THE TITS BUILDINGS FOR \mathbb{Z}/p^n

JOHN ROGNES

April 1991

ABSTRACT. We study the algebraic K-theory of a cyclic ring R of the form \mathbb{Z}/p^n . The idea is to consider the so-called rank filtration on a space representing the first delooping of K-theory. Each subquotient of this filtration is equivalent to the homotopy quotient of an action of the general linear group GL_rR on the double suspension of a finite complex B_rR , which is the rank r Tits building of R. To understand the homotopy type of these subquotients, we equivalently study the homotopy type of the Tits buildings together with the GL_rR -action.

Our results include 1) a description of the non-equivariant homotopy type of each Tits building, as a bouquet of spheres all in the same dimension, 2) a computation of the equivariant homology of a subcomplex of $B_r R$ called the small building, which captures the difference between the K-theory of R and the known K-theory of \mathbb{F}_p , the finite field with p elements, and 3) a description of the homotopy type of each fixed subcomplex of the Tits building under the action of a subgroup of the general linear group, in a (sufficiently) large class of such subgoups.

INTRODUCTION

Not yet written

K-Theory and Tits Buildings

In this section we will review definitions of K-theory and the rank filtration, and fix some notation.

The K-theory of a ring. Let R be an associative ring with unit. The algebraic K-theory of R can be defined as follows. Let $\mathcal{P}(R)$ be the additive category of finitely generated projective R-modules, viewed as a category with cofibrations and weak equivalences as per [Quillen, §2] and [Waldhausen, §1.9]. Explicitly, a cofibration is the inclusion of a direct summand in the category, and a weak equivalence is an isomorphism. Then following [Waldhausen], we can apply the S_{\bullet} -construction to $\mathcal{P}(R)$, obtaining a simplicial category $wS_{\bullet}\mathcal{P}(R)$ whose geometric realization is the (first) delooping of K-theory. This means that the higher algebraic K-groups of R can be defined as:

$$K_i R = \pi_{i+1} |w S_{\bullet} \mathcal{P}(R)| \quad \text{for } i \ge 0.$$

This definition agrees with that of [Quillen] using the Q-construction. Equivalently, we may think of the K-groups of R as the homotopy groups of the loopspace $\Omega|wS_{\bullet}\mathcal{P}(R)|$.

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

Let $\mathcal{F}(R) \subseteq \mathcal{P}(R)$ denote the full subcategory of finitely generated free R-modules. It is a subcategory with cofibrations and weak equivalences in the sense of [Waldhausen, p. 321], and furthermore it is (weakly) cofinal in $\mathcal{P}(R)$ [Grayson], so the induced map

$$|wS_{\bullet}\mathcal{F}(R)| \to |wS_{\bullet}\mathcal{P}(R)|$$

is a covering map. If we define the *free* K-theory of R by

$$K_i^f R = \pi_{i+1} |wS_{\bullet} \mathcal{F}(R)| \qquad \text{for } i \ge 0,$$

it follows that $K_i^f R \to K_i R$ is an isomorphism for $i \ge 1$, while it is an injection for i = 0. We shall be considering the free K-theory of R in this paper, but by the above argument this is the same as the usual K-theory in all positive degrees, so we shall henceforth suppress the difference in notation, and use $K_i R$ to denote the free K-groups. Let BK(R) denote the first delooping of free K-theory; $BK(R) = |wS_{\bullet}\mathcal{F}(R)|$.

The rank filtration. Now suppose that the rank of a finitely generated free R-module is well defined. Concretely, we will assume that R has the *invariant dimension property* [Mitchell], i.e. R^n and R^m are isomorphic as R-modules only if n = m. This automatically holds if R is commutative [Atiyah-Macdonald]. It is also clear that R has this property if it is an algebra over a commutative ring, for which it is finitely generated as a module. The examples we have in mind are matrix algebras over commutative rings. Denote the rank of a finitely generated free R-module M by rank(M). Then if $M' \rightarrow M \rightarrow M''$ is a cofibration sequence in $\mathcal{F}(R)$, i.e. a split short exact sequence of free R-modules, we have

$$\operatorname{rank}(M) = \operatorname{rank}(M') + \operatorname{rank}(M'').$$

We wish to approximate the K-theory of R by introducing a filtration of the delooped K-theory space, such that each successive stage of the filtration is a better approximation to the full K-theory. We do this, following [Quillen] and [Mitchell], by a rank filtration of the space BK(R). Inspecting the S_{\bullet} -construction used to define this space, we see that its simplices correspond to diagrams in the category $\mathcal{F}(R)$. For a fixed rank r we can consider the subcomplex $F_rBK(R)$ consisting of simplices corresponding to diagrams involving only free R-modules of rank less then or equal to r. This gives an increasing filtration of spaces $\{F_rBK(R)\}_{r\geq 0}$ exhausting BK(R), and we call $F_rBK(R)$ the rth stage of the rank filtration on the first delooping of the K-theory of R.

There are also other definitions of a rank filtration on K-theory. By analogy to the plus-construction definition of K-theory [Quillen], one can define

$$K_{i,r}^Q R = \pi_i (BGL_r R)^+ \qquad \text{for } i > 0,$$

as soon as a suitable perfect subgroup can be found, for instance if $r \ge 3$. There is also a Volodin construction [Suslin], where

$$K_{i,r}^V R = \pi_{i+1} V(GL_r R, \{T^\alpha\}) \qquad \text{for } i \ge 0$$

and Suslin shows that these two agree through a range. See Suslin's paper for a definition of the expression above. Lastly there is a spectrum level rank filtration of the K-theory spectrum, different from all the above, which is developed in [Rognes, thesis].

The subquotients. Our approach to understanding the K-groups of R will be to investigate the homotopy type of the subquotients of the rank filtration, i.e. the spaces $F_r BK(R)/F_{r-1}BK(R)$. There is a description of this in terms of the equivariant homotopy type of the rank r Tits building of R [Tits], as noted in [Quillen] and [Mitchell]. We now define the Tits buildings, state the description (proposition 1), and give a proof.

Definition. Suppose R satisfies the invariant dimension property, and fix a rank r. Consider the set of proper, nontrivial free R-submodules M of $R^r: 0 \neq M \subset R^r$. Give this set a partial ordering by setting $M \prec N$ if $M \subseteq N$ and the inclusion map is a cofibration in $\mathcal{F}(R)$, i.e. M is included as a direct summand in N with a free complementary summand. Denote this partially ordered set by $\mathcal{O}(R^r)$, and define the rank r *Tits building* of R, $B_r R$, to be its nerve [Quillen] :

$$B_r R = N\mathcal{O}(R^r).$$

Hence $B_r R$ is a simplicial set, with q-simplices the sequences of cofibrations

$$0 \neq M_0 \subseteq \cdots \subseteq M_q \subset R^r$$

of free R-modules, also known as *flags*.

Proposition 1 [Quillen] [Mitchell].

$$F_r BK(R)/F_{r-1}BK(R) \simeq EGL_r R_+ \wedge_{GL_r R} \Sigma^2 B_r R.$$

Proof. Review the S_{\bullet} -construction from [Waldhausen, §1.3]. $BK(R) = |wS_{\bullet}\mathcal{F}(R)|$ where $wS_{\bullet}\mathcal{F}(R)$ is the simplicial category $[q] \mapsto wS_q\mathcal{F}(R)$. An object in $S_q\mathcal{F}(R)$ is a diagram $Ar[q] \to \mathcal{F}(R)$ satisfying certain extra hypotheses. Here $[q] = \{0 < 1 < \cdots < q\}$ is thought of as a category with q + 1 objects, and Ar[q] is the arrow category associated with [q]. Specifically, a diagram $A : Ar[q] \to \mathcal{F}(R)$ associates to each $i \leq j$ a free R-module $A_{i,j} = A(i \to j)$, and A lies in $S_q\mathcal{F}(R)$ if the following three conditions hold: 1) $A_{i,i} = 0$ for each i, 2) the natural map $A_{i,j} \to A_{i,k}$ is a cofibration for each $i \leq j \leq k$, and 3) the commutative square

$$\begin{array}{cccc} A_{i,j} & & \longrightarrow & A_{i,k} \\ & & & & \downarrow \\ & & & & \downarrow \\ A_{j,j} & & \longrightarrow & A_{j,k} \end{array}$$

is a pushout square for each $i \leq j \leq k$. Such a diagram A is determined up to isomorphism by its restriction across $[q] \hookrightarrow Ar[q]$ taking i in [q] to $(0 \to i)$ in Ar[q]. The restriction of a diagram A is then a sequence of cofibrations

$$0 = A_{0,0} \to A_{0,1} \to \dots \to A_{0,q}$$

Let $\mathcal{F}_r(R) \subset \mathcal{F}(R)$ denote the full subcategory where the objects have rank at most r. Then $F_r BK(R)$ realizes the simplicial subcategory $wF_r S_{\bullet} \mathcal{F}(R)$ where

JOHN ROGNES

 $F_rS_q\mathcal{F}(R) \subset S_q\mathcal{F}(R)$ has objects the diagrams $Ar[q] \to \mathcal{F}(R)$ which factor through $\mathcal{F}_r(R) \subset \mathcal{F}(R)$. Similarly, $F_rBK(R)/F_{r-1}BK(R)$ realizes the simplicial (quotient) category $[q] \mapsto wF_rS_q\mathcal{F}(R)/wF_{r-1}S_q\mathcal{F}(R)$. For fixed q, the latter category has a base point object $*_q$, together with the diagrams $Ar[q] \to \mathcal{F}(R)$ in $S_q\mathcal{F}(R)$ which factor through $\mathcal{F}_r(R)$, but not through $\mathcal{F}_{r-1}(R)$. These are precisely the diagrams A such that the 'top' module $A_{0,q}$ has rank r.

Inspecting the simplicial structure on $wF_rS_{\bullet}\mathcal{F}(R)/wF_{r-1}S_{\bullet}\mathcal{F}(R)$, we see that the restriction of diagrams over $[q] \hookrightarrow Ar[q]$ as above induces an equivalence of simplicial categories. Furthermore, the target simplicial category is equivalent to its full simplicial subcategory where the top module $A_{0,q}$ actually is R^r . Thus $F_rBK(R)/F_{r-1}BK(R)$ is homotopy equivalent to the realization of the simplicial category Y_{\bullet} , which in simplicial degree q has the objects $*_q$ and the cofibration sequences (flags)

$$0 = A_{0,0} \to A_{0,1} \to \dots \to A_{0,q} = R^r,$$

and morphisms the isomorphisms of such diagrams.

Let X_{\bullet} be the simplicial set which has as q-simplices the object set of Y_q . For any flag $A \in X_q$, the morphisms in Y_q originating at A are precisely characterized by their effect on the top module $A_{0,q} = R^r$, i.e. an element of GL_rR . In this situation we call Y_{\bullet} the (based) GL_rR -translation category on X_{\bullet} . Using the usual simplicial model for EGL_rR it is straightforward to check that the nerve of Y_q is isomorphic to $EGL_rR_+ \wedge_{GL_rR}X_q$, and upon realizing in the q-direction we obtain:

$$|Y_{\bullet}| \cong EGL_rR_+ \wedge_{GL_rR} |X_{\bullet}|.$$

It remains to recognize $|X_{\bullet}|$ as $\Sigma^2 B_r R$.

Let $\mathcal{O}^*_*(\mathbb{R}^r)$ denote the partially ordered set of (not necessarily proper or nontrivial) free \mathbb{R} -submodules M of \mathbb{R}^r , with $M \prec N$ if $M \subseteq N$ and the inclusion map is a cofibration. Let $\mathcal{O}_*(\mathbb{R}^r)$ denote the partially ordered subset of proper submodules, and let $\mathcal{O}^*(\mathbb{R}^r)$ denote the partially ordered subset of nontrivial submodules. The nerve of either of these three partially ordered sets is contractible, due to the presence of initial and/or terminal elements.

Now note that $\mathcal{O}(R^r)$ is the intersection of $\mathcal{O}_*(R^r)$ and $\mathcal{O}^*(R^r)$. Furthermore, $|X_{\bullet}|$ is obtained from the nerve of $\mathcal{O}^*_*(R^r)$ by identifying any flags

$$0 \subseteq M_0 \subseteq M_1 \subseteq \dots \subseteq M_q \subseteq R^r$$

not beginning with $M_0 = 0$ or ending with $M_q = R^r$ to $*_q$, which amounts to contracting the nerves of $\mathcal{O}_*(R^r)$ and $\mathcal{O}^*(R^r)$ to a point. We conclude :

$$|X_{\bullet}| = N\mathcal{O}_{*}^{*}(R^{r})/(N\mathcal{O}_{*}(R^{r}) \cup N\mathcal{O}^{*}(R^{r}))$$
$$\simeq \Sigma(N\mathcal{O}_{*}(R^{r}) \cup N\mathcal{O}^{*}(R^{r}))$$
$$\simeq \Sigma^{2}(N\mathcal{O}_{*}(R^{r}) \cap N\mathcal{O}^{*}(R^{r}))$$
$$= \Sigma^{2}B_{r}R. \quad \Box$$

Thus an understanding of a weak form of the GL_rR -homotopy type of B_rR suffices to describe the subquotients of the rank filtration, in the sense that a GL_rR map which is a non-equivariant homotopy equivalence is viewed as an equivalence.

TITS BUILDINGS FOR \mathbb{Z}/p^n

We now specialize to studying the K-theory of the 'cyclic rings' \mathbb{Z}/p^n , with pa prime. The K-groups of the finite fields $\mathbb{F}_p = \mathbb{Z}/p$ are known, as computed by Quillen [Quillen]. Furthermore, the unique ring homomorphism $\mathbb{Z}/p^n \to \mathbb{F}_p$ induces an isomorphism on K-groups away from the prime p, in the sense of localization [Bousfield and Kan]. Thus we are really only interested in the p-component of the K-groups $K_i\mathbb{Z}/p^n$ for $n \geq 2$. [Aisbett] and [Evens and Friedlander] have computations of these groups for most cases with $i \leq 4$, while $K_4\mathbb{Z}/4$ and $K_4\mathbb{Z}/9$ remain unknown.

A transfer argument. For the remainder of this section let $R = \mathbb{Z}/p^n$. On the level of the subquotients of the rank filtration, we are interested in the homotopy type of $EGL_rR_+ \wedge_{GL_rR} \Sigma^2 B_r R$ localized at p. In this situation, there is a standard transfer argument which allows us to reduce from studying the p-localized equivariant GL_rR -homotopy type of B_rR to the analogous thing for the action on B_rR by a p-Sylow subgroup of GL_rR .

Definition. In the case of $GL_r\mathbb{F}_p$, the upper triangular matrices with 1's on the diagonal constitute a p-Sylow subgroup, denoted $U_r \subset GL_r\mathbb{F}_p$. In general, let $G_r = G_rR \subset GL_rR$ be the pullback of $U_r \subset GL_r\mathbb{F}_p$ over the canonical map $GL_rR \to GL_r\mathbb{F}_p$. Explicitly, G_r consists of the matrices with entries which are 0 modulo p below the diagonal, 1 modulo p on the diagonal, and arbitrary above the diagonal. G_r is a p-Sylow subgroup of GL_rR .

There is a bundle map π :

$$EG_{r+} \wedge_{G_r} \Sigma^2 B_r R \simeq EGL_r R_+ \wedge_{G_r} \Sigma^2 B_r R \xrightarrow{\pi} EGL_r R_+ \wedge_{GL_r R} \Sigma^2 B_r R,$$

and a stable equivariant transfer map τ [Adams] going the other way, such that the composite $\pi \circ \tau$ induces multiplication by the index of G_r in GL_rR on homology or stable homotopy. This index is prime to p, so it follows that π is a split surjection when localized at p. Thus to understand $EGL_rR_+ \wedge_{GL_rR} \Sigma^2 B_rR$, we will look at the G_r -homotopy type of B_rR , and appeal to the methods of [Feshbach] to compute what is lost by mapping along π .

The Tits building as a simplicial G_r -set. We have a description of the Tits building $B_r R$ as a simplicial G_r -set.

Definition. Let $\mathbf{r} = \{1, \ldots, r\}$. For any indexing set $I \subseteq \mathbf{r}$ let $R^I \subseteq R^r$ be the axial submodule where only the coordinates in $I \subseteq \mathbf{r}$ may be nonzero. Let $P_I \subseteq G_r$ denote the parabolic subgroup consisting of matrices $g = (g_{ij}) \in G_r$ such that $g_{ij} = 0$ if $i \notin I$ and $j \in I$. P_I stabilizes $R^I \subseteq R^r$ for the action of G_r on subspaces of R^r . If $\sigma = (I_0 \subseteq \cdots \subseteq I_q)$ is a chain of subsets of \mathbf{r} , then P_σ is the parabolic subgroup defined by $P_\sigma = P_{I_0 \ldots I_q} = P_{I_0} \cap \cdots \cap P_{I_q}$. P_σ stabilizes the flag $R^{I_0} \subseteq \cdots \subseteq R^{I_q}$ in R^r .

Proposition 2. As a simplicial G_r -set, the Tits building B_rR is isomorphic to

$$[q]\longmapsto \coprod_{\sigma} G_r/P_{\sigma}$$

where σ runs through the chains $\emptyset \neq I_0 \subseteq \cdots \subseteq I_q \subset \mathbf{r}$. The *i*th face map ∂_i is induced by $P_{\sigma} \subset P_{\partial_i \sigma}$ where $\partial_i \sigma = I_0 \subseteq \cdots \subseteq I_{i-1} \subseteq I_{i+1} \subseteq \cdots \subseteq I_q$, while the *j*th degeneracy map s_j is induced by $P_{\sigma} = P_{s_j \sigma}$ where $s_j \sigma = I_0 \subseteq \cdots \subseteq I_j = I_j \subseteq \cdots \subseteq I_q$.

Proof. We will show that an arbitrary q-simplex in $B_r R$

$$0 \neq M_0 \subseteq \cdots \subseteq M_q \subset R'$$

is in the G_r -orbit of an axial flag

$$0 \neq R^{I_0} \subseteq \dots \subseteq R^{I_q} \subset R^r$$

for some $\emptyset \neq I_0 \subseteq \cdots \subseteq I_q \subset \mathbf{r}$. Next we will check that there is only one such axial flag in each G_r -orbit, which proves that $\sigma = (I_0 \subseteq \cdots \subseteq I_q)$ is uniquely determined. Lastly we observe that the stabilizer of $R^{I_0} \subseteq \cdots \subseteq R^{I_q}$ is $P_{I_0 \ldots I_q} \subseteq G_r$, from which the proposition follows.

For convenience, let us reindex the flag, so as to be considering a (q-2)-simplex

$$0 = M_0 \subset M_1 \subseteq \cdots \subseteq M_{q-1} \subset M_q = R^r.$$

Let $\varphi : R \to \mathbb{F}_p$ denote the ring homomorphism, as well as the homomorphisms induced by it. For each $i \in \mathbf{r}$ there is a minimal j such that $\mathbb{F}_p{}^i \subseteq \varphi(M_j)$. Then $\mathbb{F}_p{}^i \cap \varphi(M_{j-1}) + \mathbb{F}_p{}^{i-1} \cap \varphi(M_j)$ is a codimension one subspace of $\mathbb{F}_p{}^i \cap \varphi(M_j) = \mathbb{F}_p{}^i$. Choose a $b_i \in M_j$ such that $\varphi(b_j) \in \mathbb{F}_p{}^i$ is not in this subspace. Then b_i is part of an extension of an R-basis for M_{j-1} to one for M_j , and we may assume that b_i has *i*th coordinate equal to 1 modulo p.

For each j, let $I_j = \{i \in \mathbf{r} \mid b_i \in M_j\}$. Proceeding by induction on j we see that $\{b_i\}_{i \in I_j}$ is an R-basis for M_j . Then set $g = (b_1, \ldots, b_r) \in G_r$, and observe that $g \cdot R^{I_j} = M_j$ for each j. This proves the first statement

Next we prove that if $g \in G_r$ and $g \cdot R^I = R^J$ then I = J. For each $i, \varphi(g) \in U_r$ takes the *i*th elementary vector $e_i \in \mathbb{F}_p^i$ into $\varphi(g) \cdot e_i$ with nonzero *i*th coordinate. Thus if $i \in I$, $\varphi(g) \cdot e_i \in \varphi(g) \cdot \mathbb{F}_p^I = \mathbb{F}_p^J$ and so $i \in J$. Thus $I \subseteq J$, and by the same argument for g^{-1} , I = J. This proves the second statement, concluding the proof. \Box

The non-equivariant homotopy type. Next we will analyze the non-equivariant homotopy type of $B_r R$. First we will prove two properties of cofibrations in $\mathcal{F}(R)$ which are special to $R = \mathbb{Z}/p^n$. These will be precisely what are needed in the proof of proposition 3, below. Neither lemma holds true for arbitrary local rings R.

Lemma 1. Each inclusion $M \subseteq N$ of finitely generated free *R*-modules is a cofibration.

Proof. Choose an R-basis $\{b_1, \ldots, b_j\}$ for M, and assume $N = R^r$. Write the coordinates of b_s as (b_s^1, \ldots, b_s^r) . By rescaling, and permuting the coordinates of R^r , we may assume $b_j^r = 1$. Proceed by induction on j.

If j = 1, $R^{r-1} \subset R^r$ is a complementary free summand to $M = Rb_1 \subset R^r$, as required.

If j > 1, change the basis $\{b_1, \ldots, b_j\}$ for M to $\{c_1, \ldots, c_{j-1}, b_j\}$ with

$$c_s = b_s - b_s^r \cdot b_j$$

for s < j. Then $\{c_1, \ldots, c_{j-1}\}$ spans a free submodule of R^{r-1} . Using induction, it has a complementary free submodule, which works for $M \subseteq N = R^r$ too. \Box

Definition. If $M \subseteq \mathbb{R}^r$ is a free submodule of rank s such that the inclusion map is a cofibration, we call M an s-plane in \mathbb{R}^r . If s = 1, we call M a line. A line Lis transverse to an s-plane $M \subset \mathbb{R}^r$ (s < r) if L + M is a direct sum in \mathbb{R}^r , i.e. $L \cap M = 0$ and L + M is an (s + 1)-plane.

Lemma 2 (Graph lemma). Write $R^r = R^{r-1} \oplus R$. For any plane $M \subseteq R^r$, either M contains a line transverse to $R^{r-1} \subset R^r$, or M is the graph of an R-homomorphism $N \to pR \subset R$, with $N \subseteq R^{r-1}$.

Proof. Let $\{b_1, \ldots, b_j\}$ be an *R*-basis for *M*, and write $b_s = (b_s^1, \ldots, b_s^r)$ as before. Let π and π' denote the projections $R^r \to R$ and $R^r \to R^{r-1}$ respectively. It suffices to prove that if all $b_s^r \in pR$, then $\pi'(b_1), \ldots, \pi'(b_j)$ are linearly independent.

So suppose $\sum_{i=1}^{j} r_i \pi'(b_i) = 0$ for some $r_i \in R$. Then $\pi(\sum_{i=1}^{j} r_i b_i) \in pR$. If $\pi(\sum_{i=1}^{j} r_i b_i) \neq 0$, there is a maximal e > 0 such that $\pi(\sum_{i=1}^{j} r_i b_i) \in p^e R$. Then $\sum_{i=1}^{j} (p^{n-e}r_i)b_i = 0$ and by freeness $p^{n-e}r_i = 0$ for all i. Thus we can choose $t_i \in R$ with $p^e t_i = r_i$, and $\pi(p^e \sum_{i=1}^{i} t_i b_i) \in p^e R - p^{e+1}R$. Hence $\pi(\sum_{i=1}^{i} t_i b_i) \notin pR$, contradicting the hypothesis $b_s^r \in pR$ for all s. We conclude that $\sum_{i=1}^{j} r_i b_i = 0$ and all $r_i = 0$, proving independence. \Box

We now come to the principal result of this section.

Proposition 3. $B_r R$ has the homotopy type of a bouquet (one-point wedge) of (r-2)-spheres.

Proof. To begin with, we introduce some notation. If $N \subseteq M$ is an inclusion of arbitrary finitely generated R-modules, let B(N, M) denote the partially ordered set of finitely generated free R-modules U such that $N \subset U \subset M$, where both inclusions are cofibrations. The partial ordering is given by $U \prec V$ if $U \subseteq V$ and the inclusion is a cofibration. Also let B(N, M) denote the nerve of this partially ordered set, so that $B_r R = B(0, R^r)$.

Write $R^r = R^{r-1} \oplus R$ as before, and note that there is a filtration of R by the powers of the maximal ideal pR:

$$R \supset pR \supset \cdots \supset p^l R \supset \cdots \supset p^n R = 0.$$

Let $\pi : \mathbb{R}^r \to \mathbb{R}$ be the projection on the last coordinate, as before. We filter the partially ordered set $B(0, \mathbb{R}^r)$, and hence its nerve, as follows :

$$B_r^l = \{ U \in B(0, R^r) \mid \pi(U) \subseteq p^l R \}$$

with the induced ordering. Then

$$B(0, R^r) = B_r^0 \supset B_r^1 \supset \cdots \supset B_r^n \simeq *.$$

 B_r^n is contractible as it has a terminal element. We filter $B_r^l \supset B_r^{l+1}$ for $l = 0, 1, \ldots, n-1$ by

$$F_s = \{ U \in B_r^l \mid U \in B_r^{l+1} \text{ or } \operatorname{rank}(U) \ge s \},\$$

suppressing r and l from the notation. Then

$$B_r^l = F_1 \supset F_2 \supset \cdots \supset F_{r-1} \supset F_r = B_r^{l+1}.$$

The partially ordered set F_s is obtained from F_{s+1} by adjoining the *s*-planes *V* of R^r in B_r^l but not in B_r^{l+1} . The nondegenerate simplices in the nerve of F_s , not in the nerve of F_{s+1} , are thus flags of the form :

$$0 \neq U_0 \subset U_1 \subset \cdots \subset U_q \subset R^r$$

where some $U_i = V$. Specifically U_0, \ldots, U_{i-1} lie in $B(0, V) \cap B_r^{l+1} = B(0, V \cap (R^{r-1} \oplus p^{l+1}R))$, and U_{i+1}, \ldots, U_q lie in $B(V, R^r) \cap B_r^l = B(V, R^{r-1} \oplus p^l R)$. The graph lemma implies the following two claims :

Claim 1. $B(0, V \cap (R^{r-1} \oplus p^{l+1}R)) \cong B(0, R^{s-1} \oplus pR) \cong B_s^1$. Claim 2. $B(V, R^{r-1} \oplus p^l R) \cong B(0, R^{k-s-1} \oplus p^l R) \cong B_{r-s}^l$.

Hence a simplex in the quotient of nerves F_s/F_{s+1} can be viewed as the join of a simplex in B_s^1 , a vertex V, and a simplex in B_{r-s}^l , with the faces opposite to V collapsed to *:

$$F_s/F_{s+1} \cong \bigvee_V \Sigma(B_s^1 * B_{r-s}^l) \cong \bigvee_V \Sigma^2(B_s^1 \wedge B_{r-s}^l)$$

where V runs over the s-planes of R^r in $B_r^l - B_r^{l+1}$.

Now we can prove by induction that all B_r^l are (r-3)-connected. This is trivial to check for $r \leq 2$, and each $B_r^n \simeq *$ is certainly (r-3)-connected. By the formula above, with 0 < s < r, F_s/F_{s+1} is 2 + (s-3) + 1 + (r-s+3) = (r-3)-connected for each s. Thus by downward induction on l, the result holds for each r.

Thus each B_r^l is an (r-3)-connected (r-2)-complex, and must have the homotopy type of a bouquet of (r-2)-spheres. The case l = 0 is the statement of the proposition. \Box

It remains to prove the two claims from the graph lemma.

Proof of claim 1. Let $V \subset R^r$ be an *s*-plane in $B_r^l - B_r^{l+1}$. In the case l = 0 we can choose a basis $\{b_1, \ldots, b_s\}$ for V with $\pi(b_s) = 1$ and $\pi(b_i) = 0$ for i < s. Then $V \cap (R^{r-1} \oplus pR) = R\{b_1, \ldots, b_{s-1}\} \oplus pR\{b_s\} \cong R^{s-1} \oplus pR$.

If l > 0, V is the graph of an R-homomorphism $f : W \to pR \subset R$ with $W \subseteq R^{r-1}$. We can take a basis $\{w_1, \ldots, w_s\}$ for W with $f(w_s) = p^l$ and $f(w_i) = 0$ for i < s. Then clearly $V \cap (R^{r-1} \oplus p^{l+1}R) \cong R\{w_1, \ldots, w_{s-1}\} \oplus pR\{w_s\} \cong R^{s-1} \oplus pR$. \Box

Proof of claim 2. If l = 0, the statement amounts to $B(R^s, R^r) \cong B(0, R^{r-s})$, which is clear.

If l > 0, V is the graph of $f : W \to pR \subset R$ as in the preceding proof. Extend the basis $\{w_1, \ldots, w_s\}$ for W to $\{w_1, \ldots, w_r\}$, a basis for R^r , with $w_r = e_r$. We can then change basis for R^r by replacing w_s with $w_s + p^l \cdot e_r$ to reduce to the case f = 0. This case is clear. \Box

To complete the description of the non-equivariant homotopy type of $B_r R$ we give a counting argument for finding the number of wedges in the bouquet.

Notation. Let $\langle r \rangle_{p,n} = (p^{rn} - p^{r(n-1)})/(p^n - p^{n-1})$ denote the number of lines in R^r . Then

$$\left\langle {r \atop s} \right\rangle_{p,n} = \frac{\langle r \rangle_{p,n} \cdot \ldots \cdot \langle r - s + 1 \rangle_{p,n}}{\langle s \rangle_{p,n} \cdot \ldots \cdot \langle 1 \rangle_{p,n}}$$

is the number of s-planes in R^r .

Proposition 4. For $0 = s_0 \le s_1 \le \cdots \le s_{q-1} \le s_q = r$ there are

$$\left\langle {s_1 \atop s_0} \right\rangle_{p,n} \cdot \ldots \cdot \left\langle {s_q \atop s_{q-1}} \right\rangle_{p,n} = \prod_{i=1}^q \left\langle {s_i \atop s_{i-1}} \right\rangle_{p,n}$$

flags $0 \neq V_1 \subseteq \cdots \subseteq V_{q-1} \subset R^r$ with rank $(V_i) = s_i$ representing (q-2)-simplices in $B_r R$. Counting nondegenerate simplices, the Euler characteristic is

$$\chi B_r R = \sum_{0=s_0 < \dots < s_q = r} (-1)^q \prod_{i=1}^q \left\langle \begin{array}{c} s_i \\ s_{i-1} \end{array} \right\rangle_{p,n}$$

Consequently, $B_r R \simeq \bigvee_{\beta_r} S^{r-2}$ with $\beta_r = (-1)^r (\chi B_r R - 1)$. \Box

It is also possible to give a recursive formula for the number of wedges, denoted β_r above, by following the proof of proposition 3. Lastly, one can produce a formula based on proposition 2, by expressing the order of P_{σ} for varying σ .

SMALL BUILDINGS

In this section, we will construct a covering of $B_r R$ by subcomplexes homeomorphic to S^{r-2} called apartments. In the case $R = \mathbb{F}_p$, these are the subcomplexes of $B_r \mathbb{F}_p$ making this complex into a building in the abstract sense [Tits]. With $R = \mathbb{Z}/p^n$, the ring homomorphism $R \to \mathbb{F}_p$ maps the apartments of $B_r R$ onto those of $B_r \mathbb{F}_p$. As the covering of $B_r \mathbb{F}_p$ is well understood, we choose to organize the covering apartments in $B_r R$ by what apartments they map to in $B_r \mathbb{F}_p$. The preimage of one apartment in $B_r \mathbb{F}_p$ is then the union of such a gathering of apartments in $B_r R$, which forms a subcomplex of $B_r R$ called the *small building* $b_r R$. We begin an analysis of the equivariant homotopy type of $B_r R$ through that of $b_r R$.

Apartments.

Definition. Let the standard apartment $A = A_r R \subset B_r R$ denote the subcomplex consisting of simplices which are axial flags in R^r :

$$0 \neq R^{I_0} \subseteq \cdots \subseteq R^{I_q} \subset R^r.$$

The *apartments* of $B_r R$ are the translates $g \cdot A$, for $g \in GL_r R$. They form a covering of $B_r R$. We often identify a simplex in the standard apartment A with the corresponding chain $(I_0 \subseteq \cdots \subseteq I_q)$ of subsets of **r**.

Lemma. $A \cong S^{r-2}$.

Proof. A is isomorphic to the nerve of the partially ordered set of proper nontrivial subsets of \mathbf{r} , i.e. the boundary of an (r-1)-simplex. \Box

To analyze $B_r R$ in terms of a covering by apartments, it is convenient to introduce some notation for various subcomplexes of A.

Notation. If ω is a partial ordering on \mathbf{r} , call $I \subseteq \mathbf{r}$ convex [Goodwillie] if every element of \mathbf{r} less than an element of I, in the ordering ω , already is in I. Let $A_{\omega} \subseteq A$ denote the subcomplex consisting of axial flags

$$0 \neq R^{I_0} \subseteq \dots \subseteq R^{I_q} \subset R^r$$

where each I_i is convex under ω . In the special case that ω partitions **r** into a collection of unrelated equivalence classes, we use π to denote the partition, and write $A_{\pi} \subseteq A$ as above.

If T is a collection of $r \times r$ R-matrices, let $A_T = A_{\omega_T}$ where ω_T is the partial ordering on **r** generated by $i \prec j$ whenever $g_{ij} \neq 0$ for some $g \in T$.

Lemma 3. If π partitions \mathbf{r} into $|\pi|$ equivalence classes, $A_{\pi} \cong S^{|\pi|-2}$. If ω is not a partition, i.e. there exists $i \prec j$ in ω with $j \not\prec i$, then $A_{\omega} \simeq *$. If $e \in T$, then $A_T = \bigcap_{q \in T} g \cdot A$.

Proof. See [Rognes, thesis, proposition 9.1 and lemma 10.6]. \Box

Let $R = \mathbb{Z}/p^n$. Later in the section we will restrict to $R = \mathbb{Z}/p^2$.

Notation. Let $N_r = N_r R$ be the kernel of $GL_r R \twoheadrightarrow GL_r \mathbb{F}_p$, or equivalently of $G_r \twoheadrightarrow U_r$. Let $Q_\sigma = N_r \cap P_\sigma$, where $\sigma = (I_0 \subseteq \cdots \subseteq I_q)$ can be thought of as a simplex of A.

Lemma. The G_r -translates $\{g \cdot A\}_{g \in G_r}$ of A cover $B_r R$. Similarly $\{u \cdot A\}_{u \in U_r}$ cover $B_r \mathbb{F}_p$. The preimage of $A \subset B_r \mathbb{F}_p$ by $B_r R \to B_r \mathbb{F}_p$ is the union of the apartments $\{g \cdot A\}$ with $\in N_r$.

Proof. Clear from proposition 2. \Box

Corollary [Quillen]. There is a U_r -homotopy equivalence :

$$B_r \mathbb{F}_p \simeq \bigvee_{u \in U_r} S^{r-2}.$$

Proof. $B_r \mathbb{F}_p$ is covered by the apartments $u \cdot A \cong S^{r-2}$ with $u \in U_r$. Consider a (multiple) intersection $\bigcap_{u \in T} u \cdot A = A_T$, where we may assume $e \in T$. If T also contains upper triangular matrices not equal to the identity, ω_T cannot possibly be a partition of \mathbf{r} , whence by lemma 3, $A_T \simeq *$. \Box

The small buildings.

Definition. The small building $b_r R$ is the union of the apartments $g \cdot A \subset B_r R$ for $g \in N_r$. If $u \in U_r$, the translate $u \cdot b_r R \subset B_r R$ is well defined, and these cover $B_r R$.

We now look at the N_r -homotopy type of $B_r R$, or rather the homotopy type of $EN_{r+} \wedge_{N_r} \Sigma^2 B_r R$, through the covering of $B_r R$ by the N_r -complexes $u \cdot b_r R$.

Lemma. As a simplicial N_r -set, b_rR equals

$$[q]\longmapsto \coprod_{\sigma} N_r/Q_{\sigma}$$

where σ runs through the chains $\emptyset \neq (I_0 \subseteq \cdots \subseteq I_q) \subset \mathbf{r}$.

Proof. Immediate from proposition 2. \Box

Corollary 1. There is a spectral sequence, with

$$E_{s,t}^1 = \bigoplus_{\sigma} H_t(Q_{\sigma}; \mathbb{F}_p)$$

(group homology) where σ runs through the chains $\emptyset = I_0 \subset \cdots \subset I_s = \mathbf{r}$, converging to

$$\widetilde{H}_*(EN_{r+}\wedge_{N_r}\Sigma^2 b_r R; \mathbb{F}_p).$$

The differentials $d^1|_{\sigma} : H_*(Q_{\sigma}; \mathbb{F}_p) \hookrightarrow H_*(Q_{\partial_i \sigma}; \mathbb{F}_p)$ commute with the inclusion into $H_*(N_r; \mathbb{F}_p)$.

Proof. $\Sigma^2 b_r R$ has nondegenerate q-simplices $\coprod_{\sigma} N_r / Q_{\sigma}$, with $\sigma = (\emptyset = I_0 \subset \cdots \subset I_q = \mathbf{r})$ a nondegenerate simplex in $\Sigma^2 A$, for q > 0. There is also a single base point in degree 0. The spectral sequence is that associated to the skeletal filtration on $\Sigma^2 b_r R$, with $EN_{r+} \wedge_{N_r} (-)$ applied, and we recognize the E^1 -term by

$$E_{s,t}^{1} = \widetilde{H}_{s+t}(EN_{r+} \wedge_{N_{r}} (\Sigma^{2}b_{r}R^{(s)}/\Sigma^{2}b_{r}R^{(s-1)}); \mathbb{F}_{p})$$

$$\cong \widetilde{H}_{s+t}(EN_{r+} \wedge_{N_{r}} \Sigma^{s}(\prod_{\sigma} N_{r}/Q_{\sigma} +); \mathbb{F}_{p})$$

$$\cong \bigoplus_{\sigma} H_{t}(EN_{r} \times_{N_{r}} N_{r}/Q_{\sigma}; \mathbb{F}_{p})$$

$$\cong \bigoplus_{\sigma} H_{t}(Q_{\sigma}; \mathbb{F}_{p}).$$

The observation about the differentials is immediate from the simplicial structure on $b_r R$. \Box

For the remainder of this section, assume $R = \mathbb{Z}/p^2$. Then N_r is an elementary abelian *p*-group of rank r^2 , with one \mathbb{Z}/p -factor corresponding to each matrix entry (i, j). In this case we can compute the E^2 -term of the spectral sequence above, and prove that it collapses there.

Definition. Let $C_* = H_*(\mathbb{Z}/p; \mathbb{F}_p)$ denote the graded Hopf algebra. As a \mathbb{F}_p -vector space it has a generator in each nonnegative degree. By the Künneth formula, $H_* = H_*(N_r; \mathbb{F}_p)$ is additively generated by monomials $\{z\}$ which are (tensor) products of one of the generators in C_* for each matrix entry (i, j) in N_r . We say that a monomial z involves the matrix entries (i, j) for which a generator of positive degree occurs.

Let $A_z \subseteq A$ denote the subcomplex A_{ω_z} where ω_z is generated by $i \prec j$ if z involves the (i, j)th entry. If π is a partition of \mathbf{r} , let $J_*(\pi) \subset H_*$ denote the H_* comodule which is additively generated by the monomials z such that $A_z = A_{\pi}$,
i.e. $\omega_z = \pi$. These are the π -mixing monomials in H_* .

Proposition 5. The spectral sequence in corollary 1 collapses at the E^2 -term :

$$E_{s,*}^2 = \bigoplus_{\pi} J_*(\pi)$$

where π runs over the partitions of **r** into $|\pi| = s$ equivalence classes. Hence

$$\widetilde{H}_*(EN_{r+}\wedge_{N_r}\Sigma^2 b_r R;\mathbb{F}_p)\cong\bigoplus_{\pi}\Sigma^{|\pi|}J_*(\pi).$$

Proof. The E^1 -term (E^1, d^1) splits over the monomials z. Fix a z, and consider the corresponding summand of E^1 . It contains a copy of $\mathbb{F}_p\{z\}$ precisely for each $\sigma \neq *$ in $\Sigma^2 A_z$, and d^1 agrees with the differential in the reduced simplicial chain complex $\widetilde{C}_*(\Sigma^2 A_z; \mathbb{F}_p)$. Hence the contribution to the E^2 -term is $\widetilde{H}_*(\Sigma^2 A_z; \mathbb{F}_p)$. By lemma 3, this is 0 unless ω_z is a partition π , in which case the homology is a copy of \mathbb{F}_p in degree $|\pi|$. Hence

$$E_{**}^2 \cong \bigoplus_z \widetilde{H}_*(\Sigma^2 A_z) \otimes \mathbb{F}_p\{z\}$$

equals the expression in the statement in the proposition, with the sum reindexed by π in place of z.

It remains to prove that the spectral sequence collapses. Consider a partition π of **r**, and a monomial z in $J_*(\pi) \subset H_*$ representing a generator (π, z) in $E^2_{|\pi|, |z|}$. Let $Q_z \subseteq N_r$ be the intersection of all Q_σ for $\sigma \in A_z$. Then (π, z) is realized in the homology of $BQ_{z+} \wedge \Sigma^2 A_z$. Also there is for each $\sigma \in A_z$ an inclusion :

$$BQ_z \subseteq BQ_\sigma \xrightarrow{\simeq} EN_r \times_{N_r} N_r/Q_\sigma$$

extending to

$$BQ_{z+} \wedge \Sigma^2 A_z \hookrightarrow EN_{r+} \wedge_{N_r} \Sigma^2 b_r R$$
.

Associated to the skeletal filtration on $\Sigma^2 A_z$ and $\Sigma^2 b_r R$, we have two spectral sequences (the 'left' and the 'right' ones, respectively) with a natural map between them, corresponding to the last inclusion above. The spectral sequence on the left side collapses at the E^2 -term, and as the class (π, z) is realized on this E^2 term, it supports no higher differentials on either side. As this holds for all π and z, all these classes survive to E^{∞} on the right side, and the proposition follows. \Box

Example. Let r = 2 and $R = \mathbb{Z}/4$. There are two partitions $\pi_1 = \{\{1, 2\}\}$ and $\pi_2 = \{\{1\}, \{2\}\}$ of \mathbf{r} , and $J_*(\pi_1) \cong H_* \cdot x_{12}x_{21}, J_*(\pi_2) \cong \mathbb{F}_2[x_{11}, x_{22}]$. Here x_{ij} denotes the generator in degree 1 of $H_*(\mathbb{Z}/2; \mathbb{F}_2) \cong \mathbb{F}_2[x]$, corresponding to the (i, j)th entry in N_2 . Then

$$\widetilde{H}_*(EN_{2+}\wedge_{N_2}\Sigma^2 b_2\mathbb{Z}/4;\mathbb{F}_2)\cong\Sigma^1H_*\cdot x_{12}x_{21}\oplus\Sigma^2\mathbb{F}_2[x_{11},x_{22}].$$

The covering. We would now like to extend this result to $\Sigma^2 B_r R$. Recall the covering of $B_r R$ by $\{u \cdot b_r R\}$ for $u \in U_r$. Let $T \subseteq U_r$ be nonempty. Consider the (multiple) intersection

$$\bigcap_{u \in T} EN_{r+} \wedge_{N_r} \Sigma^2(u \cdot b_r R) = EN_{r+} \wedge_{N_r} \Sigma^2 \bigcap_{u \in T} u \cdot b_r R$$

If $t \in T$, $\bigcap_{u \in T} u \cdot b_r R = t \cdot \bigcap_{u \in t^{-1}T} u \cdot b_r R$ and $e \in t^{-1}T$, so let us assume $e \in T$. By lemma 3 we have the following extension of corollary 1 :

Lemma. Let $e \in T \subseteq U_r$. There is a spectral sequence with

$$E_{s,t}^1 = \bigoplus_{\sigma} H_t(Q_{\sigma}; \mathbb{F}_p)$$

where σ runs through the nondegenerate s-simplices of $\Sigma^2 A_T$, converging to

$$\widetilde{H}_*(EN_{r+} \wedge_{N_r} \Sigma^2 \bigcap_{u \in T} u \cdot b_r R; \mathbb{F}_p). \quad \Box$$

We extend the notion of mixing monomials :

Definition. Let $e \in T \subseteq U_r$ and let π be a partition of \mathbf{r} . Let $J_*(\pi, T) \subset H_*$ denote the H_* -comodule which is additively generated by the monomials z such that $A_z \cap A_T = A_{\pi}$. These are the (π, T) -mixing monomials in H_* . If $e \notin T$ but T is nonempty, pick $t \in T$ and set $J_*(\pi, T) = J_*(\pi, t^{-1}T)$.

Proposition 6. Let $e \in T \subseteq U_r$. The spectral sequence in the lemma above collapses at the E^2 -term :

$$E_{s,*}^2 = \bigoplus_{\pi} J_*(\pi)$$

where π runs over the partitions of **r** into $|\pi| = s$ equivalence classes. Hence

$$\widetilde{H}_*(EN_{r+}\wedge_{N_r}\Sigma^2\bigcap_{u\in T}u\cdot b_rR;\mathbb{F}_p)\cong\bigoplus_{\pi}\Sigma^{|\pi|}J_*(\pi,T).$$

This isomorphism is also true if $e \notin T$.

Proof. Redo the proof of proposition 5, but replace all references to σ running through the simplices of $\Sigma^2 A$ with σ running through the simplices of $\Sigma^2 A_T$. \Box

Example. We continue the example of r = 2 and $R = \mathbb{Z}/4$. $U_2 = \{e, u\}$, where $u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then $J_*(\pi, \{e\}) = J_*(\pi, \{u\}) = J_*(\pi)$ for either partition π , while $J_*(\pi_1, \{e, u\}) = H_* \cdot x_{21}$ and $J_*(\pi_2, \{e, u\}) = 0$.

Corollary 2. There is a Mayer-Vietoris spectral sequence (see e.g. [Rognes, thesis, definition 9.4]) with E^1 -term

$$E^1_{s,*} = \bigoplus_T \bigoplus_{\pi} \Sigma^{|\pi|} J_*(\pi, T)$$

where the sum runs over $T \subseteq U_r$ with (s+1) elements, converging to the N_r -homology of $\Sigma^2 B_r R$, namely $\widetilde{H}_*(EN_{r+} \wedge_{N_r} \Sigma^2 B_r R; \mathbb{F}_p)$. \Box

Example. Still r = 2 and $R = \mathbb{Z}/4$. The only differential in the spectral sequence above is $d^1 : \Sigma^1 J_*(\pi_1, \{e, u\}) \to \Sigma^1 J_*(\pi_1, \{e\}) \oplus \Sigma^1 J_*(\pi_1, \{u\})$, mapping $H_* \cdot x_{21}$ into the diagonal of $H_* \cdot x_{12}x_{21} \oplus H_* \cdot x_{12}x_{21}$ by the map commuting with the inclusion into H_* for each summand.

Dept. of Math, Univ. of Oslo, Norway