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Abstract. We study the algebraic K–theory of a cyclic ring R of the form Z/pn.

The idea is to consider the so–called rank filtration on a space representing the first
delooping of K–theory. Each subquotient of this filtration is equivalent to the homo-
topy quotient of an action of the general linear group GLrR on the double suspension

of a finite complex BrR, which is the rank r Tits building of R. To understand the
homotopy type of these subquotients, we equivalently study the homotopy type of
the Tits buildings together with the GLrR–action.

Our results include 1) a description of the non–equivariant homotopy type of each
Tits building, as a bouquet of spheres all in the same dimension, 2) a computation of
the equivariant homology of a subcomplex of BrR called the small building, which

captures the difference between the K–theory of R and the known K–theory of Fp,
the finite field with p elements, and 3) a description of the homotopy type of each
fixed subcomplex of the Tits building under the action of a subgroup of the general

linear group, in a (sufficiently) large class of such subgoups.

Introduction

Not yet written

K–theory and Tits Buildings

In this section we will review definitions of K–theory and the rank filtration,
and fix some notation.

The K–theory of a ring. Let R be an associative ring with unit. The algebraic
K–theory of R can be defined as follows. Let P(R) be the additive category of
finitely generated projective R–modules, viewed as a category with cofibrations
and weak equivalences as per [Quillen, §2] and [Waldhausen, §1.9]. Explicitly,
a cofibration is the inclusion of a direct summand in the category, and a weak
equivalence is an isomorphism. Then following [Waldhausen], we can apply the S

•
–

construction to P(R), obtaining a simplicial category wS
•
P(R) whose geometric

realization is the (first) delooping ofK–theory. This means that the higher algebraic
K–groups of R can be defined as:

KiR = πi+1|wS•
P(R)| for i ≥ 0.

This definition agrees with that of [Quillen] using the Q–construction. Equivalently,
we may think of the K–groups of R as the homotopy groups of the loopspace
Ω|wS

•
P(R)|.
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2 JOHN ROGNES

Let F(R) ⊆ P(R) denote the full subcategory of finitely generated free R–
modules. It is a subcategory with cofibrations and weak equivalences in the sense
of [Waldhausen, p. 321], and furthermore it is (weakly) cofinal in P(R) [Grayson],
so the induced map

|wS
•
F(R)| → |wS

•
P(R)|

is a covering map. If we define the free K–theory of R by

Kf
i R = πi+1|wS•

F(R)| for i ≥ 0,

it follows that Kf
i R → KiR is an isomorphism for i ≥ 1, while it is an injection for

i = 0. We shall be considering the free K–theory of R in this paper, but by the
above argument this is the same as the usual K–theory in all positive degrees, so
we shall henceforth suppress the difference in notation, and use KiR to denote the
free K–groups. Let BK(R) denote the first delooping of free K–theory; BK(R) =
|wS

•
F(R)|.

The rank filtration. Now suppose that the rank of a finitely generated free R–
module is well defined. Concretely, we will assume that R has the invariant di-
mension property [Mitchell], i.e. Rn and Rm are isomorphic as R–modules only
if n = m. This automatically holds if R is commutative [Atiyah–Macdonald]. It
is also clear that R has this property if it is an algebra over a commutative ring,
for which it is finitely generated as a module. The examples we have in mind are
matrix algebras over commutative rings. Denote the rank of a finitely generated
free R–module M by rank(M). Then if M ′

 M ։ M ′′ is a cofibration sequence
in F(R), i.e. a split short exact sequence of free R–modules, we have

rank(M) = rank(M ′) + rank(M ′′).

We wish to approximate the K–theory of R by introducing a filtration of the
deloopedK–theory space, such that each successive stage of the filtration is a better
approximation to the full K–theory. We do this, following [Quillen] and [Mitchell],
by a rank filtration of the space BK(R). Inspecting the S

•
–construction used to

define this space, we see that its simplices correspond to diagrams in the category
F(R). For a fixed rank r we can consider the subcomplex FrBK(R) consisting
of simplices corresponding to diagrams involving only free R–modules of rank less
then or equal to r. This gives an increasing filtration of spaces {FrBK(R)}r≥0

exhausting BK(R), and we call FrBK(R) the rth stage of the rank filtration on
the first delooping of the K–theory of R.

There are also other definitions of a rank filtration on K–theory. By analogy to
the plus-construction definition of K–theory [Quillen], one can define

KQ
i,rR = πi(BGLrR)+ for i > 0,

as soon as a suitable perfect subgroup can be found, for instance if r ≥ 3. There is
also a Volodin construction [Suslin], where

KV
i,rR = πi+1V (GLrR, {Tα}) for i ≥ 0,

and Suslin shows that these two agree through a range. See Suslin’s paper for a
definition of the expression above. Lastly there is a spectrum level rank filtration of
the K–theory spectrum, different from all the above, which is developed in [Rognes,
thesis].
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The subquotients. Our approach to understanding the K–groups of R will be
to investigate the homotopy type of the subquotients of the rank filtration, i.e.
the spaces FrBK(R)/Fr−1BK(R). There is a description of this in terms of the
equivariant homotopy type of the rank r Tits building of R [Tits], as noted in
[Quillen] and [Mitchell]. We now define the Tits buildings, state the description
(proposition 1), and give a proof.

Definition. Suppose R satisfies the invariant dimension property, and fix a rank
r. Consider the set of proper, nontrivial free R–submodules M of Rr: 0 6= M ⊂ Rr.
Give this set a partial ordering by setting M ≺ N if M ⊆ N and the inclusion map
is a cofibration in F(R), i.e. M is included as a direct summand in N with a free
complementary summand. Denote this partially ordered set by O(Rr), and define
the rank r Tits building of R, BrR, to be its nerve [Quillen] :

BrR = NO(Rr).

Hence BrR is a simplicial set, with q–simplices the sequences of cofibrations

0 6= M0 ⊆ · · · ⊆ Mq ⊂ Rr

of free R–modules, also known as flags.

Proposition 1 [Quillen] [Mitchell].

FrBK(R)/Fr−1BK(R) ≃ EGLrR+ ∧GLrR Σ2BrR.

Proof. Review the S
•
–construction from [Waldhausen, §1.3]. BK(R) = |wS

•
F(R)|

where wS
•
F(R) is the simplicial category [q] 7→ wSqF(R). An object in SqF(R)

is a diagram Ar[q] → F(R) satisfying certain extra hypotheses. Here [q] = {0 <
1 < · · · < q} is thought of as a category with q + 1 objects, and Ar[q] is the arrow
category associated with [q]. Specifically, a diagram A : Ar[q] → F(R) associates to
each i ≤ j a free R–module Ai,j = A(i → j), and A lies in SqF(R) if the following
three conditions hold: 1) Ai,i = 0 for each i, 2) the natural map Ai,j → Ai,k is a
cofibration for each i ≤ j ≤ k, and 3) the commutative square

Ai,j −−−−→ Ai,ky
y

Aj,j −−−−→ Aj,k

is a pushout square for each i ≤ j ≤ k. Such a diagram A is determined up to
isomorphism by its restriction across [q] →֒ Ar[q] taking i in [q] to (0 → i) in Ar[q].
The restriction of a diagram A is then a sequence of cofibrations

0 = A0,0 → A0,1 → · · · → A0,q.

Let Fr(R) ⊂ F(R) denote the full subcategory where the objects have rank
at most r. Then FrBK(R) realizes the simplicial subcategory wFrS•

F(R) where
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FrSqF(R) ⊂ SqF(R) has objects the diagrams Ar[q] → F(R) which factor through
Fr(R) ⊂ F(R). Similarly, FrBK(R)/Fr−1BK(R) realizes the simplicial (quotient)
category [q] 7→ wFrSqF(R)/wFr−1SqF(R). For fixed q, the latter category has a
base point object ∗q, together with the diagrams Ar[q] → F(R) in SqF(R) which
factor through Fr(R), but not through Fr−1(R). These are precisely the diagrams
A such that the ‘top’ module A0,q has rank r.

Inspecting the simplicial structure on wFrS•
F(R)/wFr−1S•

F(R), we see that
the restriction of diagrams over [q] →֒ Ar[q] as above induces an equivalence of
simplicial categories. Furthermore, the target simplicial category is equivalent to
its full simplicial subcategory where the top module A0,q actually is Rr. Thus
FrBK(R)/Fr−1BK(R) is homotopy equivalent to the realization of the simplicial
category Y

•
, which in simplicial degree q has the objects ∗q and the cofibration

sequences (flags)
0 = A0,0 → A0,1 → · · · → A0,q = Rr,

and morphisms the isomorphisms of such diagrams.
Let X

•
be the simplicial set which has as q–simplices the object set of Yq. For

any flag A ∈ Xq, the morphisms in Yq originating at A are precisely characterized
by their effect on the top module A0,q = Rr, i.e. an element of GLrR. In this
situation we call Y

•
the (based) GLrR–translation category on X

•
. Using the usual

simplicial model for EGLrR it is straightforward to check that the nerve of Yq is
isomorphic to EGLrR+∧GLrRXq, and upon realizing in the q–direction we obtain:

|Y
•
| ∼= EGLrR+ ∧GLrR |X

•
|.

It remains to recognize |X
•
| as Σ2BrR.

Let O∗
∗(R

r) denote the partially ordered set of (not necessarily proper or non-
trivial) free R–submodules M of Rr, with M ≺ N if M ⊆ N and the inclusion map
is a cofibration. Let O∗(R

r) denote the partially ordered subset of proper submod-
ules, and let O∗(Rr) denote the partially ordered subset of nontrivial submodules.
The nerve of either of these three partially ordered sets is contractible, due to the
presence of initial and/or terminal elements.

Now note that O(Rr) is the intersection of O∗(R
r) and O∗(Rr). Furthermore,

|X
•
| is obtained from the nerve of O∗

∗(R
r) by identifying any flags

0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ Mq ⊆ Rr

not beginning with M0 = 0 or ending with Mq = Rr to ∗q, which amounts to
contracting the nerves of O∗(R

r) and O∗(Rr) to a point. We conclude :

|X
•
| = NO∗

∗(R
r)/(NO∗(R

r) ∪NO∗(Rr))

≃ Σ(NO∗(R
r) ∪NO∗(Rr))

≃ Σ2(NO∗(R
r) ∩NO∗(Rr))

= Σ2BrR. �

Thus an understanding of a weak form of the GLrR–homotopy type of BrR
suffices to describe the subquotients of the rank filtration, in the sense that a GLrR–
map which is a non–equivariant homotopy equivalence is viewed as an equivalence.



THE TITS BUILDINGS FOR Z/pn 5

Tits Buildings for Z/pn

We now specialize to studying the K–theory of the ‘cyclic rings’ Z/pn, with p
a prime. The K–groups of the finite fields Fp = Z/p are known, as computed by
Quillen [Quillen]. Furthermore, the unique ring homomorphism Z/pn → Fp induces
an isomorphism on K–groups away from the prime p, in the sense of localization
[Bousfield and Kan]. Thus we are really only interested in the p–component of
the K–groups KiZ/p

n for n ≥ 2. [Aisbett] and [Evens and Friedlander] have
computations of these groups for most cases with i ≤ 4, while K4Z/4 and K4Z/9
remain unknown.

A transfer argument. For the remainder of this section let R = Z/pn. On the
level of the subquotients of the rank filtration, we are interested in the homotopy
type of EGLrR+ ∧GLrR Σ2BrR localized at p. In this situation, there is a stan-
dard transfer argument which allows us to reduce from studying the p–localized
equivariant GLrR–homotopy type of BrR to the analogous thing for the action on
BrR by a p–Sylow subgroup of GLrR.

Definition. In the case of GLrFp, the upper triangular matrices with 1’s on the
diagonal constitute a p–Sylow subgroup, denoted Ur ⊂ GLrFp. In general, let
Gr = GrR ⊂ GLrR be the pullback of Ur ⊂ GLrFp over the canonical map
GLrR → GLrFp. Explicitly, Gr consists of the matrices with entries which are 0
modulo p below the diagonal, 1 modulo p on the diagonal, and arbitrary above the
diagonal. Gr is a p–Sylow subgroup of GLrR.

There is a bundle map π:

EGr+ ∧Gr
Σ2BrR ≃ EGLrR+ ∧Gr

Σ2BrR
π
−→ EGLrR+ ∧GLrR Σ2BrR,

and a stable equivariant transfer map τ [Adams] going the other way, such that the
composite π ◦ τ induces multiplication by the index of Gr in GLrR on homology or
stable homotopy. This index is prime to p, so it follows that π is a split surjection
when localized at p. Thus to understand EGLrR+ ∧GLrR Σ2BrR, we will look
at the Gr–homotopy type of BrR, and appeal to the methods of [Feshbach] to
compute what is lost by mapping along π.

The Tits building as a simplicial Gr–set. We have a description of the Tits
building BrR as a simplicial Gr–set.

Definition. Let r = {1, . . . , r}. For any indexing set I ⊆ r let RI ⊆ Rr be
the axial submodule where only the coordinates in I ⊆ r may be nonzero. Let
PI ⊆ Gr denote the parabolic subgroup consisting of matrices g = (gij) ∈ Gr such
that gij = 0 if i /∈ I and j ∈ I. PI stabilizes RI ⊆ Rr for the action of Gr on
subspaces of Rr. If σ = (I0 ⊆ · · · ⊆ Iq) is a chain of subsets of r, then Pσ is the
parabolic subgroup defined by Pσ = PI0...Iq = PI0 ∩ · · · ∩ PIq . Pσ stabilizes the flag

RI0 ⊆ · · · ⊆ RIq in Rr.

Proposition 2. As a simplicial Gr–set, the Tits building BrR is isomorphic to

[q] 7−→
∐

σ

Gr/Pσ
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where σ runs through the chains ∅ 6= I0 ⊆ · · · ⊆ Iq ⊂ r. The ith face map ∂i is
induced by Pσ ⊂ P∂iσ where ∂iσ = I0 ⊆ · · · ⊆ Ii−1 ⊆ Ii+1 ⊆ · · · ⊆ Iq, while the jth
degeneracy map sj is induced by Pσ = Psjσ where sjσ = I0 ⊆ · · · ⊆ Ij = Ij ⊆ · · · ⊆
Iq.

Proof. We will show that an arbitrary q–simplex in BrR

0 6= M0 ⊆ · · · ⊆ Mq ⊂ Rr

is in the Gr–orbit of an axial flag

0 6= RI0 ⊆ · · · ⊆ RIq ⊂ Rr

for some ∅ 6= I0 ⊆ · · · ⊆ Iq ⊂ r. Next we will check that there is only one such axial
flag in each Gr–orbit, which proves that σ = (I0 ⊆ · · · ⊆ Iq) is uniquely determined.
Lastly we observe that the stabilizer of RI0 ⊆ · · · ⊆ RIq is PI0...Iq ⊆ Gr, from which
the proposition follows.

For convenience, let us reindex the flag, so as to be considering a (q−2)–simplex

0 = M0 ⊂ M1 ⊆ · · · ⊆ Mq−1 ⊂ Mq = Rr.

Let ϕ : R → Fp denote the ring homomorphism, as well as the homomorphisms
induced by it. For each i ∈ r there is a minimal j such that Fp

i ⊆ ϕ(Mj). Then
Fp

i∩ϕ(Mj−1)+Fp
i−1∩ϕ(Mj) is a codimension one subspace of Fp

i∩ϕ(Mj) = Fp
i.

Choose a bi ∈ Mj such that ϕ(bj) ∈ Fp
i is not in this subspace. Then bi is part

of an extension of an R–basis for Mj−1 to one for Mj , and we may assume that bi
has ith coordinate equal to 1 modulo p.

For each j, let Ij = {i ∈ r | bi ∈ Mj}. Proceeding by induction on j we see that
{bi}i∈Ij is an R–basis for Mj . Then set g = (b1, . . . , br) ∈ Gr, and observe that

g ·RIj = Mj for each j. This proves the first statement
Next we prove that if g ∈ Gr and g ·RI = RJ then I = J . For each i, ϕ(g) ∈ Ur

takes the ith elementary vector ei ∈ Fp
i into ϕ(g) · ei with nonzero ith coordinate.

Thus if i ∈ I, ϕ(g) · ei ∈ ϕ(g) · Fp
I = Fp

J and so i ∈ J . Thus I ⊆ J , and by the
same argument for g−1, I = J . This proves the second statement, concluding the
proof. �

The non–equivariant homotopy type. Next we will analyze the non–equi-
variant homotopy type of BrR. First we will prove two properties of cofibrations
in F(R) which are special to R = Z/pn. These will be precisely what are needed
in the proof of proposition 3, below. Neither lemma holds true for arbitrary local
rings R.

Lemma 1. Each inclusion M ⊆ N of finitely generated free R–modules is a cofi-
bration.

Proof. Choose an R–basis {b1, . . . , bj} for M , and assume N = Rr. Write the
coordinates of bs as (b1s, . . . , b

r
s). By rescaling, and permuting the coordinates of

Rr, we may assume brj = 1. Proceed by induction on j.

If j = 1, Rr−1 ⊂ Rr is a complementary free summand to M = Rb1 ⊂ Rr, as
required.
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If j > 1, change the basis {b1, . . . , bj} for M to {c1, . . . , cj−1, bj} with

cs = bs − brs · bj

for s < j. Then {c1, . . . , cj−1} spans a free submodule of Rr−1. Using induction, it
has a complementary free submodule, which works for M ⊆ N = Rr too. �

Definition. If M ⊆ Rr is a free submodule of rank s such that the inclusion map
is a cofibration, we call M an s–plane in Rr. If s = 1, we call M a line. A line L
is transverse to an s–plane M ⊂ Rr (s < r) if L + M is a direct sum in Rr, i.e.
L ∩M = 0 and L+M is an (s+ 1)–plane.

Lemma 2 (Graph lemma). Write Rr = Rr−1 ⊕ R. For any plane M ⊆ Rr,
either M contains a line transverse to Rr−1 ⊂ Rr, or M is the graph of an R–
homomorphism N → pR ⊂ R, with N ⊆ Rr−1.

Proof. Let {b1, . . . , bj} be an R–basis for M , and write bs = (b1s, . . . , b
r
s) as before.

Let π and π′ denote the projections Rr → R and Rr → Rr−1 respectively. It
suffices to prove that if all brs ∈ pR, then π′(b1), . . . , π

′(bj) are linearly independent.

So suppose
∑j

i=1 riπ
′(bi) = 0 for some ri ∈ R. Then π(

∑j

i=1 ribi) ∈ pR. If

π(
∑j

i=1 ribi) 6= 0, there is a maximal e > 0 such that π(
∑j

i=1 ribi) ∈ peR. Then∑j

i=1(p
n−eri)bi = 0 and by freeness pn−eri = 0 for all i. Thus we can choose ti ∈ R

with peti = ri, and π(pe
∑i

i=1 tibi) ∈ peR − pe+1R. Hence π(
∑i

i=1 tibi) /∈ pR,

contradicting the hypothesis brs ∈ pR for all s. We conclude that
∑j

i=1 ribi = 0 and
all ri = 0, proving independence. �

We now come to the principal result of this section.

Proposition 3. BrR has the homotopy type of a bouquet (one–point wedge) of
(r − 2)–spheres.

Proof. To begin with, we introduce some notation. If N ⊆ M is an inclusion of
arbitrary finitely generated R–modules, let B(N,M) denote the partially ordered
set of finitely generated free R–modules U such that N ⊂ U ⊂ M , where both
inclusions are cofibrations. The partial ordering is given by U ≺ V if U ⊆ V and
the inclusion is a cofibration. Also let B(N,M) denote the nerve of this partially
ordered set, so that BrR = B(0, Rr).

Write Rr = Rr−1 ⊕ R as before, and note that there is a filtration of R by the
powers of the maximal ideal pR :

R ⊃ pR ⊃ · · · ⊃ plR ⊃ · · · ⊃ pnR = 0.

Let π : Rr → R be the projection on the last coordinate, as before. We filter the
partially ordered set B(0, Rr), and hence its nerve, as follows :

Bl
r = {U ∈ B(0, Rr) | π(U) ⊆ plR}

with the induced ordering. Then

B(0, Rr) = B0
r ⊃ B1

r ⊃ · · · ⊃ Bn
r ≃ ∗.
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Bn
r is contractible as it has a terminal element. We filter Bl

r ⊃ Bl+1
r for l =

0, 1, . . . , n− 1 by

Fs = {U ∈ Bl
r | U ∈ Bl+1

r or rank(U) ≥ s},

suppressing r and l from the notation. Then

Bl
r = F1 ⊃ F2 ⊃ · · · ⊃ Fr−1 ⊃ Fr = Bl+1

r .

The partially ordered set Fs is obtained from Fs+1 by adjoining the s–planes V of
Rr in Bl

r but not in Bl+1
r . The nondegenerate simplices in the nerve of Fs, not in

the nerve of Fs+1, are thus flags of the form :

0 6= U0 ⊂ U1 ⊂ · · · ⊂ Uq ⊂ Rr

where some Ui = V . Specifically U0, . . . , Ui−1 lie in B(0, V ) ∩ Bl+1
r = B(0, V ∩

(Rr−1 ⊕ pl+1R)), and Ui+1, . . . , Uq lie in B(V,Rr) ∩ Bl
r = B(V,Rr−1 ⊕ plR). The

graph lemma implies the following two claims :

Claim 1. B(0, V ∩ (Rr−1 ⊕ pl+1R)) ∼= B(0, Rs−1 ⊕ pR) ∼= B1
s .

Claim 2. B(V,Rr−1 ⊕ plR) ∼= B(0, Rk−s−1 ⊕ plR) ∼= Bl
r−s.

Hence a simplex in the quotient of nerves Fs/Fs+1 can be viewed as the join of
a simplex in B1

s , a vertex V , and a simplex in Bl
r−s, with the faces opposite to V

collapsed to ∗ :

Fs/Fs+1
∼=

∨

V

Σ(B1
s ∗Bl

r−s)
∼=

∨

V

Σ2(B1
s ∧Bl

r−s)

where V runs over the s–planes of Rr in Bl
r −Bl+1

r .
Now we can prove by induction that all Bl

r are (r− 3)–connected. This is trivial
to check for r ≤ 2, and each Bn

r ≃ ∗ is certainly (r− 3)–connected. By the formula
above, with 0 < s < r, Fs/Fs+1 is 2 + (s− 3) + 1+ (r− s+3) = (r− 3)–connected
for each s. Thus by downward induction on l, the result holds for each r.

Thus each Bl
r is an (r − 3)–connected (r − 2)–complex, and must have the

homotopy type of a bouquet of (r − 2)–spheres. The case l = 0 is the statement of
the proposition. �

It remains to prove the two claims from the graph lemma.

Proof of claim 1. Let V ⊂ Rr be an s–plane in Bl
r − Bl+1

r . In the case l = 0 we
can choose a basis {b1, . . . , bs} for V with π(bs) = 1 and π(bi) = 0 for i < s. Then
V ∩ (Rr−1 ⊕ pR) = R{b1, . . . , bs−1} ⊕ pR{bs} ∼= Rs−1 ⊕ pR.

If l > 0, V is the graph of an R–homomorphism f : W → pR ⊂ R with
W ⊆ Rr−1. We can take a basis {w1, . . . , ws} for W with f(ws) = pl and f(wi) = 0
for i < s. Then clearly V ∩ (Rr−1 ⊕ pl+1R) ∼= R{w1, . . . , ws−1} ⊕ pR{ws} ∼=
Rs−1 ⊕ pR. �

Proof of claim 2. If l = 0, the statement amounts to B(Rs, Rr) ∼= B(0, Rr−s),
which is clear.
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If l > 0, V is the graph of f : W → pR ⊂ R as in the preceding proof. Extend
the basis {w1, . . . , ws} for W to {w1, . . . , wr}, a basis for Rr, with wr = er. We
can then change basis for Rr by replacing ws with ws + pl · er to reduce to the case
f = 0. This case is clear. �

To complete the description of the non–equivariant homotopy type of BrR we
give a counting argument for finding the number of wedges in the bouquet.

Notation. Let <r>p,n = (prn − pr(n−1))/(pn − pn−1) denote the number of lines
in Rr. Then 〈

r

s

〉

p,n

=
<r>p,n · . . . ·<r − s+ 1>p,n

<s>p,n · . . . ·<1>p,n

is the number of s–planes in Rr.

Proposition 4. For 0 = s0 ≤ s1 ≤ · · · ≤ sq−1 ≤ sq = r there are
〈
s1
s0

〉

p,n

· . . . ·

〈
sq

sq−1

〉

p,n

=

q∏

i=1

〈
si

si−1

〉

p,n

flags 0 6= V1 ⊆ · · · ⊆ Vq−1 ⊂ Rr with rank(Vi) = si representing (q − 2)–simplices
in BrR. Counting nondegenerate simplices, the Euler characteristic is

χBrR =
∑

0=s0<···<sq=r

(−1)q
q∏

i=1

〈
si

si−1

〉

p,n

.

Consequently, BrR ≃
∨

βr
Sr−2 with βr = (−1)r(χBrR− 1). �

It is also possible to give a recursive formula for the number of wedges, denoted
βr above, by following the proof of proposition 3. Lastly, one can produce a formula
based on proposition 2, by expressing the order of Pσ for varying σ.

Small Buildings

In this section, we will construct a covering of BrR by subcomplexes homeomor-
phic to Sr−2 called apartments. In the case R = Fp, these are the subcomplexes
of BrFp making this complex into a building in the abstract sense [Tits]. With
R = Z/pn, the ring homomorphism R → Fp maps the apartments of BrR onto
those of BrFp. As the covering of BrFp is well understood, we choose to organize
the covering apartments in BrR by what apartments they map to in BrFp. The
preimage of one apartment in BrFp is then the union of such a gathering of apart-
ments in BrR, which forms a subcomplex of BrR called the small building brR. We
begin an analysis of the equivariant homotopy type of BrR through that of brR.

Apartments.

Definition. Let the standard apartment A = ArR ⊂ BrR denote the subcomplex
consisting of simplices which are axial flags in Rr :

0 6= RI0 ⊆ · · · ⊆ RIq ⊂ Rr.

The apartments of BrR are the translates g · A, for g ∈ GLrR. They form a
covering of BrR. We often identify a simplex in the standard apartment A with
the corresponding chain (I0 ⊆ · · · ⊆ Iq) of subsets of r.
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Lemma. A ∼= Sr−2.

Proof. A is isomorphic to the nerve of the partially ordered set of proper nontrivial
subsets of r, i.e. the boundary of an (r − 1)–simplex. �

To analyze BrR in terms of a covering by apartments, it is convenient to intro-
duce some notation for various subcomplexes of A.

Notation. If ω is a partial ordering on r, call I ⊆ r convex [Goodwillie] if every
element of r less than an element of I, in the ordering ω, already is in I. Let
Aω ⊆ A denote the subcomplex consisting of axial flags

0 6= RI0 ⊆ · · · ⊆ RIq ⊂ Rr

where each Ii is convex under ω. In the special case that ω partitions r into a
collection of unrelated equivalence classes, we use π to denote the partition, and
write Aπ ⊆ A as above.

If T is a collection of r × r R–matrices, let AT = AωT
where ωT is the partial

ordering on r generated by i ≺ j whenever gij 6= 0 for some g ∈ T .

Lemma 3. If π partitions r into |π| equivalence classes, Aπ
∼= S|π|−2. If ω is not

a partition, i.e. there exists i ≺ j in ω with j 6≺ i, then Aω ≃ ∗. If e ∈ T , then
AT =

⋂
g∈T g ·A.

Proof. See [Rognes, thesis, proposition 9.1 and lemma 10.6]. �

Let R = Z/pn. Later in the section we will restrict to R = Z/p2.

Notation. Let Nr = NrR be the kernel of GLrR ։ GLrFp, or equivalently of
Gr ։ Ur. Let Qσ = Nr ∩ Pσ, where σ = (I0 ⊆ · · · ⊆ Iq) can be thought of as a
simplex of A.

Lemma. The Gr–translates {g · A}g∈Gr
of A cover BrR. Similarly {u · A}u∈Ur

cover BrFp. The preimage of A ⊂ BrFp by BrR → BrFp is the union of the
apartments {g ·A} with ∈ Nr.

Proof. Clear from proposition 2. �

Corollary [Quillen]. There is a Ur–homotopy equivalence :

BrFp ≃
∨

u∈Ur

Sr−2.

Proof. BrFp is covered by the apartments u · A ∼= Sr−2 with u ∈ Ur. Consider a
(multiple) intersection

⋂
u∈T u · A = AT , where we may assume e ∈ T . If T also

contains upper triangular matrices not equal to the identity, ωT cannot possibly be
a partition of r, whence by lemma 3, AT ≃ ∗. �

The small buildings.

Definition. The small building brR is the union of the apartments g · A ⊂ BrR
for g ∈ Nr. If u ∈ Ur, the translate u · brR ⊂ BrR is well defined, and these cover
BrR.

We now look at the Nr–homotopy type of BrR, or rather the homotopy type of
ENr+ ∧Nr

Σ2BrR, through the covering of BrR by the Nr–complexes u · brR.
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Lemma. As a simplicial Nr–set, brR equals

[q] 7−→
∐

σ

Nr/Qσ

where σ runs through the chains ∅ 6= (I0 ⊆ · · · ⊆ Iq) ⊂ r.

Proof. Immediate from proposition 2. �

Corollary 1. There is a spectral sequence, with

E1
s,t =

⊕

σ

Ht(Qσ;Fp)

(group homology) where σ runs through the chains ∅ = I0 ⊂ · · · ⊂ Is = r, converg-
ing to

H̃∗(ENr+ ∧Nr
Σ2brR;Fp).

The differentials d1|σ : H∗(Qσ;Fp) →֒ H∗(Q∂iσ;Fp) commute with the inclusion
into H∗(Nr;Fp).

Proof. Σ2brR has nondegenerate q–simplices
∐

σ Nr/Qσ, with σ = (∅ = I0 ⊂ · · · ⊂
Iq = r) a nondegenerate simplex in Σ2A, for q > 0. There is also a single base
point in degree 0. The spectral sequence is that associated to the skeletal filtration
on Σ2brR, with ENr+ ∧Nr

(−) applied, and we recognize the E1–term by

E1
s,t = H̃s+t(ENr+ ∧Nr

(Σ2brR
(s)/Σ2brR

(s−1));Fp)

∼= H̃s+t(ENr+ ∧Nr
Σs(

∐

σ

Nr/Qσ +);Fp)

∼=
⊕

σ

Ht(ENr ×Nr
Nr/Qσ;Fp)

∼=
⊕

σ

Ht(Qσ;Fp).

The observation about the differentials is immediate from the simplicial structure
on brR. �

For the remainder of this section, assume R = Z/p2. Then Nr is an elementary
abelian p–group of rank r2, with one Z/p–factor corresponding to each matrix entry
(i, j). In this case we can compute the E2–term of the spectral sequence above,
and prove that it collapses there.

Definition. Let C∗ = H∗(Z/p;Fp) denote the graded Hopf algebra. As a Fp–vector
space it has a generator in each nonnegative degree. By the Künneth formula,
H∗ = H∗(Nr;Fp) is additively generated by monomials {z} which are (tensor)
products of one of the generators in C∗ for each matrix entry (i, j) in Nr. We say
that a monomial z involves the matrix entries (i, j) for which a generator of positive
degree occurs.

Let Az ⊆ A denote the subcomplex Aωz
where ωz is generated by i ≺ j if z

involves the (i, j)th entry. If π is a partition of r, let J∗(π) ⊂ H∗ denote the H∗–
comodule which is additively generated by the monomials z such that Az = Aπ,
i.e. ωz = π. These are the π–mixing monomials in H∗.
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Proposition 5. The spectral sequence in corollary 1 collapses at the E2–term :

E2
s,∗ =

⊕

π

J∗(π)

where π runs over the partitions of r into |π| = s equivalence classes. Hence

H̃∗(ENr+ ∧Nr
Σ2brR;Fp) ∼=

⊕

π

Σ|π|J∗(π).

Proof. The E1–term (E1, d1) splits over the monomials z. Fix a z, and consider
the corresponding summand of E1. It contains a copy of Fp{z} precisely for each
σ 6= ∗ in Σ2Az, and d1 agrees with the differential in the reduced simplicial chain

complex C̃∗(Σ
2Az;Fp). Hence the contribution to the E2–term is H̃∗(Σ

2Az;Fp).
By lemma 3, this is 0 unless ωz is a partition π, in which case the homology is a
copy of Fp in degree |π|. Hence

E2
∗∗

∼=
⊕

z

H̃∗(Σ
2Az)⊗ Fp{z}

equals the expression in the statement in the proposition, with the sum reindexed
by π in place of z.

It remains to prove that the spectral sequence collapses. Consider a partition π
of r, and a monomial z in J∗(π) ⊂ H∗ representing a generator (π, z) in E2

|π|,|z|.

Let Qz ⊆ Nr be the intersection of all Qσ for σ ∈ Az. Then (π, z) is realized in the
homology of BQz+ ∧ Σ2Az. Also there is for each σ ∈ Az an inclusion :

BQz ⊆ BQσ
≃
−→ ENr ×Nr

Nr/Qσ

extending to

BQz+ ∧ Σ2Az →֒ ENr+ ∧Nr
Σ2brR .

Associated to the skeletal filtration on Σ2Az and Σ2brR, we have two spectral
sequences (the ‘left’ and the ‘right’ ones, respectively) with a natural map between
them, corresponding to the last inclusion above. The spectral sequence on the left
side collapses at the E2–term, and as the class (π, z) is realized on this E2 term,
it supports no higher differentials on either side. As this holds for all π and z, all
these classes survive to E∞ on the right side, and the proposition follows. �

Example. Let r = 2 and R = Z/4. There are two partitions π1 = {{1, 2}} and
π2 = {{1}, {2}} of r, and J∗(π1) ∼= H∗ · x12x21, J∗(π2) ∼= F2[x11, x22]. Here xij

denotes the generator in degree 1 of H∗(Z/2;F2) ∼= F2[x], corresponding to the
(i, j)th entry in N2. Then

H̃∗(EN2+ ∧N2
Σ2b2Z/4;F2) ∼= Σ1H∗ · x12x21 ⊕ Σ2

F2[x11, x22].
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The covering. We would now like to extend this result to Σ2BrR. Recall the
covering of BrR by {u · brR} for u ∈ Ur. Let T ⊆ Ur be nonempty. Consider the
(multiple) intersection

⋂

u∈T

ENr+ ∧Nr
Σ2(u · brR) = ENr+ ∧Nr

Σ2
⋂

u∈T

u · brR .

If t ∈ T ,
⋂

u∈T u · brR = t ·
⋂

u∈t−1T u · brR and e ∈ t−1T , so let us assume e ∈ T .
By lemma 3 we have the following extension of corollary 1 :

Lemma. Let e ∈ T ⊆ Ur. There is a spectral sequence with

E1
s,t =

⊕

σ

Ht(Qσ;Fp)

where σ runs through the nondegenerate s–simplices of Σ2AT , converging to

H̃∗(ENr+ ∧Nr
Σ2

⋂

u∈T

u · brR;Fp). �

We extend the notion of mixing monomials :

Definition. Let e ∈ T ⊆ Ur and let π be a partition of r. Let J∗(π, T ) ⊂ H∗

denote the H∗–comodule which is additively generated by the monomials z such
that Az ∩AT = Aπ. These are the (π, T )–mixing monomials in H∗. If e /∈ T but T
is nonempty, pick t ∈ T and set J∗(π, T ) = J∗(π, t

−1T ).

Proposition 6. Let e ∈ T ⊆ Ur. The spectral sequence in the lemma above
collapses at the E2–term :

E2
s,∗ =

⊕

π

J∗(π)

where π runs over the partitions of r into |π| = s equivalence classes. Hence

H̃∗(ENr+ ∧Nr
Σ2

⋂

u∈T

u · brR;Fp) ∼=
⊕

π

Σ|π|J∗(π, T ).

This isomorphism is also true if e /∈ T .

Proof. Redo the proof of proposition 5, but replace all references to σ running
through the simplices of Σ2A with σ running through the simplices of Σ2AT . �

Example. We continue the example of r = 2 and R = Z/4. U2 = {e, u}, where

u =
(

1 1

0 1

)
. Then J∗(π, {e}) = J∗(π, {u}) = J∗(π) for either partition π, while

J∗(π1, {e, u}) = H∗ · x21 and J∗(π2, {e, u}) = 0.

Corollary 2. There is a Mayer–Vietoris spectral sequence (see e.g. [Rognes, thesis,
definition 9.4]) with E1–term

E1
s,∗ =

⊕

T

⊕

π

Σ|π|J∗(π, T )

where the sum runs over T ⊆ Ur with (s + 1) elements, converging to the Nr–

homology of Σ2BrR, namely H̃∗(ENr+ ∧Nr
Σ2BrR;Fp). �
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Example. Still r = 2 and R = Z/4. The only differential in the spectral sequence
above is d1 : Σ1J∗(π1, {e, u}) → Σ1J∗(π1, {e}) ⊕ Σ1J∗(π1, {u}), mapping H∗ · x21

into the diagonal of H∗ · x12x21 ⊕ H∗ · x12x21 by the map commuting with the
inclusion into H∗ for each summand.
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