THE TITS BUILDINGS FOR \mathbb{Z} / p^{n}

John Rognes

April 1991

Abstract

We study the algebraic K-theory of a cyclic ring R of the form \mathbb{Z} / p^{n}. The idea is to consider the so-called rank filtration on a space representing the first delooping of K-theory. Each subquotient of this filtration is equivalent to the homotopy quotient of an action of the general linear group $G L_{r} R$ on the double suspension of a finite complex $B_{r} R$, which is the rank r Tits building of R. To understand the homotopy type of these subquotients, we equivalently study the homotopy type of the Tits buildings together with the $G L_{r} R$-action.

Our results include 1) a description of the non-equivariant homotopy type of each Tits building, as a bouquet of spheres all in the same dimension, 2) a computation of the equivariant homology of a subcomplex of $B_{r} R$ called the small building, which captures the difference between the K-theory of R and the known K-theory of \mathbb{F}_{p}, the finite field with p elements, and 3) a description of the homotopy type of each fixed subcomplex of the Tits building under the action of a subgroup of the general linear group, in a (sufficiently) large class of such subgoups.

Introduction

Not yet written

K-Theory and Tits Buildings

In this section we will review definitions of K-theory and the rank filtration, and fix some notation.

The K-theory of a ring. Let R be an associative ring with unit. The algebraic K-theory of R can be defined as follows. Let $\mathcal{P}(R)$ be the additive category of finitely generated projective R-modules, viewed as a category with cofibrations and weak equivalences as per [Quillen, §2] and [Waldhausen, §1.9]. Explicitly, a cofibration is the inclusion of a direct summand in the category, and a weak equivalence is an isomorphism. Then following [Waldhausen], we can apply the S_{\bullet} construction to $\mathcal{P}(R)$, obtaining a simplicial category $w S_{\bullet} \mathcal{P}(R)$ whose geometric realization is the (first) delooping of K-theory. This means that the higher algebraic K-groups of R can be defined as:

$$
K_{i} R=\pi_{i+1}|w S \cdot \mathcal{P}(R)| \quad \text { for } i \geq 0 .
$$

This definition agrees with that of [Quillen] using the Q-construction. Equivalently, we may think of the K-groups of R as the homotopy groups of the loopspace $\Omega|w S . \mathcal{P}(R)|$.

Let $\mathcal{F}(R) \subseteq \mathcal{P}(R)$ denote the full subcategory of finitely generated free $R-$ modules. It is a subcategory with cofibrations and weak equivalences in the sense of [Waldhausen, p. 321], and furthermore it is (weakly) cofinal in $\mathcal{P}(R)$ [Grayson], so the induced map

$$
|w S . \mathcal{F}(R)| \rightarrow|w S . \mathcal{P}(R)|
$$

is a covering map. If we define the free K-theory of R by

$$
K_{i}^{f} R=\pi_{i+1}\left|w S_{.} \mathcal{F}(R)\right| \quad \text { for } i \geq 0
$$

it follows that $K_{i}^{f} R \rightarrow K_{i} R$ is an isomorphism for $i \geq 1$, while it is an injection for $i=0$. We shall be considering the free K-theory of R in this paper, but by the above argument this is the same as the usual K-theory in all positive degrees, so we shall henceforth suppress the difference in notation, and use $K_{i} R$ to denote the free K-groups. Let $B K(R)$ denote the first delooping of free K-theory; $B K(R)=$ $|w S . \mathcal{F}(R)|$.
The rank filtration. Now suppose that the rank of a finitely generated free $R-$ module is well defined. Concretely, we will assume that R has the invariant dimension property [Mitchell], i.e. R^{n} and R^{m} are isomorphic as R-modules only if $n=m$. This automatically holds if R is commutative [Atiyah-Macdonald]. It is also clear that R has this property if it is an algebra over a commutative ring, for which it is finitely generated as a module. The examples we have in mind are matrix algebras over commutative rings. Denote the rank of a finitely generated free R-module M by $\operatorname{rank}(M)$. Then if $M^{\prime} \mapsto M \rightarrow M^{\prime \prime}$ is a cofibration sequence in $\mathcal{F}(R)$, i.e. a split short exact sequence of free R-modules, we have

$$
\operatorname{rank}(M)=\operatorname{rank}\left(M^{\prime}\right)+\operatorname{rank}\left(M^{\prime \prime}\right)
$$

We wish to approximate the K-theory of R by introducing a filtration of the delooped K-theory space, such that each successive stage of the filtration is a better approximation to the full K-theory. We do this, following [Quillen] and [Mitchell], by a rank filtration of the space $B K(R)$. Inspecting the S.-construction used to define this space, we see that its simplices correspond to diagrams in the category $\mathcal{F}(R)$. For a fixed rank r we can consider the subcomplex $F_{r} B K(R)$ consisting of simplices corresponding to diagrams involving only free R-modules of rank less then or equal to r. This gives an increasing filtration of spaces $\left\{F_{r} B K(R)\right\}_{r \geq 0}$ exhausting $B K(R)$, and we call $F_{r} B K(R)$ the r th stage of the rank filtration on the first delooping of the K-theory of R.

There are also other definitions of a rank filtration on K-theory. By analogy to the plus-construction definition of K-theory [Quillen], one can define

$$
K_{i, r}^{Q} R=\pi_{i}\left(B G L_{r} R\right)^{+} \quad \text { for } i>0
$$

as soon as a suitable perfect subgroup can be found, for instance if $r \geq 3$. There is also a Volodin construction [Suslin], where

$$
K_{i, r}^{V} R=\pi_{i+1} V\left(G L_{r} R,\left\{T^{\alpha}\right\}\right) \quad \text { for } i \geq 0,
$$

and Suslin shows that these two agree through a range. See Suslin's paper for a definition of the expression above. Lastly there is a spectrum level rank filtration of the K-theory spectrum, different from all the above, which is developed in [Rognes, thesis].

The subquotients. Our approach to understanding the K-groups of R will be to investigate the homotopy type of the subquotients of the rank filtration, i.e. the spaces $F_{r} B K(R) / F_{r-1} B K(R)$. There is a description of this in terms of the equivariant homotopy type of the rank r Tits building of R [Tits], as noted in [Quillen] and [Mitchell]. We now define the Tits buildings, state the description (proposition 1), and give a proof.

Definition. Suppose R satisfies the invariant dimension property, and fix a rank r. Consider the set of proper, nontrivial free R-submodules M of $R^{r}: 0 \neq M \subset R^{r}$. Give this set a partial ordering by setting $M \prec N$ if $M \subseteq N$ and the inclusion map is a cofibration in $\mathcal{F}(R)$, i.e. M is included as a direct summand in N with a free complementary summand. Denote this partially ordered set by $\mathcal{O}\left(R^{r}\right)$, and define the rank r Tits building of $\mathrm{R}, B_{r} R$, to be its nerve [Quillen] :

$$
B_{r} R=N \mathcal{O}\left(R^{r}\right)
$$

Hence $B_{r} R$ is a simplicial set, with q-simplices the sequences of cofibrations

$$
0 \neq M_{0} \subseteq \cdots \subseteq M_{q} \subset R^{r}
$$

of free R-modules, also known as flags.
Proposition 1 [Quillen] [Mitchell].

$$
F_{r} B K(R) / F_{r-1} B K(R) \simeq E G L_{r} R_{+} \wedge_{G L_{r} R} \Sigma^{2} B_{r} R .
$$

Proof. Review the $S_{.}-$construction from [Waldhausen, §1.3]. $B K(R)=|w S . \mathcal{F}(R)|$ where $w S . \mathcal{F}(R)$ is the simplicial category $[q] \mapsto w S_{q} \mathcal{F}(R)$. An object in $S_{q} \mathcal{F}(R)$ is a diagram $\operatorname{Ar}[q] \rightarrow \mathcal{F}(R)$ satisfying certain extra hypotheses. Here $[q]=\{0<$ $1<\cdots<q\}$ is thought of as a category with $q+1$ objects, and $\operatorname{Ar}[q]$ is the arrow category associated with $[q]$. Specifically, a diagram $A: \operatorname{Ar}[q] \rightarrow \mathcal{F}(R)$ associates to each $i \leq j$ a free R-module $A_{i, j}=A(i \rightarrow j)$, and A lies in $S_{q} \mathcal{F}(R)$ if the following three conditions hold: 1) $A_{i, i}=0$ for each $\left.i, 2\right)$ the natural map $A_{i, j} \rightarrow A_{i, k}$ is a cofibration for each $i \leq j \leq k$, and 3) the commutative square

is a pushout square for each $i \leq j \leq k$. Such a diagram A is determined up to isomorphism by its restriction across $[q] \hookrightarrow \operatorname{Ar}[q]$ taking i in $[q]$ to $(0 \rightarrow i)$ in $\operatorname{Ar}[q]$. The restriction of a diagram A is then a sequence of cofibrations

$$
0=A_{0,0} \rightarrow A_{0,1} \rightarrow \cdots \rightarrow A_{0, q} .
$$

Let $\mathcal{F}_{r}(R) \subset \mathcal{F}(R)$ denote the full subcategory where the objects have rank at most r. Then $F_{r} B K(R)$ realizes the simplicial subcategory $w F_{r} S . \mathcal{F}(R)$ where
$F_{r} S_{q} \mathcal{F}(R) \subset S_{q} \mathcal{F}(R)$ has objects the diagrams $\operatorname{Ar}[q] \rightarrow \mathcal{F}(R)$ which factor through $\mathcal{F}_{r}(R) \subset \mathcal{F}(R)$. Similarly, $F_{r} B K(R) / F_{r-1} B K(R)$ realizes the simplicial (quotient) category $[q] \mapsto w F_{r} S_{q} \mathcal{F}(R) / w F_{r-1} S_{q} \mathcal{F}(R)$. For fixed q, the latter category has a base point object $*_{q}$, together with the diagrams $\operatorname{Ar}[q] \rightarrow \mathcal{F}(R)$ in $S_{q} \mathcal{F}(R)$ which factor through $\mathcal{F}_{r}(R)$, but not through $\mathcal{F}_{r-1}(R)$. These are precisely the diagrams A such that the 'top' module $A_{0, q}$ has rank r.

Inspecting the simplicial structure on $w F_{r} S . \mathcal{F}(R) / w F_{r-1} S . \mathcal{F}(R)$, we see that the restriction of diagrams over $[q] \hookrightarrow \operatorname{Ar}[q]$ as above induces an equivalence of simplicial categories. Furthermore, the target simplicial category is equivalent to its full simplicial subcategory where the top module $A_{0, q}$ actually is R^{r}. Thus $F_{r} B K(R) / F_{r-1} B K(R)$ is homotopy equivalent to the realization of the simplicial category Y_{0}, which in simplicial degree q has the objects $*_{q}$ and the cofibration sequences (flags)

$$
0=A_{0,0} \rightarrow A_{0,1} \rightarrow \cdots \rightarrow A_{0, q}=R^{r}
$$

and morphisms the isomorphisms of such diagrams.
Let X. be the simplicial set which has as q-simplices the object set of Y_{q}. For any flag $A \in X_{q}$, the morphisms in Y_{q} originating at A are precisely characterized by their effect on the top module $A_{0, q}=R^{r}$, i.e. an element of $G L_{r} R$. In this situation we call Y_{\bullet} the (based) $G L_{r} R$-translation category on X_{\bullet}. Using the usual simplicial model for $E G L_{r} R$ it is straightforward to check that the nerve of Y_{q} is isomorphic to $E G L_{r} R_{+} \wedge_{G L_{r} R} X_{q}$, and upon realizing in the q-direction we obtain:

$$
\left|Y_{\bullet}\right| \cong E G L_{r} R_{+} \wedge_{G L_{r} R}\left|X_{\bullet}\right| .
$$

It remains to recognize $\left|X_{\bullet}\right|$ as $\Sigma^{2} B_{r} R$.
Let $\mathcal{O}_{*}^{*}\left(R^{r}\right)$ denote the partially ordered set of (not necessarily proper or nontrivial) free R-submodules M of R^{r}, with $M \prec N$ if $M \subseteq N$ and the inclusion map is a cofibration. Let $\mathcal{O}_{*}\left(R^{r}\right)$ denote the partially ordered subset of proper submodules, and let $\mathcal{O}^{*}\left(R^{r}\right)$ denote the partially ordered subset of nontrivial submodules. The nerve of either of these three partially ordered sets is contractible, due to the presence of initial and/or terminal elements.

Now note that $\mathcal{O}\left(R^{r}\right)$ is the intersection of $\mathcal{O}_{*}\left(R^{r}\right)$ and $\mathcal{O}^{*}\left(R^{r}\right)$. Furthermore, $\left|X_{\bullet}\right|$ is obtained from the nerve of $\mathcal{O}_{*}^{*}\left(R^{r}\right)$ by identifying any flags

$$
0 \subseteq M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{q} \subseteq R^{r}
$$

not beginning with $M_{0}=0$ or ending with $M_{q}=R^{r}$ to $*_{q}$, which amounts to contracting the nerves of $\mathcal{O}_{*}\left(R^{r}\right)$ and $\mathcal{O}^{*}\left(R^{r}\right)$ to a point. We conclude :

$$
\begin{aligned}
\left|X_{\bullet}\right| & =N \mathcal{O}_{*}^{*}\left(R^{r}\right) /\left(N \mathcal{O}_{*}\left(R^{r}\right) \cup N \mathcal{O}^{*}\left(R^{r}\right)\right) \\
& \simeq \Sigma\left(N \mathcal{O}_{*}\left(R^{r}\right) \cup N \mathcal{O}^{*}\left(R^{r}\right)\right) \\
& \simeq \Sigma^{2}\left(N \mathcal{O}_{*}\left(R^{r}\right) \cap N \mathcal{O}^{*}\left(R^{r}\right)\right) \\
& =\Sigma^{2} B_{r} R . \quad \square
\end{aligned}
$$

Thus an understanding of a weak form of the $G L_{r} R$-homotopy type of $B_{r} R$ suffices to describe the subquotients of the rank filtration, in the sense that a $G L_{r} R-$ map which is a non-equivariant homotopy equivalence is viewed as an equivalence.

Tits Buildings for \mathbb{Z} / p^{n}

We now specialize to studying the K-theory of the 'cyclic rings' \mathbb{Z} / p^{n}, with p a prime. The K-groups of the finite fields $\mathbb{F}_{p}=\mathbb{Z} / p$ are known, as computed by Quillen [Quillen]. Furthermore, the unique ring homomorphism $\mathbb{Z} / p^{n} \rightarrow \mathbb{F}_{p}$ induces an isomorphism on K-groups away from the prime p, in the sense of localization [Bousfield and Kan]. Thus we are really only interested in the p-component of the K-groups $K_{i} \mathbb{Z} / p^{n}$ for $n \geq 2$. [Aisbett] and [Evens and Friedlander] have computations of these groups for most cases with $i \leq 4$, while $K_{4} \mathbb{Z} / 4$ and $K_{4} \mathbb{Z} / 9$ remain unknown.

A transfer argument. For the remainder of this section let $R=\mathbb{Z} / p^{n}$. On the level of the subquotients of the rank filtration, we are interested in the homotopy type of $E G L_{r} R_{+} \wedge_{G L_{r} R} \Sigma^{2} B_{r} R$ localized at p. In this situation, there is a standard transfer argument which allows us to reduce from studying the p-localized equivariant $G L_{r} R$-homotopy type of $B_{r} R$ to the analogous thing for the action on $B_{r} R$ by a p-Sylow subgroup of $G L_{r} R$.

Definition. In the case of $G L_{r} \mathbb{F}_{p}$, the upper triangular matrices with 1's on the diagonal constitute a p-Sylow subgroup, denoted $U_{r} \subset G L_{r} \mathbb{F}_{p}$. In general, let $G_{r}=G_{r} R \subset G L_{r} R$ be the pullback of $U_{r} \subset G L_{r} \mathbb{F}_{p}$ over the canonical map $G L_{r} R \rightarrow G L_{r} \mathbb{F}_{p}$. Explicitly, G_{r} consists of the matrices with entries which are 0 modulo p below the diagonal, 1 modulo p on the diagonal, and arbitrary above the diagonal. G_{r} is a p-Sylow subgroup of $G L_{r} R$.

There is a bundle map π :

$$
E G_{r+} \wedge_{G_{r}} \Sigma^{2} B_{r} R \simeq E G L_{r} R_{+} \wedge_{G_{r}} \Sigma^{2} B_{r} R \xrightarrow{\pi} E G L_{r} R_{+} \wedge_{G L_{r} R} \Sigma^{2} B_{r} R,
$$

and a stable equivariant transfer map τ [Adams] going the other way, such that the composite $\pi \circ \tau$ induces multiplication by the index of G_{r} in $G L_{r} R$ on homology or stable homotopy. This index is prime to p, so it follows that π is a split surjection when localized at p. Thus to understand $E G L_{r} R_{+} \wedge_{G L_{r} R} \Sigma^{2} B_{r} R$, we will look at the G_{r}-homotopy type of $B_{r} R$, and appeal to the methods of [Feshbach] to compute what is lost by mapping along π.

The Tits building as a simplicial G_{r}-set. We have a description of the Tits building $B_{r} R$ as a simplicial G_{r}-set.

Definition. Let $\mathbf{r}=\{1, \ldots, r\}$. For any indexing set $I \subseteq \mathbf{r}$ let $R^{I} \subseteq R^{r}$ be the axial submodule where only the coordinates in $I \subseteq \mathbf{r}$ may be nonzero. Let $P_{I} \subseteq G_{r}$ denote the parabolic subgroup consisting of matrices $g=\left(g_{i j}\right) \in G_{r}$ such that $g_{i j}=0$ if $i \notin I$ and $j \in I . P_{I}$ stabilizes $R^{I} \subseteq R^{r}$ for the action of G_{r} on subspaces of R^{r}. If $\sigma=\left(I_{0} \subseteq \cdots \subseteq I_{q}\right)$ is a chain of subsets of \mathbf{r}, then P_{σ} is the parabolic subgroup defined by $P_{\sigma}=P_{I_{0} \ldots I_{q}}=P_{I_{0}} \cap \cdots \cap P_{I_{q}}$. P_{σ} stabilizes the flag $R^{I_{0}} \subseteq \cdots \subseteq R^{I_{q}}$ in R^{r}.

Proposition 2. As a simplicial G_{r}-set, the Tits building $B_{r} R$ is isomorphic to

$$
[q] \longmapsto \coprod_{\sigma} G_{r} / P_{\sigma}
$$

where σ runs through the chains $\varnothing \neq I_{0} \subseteq \cdots \subseteq I_{q} \subset \mathbf{r}$. The ith face map ∂_{i} is induced by $P_{\sigma} \subset P_{\partial_{i} \sigma}$ where $\partial_{i} \sigma=I_{0} \subseteq \cdots \subseteq I_{i-1} \subseteq I_{i+1} \subseteq \cdots \subseteq I_{q}$, while the j th degeneracy map s_{j} is induced by $P_{\sigma}=P_{s_{j} \sigma}$ where $s_{j} \sigma=I_{0} \subseteq \cdots \subseteq I_{j}=I_{j} \subseteq \cdots \subseteq$ I_{q}.

Proof. We will show that an arbitrary q-simplex in $B_{r} R$

$$
0 \neq M_{0} \subseteq \cdots \subseteq M_{q} \subset R^{r}
$$

is in the G_{r}-orbit of an axial flag

$$
0 \neq R^{I_{0}} \subseteq \cdots \subseteq R^{I_{q}} \subset R^{r}
$$

for some $\varnothing \neq I_{0} \subseteq \cdots \subseteq I_{q} \subset \mathbf{r}$. Next we will check that there is only one such axial flag in each G_{r}-orbit, which proves that $\sigma=\left(I_{0} \subseteq \cdots \subseteq I_{q}\right)$ is uniquely determined. Lastly we observe that the stabilizer of $R^{I_{0}} \subseteq \cdots \subseteq R^{I_{q}}$ is $P_{I_{0} \ldots I_{q}} \subseteq G_{r}$, from which the proposition follows.

For convenience, let us reindex the flag, so as to be considering a ($q-2$)-simplex

$$
0=M_{0} \subset M_{1} \subseteq \cdots \subseteq M_{q-1} \subset M_{q}=R^{r}
$$

Let $\varphi: R \rightarrow \mathbb{F}_{p}$ denote the ring homomorphism, as well as the homomorphisms induced by it. For each $i \in \mathbf{r}$ there is a minimal j such that $\mathbb{F}_{p}{ }^{i} \subseteq \varphi\left(M_{j}\right)$. Then $\mathbb{F}_{p}{ }^{i} \cap \varphi\left(M_{j-1}\right)+\mathbb{F}_{p}{ }^{i-1} \cap \varphi\left(M_{j}\right)$ is a codimension one subspace of $\mathbb{F}_{p}{ }^{i} \cap \varphi\left(M_{j}\right)=\mathbb{F}_{p}{ }^{i}$. Choose a $b_{i} \in M_{j}$ such that $\varphi\left(b_{j}\right) \in \mathbb{F}_{p}{ }^{i}$ is not in this subspace. Then b_{i} is part of an extension of an R-basis for M_{j-1} to one for M_{j}, and we may assume that b_{i} has i th coordinate equal to 1 modulo p.

For each j, let $I_{j}=\left\{i \in \mathbf{r} \mid b_{i} \in M_{j}\right\}$. Proceeding by induction on j we see that $\left\{b_{i}\right\}_{i \in I_{j}}$ is an R-basis for M_{j}. Then set $g=\left(b_{1}, \ldots, b_{r}\right) \in G_{r}$, and observe that $g \cdot R^{I_{j}}=M_{j}$ for each j. This proves the first statement

Next we prove that if $g \in G_{r}$ and $g \cdot R^{I}=R^{J}$ then $I=J$. For each $i, \varphi(g) \in U_{r}$ takes the i th elementary vector $e_{i} \in \mathbb{F}_{p}{ }^{i}$ into $\varphi(g) \cdot e_{i}$ with nonzero i th coordinate. Thus if $i \in I, \varphi(g) \cdot e_{i} \in \varphi(g) \cdot \mathbb{F}_{p}{ }^{I}=\mathbb{F}_{p}{ }^{J}$ and so $i \in J$. Thus $I \subseteq J$, and by the same argument for $g^{-1}, I=J$. This proves the second statement, concluding the proof.

The non-equivariant homotopy type. Next we will analyze the non-equivariant homotopy type of $B_{r} R$. First we will prove two properties of cofibrations in $\mathcal{F}(R)$ which are special to $R=\mathbb{Z} / p^{n}$. These will be precisely what are needed in the proof of proposition 3, below. Neither lemma holds true for arbitrary local rings R.

Lemma 1. Each inclusion $M \subseteq N$ of finitely generated free R-modules is a cofibration.

Proof. Choose an R-basis $\left\{b_{1}, \ldots, b_{j}\right\}$ for M, and assume $N=R^{r}$. Write the coordinates of b_{s} as $\left(b_{s}^{1}, \ldots, b_{s}^{r}\right)$. By rescaling, and permuting the coordinates of R^{r}, we may assume $b_{j}^{r}=1$. Proceed by induction on j.

If $j=1, R^{r-1} \subset R^{r}$ is a complementary free summand to $M=R b_{1} \subset R^{r}$, as required.

If $j>1$, change the basis $\left\{b_{1}, \ldots, b_{j}\right\}$ for M to $\left\{c_{1}, \ldots, c_{j-1}, b_{j}\right\}$ with

$$
c_{s}=b_{s}-b_{s}^{r} \cdot b_{j}
$$

for $s<j$. Then $\left\{c_{1}, \ldots, c_{j-1}\right\}$ spans a free submodule of R^{r-1}. Using induction, it has a complementary free submodule, which works for $M \subseteq N=R^{r}$ too.

Definition. If $M \subseteq R^{r}$ is a free submodule of rank s such that the inclusion map is a cofibration, we call M an s-plane in R^{r}. If $s=1$, we call M a line. A line L is transverse to an s-plane $M \subset R^{r}(s<r)$ if $L+M$ is a direct sum in R^{r}, i.e. $L \cap M=0$ and $L+M$ is an $(s+1)$-plane.

Lemma 2 (Graph lemma). Write $R^{r}=R^{r-1} \oplus R$. For any plane $M \subseteq R^{r}$, either M contains a line transverse to $R^{r-1} \subset R^{r}$, or M is the graph of an $R-$ homomorphism $N \rightarrow p R \subset R$, with $N \subseteq R^{r-1}$.
Proof. Let $\left\{b_{1}, \ldots, b_{j}\right\}$ be an R-basis for M, and write $b_{s}=\left(b_{s}^{1}, \ldots, b_{s}^{r}\right)$ as before. Let π and π^{\prime} denote the projections $R^{r} \rightarrow R$ and $R^{r} \rightarrow R^{r-1}$ respectively. It suffices to prove that if all $b_{s}^{r} \in p R$, then $\pi^{\prime}\left(b_{1}\right), \ldots, \pi^{\prime}\left(b_{j}\right)$ are linearly independent.

So suppose $\sum_{i=1}^{j} r_{i} \pi^{\prime}\left(b_{i}\right)=0$ for some $r_{i} \in R$. Then $\pi\left(\sum_{i=1}^{j} r_{i} b_{i}\right) \in p R$. If $\pi\left(\sum_{i=1}^{j} r_{i} b_{i}\right) \neq 0$, there is a maximal $e>0$ such that $\pi\left(\sum_{i=1}^{j} r_{i} b_{i}\right) \in p^{e} R$. Then $\sum_{i=1}^{j}\left(p^{n-e} r_{i}\right) b_{i}=0$ and by freeness $p^{n-e} r_{i}=0$ for all i. Thus we can choose $t_{i} \in R$ with $p^{e} t_{i}=r_{i}$, and $\pi\left(p^{e} \sum_{i=1}^{i} t_{i} b_{i}\right) \in p^{e} R-p^{e+1} R$. Hence $\pi\left(\sum_{i=1}^{i} t_{i} b_{i}\right) \notin p R$, contradicting the hypothesis $b_{s}^{r} \in p R$ for all s. We conclude that $\sum_{i=1}^{j} r_{i} b_{i}=0$ and all $r_{i}=0$, proving independence.

We now come to the principal result of this section.
Proposition 3. $B_{r} R$ has the homotopy type of a bouquet (one-point wedge) of ($r-2$)-spheres.

Proof. To begin with, we introduce some notation. If $N \subseteq M$ is an inclusion of arbitrary finitely generated R-modules, let $B(N, M)$ denote the partially ordered set of finitely generated free R-modules U such that $N \subset U \subset M$, where both inclusions are cofibrations. The partial ordering is given by $U \prec V$ if $U \subseteq V$ and the inclusion is a cofibration. Also let $B(N, M)$ denote the nerve of this partially ordered set, so that $B_{r} R=B\left(0, R^{r}\right)$.

Write $R^{r}=R^{r-1} \oplus R$ as before, and note that there is a filtration of R by the powers of the maximal ideal $p R$:

$$
R \supset p R \supset \cdots \supset p^{l} R \supset \cdots \supset p^{n} R=0
$$

Let $\pi: R^{r} \rightarrow R$ be the projection on the last coordinate, as before. We filter the partially ordered set $B\left(0, R^{r}\right)$, and hence its nerve, as follows :

$$
B_{r}^{l}=\left\{U \in B\left(0, R^{r}\right) \mid \pi(U) \subseteq p^{l} R\right\}
$$

with the induced ordering. Then

$$
B\left(0, R^{r}\right)=B_{r}^{0} \supset B_{r}^{1} \supset \cdots \supset B_{r}^{n} \simeq *
$$

B_{r}^{n} is contractible as it has a terminal element. We filter $B_{r}^{l} \supset B_{r}^{l+1}$ for $l=$ $0,1, \ldots, n-1$ by

$$
F_{s}=\left\{U \in B_{r}^{l} \mid U \in B_{r}^{l+1} \text { or } \operatorname{rank}(U) \geq s\right\},
$$

suppressing r and l from the notation. Then

$$
B_{r}^{l}=F_{1} \supset F_{2} \supset \cdots \supset F_{r-1} \supset F_{r}=B_{r}^{l+1} .
$$

The partially ordered set F_{s} is obtained from F_{s+1} by adjoining the s-planes V of R^{r} in B_{r}^{l} but not in B_{r}^{l+1}. The nondegenerate simplices in the nerve of F_{s}, not in the nerve of F_{s+1}, are thus flags of the form :

$$
0 \neq U_{0} \subset U_{1} \subset \cdots \subset U_{q} \subset R^{r}
$$

where some $U_{i}=V$. Specifically U_{0}, \ldots, U_{i-1} lie in $B(0, V) \cap B_{r}^{l+1}=B(0, V \cap$ $\left(R^{r-1} \oplus p^{l+1} R\right)$), and U_{i+1}, \ldots, U_{q} lie in $B\left(V, R^{r}\right) \cap B_{r}^{l}=B\left(V, R^{r-1} \oplus p^{l} R\right)$. The graph lemma implies the following two claims :
Claim 1. $B\left(0, V \cap\left(R^{r-1} \oplus p^{l+1} R\right)\right) \cong B\left(0, R^{s-1} \oplus p R\right) \cong B_{s}^{1}$.
Claim 2. $B\left(V, R^{r-1} \oplus p^{l} R\right) \cong B\left(0, R^{k-s-1} \oplus p^{l} R\right) \cong B_{r-s}^{l}$.
Hence a simplex in the quotient of nerves F_{s} / F_{s+1} can be viewed as the join of a simplex in B_{s}^{1}, a vertex V, and a simplex in B_{r-s}^{l}, with the faces opposite to V collapsed to $*$:

$$
F_{s} / F_{s+1} \cong \bigvee_{V} \Sigma\left(B_{s}^{1} * B_{r-s}^{l}\right) \cong \bigvee_{V} \Sigma^{2}\left(B_{s}^{1} \wedge B_{r-s}^{l}\right)
$$

where V runs over the s-planes of R^{r} in $B_{r}^{l}-B_{r}^{l+1}$.
Now we can prove by induction that all B_{r}^{l} are $(r-3)$-connected. This is trivial to check for $r \leq 2$, and each $B_{r}^{n} \simeq *$ is certainly $(r-3)$-connected. By the formula above, with $0<s<r, F_{s} / F_{s+1}$ is $2+(s-3)+1+(r-s+3)=(r-3)$-connected for each s. Thus by downward induction on l, the result holds for each r.

Thus each B_{r}^{l} is an $(r-3)$-connected $(r-2)$-complex, and must have the homotopy type of a bouquet of $(r-2)$-spheres. The case $l=0$ is the statement of the proposition.

It remains to prove the two claims from the graph lemma.
Proof of claim 1. Let $V \subset R^{r}$ be an s-plane in $B_{r}^{l}-B_{r}^{l+1}$. In the case $l=0$ we can choose a basis $\left\{b_{1}, \ldots, b_{s}\right\}$ for V with $\pi\left(b_{s}\right)=1$ and $\pi\left(b_{i}\right)=0$ for $i<s$. Then $V \cap\left(R^{r-1} \oplus p R\right)=R\left\{b_{1}, \ldots, b_{s-1}\right\} \oplus p R\left\{b_{s}\right\} \cong R^{s-1} \oplus p R$.

If $l>0, V$ is the graph of an R-homomorphism $f: W \rightarrow p R \subset R$ with $W \subseteq R^{r-1}$. We can take a basis $\left\{w_{1}, \ldots, w_{s}\right\}$ for W with $f\left(w_{s}\right)=p^{l}$ and $f\left(w_{i}\right)=0$ for $i<s$. Then clearly $V \cap\left(R^{r-1} \oplus p^{l+1} R\right) \cong R\left\{w_{1}, \ldots, w_{s-1}\right\} \oplus p R\left\{w_{s}\right\} \cong$ $R^{s-1} \oplus p R$.

Proof of claim 2. If $l=0$, the statement amounts to $B\left(R^{s}, R^{r}\right) \cong B\left(0, R^{r-s}\right)$, which is clear.

If $l>0, V$ is the graph of $f: W \rightarrow p R \subset R$ as in the preceding proof. Extend the basis $\left\{w_{1}, \ldots, w_{s}\right\}$ for W to $\left\{w_{1}, \ldots, w_{r}\right\}$, a basis for R^{r}, with $w_{r}=e_{r}$. We can then change basis for R^{r} by replacing w_{s} with $w_{s}+p^{l} \cdot e_{r}$ to reduce to the case $f=0$. This case is clear.

To complete the description of the non-equivariant homotopy type of $B_{r} R$ we give a counting argument for finding the number of wedges in the bouquet.

Notation. Let $<r>_{p, n}=\left(p^{r n}-p^{r(n-1)}\right) /\left(p^{n}-p^{n-1}\right)$ denote the number of lines in R^{r}. Then

$$
\left\langle\begin{array}{c}
r \\
s
\end{array}\right\rangle_{p, n}=\frac{\left\langle r>_{p, n} \cdot \ldots \cdot<r-s+1>_{p, n}\right.}{<s>_{p, n} \cdot \ldots \cdot<1>_{p, n}}
$$

is the number of s-planes in R^{r}.
Proposition 4. For $0=s_{0} \leq s_{1} \leq \cdots \leq s_{q-1} \leq s_{q}=r$ there are

$$
\left\langle\begin{array}{c}
s_{1} \\
s_{0}
\end{array}\right\rangle_{p, n} \cdot \ldots \cdot\left\langle\begin{array}{c}
s_{q} \\
s_{q-1}
\end{array}\right\rangle_{p, n}=\prod_{i=1}^{q}\left\langle\begin{array}{c}
s_{i} \\
s_{i-1}
\end{array}\right\rangle_{p, n}
$$

flags $0 \neq V_{1} \subseteq \cdots \subseteq V_{q-1} \subset R^{r}$ with $\operatorname{rank}\left(V_{i}\right)=s_{i}$ representing $(q-2)$-simplices in $B_{r} R$. Counting nondegenerate simplices, the Euler characteristic is

$$
\chi B_{r} R=\sum_{0=s_{0}<\cdots<s_{q}=r}(-1)^{q} \prod_{i=1}^{q}\left\langle\begin{array}{c}
s_{i} \\
s_{i-1}
\end{array}\right\rangle_{p, n} .
$$

Consequently, $B_{r} R \simeq \bigvee_{\beta_{r}} S^{r-2}$ with $\beta_{r}=(-1)^{r}\left(\chi B_{r} R-1\right)$.
It is also possible to give a recursive formula for the number of wedges, denoted β_{r} above, by following the proof of proposition 3. Lastly, one can produce a formula based on proposition 2 , by expressing the order of P_{σ} for varying σ.

Small Buildings

In this section, we will construct a covering of $B_{r} R$ by subcomplexes homeomorphic to S^{r-2} called apartments. In the case $R=\mathbb{F}_{p}$, these are the subcomplexes of $B_{r} \mathbb{F}_{p}$ making this complex into a building in the abstract sense [Tits]. With $R=\mathbb{Z} / p^{n}$, the ring homomorphism $R \rightarrow \mathbb{F}_{p}$ maps the apartments of $B_{r} R$ onto those of $B_{r} \mathbb{F}_{p}$. As the covering of $B_{r} \mathbb{F}_{p}$ is well understood, we choose to organize the covering apartments in $B_{r} R$ by what apartments they map to in $B_{r} \mathbb{F}_{p}$. The preimage of one apartment in $B_{r} \mathbb{F}_{p}$ is then the union of such a gathering of apartments in $B_{r} R$, which forms a subcomplex of $B_{r} R$ called the small building $b_{r} R$. We begin an analysis of the equivariant homotopy type of $B_{r} R$ through that of $b_{r} R$.

Apartments.

Definition. Let the standard apartment $A=A_{r} R \subset B_{r} R$ denote the subcomplex consisting of simplices which are axial flags in R^{r} :

$$
0 \neq R^{I_{0}} \subseteq \cdots \subseteq R^{I_{q}} \subset R^{r} .
$$

The apartments of $B_{r} R$ are the translates $g \cdot A$, for $g \in G L_{r} R$. They form a covering of $B_{r} R$. We often identify a simplex in the standard apartment A with the corresponding chain ($I_{0} \subseteq \cdots \subseteq I_{q}$) of subsets of \mathbf{r}.

Lemma. $A \cong S^{r-2}$.
Proof. A is isomorphic to the nerve of the partially ordered set of proper nontrivial subsets of \mathbf{r}, i.e. the boundary of an $(r-1)$-simplex.

To analyze $B_{r} R$ in terms of a covering by apartments, it is convenient to introduce some notation for various subcomplexes of A.

Notation. If ω is a partial ordering on \mathbf{r}, call $I \subseteq \mathbf{r}$ convex [Goodwillie] if every element of \mathbf{r} less than an element of I, in the ordering ω, already is in I. Let $A_{\omega} \subseteq A$ denote the subcomplex consisting of axial flags

$$
0 \neq R^{I_{0}} \subseteq \cdots \subseteq R^{I_{q}} \subset R^{r}
$$

where each I_{i} is convex under ω. In the special case that ω partitions \mathbf{r} into a collection of unrelated equivalence classes, we use π to denote the partition, and write $A_{\pi} \subseteq A$ as above.

If T is a collection of $r \times r R$-matrices, let $A_{T}=A_{\omega_{T}}$ where ω_{T} is the partial ordering on \mathbf{r} generated by $i \prec j$ whenever $g_{i j} \neq 0$ for some $g \in T$.
Lemma 3. If π partitions \mathbf{r} into $|\pi|$ equivalence classes, $A_{\pi} \cong S^{|\pi|-2}$. If ω is not a partition, i.e. there exists $i \prec j$ in ω with $j \nprec i$, then $A_{\omega} \simeq *$. If $e \in T$, then $A_{T}=\bigcap_{g \in T} g \cdot A$.
Proof. See [Rognes, thesis, proposition 9.1 and lemma 10.6].
Let $R=\mathbb{Z} / p^{n}$. Later in the section we will restrict to $R=\mathbb{Z} / p^{2}$.
Notation. Let $N_{r}=N_{r} R$ be the kernel of $G L_{r} R \rightarrow G L_{r} \mathbb{F}_{p}$, or equivalently of $G_{r} \rightarrow U_{r}$. Let $Q_{\sigma}=N_{r} \cap P_{\sigma}$, where $\sigma=\left(I_{0} \subseteq \cdots \subseteq I_{q}\right)$ can be thought of as a simplex of A.

Lemma. The G_{r}-translates $\{g \cdot A\}_{g \in G_{r}}$ of A cover $B_{r} R$. Similarly $\{u \cdot A\}_{u \in U_{r}}$ cover $B_{r} \mathbb{F}_{p}$. The preimage of $A \subset B_{r} \mathbb{F}_{p}$ by $B_{r} R \rightarrow B_{r} \mathbb{F}_{p}$ is the union of the apartments $\{g \cdot A\}$ with $\in N_{r}$.
Proof. Clear from proposition 2.
Corollary [Quillen]. There is a U_{r}-homotopy equivalence :

$$
B_{r} \mathbb{F}_{p} \simeq \bigvee_{u \in U_{r}} S^{r-2}
$$

Proof. $B_{r} \mathbb{F}_{p}$ is covered by the apartments $u \cdot A \cong S^{r-2}$ with $u \in U_{r}$. Consider a (multiple) intersection $\bigcap_{u \in T} u \cdot A=A_{T}$, where we may assume $e \in T$. If T also contains upper triangular matrices not equal to the identity, ω_{T} cannot possibly be a partition of \mathbf{r}, whence by lemma $3, A_{T} \simeq *$.

The small buildings.

Definition. The small building $b_{r} R$ is the union of the apartments $g \cdot A \subset B_{r} R$ for $g \in N_{r}$. If $u \in U_{r}$, the translate $u \cdot b_{r} R \subset B_{r} R$ is well defined, and these cover $B_{r} R$.

We now look at the N_{r}-homotopy type of $B_{r} R$, or rather the homotopy type of $E N_{r+} \wedge_{N_{r}} \Sigma^{2} B_{r} R$, through the covering of $B_{r} R$ by the N_{r}-complexes $u \cdot b_{r} R$.

Lemma. As a simplicial $N_{r}-$ set, $b_{r} R$ equals

$$
[q] \longmapsto \coprod_{\sigma} N_{r} / Q_{\sigma}
$$

where σ runs through the chains $\varnothing \neq\left(I_{0} \subseteq \cdots \subseteq I_{q}\right) \subset \mathbf{r}$.
Proof. Immediate from proposition 2.
Corollary 1. There is a spectral sequence, with

$$
E_{s, t}^{1}=\bigoplus_{\sigma} H_{t}\left(Q_{\sigma} ; \mathbb{F}_{p}\right)
$$

(group homology) where σ runs through the chains $\varnothing=I_{0} \subset \cdots \subset I_{s}=\mathbf{r}$, converging to

$$
\widetilde{H}_{*}\left(E N_{r+} \wedge_{N_{r}} \Sigma^{2} b_{r} R ; \mathbb{F}_{p}\right) .
$$

The differentials $\left.d^{1}\right|_{\sigma}: H_{*}\left(Q_{\sigma} ; \mathbb{F}_{p}\right) \hookrightarrow H_{*}\left(Q_{\partial_{i} \sigma} ; \mathbb{F}_{p}\right)$ commute with the inclusion into $H_{*}\left(N_{r} ; \mathbb{F}_{p}\right)$.

Proof. $\Sigma^{2} b_{r} R$ has nondegenerate q-simplices $\coprod_{\sigma} N_{r} / Q_{\sigma}$, with $\sigma=\left(\varnothing=I_{0} \subset \cdots \subset\right.$ $\left.I_{q}=\mathbf{r}\right)$ a nondegenerate simplex in $\Sigma^{2} A$, for $q>0$. There is also a single base point in degree 0 . The spectral sequence is that associated to the skeletal filtration on $\Sigma^{2} b_{r} R$, with $E N_{r+} \wedge_{N_{r}}(-)$ applied, and we recognize the E^{1}-term by

$$
\begin{aligned}
E_{s, t}^{1} & =\widetilde{H}_{s+t}\left(E N_{r+} \wedge_{N_{r}}\left(\Sigma^{2} b_{r} R^{(s)} / \Sigma^{2} b_{r} R^{(s-1)}\right) ; \mathbb{F}_{p}\right) \\
& \cong \widetilde{H}_{s+t}\left(E N_{r+} \wedge_{N_{r}} \Sigma^{s}\left(\coprod_{\sigma} N_{r} / Q_{\sigma+}\right) ; \mathbb{F}_{p}\right) \\
& \cong \bigoplus_{\sigma} H_{t}\left(E N_{r} \times_{N_{r}} N_{r} / Q_{\sigma} ; \mathbb{F}_{p}\right) \\
& \cong \bigoplus_{\sigma} H_{t}\left(Q_{\sigma} ; \mathbb{F}_{p}\right) .
\end{aligned}
$$

The observation about the differentials is immediate from the simplicial structure on $b_{r} R$.

For the remainder of this section, assume $R=\mathbb{Z} / p^{2}$. Then N_{r} is an elementary abelian p-group of rank r^{2}, with one \mathbb{Z} / p-factor corresponding to each matrix entry (i, j). In this case we can compute the E^{2}-term of the spectral sequence above, and prove that it collapses there.

Definition. Let $C_{*}=H_{*}\left(\mathbb{Z} / p ; \mathbb{F}_{p}\right)$ denote the graded Hopf algebra. As a \mathbb{F}_{p}-vector space it has a generator in each nonnegative degree. By the Künneth formula, $H_{*}=H_{*}\left(N_{r} ; \mathbb{F}_{p}\right)$ is additively generated by monomials $\{z\}$ which are (tensor) products of one of the generators in C_{*} for each matrix entry (i, j) in N_{r}. We say that a monomial z involves the matrix entries (i, j) for which a generator of positive degree occurs.

Let $A_{z} \subseteq A$ denote the subcomplex $A_{\omega_{z}}$ where ω_{z} is generated by $i \prec j$ if z involves the (i, j) th entry. If π is a partition of \mathbf{r}, let $J_{*}(\pi) \subset H_{*}$ denote the $H_{*}-$ comodule which is additively generated by the monomials z such that $A_{z}=A_{\pi}$, i.e. $\omega_{z}=\pi$. These are the π-mixing monomials in H_{*}.

Proposition 5. The spectral sequence in corollary 1 collapses at the E^{2}-term :

$$
E_{s, *}^{2}=\bigoplus_{\pi} J_{*}(\pi)
$$

where π runs over the partitions of \mathbf{r} into $|\pi|=s$ equivalence classes. Hence

$$
\widetilde{H}_{*}\left(E N_{r+} \wedge_{N_{r}} \Sigma^{2} b_{r} R ; \mathbb{F}_{p}\right) \cong \bigoplus_{\pi} \Sigma^{|\pi|} J_{*}(\pi) .
$$

Proof. The E^{1}-term $\left(E^{1}, d^{1}\right)$ splits over the monomials z. Fix a z, and consider the corresponding summand of E^{1}. It contains a copy of $\mathbb{F}_{p}\{z\}$ precisely for each $\sigma \neq *$ in $\Sigma^{2} A_{z}$, and d^{1} agrees with the differential in the reduced simplicial chain complex $\widetilde{C}_{*}\left(\Sigma^{2} A_{z} ; \mathbb{F}_{p}\right)$. Hence the contribution to the E^{2}-term is $\widetilde{H}_{*}\left(\Sigma^{2} A_{z} ; \mathbb{F}_{p}\right)$. By lemma 3, this is 0 unless ω_{z} is a partition π, in which case the homology is a copy of \mathbb{F}_{p} in degree $|\pi|$. Hence

$$
E_{* *}^{2} \cong \bigoplus_{z} \widetilde{H}_{*}\left(\Sigma^{2} A_{z}\right) \otimes \mathbb{F}_{p}\{z\}
$$

equals the expression in the statement in the proposition, with the sum reindexed by π in place of z.

It remains to prove that the spectral sequence collapses. Consider a partition π of \mathbf{r}, and a monomial z in $J_{*}(\pi) \subset H_{*}$ representing a generator (π, z) in $E_{|\pi|,|z|}^{2}$. Let $Q_{z} \subseteq N_{r}$ be the intersection of all Q_{σ} for $\sigma \in A_{z}$. Then (π, z) is realized in the homology of $B Q_{z+} \wedge \Sigma^{2} A_{z}$. Also there is for each $\sigma \in A_{z}$ an inclusion :

$$
B Q_{z} \subseteq B Q_{\sigma} \xrightarrow{\simeq} E N_{r} \times_{N_{r}} N_{r} / Q_{\sigma}
$$

extending to

$$
B Q_{z+} \wedge \Sigma^{2} A_{z} \hookrightarrow E N_{r+} \wedge_{N_{r}} \Sigma^{2} b_{r} R .
$$

Associated to the skeletal filtration on $\Sigma^{2} A_{z}$ and $\Sigma^{2} b_{r} R$, we have two spectral sequences (the 'left' and the 'right' ones, respectively) with a natural map between them, corresponding to the last inclusion above. The spectral sequence on the left side collapses at the E^{2}-term, and as the class (π, z) is realized on this E^{2} term, it supports no higher differentials on either side. As this holds for all π and z, all these classes survive to E^{∞} on the right side, and the proposition follows.

Example. Let $r=2$ and $R=\mathbb{Z} / 4$. There are two partitions $\pi_{1}=\{\{1,2\}\}$ and $\pi_{2}=\{\{1\},\{2\}\}$ of \mathbf{r}, and $J_{*}\left(\pi_{1}\right) \cong H_{*} \cdot x_{12} x_{21}, J_{*}\left(\pi_{2}\right) \cong \mathbb{F}_{2}\left[x_{11}, x_{22}\right]$. Here $x_{i j}$ denotes the generator in degree 1 of $H_{*}\left(\mathbb{Z} / 2 ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[x]$, corresponding to the (i, j) th entry in N_{2}. Then

$$
\widetilde{H}_{*}\left(E N_{2+} \wedge_{N_{2}} \Sigma^{2} b_{2} \mathbb{Z} / 4 ; \mathbb{F}_{2}\right) \cong \Sigma^{1} H_{*} \cdot x_{12} x_{21} \oplus \Sigma^{2} \mathbb{F}_{2}\left[x_{11}, x_{22}\right] .
$$

The covering. We would now like to extend this result to $\Sigma^{2} B_{r} R$. Recall the covering of $B_{r} R$ by $\left\{u \cdot b_{r} R\right\}$ for $u \in U_{r}$. Let $T \subseteq U_{r}$ be nonempty. Consider the (multiple) intersection

$$
\bigcap_{u \in T} E N_{r+} \wedge_{N_{r}} \Sigma^{2}\left(u \cdot b_{r} R\right)=E N_{r+} \wedge_{N_{r}} \Sigma^{2} \bigcap_{u \in T} u \cdot b_{r} R .
$$

If $t \in T, \bigcap_{u \in T} u \cdot b_{r} R=t \cdot \bigcap_{u \in t^{-1} T} u \cdot b_{r} R$ and $e \in t^{-1} T$, so let us assume $e \in T$. By lemma 3 we have the following extension of corollary 1 :

Lemma. Let $e \in T \subseteq U_{r}$. There is a spectral sequence with

$$
E_{s, t}^{1}=\bigoplus_{\sigma} H_{t}\left(Q_{\sigma} ; \mathbb{F}_{p}\right)
$$

where σ runs through the nondegenerate s-simplices of $\Sigma^{2} A_{T}$, converging to

$$
\widetilde{H}_{*}\left(E N_{r+} \wedge_{N_{r}} \Sigma^{2} \bigcap_{u \in T} u \cdot b_{r} R ; \mathbb{F}_{p}\right)
$$

We extend the notion of mixing monomials :
Definition. Let $e \in T \subseteq U_{r}$ and let π be a partition of \mathbf{r}. Let $J_{*}(\pi, T) \subset H_{*}$ denote the H_{*}-comodule which is additively generated by the monomials z such that $A_{z} \cap A_{T}=A_{\pi}$. These are the (π, T)-mixing monomials in H_{*}. If $e \notin T$ but T is nonempty, pick $t \in T$ and set $J_{*}(\pi, T)=J_{*}\left(\pi, t^{-1} T\right)$.
Proposition 6. Let $e \in T \subseteq U_{r}$. The spectral sequence in the lemma above collapses at the E^{2}-term :

$$
E_{s, *}^{2}=\bigoplus_{\pi} J_{*}(\pi)
$$

where π runs over the partitions of \mathbf{r} into $|\pi|=s$ equivalence classes. Hence

$$
\widetilde{H}_{*}\left(E N_{r+} \wedge_{N_{r}} \Sigma^{2} \bigcap_{u \in T} u \cdot b_{r} R ; \mathbb{F}_{p}\right) \cong \bigoplus_{\pi} \Sigma^{|\pi|} J_{*}(\pi, T) .
$$

This isomorphism is also true if e $\notin T$.
Proof. Redo the proof of proposition 5, but replace all references to σ running through the simplices of $\Sigma^{2} A$ with σ running through the simplices of $\Sigma^{2} A_{T}$.

Example. We continue the example of $r=2$ and $R=\mathbb{Z} / 4 . U_{2}=\{e, u\}$, where $u=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then $J_{*}(\pi,\{e\})=J_{*}(\pi,\{u\})=J_{*}(\pi)$ for either partition π, while $J_{*}\left(\pi_{1},\{e, u\}\right)=H_{*} \cdot x_{21}$ and $J_{*}\left(\pi_{2},\{e, u\}\right)=0$.
Corollary 2. There is a Mayer-Vietoris spectral sequence (see e.g. [Rognes, thesis, definition 9.4]) with E^{1}-term

$$
E_{s, *}^{1}=\bigoplus_{T} \bigoplus_{\pi} \Sigma^{|\pi|} J_{*}(\pi, T)
$$

where the sum runs over $T \subseteq U_{r}$ with $(s+1)$ elements, converging to the $N_{r}-$ homology of $\Sigma^{2} B_{r} R$, namely $\widetilde{H}_{*}\left(E N_{r+} \wedge_{N_{r}} \Sigma^{2} B_{r} R ; \mathbb{F}_{p}\right)$.

Example. Still $r=2$ and $R=\mathbb{Z} / 4$. The only differential in the spectral sequence above is $d^{1}: \Sigma^{1} J_{*}\left(\pi_{1},\{e, u\}\right) \rightarrow \Sigma^{1} J_{*}\left(\pi_{1},\{e\}\right) \oplus \Sigma^{1} J_{*}\left(\pi_{1},\{u\}\right)$, mapping $H_{*} \cdot x_{21}$ into the diagonal of $H_{*} \cdot x_{12} x_{21} \oplus H_{*} \cdot x_{12} x_{21}$ by the map commuting with the inclusion into H_{*} for each summand.

Dept. of Math, Univ. of Oslo, Norway

