THE SEIBERG-WITTEN MODULI SPACE

The Seiberg–Witten equations.

Let X be a smooth oriented Riemannian 4-manifold. Let $P \to X$ be the principal SO(4)-bundle associated to the tangent bundle $TX \to X$, and let $\tilde{P} \to X$ be a choice of $Spin^c$ -structure on X, *i.e.* a principal $Spin^c(4)$ -bundle with a $Spin^c(4) \to SO(4)$ -equivariant bundle map to $P \to X$. Let $\mathbb{C}^2 \to S^{\pm}(\tilde{P}) \to X$ be the plus and minus complex spin bundles associated to the $Spin^c$ -structure, and let $\mathbb{C}^1 \to \mathcal{L} \to X$ be their associated determinant bundle.

Let

$$\mathcal{C} = \mathcal{A}(\mathcal{L})_{L_2^2} \times \Gamma(S^+(\tilde{P}))_{L_2^2}$$

be the configuration space, where $\mathcal{A}(\mathcal{L})$ denotes the affine space of U(1)-connections A on \mathcal{L} , and $\Gamma(S^+(\tilde{P}))$ denotes the space of (smooth) sections ψ in the plus complex spin bundle $S^+(\tilde{P}) \to X$, *i.e.* a positive spinor field. The subscript L_2^2 denotes completion with respect to the L_2^2 -Sobolev norm. The tangent space of \mathcal{C} at (A, ψ) is

$$T_{(A,\psi)}\mathcal{C} = \Omega^1(X, i\mathbb{R})_{L^2_2} \times \Gamma(S^+(P))_{L^2_2}.$$

Let

$$\mathcal{D} = \Omega^2_+(X; i\mathbb{R})_{L^2_1} \times \Gamma(S^-(\tilde{P}))_{L^2_1},$$

where $\Omega^2_+(X; i\mathbb{R})$ denotes the self-dual 2-forms on X with coefficients in $i\mathbb{R} = u(1)$, *i.e.* those in the +1-eigenspace for the involution induced by the Hodge *-operation, or equivalently for the multiplication by the complex unit $\omega_{\mathbb{C}}$. As above $\Gamma(S^-(\tilde{P}))$ denotes the space of sections in the minus complex spinor bundle $S^-(\tilde{P})$, *i.e.* a negative spinor field. The subscript L^2_1 denotes completion with respect to the L^2_1 -Sobolev norm. The tangent space of \mathcal{D} at (ω, μ) is

$$T_{(\omega,\mu)}\mathcal{D} = \Omega^2(X, i\mathbb{R}))_{L^2_1} \times \Gamma(S^-(\tilde{P}))_{L^2_1}.$$

Let $F: \mathcal{C} \to \mathcal{D}$ be the Seiberg-Witten functional given by

$$F(A,\psi) = (F_A^+ - q(\psi), \partial_A \psi).$$

Here F_A^+ is the self-dual (positive) part of the curvature 2-form of the connection A, and $q(\psi) = \psi \otimes \psi^* - \frac{1}{2}|\psi|^2 \cdot \text{id}$ is the trace 0 part of the rank 1 endomorphism $\psi \otimes \psi^* \colon \mu \mapsto \langle \mu, \psi \rangle \psi$, viewed as a self-dual 2-form through the identification

$$\Omega^2_+(X;\mathbb{C}) \cong \operatorname{End}_{\mathbb{C}}(S^+(\tilde{P}))_0,$$

and ∂_A is the Dirac operator for the Levi–Civita connection on $P \to X$ and the connection A on \mathcal{L} . Then F is smooth. The derivative of F at (A, ψ) has matrix

$$DF_{(A,\psi)} = \begin{bmatrix} P_+ d & Dq_w \\ \cdot \frac{1}{2}\psi & \partial_A \end{bmatrix}$$

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -T_FX

where $P_+: \Omega^2 \to \Omega^2_+$ denotes projection to the plus part.

Let the gauge group

$$\mathcal{G} = \Omega^0(X, S^1)_{L^2_2}$$

be the Sobolev L^2_3 -completion of the space of (smooth) maps $\sigma: X \to S^1$. We identify σ with the gauge equivalence $\tilde{P} \to \tilde{P}$ over P given by right scalar multiplication through $S^1 \subset Spin^c(4)$. Then \mathcal{G} acts smoothly on \mathcal{C} and \mathcal{D} by the formulas

$$(A,\psi)\cdot\sigma = (\det(\sigma)^*A, S^+(\sigma^{-1})(\psi) = (A+2\sigma^{-1}d\sigma, \sigma^{-1}\cdot\psi)$$
$$(\omega,\mu)\cdot\sigma = (\omega, S^-(\sigma^{-1})(\mu)) = (\omega, \sigma^{-1}\cdot\mu),$$

and the map F is \mathcal{G} -equivariant.

Local structure of \mathcal{B} .

The action of \mathcal{G} on \mathcal{C} has slices. Let $(A, \psi) \in \mathcal{C}$ be a configuration. Then the action map $m: \mathcal{G} \to \mathcal{C}$ has derivative

$$Dm = Dm_{id} \colon T_{id}\mathcal{G} \to T_{(A,\psi)}\mathcal{C}$$

at the identity given by $Dm(f) = (2df, -f \cdot \psi)$. Let $K \subset T_{(A,\psi)}\mathcal{C}$ be the orthogonal complement of the image of Dm, with respect to the L^2 -inner product on $T_{(A,\psi)}\mathcal{C}$. Equivalently K is the kernel of the adjoint $(Dm)^*$ to Dm. Then for $U \subset K$ a (small) $Stab_{(A,\psi)}$ -invariant neighbourhood of $0 \in K$ the subspace

$$S = (A, \psi) + U \subset \mathcal{C}$$

is a slice for the action of \mathcal{G} on \mathcal{C} .

Let $\mathcal{B} = \mathcal{C}/\mathcal{G}$ be the orbit space for the gauge action. Let $\mathcal{N} = F^{-1}(0) \subset \mathbb{C}$ be the solution space of configurations satisfying the Seiberg–Witten equations $F(A, \psi) = 0$. This subspace is \mathcal{G} -invariant. Let $\mathcal{M} = \mathcal{N}/\mathcal{G} \subset \mathcal{B}$ be the Seiberg– Witten moduli space of gauge equivalence classes of solutions to the Seiberg–Witten equations. When it makes sense, the Seiberg–Witten invariant of X (with the given $Spin^c$ -structure) will be defined as the bordism class of $\mathcal{M} \to \mathcal{B}$.

A configuration (A, ψ) is reducible if $\psi \equiv 0$ and irreducible otherwise. Let $\mathcal{C}^* \subset \mathcal{C}$ be the open subset of irreducible configurations, This subspace is \mathcal{G} -invariant. Similarly let $\mathcal{N}^* \subset \mathcal{N}, \ \mathcal{B}^* \subset \mathcal{B}$ and $\mathcal{M}^* \subset \mathcal{M}$ be the open subsets of (gauge equivalence classes of) irreducible configurations in the given spaces. Write $[A, \psi]$ for the gauge equivalence class of (A, ψ) .

The action of \mathcal{G} is free on the irreducible configurations \mathcal{C}^* , and has stabilizer $S^1 \subset \mathcal{G}$ on the reducible configurations. Hence \mathcal{B}^* can be given the structure of a

(Hausdorff) Banach manifold with local parametrizations $S \subset \mathcal{C}^* \to \mathcal{B}^*$ near $[A, \psi]$, when S is a slice for the action at (A, ψ) . Its tangent space there is then

$$T_{[A,\psi]}\mathcal{B}^* = \operatorname{coker}(Dm) = T_{(A,\psi)}\mathcal{C}/Dm(T_{\operatorname{id}}\mathcal{G}) \cong K \subset T_{(A,\psi)}\mathcal{C}.$$

Since \mathcal{G} acts freely with slices on \mathcal{C}^* there is a fiber bundle $\mathcal{G} \to \mathcal{C}^* \to \mathcal{B}^*$. This bundle is universal because \mathcal{C}^* is contractible, so \mathcal{B}^* has the homotopy type of

$$B\operatorname{Map}(X, S^1) \simeq \mathbb{C}P^\infty \times BH^1(X; \mathbb{Z}),$$

suitably completed.

Local structure of the moduli space.

Let $(A, \psi) \in \mathcal{N}^*$ be an irreducible solution. We have an elliptic complex

$$0 \to T_{\mathrm{id}}\mathcal{G} \xrightarrow{Dm_{\mathrm{id}}} T_{(A,\psi)}\mathcal{C} \xrightarrow{DF_{(A,\psi)}} T_0\mathcal{D} \to 0$$

denoted $\mathcal{E} = \mathcal{E}(A, \psi)$. Here Dm is injective because the action of \mathcal{G} on (A, ψ) is free, so $H^0(\mathcal{E}) = 0$.

We say that \mathcal{M} is smooth at $[A, \psi]$ if $F \colon \mathcal{C} \to \mathcal{D}$ is a submersion at (A, ψ) , *i.e.* if $DF_{(A,\psi)}$ is surjective. Then $H^2(\mathcal{E}) = 0$.

Now suppose that (A, ψ) is a smooth irreducible solution. Then by the implicit function theorem $\mathcal{N} \subset \mathcal{C}$ is a Banach submanifold locally near (A, ψ) , with tangent space

$$T_{(A,\psi)}\mathcal{N} = \ker(DF) \subset T_{(A,\psi)}\mathcal{C}.$$

Then the orbit of \mathcal{G} acting on (A, ψ) is contained in \mathcal{N} and has tangent space $\operatorname{im}(Dm)$. Then $K \cap T_{(A,\psi)}\mathcal{N}$ is its orthogonal complement in $T_{(A,\psi)}\mathcal{N}$, and gives a slice for the \mathcal{G} -action on \mathcal{N} at (A, ψ) . For the action map of \mathcal{G} on the slice has derivative

$$(K \cap T_{(A,\psi)}\mathcal{N}) \times T_{\mathrm{id}}\mathcal{G} \to T_{(A,\psi)}\mathcal{N} \subset T_{(A,\psi)}\mathcal{C}$$

at $((A, \psi), \mathrm{id})$, which is the inclusion on the first factor and Dm on the second. We claim that this map is an isomorphism. It is injective because $K \cap \mathrm{im}(Dm) = 0$. Given $n \in T_{(A,\psi)}\mathcal{N}$ write n = k+g with $k \in K$ and $g \in \mathrm{im}(Dm)$. Then $g \in T_{(A,\psi)}\mathcal{N}$ so $k = n - g \in K \cap T_{(A,\psi)}\mathcal{N}$, so the map is also surjective.

Hence $\mathcal{N} \to \mathcal{M}$ is locally a fiber bundle with structure group \mathcal{G} , near $[A, \psi]$, and the smooth irreducible points of \mathcal{M} form a (Hausdorff) Banach manifold locally modelled on $K \cap T_{(A,\psi)}\mathcal{N}$. It has tangent space

$$T_{[A,\psi]}\mathcal{M} = \ker(DF)/\operatorname{im}(Dm) \cong K \cap T_{(A,\psi)}\mathcal{N}$$

equal to the Zariski tangent space $H^1(\mathcal{E})$ at $[A, \psi]$.

An application of the Atiyah–Singer index theorem shows that $H^1(\mathcal{E})$ has finite dimension

$$d = \frac{1}{4}(c_1^2(\mathcal{L}) - 2\chi(X) - 3\operatorname{sign}(X))$$

and so in fact \mathcal{M} is locally a *d*-dimensional (ordinary) Hausdorff manifold near its smooth irreducible points.