexed by
the simplices A" — --- — A" — X of NSimp(X), of simplicial sets A™. The
map L,. is similarly a disjoint union of maps of the form A" — A°, and is
thus a homotopy equivalence.

Fix g. For any x € X, let %, be the category whose objects are those pairs
of arrows A? — A" — X whose composite is x; arrows between A? — A" — X
and A — A" — X are commutative diagrams of the following form.

Aq PR An

NN

An’ — X

Then V., is isomorphic to a disjoint union, indexed by 51mphlces X € X,, of
simplicial sets N%,. Now N%, has an initial object, namely A — A? 5 X, and
hence is contractible. The map M, is a disjoint union of the maps of the form
N%, — A°, and thus M. gisa homotopy equivalence.

In both cases, we conclude that L and M are homotopy equivalences by
the realization lemma [6, Lemma 5.1 ]. O

THEOREM A*. Let (f,g): X — Y x T be a map of simplicial sets. If the

composite f/(n, y) = XL T is a homotopy equivalence for all n € N and for all
y € Y, then (f,g) is a homotopy equivalence.

Proof. We observe that Simp[f/(n,y)] is naturally isomorphic to
Simp(f)/(n,y) for any y € Y,. This is easy to see since the objects in both
categories are essentially commutative diagrams of the form

Am L o x
N
y BN
A" ——=Y

and morphisms are essentially commutative diagrams of the following form.
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Applying the above observation and Lemma 2.2 we see that

. Simp(g)oSimp(x) .
Simp(f)/(n.) Simp(7)

is a homotopy equivalence.
Now apply Theorem A to the functor

Simp(X) [Bimp() Simp(e)] Simp(Y) x Simp(7)

to conclude that [Simp(f), Simp(g)] is a homotopy equivalence.
Finally, from lemma 2.2 and the natural isomorphism Simp(Y x 7T) =
Simp(Y) x Simp(7) we see that (f,g) is a homotopy equivalence. O

With the preliminaries done, we now prove the additivity theorem using
Theorem A*, thus converting the proof to a Theorem A style proof.

Let @ be a category with cofibrations and weak equivalences [7, 1.2], & be
the category of cofibration sequences of %, and x be a chosen initial and final
object of €. We use the notation S.% for Waldhausen’s S-construction and
S.% for the associated simplicial category with cofibrations and weak equi-
valences [7, 1.3]. We will use wS,% to denote the category of weak equiva-
lences of 5,4 and likewise for wS,&.

THEOREM 2.3. [Additivity Theorem (7, Theorem 1.4.2)]. The map
wS.6 L wS.€ x wS.€ that sends the cofibration sequence (A—C—B) to
(A, B) is a homotopy equivalence.

Waldhausen deduces this theorem from the following lemma.

LEMMA 2.4. [7, Lemma 1.4.3] The map S22 8% x S.% of simplicial sets
is a homotopy equivalence.

Proof. In order to apply Theorem A*, we will need to verify that for all 7 in
N and for all 4" in S,% the map s/(n, A') . 5. is a homotopy equivalence.
However, in Waldhausen’s proof of the Sublemma to Lemma 1.4.3 in [7, 1.4]
he shows that gn has a simplicial homotopy inverse. One needs to observe
only that the map he calls p is our g and the map he calls f'is our s. ]

3. Converting A Simplicial Proof

In this section, we show how to convert the proof of the additivity theorem
found in [3] to a Theorem A style proof. We begin by reviewing the naive
homotopy fibers introduced in [1].

Let T be a simplicial set, and suppose ' € T, and ¢ € T,. The notation
u:t'=tmeans u € Tjy41 and ui = ¢ and uj = t, where i is the map induced
by the order-preserving map [p] — [p + ¢ + 1] which sends [p] onto the first
p+1 elements of [p+¢-+1] and j is the map induced by the map
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[q] = [p + q + 1] which sends [¢] onto the last ¢ + 1 elements. We illustrate
the meaning of u: ¢ = t diagrammatically, as follows.
AP

Ad
We use this notation to rephrase the definitions in [1, Section 1, p. 577].
DEFINITION 3.1. For amap g: X — T of simplicial sets and a simplex ¢ of
T, the naive homotopy fiber g|t is a simplicial set defined by
glt), ={(x,u:gx=1) | x € X,}
with the evident face and degeneracy maps. We can also define ¢|g dually by
(tlg), ={(u:t=gx,x) | x € X;,}.

If Xand T happen to be nerves of categories, then the simplex u: 1= gx gives
rise to a collection of arrows #; — gx;, which our notationisintended to suggest.

There is a projection map 7n: g|t — X defined by n(x,u:gx=1) = x.
Letting ¢ vary leads to a bisimplicial set g|7 defined as follows.
DEFINITION 3.2 For a map g: X — T of simplicial sets, define the
bisimplicial set g|7T by

@l7),, ={(xu:gx=1)|x€ X, t€T,}

In case X = T and g = 17, we will write 7| for 17|t and T|T for 17|T. The
following theorem is a generalization of Theorem A that handles simplicial sets.
THEOREM A4 Letf X — Yandg: X — T be maps ofs;'mplicial sets. If, for
any simplex t of T, the composite map ,: (g\t)iX'—> Y is a homotopy

equivalence, then (f,g): X — Y x T is a homotopy equivalence. The same
conclusion holds if g|t is replaced by t|g in the hypothesis.

Proof. We prove just the first part. The proof is completely analogous to
the proof of Theorem A. Define the bisimplicial set W by
Wye={u:"=10|ye¥,reT, and 1€ T,}.

The face and degeneracy maps are defined so that W = (YR A") x (T|7).
We have a commutative diagram

XA ~———g|T

e

Y xT)RA <" —w " >yRT
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where the maps are defined as follows.
N gx = 1) =(x, %)
a(x,u:gx=1) =(fx,1)
Bx,u:gx=1) =(fx,u:gx=1)

Y u = 1) =(y, 1)

S(yyus = 1) =[(y, 1), %]

Once we show that «,y, 0 and  are homotopy equivalences it follows that
(f,g) is a homotopy equivalence, by commutativity of the diagram. We shall
show that each map is a homotopy equivalence by applying the realization
lemma [6, Lemma 5.1].

Fixing ¢, we have the following commutative diagram of simplicial sets.

(¢|T),——(YXT),

%l N l%

[[E)——117Y

IET‘, tGT‘,

The vertical maps are the obvious isomorphisms of simplicial sets. The
bottom map is a disjoint union of homotopy equivalences, by hypothesis, so
o.4 18 @ homotopy equivalence. By the realization lemma, « is a homotopy
equivalence.

Similarly y, and 5 are shown to be homotopy equivalences by the fol-
lowing diagrams.

Vq

Wq—>(Yg T),q
I Y>x(Tl)——11 Y
€T, teT,

0p. 0 1.

T, (Y x TFA )p. (8lT), ——(XRA"),
I1 (/|7 [T A° l — J°
yey, yey, x]e_IX,, (gX|T) xg/p A
= reTy

The bottom maps are homotopy equivalences because 7]¢,7|T, and gx|T are
contractible [1, Lemma 1.4]. This completes the proof. ]
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Now we wish to provide another Theorem A style proof of additivity
using the naive homotopy fibers introduced in 3.1. We use Theorem A to
convert the Theorem B style proof in [3], which is in turn based on
Waldhausen’s proof in [7].

For the rest of this section, .# will be a small exact category with a chosen
zero object 0. Let K(.#) denote a space whose homotopy groups are the
K-groups, for example, K(.#) = Q|%..#|. Let & be the category whose ob-
jects are the short exact sequences £: 0 - M — N — P — 0 of objects in .Z.
Define s, t, and ¢: & — .# to be the exact functors sending £ to M, N, and P,
respectively.

THEOREM 3.3 (Additivity Theorem). The map K(&)“Y K(.4t) x K(4) is

a homotopy equivalence.

Proof. It is enough to show that the induced map S.& ) S.H* is a
homotopy equivalence. We review some of the details of the proof in [3].

For a fixed m>0, consider M € S,,.#. For n>0, an n-simplex of (M|S.q)
is a pair (P, E) where P is an (m + n + 1)-simplex of S..#, E is an n-simplex
of S.&, and they are related by P: M= gE. An equivalent condition is
Pi= M and Pj= gE, where i and j are analogous to the maps given in
diagram (3). Consider the map p: A""! — A” sending all vertices coming
from A" to the top element of A™ while acting as the identity on vertices
{0,...,m} coming fr(1>m A". Consider also the exact functor [: 4/ — &
sending Nto 0 - N— N — 0 — 0. Now define a map @y, : S.#4 — (M|S.q)
by sending N € S,.# to (Mp,IN). Note that g/N = 0, so to check that ®,,(N)
is in (M|S.q),, we need to check that Mpj = 0, and this follows from the fact
that pj factors through a one element set, together with the remark that the
only 0-simplex of S..# is 0. Next, define n: (M|S.q) — S.& by sending (P, E)
to Eand Wy : (M|S.q) — S..# to be S.s o n. The maps we’ve just defined fit
into the following diagram.

SM —2 M|S.q —2 > M

S.E

ls.q

SM

The maps ¥, and @y, are simplicial homotopy inverses. Indeed, one can see
by inspection that W, o @y, is the identity, so we will construct a simplicial
homotopy from @y, o Wy, to 1,5, as a map H: A' x (M|S.q) — (M]|S.q) as
in [3]. Observe that (@ 0¥y )(P,E) = ®y(sE) = (Mp,IsE) = (Pip,IsE).
Suppose [z, (P, E)] € A', x (M|S.q),. We want the first component of
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Hiz, (P, E)] to interpolate between P and Pip. We first must make an order-
preserving map h.: A" — A" which interpolates between 1 and ip.
The map /4, is defined on vertices in the following way:

a: ac [mj
h(a)=< a: a=m+1+b, bein, t(b)=1.
m: a=m+1+b, beln], 1(b)=0

Note that hy = ip and h; = 1, so we can now set P* = Ph,. Also, h;i =1, so
P'i = M, which is necessary for P* to be the first component of an element of
M|S.q.

Next, we need to construct the second component, E*. Note that for all
a € [m+n+1], h,(a)<a. So there is a natural transformation /4, — 1, which
induces a map P%j = Phj — Pj = ¢gE. Identifying E with the exact sequence
0 — sE— tE — gE — 0, we can now form the pullback of that sequence
along the induced map.

E: (0———sE' =sE tE* Pj=qE"——0
1
0 SE tE qE

As suggested by our notation, £7 is defined to be this pullback. By definition,
P%j = gE", and since we already know that P%i = M, the pair (P, E) is an
element of M|S.q. It is shown in [3] that this is indeed a simplicial homotopy,

and so we can now apply Theorem A’ to ¥, = S.s o 7, which shows that the

map S.& (ﬂ) S..#* is a homotopy equivalence. ]
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