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ABSTRACT. We study the algebraic K—theory of a cyclic ring R of the form Z/p™.
The idea is to consider the so—called rank filtration on a space representing the first
delooping of K—theory. Each subquotient of this filtration is equivalent to the homo-
topy quotient of an action of the general linear group GL, R on the double suspension
of a finite complex B, R, which is the rank r Tits building of R. To understand the
homotopy type of these subquotients, we equivalently study the homotopy type of
the Tits buildings together with the G L, R—action.

Our results include 1) a description of the non—equivariant homotopy type of each
Tits building, as a bouquet of spheres all in the same dimension, 2) a computation of
the equivariant homology of a subcomplex of B, R called the small building, which
captures the difference between the K—theory of R and the known K-theory of [y,
the finite field with p elements, and 3) a description of the homotopy type of each
fixed subcomplex of the Tits building under the action of a subgroup of the general
linear group, in a (sufficiently) large class of such subgoups.

INTRODUCTION

Not yet written

K-THEORY AND T1TS BUILDINGS

In this section we will review definitions of K—theory and the rank filtration,
and fix some notation.

The K—theory of a ring. Let R be an associative ring with unit. The algebraic
K—theory of R can be defined as follows. Let P(R) be the additive category of
finitely generated projective R—modules, viewed as a category with cofibrations
and weak equivalences as per [Quillen, §2] and [Waldhausen, §1.9]. Explicitly,
a cofibration is the inclusion of a direct summand in the category, and a weak
equivalence is an isomorphism. Then following [Waldhausen|, we can apply the S,—
construction to P(R), obtaining a simplicial category wS,P(R) whose geometric
realization is the (first) delooping of K—theory. This means that the higher algebraic
K—groups of R can be defined as:

KZR = 7ri+1|w5.73(R)| for ¢ Z 0.
This definition agrees with that of [Quillen] using the Q—construction. Equivalently,
we may think of the K—groups of R as the homotopy groups of the loopspace
QwS,P(R)|.

Typeset by ApS-TEX
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Let F(R) C P(R) denote the full subcategory of finitely generated free R—
modules. It is a subcategory with cofibrations and weak equivalences in the sense
of [Waldhausen, p. 321], and furthermore it is (weakly) cofinal in P(R) [Grayson],

so the induced map
|lwS, F(R)| — |[wS,P(R)|

is a covering map. If we define the free K—theory of R by
K!R=mi1|wS,F(R)|  fori>0,

it follows that K Zf R — K;R is an isomorphism for ¢ > 1, while it is an injection for
1 = 0. We shall be considering the free K—theory of R in this paper, but by the
above argument this is the same as the usual K—theory in all positive degrees, so
we shall henceforth suppress the difference in notation, and use K; R to denote the
free K—groups. Let BK(R) denote the first delooping of free K—theory; BK(R) =
[wS,F(R)].

The rank filtration. Now suppose that the rank of a finitely generated free R—
module is well defined. Concretely, we will assume that R has the invariant di-
mension property [Mitchell], i.e. R™ and R™ are isomorphic as R—modules only
if n = m. This automatically holds if R is commutative [Atiyah-Macdonald]. It
is also clear that R has this property if it is an algebra over a commutative ring,
for which it is finitely generated as a module. The examples we have in mind are
matrix algebras over commutative rings. Denote the rank of a finitely generated
free R—module M by rank(M). Then if M’ — M — M" is a cofibration sequence
in F(R), i.e. a split short exact sequence of free R—modules, we have

rank(M) = rank(M") + rank(M").

We wish to approximate the K—theory of R by introducing a filtration of the
delooped K-theory space, such that each successive stage of the filtration is a better
approximation to the full K—theory. We do this, following [Quillen] and [Mitchell],
by a rank filtration of the space BK(R). Inspecting the S,—construction used to
define this space, we see that its simplices correspond to diagrams in the category
F(R). For a fixed rank r we can consider the subcomplex F,.BK(R) consisting
of simplices corresponding to diagrams involving only free R—modules of rank less
then or equal to r. This gives an increasing filtration of spaces {F,BK(R)},>0
exhausting BK(R), and we call F, BK(R) the rth stage of the rank filtration on
the first delooping of the K—theory of R.

There are also other definitions of a rank filtration on K—theory. By analogy to
the plus-construction definition of K—theory [Quillen], one can define

K R=m(BGL.R)*  fori>0,

as soon as a suitable perfect subgroup can be found, for instance if » > 3. There is
also a Volodin construction [Suslin|, where

K{,R=mi1V(GL,R {T"})  fori>0,

and Suslin shows that these two agree through a range. See Suslin’s paper for a
definition of the expression above. Lastly there is a spectrum level rank filtration of
the K-theory spectrum, different from all the above, which is developed in [Rognes,
thesis].
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The subquotients. Our approach to understanding the K—groups of R will be
to investigate the homotopy type of the subquotients of the rank filtration, i.e.
the spaces F.BK(R)/F,_1BK(R). There is a description of this in terms of the
equivariant homotopy type of the rank r Tits building of R [Tits], as noted in
[Quillen] and [Mitchell]. We now define the Tits buildings, state the description
(proposition 1), and give a proof.

Definition. Suppose R satisfies the invariant dimension property, and fix a rank
r. Consider the set of proper, nontrivial free R—submodules M of R": 0 # M C R".
Give this set a partial ordering by setting M < N if M C N and the inclusion map
is a cofibration in F(R), i.e. M is included as a direct summand in N with a free
complementary summand. Denote this partially ordered set by O(R"), and define
the rank r T'its building of R, B, R, to be its nerve [Quillen] :

B,R=NO(R").
Hence B, R is a simplicial set, with g—simplices the sequences of cofibrations
0#MyC---CM,CR"

of free R—modules, also known as flags.

Proposition 1 [Quillen] [Mitchell].

F,BK(R)/F,_1BK(R) ~ EGL,R, Acr, r S°B,R.

Proof. Review the S,—construction from [Waldhausen, §1.3]. BK(R) = |wS,F(R)]
where wS,F(R) is the simplicial category [¢] — wS,F(R). An object in S, F(R)
is a diagram Ar[q] — F(R) satisfying certain extra hypotheses. Here [¢] = {0 <
1 < --- < q} is thought of as a category with ¢ + 1 objects, and Ar[q] is the arrow
category associated with [¢]. Specifically, a diagram A : Ar[q] — F(R) associates to
each i < j a free R—module A; ; = A(i — j), and A lies in S, F(R) if the following
three conditions hold: 1) A;; = 0 for each 4, 2) the natural map A; ; — A; is a
cofibration for each i < j < k, and 3) the commutative square

Aij — Aig

| l

Ajj —— Ajk
is a pushout square for each ¢ < j < k. Such a diagram A is determined up to
isomorphism by its restriction across [q] < Ar[q| taking i in [¢] to (0 — ¢) in Ar|q].
The restriction of a diagram A is then a sequence of cofibrations

O:A(M) — A071 — .- —>A07q.

Let F.(R) C F(R) denote the full subcategory where the objects have rank
at most 7. Then F,. BK(R) realizes the simplicial subcategory wF,.S,F(R) where
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F.S,F(R) C S,F(R) has objects the diagrams Ar[q] — F(R) which factor through
F-(R) C F(R). Similarly, F.BK(R)/F,_1 BK(R) realizes the simplicial (quotient)
category [q] — wF,.S,F(R)/wF,_15,F(R). For fixed g, the latter category has a
base point object #,, together with the diagrams Ar[q] — F(R) in S, F(R) which
factor through F,.(R), but not through F,._1(R). These are precisely the diagrams
A such that the ‘top’ module A , has rank r.

Inspecting the simplicial structure on wF,.S,F(R)/wF,_15,F(R), we see that
the restriction of diagrams over [¢] < Ar[q] as above induces an equivalence of
simplicial categories. Furthermore, the target simplicial category is equivalent to
its full simplicial subcategory where the top module Ay, actually is R". Thus
F.BK(R)/F,-1BK(R) is homotopy equivalent to the realization of the simplicial
category Y,, which in simplicial degree ¢ has the objects *, and the cofibration
sequences (flags)

O:A070—>A071 —>"'—>A0’q:Rr,

and morphisms the isomorphisms of such diagrams.

Let X, be the simplicial set which has as g-simplices the object set of Y. For
any flag A € X, the morphisms in Y, originating at A are precisely characterized
by their effect on the top module Ag, = R", i.e. an element of GL,R. In this
situation we call Y, the (based) GL, R—translation category on X,. Using the usual
simplicial model for EGL, R it is straightforward to check that the nerve of Y}, is
isomorphic to EGL, R Ngr, r X4, and upon realizing in the ¢g—direction we obtain:

Y,| = EGL,R+ Ao, r | X,

It remains to recognize |X,| as X?B,.R.

Let O%(R") denote the partially ordered set of (not necessarily proper or non-
trivial) free R—submodules M of R", with M < N if M C N and the inclusion map
is a cofibration. Let O,(R") denote the partially ordered subset of proper submod-
ules, and let O*(R") denote the partially ordered subset of nontrivial submodules.
The nerve of either of these three partially ordered sets is contractible, due to the
presence of initial and/or terminal elements.

Now note that O(R") is the intersection of O,(R") and O*(R"). Furthermore,
| X.| is obtained from the nerve of Of(R") by identifying any flags

0OCMyCM C---C M, CR"

not beginning with My = 0 or ending with M, = R" to *,, which amounts to
contracting the nerves of O,(R") and O*(R") to a point. We conclude :

[ X.| = NOI(R")/(NO.(R") UNO™(R"))
~ Y (NOL(R")UNO*(R"))
~ Y?(NO,(R") N NO*(R"))
=¥’B,R. O
Thus an understanding of a weak form of the GL, R-homotopy type of B,R

suffices to describe the subquotients of the rank filtration, in the sense that a GL,. R—
map which is a non—equivariant homotopy equivalence is viewed as an equivalence.
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T1Ts BUILDINGS FOR Z/p™

We now specialize to studying the K—theory of the ‘cyclic rings’ Z/p™, with p
a prime. The K—groups of the finite fields F, = Z/p are known, as computed by
Quillen [Quillen]. Furthermore, the unique ring homomorphism Z/p"™ — F,, induces
an isomorphism on K—groups away from the prime p, in the sense of localization
[Bousfield and Kan|. Thus we are really only interested in the p—component of
the K—groups K;Z/p™ for n > 2. [Aisbett] and [Evens and Friedlander] have
computations of these groups for most cases with ¢ < 4, while K4Z/4 and K4Z./9
remain unknown.

A transfer argument. For the remainder of this section let R = Z/p™. On the
level of the subquotients of the rank filtration, we are interested in the homotopy
type of EGL,. R, NAgr.r ¥°B; R localized at p. In this situation, there is a stan-
dard transfer argument which allows us to reduce from studying the p-localized
equivariant G L, R—homotopy type of B, R to the analogous thing for the action on
B, R by a p-Sylow subgroup of GL,R.

Definition. In the case of GL,IF,, the upper triangular matrices with 1’s on the
diagonal constitute a p—Sylow subgroup, denoted U, C GL,F,. In general, let
G, = G,R C GL,R be the pullback of U, C GL,F, over the canonical map
GL,.R — GL,F,. Explicitly, G, consists of the matrices with entries which are 0
modulo p below the diagonal, 1 modulo p on the diagonal, and arbitrary above the
diagonal. G, is a p—Sylow subgroup of GL, R.

There is a bundle map
EG,; Ag, ¥?°B,R~ EGL,R, \g, ¥*B,R = EGL,R, AgL.r ©°B,R,

and a stable equivariant transfer map 7 [Adams] going the other way, such that the
composite 7o 7 induces multiplication by the index of GG, in GL,.R on homology or
stable homotopy. This index is prime to p, so it follows that 7 is a split surjection
when localized at p. Thus to understand EGL,R; Agr, R ¥2B, R, we will look
at the G,—homotopy type of B, R, and appeal to the methods of [Feshbach] to
compute what is lost by mapping along 7.

The Tits building as a simplicial G,—set. We have a description of the Tits
building B, R as a simplicial G,—set.

Definition. Let r = {1,...,r}. For any indexing set I C r let Rf C R" be
the axial submodule where only the coordinates in I C r may be nonzero. Let
Pr C G, denote the parabolic subgroup consisting of matrices g = (g;;) € G, such
that g;; = 0if ¢ ¢ I and j € I. P; stabilizes RT C R" for the action of G, on
subspaces of R". If o = (Ip C --- C ;) is a chain of subsets of r, then P, is the
parabolic subgroup defined by P, = Py,..;, = P, N---N Pr,. P, stabilizes the flag
R C...C Rlain R".

Proposition 2. As a simplicial G,—set, the Tits building B, R is isomorphic to

lq) — [] G/ Ps
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where o runs through the chains & # Iy C --- C I, C r. The ith face map 0; is
induced by P, C Py, where ;0 =1y C --- CI;_y C Iy C--- C I, while the jth
degeneracy map s; is induced by Py = Ps,, where sjo =1p C---CI; =1; C--- C
I,.

Proof. We will show that an arbitrary ¢—simplex in B,.R
0#MyC---CM,CR"

is in the G,.—orbit of an axial flag
0#R°C---CRY"CR"

for some @ # Iy C --- C I, C r. Next we will check that there is only one such axial
flag in each G,—orbit, which proves that o = (Iy C --- C I,;) is uniquely determined.
Lastly we observe that the stabilizer of R0 C ... C Rl is Pp,...1, € G, from which
the proposition follows.

For convenience, let us reindex the flag, so as to be considering a (g — 2)—simplex

O:MOCMlg"'qu—ICMq:RT~

Let ¢ : R — IF, denote the ring homomorphism, as well as the homomorphisms
induced by it. For each i € r there is a minimal j such that F," C ¢(M;). Then
FolNp(M;—1)+F, "1 Np(M;) is a codimension one subspace of Fp,lNp(M;) =F,".
Choose a b; € M, such that ¢(b;) € F," is not in this subspace. Then b; is part
of an extension of an R-basis for M;_; to one for M;, and we may assume that b;
has 7th coordinate equal to 1 modulo p.

For each j, let I; = {i € r | b; € M,}. Proceeding by induction on j we see that
{bi}ic1, is an R-basis for M;. Then set g = (b1,...,b;) € G;, and observe that
g-Rli =M j for each j. This proves the first statement

Next we prove that if g € G, and g- R = R’ then I = J. For each i, p(g) € U,
takes the ith elementary vector e; € F,,* into ¢(g) - e; with nonzero ith coordinate.
Thus if i € I, p(g) - e; € ¢(g) -Fp! =TF,” andsoi € J. Thus I C J, and by the
same argument for ¢g—!, I = J. This proves the second statement, concluding the
proof. [

The non—equivariant homotopy type. Next we will analyze the non—equi-
variant homotopy type of B,.R. First we will prove two properties of cofibrations
in F(R) which are special to R = Z/p™. These will be precisely what are needed
in the proof of proposition 3, below. Neither lemma holds true for arbitrary local
rings R.

Lemma 1. FEach inclusion M C N of finitely generated free R—modules is a cofi-
bration.

Proof. Choose an R-basis {b1,...,b;} for M, and assume N = R". Write the
coordinates of by as (bl,...,b7). By rescaling, and permuting the coordinates of
R", we may assume b7 = 1. Proceed by induction on j.

If j =1, R"~! C R" is a complementary free summand to M = Rb; C R", as
required.
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If j > 1, change the basis {bi,...,b;} for M to {ci1,...,cj—1,b;} with
Co = by — b - b

for s < j. Then {c1,...,cj_1} spans a free submodule of R"~!. Using induction, it
has a complementary free submodule, which works for M C N = R" too. [

Definition. If M C R" is a free submodule of rank s such that the inclusion map
is a cofibration, we call M an s—plane in R". If s = 1, we call M a line. A line L
is transverse to an s—plane M C R" (s < r) if L+ M is a direct sum in R", i.e.
LNM=0and L+ M is an (s+ 1)-plane.

Lemma 2 (Graph lemma). Write R = R"~!' @& R. For any plane M C R",
either M contains a line transverse to R"~1 C R", or M is the graph of an R-
homomorphism N — pR C R, with N C R™~!.

Proof. Let {b1,...,b;} be an R-basis for M, and write bs = (b,...,b") as before.
Let m and 7’ denote the projections " — R and R" — R"~! respectively. It
suffices to prove that if all b, € pR, then 7/(b1),...,n’(b;) are linearly independent.

So suppose Zg:1 r;w' (b;) = 0 for some r; € R. Then 7( 5:1 rib;) € pR. If
W(Zzzl r;b;) # 0, there is a maximal e > 0 such that W(Zgzl rib;) € p°R. Then

gzl(pnferi)bi = 0 and by freeness p"~°r; = 0 for all 7. Thus we can choose t; € R

with pt; = r;, and 7(p°© 2221 tib;) € p°R — p*™'R. Hence m(>_;_, t:b;) ¢ pR,
contradicting the hypothesis b7 € pR for all s. We conclude that Y 7_, r;b; = 0 and
all r; = 0, proving independence. [J

We now come to the principal result of this section.

Proposition 3. B, R has the homotopy type of a bouquet (one—point wedge) of
(r — 2)—spheres.

Proof. To begin with, we introduce some notation. If N C M is an inclusion of
arbitrary finitely generated R—modules, let B(N, M) denote the partially ordered
set of finitely generated free R-modules U such that N C U C M, where both
inclusions are cofibrations. The partial ordering is given by U < V if U C V and
the inclusion is a cofibration. Also let B(N, M) denote the nerve of this partially
ordered set, so that B,R = B(0, R").

Write R = R"~! @ R as before, and note that there is a filtration of R by the
powers of the maximal ideal pR :

ROpR>O---D>pR>---D>p"R=0.

Let m : R — R be the projection on the last coordinate, as before. We filter the
partially ordered set B(0, R"), and hence its nerve, as follows :

B.={U € B(0,R") | n(U) Cp'R}
with the induced ordering. Then

B(O,R")=B°>B!>..- > B" ~x.
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Bm is contractible as it has a terminal element. We filter B! > B! for [ =
0,1,...,n—1by

F,={U € B. | U € B! or rank(U) > s},
suppressing r and [ from the notation. Then
B.=F,D>F,>---2>F._;D>F, =B

The partially ordered set Fj is obtained from F.; by adjoining the s—planes V' of
R" in B! but not in B.*!. The nondegenerate simplices in the nerve of F, not in
the nerve of Fs 1, are thus flags of the form :

0#UycUyC---CU,CR"

where some U; = V. Specifically Uy, ...,U;_; lie in B(0,V) N Bt = B(0,V N
(R~ @ p'*tR)), and U;yq,...,U, liein B(V,R")N B. = B(V,R"~! @ p'R). The
graph lemma implies the following two claims :

Claim 1. B0,V N (R~ '@ p*tiR)) = B(0,R* ! ® pR) = B!.
Claim 2. B(V,R" '@ p'R) = B(0,R**"' @ p'R) = B!

r—s*

Hence a simplex in the quotient of nerves Fy/Fs.1 can be viewed as the join of
a simplex in B!, a vertex V, and a simplex in B._,, with the faces opposite to V'

collapsed to * :

Fy/Fop 2=\ S(BL+ BL_) = \/ S*(BL A BL_,)
|4 v

where V' runs over the s—planes of R" in B. — B+,

Now we can prove by induction that all B. are (r — 3)-connected. This is trivial
to check for r < 2, and each B]' ~ % is certainly (r — 3)—connected. By the formula
above, with 0 < s <7, Fy/Fs;1i82+ (s—3)+ 1+ (r—s+3) = (r — 3)—connected
for each s. Thus by downward induction on [, the result holds for each r.

Thus each B! is an (r — 3)-connected (r — 2)-complex, and must have the
homotopy type of a bouquet of (r — 2)—spheres. The case [ = 0 is the statement of
the proposition. [

It remains to prove the two claims from the graph lemma.

Proof of claim 1. Let V. C R" be an s—plane in B. — B!, In the case [ = 0 we
can choose a basis {b1,...,bs} for V with w(bs) =1 and 7(b;) = 0 for i < s. Then
VN(R®pR) = R{by,...,bs_1} DpR{bs} = R°*~' ©pR.

If Il > 0, V is the graph of an R-homomorphism f : W — pR C R with
W C R™~1. We can take a basis {wy, ..., ws} for W with f(w,) = p' and f(w;) =0
for i < s. Then clearly V N (R"! @ p"R) =2 R{wy,...,ws_1} ® pR{w,} =
R='@pR. O

Proof of claim 2. If [ = 0, the statement amounts to B(R*, R") = B(0, R"*),
which is clear.
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Ifl >0, V is the graph of f : W — pR C R as in the preceding proof. Extend
the basis {wq,...,ws} for W to {wy,...,w,.}, a basis for R", with w, = e,. We
can then change basis for R" by replacing w, with ws + p' - e, to reduce to the case
f =0. This case is clear. [

To complete the description of the non—equivariant homotopy type of B, R we
give a counting argument for finding the number of wedges in the bouquet.

Notation. Let <r>,, = (p"™ — p""=1)/(p™ — p"~1) denote the number of lines
in R". Then

<r>  <I>pm e <P =85+ 1>,
DN <S>p7rn Te e " <].>p7n

is the number of s—planes in R".

Proposition 4. For 0 =s9 <s; <--- <s,.1 < s, =1 there are

q
SO p;n Sq_l b, =1 81—1 p;n

flags 0 # V; C --- C V1 C R" with rank(V;) = s; representing (q — 2)-simplices
in B,.R. Counting nondegenerate simplices, the Fuler characteristic is

XBR= Y (_qu1< % >nﬁ

0=s0< - <s8g=T i1 \Si—1
Consequently, B,R ~\/ 5 8" with , = (~1)"(xB,R —1). O

It is also possible to give a recursive formula for the number of wedges, denoted
B, above, by following the proof of proposition 3. Lastly, one can produce a formula
based on proposition 2, by expressing the order of P, for varying o.

SMALL BUILDINGS

In this section, we will construct a covering of B, R by subcomplexes homeomor-
phic to S"2 called apartments. In the case R = F,, these are the subcomplexes
of B,F, making this complex into a building in the abstract sense [Tits]. With
R = Z/p™, the ring homomorphism R — [, maps the apartments of B,R onto
those of B,F,. As the covering of B,[F, is well understood, we choose to organize
the covering apartments in B, R by what apartments they map to in B,F,. The
preimage of one apartment in B, [, is then the union of such a gathering of apart-
ments in B, R, which forms a subcomplex of B, R called the small building b, R. We
begin an analysis of the equivariant homotopy type of B, R through that of b, R.

Apartments.

Definition. Let the standard apartment A = A, R C B, R denote the subcomplex
consisting of simplices which are axial flags in R" :

0#£RloC...C RlscR".

The apartments of B.R are the translates g - A, for ¢ € GL,.R. They form a
covering of B,R. We often identify a simplex in the standard apartment A with
the corresponding chain (Iy C --- C 1) of subsets of r.
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Lemma. A2 S7 2,

Proof. A is isomorphic to the nerve of the partially ordered set of proper nontrivial
subsets of r, i.e. the boundary of an (r — 1)-simplex. [

To analyze B, R in terms of a covering by apartments, it is convenient to intro-
duce some notation for various subcomplexes of A.

Notation. If w is a partial ordering on r, call I C r conver [Goodwillie] if every
element of r less than an element of I, in the ordering w, already is in I. Let
A, C A denote the subcomplex consisting of axial flags

0#£4£RPC...CRlsCR"

where each I; is convex under w. In the special case that w partitions r into a
collection of unrelated equivalence classes, we use m to denote the partition, and
write A, C A as above.

If T is a collection of r x r R-matrices, let Ar = A, where wr is the partial
ordering on r generated by i < j whenever g;; # 0 for some g € T'.

Lemma 3. If 7 partitions r into || equivalence classes, Ax = SITI=2 " If w is not
a partition, i.e. there exists © < j in w with j £ 1, then A, ~ x. Ife € T, then
Ar =N ger 9 A
Proof. See [Rognes, thesis, proposition 9.1 and lemma 10.6]. O

Let R = Z/p". Later in the section we will restrict to R = Z/p?.

Notation. Let N, = N, R be the kernel of GL,R — GL,F,, or equivalently of
G, - U,. Let Q, = N, N P,, where o0 = (Ip C --- C I;) can be thought of as a
simplex of A.

Lemma. The G,-translates {g - A}4ec, of A cover B,R. Similarly {u- A},ecu,
cover B,F,. The preimage of A C B,F, by B,R — B,IF, is the union of the
apartments {g - A} with € N,.

Proof. Clear from proposition 2. [J
Corollary [Quillen]. There is a U.—homotopy equivalence :

B,F,~ \/ s
uelU,

Proof. B,[F, is covered by the apartments u - A = S™~2 with u € U,.. Consider a
(multiple) intersection (),.pu - A = Ar, where we may assume e € T. If T also
contains upper triangular matrices not equal to the identity, wp cannot possibly be
a partition of r, whence by lemma 3, Ay ~ x. [

The small buildings.

Definition. The small building b, R is the union of the apartments g - A C B.R
for g € N,.. If u € U,., the translate u - b.R C B, R is well defined, and these cover
B, R.

We now look at the N,.—homotopy type of B, R, or rather the homotopy type of
EN,1 AN, ¥2B,.R, through the covering of B,R by the N,—complexes u - b, R.



THE TITS BUILDINGS FOR Z/p™ 11

Lemma. As a simplicial N,-set, b.R equals

q] — HNT/QG

where o runs through the chains @ # (Ip C --- C 1) C r.
Proof. Immediate from proposition 2. [J

Corollary 1. There is a spectral sequence, with
E;,t = @Ht(Qa§Fp)

(group homology) where o runs through the chains @ = Iy C --- C Iy = r, converg-
mg to B
H.(EN,; Ay, 2b.R;TF,).

The differentials d'|, : Hi(Qo;Fp) — H.(Qo,0;Fp) commute with the inclusion
into Hy(N,;Fp).

Proof. ¥2b, R has nondegenerate ¢-simplices [ [ N,/Q,, witho = (& =1, C --- C
I, = r) a nondegenerate simplex in ¥2A, for ¢ > 0. There is also a single base
point in degree 0. The spectral sequence is that associated to the skeletal filtration
on ¥2b,. R, with EN,, An, (—) applied, and we recognize the E'~term by

B!, = Hoo(EN,y AN, (270, R®) /5%, RCD);F))
= Ns+t(ENT+ AN, ES(H N /Qs +)§Fp)

= @Ht(ENr XN, NT/QavFP)
= @Ht(QU;Fp)'

The observation about the differentials is immediate from the simplicial structure
onb.R. [0

For the remainder of this section, assume R = Z/p?. Then N, is an elementary
abelian p—group of rank 72, with one Z/p—factor corresponding to each matrix entry
(i,7). In this case we can compute the E2-term of the spectral sequence above,
and prove that it collapses there.

Definition. Let C,. = H.(Z/p;F,) denote the graded Hopf algebra. As a F,-vector
space it has a generator in each nonnegative degree. By the Kiinneth formula,
H, = H.(N,;F,) is additively generated by monomials {z} which are (tensor)
products of one of the generators in C, for each matrix entry (7,7) in N,. We say
that a monomial z involves the matrix entries (4, j) for which a generator of positive
degree occurs.

Let A, C A denote the subcomplex A, where w, is generated by i < j if 2
involves the (i, 7)th entry. If 7 is a partition of r, let J.(7w) C H, denote the H,—
comodule which is additively generated by the monomials z such that A, = A,
i.e. w, = m. These are the m—mizing monomials in H,.
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Proposition 5. The spectral sequence in corollary 1 collapses at the E?~term :
E?,* = @ ‘]* (ﬂ—)
where m Tuns over the partitions of r into || = s equivalence classes. Hence

H,(EN,{ Ay, $°b,R;F,) = P I, ().

Proof. The El-term (E',d") splits over the monomials 2. Fix a z, and consider
the corresponding summand of E'. It contains a copy of F,{z} precisely for each
o # x in §2Az, and d' agrees with the differential in the reduced simplicial chain
complex C,(¥?A,;F,). Hence the contribution to the E?*-term is H,(X?A,;F,).
By lemma 3, this is 0 unless w, is a partition 7, in which case the homology is a
copy of IF,, in degree |r|. Hence

B2 = (D H.(524,) @ Fy{)

equals the expression in the statement in the proposition, with the sum reindexed
by 7 in place of z.

It remains to prove that the spectral sequence collapses. Consider a partition 7
of r, and a monomial z in J.(7m) C H, representing a generator (m,z) in E|27T|7|Z|.

Let Q. C N, be the intersection of all @, for 0 € A,. Then (7, z) is realized in the
homology of BQ.,. A X2A,. Also there is for each o € A, an inclusion :

BQ. C BQ, — EN, xn, N,/Qq

extending to
BQ.. NY?A, < EN,, Ay, 2%b,.R .

Associated to the skeletal filtration on 24, and ¥2b, R, we have two spectral
sequences (the ‘left’ and the ‘right’ ones, respectively) with a natural map between
them, corresponding to the last inclusion above. The spectral sequence on the left
side collapses at the E?-term, and as the class (7, 2) is realized on this E? term,
it supports no higher differentials on either side. As this holds for all 7 and z, all
these classes survive to E°° on the right side, and the proposition follows. [J

Example. Let r = 2 and R = Z/4. There are two partitions m; = {{1,2}} and
Ty = {{1},{2}} of r, and J*(ﬂ'l) = H* - L12X921, J*(T('Q) = FQ[IL’H,QS’QQ]. Here Lij
denotes the generator in degree 1 of H,(Z/2;Fy) = Fy[x], corresponding to the
(,7)th entry in No. Then

H,(ENyy AN, 520374, Fy) 2 SV H, - 210391 @ S2Fala11, 222).
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The covering. We would now like to extend this result to 2B, R. Recall the
covering of B, R by {u-b.R} for u € U,. Let T C U, be nonempty. Consider the
(multiple) intersection

() ENvy An, Z2(u-b,R) = EN,y A, 2 () u- bR
ueT ueT

IfteT, Nyert -brR=1t-Nyep—rpu-bRand e € t7'T, so let us assume e € 7.
By lemma 3 we have the following extension of corollary 1 :

Lemma. Lete €T C U,. There is a spectral sequence with
Esl,t = @Ht(Qa;Fp>

where o runs through the nondegenerate s—simplices of X2 Ar, converging to
H,(EN,1 Ay, 22 (| u-b,R;Fp). O
ueT
We extend the notion of mixing monomials :
Definition. Let e € T C U, and let 7 be a partition of r. Let J.(m,T) C H.
denote the H,—comodule which is additively generated by the monomials z such

that A, N Ap = A,. These are the (7, T)—mizing monomials in H,. If e ¢ T but T
is nonempty, pick t € T and set J, (7, T) = J. (7, t1T).

Proposition 6. Let e € T C U,. The spectral sequence in the lemma above
collapses at the E?—term :
Es,* = @ ‘]* (ﬂ-)
™

where ™ runs over the partitions of r into |w| = s equivalence classes. Hence
H,(EN,¢ Ay, £2 () u- bR F,) = @ 2, (7, T).
u€eT ki
This isomorphism is also true if e ¢ T.

Proof. Redo the proof of proposition 5, but replace all references to ¢ running
through the simplices of ¥2A with o running through the simplices of ¥2Ap. O

Example. We continue the example of r = 2 and R = Z/4. Uy = {e,u}, where

u = ((1) 1) Then J,(m,{e}) = Ju(m, {u}) = J.(7) for either partition 7, while

J*(ﬂ-l, {€7u}) = H* *T21 and ']*(77-27 {6,%}) = 0.

Corollary 2. There is a Mayer—Vietoris spectral sequence (see e.g. [Rognes, thesis,
definition 9.4] ) with E'~term

El. =P (x,1)
T

where the sum runs over T C U, with (s + 1) elements, converging to the N,—
homology of ¥2B, R, namely H.(EN,; AN, ¥2B,R;F,). O



14 JOHN ROGNES

Example. Still » =2 and R = Z/4. The only differential in the spectral sequence
above is d! : X1, (7, {e,u}) — 1T, (71, {e}) ® X1 T (71, {u}), mapping H, - z2
into the diagonal of H, - x122x21 & H, - x12221 by the map commuting with the
inclusion into H, for each summand.
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