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Abstract. In this work we present proofs of basic theorems in Quillen's algebraic K-theory of exact 
categories. The proofs given here are simpler and more straight-forward than the originals. 
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O. Introduction 

The object of this paper is to present proofs of the cofinality theorem, the resolution 
theorem, and the devissage theorem, and a localization theorem, starting each time 
from a basic fibration sequence up-to-homotopy constructed by Waldhausen in [4] as 
a part of his treatment of the K-theory of categories with cofibrations and weak 
equivalences. In his paper [1], Grayson broaches the idea that these theorems should 
perhaps be obtained by short arguments branching off a core construction or core 
theorem. His core construction is the fibration-sequence-up-to-homotopy associated 
to a dominant functor between two exact categories, a situation somewhat more 
restrictive and more difficult to handle than the more general situation treated by 
Waldhausen. Here we are showing that by means of a little work, one can dispense with 
the dominance condition. (One could, in fact, axiomatize each situation to a maximum 
level of generality, but this seems pointless, in view of intended applications.) The 
philosophical consequence of all this is that the additivity theorem (see below) is 
promoted to the status of the most basic theorem in algebraic K-theory. 

1. Recollections 

In this section we recall from [4], Chapter 1, various definitions and basic theorems. 
Associated to any category with cofibrations c~ and with a specified subcategory of 
weak equivalences wCg is its K-theory space f~lwS.r163 and we will be using a few 
properties of the K-theory functor. 

DEFINITION 1.1. A category with cofibrations is a pointed category c~ (i.e., 
a category equipped with a distinguished zero object) together with a subcategory coCg 
satisfying axioms Cof 1, Cof 2, and Cof 3. 

Col 1: The isomorphisms of Cg are cofibrations (so that cofg contains all the objects 
of cg.) 
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Cof  2: For every A e ~, the arrow 0 ~ A is a cofibration. 
Cof  3: Cofibrations admit cobase changes. That  is if A ~ B is a cofibration and 

A ~ C is any arrow, then the pushout C U a  B exists in cg and the arrow C >-~ C U A B is 
also in co<g. 

In [4], geometrical examples of this situation are most important. We will be 
concerned with the family of examples obtained from an exact category J//[2],  p. 91, by 
selecting a zero object and by declaring the subcategory of admissible monomorphisms 
in ~ '  to be the cofibrations. 

A functor f :  cg ~ c~, between two categories with cofibrations is exact if it takes 0 to 
0', cofibrations to cofibrations, and pushout diagrams to pushout diagrams. 

D E F I N I T I O N  1.2. A category wC of weak equivalences in a category ~q with 
cofibrations shall mean a subcategory w<g of c~ satisfying 

Weq 1: The isomorphisms of cg are in wCg. 
Weq 2: (Gluing lemma) If in the commutative diagram 

B~--< A ~ C  

I 11 
B' ~--< A ' ~  C' 

the horizontal arrows on the left are cofibrations, and all three vertical arrows are in 
wCs then the induced map 

BUc - B'U c' 
A A'  

is a map in w~. 

In this paper, we will be interested only in the minimal Choice of a subcategory of 
weak equivalences, namely, the case w~ = ic~ = the subcategory of isomorphisms. 
Conventional usage drops the explicit mention of the cofibrations in the notation and 
one refers to a category of cofibrations cg with weak equivalences wC~, or even to 
a category with cofibrations and weak equivalences c~. 

From a category qq with cofibrations and weak equivalences wOK, one constructs its 
K-theory as follows. Consider the partially ordered set of pairs (i,j)(0 <<, i <~ j <<, n), 
where (i,j) <~ (i',j') if and only ifi  ~< i' and j  <~j'. (This poset may be identified with the 
arrow category Ar[n] where [n] denotes the ordered set 0 < 1 < .-. < n viewed as 
a category.) 

Consider the functors 

A: Ar [n ]  ~ cg, 

(i,j) ~ As/~ 

having the properties that A~/i = 0 for all j, and that for every triple i ~<j ~< k, 
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A j~ i ~ A k / i  is a cofibration and 

A j~ i ~ Ak/i 

Aj / j  >-* Ak/j 

is a pushout. In other words, 

Ak/i/Aj/i  ~ Ak/j. 

The category of these functors and their natural transformations is S,C~, and the 
subcategory of these functors where the components Aj/i --* A~/i of a natural 
transformation A --, A' lie in w~f is denoted wS,  C~. 

So far we have a simplicial category 

S. ~: A ~ --* (cat), 

[n] ~ wS,  r 

and we make the following definition. 

DEFINITION 1.3. The algebraic K-theory of the category with cofibrations cg, with 
respect to the weak equivalences w~, is the pointed space ~]wS.Cdl. 

Again we will be concerned with the special case where cg is an exact category 
considered as a category with cofibrations in the canonical way, and the weak 
equivalences will be the isomorphisms. For explication of the relation of this 
construction with the Q-construction, see [4], pp. 375-376. 

One of the important properties of this concept of a category wit h cofibrations and 
weak equivalences is that it is preserved by certain constructions, the first two of which 
are in 

DEFINITION 1.4�9 F m ~  is the category in which an object is a sequence of 
cofibrations 

A o >-*A 1 >-.. . .  ~ A m 

in cd, and a morphism is a natural transformation of diagrams. F + cg is the category 
equivalent to F m ~  in which an object consists of an object of F,,Cg plus a choice of 
a quotients Aj/i = A j A i  for each 0 ~< i < j ~< m. 

PROPOSITION 1.5. F,,~d and F + cg are categories with cofibrations, where a cofibra- 

tion in either category is a transformation o f  diagrams A ~ A '  such that A i ~ A~ and 
t ~ t Ai UA, Ai+ 1 Ai+ 1 are cofibrations in cg. Moreover, the forgetful map F + cg __. F, cd is 

an exact  equivalence, and the 'subquotient' maps 

�9 + 
qj: F m ~  ~ cd and qj/i. Fm cd ~ cd 

A ~ A j, A ~ A j /AI  

are exact. 
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It follows from this that S.ff is actually a simplicial category with cofibrations and 
weak equivalences (i.e., for each n, S .~  is a category with cofibrations and weak 
equivalences), so the wS construction may be repeated. 

A third categorical construction preserving the extra structure is the extension 
construction E(d,C~,~) associated to a category with cofibrations and weak 
equivalences ~ containing subcategories d and ~ such that the inclusions 
d --* c~, ~ __, ~ are exact. 

E(d ,  ~, ~)  is the category of diagrams in c~ 

A>--. C 

t l  
* ~ - + B  

or cofibration sequences 

A >-~ C--.  B 

with A e d ,  B e N, and the maps are the maps of diagrams. As a category, E(d ,  ~, N) 
is the pullback of the diagram 

F~-~--* ~ x ~ ' * - d  x ..~ 

and we define the cofibrations and weak equivalences in E(d ,  c~, ~)  by pulling back 

co(F~-~)--, co(C~ x c~)= co~ x co~ *--co(d x ~ ) =  co(d)  x co(~) 

and 

w(F + ~r - .  w(~ x ~r = w~r x w ~  *- w ( d  x ~ )  = w d  x w ~ .  

Then the three projections 

s, t,q: E ( d ,  ~ , ~ )  --* d ,  ~ , ~  

are all exact functors. 
The first important result of all this is the additivity theorem (which we will use 

explicitly later). 

THEOREM 1.6 ([4], pp. 331 and 336). The subobject and quotient maps s and q induce 

a homotopy equivalence 

wS.  E(d,  ~, ~)  --* wS.  d x wS.  

DEFINITION 1.7. ([4], p. 343) Let f :  d --* ~ be an exact functor of categories with 
cofibrations and weak equivalences, Then S , ( f :  d -* ~ )  is the pullback of 

Sn d Snf Sn~ tdo Sn+ l ~.  

S , ( f :  d -* ~ )  is a category with cofibrations and weak equivalences in a natural way 
in which an object may be visualized as a chain of cofibrations 

Bt  >-. B2 >-. ... >--~ B,+ 1 
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together with a way of writing each quotient B J B  i as f(Aj_ 1/i- 1 ), as well as the induced 
maps between the quotients. Each Sn(f: d ~ 8 )  contains 8 (as the chain of identities 
and quotients written as f(0)), so we obtain a sequence of simplical categories with 
cofibrations and weak equivalences 

8 " *  S . ( f  : ~c ~ 8 )  ~ S . d .  

The main theorem combined with corollaries is the following, 

THEOREM 1.8. ([4], pp. 343, 345) (i) The sequence 

w S . 8  ~ w S . S . ( f  : d ~ 8 )  ~ wS.S.~r  

is a fibration up to homotopy. 

(ii) I f  d ~ 8 ~ cg are exact functors of categories with cofibrations and weak 
equivalences then the square 

w S . 8  ~ w S . S . ( d  ~ 8 )  

t 1 
wS.Cg ~ w S . S . ( d  --, cg) 

is homotopy Cartesian. 

The last result we will have occasion to use is the following: 

PROPOSITION 1.9 ([4], p. 335). I f  icg denotes the isomorphism category of  Cg, then 

iS.Cg ~_ s.Cg, 

where s. cg = the simplicial set of  objects of the simplicial category iS. cg. Moreover, if f l  
and f~ are isomorphic exact functors from cg to 9 ,  then the induced maps s.fl and 
s.f2: s.Cg ~ s . ~  are homotopic. 

2. The Cofinality Theorem 

Here we suppose that d is an exact subcategory of the exact category 8 .  We will say 
~r is cofinal in 8 i f d  is extension closed in 8 ,  meaning that if0 ~ A' ~ B ~ A" ~ 0 is 
exact in 8 and A' and A" are in d ,  then so is B, and if for each B E 8 there is a B' ~ 8 so 
that B ~ B' is isomorphic to an object of d .  For example~ the category d of finitely 
generated free R modules is cofinal in the category 8 of finitely generated projective 
R modules. For simplicity, we will assume that d is isomorphism closed in 8 ,  so that 
any object of 8 isomorphic to an object of ~ is itself in d .  

THEOREM 2.1. Suppose d is cofinal in 8 and let G = K o ( 8 ) / K o ( d  ). Then there is 
a fibration-sequence-up-to.homotopy 

i S . d  ~ i S . 8  ~ BG. 

Proof. In spirit, we follow Waldhausen's proof of a 'strong cofinality' theorem [4], 
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p. 346. By Waldhausen's fibration 
Cartesian square 

iS. ~r ~ iS. S . ( d  ~ ~ )  ~- * 

i S . ~  ~ i S . S . ( d  ~ ~ )  

ROSS E. S T A F F E L D T  

theorem quoted above there is a homotopy 

so the cofinality theorem follows once we identify iS. S. (~r ~ ~ )  with the classifying 
space BG. 

The basic trick here is that up to homotopy i S . S . ( d  ~ ~ )  is the same as 

( n ~  iS.(Sn~r ~ S,~)). The reason for this is that the categories (Sm(S,(~r ~))) and 
Sn(Smd ~ S , ,~)  are equivalent. To see this, one observes that an object of the first 
category may be considered as a diagram 

0 >--~ ... ~-~ 0 

B>--~ ... ~_~ B1, ~ 1,0 

i i 
B >'-~ ... ~ B, m n,0 

satisfying certain conditions, together with choices for the quotients. But everything 
may be symmetrically described, so essentially by 'reversal of priorities' we get our 
equivalence of categories. In this proof we will consider the simplicial space 

n ~  l i S . ( S , d  ---, S ,~[  

and will prove it is homotopy equivalent to the simplicial set BG, the homogeneous bar 
construction on G. 

We will derive this result after a tliree-step analysis. The most work goes into stage 
one, which is the proof of the following lemma. 

LEMMA 2.2. I f  d is cofinal in ~ and G denotes K o ( ~ ) / K o ( d  ) then 

~ol i S . ( ~  --, ~)1 ~ G 

and each component of l i S . ( ~  ~ ~)1 is contractible. 

Stage two is a proof that if d is cofinal in ~ ,  then S, d is cofinal in Sn &. Stage three 
uses the additivity theorem to verify that Ko(S ~ ~) /Ko(S,  d )  ~ G" in a natural way. 

Proof of 2.2. To calculate r~ o we first observe that the function 

iSo(~  ~ ~ )  = i~  ~ G 

sending B to l/3] + K o ( d )  induces a well-defined map from ~ZoliS. ( ~  ~ ~)1 to G. This 
is because the presence of i indicates that isomorphic objects of ~ are connected by one 
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simplices, and because a one simplex in the cofibration direction is a diagram 

B o ~ B 1 --.r B1/B 0 

with B1/B o in d ,  so that 

[B1] + Ko(~r = [Bo] + [B~/Bo] + g o ( ~ )  = [Bo] + Ko(d) .  

Now this map is onto. Since any element O ~ Ko(~)  can be written g = [B 1 ] - [B z ] 
for objects B 1 and B 2 of ~ ,  and since there is B~ in ~ such that B 2 @ B~ ~ ~r we get 

g + K o ( d )  = [B1] - [B2] + K 0 ( d )  

= [B~ ~ Bi ]  - [B2 �9 Bi ]  + Ko(d)  

= [B1 ~ B~] + K o ( d  ). 

Thus, each element of G is represented by an object of ~ .  
This map is also one-to-one. For  if [B1] = [B2] in G, then [B1] - [B2] = [A, ]  - 

[A2] for some pair of objects A 1,A 2 in d .  Then in Ko(~)[B1]  + [A23 = [B2] + [A1] 
and by a standard manipulation there is an object B of ~ so that 

Bt @ R @ A 2  _-__ B 2 @ R ~ A 1 .  

Using cofinality again there is/~' so that B ~)/3' = .~ in d .  The following diagram 

which illustrates three one-cells of IiS.(~r -~ ~)1 shows that B, and B 2 a r e  in the same 
path component. 

Now we adapt the argument of [4] to prove that each component of I iS. ~r --, ~)1 
Is. (~r ~ ~)l is contractible. Let Is. (~r ~ ~)[B denote the component represented by 
B ~ ~ ,  and observe that a choice of sums A @ B for A e ~r defines a map 

T(B): s.(~r --* ~r ~ s.(~r o ~ ) B  

sending (A o >-~ -.. >-~ A,, choices) to (A o ~ B >-* -.. ~ A n ~ B, 'same' choices). 
Given a diagram 

s.(~r --,  ~ r  r~BI , s.(~r --,  ~)B, 

T T 
L - -  -,~ K 

where L and K are finite simplicial sets, we will show that after a homotopy of the 
diagram the map K ~ s . ( s 4  ~ ) ~  factors through T(B). This will imply that 
rt,(I T(B)D = 0, and since s.(~r --* ~r is contractible, we deduce z,(s.(~r ~ N)~) = 0 
for * >f 0. Hence, each component of [s.(~r ~ ~ )  [ is contractible. 

Suppose first that L = 0 and K = A". Let the generating simplex of A" have image 

a=Bo>--~Bs>--~...>-.~B" 

(plus choices in ~r for BJBs). In our calculation of fro( I iS. (M ---+ ~)1), we observed that 
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there is an A e ~r such that B o @ A ~ B @ A. So, ifB' is such that B @ B' e ~' ,  then also 
B o ~ ) A ~ ) B ' e d .  

Thus, moving 

a = (Bo ~ B1 ~ "'" ~ B,, choices) 

to 

(Bo ~) A ~) B' )  ~) B :,.--,, . . .  >-.-., (B,, ~) A ~) B' )  ~) B. 

moves cr into the image of T(B).  (Since d is extension closed in ~ ,  B~ @ A ~ B' ~ d for 
all i, 0 ~< i ~< n, by induction.) 

Now for a diagram in which K has only fnitely many nondegenerate simplices {tr}, 
choose for each trA, as above and let A = ~), A,. Now move everything in K and L by 
A ~ B' ~ B e ~r The map L ~ s . ( ~  ~ ~') moves inside s.(~r ~ ~r and after the 
motion the map K ~ s.(~r ~ ~)n factors through T n. Proposition 1.9 above is used 
here everytime we claim isomorphic exact functors induce homotopic maps on the 
s level. This concludes the proof of the lemma. 

We next assert that if ~r is cofnal  in ~ then S . ~  is cofinal in S.~.  Let 

B = 

0 ~ B l l  o >.-,, B2/o >--* .. .  ~ B,~/o 

0 >-~ B211 >-~ "" >-* Bnl 1 

0 :>'-~'" >-~ 

0>-.~ 

Bn/2 
,L 

Bn/n-  1 

0 

be an object of S,~.  By cofinality of d in ~ there are objects B~/i-1 such that 
Bi/~_ 1 ~3 B~/i_ ~ e d for 1 ~< i ~< n. Using the standard injections and projections, put 

nt  

0 -o B'l/o ~ B'l/o @ B'2/1 >-* '"  >--> B'l/o ~ "'" 

0 ~ B'2/1 ~ "'" ~ B'2/1 @ "'" @ 

0 ~i.~.,. 

0>--~ 

B~ln-1 

l 
B~/._ 1 

$ 

l 
0 

B' is fairly clearly an object of S . ~  and B ~ B' e S.~1 using the extension closure of 
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~ '  in ~). Notice also that an exact sequence 

C' >--~ C --~ C" 

in S n ~ implies exact sequences 

C~/j ~ Ci/j ~ G)j  

in 8 ,  so that if C' and C" are in S , d  then so is C. It is also clear that S . d  is 
isomorphism-closed in S.&, so we have retrieved all the hypotheses of the main lemma. 

On to step three where we identify K o ( S , ~ ) / K o ( S . ~  ) with (Ko(~ ) /Ko(~) ) "  = G". 
We observe that there is an exact sequence of endofunctors of S .~  

O~j ' - - - .  Id ~ j " - - * O  

where, using the notations above, 

0 --~ BI/ lO ~ B 2 / 0  ~ "'" >-o B n _ l l  0 = B n _ l l  0 

0 ~ B2 /1  ~ . . .  ~ 13 ._  1/1 = 13 ._  1/1 

j ' (B)  = J, ~ ~, 
0 

0 = 0 
+ 
0 

and 

0 ~ 0 ~ "" O --* B./ ,_ a 

O ~  " ' O ' - .  B . / ._ I  

j"(B) = : : 

0 -o B.I ,_ 1 
+ 
0 

According to one of the interpretations of the additivity theorem, the exact sequence of 
functors implies a homotopy equivalence 

i S . S . ~  "~ i S . S . _ I ~  x i S . ~  

and, by induction 

n 

i S . S . ~ -  I--[ i S . ~ .  

Thus 

K o ( S . ~ )  = 7q ( i S . S . ~ )  

n 

= ~ l ]  Ko(g~) 
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and the isomorphism is induced by 

B ~ (Bl/o, B211,. . . ,  B,I ._  1)" 

Recall that the cofinality theorem follows from the identification of the simplicial 
space 

n ~  l i S . ( S , d  ~ S,~)l  

with the bar construction BG with G = K o ( ~ ) / K o ( d  ). Lemma 2.2 and the calculations 
above give us a homotopy equivalence 

( n ~  [iS.(S,~r ~ S,~)l  -~ (n~, G" = BG,)  

in each degree induced from 

B ~ ( [ B ~ / o ] ,  [B~/~]  . . . .  , [B./._~]). 
Now it is easy to see these maps are compatible with the face and degeneracy maps. For  
instance, a review of the definitions gives us 

d iB  ~ ([Bl/o] . . . . .  [Bi+ 1/i- 1] . . . .  , [Bn/n-  1] 

if 2 ~< i ~< n - 1. But from B itself we have an exact sequence 

0 ~ Bi/i _ 1. ~ Bi+ 1.1i- 1. ~ Bi+ 1.1i ~ 0 

so that 

[Bi+1./ i_l]  = [Bill_1. ] -k- [Bi+1./i ] in G = K o ( 2 ) / K o ( d  ). 

Hence, we have a global homotopy equivalence by the realization lemma (Lemma 5.1, 
p. 164 of [3]) 

l i S . S . ( d  ~ ~)1 ~ l n ~  l iS . (S , ,d  ~ S.~')II 

~lnal, 

and the proof is complete. []  

3. The Resolution Theorem 

T H E O R E M  3.1. Assume that d is a full exact subcategory o f  ~ ,  and that d is closed in 

under exact sequences, extensions, and cokernels. Assume that any B e ~  has 

a resolution 

O-~ B-- .  A ~ A" ~ O 

with A and A" in d .  Then the map 

i S . d  ~ i S ' ~  

is a homotopy equivalence. 

d is closed under exact sequences means that a sequence 0 ~ A' ~ A ~ A" ~ 0 of 
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objects of d which is exact in ~ is exact in d .  Here d is dosed under extension means 

that if 0 ~ A' ~ B ~ A" ~ 0 is an exact sequence in ~ with A' and A" in ~r then B 
is also in d .  That d is dosed under cokernels means that if 0 ~ A' ~ A --. B --. 0 is 
exact in ~ ,  then B is in ~ .  

Proo f  Consider the fibration sequence up-to-homotopy 

i S . d  ~ i S . ~  ~ i S . S . ( ~ /  ~ ~) .  

To prove the theorem it is enough to prove that i S . S . ( d  ~ ~ )  is contractible. The 
argument follows the format established in Section 2 of this paper, but it is slightly 
simpler, more akin to the argument of Proposition 1.5.9 in I-4]. 

Since [ i S . S . ( d  ~ ~)1 ~-[s.S.(~r ~ ~)[ it suffices to show s .S . (~r  ~ ~ )  is contrac- 
tible. As above, we may consider this bisimplicial set as the simplicial set of simplicial 
sets 

n ~ s . ( S , d  ~ S , ~  ) 

so it will suffice to show that for each n, s. (Snd  ~ S ,~)  is contractible (Lemma 5.1, p. 

164 of I-3].) This is achieved in two steps by proving the following assertion. 

FIRST ASSERTION. I f  d c ~ satisfies the hypotheses o f  the theorem then so does 

SnJ~ c Sn~. 

SECOND ASSERTION. I f  d ~ ~ satisfies the hypotheses o f  the theorem, then 

s . ( d  ~ ~ )  is contractible. 

To verify the first assertion begin by recalling that S n d  may be thought of as the 
exact category in which an object is a chain of admissible monomorphisms of ~r 

A 1 >-~A 2 ~ ... >--~A,, 

plus choices for the quotients A J A j ,  and in which an admissible monomorphism 

A' = (At ~ A~ ~-~ -.. ~ A~, choices) ~ A = (A 1 ~--~... ~-~ A n, choices) 

is a ladder diagram of admissible monomorphisms 

A'I >--~ ..- ~ A~, 

i i 
A 1 ~ ... ~ A n 

satisfying the extra condition that 

Ai 

is also an admissible monomorphism. (By Lemma 1.1.3 of [4], these conditions imply 
that 

A t ~) A) ~ A s and Asii El) A'k/i ~ Ak/i 
Ai A~/i 
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are admissible monomorphisms when i < j and i < j < k, respectively. (Aj/~ indicates 
a chosen quotient.)) Thus, everything not written out here takes care of itself under the 
constructions we make. The closure of S , d  in S . ~  under exact sequences, extensions, 
and cokernels is a consequence of the definition of exact sequences (i.e., admissible 
monomorphism) in the two categories together with the appropriate closure property 
of a '  in ~ .  

Now we have to check the resolution condition. Let 

B = (B 1 ~ -.. ~ B., choices) 

denote an object of S .~ .  We have to produce an exact sequence 

B >-~ A--> A " 

in S .~ .  The construction is made inductively, as follows. Suppose that we have a partial 
resolution 

B 1 ~ B 2 ~ . . .  > - * B i > - ~ B ~ +  1 ~ . . .  > - - ~ B .  

i I i 
A 1 >--~A 2 ~ ... >--~A~ 

A~ ,--, A~ , - - , . . .  ~ A;' 

where the upper squares satisfy 

Aj (~ Bi+l>--~Aj+i 
Bj 

is admissible for 1 ~< j < i. Note that 

Bi >--, Ai ~ A7 

is a resolution of B~. By hypotheses we can resolve 

Ai  @ B~+l >--~ A~+l ~ C i +  1 
Bi 

with A~+ l, C~+ 1 in ~r and we claim that 

Bi+l >--, A~+l --, A;'+l 

is a resolution of B~+l with A~+l and AT+l in ~r where 

(Bi+l >--~ Ai+l) = (Bi+ 1 >--,A i (~ Bi+l >--~ Ai+ 1) 
Bi 

and 

A[+l = coker ( B i +  1 ~ Ai+l). 

Granting this for the moment, we can now tack onto the old diagram one more 
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column and proceed, by induction 

B 1 >---~B 2 ~ . . .  : , . . - ~ B i : , . . - ~ B i + l  :,--,, . . .  >.-.~Bn 

A 1 :,---~A 2 ~ . . .  >-~Ai>- .~Ai+ 1 

J, ,L $ 
l !  I t  

A'~ ~-> A'~ >-* . . .  ~'-'~ A i  >"* A i + 1  

That A i ~-~ A i + z  is admissible follows from the preservation of admissible mono- 
morphisms by pushouts and the fact that a composite of admissible monomorphisms is 
admissible. That A~' ~ A~'+ 1 is admissible is also a consequence of the preservation by 
pushouts property, so all we really are left with is to show that AT+ 1 e d .  

To see this consider the iterated pushout 

O ~ A  i = A i 

O ~ B i :,..-~ A i 

0 ~- Bi+ z >--~Ai+ 1 

Evaluating rows one obtains the pushout 

A; 

A/t+ 1 

and thus coker (Af --+ A~'+ 1) for the value of the iterated pushout. Evaluating columns 
first one obtains 

O ~  A i  ~ B i + l  o A i + l  
B i  

from which one obtains C,+ 1 for the value of the iterated pushout. But the iterated 
pushouts must be the same, so we can restate the computations in the form of an exact 
sequence. 

t! t/ 
O -.-o. A i .-.* A i + 1 ---*. C i + 1 ---+0. 

So, from closure of ~r in ~ under extensions we obtain that A[+ 1 ~ ~r as needed 
The proof of assertion two is in [1], in the proof of Theorem 4.1, and it is short so we 

repeat the argument here for completeness. 
First one notices that s.(~r ~ ~ )  is homotopy equivalent to the nerve of the category 

cg in which the objects are those of ~ and in which an arrow from B to B' is an 
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admissible monomorphism B ~ B' such that B'/B ~ ~r If m d  denotes subcategory of 

admissible monomorphisms of d ,  then there is an inclusion 

G : m d ~ .  

Since m d  has 0 for an initial object, it is contractible, so we can prove cr s" ( d  ~ ~ )  is 
contractible by proving G is a homotopy  equivalence. 

We appeal to Quillen's Theorem A according to which it suffices to show 

contractibility of each fibre B/G, in which an object is a pair (A e d ,  B >-+ A, with 

A/B + d).  
Choose a resolution 

O ~  B-- .  Ao ~ A'~ ~ O  

of B, and for each (A, B ~ A) in B/G choose a pushout A o (~ A and consider the 
B 

diagram 

0 0 

O ~ B  ~ A  ~ A " - - . O  

$ ; II 
O ~ Ao ~ A o (~ A ~ A" -*  O. 

B 

$ $ 
A~ = A~) 
$ ; 
0 0 

where we have written A" = A/B. We see that A o ~3B A ~ d by extension closure, and 
by an argument like the one we made in the proof  of assertion one B ~ A o ~B A is an 

object of BIG. Moreover,  the other arrows amount  to natural transformations 

(n ~ A) --> (B ~ A o (~n A) +-- (n ~ Ao) 

linking the identity on BIG to the constant functor on BIG whose value is B ~ A o. Thus 

BIG is contractible, s. ( d  --* ~ )  is also, and we are done. 

4. The Devissage Theorem 

In this section ~ is an Abelian category and ~r c ~ is a full Abelian subcategory. The 
first example to keep in mind is the one in which ~ is the category of finite Abelian 
p-torsion groups, and d is the subcategory of elementary Abelian p-groups. 

T H E O R E M  4.1. Suppose that d is closed in ~ under direct sum, subobject, and quotient 
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object. I f  every object B of  ~ has a finite filtration 

0 = B _  1 > - . B o > - . . . . > o B v = B  

whose consecutive quotients B~/BI-1 are in ~ ,  then i S . d ~ i S . ~  is a homotopy 
equivalence. 

d is closed under direct sum means that A 1 @ A2 ~ ~ if A1 and A 2 are in d .  That d is 
dosed under subobject, (quotient) object means that if 

O ~ B' >'* A ~ B ' - *  O 

is exact in ~ and A ~ ~r then B'E d ( B " ~  ~r 

Proof Again we consider the standard fibration sequence to homotopy 

iS. d ~ iS. ~ ~ iS. S. ( d  ~ ~ )  

and develop the proof along the lines of the proof in Section 3. 
Contractibility of i S . S . ( g  ~ ~ )  is equivalent to the contractibility of its bisimplicial 

set of objects s. S. ( d  ~ ~), which may be viewed as the simplicial set of simplicial sets 

n ~ s . ( S . d  ~ S ~ ) .  

Thus it suffices to show that for each n, s . ( S , d  ~ S.~)  is contractible. Again there are 
two steps to the proof: 

FIRST ASSERTION: I f  d ~ ~ satisfies the elosure and filtration hypotheses of the 

theorem, then so does S , d  c S , ~  for any n. 

SECOND ASSERTION: I f  d c ~ satisfies the closure and filtration hypotheses of the 

theorem then s . ( d  ~ ~ )  is contractible. 

We begin the proof of the first assertion by stating that the phrase 'B' ~ B --* B" is 
exact in S ,~ '  will mean that B' ~ B is an admissible monomorphism of S . ~  and that 
there is a pushout square 

B' >-*B 

0 ~ B "  

in S,~.  Consequently, part of the data of an exact sequence in S , ~  is a family of 
pushout squares or short exact sequences in 

0 ~ B~/j ~ B~/j ~ Bi'~j ~ O. 

It is clear that if d is closed in ~ under subobject and quotient object then S . d  is 
similarly closed in S.~.  It is also clear that S , d  is dosed under sum, since the sum of 
diagrams in S , d  is computed 'pointwise'. 
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Now we have to produce a nice filtration of 

0 ~ B 1 / l O  ~ . . -  ~ Bn/o 

0 ~ ... >-+ B,/I  

B =  

0 ~ B,/,_ 1 

0 

= B 1 ~ ... ~ B., plus choices, 

for simplicity of notation. By hypothesis we can  filter B., 

0 = Bn, _ 1 ~ Bn,o ~ "'" >-" Bn,p = Bn 

with B . , J B . j _  1 ~ s / .  If  we put 

B/,j = pullback (Bi ~ B. ~ B.d ) 

= kernel (Bi (~ B.,j ~ B.) 

we get a lattice diagram 

B 1 ~ . . .  >--,.Bn 

B l , p _  1 >--'.... >-.* nn ,p_  1 

B1, o ~ .. .  ~ B . ,  o 

Choices for the cokernels of the horizontal monomorphisms may be made so that we 
get a diagram 

B o >--~B 1 ~ ... ~ Bp_ 1 >-~Bp = B 

in S .~ .  Now each of these arrows is, in fact, an admissible monomorphism in S .~ ,  
because one also has 

Bi,.i TM kernel (Boj + t @ Bi+ 1,j ~ Bi+ 1,j+ 1), 

which implies the admissibility condition 

Bi , j+ l  ~ Bi+l,j>--~ B i + l , j + l  
Bi,j 

is satisfied. And, since d is closed under subobjects and quotient objects 

Bi,j+ 1/Bi , j  ~ Bn,j+ 1/Bn,j  
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implies first Bl , j+l /n i ,  j ~ ~ and then all the unwritten quotients of subquotients by 
subquotients are in ~r too, so that Bj+ 1/Bj ~ S n d ,  as required. 

Now we can go to work on the proof of the second assertion, modifying the ideas in 
[1] somewhat so as to permit the use of different technical ideas and to avoid another 
bibliographic reference. The object is to show the contractibility of the simplicial set 
s. ( d  ~ ~)  which in degree q consists of diagrams 

Bo >--~ B 1 >--,, ... >-+ Bq 

B = 0 ~ A1/lo ~ ... >--', Ag/o 

0 ~ Ag/q_ 1 

0 

in Sq+ 1~, where Bj /B  i ~ Aj/i ~ ~r 

To show s. ( d  ~ ~)  is contractible, it suffices to show that the last vertex functor 

L: simp(s.(sr ~ ~)) ~ m~  

from the category of simplices of s . ( d  ~ ~)  to the category m~  of monomorphisms of 
is a homotopy equivalence, since m ~  has zero for an initial object and is therefore 

contractible. (For information about the category of simplices construction, we refer to 
[4] pp. 355 and 359.) 

We appeal to Quillen's Theorem A, according to which it suffices to show the 
categories L / B  are contractible. In our situation, an object of simp(s" ( d  ~ ~)) is a pair 
(q,B ~sq(~r ~ ~))  and a map ( q , B ) ~  (r,B') is a map ~: [q]-~ [r] in A such that 
~*(B') = B. The functor L sends B to Bq and sends a map as above to B~ = B~t~) ~ B'r. 
Thus an object of L / B  is a pair 

((q, B); B~ ~ B) 

and a map 

((q, B); Bq ~ B) ~ ((r, B'); B r ~ / ~ )  

is c~: I-q] ~ [r] in A such that ~*(B') = B and 

Bq = B ~ )  ~ B'~ 

B 

commutes. 
Contemplating the definitions, one sees that L//~is equivalent to simp(N~), where N~ 

is the simplicial set in which a q simplex is a q + 1 simplex of N ( m ~ )  of the form 

B o >--~ . . .  >--~ B >.-~ ~ 
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satisfying that B J B  o ~ ~r and the face and degeneracy operators act to delete and 
replicate B{s. (N~ is a simplicial set because ~r is dosed under subobject and quotient 

object.) Then we have IL/BI "" Nimp(Ns)) "" IN~I the last equivalence by a general 
property of the category of simplices construction ([4], p. 359), so it suffices to show 

N~_~ * 
Following [1] closely, pick a filtration of B 

0 =  Co>--~CI>--~ ' "> ' -~C,=B 

such that C J C i -  ~ e ~r for 0 < i ~< n and use C~ to define a self map 

Fi: N~ - ,  N~, 

Fi(B o >--,... ~ Bq ~ B) = (B o + C i >--,... >--, Bq + C i >--, B), 

where 

Bj + C i = Bj  ~ Ci/ker(B j ~ Ci ~ B). 

This works because Bq/B o --~ Bq + Ci /B o + C i and d is dosed under quotient object. 
Clearly F o is the identity and F ,  is constant, so we need homotopies from F i -  1 to F~. 
These are obtained in a standard way, by noting that a q simplex ofN~ x A [1] consists 

ofB o ~ ..- ~ Bq ~ Bin  N~and a: I-q] ~ [1] in A. The homotopy from F i_ ~ to F i sends 

the q simplex of Ng x A[1] to 

Bo + C i -  1 >-'} "'" >--} Bt + C i -  1 >--} Bt + 1 + Ci >-'} "'" Bq + C i >--} B, 

where 

0 = a(O) . . . . .  o~(t), 1 = a(t + 1) . . . . .  a(q). 

This works because d is closed under sums and quotients and because Bq + Ci/  

Bo + C i -  1 is a quotient of B J B  o ~) Ci /C i_ 1. 

5. The Localization Theorem 

In this section, R is a ring and S c R is a multiplicative set of central nonzero divisors. 
~R denotes the exact category of finitely generated projective left R-modules, and JCn 
denotes the exact category of finitely generated R-modules. sg is the full subcategory of 
~ S - ' R  consisting of those objects isomorphic to S - 1 P  for some P ~ ~R- This is also 
exact category in a natural way, since all exact sequences in ~S-XR split. 

Consider also ~ ,  the full subcategory of sg  R consisting of the objects P' of projective 
dimension ~< 1, with S-  1P' e sg. Here ~ is closed under extension and is thus an exact 

category. 
We have the localization functor F: ~ ~ ~g sending P' to S - ~ P '  and we let ~ c 

be the full subcategory whose objects are those H such that S -  1H ~ 0. Note that ~ is 
clearly closed under extensions, so it inherits the structure of an exact category from ~.  
To use the S construction for K-theory, we point J / b y  selecting one zero object 0. We 
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assume for convenience that S- 1H = 0 for each H ~ o~. The localization theorem is as  
follows. 

THEOREM 5.1. There is a fibration-sequence up-to-homotopy 

l i S . ~ l  -* l iS .~ l  --* l iS .J l l  

and thus a long exact sequence 

Ki+ I (S-1R)  -o K~(Jtf) ~ Ki(R) --* Ki(S-1R)  

This theorem follows from the cofinality theorem which identifies n,+ ~liS. v#l with 
K, (S - 'R ) ,  the resolution theorem which identifies n,+ 1 l iS. ~1 with KI(R), and the 
following theorem. 

First, we have from Theorem 1.8 a fibrafion up to homotopy 

I s . ~ l  ~ Is .~l-- ,  I s . S . ( ~  -~ ~)1 

and the main part of localization theorem is as follows. 

THEOREM 5.2. The localization functor F: ~ ~ ~g induces a homotopy equivalence 

[s.S.(~/f ~ ~)1--, IN.iS.~r162 

of  realizations of  bisimplicial sets. 
Proof. Localization obviously induces a map of bisimplicial sets 

((m, n) ~ s . S n ( ~  ~ ~)) ~ ((m, n) ~ Smin(Jg)), 

where i. is the category with cofibrations in which an object is a chain of 
n isomorphisms in d / a n d  a cofibration is a commuting ladder of cofibrations. 

By the standard trick of reversal of priorities, the domain and range can be rewritten 
and the map above replaced by the localization induced map 

((m, n) ~ s n ( S . ~  ~ Sm~)) ~ {(m, n) ~ N.(iSm(JI))}, 

where N. is the degree n part of the nerve of a category. Now notice that 
sn(Sm~ ~ Sm~) is, by neglect of data, homotopy equivalent to the nerve of the category 
m(Sm~, Sm~'~d) whose objects are those of S,.9 ~ and in which a monomorphism is 
a cofibration in Sr.~ such that the quotient object is in Sm~- (This defines a category 
because of the 'pointwise' way of computing quotients in Sm~ and because ~ is closed 
under extensions.) 

Thus, by the realization lemma, to prove the theorem it suffices to show that for each 
r t> 0 the localization induced functor 

F,: m(Sr~, SrJ/t ~) ~ iSrJg 

realizes to a homotopy equivalence. 
For this, it suffices to demonstrate that for each M ~ i(S, Jg) the comma category 

F, /M is contractible. But this is a consequence of the facts that each F J M  is nonempty 
and filtering, which we prove below. 
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For r = 0, there is nothing to prove, and for r = 1 the argument is extractable from 
Grayson, [1] and it goes as follows. Here F1/M has objects P' I '  > M, where the arrow 
is an R module map which localizes to an isomorphism and arrows commuting 
triangles 

p' ~ p" 

M' 

where the monomorphism has cokernel in of .  

By definition o f ~ ,  there is a projective module P such that S -  1p = M. Thus FI/M 
is nonempty. Now, given two objects 

p, f') M~f" p,  

of Fx/M we can find s e S and maps g' and g" so that 

p =~ p .=~p 

p, f' > M feE_p,, 

commutes. Since P is projective and s is a nonzero divisor, multiplication by s is 
an admissible monomorphism and P--* M is injective. It follows that 0' and 0" are 
injective, so we have exact sequences 

O ~ P  g'~ P ' ~  T ' ~ O ,  

O--.P r  

Since P is projective and the projective dimensions of P' and P" are less than or 
equal to 1, it follows that T', T " e  o f  c ~.  Thus g,g' " are in m(~, of), and we have 
constructed an object 

p - ~  p JL~ M 

which maps to the two given objects 

f ' :P'--*M, f ' :P"  ~ M .  

Now suppose that we have two arrows in F1/M n 

ht ' h2:( P, s'" >M)::$(P" f'" >M). 

We find a third object and map g out of it such that h~ g = h2g in F~/M. Starting with 
P Y M as above, find s and 

g : ( e ~  e f ) M ) ~ ( P '  f~>M) i n o f .  

Now S - l k e r  (hlg - h2g ) = O, together with the fact that P, being projective, has no 
S-torsion, implies that h~g = h2g, as desired. 
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For r > 1, we extend the arguments in the following manner. An object of F J M  

amounts to a map of diagrams of R modules 

0 ~ P'l/o >-~"" ~-~ P'~/o 

0 ~ "'" ~ P'm 
p , _ _  �9 

0 ~ P',I,- i 
,L 
0 

M =  

0 ~ M1/o ~ ... ~ Mr/o 

0 >-~...>--~M m 

0 ~ Mr/~_ 1 

l 
0 

which localizes to an isomorphism. F , / M  is nonempty, since we may find projectives 
Q~ such that S-1Q~ ~ Mi/i_ ~, 1 ~< i ~< r. Then putting P~/j = ~)j<k<~Qk, choosing 
maps in the obvious way, and using the lifting property of projectives we obtain 
a diagram P f ~M in Fr/M.  

Given two objects, f ' :  P ' ~  M and f":  P"-~ M, we construct as above diagrams 

Qi,  s, , Q~ , s, Q,  

, f i l l  - i f i b  - I , ,  
Pi/i- i > Mi/ i -  i < Pi/i- i 

for 1 ~< i ~< r. Assembly of these diagrams in the manner above yields 

( f ' :  P' ~ M ) ~ ( f . s :  P ~ M ) ~ ( f " :  P " - ~  M)  

a diagram in m(Sr~,  S ~ )  as desired. 
Given two maps 

hi,h2: (f ' :  P' ~ M) ~ (f": P" ~ M), 

we put together 

g : ( P - ~ P  f , M ) ~ ( f ' : P ' ~ M )  

such that hlg  = h2g, using the argument above pointwise. 
Throughout this paper we have been occupied essentially with the problem of 

proving that two inequivalent categories have the same K-theory. We close by 
mentioning a case where two categories are shown to have the same K-theory by 
showing they are, in fact, equivalent categories. The situation is the derivation of the 
localization-completion Mayer-Vietoris sequence. With notations as in the beginning 
of the section, one starts with the diagram 

R__, S - 1 R  

~ . . . . ~  S - 1 R s  

where/~s is the S-adic completion of R. According to Karoubi [5] the extension of 
scalars induces a functor ~ ~ ~ where ~ is the category of S-torsion/~s modules of 
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homological dimension ~< 1. Moreover, this functor is an equivalence of categories, so 
that one obtains a ladder diagram 

Ki(gf, ) ~ Ki (R ) ~ K i ( S -  x R) 
$ 

-~ K ~ ( ~ )  -~ Ki(~) -~ K~(S- 1i~s) -~ 

and then the Mayer-Vietoris sequence. So it is clear that more usual categorical 
considerations pop up in K-theory, too. 
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