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Foreword

These are notes intended for the author’s algebraic K-theory lectures at the
University of Oslo in the spring term of 2010. The main references for the
course will be:

• Daniel Quillen’s seminal paper “Higher algebraic K-theory. I” [55], sec-
tions 1 though 5 or 6, including his theorems A and B concerning the
homotopy theory of categories, the definition of the algebraic K-theory
of an exact category using the Q-construction, the additivity, resolution,
devissage and localization theorems, and probably the fundamental theo-
rem;

• Friedhelm Waldhausen’s foundational paper [68] “Algebraic K-theory of
spaces”, sections 1.1 through 1.6 and 1.9, including the definition of the
algebraic K-theory of a category with cofibrations and weak equivalences
using the S•-construction, the additivity, generic fibration and approxi-
mation theorems, and the relation with the Q-construction;

• Saunders Mac Lane’s textbook “Categories for the Working Mathemati-
cian” [40] on category theory, where parts of chapters I though IV, VII,
VIII, XI and XII are relevant;

• Allen Hatcher’s textbook “Algebraic Topology” [26] on homotopy theory,
drawing on parts of sections 4.1 on higher homotopy groups, 4.K on quasi-
fibrations and the appendix;

• The author’s PhD thesis “A spectrum level rank filtration in algebraic K-
theory” [57], for the iterated S•-construction and a proof of the Barratt–
Priddy–Quillen theorem.

Background material and other connective tissue will be provided in these notes.
As the list above shows, the selection of material may be a bit subjective.
Comments and corrections are welcome—please write to rognes@math.uio.no .

iv



Chapter 1

Introduction

What is algebraic K-theory?
Here is a preliminary discussion, intended to lead the way into the subject

and to motivate some of the constructions involved. Such a preamble may be
useful, since modern algebraic K-theory relies on quite a large body of technical
foundations, and it is easily possible to get sidetracked by developing one or
more of these foundations to their fullest, such as the model category theory of
simplicial sets, before reaching the natural questions to be studied by algebraic
K-theory.

There may not even be a common agreement about what these natural ques-
tions are. Algebraic K-theory is in some sense a meeting ground for several other
mathematical subjects, including number theory, geometric topology, algebraic
geometry, algebraic topology and operator algebras, relating to constructions
like the ideal class group, Whitehead torsion, coherent sheaves, vector bundles
and index theory.

It is quite possible to give a course that outlines all of these neighboring
subjects. However, the aim for this course will instead be to focus on algebraic
K-theory itself, rather than on these applications of algebraic K-theory. In
particular, we will focus directly on “higher algebraic K-theory”, the definition
of which requires more categorical and homotopy theoretic subtlety than the
simpler algebraic group completion process that is most immediately needed for
some of the applications.

After giving a first overview of the subject matter, we will therefore spend
some time on necessary background, starting with category theory and contin-
uing with homotopy theory. The aim is to spend the minimal amount of time
on this that is needed for an honest treatment, but not less. Then we turn to
the construction and fundamental theorems of higher algebraic K-theory. Here
we will reverse the historical order, at least as it is visible in the published
record, by first working with Waldhausen’s simplicial construction of algebraic
K-theory, called the S•-construction, and only later will we specialize this to
Quillen’s purely categorical construction, known as the Q-construction.

The specialization may turn out to only be an apparent restriction, as ongo-
ing work by Clark Barwick and the author extends the Q-construction to accept
∞-categories as input, but this is work in progress.

1



CHAPTER 1. INTRODUCTION 2

1.1 Representations

Many mathematical objects come to life through their representations by actions
on other, simpler, mathematical objects. Historically this was very much so for
groups, which were at first realized as permutation groups, with each group
element acting by an invertible substitution on some fixed set. We now say
that the group acts on the given set, and this gives a discrete representation
of the group. Similarly, one may consider the action of a group through linear
isomorphisms on a vector space, and this leads to the most standard meaning of
a representation. Concentrating on the additive structure of the vector space,
we may also consider actions of rings on abelian groups, which leads to the
additive representations of a ring through its module actions.

[[Retractive spaces over X.]]

Example 1.1.1. In more detail, given a group G with neutral element e we
may consider the class of left G-sets, which are sets X together with a function

G × X → X

taking (g, x) to g · x = gx, such that (gh) · x = g · (h · x) and e · x = x for all
g, h ∈ G and x ∈ X. These are discrete representations of groups.

Example 1.1.2. Similarly, given a ring R with unit element 1 we may con-
sider the class of left R-modules, which are abelian groups M together with a
homomorphism

R ⊗ M → M

taking r ⊗ m to r · m = rm, such that (rs) · m = r · (s · m) and 1 · m = m for
all r, s ∈ R and m ∈ M . These are additive representations of rings.

Example 1.1.3. Given a group G and a field k, we can form the group ring
k[G], and a left k[G]-module M is then the same as a k-linear representation of
G, since the scalar action by k ⊆ k[G] on M makes M a k-vector space. Most
of the time G and k will come with topologies, and it will then be natural to
focus on topological modules with continuous actions.

Example 1.1.4. [[Retractive spaces over X.]]

1.2 Classification

A basic problem is to organize, or classify, the possible representations of a given
mathematical object. This way, if such a representation appears “in nature”,
perhaps arising from a separate mathematical problem or construction, then
we may wish to understand how this representation fits into the classification
scheme for these mathematical objects.

In this context, we are usually willing to view certain pairs of representations
as being equivalent for all practical purposes. For example, two G-sets X and
Y , with action functions G×X → X and G×Y → Y , are said to be isomorphic
if there is an invertible function f : X → Y such that g · f(x) = f(g ·x) in Y for
all g ∈ G and x ∈ X. Functions respecting the given G-actions in this way are
said to be G-equivariant. This way any statement about the elements of X and
its G-action can be translated into a logically equivalent statement about the
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elements of Y and its G-action, by everywhere replacing each element x ∈ X by
the corresponding element f(x) ∈ Y , and likewise replacing the G-action on X
by the G-action on Y . Since f is assumed to be invertible, we can equally well
go the other way, replacing elements y ∈ Y by their images f−1(y) ∈ X under
the inverse function f−1 : Y → X.

We are therefore usually really asking for a classification of all the possible
mathematical objects of a given kind, up to isomorphism. That is, we are
asking for an understanding of the collection of isomorphism classes of the given
mathematical object.

Example 1.2.1. If G = {e} is the trivial group, then a G-set is the same thing
as a set, and the classification of G-sets up to isomorphism is the same as the
classification of sets up to one-to-one correspondence of their elements, i.e., up
to bijection. More-or-less by definition, this classification problem is solved by
the theory of cardinalities. As a key special case, if we are only interested in
finite sets, then two finite sets X and Y can be put in bijective correspondence
if and only if they have the same number of elements, i.e., if #X = #Y , where
#X ∈ N0 = {0, 1, 2, . . . } denotes the non-negative integer obtained by counting
the elements of X. In this case the counting process establishes a one-to-one
correspondence between the elements of X and the elements of the standard set

n = {1, 2, . . . , n}

with n elements, so the classification of finite sets up to bijection is given by
this identification between the collection of isomorphism classes and the set of
non-negative integers.

Example 1.2.2. Returning to the case of a general group G, to each G-set X
and each element x ∈ X, we can associate a subset

Gx = {g · x ∈ X | g ∈ G}

of X, called the G-orbit of x ∈ X, and a subgroup

Gx = {g ∈ G | g · x = x}

of G, called the stabilizer subgroup of x ∈ X. There is a natural isomorphism

fx : G/Gx

∼=
−→ Gx

from the set of left cosets gGx of Gx in G to the G-orbit of x, taking the coset
gGx to the element g · x ∈ X. Here G/Gx is a left G-set, with the G-action
G × G/Gx → G/Gx that takes (g, hGx) to ghGx, and the isomorphism fx

respects the G-actions, as required for an isomorphism of G-sets.
Given two elements x, y ∈ X, the G-orbits Gx and Gy are either equal

or disjoint, and in general the G-set X can be canonically decomposed as the
disjoint union of its G-orbits. In the special case when there is only one G-
orbit, so that Gx = X for some x ∈ X, we say that the G-action is transitive.
To classify G-sets we first classify the transitive G-sets, and then apply this
classification one orbit at a time, for general G-sets.

If X is a transitive G-set, choosing an element x ∈ X we get an isomorphism
fx : G/Gx → Gx = X, as above. Hence we would like to say that X corresponds
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to the subgroup Gx ⊆ G. However, the stabilizer subgroup Gx will in general
depend on the choice of element x. If y ∈ X is another element, then there
is also an isomorphism fy : G/Gy → Gy = X, so we should also say that X
corresponds to the subgroup Gy. What is the relation between Gx and Gy?
Well, since the G-action is transitive, we know that y ∈ Gx, so there must exist
an element h ∈ G with h · x = y. Then

Gy = hGxh−1

since g ·y = y is equivalent to gh ·x = h ·x, hence also equivalent to h−1gh ∈ Gx

or g ∈ hGxh−1. Hence it is the conjugacy class (Gx) of Gx as a subgroup of
G that is a well-defined invariant of the transitive G-set X. Checking a few
details, the conclusion is that the classification of transitive G-sets is given by
this identification with the set of conjugacy classes of subgroups of G. The
inverse identification takes the conjugacy class (H) of a subgroup H ⊆ G to the
isomorphism class of the transitive left G-set X = G/H.

For example, if G = Cp is cyclic of prime order p, the possible subgroups are
H = {e} and H = G, and the transitive G-sets are G/{e} ∼= G and G/G ∼= ∗ (a
one-point set).

Exercise 1.2.3. Let G be a finite group. Let ConjSub(G) be the set of con-
jugacy classes of subgroups of G. Show that the isomorphism classes of finite
G-sets X are in one-to-one correspondence with the functions

ν : ConjSub(G) → N0 .

The correspondence takes such a function ν to the isomorphism class of the
G-set

X(ν) =
∐

(H)

ν(H)∐
G/H .

What about the case when G is not finite?

[[Classify k-linear G-representations, at least in the semi-simple case when
G is finite and #G is invertible in k. Maybe focus on k = R and C.]]

Example 1.2.4. For a general ring R, the classification of all R-modules up
to R-linear isomorphism is a rather complicated matter. For later purposes
we are at least interested in the finitely generated free R-modules M , with are
isomorphic to the finite direct sums

Rn = R ⊕ · · · ⊕ R

with n copies of R on the right hand side, and the finitely generated projective R-
modules P , which arise as direct summands of finitely generated free R-modules,
so that there is a sum decomposition

P ⊕ Q ∼= Rn

of R-modules. Note that the composite R-linear homomorphism

Rn ∼= P ⊕ Q
pr
−→ P

in
−→ P ⊕ Q ∼= Rn
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is represented by an n × n matrix B, which is idempotent in the sense that
B2 = B. Projective modules are therefore related to idempotent matrices. We
are also interested in finitely generated R-modules M , for which there exists a
surjective R-linear homomorphism

f : Rn → M

This notion is most interesting for Noetherian rings R, since for such R the
kernel ker(f) will also be a finitely generated R-module.

[[Reference to coherence for non-Noetherian R.]]
When R = k is a field, an R-module is the same as a k-vector space, and

the notions of finitely generated, finitely generated free and finitely generated
projective all agree with the condition of being finite dimensional. In this case
the classification of finite dimensional vector spaces is given by the dimension
function, establishing a one-to-one correspondence between isomorphism classes
of finite dimensional vector spaces and non-negative integers.

When R is a PID (principal ideal domain), the classification of finitely gen-
erated R-modules is well known. In this case, a finitely generated R-module is
projective if and only if it is free, so finitely generated projective R-modules are
classified by their rank, again a non-negative integer.

When R is a Dedekind domain, e.g. the ring of integers in a number field,
the classification of finitely generated projective R-modules is due [[Check]] to
Ernst Steinitz, see John Milnor’s “Introduction to algebraic K-theory” [48, §1].
Every nonzero projective module P of rank n is isomorphic to a direct sum
Rn−1 ⊕ I, where I is a non-zero ideal in R, and I ∼= ΛnP is determined up to
isomorphism by P .

Example 1.2.5. [[For retractive spaces over X, classification up to homotopy
equivalence may be more realistic than classification up to topological isomor-
phism, or homeomorphism.]]

1.3 Symmetries

The classification question, as posed above, only asks about the existence of
isomorphisms f : X → Y between two mathematical objects X and Y . Taken
in isolation, this may be the question one is principally interested in, but as
we shall see, when trying to relate several such classification questions to one
another, it turns out also to be useful to ask about the degree of uniqueness of
such isomorphisms. After all, if X is somehow built out of X1 and X2 along
a common part X0, and similarly Y is built out of Y1 and Y2 along a common
part Y0, then we might hope that having an isomorphism f1 : X1 → Y1 and an
isomorphism f2 : X2 → Y2 will suffice to construct an isomorphism f : X → Y
that extends f1 and f2. In many cases, however, this will require that both f1

and f2 restrict to isomorphisms from X0 to Y0, along the common parts, and
furthermore, that these restrictions agree, i.e., that

f1|X0 = f2|X0 : X0

∼=
−→ Y0 .

This means that we do not just need to know that X0 and Y0 are isomorphic,
by some unknown isomorphism, but we also need to be able to compare the
different possible isomorphisms connecting these two objects.
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The reader familiar with homological algebra may recognize that this clas-
sification of all possible isomorphisms between two objects X and Y is roughly
a derived form of the initial problem of classification up to isomorphism.

The classification of isomorphisms can easily be reduced to a classification of
self-isomorphisms, or automorphisms, which express the symmetries of a mathe-
matical object. Given two isomorphic objects X and Y , choose an isomorphism
f : X → Y . Given any other isomorphism g : X → Y between the same two
objects, we can form the composite isomorphism h = f−1g : X → X, which is
a self-isomorphism of X.

Xh
77

f
))

g
55 Y

Conversely, given any self-isomorphism h : X → X we can form the composite
isomorphism g = fh : X → Y between the two given objects. This sets up a one-
to-one correspondence between the different choices of isomorphisms g : X → Y
and the self-isomorphisms h : X → X. The correspondence does depend on the
initial choice of isomorphism f , but this is of lesser importance.

Hence we are led to ask the secondary classification problem, of understand-
ing the symmetries, or self-isomorphisms h : X → X of at least one object in
each isomorphism class for the problem at hand. Note that two such symmetries
can be composed, hence form a group Aut(X), called the automorphism group
of X.

Example 1.3.1. The automorphism group of a typical finite set n = {1, 2, . . . , n}
is the group of invertible functions σ : {1, 2, . . . , n} → {1, 2, . . . , n}, i.e., the sym-
metric group Σn of permutations of n symbols.

Example 1.3.2. The automorphism group of a typical transitive G-set G/H
is the group of G-equivariant invertible functions f : G/H → G/H. Any such
function is determined by its value at the unit coset eH, since f(gH) = f(g ·
eH) = g · f(eH) for all g ∈ G. Let us write wH = f(eH) for this value in G/H.
In general, not all w ∈ G are realized in this way: since gH = ghH for all h ∈ H
we must have g ·wH = f(gH) = f(ghH) = gh ·wH for all g ∈ G, h ∈ H, which
means that w−1hw ∈ H for all h ∈ H, i.e., that w is in the normalizer NG(H)
of H in G. This condition is also sufficient, so wH can be freely chosen in the
quotient group

WG(H) = NG(H)/H ,

called the Weyl group of H in G. The automorphism group of the transitive G-
set G/H is thus the Weyl group WG(H). Note that NG(H) = G and WG(H) =
G/H precisely when H is normal in G, e.g. when G is abelian.

Exercise 1.3.3. Let X =
∐n

i=1 G/H be the disjoint union of n ≥ 0 copies of
G/H. Show that the automorphism group of the G-set X is the semi-direct
product

Σn ⋉ WG(H)n ,

where σ ∈ Σn acts by permuting the n factors in WG(H)n. Such a semi-direct
product is also called a wreath product, and denoted Σn ≀ WG(H).

What is the automorphism group of X(ν) =
∐

(H)

∐ν(H)
G/H of the disjoint

union, for H ranging over the conjugacy classes of subgroups of G, of ν(H) copies
of G/H?
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Example 1.3.4. Consider a finitely generated free R-module M = Rn with n ≥
0. The R-module homomorphisms f : Rn → Rn can be expressed in coordinates
by matrix multiplication by an n × n matrix A with entries in R. For f to be
an isomorphism is equivalent to A being invertible, so the automorphism group
of Rn is the general linear group GLn(R) of n × n invertible matrices.

[[Describe automorphism group of a finitely generated projective R-module
P , given as the image of an idempotent n × n matrix B, as a subgroup of
GLn(R).]]

1.4 Categories

We now turn to the abstract notion of a category, which encodes the key prop-
erties of the examples of discrete or additive representations considered above.
Our main reference for category theory is MacLane [40].

A category C consists of a class obj(C ) of objects, and for each pair X, Y of
objects, a set C (X,Y ) of morphisms from X to Y , usually denoted by arrows
X → Y . Given three objects X, Y and Z, and morphisms f : X → Y and
g : Y → Z, there is defined a composite morphism gf : X → Z. Furthermore,
for each object X there is an identity morphism idX : X → X. These are
required to satisfy associative and unital laws.

A morphism f : X → Y is called an isomorphism if it admits an inverse
f−1 : Y → X, such that f−1f = idX and ff−1 = idY . A category where all
morphisms are isomorphisms is called a groupoid.

Example 1.4.1. For each group G there is a category G−Set with objects
G-sets and morphisms f : X → Y the G-equivariant functions. Here not every
morphism is an isomorphism, but there is a smaller category iso(G−Set) with
the same objects, and with only the invertible G-equivariant functions. That
category is a groupoid.

Example 1.4.2. For each ring R there is a category R−Mod with objects R-
modules and morphisms f : M → N the R-linear homomorphisms. Again not
every morphism is an isomorphism, but there is a smaller category iso(R−Mod)
with the same objects, and with only the invertible R-linear homomorphisms.
That category is a groupoid.

Note that the category C contains all the information needed to ask the
classification problem for the objects of C , up to the notion of isomorphism
implicit in C . We can introduce an equivalence relation ∼= on the objects of
C , by saying that X ∼= Y if there exists an isomorphism f : X → Y in C ,
and we can let π0(C ) be the collection of equivalence classes for this relation.
We often write [X] ∈ π0(C ) for the equivalence class of an object X in C .
The classification problem is to determine π0(C ) in more effectively understood
terms.

Furthermore, given any object X in C the set C (X,X) of morphisms f : X →
X is a monoid (= group without inverses) under the given composition. The sub-
set of invertible elements is precisely the subgroup Aut(X) of automorphisms, or
symmetries, of X in C . Hence also the refined classification problem, including
not only the existence but also the enumeration of the isomorphisms between
two given objects, is encoded in the category.
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1.5 Classifying spaces

Following an idea of Alexander Grothendieck, it is possible to represent cate-
gories by topological spaces in a way that, especially for groupoids, retains all
the essential information. These constructions are explained by Graeme Segal
in [59].

The idea is to start with a category C , and to form a topological space |C |,
called the classifying space of C , that amounts to a “picture” of the objects,
morphisms and compositions of the category.

To visualize this space, start with drawing one point for each object X of
the category. Then, for each morphism f : X → Y in the category, draw an
edge from the point corresponding to X to the point corresponding to Y . If
there are several such morphisms, there will be several such edges with the same
end-points.

X
))
//
55 Y

(We do not actually draw in edges corresponding to the identity morphisms idX ,
or more precisely, these edges are collapsed to the point corresponding to X.)

Now, for each pair of composable morphisms f : X → Y and g : Y → Z,
with composite gf : X → Z, we have already drawn three points, corresponding
to X, Y and Z, and connected them with three edges, between X and Y , Y
and Z and X and Z. The rule is now to insert a planar triangle, with boundary
given by those three edges, for each such pair (g, f).

X

f
ÃÃ

@@
@@

@@
@

gf
// Z

Y

g

??~~~~~~~

(If f or g is an identity morphism, this triangle is actually collapsed to the edge
corresponding to the other morphism.)

So far we have a 2-dimensional picture. Continuing, for each triple of com-
posable morphisms f : X → Y , g : Y → Z and h : Z → W , we have already
drawn in four triangles, corresponding to the pairs (g, f), (h, g), (h, gf) and
(hg, f). These meet in the same way as the four faces of a tetrahedron, and the
rule is to insert such a solid tetrahedron for each composable triple (h, g, f).

W

X

f
ÃÃ

BB
BB

BB
BB

hgf
>>}}}}}}}}
___ gf

//___ Z

h

``AAAAAAAA

Y

g

>>}}}}}}}}

hg

OO

(Again, if f , g or h is an identity morphism, then this solid shape is flattened
down to the appropriate triangle.)

To generalize, we think of points, edges, triangles and tetrahedra as the cases
n = 0 though 3 of a family of convex spaces called simplices. The n-dimensional
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simplex ∆n can be taken to be the convex subspace

∆n = {(t0, . . . , tn) ∈ In+1 |
n∑

i=0

ti = 1}

of the (n+1)-cube that is spanned by the (n+1) vertices ei = (0, . . . , 0, 1, 0, . . . , 0)
for 0 ≤ i ≤ n. Topologically, ∆n is an n-disc, with boundary ∂∆n homeomor-
phic to an (n − 1)-sphere.

At the n-th stage of the construction of C , we insert an n-simplex ∆n for
each n-tuple of composable morphisms (fn, . . . , f1) in C , along a copy of the
boundary ∂∆n of the n-simplex, which was already added at the (n−1)-th stage.
If any one of the fi is an identity morphism, the n-simplex only appears in a
squashed form, already contained in the previous stage. Taking the increasing
union of this sequence of spaces, as n → ∞, we obtain the classifying space |C |.

The precise definition goes in two steps: first one forms a simplicial set N•C

called the nerve of C , with n-simplices NnC the set of n-tuples of composable
morphisms (fn, . . . , f1) in C , and appropriate face and degeneracy maps. Then
one defines the classifying space |C | to be the topological realization of this
simplicial set, given as an identification space

|C | =
∐

n≥0

NnC × ∆n/≃ .

We shall return to these constructions later.
A key point now is that if C is a groupoid, so that all morphisms are iso-

morphisms, then the classification problem in C becomes a homotopy theoretic
question about the classifying space |C |. For the isomorphism classes of objects
in C correspond bijectively to the path components of |C |:

π0(C ) ∼= π0(|C |)

and the automorphism group Aut(X) = C (X,X) of any object X in C is
isomorphic to the fundamental group of |C | based at the point corresponding
to X:

C (X,X) ∼= π1(|C |,X) .

Hence an understanding of the homotopy type of the classifying space |C | is
sufficient, and in some sense more-or-less equivalent, to an understanding of the
refined classification problem in C .

To motivate these formulas, note that if X and Y are isomorphic in C ,
then the edge corresponding to any chosen isomorphism shows that the points
corresponding to X and Y are in the same path component of |C |. Also, if
f : X → X is an automorphism of X, then the edge corresponding to f is in
fact a loop based at X, which determines an element in the fundamental group
π1(|C |,X). Given another automorphism g : X → X, the loop corresponding
to the composite morphism gf is not equal to the loop sum g ∗ f of the loops
corresponding to g and f , but the two loops are homotopic, by a homotopy run-
ning over the triangle corresponding to (g, f). Hence the two group structures
agree.

X

f

LL

g

ll

gf

¦¦
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[[If C is not a groupoid, these formulas fail, but the homotopical data on the
right hand side is still of categorical interest.]]

Example 1.5.1. Let iso(Fin) be the groupoid of finite sets and invertible func-
tions. The classifying space | iso(Fin)| has one path component for each non-
negative integer, with the n-th component containing the point corresponding
to the object n = {1, 2, . . . , n}. Each permutation σ ∈ Σn specifies a loop
in | iso(Fin)| at n, and the fundamental group of that path component is iso-
morphic to Σn. It turns out that the universal cover of that path component
is contractible, so that the n-th path component is homotopy equivalent to a
space called BΣn, given by the bar construction on the group Σn. Hence there
is a homotopy equivalence

| iso(Fin)| ≃
∐

n≥0

BΣn .

[[Forward reference to bar construction BG for groups (or monoids) G.]]

Exercise 1.5.2. Let G be a finite group, and let iso(G−Fin) be the groupoid
of finite G-sets and G-equivariant bijections. Convince yourself that there is a
homotopy equivalence

| iso(G−Fin)| ≃
∐

ν

B Aut(X(ν)) ,

where ν ranges over the functions ConjSub(G) → N0. Using Exercise 1.3.3, can
you see that there is a homotopy equivalence

| iso(G−Fin)| ≃
∏

(H)

∐

n≥0

B(Σn ≀ WG(H))

where (H) in the product runs through ConjSub(G)? [[Forward reference to
Segal–tom Dieck splitting.]]

[[Classifying space of real or complex vector spaces given in terms of Grass-
mannians. More elaborate spaces for k-linear G-representations.]]

Example 1.5.3. Let iso(F (R)) be the groupoid of finitely generated free R-
modules and R-linear isomorphisms. Under a mild assumption on R, satisfied
e.g. if R is commutative or if R = Z[π] is an integral group ring, the classifying
space | iso(F (R))| has one path component for each non-negative integer, with
the n-th component containing the point corresponding to the object Rn. Each
invertible matrix A ∈ GLn(R) specifies a loop in | iso(F (R))| at Rn, and the
fundamental group of that path component is isomorphic to GLn(R). It again
turns out that the universal cover of that path component is contractible, so
that the n-th path component is homotopy equivalent to BGLn(R). Hence
there is a homotopy equivalence

| iso(F (R))| ≃
∐

n≥0

BGLn(R) .

In general, for a discrete group G the bar construction BG is a space such
that its (singular) homology equals the group homology of G, which again can
be expressed as the Tor-groups of the group ring Z[G]:

H∗(BG) ∼= Hgp
∗ (G) = TorZ[G]

∗ (Z, Z) .
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To see this, arrange that BG is a CW-complex, and note that its universal cover
EG = B̃G is then a contractible CW-complex with a free, cellular G-action. The
cellular complex for BG can then be computed from that of EG, by

C∗(BG) ∼= C∗(EG) ⊗Z[G] Z ,

and since C∗(EG) is a free Z[G]-module resolution of Z, the claim follows by
passing to homology.

Hence, in the examples above, we have isomorphisms

H∗(| iso(Fin)|) ∼=
⊕

n≥0

H∗(BΣn)

and
H∗(| iso(F (R))|) ∼=

⊕

n≥0

H∗(BGLn(R)) .

Remark 1.5.4. As proposed by Jacques Tits in 1956, the symmetric group Σn

might be interpreted as the general linear group GLn(F1) over the “field with
one element”. From this perspective, Fin is a special case of F (R). The idea
has been carried further by Christophe Soulé, Alain Connes and others, to define
varieties, zeta-functions, etc. over this hypothetical field. This is apparently part
of a take on the Riemann hypothesis.

1.6 Monoid structures

So far, the introduction of categorical language and the formation of the classify-
ing space has only amounted to a process of rewriting. The original classification
problem in a groupoid C is basically equivalent to the problem of determining
the homotopy type of |C |.

The basic idea of algebraic K-theory is to consider a modification of the
classifying space |C | to form a new space K(C ). On one hand the resulting
space K(C ) should be better-behaved, more strongly structured and possibly
more easily analyzed than |C |. On the other hand, the difference between the
spaces |C | and K(C ) should not be too great, so that any information we obtain
about K(C ) will also tell us something about |C | and the classification problem
in C .

The kind of structure that we have in mind here, which is to be strengthened
in K(C ) as compared to |C |, is usually some form of sum operation on the
objects of C . At the level of isomorphism classes, the strengthening consists
of extending the resulting commutative monoid structure to an abelian group
structure.

Example 1.6.1. In the groupoid iso(Fin) of finite sets and bijections, we can
take two finite X and Y and form their disjoint union, to obtain a new finite
set X ⊔ Y . This defines a pairing of categories

⊔ : iso(Fin) × iso(Fin) −→ iso(Fin) ,

or more precisely, a bifunctor, giving iso(Fin) a (symmetric) monoidal structure.
In the larger category Fin of finite sets and arbitrary functions, the disjoint
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union X ⊔ Y , equipped with the two inclusions X → X ⊔ Y and Y → X ⊔
Y expresses X ⊔ Y as the categorical sum or coproduct of X and Y . The
isomorphism class of X ⊔ Y only depends on the isomorphism classes of X and
Y , so we get an induced pairing +: N0 × N0 → N0 on the set

π0(iso(Fin)) ∼= N0

of isomorphism classes of finite sets. This is simply the usual addition of non-
negative integers, since #(X⊔Y ) = #X+#Y . Hence the disjoint union pairing
lifts the sum operation on N0 to a refined sum operation on iso(Fin). Note that
this structure makes both sides of the displayed equation into commutative
monoids, and the isomorphism is now not just a one-to-one correspondence of
sets, but an isomorphism of commutative monoids.

Passing to classifying spaces, there is also an induced pairing

| ⊔ | : | iso(Fin)| × | iso(Fin)| −→ | iso(Fin)|

that makes | iso(Fin)| into a topological monoid. It is not strictly commutative,
since X ⊔ Y is isomorphic, but not identical, to Y ⊔ X. Still, it is homotopy
commutative in a sense that we shall return to.

Under the homotopy equivalence | iso(Fin)| ≃
∐

n≥0 BΣn, the above pairing
can be identified as the map

(∐

k≥0

BΣk

)
×

(∐

l≥0

BΣl

)
−→

∐

n≥0

BΣn

taking the (k, l)-th component to the (k + l)-th component, by the map

BΣk × BΣl → BΣk+l

induced by the group homomorphism Σk × Σl → Σk+l given by block sum of
permutation matrices (σ, τ) 7→ [ σ 0

0 τ ]. Associativity for the block sum pairing
shows that this makes

∐
n≥0 BΣn a topological monoid.

Remark 1.6.2. This process of lifting a structure from the set π0(C ) to a the
category C is known as categorification, while the process of lowering a structure
on C to the set of isomorphism classes π0(C ) is known as decategorification. It
is the former process that requires creative thought.

Example 1.6.3. In the groupoid iso(F (R)) of finitely generated free R-modules
and R-linear isomorphisms, we can take two R-modules M and N and form
their direct sum, to obtain a new R-module M ⊕ N . This defines a pairing of
categories

⊕ : iso(F (R)) × iso(F (R)) −→ iso(F (R)) .

In the larger category F (R) of finitely generated free R-modules and arbitrary
R-linear homomorphisms, the direct sum M ⊕N , equipped with the two inclu-
sions M → M ⊕ N and N → M ⊕ N expresses M ⊕ N as the coproduct of
M and N . The isomorphism class of M ⊕N only depends on the isomorphism
classes of M and N , so under the same mild hypothesis on R as above, we get
an induced pairing +: N0 × N0 → N0 on the set

π0(iso(F (R))) ∼= N0
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of isomorphism classes of finitely generated free R-modules. Again, this is usual
addition of non-negative integers, since rank(M ⊕ N) = rank(M) + rank(N).
Hence the direct sum pairing lifts the sum operation on N0 to iso(F (R)).

Passing to classifying spaces, there is also an induced pairing

| ⊕ | : | iso(F (R))| × | iso(F (R))| −→ | iso(F (R))|

that makes | iso(F (R))| into a topological monoid. It is homotopy commutative,
but not strictly commutative, since M ⊕ N is isomorphic, but not identical, to
N ⊕ M .

Under the homotopy equivalence | iso(F (R))| ≃
∐

n≥0 BGLn(R), the above
pairing can be identified as the map

(∐

k≥0

BGLk(R)
)
×

(∐

l≥0

BGLl(R)
)
−→

∐

n≥0

BGLn(R)

taking the (k, l)-th component to the (k + l)-th component, by the map

BGLk(R) × BGLl(R) → BGLk+l(R)

induced by the group homomorphism GLk(R)×GLl(R) → GLk+l(R) given by
block sum of invertible matrices (A,B) 7→ [ A 0

0 B ] This makes
∐

n≥0 BGLn(R) a
topological monoid.

Example 1.6.4. Let P(R) be the category of finitely generated projective
R-modules and R-linear homomorphisms, and let iso(P(R)) be the groupoid
where the morphisms are R-linear isomorphisms. Again the direct sum of R-
modules defines a pairing

⊕ : iso(P(R)) × iso(P(R)) −→ iso(P(R)) ,

which induces a sum operation on the set

π0(iso(P(R)))

of isomorphism classes of finitely generated projective R-modules. This pairing
makes π0(iso(P(R))) a commutative monoid.

Passing to classifying spaces, there is also an induced pairing

| ⊕ | : | iso(P(R))| × | iso(P(R))| −→ | iso(P(R))|

that makes | iso(P(R))| into a homotopy commutative topological monoid.

Example 1.6.5. When R = C(X) is the ring of continuous complex functions
on a (compact Hausdorff) topological space X, there is a correspondence be-
tween the finite-dimensional complex vector bundles E → X and the finitely
generated projective R-modules P , taking E to the module of continuous sec-
tions P = Γ(E ↓ X). In this case the classification of isomorphism classes
of finitely generated projective R-modules is the same as the classification of
finite-dimensional complex vector bundles over X, so that

π0(iso(P(R))) ∼= Vect(X) ,
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where Vect(X) denotes the set of isomorphism classes of such vector bundles.
This is an isomorphism of commutative monoids, where the direct sum of R-
modules on the left corresponds to the Whitney sum of vector bundles on the
right. For example, when X = Sk+1, Vect(Sk+1) is the disjoint union over n ≥ 0
of the homotopy groups πk(U(n)), which are not all known. This shows that the
structure of π0(iso(P(R))) can in general be rather complicated. [[Reference to
Serre and Swan?]]

1.7 Group completion

Note that the monoids N0 and π0(iso(P(R))) are not groups, since most ele-
ments lack additive inverses, or negatives. After all, there are no sets with a
negative number of elements, and no R-modules of negative rank.

A fundamental idea of Grothendieck was to strengthen the algebraic struc-
ture on commutative monoids, like π0(C ), by adjoining additive inverses to all
its elements, so as to obtain an actual abelian group.

Algebraically, this is an easy construction. Given a commutative monoid
M , written additively with neutral element 0, view elements (a, b) of M ×M as
formal differences a− b, by introducing the equivalence relation (a, b) ∼ (c, d) if
there exists an f ∈ M such that a + d + f = b + c + f . (If the cancellation law
x + f = y + f =⇒ x = y holds in M , one may omit all mention of f .) Then
the set of equivalence classes

K(M) = (M × M)/∼

becomes an abelian group, with componentwise sum. The negative of the equiv-
alence class [a, b] of (a, b) is [b, a], and there is a monoid homomorphism

ι : M → K(M)

that takes a to [a, 0]. In a precise sense this is the initial monoid homomorphism
from M to any abelian group, so K(M) is the group completion of M . For
example, K(N0) ∼= Z. We also call K(M) the Grothendieck group of M .

Example 1.7.1. Let G be a finite group, and let M(G) = π0(iso(G−Fin))
be the commutative monoid of isomorphism classes of finite G-sets, with sum
operation [X]+ [Y ] = [X ⊔Y ] induced by disjoint union. Let A(G) = K(M(G))
be the associated Grothendieck group. The identification of M(G) with the
set of functions ν : ConjSub(G) → N0 is compatible with the sum operation
(defined pointwise by (ν + µ)(H) = ν(H) + µ(H)), since X(ν) ⊔ X(µ) ∼=
X(ν + µ). Hence A(G) = K(M(G)) is isomorphic to the abelian group of
functions ν : ConjSub(G) → Z. From another point of view, M(G) is the free
commutative monoid generated by the isomorphism classes of transitive G-sets
G/H, and A(G) is the free abelian group generated by the same isomorphism
classes.

The abelian group A(G) has a natural commutative ring structure, and is
therefore known as the Burnside ring. (Another common notation is Ω(G).)
The cartesian product X × Y of two finite G-sets X and Y is again a finite
G-set, with the diagonal G-action g · (x, y) = (g · x, g · y), and this pairing
M(G)×M(G) → M(G) extends to the ring product A(G)×A(G) → A(G). By
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linearity, the ring product on A(G) is determined by the product [G/H] · [G/K]
of two transitive G-sets. Here

G/H × G/K ∼=
∐

x

G/(H ∩ xKx−1)

as G-sets, where x ranges over a set of representatives for the double coset
decomposition G =

⋃
x HxK, so

[G/H] · [G/K] =
∑

x

[G/(H ∩ xKx−1)]

in the Burnside ring.
For example, if G = Cp is cyclic of order p, the 1-element set G/G = ∗ acts as

the ring unit in A(Cp), while the free G-set G/{e} = G satisfies G×G ∼=
∐p

G,
hence

A(Cp) ∼= Z[T ]/(T 2 = pT )

as a commutative ring. Here T denotes the class of G.

[[Reference to Segal’s Burnside ring conjecture on π0
S(BG+).]]

[[Consider representation ring Rk(G), the Grothendieck group of k-linear
G-representations.]]

[[Reference to the Atiyah–Segal theorem on K0(BG).]]

Definition 1.7.2. Let R be any ring. The zero-th algebraic K-group of R is
defined to be the group completion

K0(R) = K(π0(iso(P(R))))

of the abelian monoid of isomorphism classes of finitely generated projective
R-modules, under direct sum.

Remark 1.7.3. The use of the letter ‘K’ here, and hence the name K-theory,
appears to stem from the construction of the group completion in terms of
equivalence classes of pairs, viewed as formal differences. To refer to these classes
Grothendieck might have used the letter ‘C’, but since notations like C(X) were
already in use, he chose ‘K’ for the German word ‘Klassen’. [[Reference?]]

Example 1.7.4. Consider a finite CW complex X, with cellular complex C∗(X)
and cellular (= singular) homology H∗(X). In each degree n the n-th homology
group Hn(X) is a finitely generated abelian group, or Z-module, whose rank
bn(X) is known as the n-th Betti number of X. This is obviously a non-negative
integer. Knowledge of the number of n-cells in X for each n determines the rank
of the cellular complex C∗(X) in each degree, but in order to determine the Betti
numbers, knowledge of the ranks of the boundary maps dn : Cn(X) → Cn−1(X)
in the cellular complex is also needed. However, there is one relation between
these numbers that does not depend upon the boundary maps. Namely, the
Euler characteristic χ(X) =

∑
n≥0(−1)nbn(X) of X is given by both sides of

the equation

∑

n≥0

(−1)n rankHn(X) =
∑

n≥0

(−1)n rankCn(X) .
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Of course, this is now an equation that takes place in Z, not in N0, even if each
individual rank is non-negative.

As a consequence, the Euler characteristic satisfies some useful relations in
a number of cases. For example, if Y → X is a k-fold covering space, then
χ(Y ) = k · χ(X), since there are k n-cells in Y covering each n-cell in X, so
rankCn(Y ) = k · rankCn(X). More generally, if F → E → B is a fiber bundle
(or fibration) with F , E and B finite CW complexes then χ(E) = χ(B) · χ(F ).
In general there is no equally simple relation between the Betti numbers, since
there may be many differentials in the Serre spectral sequence

E2
∗,∗ = H∗(B;H∗(F )) =⇒ H∗(E) .

The point to note is that in order to make use of the Euler characteristic, in
place of Betti numbers, we have to work with integers instead of non-negative
integers.

1.8 Loop space completion

The fundamental idea of higher algebraic K-theory, as created by Quillen, is to
strengthen the algebraic structure on topological monoids, like |C |, by topolog-
ically adjoining homotopy inverses in a systematic manner, along a map

ι : |C | → K(C ) .

The well-behaved way of specifying this is a topological process of loop space
completion, since loop spaces have homotopy inverses realized by reversing the
direction of travel around a loop. In this case the details of the definition
require more topological sophistication than in the algebraic definition of K0.
The algebraic construction and the higher, topological one, will be compatible
after decategorification, in the sense that

K(π0(C )) ∼= π0(K(C )) .

[[Sometimes we give a sum structure on π0(C ) by setting [X] + [Y ] = [Z]
whenever there is a suitable extension 0 → X → Z → Y → 0, not just when
Z = X ⊕ Y . Then the starting data on |C | is more than just the monoid
structure induced by | ⊕ |, and K(C ) is not just the group completion of that
monoid structure.]]

[[In the case of Waldhausen’s S• construction, the starting data is given by
a category with cofibrations and weak equivalences. In the case of Quillen’s
Q-construction, this is specialized to an exact category.]]

In the examples discussed in Section 1.6, where a pairing ⊕ : C × C → C

makes M = |C | a topological monoid, and we seek to group complete π0(C )
with respect to the induced sum operation, the algebraic K-theory space K(C )
can be constructed as a loop space using the bar construction BM for monoids:

K(C ) = ΩB|C | .

For any based space X, ΩX = Map∗(S
1,X) denotes the loop space of X, defined

as the space of based maps from S1 to X. There is an inclusion Σ|C | → B|C |,
where ΣX = X ∧ S1 denotes the suspension of X. There is a natural map
X → ΩΣX that maps x to the loop s 7→ x ∧ s, and the group completion map
ι : |C | → K(C ) factors as |C | → ΩΣ|C | → ΩB|C |.
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Definition 1.8.1. The higher algebraic K-groups of C are in this case defined
as the homotopy groups

Ki(C ) = πi(K(C ))

of the loop space K(C ), for i ≥ 0. In particular, for each ring R we let K(R) =
K(iso(P(R))) and Ki(R) = πi(K(R)).

Under similar hypotheses [[forward reference]], the amazing thing happens
that K(C ) is not just a loop space, i.e., a space of the form ΩX1, but it is an
infinite loop space, i.e., there is a sequence of spaces Xn such that Xn ≃ ΩXn+1

for all n ≥ 0, and K(C ) = X0. In particular, K(C ) ≃ ΩnXn = Map∗(S
n,Xn)

is an n-fold loop space, for each n ≥ 0. The sequence of spaces K(C ) =
{Xn}n≥0 form a spectrum in the sense of algebraic topology, or equivalently, an
S-module, where S is the sphere spectrum. In this sense, K(C ) is a much more
strongly structured object than the classifying space |C |, and this additional
structure can often be brought to bear on the identification and the analysis of
its homotopy type.

For this to be useful for the original classification question in C , we must
of course know something about the group completion map ι. Here there is no
general theorem, but in many special cases there are particular results about
how close |C | and K(C ) are. We shall review some of these results in the rest
of this chapter.

1.9 Grothendieck–Riemann–Roch

The zero-th K-groups were introduced by Grothendieck around 1956 in the
context of sheaves over algebraic varieties, see [6] for the published exposition
by Borel and Serre. In general there are two K-groups associated to a variety
X, here denoted K0(X) and K ′

0(X), but they are isomorphic for X smooth and
quasi-projective.

The abelian group K ′
0(X) is defined to be generated by the set π0(Coh(X))

of isomorphism classes [F ] of coherent sheaves over X, subject to the relation

[F ] = [F ′] + [F ′′]

whenever
0 → F

′ → F → F
′′ → 0

is a short exact sequence of coherent sheaves. Note that in this case, we may or
may not have that F is isomorphic to the direct sum F ′ ⊕ F ′′. Some authors
write G0(X) for the Grothendieck group K ′

0(X)
The abelian group K0(X) is defined to be generated by the set of isomor-

phism classes [F ] of algebraic vector bundles over X, subject to the same re-
lation as above. However, in this case each short exact sequence of vector
bundles admits a splitting, so the relation may also be expressed as saying that
[F ] = [F ′] + [F ′′] whenever F ∼= F ′ ⊕ F ′′.

Each vector bundle is a coherent sheaf, so there is a natural homomor-
phism K0(X) → K ′

0(X), and this is an isomorphism when X is smooth and
quasi-projective, essentially because each coherent sheaf admits a finite length
resolution by vector bundles. We shall generalize this in the resolution theorem
[[forward reference]].
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In the affine case, when X = Spec(R), the category Coh(X) of coherent
sheaves over X is equivalent to the category M (R) of finitely generated R-
modules, and the category of vector bundles over X is equivalent to the cate-
gory P(R) of finitely generated projective R-modules. In particular, K0(X) =
K0(R).

Grothendieck proves the Riemann–Roch theorem in a relative form, starting
with a proper morphism f : X → Y of smooth and quasi-projective varieties.
The direct image functor f∗ has right derived functors Rqf∗ for all q ≥ 0, and
Grothendieck shows that for each coherent sheaf F over X, each derived direct
image (Rqf∗)(F ) is a coherent sheaf over Y . The correct statement of the
Riemann–Roch theorem is not just about the direct image homomorphism (of
commutative monoids)

f∗ : π0(Coh(X)) → π0(Coh(Y ))

taking [F ] to [f∗(F )], but about the total derived direct image homomorphism

f! =
∑

q≥0

(−1)q(Rqf∗) .

As in the case of Euler characteristics, the alternating sum f!(F ) cannot be as-
sumed to take values in π0(Coh(Y )), but it does make sense in the Grothendieck
group K ′

0(Y ). Having done this, it is easy to see that f! is additive on extensions
of coherent sheaves, so that it defines a homomorphism (of abelian groups)

f! : K ′
0(X) → K ′

0(Y ) .

This maneuver is therefore needed to even state the Grothendieck–Riemann–
Roch theorem, which compares the total derived direct image f! with the cor-
responding direct image f∗ : A(X) → A(Y ) of Chow groups, via the Chern
character ch : K0(X) → A(X)⊗Q. The direct images do not directly agree, but
they do when multiplied by the so-called Todd class td(X) ∈ A(X) ⊗ Q. The
general formula reads:

ch(f!(F )) · td(Y ) = f∗(ch(F ) · td(X))

When X is smooth and projective of dimension n, the unique map f : X → Y =
Spec(k) is proper, and the formula specializes to

χ(X,F ) = (ch(F ) · td(X))n ,

where the subscript n refers to the degree n part. [[Explain, or use Kronecker
pairing with fundamental class [X]?]] In the case k = C of complex varieties,
this is the Hirzebruch–Riemann–Roch theorem, and when n = 1, one recovers
the classical Riemann–Roch theorem for complex algebraic curves.

1.10 Vector fields on spheres

For each n ≥ 1, the following statements are equivalent:

(a) There is a division algebra over R of dimension n;
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(b) The sphere Sn−1 admits (n− 1) tangent vector fields that are everywhere
linearly independent;

(c) There is a two-cell complex X = Sn ∪f D2n in which the cup product
square of a generator of Hn(X; Z/2) is a generator of H2n(X; Z/2).

The division algebras R, C, H (the quaternions) and O (the octonions) show
that these statements are true for n = 1, 2, 4 and 8.

It is a theorem of Frank Adams [1] from 1960 that the third statement is false
for all other values of n. In particular, there are no higher-dimensional division
algebras then the ones given. Adams’ original proof used a factorization of the
Steenrod operations Sqn in singular cohomology (for n a power of two) using
secondary cohomology operations, and is rather delicate.

Following Grothendieck’s ideas from algebraic geometry, Michael Atiyah and
Friedrich Hirzebruch [4] introduced topological K-theory in 1959. For a finite
CW complex X, the group

K0(X) = K(Vect(X))

is defined to be the Grothendieck group of the commutative monoid of isomor-
phism classes of finite-dimensional complex vector bundles over X. A few years
later, Adams and Atiyah [2] found a quick and short, so-called “postcard proof”,
of Adams’ theorem, replacing the use of singular cohomology, Steenrod opera-
tions and secondary cohomology operations by the use of topological K-theory
and the much simpler Adams operations ψk : K0(X) → K0(X).

For expositions of the K-theory proof, see Husemoller [28, Ch. 14] or Sec-
tion 2.3 of Allen Hatcher’s book project

http://www.math.cornell.edu/∼hatcher/VBKT/VBpage.html .

1.11 Wall’s finiteness obstruction

Here is a more elaborate version of Example 1.7.4. Suppose for simplicity that
X is a path-connected CW complex, with universal covering space p : X̃ → X.
Fix a base point in X, and let π = π1(X) be the fundamental group. Then π

acts freely by deck transformations on X̃. The CW structure on X lifts to a CW
structure on X̃, and π permutes the cells of X̃ freely. Hence the cellular complex
C∗(X̃) of X̃ is a complex of free Z[π]-modules. Since X is the orbit space for the

free π-action on X̃, we have the isomorphism C∗(X) ∼= Z⊗Z[π]C∗(X̃) previously
mentioned.

If X is a finite CW complex, then there are finitely many free π-orbits of cells
in X̃, and C∗(X̃) is a bounded complex of finitely generated free Z[π]-modules.

In other words, each Cn(X̃) is a finitely generated free Z[π]-module, which is

nonzero only for finitely many n. For each n the isomorphism class of Cn(X̃)
therefore defines an element in the commutative monoid

π0(iso(F (Z[π])))

which we may map, by viewing free modules as projective, to the commutative
monoid

π0(iso(P(Z[π]))) .
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Now, the precise cellular modules C∗(X̃) depend on the particular choice of CW
structure on X. However, as for the Euler characteristic above, the alternating
sum

[X] =
∑

n≥0

(−1)n[Cn(X̃)] ∈ K0(Z[π])

is in fact independent of the CW structure. Of course, in order to form this alter-
nating sum [X], we had to go from the commutative monoid π0(iso(P(Z[π])))
to its group completion K0(Z[π]).

In this case the added complexity does not tell us something new. After
all, if X has cn n-cells, then Cn(X) is the free Z-module on cn generators

and Cn(X̃) is the free Z[π]-module on equally many generators. Hence we can

obtain Cn(X̃) from Cn(X) by base change along the unique ring homomorphism

Z → Z[π]. (This only works one degree at a time. The boundary maps in C∗(X̃)
are usually not induced up from those in C∗(X).) It follows that the alternating
sum [X] ∈ K0(Z[π]) is the image of the ordinary Euler characteristic χ(X) ∈ Z,
under the natural map

Z ∼= K0(Z) → K0(Z[π])

that takes an integer c to the class of the Z-module Zc, and then to the Z[π]-
module Z[π]c.

Definition 1.11.1. Let R be any ring. The projective class group K̃0(R) is
the cokernel of the natural homomorphism K0(Z) → K0(R), or equivalently,
the quotient of K0(R) by the subgroup generated by R viewed as a finitely
generated free, hence projective, R-module of rank 1.

Here is an extension of the previous example, due to Terry Wall [71] from

1965, which involves the projective class group K̃0(Z[π]) in a much more es-
sential way. A first step towards the classification of compact manifolds is to
determine which homotopy types of spaces are realized by manifolds. A second
step is then to determine how many different manifolds there are of the same
homotopy type, and a third step is to understand the symmetries of each of
these manifolds.

Staying with the first step, every compact manifold M can be embedded in
some Euclidean space Rk, and is then a retract of some open neighborhood in Rk.
Such a space is called an Euclidean neighborhood retract, abbreviated ENR.
Each compact ENR is a retract of a finite simplicial complex, hence of a finite
CW complex. See [26, App. A] for proofs of these results. So when searching
for manifolds, we need only consider those homotopy types of spaces that are
homotopy equivalent to retracts of finite CW complexes. It is convenient to
relax the ‘retraction’ condition as follows.

Definition 1.11.2. A space X is dominated by a space Y if there are maps
d : Y → X and s : X → Y such that ds : X → X is homotopic to the identity
on X.

Y
d

ÃÃ
@@

@@
@@

@

≃

X =
//

s

>>~~~~~~~
X

In other words, X is a ‘retract up to homotopy’ of Y . We say that X is finitely
dominated if it is dominated by a finite CW complex Y .
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It is known that all compact manifolds are homotopy equivalent to finite
CW complexes. This is clear for piece-wise linear manifolds (since these admit
a triangulation as a finite simplicial complex), hence also for smooth manifolds,
but is a deep fact due to Rob Kirby and Larry Siebenmann [34] for topological
manifolds.

This leads to the question whether a finitely dominated space X, i.e., a
space dominated by a finite CW complex, must itself be homotopy equivalent
to a finite CW complex. The answer is ‘yes’ for simply-connected X, as follows
from [26, Prop. 4C.1]. However, for general X the answer involves an element

in the projective class group K̃0(Z[π]), known as Wall’s finiteness obstruction.

Example 1.11.3. Suppose that X is dominated by a finite CW complex Y .
We may assume that both X and Y are path connected, and that X has a
universal covering space p : X̃ → X. Let d : Y → X be the dominating map,
with homotopy section s : X → Y . Let q : Ỹ → Y be the pullback of p along d.
The pullback of q along s is then the pullback of p along a map homotopic to
the identity, hence is isomorphic to p. We get a commutative diagram:

X̃
s̃ //

p

²²

y

Ỹ
d̃ //

q

²²

y

X̃

p

²²

X
s // Y

d // X

Note that the fundamental group π = π1(X) acts freely on both X̃ and Ỹ
through deck transformations, so that d̃ and s̃ are π-equivariant maps. Let
b : Y → Y be a cellular approximation to the composite map sd : Y → Y , i.e.,
a cellular map such that b ≃ sd. Since the composite ds : X → X is homotopic
to the identity, it follows that b2 = bb is homotopic to b, i.e., that b is homotopy
idempotent. Likewise, there is a π-equivariant cellular map b̃ : Ỹ → Ỹ covering
b, with b̃ ≃ s̃d̃. The induced map of bounded chain complexes

b̃∗ : C∗(Ỹ ) → C∗(Ỹ )

of finitely generated free Z[π]-modules is then chain homotopy idempotent, in
the sense that (b̃∗)

2 = b̃∗b̃∗ is chain homotopic to b̃∗. Wall uses this to show that

the singular chain complex of X̃, as a complex of Z[π]-modules, is chain homo-
topy equivalent to a bounded chain complex P∗ of finitely generated projective
Z[π]-modules

S∗(X̃) ≃ P∗ .

(If b̃∗ were strictly idempotent, we could let P∗ be the image of b̃∗ in C∗(Ỹ ),
with complementary summand Q∗ the image of id − b̃∗. Since b̃∗ is only chain
homotopy idempotent, the precise construction is a bit more complicated.) Here
each Pn is a finitely generated projective Z[π]-module, with an isomorphism
class [Pn] in π0(P(Z[π])), and only finitely many Pn are nonzero. However, the
interesting, well-defined, quantity is the alternating sum

[X] =
∑

n≥0

(−1)n[Pn] ∈ K0(Z[π])

and its image θ(X) ∈ K̃0(Z[π]). If X is itself a finite CW complex, we saw in the
previous example that this class [X] is in the image of K0(Z) in K0(Z[π]), hence
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maps to zero in the projective class group K̃0(Z[π]). Wall’s theorem in this con-
text is that the converse holds: a finitely dominated X is homotopy equivalent
to a finite CW complex if and only if the class θ(X) is zero in K̃0(Z[π]). This
class is therefore called Wall’s finiteness obstruction. For our purposes, the
main thing to note is that this theorem requires the zero-th algebraic K-group
to form the alternating sum [X], which maps to the finiteness obstruction θ(X)
in the projective class group. For further references, the survey [19] may be a
good place to start.

1.12 Homology of linear groups

Recall the homotopy equivalence

| iso(F (R))| ≃
∐

n≥0

BGLn(R)

and the induced isomorphism

H∗(| iso(F (R))|) ∼=
⊕

n≥0

H∗(BGLn(R)) .

One way to understand the group homology of the general linear groups GLn(R)
is thus to understand the homology of the classifying space of the groupoid
F (R).

There is a stabilization homomorphism GLn(R) → GLn+1(R) given by block
sum A 7→ [ A 0

0 1 ] with the 1 × 1 matrix [1] ∈ GL1(R). We let GL∞(R) =
colimn GLn(R) be the increasing union of all of the finite GLn(R). The elements
of GL∞(R) are infinite matrices with entries in R, that agree with the identity
matrix except in finitely many places. Applying bar constructions, there are
stabilization maps BGLn(R) → BGLn+1(R) for all n, and

BGL∞(R) = colim
n

BGLn(R)

is the increasing union of all of these spaces.
After passage to loop space completion, along the map

ι :
∐

n≥0

BGLn(R) → K(iso(F (R))) ,

the block sum with [1] becomes homotopy invertible. It follows that ι factors
as a composite

∐

n≥0

BGLn(R)
α

−→ Z × BGL∞(R)
β

−→ K(iso(F (R))) ,

where α is the natural inclusion that takes BGLn(R) to {n}×BGL∞(R). By the
homology fibration theorem of Dusa McDuff and Graeme Segal [46], or Quillen’s
“Q = +” theorem, presented by Daniel Grayson in [23], the second map β is a
homology isomorphism. Furthermore, each path component of K(iso(F (R)))
is homotopy equivalent to the base point path component K(R)0 of K(R) =
K(iso(P(R))). Hence

β∗ : H∗(BGL∞(R))
∼=
−→ H∗(K(R)0)
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is an isomorphism, This means that if we can identify the (infinite) loop space
K(R) and compute its homology, then we have also computed the homology of
the infinite general linear group GL∞(R).

It then remains to understand the effect of α in homology. It turns out that,
for many reasonable rings R, the stabilization GLn(R) → GLn+1(R) induces
homomorphisms

Hi(BGLn(R)) → Hi(BGLn+1(R))

that are isomorphisms for i in a range that grows to infinity with n. See Charney
[10] for one such result, which applies when R is a Dedekind domain. Hence,
for i in this stable range, there are isomorphisms Hi(BGLn(R)) ∼= Hi(K(R)0).

Example 1.12.1. [[R = C with the usual topology, with BLn(C) ≃ BU(n)
homotopy equivalent to the Grassmannian Grn(C∞) of complex n-dimensional
subspaces in C∞, and K-theory space Z × BU .]]

Example 1.12.2. This method was successfully applied by Quillen [54] in the
case when R = Fq is a finite field with q = pd elements, and his definition of the
higher algebraic K-groups was motivated by this approach.

Quillen first relates the base point component K(Fq)0 to the infinite Grass-
mannian BU , and the homotopy fixed-points Fψq for the Adams operation
ψq : BU → BU . For each prime ℓ 6= p, this lets him calculate its homology
algebra (implicitly with coefficients in Z/ℓ) as

H∗(BGL∞(Fq)) ∼= P (ξ1, ξ2, . . . ) ⊗ E(η1, η2, . . . ) ,

where deg(ξj) = 2jr, deg(ηj) = 2jr− 1, r is the least natural number such that
ℓ | qr − 1, and P and E denote the polynomial algebra and the exterior algebra
on the given generators, respectively. Then he goes on to study α∗, and finds
that it is injective, with image

⊕

n≥0

H∗(BGLn(Fq)) ∼= P (ǫ, ξ1, ξ2, . . . ) ⊗ E(η1, η2, . . . ) ,

where ǫ ∈ H0(GL1(Fq)) is the class of [1], ξj ∈ H2jr(GLr(Fq)) and ηj ∈
H2jr−1(GLr(Fq)). From this, each individual group H∗(BGLn(Fq)) can be
extracted.

In the case of (implicit) Z/p-coefficients, the results are less complete, but
in the limiting case

Hi(BGL∞(Fq)) = 0

for all i > 0, so it follows by homological stability that Hi(BGLn(Fq); Z/p) = 0
for all n sufficiently large compared to i.

Example 1.12.3. When R = OF is the ring of integers in a number field
F , Armand Borel [7] uses analysis on symmetric spaces to compute the rational
cohomology algebra H∗(BSLn(R); Q) in a range of degrees that grows to infinity
with n. Hence he can determine the rational (co-)homology of BGL∞(R) and
K(R), which in turn determines the rational algebraic K-groups Ki(R) ⊗ Q.
The conclusion is that

rankKi(OF ) ⊗ Q =





0 i ≡ 0 mod 4

r1 + r2 i ≡ 1 mod 4

0 i ≡ 2 mod 4

r2 i ≡ 3 mod 4
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for i ≥ 2, where r1 and r2 are the number of real and complex places of F ,
respectively. For example, when F = Q, R = Z and i ≥ 2 the rank of Ki(Z)⊗Q

is one for i ≡ 1 mod 4 and zero otherwise.
Furthermore, by a theorem of Quillen [56], which rests on a duality theorem

of Borel–Serre and finiteness theorems of Ragunathan, each group Ki(OF ) is
finitely generated. Hence, for i ≥ 2 each group Ki(Z) is the sum of a copy of Z

and a finite group for i ≡ 1 mod 4, and is a finite group otherwise.
[[Also results for rings of integers in local fields, group rings of finite groups.]]

Example 1.12.4. When R = OF [1/p] is the ring of p-integers in a local or
global number field F , Bill Dwyer and Steve Mitchell [15, §10] have been able
to continue Quillen’s approach, to compute

H∗(BGL∞(R); Z/p)

under the assumption that the so-called Lichtenbaum–Quillen conjecture [[Ref-
erences]] holds for R. This conjecture asserts that mod p algebraic K-theory sat-
isfies étale descent in sufficiently high degrees, and has been proved by Vladimir
Voevodsky [66] for p = 2, and has been announced proved by Voevodsky and
Markus Rost for all odd primes. Again, the stable computations lead to unsta-
ble results in a finite range, by homological stability. Similar results hold in the
‘geometric’ case of curves over finite fields, see [14].

1.13 Homology of symmetric groups

The case of symmetric groups is similar. The homotopy equivalence

| iso(Fin)| ≃
∐

n≥0

BΣn

induces the isomorphism

H∗(| iso(Fin)|) ∼=
⊕

n≥0

H∗(BΣn) .

There are stabilization homomorphisms Σn → Σn+1, and we let Σ∞ = colimn Σn

be the union of all the finite Σn. We can view elements of Σ∞ as permutations
of N that fix all but finitely many elements. Let BΣ∞ = colimn BΣn.

The homology groups H∗(BΣn) and H∗(BΣ∞) were first determined by
Minoru Nakaoka [49], [50]. The results can be collected in a more structured
form by the use of loop space completion, using the homology operations of
Kudo–Araki [36] (for p = 2) and Dyer–Lashof [16] (for p odd), as explained by
Peter May in [11, Thm. I.4.1].

The loop space completion map

ι :
∐

n≥0

BΣn → K(iso(Fin))

factors as the composite

∐

n≥0

BΣn
α

−→ Z × BΣ∞
β

−→ K(iso(Fin)) ,
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and β is a homology isomorphism. Here, by the Barratt–Priddy–Quillen theo-
rem [5],

K(iso(Fin)) ≃ Q(S0)

where for a based space X we write

Q(X) = colim
m

ΩmΣmX .

[[Forward reference to our proof.]]
Now we can easily compute H∗(Q(Sn)) ∼= H∗(S

n) for ∗ < 2n by the Freuden-
thal suspension theorem, and then use the Serre spectral sequence for the loop–
path fibration of Q(Sn), with ΩQ(Sn) ≃ Q(Sn−1), to compute H∗(Q(Sn−k) for
∗ < 2n − k, by a downward induction. For k = n this computes H∗(Q(S0)) for
∗ < n, so starting with n arbitrarily large, we can use these topological methods
to compute

β∗ : H∗(Z × BΣ∞) ∼= H∗(Q(S0)) .

After this is done, it is not too hard to show that α∗ is injective, and to de-
termine its image

⊕
n≥0 H∗(BΣn), from which each individual group H∗(BΣn)

can be extracted. [[State outcome.]]

1.14 Ideal class groups

[[See Neukirch [51, Ch. I] for an introduction to algebraic number theory.]]
Let F be a number field, i.e., a finite extension of the rational numbers Q,

and let OF be its ring of integers. For each nonzero a ∈ OF the principal ideal
(a) = aOF admits a unique factorization

(a) =
∏

p

p
νp(a)

as a finite product of prime ideals. For each nonzero fraction a/b ∈ F×, let
νp(a/b) = νp(a)− νp(b). The rule that takes a/b to the of integers νp(a/b), as p

ranges over all prime ideals, defines a homomorphism ν:

0 → O
×
F → F× ν

−→
⊕

p

Z → Cl(F ) → 0

The kernel of ν is the group of units in OF , while the cokernel of ν is the ideal
class group of F . This is a finite group, which measures to what extent unique
factorization into prime elements holds in the ring OF . Its order, hF = #Cl(F ),
is the class number of F .

Let p be a prime and let ζp be a primitive p-th root of unity. The p-th
cyclotomic field is F = Q(ζp), with ring of integers OF = Z[ζp]. Let A be the
p-Sylow subgroup of the ideal class group Cl(Q(ζp)). The prime p is said to
be regular of p does not divide the class number hp of Q(ζp), and is otherwise
irregular. Of the primes less than 100, only 37, 59 and 67 are irregular. In 1850,
Ernst Kummer proved Fermat’s last theorem, that xp+yp = zp has no solutions
in natural numbers, for all odd regular primes.

Let A be the p-Sylow subgroup of Cl(Q(ζp)), which is trivial if and only if p
is regular. Consider the Galois group

∆ = Gal(Q(ζp)/Q) ∼= (Z/p)× ,
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which is cyclic of order (p − 1). Here an automorphism σ of Q(ζp) corresponds
to the unit u ∈ (Z/p)× such that σ(ζ) = ζu for all roots of unity ζ.

The Galois action on the p-th cyclotomic field induces an action of ∆ on
Cl(Q(ζp)) and A. Since the order of ∆ is prime to p, the latter action decomposes
into eigenspaces

A ∼=

p−2⊕

i=0

A[i]

where the Galois action on any x in the i-th summand satisfies σ(x) = ω(u)ix
for all σ ∈ ∆, with u as above and ω : (Z/p)× → Z×

p the Teichmüller character.

For example, A[0] is the part of A that is fixed by the ∆-action.
A classical conjecture, first made by Kummer but known as the Vandiver

conjecture, asserts that all of the even-indexed eigenspaces A[i] are trivial. A
more recent conjecture, made by Kenkichi Iwasawa [29], is that all of the odd-
indexed eigenspaces A[i] are (trivial or) cyclic. The Vandiver conjecture is known
to imply Iwasawa’s conjecture.

[[See Kurihara [37] for more about the relation between the classical conjec-
tures about cyclotomic fields and the algebraic K-groups of the integers.]]

By Kummer theory there is a ∆-equivariant isomorphism

A ∼= H2
et(Z[1/p, ζp]; Zp(1)) ,

where the group on the right hand side an an étale cohomology group. By
Galois descent, there is an isomorphism

A[1−j] ∼= H2
et(Z[1/p], Zp(j))

for all j = 1− i. Dwyer and Friedlander have constructed a version of algebraic
K-theory that is designed to satisfy étale descent, known as étale K-theory [13].
There is a natural homomorphism

ρ : K∗(Z) ⊗ Zp → Ket
∗ (Z[1/p]; Zp)

that is known to be surjective for all ∗ ≥ 2, and an isomorphism

Ket
2j−2(Z[1/p]; Zp) ∼= H2

et(Z[1/p], Zp(j))

for all j ≥ 2. This is a consequence of the étale descent spectral sequence

E2
s,t = H−s

et (Z[1/p]; Zp(t/2)) =⇒ Ket
s+t(Z[1/p]; Zp) ,

which collapses for p odd, and which is analogous to the Atiyah–Hirzebruch
spectral sequence

Es,t
2 = Hs(X;Kt(∗)) =⇒ Ks+t(X)

associated to the generalized cohomology theory of complex topological K-
theory.

Proposition 1.14.1. If K4k(Z) = 0 for all k ≥ 1, then the Vandiver conjecture
is true.

Proof. If K4k(Z) = 0 for all k ≥ 1, then Ket
4k(Z[1/p]; Zp) = 0 for all k ≥ 1, so

H2
et(Z[1/p]; Zp(j)) = 0 for all odd j ≥ 3, which implies that A[1−j] = 0 for all

odd j ≥ 3. Now A[i] is (p − 1)-periodic in i, so this implies that A[i] = 0 for all
even i.
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According to the Lichtenbaum–Quillen conjecture for Z, the homomorphism
ρ should be an isomorphism for all ∗ ≥ 2. This conjecture is claimed to have
been proved by Rost and Voevodsky. Assuming this, the converse also holds: If
the Vandiver conjecture holds then K4k(Z) = 0 for all k ≥ 1.

Lee–Szczarba [39], Soulé and the author [58] proved that K4(Z) = 0, corre-
sponding to the case k = 1 above, which implies that A[p−3] = 0 for all p.

[[Further work by Soulé et al.]]
[[Finite generation of algebraic K-theory groups implies finite generation of

étale cohomology groups.]]

1.15 Automorphisms of manifolds

Let M be a compact smooth manifold. The space of all manifolds diffeomorphic
to M is homotopy equivalent to the classifying space

B Diff(M)

of the topological group of diffeomorphisms M
∼=
−→ M fixing the boundary,

i.e., the group of smooth symmetries of M . In the refined classification of
manifolds we are therefore interested in understanding the homotopy type of
this topological group.

An isotopy of M is a smooth path I → Diff(M), taking t ∈ I to a diffeo-
morphism φt : M → M . Letting Φ(x, t) = φt(x), we can rewrite the path as a
diffeomorphism Φ: M ×I → M ×I that commutes with the projections to I. A
concordance (= pseudo-isotopy) of M is a diffeomorphism Ψ: M × I → M × I
that fixes M × {0} and ∂M × I, but does not necessarily commute with the
projections to I. Let C(M) be the space of all concordances of M . There is a
homotopy fiber sequence

Diff(M × I) −→ C(M)
r1−→ Diff(M)

where r1 restricts Ψ to M × 1, and a canonical involution on C(M) that after
inverting 2 decomposes π∗C(M) into (+1)- and (−1)-eigenspaces corresponding
to π∗ Diff(M × I) and π∗ Diff(M). [[In what order?]]

There is also a stabilization map C(M) → C(M × I), and passing to the
colimit one can form the stable concordance space

C (M) = colim
n

C(M × In) .

By Kiyoshi Igusa’s stability theorem [30], the connectivity of the map C(M) →
C (M) grows to infinity with the dimension of M , so that πjC(M) ∼= πjC (M)
for all j ≪ n = dim(M).

The relation to algebraic K-theory is as follows. Waldhausen’s algebraic K-
theory of the space M , denoted A(M), can be defined as the algebraic K-theory
K(S[ΩM ]) of the spherical group ring S[ΩM ] = Σ∞(ΩM)+, where S is the
sphere spectrum and ΩM is a group model for the loop space of M . According
to the stable parametrized h-cobordism theorem, first claimed by Allen Hatcher
[25], and later proved by Friedhelm Waldhausen, Bjørn Jahren and the author
[70], there are homotopy equivalences

A(M) ≃ Q(M+) × WhDiff(M)
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and
ΩWhDiff(M) ≃ Wh1(π) × BC (M) ,

where Q(M+) = colimn ΩnΣn(M+) and Wh1(π) = K1(Z[π])/(±π) is the White-
head group. Hence there are isomorphisms

πiA(M) ∼= πS
i (M+) ⊕ πi−2C (M)

for all i ≥ 2.
In the special case M = ∗, there is a rational equivalence A(∗) = K(S) →

K(Z), so Borel’s calculation of Ki(Z) ⊗ Q gives a calculation of πjC (∗) ⊗ Q,
hence also a calculation of πjC(Dn) ⊗ Q for j ≪ n. Taking the involution into
account, one reaches the following conclusion:

Theorem 1.15.1. For i ≪ n,

πi Diff(Dn) ⊗ Q ∼=

{
Q for i = 4k − 1 and n odd,

0 otherwise.

See [73] for a survey of this theory, and [70] for the proof of the stable
parametrized h-cobordism theorem.



Chapter 2

Categories and functors

A reference for this chapter is Mac Lane [40, I,II].

2.1 Sets and classes

When studying classification problems, or algebraic K-theory, we are led to
discuss sets, groups, topological spaces or other mathematical structures. Very
quickly we are also led to consider all sets, all groups or all topological spaces.
This leads to the question of what we really mean by all sets, all modules, and
so on.

Does the collection of all sets have a mathematical meaning, as a math-
ematical object? In view of Bertrand Russell’s paradox (is the set R of all
sets S that are not elements in themselves an element of itself?), the collection
R = {S | S /∈ S} cannot be a set. Then the collection A of all sets cannot be a
set either, since R would be a subset of A, and thus a set.

We are therefore led to speak of collections more general than sets, which
we call classes. For example, we will talk about the class of all sets, the class of
all R-modules, and the class of all topological spaces.

The most common basis for set theory is the ZFC axiomatization of the
notions of a set and the set membership relation ∈ due to Ernst Zermelo and
Abraham Fraenkel (and concurrently, Thoralf Skolem), together with the axiom
of choice.

Since ZFC is only an axiomatization of sets, it does not formalize the notion
of a class. Instead, a class may be viewed as a label for the logical expression
that characterizes its members, with the caveat that different logical expressions
may characterize the same class. This way, we may say “for all sets” as part of
a logical assertion, but the collection of all sets does not take on a set-theoretic
meaning.

A different approach is formalized in the notion of a universe, discussed by
Grothendieck and Jean-Louis Verdier in SGA4 [3, i.0].

Definition 2.1.1 (Universe). A Grothendieck universe is a nonempty set U

such that

(a) If X ∈ U and Y ∈ X then Y ∈ U;

(b) If X,Y ∈ U then {X,Y } ∈ U;

29
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(c) If X ∈ U then P(X) ∈ U;

(d) If Xi ∈ U for all i ∈ I and I ∈ U then
⋃

i∈I Xi ∈ U.

Here P(X) = {Y | Y ⊆ X} is the power set of X and
⋃

i∈I Xi = {Y | ∃i ∈
I : Y ∈ Xi} is the union of the sets Xi for i ∈ I.

A Grothendieck universe U provides a model for ZFC set theory. The sets
in the model are precisely the elements of U, which are then called the U-small
sets. These satisfy the axioms of ZFC. By a class we then mean a subset of U.
Every set is a class, but not every class is a set. For example, the class of all
U-small sets is U itself, which is not U-small. A proper class is a class that is
not a set.

We hereafter assume that we have fixed a Grothendieck universe U contain-
ing the sets “we are interested in”, and use the terms set and class in the sense
just explained.

The “axiom of universes”, asserting that every set is contained in some
Grothendieck universe, is equivalent to the existence of arbitrarily large strongly
inaccessible cardinals. This can then be taken as an additional axiom, together
with ZFC. See [74].

Another approach is given by von Neumann–Bernays–Gödel set theory, which
axiomatizes both classes and sets.

2.2 Categories

The starting point for category theory is that for every kind of mathematical
object, such as sets, groups or topological spaces, there is an preferred way of
comparing two such objects, such as by functions, homomorphisms or continu-
ous maps. In particular, two given objects may usefully be viewed as equivalent
even if they are not identical, as in the case of sets of equal cardinality, iso-
morphic groups or homeomorphic spaces. The language of categories provides
a framework for discussing these examples, and many more, in a uniform way.

Definition 2.2.1 (Category). A category C consists of a class obj(C ) of
objects and, for each pair X, Y of objects, a set C (X,Y ) of morphisms f : X →
Y . For each object X there is an identity morphism idX : X → X. Furthermore,
for each triple X, Y , Z of objects there is a composition law

◦ : C (Y,Z) × C (X,Y ) −→ C (X,Z) ,

taking (g, f) to g ◦f . These must satisfy the left and right unit laws idY ◦f = f
and f ◦ idX = f for all f : X → Y , and the associative law (h◦g)◦f = h◦(g◦f)
for all f : X → Y , g : Y → Z and h : Z → W .

The choice of identity morphisms and composition laws is part of the struc-
ture of the category. We say that X is the source and Y is the target of
f : X → Y . Each morphism f in the category is assumed to have a well-defined
source and target, which means that the various sets C (X,Y ) are assumed to
be disjoint. When the source of g equals the target of f we call g ◦ f the com-
posite of f and g, in that order, and say that f and g are composable. We often
abbreviate g ◦ f to gf . By the associative law, we can write h ◦ g ◦ f or hgf
for the common value of (h ◦ g) ◦ f and h ◦ (g ◦ f). We often write X

=
−→ X to

indicate an identity morphism.
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Definition 2.2.2 (Commutative diagram). A diagram in a category C is
a collection of objects in C and a collection of morphisms in C between these
objects. The diagram is said to be commutative if for any two objects X and
Y in the diagram, and any two finite chains of composable morphisms in the
diagram, both starting at X and ending at Y , then the two composite morphisms
X → Y are equal in C . For example, a square diagram

X
f

//

g

²²

Y

h

²²

Z
i // W

is commutative precisely when hf = ig as morphisms X → W .

Example 2.2.3. We can display the unit laws as the commutative triangles

X
= //

f

»»
11

11
11

11
11

11
1 X

f

§§°°
°°
°°
°°
°°
°°
°

f

»»
11

11
11

11
11

11
1

Y
= // Y

and the associative law as the commutative parallelogram

X
f

//

gf

»»
11

11
11

11
11

11
1 Y

g

§§°°
°°
°°
°°
°°
°°
°

hg

»»
22

22
22

22
22

22
2

Z
h

// W .

Definition 2.2.4 (Small category). A category C is small if obj(C ) is a set,
rather than a proper class.

Example 2.2.5. Let Set be the category of sets and functions. Its objects are
sets, so obj(Set) is the class of all sets. For each pair of sets X and Y , the
set Set(X,Y ) of morphisms from X to Y is the set of functions f : X → Y .
The identity morphism of a set X is the identity function idX : X → X, given
by idX(x) = x for all x ∈ X. The composite of two functions f : X → Y
and g : Y → Z is the function g ◦ f : X → Z given by (g ◦ f)(x) = g(f(x))
for all x ∈ X. It is easy to verify that (f ◦ idX)(x) = f(idX(x)) = f(x)
and (idY ◦ f)(x) = idY (f(x)) = f(x) for all x ∈ X, so the unit laws hold.
Furthermore, ((h◦g)◦f)(x) = (h◦g)(f(x)) = h(g(f(x))) equals (h◦(g◦f))(x) =
h((g ◦ f)(x)) = h(g(f(x))) for all x ∈ X, so the associative law holds. The class
of all sets is not itself a set, so Set is not a small category.

Definition 2.2.6 (Finite sets n). For each non-negative integer n ≥ 0 let

n = {1, 2, . . . , n} .

These are the finite initial segments of the natural numbers N = {1, 2, 3, . . . }.
Note that 0 = {} = ∅ is the empty set.
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Remark 2.2.7. The boldface may serve as a reminder that this is not the set
theorists’ notation, since they usually define n to be the set {1, 2, . . . , n − 1}.

Example 2.2.8. Let F be the skeleton category of finite sets. It is the category
with objects the sets n for all n ≥ 0, and morphisms F (m,n) the set of functions
f : m → n, for each pair m, n ≥ 0. More explicitly, F (m,n) is the set of
functions

f : {1, 2, . . . ,m} −→ {1, 2, . . . , n} .

There are nm such functions. The identity functions and composition law in F

are defined in the same way as in Set, and the unit and associative laws hold
by the same arguments as above. The class of objects in F is a set of subsets
of N, hence is itself a set, so F is a small category.

The term “skeleton category” will be explained in Definition 2.8.1, see also
Definition 3.2.11.

Definition 2.2.9 (Subcategory). A subcategory of a category D is a category
C such that obj(C ) is a subclass of obj(D), and for each pair of objects X,Y
in C the morphism set C (X,Y ) is a subset of the morphism set D(X,Y ).
Furthermore, for each object X in C the identity morphism idX in C is the
same as the identity morphism in D , and for each pair of composable morphisms
f and g in C , the composite g ◦ f in C is the same as their composite in D .

Definition 2.2.10 (Full subcategory). A subcategory C ⊆ D is said to be
full if for each pair of objects X, Y in C the morphism set C (X,Y ) is equal
to the morphism set D(X,Y ). A full subcategory C of D is thus determined
by its class of objects obj(C ), as a subclass of D . We say that C is the full
subcategory generated by the subclass of objects obj(C ) in obj(D).

Example 2.2.11. The small category F of finite sets and functions is a full
subcategory of the category Set of all sets and functions, namely the full sub-
category generated by the objects n = {1, 2, . . . , n} for n ≥ 0.

Example 2.2.12. Let Fin ⊂ Set be the full subcategory generated by all finite
sets, not necessarily of the form n. This is not a small category, since the class
of all finite sets is not itself a set.

Definition 2.2.13 (Opposite category). Given a category C , the opposite
category C op has the same class of objects as C , but the morphisms in C op from
X to Y are the same as the morphisms in C from Y to X. Hence

obj(C op) = obj(C )

and
C

op(X,Y ) = C (Y,X)

for all pairs X, Y of objects in C (or C op). For each object X, the identity
morphism of X in C op is equal to the identity morphism of X in C . For each
triple X, Y , Z of objects the composition law

◦op : C
op(Y,Z) × C

op(X,Y ) −→ C
op(X,Z)

in C op is equal to the function

C (Z, Y ) × C (Y,X) −→ C (Z,X)
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that takes a pair (g, f) of morphisms g : Z → Y and f : Y → X to their com-
posite f ◦ g : Z → X in C , with f and g appearing in the opposite of the usual
order. Hence

g ◦op f = f ◦ g .

With this notation it is straightforward to verify that C op is a category.

Lemma 2.2.14. (C op)op = C .

Proof. This is clear, since g (◦op)op f = f ◦op g = g ◦ f .

Example 2.2.15. To describe the opposite Setop of the category of sets, we
must view a function f : X → Y as a morphism f in Setop(Y,X). One way
to encode the function f is in terms of the preimage sets f−1(y) = {x ∈ X |
f(x) = y} for y ∈ Y . These are disjoint subsets of X that cover X. Hence
a morphism Y → X in Setop can be defined to be a function F : Y → P(X)
from Y to the power set P(X) of X, consisting of all subsets of X. We must
demand that the values {F (y) | y ∈ Y } form a disjoint cover of X. The identity
morphism Y → Y is then the function I : Y → P(Y ) that takes y ∈ Y to the
singleton set {y}. Given another morphism Z → Y in Setop, represented by a
function G : Z → P(Y ) whose values form a disjoint cover of Y , the composite
morphism Z → X in Setop is represented by the function H : Z → P(X) given
by

H(z) =
⋃

y∈G(z)

F (y)

for z ∈ Z. This reflects the formula (gf)−1(z) =
⋃

y∈g−1(z) f−1(y).

Definition 2.2.16 (Product category). Given two categories C , C ′, the
product category C × C ′ has as objects the pairs (X,X ′) where X is an object
in C and X ′ is an object in C ′:

obj(C × C
′) = obj(C ) × obj(C ′) .

The morphisms in C × C ′ from (X,X ′) to (Y, Y ′) are the pairs (f, f ′) where
f : X → Y is a morphism in C and f ′ : X ′ → Y ′ is a morphism in C ′. Hence

(C × C
′)((X,X ′), (Y, Y ′)) = C (X,Y ) × C

′(X ′, Y ′) .

Given a second morphism (g, g′) : (Y, Y ′) → (Z,Z ′), the composite in C ×C ′ is
given by

(g, g′) ◦ (f, f ′) = (g ◦ f, g′ ◦ f ′) .

The identity morphism of (X,X ′) is (idX , idX′).

Definition 2.2.17. More generally, suppose given a category Ci for each ele-
ment i in a set I. The product category

∏
i∈I Ci has as objects families (Xi)i∈I

with Xi an object in Ci for each i ∈ I, and the morphisms from (Xi)i∈I to
(Yi)i∈I are families (fi)i∈I of morphisms fi : Xi → Yi for all i ∈ I. Composition
is given by the formula

(gi)i∈I ◦ (fi)i∈I = (gi ◦ fi)i∈I .

The identity morphism of (Xi)i∈I is (idXi
)i∈I .
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When I = {1, 2} has two elements,
∏

i∈I Ci can be identified with the prod-
uct C1 × C2 defined above. When I = {1} has one element,

∏
i∈I Ci can be

identified with the category C1. When I is empty, the product
∏

i∈I Ci is the
category ∗ with one object (an empty family of objects) and one morphism (an
empty family of morphisms). We call ∗ the one-morphism category, since any
other category with precisely one morphism will also have precisely one object.

[[Later see that these are the products in the category of small categories,
and that ∗ is the terminal object. Needs mention of the projection functors
prj :

∏
i∈I Ci → Cj for all j ∈ I.]]

Definition 2.2.18 (Coproduct category). Given two categories C , C ′, the
coproduct category C ⊔ C ′ has object class the disjoint union

obj(C ⊔ C
′) = obj(C ) ⊔ obj(C ′)

of the object classes of C and C ′, so an object of C ⊔C ′ is an object of C or of
C ′, and if C and C ′ have any objects in common, then we view them as being
distinct in C ⊔ C ′. Given objects X, Y in C and X ′, Y ′ in C ′, all viewed as
objects in C ⊔ C ′, the morphisms in C ⊔ C ′ from X to Y are the same as the
morphisms X → Y in C , the morphisms from X ′ to Y ′ are the same as the
morphisms X ′ → Y ′ in C ′, and there are no morphisms X → Y ′ or X ′ → Y .
In slightly different notation,

(C ⊔ C
′)(X,Y ) =





C (X,Y ) if X,Y ∈ obj(C ),

C ′(X,Y ) if X,Y ∈ obj(C ′),

∅ otherwise.

Composition and identities are given as in C and C ′.
The inclusions in : C → C ⊔ C ′ and in′ : C ′ → C ⊔ C ′ exhibit C and C ′ as

the full subcategories of C ⊔ C ′ generated by obj(C ) and obj(C ′), respectively.

Definition 2.2.19. More generally, suppose given a category Ci for each ele-
ment i in a set I. The coproduct category

∐
i∈I Ci has object class the disjoint

union of the object classes Ci. We may arrange that these object classes are
disjoint by labeling each object with the index in I:

obj(
∐

i∈I

Ci) =
⋃

i∈I

{i} × obj(Ci)

contained in I ×
⋃

i∈I obj(Ci). This means that for each i ∈ I and X ∈ obj(Ci)
we have an object (i,X) in

∐
i∈I Ci, but we usually just write X for this object,

if i is clear from the context. Given two elements i, j ∈ I and objects X in Ci

and Y in Cj , there are no morphisms X → Y in
∐

i∈I Ci unless i = j, in which
case the morphisms are the same as in Ci. The inclusion inj : Cj →

∐
i∈I Ci

exhibits Cj as the full subcategory of
∐

i∈I Ci generated by obj(Cj), for each
j ∈ I.

When I = {1, 2} has two elements,
∐

i∈I Ci can be identified with the co-
product C1 ⊔C2 defined above. When I = {1} has one element,

∐
i∈I Ci can be

identified with the category C1. When I is empty, the coproduct
∐

i∈I Ci is the
empty category ∅ with no objects and no morphisms.

[[Later see that these are the coproducts in the category of small categories,
and that ∅ is the initial object.]]
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2.3 Functors

There is a preferred way of comparing two categories, namely by a functor.
Continuing the line of thought from the previous section, it follows that we
should view categories as the objects of a new category, whose morphisms are
the functors between these categories. More precisely, this turns out to work
well for functors between small categories.

Definition 2.3.1 (Functor). Let C and D be categories. A functor F : C → D

from C to D consists of two rules, one assigning to each object X of C an object
F (X) of D , and a second one assigning to each morphism f : X → Y in C a
morphism F (f) : F (X) → F (Y ) in D . We can write the rule f 7→ F (f) as a
function

F : C (X,Y ) −→ D(F (X), F (Y ))

for each pair of objects X, Y in C . The rule on morphisms must satisfy

F (idX) = idF (X)

for each object X in C , and

F (g ◦ f) = F (g) ◦ F (f)

for each pair of composable morphisms f and g in C . Note that the composite
g ◦ f is formed in C , while the composite F (g) ◦ F (f) is formed in D .

The functor F maps each commutative triangle in C (as on the left)

Z F (Z)

Â F //

X
f

//

gf

BB§§§§§§§§§§§§§§§
Y

g

\\888888888888888

F (X)
F (f)

//

F (gf)

BB§§§§§§§§§§§§§§
F (Y )

F (g)

\\88888888888888

to a commutative triangle in D (as on the right). Hence F maps any commu-
tative diagram in C to a commutative diagram in D of the same shape. We
often simplify notation by writing f∗ for F (f), in which case the conditions of
functoriality appear as (idX)∗ = idF (X) and (gf)∗ = g∗f∗.

Example 2.3.2. Let F : F → Set be the functor that takes each object n in F ,
for n ≥ 0, to the same set {1, 2, . . . , n}, viewed as an object in Set. Furthermore,
F takes each function f : m → n in F (m,n) to the same function, viewed as
an element in Set(m,n). Since the identity morphisms and composition in F

was defined in the same way as in Set, it is clear that F is a functor.

Definition 2.3.3 (Full, faithful functor). A functor F : C → D is full if
for each pair of objects X, Y in C , the function C (X,Y ) → D(F (X), F (Y )) is
surjective. The functor F is faithful if each function C (X,Y ) → D(F (X), F (Y ))
is injective, for each pair X, Y of objects in C .

Example 2.3.4. Let C be a subcategory of D . The inclusion functor C → D ,
given by the inclusions obj(C ) ⊆ obj(D) and C (X,Y ) ⊆ D(X,Y ) for all X,
Y in C , is a faithful functor. It is full (and faithful) if and only if C is a full
subcategory of D . For instance, the functor F : F → Set of Example 2.3.2 is
the full and faithful inclusion of F as a full subcategory of Set.
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Definition 2.3.5 (Identity, composition of functors). For each category C

the inclusion functor of C into itself specifies the identity functor idC : C → C .
Furthermore, given categories C , D , E and functors F : C → D and G : D → E

there is a composite functor G ◦ F : C → E , given by

(G ◦ F )(X) = G(F (X))

for each object X in C , and

(G ◦ F )(f) = G(F (f))

for each morphism f : X → Y in C . We often abbreviate G ◦ F to GF .
It is easy to verify that idC and G ◦ F are functors. For example, given

another morphism g : Y → Z in C , we have G(F (g ◦ f)) = G(F (g) ◦ F (f)) =
G(F (g)) ◦ G(F (f)), so (GF )(g ◦ f) = (GF )(g) ◦ (GF )(f).

Lemma 2.3.6. Let C and D be small categories. Then the collection of all
functors F : C → D is a set.

Proof. Since obj(C ) and obj(D) are assumed to be sets, a functor consists of
a function F : obj(C ) → obj(D) and, for each pair of objects X,Y in C , a
function F : C (X,Y ) → D(F (X), F (Y )). There is a set of sets of sets of such,
which is again a set. The collection of functors C → D is a subset of this set,
hence is also a set.

Definition 2.3.7 (Category Cat). Let Cat be the category of small cate-
gories. Its objects are the small categories C . The morphisms from C to D are
the functors F : C → D . By the lemma above, the collection Cat(C ,D) of all
such functors is a set, since C is small. The identity functor, and composition
of functors, define the identities and composition in Cat.

Definition 2.3.8 (Contravariant functor). A contravariant functor F from
C to D is the same as a functor F : C op → D from the opposite category of C to
D . It thus consists of two rules, one assigning to each object X of C an object
F (X) of D , and another assigning to each morphism f : X → Y in C , which is
the same as a morphism f : Y → X in C op, a morphism F (f) : F (Y ) → F (X)
in D . (Note how the direction of the morphism F (f) is reversed, compared to
Definition 2.3.1.) We can write the rule f 7→ F (f) as a function

F : C (X,Y ) −→ D(F (Y ), F (X))

for each pair of objects X, Y in C . The rule on morphisms satisfies

F (idX) = idF (X)

for each object X in C , and

F (g ◦ f) = F (f) ◦ F (g)

for each pair of composable morphisms f and g in C .
We often simplify notation by writing f∗ for F (f), so that the conditions

for contravariant functoriality become (idX)∗ = idF (X) and (gf)∗ = f∗g∗.
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Remark 2.3.9. A functor as in Definition 2.3.1 is sometimes called a covariant
functor, to distinguish it from contravariant functors. Sometimes it is more
convenient to view a contravariant functor F from C to D as a functor F : C →
Dop. The rules and conditions are the same. We may even consider a covariant
functor from C to D as a functor F op : C op → Dop. This can be useful when
considering a composite of covariant and contravariant functors.

Definition 2.3.10 (Corepresented functors). Fix an object X in a category
C . We define a (covariant) functor

Y
X : C −→ Set

by taking each object Y in C to the set Y X(Y ) = C (X,Y ) of morphisms
f : X → Y in C , from the fixed object X, and taking each morphism g : Y → Z
in C to the function

g∗ = Y
X(g) : Y

X(Y ) = C (X,Y ) −→ C (X,Z) = Y
X(Z)

that maps f : X → Y to the composite gf : X → Z.

X
f

~~~~
~~

~~
~

gf

ÃÃ
@@

@@
@@

@

Y
g

// Z

We call Y X the set-valued functor corepresented by X in C . It may also be
denoted Y X(−) = C (X,−).

Definition 2.3.11 (Represented functors). Fix an object Z in a category
C . We define a contravariant functor

YZ : C
op −→ Set

by taking each object Y in C to the set YZ(Y ) = C (Y,Z) of morphisms g : Y →
Z in C , to the fixed object Z, and taking each morphism f : X → Y in C to
the function

f∗ : YZ(f) : YZ(Y ) = C (Y,Z) −→ C (X,Z) = YZ(X)

that maps g : Y → Z to the composite gf : X → Z.

Y

g
ÂÂ

@@
@@

@@
@ X

f
oo

gf
~~~~

~~
~~

~

Z

We call YZ the contravariant set-valued functor represented by Z in C . It may
also be denoted YZ(−) = C (−, Z).

Remark 2.3.12. Functors of the form Y X and YZ are called corepresentable
and representable, respectively. The contravariant functor YZ represented by Z
in C is the same as the covariant functor Y Z corepresented by Z in the opposite
category, C op. [[Forward reference to Yoneda embedding and Yoneda’s lemma.]]
[[Example: The n-simplex ∆n is the representable functor ∆(−, [n]) : ∆op →
Set.]]
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Definition 2.3.13 (Bifunctor). A bifunctor F from C and C ′ to D is the
same as a functor F : C × C ′ → D from the product category of C and C ′ to
D . It associates to each pair of objects (X,X ′), with X in C and X ′ in C ′, an
object F (X,X ′) in D , and to each pair of morphisms (f, f ′), with f : X → Y
in C and f ′ : X ′ → Y ′ in C ′, a morphism F (f, f ′) : F (X,X ′) → F (Y, Y ′) in D .
We can write the rule (f, f ′) 7→ F (f, f ′) as a function

F : C (X,Y ) × C
′(X ′, Y ′) −→ D(F (X,X ′), F (Y, Y ′)) .

It satisfies
F (idX , idX′) = idF (X,X′)

for each object X in C and each object X ′ in C ′, and

F (g ◦ f, g′ ◦ f ′) = F (g, g′) ◦ F (f, f ′)

for each composable pair f and g in C and each composable pair f ′ and g′ in C ′.
In view of the relation

(f, idY ′) ◦ (idX , f ′) = (f, f ′) = (idY , f ′) ◦ (f, idX′)

in C × C ′ it suffices to specify the rule on morphisms in the cases F (f, idX′)
and F (idX , f ′), for all morphisms f : X → Y in C , f ′ : X ′ → Y ′ in C ′ and all
objects X in C and X ′ in C ′, subject to the condition

F (f, idY ′) ◦ F (idX , f ′) = F (idX , f ′) ◦ F (f, idX′) .

[[Proof?]]

Example 2.3.14. Let C be any category. We define a bifunctor

C (−,−) : C
op × C → Set

by taking each object (X,X ′) in C op × C to the set of morphisms C (X,X ′)
in C . A morphism (f, f ′) : (X,X ′) → (Y, Y ′) in C op × C consists of a pair of
morphisms f : Y → X and f ′ : X ′ → Y ′ in C . The rule

f ′
∗f

∗ = f∗f ′
∗ = C (f, f ′) : C (X,X ′) → C (Y, Y ′)

maps g : X → X ′ to the composite f ′ ◦ g ◦ f : Y → Y ′.

X

g

²²

Y
f

oo

f ′gf

²²

X ′
f ′

// Y ′

In other words, the morphisms sets in a category define a bifunctor to Set,
contravariant in the first factor (the source) and covariant in the second factor
(the target).

Remark 2.3.15. A functor C ⊔ C ′ → D is more-or-less the same as a pair
of functors C → D and C ′ → D . Likewise, a functor C → D × D ′ can be
identified with a pair of functors C → D and C → D ′. We do not introduce
special terminology for these cases. Functors C → D ⊔D ′ might call for special
terminology, but are rarely needed.



CHAPTER 2. CATEGORIES AND FUNCTORS 39

Definition 2.3.16 (Diagonal and fold functors). Let C be any category.
The diagonal functor

∆: C −→
∏

i∈I

C

takes X to the family ∆(X) = (Xi)i∈I with each Xi = X, and f : X → Y to
the family ∆(f) = (fi)i∈I with each fi = f . The fold functor

∇ :
∐

i∈I

C −→ C

takes (i,X) to X and (i, f) : (i,X) → (i, Y ) to f : X → Y , for each i ∈ I.

2.4 Isomorphisms and groupoids

Definition 2.4.1 (Isomorphism). Let f : X → Y be a morphism in a category
C . If g : Y → X satisfies g ◦ f = idX we say that g is a left inverse to f . If
g satisfies f ◦ g = idY we say that g is a right inverse to f . If g satisfies both
g ◦ f = idX and f ◦ g = idY , then we say that f : X → Y is an isomorphism
in C , or that f is invertible, and we call g : Y → X an inverse to f . We often

write f : X
∼=
−→ Y to indicate that f is an isomorphism. If such an isomorphism

f exists we say that X and Y are isomorphic in C , and write X ∼= Y .

Lemma 2.4.2. If f : X → Y has a left inverse g : Y → X and a right inverse
h : Y → X, then g = h and f is an isomorphism. Hence an isomorphism
f : X → Y has a unique inverse, which we can denote by f−1 : Y → X.

Proof. If g◦f = idX and f ◦h = idY then g = g◦ idY = g◦(f ◦h) = (g◦f)◦h =
idX ◦ h = h. Hence g = h is both a left and a right inverse to f , so f is
invertible.

Lemma 2.4.3. Each identity morphism in a category is its own inverse, id−1
X =

idX , and the composite gf of two composable isomorphisms f : X → Y and
g : Y → Z is an isomorphism, with inverse (gf)−1 = f−1g−1. The inverse f−1

of an isomorphism f : X → Y is an isomorphism, with inverse (f−1)−1 = f .

Proof. It is clear that idX ◦ idX = idX , so idX is its own inverse. To see that
f−1g−1 is an inverse to gf , we compute f−1g−1(gf) = f−1 ◦ idY ◦ f = f−1f =
idX and (gf)f−1g−1 = g ◦ idY ◦ g−1 = gg−1 = idZ . The relations f−1f = idX

and ff−1 = idY exhibiting f−1 as an inverse to f also exhibit f as the inverse
to f−1.

Lemma 2.4.4. Let f : X → Y and g, h : Y → X be morphisms in C . If
gf : X → X is an isomorphism, then (gf)−1 ◦ g : Y → X is a left inverse to f .
If fh : Y → Y is an isomorphism, then h ◦ (fh)−1 : Y → X is a right inverse to
f . Hence if gf and fh are isomorphisms, then f is invertible.

Proof. (gf)−1◦g◦f = (gf)−1(gf) = idX and f ◦h◦(fh)−1 = (fh)(fh)−1 = idY ,
so this is clear.

Example 2.4.5. Let f : X → Y be a morphism in Set, that is, a function.
Then f admits a left inverse in Set if and only if f is injective (= one-to-one),
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and f admits a right inverse if and only if f is surjective (= onto). In most
cases, these left and right inverses are not unique. A function f : X → Y is an
isomorphism if and only if it is bijective (= one-to-one and onto).

Example 2.4.6. A morphism f : m → n in F is an isomorphism if and only if
it is a bijection. This can only happen if m = n, as can be proved by induction
on n. A bijection

f : {1, 2, . . . , n}
∼=
−→ {1, 2, . . . , n}

is also known as a permutation of the set n = {1, 2, . . . , n}. There are n!
such permutations. Let Σn be the symmetric group of such permutations, with
group operation given by composition and neutral element given by the identity
permutation. In the language of Definition 2.8.11, Σn is the automorphism
group of n in F .

Exercise 2.4.7. How many injective functions f : m → n are there? How
many surjective functions f : m → n are there? (The first is easy, the second
involves Stirling numbers of the second kind. Later, we shall be interested in the
corresponding questions for order-preserving functions.) [[Forward reference.]]

Definition 2.4.8 (Isomorphic categories). We say that two categories C

and D are isomorphic if there exist functors F : C → D and G : D → C such
that G ◦ F = idC and F ◦ G = idD . We then say that F : C → D is an
isomorphism of categories, and G : D → C is the inverse isomorphism. If C

and D are small, this is the same as saying that C and D are isomorphic as
objects in the category Cat of small categories. Both functors F and G are
then full and faithful, and on objects they induce a bijection between obj(C )
and obj(D).

Definition 2.4.9 (Groupoid). A groupoid is a category in which each mor-
phism is an isomorphism. We write Gpd for the category of small groupoids
and functors. It is the full subcategory of Cat generated by the small categories
that are groupoids. Hence there is an inclusion functor Gpd ⊂ Cat.

Definition 2.4.10 (Interior groupoid). Given a category C , let iso(C ) ⊆
C be the subcategory with the same objects as C , and with morphism set
iso(C )(X,Y ) the subset of C (X,Y ) consisting of the morphisms f : X → Y
that are isomorphisms in C . Identity morphisms exist and composition is well-
defined in iso(C ), by Lemma 2.4.3. The unit laws and associative law in iso(C )
are inherited from those in C . Since the inverse of an isomorphism in C is an
isomorphism in C , each morphism in iso(C ) has an inverse in iso(C ), so iso(C )
is a groupoid.

Exercise 2.4.11. Let C be a category such that each morphism has a left
inverse. Show that C is a groupoid. Similarly if each morphism has a right
inverse.

Definition 2.4.12 (π0 of groupoid). When C is small, Lemma 2.4.3 shows
that isomorphism of objects is an equivalence relation on obj(C ). We write

π0(iso(C )) = obj(C )/ ∼=

for the set of isomorphism classes of objects in C , and denote the isomorphism
class of an object X by

[X] = {Y ∈ obj(C ) | X ∼= Y } .
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Example 2.4.13. By Example 2.4.5, iso(Set) is the groupoid of sets and bijec-
tive functions. By Example 2.4.6, the groupoid iso(F ) has objects n for n ≥ 0,
the morphism set iso(F )(m,n) is empty for m 6= n, and iso(F )(n,n) = Σn for
all n ≥ 0. In particular, iso(F ) is the full subcategory of iso(Set) generated by
the objects n for n ≥ 0.

Lemma 2.4.14. iso(C op) = (isoC )op.

Proof. This is clear, since the opposite gop of a left inverse g of f is a right
inverse of fop, and similarly with left and right exchanged.

Lemma 2.4.15. iso(C ×C ′) = iso(C )× iso(C ′), iso(C ⊔C ′) = iso(C )⊔ iso(C ′)
and similarly for arbitrary set-indexed products and coproducts.

Proof. A family (gi)i∈I is inverse in
∏

i∈I Ci to a given family (fi)i∈I if and
only if gi is inverse to fi for each i ∈ I. This proves the case of products. A
morphisms fj in Cj is invertible in Cj if and only if it is invertible in

∐
i∈I Ci.

This proves the case of coproducts.

Lemma 2.4.16. Let F : C → D be a functor. If f : X
∼=
−→ Y is an isomorphism

in C , then F (f) : F (X)
∼=
−→ F (Y ) is an isomorphism in D .

Proof. Let g : Y → X be the inverse to f . Then F (g) is inverse to F (f), since
F (g) ◦ F (f) = F (g ◦ f) = F (idX) = idF (X) and F (f) ◦ F (g) = F (f ◦ g) =
F (idY ) = idF (Y ).

Lemma 2.4.17. Any functor F : D → C from a groupoid D factors uniquely
through the inclusion ǫ : iso(C ) ⊆ C , so iso(C ) is the maximal subgroupoid of
C .

Proof. For each object X in D , F (X) is an object of C , hence also an object
of iso(C ). Each morphism f : X → Y in D is an isomorphism, since D is
assumed to be a groupoid, so F (f) is an isomorphism in C by Lemma 2.4.16,
hence a morphism in iso(C ). Hence F factors in a unique way as a composite
D → iso(C ) ⊆ C .

Lemma 2.4.18. The rule iso that takes a small category C to its maximal
subgroupoid iso(C ) defines a functor

iso : Cat −→ Gpd .

The composite functor Gpd ⊂ Cat
iso
−→ Gpd equals the identity.

Proof. We must explain how each functor F : C → D , which is a morphism

in Cat, induces a functor iso(F ) : iso(C ) → iso(D). Each morphism f : X
∼=
−→

Y in iso(C ) is an isomorphism in C , hence maps to an isomorphism F (f) in D ,
by Lemma 2.4.16. Hence F (f) is a morphism in iso(D), which we define to be
iso(F )(f). It is immediate that iso(F ) becomes a functor. The last claim is
clear.

Instead of restricting attention to the morphisms in C that are already iso-
morphisms, one may extend C so as to make all morphisms into isomorphisms,
at least if C is small.
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Definition 2.4.19 (Localized groupoid). Given a small category C , let
C [C−1] be the groupoid with the same objects as C , and with morphisms from
X to Y in C [C−1] the equivalence classes of chains (f ǫm

m , . . . , f ǫ1
1 ) of morphisms

in C ,

X = Z0
oo

f±1
1 // Z1

oo
f±1
2 // . . . oo

f±1
m−1

// Zm−1
oo

f±1
m // Zm = Y

where m ≥ 1 and each ǫi ∈ {±1}, that are composable in the sense that there
are objects Z0, . . . , Zm in C , with Z0 = X, Zm = Y , fi ∈ C (Zi−1, Zi) if ǫi = +1
and fi ∈ C (Zi, Zi−1) if ǫi = −1, subject to the equivalence relation generated
by the rules

(g+1, f+1) ∼ ((gf)+1) (f−1, g−1) ∼ ((gf)−1)

(f+1, f−1) ∼ (id+1) (f−1, f+1) ∼ (id+1) ,

in the sense that (a, x, b) ∼ (a, y, b) for possibly empty words a and b, whenever
x ∼ y.

Composition in C [C−1] is given by concatenation. The identity morphism
of X is (id+1

X ), and the inverse of (f ǫm
m , . . . , f ǫ1

1 ) is (f−ǫm

1 , . . . , f−ǫ1
m ). There is a

functor
η : C → C [C−1] ,

which is the identity on objects and takes f : X → Y to (f+1). We call C [C−1]
the localization of C with respect to all morphisms.

Remark 2.4.20. If C is not small, there may be a proper class of diagrams
X ← Z → Y in C , even if X and Y are fixed in advance. Hence the construction
above may not provide a (small) set of morphisms from X to Y in C [C−1]. If
C is small, there is only a set of morphisms in C , hence only a set of words
(f ǫm

m , . . . , f ǫ1
1 ), so C [C−1] becomes an honest category.

Lemma 2.4.21. Any functor F : C → D from a small category C to a groupoid
D extends uniquely over η : C → C [C−1], so C [C−1] is the initial groupoid
under C .

Proof. The extension must map (f ǫm
m , . . . , f ǫ1

1 ) in C [C−1] to the composite

F (fm)ǫm ◦ · · · ◦ F (f1)
ǫ1

in D , and this is well-defined.

Lemma 2.4.22. The rule L that takes a small category C to the localization
L(C ) = C [C−1] defines a functor

L : Cat −→ Gpd .

The composite functor Gpd ⊂ Cat
L

−→ Gpd is the identity.

Proof. We must explain how each functor F : C → D induces a functor

L(F ) : C [C−1] → D [D−1] .

On objects, L(F ) takes X to F (X). On morphisms, L(F ) takes (f ǫm
m , . . . , f ǫ1

1 )
in C [C−1] to (F (fm)ǫm , . . . , F (f1)

ǫ1) in D [D−1].
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2.5 Ubiquity

Practically all sorts of mathematical objects naturally occur as the objects of a
category. Here are some common examples.

Definition 2.5.1 (Groups). Let Grp be the category of groups and group
homomorphisms. Its object class obj(Grp) is the proper class of all groups. We
write general groups multiplicatively, with neutral element e. For each pair of
groups G, H, the morphism set Grp(G,H) is the set of group homomorphisms
f : G → H, i.e., the functions f : G → H such that f(xy) = f(x)f(y) for all x,
y ∈ G. It follows formally that f(e) = e and f(x−1) = f(x)−1. The identity
function idG : G → G is a group homomorphism, and the composite of two
group homomorphisms f : G → H and g : H → K is a group homomorphism
gf : G → K, since (gf)(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) =
(gf)(x)(gf)(y). The unit and associative laws hold as in Set, so Grp is a
category. An isomorphism of groups has the usual meaning.

Definition 2.5.2 (Abelian groups). Let Ab be the category of abelian groups
and group homomorphisms. This is the full subcategory of Grp generated
by the proper class of all abelian groups. We usually write abelian groups
additively, with neutral element 0. For each pair of abelian groups A, B, the
morphism set Ab(A,B) is the set of group homomorphisms f : A → B, i.e., the
functions f : A → B such that f(x+y) = f(x)+f(y) for all x, y ∈ A. It follows
formally that f(0) = 0 and f(−x) = −f(x). An isomorphism of abelian groups
has the usual meaning.

Remark 2.5.3. In this case, the morphism set Ab(A,B) = Hom(A,B) is well-
known to have the additional structure of an abelian group. For example, the
sum f + g of two group homomorphisms f , g : A → B is given by the formula
(f + g)(x) = f(x) + g(x) for all x ∈ A. However, this abelian group structure is
not part of the data when we say that Ab is a category. Categories with this
kind of additional structure are called additive categories, or Ab-categories.
[[Reference to the chapter on abelian and exact categories.]]

Example 2.5.4. Let Z/n be the cyclic group of order n. For each abelian group
B, the abelian group Hom(Z/n,B) of group homomorphisms f : Z/n → B can
be identified with the subgroup B[n] = {x ∈ B | nx = 0} of elements of order
dividing n in B. The rule B 7→ B[n] defines a covariant functor Ab → Ab,
which is corepresented by the object Z/n in Ab, viewed as an additive category.

Example 2.5.5. Let T = U(1) be the multiplicative group of complex numbers
of absolute value 1. For each group A, the abelian group A# = Hom(A, T) of
group homomorphisms f : A → T is called the character group, or the Pontrya-
gin dual of A. The rule A 7→ A# defines a contravariant functor Abop → Ab,
which is represented by the object T in Ab, viewed as an additive category.
There is a natural homomorphism A → (A#)#, which is an isomorphism for
all finite groups A. [[Better to discuss Pontryagin duality theorem in the addi-
tive topological setting, between discrete abelian groups and compact Hausdorff
abelian groups.]]

Definition 2.5.6 (Abelianization). Given a group G, the commutator sub-
group [G,G] ⊆ G is the subgroup generated by the set of commutators [g, h] =
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ghg−1h−1 ∈ G, for all g, h ∈ G. In other words, the elements of [G,G] are
all finite products of commutators in G. This is a normal subgroup, since
k[g, h]k−1 = [kgk−1, khk−1] is a commutator for all k ∈ G. The quotient group

Gab = G/[G,G]

is called the abelianization of G. It is an abelian group, since [g][h][g]−1[h]−1 =
[ghg−1h−1] = e is the neutral element in Gab for any g, h ∈ G, which implies
[g][h] = [h][g]. Here [g] denotes the coset of g, which is the image of g ∈ G under
the canonical homomorphism G → Gab. Any group homomorphism f : G → A
to an abelian group A factors uniquely through this canonical homomorphism,
since f([g, h]) = 0 for any commutator.

Lemma 2.5.7. The rule taking G to Gab defines a functor

(−)ab : Grp −→ Ab .

The composite functor Ab ⊂ Grp
(−)gp

−→ Ab is the identity.

[[Discuss as adjunction later. Abelianization is left adjoint to the full embed-
ding. The isomorphism Hgp

1 (G) ∼= Gab is generalized by Quillen [53], defining
homology as left derived functors of abelianization, where abelianization is left
adjoint to a forgetful functor from abelian group objects. The full embedding
does not respect coproducts, hence has no right adjoint.]]

Proof. A homomorphism f : G → H takes [G,G] into [H,H], since f([g, h]) =
[f(g), f(h)], hence induces a homomorphism fab : Gab → Hab. Functoriality
is easily verified. If G is already abelian, [G,G] = {e} and we will identify
Gab = G/{e} with G.

Remark 2.5.8. For a related example of something that is not a functor,
consider the rule taking a group G to its center

Z(G) = {g ∈ G | gh = hg for all h ∈ G} .

This is a well-defined abelian group, and the group inclusion Z(G) ⊆ G is such
that every group homomorphism A → G from an abelian group factors uniquely
through Z(G). Still, Z is not a functor, since for a group homomorphism f : G →
H there is not necessarily an induced homomorphism Z(f) : Z(G) → Z(H). For
example, with G = Σ2, H = Σ3 and f : Σ2 → Σ3 the usual inclusion, Z(G) = G
while Z(H) ∼= Z/3 is generated by the cyclic permutation (123). Since f admits
a left inverse the induced homomorphism Z(f) : Z(G) → Z(H) should also
admit a left inverse. But the only homomorphism Z(G) → Z(H) is the trivial
one.

Example 2.5.9. For a group G, the set of homomorphisms G# = Grp(G, T)
forms an abelian group, under pointwise multiplication. Since any commutator
in G must map to 1 under such a homomorphism, the projection G → Gab

induces an isomorphism (Gab)# ∼= G#. Hence, for each finite group G, (G#)# ∼=
Gab. To study non-abelian groups G, one can instead consider the category of
unitary G-representations, or equivalently, the group homomorphisms ρ : G →
U(n) for varying n ≥ 1, and then attempt to recover G from that category. See
Section 3.3 for more about this.
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Example 2.5.10. Let Top be the category of topological spaces and continuous
functions. The morphism set Top(X,Y ) between two topological spaces X and
Y is the set of continuous functions f : X → Y . Recall that a function f : X → Y
is continuous if f−1(U) = {x ∈ X | f(x) ∈ U} is open in X for each open
subset U ⊆ Y . Continuous functions are usually called maps, and the elements
x ∈ X in a topological space are usually called points. The identity function
idX is continuous, and the composite of two continuous functions f : X → Y
and g : Y → Z is continuous, since g−1(V ) is open in Y , and (gf)−1(V ) =
f−1(g−1(V )) is open in X, for each open subset V ⊆ Z. The unit and associative
laws hold as in Set, so Top is a category.

Remark 2.5.11. We might identify Set with the full subcategory of Top gen-
erated by the discrete topological spaces, since any function f : X → Y is con-
tinuous when X (and Y ) is given the discrete topology. In the language of
Definition 2.4.8, Set is isomorphic to this full subcategory. For general topolog-
ical spaces X and Y we might give the set Top(X,Y ) = Map(X,Y ) a topology,
for instance the compact–open topology. Under mild assumptions on Y , like lo-
cal compactness, the composition Top(Y,Z)×Top(X,Y ) → Top(X,Z) is then
a continuous map, and we obtain a topological category. Since some assumptions
are needed, we postpone the details to a later section. [[Forward reference.]]

Example 2.5.12. Let S1 be the circle. Given any space X the continuous
maps f : S1 → X are called free loops in X. When the set Top(S1,X) of
free loops is given the compact–open topology, we call it the free loop space
L X = Map(S1,X) of X. It can, for instance, be considered as the space of
closed strings in X.

Definition 2.5.13 (Path components). Let I = [0, 1] ⊂ R be the unit
interval on the real line, and let X be any topological space. A map α : I → X
is called a path in X, from α(0) to α(1). We say that two points x, y ∈ X are in
the same path component of X, and write x ≃ y, if there exists a path α in X
from x to y. This defines an equivalence relation on the set of points in X, as
we will verify in a moment. The set of equivalence classes for this relation will
be called the set of path components of X, and is denoted

π0(X) = X/≃ .

It remains to verify that ≃ is an equivalence relation on X. The constant path
α(s) = x for all s ∈ I shows that x ≃ x. If α is a path from x to y, so that
x ≃ y, then there is a path ᾱ from y to x given by the formula ᾱ(s) = α(1 − s)
for all s ∈ I, so that y ≃ x. If α is a path from x to y, and β is a path from y
to z, so that x ≃ y and y ≃ z, then there is a path α ∗ β from x to z, given by

(α ∗ β)(s) =

{
α(2s) for 0 ≤ s ≤ 1/2,

β(2s − 1) for 1/2 ≤ s ≤ 1,

so that x ≃ z. [[Should we write α ∗ β or β ∗ α for this?]]

Lemma 2.5.14. The rule taking X to π0(X) defines a functor

π0 : Top −→ Set .

The composite functor Set ⊂ Top
π0−→ Set is the identity.
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[[Mention later that π0 is left adjoint to the inclusion for reasonable (locally
path-connected) X.]]

Proof. A continuous map f : X → Y takes each path component of X into a
path component of Y , since if α : I → X is a path from x to y in X, so that
x ≃ y, then the composite f ◦ α : I → Y is a path from f(x) to f(y) in Y , so
that f(x) ≃ f(y). Hence

π0(f) : π0(X) −→ π0(Y )

is well-defined by taking [x] to [f(x)], where [x] ∈ π0(X) denotes the equivalence
class (= path component) of x under ≃. Functoriality is easily verified.

2.6 Correspondences

Example 2.6.1. Given two sets X, Y , a correspondence C from X to Y is a
subset C ⊆ X × Y . We can think of C as a multi-valued function from X to
Y , whose values at x ∈ X is the set of y ∈ Y such that (x, y) ∈ C. Let Cor
be the category of sets and correspondences. Its objects are sets, so obj(Cor)
is the class of all sets. For each pair of sets X, Y , Cor(X,Y ) is the set of
correspondences from X to Y , i.e., the set of all subsets of X ×Y . The identity
correspondence from X to X is the diagonal subset ∆(X) = {(x, x) | x ∈ X} of
X×X. Given sets X, Y , Z and correspondences C ⊆ X×Y and D ⊆ Y ×Z, we
define the composite correspondence D ◦C ⊆ X ×Z as the set of (x, z) ∈ X ×Z
such that there exists at least one y ∈ Y with (x, y) ∈ C and (y, z) ∈ D. The
unit and associative laws are easy to verify, so Cor is a category.

Remark 2.6.2. The last example shows that the morphisms in a category
do not need to have preferred underlying functions. Similarly, there is no re-
quirement that the objects of a category have preferred underlying sets. This
example is also a little unusual in that we have chosen to label the category Cor
by the name for its morphisms, rather than its objects. In many cases it is clear
what the intended morphisms are once the objects are described, in which case
it makes sense to refer to the category primarily by its objects. In other cases,
where it is the morphisms that are unobvious, it seems sensible to emphasize
them in the notation.

[[Define a concrete category.]]

Example 2.6.3. The opposite Corop of the category of correspondences can
be identified with Cor itself, so this category is self-dual. The identification is
the identity on objects, and for sets X, Y we identify Cor(X,Y ) with

Corop(X,Y ) = Cor(Y,X)

by taking a correspondence C ⊆ X × Y to the correspondence γC ⊆ Y × X,
where

γC = {(y, x) ∈ Y × X | (x, y) ∈ C} .

More precisely, this defines an isomorphism of categories γ : Cor ∼= Corop, in
the sense of Definition 2.4.8, since for D ⊆ Y ×Z the composite D ◦C ⊆ X ×Z
in Cor corresponds to γ(D ◦ C) = γD ◦op γC in Corop.
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Example 2.6.4. Let G : Set → Cor be the functor that is the identity on
objects, so that G(X) = X for all sets X, and takes each function f : X → Y
to its graph

G(f) = {(x, f(x)) | x ∈ X} ⊆ X × Y

considered as a correspondence from X to Y . The rule f 7→ G(f) defines a
function Set(X,Y ) → Cor(X,Y ) for all sets X, Y . The graph of the identity
function idX : X → X is the diagonal subset G(idX) = ∆(X) ⊆ X × X, so
G takes identities to identities. For G to be a functor, we must also check
that G takes composites in Set to composites in Cor. Thus consider functions
f : X → Y and g : Y → Z. The composite correspondence G(g) ◦ G(f) consists
of the (x, z) ∈ X × Z such that there exists a y ∈ Y with (x, y) ∈ G(f) and
(y, z) ∈ G(g). Since G(f) is the graph of the function f , the only y satisfying
the first condition is y = f(x). Then the only z satisfying the second condition
is z = g(y) = (g ◦ f)(x). Hence

G(g) ◦ G(f) = {(x, z) | z = (g ◦ f)(x)} = G(g ◦ f) ,

and G is, indeed, a functor.

Example 2.6.5. The functor G : Set → Cor is faithful, since for every pair X,
Y of sets the function

G : Set(X,Y ) −→ Cor(X,Y )

is injective. A function f : X → Y is after all determined by its graph. For most
pairs X, Y there are more correspondences than functions between X and Y ,
so G is not full.

Example 2.6.6. Let C ⊂ Cor be the subcategory of correspondences with all
sets as objects, but with morphisms C (X,Y ) only the correspondences C ⊆
X ×Y that are graphs of functions, i.e., those having the property that for each
x ∈ X there is one and only one y ∈ Y with (x, y) ∈ C. The graph functor
from Example 2.6.4 factors uniquely through C , and induces an isomorphism

of categories Set
∼=
−→ C .

Remark 2.6.7. This example presumes that we think of a function f : X → Y
as a rule that associates to each element x ∈ X a unique element f(x) in Y ,
and that this is not exactly the same as the graph subset G(f) ⊆ X × Y . If the

reader prefers to define functions as graphs, then the isomorphism Set
∼=
−→ C

is an equality, and Set is a subcategory of Cor.

2.7 Representations of groups and rings

Definition 2.7.1 (G-sets). Let G be a group with neutral element e. A (left)
G-set is a set X with a left action map

G × X −→ X

taking (g, x) to g · x, such that e · x = x and g · (h · x) = gh · x for all g, h ∈ G,
x ∈ X. We often abbreviate g · x to gx. A function f : X → Y between two left
G-sets is said to be G-equivariant if gf(x) = f(gx) for all g ∈ G, x ∈ X.
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Definition 2.7.2 (Category G−Set). Let G−Set be the category of all (left)
G-sets and G-equivariant functions. Each identity function is G-equivariant, and
the composite of two G-equivariant functions is G-equivariant, so this defines a
category. Let G−Fin be the full subcategory of G−Set generated by all finite
G-sets, i.e., G-sets X such that X is a finite set.

Definition 2.7.3 (Orbits and fixed points). Let X be a G-set, and let
x ∈ X. The orbit of x is the G-subset

Gx = {gx ∈ X | g ∈ G}

of X, and the stabilizer group of x is the subgroup

Gx = {g ∈ G | gx = x}

of X. We say that the G-action on X is transitive if Gx = X for some (hence
all) x ∈ X. We say that the G-action is free if gx = x only for g = e, so that
the stabilizer group Gx = {e} is trivial for each x ∈ X. The G-action is trivial
if gx = x for all g ∈ G and x ∈ X, so each stabilizer group Gx = G equals the
whole group. The orbit set X/G = {Gx | x ∈ X} is the set of orbits, and the
fixed point set XG = {x ∈ X | Gx = G} is the set of x with gx = x for all g.

Lemma 2.7.4. Any G-set X decomposes as the disjoint sum of its orbits

X ∼=
∐

x

Gx

where x ranges over one element in each orbit. Each orbit is a transitive G-set,
and there is an isomorphism

G/Gx

∼=
−→ Gx

of G-sets taking the coset gGx to the element gx. Each G-set is therefore of the
form

X ∼=
∐

i∈I

G/Hi

where Hi is a subgroup of G for each i ∈ I.

Lemma 2.7.5. The G-equivariant functions f : G/H → G/K can be uniquely
written in the form f(gH) = gwK for an element wK ∈ (G/K)H , [[Make
(G/K)H explicit.]] Each G-equivariant function

f :
∐

i∈I

G/Hi −→
∐

j∈J

G/Kj

has the form
f(gHi) = gwiKφ(i)

for a unique function φ : I → J and uniquely determined family of elements
wiKj ∈ (G/Kj)

Hi , with j = φ(i).

[[Discuss orbit category Or(G) of transitive G-sets G/H for H ⊆ G, as a
full subcategory of G−Set.]]
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[[Discuss the isomorphism classes of G−Set or G−Fin. Decompose G-sets
into orbits G/H, classified by the conjugacy class (H) of H in G. Form a skeleton
category G−F with objects

∐
(H)

∐nH G/H for some (class) function n from
conjugacy classes of subgroups to N0. Give criterion for finiteness. Specialize
to G finite. Alternatively, consider group homomorphisms G → Σn, which
correspond to G-actions on n. These are permutation representations of G.
Conjugate group homomorphisms give isomorphic G-sets.]]

[[Categories of left and right R-modules, R−Mod and Mod−R, for R a
ring. The full subcategory R−Coh of coherent = finitely generated R-modules
for R left Noetherian, or the full subcategory R−Proj of finitely generated
projective R-modules.]]

[[Exactness of HomR(−,−), projective and injective R-modules. Exactness
of (−) ⊗R (−), left and right flat R-modules.]]

[[Discuss the isomorphism classes of R−Mod or its various full subcate-
gories.]]

[[Example: Let R be a commutative ring. Define D : (R − Mod)op → R −
Mod by D(M) = (R − Mod)(M,R).]]

2.8 Few objects

To get more easily comprehended examples of categories, we may restrict the
number of objects in a couple of ways. We have already discussed small cate-
gories, where obj(C ) is a set. Here is a mild condition on a category, already
mentioned in the definition of F .

Definition 2.8.1 (Skeletal category). A category C is skeletal if each iso-
morphism class of objects only contains one element, i.e., if X ∼= Y in C implies
X = Y . Let SkCat be the full subcategory of Cat generated by the small
skeletal categories, and let SkGpd be the full subcategory generated by the
small skeletal groupoids.

A more drastic restriction is to only allow one object, altogether.

Definition 2.8.2 (Monoids). A monoid M is a set with a unit element e ∈ M
and a multiplication µ : M×M → M , taking (x, y) to xy, satisfying the unit laws
ex = x = xe and the associative law (xy)z = x(yz). A monoid homomorphism
f : M → N is a function satisfying f(e) = e and f(xy) = f(x)f(y). Let Mon
be the category of all (small) monoids and monoid homomorphisms.

Example 2.8.3. Let C be a category with a single object ∗, so that obj(C ) =
{∗}. The only pair of objects in C is then ∗, ∗, and the only morphism set in C is
M = C (∗, ∗). The identity morphism of ∗ specifies an element e = id∗ ∈ M , and
the composition law for the triple ∗, ∗, ∗ of objects is a function µ : M×M → M ,
which we write as taking (g, f) to gf . The unit laws and associative law for C

tell us that M is a monoid.
Let C , D be categories with obj(C ) = obj(D) = {∗}, and let M = C (∗, ∗),

N = D(∗, ∗) be the corresponding monoids. A functor F : C → D defines a
function F : M = C (∗, ∗) → D(∗, ∗) = N , such that F (e) = e and F (gf) =
F (g)F (f), for all f, g ∈ M . Hence F is a monoid homomorphism. The functor
F : C → D is an isomorphism of categories if and only if F : M → N is a monoid
isomorphism.
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Definition 2.8.4 (Category BM). Given any monoid (M, e, µ), let BM be
the category with one object ∗ and morphism set BM(∗, ∗) = M . The neutral
element e and multiplication µ specify the identity morphism id and composition
law ◦, which make C a category.

Each monoid homomorphism f : M → N specifies a functor Bf : BM →
BN , taking ∗ to ∗ and mapping M = BM(∗, ∗) → BN(∗, ∗) = N by f . which
is an isomorphism of categories if and only if f is a monoid isomorphism.

[[Consider writing [x] for the morphism in BM corresponding to x ∈ M .]]

Lemma 2.8.5. The rule taking a monoid M to the category BM defines a full
and faithful functor

B : Mon −→ Cat .

It induces an equivalence between Mon and the full subcategory of Cat generated
by categories with one object.

Proof. [[Clear. Forward reference to equivalence of categories.]]

Turning the tables, we may say that a category is a monoid with (potentially)
many objects.

Lemma 2.8.6. Let (M, e, µ) be a monoid. Then B(Mop) = (BM)op, where
(Mop, e, µop) is the opposite monoid with multiplication µop(f, g) = µ(g, f).

Lemma 2.8.7. The homomorphisms M ← M×N → N induce an identification

B(M × N)
=
−→ BM × BN

that views a morphism (x, y) on the left hand side as a pair of morphisms x and
y on the right hand side.

[[Both proofs are trivial.]]

Example 2.8.8. Let C be a groupoid with a single object ∗, so that obj(C ) =
{∗}. The only morphism set in C is G = C (∗, ∗), which we have already seen is
a monoid. Furthermore, the assumption that C is a groupoid means that each
element f ∈ G admits an inverse f−1 with respect to the multiplication, so that
(G, e, µ) is in fact a group. For f can be viewed as a morphism f : ∗ → ∗ in the
groupoid C , hence an isomorphism, and the inverse f−1 : ∗ → ∗ with respect to
composition will then correspond to a group inverse in G.

Let C , D be groupoids with obj(C ) = obj(D) = {∗}, and let G = C (∗, ∗),
H = D(∗, ∗) be the corresponding groups. A functor F : C → D defines a
function F : G → H, such that F (e) = e and F (gf) = F (g)F (f), for all f ,
g ∈ G. Hence F is a group homomorphism. The functor F : C → D is an
isomorphism of groupoids if and only if F : G → H is a group isomorphism.

Lemma 2.8.9. The rule taking a group G to the groupoid BG defines a full
and faithful functor

B : Grp −→ Gpd .

It induces an equivalence between Grp and the full subcategory of Gpd generated
by groupoids with one object.
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Proof. The thing to check is that BG is a groupoid, but each morphism f ∈
BG(∗, ∗) = G has an inverse, precisely because G is a group.

Reversing the perspective again, a groupoid is a group with many objects.
We will explain the notation BG later [[when?]], in relation to the classifying
space BG = |BG| of the group G.

Remark 2.8.10. We can organize these full subcategories of Cat in the fol-
lowing diagram:

Grp
B //

²²

SkGpd //

²²

Gpd

²²

Mon
B // SkCat // Cat

(2.1)

In the upper row all morphisms are isomorphisms, in the left hand column we
have only one object, and in the middle column each isomorphism class contains
only one object. See also diagram (2.2) below.

Definition 2.8.11 (Endomorphisms and automorphisms). A morphism
f : X → X in a category C , with the same source and target, is called an endo-

morphism. If f : X
∼=
−→ X is also an isomorphism, it is called an automorphism.

The identity morphism idX , together with the composition of morphisms in C ,
makes the set M = C (X,X) of endomorphisms of X into a monoid, called the
endomorphism monoid of X in C . The same data, together with the existence
of inverses, makes the set G = iso(C )(X,X) of automorphisms of X into a
group, called the automorphism group of X in C . With this notation, G = M×

is the maximal submonoid of M that is a group, or equivalently, the maximal
subgroup of M , also known as the group of units in M .

Example 2.8.12. The full subcategory generated by a single object X in a
category C is isomorphic to the one-object category BM associated to the
endomorphism monoid M = C (X,X) of X.

Remark 2.8.13. The commutativity relation g ◦ f = f ◦ g only makes sense
for morphisms f , g in a category C when f and g are both endomorphisms of
the same object. Is there a useful notion of a commutative monoid with many
objects, or an abelian group with many objects?

From one point of view, a commutative monoid is a monoid object in Mon,
i.e., a monoid M such that the multiplication map µ : M ×M → M is a monoid
homomorphism. Here M × M denotes the product monoid.

The many objects version of this is then to consider category objects in Cat,
i.e., a pair of small categories O and M , with identity, source and target functors
id : O → M , s : M → O and t : M → O, and a composition functor ◦ : M ×O

M → M from the fiber product category M ×O M , satisfying the unit and
associativity laws. This structure is called a bicategory. See [67, §5] for more
details. [[Discuss horizontal and vertical morphisms, and how they commute.]]

[[Give left adjoint functor Cat → Mon or Gpd → Grp? To a small
skeletal category C we associate the monoid consisting of finite words of non-
composable morphisms (fn, . . . , f1) in C , with n ≥ 0. The empty word () is the
neutral element. The product of (gm, . . . , g1) and (fn, . . . , f1) is the result of
reducing (gm, . . . , g1, fn, . . . , f1) by composing all composables. If C is a small
skeletal groupoid, this produces a group. What happens if C is not skeletal?]]
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2.9 Few morphisms

In an orthogonal direction to that of the last section, we may instead restrict the
number of morphisms between any two objects X and Y in a category, allowing
only zero or one such morphism. What remains is one bit of information (true
or false) about whether such a morphism exists or not, which amounts to a
binary relation on the object class or set.

Definition 2.9.1 (Relations). A relation R on a set P is a subset R ⊆ P ×P .
For elements x, y ∈ P we say that xRy is true if and only if (x, y) ∈ R.

Definition 2.9.2 (Orderings and relations). Let P be a set.

(a) A preordering (= quasi-ordering) on P is a relation ≤ such that

• x ≤ x for all x ∈ P , and

• (x ≤ y and y ≤ z) implies x ≤ z for all x, y, z ∈ P .

The pair (P,≤) is called a preorder.

(b) A partial ordering is a preordering ≤ such that

• (x ≤ y and y ≤ x) implies x = y for all x, y ∈ P .

The pair (P,≤) is then called a partially ordered set, or a poset.

(c) A total ordering is a partial ordering ≤ such that

• (x ≤ y or y ≤ x) for any x, y ∈ P .

The pair (P,≤) is then called a totally ordered set. [[Are we interested in
well-orderings?]]

(d) An equivalence relation on P is a preordering ≃ such that

• x ≃ y implies y ≃ x for all x, y ∈ P .

(e) Let (P,≤) and (Q,≤) be preorders. A function f : P → Q is (weakly)
order-preserving if

• x ≤ y in P implies f(x) ≤ f(y) in Q, for all x, y ∈ P .

An order-preserving function f : (P,≃) → (Q,≃) between sets with equiv-
alence relations is the same as a function respecting the equivalence rela-
tions.

Definition 2.9.3 (Categories of orderings or relations). Let PreOrd
be the category of preorders and order-preserving functions. Its objects are
the preorders (P,≤), and the morphisms from (P,≤) to (Q,≤) are the order-
preserving functions f : P → Q. Identities and composition are defined as
in Set.

Let Poset ⊂ PreOrd be the full subcategory generated by the partially
ordered sets, let Ord ⊂ Poset be the full subcategory generated by the totally
ordered sets, and let EqRel ⊂ PreOrd be the full subcategory generated by
the equivalence relations.
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Definition 2.9.4 (Preorders as categories). Any preorder (P,≤) may be
viewed as a small category, also denoted P , with objects the elements of P , and
morphisms

P (x, y) =

{
{x → y} if x ≤ y,

∅ if x 6≤ y,

for any x, y ∈ P . In other words, there is a unique morphism x → y if x ≤ y,
and no morphisms from x to y otherwise. Identity morphisms exist, since x ≤ x
for all x, and the composite of two morphisms x → y and y → z is the unique
morphism x → z, which exists because x ≤ y and y ≤ z implies x ≤ z.

Any order-preserving function f : (P,≤) → (Q,≤) may be viewed as a func-
tor f : P → Q between the small categories associated to (P,≤) and (Q,≤).
The function

f : P (x, y) −→ Q(f(x), f(y))

takes the unique morphism x → y to the unique morphism f(x) → f(y) if x ≤ y
in P , which makes sense, since then f(x) ≤ f(y) in Q. If x 6≤ y in P then there
is nothing to specify.

Lemma 2.9.5. The rule viewing a preorder (P,≤) as a small category defines
a full and faithful functor

PreOrd −→ Cat .

Proof. Briefly, this functor identifies PreOrd with the full subcategory of Cat
generated by the small categories C for which each morphism set C (X,Y ) is
either empty or consists of a single arrow X → Y .

Here is a more detailed argument. It is clear that the identity function
idP : (P,≤) → (P,≤) maps to the identity functor, and that the composite
of two order-preserving functions goes to the composite of the two associated
functors. Hence we have a functor. To see that it is full and faithful, we must
consider any pair (P,≤), (Q,≤) of preorders, and check that the function

PreOrd((P,≤), (Q,≤)) −→ Cat(P,Q)

that takes an order-preserving function f : P → Q to the associated functor,
is bijective. We can do this by exhibiting the inverse function, which takes a
functor f : P → Q to the function f : P → Q whose value f(x) at the element
x ∈ P is the element of Q given by the object f(x) in Q. This produces an
order-preserving function f , since if x ≤ y in (P,≤) then there is a morphism
x → y in P , and the functor f will take this to a morphism f(x) → f(y) in Q.
There is such a morphism in Q if and only if f(x) ≤ f(y) in (Q,≤), which
proves that f is order-preserving.

[[Conversely, a functor Cat → PreOrd that only remembers the existence
of morphisms. It takes a small category C to the preorder (obj(C ),≤), where
X ≤ Y for X,Y ∈ obj(C ) if and only if there exists a morphism f : X → Y
in C . This is left adjoint to the forgetful functor.]]

Remark 2.9.6. Each of the categories in diagram (2.1) has a full subcategory
generated by the objects that are preorders. This gives the following diagram
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of full subcategories of PreOrd:

{∗} //

²²

Set
δ //

δ

²²

EqRel

²²

{∗} // Poset // PreOrd

(2.2)

In the lower row, a skeletal preorder is the same as a poset, and a preorder with
only one element is isomorphic to the one-morphism category ∗. In the upper
row, a preorder where each relation is invertible is the same as an equivalence
relation. A skeletal equivalence relation is the same as the discrete equivalence
relation δ, where each equivalence class consists of a single element. A set with
such a relation can be identified with the underlying set.

Note that diagram (2.2) maps to diagram (2.1), yielding a 3×2×2 box of full
subcategories of Cat. We often think of monoids and preorders as giving rise
to small categories in this way, and similarly groups and equivalence relations
give rise to small groupoids.

Definition 2.9.7 (The totally ordered set [n]). For each non-negative in-
teger n ≥ 0, let

[n] = {0 < 1 < · · · < n−1 < n}

be the set of integers i with 0 ≤ i ≤ n, with the usual total ordering, so that
i ≤ j if and only if i is less than or equal to j as integers. As in the example
above, we also view [n] as the small category

[n] = {0 → 1 → · · · → n−1 → n}

with objects i = 0, 1, . . . , n−1, n the integers i with 0 ≤ i ≤ n, a unique mor-
phism i → j for each i ≤ j, and no morphisms i → j for i > j. When i ≤ j, the
unique morphism i → j factors as the composite

i → i+1 → · · · → j−1 → j

of (j − i) morphisms of the form k−1 → k, for i < k ≤ j.
Let m, n ≥ 0. An order-preserving function α : [m] → [n] is determined by

its values α(i) for 0 ≤ i ≤ m, which must satisfy

0 ≤ α(0) ≤ α(1) ≤ · · · ≤ α(m−1) ≤ α(m) ≤ n ,

and conversely.

The following category plays a fundamental role in the theory of simplicial
sets, to be discussed in Chapter 6.

Definition 2.9.8 (Category ∆). Let ∆ be the skeleton category of finite
nonempty ordinals. It is the full subcategory ∆ ⊂ Ord generated by the ordinals

[n] = {0 < 1 < · · · < n−1 < n}

for all integers n ≥ 0. For example, [0] = {0} and [1] = {0 < 1}. Hence the
morphism set ∆([m], [n]) is the set of order-preserving functions α : [m] → [n].
Identities and composition are given as in Set.
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[[Forward reference to categories of pointed sets, finite pointed sets, left and
right G-sets, left and right R-modules, left and right G-spaces, simplicial sets,
simplicial groups, simplicial abelian groups, simplicial spaces, bisimplicial sets,
etc.]]

[[Forward reference to functors like homology, topological realization, singu-
lar simplicial set, etc.]]



Chapter 3

Transformations and

equivalences

A reference for this chapter is Mac Lane [40, I,II,IV].

3.1 Natural transformations

Definition 3.1.1 (Natural transformation). Let C , D be categories and let
F , G : C → D be functors. A natural transformation φ : F ⇒ G from F to G is
a rule that to each object X in C associates a morphism

φX : F (X) −→ G(X)

in D , such that for each morphism f : X → Y in C the square

F (X)
φX //

F (f)

²²

G(X)

G(f)

²²

F (Y )
φY // G(Y )

commutes. In other words, the two diagonal morphisms G(f) ◦ φX , φY ◦
F (f) : F (X) → G(Y ) must be equal. We sometimes call the morphisms φX

the components of the natural transformation φ.
The natural transformation φ maps each commutative triangle in C (on the

left) to a commutative prism in D (on the right):

X
f

##HHHHHHHHHH

gf

²²

F (X)
φX //

F (f)

##HHHHHHHH

F (gf)

²²

G(X)
G(f)

##HHHHHHHH

G(gf)

²²

Y

g
{{vvvvvvvvvv

ÂÂ φ +3 F (Y )
φY //

F (g){{vvv
vvvv

v
G(Y )

G(g){{vvvvv
vvv

Z F (Z)
φZ // G(Z)

56
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More generally, φ maps any commutative diagram in C to a commutative dia-
gram in D , shaped like a cylinder on the original shape. In symbols the natu-
rality condition reads φY F (f) = G(f)φX , or just φY f∗ = f∗φX .

[[Later it may be suggestive to include the diagonal arrows, to see the trian-
gulations of the square and the prism.]]

Example 3.1.2. Let C = D = Grp, let F = id and let G be the composite
of the abelianization functor (−)ab : Grp → Ab and the inclusion Ab ⊂ Grp.
The canonical homomorphism φH : H → Hab is then a natural transformation
φ : id → G, since for each group homomorphism f : H → K the diagram

H
φH //

f

²²

Hab

fab

²²

K
φK // Kab

commutes. We may also call it a natural homomorphism.

Example 3.1.3. Let (P,≤) and (Q,≤) be preorders, and let f, g : P → Q be
order-preserving functions. If we view the preorders as small categories P , Q,
and the order-preserving functions as functors f, g : P → Q, then there is a
natural transformation φ : f ⇒ g if and only if f is bounded above by g, in
the sense that f(x) ≤ g(x) in (Q,≤) for all x ∈ P . In this case there is a
unique morphism φx : f(x) → g(x) in Q for each object x in P , so the natural
transformation φ is unique, if it exists.

[[Example: An isomorphism M ∼= D(M) = (R−Mod)(M,R) exists for each
finitely generated free R-module M , but no natural choice. However, there is
a natural homomorphism ρ : M → D(D(M)), which is an isomorphism for M
finitely generated and projective.]]

[[Example: For rings R, T and a homomorphism P → Q of R-T -bimodules,
there is a natural transformation of functor T−Mod → R−Mod from P⊗T (−))
to Q ⊗T (−).]]

Definition 3.1.4 (Identity, composition of natural transformations).
Let C , D be categories and let F , G, H : C → D be functors. The identity
natural transformation idF : F ⇒ F is the rule that associates to each object X
in C the identity morphism (idF )X = idF (X) : F (X) → F (X). This is a natural
transformation, since the square

F (X)
= //

F (f)

²²

F (X)

F (f)

²²

F (Y )
= // F (Y )

commutes for each morphism f : X → Y in C .
Let φ : F ⇒ G and ψ : G ⇒ H be natural transformations. The composite

natural transformation ψ ◦ φ : F ⇒ H is the rule that to each object X in C

associates the composite morphism

(ψ ◦ φ)X = ψX ◦ φX : F (X) → H(X)
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in D . This defines a natural transformation, since the outer rectangle

F (X)
φX //

F (f)

²²

G(X)
ψX //

G(f)

²²

H(X)

H(f)

²²

F (Y )
φY // G(Y )

ψY // H(Y )

commutes for each morphism f : X → Y in C .

Lemma 3.1.5. Let C and D be categories, and assume that C is small. Let
F , G : C → D be functors. Then the collection of all natural transformations
φ : F ⇒ G is a set.

Proof. To specify φ, we must choose a morphism φX in the set D(F (X), G(X))
for each object X in C . Since C is small, there is only a set of possible choices.

Definition 3.1.6 (Functor category). Let C , D be categories and assume
that C is small. The functor category Fun(C ,D) has as objects the functors
F : C → D . Let G : C → D be a second such functor. The morphisms from F
to G are the natural transformations φ : F ⇒ G. The collection Fun(C ,D) of
all such natural transformations is a set, by the lemma above. Identities and
composition are defined as in Definition 3.1.4.

An alternative notation for the functor category is DC = Fun(C ,D).

Remark 3.1.7. When C is small, we think of a functor F : C → D as a C -
shaped diagram in D . We call C the indexing category of the diagram. For each
object X of C there is a vertex in the diagram with the object F (X) in D . For
each morphism f : X → Y in C there is an edge in the diagram connecting F (X)
to F (Y ) by the morphism F (f) in D . Each commuting triangle in C expresses a
composition relation gf = g ◦ f , and by functoriality the corresponding relation
F (gf) = F (g) ◦ F (f) holds in the C -shaped diagram in D . Given a second
functor G : C → D and a natural transformation φ : F ⇒ G, we think of G as
giving a second C -shaped diagram in D , and φ as specifying a cylinder-shaped
diagram in D , with the C -shaped diagrams given by F and G at the top and
bottom, respectively. [[Reference to more precise statement D × [1] and the
cylinder.]]

Remark 3.1.8. When we view a functor C → D , or a C -shaped diagram in D ,
as an object in the functor category Fun(C ,D), we may wish to make a shift
in the notation, calling this object in Fun(C ,D) something like X or Y . To
make room for this shift, we must first assign other notation for the objects of
the indexing category C . For generic C we might call its objects c, d, while for
specific indexing categories C other notations may be more suggestive.

Example 3.1.9. Recall the notation [n] = {0 → 1 → · · · → n−1 → n} from
Definition 2.9.7. A functor X : [n] → D amounts to a diagram

X(0)
ξ1
−→ X(1) −→ . . . −→ X(n−1)

ξn
−→ X(n)

in D , with each X(k) an object of D for 0 ≤ k ≤ n, and each ξk : X(k−1) →
X(k) a morphism in D for 1 ≤ k ≤ n. A second functor Y : [n] → D amounts
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to a diagram

Y (0)
η1
−→ Y (1) −→ . . . −→ Y (n−1)

ηn
−→ Y (n)

in D , and a natural transformation φ : X ⇒ Y amounts to a commutative
diagram

X(0)
ξ1 //

φ0

²²

X(1) //

φ1

²²

. . . // X(n−1)
ξn //

φn−1

²²

X(n)

φn

²²

Y (0)
η1 // Y (1) // . . . // Y (n−1)

ηn // Y (n)

in D , where the horizontal morphisms are as above. These are then the objects
and morphisms of the functor category Fun([n],D) = D [n]. When n = 0 there
is an obvious isomorphism of categories Fun([0],D) ∼= D .

Definition 3.1.10 (Arrow category). The arrow category Ar(D) of a cate-
gory D has objects the morphisms ξ : X0 → X1 in D , and morphisms f : ξ → η
from ξ : X0 → X1 to η : Y0 → Y1 the pairs f = (f0, f1) of morphisms f0 : X0 →
Y0, f1 : X1 → Y1 in D that make the square

X0
ξ

//

f0

²²

X1

f1

²²

Y0
η

// Y1

commute. There is an obvious isomorphism of categories Fun([1],D) ∼= Ar(D).

Definition 3.1.11 (Inclusion, evaluation functors). For t ∈ {0, 1}, let

it : C → C × [1]

be the functor that takes X to (X, t) and f : X → Y to (f, idt), and let

et : Ar(C ) → C

be the functor that takes ξ : X0 → X1 to Xt and f = (f0, f1) : ξ → η to ft.

Lemma 3.1.12. Let F,G : C → D be given functors. There are bijective cor-
respondences between:

(a) the functors Φ: C × [1] → D with Φ ◦ i0 = F and Φ ◦ i1 = G;

(b) the natural transformations φ : F =⇒ G;

(c) the functors Ψ: C → Ar(D) with e0 ◦ Ψ = F and e1 ◦ Ψ = G.

In particular, the identity functor of C × [1] corresponds to a universal natural
transformation

φ : i0 =⇒ i1

between the functors i0, i1 : C → C × [1], taking each object X in C to the
morphism (idX , 0 → 1) in C × [1].
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Proof. The first correspondence takes a functor Φ to the natural transformation
φ with φX = Φ(idX , 0 → 1). Conversely, a natural transformation φ maps to
the functor Φ given on objects by Φ(X, 0) = F (X), Φ(X, 1) = G(X), and on
morphisms by Φ(f, id0) = F (f), Φ(f, id1) = G(f) and Φ(idX , 0 → 1) = ψX .
The commutation relation

(idY , 0 → 1) ◦ (f, id0) = (f, 0 → 1) = (f, id1) ◦ (idX , 0 → 1)

in the product category C × [1] corresponds precisely to the naturality condition
on φ.

The second correspondence takes a natural transformation φ to the functor
Ψ given on objects by Ψ(X) = (φX : F (X) → G(X)), and on morphisms by
Ψ(f) = (F (f), G(f)). Conversely, a functor Ψ maps to the natural transforma-
tion φ with φX = Ψ(X). The commutation condition for morphisms in Ar(D)
corresponds precisely to the naturality condition on φ.

Lemma 3.1.13. Let C , D , E be categories, with C and D small. There is a
natural isomorphism

Fun(C × D ,E ) ∼= Fun(C ,Fun(D ,E ))

that takes a functor Φ: C × D → E to the functor Ψ: C → Fun(D ,E ) that
takes X in C to Ψ(X) : D → E given by Ψ(X)(Y ) = Φ(X,Y ) for all Y in D .

Proof. [[Clear enough.]]

3.2 Natural isomorphisms and equivalences

Definition 3.2.1 (Natural isomorphism). Let C , D be categories and let

F , G : C → D be functors. A natural isomorphism φ : F
∼=

=⇒ G is a natural
transformation such that the morphism

φX : F (X)
∼=
−→ G(X)

is an isomorphism in D , for each object X in C . Alternatively we may write
φ : F ∼= G.

Example 3.2.2. Let C , D be categories with obj(C ) = obj(D) = {∗}, and
endomorphism monoids M = C (∗, ∗), N = D(∗, ∗), let F,G : C → D be func-
tors with associated monoid homomorphisms F,G : M → N , and let φ : F ⇒ G
be a natural transformation. Then φ associates to the object ∗ in C a mor-
phism φ∗ : ∗ = F (∗) → G(∗) = ∗ in D , which we consider as an element
h = φ∗ ∈ N = D(∗, ∗). The condition that φ is a natural transformation asks
that hF (f) = G(f)h in N , for all f ∈ M . We say that h ∈ N acts as an inter-
twiner between the homomorphisms F : M → N and G : M → N . When φ is a
natural isomorphism, h must be invertible in N , so the naturality condition can
be rewritten as G(f) = hF (f)h−1 for all f ∈ M . In other words, G : M → N is
the conjugate of F : M → N by h.

Similar remarks apply when C , D are one-object groupoids, and φ : F ⇒ G
a natural transformation of functors F , G : C → D . Since D is a groupoid, φ is
automatically a natural isomorphism.
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Lemma 3.2.3. The identity idF : F
∼=

=⇒ F is a natural isomorphism, the in-

verse φ−1 : G
∼=

=⇒ F of a natural isomorphism is a natural isomorphism, and

the composite ψ ◦ φ : F
∼=

=⇒ H of φ and a natural isomorphism ψ : G
∼=

=⇒ is a
natural isomorphism.

Proof. This is clear.

Lemma 3.2.4. A natural transformation φ : F ⇒ G is a natural isomorphism
if and only if there exists a natural transformation ψ : G ⇒ F such that ψ ◦φ =
idF and φ ◦ ψ = idG. If C is small, this is the same as saying that φ is an
isomorphism from F to G in Fun(C ,D).

Proof. Suppose that φ is a natural isomorphisms, so that φX : F (X) → G(X)
is an isomorphism for each object X in C . Let ψX = (φX)−1 : G(X) → F (X)
be the inverse isomorphism, for each X. Then the square

G(X)
ψX //

G(f)

²²

F (X)

F (f)

²²

G(Y )
ψY // F (Y )

commutes for each morphism f : X → Y , because

F (f) ◦ ψX = ψY ◦ φY F (f) ◦ φ−1
X = ψY ◦ G(f)φX ◦ φ−1

X = ψY ◦ G(f) .

Hence ψ is a natural transformation. It is clear that ψφ and φψ are the respective
identity transformations.

Example 3.2.5. A natural isomorphism φ : X
∼=

=⇒ Y between a pair of functors
X, Y : [n] → D amounts to a commutative diagram

X(0)
ξ1 //

φ0
∼=

²²

X(1) //

φ1
∼=

²²

. . . // X(n−1)
ξn //

φn−1∼=

²²

X(n)

φn
∼=

²²

Y (0)
η1 // Y (1) // . . . // Y (n−1)

ηn // Y (n)

in D , where the vertical arrows are isomorphisms.

[[Example: Natural transformation νM : HomR(P,R)⊗RM → HomR(P,M)
is a natural isomorphism when P is finitely generated and projective.]]

[[Natural transformation ρM : M → HomR(HomR(M,R), R) is a natural iso-
morphism when restricted to the full subcategory of finitely generated projective
R-modules M ]]

Remark 3.2.6. Recall that an isomorphism of categories is a functor F : C →
D such that there exists an inverse functor G : D → C with G◦F = idC : C → C

and F ◦ G = idD : D → D . Requiring equality of functors in these two cases
is a very strict condition. It is more natural in the categorical context to ask
for natural isomorphism of functors. This leads to the following notion, of
equivalence of categories, which is a more flexible and useful condition.
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Definition 3.2.7 (Equivalence of categories). Let C , D be categories. A
functor F : C → D is an equivalence if there exists a functor G : D → C and

natural isomorphisms φ : G ◦ F
∼=

=⇒ idC and ψ : F ◦ G
∼=

=⇒ idD .
In this case we say that C and D are equivalent categories, and that G is an

inverse equivalence to F . Note that G is usually not uniquely determined by F .
It does of course not matter if we specify the natural isomorphisms φ and ψ or
their inverses.

Lemma 3.2.8. Equivalence of categories defines an equivalence relation on any
set of categories.

Proof. The identity idC : C → C is clearly an equivalence of categories. If

F : C → D and G : D → C satisfy GF
∼=

=⇒ idC and FG
∼=

=⇒ idD , so that
F is an equivalence, then the same natural isomorphisms show that G is an

equivalence. If furthermore F ′ : D → E and G′ : E → D satisfy G′F ′
∼=

=⇒ idD

and F ′G′
∼=

=⇒ idE , so that F and F ′ are equivalences, then F ′F : C → E is also
an equivalence, since there are composite natural isomorphisms

(GG′)(F ′F ) = G(G′F ′)F
∼=

=⇒ G(idD)F = GF
∼=

=⇒ idC

and
(F ′F )(GG′) = F ′(FG)G′ ∼=

=⇒ F ′(idD)G′ = F ′G′ ∼=
=⇒ idE .

Definition 3.2.9 (Essentially surjective functor). A functor F : C → D

is essentially surjective if for each object Z of D there exists an object X of C

and an isomorphism F (X) ∼= Z in D .

Theorem 3.2.10. A functor F : C → D is an equivalence of categories if and
only if it is a full, faithful and essentially surjective.

Proof. For the forward implication, suppose that F is an equivalence. Then

there exists a functor G : D → C and natural isomorphisms φ : GF
∼=

=⇒ idC

and ψ : FG
∼=

=⇒ idD . Consider any pair of objects X, Y in C , and consider the
function

F : C (X,Y ) −→ D(F (X), F (Y ))

taking f to F (f). We must prove that it is a bijection, so that F is full and
faithful. First, consider two morphisms f, g : X → Y in C , and suppose that
F (f) = F (g) in D . Then GF (f) = GF (g) in C , so we can combine the following
two commutative squares:

X

f

²²

GF (X)
φX

∼=
oo

φX

∼=
//

GF (f)=GF (g)

²²

X

g

²²

Y GF (Y )
φY

∼=
oo

φY

∼=
// Y

Hence f = φY φ−1
Y ◦ g ◦φXφ−1

X = g and the function F is injective. By the same

argument, using ψ : FG
∼=

=⇒ idD , the function

G : D(Z,W ) −→ C (G(Z), G(W ))
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is injective for all objects Z, W in D . Next, let h : F (X) → F (Y ) be a morphism
in D . Form the composite morphism f = φY ◦ G(h) ◦ φ−1

X in C . Then we have
the following two commutative squares:

GF (X)
φX

∼=
//

G(h)

²²

X

f

²²

GF (X)
φX

∼=
oo

GF (f)

²²

GF (Y )
φY

∼=
// Y GF (Y )

φY

∼=
oo

Hence G(h) = φ−1
Y φY ◦ GF (f) ◦ φ−1

X φX = GF (f). By injectivity of the func-
tion G, it follows that h = F (f). Since h : F (X) → F (Y ) was arbitrary, this
proves that the function F is surjective. Finally, given any object Z of D let

X = G(Z). Then ψZ : FG(Z)
∼=
−→ Z is an isomorphism F (X) ∼= Z. Hence F is

essentially surjective.
For the reverse implication, suppose that F is full, faithful and essentially

surjective. We must construct an inverse equivalence G : D → C . For each
object Z in D there exists an object X in C such that F (X) ∼= Z, by the
essential surjectivity of F . For each Z we fix such an object X, and define
G(Z) = X. This specifies G on objects. Furthermore, for each Z we choose an

isomorphism F (X)
∼=
−→ Z, which we denote ψZ : FG(Z)

∼=
−→ Z. This specifies

a natural isomorphism ψ : FG → idD on objects. Now let h : Z → W be a
morphism in D . The composite ψ−1

W ◦ h ◦ ψZ : FG(Z) → FG(W ) in D can be
written as F (f) for a unique morphism f : G(Z) → G(W ), since F is full and
faithful. We define G(h) = f for this unique morphism. This specifies G on
morphisms. It is straightforward to check that G : D → C is a functor. The
diagram

FG(Z)
ψZ

∼=
//

FG(h)

²²

Z

h

²²

FG(W )
ψW

∼=
// W

commutes, since FG(h) = F (f) = ψ−1
W ◦ h ◦ ψZ , so ψ : FG

∼=
−→ idD is a natural

isomorphism. It remains to construct a natural isomorphism φ : GF
∼=

=⇒ idC .

For each object X in C , the isomorphism ψF (X) : FGF (X)
∼=
−→ F (X) can be

written as F (φX) for a unique morphism φX : GF (X) → X, since F is full and
faithful. This specifies φ on objects. Finally, let f : X → Y be a morphism
in C . We must verify that the square

GF (X)
φX

∼=
//

GF (f)

²²

X

f

²²

GF (Y )
φY

∼=
// Y

commutes. Since F is faithful, it suffices to show that F (f ◦ φX) = F (f) ◦
F (φX) = F (f) ◦ ψF (X) is equal to F (φY ◦ GF (f)) = F (φY ) ◦ FGF (f) =

ψF (Y ) ◦ FGF (f), but this is just the naturality condition for ψ : FG
∼=

=⇒ idD

with respect to the morphism F (f) : F (X) → F (Y ) in D .
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Elaborating on Definition 2.8.1, we use the following terminology.

Definition 3.2.11 (Skeletal subcategory). A skeleton of a category C is
a full subcategory C ′ ⊆ C such that each object of C is isomorphic in C to
one and only one object in C ′. (We do not ask that the isomorphism is unique
as a morphism in C .) The subcategory C ′ is then skeletal, in the sense that
two objects X, Y in C ′ are isomorphic in C ′ if and only if they are equal. A
category C is said to be skeletally small if it admits a skeleton C ′ that is small.

Lemma 3.2.12. The inclusion of a skeleton C ′ in a category C is an equiva-
lence of categories.

Proof. The inclusion functor C ′ ⊆ C is full and faithful, since C ′ is a full
subcategory. Furthermore, this functor is essentially surjective, by the definition
of a skeleton. Hence it is an equivalence of categories, by Theorem 3.2.10.

Example 3.2.13. The category F of Example 2.2.8 is a small skeleton of the
category Fin of finite sets and functions. Similarly, the groupoid iso(F ) is a
small skeleton of iso(Fin).

Lemma 3.2.14. Any two skeleta of the same category are isomorphic.

Proof. Let C ′ and C ′′ be skeleta of C . For each object X ′ of C ′, there is a unique
object X ′′ in C ′′ such that X ′ and X ′′ are isomorphic in C . Choose such an

isomorphism hX′ : X ′
∼=
−→ X ′′. Define a functor F : C ′ → C ′′ by F (X ′) = X ′′

on objects. For any morphism f ′ : X ′ → Y ′ in C ′, let F (f ′) : X ′′ → Y ′′ be the
composite

F (f ′) = hY ′ ◦ f ′ ◦ h−1
X′ .

Then F (idX′) = idX′′ and F (g′f ′) = F (g′)F (f ′) whenever f ′ and g′ : Y ′ → Z ′

are composable, so F is a functor.
Reversing the roles of C ′ and C ′′, we can also define a functor G : C ′′ →

C ′. Then GF (X ′) = X ′ and FG(X ′′) = X ′′. If we take care to choose the

isomorphism h−1
X′ : X ′′

∼=
−→ X ′ as the isomorphism hX′′ in the definition of G on

morphisms, then we also get that GF (f ′) = f ′ and FG(f ′′) = f ′′, so F and G
are inverse isomorphisms of categories.

Definition 3.2.15 (Connected groupoid). We say that a groupoid C is
connected if it is non-empty, and any two objects X,Y ∈ obj(C ) are isomorphic.
A connected, skeletal groupoid has precisely one object.

Lemma 3.2.16. Let X be an object in a connected groupoid C , with automor-
phism group Aut(X) = C (X,X). Then the inclusion

B Aut(X) = BC (X,X)
≃
−→ C

is an equivalence of categories.

Proof. We identify BC (X,X) with the full subgroupoid of C generated by
the object X. The inclusion functor is obviously full and faithful, and it is
essentially surjective since C is assumed to be connected. Hence the inclusion
is an equivalence, by Theorem 3.2.10.
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Proposition 3.2.17. Let C be a groupoid with a small skeleton C ′, generated
by a set {Xi}i∈I of objects. The inclusion

∐

i∈I

B Aut(Xi) =
∐

i∈I

BC (Xi,Xi) ∼= C
′ ≃
−→ C

is an equivalence of categories.

Proof. Let Ci ⊆ C be the full subgroupoid of C generated by the objects that
are isomorphic to Xi, for each i ∈ I. Then there is an isomorphism of categories

∐

i∈I

Ci
∼= C .

Each Ci is connected, so there is an equivalence B Aut(Xi) = BC (Xi,Xi) ≃ Ci

by Lemma 3.2.16. The coproduct of these equivalences is the asserted equiva-
lence.

Example 3.2.18. Let C be a non-empty groupoid such that any two objects
are isomorphic by a unique isomorphism. Then Aut(X) = {idX} for each object
X in C , and the unique functor

C
≃
−→ ∗

to the terminal category is an equivalence.

Example 3.2.19. The groupoid iso(Fin) of finite sets has the small skeleton
F , generated by the objects n = {1, 2, . . . n} for n ∈ N0, and Aut(n) = Σn, so
the inclusion ∐

n≥0

BΣn
≃
−→ iso(Fin)

is an equivalence of categories.

Example 3.2.20. Let G be a finite group. The groupoid iso(G−Fin) of finite
G-sets has a small skeleton generated by the objects

X(ν) =
∐

(H)

ν(H)∐

i=1

G/H

where H ranges over a set of representatives for the conjugacy classes of sub-
groups of G, and each ν(H) ∈ N0. The elements x ∈ X(ν) with stabilizer Gx

conjugate to H lie in the summand indexed by (H). A G-equivariant bijection
f : X(ν) → X(ν) preserves the stabilizers, in the sense that Gx = Gf(x), hence
it decomposes as a coproduct f =

∐
(H) fH . For each H, letting n = ν(H), the

restricted G-equivariant bijection

fH :
n∐

i=1

G/H −→
n∐

i=1

G/H

takes the i’th copy of G/H to the σ(i)-th copy of G/H, for some permutation
σ ∈ Σn, and for each 1 ≤ i ≤ n, the G-map G/H → G/H is determined by
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taking eH to wiH for some element wi ∈ WG(H). [[Reference for Weyl group?]]
We can write

fH = (σ;w1, . . . , wn) ∈ Σn ⋉ WG(H) × · · · × WG(H) = Σn ≀ WG(H) .

[[Reference for wreath product?]] Hence

Aut(X(ν)) ∼=
∏

(H)

Σν(H) ≀ WG(H)

and iso(G−Fin) is equivalent to the small skeleton

∐

ν

B Aut(X(ν)) ∼=
∏

(H)

∐

n≥0

B(Σn ≀ WG(H)) .

Example 3.2.21. For G = Cp of prime order, the possible subgroups are
H = G and H = {e}, with Weyl groups WG(G) = {e} and WG({e}) = G, so

iso(Cp−Fin) ≃
∐

n≥0

BΣn ×
∐

n≥0

B(Σn ≀ G) .

[[Discuss functors Cp−Fin → Fin taking X to X, XG or X/G, and conversely.
Give Segal–tom Dieck splitting.]]

3.3 Tannaka–Krein duality

We started by suggesting that we can study mathematical objects, such as
groups G and rings R, by means of their categories of representations, such
as the category G−Set of G-sets and the category R−Mod of R-modules. A
natural question is then to what extent these representation categories determine
the original object, i.e., can one recover the group G from the category G−Set,
and can one recover the ring R from the category R−Mod?

This discussion is not critical for the development of algebraic K-theory,
but has played an important role in Grothendieck’s ideas about motives, and
motivic cohomology is directly related to algebraic K-theory.

For compact abelian groups G, it suffices to consider the category of 1-
dimensional complex G-representations G × C → C, or equivalently, the Pon-
tryagin dual group G# = Hom(G, T). The group G is then recovered as the
double dual group, since the natural homomorphism ρ : G → (G#)# is an iso-
morphism.

For compact not-necessarily-abelian groups, a positive answer was given by
Tadao Tannaka [64], showing that G can be recovered from the category G−Vec
of complex G-representations, together with its forgetful functor ω to the cat-
egory Vec of complex vector spaces. Conversely, Mark Grigorievich Krein [35]
characterized the additional structures present on a category for it to be equiv-
alent to a category of G-representations. The resulting equivalence, between
compact groups G and such Tannakian categories is known as Tannaka–Krein
duality.

We discuss the first part of this theory in the simpler case of discrete groups G,
where it suffices to consider the category G−Set of discrete representations.
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Definition 3.3.1 (Fiber functor). For a discrete group G, let the fiber functor

ω : G−Set → Set

be the forgetful functor, that takes a G-set X (with implicit action G×X → X)
to the underlying set ω(X). Let Aut(ω) be the monoid of natural transforma-
tions

φ : ω ⇒ ω

under composition. There is a homomorphism

τ : G → Aut(ω)

that takes g ∈ G to the natural transformation φ = τ(g) with components
φX : ω(X) → ω(X) given by the function g·, mapping x ∈ ω(X) to gx ∈ ω(X).
This is a natural transformation, since for each G-equivariant function f : X →
Y the square

ω(X)
g·

//

ω(f)

²²

ω(X)

ω(f)

²²

ω(Y )
g·

// ω(Y )

commutes.

We can now recover G from the category G−Set, equipped with the fiber
functor ω.

Proposition 3.3.2. The homomorphism τ : G → Aut(ω) is an isomorphism.
In particular, Aut(ω) is a group and every natural transformation φ : ω ⇒ ω is
a natural isomorphism.

Proof. We construct an inverse κ : Aut(ω) → G to τ . Given a natural trans-
formation φ : ω ⇒ ω, consider its component φG : ω(G) → ω(G), at the G-set
X = G, with the left action G×G → G given by the multiplication in G. This
component φG maps e ∈ ω(G) to some element φG(e) ∈ ω(G). We define κ(φ)
to be this element:

κ(φ) = φG(e) .

For any g ∈ G it is clear that κτ(g) = ge = g. Conversely, consider any
φ ∈ Aut(ω). For each G-set X, and any element x ∈ ω(X), there is a unique G-
equivariant function f : G → X with f(e) = x, given by the formula f(h) = hx
for h ∈ G. Chasing the element e ∈ ω(G) through the commutative diagram

ω(G)
φG //

ω(f)

²²

ω(G)

ω(f)

²²

ω(X)
φX // ω(X)

shows that φX(x) = φX(f(e)) = f(φG(e)) = f(g) = gx, so that φX = g·. Since
this holds for all X, we see that φ = τκ(φ).

The terminology “fiber functor” is motivated by the following example.
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Example 3.3.3. Let Cov(X) be the category of covering spaces p : Y → X.
Given a point x0 ∈ X, let the fiber functor

ωx0
: Cov(X) → Set

be the functor that takes p : Y → X to the fiber Yx0
= p−1(x0) over x0, and let

Aut(ωx0
) be the monoid of natural transformations φ : ωx0

⇒ ωx0
. There is a

homomorphism
τ : π1(X,x0) → Aut(ωx0

)

that takes the homotopy class g = [γ] of a based loop γ : (I, ∂I) → (X,x0) to
the natural transformation φ = τ(g) with components

φY : Yx0
→ Yx0

given as follows. For each point y ∈ Yx0
let γ̃ : I → Y be the unique path with

pγ̃ = γ and γ̃(0) = y. Then φY (y) = γ̃(1). The endpoint of γ̃ only depends
on the homotopy class of γ. This defines a natural transformation, since for
another covering space q : Z → X and a map f : Y → Z with qf = p, the
diagram

Yx0

φY //

fx0

²²

Yx0

fx0

²²

Zx0

φZ // Zx0

commutes, since, with notation as above, fγ̃ : I → Z will be the unique lift of
γ starting at f(y), and ends at (fγ̃)(1) = f(γ̃(1)).

Proposition 3.3.4. Suppose that X at admits a simply-connected universal
covering space X̃ → X. Then the homomorphism τ : π1(X,x0) → Aut(ωx0

) is
an isomorphism.

Proof. Fix a point x̃0 ∈ X̃ over x0 ∈ X. The inverse κ : Aut(ωx0
) → π1(X,x0)

takes a natural transformation φ to a group element κ(φ) ∈ π1(X,x0) defined

as follows. Consider the component φ eX : X̃x0
→ X̃x0

of φ. It maps x̃0 to some

point φ eX(x̃0) = x̃ in the same fiber. Choose a path γ̃ in X̃ from x̃0 to x̃, and
let g = [pγ̃] be the homotopy class of its projection down to X. The choice of

path γ̃ is unique up to homotopy, since X̃ is simply-connected.
[[Clear that κτ(g) = g. Use existence of maps X̃ → Y taking x̃0 to any

given point y ∈ Yx0
to check that τκ(φ) = φ.]]

[[Comparison with previous result. Dependence on x0.]]

Remark 3.3.5. By analogy, for a geometric point x0 of a scheme X, one can
consider the category Et(X) of étale coverings Y → X, with fiber functor ω
given by the pullback to x0. The (profinite) group of natural automorphisms of
ω, is the étale fundamental group πet

1 (X,x0). [[Reference.]]

So far we have talked about ordinary categories and set-valued fiber functors.
To cover the case of compact groups, Tannaka and Krein work with C-linear
categories and a fiber functor to C−Vec. In this form, the duality theory can
be extended to algebraic groups, following Grothendieck.
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We start with the so-called neutral case. For more details, including a sketch
proof of the neutral duality theorem using the Barr–Beck theorem, see Breen
[9].

Let G be an affine algebraic group defined over a field k. Let Rep(G) be
the category of (finite-dimensional) of k-linear representations of G. The tensor
product V ⊗k W and internal Hom Homk(V,W ) of G-representations V,W
makes Rep(G) a “compact closed symmetric monoidal category”. The usual
notion of a short exact sequence 0 → V ′ → V → V ′′ → 0 of G-representations
makes Rep(G) an “abelian category”. Finally, the forgetful functor

ω : Rep(G) → k−Vec

respects the tensor structure. The k-linear tensor category Rep(G), with this
fiber functor ω, is then called a neutral Tannakian category. To recover G from
(Rep(G), ω), one proves that the group Aut(ω) of (tensor-preserving) natural
transformations φ : ω ⇒ ω is isomorphic to the group of k-valued points of G,
and more generally there is an isomorphism

G ∼= Aut(ω)

of group schemes.
In the more general, non-neutral case, one starts with a k-linear tensor

category C , but with a fiber functor to K−Vec for some field extension K of k.
One is then instead to look at a gerbe G of all fiber functors, which is a stack,
or sheaf of groupoids, of a particular kind. The automorphism group of the
single fiber functor in the neutral case is now generalized to this groupoid. The
duality theorem now asserts that a general Tannakian category C is equivalent
to a category of representations Rep(G ) of the corresponding gerbe G .

A key example of a Tannakian category is given by the category of motives
over a finite field. [[How about motives over global fields?]] It is not neutral,
and therefore corresponds to the category of representations of a gerbe, not just
an algebraic group.

[[Motivic Galois group.]]

3.4 Adjoint pairs of functors

Dan Kan [33] recognized that there is a very useful generalization of a mutually
inverse pair of equivalences (F : C → D , G : D → C ), called an adjoint pair
of functors (F : C → D , G : D → C ). For example, this generalization gives a
clear meaning to the notion of a “free” object in many contexts.

Definition 3.4.1 (Adjoint functors). Let C , D be categories and let F : C →
D and G : D → C be functors. An adjunction between F and G is a natural
bijection

φX,Y : D(F (X), Y )
∼=
−→ C (X,G(Y ))

between the two set-valued bifunctors

D(F (−),−),C (−, G(−)) : C
op × D → Set .

If such a natural bijection φ exists, we say that (F,G) is an adjoint pair of
functors.
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We call F the left adjoint (or coadjoint), and G the right adjoint (or adjoint).
Given morphisms f : F (X) → Y in D and g : X → G(Y ) in C , related by
φX,Y (f) = g, we say that f is left adjoint to g and g is right adjoint to f .

Naturality of the adjunction φ says that for morphisms c : X ′ → X, g : X →
G(Y ) in C , and d : Y → Y ′, f : F (X) → Y in D , with f left adjoint to g, the
composite d ◦ f ◦ F (c) : F (X ′) → Y ′ is left adjoint to the composite G(d) ◦ g ◦
c : X ′ → G(Y ′).

D(F (X), Y )
φX,Y

//

c∗d∗

²²

C (X,G(Y ))

c∗d∗

²²

D(F (X ′), Y ′)
φX′,Y ′

// C (X ′, G(Y ′))

Hence
φX′,Y ′(d ◦ f ◦ F (c)) = G(d) ◦ φX,Y (f) ◦ c .

In particular, φX′,Y (f ◦F (c)) = φX,Y (f) ◦ c and φX,Y ′(d ◦ f) = G(d) ◦φX,Y (f).

Remark 3.4.2. Note that the left adjoint F appears in the source in D(F (X), Y ),
while the right adjoint G appears in the target in C (X,G(Y )). Given a functor
F : C → D , for each object Y in D the value G(Y ) of a right adjoint to F must
be a representing object for the contravariant functor

YY ◦ F : X 7→ D(F (X), Y ) ,

which determines G(Y ) up to isomorphism. However, not every functor F
admits a right adjoint. Conversely, given a functor G : D → C , for each object
X in C the value F (X) of a left adjoint to G must be a corepresenting object
for the (covariant) functor

Y
X ◦ G : Y 7→ C (X,G(Y )) ,

which determines F (X) up to isomorphism. Again, not every functor G admits
a left adjoint. In diagrams of adjoint pairs of functors, we put the left adjoint
on the left hand side or on top:

C

F

²²

C

F //
D

G
oo D

G

²²

D

G

OO

D
G

// C

Foo
C

F

OO

The following examples show that a “free functor” can be interpreted as the
left adjoint of a “forgetful functor”.

Example 3.4.3. The forgetful functor U : Grp → Set, taking a group G to
its underlying set U(G), admits a left adjoint F : Set → Grp, taking a set S to
the free group F (S) = 〈s ∈ S〉 generated by S. The adjunction is the natural
bijection

Grp(F (S), G) ∼= Set(S,U(G))
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asserting that to give a group homomorphism F (S) → G it is necessary and
sufficient to specify the function S → U(G), saying where the group generators
are sent.

Set
F //

Grp
U

oo

[[This forgetful functor does not admit a right adjoint.]]

Example 3.4.4. Let G be a group. The fiber functor ω : G−Set → Set, taking
a G-set X to its underlying set ω(X), admits a left adjoint G× : Set → G−Set,
taking a set S to the free G-set G× S generated by S, with the G-action given
by (g, (h, s)) = (gh, s). The adjunction is the natural bijection

G−Set(G × S,X) ∼= Set(S, ω(X))

asserting that to give a G-equivariant function G × S → X it is necessary and
sufficient to specify the function S → ω(X), saying where the generators of the
free G-set are sent.

The fiber functor ω also admits a left adjoint
∏

G : Set → G−Set, taking a
set S to the G-set

∏
G S = Set(G,S), with the G-action given by (g · f)(k) =

f(kg) for k ∈ G. The adjunction is the natural bijection

Set(ω(X), S) ∼= G−Set(X,
∏

G

S)

taking a function σ : ω(X) → S to the G-equivariant function τ : X →
∏

G S
with values τ(x) : G → S given by τ(x)(k) = σ(k · x).

Set

G×
//

Q
G

//
G−Setωoo

We generalize this example in Definition 3.4.19.

Example 3.4.5. Let R be a ring. The forgetful functor U : R−Mod →
Set, taking an R-module M its underlying set U(M), admits a left adjoint
R(−) : Set → R−Mod, taking a set S to the free R-module

R(S) = R{s ∈ S} ∼=
⊕

s∈S

R

generated by S. The adjunction is the natural bijection

R−Mod(R(S),M) ∼= Set(S,U(M))

asserting that to give an R-module homomorphism R(S) → M it is necessary
and sufficient to specify the function S → U(M), saying where the R-module
generators are sent.

Set
R(−)

//
R−Mod

U
oo

[[This forgetful functor does not admit a right adjoint.]]
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One may also forget less structure.

Example 3.4.6. The abelianization functor (−)ab : Grp → Ab is left adjoint
to the forgetful functor U : Ab → Grp. This is because giving an (abelian)
group homomorphism Gab → A is equivalent to giving a group homomorphism
G → U(A). [[This forgetful functor U has no right adjoint.]]

Example 3.4.7. Let CMon be the full subcategory of Mon generated by the
commutative monoids. The group completion functor K : CMon → Ab is left
adjoint to the forgetful functor U : Ab → CMon. This is because giving a group
homomorphism K(M) → A is equivalent to giving a monoid homomorphism
M → U(A).

This forgetful functor U has a right adjoint (−)× : CMon → Ab, taking
M to the submonoid M× of invertible elements in M , which forms an abelian
group. Each monoid homomorphism U(A) → M factors uniquely through a
group homomorphism A → M×.

Definition 3.4.8 (Group completion, units). In the non-commutative case,
the forgetful functor U : Grp → Mon also has a left adjoint K : Mon → Grp,
the group completion of non-commutative monoids. Given a monoid M we can
describe the group K(M) in terms of generators and relations as

K(M) = 〈[x] | [x][y] = [xy]〉 .

In words, we start with one generator [x] for each element x ∈ M , and add
the relation [x][y] = [xy] for each pair of elements x, y ∈ M . Here [x][y] is the
product in the free group generated by the elements of M , and xy is the product
in M . The relation [e] = e follows. The adjunction

Grp(K(M), G) ∼= Mon(M,U(G))

takes a group homomorphism f : K(M) → G to the monoid homomorphism
g : M → U(G) given by g(x) = f([x]), and conversely. Later, we shall see that
K(M) is topologically realized as π1(BM), where the classifying space BM
contains a closed loop [x] for each x ∈ M , and a triangle [x|y] with edges [x],
[y] and [xy] for each x, y ∈ M .

This forgetful functor U also has a right adjoint (−)× : Mon → Grp, again
taking a monoid M to the submonoid M× of invertible elements, which is a
group.

Definition 3.4.9 ((Co-)reflective subcategory). A subcategory C ⊆ D is
called reflective when the inclusion functor U : C → D is a right adjoint, i.e.,
it admits a left adjoint F : D → C . It is called coreflective when U is a left
adjoint, i.e., it admits a right adjoint G : D → C .

We often omit forgetful functors like U from the notation.

Example 3.4.10. CMon ⊂ Ab, CMon ⊂ Mon, Ab ⊂ Grp and Mon ⊂
Grp are reflective subcategories. CMon ⊂ Ab and Mon ⊂ Grp are also
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coreflective subcategories.

Ab //

²²

Grp
(−)ab

oo

²²

CMon //

K

OO

(−)×

OO

Mon
(−)ab

oo

K

OO

(−)×

OO

Example 3.4.11. The full inclusion Gpd ⊂ Cat is both reflective and core-
flective. It has right adjoint the maximal subgroupoid functor iso : Cat → Gpd
of Definition 2.4.10, left adjoint the localization functor L : Cat → Gpd of
Definition 2.4.19, with L(C ) = C [C−1],

Cat

L //

iso
//
Gpdoo

since
Cat(D ,C ) ∼= Gpd(D , iso(C )

by Lemma 2.4.17 and

Gpd(C [C−1],D) ∼= Cat(C ,D)

by Lemma 2.4.21, for small categories C and groupoids D .

Exercise 3.4.12. Which of the inclusions among the full subcategories of Cat
displayed in diagrams (2.1) and (2.2) are (co-)reflective?

Lemma 3.4.13. Consider categories C ,D ,E and functors F,G,H,K, as below:

C

F //
D

G
oo

H //
E

K
oo

Let φX,Y : D(F (X), Y ) ∼= C (X,G(Y )) be an adjunction between F and G, and
let ψY,Z : E (H(Y ), Z) ∼= D(Y,K(Z)) be an adjunction between H and K. Then

(φψ)X,Z = φX,K(Z) ◦ ψF (X),Z : E (HF (X), Z) ∼= C (X,GK(Z))

is an adjunction between HF and GK, called the composite adjunction.

[[Proof omitted.]]

Definition 3.4.14 ((Co-)unit morphism). Associated to an adjunction

φX,Y : D(F (X), Y )
∼=
−→ C (X,G(Y ))

there is a natural unit morphism

ηX : X → GF (X)

in C , right adjoint to the identity morphism of F (X) in D , and a natural counit
morphism

ǫY : FG(Y ) → Y

in D , left adjoint to the identity morphism of G(Y ) in C . Hence ηX =
φX,F (X)(idF (X)) and ǫY = φ−1

G(Y ),Y (idG(Y )).
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Remark 3.4.15. The use of the letters η and ǫ for units and counits of ad-
junctions is standard. We can reformulate an adjunction entirely in terms of its
unit and counit.

Lemma 3.4.16. Given an adjunction φ, the unit morphisms ηX for X in C

define a natural transformation

η : idC ⇒ GF

of functors C → C , while the counit morphisms ǫY for Y in D define a natural
transformation

ǫ : FG ⇒ idD

of functors D → D . The composite natural transformation

ǫF ◦ Fη : F ⇒ FGF ⇒ F

with components ǫF (X) ◦ F (ηX) equals the identity transformation idF , and the
composite natural transformation

Gǫ ◦ ηG : G ⇒ GFG ⇒ G

with components G(ǫY ) ◦ ηG(Y ) equals the identity transformation idG.

Proof. To check that ηX is natural in X, we must see that for each morphism
f : X → X ′ in C the square

X
ηX //

f

²²

GF (X)

GF (f)

²²

X ′
ηX′

// GF (X ′)

commutes. By naturality of the adjunction φ, this is equivalent [[More details?]]
to the commutativity of the square

F (X)
idF (X)

//

F (f)

²²

F (X)

F (f)

²²

F (X ′)
idF (X′)

// F (X) ,

which is clear. The proof that ǫY is natural in Y is very similar.
For each X in C , the composite map

F (X)
F (ηX)
−→ FGF (X)

ǫF (X)
−→ F (X)

has right adjoint the composite

X
ηX
−→ GF (X)

idGF (X)
−→ GF (X) ,

by naturality of φ with respect to ηX . We rewrite this as the composite

X
ηX
−→ GF (X)

G(idF (X))
−→ GF (X) ,
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which has left adjoint the composite

F (X)
idF (X)
−→ F (X)

idF (X)
−→ F (X)

by naturality of φ with respect to idF (X). Since the left adjoint of the right
adjoint of a morphism is the original morphism, this proves that ǫF (X)◦F (ηX) =
idF (X). The proof that G(ǫY ) ◦ ηG(Y ) = idG(Y ) is very similar.

Lemma 3.4.17. Conversely, given functors F : C → D , G : D → C and nat-
ural transformations η : idC ⇒ GF , ǫ : FG ⇒ idD such that ǫF ◦ Fη = idF ,
Gǫ ◦ ηG = idG, there is a unique adjunction

φ : D(F (−),−)
∼=

=⇒ C (−, G(−))

with unit η and counit ǫ. For this adjunction, a map f : F (X) → Y has right
adjoint φX,Y (f) : X → G(Y ) equal to the composite

X
ηX
−→ GF (X)

G(f)
−→ G(Y )

and a map g : X → G(Y ) has left adjoint φ−1
X,Y (g) : F (X) → Y equal to the

composite

F (X)
F (g)
−→ FG(Y )

ǫY−→ Y .

Proof. The right adjoint of idF (X) must be ηX , and the formula for φX,Y (f)
is then forced by naturality. Conversely the left adjoint of idG(Y ) must be ǫY ,

and φ−1
X,Y (g) is then determined by naturality. It remains to verify that the

resulting functions φX,Y and φ−1
X,Y are indeed mutual inverses. One composite

takes f : F (X) → Y to the composite

F (X)
F (ηX)
−→ FGF (X)

FG(f)
−→ FG(Y )

ǫY−→ Y ,

which by naturality of ǫ equals the composite

F (X)
F (ηX)
−→ FGF (X)

ǫF (X)
−→ F (X)

f
−→ Y ,

which in turn equals f , since ǫF (X) ◦F (ηX) is assumed to be idF (X). The proof
that the other composite takes g : X → G(Y ) to itself is very similar.

Example 3.4.18. Suppose that (F,G) is an adjoint pair of functors between
two groupoids C and D . Then the unit and counit transformations η : idC ⇒
GF and ǫ : FG ⇒ idD are natural isomorphisms, hence F and G are inverse
equivalences.

[[Mutually inverse equivalences of categories are adjoint.]]
[[Uniqueness of adjoints.]]

Definition 3.4.19 ((Co-)induced G-sets). Let α : G → H be a group homo-
morphism. There is a functor α∗ : H−Set −→ G−Set that takes a (left) H-set
Y to the (left) G-set α∗(Y ), with the same underlying set as Y , but with action

the composite function G × Y
α×id
−→ H × Y −→ Y . We view H as a left G-set,
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and as a right G-set, using α and the group multiplication in H. The functor
α∗ has a left adjoint α∗ : G−Set −→ H−Set taking an G-set X to the H-set

α∗(X) = H ×G X ,

with action the function H ×H ×G X
µ×Gid
−→ H ×G X. Here H ×G X denotes the

balanced product (H ×X)/∼, where (h · g, x) ∼ (h, g · x) for h ∈ H, g ∈ G and
x ∈ X. The functor α∗ also has a right adjoint α! : G−Set −→ H−Set taking
an G-set X to the H-set

α!(X) = G−Set(H,X) ,

of G-equivariant functions f : H → X. The H-action

H × G−Set(H,X) −→ G−Set(H,X)

on α!(X) takes (h, f) for h ∈ H, f ∈ G−Set(H,X) to the G-equivariant func-
tion k 7→ f(kh), for k ∈ H.

G−Set

α∗ //

α!

//
H−Setα∗oo

The adjunction bijections are:

H−Set(α∗(X), Y ) ∼= G−Set(X,α∗(Y ))

G−Set(α∗(Y ),X) ∼= H−Set(Y, α!(X))

Example 3.4.20. When α : {e} → H is the inclusion of the trivial subgroup,
α∗ : H−Set → Set is the forgetful functor, equal to the fiber functor ω of
Definition 3.3.1, the left adjoint α∗ takes a set X to the free H-set α∗(X) =
H×X, and the right adjoint α! takes a set X to the cofree H-set α!(X) =

∏
H X,

as discussed in Example 3.4.4.

Example 3.4.21. When α : G → {e} is the projection to the trivial group,
α∗ : Set → G−Set takes a set X to the same set α∗(X), with the trivial G-
action. The left adjoint α∗ takes an G-set Y to the orbit set

α∗(Y ) = {e} ×G Y ∼= Y/G .

The right adjoint α! takes Y to the fixed point set

α!(Y ) = G−Set({e}, Y ) ∼= Y G .

See Definition 2.7.3 for this terminology.

Definition 3.4.22 (Direct and exceptional direct image). Let φ : R → T
be a ring homomorphism. There is a functor φ∗ : T−Mod −→ R−Mod that
takes a (left) T -module N to the (left) R-module φ∗(N), with the same underly-
ing abelian group as N , but with module action the composite homomorphism

R⊗N
φ⊗id
−→ T⊗N −→ N . We view T as a left R-module and as a right R-module

using the homomorphism φ and the ring multiplication µ : T ⊗ T → T . The
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functor φ∗ has a left adjoint φ∗ : R−Mod −→ T−Mod taking an R-module M
to the T -module

φ∗(M) = T ⊗R M ,

with module action the homomorphism T ⊗T ⊗RM
µ⊗Rid
−→ T ⊗RM . The functor

φ∗ also has a right adjoint φ! : R−Mod −→ T−Mod taking an R-module M
to the T -module

φ!(M) = RHom(T,M) ,

of R-module homomorphisms f : T → M , where T is viewed as an R-module

by the action R ⊗ T
φ⊗id
−→ T ⊗ T

µ
−→ T . The T -module structure

T ⊗ RHom(T,M) −→ RHom(T,M)

on φ!(M) takes t ⊗ f for t ∈ T , f ∈ RHom(T,M) to the R-module homomor-
phism u 7→ f(ut), for u ∈ T .

R−Mod

φ∗ //

φ!

//
T−Modφ∗oo

Both adjunctions

T−Mod(φ∗(M), N) ∼= R−Mod(M,φ∗(N))

R−Mod(φ∗(N),M) ∼= T−Mod(N,φ!(M))

respect the additive structure, hence lift to group isomorphisms

T Hom(T ⊗R M,N) ∼= RHom(M,φ∗(N))

RHom(φ∗(N),M) ∼= T Hom(N, RHom(T,M)) .

[[Warning: For R, T commutative, φ defines a morphism f : Spec(T ) →
Spec(R) of schemes, and the induced functors inverse image f∗ = φ∗, direct
image f∗ = φ∗ and exceptional inverse image f ! = φ! on quasi-coherent sheaves.
Note the reversal in variance.]]

3.5 Decategorification

Definition 3.5.1. Let C be a small groupoid. We can define an equivalence
relation ∼= on the set of objects, obj(C ), by saying that X ∼= Y if there exists a

morphism (= an isomorphism) f : X
∼=
−→ Y from X to Y in C . The fact that

this is an equivalence relation follows easily from Lemma 2.4.3. Let the set of
equivalence classes

π0(C ) = obj(C )/ ∼=

be the set of isomorphism classes of objects in C . We write [X] ∈ π0(C ) for
the isomorphism class of an object X in C . By definition, [X] = {Y ∈ obj(C ) |
X ∼= Y }.
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Remark 3.5.2. Since the equivalence relation X ∼= Y only remembers the
existence of isomorphisms from X to Y in C , not the actual nonempty set
of isomorphisms C (X,Y ), the set π0(C ) of isomorphism classes in C has lost
track of part of the categorical structure. We therefore refer to π0(C ) as the
decategorification of C . An important aspect of algebraic K-theory is a reversal
of this process, attempting to lift set level structures to the category level, by a
less well-defined process of categorification.

Example 3.5.3. Let N0 = {0, 1, 2, . . . } be the set of non-negative integers.
There is a bijection

π0(iso(F ))
∼=
−→ N0

that takes the object n to its cardinality n, for each n ≥ 0.

Remark 3.5.4. Under the bijection above, the disjoint union m ⊔ n and the
cartesian product m×n give categorical models for the sum m+n and product
mn of non-negative integers. In a sense, the need to count the number of
elements in the sets arising from these operations must have been one of the
initial reasons for introducing sums and products of natural numbers. Once
bookkeeping developed, it proved convenient to also introduce negative numbers,
extending the number system from N0 to the integers Z = {. . . ,−1, 0, 1, . . . }.
There are no sets with a negative number of elements, but what is a suitable
extension the groupoid iso(F ), so that its π0 is naturally the ring of integers?
[[We will return to this in??]]

Definition 3.5.5. Let C , D be small groupoids, and F : C → D a functor. We
define a function

π0(F ) : π0(C ) −→ π0(D)

by mapping the isomorphism class [X] to the isomorphism class [F (X)]. This is
well defined, since F maps isomorphic objects to isomorphic objects. It is clear
that π0(idC ) = idπ0(C ) and π0(G◦F ) = π0(G)◦π0(F ), if G : D → E is a second
functor between small groupoids, so we have defined a functor

π0 : Gpd −→ Set .

Definition 3.5.6. We now generalize the above constructions to the case when
C is any small category. We define a relation ∼ on its set of objects by saying
that X ∼ Y if there exists a morphism f : X → Y from X to Y in C . This
relation is reflexive and transitive, but not symmetric. However, ∼ generates a
well-defined equivalence relation ≃ on obj(C ), namely the smallest equivalence
relation (when viewed as a subset of obj(C ) × obj(C )) that contains ∼. More
explicitly, for two objects X, Y in C , we have X ≃ Y if and only if there exists
a finite sequence of objects

X = Z0 , Z1 , . . . , Zm−1 , Zm = Y

in C , with m ≥ 1, where Zi−1 ∼ Zi or Zi ∼ Zi−1 (or both) for each 1 ≤ i ≤ m.
This makes ≃ an equivalence relation on obj(C ), and we define

π0(C ) = obj(C )/≃

to be the set of equivalence classes. In this generality we say that X and Y are
homotopic when X ≃ Y , and we call π0(C ) the set of path components of C .
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Let [X] = {Y ∈ obj(C ) | X ≃ Y } denote the (object level) path component of
X in C . [[We may also refer to the full subcategory of C generated by [X] as a
path component of C .]] There is of course a relation between this notation and
that of Definition 2.5.13, which we will make clear in ? [[Forward reference to
nerve and classifying space of category.]]

Lemma 3.5.7. Two objects X, Y in C represent the same element in π0(C )
if and only if their images in C [C−1] are isomorphic. Hence

π0(C ) = obj(C )/≃

is naturally identified with

π0(C [C−1]) = obj(C [C−1])/∼= .

Proof. If X ≃ Y , there exists a finite chain of objects X = Z0, Z1, . . . , Zm = Y
and morphisms fi : Zi−1 → Zi or fi : Zi → Zi−1 for 1 ≤ i ≤ m. Letting ǫi = +1
or −1 according to the case, the resulting word (f ǫm

m , . . . , f ǫ1
1 ) determines an

isomorphism in C [C−1] from X to Y . Conversely, an isomorphism in C [C−1]
from X to Y is determined by such a word, in which case the chain of relations
Zi−1 ∼ Zi or Zi ∼ Zi−1 implies that X ≃ Y .

Definition 3.5.8. Let C , D be small categories, and let F : C → D be a
functor. We define a function

π0(F ) : π0(C ) −→ π0(D)

by mapping [X] to [F (X)], for each X in obj(C ). If X ≃ Y there exists a
finite chain of morphisms in C connecting X to Y , and applying F we obtain
a finite chain of morphisms in D connecting F (X) to F (Y ), so F (X) ≃ F (Y ).
Alternatively, we may note that F induces a functor F : C [C−1] → D [D−1] of
groupoids, and appeal to Definition 3.5.5. Either way, π0(F ) is well-defined,
and defines a decategorification functor

π0 : Cat −→ Set

extending the previously defined functor on Gpd.

Lemma 3.5.9. Let C , D be small categories, let F,G : C → D be functors, and
let φ : F ⇒ G be a natural transformation. Then the two functions

π0(F ), π0(G) : π0(C ) −→ π0(D)

are equal.

Proof. The two functions π0(F ) and π0(G) take [X] in π0(C ) to [F (X)] and
[G(X)] in π0(D), respectively. The natural morphism

φX : F (X) −→ G(X)

in D tells us that F (X) ∼ G(X), hence F (X) ≃ G(X) and [F (X)] = [G(X)].
In other words, the two functions π0(F ) and π0(G) are equal.
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Lemma 3.5.10. Let F : C → D be an equivalence of small categories. Then

π0(F ) : π0(C )
∼=
−→ π0(C )

is a bijection.

Proof. Let G : D → C be an inverse equivalence. Then there are natural iso-

morphisms φ : GF
∼=

=⇒ idD and ψ : FG
∼=

=⇒ idC , so π0(G)◦π0(F ) = idπ0(C ) and
π0(F ) ◦ π0(G) = idπ0(D), by Lemma 3.5.9, hence π0(F ) is a bijection.

Remark 3.5.11. For groupoids C , D this is a reasonable result, but for cat-
egories C , D less than an equivalence of categories is needed, since we might
replace φ and ψ by (finite chains of) natural transformations. For example, it
we get the same conclusion if F and G form an adjoint pair of functors.

Definition 3.5.12. Let C be a category with a small skeleton C ′. We define
π0(C ) to be the set π0(C

′). Given a second choice of small skeleton C ′′, there
is a preferred bijection

π0(C
′)

∼=
−→ π0(C

′′)

taking [X ′] to [X ′′], where X ′′ is the unique object in C ′′ that is isomorphic
in C to the object X ′ in C ′. If C ′ = C ′′, the preferred bijection is the iden-
tity. Given a third choice of small skeleton C ′′′, the composite of the pre-

ferred bijections π0(C
′)

∼=
−→ π0(C

′′)
∼=
−→ π0(C

′′′) equals the preferred bijection

π0(C
′)

∼=
−→ π0(C

′′′). Hence the set π0(D) is well-defined up to a “coherently”
unique isomorphism.

Let C , D be skeletally small categories, and let F : C → D be a functor.
Choose small skeleta C ′ ⊆ C and D ′ ⊆ D . Then π0(C ) = π0(C

′) and π0(D) =
π0(D

′), and we define
π0(F ) : π0(C ) −→ π0(D)

to be the function π0(C
′) → π0(D

′) that takes [X ′] to [Y ′′], where Y ′′ is the
unique object in D ′ that is isomorphic in D to the object F (X ′), for any object
X ′ in C ′. This procedure extends π0 to a functor from skeletally small categories
to sets.



Chapter 4

Universal properties

A reference for this chapter is Mac Lane [40, III].

4.1 Initial and terminal objects

Definition 4.1.1. An object X of a category C is initial if for each object
Y in C there is a unique morphism X → Y in C , i.e., if each morphism set
C (X,Y ) consists of a single element. An object Z of a category C is terminal
if for each object Y in C there is a unique morphism Y → Z in C , i.e., if each
morphism set C (Y,Z) consists of a single element.

Remark 4.1.2. Such existence and uniqueness conditions are often called uni-
versal properties.

Definition 4.1.3. Any property P formulated in terms of a category C has a
dual property P op, which is the same as the property P formulated in terms
of the opposite category C op. In other words, the definition of the opposite
property P op is obtained by reversing all arrows in the definition of the property
P . The dual property of P op is P again.

[[Example: Being a left inverse of f is dual to being a right inverse of f .]]

Lemma 4.1.4. An object X is initial in C if and only if X is terminal in the
opposite category C op, and X is terminal in C if and only if X is initial in C op.
Hence being initial and being terminal are dual properties.

Proof. The object X is initial in C if and only if for each object Y in C the set
C (X,Y ) has precisely one element. This is equivalent to the assertion that for
each object Y in C op the set C op(Y,X) has precisely one element, which says
exactly that X is terminal in C op.

The second claim follows from the first applied to the category C op, using
the fact that (C op)op = C .

Lemma 4.1.5. If X and X ′ are initial objects in a category C , then there are
unique morphisms f : X → X ′ and g : X ′ → X, and these are mutually inverse
isomorphisms.

If Z and Z ′ are terminal objects in a category C , then there are unique
morphisms f : Z → Z ′ and g : Z ′ → Z, and these are mutually inverse isomor-
phisms.

81
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Proof. Suppose that X and X ′ are initial. By the universal property of X,
there is a unique morphism f : X → X ′ in C . By the universal property of
X ′, there is a unique morphism g : X ′ → X in C . Consider the composite
gf : X → X. By the universal property of X, the only endomorphism of X is
the identity morphism idX , so by uniqueness we must have gf = idX . Next
consider the composite fg : X ′ → X ′. By the universal property of X ′, the only
endomorphism of X ′ is idX′ , so we must have fg = idX′ . Hence g is left and
right inverse to f , so f is an isomorphism with inverse f−1 = g. As already
noted, these isomorphisms f : X → X ′ and g : X ′ → X are the only morphisms
with the given source and target, hence they are unique.

The second claim follows from the first applied to the category C op, using
Lemma 4.1.4.

Example 4.1.6. In the category Set, the empty set ∅ is the unique initial
object. Each singleton set {x} is a terminal object. There are of course unique

bijections {x}
∼=
−→ {y} between any two of the terminal objects. In the full

subcategory F , the empty set 0 is the unique initial object, while the singleton
set 1 = {1} is the unique terminal object. The groupoids iso(Set) and iso(F )
do not have initial or terminal objects.

Definition 4.1.7. A zero object of a category is an object that is both initial
and terminal. A pointed category is a category with a chosen zero object.

Lemma 4.1.8. Any two zero objects in a category C are isomorphic, by a
unique isomorphism.

Example 4.1.9. Since the empty set is not a singleton set, neither Set nor F

have zero objects.

Lemma 4.1.10. Let C be a category with a terminal object Z. Let const(Z) : C →
C be the constant functor to Z, taking each object to Z and each morphism to
idZ . The rule η that to each object X in C associates the unique morphism
ηX : X → Z in C defines a natural transformation η : idC ⇒ const(Z).

Dually, for a category C with initial object X, there is a natural transforma-
tion ǫ : const(X) ⇒ idC from the constant functor to X to the identity functor.

Proof. The diagram

X
ηX //

f

²²

Z

=

²²

Y
ηY // Z

commutes for all morphisms f : X → Y in C , since there is only one morphism
X → Z.

4.2 Categories under and over

Definition 4.2.1. Let X be an object in a category C . The undercategory X/C

has as objects the class of morphisms i : X → Y in C , where the source X is
fixed, but the target Y ranges over all objects in C . Given two objects i : X → Y
and i′ : X → Y ′ in X/C , the set of morphisms (X/C )(i : X → Y, i′ : X → Y ′)
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is the set of morphisms f : Y → Y ′ in C such that f ◦ i = i′, i.e., such that the
diagram

X
i

~~~~
~~

~~
~~ i′

ÃÃA
AA

AA
AA

A

Y
f

// Y ′

commutes. The identity morphism from i : X → Y to itself is given by the
identity of Y in C . The composition of f : Y → Y ′ and g : Y ′ → Y ′′, viewed as
morphisms from i : X → Y to i′ : X → Y ′ and from i′ : X → Y ′ to i′′ : X → Y ′′

is given by the composite gf : Y → Y ′′ in C .
We may refer to the object i : X → Y as i, or just as Y , if the structure

morphism i is understood from the context.

Definition 4.2.2. Let Z be an object in a category C . The overcategory C /Z
has as objects the class of morphisms p : Y → Z in C , where the source Y ranges
over all objects in C , but the target Z is fixed. Given two objects p : Y → Z
and p′ : Y ′ → Z in X/C , the set of morphisms (C /Z)(p : Y → Z, p′ : Y ′ → Z)
is the set of morphisms f : Y → Y ′ in C such that p′ ◦ f = p, i.e., such that the
diagram

Y

p
ÂÂ

@@
@@

@@
@

f
// Y ′

p′

~~}}
}}

}}
}

Z

commutes. The identity morphism from i : Y → Z to itself is given by the
identity of Y in C . The composition of f : Y → Y ′ and g : Y ′ → Y ′′, viewed as
morphisms from p : Y → Z to p′ : Y ′ → Z and from p′ : Y ′ → Z to p′′ : Y ′′ → Z
is given by the composite gf : Y → Y ′′ in C .

Again, we may refer to the object p : Y → Z as p, or just as Y , if the
structure morphism p is understood from the context.

Lemma 4.2.3. Let X be an object in C . Then (X/C )op = C op/X and
(C /X)op = X/C op so the under- and overcategories are dual constructions.

Proof. This is clear by inspection of the definitions.

Lemma 4.2.4. Let X be an object in C . The identity morphism idX : X → X
is an initial object in the undercategory X/C , and a terminal object in the
overcategory C /X.

Proof. For each object i : X → Y in X/C there is a unique morphism from
idX : X → X to i : X → Y in X/C , namely the morphism given by i : X → Y .
This is clear, since a morphism f : X → Y in C gives such a morphism in X/C

if and only if f ◦ idX = i, which means that f = i. Hence idX : X → X is initial
in X/C .

The other statement follows by duality.

Lemma 4.2.5. Let X be an initial object in C . Then idX : X → X is a zero
object in the overcategory C /X. Dually, let Z be a terminal object in C . Then
idZ : Z → Z is a zero object in the under category Z/C .
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Proof. We know that idX is terminal in C /X by Lemma 4.2.4. It remains to
check that it is also initial in C /X. For each object p : Y → X in C /X there
is a unique morphism f : X → Y in C , since X is initial in C . The composite
p ◦ f : X → X must be equal to idX : X → X, again since X is initial. Hence f
defines the unique morphism in C /X from idX to p.

The other statement follows by duality.

Example 4.2.6. Let Set∗ be the category of pointed sets, with objects all pairs
(X,x0), where X is a set and x0 ∈ X an element in X, and morphisms from
(X,x0) to (Y, y0) the functions f : X → Y such that f(x0) = y0. We call x0 the
base point of X, and say that f is base point preserving when f(x0) = y0.

Fix a terminal object ∗ in Set, i.e., a one-element set. We can identify
a pointed set (X,x0) with an object in the undercategory ∗/Set, namely the
object i : ∗ → X where i takes the single element of ∗ to the base point x0 of
X. Likewise, a base point preserving function f : (X,x0) → (Y, y0) corresponds
to a morphism f : X → Y from i : ∗ → X to i′ : ∗ → Y . Hence there is an
identification

Set∗ ∼= ∗/Set .

In particular, the one-element set ∗, with the unique choice of base point, is a
zero object in Set∗, as we saw more generally in Lemma 4.2.5.

Definition 4.2.7. Let α : X → Z be a fixed morphism in a category C . The
under-and-overcategory X/C /Z has as objects the triples (Y, i, p) where Y is an
object in C and i : X → Y , p : Y → Z are morphisms in C , such that p ◦ i = α.
A morphism from (Y, i, p) to (Y ′, i′, p′) is a morphism f : Y → Y ′ such that
f ◦ i = i′ and p′ ◦ f = p.

X
i

~~~~
~~

~~
~~ i′

ÃÃA
AA

AA
AA

A

α

²²

Y
f

//

p
ÃÃ

@@
@@

@@
@@

Y ′

p′

~~}}
}}

}}
}}

Z

When α = idX : X → X, we call X/C /X the category of retractive objects over
X. Each object (Y, i, r), with i : X → Y , r : Y → X and r ◦ i = idX exhibits X
as a retract of Y . A morphism f : (Y, i, r) → (Y ′, i′, r′) restricts to the identity
on X, and commutes with the retractions to X.

Definition 4.2.8. Let F : C → D be a functor, and fix an object Y in D .
The left fiber category F/Y is the category with objects the pairs (X, g) where
X is an object in C and g : F (X) → Y is a morphism in D . The morphisms
in F/Y from (X, g) to (X ′, g′) are the morphisms f : X → X ′ in C such that
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g = g′ ◦ F (f).

X
f

//
_

F

²²

X ′
_

F

²²

F (X)
F (f)

//

g
""DD

DD
DD

DD
F (X ′)

g′

||yyyyyyyy

Y

Definition 4.2.9. Let F : C → D and Y be as above. The right fiber category
Y/F is the category with objects the pairs (X, g) where X is an object in C

and g : Y → F (X) is a morphism in D . The morphisms in Y/F from (X, g) to
(X ′, g′) are the morphisms f : X → X ′ in C such that g′ = F (f) ◦ g.

X
f

//
_

F

²²

X ′
_

F

²²

Y
g

||zz
zz

zz
zz g′

""EEEEEEEE

F (X)
F (f)

// F (X ′)

Example 4.2.10. Let F = idC : C → C . The left fiber category idC /Y is the
same as the overcategory C /Y . The right fiber category Y/idC is the same as
the under category Y/C .

Lemma 4.2.11. Let F op : C op → Dop be opposite to F : C → D . Then
(Y/F )op = F op/Y and (F/Y )op = Y/F op, so the left and right fiber categories
are dual constructions.

Proof. This is clear by inspection of the definitions.

Definition 4.2.12. Let F : C → D be a functor, and u : Y → Y ′ a morphism
in D . The induced functor of left fiber categories

F/u : F/Y −→ F/Y ′

takes (X, g : F (X) → Y ) to (X,ug : F (X) → Y ′). The induced functor of right
fiber categories

u/F : Y ′/F −→ Y/F

takes (X, g : Y ′ → F (X)) to (X, gu : Y → F (X)).

Definition 4.2.13. Let F : C → D and Y be as above. The fiber category
F−1(Y ) is the full subcategory of C generated by the objects X with F (X) = Y .
There are inclusions F−1(Y ) → F/Y and F−1(Y ) → Y/F , both of which map
X to (X, idY ).

Remark 4.2.14. The left and right fiber categories behave as homotopy fibers
in the homotopy theory of categories. They play a key role in Quillen’s the-
orems A and B. [[Forward reference.]] The fiber category behaves more as a
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(strict) fiber, and only has homotopy theoretic meaning for particular kinds of
functors. In general there are no natural functors u∗ : F−1(Y ) → F−1(Y ′) or
u∗ : F−1(Y ′) → F−1(Y ) associated to a morphism u : Y → Y ′ in D , but there
are special cases where such functors exist, as we shall discuss in section 4.4.

4.3 Colimits and limits

Definition 4.3.1. Let F : C → D be a functor, viewed as a C -shaped diagram
in D . A colimit of F is an object Y of D , and morphisms iX : F (X) → Y in D

for each object X in C , such that iX = iX′ ◦F (f) for each morphism f : X → X ′

in C ,

F (X)

F (f)

²²

iX

""EEEEEEEE

Y

F (X ′)

iX′

<<yyyyyyyy

with the property that for any object Z of D , and morphisms jX : F (X) → Z
in D for each X in C , such that jX = jX′ ◦ F (f) for each f : X → X ′ in C ,
there exists a unique morphism g : Y → Z in D , such that jX = g ◦ iX for each
X in C .

F (X)

F (f)

²²

iX

""EEEEEEEE
jX

µµ

Y
g

// Z

F (X ′)

iX′

<<yyyyyyyy
jX′

LL

We then write
Y = colim

C

F = colim
X∈C

F (X)

and iX : F (X) → colimX∈C F (X).
We say that D has all C -shaped colimits if there exists a colimit colimC F for

each functor F : C → D . We say that D has all small colimits, or is cocomplete,
if it has all C -shaped colimits for all small categories D .

Lemma 4.3.2. Any two colimits (Y, {iX}X) and (Y ′, {i′X}X) for F : C → D

are isomorphic by a unique isomorphism g : Y
∼=
−→ Y ′ such that i′X = g ◦ iX for

all X.

Proof. By the universal property of (Y, {iX}X) there exists a unique morphism
g : Y → Y ′ such that i′X = g ◦ iX for all X. By the universal property of
(Y ′, {i′X}X) there exists a unique morphism g′ : Y ′ → Y such that iX = g′ ◦ i′X
for all X. The composite g′g : Y → Y must then be idY , since this is the unique
morphism h : Y → Y such that iX = h ◦ iX for all X. Likewise, the composite
gg′ : Y ′ → Y ′ must be idX′ , since this is the unique morphism h′ : Y ′ → Y ′ such
that i′X = h′ ◦ i′X for all X. Hence g is an isomorphism, with inverse g′.
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We shall therefore speak of “the” colimit of a C -shaped diagram in D , when
it exists.

Definition 4.3.3. Given an object Z of D , let const(Z) : C → D be the con-
stant functor with value Z at each object X in C , and value idZ at each
morphism f : X → X ′ in C . Given any morphism g : Y → Z in D , let
const(g) : const(Y ) ⇒ const(Z) be the natural transformation of functors C →
D with components g for each X in C .

A colimit for F : C → D is then an object Y of D and a natural transforma-
tion i : F ⇒ const(Y ) of functors C → D , such that for any object Z of D and
natural transformation j : F ⇒ const(Z) there is a unique morphism g : Y → Z
such that j = const(g) ◦ i.

Definition 4.3.4. Suppose that C is small, and view functors C → D as
C -shaped diagrams in D . The constant diagrams define a functor

const : D −→ Fun(C ,D) .

Given a C -shaped diagram F in D , viewed as an object in Fun(C ,D), we can
form the right fiber category

F/ const

with objects pairs (Z, j), where Z is in D and j : F → const(Z) is a morphism
in Fun(C ,D). The morphisms in F/ const from (Y, i) to (Z, j) are morphisms
g : Y → Z such that j = const(g) ◦ i. A colimit for F is then an initial object
(Y, i) in F/ const. If such an initial Y = colimC F exists, there is a bijection

D(colim
C

F,Z) ∼= Fun(C ,D)(F, const(Z)) .

From the description of colimC F as an initial object in a right fiber category,
its essential uniqueness proved in Lemma 4.3.2 is seen as a special case of the
essential uniqueness of initial objects.

Lemma 4.3.5. Suppose that D admits all C -shaped colimits. Then a choice of
object colimC F in D , for each functor F : C → D , defines a functor

colim
C

: Fun(C ,D) −→ D

which is left adjoint to the constant diagram functor const : D −→ Fun(C ,D).

Proof. [[Explain colimC on morphisms?]]

Definition 4.3.6. Let F : C → D be a functor, viewed as a C -shaped diagram
in D . A limit of F is an object Z of D , and morphisms pX : Z → F (X) in D for
each object X in C , such that pX′ = F (f) ◦ pX for each morphism f : X → X ′

in C ,

F (X)

F (f)

²²

Z

pX

<<yyyyyyyy

pX′
""EEEEEEEE

F (X ′)
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with the property that for any object Y of D , and morphisms qX : Y → F (X)
in D for each X in C , such that qX′ = F (f) ◦ qX for each f : X → X ′ in C ,
there exists a unique morphism g : Y → Z in D , such that qX = pX ◦ g for each
X in C .

F (X)

F (f)

²²

Y
g

//

qX 00

qX′ ..

Z

pX

<<yyyyyyyy

pX′
""EEEEEEEE

F (X ′)

We then write
Z = lim

C

F = lim
X∈C

F (X)

and pX : limX∈C F (X) → F (X).
We say that D has all C -shaped limits if there exists a limit limC F for each

functor F : C → D . We say that D has all small limits, or is complete, if it has
all C -shaped limits for all small categories D .

Remark 4.3.7. A limit of a functor F : C → D is the same a colimit of the
opposite functor F op : C op → Dop, and conversely a colimit of F : C → D is the
same as a colimit of F op : C op → Dop. Proofs about colimits can therefore be
dualized into proofs about limits, and conversely.

Lemma 4.3.8. Any two limits (Z, {pX}X) and (Z ′, {p′X}X) for F : C → D are

isomorphic by a unique isomorphism g : Z
∼=
−→ Z ′ such that pX = p′X ◦ g for all

X.

Proof. Dualize the proof of Lemma 4.3.2.

We therefore speak of “the” limit of a C -shaped diagram in D , when it
exists.

Definition 4.3.9. A limit for F : C → D is an object Z of D and a natural
transformation p : const(Z) ⇒ F of functors C → D , such that for any object Y
of D and natural transformation q : const(Y ) ⇒ F there is a unique morphism
g : Y → Z such that q = p ◦ const(g).

Definition 4.3.10. Suppose that C is small. Given a C -shaped diagram F in
D , viewed as an object in Fun(C ,D), we can form the left fiber category

const /F

with objects pairs (Y, q), where Y is in D and q : const(Y ) → F is a morphism
in Fun(C ,D). The morphisms in const /F from (Y, q) to (Z, p) are morphisms
g : Y → Z such that q = p ◦ const(g). A limit for F is then a terminal object
(Z, p) in const /F . If such a terminal Z = limC F exists, there is a bijection

D(Y, lim
C

F ) ∼= Fun(C ,D)(const(Y ), F ) .

From the description of limC F as a terminal object in a left fiber category,
its essential uniqueness is a special case of the essential uniqueness of terminal
objects.
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Lemma 4.3.11. Suppose that D admits all C -shaped limits. Then a choice of
object limC F in D , for each functor F : C → D , defines a functor

lim
C

: Fun(C ,D) −→ D

which is right adjoint to the constant diagram functor const : D −→ Fun(C ,D).

Proof. [[Explain limC on morphisms?]]

Lemma 4.3.12. Suppose that D admits all C -shaped colimits and limits, with
C small. Then there are adjoint pairs (colimD , const) and (const, limD).

Fun(C ,D)

colimD //

limD

//
Dconstoo

Example 4.3.13. If C = ∅ is the empty category, there is only one functor
F : ∅ → D and a colimit for it is the same as an initial object in C . Dually, a
limit for this unique functor is the same as a terminal object in C .

Definition 4.3.14. If C = δ(I) is a small discrete category, with object set
obj(C ) = I and only identity morphisms, then a functor F : C → D is the same
as an I-indexed family (F (c))c∈I of objects in D , and a colimit for it is the same
as a coproduct

colim
C

F =
∐

c∈I

F (c)

in D of these objects, equipped with the inclusion morphisms ic : F (c) →∐
c F (c). Its universal property is that to give a morphism

∐
c F (c) → Z is

equivalent to give morphisms F (c) → Z for all c ∈ I.
Dually, a limit for F : C → D is the same as a product

lim
C

F =
∏

c∈I

F (c)

in D of these objects, equipped with the projection morphisms pc :
∏

c F (c) →
F (c). Its universal property is that to give a morphism Y →

∏
c F (c) is equiv-

alent to give morphisms Y → F (c) for all c ∈ I.

Example 4.3.15. When C = {1, 2} is discrete with two objects, we can picture
the coproduct and its universal property as

F (1)
i1 //

j1
&&LLLLLLLLLLL

F (1) ⊔ F (2)

∃!

²²
Â
Â
Â

F (2)
i2oo

j2
xxrrrrrrrrrrr

Z ,

where the symbol ∃! indicates that there exists a unique arrow making the
diagram commute. Dually, we picture the product and its universal property as

Y
q1

xxqqqqqqqqqqq

∃!

²²
Â
Â
Â

q2

&&MMMMMMMMMMM

F (1) F (1) × F (2)
p1

oo
p2

// F (2) .
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Example 4.3.16. The coproduct in D = Set is given by the disjoint union of
sets. The product in Set is given by the cartesian product of sets.

Example 4.3.17. The coproduct in D = Grp is given by the free product of
groups. The product in Grp is given by the cartesian product.

Example 4.3.18. The (co-)products of categories defined in Section 1.4 are
the categorical (co-)products.

Definition 4.3.19. When C = δ(I) is discrete and F : C → D is the constant
functor to an object X, then (F (c))c∈I = (X)c∈I is the constant family at X. If
the coproduct

∐
c∈I X exists, the identity maps idX : X → X combine to define

the fold morphism

∇ :
∐

c∈I

X −→ X

such that ∇ ◦ ic = idX for all c ∈ I. If the product
∏

c∈I X exists, the identity
maps idX : X → X combine to define the diagonal morphism

∆: X −→
∏

c∈I

X

such that pc ◦ ∆ = idX for all c ∈ I.

Example 4.3.20. The diagonal and fold functors of Definition 2.3.16 are special
cases of these constructions.

Definition 4.3.21. Let C = { 0
//
// 1 } be a category with “two parallel

arrows”. A C -shaped diagram in D has the form

F (0)
f

//

g
// F (1) .

A colimit for F is an object Y with morphisms i0 : F (0) → Y and i1 : F (1) → Y
such that i1 ◦ f = i0 = i1 ◦ g, or more succinctly, an object Y with a morphism
i1 : F (1) → Y such that i1f = i1g. Such a colimit is called the coequalizer of f
and g, denoted

colim
C

F = coeq(f, g) .

Its universal property is that to give a morphism coeq(f, g) → Z is equivalent
to giving a morphism j1 : F (1) → Z such that j1f = j1g.

Dually, a limit for F is an object Z with morphisms p0 : Z → F (0) and
p1 : Z → F (1) such that f ◦ p0 = p1 = g ◦ p0, or equivalently, an object Z
with a morphism p0 : Z → F (0) such that fp0 = gp0. Such a limit is called the
equalizer of f and g, denoted

lim
C

F = eq(f, g) .

Its universal property is that to give a morphism Y → eq(f, g) is equivalent to
giving a morphism q1 : Y → F (0) such that fq1 = gq1.
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Example 4.3.22. We can picture the coequalizer and its universal property
as:

F (0)
f

//

g
// F (1)

i1 //

j1
%%KKKKKKKKKK

coeq(f, g)

∃!

²²
Â
Â
Â

Z

Dually, we picture the equalizer and its universal property as

Y
q0

$$II
II

II
II

II

∃!

²²
Â
Â
Â

eq(f, g)
p0

// F (0)
f

//

g
// F (1) .

Example 4.3.23. The coequalizer in D = Set of two functions f, g : X → Y
is the quotient set

coeq(f, g) = Y/ ∼

of Y , where ∼ is the equivalence relation generated by f(x) ∼ g(x) for all x ∈ X.
The equalizer in Set of f, g : X → Y is the subset

eq(f, g) = {x ∈ X | f(x) = g(x)}

of X, i.e., the subset where the two functions are equal.

Example 4.3.24. The coequalizer in D = Grp of two group homomorphisms
f, g : G → H is the quotient group

coeq(f, g) = H/N

of H, where N is the normal subgroup of H generated by the elements f(k)−1g(k)
for all k ∈ G.

The equalizer in Grp of f, g : G → H is the subgroup

eq(f, g) = {k ∈ G | f(k) = g(k)}

of G, i.e., the subgroup where the two homomorphisms are equal.

Example 4.3.25. [[The coequalizer of two functors F,G : C → D?]] The
equalizer eq(F,G) of two functors F,G : C → D is the subcategory of C with
objects the X in C such that F (X) = G(X) in D , and morphisms the f : X → Y
in C such that F (f) = G(f) in D .

In these examples there were isomorphisms C ∼= C op, so that it was natural
to treat colimC and limC together. In the following examples C is not self-dual.

Definition 4.3.26. Let C = { 1 0oo // 2 }. A C -shaped diagram in D

has the form

F (1) F (0)
f

oo
g

// F (2) .

A colimit for F is an object Y with morphisms i1 : F (1) → Y and i2 : F (2) → Y
such that i1f = i2g. Such a colimit is called the pushout of f and g, often
somewhat imprecisely denoted

colim
C

F = F (1) ∪F (0) F (2) .
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To give a morphism F (1) ∪F (0) F (2) → Z is equivalent to giving morphisms
j1 : F (1) → Z and j2 : F (2) → Z with j1f = j2g : F (0) → Z:

F (0)
f

//

g

²²

p

F (1)

i1

²²

j1

´´

F (2)
i2 //

j2 //

F (1) ∪F (0) F (2)

∃!

&&MMMMMM

Z

Such a commutative square, with edges f , g, i1 and i2 is called a pushout square,
or more precisely, the pushout square generated by f and g. The symbol “p”
indicates the part of the pushout square that determines the remaining corner.
If F (0) is initial in D , then the pushout F (1)∪F (0)F (2) is equal to the coproduct
F (1) ⊔ F (2).

Definition 4.3.27. Let C = { 1 // 0 2oo }. A C -shaped diagram in D

has the form

F (1)
f

// F (0) F (2) .
g

oo

A limit for F is an object Z with morphisms p1 : Z → F (1) and p2 : Z → F (2)
such that fp1 = gp2. Such a limit is called the pullback of f and g, often
somewhat imprecisely denoted

lim
C

F = F (1) ×F (0) F (2) .

To give a morphism Y → F (1) ×F (0) F (2) is equivalent to giving morphisms
q1 : Y → F (1) and q2 : Y → F (2) with fq1 = gq2:

Y q1

ºº

q2

**

∃!

&&MMMMMM

F (1) ×F (0) F (2)
p1

//

p2

²²

y

F (1)

f

²²

F (2)
g

// F (0)

Such a commutative square, with edges p1, p2, f and g, is called a pullback
square, or more precisely, the pullback square generated by f and g. The symbol
“y” indicates the part of the pullback square that determines the remaining
corner. If F (0) is terminal in D , then the pullback F (1) ×F (0) F (2) is equal to
the product F (1) × F (2).

Remark 4.3.28. Beware the potential ambiguity in the notation X ×B E for
the pullback of X → B and E → B, compared to the notation X ×G Y for the
balanced product of two G-spaces.

Example 4.3.29. The pushout in Set of two functions f : X → Y and g : X →
Z is the quotient set

Y ∪X Z = (Y ⊔ Z)/ ∼
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where ∼ is the equivalence relation generated by the identification of f(x) ∈
Y ⊆ Y ⊔ Z with g(x) ∈ Z ⊆ Y ⊔ Z, for all x ∈ X. If f : X → Y is injective,
then the inclusion Z → Y ∪X Z is injective, and each element in Y ∪X Z can
be uniquely expressed either as an element in Y \ f(X), or as an element in Z.

The pullback in Set of two functions f : X → Z and g : Y → Z is the subset

X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)} ,

also known as the fiber product of X and Y over Z. For each x ∈ X the fiber of
X ×Z Y over x, meaning the preimage of x under the projection X ×Z Y → X,
can be identified with the fiber g−1(f(x)) of Y over f(x), meaning the preimage
of f(x) under the function g : Y → Z.

Example 4.3.30. The pushout in Grp of two homomorphisms f : K → H and
g : K → G is the amalgamated free product

colim{H
f
← K

g
→ G} = H ∗K G

obtained as the quotient group of the free product H∗K by the normal subgroup
generated by the words f(k)−1g(k) for all k ∈ K.

The pullback in Grp of two homomorphisms f : H → G and g : K → G is
the subgroup

H ×G K = {(h, k) ∈ H × K | f(h) = g(k)} ,

of the direct product H × G.

[[Pushout and pullback in Cat.]]

Definition 4.3.31. Let C be a category with a terminal object ∗. A cofiber of
a morphism f : X → Y is a pushout of the diagram

∗ ←− X −→ Y .

We write Y/X or Y/f(X) for this pushout ∗ ∪X Y . There are preferred mor-
phisms ∗ → Y/X ← Y .

Given a morphism p : ∗ → Y , the fiber of a morphism f : X → Y at p is a
pullback of the diagram

∗
p

−→ X
f

←− X .

We write f−1(p) for this pullback. There is a preferred morphism f−1(p) → X.

Example 4.3.32. In sSet, the cofiber of a function f : X → Y is the quotient
set Y/f(X) = (Y ⊔ {∗})/ ∼, where f(x) ∼ ∗ for each x ∈ X. Note that
Y/∅ = Y+ = Y ⊔ {∗}. A morphism {∗} → Y corresponds to a point p ∈ Y , and
the fiber of f : X → Y at p is the subset f−1(p) = {x ∈ X | f(x) = p}.

[[Sequential colimit, sequential limit.]]
[[Also discuss finite categories, with finitely many morphisms, and finite col-

imits? Beware that the nerve of a finite category needs not be a finite simplicial
set.]]

Lemma 4.3.33. Suppose that D has all small coproducts and coequalizers.
Then D has all small colimits.

Dually, suppose that D has all small products and equalizers. Then D has
all small limits.
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Proof. The colimit of F : C → D is given by the coequalizer of the two mor-
phisms

s, t :
∐

f : X→Y

F (X) −→
∐

X

F (X)

where f ranges over all morphisms in C and X ranges over all objects in C .
The morphism s is determined by its restrictions s ◦ if = iX for f : X → Y ,
while the morphism t is determined by its restrictions t ◦ if = iY ◦ F (f).

Dually, the limit of F : C → D is given by the equalizer of the two morphisms

s, t :
∏

X

F (X) −→
∏

f : X→Y

F (X)

where X ranges over all objects in C and f ranges over all morphisms in C . The
morphism s is determined by its projections pf ◦ s = F (f) ◦ pX for f : X → Y ,
while the morphism t is determined by its projections pf ◦ t = pY .

[[What remains to be verified?]]

Example 4.3.34. The colimit of a C -shaped diagram in sets, X : C → Set, is
the quotient set

colim
C

X =
∐

c

X(c)/∼

where ∼ is generated by ic(x) ∼ id(X(a)(x)) for all a : c → d and x ∈ X(c), or
more concisely, X(c) ∋ x ∼ a∗(x) ∈ X(d).

Dually, its limit is the subset

lim
C

X ⊆
∏

c

X(c)

of sequences (xc)c with xc ∈ X(c) for all c in C , such that X(a)(xc) = xd for
all a : c → d, or more briefly, a∗(xc) = xd.

Lemma 4.3.35. Let F : C → D have colimit colimC F and let Z be an object
of D . There is a natural bijection

D(colim
C

F,Z) ∼= lim
X∈C

D(F (X), Z) .

Dually, let G : C → D have limit limC G and let Z be an object of D . There is
a natural bijection

D(Z, lim
C

G) ∼= lim
X∈C

D(Z,G(X)) .

Proof. The first two sets are both identified with the families (φX)X of mor-
phisms φX : F (X) → Z in D for all X in C , with φY ◦ F (f) = φX for all
f : X → Y in C .

The last two sets are both identified with the families (ψX)X of morphisms
ψX : Z → G(X) in D for all X in C , with G(f) ◦ψX = ψY for all f : X → Y in
C .

The following is a useful tool for checking that a functor respects (co-)limits,
or for showing that is cannot be a (co-)adjoint.
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Proposition 4.3.36. Let F : C → D and G : D → C be an adjoint pair, and
let E be a small category. If X : E → C is an E -shaped diagram in C , with
colimit colimE X, then F ◦ X : E → D has the colimit

colim
E

(F ◦ X) = F (colim
E

X) .

Dually, if Y : E → D is an E -shaped diagram in D , with limit limE Y , then
G ◦ Y : E → C has the limit

lim
E

(G ◦ Y ) = G(lim
E

Y ) .

In other words, a left adjoint (= coadjoint) preserves colimits, and a right ad-
joint (= adjoint) preserves limits.

Proof. For any object Y in D there are natural bijections

D(F (colim
E

X), Y ) ∼= C (colim
E

X,G(Y ))

∼= lim
E

C (X(−), G(Y ))

∼= lim
E

D(F (X(−)), Y )

∼= Fun(E ,D)(F ◦ X, const(Y ))

which show that F (colimE X) is a colimit of F ◦ X.
Dually, for any object X in C there are natural bijections

C (X,G(lim
E

Y )) ∼= D(F (X), lim
E

Y )

∼= lim
E

D(F (X), Y (−))

∼= lim
E

C (X,G(Y (−)))

∼= Fun(E ,C )(const(X), G ◦ Y )

which show that G(limE Y ) is a limit of G ◦ Y .

Lemma 4.3.37. Suppose that C has a terminal object Z. Then each functor
F : C → D has a colimit

colim
C

F = F (Z)

given by the object F (Z) and the structure morphism iX = F (X → Z) : F (X) →
F (Z) for all X in C .

Lemma 4.3.38. Suppose that C has an initial object Y . Then each functor
F : C → D has a limit

lim
C

F = F (Y )

given by the object F (Y ) and the structure morphism pX = F (Y → X) : F (Y ) →
F (X) for all X in C .

[[Filtering (co-)limits?]]
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Lemma 4.3.39. Let F : C × D → E be a bifunctor. [[Which colimits need to
exist?]] There are natural isomorphisms

colim
X∈C

(
colim
Y ∈D

F (X,Y )
)
∼= colim

C×D

F ∼= colim
Y ∈D

(
colim
X∈C

F (X,Y )
)
.

[[Which limits need to exist?]] There are natural isomorphisms

lim
X∈C

(
lim
Y ∈D

F (X,Y )
)
∼= lim

C×D

F ∼= lim
Y ∈D

(
lim

X∈C

F (X,Y )
)
.

[[Which colimits and limits need to exist?]] There is a natural colimit-limit-
exchange morphism

κ : colim
X∈C

(
lim
Y ∈D

F (X,Y )
)
−→ lim

Y ∈D

(
colim
X∈C

F (X,Y )
)
.

Proof. [[Discuss first two cases.]] The morphism κ corresponds to the compatible
family of morphisms

jX : lim
Y ∈D

F (X,Y ) −→ lim
Y ∈D

(
colim
X∈C

F (X,Y )
)

induced by passage to the limit over Y in D from the colimit structure mor-
phisms

iX(Y ) : F (X,Y ) −→ colim
X∈C

F (X,Y ) .

Equivalently, κ corresponds to the compatible family of morphisms

qY : colim
X∈C

(
lim
Y ∈D

F (X,Y )
)
−→ colim

X∈C

F (X,Y )

induced by passage to the colimit over X in C from the limit structure mor-
phisms

pY (X) : lim
Y ∈D

F (X,Y ) −→ F (X,Y ) .

Remark 4.3.40. It is often an interesting question to decide when κ is an
isomorphism. [[Example: C filtering and D finite.]]

4.4 Cofibered and fibered categories

[[The Grothendieck construction C ≀ F for functors F : C → Cat, perhaps also
pseudofunctors.]] [[simp(X) = ∆ ≀ X for X : ∆op → Set.]]

The following definitions are from SGA1 [24, Exp. VI] and [55, p. 93].

Definition 4.4.1. Let F : C → D be a functor. For each object Y of D there
is a (full and faithful) functor

F−1(Y ) // // F/Y

from the fiber to the left fiber of F at Y , taking X in C with F (X) = Y to
(X, idY : F (X) → Y ). We say that C is a precofibered category over D if this
functor has a left adjoint. Denote the left adjoint

F/Y −→ F−1(Y )



CHAPTER 4. UNIVERSAL PROPERTIES 97

by (Z, g : F (Z) → Y )) 7→ g∗(Z), so that there is a natural bijection

F−1(Y )(g∗(Z),X) ∼= (F/Y )((Z, g), (X, idY )) .

This amounts to a correspondence between suitable dashed arrows in the fol-
lowing diagram:

Z //_________
_

F

²²

X_

F

²²

g∗(Z)

<<y
y

y
y

_

F

²²

F (Z)

g
$$HHHHHHHHH Y

Y

=

<<yyyyyyyyy

For each morphism u : Y → Y ′ in D there is then an associated cobase change
functor

u∗ : F−1(Y ) → F−1(Y ′)

taking Z with F (Z) = Y to u∗(Z), the value of the right adjoint on (Z, u : F (Z) →
Y ′).

F−1(Y ) //

u∗
%%KKKKKKKKKK
F/Y ′

²²

F/v

%%LLLLLLLLLL

F−1(Y ′) //

v∗
%%LLLLLLLLLL

OO

OO

F/Y ′′

²²

F−1(Y ′′)

OO

OO

If v : Y ′ → Y ′′ is a second morphism in D , there is a natural transformation

φ : (vu)∗ ⇒ v∗u∗

of functors F−1(Y ) → F−1(Y ′′). Given an object Z in C with F (Z) = Y , the
adjunction unit

η(Z,u) : (Z, u : F (Z) → Y ′) −→ (u∗(Z), idY ′)

in F/Y ′ maps under F/v to a natural map (Z, vu) −→ (u∗(Z), v) in F/Y ′′. Its
image under the left adjoint is a natural map

φZ : (vu)∗(Z) −→ v∗(u∗(Z)) ,

giving the component of φ at Z. We say that C is a cofibered category over D

if the natural transformation φ : (vu)∗ ⇒ v∗u∗ is a natural isomorphism.

Definition 4.4.2. Let F : C → D be a functor. For each object Y of D there
is a (full and faithful) functor

F−1(Y ) // // Y/F
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from the fiber to the right fiber of F at Y , taking X in C with F (X) = Y to
(X, idY : Y → F (X)). We say that C is a prefibered category over D if this
functor has a right adjoint. Denote the right adjoint

Y/F −→ F−1(Y )

by (Z, g : Y → F (Z)) 7→ g∗(Z), so that there is a natural bijection

(Y/F )((X, idY ), (Z, g)) ∼= F−1(Y )(X, g∗(Z)) .

This amounts to a correspondence between suitable dashed arrows in the fol-
lowing diagram:

X

""E
E

E
E

//_________
_

F

²²

Z_

F

²²

g∗(Z)
_

F

²²

Y

=
""EE

EE
EE

EE
E F (Z)

Y

g

::vvvvvvvvv

For each morphism u : Y → Y ′ in D there is then an associated base change
functor

u∗ : F−1(Y ′) → F−1(Y )

taking Z with F (Z) = Y ′ to u∗(Z), the value of the right adjoint on (Z, u : Y →
F (Z)).

F−1(Y )
// //

Y/Foo

F−1(Y ′)

OO

u∗

eeKKKKKKKKKK
// //

Y ′/Foo

u/F
eeLLLLLLLLLL

F−1(Y ′′)

OO

v∗

eeLLLLLLLLLL

If v : Y ′ → Y ′′ is a second morphism in D , there is a natural transformation

ψ : u∗v∗ =⇒ (vu)∗

of functors F−1(Y ′′) → F−1(Y ). Given an object W in C with F (W ) = Y ′′,
the adjunction counit

ǫ(W,v) : (v∗(W ), idY ′) −→ (W, v : Y ′ → F (W ))

in Y ′/F maps under u/F to a natural map (v∗(W ), u) −→ (W, vu) in Y/F . Its
image under the right adjoint is a natural map

ψW : u∗(v∗(W )) −→ (vu)∗(W ) ,

giving the component of ψ at W . We say that C is a fibered category over D if
the natural transformation ψ : u∗v∗ ⇒ (vu)∗ is a natural isomorphism.



Chapter 5

Homotopy theory

[[Topological spaces Top, CW complexes, compactly generated spaces U . Com-
pare Hatcher [26, App. A], May [43, Ch. 5] and McCord [45, §2]. Kelleyfication.]]

[[NOTE: Revise discussion of gluing lemma, following [26, 4.G].]]

5.1 Topological spaces

Recall that Top denotes the category of topological spaces X and continuous
functions f : X → Y , also known as maps.

Definition 5.1.1. Let Top∗ be the category of based topological spaces (X,x0),
with x0 ∈ X, and base point preserving maps (= based maps) f : (X,x0) →
(Y, y0), which are maps f : X → Y with f(x0) = y0. When the choice of base
point is clear, we often simply write X for (X,x0).

Remark 5.1.2. Let ∗ be a fixed one-point space, a terminal object in Top.
Each point x0 ∈ X determines a unique map ∗ → X, taking the point in ∗ to
x0, and conversely, so there is an isomorphism of categories Top∗

∼= ∗/Top.
Here ∗/Top denotes the undercategory of ∗ in Top, as in Definition 4.2.1.

Definition 5.1.3. Let Y be a topological space. A subset X of Y can be given
the subspace topology, which is the coarsest topology making the inclusion map
i : X → Y continuous. Hence a subset of X is open if and only if it is of the form
X ∩U for U open in Y . We then say that X is a subspace of Y . If x0 ∈ X then
(X,x0) is a based subspace of (Y, x0). A map i : X → Y is called an embedding
(or an inclusion) if it induces a homeomorphism of X with the subspace i(X)
of Y .

Definition 5.1.4. Let ∼ be an equivalence relation on a topological space X.
The quotient set X/∼ of X can be given the quotient topology, which is the finest
topology making the projection map p : X → X/∼ continuous. Hence a subset
U of X/∼ is open if and only if the preimage p−1(U) is open in X. We then
say that X/∼ is a quotient space of X. If X is based at x0 then (X/∼, p(x0)) is
a based quotient space of X. A map p : X → Y is called an identification (or a
proclusion) if it induces a homeomorphism of the quotient space X/∼ with Y ,
where x ∼ y if and only if p(x) = p(y).

99
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Definition 5.1.5. Let X,Y be topological spaces. The disjoint union X⊔Y has
the finest topology that makes both inclusions in1 : X → X ⊔ Y and in2 : Y →
X ⊔ Y continuous. Hence the open subsets are precisely those of the form
U ⊔V , with U open in X and V open in Y . The disjoint union is the categorical
coproduct in Top. [[Define fold map ∇ : X ⊔ X → X?]]

If X is based at x0 and Y is based at y0, the wedge sum (X ∨ Y, ∗) is the
quotient space

X ∨ Y = (X ⊔ Y )/(x0 ∼ y0) ,

based at the common image of x0 and y0. We write in1 : X → X ∨ Y and
in2 : Y → X ∨ Y for the inclusion maps. The wedge sum is the categorical
coproduct in Top∗. [[Define based fold map ∇ : X ∨ X → X?]]

Lemma 5.1.6. The functor Top∗ → Top that forgets the base point has a
left adjoint (−)+ : Top → Top∗ that takes a space X to the disjoint union
X+ = X ⊔ {∗} of X and a base point.

Proof. There is a natural bijection Top∗(X+, Y ) ∼= Top(X,Y ) for any space X
and based space Y = (Y, y0).

[[Any left adjoint preserves colimits, so (X ⊔ Y )+ ∼= X+ ∨ Y+ for X, Y
in Top. Any right adjoint preserves limits, so (X × Y, (∗, ∗)) is the categorical
product in Top∗, for (X, ∗), (Y, ∗) in Top∗. The left adjoint is strong symmetric
monoidal, so (X×Y )+ ∼= X+∧Y+. The right adjoint is lax symmetric monoidal,
with respect to the natural map π : X × Y → X ∧ Y .]]

Definition 5.1.7. Let i : X → Y and j : X → Z be maps. The pushout Y ∪X Z
is the quotient space

(Y ⊔ Z)/∼

where ∼ is generated by the relations i(x) ∼ j(x) for all x ∈ X. The square

X
j

//

i

²²

p

Z

²²

Y // X ∪X Z

expresses X ∪X Z as the colimit in Top of the diagram Y X
ioo

j
// Z .

If i : (X,x0) → (Y, y0) and j : (X,x0) → (Z, z0) are based maps, then X∪X Z
is based at the equivalence class ∗ of y0 ∼ z0. The square above is then a pushout
square in Top∗.

Definition 5.1.8. Let X, Y be spaces. The cartesian product X × Y has the
coarsest topology that makes both projections pr1 : X × Y → X and pr2 : X ×
Y → Y continuous. It has a subbasis given by the subsets U ×Y and X×V , for
all open U ⊆ X and V ⊆ Y . It has a basis given by the subsets U ×V for all U
open in X and V open in Y . The cartesian product is the categorical product
in Top. [[Define diagonal map ∆: X → X × X?]]

Definition 5.1.9. Let p : E → B and f : X → B be maps. The pullback
X ×B E is the subspace

X ×B E = {(x, e) ∈ X × E | f(x) = p(e)}
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of X×E, consisting of pairs (x, e) with equal images in B. The pullback square

X ×B E //

²²

y

E

p

²²

X
f

// B

expresses X ×B E as the limit in Top of the diagram X
f

// B E
p

oo .
If f : (X,x0) → (B, b0) and p : (E, e0) → (B, b0) are based maps, then X ×B

E is based at ∗ = (x0, e0). The square above is then a pullback square in Top∗.

Lemma 5.1.10. Let (X,x0), (Y, y0) be based spaces. The natural map X⊔Y →
X ×Y , taking x ∈ X to (x, y0) and y ∈ Y to (x0, y), induces a homeomorphism

X ∨ Y ∼= X × {y0} ∪ {x0} × Y ,

where X ∨ Y has the quotient topology from X ⊔ Y and X × {y0} ∪ {x0} × Y
has the subspace topology from X ×Y . Hence the induced map X ∨Y → X ×Y
is an embedding.

Proof. For brevity, let L = X × {y0} ∪ {x0} × Y . The given maps X → X × Y
and Y → X × Y are continuous, so the induced bijection h : X ∨ Y → L is
continuous. Conversely, we must check that if W ⊆ X ∨ Y is open, then so
is its image h(W ) ⊆ L. Let U ⊔ V = p−1(W ) be the preimage of W under
p : X ⊔ Y → X ∨ Y , so that U is open in X and V is open in Y . We divide into
two cases. If ∗ ∈ W then x0 ∈ U and y0 ∈ V . Then U ×V is open in X×Y , and
h(W ) = L ∩ (U × V ), so h(W ) is open in L. Otherwise ∗ /∈ W , so x0 /∈ U and
y0 /∈ V . Then U ×Y ∪X×V is open in X×Y and h(W ) = L∩(U ×Y ∪X×V ),
so h(W ) is again open in L.

We hereafter identify X ∨ Y with its image in X × Y .

Definition 5.1.11. Let (X,x0), (Y, y0) be based spaces. The smash product
(X ∧ Y, ∗) is the quotient space of X × Y by the subspace X ∨ Y :

X ∧ Y =
X × Y

X ∨ Y
.

It has the finest topology making the canonical map X×Y → X∧Y continuous.
We write x∧y ∈ X ∧Y for the image of (x, y) ∈ X ×Y . [[Define based diagonal
map ∆: X → X ∧ X?]]

We may write X ⋉Y = X+∧Y and X ⋊Y = X∧Y+ for the half-smash prod-
ucts of unbased and based spaces, resp. of based and unbased spaces. [[Define
half-based diagonal maps ∆: X → X ⋉ X and ∆: X → X ⋊ X?]]

To justify the definition of the smash product, we shall compare maps X ×
Y → Z with maps from X into a mapping space Map(Y,Z), and see that in the
based case, based maps X ∧Y → Z will correspond to based maps from X into
a based mapping space Map∗(Y,Z), at least for locally compact spaces Y . See
Proposition 5.1.28. Unlike the cartesian product in Top, the smash product is
not the categorical product in Top∗. There are no natural maps X ∧ Y → X
and X ∧ Y → Y .
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Definition 5.1.12. Let X,Y be topological spaces. The mapping space

Map(X,Y ) = {f : X → Y | f is continuous}

has the compact-open topology, with a subbasis given by the subsets

[K,U ] = {f : X → Y | f(K) ⊆ U}

for K ⊆ X compact and U ⊆ Y open. A basis is given by all finite intersections
[K1, U1] ∩ · · · ∩ [Kn, Un] of such subsets.

If X is based at x0 and Y is based at y0, the based mapping space

Map∗(X,Y ) ⊆ Map(X,Y )

is the subspace of based maps, i.e., the maps f : X → Y with f(x0) = y0. It is
itself a based space, with base point ∗ the constant map to y0.

[[Note that [X,Y ] will be used with a completely different meaning later.
Forward reference.]]

[[The restriction to locally compact Y suggests that these are not quite the
right foundations for effective algebraic topology or homotopy theory. Indeed,
we shall [[or may?]] instead work in the full subcategory of so-called compactly
generated spaces, to be discussed in Section 5.3. However, for the following
definitions, the classical foundations suffice. Our notations are based on [43].]]

Definition 5.1.13. Let I = [0, 1] ⊂ R. It is a compact Hausdorff space. The
cylinder on a space X is the cartesian product X × I. For each t ∈ I there is
an inclusion map it : X → X × I given by it(x) = (x, t). A homotopy between
maps f, g : X → Y is a map H : X × I → Y such that Hi0 = f and Hi1 = g.

X
i0 //

f
##FF

FF
FF

FF
F X × I

H

²²

X
i1oo

g
{{xx

xx
xx

xx
x

Y

We then say that f and g are homotopic, and write H : f ≃ g or just f ≃ g.
This defines an equivalence relation on the set of maps X → Y . We write [f ]
for the homotopy class of a map f : X → Y .

Let Ho(Top) be the homotopy category of topological spaces, with the same
objects as Top, and with morphism sets

Ho(Top)(X,Y ) = Top(X,Y )/≃ ,

the homotopy classes of maps X → Y . Composition is defined by [g]◦[f ] = [gf ],
and there is a canonical functor Top → Ho(Top), taking f to [f ]. A map
f : X → Y is called a homotopy equivalence if its homotopy class [f ] is an
isomorphism in Ho(Top), i.e., if there exists a map g : Y → X and homotopies
gf ≃ idX and fg ≃ idY . Such a map g is called a homotopy inverse to f .
Any two homotopy inverses to f are homotopic, by uniqueness of inverses in
Ho(Top).
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Definition 5.1.14. Let I = [0, 1] be based at 0. The (based) cylinder on a
based space (X,x0) is the smash product

X ∧ I+
∼= X × I/{x0} × I .

We write x ∧ t for the image of (x, t). For each t ∈ I there is a based inclusion
map it : X → X ∧I+ given by it(x) = x∧ t. A (based) homotopy between based
maps f, g : (X,x0) → (Y, y0) is a based map H : X ∧ I+ → Y such that Hi0 = f
and Hi1 = g.

(X,x0)
i0 //

f
&&MMMMMMMMMM

(X ∧ I+, ∗)

H

²²

(X,x0)
i1oo

g
xxqqqqqqqqqq

(Y, y0)

We then say that f and g are (based) homotopic, and write H : f ≃ g or just
f ≃ g. This defines an equivalence relation on the set of based maps X → Y .

Let Ho(Top∗) be the homotopy category of based topological spaces, with the
same objects as Top∗, and with morphism sets

Ho(Top∗)((X,x0), (Y, y0)) = Top∗((X,x0), (Y, y0))/≃ ,

the based homotopy classes of based maps (X,x0) → (Y, y0). Composition is
defined by [g] ◦ [f ] = [gf ], and there is a canonical functor Top∗ → Ho(Top∗),
taking f to [f ]. A map f : (X,x0) → (Y, y0) is called a based homotopy equiv-
alence if its homotopy class [f ] is an isomorphism in Ho(Top∗), i.e., if there
exists a based map g : (Y, y0) → (X,x0) and based homotopies gf ≃ id(X,x0)

and fg ≃ id(Y,y0). Such a map g is called a based homotopy inverse to f .
Any two based homotopy inverses to f are based homotopic, by uniqueness of
inverses in Ho(Top∗).

Definition 5.1.15. When (X,x0) has the based homotopy type of a CW com-
plex, and (Y, y0) is any based space, we write

[X,Y ] = Ho(Top∗)((X,x0), (Y, y0))

for the based homotopy classes of maps from (X,x0) to (Y, y0). [[If X does not
have such a homotopy type, one should first replace X by a weakly equivalent
CW complex ΓX.]]

Remark 5.1.16. Any based homotopy equivalence of based spaces is a homo-
topy equivalence of the underlying unbased spaces. If the spaces are cofibrantly
based, meaning that the base point inclusions are cofibrations, then the converse
also holds. See Proposition 5.4.17.

Definition 5.1.17. Let X be any space. The (unreduced) cone

CX = X × I/i0(X)

is the pushout of i0 : X → X × I and the unique map X → ∗. We write [x, t]
for the image of (x, t) in CX. There is an inclusion i1 : X → CX at the free
end of the cone. The (unreduced) suspension

ΣX = CX/i1(X)
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is the pushout of i1 and the unique map X → ∗.
For each map f : X → Y we can form the mapping cylinder

Mf = Y ∪f X × I ,

defined as the pushout of f and the inclusion i1 : X → X × I. The inclusion
i0 : X → X×I induces an inclusion i0 : X → Mf . The projection pr1 : X×I →
X induces a cylinder projection map π : Mf → Y , making the following diagram
commute:

X
i0 //

f
!!CC

CC
CC

CC
Mf

π

²²

Y
≃oo

=
}}||

||
||

||

Y

It is easy to see that π and the inclusion Y → Mf are inverse homotopy equiv-
alences. The composite Y → Y is the identity, while the composite Mf → Mf
is homotopic to the identity by a map that contracts the cylinder X × I to the
base X × {1}. We define the mapping cone, or homotopy cofiber, to be

Cf = Y ∪f CX ∼= Mf/i0(X) .

There is a canonical inclusion i : Y → Cf :

{∗} // Cf

X

OO

i0 //

x

Mf

OO

Y

i

``AAAAAAAA
oo

Definition 5.1.18. Let S1 = I/∂I be based at 0 ∼ 1, where ∂I = {0, 1} ⊂ I.
Let (X,x0) be any based space. The (based) cone

CX = X ∧ I ∼= (X ∧ I+)/i0(X)

is the pushout of i0 : X → X ∧ I+ and X → ∗. Again there is a based inclusion
i1 : X → CX at the free end of the cone. The (based) suspension

ΣX = X ∧ S1 ∼= CX/i1(X) (5.1)
∼= X × I/(X × {0, 1} ∪ {x0} × I) (5.2)

is the pushout of i1 and the map X → ∗.
For each based map f : (X,x0) → (Y, y0) the (based) mapping cylinder

Mf = Y ∪f X ∧ I+

is the based pushout of f and i1 : X → X ∧ I+. The based inclusion i0 : X →
X ∧ I+ induces a based inclusion i0 : X → Mf , and the (based) mapping cone
of f , or homotopy cofiber, is

Cf = Y ∪f CX ∼= Mf/i0(X) .

More explicitly, Cf is the identification space (Y ⊔ X × I)/∼, where x ≃ f(x)
for all x ∈ X, and X × {0} ∪ {x0} × I is collapsed to the base point.
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There is a canonical based inclusion i : Y → Cf , and a canonical based
homotopy (x, t) 7→ x ∧ t from the constant map to the base point ∗ to the
composite map

if : X
f

// Y
i // Cf .

Remark 5.1.19. The suspension ΣX equals the mapping cone of the unique
map X → ∗. There is a canonical map

Cf = Y ∪X CX → Y ∪X ∗ = Y/f(X) ,

from the homotopy cofiber to the categorical cofiber of f : X → Y , which is the
identity on Y and collapses CX to ∗. It is a homotopy equivalence if f is a
cofibration, see Lemma 5.5.3.

Definition 5.1.20. The free path space of a space Y is the mapping space
Map(I, Y ). For each t ∈ I there is an evaluation map et : Map(I, Y ) → Y given
by et(α) = α(t). [[Each et is a proclusion.]] Given a point y0 ∈ Y , the path
space

Py0
Y = e−1

0 (y0) ⊆ Map(I, Y )

of Y at y0 is the subspace consisting of paths α : I → Y with α(0) = y0. It is
the pullback of e0 : Map(I, Y ) → Y and the inclusion {y0} ⊆ Y . There is an
evaluation map e1 : Py0

Y → Y . The loop space

Ωy0
Y = e−1

1 (y0) ⊆ Py0
Y

of Y at y0 is the pullback of e1 : Py0
Y → Y and the inclusion {y0} ⊆ Y . It is the

subspace of Map(I, Y ) consisting of loops α : I → Y , with α(0) = α(1) = y0.
The mapping path space of a map f : X → Y is the pullback

Nf = X ×Y Map(I, Y )

of f and the evaluation map e1 : Map(I, Y ) → Y . Its elements are pairs (x, α),
where x ∈ X, α : I → Y and α(1) = f(x). The evaluation e0 : Map(I, Y ) → Y
induces a map e0 : Nf → Y , taking (x, α) to α(0). [[This is a proclusion.]]
The inclusion Y → Map(I, Y ), taking y ∈ Y to the constant path cy : s 7→ y,
induces a map ι : X → Nf that takes x ∈ X to (x, cf(x)). The following diagram
commutes:

X

=

}}||
||

||
||

ι

²²

f

ÃÃB
BB

BB
BB

B

X Nf
≃

oo
e0

// Y

Again, it is easy to see [[Give proof]] that ι and the projection Nf → X are
inverse homotopy equivalences. Given a point y0 ∈ Y , the homotopy fiber

Fy0
f = X ×Y Py0

Y = e−1
0 (y0) ⊆ Nf

of f : X → Y at y0 is the subspace consisting of pairs (x, α) where x ∈ X, α : I →
Y , α(0) = y0 and α(1) = f(x). There is a canonical projection p : Ff → X:

X Nfoo
e0 // Y

Fy0
f

p

aaCCCCCCCC

OO

//

q

{y0}

OO
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Definition 5.1.21. For each based space (Y, y0) we identify the (based) free
mapping space

Map∗(I+, Y ) ∼= Map(I, Y )

with the free path space, but based at the constant map c : I → Y to y0 ∈ I. The
evaluation maps et : Map∗(I+, Y ) → Y are base-point preserving. We identify
the (based) path space

PY = Map∗(I, Y ) ∼= Py0
Y

with the (unbased) path space, but based at c. Likewise, we identify the (based)
loop space

ΩY = Map∗(S
1, Y ) ∼= Ωy0

Y

with the (unbased) loop space, but based at c.
For each based map f : (X,x0) → (Y, y0), the (based) mapping path space

Nf = X ×Y Map∗(I+, Y ) ∼= X ×Y Map(I, Y )

is based at (x0, c), with c as above. The (based) homotopy fiber

Ff = X ×Y PY ∼= X ×Y Py0
Y

is based at (x0, c). More explicitly, Ff is the subspace of X × Map(I, Y ) con-
sisting of pairs (x, α) with x ∈ X and α : I → Y , such that α(0) = y0 and
α(1) = f(x), based at (x0, c).

There is a canonical based projection p : Ff → X, and a canonical homotopy
((x, α), t) 7→ α(t) from the constant map to y0 to the composite map

fp : Ff
p

// X
f

// Y .

Remark 5.1.22. The loop space ΩY of (Y, y0) equals the homotopy fiber of
the inclusion {y0} ⊆ Y . There is a canonical map

f−1(y0) = X ×Y {y0} → X ×Y PY = Ff ,

from the categorical fiber of a based map f : (X,x0) → (Y, y0) to the homotopy
fiber, which takes x with f(x) = y0 to (x, c), where c is the constant path at
y0. It is a homotopy equivalence if f is a fibration [[forward reference]]. More
generally, it is a weak homotopy equivalence if f is a quasi-fibration [[forward
reference]].

We now turn to the cartesian closed structure on Top, meaning the relation
between (−) × Y and Map(Y,−), and similarly for (−) ∧ Y and Map∗(Y,−) in
Top∗.

Lemma 5.1.23. If g : Y → Z is a map, then

X × g : X × Y → X × Z

sending (x, y) to (x, g(y)), and

Map(X, g) : Map(X,Y ) → Map(X,Z)
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sending f to gf , are continuous.
If g : (Y, y0) → (Z, z0) is a based map, then

X ∧ g : X ∧ Y → X ∧ Z

sending x ∧ y to x ∧ g(y), and

Map∗(X, g) : Map∗(X,Y ) → Map∗(X,Z)

sending f to gf , are continuous.
[[Also for Map(g,W )?]]

Proof. The case of cartesian products is obvious, and the based case of smash
products follows, since X ∧ g is continuous if and only if its composite with
π : X × Y → X ∧ Y is continuous, which is clear.

Let f : X → Y , and consider a subbasis neighborhood [K,U ] of gf =
Map(X, g)(f) : X → Z, with K compact in X and U open in Z. Then g−1(U) is
open in Y , [K, g−1(U)] is a neighborhood of f , and Map(X, g) takes [K, g−1(U)]
into [K,U ]. It follows that Map(X, g) is continuous.

The based case follows, since Map∗(X, g) is continuous if and only if its
composite with the inclusion Map∗(X,Z) ⊆ Map(X,Z) is continuous, which is
clear from the unbased case.

Lemma 5.1.24. Fix a space Y . Let ηX : X → Map(Y,X × Y ) be given by
ηX(x) = ix ∈ Map(Y,X × Y ) where ix(y) = (x, y). Then ηX is continuous, so
there is a natural transformation (of functors Topop × Top → Set)

φX,Z : Top(X × Y,Z) −→ Top(X,Map(Y,Z))

that takes f : X × Y → Z to the composite map

X
ηX
−→ Map(Y,X × Y )

Map(Y,f)
−→ Map(Y,Z) .

If X, Y , Z are based there is a natural based map ηX : X → Map∗(Y,X ∧Y )
given by ηX(x) = πix ∈ Map∗(Y,X ∧Y ). Also the based map ηX is continuous,
so there is a natural transformation (of functors Topop

∗ × Top∗ → Set∗)

φX,Z : Top∗(X ∧ Y,Z) −→ Top∗(X,Map∗(Y,Z))

that takes a based map f : X ∧ Y → Z to the composite based map

X
ηX
−→ Map∗(Y,X ∧ Y )

Map∗(Y,f)
−→ Map∗(Y,Z) .

Proof. Let x ∈ X and consider a subbase neighborhood [K,W ] of ix, with
K ⊆ Y compact and W ⊆ X × Y open. By assumption {x} × K ⊆ W . For
each y ∈ K we find a basis neighborhood Uy ×Vy of (x, y) contained in W . The
{Vy} for y ∈ K cover K, so there is a finite set y1, . . . , yn ∈ K such that the
{Vyi

}n
i=1 cover K. Let U = Uy1

∩ · · · ∩ Uyn
. Then ηX maps U into [K,W ], so

ηX is continuous.
The based case follows, since the based ηX is continuous if and only if its

composite with the inclusion Map∗(Y,X ∧ Y ) ⊆ Map(Y,X ∧ Y ) is continuous,
and this follows from Lemma 5.1.23 applied to π : X × Y → X ∧ Y and the
unbased case.
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Definition 5.1.25. A space Y is locally compact if for any point y ∈ Y and each
open neighborhood U ⊆ Y of y, there exists a smaller compact neighborhood
K ⊆ U of y.

Remark 5.1.26. For example, each compact Hausdorff space is locally com-
pact, since y and the closed complement of U can be separated by open neigh-
borhoods. The complement of the open neighborhood of U is then a closed
neighborhood of y, which is compact.

Lemma 5.1.27. Fix a space Y . Let ǫZ : Map(Y,Z) × Y → Z be given by
ǫZ(f, y)) = f(y) ∈ Z where f : Y → Z and y ∈ Y . If Y is locally compact, then
ǫZ is continuous, so there is a natural transformation

ψX,Z : Top(X,Map(Y,Z)) −→ Top(X × Y,Z)

that takes g : X → Map(Y,Z) to the composite map

X × Y
g×Y
−→ Map(Y,Z) × Y

ǫZ−→ Z .

If X, Y , Z are based there is a natural based map ǫZ : Map∗(Y,Z)∧Y → Z
given by ǫZ(f ∧ y) = f(y) ∈ Z. If Y is locally compact then also the based map
ǫZ is continuous, so there is a natural transformation

ψX,Z : Top∗(X,Map∗(Y,Z)) −→ Top∗(X ∧ Y,Z)

that takes a based map g : X → Map∗(Y,Z) to the composite based map

X ∧ Y
g∧Y
−→ Map∗(Y,Z) ∧ Y

ǫZ−→ Z .

Proof. Let (f, y) ∈ Map(Y,Z) × Y , and consider any open neighborhood W
of f(y) ∈ Z. Then f−1(W ) is an open neighborhood of y ∈ Y . By the key
assumption that Y is locally compact there exists a compact neighborhood K ⊆
f−1(W ) of y in Y . Then [K,W ]×K is a neighborhood of (f, y) in Map(Y,Z)×Y ,
and ǫZ takes it into W . Hence ǫZ is continuous.

Finally, the based ǫZ is continuous if and only if its composite with the
canonical map π : Map∗(Y,Z)×Y → Z is continuous, and this follows from the
unbased case.

Proposition 5.1.28. Let Y be a locally compact space. There is a natural
bijection

φX,Z : Top(X × Y,Z) ∼= Top(X,Map(Y,Z))

that exhibits the functors X 7→ X × Y and Z 7→ Map(Y,Z) as the left and right
adjoint, respectively, in an adjoint pair.

Top
(−)×Y

//
Top

Map(Y,−)
oo

The adjunction unit and counit are ηX : X → Map(Y,X×Y ) and ǫZ : Map(Y,Z)×
Y → Z, respectively.

If X, Y , Z are based and Y is locally compact, there is also a natural bijection

φX,Z : Top∗(X ∧ Y,Z) ∼= Top∗(X,Map∗(Y,Z))
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that exhibits the functors X 7→ X ∧Y and Z 7→ Map∗(Y,Z) as the left and right
adjoint, respectively, in an adjoint pair.

Top∗

(−)∧Y
//
Top∗

Map∗(Y,−)
oo

The adjunction unit and counit are

ηX : X → Map∗(Y,X ∧ Y )

ǫZ : Map∗(Y,Z) ∧ Y → Z

respectively.

Proof. The composite

X × Y
ηX×Y
−→ Map(Y,X × Y ) × Y

ǫX×Y
−→ X × Y

takes (x, y) first to (ix, y) and then to ix(y) = (x, y), hence equals the identity.
It follows that the composite ψX,Z ◦ φX,Z is the identity, since it takes f : X ×
Y → Z first to the composite Map(Y, f) ◦ ηX , and then to the composite ǫZ ◦
((Map(Y, f) ◦ ηX)× Y ) = ǫZ ◦ (Map(Y, f)× Y ) ◦ (ηX × Y ), which by naturality
of ǫ equals f ◦ ǫX×Y ◦ (ηX × Y )) = f ◦ id = f .

Likewise, the composite

Map(Y,Z)
ηMap(Y,Z)
−→ Map(Y,Map(Y,Z) × Y )

Map(Y,ǫZ)
−→ Map(Y,Z)

takes f first to if : y 7→ (f, y) and then to y 7→ f(y), hence equals the iden-
tity. It follows that the composite φX,Z ◦ ψX,Z is the identity, since it takes
g : X → Map(Y,Z) first to the composite ǫZ ◦ (g × Y ), and then to the com-
posite Map(Y, ǫZ ◦ (g × Y )) ◦ ηX = Map(Y, ǫZ) ◦ Map(Y, g × Y ) ◦ ηX , which by
naturality of η with respect to g equals Map(Y, ǫZ) ◦ ηMap(Y,Z) ◦ g = id ◦ g = g.

The proof in the based case goes the same way.

Corollary 5.1.29. There are natural bijections

Top∗(X ∧ I+, Z) ∼= Top∗(X,Map∗(I+, Z))

Top∗(CX,Z) ∼= Top∗(X,PZ)

Top∗(ΣX,Z) ∼= Top∗(X,ΩZ)

for based spaces X, Z. Hence each based homotopy H : X ∧ I+ → Z from f to g
corresponds to a based map K : X → Map∗(I+, Z) with e0K = f and e1K = g,
and conversely.

The adjunction unit in the third case is ηX : X → ΩΣX taking x to the based
loop s 7→ x∧ s for s ∈ S1, and the counit is ǫZ : ΣΩZ → Z taking s∧α to α(s),
where α : S1 → Z is a based loop.

Proof. These are the special cases Y = I+, Y = I and Y = S1 of the previous
proposition.
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5.2 CW complexes

The definition of a topological space is general enough to allow many quite
ill-behaved examples. However, the classifying spaces of categories, and most
of the other topological spaces that will be important for our study of higher
algebraic K-theory, are rather more well-behaved, in that they can be built up
from nothing by successive attachments of cells. More precisely they are CW
complexes, which we review in this section.

Definition 5.2.1. For n ≥ 0, let the n-disk

Dn = {(x1, . . . , xn) ∈ Rn |
n∑

i=1

x2
i ≤ 1}

be the unit ball in Euclidean n-space, and let the (n − 1)-sphere

Sn−1 = {(x1, . . . , xn) ∈ Rn |
n∑

i=1

x2
i = 1}

be its boundary, Sn−1 = ∂Dn. For n ≥ 1 we view Dn and Sn−1 as being based
at the point e1 = (1, 0, . . . , 0). Note that D0 is a point and S−1 = ∅.

[[Note that we here index the coordinates of Rn from 1 to n.]]

Definition 5.2.2. A CW complex is a space Y with a CW-structure, i.e., an
increasing skeleton filtration

∅ = Y (−1) ⊆ Y (0) ⊆ · · · ⊆ Y (n−1) ⊆ Y (n) ⊆ · · · ⊆ Y

where for each n ≥ 0 the n-skeleton Y (n) is obtained from the (n − 1)-skeleton
by the adjunction of a set of n-cells along their boundaries, so that there is a
pushout square:

∐
α Sn−1

²²

φn

//

p

Y (n−1)

²²∐
α Dn Φn

// Y (n)

Here α runs through the set Y ♯
n of n-cells in Y , the map φn is the coproduct of

maps φα : Sn−1 → Y (n−1), called the attaching maps, and the map Φn is the co-
product of maps Φα : Dn → Y (n), called the characteristic maps. Furthermore,
Y is the increasing union of its skeleta

Y =
⋃

n≥0

Y (n) = colim
n≥0

Y (n)

and is given the weak topology, meaning the finest topology such that each
inclusion Y (n) → Y is continuous. Equivalently, a subspace U ⊆ Y is open
(resp. closed) if and only if each intersection Y (n) ∩ U is open (resp. closed)
in Y (n), or equivalently, if each preimage Φ−1

α (U) is open (resp. closed) in Dn.
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Definition 5.2.3. A CW complex Y is finite dimensional if there is an integer
d such that Y has no n-cells for n > d. The minimal such d is then called the
dimension of Y . A CW complex is of finite type if for each n ≥ 0 there are
only finitely many n-cells in Y . It is finite if it is finite dimensional and of finite
type, or equivalently, if the total number of cells in all dimensions is finite.

Lemma 5.2.4. A CW complex is finite if and only if it is compact as a topo-
logical space.

Proof. [[If there are infinitely many cells, choose a non-repeating sequence (αi)
∞
i=1

of them. The center points xi in these cells then form a sequence in Y with no
convergent subsequence.]]

Definition 5.2.5. A map f : X → Y of CW complexes is cellular if f(X(n)) ⊆
Y (n) for all n ≥ 0. CW complexes and cellular maps form a subcategory

CW ⊂ Top

of topological spaces. Note that this subcategory is not full.

[[Based CW complexes: two interpretations!]]

Definition 5.2.6. A closed subspace X of a CW complex Y is a subcomplex
if for each n ≥ 0, the n-skeleton X(n) = X ∩ Y (n) is obtained by adjoining a
subset X♯

n ⊆ Y ♯
n of the n-cells in Y to the (n− 1)-skeleton X(n−1). We then say

that X ⊆ Y or (Y,X) a CW pair.

Lemma 5.2.7. Let X be a subcomplex of a CW complex Y . Then the subspace
topology on X equals the weak topology with respect to the subspaces X(n), so
that X is itself a CW complex. The inclusion X ⊆ Y is a cellular map.

Proof. A subset L ⊆ X is closed in the weak topology if and only if each X(n)∩L
is closed in X(n). Each X(n) is closed in Y (n), so this is equivalent to asking
that each Y (n) ∩L is closed in Y (n). This is the same as saying that L is closed
in Y . Since X is closed in Y , this is equivalent to L ⊆ X being closed in the
subspace topology.

Lemma 5.2.8. Let Y , Z be CW complexes, X ⊆ Y a subcomplex, and f : X →
Z a cellular map. Then Y ∪X Z is a CW complex, with n-skeleton

(Y ∪X Z)(n) = Y (n) ∪X(n) Z(n) ,

one n-cell for each n-cell in Y that is not contained in X, and one n-cell for
each n-cell in Z. The characteristic maps are the composites Dn → Y (n) →
(Y ∪X Z)(n) and Dn → Z(n) → (Y ∪X Z)(n), respectively. The square

X
f

//

²²

p

Z

²²

Y // Y ∪X Z

is a pushout in CW.
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Definition 5.2.9. Let X and Y be CW complexes, with characteristic maps
Φα and Ψβ . The product CW complex X × Y has n-skeleton

(X × Y )(n) =
⋃

i+j=n

X(i) × Y (j)

for each n ≥ 0, and one (i+ j)-cell for each i-cell α in X and each j-cell β in Y ,
with characteristic map

Θα,β : Di+j ∼= Di × Dj Φα×Ψβ
−→ X(i) × Y (j) ⊆ X(i+j) .

Its restriction to the boundary

Si+j−1 = ∂Di+j ∼= ∂(Di × Dj) = Si−1 × Dj ∪ Di × Sj−1

factors through the attaching map

θα,β : Si+j−1 ∼= Si−1 ∪ Dj ∪ Di × Sj−1

−→ X(i−1) × Y (j) ∪ X(i) × Y (j−1) ⊆ X(i+j−1) .

The product X×Y has the weak topology with respect to the skeleton filtration,
or equivalently, with respect to all of the characteristic maps Θα,β .

The projection maps pr1 : X × Y → X and pr2 : X × Y → Y are cellular,
and X × Y is the product in CW of X and Y .

Remark 5.2.10. Note that the weak topology on the product CW complex
X ×Y is not always the same as the product topology on the cartesian product
X × Y , formed in Top. There is a map from the CW product with the weak
topology, to the cartesian product with the product topology, but it is not
in general a homeomorphism. [[Example?]] This suggests that the cartesian
product topology, which is the coarsest topology making the projections to X
and Y continuous, is too coarse, and that we should instead give X × Y a finer
topology that agrees with the weak topology on a product of CW complexes in
the case when X and Y are CW complexes. This is what is achieved with the
compactly generated topology.

The following three lemmas are trivial to prove.

Lemma 5.2.11. Let X ⊆ Y be a CW pair and Z a CW complex. Then

X × Z ⊆ Y × Z

is a CW pair.

Lemma 5.2.12. Let X and Y be subcomplexes of a CW complex Z. Then
X ∩ Y and X ∪ Y are also subcomplexes of Z.

Lemma 5.2.13. Let X ⊆ Y and Z ⊆ W be CW pairs. Then

X × W ∪X×Z Y × Z ⊆ Y × W

is a CW pair.

[[Cite Milnor on the homotopy type of Map(X,Y ) for X, Y CW complexes,
with X finite?]]
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5.3 Compactly generated spaces

[[Steenrod [62], McCord [45], May [43, Ch. 5].]]
[[Weak Hausdorff spaces, (Kelley) k-spaces, compactly generated spaces U

and T , closure under closed cobase change, closed sequential colimits, adjunc-
tion

Map(X × Y,Z) ∼= Map(X,Map(Y,Z))

is a homeomorphism. Space = compactly generated space, based space = cofi-
brantly based compactly generated space.]]

5.4 Cofibrations

For more about cofibrations we refer to May [43, Ch. 6] and Hatcher [26, Ch. 0].

Definition 5.4.1. A map i : X → Y is said to have the homotopy extension
property (HEP) with respect to a space T if for any commutative diagram of
solid arrows

X
i0 //

i

²²

X × I

i×id

²²
H

³³

Y
i0 //

f //

Y × I

F
F

F

""F
F

T

there exists a dashed arrow making the whole diagram commute. The map i is
called a cofibration if it has the homotopy extension property with respect to
any space T . We often use a feathered arrow i : X  Y to indicate that i is a
cofibration.

Remark 5.4.2. In words and symbols, the homotopy extension property with
respect to T asks that given a map f : Y → T and a homotopy H : X × I → T
starting with the composite map fi : X → T , there exists a homotopy F : Y ×
I → T starting with f , such that F (i × id) = H.

Lemma 5.4.3. A map i : X → Y is a cofibration if and only if the induced map
j = i0 ∪ (i × id) : Y ∪X X × I → Y × I admits a left inverse

r : Y × I → Y ∪X X × I .

Proof. This is clear from the universal case T = Y ∪X X × I, with f : Y → T
and H : X × I → T the obvious inclusions.

Here is a basic example.

Lemma 5.4.4. The inclusion Sn−1 ⊂ Dn is a cofibration for each n ≥ 0.

Proof. View Dn×I as a subspace of Rn×R. There is a (deformation) retraction
r : Dn × I → Dn ×{0} ∪Sn−1 × I given by linear projection away from (0, 2) ∈
Rn × R, so Sn−1

 Dn.

Lemma 5.4.5. Each cofibration (in U ) is a closed embedding.
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Proof. Let r be left inverse to j, as above. The composite

X
i

−→ Y
i1−→ Y × I

r
−→ Y ∪X X × I

equals the embedding i1 : X → Y ∪X X×I. Hence i must also be an embedding.
(The open subsets of X are of the form i−1

1 (U) with U open in Y ∪X X×I, hence
are also of the form i−1(V ) with V = (ri1)

−1(U) open in Y .) The subspace

B = {x ∈ Y | jr(x, 1) = (x, 1)}

is equal to the image i(X) of i, and is closed in Y since Y is weak Hausdorff.

Lemma 5.4.6. A map i : X → Y is a cofibration if and only if it has the left
lifting property with respect to the free path fibration e0 : Map(I, T ) → T for
any space T , i.e., given any commutative diagram of solid arrows

X
H //

i

²²

Map(I, T )

e0

²²

Y
f

//

Fuuu

::u
u

T

there exists a dashed arrow making the whole diagram commute.

Proof. This is immediate from the isomorphism

Top(Y × I, T ) ∼= Top(Y,Map(I, T ))

and its variants.

Lemma 5.4.7. Each homeomorphism is a cofibration, and the composite of
two cofibrations is a cofibration, so the cofibrations form a subcategory of the
category of topological spaces.

Proof. For the first claim, let F = Hi−1, with notation as above.
If i : X  Y and j : Y  Z are cofibrations, then given a commutative

diagram of solid arrows

X
H //

²²

i

²²

Map(I, T )

e0

²²

Y
²²

j

²²

Fu
u

::u
u

Z
f

//

G¨
¨

¨
¨

CC¨
¨

¨
¨

T

we use the left lifting property for i to find the dashed arrow F , and then use
the left lifting property for j to find the dashed arrow G, making the whole
diagram commute. Hence ji : X  Z is a cofibration.

Lemma 5.4.8. (a) The coproduct X =
∐

α Xα 
∐

α Yα = Y of any set of
cofibrations iα : Xα  Yα is a cofibration.

(b) The pushout (= cobase change) Z  Y ∪X Z of a cofibration i : X  Y
along any map j : X → Z is a cofibration.
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(c) The composite Y−1  Y of a sequence of cofibrations in : Yn−1  Yn for
n ≥ 0, with Y = colimn Yn, is a cofibration.

Proof. (a): Construct a lift Fα : Yα → Map(I, T ) for each α, and assemble these
to a lift F : Y → Map(I, T ).

(b): A left lifting problem for Z → Y ∪X Z amounts to a diagram of solid
arrows:

X
f

//

²²

i

²²

p

Z
H //

²²

Map(I, T )

e0

²²

Y //

Fiiiiii

44iiii

Y ∪X Z
g

//

Gqqq

88q
q

T

The assumption that i is a cofibration gives the dashed arrow F . The fact that
the left hand square is a pushout gives the dashed arrow G, making the whole
diagram commute.

(c): A left lifting problem for Y−1 → Y is given by the solid arrows in the
following diagram, which is flipped over for typographical reasons.

Y−1
// //

H

²²

. . . // // Yn−1
//

in //

Fn−1
t

t
t

t
t

zzt
t

t
t

t

Yn
// //

Fn
n n n n n n n

vvn n n n n n

. . . // // Y

f

²²

Fi i i i i i i i i i i i

tti i i i i i i i i i

Map(I, T )
e0 // T

Assume inductively for n ≥ 0 that we have filled in the arrow Fn−1 : Yn−1 →
Map(I, T ), starting the induction with F−1 = H. Using the left lifting property
for in, we can fill in the arrow Fn : Yn → Map(I, T ), still keeping the diagram
commutative. Now let F : Y → Map(I, T ) be the colimit of the maps Fn. It is
continuous, because Y = colimn Yn is given the (weak) colimit topology.

Proposition 5.4.9. The inclusion X ⊆ Y of a subcomplex in a CW complex
is a cofibration.

Proof. Let Yn = X ∪ Y (n) ⊆ Y , for each n ≥ −1. Hence there is a pushout
square ∐

α Sn−1 //

²²

p

Yn−1

in

²²∐
α Dn // Yn

for each n ≥ 0, where α ranges over the n-cells in Y that are not in X. By
Lemmas 5.4.4 and 5.4.8, all the inclusions Sn−1 → Dn,

∐
α Sn−1 →

∐
α Dn,

in : Yn−1 → Yn and X = Y−1 → Y are cofibrations.

Lemma 5.4.10. Let f : X → Y be any map. The inclusion

X × {0} ⊔ Y  Mf

is a cofibration. Hence so are the inclusions i0 : X → Mf , Y → Mf and
i : Y → Cf .



CHAPTER 5. HOMOTOPY THEORY 116

Proof. View I × I as a subspace of R2. There is a (deformation) retraction

I × I → I × {0} ∪ {0, 1} × I

given by linear projection away from (1/2, 2). The product with the identity of
X is a retraction

(X × I) × I → (X × I) × {0} ∪ (X × {0, 1}) × I .

Taking the pushout with the identity map of Y × I along X × {1} × I, we get
a retraction

r : Mf × I → Mf × {0} ∪ (X × {0} ⊔ Y ) × I

which shows that X × {0} ⊔ Y → Mf is a cofibration.

Remark 5.4.11. The following three results generalize the easy lemmas listed
for CW pairs and CW complexes to cofibrations and (compactly generated)
spaces. [[Reference?]]

Lemma 5.4.12. The product (in U )

i × idZ : X × Z // // Y × Z

of a cofibration with an identity map is a cofibration.

Proof. The map i × idZ has the homotopy extension property with respect
to T if and only if i has the homotopy extension property with respect to
Map(Z, T ).

The following “union theorem” is less formal, and was proved by Joachim
Lillig in his Diplomarbeit, supervised by Tammo tom Dieck and Rainer Vogt.

Proposition 5.4.13. If the inclusions X ⊆ Z, Y ⊆ Z and X ∩ Y ⊆ Z are
cofibrations (in U ), then X ∪ Y ⊆ Z is a cofibration.

Proof. [[See Lillig [38, Cor. 2].]]

Lemma 5.4.14. If i : X  Y and j : Z  W are cofibrations, then

i × id ∪ id × j : X × W ∪X×Z Y × Z // // Y × W

(in U ) is a cofibration.

Proof. [[There is a more direct proof, but we deduce this from the union the-
orem.]] We may assume that i and j are inclusions of closed subspaces. The
inclusions X×W ⊆ Y ×W and Y ×Z ⊆ Y ×W are cofibrations by Lemma 5.4.12,
and likewise for X×Z ⊆ X×W . Hence the composite i×j : X×Z ⊆ Y ×W is a
cofibration by Lemma 5.4.7. By Proposition 5.4.13, the inclusion into Y ×W , of
the union of X×W and Y ×Z along their intersection X×Z, is a cofibration.

Definition 5.4.15. Fix a space X, and let X/U be the category of spaces
under X, i.e., of maps i : X → Y . A morphism in X/U from i : X → Y to
j : X → Z is a map under X, i.e., a map f : Y → Z such that the triangle

X
i

~~~~
~~

~~
~

j

ÃÃ
@@

@@
@@

@

Y
f

// Z
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commutes. We view Map(I, Z) as a space under X, by mapping x ∈ X to the
constant map I → Z to j(x). The evaluation maps et : Map(I, Z) → Z are then
maps under X. A homotopy under X, from f to g, is a map K : Y → Map(I, Z)
under X such that e0K = f and e1K = g. In other words, it is a continuous
family kt = etK : Y → Z of maps under X, for t ∈ I, with k0 = f and k1 = g.

As usual, we say that two maps f, g : Y → Z under X are homotopic un-
der X, denoted f ≃X g or f ≃ g relX, if there exists a homotopy under X from
f to g, and f : Y → Z under X is a homotopy equivalence under X, denoted
Y ≃X Z, if there exists a map g : Z → Y under X, a homotopy inverse un-
der X, such that gf : Y → Y is homotopic to idY under X, and fg : Z → Z is
homotopic to idZ under X.

Example 5.4.16. The case X = ∅, with ∅/U ∼= U , recovers the usual notions
of spaces, maps, homotopies and homotopy equivalences.

The case X = ∗, with ∗/U ∼= T , recovers the category of based spaces and
maps, based homotopies and based homotopy equivalences. [[Or do we ask that
spaces in T are cofibrantly based?]]

When the structure maps from X are cofibrations, the restriction to maps
under X does not affect the notion of homotopy equivalence.

Proposition 5.4.17. Let i : X → Y and j : X → Z be cofibrations, and let
f : Y → Z be a map of spaces under X. Then f is a homotopy equivalence if
and only if it is a homotopy equivalence under X.

In this situation we may call f a cofiber homotopy equivalence. This notion
is dual to the more classical notion of fiber homotopy equivalence. [[Reference
via G. Whitehead?]]

Proof. We elaborate on the concise proof given in May [43, p. 44].
It suffices to find a map g : Z → Y under X and a homotopy g ◦ f ≃X idY

under X to the identity.

X
i

~~~~
~~

~~
~

j

²²

i

ÃÃ
@@

@@
@@

@

Y
f

≃
//

idY

JJZ
g

//

≃X

Y

Then g will be a homotopy equivalence, and by the same argument there is
a map f ′ : Y → Z under X and a homotopy f ′ ◦ g ≃X idZ . It follows that
f ′ ≃X f ◦ g ◦ f ′ ≃X f , so g is a homotopy inverse under X to f . [[Could put
this in the diagram, too.]]

By hypothesis, there is a map g′′ : Z → Y that is homotopy inverse to f .
Since g′′ ◦f ≃ idY , there is a homotopy H : g′′ ◦ j = g′′ ◦f ◦ i ≃ idY ◦ i = i, so by
the homotopy extension property for j : X → Z, there is an extended homotopy
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F : g′′ ≃ g′ of maps Z → Y , where g′ ◦ j = i.

X
i0 //

j

²²

X × I

j×id

²²

H

¼¼
33

33
33

33
33

33
33

3 X
i1oo

i

tt

j

²²

Z
i0 //

g′′ //

Z × I

F
##FF

FF
FF

FF
F Z

i1oo

g′

²²

Y

It suffices to prove that the map g′ ◦ f : Y → Y under X has a left homotopy
inverse e : Y → Y under X, since g = e ◦ g′ : Z → Y will then satisfy g ◦ f =
e ◦ g′ ◦ f ≃X idY . Note that g′ ◦ f ≃ g′′ ◦ f ≃ idY .

X
i

~~~~
~~

~~
~

j

²²

i

ÃÃ
@@

@@
@@

@ i

´´

Y
f

// Z
g′

//

g

JJY e
// Y

To simplify the notation, we replace the original map f by g′ ◦ f . The
problem is then, given a map f : Y → Y under X with f ≃ idY , to find a left
homotopy inverse e : Y → Y under X, so that e ◦ f ≃X idY .

X
i

~~~~
~~

~~
~

i

²²

i

ÃÃ
@@

@@
@@

@

Y
f

≃
//

idY

JJY
e //

≃X

Y

Start by choosing a homotopy H : f ≃ idY , so that H(y, 0) = f(y) and
H(y, 1) = y for all y ∈ Y .

X
i0 //

i

²²

X × I

i×id

²²

H|

¼¼
33

33
33

33
33

33
33

3 X
i1oo

i

²²

Y
i0 //

f //

Y × I

H
##FF

FF
FF

FF
F Y

i1oo

idY

²²

Y

The restricted homotopy

H| = H ◦ (i × id) : X × I → Y

from f ◦ i = i to idY ◦ i = i might not be homotopic (relative to the endpoints)
to the constant homotopy at i. We therefore seek a homotopy K : idY ≃ e,
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such that the restricted homotopy K| = K ◦ (i × id) is equal to H|. Then
Kf = K ◦ (f × id) : f ≃ e◦f will also restrict to H|, so the composite homotopy
H̄ ∗ Kf : idY ≃ f ≃ e ◦ f extends H̄| ∗ H|, which is homotopic (relative to the
endpoints) to the constant homotopy. We will then use the homotopy extension
property for i × id : X × I → Y × I to deform the restricted homotopy to the
constant one.

Hence we consider the homotopy extension problem

X
i0 //

i

²²

X × I

i×id

²²

H|

¼¼
33

33
33

33
33

33
33

3 X
i1oo

i

²²

Y
i0 //

idY
//

Y × I

K
##F

F
F

F
F Y

i1oo

e

²²
Â
Â
Â

Y

where we keep H|, but replace f by idY . We define e : Y → Y to be the end of a
choice of extended homotopy K, so K : idY ≃ e and Kf = K◦(f×id) : f ≃ e◦f .
Since K ◦ (i× id) = H ◦ (i× id), we see that e ◦ i = i, as desired. It remains to
prove that e ◦ f ≃X idY .

We start by forming the “loop sum” homotopy J = H̄ ∗ Kf : Y × I → Y ,
given by

(H̄ ∗ Kf)(y, s) =

{
H(y, 1 − 2s) for 0 ≤ s ≤ 1/2,

K(f(y), 2s − 1) for 1/2 ≤ s ≤ 1.

This is an s-parametrized homotopy from idY , via f for s = 1/2, to e ◦ f .
Restricting J along i × id : X × I → Y × I, we get the map

J | = J ◦ (i × id) : X × I → Y

given by

J |(x, s) =

{
H(i(x), 1 − 2s) for 0 ≤ s ≤ 1/2,

H(i(x), 2s − 1) for 1/2 ≤ s ≤ 1,

since K(f(i(x), 2s− 1) = K(i(x), 2s− 1) = H(i(x), 2s− 1). Notice that this the
loop sum J | = H̄| ∗H|, given by following H̄ from i to i, and then backtracking
along H to i again.

There is a standard t-parametrized homotopy L from the path J | = H̄| ∗H|
to the constant path C(x, s) = i(x) at i, which at time t ∈ I follows the first
part of H̄ at t times the usual speed, and then backtracks along the last part of
H at t times the usual speed.

L(x, s, t) =

{
H(i(x), 1 − 2st) for 0 ≤ s ≤ 1/2,

H(i(x), 1 − 2(1 − s)t) for 1/2 ≤ s ≤ 1.

Note that L : X × I × I → Y satisfies L(x, s, 0) = L(x, 0, t) = L(x, 1, t) = i(x)
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and L(x, s, 1) = J |(x, s) for all x ∈ X, s, t ∈ I.

J |

L

®¶

i

C

i
Hoo H //

H

²²

i

C

C i
C

i
C

i

We now use that i × id : X × I → Y × I is a cofibration, see Lemma 5.4.12,
to extend the t-parametrized homotopy L of J | to a t-parametrized homotopy
M : Y × I × I → Y of J .

X × I
i0 //

i×id

²²

X × I × I

i×id×id

²²
L

³³

Y × I
i0 //

J=H̄∗Kf
//

Y × I × I

M
J

J

$$JJJ

Y

Going around the three other edges of I × I than the image of i0, i.e., along
⊔ = {0} × I ∪ I × {1} ∪ {1} × I within ¤ = ∂(I × I), the map M restricts to a
homotopy

y = M(y, 0, 0) ≃ M(y, 0, 1) ≃ M(y, 1, 1) ≃ M(y, 0, 1) = (e ◦ f)(y)

of maps Y → Y , from idY to e ◦ f . Furthermore, this is a homotopy under X,
since M(i(x), s, t) = L(x, s, t) = i(x) for (s, t) ∈ ⊔. Hence idY ≃X e ◦ f , as
required.

5.5 The gluing lemma

[[Might alternatively have followed Hatcher [26, App. 4.G].]]

Definition 5.5.1. Given maps i : X → Y and j : X → Z, let the double map-
ping cylinder

Y ∪h
X Z = Mi ∪X Mj

be the union of Mi = Y ∪X X × I and Mj = Z ∪X X × I along the two
cofibrations i0 : X → Mi and i0 : X → Mj. There is a natural map

Π: Y ∪h
X Z → Y ∪X Z

to the pushout of i : X → Y and j : X → Z, induced by the cylinder projections
π : Mi → Y , idX and π : Mj → Z. We also call Y ∪h

X Z the homotopy pushout
of i and j.

Remark 5.5.2. This is an instance of a more general construction, called the
homotopy colimit. [[Forward reference.]]
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Lemma 5.5.3. Let i : X → Y be a cofibration and let j : X → Z be any map.
Then the natural map

Π: Y ∪h
X Z → Y ∪X Z

is a homotopy equivalence.

Proof. Reparametrizing X × I ∪X X × I as X × I, we may rewrite Y ∪h
X Z as

Mi∪X Z, and view Π as the map π ∪ idZ : Mi∪X Z → Y ∪X Z induced by the
cylinder projection π : Mi → Y and idZ along idX .

The inclusion i0 : X → Mi is a cofibration by Lemma 5.4.10, and by as-
sumption i : X → Y is a cofibration. With these structure maps, the projection
π : Mi → Y is a map under X. It is also a homotopy equivalence, with homotopy
inverse the inclusion Y → Mi.

X
}}

i0

}}{{
{{

{{
{ ÃÃ

i

ÃÃ
@@

@@
@@

@

Mi
π

≃
// Y

By Proposition 5.4.17, π is a homotopy equivalence under X, so there exists a
map g : Y → Mi under X, and homotopies πg ≃X idY and gπ ≃X idMi under
X.

Forming pushouts with idZ along idX , we get a map G = g∪idZ : Y ∪X Z →
Mi ∪X Z and homotopies ΠG = πg ∪ idZ ≃ idY ∪XZ and GΠ = gπ ∪ idZ ≃
idMi∪XZ . Hence Π is a homotopy equivalence.

Lemma 5.5.4. Suppose given a commutative diagram

Y

η ≃

²²

X
ioo

j
//

=

²²

Z

ζ ≃

²²

Y ′ X
ηi

oo
ζj

// Z ′

where η and ζ are homotopy equivalences. Then the homotopy pushout map

η ∪h ζ : Y ∪h
X Z

≃
−→ Y ′ ∪h

X Z ′

is a homotopy equivalence.

Proof. We are considering the vertical map of horizontal pushouts induced by
the commutative diagram

Mi

η′ ≃

²²

Xoo
i0oo //

i0 //

=

²²

Mj

ζ′ ≃

²²

M(ηi) Xoo
i0oo //

i0 // M(ζj)

where η′ = η ∪ idX×I and ζ ′ = ζ ∪ idX×I are maps under X. In view of the
commutative squares

Y
≃ //

η ≃

²²

Mi

η′

²²

Mj

ζ′

²²

Z
≃oo

ζ ≃

²²

Y ′ ≃ // M(ηi) M(ζj) Z ′≃oo
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the maps η′ and ζ ′ are homotopy equivalences. By Proposition 5.4.17, η′ and
ζ ′ are homotopy equivalences under X, so there are maps g : M(ηi) → Mi
and h : M(ζj) → Mj under X, and homotopies gη′ ≃X idMi, η′g ≃X idM(ηi),
hζ ′ ≃X idMj and ζ ′h ≃X idM(ζj), all under X. Forming pushouts along X, we
get a map g∪h : Y ′∪X Z ′ → Y ∪X Z and homotopies (g∪h)(η′∪ζ ′) = gη′∪hζ ′ ≃
idY ∪h

X
Z and (η′ ∪ ζ ′)(g ∪ h) = η′g ∪ ζ ′h ≃ idY ′∪h

X
Z′ . Hence η′ ∪ ζ ′ = η ∪h ζ is a

homotopy equivalence.

Lemma 5.5.5. Suppose given a commutative diagram

Y

=

²²

X
iξ

oo
jξ

//

ξ ≃

²²

Z

=

²²

Y X ′ioo
j

// Z

where ξ is a homotopy equivalence. Then the homotopy pushout map

id ∪h
ξ id : Y ∪h

X Z
≃
−→ Y ∪h

X′ Z

is a homotopy equivalence.

Proof. More explicitly,

id ∪h
ξ id = idY ∪ (ξ × id) ∪ idZ : M(iξ) ∪X M(jξ) → Mi ∪X′ Mj

is induced by the identity on Y and Z, and by ξ × idI on each of the two copies
of X × I, one attached by iξ to Y and one attached by jξ to Z.

Choose a homotopy inverse g : X ′ → X to ξ, together with homotopies
H : X × I → X from gξ to idX , and K : X ′ × I → X ′ from ξg to idX′ . We then
have a homotopy commutative diagram

Y

=

²²

X ′ioo
j

//

g

²²

Z

=

²²

Y X
iξ

oo
jξ

//

iKAAA
AAA

\dAAA
AAA

jK}}} }}}

:B}}}}}}

Z

with homotopies iK : iξg ≃ i and jK : jξg ≃ j as indicated. Let the map

i′ = idY ∪ (g ∗ iK) : Mi → M(iξ)

be given by the identity on Y and the map

(x′, s) 7→

{
(g(x′), 2s) for 0 ≤ s ≤ 1/2

iK(x′, 2s − 1) for 1/2 ≤ s ≤ 1

from X ′ × I. Likewise, let the map

j′ = idZ ∪ (g ∗ jK) : Mj → M(jξ)

by given by the identity on Z and the map

(x′, s) 7→

{
(g(x′), 2s) for 0 ≤ s ≤ 1/2

jK(x′, 2s − 1) for 1/2 ≤ s ≤ 1
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from X ′ × I. These both agree with g on X ′, and combine to a map

i′ ∪g j′ : Mi ∪X′ Mj → M(iξ) ∪X M(jξ)

that we wish to show is homotopy inverse to id ∪h
ξ id.

The composite self-map

(i′ ∪g j′)(id ∪h
ξ id) : M(iξ) ∪X M(jξ) −→ M(iξ) ∪X M(jξ)

is the identity on Y , Z and equals gξ on the middle copy of X. Using the
homotopy H : gξ ≃ idX , we can homotope the displayed self-map to the union
η ∪ ζ along X of a self-map η of M(iξ) that is the identity on Y and X, and a
self-map ζ of M(jξ) that is the identity on Z and X. In view of the commutative
squares

Y
≃ //

=

²²

M(iξ)

η

²²

M(jξ)

ζ

²²

Z
≃oo

=

²²

Y
≃ // M(iξ) M(jξ) Z

≃oo

the self-maps η and ζ are homotopy equivalences. Since they are also maps
under X, and the inclusions X → M(iξ) and X → M(jξ) are cofibrations, they
are also homotopy equivalences under X by Proposition 5.4.17. Gluing a pair
of chosen homotopy inverses along X, we see that the union map η ∪ ζ is also
a homotopy equivalence. This proves that (i′ ∪g j′)(id ∪h

ξ id) is a homotopy
equivalence.

Conversely, the composite self-map

(id ∪h
ξ id)(i′ ∪g j′) : Mi ∪X′ Mj −→ Mi ∪X′ Mj

is the identity on Y , Z and equals ξg on the middle copy of X ′. Using the
homotopy K : ξg ≃ idX′ , it is homotopic to a union map η′ ∪ ζ ′ along X ′,
where η′ : Mi → Mi is a map under X ′ and a homotopy equivalence, hence a
homotopy equivalence under X ′, and likewise for ζ ′ : Mj → Mj. Gluing along
X ′, we see that η′ ∪ ζ ′ and (id ∪h

ξ id)(i′ ∪g j′) are homotopy equivalences.

We can now prove the following gluing lemma. It will be the basis for a real-
ization lemma for simplicial spaces, which in turn leads to Quillen’s theorem A
and the additivity theorem for algebraic K-theory.

Proposition 5.5.6 (Gluing lemma). Suppose given a commutative diagram

Y

η ≃

²²

Xooioo
j

//

ξ ≃

²²

Z

ζ ≃

²²

Y ′ X ′ooi′oo
j′

// Z ′

where i and i′ are cofibrations and ξ, η and ζ are homotopy equivalences. Then
the induced map

η ∪ξ ζ : Y ∪X Z
≃
−→ Y ′ ∪X′ Z ′

of pushouts is a homotopy equivalence.
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Proof. Since i and i′ are cofibrations, the natural maps Π and Π′ in the following
commutative diagram are homotopy equivalences by Lemma 5.5.3.

Y ∪h
X Z

Π

≃
//

η∪h
ξ ζ

²²

Y ∪X Z

η∪ξζ

²²

Y ′ ∪h
X′ Z ′ Π′

≃
// Y ′ ∪X′ Z ′

Hence, to prove that the pushout η ∪ξ ζ is a homotopy equivalence it suffices to
prove that the homotopy pushout η ∪h

ξ ζ is one. By factoring this map as

(id ∪h
ξ id) ◦ (η ∪h ζ) ,

we may assume either that ξ = idX , or that η = idY and ζ = idZ .

Y

η ≃

²²

X
ioo

j
//

=

²²

Z

ζ ≃

²²

Y ′

=

²²

Xoo //

ξ ≃

²²

Z ′

=

²²

Y ′ X ′i′oo
j′

// Z ′

In the first case, it follows by Lemma 5.5.4 that η∪hζ is a homotopy equivalence.
In the second case, it follows by Lemma 5.5.5 that id ∪h

ξ id is a homotopy

equivalence. Hence the composite map η∪h
ξ ζ is also a homotopy equivalence.

We also need a similar result for sequential colimits.

Lemma 5.5.7. Suppose given a commutative diagram

. . . // // Xn−1
//

in //

fn−1 ≃

²²

Xn
// //

fn ≃

²²

. . .

. . . // // Yn−1
//

jn // Yn
// // . . .

where n ≥ 0, each in and jn is a cofibration, and each fn is a homotopy equiv-
alence. Then the induced map

colim
n

fn : colim
n

Xn
≃
−→ colim

n
Yn

is a homotopy equivalence.

[[Choose homotopy inverses g′n : Yn → Xn, use the homotopy extension
property to find maps gn : Yn → Xn commuting with the in and jn, and let
g = colimn gn. Check that g is homotopy inverse to f . Alternatively, follow
[26, App. 4.G].]]
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5.6 Homotopy groups

[[Refer to [43, Ch. 9], [26, 4.1].]]
The homotopy groups πn(X) will be the main algebraic invariants that we

extract from a based space X. More precisely, π0(X) is a based set, π1(X) is a
group, and πn(X) is an abelian group for each n ≥ 2.

Definition 5.6.1. Let (X,x0) be a based topological space. For each non-
negative integer n ≥ 0 we let

πn(X) = [Sn,X]

be the set of based homotopy classes of maps α : Sn → X. We denote the
homotopy class of α by [α] ∈ πn(X). The constant map to x0 in X specifies a
base point in πn(X).

Each based map f : X → Y induces a function πn(f) : πn(X) → πn(Y )
taking the homotopy class of α to the homotopy class of the composite f ◦ α =
fα : Sn → Y . This function is well-defined, since a homotopy H : α ≃ β induces
a homotopy fH : Sn ∧ I+ → Y from fα to fβ. It also respects the base point.
Hence πn for n ≥ 0 defines a functor

πn : Top∗ → Set∗ .

Lemma 5.6.2. Let p1 : S1 → S1∨S1 be the pinch map. Under the identification
S1 = I/∂I, it takes s ∈ [0, 1/2] to in1(2s), and s ∈ [1/2, 1] to in2(2s − 1). Its
stabilization

pn = p1 ∧ idSn−1 : Sn −→ (S1 ∨ S1) ∧ Sn−1 ∼= Sn ∨ Sn

induces a pairing
πn(X) × πn(X)

∗
−→ πn(X)

for each n ≥ 1, that takes ([α], [β]) to the class [α] ∗ [β] of the composite

Sn
pn // Sn ∨ Sn

α∨β
// X ∨ X

∇ // X .

It induces a natural group structure on πn(X), which we call the n-th homotopy
group of X. Hence πn for n ≥ 1 lifts to a functor

πn : Top∗ → Grp .

Proof. [[Discuss associativity, unit and inverse.]]

Lemma 5.6.3. For n ≥ 2 the group structure on πn(X) is abelian. Hence πn

for n ≥ 2 lifts to a functor

πn : Top∗ → Ab .

[[This is the Eckmann–Hilton argument. Picture with little squares?]]

Proof. For n ≥ 2, the map

qn = id ∧ p1 ∧ id : Sn → S1 ∧ (S1 ∨ S1) ∧ Sn−2 ∼= Sn ∨ Sn
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induces a second pairing

πn(X) × πn(X)
⋆

−→ πn(X)

that takes ([α], [β]) to the class [α] ⋆ [β] of the composite

Sn
qn // Sn ∨ Sn

α∨β
// X ∨ X

∇ // X .

Let c : Sn → X be the constant map to ∗, so that [c] is the identity element
in πn(X). Then

[α] ∗ [β] = ([α] ⋆ [c]) ∗ ([c] ⋆ [β]) = ([α] ∗ [c]) ⋆ ([c] ∗ [β]) = [α] ⋆ [β]

and

[α] ∗ [β] = ([c] ⋆ [α]) ∗ ([β] ⋆ [c]) = ([c] ∗ [β]) ⋆ ([α] ∗ [c]) = [β] ⋆ [α]

so the two pairings ∗ and ⋆ are equal, and both are commutative.

[[Based homotopic maps induce same functions on πn. Factor πn through
Ho(Top∗).]]

[[Discuss (in-)dependence of πn(X,x0) on the choice of base point.]]

5.7 Weak homotopy equivalences

Definition 5.7.1. A map f : X → Y of spaces is a weak homotopy equivalence
if π0(f) : π0(X) → π0(Y ) is a bijection, and if for each point x0 ∈ X and each
n ≥ 1 the homomorphism πn(f) : πn(X,x0) → πn(Y, f(x0)) is an isomorphism.

We often write f : X
≃
−→ Y to indicate that f is a weak homotopy equivalence.

Remark 5.7.2. It is not quite correct to restate this definition as saying that
πn(f) : πn(X,x0) → πn(Y, f(x0)) is a bijection for all x0 ∈ X and n ≥ 0,
since this would make any map ∅ → Y a weak equivalence. However, if X is
nonempty, then this is an acceptable rewording. In this case it suffices to verify
that πn(f) is a bijection for one point x0 in each path component of X, and for
all n ≥ 0.

Lemma 5.7.3. Each homotopy equivalence f : X → Y is a weak homotopy
equivalence.

[[Relative Hurewicz theorem?]]
[[Topological realization of singular complex ΓX = | sing(X)| defines a cel-

lular approximation to X by the adjunction counit ǫ : | sing(X)| → X, which is
a weak homotopy equivalence.]]

[[Weak homotopy equivalence is an equivalence relation. Dold–Thom [12,
p. 244.].]]

Theorem 5.7.4 (J.H.C. Whitehead). Let X and Y each be of the homotopy
type of a CW complex. Then a map f : X → Y is a weak homotopy equivalence
if and only if it is a homotopy equivalence.

[[Reference, proof in Hatcher [26, 4.5].]]
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5.8 Fibrations

Definition 5.8.1 (Hurewicz fibration). A map f : X → Y is said to have
the homotopy lifting property (HLP) with respect to a space T if for any com-
mutative diagram of solid arrows

T

i0

²²

// X

f

²²

T × I //

<<x
x

x
x

Y

there exists a dashed arrow making the whole diagram commute. The map f is
called a (Hurewicz) fibration if it has the homotopy lifting property with respect
to any space T . For each point y ∈ Y , the preimage f−1(y) = X×Y {y} is called
the fiber of f at y.

Definition 5.8.2 (Serre fibration). A map f : X → Y is a Serre fibration if
it has the homotopy lifting property with respect to Dn for each n ≥ 0. Any
Hurewicz fibration is a Serre fibration.

Lemma 5.8.3. A Serre fibration has the homotopy lifting property with respect
to any CW complex T .

[[Proof by induction over cells and skeleta of T .]]

Lemma 5.8.4. Let f : X → Y be a Serre fibration, and choose base points
y ∈ Y , x ∈ f−1(y) ⊆ X. Then there is a long exact sequence of homotopy
groups

· · · → πn(f−1(y), x) → πn(X,x)
f∗
−→ πn(Y, y)

∂
−→ πn−1(f

−1(y), x) → . . .

· · · → π0(f
−1(y), x) → π0(X,x)

f∗
−→ π0(Y, y) .

[[See [26, Thm. 4.41] for a proof.]]
Let f : X → Y be any map. The mapping path space

Nf = X ×Y Map(I, Y )

consists of pairs (x, α) with f(x) = α(1). There is an evaluation map e0 : Nf →
Y , taking (x, α) to α(0).

Lemma 5.8.5. The map e0 : Nf → Y is a (Hurewicz) fibration.

[[Proof]]
Let ι : X → Nf be the embedding taking x ∈ X to the pair (x, α) ∈ Nf ,

where α is the constant path at f(x). It is a homotopy equivalence, with a
homotopy inverse given by the projection Nf → X taking (x, α) to x. [[The
composite X → Nf → X is the identity, while the composite Nf → X → Nf is
homotopic to the identity, via a homotopy deforming the path α to the constant
path at its endpoint.]]

Given a base point y ∈ Y , the homotopy fiber of f at y,

Fyf = X ×Y Map(I, Y ) ×Y {y} ,
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equals the fiber of e0 : Nf → Y at y. It consists of pairs (x, α), with x ∈ X and
α : I → Y such that α(0) = y and α(1) = f(x). Under the embedding ι, the
fiber f−1(y) is identified with a subspace of the homotopy fiber Fyf , and there
is a commutative diagram

f−1(y) //

ι

²²

X
f

//

ι ≃

²²

Y

=

²²
Fyf // Nf

e0 // Y .

Lemma 5.8.6. Let f : X → Y be any map, and choose base points y ∈ Y ,
x ∈ f−1(y) ⊆ X. Then there is a long exact sequence

· · · → πn(Fyf, ι(x)) → πn(X,x)
f∗
−→ πn(Y, y)

∂
−→ πn−1(Fyf, x) → . . .

· · · → π0(Fyf, ι(x)) → π0(X,x) → π0(Y, y) .

Proof. This is the long exact sequence associated to the (Hurewicz, hence Serre)
fibration Fyf → Nf → Y , with πn(X,x) replacing its isomorphic image under
ι∗, that is πn(Nf, ι(x)).

The following definition is due to Dold, see [12].

Definition 5.8.7 (Quasi-fibration). A map f : X → Y is a quasi-fibration if
for each point y ∈ Y the inclusion

ι : f−1(y)
≃
−→ Fyf

is a weak homotopy equivalence.

Lemma 5.8.8. Let f : X → Y be a quasi-fibration, and choose base points
y ∈ Y , x ∈ f−1(y) ⊆ X. Then there is a long exact sequence

· · · → πn(f−1(y), x) → πn(X,x)
f∗
−→ πn(Y, y)

∂
−→ πn−1(f

−1(y), x) → . . .

· · · → π0(f
−1(y), x) → π0(X,x) → π0(Y, y) .

Proof. This is the long exact sequence above, with πn(f−1(y), x) replacing its
isomorphic image πn(Fyf, ι(x)).

Lemma 5.8.9. Any Serre fibration f : X → Y is a quasi-fibration.

Proof. Let y ∈ Y . If f−1(y) is empty, then so is Fyf , by the homotopy lifting
property. Otherwise, for each choice of base point x ∈ f−1(y), the five-lemma
applied to the diagram

πn+1(X,x)
f∗ //

=

²²

πn+1(Y, y)
∂ //

=

²²

πn(f−1(y), x) //

²²

πn(X,x)
f∗ //

=

²²

πn(Y, y)

=

²²

πn+1(X,x)
f∗ // πn+1(Y, y)

∂ // πn(Fyf, ι(x)) // πn(X,x)
f∗ // πn(Y, y)

implies that the middle vertical map is an isomorphism. (Some special care is
needed for n = 0, see [12].)
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Proposition 5.8.10. Let f : X → Y be a map, let U, V ⊂ Y be open subsets
covering Y , and assume that all three of the restricted maps f−1(U) → U ,
f−1(V ) → V and f−1(U ∩ V ) → U ∩ V are quasi-fibrations.

f−1(U)

²²

f−1(U ∩ V )oo //

²²

f−1(V )

²²

U U ∩ Voo // V

Then f : X → Y is a quasi-fibration.

[[Cite [12], [26] for proof.]]
[[Dold–Lashof/Dold–Thom criteria for quasi-fibrations.]]
[[Homotopy cartesian squares.]]



Chapter 6

Simplicial methods

6.1 Combinatorial complexes

General references for combinatorial complexes are Eilenberg–Steenrod [17, Ch. 2]
and Fritsch–Piccinini [20, Ch. 3].

Definition 6.1.1. For each n ≥ 0, the standard n-simplex ∆n is the convex
span

∆n = {(t0, . . . , tn) ∈ Rn+1 |
n∑

i=0

ti = 1, ti ≥ 0}

of the (n + 1) points

e0 = (1, 0, . . . , 0)

e1 = (0, 1, . . . , 0)

...

en = (0, 0, . . . , 1)

in Rn+1. Note that

(t0, t1, . . . , tn) =

n∑

i=0

tiei .

A Euclidean n-simplex σ in RN is the convex span

σ = {
n∑

i=0

tivi | (t0, . . . , tn) ∈ ∆n}

of (n + 1) points v0, v1, . . . , vn ∈ RN in general position, meaning that the n
vectors

v1 − v0 , . . . , vn − v0

are linearly independent. The points v0, v1, . . . , vn are called the vertices of σ.
We say that an n-simplex σ has dimension n.

When the total ordering of the vertices is fixed, the presentation of each
point in σ as a sum

∑n
i=0 tivi is unique, and the numbers (t0, t1, . . . , tn) are

called the barycentric coordinates of the point. A Euclidean simplex τ is a face
of a Euclidean simplex σ if τ is the convex span of a non-empty subset of the
vertices of σ. It is a proper face if τ 6= σ.

130
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For simplicity, we only deal with finite complexes in the following. To handle
infinite complexes, some additional point-set topological care is required.

Definition 6.1.2. A Euclidean precomplex is a finite set K = {σ ∈ K} of
Euclidean simplices in some RN , with the property that the intersection σ ∩ τ
of any two simplices σ, τ in K is either empty or a face of both σ and τ . If
furthermore any face τ ⊂ σ of a simplex σ ∈ K is a simplex in K, then we
call K a Euclidean complex. Given a Euclidean precomplex K, let Ka = {τ |
τ is a face of a σ ∈ K} denote the associated Euclidean complex.

The subspace |K| =
⋃

σ∈K σ ⊆ RN is called a polyhedron. A triangulation
of a space X is a pair (K,h) where K is a Euclidean complex and h is a
homeomorphism h : |K| ∼= X. A subcomplex of a Euclidean complex K is a
subset L ⊆ K that is itself a Euclidean complex. The dimension of an Euclidean
complex is the maximal dimension of its simplices.

Example 6.1.3. For each n ≥ 0, let

σn = {(u1, u2, . . . , un) | 1 ≥ u1 ≥ u2 ≥ · · · ≥ un ≥ 0} .

This is the convex span in Rn of the vertices

f0 = (0, 0, . . . , 0) , f1 = (1, 0, . . . , 0) , . . . , fn = (1, 1, . . . , 1)

hence is a Euclidean n-simplex in Rn. The faces of σn can be described by
adding relations of the form 1 = u1, ui = ui+1 for 1 ≤ i < n or un = 0. We
abuse notation, and also write σn for the Euclidean complex {σn}a consisting
of σn and all of its faces, with underlying polyhedron σn homeomorphic to Dn.

f3

f2

f0

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

jjjjjjjjjj
f1

ÄÄÄÄÄÄÄ

¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶¶

The ui are related to the barycentric coordinates (t0, . . . , tn) by (u1, . . . , un) =∑n
i=0 tifi, so that

ui = ti + · · · + tn

for 1 ≤ i ≤ n.

Example 6.1.4. Let ∂σn ⊂ σn be the subcomplex consisting of all of the
proper faces of σn. Its underlying polyhedron |∂σn| is the topological boundary
of σn ⊆ Rn, homeomorphic to Sn−1.

Remark 6.1.5. One difficulty with the category of Euclidean complexes, as
well as the categories of (ordered) simplicial complexes to be discussed below,
is that colimits can be badly behaved or fail to exist. For example, the quotient
K/L of a Euclidean complex K by a subcomplex L is usually not defined as a
Euclidean complex. The reader might consider the case when K = σ2 and L is
either a 1-dimensional face of K or the whole boundary ∂σ2.
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Example 6.1.6. Let Σn act on Rn by permuting the coordinates, with π ∈ Σn

taking (u1, u2, . . . , un) to

π · (u1, u2, . . . , un) = (uπ−1(1), uπ−1(2), . . . , uπ−1(n)) .

The set
Cn = {π(σn) | π ∈ Σn}

a

is then a Euclidean complex in Rn. To prove that π1(σ
n) ∩ π2(σ

n) is a face of
both π1(σ

n) and π2(σ
n), for π1, π2 ∈ Σn, it suffices to check that σn∩π(σn) is the

face of σn where uπ(i) = uπ(j) for all i < j with π(i) > π(j), for any π ∈ Σn. To
see this, note that (u1, . . . , un) ∈ σn has the form π(v1, . . . , vn) ∈ π(σn) only if
(v1, . . . , vn) = π−1(u1, . . . , un) = (uπ(1), . . . , uπ(n)), so that uπ(1) ≥ · · · ≥ uπ(n).
The underlying polyhedron of Cn is the n-cube

|Cn| =
⋃

π∈Σn

π(σn) = In

since any point (w1, . . . , wn) in In has the form π · (u1, . . . , un) for some π ∈ Σn

and (u1, . . . , un) ∈ σn.

Definition 6.1.7. A permutation π ∈ Σm+n is called an (m,n)-shuffle if

π(1) < · · · < π(m) , π(m + 1) < · · · < π(m + n) .

An (m,n)-shuffle π is uniquely determined by the subset {π(1), . . . , π(m)} of
{1, . . . ,m+n}, so altogether there are precisely (m,n) = (m+n)!/m!n! different
(m,n)-shuffles. The inverse of an (m,n)-shuffle is not necessarily an (m,n)-
shuffle.

Lemma 6.1.8. The product σm × σn ⊆ Im × In = Im+n is triangulated by the
Euclidean complex

Pm,n = {π−1(σm+n) | π is an (m,n)-shuffle}a .

Hence
|Pm,n| =

⋃

(m, n)-shuffles π

π−1(σm+n) = σm × σn .

Proof. Pm,n is a subcomplex of Cm+n, hence is a Euclidean complex. The
polyhedron |Pm,n| consists of the points of the form

(w1, . . . , wm+n) = π−1 · (u1, . . . , um+n) = (uπ(1), . . . , uπ(m+n))

with π an (m,n)-shuffle and 1 ≥ u1 ≥ · · · ≥ um+n ≥ 0, which precisely means
that 1 ≥ w1 ≥ · · · ≥ wm ≥ 0 and 1 ≥ wm+1 ≥ · · · ≥ wm+n ≥ 0. These are
exactly the points in the product σm × σn.

Definition 6.1.9. Let K be a Euclidean complex. Let the n-skeleton

K(n) = {σ ∈ K | dim(σ) ≤ n}

be the subcomplex of simplices of dimension ≤ n. Let

K♯
n = {σ ∈ K | dim(σ) = n}

be the set of n-simplices in K.
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Lemma 6.1.10. The polyhedron |K| of a Euclidean complex is a finite CW
complex, with n-skeleton

|K|(n) = |K(n)| ⊂ |K|

and characteristic maps
Φσ : Dn ∼= σ → |K| .

for σ ∈ K♯
n.

[[Clear?]]

Definition 6.1.11. An affine linear map RN → RM is the composite of a linear
map and a translation. Let σ ⊂ RN , τ ⊂ RM be Euclidean simplices. A map
σ → τ that is the restriction of an affine linear map, and takes the vertices of σ
to the vertices of τ , is called a simplicial map.

Let K, L be Euclidean complexes. A simplicial map f : K → L is a map
f : |K| → |L| such that for each simplex σ ∈ K there is a simplex τ ∈ L such
that the restriction f |σ factors as the composite of a simplicial map σ → τ and
the inclusion τ ⊂ |L|.

RN

²²

σoooo

²²

// // |K|

f

²²

RM τoooo // // |L|

Euclidean complexes and simplicial maps form a category EuCx. A simplicial
isomorphism of Euclidean complexes is an invertible simplicial map.

Example 6.1.12. The effect of a simplicial map on barycentric coordinates
is as follows. Let f : σ → τ be a simplicial map, where σ is spanned by the
vertices v0, . . . , vm and τ is spanned by the vertices w0, . . . , wn. Then f takes
the point

∑m
i=0 uivi with barycentric coordinates (u0, . . . , um) ∈ ∆m to the

point
∑n

j=0 tjwj with barycentric coordinates (t0, . . . , tn) ∈ ∆n, where

tj =
∑

f(vi)=wj

ui .

It suffices to check this formula for each vertex vi of σ, with barycentric coordi-
nates ei, which maps to the vertex f(vi) = wj of τ , with barycentric coordinates
ej .

Since each Euclidean simplex is determined (as the convex span) of its ver-
tices, and each simplicial map is determined (as an affine linear map on each
simplex) by its effect on the vertex sets, we can encode the key data in a Eu-
clidean complex in terms of the set of vertices and the subsets that span sim-
plices. This leads to the following abstract version of a Euclidean complex,
made independent of the specific embedding in some RN .

Definition 6.1.13. A simplicial precomplex is a set K = {σ ∈ K} of finite
non-empty sets σ, called the simplices of K. It is called a simplicial complex if
each non-empty subset τ ⊂ σ of a simplex in K is again a simplex in K. Given a
simplicial precomplex K, let Ka = {τ | ∅ 6= τ ⊆ σ} be the associated simplicial
complex.
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For a simplicial complex K, let K0 =
⋃

σ∈K σ, so that each simplex is a
subset of K0. The elements of K0 are called the vertices of K. A simplex with
(n + 1) elements is called an n-simplex. The 0-simplices of K are precisely the
singleton sets {v} for all vertices v.

A simplicial complex K is finite if the set of simplices K is finite, or equiv-
alently, if the set of vertices K0 is finite.

Example 6.1.14. To a Euclidean complex K in RN we can associate a finite
simplicial complex sK, with simplices sσ equal to the sets of vertices {v0, . . . , vn}
of the Euclidean simplices σ in K. The set sK0 ⊂ RN is then the set of
all vertices in all of the Euclidean simplices of K. A non-empty subset sσ =
{v0, . . . , vn} ⊆ sK0 is a simplex in sK if and only if the points v0, . . . , vn are
the vertices of a Euclidean simplex σ in K.

Example 6.1.15. To a finite simplicial complex K we can associate a Euclidean
complex eK. First, enumerate the elements of K0 as (v0, . . . , vN ). Then, to each
simplex σ ∈ K, viewed as a subset σ ⊆ K0, associate the Euclidean simplex
eσ in RN with vertices the fj ∈ RN such that vj ∈ σ. The Euclidean complex
eK = {eσ | σ ∈ K} is the set of all these Euclidean simplices eσ. Note that
all of the vertices f0, . . . , fN are in general position within RN , and that two
Euclidean simplices eσ and eτ in eK, corresponding to simplices σ, τ ∈ K, meet
at the Euclidean simplex eσ ∩ eτ = e(σ ∩ τ) corresponding to the intersection
σ ∩ τ ∈ K0, unless that intersection is empty. The resulting Euclidean complex
eK is a subcomplex of the Euclidean complex σN , so |eK| ⊆ σN .

[[Define a simplicial map of simplicial complexes, and the associated category
SCx.]]

Remark 6.1.16. Starting with a Euclidean complex K, forming a finite sim-
plicial complex sK as above, and then forming a Euclidean complex e(sK),
there is a simplicial isomorphism e(sK) ∼= K. Conversely, given a finite simpli-
cial complex K, forming the Euclidean complex eK and the simplicial complex
s(eK), there is a simplicial isomorphism K ∼= s(eK). These two notions of
combinatorial complexes are therefore effectively equivalent.

To have well-defined barycentric coordinates in a Euclidean simplex, we
needed to fix a total ordering of its vertices. When considering products K ×L
of simplicial complexes, it is likewise essential to work with ordered simplices.
We follow Eilenberg–Steenrod [17, II.8.7].

Definition 6.1.17. An ordered simplicial complex (K,≤) is a simplicial com-
plex K = {σ ∈ K} together with a partial ordering (K0,≤) on its set of vertices,
such that

(a) the partial ordering ≤ restricts to a total ordering on each simplex σ ⊆ K0,
and

(b) two vertices v0, v1 ∈ K0 are unrelated if {v0, v1} is not a simplex in K.

A simplicial map f : (K,≤) → (L,≤) of ordered simplicial complexes is an
order-preserving function f : (K0,≤) → (L0,≤) between the vertex sets, such
that for each simplex σ ⊆ K0 in K the image f(σ) ⊆ L0 is a simplex in L.
[[The rule σ 7→ f(σ) then defines a function f : K → L.]] We write OSCx for
the category of ordered simplicial complexes and simplicial maps.



CHAPTER 6. SIMPLICIAL METHODS 135

Example 6.1.18. Each simplicial complex K can be ordered, by first choosing
a total ordering on its vertex set K0, and then defining the partial ordering ≤
to agree with the total ordering for pairs v0, v1 with {v0, v1} a simplex in K,
and otherwise making v0, v1 unrelated.

Example 6.1.19. For each n ≥ 0, let (∆[n],≤) be the ordered simplicial com-
plex with vertices ∆[n]0 = [n] = {0 < 1 < · · · < n}, given the usual total
ordering, and with simplices all non-empty subsets ∅ 6= σ ⊆ [n]. The corre-
sponding Euclidean complex is e∆[n] = σn.

Example 6.1.20. For each n ≥ 0, let (∂∆[n],≤) ⊂ (∆[n],≤) be the ordered
simplicial subcomplex with simplices all proper, non-empty subsets ∅ 6= σ ⊂ [n].
The corresponding Euclidean complex is e∂∆[n] = ∂σn.

Definition 6.1.21. Let (K,≤) and (L,≤) be ordered simplicial complexes. The
product (K × L,≤) has vertex set

(K × L)0 = K0 × L0

with the product partial ordering, so that (v0, w0) ≤ (v1, w1) if and only if v0 ≤
v1 in (K0,≤) and w0 ≤ w1 in (L0,≤). A finite, nonempty subset σ ⊆ K0 × L0

is a simplex in K × L if and only if

(a) the restriction of ≤ to σ is a total ordering,

(b) the projection prK(σ) ⊆ K0 is a simplex in K, and

(c) the projection prL(σ) ⊆ L0 is a simplex in L.

Lemma 6.1.22. The product (K×L,≤), with the two projection maps prK : (K×
L,≤) → (K,≤) and prL : (K × L,≤) → (L,≤), is the categorical product of
(K,≤) and (L,≤) in OSCx.

Proof. Given any ordered simplicial complex (M,≤) and simplicial maps f : M →
K and g : M → L, the function (f, g) : M0 → K0 × L0 defines the unique sim-
plicial map h : M → K × L with prK(h) = f , prK(h) = g. [[Say more?]]

Example 6.1.23. The product (∆[m]×∆[n],≤) is the ordered simplicial com-
plex with vertex set

(∆[m] × ∆[n])0 = [m] × [n]

given the product partial ordering, so that (i, j) ≤ (i′, j′) if and only if i ≤ i′

and j ≤ j′.

(0, 1) // (1, 1) // (2, 1)

(0, 0) //

OO

(1, 0) //

OO

(2, 0)

OO

The simplices of ∆[m]×∆[n] are the finite, nonempty subsets of [m]× [n] that
are totally ordered in the inherited ordering. In other words, the p-simplices are
the linear chains

(i0, j0) < (i1, j1) < · · · < (ip, jp)

in [m]× [n]. Note that the projection of such a p-simplex to ∆[m] is the simplex
{i0, i1, . . . , ip}, and its projection to ∆[n] is the simplex {j0, j1, . . . , jp}. Even if
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there is no repetition in the linear chain in [m] × [n], there may be repetitions
in the sequences i0 ≤ i1 ≤ · · · ≤ ip and j0 ≤ j1 ≤ · · · ≤ jp, so the projected
simplices in ∆[m] and ∆[n] may well be of lower dimension than p.

f1 • //

''NNNNNNNNNNNNNN •

•

77pppppppppppppp

f0

OO

•

OO

>>~~~~~~~~~~~~~~~~~

''NNNNNNNNNNNNNN //_____________
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•

OO

•

OO
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77pppppppppppppp

f0
//

&&MMMMMMMMMMMMM f2

f1

88qqqqqqqqqqqqq

The following is a special case of [17, Lem. I.8.9].

Proposition 6.1.24. There is an isomorphism of simplicial complexes

sPm,n ∼= ∆[m] × ∆[n] .

(The ordering on ∆[m] × ∆[n] thus determines an ordering on sPm,n, making
this an isomorphism in OSCx.) The simplicial maps ∆[m]×∆[n] → ∆[m] and
∆[m] × ∆[n] → ∆[n] induce a homeomorphism

|e(∆[m] × ∆[n])| ∼= |e(∆[m])| × |e(∆[n])| .

Proof. There is a bijective correspondence between (m,n)-shuffles π and linear
chains

(0, 0) = (i0, j0) < · · · < (is, js) < · · · < (im+n, jm+n) = (m,n)

of length (m + n) in [m] × [n]. It takes a shuffle π to the chain with

is = #({1, . . . , s} ∩ {π(1), . . . , π(m)})

js = #({1, . . . , s} ∩ {π(m + 1), . . . , π(m + n)})

for 0 ≤ s ≤ m + n. Conversely, it takes such a linear chain to the (m,n)-shuffle
π with

π(i) = min{s | is ≥ i}

for 1 ≤ i ≤ m, and
π(m + j) = min{s | js ≥ j}
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for 1 ≤ j ≤ n. Going up the linear chain, (is, js) = (is−1 + 1, js−1) precisely if
s ∈ {π(1), . . . , π(m)}, and (is, js) = (is−1, js−1 + 1) otherwise.

The isomorphism of simplicial complexes takes (the (m + n)-simplex corre-
sponding to) the Euclidean (m+n)-simplex π−1(σm+n) ∈ Pm,n to the (m+n)-
simplex

(i0, j0) < · · · < (is, js) < · · · < (im+n, jm+n) (6.1)

in ∆[m]×∆[n], where π and the (is, js) correspond as above. For example, the
Euclidean (m + n)-simplex σm+n corresponds to the chain

(0, 0) < (1, 0) < · · · < (m, 0) < (m, 1) < · · · < (m,n) .

A check of definitions shows that two Euclidean (m + n)-simplices π−1
1 (σm+n)

and π−1
2 (σm+n) intersect in the face corresponding to intersection of the two

corresponding chains, as required for a simplicial isomorphism. [[Elaborate?]]
The projection map ∆[m] × ∆[n] → ∆[m] takes the (m + n)-simplex (6.1)

to the m-simplex 0 < 1 < · · · < m, mapping the elements (is, js) with π(i) ≤
s < π(i + 1) to i. (The elements with 0 ≤ s < π(1) map to 0, and the elements
with π(m) ≤ s ≤ m+n map to m.) At the level of polyhedra, it takes the point
with barycentric coordinates (t0, t1, . . . , tm+n) in the (m + n)-simplex (6.1) to
the point with barycentric coordinates

(t0 + · · · + tπ(1)−1, tπ(1) + · · · + tπ(2)−1, . . . , tπ(m) + · · · + tm+n)

in the m-simplex 0 < 1 < · · · < m. See Example 6.1.12. The resulting map

σm × σn = |Pm,n| ∼= |e(∆[m] × ∆[n])| → |e(∆[m])| = σm

takes a point (w1, . . . , wm+n) = π−1(u1, . . . , um+n) = (uπ(1), . . . , uπ(m+n)) in
π−1(σm+n) ⊂ |Pm,n|, which has barycentric coordinates

(1 − u1, u1 − u2, . . . , um+n) ,

to the point with barycentric coordinates

(1 − uπ(1), uπ(1) − uπ(2), . . . , uπ(m))

in σm, i.e., the point

(uπ(1), . . . , uπ(m)) = (w1, . . . , wm) .

This proves that the composite map σm × σn → σm equals the projection on
the first coordinate, and similarly for the map to σn. Hence the natural map

|e(∆[m] × ∆[n])| → |e(∆[m])| × |e(∆[n])|

is a homeomorphism.

[[It may be simpler to discuss the combinatorics of this isomorphism for
m = 1, then use induction to get an isomorphism with ∆[1]m × ∆[n], and then
use that ∆[m] is a retract of ∆[1]m to get the general case.]]
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Example 6.1.25. The product σ2 ×σ2 is a union of six 4-simplices π−1(σ4) ⊂
I4, corresponding to the six (2, 2)-shuffles taking (1, 2, 3, 4) to (1, 2, 3, 4), (1, 3, 2, 4),
(1, 3, 4, 2), (3, 1, 2, 4), (3, 1, 4, 2) or (3, 4, 1, 2). These correspond to the six max-
imal paths from (0, 0) to (2, 2) in [2] × [2]:

(0, 2) // (1, 2) // (2, 2)

(0, 1) //

OO

(1, 1) //

OO

(2, 1)

OO

(0, 0) //

OO

(1, 0) //

OO

(2, 0)

OO

The 4-simplices meet along 3-simplices according to the edges of following graph:

(1, 2, 3, 4)

MMMMMMMMMM
(1, 3, 4, 2)

MMMMMMMMMM

(1, 3, 2, 4)

qqqqqqqqqq

MMMMMMMMMM
(3, 1, 4, 2)

MMMMMMMMMM

(3, 1, 2, 4)

qqqqqqqqqq
(3, 4, 1, 2)

The central four 4-simplices all meet along the 2-simplex (0, 0) < (1, 1) < (2, 2).
All 4-simplices meet along the 1-simplex (0, 0) < (2, 2).

6.2 Simplicial sets

Simplicial sets are models for topological spaces, assembled from sets of simplices
of varying dimensions. The vertices of each simplex are totally ordered, and the
possible identifications between different simplices are given by order-preserving
functions among the vertex sets, extended (affine) linearly over the simplices.
The sets of simplices are assumed to be complete, in the sense that each order-
preserving function to the vertex set of a simplex is assumed to be realized by a
map of simplices. This leads to a well-behaved category of models for topological
spaces, with all colimits and limits.

General references for simplicial sets are May [42], Fritsch–Piccinini [20,
Ch. 4] and Goerss–Jardine [22].

Definition 6.2.1. Let ∆ be the skeleton category of finite, nonempty ordinals,
with objects

[n] = {0 < 1 < 2 < · · · < n}

for each non-negative integer n ≥ 0, and morphisms ∆([m], [n]) for m,n ≥ 0
the set of order-preserving functions

α : [m] → [n] ,

i.e., functions α such that i ≤ j implies α(i) ≤ α(j), for i, j ∈ [m].
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The following indecomposable morphisms δi and σj play a special role in ∆,
since they generate all morphisms in ∆ under composition.

Definition 6.2.2. For n ≥ 1 and 0 ≤ i ≤ n, the i-th coface morphism

δi = δn
i : [n − 1] → [n]

is given by

δi(j) =

{
j for j < i,

j + 1 for j ≥ i.

It is the unique injective, order-preserving function [n − 1] → [n] such that i is
not in its image, or equivalently, such that the preimage of i is empty.

For n ≥ 0 and 0 ≤ j ≤ n, the j-th codegeneracy morphism

σj = σn
j : [n + 1] → [n]

is given by

σj(i) =

{
i for i ≤ j,

i − 1 for i > j.

It is the unique surjective, order-preserving function [n+1] → [n] such that the
preimage of j contains two elements (namely j and j + 1).

Lemma 6.2.3 (Cosimplicial identities). The coface and codegeneracy mor-
phisms satisfy the following commutation rules:





δjδi = δiδj−1 for i < j,

σjδi = δiσj−1 for i < j,

σjδi = id for j ≤ i ≤ j + 1,

σjδi = δi−1σj for j + 1 < i,

σjσi = σiσj+1 for i ≤ j.

Proof. Let 0 ≤ i < j ≤ n. Then both δjδi and δiδj−1 map k ∈ [n − 2] to k for
0 ≤ k ≤ i − 1, to k + 1 for i ≤ k ≤ j − 2, and to k + 2 for j − 1 ≤ k ≤ n − 2.
Hence the two functions are equal. The proofs in the other cases are similar,
and are left as an exercise.

Lemma 6.2.4. A general morphism α : [m] → [n] in ∆ factors uniquely as
the composite of a surjective, order-preserving function ρ : [m] → [p] and an
injective, order-preserving function µ : [p] → [n].

[m]
α //

ρ
ÃÃ

AA
AA

AA
AA

[n]

[p]

µ

??~~~~~~~

Furthermore, µ factors uniquely as the composite of r = n−p coface morphisms

µ = δir
. . . δi1
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subject to the conditions 0 ≤ i1 < · · · < ir ≤ n, and ρ factors uniquely as the
composite of s = m − p codegeneracy morphisms

ρ = σj1 . . . σjs

subject to the conditions 0 ≤ j1 < · · · < js < m. Hence

α = µρ = δir
. . . δi1σj1 . . . σjs

.

Proof. We list the elements in [n] that are in the image of α in increasing order,
as

µ(0) < · · · < µ(p)

and this defines the injective morphism µ, with the same image as α. The
surjective morphism ρ is uniquely determined by the condition α = µρ.

We list the elements in [n] that are not in the image of µ in increasing order,
as

i1 < · · · < ir .

Then the composite injective morphism δir
. . . δi1 : [p] → [n] has the same image

as µ, hence is equal to µ.
We list the elements j in {0, 1, . . . ,m − 1} that have the same image under

ρ as their successor j + 1, in increasing order as

j1 < · · · < js .

Then the composite surjective morphism σj1 . . . σjs
: [m] → [p] identifies j and

j + 1 for the same 0 ≤ j < m as ρ, hence is equal to ρ.

Remark 6.2.5. Any finite composable chain of coface and codegeneracy mor-
phisms can be brought to the standard form of Lemma 6.2.4, using only the
cosimplicial identities. First all codegeneracies can be brought to the right of
all cofaces, using the three expressions for σjδi. Next all cofaces can be brought
in order of descending indices, by replacing δiδj−1 by δjδi whenever j − 1 ≥ i.
Finally all codegeneracies can be brought in order of increasing indices, by re-
placing σjσi by σiσj+1 whenever j ≥ i.

Definition 6.2.6. A simplicial set X• is a contravariant functor X : ∆op → Set
from ∆ to sets. For each object [n] in ∆ we write

Xn = X([n])

for the set of n-simplices in X•. For each morphism α : [m] → [n] in ∆ we write

α∗ = X(α) : Xn → Xm

for the associated simplicial operator. In particular, for n ≥ 1 and 0 ≤ i ≤ n,
the i-th face operator in X• is the function

di = δ∗i : Xn → Xn−1 ,

and for n ≥ 0 and 0 ≤ j ≤ n, the j-th degeneracy operator in X• is the function

sj = σ∗
j : Xn → Xn+1 .
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Lemma 6.2.7 (Simplicial identities). The face and degeneracy operators in
a simplicial set X• satisfy the following commutation rules:





didj = dj−1di for i < j,

disj = sj−1di for i < j,

disj = id for j ≤ i ≤ j + 1,

disj = sjdi−1 for j + 1 < i,

sisj = sj+1si for i ≤ j.

Proof. This is clear from Lemma 6.2.3 and the contravariance of X.

The following converse holds.

Lemma 6.2.8. To specify a simplicial set X• it is necessary and sufficient to
specify

(a) a sequence of sets Xn for n ≥ 0,

(b) functions di : Xn → Xn−1 for all 0 ≤ i ≤ n ≥ 1, and

(c) functions sj : Xn → Xn+1 for all 0 ≤ j ≤ n, such that

(d) the di and sj satisfy the simplicial identities.

Proof. For each morphism α : [m] → [n], the simplicial operator α∗ : Xn → Xm

can only be defined as the composite

α∗ = sjs
. . . sj1di1 . . . dir

where α = δir
. . . δi1σi1 . . . σis

. The main thing to verify is that this specifies a
well-defined functor, so that (αβ)∗ = β∗α∗. Since the composite of the standard
forms for β and α can be brought to the standard form for αβ using only the
cosimplicial identities, and the di and si are assumed to satisfy the simplicial
identities, the two functions (αβ)∗ and β∗α∗ will, indeed, be equal.

Definition 6.2.9. A map of simplicial sets f• : X• → Y• is a natural trans-
formation f : X ⇒ Y of functors ∆op → Set. Let sSet be the category of
simplicial sets and maps, with the obvious notions of identity and composition.

Equivalently, a simplicial map f• amounts to a function

fn : Xn → Yn

for each object [n] in ∆, such that for each morphism α : [m] → [n] in ∆ the
square

Xn
fn //

α∗

²²

Yn

α∗

²²

Xm
fm // Ym

commutes. It suffices to verify this condition for the face and degeneracy oper-
ators, meaning that difn = fn−1di for 0 ≤ i ≤ n ≥ 1, and sjfn = fn+1sj for
0 ≤ j ≤ n, since these operators generate all morphisms in ∆.

We say that X• is a simplicial subset of Y• if each Xn is a subset of Yn, and
the inclusion X• ⊆ Y• is a simplicial map.
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[[This terminology is imprecise, since we are not talking about a simplicial
object in a category of subsets. Saying a “sub simplicial set” might be better,
but how to hyphenate this?]]

Lemma 6.2.10. A map f• : X• → Y• of simplicial sets is an isomorphism in
sSet if and only if each function fn : Xn → Yn is bijective.

A degreewise injective map f• : X• → Y• of simplicial sets induces an iso-
morphism of X• with its image f•(X•), as a simplicial subset of Y•.

Proof. The inverse functions gn = f−1
n : Yn → Xn define a simplicial map

g• : Y• → X•. If f• is simplicial, then the subsets fn(Xn) ⊆ Yn are closed
under the simplicial operators. Hence the simplicial structure on Y• restricts to
a simplicial structure on f•(X•).

Definition 6.2.11. Recall that for each n ≥ 0, the standard n-simplex is the
convex subspace

∆n = {(t0, . . . , tn) |
n∑

i=0

ti = 1, ti ≥ 0}

of Rn+1 spanned by the (n + 1) vertices e0, e1, . . . , en.
For each order-preserving function α : [m] → [n], let α∗ : ∆m → ∆n be the

linear map given by α∗(ej) = eα(j) for all 0 ≤ j ≤ m. In formulas,

α∗(

m∑

j=0

ujej) =

m∑

j=0

ujeα(j)

for (u0, u1, . . . , um) ∈ ∆m, or equivalently,

α∗(u0, u1, . . . , um) = (t0, t1, . . . , tn)

where
ti =

∑

α(j)=i

uj =
∑

j∈α−1(i)

uj .

Example 6.2.12. For each 0 ≤ i ≤ n ≥ 1, δi∗ : ∆n−1 → ∆n is the embedding

δi∗(u0, u1, . . . , un−1) = (u0, . . . , ui−1, 0, ui, . . . , un−1)

onto the face of ∆n where ti = 0, known as the i-th face. It is opposite to the
i-th vertex ei, where ti = 1.

We write

∂∆n =
n⋃

i=0

δi∗(∆
n−1)

for the boundary of ∆n.
For each 0 ≤ j ≤ n, σj∗ : ∆n+1 → ∆n is the identification map

σj∗(u0, u1, . . . , un+1) = (u0, . . . , uj−1, uj + uj+1, uj+1, . . . , un+1)

that collapses the edge between ej and ej+1 to one point.
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Lemma 6.2.13. The rules [n] 7→ ∆n, α 7→ α∗ define a (covariant) functor

∆(−) : ∆ −→ Top .

Proof. For α : [m] → [n], β : [n] → [p] the composite β∗α∗ : ∆m → ∆p is given on
vertices by β∗α∗(ej) = β∗eα(j) = eβα(j), hence agrees with (βα)∗. The relation
(id[n])∗ = id∆n is also clear.

We view simplicial sets as models for topological spaces by way of the fol-
lowing construction, which is also known as “geometric realization”.

Definition 6.2.14. Let X• be a simplicial set. The topological realization |X•|
is the identification space

|X•| =
∐

n≥0

Xn × ∆n/ ∼

where ∼ is the equivalence relation generated by the identifications

(x, α∗(ξ)) ∼ (α∗(x), ξ)

for all α : [m] → [n] in ∆, x ∈ Xn and ξ ∈ ∆m. Here we view (x, α∗(ξ)) ∈ Xn ×
∆n as lying in the n-th summand of the coproduct, while (α∗(x), ξ) ∈ Xm×∆m

lies in the m-th summand. The same equivalence relation is generated by the
identifications

(x, δi∗(ξ)) ∼ (di(x), ξ)

for all 0 ≤ i ≤ n ≥ 1, x ∈ Xn and ξ ∈ ∆n−1, and the identifications

(x, σj∗(ξ)) ∼ (sj(x), ξ)

for all 0 ≤ j ≤ n, x ∈ Xn and ξ ∈ ∆n+1.

Remark 6.2.15. Note how each element x ∈ Xn, an “abstract” n-simplex,
gives rise to a Euclidean n-simplex {x} × ∆n in

∐
n≥0 Xn × ∆n, that maps to

|X•|.
Each point in the boundary ∂∆n ⊂ ∆n of the Euclidean n-simplex lies in

some face, say the i-th, and can then be written as δi∗(ξ) for some ξ ∈ ∆n−1.
The relation (x, δi∗(ξ)) ∼ (di(x), ξ) tells us that that boundary point of the
x’th Euclidean n-simplex is identified with a point in the Euclidean (n − 1)-
simplex {di(x)} × ∆n−1 associated to the abstract (n − 1)-simplex di(x). The
face operators di : Xn → Xn−1 therefore specify how the boundary faces of each
n-simplex are to be identified as (n − 1)-simplices.

Some abstract n-simplices are of the form sj(x), for 0 ≤ j ≤ n. Here
x ∈ Xn−1, and n ≥ 1. The corresponding Euclidean n-simplex {sj(x)} × ∆n

is then identified with the Euclidean (n − 1)-simplex {x} × ∆n−1 associated to
x, via the map σj∗ : ∆n → ∆n−1 that collapses the edge from ej to ej+1 to a
point. These Euclidean n-simplices {sj(x)} × ∆n do therefore not contribute
any new points to |X•|.

Lemma 6.2.16. Let f• : X• → Y• be any map of simplicial sets. The maps

∐

n≥0

fn × id :
∐

n≥0

Xn × ∆n −→
∐

n≥0

Yn × ∆n
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descend to a unique map
|f•| : |X•| −→ |Y•| .

The rules X• 7→ |X•|, f• 7→ |f•| define the topological realization functor

| − | : sSet −→ Top .

Proof. For each identification (x, α∗(ξ)) ∼ (α∗(x), ξ) made in |X•|, we have the
identification

(fn(x), α∗(ξ)) ∼ (α∗(fn(x)), ξ) = (fm(α∗(x)), ξ)

between the image points, made in |Y•|, so |f•| is well-defined. Given a second
map g• : Y• → Z• of simplicial sets, the maps |g•f•| and |g•||f•| are both induced
by ∐

n≥0

gnfn × id = (
∐

n≥0

gn × id) ◦ (
∐

n≥0

fn × id) ,

hence are equal.

Remark 6.2.17. We shall later show that |X•| is a CW complex and that
|f•| is a cellular map. We may then think of | − | as a functor to CW. This
affects our interpretation of the topology of products like |X•| × |Y•|, since in
CW we use the weak (compactly generated) topology on this product, rather
than the cartesian product topology. [[If we replace Top by U , this makes no
difference.]]

Definition 6.2.18. Let Y be any topological space. The singular simplicial set
sing(Y )• is the simplicial set with n-simplices

sing(Y )n = Top(∆n, Y )

the set of maps σ : ∆n → Y , and with simplicial operators

α∗ = Top(α∗, Y ) : sing(Y )n → sing(Y )m

for all α : [m] → [n] in ∆, taking a singular n-simplex σ : ∆n → Y to the
composite α∗(σ) = σ ◦ α∗ : ∆m → Y .

For example, di(σ) = σ ◦ δi∗ is the restriction of σ to the i-th face of
∆n, composed with the identification of that face with ∆n−1. It is clear that
sing(Y ) : ∆op → Set is a (contravariant) functor, since (βα)∗(σ) = σβα =
α∗β∗(σ) for all composable α, β and σ.

Lemma 6.2.19. Let f : X → Y be any map of topological spaces. The functions
fn : sing(X)n → sing(Y )n, that take σ : ∆n → X to fn(σ) = fσ : ∆n → Y ,
define a simplicial map

f• : sing(X)• −→ sing(Y )• .

The rules X 7→ sing(X)•, f 7→ f∗ define a functor

sing : Top −→ sSet .
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Proof. To define a simplicial map, the functions fn for n ≥ 0 must satisfy
α∗fn = fmα∗ for all α : [m] → [n], but for each σ : ∆n → X we have α∗(fn(σ)) =
fσα∗ = fm(α∗(σ)), so this is clear.

∆m
α∗ // ∆n σ // X

f
// Y

Given a second map g : Y → Z, it is clear that (gf)• = g•f•, since (gf)n(σ) =
gfσ = gn(fn(σ)) for all n ≥ 0 and σ : ∆n → X. Also (idX)• = idsing(X)• is
clear.

These two constructions are adjoint.

Proposition 6.2.20. There is natural bijection

Top(|X•|, Y ) ∼= sSet(X•, sing(Y )•) ,

making topological realization left adjoint to the singular simplicial set functor.

sSet
|−|

//
Top

sing(−)•

oo

Proof. Each map f : |X•| → Y corresponds to maps fn : Xn × ∆n → Y for
all n ≥ 0, compatible for all morphisms α in ∆, which in turn correspond to
functions gn : Xn → Top(∆n, Y ) = sing(Y )n for all n ≥ 0, satisfying similar
compatibilities. This is the same as a map g• : X• → sing(Y )• of simplicial
sets.

All small colimits and limits of simplicial sets exist, and are constructed
degreewise.

Lemma 6.2.21. Let X• : C → sSet be a C -shaped diagram of simplicial sets,
with C small. The colimit Y• = colimC X• exists, with n-simplices

Yn = colim
C

Xn .

Dually, the limit Z• = limC X• exists, with n-simplices

Zn = lim
C

Xn .

Proof. For each α : [m] → [n] in ∆, the functions

α∗
c : Xn(c) → Xm(c)

for objects c in C define a natural transformation α∗ : Xn ⇒ Xm of functors
C → Set, and induce a function of colimits

α∗ : Yn = colim
c∈C

Xn(c) −→ colim
c∈C

Xm(c) = Ym .

It is straightforward to check that this makes Y• a simplicial set, with the
universal property of the colimit.

The limit case is dual.
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Corollary 6.2.22. The topological realization functor | − | : sSet → Top com-
mutes with all small colimits:

colim
c∈C

|X•(c)| ∼= | colim
c∈C

X•(c)|

Proof. This is clear from Propositions 4.3.36 and 6.2.20.

Definition 6.2.23. A based simplicial set is a pair (X•, x0), where X• is a
simplicial set and x0 ∈ X0 is a chosen 0-simplex. For each n ≥ 0 the set of
n-simplices is then viewed as based at sn

0 (x0) ∈ Xn, where σn
0 : [n] → [0] is

the unique morphism and sn
0 = (σn

0 )∗. A based simplicial map f• : (X•, x0) →
(Y•, y0) is a simplicial map f• such that f0(x0) = y0. Note that fn(sn

0 (x0)) =
sn
0 (y0) for all n ≥ 0. These objects and morphisms define a category sSet∗.

The topological realization |X•| is based at the image of {x0} × ∆0, also
denoted x0. It defines a functor sSet∗ → Top∗. The smash product X• ∧ Y• is
given in simplicial degree n by

(X• ∧ Y•)n = Xn ∧ Yn

and there is a canonical simplicial isomorphism (X•×Y•)/(X•∨Y•) ∼= (X•∧Y•).

Definition 6.2.24. Let (−)op : ∆ → ∆ be the (covariant) functor reversing
the total ordering of the objects, taking [n] to [n], but taking α : [m] → [n] to
αop : [m] → [n] given by

αop(i) = n − α(m − i)

for i ∈ [m]. For example, δop
i = δn−i : [n−1] → [n] and σop

j = σop
n−j : [n+1] → [n].

The composite (−)op ◦ (−)op is the identity.
For a simplicial set X•, given by a functor X : ∆op → Set, let the opposite

simplicial set Xop
• be given by the composite functor

X ◦ ((−)op)op : ∆op −→ ∆op −→ X .

It takes [n] to Xop
n = Xn on objects, but takes α : [m] → [n] to (αop)∗ : Xn →

Xm on morphisms. Hence the i-th face operator dop
i : Xop

n → Xop
n−1 equals

dn−i : Xn → Xn−1, and the j-th degeneracy operator sop
j : Xop

n → Xop
n+1 equals

sn−j : Xn → Xn+1.

Lemma 6.2.25. There is a natural cellular homeomorphism

o : |Xop
• | ∼= |X•|

such that the composite o2 : |(Xop
• )op| ∼= |Xop

• | ∼= |X•| is the identity.

Proof. Let on : ∆n → ∆n be the homeomorphism reversing the order of the
barycentric coordinates, taking (t0, t1, . . . , tn) to (tn, . . . , t1, t0). It takes the
i-th vertex ei to the (n − i)-th vertex en−i. The maps

∐

n≥0

id × on :
∐

n≥0

Xop
n × ∆n −→

∐

n≥0

Xn × ∆n ,

taking (x, ξ) ∈ Xn × ∆n = Xop
n × ∆n to (x, on(ξ)) ∈ Xn × ∆, descend to a

unique map
o : |Xop

• | −→ |X•|

since αop
∗ ◦ om = on ◦ α∗ : ∆m → ∆n. [[Elaborate?]] Clearly o2 = id, so o is a

homeomorphism.
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6.3 The role of non-degenerate simplices

Example 6.3.1. Let (K,≤) be an ordered simplicial complex. There is an
associated simplicial set X•, with n-simplices the linear chains

x = (v0 ≤ v1 ≤ · · · ≤ vn)

in the partially ordered vertex set (K0,≤), such that {v0, v1, . . . , vn} is a simplex
in K, necessarily of dimension less than or equal to n. In particular, X0 = K0.
For each morphism α : [m] → [n], the function α∗ : Xn → Xm maps an n-simplex
x as above to the m-simplex

α∗(x) = (vα(0) ≤ vα(1) ≤ · · · ≤ vα(m)) .

For example, when α = δi : [n − 1] → [n], the face operator di : Xn → Xn−1

omits the i-th vertex vi in the linear chain defining x ∈ Xn.

di(x) = (v0 ≤ · · · ≤ vi−1 ≤ vi+1 ≤ · · · ≤ vn)

When α = σj : [n + 1] → [n] the degeneracy operator sj : Xn → Xn+1 repeats
the j-th vertex vj in the linear chain.

sj(x) = (v0 ≤ · · · ≤ vj−1 ≤ vj = vj ≤ vj+1 ≤ · · · ≤ vn)

Let (K,≤), (L,≤) be ordered simplicial complexes with associated simplicial
sets X• and Y•, and let f : (K,≤) → (L,≤) be a simplicial map of ordered sim-
plicial complexes, given by the order-preserving function f : (K0,≤) → (L0,≤).
There is an associated map of simplicial sets f• : X• → Y•, with components
fn : Xn → Yn taking an n-simplex x as above to the n-simplex

fn(x) = (f(v0) ≤ f(v1) ≤ · · · ≤ f(vn)) .

We therefore have a functor

OSCx −→ sSet .

[[Explain why |X•| is homeomorphic to the underlying polyhedron |eK| of
an associated Euclidean complex?]]

Remark 6.3.2. An n-simplex σ ⊆ K0 in an ordered simplicial set is determined
by its (n + 1) vertices, since σ = {v ∈ σ}. A simplex x ∈ Xn of a simplicial set
also has vertices, namely the elements vi = ǫ∗i (x) ∈ X0 for 0 ≤ i ≤ n, where
ǫi : [0] → [n] is given by ǫi(0) = i. However, these (n + 1) elements do not need
to be distinct. Furthermore, the n-simplex X is not necessarily determined by
its vertices (v0, . . . , vn). We can identify OSCx with the full subcategory of
sSet generated by the simplicial sets X such that each simplex x is uniquely
determined by its set of vertices {ǫ∗i (x)}i. [[Elaborate?]] [[If each non-degenerate
n-simplex has (n + 1) distinct vertices, we say that X is non-singular.]]

Definition 6.3.3. For each n ≥ 0, let the simplicial n-simplex ∆n
• be the

contravariant functor ∆(−, [n]) = Y[n] : ∆op → Set represented by the object
[n] in ∆. It has p-simplices

∆n
p = ∆([p], [n]) = {all order-preserving functions ζ : [p] → [n]}



CHAPTER 6. SIMPLICIAL METHODS 148

and simplicial structure maps

β∗ : ∆n
p → ∆n

q

taking ζ : [p] → [n] to β∗(ζ) = ζ ◦ β : [q] → [n], for each morphism β : [q] → [p]
in ∆.

For each morphism α : [m] → [n] in ∆, there is a map of simplicial sets

α• : ∆m
• −→ ∆n

• ,

which on p-simplices is given by the function

∆([p], α) : ∆([p], [m]) −→ ∆([p], [n])

taking ζ : [p] → [m] to α ◦ ζ : [p] → [n].

Lemma 6.3.4. For each n ≥ 0 there is a natural bijective correspondence

sSet(∆n
• ,X•)

∼=
−→ Xn

taking a simplicial map f : ∆n
• → X• to the n-simplex fn(id[n]) ∈ Xn. Here

id[n] ∈ ∆n
n. The inverse takes an n-simplex x ∈ Xn to the characteristic map

x• : ∆n
• → X• ,

given in simplicial degree p by xp(ζ) = ζ∗(x) for ζ : [p] → [n] in ∆n
p .

Proof. It is clear that x• is simplicial, and that the two constructions are mu-
tually inverse.

[[Could have discussed Yoneda embedding Y : C → Fun(C op,Set) earlier,
specializing to ∆ → sSet in this case.]]

Remark 6.3.5. This notation is consistent with the notation α• : ∆m
• → ∆n

•

for the simplicial map induced by a morphism α : [m] → [n] in ∆, when viewed
as a simplex α ∈ ∆n

m.

Lemma 6.3.6. The simplicial set associated to the ordered simplicial complex
(∆[n],≤) is (isomorphic to) the simplicial n-simplex ∆n

• .

Proof. Recall from Example 6.1.19 that the vertex set of ∆[n] is the totally
ordered set ([n],≤), so the p-simplices of the associated simplicial set are the
linear chains

(z0 ≤ z1 ≤ · · · ≤ zp)

in [n], which we can identify with the order-preserving functions ζ : [p] → [n],
with values ζ(i) = zi. By definition, α∗ takes the linear chain to

(ζα(0) ≤ ζα(1) ≤ · · · ≤ ζα(q)) ,

which is identified with the composite function ζ ◦ α = α∗(ζ). Hence the two
simplicial sets are isomorphic.

Lemma 6.3.7. The rules [n] 7→ ∆n
• , α 7→ α• define a (covariant) functor

∆
(−)
• : ∆ −→ sSet .
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Proof. It is clear that (βα)• = β•α•.

Lemma 6.3.8. There is a natural homeomorphism |∆
(−)
• | ∼= ∆(−) of functors

∆ → Top. In other words, there is a homeomorphism

|∆n
• |

∼= ∆n

for each n ≥ 0, such that |α•| : |∆
m
• | → |∆n

• | corresponds to α∗ : ∆m → ∆n, for
all α : [m] → [n] in ∆.

Proof. The map ∐

p≥0

∆n
p × ∆p −→ ∆n

taking (ζ, ξ) ∈ ∆n
p ×∆p to ζ∗(ξ) ∈ ∆n sends both (α∗(ζ), ξ) and (ζ, α∗(ξ)) to the

same point, hence induces a map |∆n
• | −→ ∆n. An inverse map takes ξ ∈ ∆n

to the image of (id[n], ξ) ∈ ∆n
n × ∆n. One composite takes ξ to id[n]∗(ξ) = ξ.

The other composite takes the equivalence class of (ζ, ξ) in |∆n
• | to the class of

(id[n], ζ∗(ξ)), but these are the same, since ζ∗(id[n]) = ζ. Hence the two maps
are mutually inverse homeomorphisms.

To check naturality with respect to α : [m] → [n], note that (ζ, ξ) ∈ ∆m
p ×∆p

corresponds to ζ∗(ξ) ∈ ∆m, which maps to α∗(ζ∗(ξ)) in ∆n. On the other hand,
(ζ, ξ) maps to (αζ, ξ) ∈ ∆n

p × ∆p, which corresponds to (αζ)∗(ξ) in ∆m. These
points are equal.

Definition 6.3.9. For each n ≥ 0 the simplicial boundary (n − 1)-sphere ∂∆n
•

is the simplicial subset of ∆n
• with p-simplices

∂∆n
p = {ζ ∈ ∆n

p | ζ : [p] → [n] is not surjective}

the set of order-preserving functions ζ : [p] → [n] with ζ([p]) 6= [n], i.e., the
non-surjective order-preserving functions.

Lemma 6.3.10. The simplicial set associated to the ordered simplicial complex
(∂∆[n],≤) is (isomorphic to) the simplicial boundary (n − 1)-sphere ∂∆n

• .

Proof. The p-simplices of the associated simplicial set are the linear chains

(z0 ≤ z1 ≤ · · · ≤ zp)

in [n] such that {z0, z1, . . . , zp} are the vertices of a simplex in ∂∆[n], which is
equivalent to asking that {z0, z1, . . . , zp} is a (non-empty) proper subset of [n],
which in turn is equivalent to the condition that the order-preserving function
ζ : [p] → [n] with ζ(i) = zi is not surjective.

Lemma 6.3.11. The inclusion ∂∆n
• ⊂ ∆n

• induces the embedding ∂∆n ⊂ ∆n

upon topological realization.

Proof. Let C be the subcategory of the overcategory ∆/[n], consisting of pairs
(p, µ) where µ : [p] → [n] in ∆ is injective but not the identity. We can identify
it with the partially ordered set of proper, non-empty subsets ∅ 6= S ⊂ [n], by
taking µ to its image. In this way is also corresponds to the category of proper
faces of ∆n.
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Let F : C → sSet be the functor F ([p], µ) = ∆p
•, taking a morphism

β : [q] → [p] from (q, βµ) to (p, µ), to the simplicial map β• : ∆q
• → ∆p

•. Then
the compatible maps j(p,µ) = µ• : ∆p

• → ∆n
• induce a map

colim
C

F = colim
(p,µ)∈C

∆p
• −→ ∆n

• ,

which identifies the colimit with ∂∆n
• inside of the target. This can be checked

degreewise, as an identity of sets. By Corollary 6.2.22, we get a homeomorphism

colim
(p,µ)∈C

∆p = colim
(p,µ)∈C

|∆p
•|

∼= | colim
(p,µ)∈C

∆p
•|

∼= |∂∆n
• |

and it is clear that colim(p,µ)∈C ∆p = ∂∆n.

Exercise 6.3.12. Enumerate the n-simplices of ∆1
• as

∆1
n = {ζn

0 , . . . , ζn
n+1}

where ζn
k : [n] → [1] maps {0, . . . , k − 1} to 0 and {k, . . . , n} to 1, for 0 ≤ k ≤

n + 1. Show that

di(ζ
n
k ) =

{
ζn−1
k−1 for 0 ≤ i < k

ζn−1
k for k ≤ i ≤ n

for n ≥ 1, and

sj(ζ
n
k ) =

{
ζn+1
k+1 for 0 ≤ j < k

ζn+1
k for k ≤ j ≤ n

for n ≥ 0. Show that the nondegenerate simplices of ∆1
• (see Definition 6.3.15)

are ζ0
0 , ζ0

1 and ζ1
1 .

With notation as above, the n-simplices of ∂∆1
• are

∂∆1
n = {ζn

0 , ζn
n+1} .

Enumerate the n-simplices of S1
• = ∆1

•/∂∆1
• as

S1
n = {ζn

0 , . . . , ζn
n} ,

where now ζn
0 = ζn

n+1. Obtain formulas for di(ζ
n
k ) and sj(ζ

n
k ) in S1

• , for all 0 ≤

i, j, k ≤ n. Note in particular that dn(ζn
n ) = ζn−1

0 . What are the nondegenerate
simplices of S1

•?
[[Relate S1

• to the Hochschild complex of a ring R.]]

Remark 6.3.13. We can identify ∆1
n
∼= [n + 1] as sets, taking ζn

k ∈ ∆1
n to

k ∈ [n + 1]. Then di : ∆1
n → ∆1

n−1 corresponds to σi : [n + 1] → [n] in ∆, and
sj : ∆1

n → ∆1
n+1 corresponds to δj+1 : [n+1] → [n+2]. We get a (contravariant)

functor ∆1 : ∆op → ∆ ⊂ Set, taking [n] to [n + 1].

Remark 6.3.14. We have at least three useful simplicial models for the topo-
logical n-sphere Sn. One is the simplicial boundary n-sphere ∂∆n+1

• with
|∂∆n+1

• | ∼= ∂∆n+1. This is the source of the attaching map of (n + 1)-cells
in the CW structure on the topological realization of a simplicial set.

Another is the quotient n-sphere ∆n
•/∂∆n

• with |∆n
•/∂∆n

• |
∼= ∆n/∂∆n. This

is the minimal model for Sn as a based space, and can be used in the description
of simplicial homotopy groups.
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A third is the n-fold smash product S1
• ∧ · · · ∧S1

• where S1
• = ∆1

•/∂∆1
•, with

|S1
• ∧ · · · ∧ S1

• | = ∆1/∂∆1 ∧ · · · ∧ ∆1/∂∆1. This model has a natural action by
Σn, permuting the order of the n smash factors, and appears in the definition
of symmetric spectra.

Definition 6.3.15. Let X• be a simplicial set. An n-simplex x ∈ Xn is said
to be degenerate if x = sj(y) for some (n − 1)-simplex y ∈ Xn−1 and some
degeneracy operator sj : Xn−1 → Xn, for 0 ≤ j < n. Otherwise, x is said to be
non-degenerate. Let

sXn =
⋃

0≤j<n

sj(Xn−1) ⊆ Xn

be the set of degenerate n-simplices, and let X♯
n = Xn \ sXn be the set of

non-degenerate n-simplices.

Example 6.3.16. Let X• be the simplicial set associated to an ordered sim-
plicial complex (K,≤). An n-simplex x = (v0 ≤ · · · ≤ vn) is non-degenerate
if and only if vj 6= vj+1 for all 0 ≤ j < n, or equivalently, if σ = {v0, . . . , vn}
has (n + 1) distinct elements, so that σ is an n-simplex in K. Conversely, any
n-simplex σ = {v0, . . . , vn} in K can be totally ordered as x = (v0 ≤ · · · ≤ vn),
and thus determines a non-degenerate n-simplex in X•. We get a one-to-one
correspondence

K♯
n
∼= X♯

n

between the n-simplices of (K,≤) and the non-degenerate n-simplices of X•.

We shall prove that |X•| is a CW complex with one n-cell for each non-
degenerate n-simplex in X•. The key fact is the following Eilenberg–Zilber
lemma from [18, (8.3)], see also [20, Thm. 4.2.3].

Proposition 6.3.17 (Eilenberg–Zilber). Let X• be a simplicial set, and x ∈
Xm any m-simplex. There exists a surjective morphism ρ : [m] → [p] and a
non-degenerate p-simplex y ∈ Xp such that x = ρ∗(y). Moreover, the pair (ρ, y)
is uniquely determined by x.

Proof. The existence part follows easily by induction on m: If x is non-degenerate,
we can let ρ = id[m] and y = x. Otherwise x = sj(x1) for some (m− 1)-simplex
x1. By induction on m we may assume that x1 = ρ∗1(y) for some surjective
ρ1 : [m − 1] → [p] and y ∈ Xp non-degenerate. Then ρ = ρ1σj : [m] → [p] is
surjective and x = ρ∗(y) = (ρ1σj)

∗(y), as required.
Suppose that x = ρ∗(y) = τ∗(z) for non-degenerate simplices y ∈ Xp, z ∈ Xq

and surjective morphisms ρ : [m] → [p], τ : [m] → [q]. We must show that y = z
and ρ = τ .

x ∈ Xm

µ∗

²²

y ∈ Xp

ρ∗
99ssssssssss

=
// y ∈ Xp Xq ∋ z

τ∗

eeKKKKKKKKK

(τµ)∗
oo

Consider any section µ : [p] → [m] to ρ, with ρµ = id. We get

y = µ∗ρ∗(y) = µ∗τ∗(z) = (τµ)∗(z) .
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We can factor τµ as a composite

τµ = δir
. . . δi1σj1 . . . σjs

as in Lemma 6.2.4, so that

(τµ)∗(z) = sjs
. . . sj1di1 . . . dir

(z) .

Since y = (τµ)∗(z) is non-degenerate, we must have s = 0, so that τµ : [p] → [q]
is injective. Hence p ≤ q. By symmetry, q ≤ p, so p = q. For τµ : [p] → [p]
to be order-preserving and injective, it must be the identity, so τµ = id and
µ is also a section to τ . Hence y = (τµ)∗(z) = z, proving the uniqueness of
the non-degenerate y. Two order-preserving surjections ρ, τ : [m] → [p] have the
same set of sections µ : [p] → [m] if and only if they are equal [[Exercise!]], hence
ρ = τ , proving the uniqueness of the order-preserving surjection ρ.

Corollary 6.3.18. The set of m-simplices of a simplicial set X• decomposes
as

Xm
∼=

∐

p≥0

X♯
p × (∆p

m \ ∂∆p
m) ,

with x ∈ Xm corresponding to the unique pair (y, ρ) with x = ρ∗(y), ρ : [m] → [p]
surjective (and order-preserving), and y ∈ Xp non-degenerate.

Definition 6.3.19. Given a simplicial set X•, and a set S of simplices in X•,
let the simplicial subset of X• generated by S,

〈S〉• ⊆ X• ,

be the minimal simplicial subset of X• that contains all the elements of S. It
has m-simplices

〈S〉m = {α∗(y) ∈ Xm | α ∈ ∆([m], [n]), y ∈ Sn} ,

where Sn = S ∩ Xn is the set of n-simplices in S.

Definition 6.3.20. Let the simplicial n-skeleton X
(n)
• ⊆ X• be the simplicial

subset generated by the set S =
⋃

p≤n Xp of simplices of dimension ≤ n in X•.
There are natural inclusions

∅ = X
(−1)
• ⊆ X

(0)
• ⊆ · · · ⊆ X

(n−1)
• ⊆ X

(n)
• ⊆ . . .

with
⋃

n≥0 X
(n)
• = X•, called the simplicial skeleton filtration of X•.

Example 6.3.21. The simplicial boundary (n − 1)-sphere ∂∆n
• is the (n − 1)-

skeleton of the simplicial n-simplex ∆n
• .

Lemma 6.3.22. The set of m-simplices of X
(n)
• decomposes as

X(n)
m

∼=
∐

0≤p≤n

X♯
p × (∆p

m \ ∂∆p
m) ,

with x ∈ X
(n)
m corresponding to the unique pair (y, ρ) with x = ρ∗(y), ρ : [m] →

[p] surjective and y ∈ X♯
p non-degenerate in X•, with 0 ≤ p ≤ n.
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Proof. Every simplex in X
(n)
m has the form x = α∗(y) with α : [m] → [q], y ∈ Xq

and q ≤ n. Factoring α = µρ with ρ : [m] → [p] surjective and µ : [p] → [q]
injective, we have x = ρ∗(µ∗(y)) with µ∗(y) ∈ Xp. We can write µ∗(y) = τ∗(z)
for some surjective τ : [p] → [r] and non-degenerate z ∈ X♯

r, so x = (τρ)∗(z)
with τρ : [m] → [r] surjective, z non-degenerate, and r ≤ p ≤ q ≤ n. Hence x
corresponds to an element on the right hand side.

y ∈ Xq

µ∗

²²

α∗

yytttttttttt

x ∈ Xm Xp
ρ∗

oo Xr ∋ z
τ∗

oo

Conversely, every element ρ∗(y) with ρ : [m] → [p] surjective, y ∈ X♯
p and p ≤ n

lies in the n-skeleton of X•, since y has dimension n or less.

Lemma 6.3.23. Let X• be a simplicial set. For each n ≥ 0 there is a pushout
square

Xn × ∂∆n
• ∪ sXn × ∆n

•
//

²²

²²

p

X
(n−1)
•

²²

²²

Xn × ∆n
•

Ψ• // X
(n)
•

in sSet.

Here Xn × ∂∆n
• ∪ sXn ×∆n

• denotes the union of Xn × ∂∆n
• and sXn ×∆n

•

as simplicial subsets in Xn × ∆n
• , meeting in sXn × ∂∆n

• .

Proof. The characteristic maps x• : ∆n
• → X• for x ∈ Xn combine to a simplicial

map

Ψ• : Xn × ∆n
• → X

(n)
• .

Here Xn can be viewed as a constant simplicial set, equal to Xn in each simplicial
degree, with all face and degeneracy maps equal to the identity. Then Xn ×∆n

•

is the product simplicial set, with m-simplices Xn×∆n
m. In simplicial degree m,

the map Ψ• takes (x, ζ) ∈ Xn ×∆n
m to ζ∗(x) ∈ Xm. This gives a simplex in the

n-skeleton X
(n)
m , since x ∈ Xn is a simplex of dimension ≤ n in X•.

The simplicial map Ψ• takes the union

Xn × ∂∆n
• ∪ sXn × ∆n

•

into the (n − 1)-skeleton X
(n−1)
• . For, if ζ ∈ ∂∆n

m ⊆ ∆n
m, then ζ : [m] → [n]

factors through some δi : [n − 1] → [n], as ζ = δiβ, and ζ∗(x) = β∗(δ∗i (x))
lies in the (n − 1)-skeleton of X•, since δ∗i (x) = di(x) has dimension (n − 1).
Otherwise, if x ∈ sXn ⊆ Xn, then x = sj(y) = σ∗

j (y) for some σj : [n] → [n−1],
and ζ∗(x) = ζ∗(σ∗

j (y)) = (σjζ)∗(y) lies in the (n−1)-skeleton of X•, since y has
dimension (n − 1).

To check that the resulting square is a pushout, it suffices to verify this
in each simplicial degree m, since colimits of simplicial sets are constructed
degreewise. Hence it suffices to check that the set complement

Xn × ∆n
m \ (Xn × ∂∆n

m ∪ sXn × ∆n
m) = (Xn \ sXn) × (∆n

m \ ∂∆n
m)
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maps bijectively under Ψm to the set complement X
(n)
m \X

(n−1)
m . By Lemma 6.3.22

the latter set decomposes as

X(n)
m \ X(n−1)

m
∼= X♯

n × (∆p
m \ ∂∆p

m) .

The function Ψm takes (x, ζ) on the left, with

x ∈ Xn \ sXn = X♯
n

and
ζ ∈ ∆n

m \ ∂∆n
m ,

to ζ∗(x), which corresponds to the same pair (x, ζ) on the right, since ζ is
surjective and x is non-degenerate.

Lemma 6.3.24. Let X• be a simplicial set. For n ≥ 0 there is a pushout square

X♯
n × ∂∆n

•
// //

²²

²²

p

Xn × ∂∆n
• ∪ sXn × ∆n

•
²²

²²

X♯
n × ∆n

•
// // Xn × ∆n

•

in sSet.

Proof. The horizontal maps are induced by the inclusion X♯
n ⊆ Xn. In simplicial

degree m, the set complement

X♯
n × ∆n

m \ X♯
n × ∂∆n

m
∼= X♯

n × (∆n
m \ ∂∆n

m)

maps bijectively to the set complement

(Xn \ sXn) × (∆n
m \ ∂∆n

m) ,

so the square is a pushout.

We now get to the main result of this section, proved in [47, Thm. 1].

Proposition 6.3.25 (Milnor). Let X• be a simplicial set. The topological

realization |X•|
(n) = |X

(n)
• | of the simplicial skeleton filtration of X• defines the

skeleton filtration

∅ = |X
(−1)
• | ⊆ |X

(0)
• | ⊆ · · · ⊆ |X

(n−1)
• | ⊆ |X

(n)
• | ⊆ · · · ⊆ |X•|

of a CW structure on |X•|. The pushout square

∐
X♯

n
∂∆n ∼= |X♯

n × ∂∆n
• | //

²²

²²

p

|X
(n−1)
• |

²²

²²∐
X♯

n
∆n ∼= |X♯

n × ∆n
• |

Φ // |X
(n)
• |

in Top exhibits the n-skeleton as being obtained from the (n−1)-skeleton by at-
taching one n-cell for each element of X♯

n. Hence |X•| has a canonical structure
as a CW complex, with one n-cell for each non-degenerate n-simplex in X•.
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Proof. It is clear that |X•| ∼= colimn |X
(n)
• | has the weak (colimit) topology,

since topological realization commutes with colimits. Combining Lemmas 6.3.23
and 6.3.24, we get a pushout square

X♯
n × ∂∆n

•
//

²²

p

X
(n−1)
•

²²

X♯
n × ∆n

•

Φ• // X
(n)
•

in sSet, which gives the required pushout square in Top upon topological real-
ization.

Lemma 6.3.26. Each simplicial map f• : X• → Y• induces a cellular map
|f•| : |X•| → |Y•| upon topological realization. Hence topological realization fac-
tors as a (faithful) CW realization functor

| − | : sSet −→ CW

followed by the inclusion CW ⊂ Top.

Proof. The simplicial map f• takes simplices of dimension ≤ n in X• to simplices
of dimension ≤ n in Y•, hence maps the n-skeleton of X• into the n-skeleton of
Y•. Thus |f•| maps |X•|

(n) into |Y•|
(n), as required.

Definition 6.3.27. A degreewise injective simplicial map f• : X• → Y• is called
a cofibration.

Lemma 6.3.28. If X• ⊆ Y• is a simplicial subset, then |X•| is a subcomplex
of |Y•|. More generally, a cofibration f• : X• → Y• (of simplicial sets) induces
an isomorphism of |X•| with its image, as a subcomplex of |Y•|. In particular,
|f•| : |X•| → |Y•| is a cofibration (of topological spaces).

Proof. If X• ⊆ Y•, then X♯
n ⊆ Y ♯

n for each n ≥ 0, since if x = sj(y) ∈ Xn with
y ∈ Yn−1 then sjdj(x) = sjdjsj(y) = sj(y) = x with dj(x) ∈ Xn−1, using the
simplicial identities. Thus x is degenerate in X• if and only if it is degenerate in
Y•. Hence |X•| is the subcomplex of |Y•| whose n-cells correspond to the subset
X♯

n ⊆ Y ♯
n of the n-cells of |Y•|.

A degreewise injective simplicial map f• : X• → Y• factors as an isomor-
phism of simplicial sets X•

∼= f•(X•) followed by the simplicial subset inclusion
f•(X•) ⊆ Y•, hence induces an isomorphism of CW complexes |X•| ∼= |f•(X•)|
followed by the subcomplex inclusion |f•(X•)| ⊆ |Y•|.

Definition 6.3.29. A simplicial set X• is finite if it is generated by finitely
many simplices, or equivalently, if the set of all non-degenerate simplices X♯ =⋃

n≥0 X♯
n is finite. This is equivalent to asking that |X•| is a finite CW complex.

Recall Whitehead’s Theorem 5.7.4 on (weak) homotopy equivalences be-
tween CW complexes.

Definition 6.3.30. A map f• : X• → Y• of simplicial sets is called a weak
homotopy equivalence if the induced map of CW realizations

|f•| : |X•| −→ |Y•|

is a homotopy equivalence. We then write f• : X•
≃
−→ Y•.
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Lemma 6.3.31. Let f• : X• → Y• and g• : Y• → Z• be simplicial maps. If two
of the simplicial maps f•, g• and g•f• : X• → Z• are weak homotopy equiva-
lences, then so is the third.

Proof. This follows from the two-out-of-three property for homotopy equiva-
lences, since |g•f•| = |g•||f•|.

6.4 The role of degenerate simplices

Recall that limits of simplicial sets are constructed degreewise, so that the prod-
uct X• × Y• of two simplicial sets has n-simplices Xn × Yn for all n ≥ 0, and
simplicial operators α∗ × α∗ : Xn × Yn → Xm × Ym for all α : [m] → [n] in ∆.

In general, a left adjoint like topological realization will not commute with
limits like products. However, due to the presence of degenerate simplices,
topological realization does commute with finite products, as was shown by
Milnor [47, Thm. 2]. We shall deduce this from the case when X• and Y• are
simplicial simplices, using the following isomorphism.

Lemma 6.4.1. There is a natural isomorphism

∐

n≥0

Xn × ∆n
•/ ∼

∼=
−→ X•

where (x, α•(ζ)) ∼ (α∗(x), ζ) for all α : [m] → [n], x ∈ Xn and ζ ∈ ∆m
• .

Proof. The simplicial maps Ψ• : Xn×∆n
• → X•, taking (x, ζ) to ζ∗(x) for n ≥ 0,

are compatible under ∼, since Ψ•(x, α•(ζ)) = (αζ)∗(x) and Ψ•(α
∗(x), ζ) =

ζ∗(α∗(x)). Hence there is an induced map of simplicial sets, as displayed.
It suffices to check that this map is a bijection in each simplicial degree p. An

inverse map takes y ∈ Xp to the equivalence class of (y, id[p]) ∈ Xp × ∆p
p. One

composite takes y to id∗[p](y) = y. The other composite takes the equivalence

class of (x, ζ), with x ∈ Xn and ζ : [p] → [n], to the class of (ζ∗(x), id[p]). Now
(ζ∗(x), id[p]) ∼ (x, ζ•(id[p])) = (x, ζ), so this composite is also the identity.

[[Discuss compatibility of this lemma with Definition 6.2.14.]]

Corollary 6.4.2. There is a coequalizer diagram

∐
α : [m]→[n] Xn × ∆m

•

s //

t
//

∐
n≥0 Xn × ∆n

•
// X•

in sSet, where s maps Xn×∆m
• → Xm×∆m

• by α∗×id, and t maps Xn×∆m
• →

Xn × ∆n
• by id × α•.

Proof. The coequalizer in sSet is computed degreewise, and equals the identi-
fication space

∐
n≥0 Xn × ∆n

•/ ∼ where ∼ identifies s(x, ζ) = (α∗(x), ζ) with
t(x, ζ) = (x, α•(ζ)), just as in the previous lemma.

See also Lemma 7.6.4 below.
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Proposition 6.4.3 (Milnor). Let X•, Y• be simplicial sets. The projections

X• X• × Y•
pr1oo

pr2 // Y•

in sSet induce a natural homeomorphism

(|pr1|, |pr2|) : |X• × Y•|
∼=
−→ |X•| × |Y•| ,

where the target is topologized as the product of CW complexes.

Proof. In the special case X• = ∆m
• , Y• = ∆n

• , the projections pr1 : ∆m
• ×∆n

• →
∆m

• , pr2 : ∆m
• × ∆n

• → ∆n
• induce a homeomorphism

(|pr1|, |pr2|) : |∆m
• × ∆n

• |
∼=
−→ |∆m

• | × |∆n
• |

by Proposition 6.1.24, for each m,n ≥ 0. In the general case,

|
( ∐

m≥0

Xm × ∆m
• / ∼

)
×

(∐

n≥0

Yn × ∆n
•/ ∼

)
|

∼=
−→ |X• × Y•|

is a homeomorphism by Lemma 6.4.1 for X• and Y•. By naturality, its composite
with (|pr1|, |pr2|) factors as the chain of homeomorphisms

|
( ∐

m≥0

Xm × ∆m
• / ∼

)
×

(∐

n≥0

Yn × ∆n
•/ ∼

)
|

∼= |
∐

m,n≥0

Xm × Yn × ∆m
• × ∆n

•/ ≈ |

∼=
∐

m,n≥0

Xm × Yn × |∆m
• × ∆n

• |/ ≈

∼=
∐

m,n≥0

Xm × Yn × |∆m
• | × |∆n

• |/ ≈

∼= |
( ∐

m≥0

Xm × ∆m
• / ∼

)
| × |

(∐

n≥0

Yn × ∆n
•/ ∼

)
|

∼=
−→ |X•| × |Y•|

by Corollary 6.2.22, the special case of simplicial simplices, and Lemma 6.4.1.
Hence (|pr1|, |pr2|) is a homeomorphism.

Corollary 6.4.4. CW realization | − | : sSet → CW commutes with finite
products.

Proof. This is clear by induction from the previous proposition.

[[Discuss realization and equalizers or finite limits. Failure to commute with
infinite products.]]

Definition 6.4.5. Let f•, g• : X• → Y• be simplicial maps. A simplicial homo-
topy from f• to g• is a simplicial map

H• : X• × ∆1
• → Y•

such that H• ◦ δ1• = f• and H• ◦ δ0• = g•. When such an H• exists, we say
that f• and g• are simplicially homotopic, and write H• : f• ≃ g•.
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Remark 6.4.6. Existence of a simplicial homotopy is not in general an equiva-
lence relation on simplicial maps X• → Y•. However, simplicial homotopy does
of course generate an equivalence relation on the set of such simplicial maps.
[[If Y• is Kan (= fibrant), then simplicial homotopy is an equivalence relation
on simplicial maps to Y•.]]

Lemma 6.4.7. A simplicial homotopy H• : f• ≃ g• of simplicial maps X• → Y•

induces a homotopy |H•| : |f•| ≃ |g•| of maps |X•| → |Y•|.

Proof. The homotopy is given by the composite

|X•| × |∆1
•|

∼= |X• × ∆1
•|

|H•|
−→ |Y•| ,

where we identify |∆1| ∼= I = [0, 1] so that the maps |δ1•| and |δ0•| correspond
to the end-point inclusions i0 and i1, respectively.

Lemma 6.4.8. A simplicial homotopy H• : f• ≃ g• corresponds to a collection
of functions

hk
n : Xn −→ Yn

for n ≥ 0, 0 ≤ k ≤ n + 1, such that

di(h
k
n(x)) =

{
hk−1

n−1(di(x)) for 0 ≤ i < k

hk
n−1(di(x)) for k ≤ i ≤ n

for n ≥ 1,

sj(h
k
n(x)) =

{
hk+1

n+1(sj(x)) for 0 ≤ j < k

hk
n+1(sj(x)) for k ≤ j ≤ n

for n ≥ 0, and hn+1
n (x) = fn(x), h0

n(x) = gn(x) for all n ≥ 0 and x ∈ Xn.

Proof. The components of H• are functions

Hn : Xn × ∆1
n −→ Yn .

We enumerate ∆1
n = {ζn

0 , . . . , ζn
n+1} where ζn

k : [n] → [1] maps {0, . . . , k − 1} to
0 and {k, . . . , n} to 1, see Exercise 6.3.12. Let

hk
n(x) = Hn(x, ζn

k )

for x ∈ Xn, 0 ≤ k ≤ n + 1. The naturality conditions

di(Hn(x, ζn
k )) = Hn−1(di(x), di(ζ

n
k ))

sj(Hn(x, ζn
k )) = Hn+1(sj(x), sj(ζ

n
k ))

then translate to the displayed relations.

[[Relate to May’s formulation in terms of functions Xn → Yn+1 [42, Def. 5.1].]]
Waldhausen [68, p. 335] gives the following reformulation of the data de-

scribing a simplicial homotopy. It is often convenient for defining simplicial
homotopies in a categorical context.
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Definition 6.4.9. Let ∆/[1] be the category of objects in ∆ over [1], with
objects ([n], ζ : [n] → [1]) and morphisms α : [m] → [n] from ([m], ζα) to ([n], ζ).
For each simplicial set X•, let X∗ : (∆/[1])op → Set be the composite functor

X∗ : (∆/[1])op −→ ∆op X
−→ Set

taking ([n], ζ) to Xn and α to α∗ : Xn → Xm.

Lemma 6.4.10. A simplicial homotopy H• : X•×∆1
• → Y•, from f• : X• → Y•

to g : X• → Y•, is equivalent to a natural transformation

h : X∗ =⇒ Y ∗

of functors (∆/[1])op → Set, such that h([n],0) = fn : Xn → Yn and h([n],1) =
gn : Xn → Yn for all n ≥ 0, where 0 and 1 denote the constant morphisms to
0 ∈ [1] and 1 ∈ [1], respectively.

Proof. A simplicial homotopy H• : X• × ∆1
• → Y• consists of functions

Hn : Xn × ∆1
n −→ Yn

for n ≥ 0, such that

α∗(Hn(x, ζ)) = Hm(α∗(x), α∗(ζ))

for all α : [m] → [n], x ∈ Xn and ζ : [n] → [1] in ∆1
n. Note that α∗(ζ) = ζα.

With these notations, let hζ(x) = Hn(x, ζ). The functions Hn correspond to
functions

hζ : Xn −→ Yn

for all ζ : [n] → [1], such that

α∗(hζ(x)) = hζα(α∗(x))

for all α : ([m], ζα) → ([n], ζ) and x ∈ Xn.

Xn

hζ
//

α∗

²²

Yn

α∗

²²

Xm

hζα
// Ym

These correspond precisely to the components h([n],ζ) of a natural transforma-
tion h : X∗ ⇒ Y ∗ of functors (∆/[1])op → Set, as claimed.

6.5 Bisimplicial sets

Definition 6.5.1. Let D be any category. A simplicial object X• in D is a
contravariant functor

X : ∆op −→ D .

For each n ≥ 0 we write Xn = X([n]) for the object of n-simplices, and for
each morphism α : [m] → [n] in ∆ we write α∗ : Xn → Xm for the simplicial
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structure morphism in D . It suffices to specify the face and degeneracy mor-
phisms di : Xn → Xn−1 and sj : Xn → Xn+1, subject to the simplicial identities
of Lemma 6.2.7. We may write

[n] 7−→ Xn

for such a functor.
A map f• : X• → Y• of simplicial objects in D is a natural transformation

f : X =⇒ Y .

It is determined by its components fn : Xn → Yn for n ≥ 0, which are morphisms
in D such that α∗fn = fmα∗ for α : [m] → [n]. It suffices to check that difn =
fn−1di and sjfn = fn+1sj for all i and j. We may write

[n] 7−→ (fn : Xn → Yn)

for such a natural transformation.
We write

sD = Fun(∆op,D)

for the category of simplicial objects in D .

Example 6.5.2. Quoting [67, p. 163], if the objects of D are called things, then
the simplicial objects in D are called simplicial things.

(a) A simplicial set is a simplicial object in Set.

(b) A based simplicial set is the same as a simplicial based set, i.e., a simplicial
object in Set∗.

(c) A simplicial space Y• is a simplicial object in Top, with a space Yn of
n-simplices for each n ≥ 0, and a map α∗ : Yn → Ym for each α : [m] → [n]
in ∆.

(d) A simplicial category C• is a simplicial object in Cat, with a category
Cn of n-simplices for each n ≥ 0, and a functor α∗ : Cn → Cm for each
morphism α in ∆.

Example 6.5.3. An object X of a category D can be viewed as a constant
simplicial object in sD , given by the constant functor X : ∆op → D taking each
object [n] to X and each morphism α to idX . [[No change in the notation?]]
Given a simplicial object Y• in D , we may view its degree zero part Y0 as a
constant simplicial object. There is then a unique simplicial map

ρ∗ : Y0 −→ Y•

that is the identity in degree 0, called the inclusion of the zero-simplices. It
is given in simplicial degree n by the simplicial operator ρ∗n : Y0 → Yn, where
ρ : [n] → [0] is the unique morphism in ∆. For each morphism α : [m] → [n] in
∆ the simplicial operators α∗ = id : Y0 → Y0 and α∗ : Yn → Ym commute with
ρ∗, in the sense that α∗ ◦ ρ∗n = ρ∗m ◦ id, since ρn ◦ α = ρm : [m] → [0]. Hence
ρ∗ is a simplicial map. The “constant simplicial object” functor D → sD is
left adjoint to the “degree zero part” functor sD → D , with ρ∗ as adjunction
counit.
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Definition 6.5.4. A bisimplicial set X•,• is a contravariant functor

X : ∆op × ∆op −→ Set .

We write Xm,n = X([m], [n]) for the set of (m,n)-bisimplices, and may display
X as

[m], [n] 7−→ Xm,n .

A map f•,• : X•,• → Y•,• is a natural transformation f : X ⇒ Y . Its compo-
nents are functions fm,n : Xm,n → Ym,n for all m,n ≥ 0, commuting with the
bisimplicial structure maps (α, β)∗ for all α : [p] → [m] and β : [q] → [n].

Lemma 6.5.5. The category ssSet of bisimplicial sets is identified with the
category ssSet of simplicial objects in simplicial sets, via the isomorphism

ssSet = Fun(∆op × ∆op,Set) ∼= Fun(∆op,Fun(∆op,Set)) = ssSet .

A bisimplicial set X•,• then corresponds to the simplicial simplicial set

[m] 7−→ Xm,• ,

with m-simplices the simplicial set Xm,• : [n] 7−→ Xm,n having simplicial struc-
ture maps the functions β∗ = (id[m], β)∗. The simplicial structure maps of
[m] 7→ Xm,• are simplicial maps α∗

• with n-th component α∗
n = (α, id[n])

∗.

Proof. See Lemma 3.1.13.

Remark 6.5.6. In a bisimplicial set X•,• we may refer to the first and sec-
ond simplicial directions as the left hand and right hand simplicial directions,
respectively. Under the identification of Lemma 6.5.5, we can think of these as
external and internal simplicial directions, respectively.

Remark 6.5.7. The algebraic K-theory of a Waldhausen category will be de-
fined as the (total) topological realization of a bisimplicial set associated to a
simplicial category. We shall therefore need to be able to manipulate bisimplicial
sets and certain associated simplicial spaces.

Definition 6.5.8. The degreewise topological realization of a bisimplicial set
X•,• is the simplicial space

[m] 7−→ |Xm,•| =
∐

n≥0

Xm,n × ∆n/∼r

given by the composite functor

∆op X
−→ sSet

|−|
−→ Top .

Here ∼r refers to the identifications (x, β∗(η)) ∼ (β∗(x), η) involving the right
hand (= internal) simplicial structure of X•,•, for β : [q] → [n], x ∈ Xm,n and
η ∈ ∆q.

Definition 6.5.9. The topological realization of a simplicial space Z• is the
identification space

|Z•| =
∐

m≥0

Zm × ∆m/ ∼

where Zm×∆m is given the product topology,
∐

m≥0 Zm×∆m is the coproduct,
and ∼ is generated by (z, α∗(ξ)) ∼ (α∗(z), ξ) for α : [p] → [m], z ∈ Zm and
ξ ∈ ∆p.
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For general simplicial spaces, this can be a badly behaved identification
space. However, for simplicial spaces arising by degreewise topological realiza-
tion of bisimplicial sets, there is no difficulty.

Definition 6.5.10. The total topological realization of a bisimplicial set X•,•

is the identification space

‖X•,•‖ =
∐

m,n≥0

Xm,n × ∆m × ∆n/ ≈

where Xm,n×∆m×∆n is homeomorphic to the disjoint union of one copy of the
product ∆m × ∆n for each element in Xm,n, and ≈ is the equivalence relation
generated by

(x, (α, β)∗(ξ, η)) ≈ ((α, β)∗(x), (ξ, η))

for α : [p] → [m], β : [q] → [n], x ∈ Xm,n, ξ ∈ ∆p, η ∈ ∆q.

Lemma 6.5.11. There is a natural homeomorphism

‖X•,•‖ ∼= | [m] 7→ |Xm,•| | .

Proof. All terms in

| [m] 7→ |Xm,•| | =
∐

m≥0

|Xm,•| × ∆m/ ∼

=
∐

m≥0

(∐

n≥0

Xm,n × ∆n/ ∼r

)
× ∆m/ ∼

∼=
∐

m,n≥0

Xm,n × ∆m × ∆n/ ≈

= ‖X•,•‖

are obtained from
∐

m,n≥0 Xm,n ×∆m ×∆n by the same identifications. [[Some
explanation of the interaction of products and identification spaces might be
appropriate. Alternatively, consider realization to CW instead of Top.]]

Definition 6.5.12. A map f•,• : X•,• → Y•,• of bisimplicial sets is a weak
homotopy equivalence if the total topological realization

‖f•,•‖ : ‖X•,•‖ → ‖Y•,•‖

is a homotopy equivalence.

Definition 6.5.13. The simplicial realization of a bisimplicial set X•,• is the
simplicial set ∐

m≥0

Xm,• × ∆m
• / ∼l

where Xm,• × ∆m
• is the product simplicial set, with n-simplices Xm,n × ∆m

n ,∐
m≥0 Xm,• × ∆m

• is the coproduct of simplicial sets, and ∼l is the equivalence
relation generated in each simplicial degree n by the relations (x, α•(ζ)) ∼l

(α∗
•(x), ζ) for α : [p] → [m], x ∈ Xm,n and ζ ∈ ∆p

n, coming from the left hand
(= external) simplicial structure on X•,•.
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Lemma 6.5.14. The topological realization of the simplicial realization of a
bisimplicial set is naturally homeomorphic with the total topological realization.

Proof.

|
∐

m≥0

Xm,• × ∆m
• / ∼l | ∼=

∐

m≥0

|Xm,• × ∆m
• |/ ∼

∼=
∐

m≥0

|Xm,•| × |∆m
• |/ ∼

∼=
∐

m≥0

|Xm,•| × ∆m/ ∼

∼= ‖X•,•‖

by Corollary 6.2.22, Proposition 6.4.3, Lemma 6.3.8 and Lemma 6.5.11.

Definition 6.5.15. The diagonal of a bisimplicial set X•,• is the simplicial set
diag(X)•, with n-simplices

diag(X)n = Xn,n

for all n ≥ 0, and simplicial structure maps α∗ = (α, α)∗ : diag(X)n → diag(X)m

for all α : [m] → [n] in ∆. It equals the composite functor

∆op ∆
−→ ∆op × ∆op X

−→ Set ,

where ∆ denotes the diagonal functor. Any map f•,• : X•,• → Y•,• of bisimpli-
cial sets induces a map diag(f)• : diag(X)• → diag(Y )• of diagonal simplicial
sets, and

diag : ssSet → sSet

is a functor.

Proposition 6.5.16. The diagonal of a bisimplicial set is naturally isomorphic
to the simplicial realization:

diag(X)• ∼=
∐

m≥0

Xm,• × ∆m
• / ∼l

Hence there is a natural homeomorphism

|diag(X)•| ∼= ‖X•,•‖ .

Proof. For each m ≥ 0 there is a simplicial map

Ψ• : Xm,• × ∆m
• −→ diag(X)•

given in simplicial degree n by

(x, ζ) 7→ ζ∗n(x) = (ζ, id[n])
∗(x) ,

for x ∈ Xm,n, ζ ∈ ∆m
n . This is a simplicial map, since for β : [q] → [n],

β∗(x, ζ) = (β∗(x), β∗(ζ)) = ((id[m], β)∗(x), ζβ)
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maps to

(ζβ, id[n])
∗((id[m], β)∗(x)) = (β, β)∗(ζ, id[n])

∗(x) = (β, β)∗(ζ∗n(x)) .

The maps Ψ• are compatible under the relation ∼l, since for α : [p] → [m],
x ∈ Xm,n and ζ ∈ ∆n

p the class (x, α•(ζ)) = (x, αζ) maps to (αζ)∗n(x), while
the class (α∗

n(x), ζ) maps to ζ∗n(α∗
n(x)), and these values are equal. Hence there

is a well-defined simplicial map

∐

m≥0

Xm,• × ∆m
• / ∼l −→ diag(X)• .

There is also a simplicial map the other way, taking x ∈ diag(X)n = Xn,n to
the equivalence class of the n-simplex (x, id[n]) in Xn,• × ∆n

• . This is sim-
plicial, since for β : [q] → [n] the q-simplex (β, β)∗(x) in diag(X)q = Xq,q

maps to ((β, β)∗(x), id[q]), while β∗(x, id[n]) = ((id[n], β)∗(x), β) is equivalent
to β∗

q ((id[n], β)∗(x), id[q]) = ((β, β)∗(x), id[q]).
The composite self-map of diag(X)• takes x ∈ Xn,n to id∗[n](x) = x, hence

equals the identity.
The other composite takes the class of (x, ζ) to the class of (ζ∗n(x), id[n]),

which under ∼l is identified with (x, ζn), so also this composite is the identity.
The natural homeomorphism is now obtained by passing to topological re-

alization, and using Lemma 6.5.14.

Remark 6.5.17. This proposition may seem surprising, since it exhibits a
homeomorphism between the different-looking identification spaces

∐

p≥0

Xp,p × ∆p/ ∼

and ∐

m,n≥0

Xm,n × ∆m × ∆n/ ≈ .

It provides a key simplifying tool in the theory of bisimplicial sets, since for the
purposes of homotopy theory, the topological realization of X•,• is the same as
that of the diagonal simplicial set diag(X)•. The additional simplicial direction
does therefore not contribute essentially to the form of the topological realiza-
tion. More generally, for multi-simplicial sets given by contravariant functors

X : ∆op × · · · × ∆op → Set ,

the total topological realization is naturally homeomorphic to the topological
realization of the diagonal simplicial set X ◦ ∆, where

∆: ∆op → ∆op × · · · × ∆op

is the diagonal functor.

Corollary 6.5.18. A map f•,• : X•,• → Y•,• of bisimplicial sets is a weak
homotopy equivalence if and only if the diagonal map diag(f)• : diag(X)• →
diag(Y )• of simplicial sets is a weak homotopy equivalence.
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Proof. This is clear from the commutative square

|diag(X)•|
| diag(f)•|

//

∼=

²²

|diag(Y )•|

∼=

²²

‖X•,•‖
|f•,•|

// ‖Y•,•‖

expressing naturality in Proposition 6.5.16.

[[External product of simplicial sets, (X• ⊠ Y•) : [m], [n] 7→ Xm × Yn.]]
[[Isomorphism of bisimplicial sets X•,•

∼=
∐

m,n≥0 Xm,n × ∆m
• ⊠ ∆n

•/ ≈.]]
[[May interchange left and right, and consider [n] 7→ X•,n, etc.]]

6.6 The realization lemma

The following useful result is stated in [67, Lem. 5.1].

Proposition 6.6.1 (Realization lemma). Let f•,• : X•,• −→ Y•,• be a map
of bisimplicial sets, such that for each m ≥ 0 the map

fm,• : Xm,• −→ Ym,•

of simplicial sets is a weak homotopy equivalence. Then f•,• is a weak homotopy
equivalence.

The naming of this result is perhaps clearer from the following restatement.

Corollary 6.6.2. Let f•,• : X•,• −→ Y•,• be a map of bisimplicial sets, and let
Zm = |Xm,•|, Wm = |Ym,•| and gm = |fm,•|, so that g• : Z• → W• is a map of
simplicial spaces. If

gm : Zm
≃
−→ Wm

is a homotopy equivalence for each m ≥ 0, then the induced map of topological
realizations

|g•| : |Z•|
≃
−→ |W•|

is a homotopy equivalence.

Proof. This is clear by the realization lemma and Lemma 6.5.11.

[[More general statement, cite Segal [60].]]

Remark 6.6.3. The roles of the left and right simplicial directions may of
course be interchanged: If f•,n is a weak homotopy equivalence for each n ≥ 0,
then f•,• is a homotopy equivalence.

As a first step towards proving the realization lemma, we analyze the sim-
plicial subsets of degenerate simplices. We follow the notation of [22, ??].

Definition 6.6.4. Let k ≥ 0. For each 0 ≤ j < k let sj(Xk−1,•) ⊆ Xk,• be
the simplicial subset given by the image of sj,• = (σj , id)∗ : Xk−1,• → Xk,•. For
each −1 ≤ ℓ < k let

s[ℓ]Xk,• =
⋃

0≤j≤ℓ

sj(Xk−1,•) ,
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and let
sXk,• = s[k−1]Xk,• =

⋃

0≤j<k

sj(Xk−1,•)

be the simplicial subset of degenerate k-simplices.

Lemma 6.6.5. For each 0 ≤ ℓ < k there is a pushout square

s[ℓ−1]Xk−1,• //

²²

²²

p

s[ℓ−1]Xk,•
²²

²²

Xk−1,•
sℓ,•

// s[ℓ]Xk,•

in sSet.

Proof. Since s[ℓ]Xk,• is defined as the union of s[ℓ−1]Xk,• and the image of sℓ

on Xk−1,•, it suffices to show that s[ℓ−1]Xk−1,• is the preimage of s[ℓ−1]Xk,•

under sℓ. Suppose that y ∈ Xk−1,• satisfies sℓ(y) = sj(z) for some 0 ≤ j < ℓ
and z ∈ Xk−1,•. Then by the simplicial identities,

y = dℓ+1(sℓ(y)) = dℓ+1(sj(z)) = sj(dℓ(z)) ,

so y ∈ s[ℓ−1]Xk−1,•. Conversely, suppose that y = sj(w) for some 0 ≤ j < ℓ and
w ∈ Xk−2,•. Then, by another case of the simplicial identities,

sℓ(y) = sℓ(sj(w)) = sj(sℓ−1(w))

and sℓ(y) ∈ s[ℓ−1]Xk,•.

Corollary 6.6.6. Let f•,• : X•,• −→ Y•,• be such that

fm,• : Xm,• −→ Ym,•

is a weak homotopy equivalence for each m ≥ 0. Then the restricted map

sfk,• : sXk,• −→ sYk,•

is a weak homotopy equivalence for each k ≥ 0.

Proof. We prove by induction on k ≥ 0 and −1 ≤ ℓ < k that s[ℓ]fk,• : s[ℓ]Xk,• →
s[ℓ]Yk,• is a weak homotopy equivalence. This is clear for ℓ = −1. For 0 ≤ ℓ < k
it follows by the gluing lemma, Lemma 6.6.5, and the inductive hypothesis.

Definition 6.6.7. For each k ≥ −1, let the external k-skeleton

X
(k)
•,• ⊆ X•,•

be the bisimplicial subset generated by the (m, q)-bisimplices with m ≤ k. It is
the image of the canonical map

∐

m≤k

Xm,• × ∆m
• −→ X•,• .

Then X
(k)
•,q is the simplicial k-skeleton of X•,q for each q ≥ 0. Let diag(X(k))• ⊆

diag(X)• be the diagonal simplicial set, with q-simplices diag(X(k))q = X
(k)
q,q ⊆

Xq,q.
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Proof of the realization lemma. We shall prove by induction that the restricted
map

diag(f (k))• : diag(X(k))• −→ diag(Y (k))•

is a weak homotopy equivalence, for each k ≥ −1. This is clear for k = −1,
since all (−1)-skeleta are empty. Applying topological realization, and using
Lemma 5.5.7 to pass to the colimit as k → ∞, it then follows that

|diag(f)•| : |diag(X)•| −→ |diag(Y )•|

is a homotopy equivalence, which by Corollary 6.5.18 is what we need to prove.
By Lemma 6.3.23 applied to the simplicial set X•,q there is a pushout square

Xk,q × ∂∆k
• ∪ sXk,q × ∆k

•
//

²²

²²

p

X
(k−1)
•,q

²²

²²

Xk,q × ∆k
•

// X
(k)
•,q

in sSet for each q ≥ 0, hence also a pushout square

Xk,• × ∂∆k
• ∪ sXk,• × ∆k

•
//

²²

²²

p

diag(X(k−1))•
²²

²²

Xk,• × ∆k
•

// diag(X(k))•

(6.2)

in sSet. The vertical maps are inclusions, hence cofibrations.
By assumption, each map Xm,• → Ym,• is a weak homotopy equivalence,

so by Corollary 6.6.6, each restricted map sXk,• → sYk,• is a weak homotopy
equivalence. It follows, from the commutation of products with topological
realization, that the four maps

Xk,• × ∆k
• −→ Yk,• × ∆k

•

Xk,• × ∂∆k
• −→ Yk,• × ∂∆k

•

sXk,• × ∆k
• −→ sYk,• × ∆k

•

sXk,• × ∂∆k
• −→ sYk,• × ∂∆k

•

are weak homotopy equivalences. By the gluing lemma applied to the pushout
square

sXk,• × ∂∆k
•

// //

²²

²²

p

sXk,• × ∆k
•

²²

²²

Xk,• × ∂∆k
•

// // Xk,• × ∂∆k
• ∪ sXk,• × ∆k

•

the union map

Xk,• × ∂∆k
• ∪ sXk,• × ∆k

• −→ Yk,• × ∂∆k
• ∪ sYk,• × ∆k

•

is a weak homotopy equivalence.
By another application of the gluing lemma, using the pushout square (6.2)

and the inductive hypothesis that diag(f (k−1))• is a weak homotopy equivalence,
it follows that diag(f (k))• is a weak homotopy equivalence. This completes the
inductive proof.
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Example 6.6.8. Let Y•,• be a bisimplicial set, such that each degeneracy map

ρ∗m : Y0,• −→ Ym,•

is a weak homotopy equivalence. Then the inclusion of zero-simplices (see Ex-
ample 6.5.3)

ρ∗ : Y0,• −→ Y•,•

is a weak homotopy equivalence, by the realization lemma.

6.7 Subdivision

[[Segal’s edgewise subdivision.]]
[[The Bökstedt–Hsiang–Madsen edgewise subdivision.]]
[[Barycentric subdivision and Kan normal subdivision.]]

6.8 Realization of fibrations

The following is a special case of the Bousfield–Friedlander fibration theorem
[8, B.4]. We outline Waldhausen’s argument [67, 5.2], which in turn extends a
one-line proof of a special case due to Dieter Puppe.

Definition 6.8.1. A diagram V → X → Y of topological spaces is a fibration
up to homotopy if the composite map V → Y is constant [[to a point z0 ∈ Y ]],
and if the induced map from V to the homotopy fiber of X → Y [[at z0]] is a
homotopy equivalence.

A diagram of simplicial sets V• → X• → Y• is a fibration up to homotopy
if the diagram |V•| → |X•| → |Y•| obtained by topological realization has this
property, and similarly for multi-simplicial sets, categories, etc.

Proposition 6.8.2. Let V•,• → X•,• → Y•,• be a diagram of bisimplicial sets
such that V•,• → Y•,• is constant. Suppose that

Vm,• −→ Xm,• −→ Ym,•

is a fibration up to homotopy, for each m ≥ 0. Suppose furthermore that Ym,•

is connected, for each m ≥ 0. Then

V•,• −→ X•,• −→ Y•,•

is a fibration up to homotopy.

Proof. Consider first the special case when there is a bisimplicial group G•,•

that acts from the right on a bisimplicial set W•,•, and the diagram has the
form

Wm,• −→ Wm,• ×Gm,•
E•Gm,• −→ B•Gm,• ,

(balanced product over Gm,•) compatibly for each m ≥ 0. [[Reference for bar
constructions. Implicitly pass to diagonal in B•Gm,•.]] The topological realiza-
tion can then be written as

W −→ W ×G EG −→ BG
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where G = ‖G•,•‖ is a (cofibrantly based) topological group acting on the right
on the space W = ‖W•,•‖. This is the fiber bundle associated to the principal
G-bundle G → EG → BG, see [63] and also [41, 1.5]. In particular it is a
homotopy fiber sequence, since the base is numerable [[Reference]].

To handle the general case, we will the Kan loop group functor, which to
each connected pointed simplicial set Z• associates a (degreewise free) simplicial
group G(Z•), such that |G(Z•)| ≃ Ω|Z•|. More precisely, there is a principal
G(Z•)-bundle

Γ̃Z• −→ ΓZ•

with Γ̃Z• weakly contractible, and a pointed weak equivalence Z•
≃
−→ ΓZ•,

all of which depend functorially on Z•. See Kan’s original article [32] and
Waldhausen’s remake [69]. [[Discuss preferred base points in Γ̃Z• and ΓZ•.]]

For each m ≥ 0, form the Kan loop group Gm,• = G(Ym,•) and the principal

Gm,•-bundle Γ̃Ym,• → ΓYm,•. Let

Wm,• = Xm,• ×ΓYm,•
Γ̃Ym,•

denote the pullback along the composite map Xm,• → Ym,• → ΓYm,•. Here the
subscript indicates the pullback with respect to the maps to ΓYm,•. We get a
commutative diagram

Vm,• //

=

²²

Xm,• //

=

²²

Ym,•

≃

²²

Vm,• // Xm,• // ΓYm,•

Vm,• //

=

OO

Wm,•
f̃

//

OO

q

Γ̃Ym,•

OO

The middle row is a fibration up to homotopy since Ym,•
≃
−→ ΓYm,• is a weak

homotopy equivalence, so that the homotopy fibers of |Xm,•| → |Ym,•| and
|Xm,•| → |ΓYm,•| are homotopy equivalent.

The free right Gm,•-action on Γ̃Ym,• pulls back to a free action on Wm,•, and

the map labeled f̃ is equivariant. Applying the Borel construction (−) ×Gm,•

E•Gm,• (where the subscript now denotes the balanced product with respect to
the Gm,•-actions), we get the upper part of the following commutative diagram.

Vm,• // Xm,• // ΓYm,•

Vm,• //

=

OO

≃

²²

Wm,• ×Gm,•
E•Gm,• //

≃

OO

=

²²

q

Γ̃Ym,• ×Gm,•
E•Gm,•

≃

OO

≃

²²

Wm,• // Wm,• ×Gm,•
E•Gm,• // B•Gm,•

The right hand vertical map is induced by the collapse map Γ̃Ym,• → ∗, and
the lower row is the fiber bundle associated to the Gm,•-action on Wm,•.
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The maps in the middle and right hand columns are weak equivalences,
since Wm,• → Xm,•, Γ̃Ym,• → ΓYm,• and E•Gm,• → B•Gm,• are principal

Gm,•-bundles, and E•Gm,• and Γ̃Ym,• are contractible.
It follows that the middle row is a fibration up to homotopy. By comparing

the long exact sequences in homotopy for the middle and lower rows, and using
the five-lemma, it follows that the left hand vertical map Vm,• → Wm,• is a
weak homotopy equivalence.

By functoriality of the Kan loop group construction, we now have a diagram
of bisimplicial sets

V•,• //

=

²²

X•,• //

=

²²

Y•,•

≃

²²

V•,• // X•,• // ΓY•,•

V•,• //

=

OO

≃

²²

W•,• ×G•,•
E•G•,• //

≃

OO

=

²²

ΓY•,• ×G•,•
E•G•,•

≃

OO

≃

²²

W•,• // W•,• ×G•,•
E•G•,• // B•G•,•

where all vertical maps are weak equivalences, by the the discussion above for
each m ≥ 0 and the realization lemma, and all horizontal composites are con-
stant. By the first special case, the lower row is a fibration up to homotopy. It
follows that also the upper row is a fibration up to homotopy, as desired.



Chapter 7

Homotopy theory of

categories

We now turn to the first chapter of Quillen’s paper [55], on the classifying space
of a small category.

7.1 Nerves and classifying spaces

Recall from Definition 2.9.4 that we view the totally ordered set

[n] = {0 < 1 < · · · < n}

as a small category.

Definition 7.1.1. The nerve of a small category C is the simplicial set N•C

with n-simplices
NnC = Cat([n],C )

for n ≥ 0, and structure maps

α∗ = Cat(α,C ) : NnC = Cat([n],C ) −→ Cat([m],C ) = NmC

for each morphism α : [m] → [n] in ∆. Here α∗ takes an n-simplex x : [n] → C

to the composite
α∗(x) = x ◦ α : [m] −→ C .

In other words, NnC is the set of all diagrams

X0
f1
−→ X1

f2
−→ . . .

fn
−→ Xn

of n composable morphisms in C . The i-th face operator di : NnC → Nn−1C ,
for 0 ≤ i ≤ n ≥ 1, takes the n-simplex above to the (n − 1)-simplex

X1
f2
−→ . . .

fn
−→ Xn

for i = 0,

X0
f1
−→ . . .

fi−1
−→ Xi−1

fi+1fi
−→ Xi+1

fi+2
−→ . . .

fn
−→ Xn

171
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for 0 < i < n, and

X0
f1
−→ . . .

fn−1
−→ Xn−1

for i = n. The j-th degeneracy operator sj : Xn → Xn+1, for 0 ≤ j ≤ n, takes
the n-simplex above to the (n + 1)-simplex

X0
f1
−→ . . .

fj
−→ Xj

idXj
−→ Xj

fj+1
−→ . . .

fn
−→ Xn .

Definition 7.1.2. Let F : C → D be a functor between small categories. The
induced map of nerves

N•F : N•C −→ N•D

is the map of simplicial sets given in degree n by the function

NnF = Cat([n], F ) : NnC = Cat([n],C ) −→ Cat([n],D) = NnD .

Here NnF takes an n-simplex x : [n] → C to the composite

(NnF )(x) = F ◦ x : [n] −→ D .

In other words, this is the function taking the diagram

X0
f1
−→ X1

f2
−→ . . .

fn
−→ Xn

of n composable morphisms in C to the diagram

F (X0)
F (f1)
−→ F (X1)

F (f2)
−→ . . .

F (fn)
−→ F (Xn)

of n composable morphisms in D .

Example 7.1.3. N•[n] = ∆n
• for all n ≥ 0, and N•α = α• for all α in ∆. In

particular, N•[1] = ∆1
•, where [1] is the category {0 < 1}.

Definition 7.1.4. We will use the bar notation [fn| . . . |f1]X0 for the n-simplex

X0
f1
−→ . . .

fn
−→ Xn

in N•C . Then

di([fn| . . . |f1]X0) =





[fn| . . . |f2]X1 for i = 0,

[fn| . . . |fi+1fi| . . . |f1]X0 for 0 < i < n,

[fn−1| . . . |f1]X0 for i = n,

and
sj([fn| . . . |f1]X0) = [fn| . . . |idXj

| . . . |f1]X0

for 0 ≤ j ≤ n, while

(NnF )([fn| . . . |f1]X0) = [F (fn)| . . . |F (f1)]F (X0)

for n ≥ 0.
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Definition 7.1.5. For 0 ≤ i ≤ n, let the i-th vertex morphism ǫi : [0] → [n] in
∆ be given by ǫi(0) = i. For 1 ≤ i ≤ n let the i-th edge morphism ηi : [1] → [n]
in ∆ be given by ηi(0) = i − 1 and ηi(1) = i. In the nerve N•C of a category
we can recover the objects and morphisms in a diagram

X0
f1
−→ . . .

fn
−→ Xn

corresponding to an n-simplex σ = [fn| . . . |f1]X0 by the formulas Xi = ǫ∗i (σ)
for 0 ≤ i ≤ n and fi = η∗

i (σ) for 1 ≤ i ≤ n.

Lemma 7.1.6. The rules C 7→ N•C and F 7→ N•F define a full and faithful
functor

N• : Cat −→ sSet .

Proof. Functoriality is clear. Given small categories C and D , we must prove
that

N• : Cat(C ,D) −→ sSet(N•C , N•D)

is bijective.
Suppose given a simplicial map h• : N•C → N•D . For each X in obj(C ) =

N0C , let H(X) = h0(X) in obj(D) = N0D . For each f : X → Y in C (X,Y ),
view f = [f ]X as an element in N1C with d0(f) = Y and d1(f) = X, and let
H(f) = h1(f) ∈ N1D . Then d0(H(f)) = d0(h1(f)) = h0(d0(f)) = h0(Y ) =
H(Y ) and d1(H(f)) = d1(h1(f)) = h0(d1(f)) = h0(X) = H(X), since h• is a
simplicial map, so H(f) : H(X) → H(Y ) lies in D(H(X),H(Y )).

We check that the rules X 7→ H(X) and f 7→ H(f) define a functor. If
f = idX ∈ N1C then f = s0(X) for X ∈ N0C , so H(f) = h1(s0(X)) =
s0(h0(X)) = s0(H(X)) = idH(X). If g : Y → Z in C then we view

X
f

−→ Y
g

−→ Z

as a 2-simplex σ = [g|f ]X ∈ N2C , with d0(σ) = g, d1(σ) = gf and d2(σ) = f in
N1C . Applying the simplicial map h• we get a 2-simplex τ = h2([g|f ]X) ∈ N2D

with d0(τ)) = h1(g) = H(g), d1(τ)) = h1(gf) = H(gf) and d2(τ)) = h1(f) =
H(f). Hence τ is the 2-simplex

H(X)
H(f)
−→ H(Y )

H(g)
−→ H(Z)

in N•D , denoted [H(g)|H(f)]H(X), with the property that H(g) ◦ H(f) =
d1(τ) = H(gf).

Starting with a functor F : C → D and applying this construction to h• =
N•F , it is clear that the resulting functor H agrees with F on objects and
morphisms, so that F = H.

Conversely, starting with a simplicial map h• : N•C → N•D , we claim that
h• equals the nerve map N•H of the associated functor H. To see this, consider
an n-simplex

X0
f1
−→ . . .

fn
−→ Xn

in N•C , say σ = [fn| . . . |f1]X0. It is mapped under N•H to the n-simplex

H(X0)
H(f1)
−→ . . .

H(fn)
−→ H(Xn)
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in N•D , say τ = [H(fn)| . . . |H(f1)]F (X0). We need to compare τ with the
image hn(σ) of σ under h•. Suppose that hn(σ) is the simplex

Y0
g1
−→ . . .

gn
−→ Yn .

We now use naturality of h• with respect to the vertex morphisms ǫi and the
edge morphisms ηi. For each 0 ≤ i ≤ n the i-th vertex Yi of hn(σ) equals h0

applied to the i-th vertex Xi of σ, which equals H(Xi), by construction of H
on objects. And for each 1 ≤ i ≤ n the edge gi : Yi−1 → Yi of hn(σ) equals h1

applied to the edge fi : Xi−1 → Xi of σ, which equals H(fi), by construction of
H on morphisms. Hence τ = hn(σ), as required.

Remark 7.1.7. The nerve functor induces an equivalence from Cat to the
full subcategory of sSet generated by the simplicial sets X• that satisfy the
following Segal condition: The function

Xn −→ X1 ×X0
X1 ×X0

· · · ×X0
X1 ×X0

X1

sending x ∈ Xn to the n-tuple (η∗
n(x), . . . , η∗

1(x)) is a bijection for each n ≥
0. Here the right hand side is the limit of the diagram obtained by applying
X : ∆op → Set to the lower part of the diagram

[n]

[1]

ηn

11

[1]

ηn−1

>>

. . . [1]

η2

``

[1]

η1

mm

[0]

d1

__??????? d0

??ÄÄÄÄÄÄÄ

ǫn−1

44

. . . [0]

d1

__??????? d0

??ÄÄÄÄÄÄÄ

ǫ1

jj

in ∆, and the function from Xn is determined by the universal property of the
limit.

Equivalently, let En
• ⊆ ∆n

• be the simplicial subset generated by the n edges
(= 1-simplices) ηi ∈ ∆n

1 for 1 ≤ i ≤ n. The Segal condition for X• asserts that
the restriction map

sSet(∆n
• ,X•) −→ sSet(En

• ,X•)

is a bijection, for each n ≥ 0.

[[This is not the same as being 1-coskeletal, which amounts to asking that
the restriction map along (∆n

• )(1) ⊆ ∆n
• is a bijection for each n ≥ 0.]]

[[Alternatively, consider horns Λn
i ⊂ ∆n

• , and ask that sSet(∆n
• ,X•) →

sSet(Λn
i ,X•) is bijective for all 0 < i < n (inner horns. Forward reference to

∞-categories.]]
[[Likewise, bicategories embed in bisimplicial sets.]]

Lemma 7.1.8. The nerve respects small limits, including products, as well as
coproducts: There are natural simplicial isomorphisms

N•(lim
c∈C

F (c)) ∼= lim
c∈C

N•F (c)
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for each diagram F : C → Cat, and

N•(
∏

i∈I

Ci) ∼=
∏

i∈I

N•Ci

N•(
∐

i∈I

Ci) ∼=
∐

i∈I

N•Ci

for each family (Ci)i∈I of small categories.

Proof. Functors [n] → limc∈C F (c) correspond to families of functors [n] → F (c)
for c in C , compatible under the morphisms of C . Each functor [n] →

∐
i∈I Ci

factors through a unique Ci.

Remark 7.1.9. The nerve N• admits a left adjoint, L : sSet → Cat, taking
a simplicial set X• to a coequalizer

∐
α : [m]→[n] Xn × [m]

s //

t
//

∐
n≥0 Xn × [n] // L (X•)

in Cat. Here Xn × [n] denotes
∐

Xn
[n], and so on. Functors F : L (X•) → D

correspond to compatible families of functors Fn : Xn × [n] → D for n ≥ 0, or
equivalently, to compatible functions Gn : Xn → NnD . These are the same as
simplicial maps G• : X• → N•D .

Remark 7.1.10. The nerve does not preserve general colimits. For example,
for suitable functors s and t, the coequalizer of the nerve of the diagram

[1] ⊔ [1]
s //

t
// [2] ⊔ [2]

is not the nerve of a category. [[Elaborate?]]

Lemma 7.1.11. The nerve of the opposite category is the opposite simplicial
set of the nerve:

N•(C
op) = N•(C )op

[[Proof]]

Definition 7.1.12. The classifying space of a small category C is the topolog-
ical realization

|C | = |N•C |

of its nerve. It is a CW complex with one n-cell for each non-degenerate n-
simplex in N•C , i.e., for each chain

X0
f1
−→ . . .

fn
−→ Xn

of n composable, non-identity morphisms in C .
Each functor F : C → D of small categories induces a cellular map

|F | = |N•F | : |C | −→ |D |

of classifying spaces. The classifying space defines a functor

| − | : Cat −→ CW ⊂ Top .
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Example 7.1.13. Each object X of C corresponds to a 0-cell, each non-identity
morphism f : X → Y corresponds to a 1-cell [f ]X connecting X and Y , and
each pair of non-identity morphisms f : X → Y and g : Y → Z corresponds to
a 2-cell [g|f ]X attached along [f ]X, [g]Y and [gf ]X.

Z

X
[f ]X

//

[gf ]X
>>~~~~~~~ [g|f ]X

Y

[g]Y
__@@@@@@@

Remark 7.1.14. Our notation follows Waldhausen [68]. Other authors, in-
cluding Quillen [55], write BC for the classifying space of C . [[Comment on the
case BG = |BG|.]]

Lemma 7.1.15. Let F : C → D be an isomorphism of small categories. Then

|F | : |C |
∼=
−→ |D |

is an isomorphism of CW complexes.

Proof. The inverse functor G : D → C induces the inverse cellular homeo-
morphism |G| : |D | → |C |.

Lemma 7.1.16. The classifying space functor |− | : Cat → CW respects finite
products. Given small categories C and D , the projections

C ←− C × D −→ D

induce a homeomorphism

|C × D |
∼=
−→ |C | × |D | ,

where the target is topologized as the product of CW complexes.

Proof. This is the composite of the two homeomorphisms

|N•(C × D)| ∼= |N•C × N•D | ∼= |N•C | × |N•D |

from Lemma 7.1.8 and Proposition 6.4.3.

The following useful observation was publicized by Segal [59].

Proposition 7.1.17. Let φ : F ⇒ G be a natural transformation of functors
F , G : C → D between small categories. The nerve of the corresponding functor
Φ: C × [1] → D induces a simplicial homotopy

N•Φ: N•C × ∆1
• −→ N•D

between N•F and N•G : N•C → N•D , and a homotopy

|Φ| : |C | × I −→ |D |

between |F | and |G| : |C | → |D |.
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Proof. This is clear from Lemma 3.1.12, the identity N•[1] = ∆1
•, the identifica-

tion |∆1
•| = ∆1 ∼= I, and the commutation of nerves and classifying spaces with

(finite) products.

Example 7.1.18. The simplicial homotopy can be illustrated as follows. Let
f : X → Y and g : Y → Z be composable morphisms in C . The functor Φ: C ×
[1] → D maps the diagram

(X, 1)
(gf,id)

//

(f,id)

''PPPPPPPPPPPP
(Z, 1)

(Y, 1)

(g,id)
77nnnnnnnnnnnn

(X, 0)
(gf,id)

//______________

(f,id)
''PPPPPPPPPPPP

<<yyyyyyyyyyyyyyyyy

(id,0<1)

OO 99t
t

t
t

t
t

t
t

t
t

t
t

t
t

t
t

t
t

(Z, 0)

(id,0<1)

OO

(Y, 0)

(g,id)

77nnnnnnnnnnnn

(id,0<1)

OO
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in C × [1] to the diagram
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F (g)
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in D . The reader may visualize how the image of ∆2
• × ∆1

• in N•(C × [1]) is
mapped to N•(D), or how the image of ∆2 × ∆1 in |C × [1]| is mapped to |D |.

Lemma 7.1.19. Let F : C → D be an equivalence of small categories. Then

|F | : |C |
≃
−→ |D |

is a homotopy equivalence.

Proof. Let G : D → C be an inverse equivalence. The natural isomorphisms
G◦F ∼= idC and F ◦G ∼= idD induce homotopies |G|◦ |F | ≃ id|C | and |F |◦ |G| ≃
id|D|, exhibiting |F | and |G| as homotopy inverses.
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Definition 7.1.20. Let C be a category with a small skeleton C ′, as in Defi-
nition 3.2.11. Then we can define |C |, up to homotopy equivalence, to be |C ′|.
For any other skeleton C ′′ the composite equivalence C ′ ⊆ C −→ C ′′ induces a
homotopy equivalence |C ′| ≃ |C ′′|, well-defined up to homotopy.

Lemma 7.1.21. Let F : C → D and G : D → C be an adjoint pair of functors
between small categories. Then

|F | : |C |
≃
−→ |D |

and
|G| : |D |

≃
−→ |C |

are mutually inverse homotopy equivalences.

Proof. The natural transformations η : idC ⇒ G◦F and ǫ : F ◦G ⇒ idD induce
homotopies id|C | ≃ |G| ◦ |F | and |F | ◦ |G| ≃ id|D|, exhibiting |F | and |G| as
homotopy inverses.

Definition 7.1.22. A functor F : C → D between (skeletally) small categories
is called a homotopy equivalence if |F | : |C | → |D | is a homotopy equivalence of
spaces. A category C is said to be contractible if |C | is a contractible space.

Lemma 7.1.23. Suppose that C has an initial object or a terminal object. Then
C is contractible.

Proof. Suppose that X is initial in C . The composite C → ∗ → C taking
each object Y in C to X, and each morphism in C to idX , is the constant
functor const(X). The unique morphisms ǫY : X → Y , for all Y in C , define
a natural transformation ǫ : const(X) ⇒ idC . Passing to classifying spaces, |ǫ|
is a homotopy from the constant map to X, viewed as a 0-cell in |C |, to the
identity map id|C |. Hence |C | is contractible.

The case with a terminal object is dual.

Example 7.1.24. Let C = [p], with terminal object p. The unique morphisms
ηi = (i ≤ p) for i ∈ [p] define a natural transformation η : id[p] ⇒ constp

from the identity to the constant functor at p. The corresponding (bi-)functor
H : [p] × [1] → [p] is given by H(i, 0) = i and H(i, 1) = p, for i ∈ [p]. Its nerve

N•H : ∆p
• × ∆1

• −→ ∆p
•

is a simplicial homotopy from id∆p
•

to the constant simplicial map to the vertex
p in ∆p

•. It is given in simplicial degree n by NnH : ∆p
n × ∆1

n → ∆p
n, mapping

(α : [n] → [p], ζ : [n] → [1]) to NnH(α, ζ) = β : [n] → [p], given by

β(i) =

{
α(i) if ζ(i) = 0

p if ζ(i) = 1.

Setting ζ = ζn
k for 0 ≤ k ≤ n + 1, we can rewrite this as hk

n(α) = NnH(α, ζn
k ) =

β, where

β(i) =

{
α(i) if 0 ≤ i < k

p if k ≤ i ≤ n.
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In Waldhausen’s formulation, with X = ∆p
•, the functor X∗ : (∆/[1])op → Set

maps ([n], ζ : [n] → [1]) to Xn = ∆p
n. The corresponding natural transformation

h : X∗ ⇒ X∗ has components hζ : ∆p
n → ∆p

n given by hζ(α) = NnH(α, ζ) = β,
with β equal to the composite

[n]
(α,ζ)
−→ [p] × [1]

H
−→ [p] .

[[Since [p] has the initial object 0, there is a dual simplicial homotopy to the
identity of ∆p

•, from the constant simplicial map to the vertex 0.]]

Lemma 7.1.25. Let C be a small category. There is a natural bijection

π0(C ) ∼= π0(|C |) .

Proof. Recall Definition 3.5.6. The bijection takes the equivalence class of an
object X of C , which we can view as a 0-simplex in N•C , to the path component
of the corresponding 0-cell (X) in |C |. If f : X → Y is a morphism in C , so
X ∼ Y , then the 1-simplex [f ]X in N•C maps to a path (f) from (X) to (Y )
in |C |, so (X) and (Y ) lie in the same path component. By induction, if X ≃ Y
are related by a chain of morphisms in C , then (X) and (Y ) still lie in the same
path component.

Conversely, any point in |C | is in the image of a simplex {x}×∆n → |C |, for
some x : [n] → C , and is in the same path component as the 0-cell corresponding
to the object X0 = x(0). Given two objects X and Y of C , if (X) and (Y ) lie
in the same path component of |C |, then there exists a path in |C | from (X)
to (Y ), and this path can be homotoped into the 1-skeleton of |C |. Hence it
is homotopic to the path sum of a chain of paths (f), or reverse paths (f),
for morphisms f in C . This means that X and Y are connected by a chain
of morphisms in C , so X ≃ Y and X and Y represent the same element in
π0(C ).

Lemma 7.1.26. Consider a small category C with a chosen object X. There
is a natural group isomorphism

C [C−1](X,X) ∼= π1(|C |,X) .

Hence, C (X,X) ∼= π1(|C |,X) if C is a groupoid.

Proof. By the van Kampen theorem, the fundamental group π1(|C |,X) is known
to be generated by the edge paths in |C |, which are words (f±1

m , . . . , f±1
1 ) in the

edges of |C |, or equivalently, in the morphisms of C and their formal inverses,
subject to the cancellation rules normally generated by the 2-cells in |C |, i.e.,
the 2-simplices associated to each pair of composable morphisms f and g in C .
These rules assert that going round two of the edges of this triangle gives a path
that is homotopic to going directly across the third edge.

Letting h = gf , and taking into account the six possible orientations of the
edges of the triangle, one gets the relations

(g−1, h+1) ∼ (f+1) (h+1, f−1) ∼ (g+1) (g+1, f+1) ∼ (h+1)

(h−1, g+1) ∼ (f−1) (f+1, h−1) ∼ (g−1) (f−1, g−1) ∼ (h−1) .

These may be simplified to (g+1, f+1) ∼ (h+1), (f−1, g−1) ∼ (h−1), (g+1, g−1) ∼
(id+1) and (g−1, g+1) ∼ (id+1). But these are precisely the generating relations
among morphisms imposed in the definition of C [C−1].
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7.2 The bar construction

Definition 7.2.1. Let M be a monoid with unit element e and multiplication
µ : M × M → M taking (m,m′) to µ(m,m′) = mm′. Let BM be the category
with one object ∗, and one morphism [m] : ∗ → ∗ for each m ∈ M , with identity
[e], and composition [m] · [m′] = [mm′] for m,m′ ∈ M . The simplicial bar
construction on M is the nerve

B•M = N•BM .

It is the simplicial set with n-simplices the set

BnM = {[mn| . . . |m1] | mi ∈ M} = Mn ,

face maps di : BnM → Bn−1M given by

di([mn| . . . |m1]) =





[mn| . . . |m2] for i = 0,

[mn| . . . |mi+1mi| . . . |m1] for 0 < i < n,

[mn−1| . . . |m1] for i = n,

and degeneracy maps sj : BnM → Bn+1M given by

sj([mn| . . . |m1) = [mn| . . . |mj+1|e|mj | . . . |m1]

for 0 ≤ j ≤ n. The bar construction on M is the topological realization

BM = |B•M | = |BM | .

It is a CW complex with one n-cell [mn| . . . |m1] for each n-tuple of non-identity
elements in M .

Given a monoid homomorphism f : M → N , let B•f : B•M → B•N be the
simplicial map of nerves B•f = N•(Bf), given in degree n by

(Bnf)([mn| . . . |m1]) = [f(mn)| . . . |f(m1)] .

Let Bf : BM → BN be the cellular map Bf = |B•f | = |Bf |.

Example 7.2.2. The bar construction on the trivial monoid {e} is a point.
The bar construction BC2 on a group with two elements {e, T} has one n-cell
[T | . . . |T ] for each n ≥ 0.

Lemma 7.2.3. The composite B• = N•◦B : Mon → sSet is a full and faithful
functor, and B = | − | ◦ B• : Mon → CW is a (faithful) functor.

Proof. This is clear from Lemmas 2.8.5, 6.3.26 and 7.1.6.

Lemma 7.2.4. The projections M ← M ×N → N induce a natural simplicial
isomorphism

B•(M × N)
∼=
−→ B•M × B•N

and a natural homeomorphism of CW complexes

B(M × N)
∼=
−→ BM × BN .
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Proof. This is clear from Lemmas 2.8.7 and 7.1.16.

Lemma 7.2.5. If M is commutative, then the unit map {e} → M and the
multiplication map µ : M ×M → M induce simplicial maps ∗ = B•{e} → B•M
and

B•µ : B•M × B•M ∼= B•(M × M) −→ B•M ,

making B•M a commutative monoid in sSet. Passing to CW realizations, the
maps ∗ → BM and

Bµ : BM × BM ∼= B(M × M) −→ BM

make BM a commutative monoid in CW.

[[Proof]]
[[Can iterate, to form BnM .]]

Definition 7.2.6 (Translation category). Let M be a monoid and Y a left
M -set. Let B(M,Y ) be the small category with objects the y ∈ Y , and with
a morphism [m]y from y to my for each m ∈ M , y ∈ Y . We call B(M,Y ) the
translation category of the M -action on Y . If M = G is a group, then B(G,Y )
is a groupoid, called the translation groupoid.

Definition 7.2.7. In the special case Y = M , let E (M) = B(M,M) be the
translation category for M acting from the left on itself, and let EM = |E (M)|
be its classifying space. The right action of M on Y = M induces a right
action on E (M) and on EM . [[Free action when M = G is a group, with
orbits EG/G = BG.]] Note that E (M) has the initial object e, with a unique
morphism [m]e from e to any other object m. Hence EM is contractible.

Lemma 7.2.8. |B(M,Y )| ∼= EM ×M Y . When M = G is a group, there is a
fiber bundle Y → EG ×G Y → BG.

[[Same for simplicial monoids/groups acting on simplicial sets.]]
[[One-sided bar construction. E•G = B•(∗, G,G) contractible. fiber se-

quence G → EG → BG.]]
[[Form two-sided bar construction B(X,M, Y ) as classifying space of the

category with objects X × Y and a morphism from (x · m, y) to (x,m · y), or
vice versa.]]

Definition 7.2.9. Let M be a monoid, X a right M -set and Y a left M -set.
Let B(X,M, Y ) be the small category with objects the pairs (x, y) ∈ X × Y ,
and one morphism x[m]y from (xm, y) to (x,my) for each x ∈ X, m ∈ M and
y ∈ Y . The composite of x[m]y and [[ETC]]

[[Compute π0 and π1 of |C |, at least for groupoids.]]

7.3 Quillen’s theorem A

Quillen [55, p. 93] found the following useful sufficient condition for a functor
to be a homotopy equivalence.

Theorem 7.3.1 (Quillen’s theorem A). Let F : C → D be a functor of small
categories. Suppose that the left fiber F/Y is contractible for each object Y of
D . Then F is a homotopy equivalence.
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Proof. Let T•,•(F ) be the bisimplicial set with (m,n)-bisimplices the diagrams

X0
// . . . // Xm_

²²

F (Xm)
f

// Y0
// . . . // Yn

where the upper row lies in C and the lower row lies in D . In other words,
an element of Tm,n(F ) is a triple (x, f, y), where x : [m] → C , y : [n] → D and
f : F (Xm) → Y0 is a morphism in D , where we set Xi = x(i) and Yj = y(j) for
i ∈ [m], j ∈ [n].

The bisimplicial structure map (α, β)∗, for α : [p] → [m], β : [q] → [n], takes
(x, f, y) to

(α, β)∗(x, f, y) = (α∗(x), g, β∗(y))

in Tp,q(F ), where g : F (α∗(x)p) → β∗(y)0 is the composite

F (Xα(p)) −→ F (Xm)
f

−→ Y0 −→ Yβ(0) .

Hence the i-th left hand face map deletes Xi, and replaces F (Xm) → Y0 with the
composite F (Xm−1) → F (Xm) → Y0 if i = m. The j-th left hand degeneracy
map repeats Xj . The i-th right hand face map deletes Yi, and replaces F (Xm) →
Y0 with the composite F (Xm) → Y0 → Y1 if i = 0. The j-th right hand
degeneracy map repeats Yj .

For each m ≥ 0, the simplicial set Tm,•(F ) decomposes as the disjoint union

Tm,•(F ) ∼=
∐

x∈NmC

N•(F (Xm)/D) .

indexed on the x : [m] → C . Each category F (Xm)/D has an initial object,
hence is contractible by Lemma 7.1.23. Thus the simplicial map

sm,• : Tm,•(F ) ∼=
∐

x∈NmC

N•(F (Xm)/D)
≃
−→

∐

x∈NmC

∗ ∼= NmC

collapsing each summand N•(F (Xm)/D) to a point ∗ ∼= ∆0
•, is a weak homotopy

equivalence. Here the set NmC is viewed as a simplicial set in a trivial way,
with n-simplices NmC for all n ≥ 0, and identity maps as simplicial structure
maps.

Likewise, we view N•C as a bisimplicial set in a trivial way, with (m,n)-
simplices NmC for all m,n ≥ 0. In functorial terms, we are considering the
composite functor

∆op × ∆op pr1
−→ ∆op N•C

−→ Set .

The weak homotopy equivalences sm,• : Tm,•(F ) → NmC for m ≥ 0 combine to
a bisimplicial map

s•,• : T•,•(F )
≃
−→ N•C .

By the realization lemma, s•,• is a weak homotopy equivalence.
On the other hand, for each n ≥ 0, the simplicial set T•,n(F ) decomposes as

the disjoint union

T•,n(F ) ∼=
∐

y∈NnD

N•(F/Y0)



CHAPTER 7. HOMOTOPY THEORY OF CATEGORIES 183

indexed on the y : [n] → D . By hypothesis, each left fiber category F/Y0 is
contractible. Thus the simplicial map

t•,n : T•,n(F ) ∼=
∐

y∈NnD

N•(F/Y0)
≃
−→

∐

y∈NnD

∗ ∼= NnD

collapsing each summand N•(F/Y0) to a point, is a weak homotopy equivalence.
Now we view N•D as a bisimplicial set in the “other” trivial way, with

(m,n)-simplices NnD for all m,n ≥ 0. The weak homotopy equivalences t•,n

combine to a bisimplicial map

t•,• : T•,•(F )
≃
−→ N•D .

By the realization lemma, in its reflected form, t•,• is a weak homotopy equiv-
alence.

Note that the maps s•,• and t•,• are natural in F , in the sense that the
diagram

N•C

N•F

²²

T•,•(F )
s•,•

≃
oo

²²

t•,•

≃
// N•D

=

²²

N•D T•,•(idD)
s•,•

≃oo
t•,•

≃ // N•D

commutes. The middle vertical map takes (x, f, y) in Tm,n(F ) to (F ◦x, f, y) in
Tm,n(idD), realized by the diagram

F (X0) // . . . // F (Xm)
_

²²

F (Xm)
f

// Y0
// . . . // Yn .

It is clear that each left fiber idD/Y is contractible, as this is the same as the
overcategory D/Y , with the terminal object id : Y → Y . Hence the arguments
above, for idD in place of F , show that also the lower maps s•,• and t•,• are
weak homotopy equivalences.

Chasing the diagram, it follows that N•F is a weak homotopy equivalence,
so F : C → D is a homotopy equivalence.

Corollary 7.3.2. Let F : C → D be a functor of small categories. Suppose
that the right fiber Y/F is contractible for each object Y of D . Then F is a
homotopy equivalence.

Proof. This is clear from the other form of Quillen’s theorem A by duality.

Recall Definitions 4.4.1 and 4.4.2.

Corollary 7.3.3. Let C be a precofibered (or prefibered) category over D , via
a functor F : C → D , and that the fiber F−1(Y ) is contractible for each object
Y of D . Then F is a homotopy equivalence.

Proof. This is clear by the assumed existence of a left adjoint to F−1(Y ) → F/Y
(or right adjoint to F−1(Y ) → Y/F ), Lemma 7.1.21 and Quillen’s theorem A.
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7.4 Theorem A*

Jones, Kim, Mhoon, Santhanam, Walker and Grayson [31] extended Quillen’s
proof to get a sufficient condition for a functor to a product of categories to
be a homotopy equivalence. This theorem A* can sometimes replace the use of
Quillen’s more general theorem B, and its proof only relies on the realization
lemma, instead of the theory of quasi-fibrations.

Theorem 7.4.1 (Theorem A*). Let F : C → D and G : C → E be functors
of small categories. Suppose that the composite functor

F/Y −→ C
G
−→ E

taking (X, f : F (X) → Y ) to G(X), is a homotopy equivalence for each object
Y of D . Then (F,G) : C → D × E is a homotopy equivalence.

Proof. We keep the notation from the proof of Quillen’s theorem A, and note
that s•,• : T•,•(F ) → N•C is a weak homotopy equivalence, as before.

We also decompose T•,n(F ) for each n ≥ 0 as before:

T•,n(F ) ∼=
∐

y∈NnD

N•(F/Y0) .

By hypothesis, the composite simplicial map N•(F/Y0) → N•C → N•E is a
weak homotopy equivalence for each Y0 in D . Thus the simplicial map

u•,n : T•,n(F ) ∼=
∐

y∈NnD

N•(F/Y0)
≃
−→

∐

y∈NnD

N•E
∼= N•E × NnD

taking (x : [m] → C , f : F (Xm) → Y0, y : [n] → D) to

(G ◦ x : [m] → E , y : [n] → D)

is a weak equivalence. We now view

[n] 7→ N•E × NnD

as a bisimplicial set, with (m,n)-simplices NmE × NnD . This is the external
product of N•E and N•D , denoted N•E ⊠ N•D . Its diagonal is the usual
categorical product N•E × N•D in sSet.

The weak homotopy equivalences u•,n combine to a bisimplicial map

u•,• : T•,•(F )
≃
−→ N•E ⊠ N•D ,

and by the realization lemma, u•,• is a weak homotopy equivalence.
We now use naturality of s•,• and u•,• in F and G, in the sense that the

diagram

N•C

N•(F,G)

²²

T•,•(F )
s•,•

≃
oo

²²

u•,•

≃
// N•E ⊠ N•D

=

²²

N•(D × E ) T•,•(pr1)s•,•

≃oo
u•,•

≃ // N•E ⊠ N•D
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commutes. The middle vertical map takes (x, f, y) to ((F ◦ x,G ◦ x), f, y) in
Tm,n(pr1), realized by the diagram

(F (X0), G(X0)) // . . . // (F (Xm), G(Xm))
_

²²

F (Xm)
f

// Y0
// . . . // Yn .

The lower map u•,• is associated to the projection functors pr1 : D × E → D

and pr2 : D × E → E .
For each object Y of D , the left fiber pr1/Y is isomorphic to the product

category D/Y × E , where D/Y has a terminal object, so pr2 : D/Y × E → E

is a homotopy equivalence, as is easily seen. Hence the arguments above also
show that the lower maps s•,• and u•,• are weak homotopy equivalences.

Chasing the diagram, it follows that N•(F,G) is a weak homotopy equiva-
lence, so (F,G) : C → D × E is a homotopy equivalence of categories.

7.5 Quillen’s theorem B

[[Using Grothendieck construction and quasi-fibrations.]]

7.6 The simplex category

Up to weak homotopy equivalence, every simplicial set is the nerve of a small
category. We shall use this to obtain Waldhausen’s versions of Quillen’s theo-
rems A, A* and B for simplicial maps. We follow the notation from [60, p. 308],
see also [68, p. 337].

Definition 7.6.1. Let X• be a simplicial set. The simplex category simp(X)
has objects the pairs (n, x), where n ≥ 0 and x ∈ Xn is an n-simplex in X. A
morphism (m, y) → (n, x) in simp(X) is a morphism α : [m] → [n] in ∆, such
that α∗(x) = y.

Every morphism in simp(X) has the form α : (m,α∗(x)) → (n, x). The
composite of α and β : (p, β∗(α∗(x))) → (m,α∗(x)), with β : [p] → [m] in ∆, is
αβ : (p, (αβ)∗(x)) → (n, x).

(p, (αβ)∗(x))
_

²²

β
// (m,α∗(x))

_

²²

α // (n, x)
_

²²

[p]
β

// [m]
α // [n]

Let f• : X• → Y• be a simplicial map. The simplex functor

simp(f) : simp(X) −→ simp(Y )

takes the object (n, x) to the object (n, fn(x)), and the morphism α : (m,α∗(x)) →
(n, x) to the morphism α : (m, fm(α∗(x)) = (m,α∗(fn(x))) → (n, fn(x)). We
get a functor

simp: sSet −→ Cat .
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[[Can view simp(X) as a category over ∆, the Grothendieck construction
∆ ≀ Xop of Xop : ∆ → Setop.]]

Remark 7.6.2. We can view an object (n, x) of simp(X) as a simplicial map
x• : ∆n

• → X•, and a morphism α as a commutative triangle

∆m
•

α• //

α∗(x)• !!CC
CC

CC
CC

∆n
•

x•

}}||
||

||
||

X•

in sSet. The functor simp(f) then takes an object x• to the composite map

∆n
•

x•

}}||
||

||
|| simp(f)(x•)

!!CC
CC

CC
CC

X•
f• // Y• .

Remark 7.6.3. The functor simp is not the left adjoint L to the nerve functor.
Instead, it is a kind of subdivision of this functor, with better homotopical
properties.

Lemma 7.6.4. There is a natural isomorphism

colim
(n,x)∈simp(X)

∆n
•

∼=
−→ X•

taking ζ ∈ ∆n
p , in the copy indexed by (n, x), to x•(ζ) ∈ Xp.

Proof. The colimit equals the coequalizer

∐
α : [m]→[n] Xn × ∆m

•

s //

t
//

∐
n≥0 Xn × ∆n

•

that we identified with X• in Corollary 6.4.2. The inverse isomorphism takes
x ∈ Xn to id[n] ∈ ∆n

n in the copy indexed by (n, x).

This is a special case of the general result that presheaves of sets are colimits
of representable presheaves. [[How about more general topoi?]]

Definition 7.6.5. Let the last vertex map

d• : N• simp(X) −→ X•

be the simplicial map (see the following lemma) taking a q-simplex

(n0, x0)
α1−→ (n1, x1)

α2−→ . . .
αq
−→ (nq, xq) (7.1)

in
Nq simp(X) ∼=

∐

n∈Nq∆

Xn(q)

to the q-simplex ζ∗(xq) of X•, where ζ : [q] → [nq] is given by the images of the
last vertices ni ∈ [ni], for i ∈ [q]:

ζ(i) = (αq · · ·αi+1)(ni) .

This makes sense, since αi(ni−1) ≤ ni for all 0 < i ≤ q.
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Remark 7.6.6. In terms of represented simplicial sets, dq takes the q-simplex
given by the upper row

∆n0
•

α1• // ∆n1
•

α2• // . . .
αq•

// ∆
nq
•

xq•
// X•

∆q
•

ζ•

OO

ζ∗(xq)•

=={{{{{{{{

to the diagonal arrow.

Lemma 7.6.7. The last vertex map d• : N• simp(X) → X• is a simplicial map,
natural in X•.

Proof. For each morphism β : [p] → [q], β∗ takes the q-simplex displayed in (7.1)
to the p-simplex

(nβ(0), xβ(0)) −→ . . . −→ (nβ(p), xβ(p))

with last vertex image ξ∗(xβ(p)), where ξ : [p] → [nβ(p)] is given by the images
of the nβ(j) ∈ [nβ(j)] for j ∈ [p]. Note that ζβ = γξ, where γ = αq · · ·αβ(p)+1.
Hence β∗ applied to the last vertex image ζ∗(xq) of the displayed q-simplex
equals β∗ζ∗(xq) = ξ∗γ∗(xq) = ξ∗(xβ(p)).

If f• : X• → Y• is a simplicial map, fq(ζ
∗(xq)) = ζ∗(fnq

(xq)), hence d• is
natural.

Example 7.6.8. Consider the case X• = N•C for a small category C . The
simplex category simp(X) = simp(NC ) = N•D is the nerve of the category D

with objects pairs (n, x) with n ≥ 0 and x : [n] → C , and morphisms α : (m,x ◦
α) → (n, x) for α : [m] → [n]. There is a functor d : D → C , taking (n, x) to
the last vertex x(n) and α to x(α(m) ≤ n) : (x ◦α)(m) → x(n). The last vertex
map

d• = N•d : N• simp(NC ) → N•C

is the nerve of d.

[[Relate to subdivisions?]]

Lemma 7.6.9. The functor X• 7→ N• simp(X) commutes with all small colim-
its.

Proof. Let F : C → sSet be a C -shaped diagram of simplicial sets. The natural
simplicial map

colim
c∈C

N• simp(F (c)) −→ N• simp(colim
c∈C

F (c))

is given in simplicial degree q by the bijection

colim
c∈C

∐

n∈Nq∆

F (c)n(q)

∼=
−→

∐

n∈Nq∆

colim
c∈C

F (c)n(q) .

Lemma 7.6.10. The functor X• 7→ N• simp(X) preserves cofibrations of sim-
plicial sets.
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Proof. If f• : X•  Y• is injective in each simplicial degree, then so is

Nq simp(f) :
∐

n∈Nq∆

Xn(q) −→
∐

n∈Nq∆

Yn(q)

for each q ≥ 0.

We can now represent each weak homotopy type of simplicial sets by nerves.
Up to weak homotopy equivalence, the category of simplicial sets is a retract of
the category of small categories. The proof is essentially that of Segal [60, p. 309]
and Waldhausen [68, p. 359]. See also [70, 2.2.17].

Proposition 7.6.11. The last vertex map d• : N• simp(X)
≃
−→ X• is a weak

homotopy equivalence.

Proof. When X• = ∆n
• the simplex category simp(∆n

• ) has the terminal object
(n, id[n]), hence is contractible. The simplicial map d• : N• simp(∆n

• ) → ∆n
• is

thus trivially a weak homotopy equivalence.
Now consider a general simplicial set X•, viewed as the colimit of its simpli-

cial skeleta X
(n)
• . For each n ≥ 0, X

(n)
• is the pushout of a diagram

∐
∆n

•

∐
∂∆n

•
oooo // X

(n−1)
•

where both coproducts range over the non-degenerate n-simplices in X. Then
N• simp(X(n)) is the pushout of the induced diagram

∐
N• simp(∆n)

∐
N• simp(∂∆n)oooo // N• simp(X(n−1))

by Lemma 7.6.9. The left hand map is a cofibration of simplicial sets by
Lemma 7.6.10. By induction on n and the special case considered at the
outset, each map

∐
N• simp(∆n) →

∐
∆n

• ,
∐

N• simp(∂∆n) →
∐

∂∆n
• and

N• simp(X(n−1)) → X
(n−1)
• is a weak equivalence. Hence, by the gluing lemma,

N• simp(X(n)) → X
(n)
• is a weak equivalence. Passing to colimits over n, using

Lemma 5.5.7, N• simp(X) → X• is a weak equivalence.

We can therefore translate Quillen’s theorems A, A* and B to statements
about simplicial sets, as in [68, 1.4.A, 1.4.B] and [31, p. 185]. First we need the
analogue of the left fiber.

Definition 7.6.12. Let f• : X• → Y• be a map of simplicial sets, and let y ∈ Yn

be an n-simplex, so that (n, y) is an object in simp(Y ). By the Yoneda lemma,
Lemma 6.3.4, there is a unique characteristic map y• : ∆n

• → Y• taking id[n] to
y in simplicial degree n. Let the fiber of f• at y be the pullback

f•/(n, y) //

²²

y

X•

f•

²²

∆n
•

y• // Y•

in sSet. We may also write fib(f•, y) for f•/(n, y).
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Lemma 7.6.13 (Lemma A). Let f• : X• → Y• be a map of simplicial sets.
Suppose that f•/(n, y) is weakly contractible for each n ≥ 0 and y ∈ Yn. Then
f• is a weak homotopy equivalence.

Proof. In view of the commutative square

N• simp(X)
d•

≃
//

N• simp(f)

²²

X•

f•

²²

N• simp(Y )
d•

≃
// Y•

and Proposition 7.6.11, it suffices to prove that the functor simp(f) : simp(X) →
simp(Y ) is a homotopy equivalence.

The left fiber of this functor at an object (n, y) in simp(Y ) is the category
with objects (m,x, α), where m ≥ 0, x ∈ Xm, α : [m] → [n] and α∗(y) = fm(x).
We can rewrite the latter condition as ym(α) = fm(x), where we view α as
an m-simplex in ∆n

• . Hence (x, α) is precisely an m-simplex in f•/(n, y). The
morphisms in the left fiber category are of the form (p, β∗(x), αβ) → (m,x, α),
for β : [p] → [m]. Since β∗(x, α) = (β∗(x), αβ) in the simplicial set f•/(n, y),
these correspond precisely to the morphisms in simp(f/(n, y)).

It follows that there is an isomorphism of categories

simp(f)/(n, y) ∼= simp(f/(n, y)) .

Using Proposition 7.6.11 again, there is a weak homotopy equivalence

N• simp(f/(n, y))
≃
−→ f•/(n, y)

and by hypotheses the right hand side is weakly contractible. Hence the cat-
egories simp(f/(n, y)) and simp(f)/(n, y) are contractible, so simp(f) is a ho-
motopy equivalence by Quillen’s theorem A.

Lemma 7.6.14 (Lemma A*). Let f• : X• → Y• and g• : X• → Z• be maps
of simplicial sets. Suppose that the composite map

f•/(n, y) −→ X•
g•
−→ Z•

is a weak homotopy equivalence for each (n, y). Then (f•, g•) : X• → Y• ×Z• is
a weak homotopy equivalence.

Proof. By Lemma 7.1.8 and Proposition 7.6.11, it suffices to prove that the
functor

(simp(f), simp(g)) : simp(X)
≃
−→ simp(Y ) × simp(Z)

is a homotopy equivalence. By theorem A*, it is enough to check that the
composite functor

simp(f)/(n, y) −→ simp(X)
simp(g)
−→ simp(Z)

is a homotopy equivalence, for each object (n, y) in simp(Y ). As in the previous
proof we can identify this composite with simp applied to the two simplicial
maps

p• : f•/(n, y) −→ X•
g•
−→ Z• .

Using Proposition 7.6.11 again, the assumption that p• is a weak homotopy
equivalence implies that simp(p) is a homotopy equivalence, as desired.
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[[Lemma B.]]

7.7 ∞-categories

[[

Grp //

²²

Cat

²²

N•

³³

Kan //

//

∞−Cat

%%KKKKKKKKK

sSet

]]



Chapter 8

Waldhausen K-theory

Let C be a category, with a suitable subcategory wC of weak equivalences. We
wish to define the algebraic K-theory of C as a based loop space K(C ) = ΩY ,
equipped with a loop completion map ι : |wC | → K(C ) from the classifying
space of the subcategory wC . For example, each object X of C will correspond
to a point in |wC |, which in turn corresponds to a loop ι(X) : S1 → Y . We shall
ask that the pairing K(C )×K(C ) → K(C ) given by the loop space composition
∗ : ΩY × ΩY → ΩY is compatible with a suitable extension structure on C , in
the sense that for certain pushout squares

X ′ //

²²

p

X

²²

∗ // X ′′

in C , expressing X as a kind of extension of X ′ and X ′′, the loop ι(X) : S1 → Y
is homotopic to the composite of the loops ι(X ′) : S1 → Y and ι(X ′′) : S1 → Y ,

•

•
ι(X′)

//

ι(X)
??ÄÄÄÄÄÄÄ

•

ι(X′′)
__@@@@@@@

so that ι(X) ≃ ι(X ′) ∗ ι(X ′′). For example, X might be the coproduct X ′ ∨X ′′

of two objects in C , and the loop space completion map ι will then respect the
monoidal pairing on |wC | induced by the coproduct, since we ask that

ι(X ′ ∨ X ′′) ≃ ι(X ′) ∗ ι(X ′′) .

The coherent commutativity of the categorical coproduct (X ′ ∨X ′′ ∼= X ′′ ∨X ′)
will imply that we get even more: the loop space K(C ) = ΩY is in fact an
infinite loop space, so that K(C ) is the underlying infinite loop space of a
spectrum K(C ), the algebraic K-theory spectrum of C .

We now follow Waldhausen’s foundational paper [68], to make sense of what
we mean by suitable extension structures and suitable weak equivalences.

191
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8.1 Categories with cofibrations

In this section we follow [68, 1.1].
Waldhausen axiomatized the extension structure, i.e., which pushout squares

to consider, in terms of conditions on the horizontal map X ′ → X, which
determines X ′′ as the pushout X ∪X′ ∗ = X/X ′. The allowable horizontal
maps X ′ → X are called cofibrations, as motivated by the similarity of the
following axioms with standard properties of cofibrations for well-based spaces
in homotopy theory, or for cofibrant objects in a Quillen (closed) model category
[52].

Definition 8.1.1 (Pointed category). A category C is pointed if it has a
chosen zero object, i.e., an object ∗ that is both initial and terminal. Let Cat∗
be the category of small pointed categories and functors preserving the zero
objects.

We may denote a pointed category by (C , ∗), but usually abbreviate this
to C when the zero object is clear from the context. Given any two objects
X, Y in C there are then unique morphisms X → ∗ and ∗ → Y in C . Their
composite X → ∗ → Y is called the zero morphism from X to Y .

Definition 8.1.2 (Category with cofibrations). A category with cofibrations
is a pointed category (C , ∗) with a subcategory coC ⊆ C , whose morphisms are
called cofibrations and denoted X  Y , such that:

(a) The isomorphisms of C are cofibrations.

(b) For every object X in C the unique morphism ∗  X is a cofibration.

(c) Cofibrations admit cobase change: For every cofibration X  Y and every
morphism X → Z in C the pushout Y ∪X Z exists in C , and the morphism
Z  Y ∪X Z is a cofibration.

X // //

²²

p

Y

²²

Z // // Y ∪X Z

Remark 8.1.3. Conditions (a) and (b) each imply that coC has the same
objects as C , so the emphasis is on the morphisms, the cofibrations. In (c)
the pushouts Y ∪X Z are only asserted to exist, with no preferred choice being
made. We denote the category with cofibrations by (C , coC ), or just C when
the subcategory coC is clear from the context.

Definition 8.1.4 (Cofiber sequence). When X  Y is a cofibration in C ,
we can form the cobase change along the unique map X → ∗:

X // //

²²

p

Y

²²²²

∗ // // Y ∪X ∗

We write Y/X for the pushout Y ∪X ∗, and call the induced map Y ։ Y/X a
quotient map. For example, the terminal map Y ։ ∗ is a quotient map, induced
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by the identity cofibration Y  Y . In general Y ։ Y/X is only defined up to
isomorphism in Y/C . The quotient maps are not assumed to form a category.

A diagram of the form

X // // Y // // Y/X ,

where the first map is a cofibration and the second map is an associated quotient
map, is called a cofiber sequence. On the other hand, a diagram of the form

X1
// // X2

// // . . . // // Xq

is called a sequence of cofibrations.

Lemma 8.1.5. A diagram isomorphic to a cofiber sequence is a cofiber sequence.

Proof. Consider a commutative diagram

X // //
OO

∼=

²²

Y // //
OO

∼=

²²

ZOO

∼=

²²

X̄ // Ȳ // Z̄

where the top row is a cofiber sequence and the vertical maps are isomorphisms.
The isomorphisms X̄  X and Y  Ȳ are cofibrations, so the composite
X̄  Ȳ is a cofibration. The pushout map Ȳ ∪X̄ ∗ → Z̄ is the composite of
the isomorphisms Ȳ ∪X̄ ∗ ∼= Y ∪X ∗ ∼= Z ∼= Z̄, hence X̄  Ȳ ։ Z̄ is a cofiber
sequence.

Lemma 8.1.6. Let X  Y be a cofibration, and suppose that the pushout
X ∪W Z of a given diagram X ← W → Z exists. (For example, W → X or
W → Z might be a cofibration.) Then the pushout

X ∪W Z  Y ∪W Z

of X  Y along W → Z is a cofibration.

Proof. Consider the two pushout squares:

W //

²²

p

X // //

²²

p

Y

²²

Z // X ∪W Z // // Y ∪W Z

The pushout map in question is the cobase change of X  Y along X →
X ∪W Z, since Y ∪X (X ∪W Z) ∼= Y ∪W Z.

Example 8.1.7. If C is a pointed category such that for any two objects
X,Y the pushout X ∨ Y = X ∪∗ Y exists, then there is a minimal choice of a
category of cofibrations coC , consisting of all morphisms that are isomorphic to
the canonical inclusion Y  X ∨ Y . These are the cobase changes of ∗  X
along ∗ → Y . The cobase change of Y  X ∨ Y along Y → Z is the canonical
inclusion Z  X ∨ Z.
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Example 8.1.8. (a) Fix a one-element set ∗, and let Set∗ be the pointed
category of based sets and based (= base-point preserving) functions. Let
coSet∗ be the subcategory of injective functions. Then (Set∗, coSet∗) is
a category with cofibrations.

(b) Let Fin∗ be the category of based, finite sets and based functions. Let
coFin∗ be the subcategory of injective functions. Then (Fin∗, coFin∗) is
a category with cofibrations, since the pushout of finite sets is finite.

(c) Let F∗ be the category with objects the finite sets

n+ = {0, 1, 2, . . . , n}

for n ≥ 0, based at 0 ∈ n+, and based functions α : m+ → n+. Let coF∗

be the subcategory of injective functions. Then (F∗, coF∗) is a small
category with cofibrations, since pushouts exist within F∗.

[[The category F∗ agrees with Segal’s category Γ from [60], or rather the
opposite category Γop.]]

[[The functor (−)+ : F → F∗ taking n to n+ induces an isomorphism of
isomorphism groupoids iso(F ) ∼= iso(F∗).]]

Example 8.1.9. (a) Let G be a finite group, and let G−Set∗ be the cate-
gory of based G-sets, with a G-fixed base point, and based G-equivariant
functions. The one-element G-set ∗ is a zero object. Let coG−Set∗ be
the subcategory of injective functions. Then (G−Set∗, coG−Set∗) is a
category with cofibrations.

(b) Let G−Fin∗ be the category of finite based G-sets and based G-equivariant
functions. Let coG−Fin∗ be the subcategory of injective functions. Then
(G−Fin∗, coG−Fin∗) is a category with cofibrations.

(c) Let G−F∗ be the category with objects the finite sets n+ for n ≥ 0,
equipped with a base-point preserving G-action, and based G-equivariant
functions. Let coG−F∗ be the subcategory of injective functions. Then
(G−Fin∗, coG−Fin∗) is a small category with cofibrations.

Definition 8.1.10 (Category with cofibrations P(R)). Let R be a ring,
and let P(R) be the category of finitely generated projective (left) R-modules,
and R-module homomorphisms. The zero module 0 is a zero object in P(R).
Let coP(R) be the subcategory of injective R-module homomorphisms f : P 

Q such that the cokernel Q/P is (finitely generated) projective. The pair
(P(R), coP(R)) is then a category with cofibrations.

To check the axioms, note that (a) the cokernel of any isomorphism P ∼= Q
is zero, (b) the cokernel of 0 → Q is Q, which is projective, and (c) given
f : P  Q with projective cokernel and any g : P → L, the pushout Q ⊕P L
exists as an R-module, the cokernel of L → Q⊕P L is isomorphic to Q/P , thus
projective, hence Q ⊕P L ∼= (Q/P ) ⊕ L is finitely generated projective.

P //
f

//

g

²²

p

Q // //

²²

Q/P

∼=

²²

L // // Q ⊕P L // // (Q ⊕P L)/L
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Lemma 8.1.11. The cofibrations in P(R) are precisely the split injective R-
module homomorphisms, i.e., the R-module homomorphisms f : P → Q for
which there exists a left inverse r : Q → P with rf = idP .

Proof. If f is split injective, then Q ∼= P ⊕ Q/P , so Q/P is a direct summand
of a projective module, hence projective.

P
f

// Q
g

//

r
ii Q/P

s

ii

Conversely, if f is injective and Q/P is projective then the quotient homomor-
phism g : Q → Q/P admits a right inverse (= section) s, which implies that
P → Q admits a left inverse (= retraction) r, with fr + sg = idQ.

Definition 8.1.12 (Category with cofibrations M (R)). Let R be a ring,
and let M (R) = R−Modfg be the category of finitely generated (left) R-
modules, and R-module homomorphisms. The zero module 0 is a zero object
in M (R). Let coM (R) be the subcategory of injective R-module homomor-
phisms f : M  N . Then (M (R), coM (R)) is a category with cofibrations.
[[Explain?]]

[[(Pseudo-)coherent modules?]]

Example 8.1.13. Let Rf (∗) be the category of finite based simplicial sets, or
more precisely, the finite simplicial sets X• containing a fixed one-point simpli-
cial set ∗ as a retract. It is pointed at the zero object ∗. Let coRf (∗) be the
subcategory of (degreewise) injective based simplicial maps X•  Y•. Then
(Rf (∗), coRf (∗)) is a category with cofibrations. For if X• → Z• is any based
simplicial map, the cobase change Z•  Y• ∪X•

Z• can be constructed degree-
wise, and is degreewise injective.

This is the minimal example for Waldhausen’s algebraic K-theory of spaces.
See [68, 2.1] for more general examples along these lines.

Example 8.1.14. Let R be a ring, and let C b(P(R)) be the category of
bounded chain complexes of finitely generated projective R-modules, and chain
maps. The objects (P∗, d) are diagrams

. . . d // Pn
d // Pn−1

d // . . .

with d2 = 0, each Pn a finitely generated projective R-module, and Pn = 0 for
all n sufficiently positive or sufficiently negative. The morphisms f∗ : (P∗, d) →
(Q∗, d) are commutative diagrams

. . . d // Pn
d //

fn

²²

Pn−1
d //

fn−1

²²

. . .

. . . d // Qn
d // Qn−1

d // . . .

The zero object is the complex of zero modules. Let coC b(P(R)) be the sub-
category of chain maps f∗ such that each fn : Pn  Qn is a cofibration in
P(R), i.e., an injective R-module homomorphism with (finitely generated)
projective cokernel Qn/Pn. Equivalently, each fn is split injective. Then
(C b(P(R)), coC b(P(R))) is a category with cofibrations.
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Example 8.1.15. Let R be a ring, and let C b(M (R)) be the category of
bounded chain complexes of finitely generated R-modules, and chain maps.
The objects (M∗, d) are diagrams

. . . d // Mn
d // Mn−1

d // . . .

with d2 = 0, each Mn a finitely generated R-module, and Mn = 0 for all
n sufficiently positive or sufficiently negative. The morphisms f∗ : (M∗, d) →
(N∗, d) are commutative diagrams

. . . d // Mn
d //

fn

²²

Mn−1
d //

fn−1

²²

. . .

. . . d // Nn
d // Nn−1

d // . . .

The zero object is the complex of zero modules. Let coC b(M (R)) be the subcat-
egory of chain maps f∗ such that each fn : Mn  Nn is a cofibration in M (R),
i.e., an injective R-module homomorphism. Then (C b(M (R)), coC b(M (R))) is
a category with cofibrations.

See Thomason–Trobaugh [65, §2] for many more examples of categories with
cofibrations given by complexes of modules, or objects in more general abelian
categories.

Definition 8.1.16 (Exact functor). Let (C , coC ) and (D , coD) be categories
with cofibrations. A functor F : C → D is said to be exact if it preserves all
the relevant structure, i.e., if it takes ∗ to ∗ and coC to coD , and if for each
pushout square

X // //

²²

p

Y

²²

Z // // Y ∪X Z

in C , with X  Y a cofibration, the image

F (X) // //

²²

p

F (Y )

²²

F (Z) // // F (Y ∪X Z)

is a pushout square in D . Hence F (Y )∪F (X)F (Z) ∼= F (Y ∪X Z). Composites of
exact functors are exact, so small categories with cofibrations and exact functors
form a category. [[No notation?]]

Remark 8.1.17. In the following examples, we follow the variance conven-
tions of ring theory, opposite to those of algebraic geometry. If a ring ho-
momorphism φ : R → T (of commutative rings) is viewed as a map f : X =
Spec(T ) → Spec(R) = Y of affine schemes, the functor φ∗ : P(R) → P(T ) of
finitely generated projective modules corresponds to the inverse image functor
f∗ : Vec(Y ) → Vec(X) of algebraic vector bundles, while φ∗ : M (T ) → M (R)
corresponds to the direct image functor f∗ : Coh(X) → Coh(Y ) of coherent
sheaves, when defined.
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Example 8.1.18. Let φ : R → T be a ring homomorphism. The inverse image
functor φ∗ : P(R) → P(T ) takes a finitely generated projective R-module P
to the finitely generated projective T -module

φ∗(P ) = T ⊗R P .

It is exact, since it maps each cofiber sequence P  Q ։ Q/P to a cofiber
sequence

T ⊗R P  T ⊗R Q ։ T ⊗R (Q/P ) ,

by flatness of projective modules, which implies that for any pushout square

P // //

²²

p

Q

²²

L // // Q ⊕P L

with horizontal cofibrations in P(R), the image

T ⊗R P // //

²²

p

T ⊗R Q

²²

T ⊗R L // // T ⊗R (Q ⊕P L)

is a pushout square with horizontal cofibrations in P(T ).

Example 8.1.19. Let φ : R → T be a ring homomorphism, making T flat as a
right R-module. The inverse image functor φ∗ : M (R) → M (T ) takes a finitely
generated R-module M to the finitely generated T -module

φ∗(M) = T ⊗R M .

It is exact, since it maps each cofiber sequence M  N ։ N/M to a cofiber
sequence

T ⊗R M  T ⊗R N ։ T ⊗R (N/M) ,

by the assumed flatness of T .

Example 8.1.20. Let φ : R → T be a ring homomorphism, making T a finitely
generated projective (left) R-module. The direct image functor φ∗ : P(T ) →
P(R) takes a finitely generated projective T -module P to the same abelian
group, viewed as an R-module through φ:

φ∗(P ) = P .

This functor is clearly exact.

Example 8.1.21. Let φ : R → T be a ring homomorphism, making T a finitely
generated (left) R-module. The direct image functor φ∗ : M (T ) → M (R) takes
a finitely generated T -module M to the same abelian group, viewed as an R-
module through φ:

φ∗(M) = M .

This functor is clearly exact.
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[[Similar constructions for categories of chain complexes.]]

Definition 8.1.22 (Subcategory with cofibrations). Let (C , coC ) and
(D , coD) be categories with cofibrations, with C a subcategory of D . We say
that C is a subcategory with cofibrations of D if the inclusion functor C ⊆ D is
exact and, furthermore, a morphism X → Y in C is a cofibration in C if (and
only if) it is a cofibration in D and the quotient Y/X in D is isomorphic to an
object in C .

Example 8.1.23. Let R be a ring. The category P(R) of finitely generated
projective R-modules is a subcategory with cofibrations of the category M (R)
of finitely generated R-modules.

The category C b(P(R)) is a subcategory with cofibrations of the category
C b(M (R)).

We are very much interested in the following category S2C of extensions, or
cofiber sequences, in C . The notation will be explained in Section 8.3. Another
notation for S2C is E(C ).

Definition 8.1.24 (Category S2C ). Let S2C be the category with objects
the cofiber sequences

X ′ // // X // // X ′′

in (C , coC ), and morphisms from X ′
 X ։ X ′′ to Y ′

 Y ։ Y ′′ the
commutative diagrams

X ′

f ′

²²

// // X

f

²²

// // X ′′

f ′′

²²

Y ′ // // Y // // Y ′′

in C . It is pointed at the cofiber sequence ∗  ∗ ։ ∗.

Definition 8.1.25 (Cofibration category coS2C ). Let coS2C ⊆ S2C be
the subcategory of morphism (f ′, f, f ′′) such that both f ′ : X ′

 Y ′ and the
pushout morphism X ∪X′ Y ′

 Y are cofibrations in C (= morphisms in coC ).

X ′ // //

²²

f ′

²²

p

X
²²

²²

,,

f

³³

Y ′ // //

··

//

X ∪X′ Y ′

$$

$$IIIIIIIII

Y

These assumptions imply that f : X  Y and f ′′ : X ′′
 Y ′′ are cofibrations,

since f is the composite X  X ∪X′ Y ′
 Y of the cobase change of f ′ along

X ′ → X and the pushout morphism, and f ′′ is the cobase change of the pushout
morphism along the quotient map X ∪X′ Y ′

։ X ∪X′ Y ′/Y ′ ∼= X ′′.

Remark 8.1.26. We view objects in S2C as short filtrations X ′
 X in C ,

together with a choice of filtration quotient X ։ X ′′. A cofibration (f ′, f, f ′′)
is then a bifiltered object, or lattice, in C , together with choices of quotients. As
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Waldhausen comments, the lattice condition that X∪X′ Y ′
 Y is a cofibration

serves as a replacement for the condition that X ′ is the pullback of X and Y ′

in Y , which does not generally make sense in the present context.

Definition 8.1.27 (Lattice square). A commutative square

X ′ // //

²²

²²

L

X
²²

²²

Y ′ // // Y

is a lattice square if X ′
 X, X ′

 Y ′ and the pushout morphism X ∪X′ Y ′


Y are all cofibrations. We indicate this by the central label “L”. [[Consider
using ¤ in place of L.]] It follows that X  Y and Y ′

 Y are cofibrations.

Proposition 8.1.28. (S2C , coS2C ) is a category with cofibrations.

Proof. To see that coS2C is category, consider the diagram

X ′

f ′

²²

// //

L

X

f

²²

// // X ′′

f ′′

²²

Y ′

g′

²²

// //

L

Y

g

²²

// // Y ′′

g′′

²²

Z ′ // // Z // // Z ′′

where f ′, g′, X ∪X′ Y ′
 Y and Y ∪Y ′ Z ′

 Z are cofibrations. Then g′f ′ is
obviously a cofibration, and the pushout morphism X ∪X′ Z ′ → Z factors as
the composite

X ∪X′ Z ′
 Y ∪Y ′ Z ′

 Z

of the pushout of X ∪X′ Y ′
 Y along g′ : Y ′ → Z ′ (using Lemma 8.1.6), and

Y ∪Y ′ Z ′
 Z, hence is a cofibration.

To see that cofibrations in S2C admits cobase change, consider the diagram

Y ′ // // Y // // Y ′′

X ′

f ′

OO

g′

²²

// //

L

X

f

OO

g

²²

// // X ′′

f ′′

OO

g′′

²²

Z ′ // // Z // // Z ′′

(8.1)

where f ′ and X ∪X′ Y ′
 Y are cofibrations, viewed a vertical cofibration

(f ′, f, f ′′) and a vertical morphism (g′, g, g′′) in S2C . As discussed above, it
follows that f and f ′′ are cofibrations, so the pushouts Y ′ ∪X′ Z ′, Y ∪X Z and
Y ′′ ∪X′′ Z ′′ all exist in C . To see that the induced diagram

Y ′ ∪X′ Z ′ −→ Y ∪X Z −→ Y ′′ ∪X′′ Z ′′

is the pushout in S2C of the diagram above, we need to check that the left hand
morphism is a cofibration, and that the right hand morphism is the associated
quotient map.
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The left hand morphism is the composite of the pushout

Y ′ ∪X′ Z ′
 Y ′ ∪X′ Z

of Z ′
 Z along f ′ : X ′ → Y ′, and the pushout

Y ′ ∪X′ Z ∼= (Y ′ ∪X′ X) ∪X Z  Y ∪X Z

of Y ′ ∪X′ X  Y along g : X → Z, hence is a cofibration. To see that the right
hand morphism is a quotient map, we compute the colimit of the diagram

∗ Y ′ // //oo Y

∗

OO

²²

X ′ // //oo

f ′

OO

g′

²²

X

f

OO

g

²²

∗ Z ′ // //oo Z

in two different ways: Taking vertical colimits first and horizontal colimits there-
after leads to (Y ∪X Z)/(Y ′ ∪X′ Z ′), while taking horizontal colimits first and
vertical colimits thereafter leads to Y ′′ ∪X′′ Z ′′, as desired.

Lastly, we need to check that the cobase change

Z ′ // //

²²

Z // //

²²

Z ′′

²²

Y ′ ∪X′ Z ′ // // Y ∪X Z // // Y ′′ ∪X′′ Z ′′

of the cofibration (f ′, f, f ′′) along (g′, g, g′′) is a cofibration in S2C , i.e., that
Z ′

 Y ′ ∪X′ Z ′ and

(Y ′ ∪X′ Z ′) ∪Z′ Z ∼= Y ′ ∪X′ Z  Y ∪X Z

are cofibrations. The first is the cobase change of f ′ : X ′
 Y ′ along g′ : X ′ →

Z ′, so this is clear. The second is the pushout of Y ′∪X′X  Y along g : X → Z,
so this is also clear.

Lemma 8.1.29. The source, target and quotient functors s, t, q : S2C → C ,
taking X ′

 X → X ′′ to X ′, X and X ′′, respectively, are all exact.

Proof. The requisite conditions, which the reader should identify, have all been
checked in the previous proof.

Lemma 8.1.30. An exact functor F : (C , coC ) → (D , coD) induces an exact
functor S2F : (S2C , coS2C ) → (S2D , coS2D).

Proof. The functor S2F : S2C → S2D takes a cofiber sequence X ′
 X ։ X ′′

to F (X ′)  F (X) ։ F (X ′′), which is again a cofiber sequence by exact-
ness. If (f ′, f, f ′′) is a cofibration in S2C , then F (f ′) : F (X ′)  F (Y ′) and
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F (X) ∪F (X′) F (Y ′) ∼= F (X ∪X′ Y ′)  F (Y ) are cofibrations, again by ex-
actness, so (F (f ′), F (f), F (f ′′) is a cofibration in S2D . Applying S2F to the
diagram (8.1), we get the diagram

F (Y ′) // // F (Y ) // // F (Y ′′)

F (X ′)

F (f ′)

OO

F (g′)

²²

// //

L

F (X)

F (f)

OO

F (g)

²²

// // F (X ′′)

F (f ′′)

OO

F (g′′)

²²

F (Z ′) // // F (Z) // // F (Z ′′)

with pushout

F (Y ′) ∪F (X′) F (Z ′) // // F (Y ) ∪F (X) F (Z) // // F (Y ′′) ∪F (X′′) F (Z ′′)

isomorphic to S2F applied to the pushout of diagram (8.1).

[[Also consider S̄2C , forgetting quotients?]]

Lemma 8.1.31. The (categorical) product of two categories with cofibrations
(D , coD) and (E , coE ) is (D × E , coD × coE ). More generally, if F : D → C

and G : E → C are exact functors, the pullback of

(D , coD)
F
−→ (C , coC )

G
←− (E , coE )

is (D ×C E , coD ×coC coE ), consisting of pairs f : X ′
 X and g : Y ′

 Y of
cofibrations in D and E , respectively, with F (f) = G(g) in C .

[[Clear?]]

Lemma 8.1.32. Let (C , coC ) be a category with cofibrations. The coproduct
functor

∨ : (C , coC ) × (C , coC ) −→ (C , coC )

taking (X,Y ) to X ∨ Y = X ∪∗ Y is exact.

[[Clear?]]

Definition 8.1.33 (Category of extensions E(D ,C ,E )). Let C , D , E be
categories with cofibrations, and suppose that D ⊆ C and E ⊆ C are exact
inclusion functors of subcategories. Let E(D ,C ,E ) be the category of cofiber
sequences

X  Y ։ Z

in C , with X in D and Z in E . It is the pullback of the diagram

E(D ,C ,E ) //

²²

y

D × E
²²

²²

S2C
(s,q)

// C × C .

As a special case, E(C ,C ,C ) = E(C ) = S2C .
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Lemma 8.1.34. E(D ,C ,E ) is a category with cofibrations, and the inclusion
functor E(D ,C ,E ) ⊆ S2C is exact.

[[Fiber products, colimits of categories with cofibrations.]]

Definition 8.1.35 (Fiber product). Let F : D → C and G : E → C be
functors. The fiber product D ×i

C
E is the category with objects (X,h, Y )

with X and Y objects in D and E , respectively, and h : F (X) ∼= G(Y ) an
isomorphism in C . A morphism (f, g) : (X,h, Y ) → (X ′, h′, Y ′) is a pair of
morphisms f : X → X ′ and g : Y → Y ′ in D and E , respectively, such that the
square

F (X)
h
∼=

//

F (f)

²²

G(Y )

G(g)

²²

F (X ′)
h′

∼=
// G(Y ′)

commutes in C . There are projection functors pr1 : D×i
C

E → D and pr2 : D×i
C

E → E , and the two composites F ◦ pr1, G ◦ pr2 : D ×i
C

E → C are naturally
isomorphic. [[Continue with cofibration structure.]]

8.2 Categories of weak equivalences

In this section we follow [68, 1.2]
In forming the algebraic K-theory of a category C , we wish to view cer-

tain objects in C as “equivalent”. Waldhausen axiomatized this equivalence
structure in terms of a subcategory wC ⊆ C of weak equivalences, so that the
equivalent pairs of objects are precisely those that can be connected by a finite
chain of morphisms in wC . At the level of classifying spaces, this means that
we view points in the same path component of |wC | as equivalent.

Definition 8.2.1 (Category of weak equivalences). Let C be a category
with cofibrations. A category of weak equivalences in C is a subcategory wC ⊆
C , whose morphisms are denoted X

∼
−→ Y , such that:

(a) The isomorphisms of C are weak equivalences.

(b) The gluing lemma holds: Given a commutative diagram

Y

∼

²²

Xoooo

∼

²²

// Z

∼

²²

Ȳ X̄oooo // Z̄

where the two horizontal morphisms on the left are cofibrations and the
three vertical morphisms are weak equivalences, then the pushout mor-
phism

Y ∪X Z
∼
−→ Ȳ ∪X̄ Z̄

is also a weak equivalence.

Remark 8.2.2. Condition (a) implies that wC has the same objects as C ,
so again the emphasis is on the morphisms, the weak equivalences. Note that
condition (b) depends on the implicit subcategory coC of cofibrations in C .
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Definition 8.2.3 (Waldhausen category). A category with cofibrations and
weak equivalences (= a Waldhausen category) is a category with cofibrations
(C , coC ) with a chosen category of weak equivalences wC . We usually abbre-
viate (C , coC , wC ) to (C , wC ).

Example 8.2.4. The minimal example of a category of weak equivalences is the
isomorphism subcategory, which we in this context denote as iC = iso(C ) ⊆
C . This is the standard choice of weak equivalences on the categories with
cofibrations F∗, P(R) and M (R). These make (F∗, iF∗), (P(R), iP(R))
and (M (R), iM (R)) into Waldhausen categories.

Example 8.2.5. Let hRf (∗) ⊂ Rf (∗) be the subcategory of based simplicial

maps X•
∼
−→ Y• that are weak homotopy equivalences. Then (Rf (∗), hRf (∗)) is

a Waldhausen category. To prove the gluing lemma, apply CW realization and
use the gluing lemma for topological spaces and homotopy equivalences, using
Lemma 6.3.28.

Example 8.2.6. Let sRf (∗) ⊂ Rf (∗) be the subcategory of based simplicial

maps X•
∼s−→ Y• that are simple maps, meaning that the point inverses of |X•| →

|Y•| are all contractible. Then (Rf (∗), sRf (∗)) is a Waldhausen category. The
fact that sRf (∗) is closed under composition, and the requisite gluing lemma,
are proved in [70, Prop. 2.1.3(d)].

Example 8.2.7. Let qC b(P(R)) ⊆ C b(P(R)) be the subcategory of chain
maps f∗ : P∗

∼
−→ Q∗ that are quasi-isomorphisms, i.e., that induce isomor-

phisms f∗ : Hn(P∗) → Hn(Q∗) on homology in all degrees n ∈ Z. Then
(C b(P(R)), qC b(P(R))) is a Waldhausen category. To prove the gluing lemma,
construct and use the long exact Mayer–Vietoris sequence

· · · → Hn(P∗) → Hn(Q∗) ⊕ Hn(L∗) → Hn(Q∗ ⊕P∗
L∗)

∂
−→ Hn−1(P∗) → . . . .

Example 8.2.8. Let qC b(M (R)) ⊆ C b(M (R)) be the subcategory of quasi-
isomorphisms f∗ : M∗

∼
−→ N∗. Then (C b(M (R)), qC b(M (R))) is a Waldhausen

category.

[[Perfect complexes.]]
[[Saturation axiom, extension axiom.]]

Definition 8.2.9 (Exact functor). A functor F : (C , wC ) → (D , wD) be-
tween Waldhausen categories is exact if it preserves all relevant structure, i.e.,
if it is exact as a functor between categories with cofibrations and, furthermore,
it takes wC to wD . The composite of two exact functors is exact. We get a
category Wald of small Waldhausen categories and exact functors.

Example 8.2.10. In Examples 8.1.18 through 8.1.21, φ∗ and φ∗ are exact as
functors of Waldhausen categories (with isomorphisms as weak equivalences)
whenever they are defined and exact as functors of categories with cofibrations.
For example, the inverse image functor

φ∗ : (P(R), iP(R)) −→ (P(T ), iP(T ))

is exact for each ring homomorphism φ : R → T .
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Example 8.2.11. In Examples 8.2.5 and 8.2.6, each simple map is a weak
homotopy equivalence, so the identity functor on Rf (∗) defines an exact functor
(Rf (∗), sRf (∗)) → (Rf (∗), hRf (∗)).

Definition 8.2.12 (Waldhausen subcategory). Let (C , wC ) and (D , wD)
be Waldhausen categories, and suppose that (C , coC ) is a subcategory with
cofibrations of (D , coD). We say that C is a subcategory with cofibrations and
weak equivalences (= a Waldhausen subcategory) if the inclusion functor C ⊆ D

is exact and, furthermore, a morphism X → Y in C is a weak equivalence in C

if (and only if) it is a weak equivalence in D .

Example 8.2.13. Let R be a ring. The Waldhausen category (P(R), iP(R))
of finitely generated projective R-modules and isomorphisms is a Waldhausen
subcategory of the Waldhausen category (M (R), iM (R)) of finitely generated
R-modules and isomorphisms.

The Waldhausen category (C b(P(R)), qC b(P(R))) is a Waldhausen sub-
category of the Waldhausen category (C b(M (R)), qC b(M (R))).

[[Example: Compact objects in a closed model category.]]

Definition 8.2.14 (Weak equivalence category wS2C ). Let wS2C ⊆ S2C

be the subcategory of morphisms (f ′, f, f ′′) such that both f ′ : X ′ ∼
−→ Y ′ and

f : X
∼
−→ Y are weak equivalences in C (= morphisms in wC ).

X ′

f ′ ∼

²²

// // X

f ∼

²²

// // X ′′

f ′′ ∼

²²

Y ′ // // Y // // Y ′′

These assumptions imply that f ′′ : X ′′ ∼
−→ Y ′′ is a weak equivalence by the

gluing lemma, since f ′′ is the pushout morphism

X ∪X′ ∗
∼
−→ Y ∪Y ′ ∗

of f and ∗
∼
−→ ∗ along f ′.

Proposition 8.2.15. (S2C , wS2C ) is a Waldhausen category.

Proof. We must check the gluing lemma. Consider a vertical map from dia-
gram (8.1), where f ′ : X ′

 Y ′ and X ∪X′ Y ′
 Y are cofibrations, to the

diagram

Ȳ ′ // // Ȳ // // Ȳ ′′

X̄ ′

f̄ ′

OO

ḡ′

²²

// //

L

X̄

f̄

OO

ḡ

²²

// // X̄ ′′

f̄ ′′

OO

ḡ′′

²²

Z̄ ′ // // Z̄ // // Z̄ ′′

where f̄ ′ : X̄ ′
 Ȳ ′ and X̄ ∪X̄′ Ȳ ′

 Ȳ are cofibrations, such that each of the
maps Y ′ ∼

−→ Ȳ ′, Y
∼
−→ Ȳ , X ′ ∼

−→ X̄ ′, X
∼
−→ X̄, Z ′ ∼

−→ Z̄ ′ and Z
∼
−→ Z̄

are weak equivalences. Then by the gluing lemma in C the pushout maps
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Y ′ ∪X′ Z ′ ∼
−→ Ȳ ′ ∪X̄′ Z̄ ′ and Y ∪X Z

∼
−→ Ȳ ∪X̄ Z̄ are weak equivalences. Hence

the vertical pushout map

Y ′ ∪X′ Z ′ // //

∼

²²

Y ∪X Z // //

∼

²²

Y ′′ ∪X′′ Z ′′

∼

²²

Ȳ ′ ∪X̄′ Z̄ ′ // // Ȳ ∪X̄ Z̄ // // Ȳ ′′ ∪X̄′′ Z̄ ′′

is a weak equivalence in S2C .

Lemma 8.2.16. The source, target and quotient functors s, t, q : (S2C , wS2C ) →
(C , wC ), taking X ′

 X → X ′′ to X ′, X and X ′′, respectively, are all exact.

Proof. If (f ′, f, f ′′) is a weak equivalence in S2C , we have already seen that f ′,
f and f ′′ are weak equivalences in C .

Lemma 8.2.17. An exact functor F : (C , wC ) → (D , wC ) induces an exact
functor S2F : (S2C , wS2C ) → (S2D , wS2D).

Proof. Given a weak equivalence (f ′, f, f ′′) in S2C , its image (F (f ′), F (f), F (f ′′))
is clearly a weak equivalence in S2D , since F preserves weak equivalences.

Lemma 8.2.18. The (categorical) product of two Waldhausen categories (D , wD)
and (E , wE ) is (D × E , wD ×wE ). More generally, if F and G are exact func-
tors, the pullback of

(D , wD)
F
−→ (C , wC )

G
←− (E , wE )

is (D ×C E , wD ×wC wE ), consisting of pairs f : X ′ ∼
−→ X and g : Y ′ ∼

−→ Y of
weak equivalences in D and E , respectively, with F (f) = G(g) in C .

[[Clear?]]

Lemma 8.2.19. Let C , D , E be Waldhausen categories, and suppose that D ⊆
C and E ⊆ C are exact inclusion functors. Then E(D ,C ,E ) is a Waldhausen
category, and the inclusion functor E(D ,C ,E ) ⊆ S2C is exact.

[[Clear?]]

Lemma 8.2.20. Let (C , wC ) be a Waldhausen category. The coproduct functor

∨ : (C , wC ) × (C , wC ) −→ (C , wC )

taking (X,Y ) to X ∨ Y = X ∪∗ Y is exact.

Proof. If (X,Y )
∼
−→ (X̄, Ȳ ) is a weak equivalence, each map X

∼
−→ X̄ and

Y
∼
−→ Ȳ is a weak equivalence, so by the gluing lemma applied to the diagram

X

∼

²²

∗oooo // //

=

²²

Y

∼

²²

X̄ ∗oooo // // Ȳ

the pushout map X ∨ Y
∼
−→ X̄ ∨ Ȳ is a weak equivalence.
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Lemma 8.2.21. The topological realization

|∨| : |wC | × |wC | ∼= |wC × wC | −→ |wC |

induces the homomorphism

πi|∨| : πi|wC | × πi|wC | −→ πi|wC |

taking (x, y) to x + y in the group structure on πi|wC |, for i ≥ 1. In particular,
π1|wC | is abelian. The same pairing makes π0|wC | a commutative monoid.

Proof. The natural isomorphisms ∗ ∨ X ∼= X ∼= X ∨ ∗ lead to the commutative
diagram

∗ × wC //

∼=
&&NNNNNNNNNNN wC × wC

∨

²²

wC × ∗oo

∼=
xxqqqqqqqqqqq

wC

in Cat. For i ≥ 1, let G = πi|wC | with neutral element 0. Then πi|∨| : G×G →
G is a group homomorphism, mapping (0, y) 7→ y and (x, 0) 7→ x. The product
of (x, 0) and (0, y), in either order, equals (x, y), hence (x, y) 7→ x + y = y + x.
In particular G is abelian for i = 1. When i = 0 let M = π0|wC |. The pairing
π0|∨| : M × M → M defines a monoid structure on M , with neutral element
the class of the zero object ∗. It is commutative and associative, due to the
isomorphisms X ∨ Y ∼= Y ∨ X and (X ∨ Y ) ∨ Z ∼= X ∨ (Y ∨ Z).

Exercise 8.2.22. Compute the commutative monoids π0|iP(Z)| and π0|iM (Z)|,
and the homomorphism induced by the inclusion iP(Z) ⊂ iM (Z).

[[Fiber products, colimits of Waldhausen categories?]]

8.3 The S•-construction

This section is based on [68, 1.3].
The objects of S2C are cofiber sequences X1  X2 ։ X2/X1, which we

either think of a short filtration X1  X2 of the object X2, together with a
choice of filtration quotient X2/X1, or as an extension of the two objects X1

and X2/X1.
For the purpose of higher algebraic K-theory, we must generalize this to

consider sequences of cofibrations

X1
// // . . . // // Xq−1 // // Xq ,

viewed as a longer filtration of the object Xq, together with choices of filtration
quotients Xj/Xi for all 1 ≤ i < j ≤ q. Alternatively, we view these as compati-
ble extensions of the q objects X1,X2/X1, . . . ,Xq/Xq−1. These are the objects
of a category SqC , and taken together for varying q ≥ 0, we get a simplicial
category S•C , known as Waldhausen’s S•-construction.
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It is convenient to add X0 = ∗ to the sequence of subobjects, and to set
Xj/Xi = ∗ for i = j. The objects of SqC are then certain commutative diagrams

∗ // // X1
// //

²²²²

. . . // // Xq−1 // //

²²²²

Xq

²²²²

∗ // // . . . // // Xq−1/X1
// //

²²²²

Xq/X1

²²²²

. . .
...

²²²²

...

²²²²

∗ // // Xq/Xq−1

²²²²
∗

in C , with one entry Xi,j = Xj/Xi for each 0 ≤ i ≤ j ≤ q. We view i ≤ j as
a morphism in [q], or rather as an object in the arrow category Ar[q], so that
diagrams like the one above are given by functors X : Ar[q] → C .

[[Only extensions Xj/Xi of consecutive objects Xi+1/Xi, . . . ,Xj/Xj−1 are
considered.]]

Definition 8.3.1 (Arrow category on [q]). Let [q] = {0 < 1 < · · · < q} for
q ≥ 0. The arrow category Ar[q] ∼= Fun([1], [q]) has objects the pairs (i, j) with
i, j ∈ [q] and i ≤ j, corresponding to the arrow i → j in [q], or the functor
[1] → [q] mapping 0 7→ i and 1 7→ j. There is a unique morphism (i, j) → (i′, j′)
in Ar[q] if and only if i ≤ i′ and j ≤ j′, corresponding to the commutative
square

i //

²²

j

²²

i′ // j′

in [q]. In particular there are morphisms (i, j) → (i, k) and (i, k) → (j, k) for
all triples i ≤ j ≤ k, and every other morphism in Ar[q] is a composite of these
generating morphisms.

We shall view [q] as a full subcategory of Ar[q], by mapping j ∈ [q] to
(0, j) ∈ Ar[q]. Given a morphism α : [p] → [q] in ∆, there is an induced functor
Ar(α) : Ar[p] → Ar[q] taking (i, j) to (α(i), α(j)), defining a functor Ar: ∆ →
Cat.
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Example 8.3.2. Here is a picture of Ar[3], with a generating set of morphisms:

(0, 0) // (0, 1) //

²²

(0, 2) //

²²

(0, 3)

²²

(1, 1) // (1, 2) //

²²

(1, 3)

²²

(2, 2) // (2, 3)

²²

(3, 3)

The category [3] = {0 < 1 < 2 < 3} is embedded as the top row in this
diagram. The identity arrows (j, j) in [q] appear along the diagonal, and the
indecomposable arrows (j − 1, j) in [q] appear on the adjacent “superdiagonal”.

Definition 8.3.3 (Category SqC ). Let C be a category with cofibrations.
Consider the category Fun(Ar[q],C ) of Ar[q]-shaped diagrams in C , i.e., func-
tors

X : Ar[q] −→ C

taking (i, j) to Xi,j for i ≤ j in [q], and natural transformations between these.
Let

SqC ⊆ Fun(Ar[q],C )

be the full subcategory generated by the diagrams X : Ar[q] → C such that

(a) Xj,j = ∗ for each j ∈ [q].

(b) Xi,j  Xi,k ։ Xj,k is a cofiber sequence for each triple i < j < k in [q].

A morphism f : X → Y in SqC is a map of Ar[q]-shaped diagrams, consisting
of morphisms fi,j : Xi,j → Yi,j in C for all i ≤ j in [q], making the square

Xi,j
fi,j

//

²²

Yi,j

²²

Xi′,j′

fi′,j′
// Yi′,j′

commute for each morphism (i, j) → (i′, j′) in Ar[q]. The category SqC is
pointed at the constant diagram at ∗.

Remark 8.3.4. Condition (b) holds trivially if i = j or j = k, since ∗ 

Xi,k = Xi,k and Xi,k = Xi,k ։ ∗ are cofiber sequences. It can be rewritten as
saying that Xi,j  Xi,k is a cofibration and the square

Xi,j // //

²²²²

p

Xi,k

²²²²

Xj,j // // Xj,k

is a pushout, for each triple i ≤ j ≤ k in [q].
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Example 8.3.5. An object in S0C is the diagram

∗

in C , with X0,0 = ∗. Hence S0C is the one-morphism category, also denoted ∗.

Example 8.3.6. An object in S1C is any (trivially commutative) diagram

∗ // // X0,1

²²²²
∗

in C , with X0,0 = X1,1 = ∗. We view it as the object X0,1 in C , with no
filtration. Hence S1C is naturally isomorphic to C .

Example 8.3.7. An object in S2C is a commutative diagram

∗ // // X0,1 // //

²²²²

p

X0,2

²²²²

∗ // // X1,2

²²²²
∗

in C , where each horizontal morphism is a cofibration, and the square is a
pushout. We view it as the object X0,2 with the short filtration X0,1  X0,2,
together with the choice of quotient map X0,2 ։ X1,2. Alternatively, we can
view it as a choice of extension X0,2 of the objects X0,1 and X1,2. Hence S2C

is naturally isomorphic to the category defined in Definition 8.1.24.

Example 8.3.8. An object in S3C is a commutative diagram

∗ // // X0,1 // //

²²²²

p

X0,2 // //

²²²²

p

X0,3

²²²²

∗ // // X1,2 // //

²²²²

p

X1,3

²²²²

∗ // // X2,3

²²²²
∗

in C , where each horizontal morphism is a cofibration, and each square is a
pushout. (See Lemma 8.3.9 for the upper right hand square.) We view it as the
object X0,3 with the three-stage filtration X0,1  X0,2  X0,3, together will
all choices of subquotients. Alternatively, we can view it as a compatible system
of choices of extensions of all consecutive subsets of the three objects X0,1, X1,2

and X2,3. (No extension of the non-consecutive objects X0,1 and X2,3 is part of
the data.)
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Lemma 8.3.9. Let X : Ar[q] → C be an object in SqC . Then

Xi,k // //

²²²²

p

Xi,ℓ

²²²²

Xj,k // // Xj,ℓ

is a pushout square with horizontal cofibrations and vertical quotient maps, for
each i ≤ j ≤ k ≤ ℓ in [q].

Proof. Consider the subdiagram

Xi,j //

²²

Xi,k //

²²

Xi,ℓ

²²

Xj,j // Xj,k //

²²

Xj,ℓ

²²

Xk,k // Xk,ℓ

of X. By the defining condition for i ≤ j ≤ k the upper left hand square is a
pushout and Xi,k ։ Xj,k is a quotient map. By the condition for i ≤ k ≤ ℓ
the morphism Xi,k  Xi,ℓ is a cofibration, and by the condition for j ≤ k ≤ ℓ
the morphism Xj,k  Xj,ℓ is a cofibration. By the condition for i ≤ j ≤ ℓ the
upper rectangle is a pushout and Xi,ℓ ։ Xj,ℓ is a quotient map. It follows that
the upper right hand square is a pushout, since

Xj,k ∪Xi,k
Xi,ℓ

∼= Xj,j ∪Xi,j
Xi,k ∪Xi,k

Xi,ℓ
∼= Xj,j ∪Xi,j

Xi,ℓ

maps isomorphically to Xj,ℓ.

Definition 8.3.10 (Cofibration category coSqC ). Let (C , coC ) be a cate-
gory with cofibrations. Let coSqC ⊆ SqC be the subcategory with morphisms
f : X  Y the maps of Ar[q]-shaped diagrams such that the pushout morphism

X0,j ∪X0,j−1
Y0,j−1  Y0,j

is a cofibration in C , for each 1 ≤ j ≤ q.

X0,j−1 // //

f0,j−1

²²

p

X0,j

²²

f0,j

µµ

Y0,j−1 // //

¼¼

//

X0,j ∪X0,j−1
Y0,j−1
''

''OOOOOOOOOOOO

Y0,j

Remark 8.3.11. The assumption that f is a cofibration in SqC implies that
each f0,j is a cofibration in C , so each diagram

X0,j−1 // //

²²

²²

L

X0,j
²²

²²

Y0,j−1 // // Y0,j
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is a lattice square. This implies the seemingly more general statement below.

Lemma 8.3.12. Let f : X  Y be a morphism in coSqC . The diagram

Xi,j // //

²²

fi,j

²²

L

Xi,k
²²

fi,k

²²

Yi,j // // Yi,k

is a lattice square for each i ≤ j ≤ k in [q]. In particular, each component
fi,j : Xi,j  Yi,j is a cofibration.

Proof. We first prove that

X0,k ∪X0,j
Y0,j  Y0,k (8.2)

a cofibration for all j ≤ k in [q]. This is trivially true for j = k. If j < k, we
may assume by induction on (k − j) that

X0,k−1 ∪X0,j
Y0,j  Y0,k−1

is a cofibration. By pushout along X0,k−1  X0,k, using Lemma 8.1.6), it
follows that

X0,k ∪X0,j
Y0,j  X0,k ∪X0,k−1

Y0,k−1

is a cofibration. By assumption

X0,k ∪X0,k−1
Y0,k−1  Y0,k

is a cofibration, hence the composite map (8.2) is also a cofibration, completing
the inductive step.

There is a vertical map of cofiber sequences

Y0,i ∪X0,i
X0,i // //

∼=

²²

Y0,j ∪X0,j
X0,k // //

²²

²²

p

Yi,j ∪Xi,j
Xi,k

²²

²²

Y0,i // // Y0,k // // Yi,k

where the left hand vertical map is an isomorphism. Hence the right hand square
is a pushout. We have just shown that the middle vertical map is a cofibration,
so the right hand vertical map is also a cofibration, by cobase change.

The horizontal maps Xi,j  Xi,k and Yi,j  Yi,k were shown to be cofibra-
tions in Lemma 8.3.9. It remains to prove that the vertical maps Xi,j  Yi,j

are cofibrations for all i ≤ j in [q]. But this map can be rewritten as

Xi,j
∼= Yi,i ∪Xi,i

Xi,j  Yi,j

since Xi,i → Yi,i is the identity map ∗ → ∗, which we have just shown is a
cofibration.

Lemma 8.3.13. (SqC , coSqC ) is a category with cofibrations.
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Proof. The proof is similar to the case q = 2: The composite of two cofibrations
f : X  Y and g : Y  Z is a cofibration, since for each 1 ≤ j ≤ q, the three
pushout squares

X0,j−1 // //

f0,j−1

²²

p

X0,j

²²

f0,j

¸¸

Y0,j−1 // //

g0,j−1

²²

p

X0,j ∪X0,j−1
Y0,j−1

²²

// //

p

Y0,j

²²

f0,j

µµ

Z0,j−1 // // X0,j ∪X0,j−1
Z0,j−1 // // Y0,j ∪Y0,j−1

Z0,j−1 // // Z0,j

exist, three morphisms are cofibrations by assumption, and the remaining three
morphisms are cofibrations by cobase change.

Isomorphisms and initial morphisms in SqC are obviously cofibrations. Con-
cerning cobase change, suppose given a cofibration f : X  Y and any mor-
phism g : X → Z in SqC . Each component fi,j : Xi,j  Yi,j is a cofibration,
by Lemma 8.3.12, so each pushout Wi,j = Yi,j ∪Xi,j

Zi,j exists. These assemble
to a functor W : Ar[q] → C by the universal property of pushouts. If i = j, we
may assume that we chose Wj,j = ∗ as the pushout ∗ ∪∗ ∗. For each i < j < k
in [q], we claim that the diagram

Wi,j // // Wi,k // // Wj,k

is a cofiber sequence. The left hand morphism factors as the composite of two
cofibrations, as in the following diagram

Zi,j

fi,j∪id

²²

// //

p

Zi,k

fi,j∪id

²²

Yi,j ∪Xi,j
Zi,j // // Yi,j ∪Xi,j

Zi,k // //

p

Yi,k ∪Xi,k
Zi,k

Yi,j ∪Xi,j
Xi,k

id∪gi,k

OO

// // Yi,k

id∪gi,k

OO

with two pushout squares, where the upper and lower horizontal arrows are cofi-
brations by Lemmas 8.3.9 and 8.3.12, respectively. The proof that Wi,k/Wi,j

∼=
Wj,k is by commutation of colimits, just as for q = 2. Hence W is the pushout
of f and g in SqC .

Finally, to see that the induced map f∪id : Z → Y ∪XZ = W is a cofibration,
we must check that the pushout map W0,j−1∪Z0,j−1

Z0,j → W0,j is a cofibration,
for 1 ≤ j ≤ q. This follows from the pushout square

Y0,j−1 ∪X0,j−1
X0,j // //

²²

p

Y0,j

²²

Y0,j−1 ∪X0,j−1
Z0,j // // Y0,j ∪X0,j

Z0,j
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Definition 8.3.14 (Weak equivalence category wSqC ). Let (C , wC ) be a
Waldhausen category. Let wSqC ⊆ SqC be the subcategory with morphisms

f : X
∼
−→ Y the maps of Ar[q]-shaped diagrams such that

f0,j : X0,j
∼
−→ Y0,j

is a weak equivalence in C for each 1 ≤ j ≤ q.

Lemma 8.3.15. Let f : X
∼
−→ Y be a morphism in wSqC . Each component

fi,j : Xi,j
∼
−→ Yi,j

is a weak equivalence in C , for i ≤ j in [q].

Proof. This is immediate from the gluing lemma applied to the diagram

X0,j

≃

²²

X0,ioooo //

≃

²²

∗

=

²²
Y0,j Y0,ioooo // ∗ ,

giving the weak equivalence Xi,j
∼= X0,j ∪X0,i

∗
∼
−→ Y0,j ∪Y0,i

∗ ∼= Yi,j .

Lemma 8.3.16. (SqC , wSqC ) is a Waldhausen category.

[[Proof]]

Definition 8.3.17 (Simplicial category S•C ). Let C be a category with
cofibrations. For each morphism α : [p] → [q] in ∆, let

α∗ : SqC −→ SpC

take X : Ar[q] → C to the composite functor

α∗(X) = X ◦ Ar(α) : Ar[p] −→ Ar[q] −→ C .

Hence α∗(X) : Ar[p] → C takes (i, j) to Xα(i),α(j). This defines an object in
SpC , since

α∗(X)j,j = Xα(j),α(j) = ∗

for all j ∈ [p], and
α∗(X)i,j  α∗(X)i,k ։ α∗(X)j,k

equals the cofiber sequence

Xα(i),α(j)  Xα(i),α(k) ։ Xα(j),α(k)

for each triple i < j < k in [p]. These rules define a simplicial pointed category

S•C : [q] 7−→ SqC

called the S•-construction on C .

[[Explain face and degeneracy maps.]]
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Lemma 8.3.18. Let C be a category with cofibrations. Each functor

α∗ : SqC → SpC

is exact. Hence S•C is a simplicial category with cofibrations.

[[Proof]]

Lemma 8.3.19. An exact functor F : C → D of categories with cofibrations
induces a (simplicial) exact functor S•F : S•C → S•D of simplicial categories
with cofibrations.

[[Proof]]

Proposition 8.3.20. Let (C , wC ) be a Waldhausen category. Each functor

α∗ : SqC → SpC

is exact. Hence (S•C , wS•C ) is a simplicial Waldhausen category.

[[Proof]]

Proposition 8.3.21. An exact functor F : (C , wC ) → (D , wD) of Waldhausen
categories induces a (simplicial) exact functor

S•F : (S•C , wS•C ) −→ (S•D , wS•D)

of simplicial Waldhausen categories. In particular, it induces a (simplicial)
functor

wS•F : wS•C −→ wS•D

of simplicial pointed categories. We get functors S• : Wald → sWald and
wS• : Wald → sCat∗.

[[Proof]]
[[Show that SqC is determined by its 2-faces α : [2] → [q].]]

8.4 Algebraic K-groups

Let (C , wC ) be a Waldhausen category. The nerve of the simplicial category
wS•C is the bisimplicial set N•wS•C with (p, q)-bisimplices the chains of p
composable weak equivalences of length q sequences of cofibrations:

∗ // // X0
1

// //

∼

²²

X0
2

// //

∼

²²

. . . // // X0
q

∼

²²

∗ // // X1
1

// //

∼

²²

X1
2

// //

∼

²²

. . . // // X1
q

∼

²²

...

∼

²²

...

∼

²²

...

∼

²²

∗ // // Xp
1

// // Xp
2

// // . . . // // Xp
q

together with choices of subquotients Xk
i,j

∼= Xk
j /Xk

i for each i ≤ j in [q], k ∈ [p].
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Lemma 8.4.1. The inclusion of the right 1-skeleton defines a natural bisimpli-
cial map

N•wC ∧ S1
• −→ N•wS•C ,

inducing a based map
σ : Σ|wC | −→ |wS•C |

on classifying spaces.

Proof. We view N•wS•C as the simplicial object

[q] 7→ N•wSqC

in simplicial sets, treating the right hand index, q, as the external grading. [[As
opposed to in the proof of the realization lemma, where the left hand index
was the external grading.]] For q = 0, wS0C = S0C = ∗ is the one-morphism
category, so N•wS0C = ∗ is the simplicial point. For q = 1, wS1C

∼= wC . The
right 1-skeleton of N•wS•C is the image of the canonical map

∐

q≤1

N•wSqC × ∆q
• −→ N•wS•C ,

which equals the reduced suspension

N•wC ∧ S1
• =

N•wC × ∆1
•

{∗} × ∆1
• ∪ N•wC × ∂∆1

•

.

[[The degeneracy map s0 collapses {∗} ×∆1
•. The face maps d0 and d1 collapse

N•wC × ∂∆1
•.]]

Definition 8.4.2 (Algebraic K-theory). Let (C , wC ) be a Waldhausen cat-
egory. The algebraic K-theory space

K(C , w) = Ω|wS•C |

is the loop space of the classifying space of the simplicial pointed category wS•C ,
i.e., of the topological realization of the bisimplicial set N•wS•C . Let

ι : |wC | −→ K(C , w)

be right adjoint to the based map σ above.
Let F : (C , wC ) → (D , wD) be an exact functor. The induced map in

algebraic K-theory

K(F ) = Ω|wS•F | : K(C , w) −→ K(D , w)

is the loop map of the classifying map of the simplicial functor wS•F . These
rules define the algebraic K-theory functor

K : Wald −→ Top∗ .

Definition 8.4.3 (Algebraic K-groups). The algebraic K-groups

Ki(C , w) = πiK(C , w)
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of a Waldhausen category (C , wC ) are the homotopy groups, for i ≥ 0, of the
algebraic K-theory space. The induced homomorphism

Ki(F ) : Ki(C , w) −→ Ki(D , w)

of an exact functor F : (C , wC ) → (D , wD), is the homomorphism Ki(F ) =
πiK(F ) induced by the based map of algebraic K-theory spaces. These rules
define the algebraic K-group functors

Ki : Wald → Ab .

Remark 8.4.4. The space |wS•C | is connected, since wS0C = ∗ in simplicial
degree 0 and all higher simplices are attached to this point. Hence no homo-
topical information is lost by passing to the loop space Ω|wS•C |.

Remark 8.4.5. It is clear that Ki(C , w) = πi+1|wS•C | is abelian for i ≥ 1.
The assertion that K0(C , w) is abelian follows from the next lemma, since the
(split) cofiber sequences X ′

 X ′ ∨X ′′
։ X ′′ and X ′′

 X ′ ∨X ′′
։ X ′ imply

[X ′] · [X ′′] = [X ′ ∨ X ′′] = [X ′′][X ′]. We therefore write the group operation in
Ki(C , w) additively, also for i = 0.

Lemma 8.4.6. The group K0(C , w) is generated by classes [X] for each object
X in C , subject to the relations [X ′] + [X ′′] = [X] for each cofiber sequence
X ′

 X ։ X ′′, and [X] = [Y ] for each weak equivalence X
∼
−→ Y . The

homomorphism K0(F ) : K0(C , w) → K0(D , w) takes [X] to [F (X)].

Proof. We compute the fundamental group of the topological realization of
N•wS•C , based at the single (0, 0)-simplex ∗. The realization has a CW struc-
ture [[Explain!]] with one 1-cell for each (0, 1)-simplex X, a 2-cell for each
(0, 2)-simplex X ′

 X ։ X ′′ (attached to the 1-cells X ′′, X and X ′), and a
2-cell for each (1, 1)-simplex X

∼
−→ Y (attached to the 1-cells X and Y ). The

remaining cells are of higher dimension, hence do not affect the fundamental
group.

The bisimplicial map N•wS•C → N•wS•D takes each (0, 1)-simplex X to
the (0, 1)-simplex F (X), which determines K0(F ) on the generators.

Definition 8.4.7 (Algebraic K-theory of rings). Let R be a ring. The
algebraic K-theory space of R is

K(R) = K(P(R), i) = Ω|iS•P(R)|

is the algebraic K-theory space of the Waldhausen category (P(R), iP(R))
of finitely generated projective R-modules, injective R-module homomorphisms
with projective cokernel, and R-module homomorphisms. The algebraic K-
theory groups of R are

Ki(R) = Ki(P(R), i) = πi+1|iS•P(R)|

for i ≥ 0.
For each ring homomorphism φ : R → T the inverse image (= base change)

functor φ∗ : P(R) → P(T ) induces the natural map K(φ∗) : K(R) → K(T ),
and the natural homomorphisms

φ∗ = Ki(φ∗) : Ki(R) −→ Ki(T )
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for each i ≥ 0. If T is finitely generated projective over R, the direct image (=
forgetful) functor φ∗ : P(T ) → P(R) induces the transfer map K(φ∗) : K(T ) →
K(R) and the transfer homomorphisms

φ∗ = Ki(φ
∗) = Ki(T ) −→ Ki(R) .

Definition 8.4.8 (Algebraic G-theory of rings). Let R be a Noetherian
ring. The algebraic G-theory space of R is

G(R) = K(M (R), i) = Ω|iS•M (R)|

is the algebraic K-theory space of the Waldhausen category (M (R), iM (R))
of finitely generated R-modules, injective R-module homomorphisms, and R-
module homomorphisms. The algebraic G-theory groups of R are

Gi(R) = Ki(M (R), i) = πi+1|iS•M (R)|

for i ≥ 0. [[Discuss the immediate functoriality properties of G-theory.]]
The exact functor P(R) ⊆ M (R) induces a natural map K(R) → G(R)

and natural homomorphism Ki(R) → Gi(R) for i ≥ 0.

Remark 8.4.9. Another name for G-theory is K ′-theory. Under suitable reg-
ularity hypotheses on R, the natural map K(R) → G(R) is a homotopy equiva-
lence. [[View K-theory as a cohomology theory on schemes, with corresponding
Borel–Moore/locally finite homology theory given by G-theory. A homotopy
equivalence K(R) ≃ G(R) is then a form of Poincaré duality.]]

[[For non-Noetherian R, one should work with coherent, or pseudo-coherent,
R-modules.]]

Exercise 8.4.10. Let co⊕M (Z) ⊂ coM (Z) be the subcategory consisting of
split injective Z-module homomorphisms. Determine the groups

G0(Z) = K0(M (Z), coM (Z), iM (Z))

and
G⊕

0 (Z) = K0(M (Z), co⊕M (Z), iM (Z)) ,

and the induced homomorphisms K0(Z) → G⊕
0 (Z) → G0(Z).

Exercise 8.4.11. Let M q(Z) ⊂ M (Z) be the full subcategory consisting of
finite abelian groups (= rationally trivial finitely generated Z-modules). Con-
sider it as a Waldhausen subcategory of (M (Z), coM (Z), iM (Z)). Determine
the group

K0(M
q(Z), i)

and the induced homomorphism to G0(Z).

[[Relate coproduct in C with group structure on Ki(C ).]]
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8.5 The additivity theorem

The following theorem is fundamental in the development of higher algebraic
K-theory. [[Refer to Grayson, Staffeldt, McCarthy.]] It was proved by Quillen
in the setting of exact categories [55, §3], and generalized by Waldhausen. We
follow Waldhausen’s presentation [68, 1.4], but make use of the simplification
found by Grayson et al [31], which relies on theorem A* instead of Quillen’s
theorem B.

Theorem 8.5.1 (Additivity theorem). Let (C , wC ) be a Waldhausen cate-
gory. The exact functor

(s, q) : S2C −→ C × C

taking X ′
 X ։ X ′′ to (X ′,X ′′) induces a homotopy equivalence

wS•(s, q) : wS•S2C
≃
−→ wS•C × wS•C .

Hence
K(s, q) : K(S2C , w)

≃
−→ K(C , w) × K(C , w) .

Corollary 8.5.2. The two exact functors of Waldhausen categories

t , s ∨ q : S2C −→ C

taking X ′
 X ։ X ′′ to X and X ′ ∨ X ′′, respectively, induce homotopic

functors
wS•t ≃ wS•(s ∨ q) : wS•S2C −→ wS•C .

Hence
K(t) ≃ K(s ∨ q) : K(S2C , w) −→ K(C , w)

and
Ki(t) = Ki(s) + Ki(q) : Ki(S2C , w) −→ Ki(C , w)

for each i ≥ 0.

Proof. Let σ : C × C → S2C be the exact functor of Waldhausen categories
taking (X ′,X ′′) to the (split) cofiber sequence X ′

 X ′ ∨ X ′′
։ X ′′. The

composite (s, q) ◦σ is the identity on C ×C , and the two composites (s∨ q) ◦σ,
t ◦ σ : C × C → C are equal, so we get a diagram

C × C

σ

²²

=

yyttttttttt

³³

C × C S2C
(s,q)

oo

s∨q
//

t
// C

in Wald. By the additivity theorem, wS•(s, q) is a homotopy equivalence, so
wS•σ is a homotopy equivalence. Since wS•(s ∨ q) ◦ wS•σ = wS•t ◦ wS•σ, it
follows that wS•(s ∨ q) and wS•t are homotopic. [[Relate ∨ to + in Ki.]]

Definition 8.5.3 (Cofiber sequence of exact functors). Let F ′, F, F ′′ : C →
D be exact functors of Waldhausen categories. A pair of natural transformations
F ′ ⇒ F ⇒ F ′′ is a cofiber sequence of exact functors, denoted F ′

 F ։ F ′′, if



CHAPTER 8. WALDHAUSEN K-THEORY 219

(a) for each object X in C the sequence

F ′(X)  F (X) ։ F ′′(X)

is a cofiber sequence in D , and

(b) for each cofibration X ′
 X in C , the diagram

F ′(X ′) // //

²²

²²

F ′(X)
²²

²²

F (X ′) // // F (X)

L

is a lattice square in D , in the sense that the pushout morphism

F (X ′) ∪F ′(X′) F ′(X)  F (X)

is a cofibration.

Equivalently, the rule sending X in C to F ′(X)  F (X) ։ F ′′(X) in S2D

defines an exact functor (C , wC ) → (S2D , wS2D).

Corollary 8.5.4. If F ′
 F ։ F ′′ is a cofiber sequence of exact functors of

Waldhausen categories, then the two exact functors F , F ′ ∨F ′′ : C → D induce
homotopic functors

wS•F ≃ wS•(F
′ ∨ F ′′) : wS•C −→ wS•D .

Hence
K(F ) ≃ K(F ′ ∨ F ′′) : K(C , w) −→ K(D , w)

and
Ki(F ) = Ki(F

′) + Ki(F
′′) : Ki(C , w) −→ Ki(D , w)

for each i ≥ 0.

Proof. The cofiber sequence of exact functors defines an exact functor G : C →
S2D . By the previous corollary, and composition, the two exact functors (s ∨
q) ◦ G = F ′ ∨ F ′′ and t ◦ G = F induce homotopic functors, as claimed.

[[Relate to sum in K-groups, using K(F ′∨F ′′) = K(F ′)∨K(F ′′) ≃ K(F ′)∗
K(F ′′), so that K∗(F ) = K∗(F

′) + K∗(F
′′).]]

Waldhausen’s proof of the additivity theorem separates into one part con-
cerning the cofibrations and a second part involving the weak equivalences.

Definition 8.5.5 (Simplicial set s•C ). If C is a small category with cofibra-
tions, let sqC = obj(SqC ) for each q ≥ 0, so that [q] 7→ sqC defines a simplicial
set s•C . Each exact functor F : C → D of categories with cofibrations induces
a simplicial map s•F : s•C → s•D . In simplicial degree q it takes the object
X : Ar[q] → C to the object F ◦ X : Ar[q] → D .

Lemma 8.5.6. A natural isomorphism φ : F
∼=

=⇒ G of exact functors F,G : C →
D induces a simplicial homotopy s•F ≃ s•G : s•C → s•D .
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Proof. Write the natural isomorphism as a functor Φ: C ×[1] → D . We describe
the simplicial homotopy using Waldhausen’s notation from Definition 6.4.9, as
a natural transformation

φ∗ : (s•C )∗ =⇒ (s•D)∗

of functors (∆/[1])op → Set. Its component at ζ : [q] → [1] is the function
φ∗

ζ : sqC → sqD taking X : Ar[q] → C in sqC to Y : Ar[q] → D , defined as the
composite

Ar[q]
(X,Ar(ζ))
−→ C × Ar[1]

id×t
−→ C × [1]

Φ
−→ D .

Here t : Ar[1] → [1] takes (i, j) to j, for all i ≤ j in [1].
The object Yj,j equals F (∗) or G(∗), depending on the value of ζ(j), and

both values equal ∗ by exactness of F and G. For i ≤ j ≤ k in [q], the diagram
Yi,j → Yi,k → Yj,k equals one of the diagrams

F (Xi,j)  F (Xi,k) ։ F (Xj,k)

F (Xi,j)  G(Xi,k) ։ G(Xj,k)

G(Xi,j)  G(Xi,k) ։ G(Xj,k) ,

depending on the values of ζ(j) and ζ(k). The first and third diagrams are
cofiber sequences, by exactness of F and G. The second diagram is also a cofiber
sequence, since φ is a natural isomorphism. Hence Y lies in sqD . [[Elaborate?]]

To check naturality, let α : [p] → [q] in ∆, and note that the diagram

Ar[p]

Ar(α)

²²

(α∗(X),Ar(ζα))
// C × Ar[1]

id×t
//

=

²²

C × [1]
Φ //

=

²²

D

=

²²

Ar[q]
(X,Ar(ζ))

// C × Ar[1]
id×t

// C × [1]
Φ

// D

commutes. Hence the square

sqC
φ∗

ζ
//

α∗

²²

sqD

α∗

²²

spC
φ∗

ζα
// spD

commutes.

Remark 8.5.7. To illustrate, for a 1-simplex X in s•C , the simplicial homotopy
traces out the square

∗
G(X)

// ∗

∗
F (X)

//

∗

OO

G(X)
ÄÄÄÄÄÄÄ

??ÄÄÄÄÄÄÄ

∗

∗

OO
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in s•D , where the lower 2-simplex is given by the cofiber sequence

F (X) //
φX // G(X) // // ∗

and the upper 2-simplex is given by the cofiber sequence

∗ // // G(X)
= // // G(X) .

For a q-simplex X : Ar[q] → C , as ζ ranges through ∆1
q the q-simplices φ∗

ζ(X)

range from F ◦X to G◦X. When ζ = ζq
k takes {0, . . . , k−1} to 0 and {k, . . . , q}

to 1, φ∗
ζ(X) : Ar[q] → D takes the values F (Xi,j) at the (i, j) with j < k, and

the values G(Xi,j) at the (i, j) with j ≥ k. In other words, φ∗
ζ(X) is given by

the cofiber sequence

∗  F (X1)  . . .  F (Xk−1)  G(Xk)  . . .  G(Xq) ,

together with the choices of subquotients F (Xj)/F (Xi) = F (Xi,j) for i ≤ j <
k, G(Xj)/F (Xi) = G(Xi,j) for i < k ≤ j and G(Xj)/G(Xi) = G(Xi,j) for
k ≤ i ≤ j.

Remark 8.5.8. Lemma 8.5.6 is not just a special case of Segal’s Proposi-
tion 7.1.17, since s•C can be identified with the subcategory of identity mor-
phisms in S•C , not the subcategory iS•C of isomorphisms. The lemma relies
essentially on the closure of cofiber sequences under isomorphism.

Corollary 8.5.9. An exact equivalence F : C
≃
−→ D of categories with cofibra-

tions [[with exact inverse]] induces a simplicial homotopy equivalence

s•F : s•C
≃
−→ s•D .

Proof. Let G : D
≃
−→ C be an exact inverse equivalence. Then s•G : s•D → s•C

provides the simplicial homotopy inverse, by Lemma 8.5.6.

Corollary 8.5.10. Let (C , iC ) be a Waldhausen category, where iC is the
subcategory of isomorphisms. There is a homotopy equivalence

s•C
≃
−→ iS•C .

Proof. Consider the simplicial object

[m] 7→ NmiS•C

in sSet, and note that s•C = N0iS•C . Recall Example 6.6.8. Viewing s•C as
a constant simplicial object, there is a simplicial map s•C → N•iS•C given in
simplicial degree m by the m-fold degeneracy map

ρ∗m : s•C −→ NmiS•C

where ρm : [m] → [0] is (the unique morphism) in ∆. Here NmiS•C is s•D
for the category with cofibrations D = NmiC , and ρ∗m is induced by the exact
functor C → NmiC taking each object to m copies of the identity isomorphism
on that object. [[Explain the cofibration structure on NmiC ?]]
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Let ǫm : [0] → [m] take 0 to m. The exact functor ǫ∗m : NmiC → C takes a
chain

X0

∼=
−→ . . .

∼=
−→ Xn

of m composable isomorphisms in C to the target object Xm. The composite
ǫ∗mρ∗m is the identity on C , while the composite ρ∗mǫ∗m is naturally isomorphic to
the identity on NmiC . [[Elaborate?]] Hence ρ∗m is a weak homotopy equivalence,
by Lemma 8.5.6. Since this holds for each m ≥ 0, the inclusion s•C → N•iS•C

is a weak homotopy equivalence by the realization lemma.

The additivity theorem will be deduced from the following lemma.

Lemma 8.5.11. Let C be a category with cofibrations. The simplicial map

s•(s, q) : s•S2C
≃
−→ s•C × s•C

is a weak homotopy equivalence.

Proof. We apply Lemma A* to the simplicial maps f• = s•s : s•S2C → s•C
and g• = s•q : s•S2C → s•C .

An n-simplex in f•/(q,X ′) consists of a morphism α : [n] → [q] and a cofiber
sequence X  Y ։ Z in SnC , such that X = α∗(X ′).

f•/(q,X ′) //

²²

s•S2C

f•

²²

∆q
•

X′
• // s•C

We must prove that for each q ≥ 0 and X ′ ∈ sqC , the composite map

p• : f•/(q,X ′) −→ s•S2C
g•
−→ s•C

is a weak homotopy equivalence. The map p• takes (α,X  Y ։ Z) to the
n-simplex Z in s•C . In fact, p• is a simplicial deformation retraction. Let

j• : s•C → f•/(q,X ′)

map Z ∈ snC to (ǫqρn, ∗  Z
=
։ Z), where ǫqρn : [n] → [q] takes each i ∈ [n]

to the last vertex q ∈ [q]. This makes sense, since ǫ∗q(X
′) = ∗ in s0C , which

degenerates by ρ∗n to ∗ in snC .
The composite p• ◦ j• : s•C → s•C is the identity, while the composite

j• ◦ p• : f•/(q,X ′) → f•/(q,X ′) takes (α,X  Y ։ Z) to (ǫqρn, ∗  Z ։ Z).
Following Waldhausen, we shall construct an explicit simplicial homotopy from
the identity on f•/(q,X ′) to the composite j• ◦ p•.

This simplicial homotopy lifts the simplicial contraction of Example 7.1.24,
from the identity on ∆q

• to the constant map ǫqρ• to the terminal vertex q. Let
the functor H : [q]× [1] → [q] be given by H(i, 0) = i and H(i, 1) = q, for i ∈ [q],
representing the natural transformation from the identity on [q] to the constant
functor to q. The simplicial contraction is given by the natural transformation
h : (∆q)∗ =⇒ (∆q)∗ with components hζ for ζ : [n] → [1], taking α : [n] → [q] to
ᾱ = hζ(α) equal to the composite

ᾱ : [n]
(α,ζ)
−→ [q] × [1]

H
−→ [q] .
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The lifted simplicial homotopy

h̃ : (f•/(q,X ′))∗ =⇒ (f•/(q,X ′))∗

will be defined to have components h̃ζ , taking (α,X  Y ։ Z) to

(ᾱ, X̄  Ȳ ։ Z̄) .

Here ᾱ : [n] → [q] is as above, and X̄ = ᾱ∗(X ′).
To define Ȳ , Z̄ and the cofiber sequence X̄  Ȳ ։ Z̄, we shall use a

preferred morphism X → X̄ in SnC . We have α(i) ≤ ᾱ(i) in [q] for all i ∈ [n],
hence there is a (unique) natural transformation Arα =⇒ Ar ᾱ of functors
Ar[n] → Ar[q], and an induced natural transformation α∗(X ′) =⇒ ᾱ∗(X ′) of
functors Ar[n] → C . This is the preferred morphism X → X̄. Its components
are

Xi,j = X ′
α(i),α(j) −→ X ′

ᾱ(i),ᾱ(j) = X̄i,j

for all i ≤ j in [n]. The cofiber sequence X̄  Ȳ ։ Z̄ is now defined by cobase
change from X  Y ։ Z along X → X̄:

X // //

²²

p

Y // //

²²

Z

=

²²

X̄ // // Ȳ // // Z̄

This involves making choices of pushouts. To ensure naturality in ζ : [n] → [1],
these choices should be made in C , and extended pointwise to the diagram
category S2C . Then, to check that h̃ is a natural transformation, consider a
morphism β : [m] → [n] in ∆, viewed as a morphism from ζβ to ζ in ∆/[1]. The
composite β∗ ◦ h̃ζ takes (α,X  Y ։ Z) to (β∗ᾱ, β∗X̄  β∗Ȳ  β∗Z̄), which

is also the value of h̃ζβ on (β∗α, β∗X  β∗Y ։ β∗Z). [[See [68, p. 340] for
further discussion.]]

When ζ(i) = 0 for all i ∈ [n], α = ᾱ and X̄ = X. When ζ(i) = 1 for all i,
α = ǫqρn and X̄ = ∗. If we additionally ensure that the pushout are chosen so
that Y → Ȳ is the identity if X → X̄ is the identity, and Ȳ → Z̄ is the identity
if X̄ = ∗, then h̃ is indeed a simplicial homotopy from the identity to j• ◦ p•.
[[Slight issue: if Xi,j = X̄i,j = ∗, should the pushout of X̄i,j ← Xi,j → Yi,j be
Yi,j or Zi,j? May be allowed to depend on ζ(i).]]

[[Comment: The simplicial homotopy h̃ fibers over s•C via p•, which should
mean that |p•| has contractible point inverses. The simplicial sets involved are
rarely finite, but are p• and s•(s, q) simple homotopy equivalences in any useful
sense?]]

Proof of the additivity theorem. We wish to prove that the bisimplicial map

(s, q)•,• : N•wS•S2C −→ N•wS•C × N•wS•C

is a weak homotopy equivalence. We view this as a map of simplicial objects in
sSet, given in simplicial degree m by

(s, q)m,• : NmwS•S2C −→ NmwS•C × NmwS•C .
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For each m ≥ 0, let C (m,w) ⊆ Fun([m],C ) be the full subcategory gener-
ated by the functors that takes values in wC , i.e., the diagrams

X0 ∼
−→ X1 ∼

−→ . . .
∼
−→ Xm .

Then C (m,w) is a subcategory with cofibrations of Fun([m],C ), and [m] 7→
C (m,w) defines a simplicial category with cofibrations. There are simplicial
isomorphisms

NmwS•C
∼= s•C (m,w)

and
NmwS•S2C

∼= s•S2C (m,w) ,

and the map (s, q)m,• can be rewritten as the map

s•(s, q) : s•S2C (m,w) −→ s•C (m,w) × s•C (m,w)

of Lemma 8.5.11, for the category with cofibrations C (m,w). Hence (s, q)m,• is
a weak equivalence for each m ≥ 0, and the bisimplicial map (s, q)•,• is a weak
equivalence by the realization lemma.

8.6 Delooping K-theory

[[Introduction, reference to [68, 1.5]]]

Definition 8.6.1. Let P : ∆ → ∆ be the shift functor taking [q] to P [q] =
[q + 1] and α : [p] → [q] to Pα : [p + 1] → [q + 1], given by Pα(0) = 0 and
Pα(i + 1) = α(i) + 1 for i ∈ [p].

Given a simplicial object X• in a category D , i.e., a functor X : ∆op → D ,
let the path object PX• be given by the composite functor X ◦ P op : ∆op → D ,
so that (PX)q = Xq+1 for all q ≥ 0.

The 0-th face maps δq+1
0 : [q] → [q + 1] induce a natural transformation

id =⇒ P and a simplicial map

d0 : PX• −→ X• ,

given by d0 : PXq = Xq+1 → Xq for each q ≥ 0. The inclusion of zero-simplices
induces maps X1 = PX0 → PX• and X0 → X•, and the square

X1
//

d0

²²

PX•

d0

²²

X0
// X•

commutes.

[[Discuss P sing(Y )• as an example.]]

Lemma 8.6.2. There is a simplicial homotopy equivalence PX ≃ X0.

[[See [68, 1.5.1].]]
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We apply this when X• = wS•C for a Waldhausen category (C , wC ). Then
X0 = wS0C = ∗ and X1 = wS1C

∼= wC , so we have a diagram of simplicial
categories

wC −→ P (wS•C )
d0−→ wS•C , (8.3)

with constant composite. By the lemma above, P (wS•C ) is simplicially con-
tractible. A choice of contraction of |P (wS•C )| thus determines a map

ι : |wC | −→ Ω|wS•C | = K(C , w) .

Lemma 8.6.3. The simplicial contraction of P (wS•C ) can be chosen so that ι
is (homotopic to) the map from Definition 8.4.2.

[[See [68, 1.5.2].]]
In general ι is not a homotopy equivalence, so diagram (8.3) is not a fibra-

tion up to homotopy. This situation improves greatly after applying the S•

construction one more time.

Proposition 8.6.4. Let (C , wC ) be a Waldhausen category. The diagram

wS•C −→ P (wS•S•C )
d0−→ wS•S•C

is a fibration up to homotopy. Hence the map

ι : |wS•C |
≃
−→ Ω|wS•S•C |

is a homotopy equivalence.

[[See [68, 1.5.3].]]

Proof. We may assume that the path object construction acts on the second of
the two S• constructions. We use the fibration criterion of Proposition 6.8.2. It
suffices to show that

wS•C −→ P (wS•S•C )q
d0−→ wS•SqC

is a fibration up to homotopy for each q ≥ 0, since wS•SqC is connected for
each q. In view of the definition of the path object functor, we can rewrite this
diagram as

wS•C −→ wS•Sq+1C
d0−→ wS•SqC .

This is the diagram we obtain by applying wS•(−) to

C −→ Sq+1C
d0−→ SqC ,

and we shall use the additivity theorem to see that this is homotopy equivalent
to the product fibration obtained by applying wS•(−) to

C −→ C × SqC
pr2
−→ SqC .

Let η∗
1 : Sq+1C → C take X : Ar[q + 1] → C to X0,1. (It is induced by

the morphism η1 : [1] → [q + 1] from Definition 7.1.5.) We get a commutative
diagram

C //

=

²²

Sq+1C

τ

²²

d0 // SqC

=

²²

C // C × SqC
pr2 // SqC
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where τ = (η∗
1 , d0) takes an object

X0,1  X0,2  . . .  X0,q+1

(plus choices of subquotients) in Sq+1C to

(X0,1,X1,2  . . .  X1,q+1)

(plus choices of subquotients) in C × SqC .
We can identify C with the full subcategory of Sq+1C where all cofibrations

X0,j−1  X0,j are identities and all subquotients are ∗. Similarly, we can
identify SqC with the full subcategory of Sq+1C where X0,1 = ∗ and the quotient
maps X0,j ։ X1,j are identities. Using these identifications, the exact functor
τ : Sq+1C → C × SqC has an exact section σ given by the composite

C × SqC ⊂ Sq+1C × Sq+1C
∨

−→ Sq+1C ,

taking (X0,1,X1,2  . . .  X1,q+1) (with choices of subquotients) to

X0,1  X0,1 ∨ X1,2  . . .  X0,1 ∨ X1,q+1

(with the evident choices of subquotients).
The composite τ ◦ σ is the identity, while the composite σ ◦ τ : Sq+1C →

Sq+1C is the wedge sum of the two exact functors

F ′, F ′′ : Sq+1C → Sq+1C

taking X0,1  X0,2  . . .  X0,q+1 to

X0,1
=
−→ X0,1

=
−→ . . .

=
−→ X0,1

and
∗  X1,2  . . .  X1,q+1 ,

respectively. Let F be the identity functor on Sq+1C . Then there is a cofiber
sequence of exact functors

F ′
 F ։ F ′′

with components X0,1  X0,j ։ X1,j . Hence, by the additivity theorem
(Corollary 8.5.4), there is a homotopy

wS•σ ◦ wS•τ = wS•(F
′ ∨ F ′′) ≃ wS•F

to the identity on wS•Sq+1C . It follows that wS•τ is a homotopy equivalence,
and we get the commutative diagram

wS•C
//

=

²²

wS•Sq+1C

wS•τ≃

²²

d0 // wS•SqC

=

²²

wS•C
// wS•C × wS•SqC

pr2 // wS•SqC .

The lower row is clearly a fibration up to homotopy, hence so it the upper
row.
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8.7 The iterated S•-construction

We can encode the fact that the algebraic K-theory space K(C , w) = Ω|wS•C |
is an infinite loop space in an algebraic K-theory spectrum. To discuss mul-
tiplicative properties, it is useful to use Jeff Smith’s notion of a symmetric
spectrum, see Hovey–Shipley–Smith [27].

Definition 8.7.1. A symmetric spectrum X (in topological spaces) is a sequence
{n 7→ Xn} of based Σn-spaces, with structure maps σ : Xn ∧ S1 → Xn+1 such
that the k-fold iterate σk : Xn ∧ Sk → Xn+k is (Σn × Σk)-equivariant for each
n, k ≥ 0. Here Σk acts on Sk = S1 ∧ · · · ∧ S1 by permuting the smash factors,
and Σn × Σk is viewed as a subgroup of Σn+k in the obvious way.

A map f : X → Y of symmetric spectra is a sequence {n 7→ fn : Xn → Yn}
of based Σn-equivariant maps, such that the square

Xn ∧ S1
fn∧id

//

σ

²²

Yn ∧ S1

σ

²²

Xn+1
fn+1

// Yn+1

commutes for each n ≥ 0 Let SpΣ be the category of symmetric spectra.

[[Level equivalence, stable equivalence.]]
The following constructions are discussed in [68, p. 330] and [57, §1]. The

symmetric structure is emphasized in [21, §6].

Definition 8.7.2. Let (C , wC ) be a Waldhausen category. The external n-fold
S•-construction on C is the n-multisimplicial Waldhausen category

(S• . . . S•C , wS• . . . S•C ) .

In multidegree (q1, . . . , qn), it has objects the Ar[q1] × · · · × Ar[qn]-shaped dia-
grams

X : Ar[q1] × · · · × Ar[qn] −→ C

such that

(a)
X(i1 ≤ j1, . . . , in ≤ jn) = ∗

if it = jt in [qt] for some 1 ≤ t ≤ n.

(b)
X(. . . , it ≤ jt, . . . )  X(. . . , it ≤ kt, . . . ) ։ X(. . . , jt ≤ kt, . . . )

is a cofiber sequence in the (n− 1)-fold iterated S•-construction, for each
triple it ≤ jt ≤ kt in [qt].

Let the internal n-fold S•-construction

(S
(n)
• C , wS

(n)
• C )

be the diagonal simplicial Waldhausen category, with q-simplices

(S(n)
q C , wS(n)

q C ) = (Sq . . . SqC , wSq . . . SqC ) .
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It has objects the (Ar[q])n = Ar([q]n)-shaped diagrams

X : Ar[q]n −→ C

such that

(a)
X(i1 ≤ j1, . . . , in ≤ jn) = ∗

if it = jt in [q] for some 1 ≤ t ≤ n.

(b)
X(. . . , it ≤ jt, . . . )  X(. . . , it ≤ kt, . . . ) ։ X(. . . , jt ≤ kt, . . . )

is a cofiber sequence in the (n− 1)-fold iterated S•-construction, for each
triple it ≤ jt ≤ kt in [q].

The symmetric group Σn acts simplicially on S
(n)
• C , by permuting the n

copies of [q] in Ar[q]n. More explicitly, for π ∈ Σn,

(π · X)(. . . , it ≤ jt, . . . ) = X(. . . , iπ−1(t) ≤ jπ−1(t), . . . ) .

Definition 8.7.3. The (symmetric) algebraic K-theory spectrum K(C , w) of a
small Waldhausen category (C , wC ) has n-th space

K(C , w)n = |wS
(n)
• C |

based at ∗, with the Σn-action induced by permuting the order of the S•-
constructions. The structure map σ is the composite

|wS
(n)
• C | ∧ S1 ∼= |wS

(n)
• S•C |(1) ⊂ |wS

(n)
• S•C | ∼= |wS

(n+1)
• C | ,

where the superscript (1) indicates the 1-skeleton with respect to the last simpli-
cial direction. See Lemma 8.4.1. The k-fold iterated structure map σk is then
the composite

|wS
(n)
• C | ∧ Sk ∼= |wS

(n)
• S• . . . S•C |(1,...,1) ⊂ |wS

(n)
• S• . . . S•C | ∼= |wS

(n+k)
• C | ,

where the superscript (1,...,1) indicates the multi-1-skeleton with respect to the
k last simplicial directions. This map is clearly (Σn × Σk)-equivariant.

Lemma 8.7.4. The algebraic K-theory spectrum is positively fibrant (= a semi-
Ω-spectrum), in the sense that the adjoint structure maps

K(C , w)n
≃
−→ ΩK(C , w)n+1

are homotopy equivalences for all n ≥ 1. Hence there are isomorphisms

Ki(C , w) = πi+1K(C , w)1 ∼= πiK(C , w)

for all i ≥ 0.

Proof. This is the map ι : |wS•D | → Ω|wS•S•D | for D = S
(n−1)
• C , which is a

homotopy equivalence by Proposition 8.6.4.

Remark 8.7.5. We can also define K(C , w) as a symmetric spectrum in sim-

plicial sets, letting K(C , w)n be the diagonal of N•wS
(n)
• C . Note that this is

not a fibrant simplicial set (= a Kan complex) in most cases.

[[Reference for model structures?]]
[[Biexact functors D ×E → C induce pairing K(D)∧K(E ) → K(C ), taking

wS
(m)
• D × wS

(n)
• E to wS

(m+n)
• C . Swallowing lemma.]]
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8.8 The spectrum level rank filtration

[[Reference to [57].]]

Definition 8.8.1. Let C be a small category with cofibrations. We call

rank: obj(C ) → N0 = {0, 1, 2, . . . }

a rank function if

(a) rank(X) = 0 if and only if X ∼= ∗ is a zero object.

(b) If f : X  Y is a cofibration then rank(X) ≤ rank(Y ), with rank(X) =
rank(Y ) only if f is an isomorphism.

(c) If f : X  Y is a cofibration then rank(Y ) ≥ rank(Y/X), with rank(Y ) =
rank(Y/X) only if X ∼= ∗.

Remark 8.8.2. If f : X
∼=
−→ Y is an isomorphism, then f and f−1 are cofibra-

tions, so rank(X) ≤ rank(Y ) and rank(Y ) ≤ rank(X), so rank(X) = rank(Y ).

Example 8.8.3. For a commutative ring R, let C = F (R) be the category
of finitely generated free R-modules, with split injective cofibrations, and let
rank(Rk) = k. [[This also works for certain reasonable, non-commutative rings.]]

Example 8.8.4. Let C = F∗ be the category of finite pointed sets, with
injective cofibrations, and let rank(k+) = k, where k+ = {0, 1, 2, . . . , k} is based
at 0.

We consider the algebraic K-theory K(C ) = K(C , iC ) of C with respect to
the subcategory iC = iso(C ) of weak equivalences.

Definition 8.8.5. For each k ≥ 0 let FkC ⊂ C be the full pointed subcategory
generated by the objects X with rank(X) ≤ k. For each level n ≥ 0 and degree
q ≥ 0 let

FkiS(n)
q C ⊂ iS(n)

q C

be the full pointed subgroupoid generated by the objects X : Ar[q]n → C in

S
(n)
q C that factor through FkC ⊂ C . Then FkiS

(n)
• C ⊂ iS

(n)
• C is a simplicial

pointed subgroupoid, and we let

FkK(C ) ⊂ K(C )

be the symmetric subspectrum with n-th space

FkK(C )n = |FkiS
(n)
• C | ⊂ |iS

(n)
• C | = K(C )n .

It is clear that the Σn-action on K(C )n restricts to FkK(C )n, and that the
structure maps σ : K(C )n ∧ S1 → K(C )n+1 restrict to σ : FkK(C )n ∧ S1 →
FkK(C )n+1, satisfying the required equivariance property.

As k varies, we obtain a diagram of symmetric spectra

F0K(C )  F1K(C )  . . .  Fk−1K(C )  FkK(C )  . . .  K(C )

where each map is a levelwise cofibration, and colimk FkK(C ) ∼= K(C ). This is
the spectrum level rank filtration of K(C ). In particular,

colim
k

πiFkK(C )
∼=
−→ Ki(C )

for all i ≥ 0.
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Lemma 8.8.6. There is a levelwise equivalence F0K(C ) ≃ ∗.

Proof. By condition (a) in the definition of a rank function, F0iS
(n)
q C is the

pointed groupoid of diagrams X : Ar[q]n → F0C , all uniquely isomorphic to the

constant diagram at the chosen zero object ∗. Hence F0iS
(n)
q C is contractible for

each q, so |F0iS
(n)
• C | = F0K(C )n is contractible by the realization lemma.

Lemma 8.8.7. Let k ≥ 1. An object X : Ar[q]n → C in S
(n)
q C lies in FkiS

(n)
q C

but not in Fk−1iS
(n)
q C if and only if

rankX(0 ≤ q, . . . , 0 ≤ q) = k .

Proof. In view of the cofibration

X(0 ≤ j1, . . . , 0 ≤ jn)  X(0 ≤ q, . . . , 0 ≤ q)

and quotient map [[Explain?]]

X(0 ≤ j1, . . . , 0 ≤ jn) ։ X(i1 ≤ j1, . . . , in ≤ jn)

it is clear that

rankX(i1 ≤ j1, . . . , in ≤ jn) ≤ X(0 ≤ q, . . . , 0 ≤ q)

for all (i1 ≤ j1, . . . , in ≤ jn) in Ar[q]n. Hence X factors through FkC if and
only if rankX(0 ≤ q, . . . , 0 ≤ q) ≤ k.

Definition 8.8.8. For each object X : Ar[q]n → C in S
(n)
q C we call

X(0 ≤ q, . . . , 0 ≤ q)

the top object of X. Its rank is the top rank of X.

Definition 8.8.9. For k ≥ 1, let

F̄kK(C ) = FkK(C )/Fk−1K(C )

be the k-th subquotient spectrum in the rank filtration. It has n-th space

F̄kK(C )n = |F̄kiS
(n)
• C | where

F̄kiS
(n)
• C = FkiS

(n)
• C /Fk−1iS

(n)
• C

is the simplicial pointed groupoid obtained from FkiS
(n)
• C by identifying all

X : Ar[q]n → C with top rank < k to the base point object, with trivial auto-
morphism group.

In simplicial degree q, the pointed groupoid F̄kiS
(n)
q C has objects the base

point, together with the diagrams X : Ar[q]n → C in S
(n)
q C with top rank k.

For each α : [p] → [q] the simplicial operator α∗ takes X to

X ◦ Ar(α)n : Ar[p]n → C

in S
(n)
p C whenever this has top rank k, and to the base point object otherwise.

Note that if α(0) = a and α(p) = b, then the top object of X ◦ Ar(α)n is
X(a ≤ b, . . . , a ≤ b).
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Definition 8.8.10. The embedding [q] → Ar[q] induces embeddings [q]n →
Ar[q]n taking (j1, . . . , jn) to (0 ≤ j1, . . . , 0 ≤ jn), for all n ≥ 0. The n-
dimensional cube [q]n is partially ordered with the product ordering, so that
u = (i1, . . . , in) and v = (j1, . . . , jn) satisfy u ≤ v if and only if i1 ≤ j1, . . . , in ≤
jn. For X : Ar[q]n → C let its restriction

X̄ : [q]n → C

be the composite [q]n → Ar[q]n → C . The top object of X̄ is the top object

X̄(q, . . . , q) = X(0 ≤ q, . . . , 0 ≤ q)

of X.

Definition 8.8.11. We say that X̄ : [q]n → C is a lattice (n-)cube if

(a) X̄(i1, . . . , in) = ∗ whenever some it = 0, 1 ≤ t ≤ n.

(b) For each v ∈ [q]n the canonical map

colim
u<v

X̄(u)  X̄(v)

is a cofibration in C , where the colimit ranges over the u ∈ [q]n that are
strictly smaller than v in the product partial ordering.

[[Explain why the colimit exists, by induction on v.]]

Lemma 8.8.12. A diagram X̄ : [q]n → C is the restriction of an object X in

S
(n)
q C if and only if X̄ is a lattice cube.

Proof. For n = 1, an object X : Ar[q] → C in SqC consists of a sequence

X0 −→ X1 −→ . . . −→ Xq

in C , where X0 = ∗ and each Xi−1  Xi is a cofibration, together with
compatible choices of quotients X(i ≤ j) ∼= Xj/Xi. The restriction X 7→ X̄
forgets the choices of quotients.

For n = 2, an object X : Ar[q]2 → C in S
(2)
q C consists of a q × q square

X0,q // X1,q // . . . // Xq,q

...

OO

...

OO

...

OO

X0,1 //

OO

X1,1 //

OO

. . . // Xq,1

OO

X0,0 //

OO

X1,0 //

OO

. . . // Xq,0

OO

in C , where Xi1,0 = X0,i2 = ∗ and each pushout morphism

Xi1,i2−1 ∪Xi1−1,i2−1
Xi1−1,i2  Xi1,i2
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is a cofibration, together with compatible choices of quotients. By induction
each morphism Xi1,i2−1  Xi1,i2 and Xi1−1,i2  Xi1,i2 is a cofibration, so
each pushout exists, and the q × q square is a diagram of lattice squares.

For n ≥ 3, an object X : Ar[q]n → C in S
(n)
q C consists of a q × q square as

above, in S
(n−2)
q C , where Xi1,0 = X0,i2 = ∗ and each pushout morphism

Xi1,i2−1 ∪Xi1−1,i2−1
Xi1−1,i2  Xi1,i2

is a cofibration in S
(n−2)
q C , together with compatible choices of quotients.

[[ETC]]

Definition 8.8.13 (Category of subobjects). Let Z be an object in a cate-
gory with cofibrations (C , coC ). The over category coC /Z has objects cofibra-
tions X  Z with target Z, and morphisms (X ′

 Z) → (X  Z) given by
cofibrations X ′

 X making the triangle

X ′ // //
ÃÃ

ÃÃ
AA

AA
AA

A
X

ÄÄ

ÄÄ~~
~~

~~
~

Z

commute. By a category of subobjects Sub(Z) we mean a skeleton of the over
category coC /Z, containing the objects ∗  Z and idZ : Z  Z. In other
words, Sub(Z) is to be a full subcategory of coC /Z that contains exactly one
object in each isomorphism class. The inclusion

Sub(Z)
≃
−→ coC /Z

is then an equivalence of categories. We think of the preferred element in the
isomorphism class of X  Z as the image of X in Z.

[[If the cofibrations are categorical monomorphisms, then coC /Z and Sub(Z)
will be a preorder and a partially ordered set, respectively.]]

Example 8.8.14. For a [[reasonable]] ring R, the free R-module Rk has a
category of subobjects (= submodules) Sub(Rk) ⊂ coF (R)/Rk given by the
partially ordered set of free submodules L ⊆ Rk with free quotient Rk/L, where
L′ ≤ L if and only if L′ ⊆ L with L/L′ free.

Example 8.8.15. The finite pointed set k+ has a category of subobjects (=
subsets) Sub(k+) ⊂ coF∗/k+ given by the partially ordered set of pointed
subsets X ⊆ k+, with X ′ ≤ X if and only if X ′ ⊆ X.

Example 8.8.16. A finite pointed G-set Z has a category of subobjects Sub(Z) ⊂
G−F∗/Z given by the partially ordered set of pointed G-equivariant subsets
X ⊆ Z, with X ′ ≤ X if and only if X ′ ⊆ X.

Definition 8.8.17 (Stable building). Let Z be an object in C with rank(Z) =
k ≥ 1, and fix a subcategory Sub(Z) ⊆ coC /Z of subobjects. For n ≥ 0 let
D•(Z)n be the simplicial set with q-simplices a base point, together with all
lattice cubes X̄ : [q]n → C such that

(a) X(q, . . . , q) = Z.
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(b) X(v)  Z is an object in Sub(Z), for each v ∈ [q]n.

For α : [p] → [q] in ∆ the simplicial operator α∗ : Dq(Z)n → Dp(Z)n takes X̄
to Ȳ = X̄ ◦ αn if Ȳ (i1, . . . , in) = ∗ whenever some it = 0 and Ȳ (p, . . . , p) = Z,
and to the base point otherwise.

The stable building D(Z) is the symmetric spectrum with n-th space D(Z)n =
|D•(Z)n|. [[Evident symmetric group action and spectrum structure maps.]]

[[The automorphism group Aut(Z) of Z acts naturally on D(Z).]]

Example 8.8.18. For a [[reasonable]] ring R, the q-simplices of D•(R
k)n are

the base point, together with the diagrams X̄ : [q]n → F (R) such that

(a) X̄(i1, . . . , in) = 0 whenever some it = 0.

(b) X̄(q, . . . , q) = Rk.

(c) X̄(u) → X̄(v) is an inclusion of free R-modules, with free quotient, for
each u ≤ v in [q]n.

(d) colimu<v X̄(u)  X̄(v) is injective with free quotient, for each v ∈ [q]n.

Example 8.8.19. The q-simplices of D•(k+)n are the base point, together with
the diagrams X̄ : [q]n → F∗ such that

(a) X̄(i1, . . . , in) = 0+ whenever some it = 0.

(b) X̄(q, . . . , q) = k+.

(c) X̄(u) → X̄(v) is an inclusion of pointed sets for each u ≤ v in [q]n.

(d) colimu<v X̄(u)  X̄(v) is injective for each v ∈ [q]n.

[[Also G-sets?]]

Proposition 8.8.20. There is a levelwise equivalence

F̄kK(C ) ≃
∨

Z

E Aut(Z)+ ∧Aut(Z) D(Z)

of symmetric spectra, where the wedge sum runs over representatives for the
isomorphism classes of objects of rank k in C , and Aut(Z) is the automorphism
group of Z.

Proof. Step 1: Let Eq ⊂ F̄kiS
(n)
q C be the full subgroupoid generated by the

base point object, together with the X : Ar[q]n → C such that each quotient
map

X(u ≤ w) ։ X(v ≤ w)

that is an isomorphism is actually an identity morphism, for all u ≤ v ≤ w in

[q]n. Each object in F̄kiS
(n)
q C is isomorphic to an object in the subgroupoid,

so the inclusion is an equivalence of categories. [[For each fixed w, choose the
X(u ≤ w) appropriately for increasing u.]]

The simplicial operators respect the subgroupoids, hence these assemble to a

simplicial pointed groupoid E•, and the inclusion E• ⊂ F̄kiS
(n)
• C is a homotopy

equivalence by the realization lemma.
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Step 2: Let Ēq be the pointed groupoid with objects a base point, together
with the lattice cubes X̄ : [q]n → C with top rank k. There is a pointed functor
Eq → Ēq taking X : Ar[q]n → C to its restriction X̄ : [q]n → C . This functor
is full, faithful and (essentially) surjective on objects, hence an equivalence of
categories. [[Since choices of quotients exist, and are unique up to isomorphism.]]
We claim that the Ēq assemble to a simplicial pointed groupoid Ē•, such that
the functors above combine to a simplicial functor E• → Ē•, which is then a
homotopy equivalence by the realization lemma.

Consider a morphism α : [p] → [q] in ∆. We must define a functor α∗ : Ēq →
Ēp so that the square

Eq
//

α∗

²²

Ēq

α∗

²²

Ep
// Ēp

commutes. We let α(0) = a and α(p) = b, so αn : [p]n → [q]n takes (0, . . . , 0) to
(a, . . . , a) and (p, . . . , p) to (b, . . . , b).

Let X : Ar[q]n → C in Eq be any object other than the base point, with
restriction X̄ : [q]n → C in Ēq. The image α∗(X) in Ep equals

Y = X ◦ Ar(α)n : Ar[p]n → C ,

unless the resulting top module

Y (0 ≤ p, . . . , 0 ≤ p) = X(a ≤ b, . . . , a ≤ b)

has rank < k, in which case α∗(X) is the base point object. There is a cofiber
sequence

colim
w

X̄(w)  X̄(b, . . . , b) ։ X(a ≤ b, . . . , a ≤ b) ,

where w ranges over the (j1, . . . , jn) in [q]n where each jt ∈ {a, b}, but w 6=
(b, . . . , b). [[Better: index w by proper subsets of {1, . . . , n}.]] In view of condi-
tion (b) in the definition of a rank function, the first case happens if and only
if each X̄(w) has rank 0 and X̄(b, . . . , b) has rank k. The restriction in Ēp of
α∗(X) is therefore given by Ȳ : [p]n → C taking (i1, . . . , in) to

X(a ≤ α(i1), . . . , a ≤ α(in)) ,

if each X̄(w) has rank 0 and X̄(b, . . . , b) has rank k, and to the base point object
otherwise.

We now define the functor α∗ : Ēq → Ēp by mapping a lattice cube X̄ : [q]n →
C to X̄ ◦ αn : [p]n → C taking (i1, . . . , in) to

X̄(α(i1), . . . , α(in)) ,

if each X̄(w) has rank 0 and X̄(b, . . . , b) has rank k, and to the base point object
otherwise. The behavior on (iso-)morphisms is obvious.

To show that this definition makes the square above commute, we must check
that for each X : Ar[q]n → C in Eq with each X̄(w) of rank 0 and X̄(b, . . . , b) of
rank k, the lattice cubes [p]n → C taking (i1, . . . , in) to X(a ≤ α(i1), . . . , a ≤
α(in)) and to X̄(α(i1), . . . , α(in)) are equal. There is a cofiber sequence

colim
v

X̄(v)  X̄(α(i1), . . . , α(in)) ։ X(a ≤ α(i1), . . . , a ≤ α(in)) ,
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where v ranges over the (j1, . . . , jn) in [q]n where each jt ∈ {a, α(it)}, but
v 6= (α(i1), . . . , α(in)). [[Better: index v by proper subsets of {1, . . . , n}.]] For
each v there is a w as above with v ≤ w, so each X̄(v) has rank 0 and the colimit
is a zero object. Hence the quotient map is an isomorphism by condition (c)
in the definition of a rank function, and therefore is an identity map by the
definition of E•.

It is now easy to check that (βα)∗ = α∗β∗ for any other morphism β : [q] →
[r] in ∆, so E• → Ē• is a well-defined simplicial functor.

Step 3: Each lattice cube X̄ : [q]n → C factors uniquely through coC ⊆ C .
If X̄(q, . . . , q) = Z, then for each v ∈ [q]n the chosen morphisms X̄(v)  Z lift
X̄ through coC /Z → coC .

For each object Z of rank k, let Dq(Z) ⊆ Ēq be the full subgroupoid generated
by the lattice cubes X̄ : [q]n → C with top object X̄(q, . . . , q) = Z, such that
the preferred lift [q]n → coC /Z factors through Sub(Z) ⊆ coC /Z. In other
words, Dq(Z) is the pointed groupoid with objects a base point, together with
the lattice cubes X̄ : [q]n → C such that X̄(q, . . . , q) = Z and each X̄(v) is a
subobject of Z.

The (iso-)morphisms X̄ ′ ∼= X̄ are determined by the automorphism f : Z =
X̄ ′(q, . . . , q) ∼= X̄(q, . . . , q) = Z, since then X̄ ′(v) is the image of the composite

X̄ ′(v)  Z
f

−→ Z

for all v ∈ [q]n. The base point object admits only the identity automorphism.
Hence Dq(Z) is the based translation groupoid for the action of Aut(Z) on the
object set obj(Dq(Z)). In particular,

|Dq(Z)| ∼= E Aut(Z)+ ∧Aut(Z) obj(Dq(Z)) .

Letting q ≥ 0 vary, D•(Z) ⊆ Ē• is a simplicial full subgroupoid. To see that
α∗ : Ēq → Ēp takes Dq(Z) to Dp(Z), consider a lattice cube X̄ : [q]n → Sub(Z)
with top object Z, and let b = α(p). If the top object X̄(b, . . . , b) of X̄ ◦αn has
rank < k, then α∗(X̄) is the base point object. Otherwise,

X̄(b, . . . , b)  X(q, . . . , q) = Z

is an isomorphism by condition (c) in the definition of a rank function, hence
it equals the identity since Sub(Z) is skeletal and contains idZ : Z  Z.
Thus α∗(X̄) is an object in Dp(Z). It follows that D•(Z) is the simplicial
based translation groupoid for the action of Aut(Z) on the simplicial object set
obj(D•(Z)) = D•(Z)n. Hence

|D•(Z)| ∼= E Aut(Z)+ ∧Aut(Z) D(Z)n .

Letting Z range over the isomorphism classes of objects of rank k in C , the
full inclusion ∨

Z

D•(Z)
≃
−→ Ē•

is a degreewise equivalence of pointed groupoids, since each lattice cube X̄ : [q]n →
C in Eq is isomorphic to a lattice cube in Dq(Z) for a unique Z. By the real-
ization lemma, we get a homotopy equivalence of simplicial pointed groupoids.



CHAPTER 8. WALDHAUSEN K-THEORY 236

Hence there is a chain of homotopy equivalences

F̄kK(C )n = |F̄kiS
(n)
• C |

≃
←− |E•|

≃
−→ |Ē•|

≃
←−

∨

Z

|D•(Z)| ∼=
∨

Z

E Aut(Z)+ ∧Aut(Z) D(Z)n .

These are compatible with the evident Σn-actions and the spectrum struc-
ture maps, leding to the asserted levelwise equivalence.

Corollary 8.8.21. There is a levelwise equivalence

F̄kK(F (R)) ≃ EGLk(R)+ ∧GLk(R) D(Rk)

of symmetric spectra, for each k ≥ 1.

8.9 Algebraic K-theory of finite sets

[[Using spectrum level rank filtration [57].]]

Proposition 8.9.1. D(k+)n
∼= Skn for all k ≥ 1, n ≥ 1.

Proof. Consider first the case k = 1 and n = 1, recalling Exercise 6.3.12. A
q-simplex in D•(1+)1 is a diagram X̄ : [q] → Sub(1+), taking the values 0+ or
1+ at each vertex, such that X̄(j − 1) ⊆ X̄(j) for each j. If X̄(0) = 1+ 6= 0+ or
X̄(q) = 0+ 6= 1+, we identify X̄ with the base point. For each such chain

X0 ⊆ X1 ⊆ · · · ⊆ Xq

of pointed subsets of 1+ there is a unique i, with 0 ≤ i ≤ q + 1, such that
Xj = 1+ if and only if i ≤ j. The end cases i = 0 and i = q + 1 are then
identified with the base point, since they correspond to the cases X̄(0) = 1+

and X̄(q) = 0+, respectively. Each such chain also corresponds to a morphism
ζ : [q] → [1] in ∆, or a q-simplex in ∆1

•, via the formula Xj = ζ(j)+. The case
X̄(0) = 1+ then corresponds to the constant morphism ζ to 1, while the case
X̄(q) = 0+ corresponds to the constant morphism ζ to 0. Thus the ζ in the
simplicial subset ∂∆1

• ⊂ ∆1
• are collapsed to the base point. There is therefore

a simplicial isomorphism

D•(1+)1 ∼= ∆1
•/∂∆1

• = S1
• .

Next consider the case k = 1 and n ≥ 1. A q-simplex in D•(1+)n is a diagram
X̄ : [q]n → Sub(1+), still taking the values 0+ or 1+ at each vertex, subject to
the lattice conditions. These ensure that there exists a unique u = (i1, . . . , in)
with 0 ≤ it ≤ q + 1 for each t, such that X̄(v) = 1+ if and only if u ≤ v. To see
this, consider two vertices v, v′ in [q]n with X̄(v) = X̄(v′) = 1+, let u ∈ [q]n be
maximal with u ≤ v, u ≤ v′, and let w ∈ [q]n be minimal with v ≤ w, v′ ≤ w.
Clearly then X̄(w) = 1+. There is then a lattice square

X̄(v) // X̄(w)

X̄(u) //

OO

X̄(v′) ,

OO
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which means that X̄(u) cannot be 0+, since 1+ ∪0+
1+

∼= 2+ does not map by
a cofibration to 1+. Hence X̄(u) = 1+.

Writing u = (i1, . . . , in), each it corresponds to a q-simplex ζt : [q] → [1] in
∆1

•, given by ζt(j) = 1 if and only if j ≥ it. The n-tuple (ζ1, . . . , ζn) corresponds
to a q-simplex in ∆1

•×· · ·×∆1
•. However, if it = 0 or it = q +1 for some t, then

ζt is constant at 0 or 1, and the q-simplex is identified with the base point, due
to the boundary conditions. This means that there is a simplicial isomorphism

D•(1+)n
∼= S1

• ∧ · · · ∧ S1
• = Sn

• .

In the general case, k ≥ 1 and n ≥ 1, a q-simplex in D•(k+)n is a diagram
X̄ : [q]n → Sub(k+), taking values that are pointed subsets of k+ at each vertex,
subject to the lattice conditions. These conditions are independent for each
element s in k+, so X̄ can be viewed as a k-tuple of diagrams X̄1, . . . , X̄k : [q]n →
Sub(1+), where X̄s(v) = 1+ if and only if s ∈ X̄(v). We have X̄(v) = 0+ if
and only if each X̄s(v) = 0+, and X̄(v) = k+ if and only if each X̄s(v) = 1+.
Hence there is a simplicial isomorphism

D•(k+)n
∼= D•(1+)n ∧ · · · ∧ D•(1+)n ,

and D(k+)n
∼= D(1+)n ∧ · · · ∧ D(1+)n

∼= Sn ∧ · · · ∧ Sn ∼= Skn.

Corollary 8.9.2. D(1+) ∼= S is the sphere spectrum {n 7→ Sn}, while D(k+) ≃
∗ is stably trivial for k ≥ 2.

Proof. It is easy to check that Σn permutes the n simplicial circles in D•(1+)n
∼=

Sn
• , and that the spectrum structure map is the usual identification Sn ∧ S1 ∼=

Sn+1.
For k ≥ 2, the n-th space D(k+)n

∼= Skn is at least (2n − 1)-connected,
hence πi+n(D(k+)n) = 0 for all n > i, so πiD(k+) = 0 in all degrees i. This
implies that D(k+) is stably trivial.

We can now prove that the algebraic K-theory of finite sets is the sphere
spectrum, which is one form of the Barratt–Priddy–Quillen theorem.

Theorem 8.9.3.
K(F∗) ≃ S ,

so Ki(F∗) ∼= πi(S) = colimm πi+m(Sm) for all i ≥ 0.

Proof. By Proposition 8.8.20, there are levelwise equivalences

F̄kK(F∗) ≃ EΣk+ ∧Σk
D(k+)

for k ≥ 1. For k = 1 we get levelwise equivalences F1K(F∗) ≃ F̄1K(F∗) ≃
D(1+) ∼= S, while for k ≥ 2 we get stable equivalences F̄kK(F∗) ≃ EΣk+∧Σk

∗ ≃
∗. It follows that Fk−1K(F∗) → FkK(F∗) is a stable equivalence for each k ≥ 2,
hence in the colimit F1K(F∗) → K(F∗) is a stable equivalence.

Corollary 8.9.4. K(F∗)n ≃ Q(Sn) = colimm ΩmSn+m for all n ≥ 0. In par-
ticular, for n = 0 the loop space completion map ι : |iF∗| → K(F∗) is homotopy
equivalent to

∐
n≥0 BΣn → Q(S0).
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[[The rank ≤ 1 inclusion S0 ≃ BΣ1+ ⊂
∐

n≥0 BΣn → K(F∗)0 is right
adjoint to the spectrum map S → K(F∗) that is an equivalence.]]

[[The map
∐

n≥0 BΣn → Q(S0) has interesting geometric constructions, in-
volving operads, and induces a homology isomorphism after inverting the gener-
ator of H0(BΣ1) in H∗(

∐
n≥0 BΣn). Hence there is an equivalence Z×BΣ+

∞ ≃

Q(S0).]]

Corollary 8.9.5 (May–Milgram filtration). For n ≥ 1 there is a filtration

∗ ≃ F0,n  . . .  Fk−1,n  Fk,n  . . .  K(F∗)n ≃ Q(Sn)

with filtration quotients

Fk,n/Fk−1,n ≃ EΣk+ ∧Σk
Snk

for k ≥ 1, where Σk permutes the copies of Sn in Snk ∼= Sn ∧ · · · ∧ Sn.

Proof. Let Fk,n = FkK(F∗)n.

Definition 8.9.6. For G a finite group, let G−F∗ be the category of finite
pointed G-sets and G-equivariant base-point preserving functions. Let coG−F∗

be the subcategory of injective functions, and let rank(X+) = k when X ∼=∐k
s=1 G/Hi is the disjoint union of k orbits.

The following is a form of the Segal–tom Dieck splitting. [[reference]]

Theorem 8.9.7.
K(G−F∗) ≃

∨

(H)

S[BWG(H)] ,

where the wedge sum runs over the conjugacy classes of subgroups H of G, and
WG(H) = NG(H)/H is the Weyl group of H in G, where NG(H) = {n ∈ G |
nH = Hn} is the normalizer of H in G.

Proof. The finite pointed G-sets of rank 1 are of the form G/H+, as H ranges
over all subgroups of G. There is an isomorphism G/H ∼= G/K taking eH
to cK if and only if H = cKc−1, i.e., if H and K are conjugate subgroups.
The automorphism group of Z = G/H+ consists of the G-equivariant func-
tions G/H → G/H taking eH to nH, where n ∈ G must normalize H and
is only defined modulo H, so Aut(Z) ∼= WG(H). Hence by Lemma 8.8.6 and
Proposition 8.8.20 for k = 1, there is an equivalence

F1K(G−F∗) ≃
∨

(H)

EWG(H)+ ∧WG(H) D(G/H+) .

We claim that there is an isomorphism D(G/H+) ∼= D(1+) ∼= S, with the
trivial WG(H)-action. For any diagram X̄ : [q]n → Sub(G/H+) takes the val-
ues ∗ and G/H+ only, of rank 0 and 1, respectively. Hence the isomorphism
Sub(G/H+) ∼= Sub(1+) taking ∗ and G/H+ to 0+ and 1+, respectively, induces
the claimed isomorphism. Thus

F1K(G−F∗) ≃
∨

(H)

S[BWG(H)] .
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More generally, we claim that there is an isomorphism D(Z+) ∼= D(k+) ≃ ∗

for any Z ∼=
∐k

s=1 G/Hs. Again, any subobject of Z+ has the form X+, where
X is the coproduct of a subset of the s with 1 ≤ s ≤ k, and the isomor-
phism Sub(Z+) ∼= Sub(k+) taking X+ with X =

∐
s∈U G/Hs to U+ with

U ⊆ {1, . . . , k} induces the claimed isomorphism. Hence by Proposition 8.8.20
for k ≥ 2, there is are stable equivalences

F̄kK(G−F∗) ≃
∨

Z

E Aut(Z)+ ∧Aut(Z) D(k+) ≃ ∗ ,

so that all of the maps

F1K(G−F∗)
≃
−→ . . .

≃
−→ Fk−1K(G−F∗)

≃
−→ Fk−1K(G−F∗)

≃
−→ . . .

≃
−→ K(G−F∗)

are stable equivalences.

[[Note how K0(G−F∗) ∼=
∐

(H) Z ∼= A(G) is the free abelian group generated

by the G/H, i.e., the Burnside ring.]]
[[The rank ≤ 1 inclusion (

∐
(H) BWG(H))+ ⊂ |i(G−F∗)| → K(G−F∗) is

right adjoint to the spectrum map
∨

(H) S[BWG(H)] → K(G−F∗) that is an

equivalence.]]
[[One can also identify K(G−F∗) with the G-fixed point spectrum (SG)G of

the G-equivariant sphere spectrum SG. The loop space completion map takes
|i(G−F∗)| ≃

∐
[Z] B Aut(Z) to QG(S0)G = colimV (ΩV SV )G where V ranges

over “all” G-representations, and (ΩV SV )G is the space of based G-equivariant
maps SV → SV .]]

Definition 8.9.8. Let F∗(G) be the category of finite free pointed G-sets, i.e.,
finite G-sets X+ where G acts freely on X and fixes the base point ∗, and G-
equivariant base-point preserving functions. Let coF∗(G) be the subcategory

of injective functions, and let rank(X+) = k when X ∼=
∐k

s=1 G. Then F∗(G)
is a subcategory with cofibrations of G−F∗.

The following variant is known as the Barratt–Priddy–Quillen–Segal theo-
rem.

Theorem 8.9.9. K(F∗(G)) ≃ S[BG].

Proof. This is much like the previous proof, but only the case H = e with
WG(e) = G appears.

[[Exercise: Use the additivity theorem to prove that

K(G−F∗) ≃
∨

(H)

K(F∗(G,H)) ≃
∨

(H)

K(F∗(WG(H))) ≃
∨

(H)

S[BWG(H)]

where F∗(G,H) ⊂ G−F∗ is the Waldhausen subcategory of finite based G-sets
with stabilizers conjugate to H. Hint: Do the case G = Cp first. In general,
refine the partially ordered set of conjugacy classes to a linear ordering, and use
an induction.]]

[[The multiplicative structure of K(G−F∗) and K(F∗(G)) is not fully un-
derstood. These are commutative S-algebras = E∞ ring spectra.]]



Chapter 9

Abelian and exact

categories

9.1 Additive categories

[[[40, I.8, VIII.2].]]
[[Define Ab-category. Zero map.]]
[[Initial object = terminal object = zero object.]]

Lemma 9.1.1. Let X, Y be objects in an Ab-category A . If p : X × Y → X
and q : X × Y → Y make X × Y a product of X and Y in A , then

(a) i = (idX , 0) : X → X × Y and j = (0, idY ) : Y → X × Y make X × Y a
coproduct of X and Y .

(b) the diagram

X
i //

X × Y
p

oo

q
//
Y

j
oo

with qi = 0, pj = 0 and ip + jq = id makes X × Y a biproduct of X and
Y .

[[Additive category is an Ab-category with finite products (= finite coprod-
ucts, including a zero object).]]

9.2 Abelian categories

[[[40, VIII.3], [72, 1.2, 1.6].]]

Definition 9.2.1. A kernel of a morphism f : X → Y in an additive category
A is an equalizer k : K → X of f and the zero map 0: X → Y .

K
k // X

f
//

0
// Y

240
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Hence fk = 0 and any map t : T → X with ft = 0 factors uniquely as t = ku
with u : T → K. In other words,

0 → A (T,K)
k∗−→ A (T,X)

f∗
−→ A (T, Y )

is an exact sequence of abelian groups, for any T .
A morphism k : K → X in A is called a monomorphism if ku = 0 only if

u = 0, for u : T → K. In other words,

0 → A (T,K)
k∗−→ A (T,X)

is an exact sequence of abelian groups, for any T . A kernel is clearly a monomor-
phism.

Definition 9.2.2. A cokernel of a morphism f : X → Y in an additive category
A is a coequalizer c : Y → C of f and the zero map 0: X → Y .

X
f

//

0
// Y

c // C

Hence cf = 0 and any map t : Y → T with tf = 0 factors uniquely as t = uc
with u : C → T . In other words,

0 → A (C, T )
c∗
−→ A (Y, T )

f∗

−→ A (X,T )

is an exact sequence of abelian groups, for any T .
A morphism c : Y → C in A is called an epimorphism if uc = 0 only if

u = 0, for u : C → T . In other words,

0 → A (C, T )
c∗
−→ A (Y, T )

is an exact sequence of abelian groups, for any T . A cokernel is clearly an
epimorphism.

[[Kernels and cokernels are well-defined up to unique isomorphism, like all
other limits and colimits.]]

[[Some authors say monic or epi instead of monomorphism and epimorphism,
respectively.]]

Definition 9.2.3 (Abelian category). An abelian category is an additive
category A such that

(a) Every morphism in A has a kernel and a cokernel.

(b) Every monomorphism in A is a kernel.

(c) Every epimorphism in A is a cokernel.

[[It follows that every monomorphism m : X  Y is the kernel of its cokernel
c : Y ։ C, and that every epimorphism e : X ։ Y is the cokernel of its kernel
k : K  X.]]

[[Image of f : X → Y is the kernel of its cokernel c : Y ։ C. It is isomorphic
to the cokernel of its kernel k : K  X, i.e., the coimage:

X ։ coim(f) ∼= im(f)  Y



CHAPTER 9. ABELIAN AND EXACT CATEGORIES 242

]]
We can talk about exact sequences in an abelian category A , hence do

homological algebra.

Example 9.2.4. Let R be a ring. The category R−Mod of left R-modules is
an abelian category. In particular, Ab is abelian.

Example 9.2.5. The category M (R) of finitely generated R-modules is an
additive category, which is abelian if R is Noetherian. [[More generally, the
category of coherent R-modules is abelian, also for non-noetherian R.]]

The category P(R) of finitely generated projective R-modules is additive,
but usually not abelian.

Example 9.2.6. The category of finite abelian groups is abelian. So is the
subcategory if finite abelian p-groups, for each prime p, and the subcategory of
elementary abelian p-groups.

Definition 9.2.7. A functor F : A → B between Ab-categories is additive if
F : A (X,Y ) → B(F (X), F (Y )) is a group homomorphism for all objects X, Y
in A .

An additive functor F : A → B between abelian categories is exact if it
preserves exact sequences, i.e., if F (X) → F (Y ) → F (Z) is exact in B whenever
X → Y → Z is exact in A .

Theorem 9.2.8 (Freyd–Mitchell embedding theorem). Let A be a small
abelian category. There exists a ring R and an exact, fully faithful functor from
A to R−Mod, embedding A as a full subcategory.

9.3 Exact categories

[[[55, §2].]]
[[We follow Quillen.]]

Definition 9.3.1. Let A be an abelian category, and let P ⊂ A be an additive
full subcategory. Suppose that P is closed under extensions in A , in the sense
that if

0 → X  Y ։ Z → 0

is a short exact sequence in A , and X and Z are isomorphic to objects in P,
the Y is isomorphic to an object in P. Let E be the class of sequences

0 → X  Y ։ Z → 0

in P that are exact in A . The morphisms X  Y in P that occur at the left in
some sequence in E are called admissible monomorphisms, and the morphisms
Y ։ Z in P that occur at the right in some sequence in E are called admissible
epimorphisms.

Lemma 9.3.2. (a) Any sequence in P isomorphic to a sequence in E is in
E . For any X, Z in P the sequence

0 → X
i

−→ X ⊕ Z
q

−→ Z → 0
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is in E . For any sequence

0 → X  Y ։ Z → 0

in E , X  Y is a kernel for Y ։ Z and Y ։ Z is a cokernel for X  Y
in the additive category P.

(b) The class of admissible epimorphisms is closed under composition and
under base change by arbitrary morphisms in P. Dually, the class of
admissible monomorphisms is closed under composition and under cobase
change by arbitrary morphisms in P

(c) Let Y → Z be a morphism with a kernel in P. If there exists a morphism
T → Y in P such that the composite T → Z is an admissible epimor-
phism, then Y → Z is an admissible epimorphism. Dually for admissible
monomorphisms.

Definition 9.3.3. An exact category is an additive category P equipped with
a family E of exact sequences, called the short exact sequences of P, such that
the properties (a), (b) and (c) of the lemma above hold. An exact functor
F : P → Q between exact categories is an additive functor carrying exact
sequences in P into exact sequences in Q.

Quillen proves that any (small?) exact category (P,E ) occurs as an additive
full subcategory of an abelian category A , with E equal to the class of sequences
in P that are exact in A , as above.

Example 9.3.4. The additive category P = P(R) of finitely generated pro-
jective R-modules, viewed as a full subcategory of the abelian category A =
R−Mod of all R-modules, is an exact category. The class E consists of the
short exact sequences of finitely generated projective R-modules.



Chapter 10

Quillen K-theory

10.1 The Q-construction

[[[55, §2], [68, 1.9].]]
[[Start with Segal subdivision of S•-construction.]]
[[Additivity theorem [55, §3].]]

10.2 The cofinality theorem

[[[68, 1.5], [61, §2].]]

10.3 The resolution theorem

[[[55, §4], [61, §3].]]

10.4 The devissage theorem

[[[55, §5], [61, §4].]]

10.5 The localization sequence

[[[55, §5], [61, §5].]]
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