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Foreword

These are the author’s lecture notes for the course MAT9580, Algebraic Topology III, as given at the
University of Oslo in the spring term of 2012. Thanks to Tilman Bauer for the sseq package. Thanks to
Knut Berg, Hakon Schad Bergsaker, Robert B. Bruner, Eivind Dahl, Christian Schlichtkrull and Sigurd
Segtnan for comments, corrections and helpful references.

1 Stable homotopy theory

1.1 Vector fields on spheres

Many topological problems can be formulated as questions about the existence or enumeration of contin-
uous maps with suitable properties. To answer these questions one needs tools to help determine when
such maps exist or how many there are.

An interesting example is the vector fields problem on spheres. Let S™ C R"*! be the unit sphere
in (n + 1)-space. At each point p € S™ there is an n-dimensional tangent space T},S™, consisting of the
vectors v € R*! with p L v. These combine to the total space of the tangent bundle 7: T.S™ — S™ the
n-sphere. A vector field on the sphere is a section in the tangent bundle, i.e., a map X : S™ — T'S™ with
mo X = id. It associates to each point p € S™ a tangent vector X (p) € T,S™ at that point.

If n = 2e — 1 is odd, there is an everywhere nonzero vector field on S™. Identifying R"*! = R?¢ with
C¢, one such field is given in terms of the complex multiplication by X (p) = ip. In coordinates, the
tangent vector at p = (21,%a,...,2Z2.—1,T2.) € S™ is X (p) = (—x2,21,..., —Z2e,T2c—1). On the other
hand, if n is even there is no everywhere nonzero vector field on S™. One proof uses that the Euler
characteristic of S™, which is 2 for n even, can be written as a sum over the zeros of any (reasonably
nice) vector field, and such a sum would be 0 if the vector field had no zeros. Similarly, if n =4e — 1 is
congruent to 3 mod 4, there are three everywhere linearly independent vector fields on S™. Identifying



Rl = R* with H, these can be given in terms of the quaternionic multiplication by X;(p) = ip,
Xo(p) = jp and X3(p) = kp, where H = R{1,4,j,k} and i®? = j2 = k? = —1,ij = k = —ji, jk =i = —kj
and ki = j = —ik. On the other hand, if n =1 mod 4 there is no pair of everywhere independent vector
fields on S™. Continuing, if n = 8¢ — 1 = 7 mod 8, then there are 7 independent vector fields on S,
given in terms of the octonionic multiplication on R"*! = @°. When n = 3 mod 8 there is no quadruple
of independent vector fields. After this, the pattern changes. There is no division algebra structure on
R'6, and the maximum number of independent vector fields on S'° is 8, not 15.

The vector fields on spheres problem is then this: What is the maximal number m of vector fields
Xi,..., X, on the n-dimensional sphere S™ such that X1 (p), ..., X (p) € T,S™ are linearly independent
for each p € S™? By an application of the Gram—Schmidt process, any m-tuple of everywhere linearly
independent vector fields can be converted into an m-tuple of everywhere orthonormal vector fields. The
problem may therefore be reformulated as: What is the maximal number of everywhere orthonormal
vector fields on the n-sphere? Another reformulation is: What is the maximal dimension of a trivial
subbundle €™ C 7gn of the tangent bundle of ™7

An orthonormal m-tuple of vectors vy, ..., v, in T,S", together with the point p € S™, constitute an
orthonormal (m + 1)-tuple (v1, ..., v, p) in R*1 and conversely. Any such orthonormal (m + 1)-tuple,
also known as an (m + 1)-frame, can be completed to an orthonormal basis (w1,...,wg,v1,...,Um, D)
by prepending k more vectors, where k = n — m is the complementary dimension of €” in 7g». The
vectors in such an orthonormal basis constitute the column vectors of a matrix in O(n + 1), the Lie
group of (n+1) x (n+1) orthogonal matrices, and the different choices of completing vectors wy, . .., wg
correspond to an orbit for the right action of the subgroup O(k) C O(n + 1), placed in the upper left
hand corner. The space of (m + 1)-frames (v, ..., Vm,p) in R*T! is therefore the homogeneous space
O(n 4+ 1)/O(k), also known as a Stiefel manifold. As special cases we have O(n + 1)/O(n) = S™ and
O(n+1)/O(n — 1) C TS™ is the subspace of unit tangent vectors. The map taking (vi,...,v,,p) to
p € S™ corresponds to the map w: O(n + 1)/O(k) — O(n 4+ 1)/0O(n) = S™, induced by the inclusion
O(k) € O(n). An m-tuple of everywhere orthonormal vector fields Xi,..., X,, on S™ now defines a
map o: 8™ = O(n+ 1)/O(k) taking p to the (m + 1)-frame (X;(p), ..., Xm(p),p), with the property
that m o 0 = id. The vector fields problem is thus: Given n, what is the maximal m, or the minimal
k = n —m, such that there is a map o: S™ — O(n 4+ 1)/O(k) with 7 o 0 = id?

The map 7: O(n + 1)/O(k) — S™ is a fiber bundle (over a numerable base), which means that it
has the homotopy lifting property. This means that if there exists a map o’: S™ — O(n +1)/O(k) with
7 o ¢’ homotopic to the identity map, then the homotopy can be lifted to a homotopy from ¢’ to a map
o: 8" = O(n+ 1)/O(k) with 7 o o equal to the identity. This means that the vector fields problem
is a question about homotopy classes of maps, rather than about individual maps, and this makes it a
problem in homotopy theory, rather than general topology.

1.2 Homology and homotopy

Let X be a topological space, with a chosen base point o € X. Give S™ the base point sy = (1,0,...,0) €
R™*1 for n > 0. The n-th homotopy group ,(X) = [S™, X] is the set of homotopy classes of base-point
preserving maps f: S™ — X. It is a group for n > 1, and an abelian group for n > 2. We usually omit z¢
from the notation. We say that X is n-connected, for n > 0, if 7;(X) = 0 for all 0 < ¢ < n. A base-point
preserving map f: X — Y is n-connected if f,: m;(X) — m;(Y) is an isomorphism for 0 < i < n and
a surjection for ¢ = n. It is a weak homotopy equivalence if f.: 7;(X) — m;(Y) is an isomorphism for
all i > 0. The Hurewicz homomorphism h,,: m,(X) — H,(X) (integer coefficients) takes the homotopy
class [f] of a map f: S™ — X to the image f.[S"] of the fundamental class [S"] € H,,(S™).

Lemma 1.1 (Poincaré). Let X be a 0-connected space. The homomorphism hy: m(X) — H1(X) is
surjective with kernel the commutator subgroup of w1 (X), inducing an isomorphism 71 (X )ap = Hy1(X).

Theorem 1.2 (Hurewicz). Let X be an (n — 1)-connected space, for some n > 2. Then the homomor-
phism hy: m,(X) = Hp(X) is an isomorphism.

See Hatcher (2002) Theorem 4.32. ((Also state relative version, for maps of 1-connected spaces.))

Corollary 1.3. Let X be a 1-connected space, with H;(X) = 0 for all2 < i < n. Then X is n-connected.



Let t: A C X be a cofibration, so that X Uy CA — X/A is a homotopy equivalence. For example, A
might be a subcomplex of a CW complex X. There is a long exact sequence in homology

oo Hi(A) = Hy(X) — Hi(X/A) -2 Hi_(A) > ...
for all ¢ (with arbitrary coefficients). There is a corresponding diagram in homotopy, but only in a
restricted range. Let ag € A C X. Using relative homotopy groups, there is a long exact sequence
o m(A) = (X)) = (X, A) D T (A) >

Theorem 1.4 (Homotopy excision). If A is (m — 1)-connected and t: A — X is n-connected with
m,n > 1, then m;(X, A) = m;(X/A) is an isomorphism for i < m +n and a surjection for i = m + n.
Hence there is an exact sequence

Tan1(A) = = mi(A) = m(X) = m(X/A) -5 w1 (A) — ... .

See Hatcher (2002) Theorem 4.23.
Dually, let m: E — B be a fibration, so that F' = 7=!(by) — E x5 PB is a homotopy equivalence.
For example, F — B might be a numerable fiber bundle. There is a long exact sequence in homotopy

o m(F) = mi(B) = mi(B) -2 w1 (F) — ...

for all 4. There is a corresponding diagram in homology, but only in a restricted range. Using relative
homology groups, there is a long exact sequence

oo Hy(F) = Hy(E) —» Hy(E,F) -2 Hy_{(F) - ...
(with arbitrary coefficients).

Theorem 1.5 (Serre homology sequence). If B is (m — 1)-connected and F is (n — 1)-connected, with
m,n > 1, then H;(E,F) — H;(B) is an isomorphism for i < m +n and a surjection for i = m + n.
Hence there is an exact sequence

Hpin 1(F) =+ — Hy(F) — Hy(E) — Hy(B) -2 Hy_(F) — ... .

This is an easy application of the Serre spectral sequence.

1.3 Stunted projective spaces

The n-sphere S™ is (n — 1)-connected, and h,,: 7,(S™) — H,(S™) = Z is an isomorphism. The vector
field problem for S™ asks what is the minimal k& < n such that . : 7,(O(n+1)/O(k)) — 7, (S™) 2 Z is
surjective. The maximal number of orthonormal vector fields on S™ is then m = n — k.

Lemma 1.6. The Stiefel manifold O(n + 1)/O(k) is (k — 1)-connected.

Proof. This can be seen by induction on m = n — k > 0, using the fiber sequences O(k +m)/O(k) —
Ok +m +1)/O(k) — S*¥*t™. Here O(k + m)/O(k) is (k — 1)-connected by inductive hypothesis and
Sk+m is (k + m — 1)-connected, so O(k +m + 1)/O(k) is (k — 1)-connected by the long exact sequence
in homotopy. O

Let RP™ be the projective n-space of lines through the origin in R”*!. Each such line L determines
an orthogonal splitting R"*! = L @ L+ and an orthonormal reflection r7: R"*! — R™*+! that reverses
L and fixes L. This defines a map 7": RP" — O(n + 1), taking L to the matrix representing ry. If
L C R represents a point in RP*~! then L' contains {0} x R™*1 c R"*! so rp, lies in the subgroup
O(k). Hence the composite map RP™ — O(n+ 1) — O(n + 1)/O(k) factors through the quotient space
RP"/RPF-1 = RP, known as a stunted projective space.

RPk-1 RP" RP}

[ 1

O(k) —— O(n+1) —» O(n +1)/0(k)



The usual CW structure on RP"™, with one i-cell for each 0 < i < n, contains RPF-1 agits (k—1)-skeleton
and induces a CW structure on RP}, with one i-cell for each k < ¢ < n. For k = n, the identifications
RP? 2 O(n+1)/0O(n) = S™ are compatible. The stunted projective spaces are “smaller” than the Stiefel
manifolds, hence may be easier to analyze. Still, they are large enough to have the same homotopy groups,
in a useful range of dimensions:

Lemma 1.7. The map r: RPP — O(n+1)/0(k) is 2k-connected.

Proof. Proof by induction on m = n —k > 0. For m = 0 the map RPf — O(k + 1)/O(k) is a
homeomorphism. For m > 0 we use the diagram

k+m—1 k4+m p k+
—_— _—
RP} RP} ghetm

k4m—1 k+m —

O(k +m)/O(k) —— O(k +m + 1)/O(k) ——» Sk*tm

where the upper row is a cofiber sequence, and the lower row is a fiber sequence.

Since O(k +m)/O(k) is (k — 1)-connected and S**™ is (k + m — 1)-connected, the homomorphism
H;(O(k+m+1)/O(k),O(k+m)/O(k)) — H;(S*¥*™) is an isomorphism for i < 2k by Serre’s homology
sequence. Hence H;(RPF™™ RPFT™ 1) — H,(O(k+m+1)/0(k), O(k+m)/O(k)) is also an isomorphism
for i < 2k. By inductive hypothesis, H;(RPF*™~) — H;(O(k +m)/O(k)) is an isomorphism for i < 2k
and surjective for ¢ = 2k, which implies that H;(RP{T™) — H;(O(k +m + 1)/O(k)) has the same
property. ((Deduce that RPFT™ — O(k +m + 1)/O(k) is 2k-connected.)) O

Hence, as long as n < 2k the problem of finding a section o for the fiber bundle projection 7: O(n +
1)/O(k) — S™ is equivalent to that of finding a section up to homotopy for the pinch map p: RP}* — S,
i.e., deciding whether p,: m,(RP}) — m,(S™) is surjective.

St — 2 SRPP

~

> ~ n p
AN Tk

O(n+1)/0(k) —3 5"

Except in a few cases, namely n = 1, 3, 7 and 15 ((check)) it turns out that the minimal k such that
P+ s surjective satisfies n < 2k — 2, so that the fact that m,(RP}* ;) — m,(S™) is not surjective implies
that m,(O(n +1)/O(k — 1)) — 7, (S™) is not surjective either.

The pinch map p fits in a Puppe cofiber sequence

sl rprl s RPP Ly gn 22 yRPP-!

K
N =
s\
AN

Sn

where ¢ is the attaching map for the top n-cell in RP, and X denotes suspension. If the maps p and
Y¢ had formed a homotopy fiber sequence, then p would admit a section up to homotopy s if and only
if ¥¢ were null-homotopic. However, p and ¢ form a (homotopy) cofiber sequence, and that is in general
something different from a homotopy fiber sequence. Fortunately, in the cases n less than approximately
2k the difference is negligible. This leads us to concentrate on the homotopy groups in dimensions below
2k for (k—1)-connected spaces, and the extent to which homotopy cofiber sequences and homotopy fiber
sequences agree in this range. This is the subject of stable homotopy theory.

1.4 The stable category

The suspension XX is the smash product X A S! = (X x S1) /(X x {so} U{zo} x S1), based at the image
of (zg,80). There is a homeomorphism S8" = §"+1 and a suspension homomorphism E: m,(X) —
1 (X2X) (‘E’ for ‘Einhiingung’) taking the homotopy class of f: 8™ — X to that of Xf: §n+! =
»S" — ¥ X.



Theorem 1.8 (Freudenthal suspension). Let X be (k — 1)-connected, with k > 1. The homomorphism
E: 1, (X) = mp1(2X) is an isomorphism for n < 2k — 1 and is surjective for n = 2k — 1.

This follows from homotopy excision for the cofibration X — CX, with CX/X =2 ¥ X.

Let 5 (X) = colim; 7,,4;(3X) be the n-th stable homotopy group of X. When X is (k—1)-connected
the stabilization homomorphism 7, (X) — 73 (X) is an isomorphism for n < 2k — 1 and surjective for
n=2k—1.

In the special case X = S% we call 77 = 75 (S°) = colim; 7,4;(S?) the n-th stable stem. The
homomorphism 7, ;(S?) — 73 is surjective for i = n + 1 and an isomorphism for i > n + 1. In
particular, 75 = 0 for n < 0, while 75 = Z.

Corollary 1.9. Let X be a CW complex of dimension d andY a (k—1)-connected space. The suspension
homomorphism E: [X,Y] — [EX,XY] is bijective if d < 2k — 1 and surjective if d = 2k — 1.

This follows from Freudenthal’s theorem by induction over the cells of X.

Let {X,Y} = colim;[X¢X, ¥Y] be the group of stable homotopy classes of maps X — Y. When
[X,Y] — {X,Y} is an isomorphism we say that X and Y are in the stable range. With notations as
above, XX is a CW complex of dimension d + 4 and 'Y is (k + i — 1)-connected, so £'X and XY are
in the stable range if (d +14) < 2(k +14) — 1, which holds for i > d — 2k + 1, i.e., for all sufficiently large i.

The homotopy category % of finite based CW complexes has morphism sets #(X,Y) = [X,Y].
It maps to the stable homotopy category . [X~1] of finite based CW complexes, with morphisms sets
{X,Y}. The suspension induces a full and faithful functor from this category to itself, since E: {X,Y} —
{XX,XY} is always an isomorphism, but it is not an equivalence of categories, because not every object
is isomorphic to a suspension. This can be arranged by formally adjoining desuspensions ¥~ "X for all
n, leading to the Spanier—Whitehead stable category .#7# . However, this category does still not have
(weak) colimits. This can be arranged by considering formal sequences of desuspensions

XO - ... _>2_an —)E_n_an+1 — .,

which is more commonly encoded by a sequence of spaces {n — X,} and structure maps ¥X, —
X1, leading to the notion of a (sequential) spectrum. Boardman’s stable category £ is the homotopy
category of spectra, with morphism groups #(X,Y) = [X, Y] given by homotopy classes of maps between
spectra X and Y, and contains . # as a full subcategory. This stable category % has “better” formal
properties than the unstable homotopy category .%. In particular it is a triangulated category, so that
cofiber sequences and fiber sequences agree (up to a sign in the connecting maps), finite coproducts are
isomorphic to finite products, etc.

Given a diagram in %, we can view it as a diagram in £ by applying the suspension spectrum
functor, taking a based space X to the spectrum X = {n — X" X} with identity maps as structure
maps. We refer to the result as a stable diagram.

The sphere spectrum S = 350 is the suspension spectrum on the 0-sphere. There is an n-sphere
spectrum S™ for each integer n, having S™ as 0-th space if n > 0, and having S° as (—n)-th space if
n < 0. The homotopy groups of a spectrum X are given by the stable morphism groups m,(X) = [S", X],
so that m,(X*°X) = 75(X) for a space X.

Let X and Y be finite CW spectra. These sit in cofiber sequences S™ ! — X’ — X — S™ and
S"1 - Y’ —Y — S" for smaller such spectra X" and Y’. The stable morphism group [X,Y] sits in
an exact sequence

[EX, Y] = [S™, Y] = [X,Y] = X, Y] = [S"1Y],

hence is in principle determined by the groups [S™,Y] = m,,(Y). These in turn sit in exact sequences
T (8" 1) = 1 (YY) = 71 (Y) = T (S™) = 7, (2Y)

(since a stable cofiber sequence is a stable fiber sequence), hence are in principle determined by the
groups 7, (S") & 75 i.e., the stable homotopy groups of spheres. Cells, or cones on spheres, are the
basic building blocks for CW complexes, and in the stable category, stable maps between spheres are the
basic building instructions for CW spectra. (This is less pronounced in the unstable category %, since
Tm(Y') is not so directly determined by m,, (Y”) and m,,,(S™).)

Whenever it is clear that we are working with stable diagrams, we shall omit the boldface notation
for spectra and the X°*° notation for suspension spectra.



1.5 Thom spectra

When n < 2k — 2, the stabilization homomorphism 7, (RP?*) — w2 (RP) is an isomorphism, as is
the homomorphism 7, (S™) — 75 (S™) = 7§, so the question if p.: 7, (RP?) — m,(S™) is surjective is
equivalent to the stable question if p.: 75 (RPP) — w5 (S™) is surjective. In other words, does the pinch
map p: RP} — S™ admit a stable section, so that the top cell on RFP splits off? If so, we say that RP}"
is stably coreducible.

This is equivalent to the question if the attaching map ¢: S~ ! — RP,?_l is stably null-homotopic.
In terms of the stable diagram

RPF-1 s RP — 5 RPP

(the lower row is a cofiber sequence, hence stably a fiber sequence) this is the question how far back the
attaching map ¢ of the top cell in RP"™ pulls back. In other words, what is the minimal k& such that
q: S"1 — RP""! can be compressed into the (k — 1)-skeleton, as a stable map?

Boardman’s stable category admits function spectra, in the sense that given two spectra X and
Y there is a natural function spectrum F(X,Y’) with suitable properties. For example, 7, F(X,Y) =
[E"X,Y]. Let DX = F(X,S) be the functional dual of X. For example, DS™ = S~". The rule
X — DX induces a contravariant endofunctor D: %°P? — . There is a natural map p: X — DDX,
which is an equivalence if X is a finite CW spectrum, in which case we call DX the Spanier—Whitehead
dual of X. When restricted to finite CW spectra, D is a contravariant equivalence of categories.

The question if the map p: RP' — S™ admits a stable section is thus equivalent to the question if
the dual map Dp: DS™ — D(RP}}) admits a stable retraction.

((Discuss Thom complexes and Thom spectra.))

Lemma 1.10. There is a homeomorphism RP,5+m = Th(kv},) where ), is the tautological line bundle
over RP™.

Proof. The normal bundle of S™ in S¥*™ is trivial, and covers the bundle kv}, over RP™. It embeds
as the complement S¥+™\ S¥~1 and has one-point compactification S¥*™ /S*~1. Identifying antipodal
points, the quotient space RP*+™ /RP¥~1 = RPF™™ maps homeomorphically to Th(kv.,). O

Theorem 1.11 (Atiyah duality). Let M be a closed manifold, with tangent bundle Tp; and virtual normal
bundle vyy = —7pr. Then D(My) =2 Th(vyy).

Lemma 1.12. mgpm @ e' 2 (m+ 1)), s0 vppm = €' — (m+ 1)}, and D(RPFT™) =2 Th(e! — (k+m+
D) = SRPZZ, .

The question of stable coreducibility of RFP; is thus equivalent to the question of stable reducibility
of Th(—(n+1)7L) = RP-F~! ie., whether the inclusion i: S~"~1 — RP~F~! of the bottom cell admits
a stable retraction up to homotopy.

If (n+1)7}, = "™ as vector bundles over RP™, or more generally, if the sphere bundle S((n+1)7.,)
is fiber homotopy trivial over RP™, then Th(—(n + 1)7}) ~ Th(—(e"*!)) & S=("*+*URP™ and the
bottom cell does indeed split off. -

((Concerned with the additive order of ¢! — ~} in KORP™) = 7/2%0™) where ¢(m) = #{1 <
i <m|i=1,24,8 mod 8}, or perhaps in the isomorphic image JO(RP™). Computation with
Atiyah—Hirzebruch spectral sequence. Adams conjecture?))

Theorem 1.13 (Adams). RP}' is stably coreducible (if and) only if n +1 = 0 mod 20(m)  where
n =k +m. The mazimal m with this property is 8c +2% — 1, when n+1=2%-b and a = 4c+ d, with b
odd and 0 < d < 3.

By inspection, n > 2m + 2 except for n = 1,3,7,15, which is equivalent to the stability condition
n < 2k — 2. Hence 8c + 2% — 1 is also the maximal number of everywhere linearly independent vector
fields on S™. ((Separate check for n = 15, using Toda’s work.))



2 Spectral sequences

2.1 Exhaustive complete Hausdorff filtrations

Consider a filtered space or spectrum X, i.e., a diagram
D Xy X

with s € Z. For example, we might have a map f: X — Y and X, = f~1(Y®)), where Y(*) is the
s-skeleton of a CW complex Y. Applying homology we get a diagram

S Ho (X)) — s H(X,) H.(X)

IS
~
- .
~ Jx
8 ~ - l

H*(Xsa Xsfl)

where 0 has degree —1. We would like to use knowledge of the graded groups H.(Xs, Xs_1) for all s to
obtain knowledge of the graded group H.(X). There is an induced increasing filtration

-+ CFs_1 CFsC---C H(X)
where Fy = FyH,(X) = im(H.(X;) — H.(X)). There is a short exact sequence, or extension,
0—>Fs1 —>Fs— F;/Fs_1—0

for each s. If we have inductively determined the subgroup Fs_; H,(X), and somehow know the quotient
group Fy/F,_1, then it is an algebraic extension problem to determine the total group Fs. For this to
be useful in determining H,(X), we must at least assume that the filtration {F;}s exhausts H.(X), i.e.,
that

H.(X) = colim Fy = UF..

Furthermore, we apparently need to start the induction somewhere.

The reader who is unfamiliar with limits may prefer to assume that the filtration is bounded, in the
sense that there is a natural number N such that H,(X;) = 0 for s < —N and H.(X;) = H.(X) for
s> N. Then Fy/Fs_; is only nonzero for —N < s < N. We can start the induction with F_y_1 = 0,
and it stops after a finite number of steps at Fy = H.(X).

However, there is a refined approach to this that is a little better. Fix a filtration degree k, until
further notice, and consider the problem of determining the quotients H,(X)/F} in place of H,(X).
There is an extension

0— Fs_1/Fy = Fs/F, — Fs/Fs_1 =0

for each s > k. We know that Fs_,/F, = 0 for s = k + 1, and this starts the induction. If we know
F;H,.(X)/Fs_1 for each s > k and can resolve each extension problem, then we can determine Fy/F}, for
each s, hence also

H.(X)/Fy = colim F,/F}.

There is an exact sequence
0— lilgan — H.(X) > lilgnH*(X)/Fk — ngka —0,
where limy, F), = ﬂk Fj, is the limit, and Rlimg F} is the right derived limit, also known as liml, of the

sequence
e = Fy g — Fy— ...

These graded groups are the kernel and cokernel, respectively, of the homomorphism

1—3: HFk%HFk
k k



where 1 is the identity and ¢ is the identification Hk F, = Hk Fi_1 combined with the product of the
homomorphisms Fj_1 — Fj. It is known that Rlimg F, = 0 if each homomorphism Fj_; — F} is
surjective, or if each group Fy is finite. (The Mittag-Leffler condition also ensures the vanishing of
Rlim.)

If limyg F, = 0 we say that the filtration {Fs}s is Hausdorfl. If Rlimg Fy, = 0 we say that it is
complete. The terminology can be justified by thinking of the filtration as a neighborhood basis around
0 and considering the associated linear topology on H,(X). If {F}s is both complete and Hausdorff,
then

H.(X) lilgnH*(X)/Fk

and we can recover the abutment H,(X) from the quotients H,(X)/F}, as desired.

Il

Lemma 2.1. Let {Fs}s be an exhaustive complete Hausdorff filtration of H.(X). Then H.(X)
limy, colimg Fs / F.

2.2 Spectral sequences of homological type

Definition 2.2. A spectral sequence of homological type is a sequence of bigraded abelian groups Ef , =
{E% ;}s,t, differentials d": E] , — EY , of bidegree (—r,r — 1), and isomorphisms E’”Jr1 = Ho . (EY,,d")
for all r > 1. We call ET’ the E"-term, d” the d"-differential, s the filtration degree ‘and s —|— t the total
degree of the spectral sequence. Sometimes only the terms for r > 2 are specified.

Making the bigrading explicit, the components of the d"-differential are homomorphisms d ,: £, —
+r_1- Note that the differential reduces the total degree by 1. The condition to be a differential
d") is the
In thls sense the

I3
Es—r,twn

is that d" o d” = 0, so that imd{,,, .., C kerd;, C E{,. The homology group H, (£}
ET

quotient group kerd;,/imdg,, , ,,;, which is required to be isomorphic to
E"-term and the d"-differential determine the E"!-term.

Fix a bidegree (s,t) and consider the sequence of groups {£y,} for r > 1. If there is a natural
number N such that dg, = 0 for all » > N, then there is a sequence of surjective homomorphisms

EYN, — .-« = El, — ... for r > N. We then let EZ = colim, E7,. ((On the other hand, if there is an
mteger N such that ds st4—rtp1 = 0 for all » > N, then there is a sequence of injective homomorphisms
-CEl,C---CEY forr>N. In that case we let B3 = lim, E7,.))

Definition 2.3. A spectral sequence {E* ., d" }, converges strongly to a graded abelian group G, if there
is an exhaustive complete Hausdorff filtration - - - C Fs_1G, C FsG, C ... of G, and isomorphisms

B = FGoyi/Fs1Goyt
for all s and t. We call G, the abutment of the spectral sequence.

If one can resolve the extension questions of how to recover F,G./F,G, from Fs_1G,/F;G, and
E2°,, then strong convergence suffices to recover the abutment G, as limy colimg FsG./ FiG..

8,7

Definition 2.4. If there is a natural number N such that d” = 0 for all » > N (in all bidegrees (s, 1)),
then there are isomorphisms £, = E:f;l & .. = EX forall r > N. In this case we say that the
spectral sequence collapses at the EV-term.

In many cases one can prove that a spectral sequence collapses at an EV-term by an appeal to the
internal grading t. Omne needs to check that for each bidegree (s,t) where Eé\ft is nonzero, all of the
groups EéV_T’H_r_l are zero for r > N. Since d" has bidegree (—r,7 + 1), this will imply that df , = 0. In
this case, we may say that the spectral sequence collapses at the EV-term for bidegree reasons.

Definition 2.5. A morphism from a spectral sequence {EY .} to a spectral sequence {'E],}, is a
sequence of bidegree-preserving homomorphisms

T, r ! T
f : E*7* E*7*



such that the diagrams
E'f‘ fr /ET’

*,%

fr

Er, ——Er

*, %

and

H,.(B") L 1, (BT

\L fT+1 l

E:;‘;l /E:::1

commute. In other words, f is a chain map from (E7 ,,d") to ("E],,d"), and induces f"*! on passage
to homology.

A morphism {f"}, of spectral sequences induces a homomorphism f°°: EX, — ’Ef,O* of E*°-terms,
when they are defined as discussed above.

Proposition 2.6. Let {f": £, — "E} .}, be a morphism of spectral sequences. If there is a natural
number N such that f is an isomorphism, then f" is an isomorphism for all v > N, including r = co.

Proof. If fT is an isomorphism, then so is the homomorphism f7 induced on homology, so f"! is an
isomorphism. Proceed by induction, starting at » = N. Pass to (co-)limits to get to r = oco. O

Definition 2.7. A morphism {f": E] , — "E] .}, of spectral sequences converges to a homomorphism
f: G, — G if f restricts to homomorphisms F;G, — F,G’, for all s and the induced homomorphisms
F.G./F;1G. — F,G'/Fs G, agree with the homomorphisms f>: ES, — 'E, under the isomor-
phisms F,G./Fs_1G, = E, and F,G.,/Fs_1G), 2 'EX,, for all s.

S,% 8%

Proposition 2.8. Let {f": El,— ’E:’*}T be a morphism of spectral sequences, converging strongly to
a homomorphism f: G. — G',. If f*°: EX, — "B, is an isomorphism, then so is f: G« — G,.

*,%

Proof. We use the map of short exact sequences

0—— Fs_1Gy/Fs_ Gy —— F;G./Fs_ .G, —— FsG./Fs_1G, —— 0

| | |

0—— Fs1G./Fs_ .G, —— F;G,/Fs_.G,, —— F;G, /Fs_1G', —— 0

to prove, by induction on r, that FsG./Fs_.G. — F,G' /Fs_, G’ is an isomorphism for all » > 1 and all
s. Passing to limits over r, we get an isomorphism F,G, — F,G’, for all s. Passing to colimits over s we
get the isomorphism f: G, — G.,. O
2.3 Cycles and boundaries

Recall the diagram

IS
~
- .
~ Jx
a ~ - \L

H*(Xs; Xs—l)

where the triangle is a rolled-up long exact sequence. The homomorphism H,(X;) — H,.(X) induces an
isomorphism

H,(X,)
ker(H.(X;) = H« (X))~

1%

Fy =im(H,.(Xs) = H.(X))

10



The image of i, maps onto Fs_1, so there is a quotient isomorphism

H.(Xy)

F,/Fy_y = .
s/ Fot ker(H,(X,) = H,(X)) + im i,

The homomorphism j, induces isomorphisms H,(X,)/imi. = imj, = kerd, and there is a quotient
isomorphism

H,.(X5) ker 0

~

ker(H,(X;) — Ho(X)) +imi,  ju(ker(H.(Xs) = Ho(X))) "

Lemma 2.9. There is a natural isomorphism
Fs/stl = Zs/Bs
where Zs = ker 0, By = ju(ker(H.(Xs) = H.(X))), and By C Z; C H (X5, Xs_1).

The task of a spectral sequence is to start with the groups H.(Xs, Xs—1) and to determine the
cycle and boundary subgroups Zs; and Bs, or more precisely, the quotient groups Z/Bs = Fs/F,_.
The starting groups will be the E'-term, Esl* = H,.(Xs,Xs-1), while the quotient groups will be the
E®°-term Z;/B; = EZ,. The passage from E' to E* can be done in steps, by weakening the condition
that an element in Z; = ker @ must map to 0 under 0, and strengthening the condition that an element
in ker(H,(Xs) — H.(X)) goes to 0 in H,(X). The intermediate steps give the E"-terms in the spectral
sequence.

Regarding the cycles, we let » > 1 and consider the diagram:

. -1
[

S H (X)) ————— Ho(Xs1) ——— H(X,)

A
/
Q’)/
/
/
/
<;
;L

H*(Xsts—l)
Let
Zr =0 MimiT "t He 1 (Xeor) = He 1(Xs1))
be the r-th cycles in H, (X, Xs—1). Then

Zo=kerdCZXC---CZ'C---CZ=H,(X,, Xs 1)

where Z3° = lim, Z] = (), Z7 is the (graded abelian) group of infinite cycles.
There is a subtle point about limits and images here. If the intersection

(Yimil ™ Ho g (Xoor) = Hooy (Xoo1)

r

is zero, then Z; = Z2°, so that we can obtain Z, = kerd as the limit over r of the cycle groups Z;.
This is certainly the case if there is an integer N such that H,._1(X) = 0 for s < —N, but it is not, in
general, enough to assume that limg H,._1(X) = 0. We shall soon return to this in greater generality.

Regarding the boundaries, we let » > 1 and consider the diagram:

i vt i
HL(X 1) " Ho(X,) o Ho(Xoiy 1) —
IS
PR
H*( EX) Xsfl)

Let
Bl = j(keril™': Hy(X,) = H.(Xotr1))

S

be the r-th boundaries in H, (X, Xs_1). Then

0=Bl!C---CBC---CB¥C B, = j.(ker(H.(X,) = H.(X)))

11



where B = colim, B} = |, B is the (graded abelian) group of infinite boundaries.
The interaction between colimits and kernels is less subtle. If the union

Ukerf U H (X)) = Ho(Xeyr1)

equals ker(H,(X) — H,.(X)), then B = By, so that we can obtain B; = j.(ker(H.(X;) — H.(X)))
as the colimit over r of the boundary groups B?. In this case it suffices to assume that colims H.(X,) =
H,.(X). This is a reasonable assumption, Wthh also implies that the filtration {Fs}s of H,.(X) is
exhaustive.

We now have a doubly infinite filtration

0=Blc---cB'C---CB®CB,CZ;CZ*C---CZ' C---CZ' =H,(X,,X,_1)

and in favorable cases (this is the subject of convergence), B = B, and Z; = Z°. We define the
ET-term
E{ = Z{/B;

to be given by the r-th cycles modulo the r-th boundaries, for 1 < r < oo. Then E! = H,(X,, X, 1)
and, assuming convergence, F° = F, /F, ;. The wonderful algebraic fact is that there is a differential
d": ET — E"__ of degree (r — 1) that makes the collection {E”,d"}, a spectral sequence, so that there
are isomorphisms Hy(E7,d") = E7*! for all finite r > 1.

Theorem 2.10. Suppose that H.(Xs) = 0 for s < 0 and that colimg H,(X) = H.(X). Then there is
a spectral sequence of homological type, with B}, = Ho(Xs, Xs_1) and d': EL, — E} |, given by the
composite homomorphism

o o
Hs+t(XS7Xs—1) — Hs+t—1(Xs—1) j—> Hs+t—1(Xs—1aXs—2)7

converging strongly to H.(X).

2.4 Unrolled exact couples
Following Massey and Boardman, we extract the essential algebraic structure from the discussion above.

Definition 2.11. An unrolled exact couple (of homological type) is a diagram

Ay o—t v Ay 1 — s Ay —L 5 Ay — .
RN J\ &
. E, 4 E; Eqsiq
of graded abelian groups and homomorphisms, in which each triangle
e A A B S Ay —

is a long exact sequence. Usually i and j will be of degree 0 and 0 of degree —1.
For r > 1, let
Zr =0 Yimi"t Ay, — Asy)

be the r-th cycle subgroup of Ej, let
BT =j(keri" ' Ay — Agyr1)
be the r-th boundary subgroup of E;, and let
E{ = Z{/B;
be the component of the E"-term in filtration degree s. Let
d,: E, — E._,

be the r-th differential, given by d%([x]) = [j(y)], where x € Z7, y € As_, and 9(z) = i"~*(y).

12



Proposition 2.12. d" is well-defined, kerd, = ZI™'/B? and imd.,, = BI*'/BI, so H(ET,d") =
E™*Y. Hence {E",d"}, is a spectral sequence of homological type.
Proof. (Straightforward.) O

Definition 2.13. Let G = colim; As be the direct limit. Let Fy = im(A4; — G), so that there is an
increasing, exhaustive filtration --- C Fs_1 C Fs C --- C G.

Theorem 2.14 (Cartan-Eilenberg(?)). Suppose that A = 0 for s < 0, so that E} =0 for s <0, and
all but finitely many differentials leaving any fized bidegree are zero. Then {Fg}s is trivially a complete
Hausdorff filtration, and there are isomorphisms EX® = F/F,_1, so that the spectral sequence {E",d"},
converges strongly to the colimit G.

2.5 Spectral sequences of cohomological type

If we apply cohomology, in place of homology, to the filtered spectrum X, we get a diagram

H*(X) H*(X,) —— H*(Xo_q) — ...

~
~
L —
JT _ 7
p
—1

H*(Xs, Xs-1)

where 0 has cohomological degree +1. This leads to an unrolled exact couple and a spectral sequence,
where we may be able to recover H*(X) as the limit group lims H*(X,) under the assumption that
colimg H*(X;) = 0.

We shall instead focus on spectral sequences that converge to the colimit groups. By passing to
relative cohomology groups, we can transform the diagram above as follows:

s HH(X, X)) s HY (X, Xyo1) —— . —— H*(X)

Fs
~
~ L
s> ‘
~

H*(XsaXs—l)

This leads to an unrolled exact couple and a spectral sequence, with A_; = H*(X,X;_1) and E_; =
H*(Xs,Xs_1), so that i = j*, j = ¢* have degree 0 and d = § has (cohomological) degree +1. Note that
the El-term, given by the relative groups H* (X, X,_1), is the same as before. The sign change in the
filtration grading is undesirable. We therefore convert to a cohomological indexing, by letting A* = A_g
and E* = F_;. In the example above we would then have A®* = H*(X, X;_1) and F* = H*(X,, Xs_1).

If there is an integer N such that H*(X,X,) = 0 for s > N, or more subtle limiting conditions
are satisfied (see the subsection on conditional convergence), then the associated spectral sequence will
converge to colimg H*(X, X,). If colimy H*(X;s) = 0 then this is isomorphic to the desired abutment
group H*(X).

We shall mostly be interested in filtered spectra where X, =Y for all s > 0, so that the E'-term is
concentrated in the region where s < 0. In this case is is also convenient to convert to a cohomological
indexing, by letting Y* = X_, so that we have a tower

R S D A RERI (N (L

of spectra. Let K*® be the mapping cone (homotopy cofiber) of the map i: Y**! — Y  so that there is
a cofiber sequence

ystl Lys Jy s 9, systl
for each s > 0. We may apply any generalized homology theory to this diagram, such as the (stable)
homotopy groups of spectra. This leads to an unrolled exact couple

o (V) I (V) s (V) s 1 (Y0) =— (V)

T (K?®) 7. (KY)

13



where i, and j, have degree zero and O has (homotopical) degree —1. We have A®* = 7,(Y*) and
E® = (K?®).

Definition 2.15. A spectral sequence of cohomological type is a sequence of bigraded abelian groups
B = {E3'},,, differentials d.: E}* — E’* of bidegree (r,—r + 1), and isomorphisms EJ}, =2
HSY(EX*,d,) for all r > 1. We call EX* the E,-term, d, the d,-differential, s the filtration degree
and s + t the total degree of the spectral sequence.

Definition 2.16. A spectral sequence of Adams type is a sequence of bigraded abelian groups E* =
{E3$'}s 1, differentials d,.: EX* — E** of bidegree (r,7 — 1), and isomorphisms Efﬁl ~ HSYES* d,)
for all » > 1. We call E* the E,-term, d, the d,-differential, s the filtration degree and ¢ — s the total

degree of the spectral sequence.

Definition 2.17. An unrolled exact couple (of cohomological type, resp. of Adams type) is a diagram

ASH2 g pstl L gs P psm1

RENUENINY

Es+1 Es Es— 1

of graded abelian groups and homomorphisms, in which each triangle
e AP g Ty s O sty

is a long exact sequence. The respective bidegrees of i, j and 9 are (—1,1), (0,0) and (1,0) in the
cohomological case and (—1,—1), (0,0) and (1,0) in the Adams case.
For r > 1 let
75 =0 M (imi"h ASTT o AT

be the r-th (co-)cycle subgroup of E*| let
BE = j(keri""!t: A% — ASTTH
be the r-th (co-)boundary subgroup, and let
B} = 7;/B;
be the filtration degree s component of the E,-term. Note that Z7 = E® and Bf = 0so Ej = E°. Let
dé: BES — EStT

be the r-th differential, satisfying d2([x]) = [j(y)], where z € Z, y € A**" and d(z) = i"~(y). Then d,
has bidegree (r, —r 4+ 1) in the cohomological case and bidegree (r,r — 1) in the Adams case.

Proposition 2.18. d, is well-defined, kerd; = Z7 /By and imd; = B;,,/B;, so H*(E},d,) = E; .
Hence {E,,d,}, is a spectral sequence of cohomological type, resp. of Adams type.

Proposition 2.19. Consider a tower of spectra

ystl L L ys sYl Lyl ——
S S
N lj N Jj
o~ _ NN
Ks KO

where K* is the mapping cone of i: Yt — Y and 0: K° — XYYt is the cofiber map. Applying
homotopy one obtains an unrolled exact couple of Adams type, giving rise to a spectral sequence of
Adams type with Ey-term

Ef’t = m—s(K*)

14



S
dg.(b)
1 d3.(\0)
N
2 d1£a)
a \e
0
0 2 4 6 8 t—s

Figure 1: Adams type differentials

for s >0, and d*-differential di"*: E{* — ESTY' given by the composite

sy 9 s x
ﬂ't,s(K() — 7Tt,3,1(y +1) ]—) thsfl(Kerl) .

If the images F* = im(m.(Y?®) — m.(Y)) define a complete Hausdorff filtration of colim, m.(Ys) = m.(Y),
meaning that lims F* = 0 and Rlim, F* = 0, and there are isomorphisms E3 = F$/FtL for all s > 0,
then the spectral sequence converges strongly to m.(Y).

For spectral sequences of Adams type, it is traditional to display the E,-terms in a coordinate system
with the total degree ¢ — s on the horizontal axis, and the filtration degree s on the vertical axis, thus
using (t—s, s)-coordinates, rather than (s, t)-coordinates. The d,-differentials change (t—s, s) by (—=1,7),
mapping one unit to the left and r units upwards.

The groups ES! = E%5T" contributing to the homotopy group m,(Y) in the abutment are precisely
those that sit in the column ¢t — s = n, for each integer n.

2.6 Conditional convergence

Following Boardman, we address the issue of convergence for spectral sequences of cohomological type,
or of Adams type. For simplicity, we concentrate on the case when Ef = 0 for s < 0, so that all but
finitely many differentials entering any fixed bidegree are zero.

Definition 2.20. Consider an unrolled exact couple (of cohomological type, or Adams type)

AsHL 1 gs . Al L A0 —— @
S N
Es . E°

with A = A5 = G and E® = 0 for all s < 0. We say that the resulting spectral sequence converges
conditionally (to G = colimg Ay) if limg A* = 0 and Rlim; A®* = 0. Note that conditional convergence is a
condition on the groups A® in the unrolled exact couple, not on the filtration groups F'* = im(A* — G).

Definition 2.21. Let Z3, = lim, Z; =), Z; be the infinite cycles in E®, let BS, = colim, B; =, B}
be the infinite boundaries, and let ES = Z5_ /B35 be the filtration s component of the E.-term.

As in the homological case we have inclusions Z* = kerd C Z3 and B, C B® = j.(ker(4° — G)).
We also have isomorphisms F*/F*T1 = 75 /B%. We have assumed that E* = 0 for s < 0, so B = B3, =
B? for all r > s. To establish strong convergence, we therefore need to know that Z° = Z3  and that
{F*}, is a complete Hausdorff filtration. The E..-term is the limit of the sequence of inclusions

E =lmE C---CE},CE;C...
T
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where r > s. The following derived limit group measures the difference between conditional convergence
and strong convergence.

Definition 2.22. Let RE] = Rlim, E; be the derived E-term.

Lemma 2.23. If there is a natural number N such that E%, = E*_ (the spectral sequence collapses at
the En-term), or such that EY' is finite in each bidegree (s,t), then RE, = 0.

Consider an unrolled exact couple

AstL 1 gs Al L0 ——
\ Jj X Jj
Es E°

Theorem 2.24 (Boardman). Suppose that (a) A® = A® for s <0, so that E* =0 for s <0 and all but
finitely many differentials entering any fized bidegree are zero, (b) The spectral sequence is conditionally
convergent, so that lims A* = 0 and Rlimg A®* = 0, and (¢) RE« = 0. Then the spectral sequence
converges strongly to A = G. In other words, the subgroups F'* = im(A° — G) form an exhaustive
complete Hausdorff filtration of G, and there are isomorphisms F*/Fst1 =~ ES_.

This is part of Boardman’s Theorem 7.3, which builds on his Lemmas 5.6 and 5.9. We omit the proof.
Consider a tower of spectra

ystl L L ys Yl y0——vy
X S
N lj N Jj
o~ _ NN
Ks KO

where K* is the mapping cone of i: Y*T! — Y and 9: K° — XY **! is the cofiber map.

Definition 2.25. The homotopy limit of the tower Y° is the homotopy fiber
. s s 1—1 s
holimy* — JTy* = []v
S S
where 1 is the identity map and i is the composite of the identification [T, Y* =[], Y**! and the product
of the maps i: Y5T1 — Y%,
Proposition 2.26 (Milnor). There is a short exact sequence
0 — Rlim 7,41 (Y?) — 7, (holimY?®) — lim 7, (Y*) — 0
S s S

for each integer n.

Consider the unrolled exact couple with A° = 7,(Y®) and E° = 7,(K?) associated to a tower of
spectra as above. The following two conditions ensure strong convergence to m,(Y").

Corollary 2.27. The associated spectral sequence is conditionally convergent if and only if holimg Y is
contractible. If m,(K?®) is a finite group, for each s and n, then RE~ = 0. If both conditions hold then
the spectral sequence s strongly convergent.

Proof. Conditional convergence means that A>° = lim, 7,(Y*) and RA* = Rlim, 7. (Y®) both vanish.
By Milnor’s lim-Rlim sequence this is equivalent to the vanishing of 7. (holim,;Y®). We have E® =
.« (K*), so if each m,(K*) is finite then F; is finite in each bidegree, which implies that RE,, =0. O
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3 The Steenrod algebra

3.1 Steenrod operations

We start at the prime p = 2. For brevity, we write H,(X) for H.(X;F2) and H*(X) for H*(X;F2).

Theorem 3.1 (Steenrod, Cartan). (a) For each pair of integers i,n > 0 there is a natural transforma-
tion Sq*: H™(X) — H" (X)) of functors from based spaces to abelian groups.

(b) Sq° =1 is the identity.
(c) If n = |z| then Sq"(x) = x? is the cup square.
(d) If i > |z| then Sq'(z) = 0.

(e) (Cartan formula) Sq*(zy) = Zf:o Sq(z)Sq* i (y).

We call Sq* the i-th Steenrod (reduced) squaring operation. Naturality means that for each base-point
preserving map f: X — Y we have f*Sq'(z) = S¢'(f*x), and Sq' is a homomorphism. The Cartan
formula can be rewritten as Sq¥(zy) = Dtk Sqi(x)Sq’(y), with the convention that Sq'(z) = 0
for i < 0, or in terms of the smash product A: H"(X) ® H™(Y) — H""™(X AY) as S¢¥(z A y) =
S 1spn 54 (@) A SqP ().

The properties in the theorem can be taken as axioms, and imply the following results. Recall
that the Bockstein homomorphism of the coefficient sequence Fo — Z/4 — Fy is the connecting ho-
momorphism 3: H"(X) — H"1(X) in the long exact sequence associated to the short exact sequence
0 = C*(X;Fy) — C*(X;7Z/4) — C*(X;Fy) — 0 of cochain complexes. Let ¥: H™(X) — H"t(X) be
the suspension isomorphism.

Theorem 3.2. (a) Sq' = j3 is the Bockstein homomorphism.
(b) (Adem relations) If a < 2b then
[a/2] b1 o
SqeSqb = Z ( _j)Sqa"’b_]qu .
- a—2j
7=0
(c) Sq'(Sx) = £5¢ (2).

With the convention that (Z) = 0 for k < 0, the summation limits j > 0 and j < [a/2] can be ignored.

Notice that Sq'Sq® = S¢®*? for b even, and Sq'Sq® = 0 for b odd. Note also that Sq?*~1Sq® = 0 for all
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b. The Adem relations in degrees < 11 are:

Sq'Sq' =0 Sq'Sq® = S¢°

Sq*Sq* = S¢* S¢*Sq" = Sq° + S¢®Sq'
SqtSe® =0 S¢®Sq® =0

S¢*Sq* = Sq*Sq* Sq*Sq® = Sq° + Sq*Sq* + Sq" Sq®
SqtSqt = S¢° Sq°Sq* = Sq¢"Sq?

S¢*Sq® = Sq° + Sq*Sq* Sq'Sq¢° =0

S¢*Sq* =0 S¢*Sq® = Sq" + Sq¢°Sq*
SqtSq® =0 Sq*Sq" = Sq°Sq*

Sq?Sq* =S¢5 + S¢°Sqt Sq*Sq¢® = Sq¢'° + S¢®Sq?
S¢®Sq® = Sq¢°Sqt Sq¢°Sq® = Sq¢°Sqt

SqlSq® = S¢° Sq®Sq* = Sq¢"Sq?

S¢2Sq° = 54°Sq" Sq'Sq"0 = Sg't

S¢*Sq* = Sq7 S25¢° = S¢°Sq"

Sq*Sq® = S°Sq? SPSq® = Sqit

SqtSq" =0 Sq*Sq" = Sq't + S¢°S¢?
S¢2Sq° = 547 54" S¢°Sq® = 5q'' + S¢°Sq?
S¢®Sq® = Sq"Sqt S¢5Sq® = Sq¢°Sq* + S¢®S¢?
Sq*Sq* = Sq"Sq" + Sq¢°Sq? Sq"Sq* =0

Sq¢°Sq® =0

To prove (a) one considers the case X = RP2. To prove (b) one considers X = (RP>)" for large
r, as we will outline below. To prove (c) one uses the smash product form of the Cartan formula for
Yy =St

Now let p > 2 be an odd prime.

Theorem 3.3 (Steenrod, Cartan). (a) For each pair of integers i,n > 0 there is a natural transforma-
tion P': H"(X;F,) — H"2W=U(X:F,) of functors from based spaces to abelian groups.

(b) P° =1 is the identity.

(c) If 2k = |z| then P*(z) = P is the cup p-th power.
(d) If 2k > |z| then P*(x) = 0.

(e) (Cartan formula) P*(zy) = Zf:o Pi(z)P*=i(y).

Let §: H"(X;F,) — H""'(X;F,) be the Bockstein homomorphism associated to the coefficient
sequence F, — Z/p*> — F,,.

Theorem 3.4. (a) (Adem relations) If a < pb then

[a/p] .
Pan — Z(_l)a—i-j <(p - 1)(b - ]) - 1) Pa-‘rb—ij .
= a—pj
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(b) If a < pb then

PeppPt = [%é](—l)aﬂ' <(p — - j)) gpatt-ips

=0

) ““i/p](_l)m ((p -1 —-j) - 1) patb=igpi

= a—pj—1

(c) P{(Xz) = XP(x) and B(Xx) = —X3(x).

The first few p-primary Adem relations (for b = 1) are

pepl — (71)0, (p - 2) petl
a

Paﬂpl — (_1)a (pa 1>BPG+1 _ (_1)a (p - 2)Pa+1ﬂ

a—1

for 0 < a < p, which imply that (P!)? =0, and PP3P' = SPPPL.

3.2 Construction of the reduced squares

We follow Steenrod—Epstein, Chapter VII and Hatcher, Section 4.L.

Definition 3.5. Let H,, = K(F2,n) be an Eilenberg—Mac Lane complex of type (Fa,n), i.e., a space
with m;(H,) = 0 for i # n and m,(H,) = Fa. Such spaces exist, and are uniquely determined up to
weak homotopy equivalence. There is a universal class ¢,, € H "(H,) that corresponds to the identity
homomorphism Fy — Fy under the isomorphisms H"(H,,) = Hom(H,(H,),F2) = Hom(r,(H,),Fs) =
Hom(FQ, Fg)

Note that H; ~ RP.

Theorem 3.6 (Eilenberg-Mac Lane). There is a natural isomorphism [X

JH,] = H™(X) taking the
homotopy class of a base-point preserving map f: X — H,, to the image f*(i,)

of the universal class.

See Hatcher (2002) Theorem 4.57.

The smash product ¢, AL, € I;TQ”(H”/\Hn) is represented by a map ¢: H, AH,, — Has,. By homotopy
commutativity, there is a homotopy I+ A H, A H,, — Ha, from ¢ to ¢y, where v: H, NH,, - H, NH,, is
the twist map. Thinking of the interval I as the upper half of a circle S!, this homotopy can be thought
of as a Cs-equivariant map S_1~_ A H, A H,, — Ha, where Cy = {1} acts antipodally on S! and by the
twist on H, A H,. Equivalently, it corresponds to a map ¢ : S_1~_ Ac, Hn AN Hy, — Ha,. This map ¢
extends (uniquely, up to homotopy) to a map

®: 5 Ac, Hy A H,, — H,,

where S°° has the antipodal action. We call S° Ac, H,, A H,, the quadratic construction on H,,.
There is a diagonal map A: H, — H, A H,, and an induced map

V=1AA:RP®AH, = S Ac, Hy A H,y,

where RP*> = S™ /C5. The composite map ®V: RP*AH,, — Hj, induces a map (®V)* in cohomology,

taking the universal class .o, to an element in degree 2n of H*(RP® A H,) = H*(RP>®) @ H*(H,).
Writing H*(RP>°) = P(u) = Fa[u] with |u| = 1, we can write (PV)*(12y,) as a sum of terms

(PV)*(12n) = Z u" " ® Sq (1)

=0
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where Sq¢'(1,) € fl"+’(Hn) More generally, for any class z € H” (X) represented by a map f: X — H,
we have a commutative diagram

RP® A X —— 5% Ag, X A X

1/\fl J(l/\f/\f

RP A H, —— S Ac, Hy A H, —2— Hy,

\_/

oV

In terms of the isomorphism H*(RP> A X) = P(u) ® H*(X) we can define classes Sq¢'(x) € H"(X)
by the formula

(IAS)(PV)(t2n) = Zu"ﬂ‘ ® Sq'(x).

It is then clear that f*Sq'(:,) = S¢'(x), and naturality follows easily. The restriction of ®V to H,, =
RPE A H, is the diagonal A: H,, — H, A H,, followed by ¢: H, A H, — Ha,, taking ta, to ¢, hence
Sq"(z) = 22,

For the Cartan formula, consider the map p: H, A H,, — Hp,, representing the smash product
tn A tm. There is a commutative diagram

RP> A Hyp g v S%° NGy Hypm A Hy g —————— Hopym)
MHT Tl/\#/\u
RP® A Hy, A Hyyy ————— 5% Agy Hy A Hyy A Hyy A Hy, "
A% J

RP® ARP® A Hy A Hy ~2Y5 8% Ay Hy A Hy A S Ay Hy A Hyy =225 Hypy A Hop,
where 7 is induced by the (Cy — Ca x Cy)-equivariant diagonal embedding S° — S A ST . The right
hand rectangle commutes by a check in H2("+m) (—) of the central term. Granted this, the class ta(,4m)
at the upper right pulls back to ts, ® to,, at the lower right, and across to E” TR um I @ Sqi(Ln) ®
Sq¢’ (tm) at the lower left. Pulling up the center left term we obtain -, s u" ™"~/ @ Sq*(1n) @ S¢’ (tm)-
Going the other way around the diagram, we first come to Y., u"*™ % @ S¢¥(t,,4,,), and then to
> u TR SqR (1, ALy ). Comparing the coefficients of u™™ =% we get Sq¥ (1, At) = Dtk Sqt (1) A
Sq¢’(ty,). This implies S¢*(z A y) = Diti=k Sqi(x) A S¢’ (y) and the Cartan formula by naturality.
The fact that Sq°(z) = = can be deduced from the case X = S1.

3.3 Admissible monomials

Again, we start with p = 2. For x € ﬁ*(X) let Sq(z) = Y, Sq¢'(z) be the total squaring operation.
Then Sq(zy) = Sq(x)Sq(y) by the Cartan formula.

Lemma 3.7. The Steenrod operations in H*(RP®) = H*(RP™) = P(z), with |z| = 1, are given by
Sq(z™) = (7)a" .

Proof. Sq(z) = z + 22 = x(1 + ) since S¢°(z) = z and Sq'(x) = 2%. Hence Sq(a™) = Sq(z)"
2"(1+ z)"™. Thus Sq¢'(z™) = (7)™ in degree n + .

|

Let (RP>)" = RP> x --- x RP> be the product of r > 1 copies of RP>, so that (RP>)] =
RP A--- ARP°. Then H*((RP*)%) = H*((RP*)") = P(x1,...,2,) with || =--- =|z,| = 1. The
Cartan formula implies:

Lemma 3.8. The Steenrod operations in H*((RP*>)") = P(x1,...,x,) are given by

k(.mn e\ ni Ny ni+i Nty
Sq (xll...xr)_ E <11)<@ >x11 1...xr .
T

i1 tin=k
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Using this, it is matter of algebra to check that the Adem relations hold for the Steenrod squares in

P(z1,...,2,), in the sense that for a < 2b the action of S¢” o 5S¢ equals the sum over j of the actions
of (°,157)Sq™ "7 o 5¢/.

Definition 3.9. Let the mod 2 Steenrod algebra, &/ = &/(2), be the graded, unital, associative Fo-

algebra generated by the symbols Sq* for i > 0, subject to the relation S¢” = 1 and the Adem relations

Sq*Sqb = > (bail;jj) Sq*tt=3iS¢? for all a < 2b.

For any based space X, the reduced cohomology H *(X) is naturally a left module over the Steenrod
algebra, i.e., an /-module, with S¢!(x) = Sq¢*(...Sq(x)...). We write

Ao/ @ H(X) — H*(X)
for the left module action map.

Definition 3.10. For each sequence I = (iy,...,4,) of non-negative integers, with £ > 0, let S¢! =
Sq't ... Sq" be the product in & = &7/(2). We say that I has length ¢ and degree iy + - -- +i,. We say
that I (or Sq') is admissible if is > 2i,,; for all 1 < s < £ and i > 1. The empty sequence I = () is
admissible, with length ¢ = 0, and Sq0 = 1.

The admissible monomials of degree < 11 are S¢U = 1 in degree 0, and:
(1) Sq
(2) S¢?
(3) S¢*, Sq*Sq’
(4) Sq¢*, S¢*Sq’
(5) Sq¢°, Sq*Sq’
(6) Sq° Sq°Sq*, Sq*Sq®
(7) Sa’, Sq4°Sq*, Sq°Sq?, Sq*Sq*Sq'
(8) Sq®, Sq"Sq', Sq°Sq?, Sq°Sq*Sq'
(9) Sq°, Sq*Sq', Sq"S¢?, S¢°Sq*, Sq¢°Sq*Sq'
) Sq', Sq°Sq", Sq®Sq?, Sq7Sq?, Sq7Sq?Sq, SqtSq>Sq
(11) Sq'', S¢'9Sq', Sq°Sq?, Sq*Sq®, Sq®Sq?Sq", Sq7Sq3Sq"
Theorem 3.11. The admissible monomials form a vector space basis for the Steenrod algebra:
o =To{Sq’ | I is admissible} .

See Steenrod and Epstein (1962) Theorem 1.3.1.

The Adem relations imply that any inadmissible S¢’ can be written as a sum of admissible monomials,
so the admissible Sq’ generate </. To prove that they are linearly independent, one uses the fact that
the Adem relations hold for the Steenrod operations on H*((RP*>)") = P(z1,...,,), so that there is a
pairing

o @ P(x1,...,2.) — Pzy,...,2,)
making P(x1,...,x,) a graded, left &/-module. The action on the product w, = x1 - - -z, € H"((RP>°)")
is particularly useful. This is the top Stiefel-Whitney class of the canonical r-dimensional vector bundle
over (RP*)". It defines a homomorphism

VQ{—>P(Z‘1,...,$T)

of degree r, taking Sq’ to Sq**(...Sq*(w,)...). It can be checked that this homomorphism takes the
admissible monomials Sq’ of degree < 7 to linearly independent elements in P(xq,...,z,) (in degrees
r < % < 2r). Letting » grow to infinity, this implies that the admissible Sq’ are independent.
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Corollary 3.12. The homomorphism &/ — P(z1,...,x,), taking Sq' to Sq' (w,) for w, = x1 -+ x,, is
injective in degrees < r (in the source).

Hence, in order to verify a formula in o/ in degrees < r, it suffices to establish this formula for the
action on w, in H*((RP*)"). This gives one way to verify the Adem relations.

Definition 3.13. The Steenrod algebra is connected as a graded algebra, in the sense that it is zero
in negative degrees and the unit map n: Fo — &7 is an isomorphism in degree zero. Let e¢: o/ — Fy
be the augmentation, such that en = 1, and let I(«/) = ker(e) be the augmentation ideal, i.e., the
positive-degree part of /. The decomposable part of o7 is the image I(/)? of I(</) ® I(</) under
the algebra multiplication ¢: & ® & — /, and the vector space Q(«/) = I(«/)/I1(</)? is the set of
indecomposables in 7.

Theorem 3.14. S¢* is decomposable if and only if k is not a power of 2. Hence the elements qui for
i>0 (ie., Sq*,Sq¢% Sq*,Sq¢®,... ) generate &/ as an algebra.

See Steenrod—Epstein (1962) section I1.4.
The Adem relation

b1 Wy .
< >Sqa+b — Sanqb+ Z ( ' )SanerSqJ
a = a—2j

for 0 < a < 2b shows that Sq®*?® is decomposable if (bgl) =1 mod 2. If k is not a power of 2 then
k=a+bwith0<a<2 andb=2". Thenb—1=1+2+---+271 50 (°-!) =1 mod 2 by the
following lemma:

Lemma 3.15. Let a =ag+ a12+ - + a2’ and b=">by + 12+ - - - + b2 with 0 < as, b, < 1. Then

() =1 (%) moa

20—
j=1

Consider the action on 22" in H*(RP*>) = P(z). On one hand, S¢’ (x2) = (2;)xj+2i =0 for 0 < j < 2,

while S¢% (in) = 227" £ 0. This leads to a contradiction.

Now let p be odd.

For the converse, suppose that Sq2i = > 1ijqj is decomposable, where each m; € I(</).

Definition 3.16. Let the mod p Steenrod algebra, & = 7(p), be the graded, unital, associative
FF,-algebra generated by the symbols P! of degree 2i(p — 1) for i > 0, and 8 of degree 1, subject to the
relations P° =1, 2 = 0 and the Adem relations.

Definition 3.17. For each sequence I = (e€p,i1,€1,...,%0,€,,0,0,...) of non-negative integers, with
€s < 1,let P = Beopirger . Pie3e be the product in .« (p). We say that I is admissible if 15 > €, +pisiq
for all s > 1.

Theorem 3.18. The admissible monomials P' form a basis for the Steenrod algebra:
A (p) = F,{P! | I admissible} .
See Steenrod and Epstein (1962) Theorem VI.2.5.

Theorem 3.19. P* is decomposable if and only if k is not a power of p. Hence the elements 3 and pr'
fori >0 generate & (p) as an algebra.
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3.4 Eilenberg—Mac Lane spectra

Definition 3.20. Let H = {n +— H,} be the mod 2 Eilenberg-Mac Lane spectrum. The structure maps
>H, — H,11 are left adjoint to the homotopy equivalences H,, = QH, 1, for all n > 0.

Proposition 3.21 (Whitehead). There are natural isomorphisms H,(Y) 2 m,(HAY) = [S", H AY]
and H*(Y) 2 w_,F(Y,H) = [Y,X"H] for all spectra Y and integers n.

The composite RP> x --- x RP* — Hy A--- A Hy — H, induces a homomorphism in cohomology
that takes the universal class ¢, € H"(H,) to w,.

Proposition 3.22 (Serre). The homomorphism
Yo/ — H*(H,),
taking X" Sq’ to Sq' (1), induces an isomorphism in degrees * < 2r.
Corollary 3.23. There is an isomorphism
o = H*(H) = [H, H]_,
of graded Fy-algebras, taking each Sq’ to its representing map H — X1H.

This shows that the Steenrod operations account for all stable mod 2 cohomology operations. The
mod 2 cohomology of any spectrum Y is a left o/-module, and the module action map

A @ H(Y) — H*(Y)
can be written as the composition pairing
[H, H]. @ [Y, H]. — [V, H].
taking S¢': H — X'H and x: Y — X"H to X*(Sq")oz: Y — X" H.
The mod 2 reduction h; of the Hurewicz homomorphism is the composite
(V) L5 H (Y,Z) — H.(Y).

The adjoint
p: H.(Y) — Hom(H*(Y),F3)

to the Kronecker pairing is an isomorphism when H,(Y') is of finite type, i.e., if H,(Y) = H,(Y;Fs) is
finite-dimensional (= finite) for each integer n. The composite

pohy: m(Y) — Hom(H*(Y),Fy)

is the homomorphism taking the homotopy class of a map f: S™ — Y to the induced homomorphism
f*r H*(Y) —» H*(S™) = ¥"F,. By naturality of the Steenrod operations, the homomorphism f* is one
of left &/-modules, so that p o hy factors as a homomorphism

d: m,(Y) — Hom,y (H*(Y),Fs)

followed by the inclusion Homg (H*(Y),F2) C Hom(H*(Y),F2). More generally, there is a homomor-
phism
d: [ X,Y] — Homg (H*(Y), H* (X))

(the cohomology d-invariant) taking the homotopy class of f: X — Y to the induced .«7-module homo-
morphism f*: H*(Y) —» H*(X).

Lemma 3.24. When Y = X" H, for any integer n, the homomorphism
d: 7,(S"H) = Hom,, (H*(S"H), Fy)
is an isomorphism. More generally, there is an isomorphism

d: [X,S"H] = Hom, (H*(S"H), H*(X))

for any spectrum X .
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Proof. There is a class ¢, € H"(X"H), with ¢,, = X", such that [f] — f*(¢,) defines an isomorphism
[X,X"H] =2 H"(X). Since H*(X"H) = X" is the free &/-module generated by ¢, the correspondence
f* = f*(tn) defines another isomorphism Homg (H*(X"H), H*(X)) & H™(X). Thus d: [f] — f* is
also an isomorphism. O

Definition 3.25. We say that a spectrum Y is bounded below if 7,(Y") is bounded below, i.e., if there
exists an integer N such that 7, (Y) =0 for n < N.

Lemma 3.26. Suppose that K = \/, X" H is a wedge sum of suspended Eilenberg-Mac Lane spectra,
such that {u | n, < N} is finite for each integer N.
Then the canonical map \/,, X" H — [, X" H is a stable equivalence, and

d: 7,(K) — Hom, (H*(K),Fs)
is an isomorphism. More generally, there is an isomorphism
d: [X, K] — Hom,, (H*(K), H* (X))
for any spectrum X.

Proof. The finiteness hypothesis is equivalent to asking that 7, (K) is bounded below and H,(K) is of
finite type. It implies that the canonical map \/, X"*H — [], X" H is a weak equivalence, since the
induced map in homotopy is the isomorphism @, ¥"Fy — [], £"*F5. We deduce that

H(K) = [[2mo =@ rmo =@ H (2" H)

is a free &7-module, so
X, K] = [X, [[2mH] = []1X,5"H]

and

Hom,, (H*(K), H*(X)) 2 [ [ Hom (£" o, H*(X)) = [ [ Hom,, (H* (5" H), H* (X))

Hence d for K is the product of the isomorphisms d for the summands/factors X"+ H, and is therefore
an isomorphism. O

The pairings ¢: H,, A H, — H,,1, (representing the cup product ¢y, U t,, or more precisely, its
reduced version iy, A t,) combine to a map ¢: H A H — H of spectra. Together with the unit map
n: S — H coming from the maps S™ — H,, (representing the generator of ﬂ"(S”)), these make H a
homotopy commutative ring spectrum. In fact it is a homotopy everything ring spectrum, i.e., an E.,
ring spectrum.

Lemma 3.27. Let Y be bounded below with H.(Y) = Fo{aw}u of finite type. Let {ay}y be the dual
basis for H*(Y), with |ay| = |ay| = ny. Let c: S™ — HAY and a,: Y — ™ H be the representing
maps. Then the sum of the composites (PA1)(1Aay): X" H — HAY and the product of the composites
(AL (1 Aay): HANY — E™Y are stable equivalences

\/Z"uHiH/\YéHz"uH.

Corollary 3.28. Let j: Y — K be a map of spectra, where K =\/,, X" H and {u | n, < N} is finite for
each N, and suppose that j*: H*(K) — H*(Y) is surjective. Then a map f: X =Y of spectra induces
the zero homomorphism f*: H*(Y) — H*(X) if and only if the composite jf: X — K is null-homotopic.

Proof. We have an isomorphism d: [X, K] = Hom (H*(K), H*(X)) taking jf to f*j*, and an injective
homomorphism Hom g (H*(Y), H*(X)) — Homg (H*(K), H*(X)) taking f* to f*j*, so [jf] = 0 if and
only if f* =0. O
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The corollary tells us that in the diagram
xLy Lk

the map f induces the zero map in cohomology, if and only if the composite jf is null-homotopic. By
the lemma above, the unit map n: S — H inducesamap j: Y = SAY — HAY ~ K, where K has the
properties of the corollary when Y is bounded below with H,(Y") of finite type. Furthermore, the map
J: Ho(Y) = H,.(K) is split injective, since it is the homomorphism of homotopy groups represented by
the map

IAgAL: HANY 2 HASANY — HANHANH

which admits the retraction ¢A1. By the universal coefficient theorem, j*: H*(K) — H*(Y) is surjective.
Hence, under these hypotheses on Y we can use the diagram

x Ly L H Ay

with 7 = n A1 to interpret the vanishing of f* in homotopical terms.

4 The Adams spectral sequence

We follow Bruner’s Adams spectral sequence primer. We continue working at p = 2, using the abbrevi-
ations H,(Y) = H.(Y;Fs) and H*(Y) = H*(Y; F2).

4.1 Adams resolutions

Definition 4.1. Let Y be a spectrum with 7, (Y) bounded below and H,(Y) = H,.(Y;F3) of finite type.
An Adams resolution of Y is a diagram of spectra

. Y2yl L y0——y
S X S
N RN RN .
3\\ l] a\\ lj 8\\ J/]
K2 K! KO

where V51 5 vs Ly ks 94 3y st s a cofiber sequence, for each s > 0, such that (a) each K* is
a wedge sum of suspended mod 2 Eilenberg—-Mac Lane spectra that is bounded below and of finite type,

and (b) each homomorphism j*: H*(K?®) — H*(Y®) is surjective.

Writing K* ~ \/, X"« H, the finiteness condition in (a) is the same as asking that {u | n, < N} is
finite for each integer N. By induction on s it implies that each Y*® is bounded below with H.(Y®) of
finite type. In view of the long exact sequence

-

oo NS D (k) s 5y S Byt

the condition that j* is surjective is equivalent to asking that ¢* = 0 or that 9* is injective. ((Also
homological interpretation, by the universal coefficient theorem.))

Lemma 4.2. Adams resolutions exist.

Proof. Suppose that Y* has been constructed, with 7,(Y®) bounded below and H,(Y®) of finite type.
Let K = HAY? andlet j =1An:Y" =SAY® - HAY® = K° Then K° is a wedge sum
of Eilenberg-Mac Lane spectra, bounded below and of finite type, and j* is surjective. Let Yt1 =
hofib(j: Y — K*) be the homotopy fiber. Then 7, (Y **!) is bounded below by the long exact sequence
in homotopy, and H.,(Y**1) is of finite type by the long exact sequence in mod 2 homology. Continue
by induction. O
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Let H be the cofiber of the unit map 7: S — H, so that there is a cofiber sequence
>'H—S-5H-—H

The unit map induces the augmentation e: &/ — Fy in cohomology, so H*(H) = I(</) = ker(e) is the
augmentation ideal.
Smashing with Y* we get the cofiber sequence

STHAY 5y L HAY S HAY
so that the construction in the proof above gives K* = HAY® and Yt = X" 1H A Y,

Definition 4.3. The canonical Adams resolution of Y is the diagram

e (UM AY — 5 ST H AﬁY%Y
~ * N
8\\\ JJ a\\\\ } a\\\ JJ
HAETTH)2AY HAYSTTHAY HAY
where

Yi= (ST AY
Ks=HASTTH)MAY

and i, j and O are induced by X"'H — S, n: S — H and H — H, respectively. We note that the
canonical resolution is natural in Y.

Lemma 4.4. For any Adams resolution, let

Ps — H*(ESKS)
as — (9*]’*: H*(E‘SK‘S) — H*(Zs_le_l)

and € = j*: H*(K°) — H*(Y). Then the diagram
PP P P S HY(Y) 50

is a resolution of H*(Y) by free o -modules, each of which is bounded below of finite type.

The homomorphisms 0; and e all preserve the cohomological grading of H*(Y') and P,, which is
called the internal grading and usually denoted by t.

Proof. By assumption (a) each j* is surjective, so each i* is zero and the long exact sequences in
cohomology break up into short exact sequences

0 — H* (25 y s+l 2 (25 k®) L 5 (2°Y*) — 0
for all s > 0. These splice together to a long exact sequence

*(22Y?)

N AT FTR AT

— H*(X?K*® H*(K°

along the lower edge of this diagram of &/-modules. By assumption (b), each H*(K*®) is a free o/-module.
Hence e: P, — H*(Y) is a free resolution of the «/-module H*(Y). O
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The Adams resolution {Y*}; is called a realization of the free resolution {Ps}s of H*(Y). The
resolution is induced by passage to cohomology from the diagram

A 5} DLy ' A

jo
ERELEES 276
where each composite of two maps is null-homotopic. In the case of the canonical resolution this diagram

appears as follows:

Jjo J

o ma@ Ay B AENY HAY Y

The associated free resolution has the form

s I NP HNY) L @ 1)@ HY (Y) L o @ HY(Y) - H*(Y) =0,

where o/ = H*(H), and I(&/) = H*(H) is the augmentation ideal. We shall return to this complex
later, in the context of the bar resolution.

4.2 The Adams E5-term

We follows Adams (1958), using the spectrum level reformulation that appears in Moss (1968).
Let Y be a spectrum such that m,.(Y) is bounded below and H.(Y) = H.(Y;F3) is of finite type.
Consider any Adams resolution

- Y2ty L y0——y
S S
AN RN . AN .
3\\ J 8\\ J 8\\ J
K2 K! KO

of Y. Applying homotopy groups, we get an unrolled exact couple of Adams type

T (V) s (V) s (YO) —

NN N

7. (K?) 7. (K1) 7. (KY)

(V)

where A° = 7m,(Y?®), E° = 7, (K?) are graded abelian groups, i, and j. have degree 0, and 0, has
degree —1. There is an associated spectral sequence of Adams type

{Er = E:’*, dr = d:’*}r

with
Ef’t =m—s(K*)

and
A3 = (§O)s: T (K®) = m_s 1 (K*F1).

The d,-differentials have bidegree (r,7—1). This is the Adams spectral sequence of Y, sometimes denotes
{E;(Y) = E**(Y)},. The expected abutment is the graded abelian group G = 7. (Y), filtered by the
image groups F** = im(i%: m.(Y*) — m.(Y)).

((NOTE: Explain “expected abutment”. Do we mean that there are isomorphisms F*/Fst! = F3 |
but that the filtration might not be complete Hausdorff and/or exhaustive? If so, discuss this in the
section on convergence.))

Definition 4.5. An element in E$" is said to be of filtration s, total degree ¢ — s and internal degree t.
An element in F* C m,(Y) is said to be of Adams filtration > s.

A class in 7, (Y) has Adams filtration 0 if it is detected by the d-invariant in 7.(K?), i.e., if it has
non-zero mod 2 Hurewicz image. If the Hurewicz image is zero, then the class lifts to 7.(Y!). Then
it has Adams filtration 1 if the lift is detected in 7. (K1), i.e., if the lift has non-zero mod 2 Hurewicz
image. If also that Hurewicz image is zero, then the class lifts to m.(Y?). And so on.
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Theorem 4.6. The Es-term of the Adams spectral sequence of Y is
Ey' = Ext®/ (H*(Y),Fy).
In particular, it is independent of the choice of Adams resolution.

Proof. The Adams E;-term and d;-differential is the complex

(30)«

.
e (2 2 ety O

7o (KY) +——0

of graded abelian groups. It maps isomorphically, under the d-invariant 7.(K) — Homg (H*(K),F3),
to the complex

e Homy (H*(52K2), F2) €27 Hom (H* (2K, F2) €2 Hom,y, (H* (K°), Fa) «—— 0

where ((j0)*)* = Homg ((j0)*,1). With the notation of the previous subsection, this complex can be
rewritten as

* *

0. 5]
... &—— Hom y (Py, Fy) +—— Hom, (P;,Fy) +—— Hom (P, Fa) +—0.

This is the complex Homg (Ps,Fs) obtained by applying the functor Homg (—,F3) to the resolution
e: P, —» H*(Y) of H*(Y) by free «7-modules. Its cohomology groups are by definition, the Ext-groups

ExtS,(H*(Y),Fq) = H*(Homy (Py,Fs)) .
At the same time, the cohomology of the E;j-term of a spectral sequence is the Es-term. Hence

Ej = Ext®,(H*(Y),Fy).

~

As regards the internal grading, E* = m_o(K*®) = 7,(X*K*®) corresponds to the 2/-module homo-
morphisms H*(X*K®) — X!F,. This is the same as the «/-module homomorphisms H*(L5K*) —
Fy that lower the cohomological degrees by t. We denote the group of these homomorphisms by
Hom', (H*(%°K*),Fy) = Hom',(P;,Fy), and similarly for the derived functors. With these conven-
tions, B3 = Ext®/ (H*(Y),Fy), as asserted. O

We are particularly interested in the special case Y = S, with H*(S) = Fy and 7. (S) = 77 equal to
the stable homotopy groups of spheres.
Theorem 4.7. The Adams spectral sequence for S has Fo-term
E3" = Ext®} (Fg,Fy).

On the other hand, we can also generalize (following Brinkmann (1968)). Let X be any spectrum
and apply the functor [X, —]. to an Adams resolution of Y. This yields an unrolled exact couple

o [X VY, —E S (XYY S [X,YO), = [X, Y],

NN AN

(X, K2, [X, K. [X, K.

where A° = [X,Y?®],, E®* = [X, K®], are graded abelian groups, i, and j. have degree 0, and J, has
degree —1. There is an associated spectral sequence with
By = [X,K*]is
and
A3t = (jO)u: [X, K®)—s — [X, K)oy
The d,-differentials have bidegree (r,r — 1). The expected abutment is the graded abelian group G =
[X,Y]., filtered by the image groups F* = im(i%: [X,Y*]. — [X,Y].).

Theorem 4.8. The Adams spectral sequence {E,.(X,Y) = EX*(X,Y)}, of maps X — Y, with expected
abutment [X,Y]., has Ey-term
Eyt =Ext®/ (H*(Y), H*(X)).

The proof is the same as for X = S, replacing Fo by H*(X) in the right hand argument of all Hom -
and Ext$,-groups.
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4.3 A minimal resolution

To compute the Adams Es-term for the sphere spectrum, we need to compute
EXtZ;{* (F27 IFQ) = H** (HOHILQ{(P*, IFQ))

for any free resolution P, of F5. We now construct such a free resolution by hand, in a small range of
degrees.

4.3.1 Filtration s =0

We need a surjection e: Py — Fy, so we let Py = &/{go0} be the free «/-module on a single generator
go,0 in internal degree 0. We will also use the notation gg,0 = 1. More generally, we will let g, ; denote
the i-th generator in filtration degree s, counting from i = 0 in some order of non-decreasing internal
degrees t.

4.3.2 Filtration s =1

Next, we need a surjection 0;: P; — ker(e), where ker(e) = I(«/). An additive basis for ker(e) is given
by the admissible monomials Sq’go o = Sq for I of length > 1. (We listed these through degree 11 in
the subsection on admissible monomials.)

Starting in low degrees, we first need a generator g; o = [S¢'] in internal degree 1 that maps to Sq'.
The free summand &7{g1 o} that it will generate in P; will then map by 01 to all classes of the form
Sq' 0 Sq', with I admissible. In view of the Adem relation S¢' o Sq' = 0, the image consists of all classes
Sq” where J = (j1,...,j¢) is admissible and j, = 1. See the left hand column in Table 1.

The first class not in the image from o/{g1 0} is Sg? in internal degree 2, so we must add a second
generator g1 1 = [Sq?] to Pp, that maps to Sqg? under 9;. We use the Adem relations to compute the
image Sq'Sq? of Sq’[Sq?]. For example, Sq*Sq?>Sq' o S¢® = Sq*Sq?Sq¢® = Sq*Sq® + Sq*Sq*Sq' =
Sq° + Sq®Sqt + Sq"Sq* + S¢°Sq*Sqt (where we omitted Sq”Sq!Sq! = 0 at the last step). See the right
hand column in Table 1.

The images of Sq?[Sq'] and Sq'[Sq?] generate ker(e) in internal degree 3, and Sq>Sq' is in the
image of 01, but the class Sq* is not in the image from %7 {g1 0,91.1}, so we must add a third generator
g1.2 = [S¢"] to Pi, mapping to Sq* under 9;. See the left hand column in Table 2.

All the admissible monomials in degree 1 < ¢ < 7 are then in the image of 8, but S¢® is not hit.
We must therefore add a fourth generator g1 3 = [Sq¢®] with 91(g1,3) = S¢®. An inspection then reveals
that 01: 9/{g1,0,91.1,91,2,91,3} — ker(e) is surjective in degrees ¢ < 11. See the right hand column in
Table 2.

In general, we need enough &/-module generators {g1 ;}; for P; to map surjectively to the indecom-
posables Q(&7) = I(/)/I(/)? = Fo{Sq¢® | i > 0}. This is necessary, since if d;: P, — ker(e) = I(«/)
is surjective, then so is the composite P; — I(«/) — Q(&). It is also sufficient, since if P, — I(&/)
is surjective below degree t and P; — Q(<7) is surjective in degree t, then all classes in I(.%7)? of de-
gree t are in the image of Py, and any class in I(&/) of degree t is congruent modulo I(27)? to a class
in the image of P;. The full definition of P; is therefore P = &/{g1,; | ¢ > 0} with g1, = [Sq¢?']
mapping to d1(g1;) = Sq¢?, for all i > 0. Below internal degree 16 we thus have an isomorphism
P~ {q10,91.1,91.2,91.3} ((References to Milnor—-Moore, Steenrod-Epstein?))

4.3.3 Filtration s =2

To continue, we ignore classes in degree ¢ > 11. We need a surjection 0s: Py — ker(9;). First we go
through the linear algebra exercise of computing an additive basis for ker(d;). See Table 3.

The class in lowest degree in ker(d1) is Sq¢*g1.0 = Sq'[Sq'], which corresponds to the Adem relation
Sq'Sq! = 0. We put a first generator gz o of degree 2 in Py, with 02(g2.0) = Sq'[S¢']. See the left hand
column of Table 4.

The first class in ker(d;) that is not in the image of 9y on @{g20} is S¢[Sq'] + S¢*[Sq?], which
corresponds to the Adem relation Sq?Sq? = S¢3Sq'. We add a second generator g1 to Ps, in degree 4,
with 92(g2,1) = S¢*[Sq*] + S¢*[S¢?], and compute the value of 92(Sq’g2,1) = Sq’ (S¢*[Sq'] + S¢*[Sq?))
in ker(0;) C Py for each admissible I, using the Adem relations. See the right hand column of Table 4.
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g1,0 = [Sql] — Sq
Sq*[Sq'] — 0 g11 = [Sq?] N Sq?
Sq¢*[Sq'] — S¢*Sq' Sq'[S¢?) — Sq°
S¢°[Sq'] — Sq*Sq S¢*[Sq¢’] — Sq°Sq'
S¢*Sq'[Sq'] — 0
Sq*[Sq'] — Sq*Sq' S¢’[S¢*] — 0
S¢*Sq'[Sq'] — 0 S¢°Sq'[S¢*] — Sq¢° + Sq'Sq
Sq¢°[Sq'] — Sq°Sq' Sq*[S¢°] — Sq*Sq?
Sq*Sq'[Sq'] — 0 Sq¢*Sq'[Sq*) — Sq°Sq'
Sq°[Sq'] — Sq°Sq’ S¢°[S¢°] — Sq°Sq?
5¢°Sq'[Sq'] — 0 Sq*Sq'[S¢%] — S¢°Sq?
Sq*Sq*1Sq'] — Sq*Sq*Sq*
Sq"[Sq'] — Sq"Sq' Sq¢°[S¢°] — Sq°Sq?
5¢°Sq'[Sq'] — 0 5¢°Sq'[S¢*] — 0
S¢°Sq[Sq'] — S¢°Sq*Sq! Sq*Sq¢*[S¢*) — Sq°Sq*Sq'
Sq*Sq*Sq'[Sq'] — 0
Sq¢®[Sq'] — Sq°Sq’ Sq"[S¢’] — Sq"Sq?
Sq"Sq'[Sq"] — 0 5q¢°Sq'[S¢*] — Sq°Sq?
Sq¢°Sq*[Sq'] — Sq°Sq*Sq! Sq*S¢*[S¢*] — 0
Sq¢°Sq*Sq'[Sq) — 0 Sq*Sq?Sq'[Sq?] — Sq¢° + S¢®Sq' + Sq"S¢* + Sq¢°Sq*Sqt
Sq°[Sq') — Sq°Sq' S¢®[Sq*] — Sq°Sq?
S¢*Sq'[Sq'] — 0 Sq"Sq'[S¢*) — Sq"S¢?
Sq"Sq*[Sq"] — Sq"Sq*Sq' S¢°Sq*[9¢%] — Sq°Sq*Sq'
Sq°Sq*[Sq') — Sq°Sq*Sq"  Si°Sq*Sq'[Sq’) — Sq’Sq' + Sq"Sq*Sq!
Sq¢°Sq*Sq'[Sq'] — 0
Sq'°1Sq'] — Sq'°Sq’ Sq¢°[S¢%] — Sq°Sq?
Sq¢°Sq'[Sq'] — 0 S¢*Sq'[S¢*] — S¢°Sq?
S¢*Sq*[Sq"] — S¢*Sq*Sq' 5q"Sq*[S¢%] — Sq"Sq*Sq'
Sq"S¢%1Sq") — Sq"Sq*Sq* S¢°Sq’[Sq*] — 0
Sq"Sq¢*Sq'[Sq) — 0 Sq°Sq*Sq'[Sq?) — Sq’Sq® + Sq®Sq® + Sq"Sq*Sq'

Table 1: 91 on &/{g1,0,011} C P
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Sq*[SqY —s Sq7Sq' + Sq°Sq? g3 = [S¢®] 2 S¢b
Sq*] — Sq7Sq¢? Sql[SqS] — S¢°

Sq°[Sq*] — Sq7S¢? Sq?[Sq®] — Sq*° 4+ S¢°Sq!

Sq7[Sq"] — 0 Sq¢°[S¢%) — Sq'!
Sq°Sqt[Sqt] — S¢°Sq? + S¢®Sqd Sq¢*Sq'[Sq®] — Sq'’Sq!

Table 2: 0; on &27{91,2,91,3} ch

The lowest degree class not in the image of 9y on &7{g20,921} C P is S¢*[Sq'] + S¢*>Sq'[Sq¢*] +
Sq'[Sq?], in degree 5. It corresponds to the Adem relation Sq?Sq® = S¢° + Sq*Sq', in view of the
identities Sq'Sq¢? = S¢* and S¢'Sq* = Sq¢°. We add a third generator g2 2 to P, with d2(g22) =
Sq*[Sq] + Sq?Sq [Sq%) + Sq*[Sq'], and compute 92(Sq’ g2,2), as before. See Table 5.

The first class in ker(d;) not in the image of 92 on & {ga,0, 92,1, 92,2} is Sq"[Sq']+S¢°[S¢?] +Sq*[Sq?].
We add a fourth generator gs 3 to P, in degree 8, corresponding to the Adem relation Sq*Sq* = Sq"Sq* +
Sq%Sq?, and let 02(g23) = Sq"[Sq'] + Sq°[S¢?] + Sq*[Sq'].

02
g2.3 = Sq"[Sq'] + Sq°[Sq?] + Sq*[Sq*]
Sq'ga3 — Sq"[Sq*] + Sq°[Sq?]
Sq®g23 — (Sq° + Sq®Sq")[Sq'] + Sq"Sq' [Sq*] + (Sq° + Sq°Sq')[Sq"]
Sq¢*gas — Sq°Sq' [Sq'] + Sq"[Sq?]
S¢*5q' 923 — (S¢° + S¢°Sq")[Sq”] + Sq°Sq' [Sq"]
This still leaves Sq¢®[Sq'] + Sq7[Sq?] + Sq¢*Sq'[Sq*] + Sq'[S¢®] not in the image of d, so we add a fifth
generator g 4 in degree 9, corresponding to the Adem relation Sq*Sq® = Sq¢° + S¢®Sqt + Sq¢"Sq?, and
let 02(g2,4) = S¢°[Sq'] + Sq"[Sq®] + Sq*Sq' [Sq*] + Sq* [SqP.
02
g2.4 2 S¢®1Sq*]) + Sq"[Sq*] + Sq*Sq'[Sq*] + Sq* [Sq®]
Sq" g2, — S¢°[Sq'] + S4°Sq'[Sq"]
Sq?ga.a — (5" + S¢?Sq")[Sq'] + (Sq° + S¢®Sq")[Sq?] + Sq°Sq' [Sq*] + Sq*Sq*[Sq®]
Finally we need a sixth generator, gs 5 in degree 10, mapping to Sq”Sq?[Sq'] + Sq®[S¢%] + Sq* Sq*[Sq*] +

Sq*[Sq®]. Tt derives from the Adem relations for Sq2S¢® and for Sq*Sq®, using the Adem relation for
Sq?Sq*. ((Can we pick a different generator that corresponds to just a single Adem relation?))

02
92,5 —> Sq"Sq*[Sq'] + S¢®[Sq’] + Sq*Sa®[Sq'] + S¢*[Sq°]
Sq 925 — S¢°[Sq?] + Sq®Sq*[Sq*] + S¢°[Sq°]
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Sq'[Sq"]

Sq¢*Sq'[Sq')

S¢’[Sq'] + S¢*[S¢%)
Sq¢°Sq'[Sq")

S¢[Sq°]

Sq*[Sq'] + S¢*Sq' [Sq°] + Sq'[Sq"]
Sq*Sq'[Sq")

Sq°[Sq'] + Sq¢*Sq' [Sq?]
Sq¢°Sq'[Sq")

(S¢® + Sq*Sq")[Sq?]
Sq°[Sq'] + Sq*Sq' [Sq]
Sq°Sq'[Sq')
Sq4Sq2Sq1[Sq1]
Sq¢°Sq'[Sq?)

Se°Sq*[Sq'] + Sq*Sq*[9¢7]
Sq"[Sq'] + S¢°1S¢®) + Sq'[Sq"]
Sq"[Sq'] + S¢*Sq' [Sq"]
Sq"Sq'[Sq"]
Sq°Sq*Sq'[Sq']
Sq°Sq*[Sq’)

Sq"[S¢°] + Sq°[Sq")

Sq°Sq*[Sq'] + Sq*Sq*Sq' [Sq*] + Sq*Sq' [Sq*]
Sq®[Sq'] + Sq"[Sq?] + Sq*Sq*[Sq*] + Sq*[Sq®]

Sq®Sq'(Sq"]

5q¢°Sq*Sq'[Sq']

Sq°Sq*[Sq'] + Sq°Sq*[Sq?)

(Sq¢° + 54" Sq?)[Sq'] + S¢°Sq* Sq' [S¢?)
Sq"Sq'[S¢*] + 5¢°[Sq"]

Sq°[Sq' ]+ Sq°Sq' [Sq*]

Sq"Sq*[Sq'] + S¢®[S¢*) + Sq*Sq?[Sq*] + Sq*[Sq”]
Sq"Sq?15q"] + S¢°[Sq°] + Sq*S¢*[Sq"] + S¢°[Sq"]
54¢°Sq'[Sq']

Sq"Sq*Sq'[Sq']

Sq°Sq*Sq'[Sq']

Sq"S¢*[Sq') + Sq"S¢*[S¢?)

Sq®Sq®(Sq?]

Sq"Sq’[Sq']
Sq"[Sq]
(S¢° + S4°Sq")[Sq°] + Sq°Sq' [Sq']
(Sq'° + S¢*Sq*)[Sq'] + Sq*Sq* Sq' [Sq']
S¢°[Sq°] + S¢°Sq*[Sq"] + S¢*[Sq®)
5q'°[Sq'] + S¢*Sq' [S¢°)

+ (Sq¢” + S¢°Sq' + S¢°Sq*Sq")[Sq?]

Table 3: A basis for ker(9;) in degrees < 11
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92,0 & Sql[Sql]
Sqlgg,o — 0
Sq*ga0 — S¢*Sq' [Sq']
Sq3g2,0 — Sq35q1 [Sql}
S¢*Sq' gao — 0
Sq*g2.0 — Sq*Sq'[Sq"]
S¢*Sq' gao — 0
Sq°g20 — Sq°Sq' [Sq']
Sq*Sq'g2,0 — 0
Sq®g2.0 — Sq°Sq'[Sq"]
5¢°Sq' g2,0 — 0
Sq*Sq*ga.0 — Sq*Sq*Sq'[Sq']
Sq"g2,0 — Sq"Sq'[Sq"]
5q°Sq'g20 — 0
S¢°Sq*g2,0 — Sq°Sq*Sq' [Sq']
Sq*S¢°Sq g0 — 0
qugz,o — qusql [Sql}
Sq"Sq" ga,0 — 0
5¢°Sq*ga.0 — Sq°Sq*Sq'[Sq']
Sq5Sq25q1g2,0 — 0
nggz,o — Sq95q1 [Sql}
S¢*Sq'gao — 0
Sq"Sqga.0 — Sq"Sq*Sq'[Sq']

02
g2.1 > S¢°[Sq'] + S¢*[S¢?]
Sq' g2 — Sq*[S¢?]

Sq*ga1 — (Sq° + Sq*Sq")[Sq'] + Sq*Sq' [Sq*]

Sq*ga1 — Sq¢°Sq'[Sq']
Sq*Sq ga1 — (S¢° + Sq*Sq")[Sq?]
Sq*ga1 — Sq°S¢?[Sq'] + Sq¢*Sq*[S?
S¢°Sq' ga1 — Sq°Sq'[S¢?)

Sq°g2.1 — Sq°Sq*[Sq?]
Sq*Sq*ga1 — Sq°Sq*[Sq?

5¢°g2,1 — S4°Sq°[Sq'] + S¢°S¢?[S¢?]
S¢°Sq' ga1 — 0
Sq*Sq’gan — (Sq° + S¢°Sq" + Sq"Sq® + Sq°Sq*Sq")[Sq' |+
+5¢°5¢*5q'[S¢?)
Sq"ga1 — Sq"S¢*[Sq'] + Sq" S¢S
Sq°Sq' ga1 — Sq°Sq*[S¢]
Sq°SqPga1 — (S¢°Sq* + Sq"Sq*Sq")[Sq']

Sq¢°SqPga0 — Sq°Sq*Sq' [Sq']  Sq¢*Sq*Sqtgen — (Sq¢° + Sq®Sq' + Sq"Sq® + S¢°Sq*Sqh)[Sq?]

Sq65q25q1g2,0 — 0

Table 4: 0 on @ {g20,921} C P>
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9.0 2 Sq*[S¢"] + S¢>S4" [S¢%) + S¢' [Sq]

S¢" 92,2 — Sq°[Sq'] + S¢*Sq* [S¢?]

Sq*ga.0 — (Sq° 4+ Sq°Sq")[Sq'] + Sq*Sq' [Sq]

5¢°g2.2 — 8q"[Sq'] + S¢*Sq* [Sq"]
Sq*Sq a2 — Sq°Sqt[Sq'] + Sq°Sq'[S¢?]

Sq*g20 — (Sq"Sq* + S¢°Sq®)[Sq'] + Sq*Sq*Sq' [Sq?] + Sq* Sq* [Sq']
Sq¢*Sq' go0 — Sq"Sq [Sq]

Sq°ga.0 — Sq"S¢?[Sq"] + S¢°Sq*Sq' [Sq?] + Sq° Sq* [Sq]
Sq*Sq ga,2 — (Sq° + S¢®Sq* + Sq"Sq*)[Sq'] + Sq®Sa*Sq'[Sq?]

Sq%ga.0 — Sq"S¢*[Sq'] + S¢°Sq*Sq' [Sq?] + S¢St [Sq]
Sq°Sq ga.o — Sq°Sq*[Sq"]
Sq*Sq*ga — (S¢'° + S¢°Sq* + Sq®Sq® + Sq"Sq*Sq")[Sq'] + Sq*Sq*Sq' [Sq*]

Table 5: 05 on & {g22} C P>

Now 02: @/{g2,0,.-..,925+ — ker(d1) is surjective in degrees ¢ < 11. (In fact, it is surjective below
internal degree 16.)

4.3.4 Filtration s =3

We carry on to filtration degree s = 3, looking for a surjection d3: P3 — ker(0s). First we must compute
a basis for ker(dz) C Py, in our range of degrees. The result is displayed in Table 6.

As usual, the lowest degree class is Sq'g2 0, so we first put a generator gs o of degree 3 in P with
93(93,0) = Sq'g2,0. The extension to «7{g3 0} is given in the left hand column of Table 7.

The lowest class not in the image of this extension is 93(g3.1) = Sq*g2.0+5¢%g2.1+5¢' g2 2 in degree 6.
See the right hand column of Table 7.

After this, the only class not in the image of 3 on @{gs0,931} is 93(g32) = Sq®g2.0 + (5¢° +
Sq*Sq")ga.2 + Sqtga.a in degree 10:

P
932 2 Sq°ga0 + (S¢° + S¢*Sq")g22 + Sq' g2,
Sq' g3 — S¢°g2,0 + S¢°Sq' ga,2

Finally, we need a fourth generator, g3 3 in degree 11, with

8
g3,3 —> Sq4Sq25qlgg’0 + 5(1692,2 + S’q25qlgg,3 .

(This generator will be particularly interesting when we get to the multiplicative structure in the Adams
Es-term.) Then 0s: 7 {gs,0,...,933} — ker(d2) is surjective in degrees ¢ < 11.

4.3.5 Filtration s =4

In degrees < 11 we have an additive basis

5(1193,0 SQGS(]lgs,o

Sq*Sq'gs Sq*Sq*Sq' gs0

Sq°Sq' gs.0 Sq"Sq'gs.0

Sq*Sq'gs0 Sq°Sq*Sq' gs0

Sq°Sq*gs,0 S¢gs0 + (S¢° + Sq*Sq")gs.1 + Sq' gs 2
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Sqlgz,o Sq75q192,0

Sq*Sq" g2,0 Sq°Sq°Sq" 92,0

S¢*Sq" g2,0 Sq°Sq g2

Sq49270 + Sq292,1 + 5q192,2 Sq65q292,0 + Sq4Sq2gQ,1 + Sq45(1192,2
Sq*Sq g2.0 Sq®g20 + (S¢° + Sq*Sq ) g22 + Sq' g2,
Sq°g2.0 + Sq3gon 5¢°Sq' g2.0

5¢°Sq' g2,0 Sq°Sq*Sq" ga,0

S¢°g2,0 + S¢°Sq" 921 + S4°Sq g2, (Sq° + Sq"Sq%)g2.0 + S¢°Sq* g2
54¢°Sq" g2,0 5¢°g2.0 + 5¢°Sq" g2,2

5q*Sq°Sq" g2.0 Sq*S*Sq* ga,0 + Sq°g22 + Sa*Sq' g2.3

(S¢° + Sq*Sq") g2
Sq"g2,0 + Sq*Sq* ga,2

Table 6: A basis for ker(d2) in degrees < 11

-
g3,0 — Sqng,O

Sq'gs0 — 0

Sa*gs.0 — S¢*Sq 92,0

Sq*g30 — S¢°Sq" 92,0 931 2% Sq*ga0 + Sq2g2,1 + Sq" 92,2
5¢*Sq'g3,0 — 0

Sq*gs0 — Sq*Sq" g2.0 Sq'gsa — Sq°g2,0 + Sq’gaa
5¢°Sq' g3,0 — 0

Sq°g3,0 — Sq¢°Sq" 92,0 Sq®g31 — (S¢° + S°Sq" ) g2.0 + Sa°Sq 921 + 547 Sq g2.2
Sq*Sq'gs0— 0

Sq°g30 — Sq°Sq'g2.0 Sq®gs1 — Sq"g20 + S®Sq g,
Sq¢°Sq' gz 0 — 0 Sq*Sqgs1 — S¢°Sq' g20 + (S¢° + Sq*Sq") g2
Sq*SqPgs0 — Sq*Sa*Sq' g20

Sq"gs,0 — Sq7Sq 92,0 Sq*gs.a— (S¢"Sq" + S4°Sq%)g2.0 + Sq*Sq’g2,1 + Sq*Sq 92,2
Sq®Sq'gs.o— 0 Sq*Sq'gsy — Sq7Sq 92,0 + S4°Sq g2

Sq°Sq?gs,0 — Sq°Sq*Sq g2,
Sq*Sq*Sq' g3,0 — 0
SqB Sq®Sqt Sq° Sq7Sq? Sq®Sq? Sq®Sqt
qg3or——0q 949 g2,0 q°931—> 5q¢ ' 5q"g2,0+59°5q¢°g21 +9G°5q 92,2
Sq"Sq 30— 0 Sq*Sq'gs 1 — (Sq°” + S¢Sq' + 547 Sq%) 92,0 + S¢°SqPga,
Sq°Sq?gs,0 — Sq°Sq*Sq g2,
S¢°Sq*Sq g3,0 — 0

Table 7: 93 on &/{g3.0,931} C Ps
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for ker(0s), and a surjection 9y: Py = 27 {g4,0,94.1} — ker(93) where

94(91,0) = Sq' gs.0

in degree 4, and
D4(94.1) = Sq°gs.0 + (S¢° + Sq*Sq" ) gs1 + Sq' g3 2

in degree 11.

4.3.6 Filtration s > 5

Things become quite simple from filtration degree s = 5 and onwards. In degrees < 11 we have an
additive basis

Sq"ga0 5¢°Sq" ga0
Sq°Sq" ga0 S4°Sq ga0
Sq*Sq" g 5¢*5q*Sq" ga0
Sq*Sq' ga0

for ker(dy4), and a surjection d5: Ps = /{gs 0} — ker(ds) where 95(g5,0) = Sq'ga,0 in degree 5. Contin-
uing, we have a surjection ds: Ps = o7 {gs 0} — ker(ds_1) in degrees < 11, where 05(go.s) = Sq'gos—1 in
degree s, for all 5 < s < 11.

Definition 4.9. We say that P, is a minimal resolution when im(9s4+1) C I(«/) - P, for all s > 0. Then
1®0s41: Fo Qg Psy1 — Fy @ Ps and Hom(0s41,1): Homg (Ps,Fa) — Homg (Psi1,F2) are the zero
homomorphisms, so that Torfi(Fg,Fg) >~ Fy @ Ps and Ext},(Fa,Fa) & Hom (Ps, Fo), for all s > 0.
Equivalently, the number of generators of P, is minimal in each degree.

Theorem 4.10. There is a minimal resolution €: P, — Fo with Py = «/{go0} and Ps = &/{gs; | i > 0},
where 0s: Ps — Ps_1 is given in internal degrees t < 11 by

d1(g91.0) = Sq* go0.0
N (g1.1) = S¢%g0.0
d1(g1.2) = Sq*go0.0

92(92,5) = Sq¢" S g10 + 5911 + S¢S 912 + ST g1 3
93(g3,0) = Sq' g2.0

93(gs,1) = Sq*g2.0 + Sq°g2.1 + Sq' g2,

93(gs,2) = Sa®ga.0 + (S¢° + Sq*Sq")ga.2 + Sq* go.a

93(g3.3) = (Sq¢" + 54" S¢°Sq" ) ga.1 + S¢°g2.2 + S¢°Sq' g2
94(94.0) = Sq* g0

(91,0)
(91,1)
(91,2)
(91,3)
(92,0)
(92,1)
(92,2)
(92,3)
92(g2,4) = S¢®g1.0 + Sq"g1.1 + S¢*Sq' 912 + Sq' g1 3
(92,5)
(93,0)
(93,1)
(93,2)
(93,3)
(94,0)
(941) = Sa®gs0 + (Sa° + Sq*Sq*)gs.1 + Sq'gs.2
(95,0)

D
ot
Nl
o
(=}

Il

n
<

L
et
S
o

11(g11,0) = Sq' 10,0 -

36



Proof. This summarizes the calculations above. The resolution is minimal, since we only added generators
Gs,i With 0s(gs,i) € I(e/)- Ps—1 = I(#/){gs-1,;};- It should be clear that we can continue that way, since
o/ is connected. If any sum involving 1- g ,, occurs in ker(9), then gs ,, could be omitted from the basis
for Ps; and 9,: Ps — ker(9s—1) would still be surjective. O

Theorem 4.11. Ext?/ (Fo,Fo) = Fa{v;,:}:i where v,;: Ps — Fy is the o/ -module homomorphism dual
to gs,i, for each s > 0. The bidegrees of the generators in internal degrees t < 11 are as displayed in the
following chart. The horizontal coordinate is the topological degree t — s, the vertical coordinate is the
cohomological degree s, and the sum of these coordinates is the internal degree t.

V11,0
10|710,0

79,0
8| 78,0

¥7,0 . . . . . . ?
6] 76,0 . . ‘ . ? ?

5,0 : : ? ? ?
4]74,0 Va1 7 ? ? ?

3,0 V3,1 V3,2 |73,3| 7 ? ?
21 72,0 Y2,1 | V2,2 Y2,3 | V2,4 | V2,5 ? ?

V1,0 | V1,1 71,2 71,3 ?
0| 70,0

0 2 4 6 8 10

We have not yet computed the groups labeled - or 7, but we will prove below that the groups labeled -
are 0. In fact, many of the groups labeled ? are also zero.

Proof. For each s > 0 we have Hom (Ps,F2) = Hom (%7 {gs,i}i, F2) = [, Fo{7vs,:}, where v44(gs,5) =
0;; is 1 if 4 = j and 0 otherwise. It will be clear later that there are at most finitely many g, ; in a given
bidegree, so this product is finite in each degree. Then 7y, ; 0 9541 = 0, so the cocomplex Hom g (P, )
has trivial coboundary. Hence Ext}, (Fa,Fs) = Homy (Ps, Fa) = Fo{vs,:}i, as claimed. O

Lemma 4.12. Let e: P, — Fy be a free of -module resolution. Then Hom g (Ps,Fy) = Hom(Fy ®
P,,Fy), so there is an isomorphism Ext®) (Fg, Fq) = Hom(Torft(Fg,]Fg),Fg),

4.4 The Hopf-Steenrod invariant

The standard notation for the class 7 ;, dual to the indecomposable S’q2i7 is h;. See Adams (1958). The
h is for Hopf, since these classes detect the stable maps of spheres with Hopf invariant one.

Lemma 4.13. Tor{ (Fy,Fy) = I()/I(/)? = Q(/) = Fo{Sq® | i > 0} and Extl,(Fy,Fy) =
Hom(Tor (Fy, Fy),Fa) = Fol{h; | @ > 0} where h; has bidegree (s,t) = (1,2%) and is dual to Sq*,
for each i > 0.

Proof. There exists a free resolution --- — P, — Py — Fy — 0 where Py :‘42{ and P, = @/ {g1,}:

with 01: ¢1,; — Sq2i for all i > 0. The resolution is exact at Py since the Sq¢? generate the left ideal
I(&) C &/, and it is minimal there since 01 (Py) C I(«7)Fp. It is also minimal at Py, since the surjection
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Py — I(</) induces an isomorphism Fa{g1:}; = Fo @ P1 = P1/I()Py — I()/1()? = Q(),
so that 8y(Py) = ker(8;) C I(«/)Py. Hence Tor{ (Fa,Fs) = Fy ®. P, = Q(&7) and Ext ﬂ(FQ,Fg) o
Hom (P, Fo) 2 Fo{h;};, as claimed. ((Proof using bar complex?)) O

We shall soon prove that the Adams spectral sequence
Ey' = Ext®) (Fg, Fo) = m_4(S))

converges to the 2-adic completion of the stable homotopy groups of spheres. The chart in the theorem
above displays the Es-term in the range t < 11. ((EDIT FROM HERE TO TAKE INTO ACCOUNT
THE ADAMS VANISHING LINE.)) We will see later that the pattern above the diagonal line, where s >
t—s, continues. There is an isomorphism Ext?)’(Fa, F2) = Fo{v,,0} for all s > 0, while Ext“;;t(Fg, Fy) =0
for t — s < 0 and for 0 < t — s < s. Thus the groups labeled - in the chart are 0. Granting this, the only
possible d,-differentials starting in total degree ¢t — s < 6, for » > 2, are the ones starting on v; 1 = by
and landing in the group generated by 7,1,0.

However, these differentials are all 0, as can be seen either by proving that «, ¢ detected 2° € m(S),
or that v11 detects n € m(S), or by appealing to multiplicative structure in the spectral sequence.
Granting this, we can conclude that E; = Eo in this range of degrees, so that the groups Fao{v;;} in
one topological degree n =t — s, for s > 0 and n < 5 are the filtration quotients of a complete Hausdorff
filtration {F*}, that exhausts m,(5)5.

For n = 0, we already know that m(S) = Z so m(S)3 = Zz2. The only possible filtration is the 2-adic
one, with F* = 257y C Zg and F*/F*T1 2 257, /25117 =2 Fy{~, o} for all s > 0. For n = 1 we deduce
that m1(9)8 2 Z/2{y1.1} = Z/2{h1}. In fact m(S) = Z/2{n} is generated by the complex Hopf map
n: S* — S. For n = 2 we deduce that m3(9)% = Z/2{y2.1}. We shall see later that m2(S) = Z/2{n?}
is generated by the composite n?> = no ¥n: S? — S. For n = 3 we deduce that m3(S)% is an abelian
group of order 8. We shall see later that 73(S)5 = Z/(8) is the 2-Sylow subgroup of 73(S) = Z/24,
generated by the quaternionic Hopf map v: S% — S. Finally, for now, we conclude that 74(S)5 = 0 and
75(S)5 = 0, and in fact m4(S) = 75(S) = 0. ((EDIT TO HERE.))

Lemma 4.14. (Hopf, Steenrod) Let f: S™ — S be a map with 0 = f*: H*(S) — H*(S™), and let
C; = hocofib(f) = S Uy CS™ be its mapping cone. Suppose that Sq"*': H°(Cy) — H"TY(Cy) is
nonzero. Then n+1 = 2 for some i > 0 and [f] € 7, (S) is detected in the Adams spectral sequence by
h; € E21’21.

Proof. Consider the canonical Adams tower for Y = S, with Y* = S, K’ = H, Y! = Y~1H and
K! = HAX"'H. The composite j o f is null-homotopic, since d(f) = f* = 0, so we have a map of
cofiber sequences:

sn S o gt
I L
sg—t s 2 .g- % .p
|s
HAYS'H

Here d: Cy —+ H and e: S™ — Y ~'H are determined by a null-homotopy of f. Applying cohomology to
the right hand part of the diagram, we get a map of «/-module extensions:

Fy «—— H*(Cy) «——= X" 1T,

()
Here d*(1) = 1, so by assumption d*(Sq¢"™!) # 0. Hence Ye*(Sq"™1) # 0. This is impossible if
Sq**! is decomposable, so we must have n + 1 = 2 for some 7 > 0. Then e* # 0, which implies that
joe: 8™ — H AY'H is essential (= not null-homotopic).
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This proves that [f] € m,(S) lifts to 7, (Y") but not to m, (Y ?), hence corresponds under the isomor-

phism F'/F? = EL* to a nonzero class in EL2 C E3? = Fy{h;}. The only possibility is that [f] is
detected by h;. O

The class of Ze*0d;: Py — Z"HF, in Extifi (Fo,Fo) = Fo{h;} is called the Hopf-Steenrod invariant,
or the cohomology e-invariant, of [f]. It is only defined for the [f] with vanishing d-invariant. More
generally, we have a diagram

F? F! FO=[X,Y],
| :
Ext " (H*(X), H*(Y)) Hom?, (H*(X), H*(Y)).

Theorem 4.15. The Hopf maps 2: S — S, n: S* = S, v: 8% = S and 0: S” = S are detected in the
Adams spectral sequence by the classes hg, hi, he and hs, respectively. These are infinite cycles in the
spectral sequence.

Proof. In each case, f: S™ — S is the stable form of a fibration X271 f: §2n+! — §n+l with mapping
cone a projective plane P2. Here H*(P?) = P(x)/(z%) = Fo{l, 2,22}, where |z| = n + 1, by Poincaré
duality Hence S¢"*!(x) = 22 # 0, and the previous lemma applies. Quite explicitly, ¥Cy = RP? has a
nonzero Sq*, ¥£2C,, = CP? has a nonzero Sq¢?, £*C,, = HP? has a nonzero Sq¢* and 8C, = OP? has a
nonzero SqB. O

The names 7, v and ¢ for the Hopf maps detected by hi, ho and hs are supposedly unrelated to the
correspondence between the initial phonemes in the Greek letters “eta”, “nu” and “sigma” and in the
first three Japanese numerals “ichi”, “ni” and “san”. We shall see later that none of the classes h; for
i > 4 survive to the E-term, so there are no maps S™ — S with nonzero Hopf-Steenrod invariant for

n > 8.

4.5 Naturality
The essential uniqueness of free resolutions lifts to the level of spectral realizations. Consider diagrams

%

R G D G SR (O U

and 4

ezt Lzt 520 =27
with cofibers K* = hocofib(Y**! — Y*¥) and L® = hocofib(Z**! — Z¢) for all s > 0. There are
associated chain complexes

PP P S HNY) 0

and

of @/-modules, where Py = H*(3°K*®), Qs = H*(X°L®), 05 = 0*j* and e = j*.

Theorem 4.16. Suppose that (a) each cofiber L* is a wedge sum of Eilenberg—Mac Lane spectra that is
bounded below and of finite type, and (b) each map i: YTt — Y* induces the zero map on cohomology.
(For instance, {Y*}s and {Z°}s might be Adams resolutions.) Then each Qs is a free of -module, and
the augmented chain complex e: P, — H*(Y) — 0 is ezact.

Let f:Y — Z be any map. Then there exists a chain map g.: Q. — Py lifting f*, in the sense that
the diagram

) o1

P P Py < H*(Y) 0
921\ 911\ QOT f*T
Qs —25 Qr —25 Qp —* H*(Z) 0
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commutes. Furthermore, there is a map of resolutions {f*: Y — Z°} lifting f and realizing g., in the
sense that there is a homotopy commutative diagram

y2 Lyt Y
sz Jfl Jf
72t Z,

and given any choice of commuting homotopies, the induced map of homotopy cofibers g°: K® — L°
induces gs = (X°¢°)*: Qs — Ps, for each s > 0.

If g.: Q. — P. is a second chain map lifting f*, and {f*}s is a map of resolutions lifting f and
realizing G., then g. and g. are chain homotopic, and {f*}s and {f*}s are homotopic in the sense that
the composites f5oi and f*oi: Y*tl — Z% are homotopic for all s > 0.

Proof. Freeness of each @), is clear from the wedge sum decomposition of L®. Exactness of e¢: P, —
H*(Y) — 0 is clear from the vanishing of i*. The existence of a chain map g, lifting f* is standard
homological algebra. We need to construct a diagram

% Y2 % Yl A Yy
I I
N N
/ 2> N / o> N \/
f2 Kl £l KO f
q' 9°
Z? ! A ! VA
K K
Ao A
N N
Lt Lo
of spectra, inducing a commutative diagram
*(X2Y?) (LYl
. / T “(DKY) W H*(K?)
(=252 ="
*(%222?) *(n21) (9" H*(Z)
*(BLY) LY)

of @7-modules, with g; = (X%g°)*.

Inductively, suppose the maps f = f°,...,f° and g%, ...,¢° ! are given, for some s > 0. Then
j*ogs = (X°f%)* o j*, by the assumption that go lifts f* for s = 0, and by the assumption that
0*j* 0 gs = gs—1 00%j* = 0*(X°f*)* o j* and the injectivity of 9* for s > 1.

We have an isomorphism [K?®, L®] = Homg (H*(L?®), H*(K?)), so there is a unique homotopy class
of maps ¢°: K° — L*® with (¥°¢°)* = g,. Note that g* o j: Y*® — L® is homotopic to jo f*: Y* — L%,
because of the isomorphism [Y*, L] = Hom, (H*(L*), H*(Y®)) and the fact that (¢° o j)* = (j o f*)*.
(Both isomorphisms follow from hypothesis (a)).

Choosing a commuting homotopy and passing to mapping cones, or appealing to the triangulated
structure on the stable category of spectra, we can find a map f*+!: Ys*1 — Z5+1 making the diagram

Ys+1 i Ys J s K8 o ZYS‘H

fs+1l fsl gsl EfSJrlJ(

Zs+1 ? s J LS 0 Zzs+1
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commute up to homotopy. This completes the inductive step.

The uniqueness of g, up to chain homotopy, meaning that any other lift g, is chain homotopic to g., is
standard homological algebra. We prove that o1 is homotopic to f*oi by induction on s. This is clear
for s = 0, since fo = fo = f. Suppose that o f* ~ 5104 is homotopic to io f* ~ f51oi: Y5 — Z5~ 1,
for some s > 1.

Ys+1 i Ys i Ys—l
fsl lfs fbll lf‘sl
7s @ Zs—l
\
EflLsfl

Then i o (f* — f*) is null-homotopic, so that f* — f* factors through a map h: Y* — S71Ls71
Then f5oi — fSoi = (f° — f%) oi factors through hoi: Yt — $71Ls~!  This map induces
i* o h* = 0 in cohomology, hence is null-homotopic because of the isomorphism [Y*T1 ¥-1[s—1] =
Hom ., (H*(X71Ls~1), H*(Y**1)). In other words, f*oi~ f*oi. O

Corollary 4.17. Let f: Y — Z be a map of bounded below spectra with H,.(Y) and H.(Z) of finite type.
Then there is a map

foi AB(Y), dp}r — {E(Z),dy}r

of Adams spectral sequences, given at the Fo-level by the homomorphism
(f)": BxtSf(H*(Y),Fy) — Ext®) (H*(Z),F2)

induced by the of -module homomorphism f*: H*(Z) — H*(Y'), with expected abutment the homomor-
phism
fe:m(Y) = m(2) .

(Similarly for the Adams spectral sequences converging to [X,Y ], and [X, Z]«, for any spectrum X.)

Lemma 4.18. Let {Y*}, and {Z*}; be Adams resolutions of a bounded below spectrum Y with H,.(Y)
of finite type. Then there is a homotopy equivalence holimg Y* ~ holimg Z*.

Proof. There are maps {f*: Y* — Z°}; and {fsz Z*® — Y*} of resolutions covering the identity map
of Y = Y% = Z° and homotopies f*o f*oi~i:Y*™ — Y*and f*o f*oi~i: Zt" — Z*, for all
s > 0. Hence holimg f* and holim, f° are homotopy inverses. O

Theorem 4.19. Let {Y*}; be an Adams resolution of Y, and let X be any spectrum. (The case X = S
is of particular interest.) A class [f] € [X,Y], has Adams filtration > s, i.e., is in the image F*
of i*: [X,Y®], — [X,Y],, if and only if the representing map f: ¥"X — Y can be factored as the
composite of s maps

YX =X, 25 X, 2 X, S Xy =Y
where 0 = z5: H*(X,—1) —» H*(X,) for each 1 < u < s. In particular, F* C [X,Y]. is independent of
the choice of Adams resolution.

Proof. If [f] has Adams filtration > s, let g: XX — Y*® be a lift, with i*og ~ f. Let X, = Y* and
zy =1 for 0 <u<s—1, and let z5 = ig:
srlysl L Lyl Ly

Conversely, given a factorization f = z; o--- o0 z, as above, let f0: Y — Y be the identity map. We
can inductively find lifts f*: X, — Y* making the diagram

Zs Zs—1 D) 21

Xs Xs—l X1 Y
fsl fsfll fll J
Ys ¢ ys—1 ? v y1 ? Y
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commute, since the obstruction to lifting f*~1' o z,: X, = Y* ! over i: Y* — Y*~! is the homotopy
class of the composite jo f*"toz,: X, — K“~! which is zero because 2} = 0. Let g = f*: ¥"X — Y*.

Then i® o g ~ f, and [f] has Adams filtration > s.

4.6 Convergence

O

Definition 4.20. For each natural number m let the mod m Moore spectrum S/m be defined by the

cofiber sequence
S8 —S/m— St

where the map m induces multiplication by m in integral (co-)homology. Note that H.(S/m;Z) = Z/m
is concentrated in degree 0. For any spectrum Y let Y/m =Y A S/m, so that there is a cofiber sequence

Y Y —Y/m— %Y.
Applying F(—,Y) to the cofiber sequence
St —SYm-—85"8

leads to the cofiber sequence
Y Y — F(S™Ym,Y) — XY

and an equivalence Y/m ~ F(S~1/m,Y).
Definition 4.21. For each prime p there is a horizontal tower of vertical cofiber sequences

p

[ SN N S

p° p? P

= 5= = ,5—= .9
S/p° - S/p? S/p

P gt 2 P g1 P g4

We define the p-completion of Y as the homotopy limit Yp/\ = holim, Y/p® of the tower
s YAS/pE = - Y AS/pE =Y AS/p.

The maps S — S/p® induce the p-completion map ¥ — YPA.

Dually there is a horizontal sequence of vertical cofiber sequence

g1 r ye1 P, P g1 P

S Yp——SYp?——  —— ST pt—— ...

s e . P g P

Let S™1/p> = hocolim. S~/p?. Note that H,(S™Yp><;Z) = Z/p™ = Q/Zy) = Q,/Z,.

F(—,Y) we get the tower defining the p-completion, so
A r -1
Y, ~ F(57/p™.Y).
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The map S~1/p> — S induces the p-completion map ¥ — Yp’\.
((See Bousfield.))

Lemma 4.22. The p-completion map induces an equivalence Y/p® — (Yp/\)/pe for each e. Hence it
induces an isomorphism H.(Y') = H.(Y,}) in mod p homology (and cohomology).

Proof. The map S~Y/p> — S induces an equivalence S~Y/p° AS™/p> — S~Yp¢ AS = S~1/p¢, for each
e. Apply FI(—,Y) to get the first conclusion. Apply integral homology to the equivalence Y/p — (Y,")/p
to get the second conclusion. O

A

»» meaning that p-completion

Lemma 4.23. The p-completion map for YpA s an equivalence Yp/\ — (YPA)
is idempotent.

Proof. Use that the map S~1/p> — S induces an equivalence S~1/p> A S~1/p> — S=1/p> or pass to
the limit over e from the previous lemma. O

Lemma 4.24. Let 7,(Y), = lim, m,(Y)/p® be the algebraic p-completion of m,(Y'). There is a short
exact sequence

0= m,(Y)) = limm, (Y/p®) = Hom(Z/p™, m,—1(Y)) = 0
and an isomorphism Rlim, 7,41 (Y/p®) = Rlim, Hom(Z/p®, 7, (Y)). If m.(Y) is of finite type, i.e., if
7, (Y) is finitely generated for each n, then 7,(Y) ® Zp = 1, (Y);) = w0, (YY) for all n.

Proof. ((Straightforward. TBW.))

Example 4.25. (a) H ~ Hy and (HZ)y ~ (HZ3))y ~ HZs.

(b) For Y = HZ[1/2] or HQ we have Y/2¢ ~ x for all e, so (HZ[1/2])} ~ (HQ)% =~ *.

(c) For Y = H(Z[1/2]/Z) = HZ/2* or H(Q/Z) we have Y/2¢ ~ X HZ/2¢ for all e, so H(Z[1/2]/Z)5 =
H(Z/2°)) ~ H(Q/Z)) ~ SHZ,.

Lemma 4.26. Let 0 — @ 7Z — 69/32 — Zo — 0 be a short free resolution of Zy. There is a

corresponding cofiber sequence \/, S — \/ﬁ S — 87y, where H,(SZo;Z) = Zs is concentrated in degree 0.

Then 7, (Y A SZs) = 7, (Y) @ Zo for all n. In particular, S ~ (SZ3)% ~ SZs. If m.(Y) is of finite type
then the natural map Y A SZg — Y3 is an equivalence, and H.(Y) — H.(Y3") is an isomorphism.

Proof. ((Straightforward. TBW.)) O

Let HZ be the integral Eilenberg-Mac Lane spectrum, with mo(HZ) = Z and m;(HZ) = 0 for i # 0.
It is a ring spectrum, with multiplication ¢: HZ AN HZ — HZ and unit n: S — HZ. (Not to be confused
with the Hopf map n: S' — S.) Let HZ = HZ/S be the cofiber.

Lemma 4.27. H*(HZ) = o/ | o/{Sq'}.

Proof. Since the unit map S — HZ induces an isomorphism on 7y and a surjection on 7y, we find that
HZ is 1-connected. Hence H'(HZ) = H'(HZ) = 0.
There is a short exact sequence of «7-modules

0 o) d{Sq'} ¢— o «— Xl | {Sq*} +— 0
where the right hand arrow takes X1 to Sq*. It is clear that XSq’ — Sq’ 0 Sq* maps to 0, for admissible
I, if and only if I = (iy,...,4i) with i, = 1. These Sq’ generate precisely the left ideal o7 {Sq'}.

There is also a cofiber sequence HZ 2y HZ — H — YHZ, where 2* = 0, so that there is an
associated short exact sequence

0+— H*(HZ)+— H*(H) +— XH"(HZ) +— 0.

in cohomology. Let &/ — H*(H) be the isomorphism taking Sq’ to its value on the generator 1 € H(H).
The composite LA/A{Sq'} — o/ — H*(H) — H*(HZ) is zero, since the source is generated by ©1 in
degree 1, and H*(HZ) = 0. Hence there is a map from the first short exact sequence of .&/-modules to the
second one. By induction, we may assume that the left hand homomorphism f: & //{Sq'} — H*(HZ)
is an isomorphism in degrees * < t. Then the right hand homomorphism X f: ¥.o7 /<7 {Sq'} — SH*(HZ)
is an isomorphism in degrees x < t. Since the middle map is an isomorphism, it follows that the left
hand homomorphism is an isomorphism, also in degree ¢t. O
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Recall Boardman’s notion of conditional convergence, meaning that limg A°* = 0 and Rlim; A®* = 0,
and the result that strong convergence follows from conditional convergence and the vanishing of the
derived Foo-term RE.. For the spectral sequence associated to an Adams resolution {Y*};, conditional
convergence is equivalent to the contractibility of the homotopy limit Y*° = holim, Y?, in view of Milnor’s
short exact sequence

0 — Rlim 7,41 (Y?®) = 7, (holimY?®) — lim 7, (Y®) — 0.

As we have seen before, the condition holim, Y® ~ x is independent of the choice of Adams resolution.

Lemma 4.28. Let Y be bounded below with H.(Y') of finite type. Then there is an Adams resolution
{Z%}s of Z =Y /2 with holimg Z° ~ x.

((Enough that Y/2 is bounded below with H,(Y/2) of finite type?))

Proof. The “canonical HZ-based resolution”

— S HM?—— L S HT S
lj JJ JJ’
HZ A (S~YHZ)"> NHZ HZAY"'HZ HZ

is not an Adams resolution, since HZ is not a wedge sum of mod 2 Eilenberg—Mac Lane spectra, but the
ring spectrum structure ensures that j =nA1l: X = HZ A X induces a split injection 1A j: HA X —
HANHZA X, so that j*: H*(HZ A X) — H*(X) is surjective, for each spectrum X.

Smashing this diagram with Z = Y/2, we get a diagram

s (STYHZ)2AY2— 5 ST THLAY)2 — Y2

N

HA((ETYHZ)"AY HAYST'HZAY HAY

where we have identified HZ A X AY/2 with H A X AY, for suitable X. This is the desired Adams
resolution, with Z* = (X~'HZ)"* A Y/2 and cofibers L* = H A (S"YHZ)"* AY. The maps j are split
injective, so each j* is surjective, as before. Since (HZ)"* A'Y is bounded below and H,((HZ)"* A
Y) = H,(HZ)®* @ H.(Y) is of finite type, it follows that each L* is a wedge sum of suspended mod 2
Eilenberg—Mac Lane spectra, satisfying the finiteness condition required for an Adams resolution.

It remains to show that holim; Z° ~ x. This is true in the strong sense that in each topological
degree n, m,(Z*%) = 0 for all sufficiently large s. By assumption there is an integer N such that 7, (Y) =0
for all n < N. We have seen that HZ is 1-connected, so that (X"1HZ)"* is (s — 1)-connected. Then
7Zs = (X"YHZ)"*NY /2 is (N +s—1)-connected. Hence m,(Z%) = 0 for all n < N +s—1, or equivalently,
for all s >n — N. O

Theorem 4.29. Let Y be bounded below with H.(Y') of finite type. Then the Adams spectral sequence
Ey't = Ext®/ (H*(Y),Fq) = m_s(Y3)
is strongly convergent. In particular, there is a strongly convergent Adams spectral sequence
Ey' = Ext® (Fo,Fo) = m_4(9)5 .
More generally, the Adams spectral sequence
Eyt = Ext (H*(Y), H* (X)) = [X, Y3]i—s
is conditionally convergent. It is strongly convergent when RE., = 0, which happens, for instance, if

H*(X) is of finite type and bounded above, or if the spectral sequence collapses at a finite stage.
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Proof. Let {Y*}4 be an Adams resolution of Y =Y, with cofiber sequences
ystl i ys Iy ks 9y mystt

Smashing with S/2¢ for each e > 1, we get a tower of Adams resolutions {Y*/2¢}¢ of Y9/2¢ = Y/2¢,
with cofiber sequences

yetlyge Ly ys jge 1y s jpe 9y wystl jpe
(We check that these diagrams satisfy the conditions to be Adams resolutions: Each homomorphism
J* H*(K®/2¢) — H*(Y?/2¢) can be rewritten as j* ® 1: H*(K®) ® H*(S/2¢) — H*(Y*®) @ H*(5/2°),
hence remains surjective. Each cofiber K®/2€ sits in a cofiber sequence

K* 25 K — K°/2° — SK*

where 2¢ is null-homotopic, so that K¢/2¢ ~ K*®V YXK* is still a suitably finite wedge sum of mod 2
Eilenberg—Mac Lane spectra.) Now pass to the homotopy limit over e of these Adams resolutions. The
result is a diagram {(Y*)2 1}, of spectra, with cofiber sequences

s i s j s o s
(Vo)) == (Y*)y == (K*)5 — S(Y*+)5

(Cofiber sequences are fiber sequences, up to a sign, hence are preserved by passage to homotopy limits,
such as completions.) It is again an Adams resolution, since the completion map K* — (K*®)) is
an equivalence (K* ~ \/ X" H ~ [[ X" H and H — Hj is easily seen to be an equivalence) and
j: (Y#$)2 — (K*)4 induces the “same” map as j: Y* — K* in mod 2 cohomology. We get the following
vertical maps of Adams resolutions:

holim, Y y?2 : y! : Y
K? K! KO
holim, (Y*)} (V2) — (Yhy — vy
(K?)% (K15 (K°)%
holim, Y'* /2° y2/2e —* yijoe —* Y/2¢
J J L J
KQ/Q@ Kl/ze KO/Ze

(We omit the maps 0: K* — LY **! etc.) By the previous lemma, there exists an Adams resolution
{Z?}; for Y/2 with holim, Z® ~ . Since this homotopy limit is independent of the choice of resolution,
we must also have holimg Y*/2 ~ .

There are cofiber sequences S/2 — S§/2¢+1 — §¢ — $5/2, inducing cofiber sequences Y*5/2 —
Y$/2¢t1 Yy /2¢ — BY$/2 for all s, hence also

holim Y* /2 — holim Y*/2¢"! — holim Y*/2¢ — S holimY*/2.
We deduce that holim, Y¥/2¢ ~ « for all e > 1, by induction on e. Thus
holim (Y *)5 = holim holim Y* /2¢ ~ holim holim Y* /2¢ ~ x

by the standard exchange of homotopy limits equivalence.
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Applying homotopy, we get a map of unrolled exact couples from the one for Y to the one for Y3}:

T (Y?) : m (Y1) : T (Y)

~ LS X
\\ g > . DN ;
NN J 9~ J 9~ J
~ ~

T ((Y2)5) — m(Y 1)) — . (Y5)

-
~ X N
N ~ ~
BRI j 2>~ j o>~ j
N ~ ~

T ((K%)3) m((K1)3) ™ ((K%)3)

IR
IR
IR

This induces a map of spectral sequences, from the Adams spectral sequence for Y to the one associated
to the lower exact couple. The equivalences K* — (K*)% induce isomorphisms

B = (K%)= m s (K*)5)

of E7-terms between these spectral sequences. By induction on r, it follows that it also induces an
isomorphism of F,-terms, for all » > 1. Hence we have two different exact couples generating the same
spectral sequence. The upper one is the Adams spectral sequence for Y. The lower one is conditionally
convergent to m,(Y3), since holim,(Y*)) ~ *. Hence the Adams spectral sequence for Y, with E;" =
Ext?) (H*(Y),Fy), is conditionally convergent to m,(Y3"), as asserted. Replacing m.(—) by [X, -], we
get the same conclusion for the Adams spectral sequence for maps X — Y.

To get strong convergence to . (Y3") or [X, 3], we need to verify Boardman’s criterion REo, = 0. In
the first case, this follows since E3"*(Y) is of finite type, i.e., is finite(-dimensional) in each bidegree (s, ).
In fact, this holds already at the E-term if we use the canonical Adams resolution for Y, with X5 K* =

H A (H)™ NY, since then
BV = (K%)= m (28K = Hy(H) AY) 2 [H (H)®* @ Ho (Y)]; .
In the case of a general spectrum X, we have

EPt =X, K%, , = [X,2°K®], 2 Hom', (H*(2°K*®), H* (X))
>~ Hom', (o @ I(/)®* @ H*(Y), H*(X)) = Hom'(I(«/)®* @ H*(Y), H*(X)).

This group is finite if H*(X) is of finite type and bounded above, in the sense that there exists an integer
N with H™"(X) = 0 for n > N. For instance, this is the case of X is a finite CW spectrum. O

Proposition 4.30. Let Y be bounded below with H.(Y) of finite type. There is a cofiber sequence
holimY*® — Y — Y3}
where {Y*}4 is any Adams resolution of Y.

Proof. We use the notation of the proof above. In view of the equivalences K® ~ (K*)%, we get a chain
of equivalences

holim hofib(Y* — (Y*)5) =~ hofib(Y*® — (Y*)5) ~ - -+ ~ hofib(Y — YJ)
S
for all s. Passing to homotopy limits, we find that
holim Y* ~ hofib(holim Y* — holim(Y*)%) ~ holim hofib(Y* — (Y*)5) ~ hofib(Y — Y3").

In other words, the 2-completion Y — Y3 precisely annihilates the obstruction holims Y* to conditional
convergence for the unrolled exact couple associated to the Adams resolution of Y. O

((Mention Bousfield’s E-nilpotent completion Y2 = Y/holimg Yz where Y3 = (S71E)" A Y?))
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5 Multiplicative structure

5.1 Composition and the Yoneda product
Let X, Y and Z be spectra. We have a composition pairing

o: [V, 2], ® [X,Y], — [X, Z].

that takes g: XYY — Z and f: 3'X — Y to the composite g o XV f: XX — Z. To simplify the
notation we refer to f and g as maps f: X =Y and ¢g: Y — Z of degree ¢t and v, respectively.

Suppose that Y and Z are bounded below, and that H.(Y) and H,.(Z) are of finite type. Let
{v#}, and {Z“}, be Adams resolutions of Y and Z, respectively, with cofibers Y*/Y**! = K* and
Z%)/Zu Tt = L¥. If f and g have Adams filtrations > s and > u, meaning that they factor as f = i°f
and g = “g with f: X —Y*%and g: Y — Z“ of degree t and v, respectively, then we can lift g to a map
{g°}s of Adams resolutions

ye— . — Yy
gsl }7
Zuts L, L, gu,
Hence gf = i“§i®f = i“t5¢5 f factors through i%*$: Z%+s — Z and has Adams filtration > (u + s). We
thus get a restricted pairing
FUY, 7], ® F*[X,Y ], — F“"%[X, Z].
that induces a pairing
Fu/Fu+l ® FS/F8+1 N Fqus/Fquerl

of filtration subquotients. When the respective spectral sequences converge, we can rewrite this as a
pairing
Egg* ® Eggk Ego-l—s,*

of E.-terms. Conversely, this pairing of F.-terms will determine the restricted pairings F*®@F* — FvTs
modulo F*+5+1 ie., modulo higher Adams filtrations. In this way the pairing of E..-terms determines
the composition pairing [V, Z], @ [X,Y]. — [X, Z]. modulo the Adams filtration.

((Example of this phenomenon: h3 = h2hz so v® = n?c modulo Adams filtration > 4. In fact,
v = 1o+ e)

Let P = H*(X*K*®) and Q,, = H*(X“L"), so that there are free resolutions

s Py P2 Py S HYY) 5 0

and
-~~%Qui>~~%Q1AQO—WH*(Z)%O.

By definition,
Ext"(H*(Z), H*(Y)) = H"(Homg, (Q., H*(Y)))
Exty (H*(Y), H* (X)) = H*(Hom', (P., H*(X))
Exty, "™ (H*(Z), H* (X)) = H"**(Hom} " (Q., H*(X))) .
The (opposite) Yoneda product is a pairing
Ext? (H*(Z),H*(Y)) ® Ext. (H*(Y), H* (X)) — Ext) (H*(Z), H (X)),
and we shall see that the Adams spectral sequence relates the Yoneda product in Fy = Ext(—,—) to

the composition product in homotopy. (This is the opposite of the usual Yoneda pairing, meaning that
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the two factors in the source have been interchanged. This comes about due to the contravariance of
cohomology. Working at odd primes the interchange introduces a sign, which we ignore here.)

Let f: Py — Y'H*(X) and g: Q, — XYH*(Y) be «/-module homomorphisms. To simplify the
notation, we will refer to these as homomorphisms f: P — H*(X) and g: Q, — H*(Y) of degree ¢ and v,
respectively. We also suppose that f and g are cocycles, meaning that 0 = f0s41: Psy1 — H*(X) and 0 =
90u+1: Quir — H*(Y). The cohomology classes [f] and [g] are then elements in Ext®) (H*(Y), H*(X))
and Ext'"(H*(Z), H*(Y')), respectively. Then g lifts to a chain map g, = {gn: Quin — Pn}n, where
each g, has degree v, making the diagram

H*(X)

]

P PPy 1Y)
s QIT QOT /
Qu+s Dty Qu+1 Ot Qu

commute. The composite fgs: Quis — H*(X) is then an &/-module homomorphism of degree (v + t),
and satisfies fgs0uys+1 = 0. It is therefore a cocycle in Hom"/"(H*(Z), H*(X)), and its cohomology
class [fg,] in Ext“F*"* (H*(Z), H*(X)) is by definition the Yoneda product of [g] and [f]. It is not hard
to check that a different choice of chain map lifting g only changes the cocycle fg,s by a coboundary, i.e., a
homomorphism that factors through 0y 4s: Quis — Quis—1, S0 that its cohomology class is unchanged.
Likewise, changing f or g by a coboundary only changes fgs by a coboundary, so that the Yoneda
product is well defined.

Example 5.1. Let X =Y = Z = S and let P, = ), be the minimal resolution of Fy computed earlier.
We can compute the Yoneda product

Ext"’ (Fq, Fa) @ Ext™) (Fg, Fo) — Ext"F " (Fy, Fy)

that makes Ext"(F2,Fy) into a bigraded algebra, by choosing cocycle representatives f: Py — Fa and
g: P, — Fo, lifting g to a chain map g.: P,4++« — Ps, and computing the composite fg;.

Let f=v10=ho: P > Fybedualtog; o€ P, andlet g =2 =ho: P, - Fy bedualtog; s € P;.
A lift go: Py = Py of g is given by g1,2 — go,0 and g1,; — 0 for i # 2.

Fy

o]

P LP@ ;>IF2

g1 90
g=hs
02

P,—— P

The composite goOz: Py — Py is then given by ga o+ 0, g2.1 + 0, ga2 — S¢*go.0, 92,3 — Sqgo,0 etc. A
lift g1: P, — Py is given by g29 +— 0, g2.1 — 0, g2.2 = 91,0, 92,3 — g1,2 etc. Hence fg;: P, — Fy is given
by go.2 — 1 and ga; — 0 for i # 2 (for degree reasons), so that [fg1] = v2,2. Thus hoha = 72,2 in bidegree
(s,t) = (2,4) of Ext."(F2,F5). In hindsight, this it the only possible nonzero value of the product, and
it is realized because of the summand Sq'g; 2 in 92(gs,2) and the summand Sq*go o in 81 (g1,2), with Sq*
detecting hg and Sq¢* detecting ha.

Definition 5.2. Consider any two complexes P, and @, of /-modules. Let

HOMY,"(Q., P.) = [ [ HomY (Quys, Ps)

be the abelian group of sequences {gs: Quis — Ps}s of &/-module homomorphisms, each of degree v.
Thus HOMYL, (Q., P.) is a graded abelian group. Let

8. HOMY(Q., P.) - HOM“ ' (Q., P,)
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map {gs}s 10 {Os+19s+1 + 9sOuts+1ts. ((We are working mod 2, so there is no sign.)) Then §,41d, = 0,
so HOM?/(Q., P.) is a cocomplex of graded abelian groups.

Lemma 5.3. The kernel
ker(Jp) € HOM®,(Q., P,)

consists of the chain maps g.: Q« — Pi, meaning the sequences {gs: Qs — Ps}s of &/-module homo-
morphisms such that Os119s+1 = gsOs+1 for all s. The image

im(5_1) C ker(éo)

consists of the chain maps that are chain homotopic to 0, i.e., those of the form {Jsy1hsy1 + hsOs}s for
some collection of <7 -module homomorphisms hsy1: Qs — Psy1 for all s. Hence the 0-th cohomology

HO(HOM*M(QMP*)) = {g:: Q = P}/ (~) = [Qs, P4

is the (graded abelian) group of chain homotopy classes of chain maps Q. — P.. More generally,
H*(HOM?,(Q«, Py)) is the group [Qui«, P:] of chain homotopy classes of chain maps Qui+« — Px.

In the special case when P, = H*(Y) is concentrated in filtration s = 0, so that Py = H*(Y)
and Py = 0 for s # 0, then HOM"(Q., H*(Y)) = Hom,(Q., H*(Y)) and 6, = (Jy41)*, so that
H*(HOM 4 (Q., H*(Y))) &2 H"(Homy (Q., H*(Y))). When Q. is a free resolution of H*(Z), this is
Ext (H*(Z), H*(Y)).

Proposition 5.4. Lete: P, — H*(Y) and €: Q. — H*(Z) be free o/ -module resolutions. Then
e.: HOM*,(Q., P.) — HOM*,(Q., H*(Y)) = Hom(Q., H*(Y))
is a quasi-isomorphism, in the sense that it induces an isomorphism
€. H'(HOM, (Q., P.)) — Extls (H*(Z), H(Y))
in cohomology, in each filtration u.

This is standard homological algebra. The first assertion only requires that Q). is free and P, — H*(Y)
is exact, but the identification with the final Ext requires that Q. — H*(Z) is exact.

The composition pairing and the quasi-isomorphism

HOM?, (Q., P.) ® Hom gy (P,, H* (X)) —— Hom  (Q., H*(X))
Hom’,(Q., H*(Y)) ® Hom g (Px, H*(X))

thus induce a pairing and an isomorphism

H%(Hom}, (Q«, P.)) ® Ext5,(H*(Y), H* (X)) —— Extgjs(H*(Z),H*(X))

l A

Ext’, (H*(Z), H*(Y)) ® Ext?, (H*(Y), H* (X))

in cohomology, and the Yoneda product is given by the dashed arrow. From this description it is easy
to see that the Yoneda product is associative and unital.

5.2 Smash product and tensor product

Let T, V, Y and Z be spectra. We have a smash product pairing

ALY, @[V, 2] — [TAV,Y A Z),
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taking f: T —Y and g: V — Zto fAg: TANV =Y AZ, and similarly for graded maps. In particular,
for T =V = S we have a pairing

N (V)@m(Z) — m(Y NZ).

If Y is a ring spectrum, with unit n: S — Y and multiplication p: Y A Y — Y, we have a unit
homomorphism
N e (S) — me (V)

and a product
(V) @m(Y) L m (Y AY) 25 1, (Y)

that make m,.(Y) an algebra over m.(S). If Y is homotopy commutative, then 7. (Y) is a (graded)
commutative 7, (S)-algebra.

When Y = 5, the smash product A: m.(S) ® m.(S) = 7. (S) agrees up to sign with the composition
product o: m,(S) ®@ m.(S) — m(S). In detail, the smash product of f: S* — S and g: SV — S is
fAg: Sty =8t AGY » §AS =8, while the composition product is f o Xtg: SUTt = Xt5? — ¥t =
St — S. These agree up to the twist equivalence v: S' ASY = SY A S? which is a a map of degree (—1)%.

Now suppose that Y and Z are bounded below with H,(Y") and H.(Z) of finite type, and let {Y}
and {Z"}, be Adams resolutions. If f: T — Y and ¢g: V — Z have Adams filtrations > s and > u,
respectively, then they factor as the composites of s maps

T=T,—---=Ty=Y

and u maps
V=Vy—=- =>W=72,

all inducing zero on cohomology. By the Kiinneth theorem, the smash product f A g then factors as the
composite of (s + u) cohomologically trivial maps

TANV =T ANVy— - =2ToANVy — - =>ToANVG=Y NZ.
Hence we get a restricted pairing
F3[T, Y], @ F“[V,Z]. — FSTU [T AV,Y A Z).

that descends to a pairing
FS/F3+1 ® F"/Fu+1 N Fs+u/Fs+u+1

of filtration quotients.
((TODO: Discuss tensor product pairing of complexes and Ext, and compare with the Yoneda pair-

ing.))
The Yoneda pairing
EXt;}* (]FQ, IF2) ® EXtZ;{* (FQ, Fg) — EXtZ’{* (]F27 ]FQ)
agrees with the tensor product pairing

EXt:}* (F27 Fg) ® EXt;;{* (]FQ, IFQ) — EXt;l{* (]FQ, Fg) ,

so the two multiplicative structures on the Adams spectral sequence for S agree. ((Give proof?))

5.3 Pairings of spectral sequences

Definition 5.5. Let {'E..},, {"E,}, and {E,}, be three spectral sequence. A pairing of these spectral
sequences is a sequence of homomorphisms

Q/)r: /E:,* ® ”E:’* N E:’*
((for r > 1)) such that the Leibniz rule

dr(¢r(x @ y)) = ¢r(dr(x) @ y) + (=1)"¢r(x @ dr(y))
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holds, where n = |z| is the total degree of z, and

¢’l"+1([x] ® [y]) = [(br(x ® y)]

where [z] € 'E;"| is the homology class of a d,-cycle x € 'E*, and similarly for [y] and the right hand
side. In other words, the diagrams

/E:,* ®”E:’* Pr E:’*

d7\®1i1®d7.l Jdr

/E:,* ®”E:’* Pr E:’*

and
H*’*(/ET) ® H*,*(//ET) H*’*(/ET ® NET) (¢r)* H*,*(ET)
* % J( * % Pr ;Lk
! r’+1 ® ”Er’+1 = Er’+1
commute.

A spectral sequence pairing {¢, }, induces a pairing
(boo: /E:O,* ® //E:é* N E:é*

of E-terms. ((Clear if each spectral sequence vanishes in negative filtrations, so that in each bidegree
(s,t) the E,-terms eventually form a descending sequence, with intersection equal to the E.-term.))

When the Kiinneth homomorphism H**('E,)® H**("E,) - H**('E,®" E,) is an isomorphism, for
all r, one can readily define a tensor product spectral sequence {'F,. ® "E,.},., and the pairing of spectral
sequences is the same as a morphism {'E, ® "E,.}, — {E,}, of spectral sequences.

Definition 5.6. Suppose that the spectral sequences above converge to the graded abelian groups G’,
G" and G, respectively, in the sense that there are filtrations {/F*},, {F*}, and {F*}; of these groups,
and isomorphisms 'F¢ //Fstt = /ps Mps/'pstl =S and FS/Fst = B3 | for all s.

A pairing {¢,}, of spectral sequences, as above, converges to a pairing ¢: G’ ® G’ — G if the
latter pairing restricts to homomorphisms ¢: 'F* @ "F® — F“*$ for all u and s, and if the induced
homomorphisms ¢: 'F*/ Futl @ "Fs ! s+l — puts |putstl qoree with the limit ¢oo: 'EY @ "ES —
EYFs of the pairings ¢,.

In other words, the diagram

/Eu ® //Es = /Fu//Fqul ® I/Fs///Ferl lFu ® //Fs G/ ® G//
[eS) oo ¢

R

E;Lo-'rs ] = Fu+s/Fu+s+1 ] Fu+s s e

commutes. ((Consequences?))

Definition 5.7. An algebra spectral sequence is a spectral sequence {E,}, with a spectral sequence
pairing {¢,: FE, ® E. — E,.}, that is associative and unital. It is commutative if the pairing satisfies
oy @) = (—1)"™¢.(x @ y) for all z, y and r, where n = |z| and m = |y| are the total degrees.
((Elaborate?))

5.4 The composition pairing

Adams (1958) defined a join pairing in his spectral sequence for S, which is stably equivalent to a smash
product pairing in that spectral sequence. We shall return to those pairings later, but first look at the
case of composition pairings, since these are most closely related to the Yoneda product. ((We may also
need to look at this for Moss’ later theorem on Toda brackets and Massey products.))
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Theorem 5.8 (Moss (1968)). Let X, Y and Z be spectra, with Y and Z bounded below and H,(Y) and
H.(Z) of finite type. There is a pairing of spectral sequences

EY,Z) Er*(X,Y) — EX*(X, Z)
which agrees for r = 2 with the Yoneda pairing
ExtD (H*(Z),H*(Y)) ® Ext. (H*(Y), H* (X)) — Ext.) (H*(Z), H" (X))
and which converges to the composition pairing
¥, 23 ® [X, Y], — [X, 23], .
The pairing is associative and unital.

Here is a version of Moss’ original proof.

Proof. Let {Y*}4 and {Z"}, be Adams resolutions of Y and Z, respectively, with cofibers K% = Y*/Y$*1
and L* = Z%/Zu+.
In the unrolled exact couple for X mapping to {Y*},, we can write

Z3(X,Y) = im([X,Y*/V*], — [X,K*].)
Bi(X,Y) = m([X, 57 (Y"1 Y] - [X, K7L.)

as subgroups of E$(X,Y) = [X,K?®].. The homomorphisms are induced by the maps Y*/Yst" —
Ye/Y*tt = K$ and 71V "*1/Y*) —» Y* — K*. Similarly,

Z}(Y,Z) = im([Y,Z2"/Z"""], — [V, L"],)
B(Y. Z) = im([Y,S7H (2" Z")]. — [V, L))

as subgroups of E}(Y, Z) = [Y, LY]..
We would like to define a pairing

ZY(Y,Z)® Z{(X,Y) — Z77(X, 2)

that takes Z%(Y,Z) ® Z$(X,Y) into Z**5(X, Z), and satisfies d,.(xy) = d,(z)y + zd,(y). ((Cope with
indeterminacy!))

This implies that the pairing takes Z*(Y, Z) ® B:(X,Y) and BX(Y,Z) ® Z$(X,Y) into B**%(X, Z),
so that there is an induced pairing E*(Y, Z) ® E3(X,Y) — E*"5(X, Z). It follows that d, satisfies the
Leibniz rule, and the pairing of F,.-terms induces the pairing of E,.;1-terms upon passage to homology.

We must also check that the pairing of Fs-terms agrees with the Yoneda product, and that the limit
pairing of E..-terms is compatible with the composition product. ~

Let f: X — K? and g: Y — L* be maps of degree ¢t and v, respectively, that admit lifts f: X —
Y$/Y*T and §: Y — Z%/Z%t" across the maps Y /Y*T" — K and Z%/Z4T" — L¥.

There is a map of Adams resolutions {i": Z"*" — Z"}, giving a vertical map of cofiber sequences

Zn+1+r v Zn+r J Ln+r o Ezn+1+r

e -

Zn+ 1 t VAL J " ZZ”+ 1

for each n. It factors through the cofiber sequence Z"*1 — Z"t! — x — ¥Z"*+! since r > 1, so
the map L™ — L™ is null-homotopic. Hence its cofiber splits as L™/L"T" ~ L™ v L. ((At
least we can choose commuting homotopies in this way. Different null-homotopies could give different
splittings.)) Passing to vertical cofibers we get an Adams resolution {Z™/Z"*"}, of Z/Z" with cofibers
Ln/LHT o [PV SO~ [ x LT
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The map §: Y — Z%/Z%*" now lifts to a map {g": Y™ — Zutn/Zutn+r1  of Adams resolutions.
Let [ ]: K™ — Lutn/Lutntr o~ Lutn v SLUTHT be the corresponding map of cofibers.

-n

% yn i Y
Kr 7" K° 3
n 0
e i
1 Zu+n/zu+n+r 1 ZU/ZUJrr
Lu+n/Lu+n+r Lu/Lqur

Then \%: Y — K — L% equals g: Y — Z%/Z%F" — L% while 6°j: Y — SL“T" represents d,.(g).
Starting with {Y*}, in place of {Z“},, we get an Adams resolution {Y"/Y"*"}, of Y/Y" with
cofibers K" /K"t" ~ K™V X K"*". We can define a map of cofibers

Kn v ZKTL-‘,—T’ ~ Kn/Kn—i-r N Lu+n/Lu+n+r ~ Lu—l—n v ZLu—Q—n—H’

A" 0
(Sn E)\’VH-T .

In other words, on K™ it agrees with the cofiber map [g‘: ] in the map of Adams resolutions lifting §, while

by the matrix

on LK™ it agrees with the suspended cofiber map Z[g\ﬂf ], but projected away from the summand

R2LuHntIr We claim that there are maps 0: Y™ /Y7 — Zutn /7untr making the diagram

ynjyntr _ 3 Kn K+

J J[g;% 0]

Zu+n+1/zu+n+1+r ¢ Zu+n/zu+n+r J Lu+n/Lu+n+r o E(zu+n+1/zu+n+1+r)

commute. ((Do they extend to a map of Adams resolutions lifting Y/Y" — Z%/Z“*"?)) To prove this,

one checks that 0 o [g‘w 5 )\QM] o j is null-homotopic.

The pairing of r-th cycles now takes g € Z¥(Y,Z) and f € Z:(X,Y) to the composite

g-f: X Ly yeyyetr L guks jputstr _ puts

in Z8+(X, Z) C [X, L"),
It equals the composite
x Ly ks X pus,
and the explicit lift 0% o f through Z%+s/Z%+s+7 tells us that d,.(g - f) is represented by the composite
55 F + SN (f)
((Relate this to d,-(g) - f + g - d-(f).)
((ETC)) O

5.5 The smash product pairing
Let Y and Z be spectra. We have a smash product pairing

AN (V)@ 7m(Z) — m(Y AN Z)
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that takes f: S* =Y and g: S¥ — Z to the smash product f Ag: SIT* =2 STASY 5 Y A Z.

Suppose that Y and Z are bounded below, and that H.(Y) and H,.(Z) are of finite type. Let
{Y*}s and {Z“}, be Adams resolutions of Y and Z, respectively, with cofibers Y*/Y*T1 = K* and
Z% )7t = L% Let Py = H*(L°K*®) and Q, = H*(X*L") be the «/-modules that appear in the usual
free resolutions e¢: P, — H*(Y) and €: Q. — H*(Z).

Let W =Y A Z be the smash product. Then W is bounded below and H.(W) = H,(Y) ® H.(Z) is
of finite type. We shall construct an Adams resolution {W"},, of W by geometrically mixing the Adams
resolutions for Y and Z.

Traditionally, this is done by first replacing Y, Z and their Adams resolutions by homotopy equivalent
spectra, so that each Y° and Z% is a CW spectrum, and each map i: Y*+t! — Y% and i: Z%+! — Z% is
the inclusion of a CW subspectrum. Then Y* A Z% is a CW subspectrum of Y A Z, and one can form
the union of these subspectra for all s +u = n. Hence one defines

wr= ) veawe.
st+u=n
Then W"*! is a CW subspectrum of W™, and
wr/wrtt = \/ K*AL".
stu=n

Lemma 5.9. The diagram

w2 LWt : w

5 by by
) J \ l ) J/
N ; ~ i ~ ;
J J J
~
14} o o>

w2/w3 wl/w? w/wt

is an Adams resolution of W =Y NZ. The associated free resolution R, — H*(W) is the tensor product
of the free resolutions P, — H*(Y') and Q. — H*(Z).

Proof. Since each K* is a wedge sum of suspended copies of H, of finite type, and each L" is of finite
type, we know that W™ /W"*! is a wedge sum of suspended copies of H, of finite type. Let

stu=n

This is a free &/-module of finite type, by its geometric origin as the cohomology of W™ /W *1. (We shall
discuss the </-module structure on a tensor product of &/-modules later.) The composite W"~1 /W™ —
LW — S(W™ /W) splits as the direct sum of the maps jOA1: KS7IALY — SKSALY 2 S(KSALY)
and 1A jO: KS ALYt — KS AXLY = %(K* A LY). Hence the boundary map 9,,: R, — R,_1 is given
by the usual formula

On(z®y)=0,(z) Yy + z® I,(y)

(we work at p = 2, hence there is no sign), so that R. = P. ® @, is the tensor product of the two
resolutions. By the Kiinneth theorem, the homology of R, is the tensor product of the homologies of P,
and Q., so €: R, = H*(Y)® H*(Z) 2 H*(Y A Z) is a free resolution.

In particular, j: W% = Y A Z — K° A L? induces a surjection j* in cohomology. It follows that
9: W/W! — YW induces an injection d* in cohomology, with image in Ry = H*(W/W!) equal to
the kernel of j* = e. This equal the image of 9; = 0*j* : Ry — Ry, by exactness at Ry of the free
resolution, which implies that j*, induced by j: W' — W' /W2 is surjective. Suppose inductively that
j: Wt — Wn=l/W™ induces a surjection j* in cohomology, for some n > 2. Then 9: W*=1/W" —
YW™ induces an injection 9* in cohomology. The image of 0* equals the kernel of j*, hence lies in the
kernel of 0,,_1 = 0*j*: R,_1 — R,_2. This equals the image of 0,, = 9*j*: R, — R, _1, by exactness
at R,_1, which implies that j*, induced by j: W™ — W"/W"+1 is surjective. O

Granting a little more technology, the substitution by CW spectra can be replaced by the passage to
a homotopy colimit. For a fixed n > 0, one considers the diagram of all spectra Y* A Z* for s +u > n,
and forms the homotopy colimit
W™ = hocolimY*® A Z* .

st+u>n
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There is a natural diagram
W2 WS W0y AZ

and an identification

W /Wt = \/ hocofib(Y*T — Y*) A hocofib(Z"*! — Z*)

stu=n

where hocofib(Y*t! — Y*) ~ K* denotes the mapping cone of the given map, etc. The proof of the
lemma goes through in the same way with these conventions.
There is a natural tensor product pairing

Ext? (H*(Y),Fs) ® Ext) (H*(Z),Fs) — Ext ) (H* (Y A Z),F3)
induced by passage to cohomology from the pairing
Hom g (Ps,F2) @ Hom gy (Q4, Fo) — Hom gy (Py @ Qy,Fa)

that takes f: P, — X'Fy and g: Q, — X*F, to the projection P, ® Q. — P ® Q., followed by
f®g: Ps® Qyu — Fa. ((Compare this to the Yoneda pairing when Y = Z = S.))
The following theorem is similar to that proved in §4 of Adams (1958).

Theorem 5.10. There is a natural pairing
EXNY)® E*Y(Z) — ESTMTY(Y A Z)
of Adams spectral sequences, given at the Eo-term by the tensor product pairing
Ext® (H*(Y),Fq) @ Ext"" (H*(Z),Fy) — Ext® " (H*(Y A Z),Fy)
and converging to the smash product pairing
Teeo (V) @ Mol 28) — Tesruul(Y A 2)3).
((Discuss the role of completion in the pairing?))

Proof. Recall that ES = Z5/B2, where

72 =0 Him@iT 1 m (YO — mo (Y5 T)

r

and
Bf = jker(iT ! m (Y®) = m (YL

are subgroups of E! = 7,(K*®). For the purpose of this proof, it is convenient to rewrite these groups as

75 — im(ﬂ_*(ys/ys-‘rr) - W*(Ké))

r

and
B = im(m, (27N Y T Y ) = m (KF)).

These formulas can be obtained by chases in the diagrams

Yerr i Ys YS/YS+’I‘
| ) |
* K? = K?®

L L |

EYS+T Ys+1 N E(ys+1/ys+r>
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and
% Z—l(YS—T+1/YS) = Z—l(ys—r+1/ys)

N

Ys+1 3 Ys J K
J \Lirl l
Ys+1 i Ys—r—i—l Ys—v"+1/ys+1

of horizontal and vertical cofiber sequences.
The differential dé: E$ — ES™" is determined by the homomorphism §: m,(Y*/Y5¥") — Zstr
induced by Y*/Y*T" — LKt and the surjection 7: 7, (Y*/Y*t") — Z% induced by Y /Yt — K.

Bj ¢ Z8 " m, (Vo )Yty 2 Zot Byt
E: - Estr

It follows that By} /B:*" C ES™" equals the image of d3.
So far we have discussed the Adams spectral sequence for a single spectrum Y. We now relate the

Adams spectral sequences for Y, Z and W =Y A Z, where W has the Adams resolution obtained from
given Adams resolutions of Y and Z.

There is a preferred inclusion Y% A Z% — W™ for all s,u > 0 and n = s + u. It restricts to inclusions

YA Z% — W and Y8 A Z9TT — WP that agree on YT A Z%+". Hence we have a main
commutative diagram

ar

U-— YT AZUUYSAZUT VSt LA ZuyYSAZutl s ysaZuv — s Y A Z

J T

Wn+r+1 i N WnJrr Wn+1 ¢ wn w

where Y$¥t7 A Z¥ UY$ A Z¥FT denotes the pushout of YT A Z% and Y* A Z4T" along Y7 A Z¥F7 and
U is brief notation for a similar union of Y+t A Zu, Y+ A Zutl Y+l A Z¥% and Y5 A Z¥F1,
Passing to horizontal cofibers for the middle part of the diagram, we get a commutative diagram

YSAZY—— YV A Z8) 20— K5 A LY (1)

| | |

wn s Wn/wn-i—r Wn/wn-i—l
where the maps in the upper row are smash products of the standard maps V¢ — Y /Y7 Y /Y5 —
K*, etc. The vertical map KSALY — W™ /W™ *! agrees with the inclusion of a summand in W /Wn+! =
Vopuen K° A LY. Hence it induces a pairing
¢1: EY(Y) ® EY(Z) — EY (W)
that corresponds to the previously discussed pairing
Hom g (Ps,F2) @ Hom g (Qs, Fo) — Hom gy (P @ Qy, Fa)

under the d-invariant isomorphisms m;_¢(K*®) & Homf;f(Ps7 Fs), etc.
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Passing to horizontal cofibers further to the left in the main diagram, we get a commutative diagram

Y)Y A ZU )20 s SV A ZEUYS A Z9) — 5 (KT ALYV KS ALY (2)

| J |

Wn/wn-i—r Ewn—&-r E(WTL+T'/W7L+T+1)

where the composite map in the upper row is the wedge sum of the smash product of the standard maps
Y$/Y3T" — KT and Z%/Z%" — L*, and the smash product of the standard maps Y*/Y$+" — K*
and Z%/ZvtT — Y LYTT. The right hand vertical map is the suspension of the wedge sum of the pairings
Ks+r ALY — Wn+r/wn+r+1 and K5 A Lu+r N Wn—i—r/wn-i—r—i—l.

We now claim that (a) ¢; = (;7)1 restricts to a pairing

bri Z3(Y) ® Z2(Z) — ZP(W),

(b) &, descends to a pairing
or: EJ(Y) @ E(Z) — EX(W)

and (c) ¢, satisfies the Leibniz rule

dr(¢r(y ® 2)) = r(dr(y) ® 2) + br(y @ dr(2)) -

Here r > 1 and n = s + u.

Assuming these claims, which are similar to the conditions of Lemma 2.2 of Moss (1968), we can
easily finish the proof of the theorem. The pairings (¢,). and ¢,11 agree, under the identification
H*(Ey,d,) = E;,,, since they are both induced by a passage to quotients from érﬂ. Hence the
sequence {¢.}, qualifies as a pairing of spectral sequences. In particular, ¢ = (¢1)« is the tensor
product pairing of Ext-groups. This spectral sequence pairing converges to the smash product pairing
in homotopy, since the pairing of F..-terms is induced by the pairing

(V) @m(Z%) — m(YP AN ZY) — 7 (WT)
via the surjections m,(Y®) — EZ_, etc., and the pairing of filtration quotients is induced by the same
pairing via the surjections 7, (Y®) — F* — F%/F*T! etc. These surjections have the same kernel, so
the induced pairings of quotients are compatible under the identifications F*/F$t1 = E3_.

It remains to prove the three parts of the claim.

(a) Applying 7. (—) to the right hand square in diagram (1), we get the outer rectangle of the following
map of pairings:

T (YY) @ (24 ) Z%FT) — Z3(Y) @ Z4(Z) —— E5(Y) @ E(Z)

| i I

T (W /W) T ZrM (W) r————— EP (W)

In view of the description of Z(W) as the image of m, (W™ /W"*") — m, (W™ /W"*!) = E}(W), and
similarly for Y and Z, it follows that there is a unique pairing ¢, that makes the whole diagram commute.
(b) To check that ¢, descends to a pairing ¢,: E5(Y) ® E¥(Z) — E*(W), we use the diagram

EY)®ENZ) «—— 2, (V) ®@ ZNZ) —— 27 (V) ® 2} (Z) —— E; (V) @ B} (Z)

|
br | QETJ Q’;Tll ¢7~1J/
4

EW) ¢——— W) ———— 2 (W) ———— > B, (V).

T

There is only something to prove for r» > 2. We assume, by induction on r, that the Leibniz rule in (c)
holds for d,_1 and ¢,_1.

Given y € BS(Y) C Z5(Y) and z € Z¥(Z) we must show that ¢,.(y ® z) € B*(W) C Z*(W). The
image of y in ES_,(Y) has the form [y] = d,_1(z) for some z € ES"7T1(Y), and the image of z in
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EY | (Z) satisfies dr,1~([z]) = 0. Then drjl(@,l(m ®[2]) = pr—1(dr—1(2) ® [2]) + Pr_1(z @ dr_1([2])) =
dr—1([y] ® [2]) + 0 = [¢r(y @ 2)]. Hence ¢, (y ® z) is congruent modulo B ; (W) to a class in B(W), as
we asserted. The same argument shows that ¢, maps Z*(Y) ® B¥(Z) into B*(W). Hence ¢, descends
to ¢, and this uniquely determines ¢,..

(¢) Applying 7.(—) to the outer rectangle in diagram (2), we get the outer rectangle of the following
map of pairings:

[255] zetr(v) @ 22(2) BT (Y) @ B (Z)
—

T (YY) @ o (2 Z0FT) o &
ZYV)©Z(Z)  B(Y)® EyY(Z)
[&7‘ (57‘] l[d’l ¢1]
T (W /W) : 2y (W) e Y (W)

Since the pairings ¢, have been defined to make the right hand square commute, the whole diagram
commutes.
Combining parts of four of these diagrams, we have the commutative sprawl:

7r®7rT -
[i;%i] Ty (YS/Y8+T) (024 W*(Z“/ZU‘H) N ,]T*(Wn/WnJrr) -
1251
TR 5
ExT(Y)® By (Z ZETY) 0 ZM2) 6 é
T ( 29 7"( )«— T ( 29 r( )%Z;H_T(W);»E;L"'T(W)
ENY) @ EXTT(Z) Z3(Y) @ Zutr(Z) /
[#r 0]

Going around the outer boundary of the diagram we see that d? (¢, (y®2)) = ¢, (d3(y)®2)+ ¢ (y2d¥(2)),
proving the Leibniz rule. O

Remark 5.11. If y € m.(K®) and z € 7 (L%) lift to § € m(Y*/Y*t") and Zz € 7. (Z%/Z"t"), re-
spectively, with images dy € m.(XK*T") and §z € m (XL""T"), then y A z € m.(K* A L") lifts to
GAZEm (Y )YSHT A Zu )70+,

EK3+T YS/YS+’I‘ s K

K /\(Lu\ /S " T
Ys/ys—l—r A Zu/zu+r ZU/ZU+T
SKS A LUt SLutr

The maps Y* A Z% — Wt = W" induce a commutative diagram

SKSTTALYVSKS ALY «—— Y8 JYSTT A Z% /78T — 5 KS ALY

| | |

2(wn+r/wn+r+1) W"/W”‘Hﬂ Wn/Wn-’rl
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and § A Z maps to a lift § - Z in 7, (W™ /W) of the image y - z of y A z in W /W"*+1. Hence §(y - 2)
is the image 0y - 2 +y -0z of Sy Az +y A dz in m (BK*T" A L* VvV XK* A L“T"). The key point is that,
even if YS/YST" A Z4/Z4TT is attached to all of YT A Z¥ UY® A ZYTT in Y A Z%, the composite
map to WnH" — Wt /W Hr+l factors through the quotient Kt A L* vV K A L*T" making the left
hand square above commute. The bookkeeping shows that dy represents d,.([y]), and so on, so that
d(y-z)=0y-z+y- 0z implies the Leibniz rule for d,.

Corollary 5.12. Suppose that Y 1is a ring spectrum, with multiplication u: Y ANY — Y and unit
1n: S =Y. Then there is a natural pairing

E(Y)@EXT — EPH(Y),
given at the Es-term by the composite
Ext?) (H*(Y),F2) @ Ext) (H*(Y),Fy) — Ext?) (H*(Y AY),Fy) Sy Ext (H*(Y),F2),

and a unit map
Ep*(S) =5 Ep(Y),

given at the Es-term by
Ext®*(Fp, Fy) 5 Ext®) (H*(Y),Fa),

that make the Adams spectral sequence E**(Y) an algebra spectral sequence over E**(S). IfY is
homotopy commutative, then it is a commutative algebra spectral sequence.

5.6 The composition pairing, revisited

Here is a geometric proof of Moss’ theorem on the composition pairing, close to the one for the smash
product pairing.

Proof. Let {Y*}s and {Z"}, be Adams resolutions of Y and Z, with cofibers Y*/YV**1 = K* and
Zv%)Zv L = L4, respectively. Let Py = H,(X*K®) and Q,, = H,(Z*“L"), as usual.
Consider the homotopy limit of mapping spectra

M* = holim F(Y*, Z").

n<u+s

Restriction from n < u+ s+ 1ton < u+ s gives a map i: M*+t!1 — M*. Its homotopy fiber is the
product over s of the iterated homotopy fiber in the square

F(Y*, Zvs ) s (Y, Z%F%)

| |

F(ys+1’ Zu+s+1) F(ys+1’ ZquS),

which is equivalent to F'(K*, L“**). Hence we get a tower

o MY M M! MO
o J N l
[, PR, L) [, F(K*,L*).

Restriction to (s,n) = (0,u) defines a map to the tower

oo —— F(Y, 2 — s F(Y, Z2%) —— ... ——= F(Y,ZY) —— F(Y, Z)

X IS
~ ~
- l - l
~ ~
~ ~

F(Y, L") F(Y, LY.
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Applying homotopy we get a map of unrolled exact couples, from

coo —— T (M) ——— (M) T (M) —— m, (MO)
N l N J(
LIk, L), (. L.

to the one generating the Adams spectral sequence {E**(Y, Z)},. Let {{ E¥*}, be the spectral sequence
generated by the unrolled exact couple just displayed. The map 'E}"" — E}"*(Y, Z) of E;-terms can be
identified, using the d-invariant isomorphisms

[, L4, = ][ Hom?, (Qurs, P.) = HOMYL(Q., Py)

S

[Y, L*], = Hom{, (Qu, H*(Y)),
with the quasi-isomorphism
€x: HOMY"(Qy, P.) — Hom’,(Q,, H*(Y))

induced by €: P, — H*(Y). Hence the map of Ea-terms is an isomorphism, identifying 'E5"" with the
Adams Es>-term
Ey*(Y, 2) = Ext (H"(Z), H*(X)).

We shall define a pairing of spectral sequences
br: "BV @ ES*(X,Y) — ET5%(X, Z)
for 7 > 1, which agrees with the composition pairing
HOM (Q+, P.) ® Homy (Ps, H* (X)) = Homg (Qu+s, H* (X))
for r = 1. For r» > 2 the source is isomorphic to
EX(Y,Z) @ E*(X,Y)
via €, ® 1, which yields Moss’ pairing and the compatibility with the Yoneda product for r = 2.

The pairing ¢;: 'E}"* @ EJ*(X,Y) — E}7*(X, Z) is the composition pairing

H[KS, L"), ® [X, K*], — [X, L"*],

S

that takes (¢%), @ f to ¢°f. We show that it restricts to a pairing ¢,: 'Z%* ® Z5*(X,Y) — Z4T5*(X, Z)
of r-th cycles, that descends to a pairing ¢,.: 'E¥* @ E$*(X,Y) — E¥t*(X, Z) satisfying the Leibniz
rule, for each r > 1.

((EDIT FROM HERE))

We shall use the identifications
'z = im(m, (MY /M) — (M MEY)
Z55(X,Y) =im([X,Y*/Y*T], — [X, K®].)
zZ2"(X, Z) = im([X, Z“+S/Z“+S+T]* — X, L“+S]*)

where M¥/M“*t1 =T], F(K*, L"**).
Consider the commutative square

F(ys, Zu+8+r) F(ys7 Zu+s)

| |

F(ys—i—r, Zu+s+r> F(YS'H"’ Zu—&-s) .
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There are restriction maps from M¥*" to the upper left hand corner, and from M" to the homotopy
pullback of the rest of the square. Hence there is a map of homotopy fibers from L =1(M“/M"F1) to
F(Ys)ystr =Y (zwts | Zutstr)) giving a map
Mu/Mu+r N F(YS/YS+T, Zu+s/Zu+s+r)
and an adjoint pairing
Mu/Mqur A Ys/strr SN Zu+s/zu+s+r
compatible with the pairing M*/M“*t! A K% — L%*s for r = 1. This leads to the commutative diagram

7r>k(]\4u/]\4u+r) ® [X, Ys/ys+r]* [X, Zu+s/Zu+s+r]*

| |

[LIK® L) @ [X, K], —— s [X, L],

The induced pairing of vertical images is ¢,..
((EDIT TO HERE)) O

6 Calculations

6.1 The minimal resolution, revisited
Recall the minimal resolution e¢: P, — Fs.

Lemma 6.1. The product h;- s, contains the summand Ys+1,m if and only if Os+1(gs41,m) = Zj a;9s.;

contains the summand Sq2igs7n.

Proof. Let"y&n: P; — F3 be dual to the generator g5, € P, and let h; = 7v;,;: P — F2 be dual to
g1, = [5(121
Py 2P

P,—L 5P Fo

N,

F,

We lift v5.,, to vo: Ps = Po mapping g, — go,o and gs; — 0 for j # n. Then g o0 0541 sends gs+1,m
to ango,. To lift vo to v1: Poyy — Py we write a, = >, kaqQk, with each by € «/. Then we may
take Y1 (gs+1,m) = Y Dkg1,k, since 01 (g1,x) = Sqngoyo. The coefficient of gsyi , in the Yoneda product
hi - 7s,n is then given by the value of h; 01 on gsi1,m, which equals h; (3", brgi,x) = €(b;). Hence voy1,m
occurs as a summand in h; - 7y, if and only if Squ occurs as a summand in a, =), kaqQk. This is
equivalent to the condition that Squ occurs as a summand when a,, is written as a sum of admissible
monomials. O

Proposition 6.2. The Yoneda products in Ext?) (Fo,Fs) in internal degrees t < 11 are given by:

‘70,0‘71,0 V1,1 V1,2 ’71,3‘72,0 Y2,1 V2,2 V2,3 72,4 ’72,5‘73,0 73,1 ’73,2‘ Vs,0

ho | 710|720 0 72 724|730 0 31 0 932 0 |vo 0 71| ¥s+1,0
hi|mi] 0 221 0 95| 0 31 0 0 0 ? 0 0 ? 0
hg 1,2 V2,2 0 72,3 ? 3,1 0 0 ? ? ? 0 0 ? 0
h3 ")/173 ’}/2,4 ’)/275 ? ? ’)/372 ? ? 7 7 ? ’)/471 ? ? ?
for 5 < s <10.
Proof. This can be read off from the minimal resolution e€: P, — F5, using the lemma above. O
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Remark 6.3. The remaining summands, like S¢3g1 o in 92(g2.1) and Sq?Sq*g11 in 92(g2.2), contribute
to higher compositions like Massey products, like h3 € (ho, h1, ho) and hoha € (hi, ho, h1), which imply
n? € (2,n,2) and 2v € (n,2,7), respectively.

Definition 6.4. Let ¢y € Exti‘;{n(lﬁ‘g, F3) be the class of the cocycle v3 3: P3 — Fy of degree 11, dual to
g3,3.

Corollary 6.5. The algebra unit is 1 = 79,. The classes hg = v1,0, h1 = 71,1, ha = 71,2, ha = N3
and cy = 73,3 are indecomposable. The remaining additive generators in internal degree t < 11 are
decomposable. These algebra generators commute with one another, so the Yoneda product is commutative
(in this range). The decomposable generators have the following presentations:

Yo,0 = h§ Y30 = hd

Vo1 = h} Y31 = h} = hiho
72,2 = hoha V3,2 = h(z)h?,

Yo,3 = h3 Va1 = highs

V2,4 = hohs ¥s,0 = hg

V2,5 = hihs

for s > 5. The relations hohy = 0, h1hy = 0, hi” = h%hg and hoh? = 0 are satisfied, and generate all
other relations for s <3 and t < 11.

We redraw the Adams Fs-term with these standard names for the generators, in the usual chart with
the topological degree t — s on the horizontal axis and the filtration degree s on the vertical axis. (The
class labeled h$ could equally well have been called h2hs.)

h§ 202
4] hj hihs 7 | 2 | 2
h} h3 h2hs| co | 7 | 7
2| h3 h3 |hohs h3 |hohs hihs ?
ho | ho hs
0 1
0 2 4 6 8 10

Another way to draw the chart is to use a e for each additive generator, a vertical line connecting x
to hox, a line of slope 1 connecting = to hix, a (dashed) line of slope 1/3 connecting x to hoz, and a
(dotted) line of slope 1/7 connecting x to hzz.

‘ o | 9
4 s s 77| 2
¢ . o | e | 2| 2
2| el ‘. o |.e 2
ol -
0 2 4 6 8 10

62



Here is the same chart without the hs-multiplications, which tend to clutter the picture, but with
labels for the indecomposables.

. ? ?
4| e ° ? ? ?
. ’ . CO. ? ?
2 i _e _e ° ?
frot hi .- fzrz ﬁ3
0 ¥
0 2 4 6 8 10

The reader might contemplate the relations h;h;41 = 0, h?—s-l = h%hprg and hihf+2 =0, in view of this
diagram.

Let us take for granted Adams’ vanishing result, in the form that the groups E; T—0forl<t—s<T
and s > 5. Then:

Lemma 6.6. Ey' = E3! fort <11.

Proof. Since the h; for 0 < ¢ < 3 represent homotopy classes, they are infinite cycles, meaning that
dy(h;) = 0 for all » > 2. By the Leibniz rule, it follows that d,(z) = 0 for each z in the subalgebra
generated by these classes. The only remaining additive generator is cg, but d,(cp) lands in Adams’
vanishing range, for all r > 2. O

Theorem 6.7. (a) my(S)5 = Zs is generated by the identity map v: S — S, represented by 1 € E%C.
The class of 2°1 is represented by h§ € ES°, for all s > 0.

(b) 71(S)5 = 7Z/2 is generated by the complex Hopf map n: S* — S, represented by hy € EL2.
(c) m2(S)5 = 7Z/2 is generated by n?, represented by h? € E%*.
A

(d) 73(S)s =2 Z/8 is generated by the quaternionic Hopf map v: S3 — S, represented by hy € EXA. The

class 2v is represented by hohe € E%, and the class 4v = n3 is represented by hihy = h3 in E3S.
(e) ma(S)y = 0.
(f) m5(5)3 = 0.
(g9) 76(S)5 = 7Z/2 is generated by v?, represented by h3 € E%5.
(h) 77(S)5 =2 Z/16 is generated by the octonionic Hopf map o: ST — S, represented by hy € EL8. The
classes 2k are represented by hfhs € EXF1R+8 for 0 <k < 3.

This gives the additive structure of m,(S5)5 for * < 7. We can also determine the multiplicative
structure.

Proposition 6.8. 2n =0, n® =4v, nv =0, 202 = 0.

Proof. These follow from the relations hohy = 0, h3 = h3hg, hiha = 0 and hoh3 = 0 in Ext, together
with the fact that there are no classes of higher Adams filtration, in these cases. O

Remark 6.9. By associativity, it is clear that 1 - 1% = gv - v = 0. On the other hand, the vanishing of
hy - k3 in Ext‘z;m(FgJFg) only tells us that 7 - ? is 0 modulo classes of Adams filtration s > 4. There
is one such class, namely 8¢ represented by h3hs, but the factorization of v? tells us that 7 - 2 is not
equal to 8o, but is 0.
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Figure 2: Adams spectral sequence for S, in degrees 0 < x < 22

6.2 The Toda—Mimura range

Toda (1962) calculated 7, 4(S*) for all n < 19, Mimura and Toda (1963) extended this to n = 20, and
Mimura (1965) carried on to n = 21 and n = 22. For k large, these computations determine the stable
homotopy groups m,(.S) for n < 22. ((Maybe better to continue to n < 23, to see vR.))

The Adams Fs-term in this range was originally computed by hand (by Adams (1961) for ¢t —s < 17
and Liulevicius (unpublished) for ¢t — s < 23), then by the May spectral sequence (by May (1964) for
t—s < 42 and Tangora (1970) for t —s < 70), but can now quickly be obtained by machine computation.
Bruner’s ext-program yields the chart in Figure 2. The larger chart in Figure 3 was created by Christian
Nassau (2001).

((Show hidden extensions: 1 times p is represented by Pcg, 7 times ni is represented by Pdy, 2 times
2vk equals v times 4k and is represented by hy Pdy, v times v? differs from n?c by ne.))

With the exception of fy, each labeled class is the unique nonzero class in its bidegree. The class fy
is, for now, only defined modulo the decomposable class h?h4 = h3h2h4. (A definite choice can be made
using Steenrod operations in Ext.)

In addition to the hg-, h1- and he-multiplications shown, and the product hs - hs = h% in E;‘lﬁ, there
are the following nonzero hs-multiplications:

hs - Phy = h2dy
hs - hiPhy = h3Phy = hidy = hieg
hs - h3 = h3hy
hs - eq = hihaco
hs - P*hy = hiPdy
hs - hiP?hy = h3P?hg = h3Pdy = hi Pe
The last three of these land outside the displayed range of topological degrees. We omit to list the

h;-multiplications for i > 4. ((The multiplicative structure also includes relations like ¢2 = hidj.))
The evolution of the Adams spectral sequence in this range is as follows.

Theorem 6.10. The algebra indecomposables in topological degree t — s < 22 of the Adams Es-term are
ho, hi1, ha, hy and hy in filtration s =1, ¢g and ¢y in filtration s = 3, dy, eo, fo and g = g1 in filtration
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s =4, Phy and Phy in filtration s = 5, Pcy in filtration s = 7, Pdy in filtration s = 8, and P%h; and
P2hy in filtration s = 9.
The classes hg, hi, ha, hs, co, c1, do, g, Phy, Phy, Pcy, Pdy, P?hy and P%hy are infinite cycles.
The nonzero ds-differentials affecting this range are:

ha v25 hoh2
eo — hidy
fo > hohady = hieo
hieg = hofo — hidy = hieo
i — hoPdy
hoi — h3Pdy

The list of algebra indecomposables of the Es-term is as for the Fo-term, with hy, eq and fo deleted,
but with hohy, hihs and hohy added. The classes hihy and hohy are infinite cycles.
The nonzero ds-differentials are:

hoha v hody
h2hy — h2dg

The list of algebra indecomposables of the E4-term is as for the Es-term, with hohy deleted, but with
h3hy added. There are no further differentials, so that Ey = Es, in this range of topological degrees.

Sketch proof. Use graded commutativity of 7. (S) to see that 202 = 0, but hoh2 # 0 in E>''7. Since hoh3
is an infinite cycle, it must be a boundary, so da(hs) = hoh3.

Using the homotopy-everything structure on S, one gets a differential da(fo) = h3eg, which implies
that dg(hofo) = hgeo and dQ(eo) = h%do

Using the J-homomorphism, we known that m15(5)% contains Z/32 as a direct summand. We know
that da(hohy) = h2h3 = 0. If also d3(hohs) = 0, then 715(S)5 would instead contain a copy of Z/64
(unless dg(h1hy) = hihs). Deduce that d3(hohs) = hodo. O

Toda (1962) uses the following notation.

Definition 6.11. Let € € m3(S)) be the unique class represented by ¢y € E3!. Then ne € mo(5)5 is
represented by hico € EL12. ((Claim: v® = n%0 + ne.))

Let = pg € mo(S)% be the unique class represented by Phy € E%4. Then nu = 19 € m10(S)5 is
the unique class represented by hi Phy € ES16.

Let ¢ € m11(S)% be a class represented by Phy € E%16. Tt is determined up to an odd multiple. Then
4¢ = n*p.

The class 02 = 03 in m14(S)% is decomposable. It is represented by h3 € E216.

Let x € m14(5)% be the unique class represented by dy € EX8. ((Then nr € m15(9)5 is represented
by hidy, and vk € m17(5)% is represented by hadg, while n’k = 0.))

Let p € m15(S)5 be a class represented by h3hy. It is determined up to an odd multiple. ((There is
a hidden multiplicative extension: np is represented by Pcy.))

Let n* = ny € m16(S)% be a class represented by hihy. ((This only defines it modulo np.))

Let v* € m15(9)% be a class represented by hohy. ((This only defines it up to an odd multiple, and
modulo nfi = p1z. Compare o2 to vv*?))

Let i = p17 € m17(S)% be the unique class represented by P2h; € E226. Then ni = 15 € ms(9)%
is the unique class represented by hy P?h; € E10:28,

((Define &, C.))

Definition 6.12. It is traditional to write 6; for a class in my;+1_5(S) represented by h? in Egi“g, if
such a class exists, and to write 7, for a class in 7, (S) represented by hih; € E2+22,

Remark 6.13. The classes 0; are realized for 0 < j < 3 by 22 = 4, n?, v? and o2. It follows from the
computations of Mahowald and Tangora (1967) that h3 is an infinite cycle, so that 6, € m30(S) exists.
It was proved by Barratt, Jones and Mahowald (1984) that h? is an infinite cycle, so that 05 € m62(S)
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exists. It is an open problem whether 0 € m196(S) exists. Hill, Hopkins and Ravenel (2009, to appear)
showed that 6; does not exist for j > 7.

Mahowald (Topology, 1977) proved that the n; exist (so that hqh; is an infinite cycle) for all j > 3.
It is known (Mahowald and Tangora (1967), plus later calculations) that the only other classes in
filtration s = 2 that survive to the E..-term are hghs, hohs and hshy, representing 2v, 20 and v* in

7 (S).

Theorem 6.14. (a) 7s(S)) =2 (Z/2)? is generated by no and €, represented by hihs € E%Y and co €
E3M | respectively.

(b) mo(S)5 =2 (Z/2)® is generated by nc, ne and p, represented by h3hs € E3'2, hicy € EL and
Phy € E%' ) respectively.

(¢c) m0(S)s = 7Z/2 is generated by nu, represented by hyPhy € ES16.

(d) 711(S) = Z/8 is generated by ¢, represented by Phy € E%6. The class 2 is represented by
hoPhy € ES7, and the class 4C = n?p is represented by h3Phy = h?Phy € EL8.

(6) le(S)é\ =0.
(f) m3(S)y =0.
(9) m4(S)5 = (Z/2)? is generated by 0% and k, represented by h3 € E% and dy € EL!8, respectively.

(h) m5(S)s = Z/32 ® Z/2 is generated by p and nk, represented by hihy € E%Y and hidy € E32°,
respectively. The classes 2Fp are represented by h§+3h3 € EFrOkE19 for 0 < k < 4.

(i) m16(S9)% =2 (Z/2)? is generated by n* = ny and np, represented by hihy € E%® and Pcy € EL?3,
respectively. ((Note the filtration shift inn-p.))

(G) m17(9)% = (Z/2)* is generated by m*, vk, n’p and i = piz, represented by hihy € E320, haody €
E52% hyPcy € ET?* and P2hy € E%25, respectively.

(k) ms(S)y 2 Z/8 B Z/2 is generated by v* and nji = p1s, represented by hahy € E%%° and hiP?hy €
E19:28 respectively.

1) m9(8)) = 7Z/2®7Z/8 is generated by & (mdgT represented by ¢1 € E>%2 and P?hy € E228 respec-
(1) m9(S5)2 g y , rep y e 2%, resp
tively.

(m) ma0(S)% = Z/8 is generated by K, represented by g € EX?4. The class 2k is represented by hog €
E325, and the class 4k = v?k is represented by hig = h3dy € ES:%°.

(n) ma1(S)y = (Z/2)% ((?)) is generated by vv* and nk, represented by hihy € E32* and hig € E2:%6,
respectively.

(0) m22(S)s = (Z/2)? ((?)) is generated by va and 1k, represented by hacy € E%%% and Pdy € E%3°,
respectively. ((Note the filtration shift in n-nk.))

((Discuss additive splittings, by 27 = 0 and associativity, and multiplicative extensions.))

Remark 6.15. There are Steenrod operations S¢' in Ey™* = Ext**(Fy, Fy), taking E5* to Et? I
particular Sq°: ES’t — E§’2t is multiplicative, and maps h; to h;+1 for ¢ > 0. A sequence of elements

€, Sqo(m)v SqO(SqO(w))7 s

is called a Sq°-family. In the Sq°-family hq, h1, he, ... the first four classes detect 2¢, 1, v and o, but hy
and all later terms are killed by the Adams differentials da(h;) = hoh?_; for i > 4.

In the Sq°-family h2, h3, h3,... the first six classes detect 4:, 0%, v?, 02, 6, and 05, but h2 and
all later terms are killed by (unknown) differentials. The status of hZ is unknown. In the family
hohsa, hihs, hohy, ... the first three classes detect 2v, no and v*, but hshs and all later terms sup-
port differentials. In the family hohg, hihg, hohs,... the first two classes detect 20 and n*, but hohs
and all later terms support differentials. For each ¢ > 4, only the term hih;y; survives in the family
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Figure 4: Adams spectral sequence for HZ

hohi, hihiy1, hahiya, ..., detecting 7;41. The classes cg,cy,ca, ... also form a Sq°-family. The first two
classes detect € and &, but there are differentials do(c;) = ho fi—1 for i > 2.

These results leads to the conjecture, called the “New Doomsday Conjecture” by Minami, and the
“Finiteness Conjecture” by Bruner, saying that only a finite number of terms in each Sq¢"-family detects
nonzero homotopy classes. ((References?))

6.3 Adams vanishing

Lemma 6.16 (Change of rings). Let A be any algebra, let B C A be a subalgebra such that A is flat
as a right B-module, let M be any left B-module and let N be any left A-module. There is a natural
isomorphism

Ext%'(A®p M,N) = Ext%'(M,N).

Proof. Let P, — M be a B-free resolution. Then A ®p P, -+ A ®p M is an &/-free resolution. The
isomorphism Homy (A ®p P, N) = Homp(P,, N) induces the asserted isomorphism upon passage to
cohomology. O

((TODO: Discuss compatibility of multiplicative structure(s) in Ext4 and Extp.))

Definition 6.17. Let A be an algebra and let B C A be an augmented subalgebra, with augmentation
ideal I(B) = ker(e). Let
A//B=A®pF, =2 A/A-1I(B).

If B is normal in A, meaning that I(B)- A= A-I(B), then A//B is a quotient algebra of A.

Recall that we write P(x) = Fy[x] and E(z) = P(x)/(2?) for the polynomial algebra and the exterior
algebra, respectively, on a generator x. Let A(0) = E(0) = E(Sq') C & be the subalgebra generated by
Sq'. There are isomorphisms H*(HZ) = of |/ Sq* = o @ a(9) F2 = o/ /A(0).

Proposition 6.18. The Adams spectral sequence for HZ collapses at the Es-term

Eék’* = EXt;{* (H* (HZ),FQ) = EXtZEkO) (FQ,FQ) = P(ho)

where hg € Ey', and converges strongly to m,(HZs>). The class of 2° € no(HZs) = Zs is represented by

h§ € E?, for each s > 0.

Proof. The Steenrod algebra & is free as a right A(0)-module, generated by the admissible monomials
Sq' for which I = (iy,...,4¢) and i, > 2. (This includes the monomial 1 = Sq0.)

There is a minimal, free A(0)-module resolution P, of Fy with P, = A(0){gs} = Fa{gs, Sq'gs} for
each 5 > 0, and d,(gs) = Sq'gs—1 for each s > 1. Then Ext ) (F2, F2) 2= Hom (o) (Ps, F2) = Fa{7,} is
generated by the dual of gs. It lifts to a chain map 7,: P.ys — P that takes g, to g, for each n > 0.
These satisfy 4, 0 75 = Fu+s under composition, so v, - vs = Yuts in the Yoneda product. Let hg = 71
be dual to g1, in internal degree 1. Then 75 = h§ and we have proved that Ext} o) (F2,F2) = Fa{h{ |
s> 0} = P(hg). O
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The cofiber sequence
S - HZ — HZ

induces a short exact sequence
0« Fy <7 o7 /JA(0) «— (o |/ Sq") + 0
in cohomology, and a long exact sequence
Ext®, Y (I(o/ )/ Sq"), Fy) — Ext®!(Fa, Fy) Ext’y o) (F2, Fo) — Ext() (I(«/ /<7 Sq"), F2)

of Adams Fs-terms. The map 7, is an isomorphism for ¢ — s = 0, so the connecting homomorphism § is
an isomorphism for ¢t — s # 0.

Lemma 6.19. I(</ /o Sq') is free as a left A(0)-module, generated by the admissible Sq' for which
I = (i1,... i), i1 is even and iy > 2. (This excludes the monomial 1 = SqU.) The first few basis
elements are

Sq?,Sq*, Sq%, Sq*Sq?, Sq®,5¢°Sq?, Sq°Sq?, Sq'°, Sq¢*Sq*, S¢* S, ... .

Proof. When Sq! ranges over the admissible monomials with i; even and i, > 2, then S¢! and Sq'Sq’
range over the admissible monomials with i, > 2. The only exception occurs for I = (). O

Proposition 6.20. Let M be an o/ -module that is free as an A(0)-module, and concentrated in degrees
x> 0. Let
0 fors=0 mod 4,

e(s)=4¢1 fors=1 mod 4,
2 fors=2,3 mod4.

Then
Ext®)(M,Fqy) =0

fort—s < 2s—e(s).
Proof. First consider the case M = A(0), with the unique &/-module structure realized by H*(S/2).
There is a minimal free «/-module resolution

Py 2P 22 P 2 Py S5 A(0) = 0

with Py = «7{1}, P, concentrated in degrees t > 2, P5 concentrated in degrees ¢t > 4, P3 concentrated
in degrees t > 7, and SI2K = ker(ds) concentrated in degrees ¢t > 12.
This can be proved by direct calculation, or by using our previous Ext-calculations for the sphere

spectrum, the cofiber sequence S 2,8 S/2 — ¥.§ = S1, the induced extension 0 < Fy < A(0) +
3Fy + 0 of &/-modules, and the associated long exact sequence

o= Ext® VT (g, Fy) 2, Ext®! (Fa, Fy) — Ext®(A(0), Fy) — Ext®/ ™ (Fy, Fa) — ...

in Ext. Here each connecting map ¢ is given by the Yoneda product with hg, which is the class in
Exti;,l (Fy,Fy) of the extension above. This leads to the additive structure of the following Adams chart
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for Ext?)"(A(0), Fa):
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This proves the claim for M = A(0) and 0 < s < 4.

Next, consider an extension 0 = M’ — M — M" — 0 of A(0)-free o/-modules, all concentrated in
degrees * > 0, and suppose that the claim holds for M’ and M". Then the claim follows for M, in view
of the long exact sequence

o Bxt®f (M, Fy) — Ext®) (M, Fa) — Ext® (M’ Fy) — ... .

The claim for general A(0)-free M and 0 < s < 4 then follows.
Since A(0) and each P is A(0)-free, it follows that X2 K = ker(03) is A(0)-free, and concentrated in
degrees * > 12. Thinking of P, 4 as a resolution of X'2K, we get an isomorphism

Ext® (K, Fy) = Ext® 12 (Fy, Fy)

for all s > 0. Hence the claim for A(0) and 4 < s < 8 follows from the one for K and 0 < s < 4. The
general claim for A(0)-free M and 4 < s < 8 then follows as above. Continuing this way, the general
claim follows for all s > 0. O

Corollary 6.21. Extfj(]Fg,IFg) =0for0<t—s<2s—¢, wheree =1 for s =1 mod 4, ¢ = 2 for
s=2 mod 4 and e =3 for s =0,3 mod 4.

Proof. This follows from the isomorphisms
Ext®) (F, Fy) 2 Ext®, " (I(of /o7 Sqt), Fa) = Ext®, V72 (M, Fy)
for t — s > 0, where ¥2M = I(<//</Sq'), and the proposition as applied to M. O

This result is not quite optimal for s = 0 mod 4. Adams (1966) works a little harder to prove the
optimal vanishing range:
Theorem 6.22 (Adams vanishing). Ext‘;’;(IE‘QJFg) =0for0<t—s<2s—e¢ wheree=1 fors=0,1
mod 4, e =2 for s=2 mod 4 and e =3 for s =3 mod 4.

((ETC: Approximation for Ext over A(n) C &7.))

6.4 Topological K-theory

Definition 6.23. Let ku and ko be the complex and real connective K-theory spectra, with underlying
infinite loop spaces 2°°ku = Z x BU and Q*°ko = Z x BO, respectively. These are the connective covers
of the complex and real topological K-theory spectra, KU and KO, respectively.

Definition 6.24. Let bu and bsu be the 1- and 3-connected connected covers of ku, respectively, with
Q>*bu = BU and Q*°bsu = BSU. Let bo, bso and bspin be the 0-, 1- and 3-connected covers of ko,
respectively, with Q2°°bo = BO, Q2*°bso = BSO and Q*°bspin = BSpin. We may also use the notations
u=X"1hu, su=X"tbsu, 0o = " 'bo, so = X" 'bso and spin = ¥ 'bspin, for the desuspended spectra
with infinite loop spaces U, SU, O, SO and Spin, respectively.
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Remark 6.25. This is the notation used by Adams and May. Mahowald and Ravenel write bu and bo
for “our” ku and ko.

Definition 6.26. Let Q1 = [Sq!, S¢%] = S¢® + S¢*Sq*. Let E(1) = E(Sq*, Q1) C & be the subalgebra
of & generated by Sq! and Q1, and let A(1) = (Sq', S¢?) C & be the subalgebra generated by Sq' and
Sq?. Here is an additive basis for A(1), with the action by Sq! and Sq? indicated by arrows:

! qu S\q?) Sq2Sq3
Sqt ————————— 8¢°Sqt —— S¢3Sqt SqlSqd

For typographical reasons, we write Sq?Sq> in place of its admissible expansion S¢° 4+ Sq*Sq!. Note
that £(1)//A(0) = E(Q1), A(1)//E(Q1) = E(Sq",Sq¢?) and A(1)//E(1) = E(Sq?).

Proposition 6.27 (Stong). There are <7 -module isomorphisms
H*(ku) = o/ |JE(1) = of | {Sq",Q1} = o | «/{Sq", Sq*}

and

H*(ko) = o/ | JA(1) = o | /{Sq", S¢°} .
Proof. By complex Bott periodicity, there is a cofiber sequence
S2hu 25 ku — HZ — Y3%ku.

Here Y2ku = bu is the connected cover of ku. The left hand map is a composite

Y2k = ku A S? 2% ku A ku -2 ku

where u € ma(ku) is a generator and ¢ is the ring spectrum product. It is known that the mod 2 Hurewicz
image of w is zero, so f* = 0, and there is a short exact sequence of &7-modules

0+ H*(ku) < H*(HZ) + S*H*(ku) + 0.
The short exact sequence of F(1)-modules
0+ Fy < E(1)//A(0) + ¥3Fy < 0
can be induced up to a short exact sequence
04 o //E(1) + o |/A0) + £*a/ //E(1) + 0,

since & is free as a right F(1)-module.
The composite HZ — 23ku — £3HZ is known to take 31 to Q; in cohomology, so ku — HZ takes
(21 to 0 in cohomology. Hence there is a map of short exact sequences

0¢— o //EQ) o | JA(0) «—— S3e/ | | E(1) +—— 0

| J

0+—— H*(ku) +—— H*(HZ) +—— X3H*(ku) +——0
We know that the middle map is an isomorphism, and the right hand map is the triple suspension of

the left hand map. It follows by induction on the internal degree that the latter two maps are also
isomorphisms.
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By real Bott periodicity, there is a cofiber sequence
Sko 15 ko — ku — X%ko.

The left hand map is a composite

Sko = ko A S' 2% ko A ko -2 ko

where 7 € w1 (ko) is the image of n € m1(S), and ¢ is the ring spectrum product. The mod 2 Hurewicz
image of 7 is zero, so n* = 0, and there is a short exact sequence of &7-modules

0 < H*(ko) + H*(ku) + X*H*(ko) < 0.
The short exact sequence of A(1)-modules
04+ Fy < A(1)//E(1) < X?Fy + 0
can be induced up to a short exact sequence
0+ o///]A(1) + o/ //E(1) + $2a///A(1) 0,

since 7 is free as a right A(1)-module.
The composite ku — Y2ko — X2ku takes ¥21 to S¢? in cohomology, so ko — ku takes Sq® to 0 in
cohomology. Hence there is a map of short exact sequences

0 o /JA(1) +—— o /| E(1) «—— S2e7 | JA(1) «—— 0
0 +—— H*(ko) «+—— H*(ku) +——— X2H*(ko) +——0

We know that the middle map is an isomorphism, and the right hand map is the double suspension
of the left hand map. It follows by induction on the internal degree that the latter two maps are also
isomorphisms. [

Proposition 6.28. The Adams spectral sequence for ku collapses at the Eo-term

E;’* = Eth}*(H*(/{U),Fg) = EXtE:I)(FQ,]FQ) = P(ho, hgo)

where ho € By and hyo € Ey®, and converges strongly to m.(kub) = Zo[u]. The class of 2 € mo(kup) is
represented by ho, and the class of u € wa(kub) is represented by hag.

Proof. We use the change of rings isomorphism Ext?) (<7 //E(1),F,) = Extga)(lﬁ‘g, Fy). ((Must justify

that & is right free, thus flat, over E(1).)) There is a Kiinneth isomorphism

Extyyr (F2, F2) 2 Extlyls . (F2, F2) @ Extlyo, | (Fa, Fa)

E(1) E(Sqt) (@Q1)
and Exth’(*Ql)(Fg,IFg) > P(hg) with hgy dual to Qq, by the same argument we used to show that
Extgz‘l)(Fg,Fg) > P(hg) with ho dual to Sq'. (Another name for hgg is v1.) The spectral sequence is

concentrated in even columns, hence collapses for bidegree reasons. O
Proposition 6.29. The Adams spectral sequence for ko collapses at the Eo-term
Ey" =Ext} (H*(ko),Fy) = Extj{z‘l)(]Fg,Fz)
>~ P(hg, h1,v,w1)/(hohi, h3, hiv,v* = h3w;)
where hg € E21’1, hy € E21’2, v E E§’7 and wy € E;l’u, and converges strongly to
me(koy) = Zaln, o, B]/ (20,77, na, o® = 46) .

The classes 2, m, o and B are represented by hg, h1, v and wy, respectively.
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Figure 6: Adams spectral sequence for ko
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Hence _
T (k) = {Zz{ul} for n = 2i

2270 otherwise
and '
Z2{B"} for n = 8
Z/2{nB'} forn=8i+1
7o (kod) = < Z/2{n*B'} for n=8i +2
Zo{aBt} forn =8i+4
0 otherwise
for n > 0.

((The complexification map c: ko — ku induces hg — hg, h1 + 0, v+ hoh3, and wy — h3, in Ext,
and similarly in homotopy.))

*

Remark 6.30. To compute EXtZ(l)(F27F2), we can use the Cartan—Eilenberg spectral sequence (1956,

Theorem XVI.6.1). If A is a connected graded algebra, B C A is a normal subalgebra, and A is projective
as a right B-module, then this is an algebra spectral sequence

ERY = Ext?,

s (F2, Exth (Fa, Fy)) = Ext’}" (s, Fo)

of cohomological type. In the special case when A = F5[G] is a group algebra, and B = F3[N] is the group
algebra of a normal subgroup, we have B//A = F3[G/N] and the Cartan-Eilenberg spectral sequence
agrees with the Lyndon—Hochschild—Serre spectral sequence

EYY = HP (G/N; HL,(N;Fy)) = H;’;“q(G;]FQ).

This is again a special case of the Serre spectral sequence in mod 2 singular cohomology, for the fibration
BN — BG — B(G/N).

First proof. We use the change of rings isomorphism Ext;"(e///A(1),F2) = Exty,(F2, F2). ((Must
justify that o is right free, thus flat, over A(1).)) The subalgebra E(Q;) C A(1) is normal, with
quotient A(1)//E(Q1) = E(Sq', Sq?). Hence there is a Cartan—Eilenberg spectral sequence

By = Extp(sqr,sq2) (F2, Extipg,) (F2, F2)) = Extly ) (F2, Fa) .
Here Exty g, )(F2,Fa) 2 P(hy). The module action of E(Sq', S¢%) on P(hs) is (necessarily) trivial, so
E;’* = P(ho,hl) (9 P(hgo)

with hg € E21’0 dual to Sq¢', hy € E;’O dual to Sq¢?, and hgy € Eg’l dual to Q1. (We are ignoring the
internal degrees here.) There is a ds-differential da(hog) = hohi, corresponding to the fact that the
generator @)1 € E(Q1) becomes decomposable in A(1). This leaves the Es-term

B3" = P(ho, hn)/(hoh1) © P(h) -
There is a further ds-differential da(h3,) = h$. This leaves the E3-term
By = (P(ho, ha)/(hohy, h) @ P(ho){hoh3,}) ® P(h).

The spectral sequence collapses at this stage, for bidegree reasons: A ds-differential on h3; could only
hit A3, but the internal degrees do not match. ((No additive or multiplicative extensions.)) O

Second proof. One might also consider the Cartan—Eilenberg spectral sequence

By = Exthy g0 (F2, Ext ) (F2, F2)) = Extfyt] (F2, Fa)

( B

associated to the isomorphism A(1)//E(1) = E(Sq?), but in this case the E(S¢?)-module action on
EXt*E(l)(]FQ,]FQ) = P(ho, hag) is non-trivial, being given by Sq? - hog = hg. With the usual periodic
resolution for Ext over E(Sq?), this gives a d;-differential dy(hag) = hohi, so that

E3™ = P(ho, h1)/(hoh1) @ P(h3g) .
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Again there is a ds-differential dz(h3,) = h}, leaving
By = By = (P(ho, h1)/(hohi, hi) & P(ho){hoh3o}) ® P(hy) -
Note that in this case hg, h1 and hgg have bigradings (p,q) = (0,1), (1,0) and (0, 1), respectively. O

Third proof. For a proof without the Cartan—FEilenberg spectra sequence, we may construct a minimal
resolution of Fy by “almost free” A(1)-modules. Some interesting examples of indecomposable modules
appear along the way. There is an exact sequence

0= D12F, — S7TA(1)//A(0) 25 S A1) 22 224(1) 25 A(1)//A(0) -5 Fy — 0
of A(1)-modules. The kernel of the augmentation e from A(1)//A(0) = A(1)/A(1)Sq*
1 Sq? Sq3 Sq?Sq®

is the “question mark module”

Sq¢? —— 8¢ Sq¢2S¢3

which is isomorphic to %2(A(1)/A(1)Sq¢?). Here 1 ® e: &7 //A(0) — o //A(1) is induced by the zeroth

Postnikov section ko — HZ, with homotopy fiber bo, so XH*(bo) = &/ ®4(1) ker(e) and H*(bo) =
S [ SeP).

The kernel of 9 : $2A4(1) — ker(e), taking %21 to Sq¢?, is the double suspension of the “joker module”

YR

Sq¢2 —— S¢3 Sq¢38qt S5q¢2Sq® —— Sq'S¢°

which is isomorphic to (7 /.7 Sq*). Here 100, : X2.o/ — &/ ® 4(1)ker(e) is induced by the Postnikov sec-
tion bo — X H, with homotopy fiber bso, so S2H*(bso) = &/ @ 5(1) ker(81) and H* (bso) = ¥2(of [/ Sq?).
The kernel of 95: 2*A(1) — ker(9;), taking %41 to %25¢2, is the fourfold suspension of the “inverted

question mark module”

Sq¢? S¢*Sq® —— SqtSq°

which is isomorphic to ¥3(«7 /&7 {Sq', Sq*>Sq®}). Here 1®0y: X4/ — o @ 4(1) ker(91) is induced by the
Postnikov section bso — X2 H, with homotopy fiber bspin = Sksp, so L3 H*(bspin) = o @ (1) ker(d2)
and H*(bspin) = Y4(o/ |/ {Sq¢", S¢*Sq>}).

The kernel of 93: £7A(1)//A(0) — ker(02), taking X271 to X4S5¢3, is the sevenfold suspension of the
trivial module

Sq*Sq®

which is isomorphic to X5F,. Here 1 ® d3: X7/ //A(0) = & ® (1) ker(d2) is induced by the Postnikov
section bspin — %*HZ, with homotopy fiber %8ko, so L4 H*(X8ko) = o ®4(1) ker(d3) and H*(3%ko) =
¥8(a7//A(1)), which we already knew.

From the exact sequence of A(1)-modules, we get short exact sequences

0 — Ext’y ;' (ker(e), F

0— Extz(f)t(ker(al)

—> EXt )(FQ,FQ) — EXtA(O)(FQ,FQ) —0

LN Ext’y ;' (ker(e), F2) — Exty ' (Z°F2, F2) — 0

0 — Ext’y ) (ker(d2), F N Ext’y 3 (ker(d1), F2) — Exty, ' (S'Fa, Fa) = 0

0

2)
2)
2)
) = Ext’y ' (ker(,), Fa) — Ext’y o (S7Fa,Fa) — 0

0 — Ext’y 5 (S17Fy, F

(0]



This determines Ext’y ) (F2, F2). O

Corollary 6.31. There are &7 -module isomorphisms:
H*(bo) = X(o | o/ Sq?)
H*(bso) = ¥?(of | .o/ Sq®)
H*(bspin) = X% (o/ |/ {Sq", S4*Sq’})

((Also k(1) = ku/2, ko/2.))

7 The dual Steenrod algebra

7.1 Hopf algebras
Let G be a topological group with H,.(G) of finite type. Then the cohomology cross product

H*(G)® H*(G) = H*(G x Q)

is an isomorphism. The (cocommutative) diagonal map A: G — G x G, and the augmentation G —
induce a pairing
¢ H*(G) @ H*(G) = H*(G x G) 25 H*(G)

and a unit map
n:F, — H*(G)
that make H*(G) a (graded commutative) algebra. The group multiplication m: G x G — G and the

inclusion {e} — G induce homomorphisms

b HY(G) ™5 H*(G x Q) = H*(G) ® H*(G)
and
e: H(G) — T,

that make H*(G) a commutative Hopf algebra, and the group inverse i: G — G induces a homomorphism
x: H*(G) -5 H*(G)

that makes H*(G) a commutative Hopf algebra with conjugation, according to the following definitions.
It is connected if and only if G is path connected as a topological space.

Dually, the Pontryagin product ¢ = m.: H.(G) ® H.(G) — H.(G), unit inclusion 7: F, — H,(G),
diagonal coproduct ¢ = A,: H,(G) —» H.(G) ® H.(G), augmentation e: H,(G) — F, and conjugation
X = ix: H(G) — H,.(G) make H,(G) a cocommutative Hopf algebra with conjugation.

Let k£ be any field, and write ® for ®.

Definition 7.1. A k-algebra is a graded k-module A equipped with homomorphisms ¢: A® A — A and
n: k — A, such that the diagrams

AAA 5 404
o
ApA—" A
(associativity) and

koA A0 Al Ak
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(unitality) commute. It is commutative if the diagram

commutes, where y(a®b) = (=1)l?ltlb@a. A k-algebra homomorphism f: A — B is a degree-preserving
k-module homomorphism such that the diagram

AA—" A g

Y

BoB—2 Bk

commutes.

Definition 7.2. A k-coalgebra is a graded k-module A equipped with homomorphisms ¢p: A - A® A
and e: A — k, such that the diagrams

A—"Y sAgA

wl }@w
PR1

ARA——ARQRARA

(coassociativity) and
A

R
R

P
k®A<€®ﬁA®AT®C>A®k

(counitality) commute. It is cocommutative if the diagram

N

ARA———FA®A

2

1R

commutes. A k-coalgebra homomorphism f: A — B is a degree-preserving k-module homomorphism
such that the diagram

— LA@A

k A
1
ke B .BwB

commutes.

Definition 7.3. A k-algebra A is connected if the underlying graded k-module is zero in negative degrees
and n: k — A is an isomorphism in degree 0. A k-coalgebra A is connected if it is zero in negative degrees
and €: A — k is an isomorphism in degree 0.

Definition 7.4. An augmented k-algebra is a k-algebra A with a k-algebra homomorphism e: A — k.
Let I(A) = ker(e) be the augmentation ideal, and let

Q(A) = I(A)/I(A)* =k ®4 I(A)



be the indecomposable quotient module.

1(A)® I(4) 1(A) Q(A)

A homomorphism of augmented algebras is an algebra homomorphism that commutes with the augmen-
tations.

(We make sense of the tensor product over A in the next subsection.)

Proposition 7.5 (Milnor-Moore). Let f: A — B be a homomorphism of augmented algebras, with B
connected. Then [ is surjective if and only if Q(f): Q(A) — Q(B) is surjective.

Definition 7.6. A coaugmented k-coalgebra is a k-coalgebra A with a k-coalgebra homomorphism
n: k— A. Let J(A) = cok(n) be the coaugmentation coideal, and let

PA) ={zcAl¢Y@)=201+1@z}=k04 J(A)
be the submodule of primitives.

J(A) ® J(A) J(A) P(A)

[, 1

A homomorphism of coaugmented coalgebras is a coalgebra homomorphism that commutes with the
coaugmentations.

(We make sense of the cotensor products under A in the next subsection.)

Proposition 7.7 (Milnor-Moore). Let f: A — B be a homomorphism of coaugmented coalgebras, with
A connected. Then f is injective if and only if P(f): P(A) — P(B) is injective.

Definition 7.8. A Hopf algebra (over k) is a k-algebra structure (¢,n) and a k-coalgebra structure
(1, €) on the same graded k-module A, such that 1 and e are algebra homomorphisms and ¢ and n are
coalgebra homomorphisms. This means that the diagrams

AA—2 sA Y ApA
o] Joo
o
ARABARA——— 3 ARA®ABA
and
A9ACkok E—"T A
ol | ]
€ nen
A—C Lk kok—" A0 A

commute. A homomorphism if Hopf algebras is an algebra homomorphism that is simultaneously a
coalgebra homomorphism.
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Definition 7.9. A Hopf algebra with conjugation is a Hopf algebra A with a homomorphism x: A — A
such that the diagram

A— " 44
wJ{ Tw
ApA— 8% 404

commutes. A homomorphism of Hopf algebras with conjugation is a Hopf algebra homomorphism that
commutes with the conjugation.

Definition 7.10. Let A be a k-algebra, and let B C A be a subalgebra with an augmentation e: B — k,
making k£ a B-module. Then we let

A//B=A®pk=A/A-I(B)
and
B\\A=k®p A=A/I(B)-A.

If A-I(B) =I(B) - A we say that B is normal in A. Then A//B is a k-algebra, and the canonical map
A — A//B is an algebra homomorphism.

Theorem 7.11 (Milnor-Moore). Let A be a connected Hopf algebra and B C A a Hopf subalgebra. Then
there is an isomorphism A = A//B ® B of right B-modules, and an isomorphism A = B ® B\\A of left
B-modules, so A is free as a left B-module and as a right B-module.

This is part of Theorem 4.4 in Milnor—-Moore (1965). More concretely, let i: B — A be the inclusion
and let s: A//B — A be any k-linear section to the projection A — A//B. Then the composite

A//BoB 2 AgA-25 A

is an isomorphism of right B-modules. It is not usually true that A is free as a B-B-bimodule.

7.2 Actions and coactions

Definition 7.12. Let A be a k-algebra. A left A-module is a graded k-module M with a pairing
A A® M — M such that the diagrams

A9 Ao M2 Ao M ko M- Ae M
¢®1J lx \ J/A
AoM—2 M M

commute. A right A-module is a graded k-module N with a pairing p: N @ A — N such that the
diagrams

NeA A2 NoA Nok—24N®A
N !
NoA—L N N
commute. The tensor product N ® 4 M is the coequalizer in the diagram
1A
N@A@MééjN@Me—»N®AM

Definition 7.13. Let A be a k-coalgebra. A left A-comodule is a graded k-module M with a pairing
A M — A® M such that the diagrams

M—2 Ao M M
)i ll@k )\J\
AQM —— AQARQM AM —s ko M
PR1 e®1
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commute. A right A-comodule is a graded k-module N with a pairing p: N — N ® A such that the
diagrams

N—'" sNwA N
T
NRA—NRQARA NA—N®Ek
1®y 1®e

commute. The cotensor product N 4 M is the equalizer in the diagram

19X
—
NOsM— NQM — NRARM

Lemma 7.14. Let M be a left A-module, with action a-m = Aa®@m) fora € A and m € M. Then the
linear dual M™* = Hom(M, k) is a right A-module, with action p-a = p(p®a) given by p-a: m — p(a-m),
for p: M — k in M*. Likewise, if N is a right A-module then N* is a left A-module.

Proof. p-a: m— p(a-m),so (p-a)-b:m— (u-a)(b-m)=pla-b-m)=plab-m) equals p-ab. O

Lemma 7.15. Let A be a k-algebra, bounded below and of finite type. Then A* = Hom(A, k) is a
k-coalgebra with coproduct ¥ = ¢*: A* —» (A® A)* 2 A* ® A* and counit e = n*: A* — k. Conversely,
if A is a k-coalgebra then A* is a k-algebra. If A was bounded below and of finite type, then so is A*,
and A= (A*)*.

Lemma 7.16. Let A be an augmented k-algebra, bounded below and of finite type. Then A* is a
coaugmented k-coalgebra, J(A*) =2 I[(A)* and P(A*) = Q(A)*.

Lemma 7.17. Let A be a k-algebra, M a left A-module and N a right A-module, all bounded below and
of finite type. Then M* is a left A*-comodule with coaction A = X\*: M* — (AQ M)* =2 A* @ M*, and
N* is a right A*-comodule with coaction p = p*: N* = (N ® A)* =2 N* @ A*.

Conversely, let A be a k-coalgebra, M a left A-comodule and N a right A-comodule. Then M* is a
left A*-module with action A\: A* @ M* — (A® M)* — M*, and N* is a right A*-module with action
prN*@A* - (N® A)* - N*.

Definition 7.18. Let A be an augmented k-algebra and let M be a left A-module. The A-module
indecomposables in M is the quotient k-module k ® 4 M = M/I(A) - M.

Definition 7.19. Let A be a coaugmented k-coalgebra and let M be a left A-comodule. The A-comodule
primitives in M is the k-submodule k04 M = {m € M | \(m) =1®m}.

Lemma 7.20. Let A be an augmented k-algebra and M left A-module, both bounded below and of finite
type. Let M* be the dual left A*-comodule. Then there are natural isomorphisms

Homa (M, k) 2 Hom(k ®4 M, k) 2 k04 M*
that are compatible with the inclusions into Hom(M, k) = M*.

See Boardman (1982) for more on left/right algebra/coalgebra actions/coactions.

Definition 7.21. Let A be a Hopf algebra, and let M and N be left A-modules. Then M ® N is a left
A-module, with the action A: A ® M ® N defined as the composite

AeMaN 2B A Ao M N 2B A Mo A N 225 Mo N .

Likewise for right A-modules.

Conversely, let M and N be left A-comodules. Then M ® N is a left A-comodule, with the coaction
M M®RN—> AR M ® N defined as the composite
MeN22 Ao Mo A N 2B Ao Ao Mo N2 Ao MaN.

Likewise for right A-comodules.
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7.3 The coproduct

Let Y and Z be spectra. If Y and Z are bounded below with H,.(Y) and H,.(Z) of finite type, then the
cohomology smash product

H*(Y)® H*(Z) 2 H (Y A 2)

is an isomorphism. The Cartan formula

Fly A z) Z Sq'(y) NS¢’ (2)
i+j=k

implies the more general formula

S¢"(ynz)= Y Sq'(y)ASq(2)

I+J=K

for sequences K = (ki,...,k¢) of non-negative integers, where the sum is over pairs of sequences I =
(i35...,1¢) and J = (J1,...,j¢) of non-negative integers, such that k, = i, + j, for all 1 < wu < £. Milnor
proved that the rule
Sq¥ —s Z Sq" ® Sq’
I+J=K

respects the Adem relations, in the sense that it gives a well-defined algebra homomorphism
VA — AR .
Since o7 is connected, there is a unique homomorphism
X: A — o

with x(1) =1 and Y a'x(a”) =0 for all a € I(«/) with ¢¥(a) = Y. a’ ® a’’. Then x(ab) = x(b)x(a) and
x? is the identity.

Theorem 7.22 (Milnor (1958)). The Steenrod algebra < , with the composition coproduct ¢, the coprod-
uct ¥ and the conjugation x, is a cocommutative Hopf algebra with conjugation.

Definition 7.23. Let the dual Steenrod algebra <7, = Hom(/,Fs) be the linear dual of the Steenrod
algebra. Since o is of finite type, there is a natural isomorphism & = Hom(,Fs). The algebra
structure maps ¢: & ® o — o/ and n: Fo — o dualize to coalgebra structure maps ¢: &, — @, Q
and e: &, — Fy. The cocommutative coalgebra structure maps ¢: &/ — &/ ® & and €: & — Fy dualize
to commutative algebra structure maps ¢: o7, ® &%, — 2/, and n: Fy — o7.. The conjugation x: & — &
dualizes to a conjugation y: o/ — .. With these structure maps, <7 is a commutative Hopf algebra.

Remark 7.24. The isomorphism &/ = H*(H) is dual to an isomorphism 7 = H,(H). This may justify
why we write <7, instead of o/* for the dual Steenrod algebra, thinking of the star as a homological
grading rather than as the symbol for dualization. The ring spectrum product u: H A H — H induces
the product ¢: & ® . = H,(H)® H.(H) = H.(H NH) — H,(H) = &/ in homology, and the counit
e: o, = m.(HANH) — m.(H) = Fy in homotopy. The ring spectrum unit : S — H induces a map
H >~ SANH — HA H that induces the coproduct ¢: @ = H,(H) - H,(HANH) 2 H,(H)® H.(H) =
oy @ o, in homology. The two maps H 2 SAH — HANH and H = HAS — H A H both induce the
unit n: Fy — 7 in homotopy. The twist map v: H A H — H A H induces the conjugation x: @, — .
((Reference?))

By definition, ¢: &/ — o/ ® &/ makes the diagram

g0 H (V)2 H (2) 222 o 0 H (V) @ H*(Z) 22 of @ H*(Y A Z)

I
1®7®1J% Al J{A
4

7 @ H(YV)® o @ H(Z) —2 5 H*(Y) @ H*(Z) —2—— H*(Y A Z)

81



commute, where A\: & @ H*(Y) — H*(Y) denotes the left o/-module action. We defined the &/-module
action on the tensor product H*(Y) ® H*(Z) by the dashed composite in this diagram, so that the
Kiinneth homomorphism A is an 2/-module homomorphism.

By the Hom-tensor adjunction, the diagram can be reformulated as follows:

Hom (o, H*(Y)) ® Hom (s, H* (Z)) «—2 H*(Y) @ H"(Z) —— s H*(Y A Z)

s

Hom(o/ @ o, H*(Y) © H*(Z)) — s Hom(e/, H*(Y) ® H*(Z)) — Hom(o/, H*(Y A Z))

where A: H*(Y) — Hom(«/, H*(Y)) takes y to the homomorphism a — a(y), etc. If we add the
assumption that H*(Y') is bounded above, so that H.(Y) is (totally) finite, then there is a natural
isomorphism

H*(Y) ® o, = Hom(e/, H*(Y))

taking y ® a to a — a(a)y, withy € H*(Y), o € & and a € &/. We also assume that H,(Z) is (totally)
finite. Then we can rewrite the diagram as:

H*(Y)® o, @ H*(Z) ® o, 22 H*(Y) ® H*(Z) —2— H*(Y A Z)

\
1®'y®1Jﬁ Pl Jp
4

H*(Y) @ H*(2) @ o, © o, 228 H*(Y) @ H*(Z) © o, 225 H* (Y A 2) ® o,

where ¢ is the algebra structure on 7, dual to the coproduct 1 on 7, and p: H*(Y) - H*(Y) ® o is
the right 7.-comodule coaction on H*(Y'), corresponding to A via the isomorphism above. We defined
the «.-coaction on the tensor product H*(Y) ® H*(Z) by the dashed composite. Hence the Kiinneth
morphism A is an o7-comodule homomorphism.

Proposition 7.25 (Milnor). Let X be a space with H.(X) (totally) finite. The right <7 -comodule
coaction

p: H*(X) = H*(X) ® .

is an algebra homomorphism, where H*(X) has the cup product and <, has the product dual to the
coproduct 1 on < .

Proof. Let Y = Z = ¥°°(X,). Then the diagonal A: X — X x X induces the commutative diagram

H*(X) @ o, ® H*(X) @ o, « 222 H*(X) @ H*(X) —2— H*(X)

\
1®~/®1J: Pl Jp
1

HY(X)® H'(X) @ o, @ of, 228 0 (X) @ H*(X) ® o, 2% H*(X) ® o,

which says that the cup product U is an o7,-comodule homomorphism, or equivalently, that the coaction
p is an algebra homomorphism. O

This results encodes the Cartan formula for the Steenrod algebra action on the cohomology of a
product of spaces, in terms of the coaction of the dual Steenrod algebra, in a very convenient form.

7.4 The Milnor generators

Without appealing to the conjugation x, we have the following four left and right actions and coactions
on the homology and cohomology of a space X with H,(X) finite:

A/ @ H'(X) — H*(X)
p: Ho(X)® o — H.(X)
p: H (X)) — H*(X) ®
A Ho(X) — o ® Ho(X)
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We specialize to the test object X = RPN C RP* = Hy, with H*(X) = P(z)/(zV*!) and H.(X) =
Fa{v; | 0 < j < N}, where 27 is dual to 7;. We are interested in the limit as N — oo, when
limy H*(RPN) = P(z) and colimy H,.(RPY) = Fy{v; | j > 0}. The limiting right coaction

p: P(z) — P(z) ® 4,
was just seen to be an algebra homomorphism, hence is determined by the single value
ple) =Y o/ ©a
j>1
where a; € 7 has degree (j — 1), for each j > 1.
Lemma 7.26. There are well-defined classes &; € <, such that
plx) = Z:ry ®& .
i>0
Here & = 1, and & has degree 2¢ — 1, for each i > 0.

Proof. There is a pairing m: RP>* x RP>* — RP> that represents the tensor product of real line
bundles, or comes from the loop structure on Hy; ~ Q2Hs. It induces a homomorphism

m*: P(x) = H*(RP*) —» H*(RP*® x RP*) = P(x1,22)
with m*(x) = 1 + 29, where 1 = X 1 and 25 = 1 X . By naturality of the right <-coaction p, we
have that 4
m*(p(x)) =Y (1 +22) @y
=1

is equal to

p(m*(x)) = pla1 +3) = plar) + plas) = Y el @a;+ Y wh@q
i>1 i>1

in P(x),x2)® 4. The product formula for binomial coefficients mod 2 implies that () +z2)? # 2 +
for all j not of the form j = 2%, i > 0, hence a; = 0 for all such j. We let & = s for i > 0. Counitality
of the coaction implies that &, = 1. O

Let P(& |1 > 1) = P(&1,£2,83,...) be the polynomial algebra generated by the classes ; for i > 0,
only subject to the relation & = 1.

Theorem 7.27 (Milnor). The canonical homomorphism
P& |i>1) — o
is an algebra isomorphism.

See Milnor (1958) Theorem 2 or Steenrod-Epstein (1962) Theorem 2.2 for the proof. Surjectivity
of P(& | i > 1) — & follows by the detection results for o/. A count of dimensions then proves
isomorphism.

Theorem 7.28 (Milnor). The Hopf algebra coproduct i: ot — o, @ o, is given by
(&) = D & g
itj=k
where i,5 > 0 and & = 1. Hence the conjugation x: <t — <y is determined by
> &g =0
itj=k

forallk > 1.
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Proof. The coassociativity of the right coaction tells us that

(e px)=(pa O a¥ ©&) =D p@)? 0= 22" 0 vg

Jj=0 Jj=0 4,520

is equal to

(1@Y)p(z) =Y 2% @ p(&).

k>0
O

These formulas for the coproduct in <7 are often more manageable than the Adem relations for the
product in 7. Here is list of (&) and x(&x) for small k:

P(&)=6a®1+1R&

V(&) =L@1+EE 6 +106

P(E) =& R1+E5 6+ QL +1®E

PE) =G®1+804+6H06+8 06 +104
x(&) =&

x(&2) =&+ &

X&) =&+ &G + &+

X&) =&+ 68 +EG+E+ G +EE + L +&°

We note that Efz is primitive for each ¢ > 0, and that x(&x) = £ modulo decomposables.
We now make the Milnor classes & € 7 a little more explicit. Dualizing the formula for p(z), the
right action
p: H(RP*®)® o/ — H.(RP>)

is given in total degree 1 by

(&) for j=2°

i ®ar—
i {0 otherwise.

Here a € & has degree (j — 1) and (—, —): & ® &, — Fy is the evaluation pairing. Likewise, the left
action
A/ @ P(x) — P(x)

is given on & @ Fo{x} by _
a®ar—a(z) = Z{a,fiﬂy .

i>0

Lemma 7.29. For admissible sequences I,

54! () = 2 for I = (271,272 2.1),i>0
0 otherwise.

Hence

0 otherwise.

_ i—1 o9i—2
<Sq,’€i>{1 for I=(21-1,21=2 . 21)

In other words, & is dual to S(]QFISqQP2 ... 8¢%Sq" when we give o the admissible basis.

The identification of RP> with the first space H; in the Eilenberg—Mac Lane spectrum H leads to a
stable map f: X°°H; — X H. The induced «/-module homomorphism

f*: Yo = H*(XH) — H*(H,) C P(x)
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takes the generator X1 to z, hence agrees with the &/-module homomorphism & @ Fo{z} — P(z) taking
a®xto ,
a(x) = Z<a7§i>x2 )
i>0

via the isomorphism X.&/ 2 o/ ® Fy{x}. Dually, it follows that the @%-comodule homomorphism
fo: H.(H,)) — H,(XH) = %4,

is the linear dual mapping
Y& forj=209i>0
& 0 otherwise.

Lemma 7.30. The map f: S°RP> — Y H induces a homomorphism H.. (RP>) — , taking ; €
H;(RP>) to & if j =2, i >0, and to 0 otherwise.

Definition 7.31. The dual Steenrod algebra o7 = P(& | k > 1) has a basis {¢%}x given by the
monomials

§R: ?1”1 ;2 ;e
where R = (r1,...,r¢) ranges over all finite sequences of non-negative integers, with r, > 1 if £ > 1. The

Milnor basis {S¢®}r for the Steenrod algebra <7 is the dual basis, defined so that

1 forR=S

0 otherwise.

(Sq", &%) = {

£

Hence |Sq®| = |¢7| = 37, _; 7u (2" — 1). The coproduct is given by 1(Sq”) =3 5 g ¥ @95,

Remark 7.32. One should not confuse the notations Sq’ and Sq®. We let I, J and K range over
admissible sequences, and let Sq’, Sq” and S¢¥ denote the corresponding admissible composites of
Steenrod squares. We let R, S and T range over finite sequences of non-negative integers, and let Sq’,
Sq° and SqT denote the corresponding elements in the Milnor basis.

Example 7.33. It is clear that Sq0 =1, S¢() = Sq¢' and Sq¢(® = S¢?. In degree 3, we have (S¢?, &) =
0, (S¢°Sq¢", &) =1, (S¢*, &) = 1 and (S¢*Sq',&}) = 1. For example,

(Sq*Sq", &) = (Sa°Sq*, (&1 ® &) = (W(Sg*Sq"), & ® &)
= (S @1+ 5¢" ®59¢" +1®5¢*)(S¢" ®1+1® S¢"), & ® £2)
= (Sq' ® (S¢* + S¢' Sq"), &1 @ &) = (Sq", &)(S¢*, &) = 1.

Hence Sq¢®) = S¢* and SqOY = S¢° 4+ S¢2S¢* = Q.
Lemma 7.34. The Milnor basis element Sq\") equals the Steenrod operation Sq", for each r > 1.

Proof. Let S = (s1,...,8¢) be a finite sequence of non-negative integers, with s, > 1. We must prove
that (Sq",¢%) equals 1 for S = (r) and 0 otherwise. Let ® be the Zizl sy-fold product on <7, and
let ¥ be the Zﬁzl sy-fold coproduct on 7. Writing ¢% = ®(¢, ®@ -+ ® &) with a < --- < £, we must
compute (Sq", %) = (Sq", ®(a @ - @ &)) = (V(Sq"), & @ -+ @ &). Here W(Sq") is a sum of tensor
products of factors of the form Sq¢/. We have <Sq2i’1,§i> equals 1 for 4 = 1 and 0 for ¢ > 2. Hence
(U(Sq"),&,®---®@&) = 0if £ > 2. Furthermore, (¥(Sq¢"),&,®---®@&)=1if{S=(r)anda=---=(=1,
since ¥(Sq") contains the summand Sq! @ - - ® Sq! that evaluates to 1 on & ® -+ - ® &;. O

Theorem 7.35 (Milnor). For each infinite matriz of non-negative integers (almost all zero)

* To1 To2
10 T11 T12
T20 T21 T22
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let R(X) = (r1,79,...), S(X) = (s1,82,...) and T(X) = (t1,t2,...) be given by the sums

T, = Z 292 (weighted row sum),
J
sj = Z Tij (column sum),
i
ty = Z Zij (diagonal sum).
iti=k

Then
Sq™ . Sq¢° = Z b(X)Sq"
X

where X ranges over the matrices with R(X) =R and S(X) =S, with T =T(X) and

k i,j

See Milnor (1958) Theorem 4b. To prove this, one must count how often ¢¥ ® ¢ € &7, ® </, occurs
as a summand in $(€7) = H(E)" -+ - ¥(En)".

Example 7.36. Let k > 2, R = (2*) and S = (0,...,0,1) with (k— 1) zeroes. Then Sq*- S¢° is a sum
of terms b(X)Sq”, where X ranges over the matrices (x;;) with zgp = 0, > 2xy; = 2%, > 2z =0
fori>2,% 2, =1and ), x;; =0for 1 <j<k—1andfor j > k+ 1. There are only two possible
matrices X, namely X’ with 2/, = 1 and the remaining terms zero, and X” with z{, = 1, 2, = 2 and
the remaining terms zero. The corresponding sequences are 7/ = T(X’) = (0,...,0,1) with & zeroes,
and T" = T(X") = (2¥,0,...,0,1) with (k — 2) zeroes. The coefficients b(X’) and b(X") are 1, so

Sq(Qk) . Sq(o,...,o,l) _ Sq(o,...,o,o,l) + Sq(Qk’O"“’O’l).

On the other hand, Sq¢° - S¢% is the sum of a single term b(X)Sq”, where X has x¢; = 2*, 230 = 1 and
the remaining terms are zero. Again b(X) = 1, so

Sq(o,...,o,l) -Sq(Qk) _ Sq(Qk’O"“’O’l).
Hence the commutator
k k k
[Sq(2 ),Sq(o’“"o’l)} = 5q2") . §q(0:0:1) 4 Gg(0:--0.1) | G (2%)

((k — 1) zeroes each time) equals the Milnor element Sq(®+0:%) now with k zeroes.

7.5 Subalgebras of the Steenrod algebra

Definition 7.37. A Hopf ideal in a Hopf algebra A is a two-sided ideal I C A such that ¢(I) C
ART+T® A and e(I) =0:

0 I A9T+I®A
e A— Y AmA
ke A/l s A)Te AL

Then ) and ¢ induce a coproduct ¢: A/I — A/I ® A/I and a counit €: A/I — k that make A/I a Hopf
algebra, and the canonical surjection A — A/T is a Hopf algebra homomorphism. Dually, (4/1)* — A*
is a Hopf subalgebra.

Definition 7.38. For each k > 0, let Q;, = Sq(®+%1) (k zeroes) denote the Milnor basis element in .o/
that is dual to &1, in degree 28+1 — 1.
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These classes are known as the Milnor primitives; see the next lemma. By the sample calculation
above, these classes can also be recursively defined by Qo = Sq' and [quk,Qk,l] = Qy for all k£ > 1.
The first few Milnor primitives are:

Qo =Sq'
Q1= 5¢'"V = 5¢° + 5¢°Sq!
Q2= 5¢""Y = Sq" + S¢°Sq' + Sq°Sq® + Sq*Sq*Sq*
Q3 _ Sq(0,0,0,l)
Lemma 7.39. The Qy are primitive elements, and they generate an exterior Hopf subalgebra
E=EQr|k>0)Co

of the Steenrod algebra. In symbols, Y(Qr) = Q1 ® 1+ 1® Qk, QF = 0 and Q;Q; = Q;Q; for all
i,5,k > 0. The conjugation is trivial: x(Qx) = Q.

Proof. First note that if A = E(€) is the primitively generated exterior algebra on one generator, viewed
as a bicommutative Hopf algebra, then the dual Hopf algebra A* = E(Q) is also a primitively generated
exterior algebra, with 1 and @ dual to 1 and &, respectively.

Now consider the quotient algebra E, = /(&% | k > 1) of the dual Steenrod algebra. The ideal

J=(& | k>1) C o is a Hopf ideal, since (&) = 32,4 & @ &7 lies in @7, ® J + J @ &, and
e(€2) = 0. Hence &/, — E, is a Hopf algebra surjection. The generators &, are primitive in E,, since
k g J g

V() =61+ 1®&

modulo A® J + J ® A. It follows that x(£x) = & modulo J. Hence E, = E(§x | k> 1) = Q»q £(&k)
is a primitively generated exterior Hopf algebra. -
Passing to duals, we have a Hopf algebra injection F = (F.)* — «/. Here E = E(Q; | k > 0) =
Q>0 E(Qr) is also primitively generated, with @y, dual to £, in the monomial basis for E,. Since I
is generated by monomials, it follows that the inclusion maps Qr € E to Q € «/. Hence the Qj are
primitive in &7 O

Lemma 7.40. Q(</) = Fo{Sq® | i > 0}, P(e) = Fo{€&]' | i > 0}, Q(e) = Fo{&iar | i > 0} and
P(/) 2 Fo{Q; | i > 0}.

Definition 7.41. For each n > 0, let E(n) = E(Qqo,...,Q,) C & be the exterior subalgebra generated
by the Milnor primitives Qo, ..., Q,. It is a Hopf subalgebra with conjugation. The dual of E(n) is the
quotient Hopf algebra E(n). = <% /J(n) of <7 by the Hopf ideal

J(n) = (5%7'~'7§Z+17£k | k2n+2)

Definition 7.42. For each n > 0, let A(n) = (Sq',...,S¢*>") C o/ be the subalgebra generated by the
Steenrod squares Sq',...,S¢?". It is a Hopf subalgebra with conjugation.

Lemma 7.43. The dual of A(n) is the quotient Hopf algebra A(n). = . /1(n) of < by the Hopf ideal

gn+1

n 2
I(TL):( 7%77§Za§i+1a§k|k2n+2)

Proof. The ideal I(n) is generated by the classes f?t with s > 1 and s+t > n+ 2. It is a Hopf ideal

since . " .
e =Y & ef
1+j=s

is a sum of terms in &/ ® I(n) (for i = 0) and in I(n) ® & (for 1 < i < s). Hence & /I(n) is a finite
commutative Hopf algebra, and the dual is a finite cocommutative Hopf subalgebra of <.

We claim that S¢F € A(n) for all 0 < k < 2”1, Equivalently, we must prove that (S¢*,¢) = 0 for
all £ € I(n). By induction, we may assume that this holds for all smaller values of k. The ideal I(n) is
additively generated by products f:ft € with s > 1and s+t >n+2, and

(Sq*, €2 €f) = (Sq*, o(eF @ €M) = ((Sq"), ¥ @™y = Y (Sq', X )(Sq,€F) .

it+j=k
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By the inductive hypothesis, this equals (Sg*,€2") - (1,€%), which is 0 for k < 27" since [¢2'| > 27+!
when s > 1 and s+t > n + 2. ((It remains to prove that the Sqg* for k < 2", or for k < 2"*+1, generate
all of the dual of A(n)..)) O

Corollary 7.44. &/ = colim,>o A(n) is a countable union of finite algebras. Hence each element in
positive degree of <7 is nilpotent.

Remark 7.45. Steenrod and Epstein (1962) write <, for our A(h + 1). Adams (Math. Proc. Camb.
Phil. Soc., 1966) writes A, for our A(r). Clearly E(0) = A(0), and E(n) C A(n) for n > 1. This can
also be seen from the inclusion I(n) C J(n).

((Write P! = Sq(©-92) for the dual of £2', so that P! = S¢2" and P2, = Qs? Review Adams—

s

Margolis classification of Hopf ideals in <7 and Hopf subalgebras of &7, in terms of profile functions.))

7.6 Spectral realizations

Definition 7.46. Brown and Peterson (Topology, 1966) construct a spectrum BP such that H*(BP) 2
o //E as an &/-module. Johnson and Wilson (Topology, 1973) construct spectra BP(n) such that
H*(BP(n)) 2 «///E(n), for each n > 0. As a convention, one may define BP(—1) = H.

The connective cover k(n) of the n-th Morava K-theory spectrum K (n) has cohomology H*(k(n)) &
o [|E(Qy), for each n > 1. By convention, k(0) = HZ) and K(0) = HQ.

Remark 7.47. Baker and Jeanneret (HHA, 2002), using methods of Lazarev (K-Theory, 2001), show
that there is a diagram
BP —---— BP{n)—---— BP(0) > H

of S-algebras, or equivalently, of A, ring spectra, inducing the surjections
o - d//E0)— - - > A//E(n)— - — A

in cohomology. Naumann and Lawson (J. Topology, 2011) prove (for p = 2 only) that BP(2) can
be realized as a commutative S-algebra, or equivalently as an E., ring spectrum, like the realizations
BP{(0) ~ HZy and BP{1)% ~ kuf. It is an open problem whether BP can be realized as a commutative
S-algebra.

Baas and Madsen (Math. Scand., 1972) realize k(n). Angeltveit (Compos. Math., 2011) proves
that K(n) has a unique S-algebra structure. For n = 1 (and p = 2) one can take k(1) = ku/2 and
K(1) = KU/2. None of the k(n) for n > 1 admit commutative S-algebra structures, since the map
k(n) — H induces a homomorphism H,(k(n)) — & that cannot commute with the Dyer-Lashof
operations in the target.

Proposition 7.48. The Adams spectral sequence for BP collapses at the FEo-term
B3 = Exty (Fa,Fg) = P(vg | k> 0)

to the abutment
W*(BPQ/\) = Zg[’l}k | k Z 1],

where vy, in degree 2811 — 2 is detected in E;ﬁ“lfl by the dual of Q) € E.
Similarly, the Adams spectral sequence for BP(n) collapses at

E;’* = EXtEZn) (FQ,FQ) = P(U(), . ,Un)

to the abutment
T« (BP(n)) = Zs[vy,...,vn],

and the Adams spectral sequence for k(n) collapses at

E;* o EXth(Qn)(]FQ,FQ) &~ P(”Un)

to the abutment
e (k(n)) = Falv,].
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Figure 7: Adams spectral sequence for BP

Proof. The Es-term can be computed using change-of-rings:
Ext(H*(BP),Fy) = Ext,, («///E,Fy) = Exty" (Fa,F2) = P(vy | k > 0)

where vy, is dual to the indecomposable @ € E. In particular, vg = hg is dual to Q¢ = Sq'. Since the
Es-term is concentrated in even total degrees, there is no room for differentials. There is also no room for
other multiplicative extensions than the ho-towers, since Zs[vg | k > 1] is free as a graded commutative
algebra. ((This presumes that 7.(BP) is commutative.)) O

Remark 7.49. Let MU be the complex bordism spectrum. Milnor (Ann. Math., 1960) and Novikov
((ref?)) shows that H*(MU) is a direct sum of suspensions of copies of H*(BP) = &/ //E. Brown
and Peterson (Topology, 1966) showed that MU, splits as a wedge sum of suspensions of BP. One
finds that 7. (MU) = Z[zy, | k > 1] with |z, = 2k. Quillen (Bull. Amer. Math. Soc., 1969) relates
7 (MU) to formal group laws, in such a way that m,(BP) corresponds to p-typical formal group laws.
The introduction of spectra like BP{n), FE(n), k(n) and K(n) is then motivated by the classification
of formal group laws according to height, which in turn leads to the chromatic perspective on stable
homotopy theory, which seeks to organize the homotopy groups of S and related spectra in periodic
families of varying wave-lengths.

Remark 7.50. Starting with the Hopkins—Miller obstruction theory for A, ring structures, continued
by Goerss—Hopkins—Miller and Lurie for E, ring structures, Hopkins and Mahowald (preprint, 1994)
produce a connective Eo, ring spectrum tmf with H*(tmf) = o/ //A(2). We have already discussed
the realizations H*(ko) = «///A(1) and H*(HZ) = «///A(0). (The Davis-Mahowald proof of the
non-realizability of o///A(2) (Amer. J. Math., 1982) contains an error.)

There is no spectrum with cohomology H*(X) = &/ //A(n) for n > 3, since the unit map S — X
would induce a map of Adams spectral sequences

E;’*(S) = EXt;?(]FQ,FQ) — EXtZEkn)(F27F2) = E;’*(X)

mapping h, — h, and h,y; — 0. This contradicts the Adams differential ds(h,11) = hoh%, since
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hoh? # 0 on the right hand side for n > 3. ((Elaborate?))

hoh?

h'z

hn+1

((B. = A,/ (&1,€3,63,&4, ...) has dual B = A(1) ® E(Q) and Extp is Exta) ® P(v2).))

8 Ext over A(1) and A(2)

8.1 The Iwai-Shimada generators

((Edit.)) Our next aim is to compute the homotopy m.(tmf)% of the spectrum of topological modu-
lar forms, which is a connective commutative S-algebra of finite type, with cohomology H*(tmf) =
o/ //A(2). We shall use the Adams spectral sequence

Ey' = Ext% (H* (tmf),F) = m.(tmf)} .
Using change-of-rings, the Fs-term
ExtS, (H*(tmf), F2) = Ext() (7 //A(2), Fa) = Ext}j(,) (Fa, Fa)
can be rewritten as Ext over the finite Hopf subalgebra
A(2) = (Sq", 8¢* Sq") C o ,
which is dual to the finite Hopf quotient algebra
A2). = P(61,6.6)/(6.6.6)

of f,. It has dimension 8 - 4 - 2 = 64 as [Fy-vector space.

The first computation of Ext over A(2) was done by Iwai and Shimada (Nagoya Math. J., 1967).
The answer is complicated, but interesting. The graded commutative algebra EXtZE;)(FQ,FQ) has 13
generators

hO (Oa ]-)

hi (1,1) hi
ha (3,1) ha
wo (8,4) wy = v]
w1 (20,4) g

ag (48,8)  wg =18
aq (8, 3) Co
Qg (12,3) @
Qs (15,3) B
(67} (147 4) d()
(0% (17, 4) €o
a6 (25,5) vy
a7 (32,7) 0

that are subject to a list of 54 relations, which we do not list here. In particular, it is a free P(wp, avg)-
module. The part in topological degrees 0 <t — s < 70 is displayed in Figure 8, which was created by
Christian Nassau (2001).

90



45

40

7]
o

(=3 vy o sl o
A o] Q — —
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There are (commutative S-algebra) maps S — tmf — BP(2) that induce surjections o/ //E(2) —
o/ //A(2) — Fa in cohomology, and the restriction homomorphisms

Ext;{* (FQ, ]FQ) — EXtZ’Ekz) (FQ, Fg) — Extga) (IF27 Fg)

at the level of Adams Es-terms. The classes hg, h1, ho, o, dg, €9 and g in the Adams spectral sequence
for S, detecting 2, n, v, €, k, (no homotopy element) and &, map to the Iwai-Shimada generators hq, h1,
ha, a1, ay, as and wy, respectively. The Iwai-Shimada generators hg, wy and ap map to vg, vi and v§ in
the Adams spectral sequence for BP(2), respectively. We may follow notes of André Hernandez (Talbot
workshop, 2007), writing w; and ws for wy and a4, and writing «, 8, v and § for the remaining algebra
generators ag, as, ag and a7. With this notation, the Fa-term for tmf is free as a P(wy, ws)-module.

8.2 The Davis—Mahowald resolution

To make this calculation, we shall instead follow section 5 of Davis and Mahowald (CMS Conf. Proc.,
1982) and use a Koszul-type resolution of Fo by A(2)-modules of the form A(2)//A(1) ® N, with the
diagonal action. By the shearing lemma below, these are isomorphic to induced modules of the form
A(2) ®a(1) N, and using the change-of-rings isomorphism

EXti{Eg)(A(?) ®a1) N, F2) = Extj{fl)(N, Fy)

we are reduced to the problem of computing Ext over A(1), which is quite straightforward.

Lemma 8.1 ((Reference?)). Let A be a Hopf algebra with conjugation, N a left A-module and B C A
a ((Hopf?)) subalgebra. There is an isomorphism of left A-modules

0: Aog N — A//B® N

where the left hand side has the A-module structure induced up from the restricted B-module structure
on N, and the right hand side has the diagonal A-module structure.

Proof. This is analogous to the homeomorphism G xg X =2 G/H x X for a G-space X and a subgroup
H. The shear map taking [g, z] to ([g], gz) has inverse taking ([g],y) to [g,¢9  y], for g € G, x,y € X.
Similarly, the composite homomorphism

AN A A9 N™3 A//Bo N

coequalizes the two homomorphisms
p®1
AR B®N *i AN

1®A

to induce 6, while the composite homomorphism

AN A0 AN 25 A0 Ao N 23 AN " Aoy N

vanishes on A - I(B) ® N to induce #~1. These maps are mutual inverses; see Adams (1974, p. 338) and
Anderson, Brown and Peterson (1969, Prop. 3.1). ((Thanks to Bruner for these references.)) O

Corollary 8.2. Let R and Y be spectra that are bounded below, with H.(R) and H.(Y) of finite type.
Suppose furthermore that H*(R) = o/ // B, for some subalgebra B C & such that </ is free as a right
B-module. For instance, B might be a Hopf subalgebra. Then the Es-term for the Adams spectral
sequence converging to T (RAY) = R.(Y) is

Ey" =Ext) (H*(RAY),Fa) = Exty" (H*(Y),F2).

In particular, it only depends on the restricted B-module structure on H*(Y).
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Proof. H*(RAY) = H*(R)QH*(Y) = o/ //BH*(Y) = o @ H*(Y), and Ext} (sA®p H*(Y),F>)
Extly* (H*(Y),Fs).

O

Example 8.3. This shows that the Es-terms of the Adams spectral sequences computing H,(Y;Z),
ku.(Y) and ko.(Y) only depend on the A(0)-, E(1)- and A(1)-module structures on H*(Y). The later
differentials in the spectral sequences may depend on more than these module structures. See Bayen and
Bruner (1996, p. 2205).

Definition 8.4. Let & € o, denote the conjugate Milnor generator & = x(&), for each k > 0. Thus
Eo=1,& =& (for p=2) and & = & + &, The coproduct v : o, — o, ® o, satisfies

(&) = Z & ®€72-i .
iti=k

We are interested in the case n = 2 of the following general result. Recall how the dual of a left
A(n)-module can be viewed as a left A(n).-comodule or as a right A(n)-module.

Lemma 8.5. The left A(n)-module A(n)//A(n —1) = A(n) ®a(m—-1) Fo of A(n) is dual to the right
A(n)-module subalgebra

(A(n)//A(n —1))* = A(n). Oagn_r), Fo = E(€2",&" .. énpn)

of A(n)y = P(€1,... Ens1)/ (€2 63", ... ,E2.1). Hence m: A(n) — A(n)//A(n — 1) is a surjection of
left A(n)-module coalgebras.

Proof. By a dimension count, it suffices to prove that 5,%171’9 € A(n), lies in A(n). O4(n—1), Fa, for each
0 < k < mn. The coaction p = (1@ m)1): : A(n)x = A(n), ® A(n — 1), takes this element to

n—k i+n—k
> & eg

itj=k+1

and the terms with j > 0 vanish. O

n Zon-— 1

Definition 8.6. Let E,, = E(¢2",£2" ... &u41) = E(20,71,...,7,) be the right A(n)-module graded
exterior algebra generated by zj = f_zi_lk for 0 < k < n. Here |x;| = 2" F(2F+1 — 1) = 27+l —2n=Fk and
Ty - Sanfk = xp_y for 1 < k < n, while zo - S¢" = 1. The inclusion E,, — A(n), is a homomorphism
of right A(n)-module algebras.

Lemma 8.7. The left A(n).-coaction on E,, is given by

n—k —yn—k
Mar) =& @1+ Y &

i+j=k

®.73j

for0<k<n.

Proof. This is clear from the coproduct on A(n)., which is given by the same formula as the coproduct
on JZ{* . O

Example 8.8. For n = 1 we have E; = E(¢2,&,) = E(x¢, 1) concentrated in homological degrees ¢ €
{0,2,3,5}, with the right A(1)-module structure:

-5¢? -S¢?

NN

1 To— 1 Tl
-Sqt

The left A(1).-coaction is given by A(zo) =1 ®@z0 + & @1 and A(z1) = 1@ 2 + & Qa0+ & @ 1.
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For n = 2 we have By = FE(¢1,62,&3) = E(x0,21,72) concentrated in homological degrees t €
{0,4,6,7,10,11,13,17}, with the following right A(2)-module structure:

-Sq* -Sq*
m 2 /\
/\ -Sqt
1 xo T (*11‘2 ToT1 < T2 T1T2 ToT1T2
-Sq \/ \_/
\_/ ~Sq2

~Sq4 ~Sq4

The left A(2).-coaction is given by A(zo) = 1® 20 + & ®@ 1, Ma1) = 1@ 21+ & @0+ & © 1 and
Maz)=1@22+6 @71+ & @70+ ® 1.

((NOTE: The part in degrees 4 < x < 13 occurs as L[2] in H,(THH (tmf)). Get sequences relating
Ext 4(2) for L[2] to those for Fo and A(2)//A(1).))

Remark 8.9. A(n—1) is not normal in A(n), so A(n)//A(n—1) is not a quotient Hopf algebra of A(n),
and E,, is not a Hopf subalgebra of A(n).. Nonetheless, E,, is a primitively generated Hopf algebra on
its own. There is a standard way to resolve E,-comodules using a twisted tensor product (Brown, Ann.
of Math., 1959), which in this case specializes to a kind of dual Koszul resolution. This turns out to
produce a useful right A(n)-module resolution. ((What is the general picture behind this??))

Definition 8.10. Let R, = P(yo,¥1,...,Yn) be the right A(n)-module bigraded polynomial algebra
generated by y;, of bigrading (o,t) = (1, |zk|), for 0 < k < n. It decomposes additively as

Rn:@Rgv

o>0

where RZ is spanned by the monomials of degree o in the y,’s. In particular, RY = Fy and R. =
Fo{%0, - --,Yn}. The right A(n)-module action on R} is given by yj S " = Yr—1 for 1 < k < n, and
extends to a right A(n)-action on R? for each o > 0, since A(n) is cocommutative.

Lemma 8.11. The left A(n).-coaction on R, is given by
—on—=k
Ayr) = D & @y,
itj=k
for0<k<n.
Proof. This is clear from the coaction on E,, and the fact that d(1) = 0. O

Definition 8.12. Let (E, ® R,,d) be the right A(n)-module differential bigraded algebra given by the
tensor product of E,, = E(xq,...,x,) (in degree o = 0) and R,, = P(yo,- - -, Yn), with the diagonal right
A(n)-module structure and with the differential given by d(xy) = yj, for all 0 < k < n.

Remark 8.13. Our numbering of the zy, is reversed compared to that of Davis—-Mahowald. Furthermore,
they do not distinguish notationally between the x; and the y;.

Lemma 8.14. The differential d: E, ® R — E,, ® RSt is right A(n)-linear.

Proof. For e € E,, and r € R, we have (d(e-))Sq® = >, ,_.(d(e))Sq" - (r)Sq" since d(r) = 0, and
d((e - 1)Sq%) = 3 4ipecd((€)Sq®) - (r)Sq since d((r)Sq®) = 0, so it suffices to check that d: E, =
E,®RY — E, ® R. is A(n)-linear. When n = 1 we have that d(zoz1) = xoy1 + 1Yo is mapped by Sq'
to zoyo + Zoyo = 0 and by Sq? to yi, while d(x1) = 31 is mapped by Sq' to yo.

((Check for n = 2, or give general formula.)) O

Definition 8.15. For a fixed n, let N, = (R7)* be the dual left A(n)-module, so that N = @_ N, is a
left A(n)-module differential bigraded coalgebra. In particular, Ny = Fs.
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Lemma 8.16. H.(F, ® R,,d) =2 F,, so

0-F L E,®R S E,oR % ... L E,oR -4 ...

n

is an exact complex of right A(n)-modules. Dually,
s A)/JA(n —1)® Ny 25 225 A(n)/JA(n — 1) @ Ny 25 A(n)//A(n — 1) ® Ny —= Fy — 0

is an exact complex of left A(n)-modules.

Proof. Tt is clear that F(zx) ® P(yx) with d(zx) = yx has homology F2{1} concentrated in degree 0, for
each 0 < k < n. The lemma follows from the Kiinneth formula. O

For each o, the short exact sequence of left A(n)-modules
0 — im(9py1) = A(n)//A(n —1) ® Ny — im(dy) — 0

(with 0y = €) generates a long exact sequence

— Bxt’y 5 (im(0,41), F2) —2 Bxt3jl (im(0,), F2) —

— Ext%! (A(n)//A(n —1)® N,,Fy) — EthEn)(im(aaH),Fg) -

A(n)

in Ext. These can be linked together, for varying o > 0, to an unrolled exact couple of (s, t)-bigraded
abelian groups

o Bxt’ 5 (im (), Fz) —— Ext’y 5 (im (1), F2) —— Ext’j(, (Fs, F»)

A(n) A(n)
T | |
Extiyot) ) (No, o) Ext’yi, ) (N1, Fa) Ext3i(,_y,(No, F2)
with
ATt = EXtZ_(ZSt(im(aa')7F2)
and

E7%! = Extly 7 (A(n)//A(n — 1) @ No, Fy) = Ext’y 7%, (N, Fa) .

Here we have used the shearing isomorphism A(n)//A(n —1) ® Ng =2 A(n) ® o(n—1) No and the change-
of-rings isomorphism for A(n — 1) C A(n). Note that the E;j-term only depends on the restricted
A(n — 1)-module structure of the N,’s.

Proposition 8.17 (Davis—Mahowald (1982, Cor. 5.3)). There is an algebra spectral sequence converging

to EXt:EKn) (FQ, IFQ), with

E7Y = Ext}y 7
More generally, let M be a left A(n)-module. There is a spectral sequence converging to EXt*A’Ekn)(M, Fs),

with

(Ny, Fa).

Eir,s,t = Exti;(Zfl)(No- Q@ M, IFQ) .

The differential dy: EJ*" — EJTY TN s induced on Extzzﬁn)((f) ® M,Fq) by the homomorphism
Oot1: A(n)//A(n —1) @ Nyy1 — A(n)//A(n —1) @ N,.

Proof. The algebra structure can be seen from the right A(n)-module algebra resolution n: Fo — E, QR,,,
which we can also think of as a left A(n).-comodule algebra resolution. Applying Eth’Z‘n)*(IE‘Q, —) for

the category of left A(n).-comodules, we get an algebra spectral sequence

Ef,s,t — Extzzgsi (]F27 En X RZ) i EXtZEn)* (IF27 ]FQ) .
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((Elaborate??)) The contravariant duality equivalence gives isomorphisms Extz(z)t (Fo, B, ® RZ) =
Exts 7 t( (n)//A(n—1)® Ny, Fs) and ExtA(n) (Fy,Fo) = Exti"én) (F3, F2), which identify the two spec-
tral sequences

The case with coefficients in a module M arises in the same way, from the short exact sequences

0= im(0py1) @M — A(n)//A(n—1) @ Ne @ M — im(9,) @ M — 0
of left A(n)-modules. O

Remark 8.18. ((Added April 25th 2012)) The Davis-Mahowald resolution for n = 2 may be closely
related to the resolution coming from the Amitsur complex for tmf — ko, meaning the cosimplicial
commutative S-algebra

[k] — ko /\tmf ko /\tmf s /\tmf ko

with coface maps induced by the unit tmf — ko and codegeneracies induced by the multiplication
koAgmpko — ko. Its totalization is the completion of tm f along ko, which should be tm f again, since ko is
connective with 7 (ko) Z. ((Explam H,(koNimgko) = H.(ko)® g, (tms)He(ko) = Hy(ko)[yo, y1,y2]/(~
) where y2 = €3, y? = &3 and y2 = €2, with &/,-coaction like in Ey ® Ry. Probably the Amitsur complex
gives a cobar type resolution, while Fy ® Ry is a minimal resolution.)) Similarly for n = 1, using
ko — HZ.

8.3 Ext over A(1), revisited

As a warm-up, we compute Ext*’a)(IFQ, IFy) using the Davis—-Mahowald resolution.

Let n = 1. We have Ry = P(yo,y1) with yo = d(gl) and y1 = d(ﬁg) in bidegrees (o,t) = (1,2) and
(1,3), respectively, with y; - Sq' = yo and (yiy])Sq' = j - yo* . Hence R = Fo{yiyl |i+j = o}
is dual to N, = Fa{a;; | i +j = o}, where a;; is dual to y0y1 of degree 2i + 3j, and Sq'(a; ;) =
( + Da;—14+1. Thus N, is a sum of free A(0)-modules on generators a; ,—; for 0 < i < ¢ with i = o
mod 2, plus a trivial A(0)-module on the generator ag , in the cases when o is even.

NO : ap,0
S 1
N1 : aio 4) aop,1
Ny : az0—0a1,1 ap,2
Ns : as,o — a1 a1 — Qo3
Ny : Q4,0 — a3,1 Q22— a13 ao.4

Thus Ext’Z:O)(NU,IFg) is the sum of a copy of Fy on the generator yiy? " in internal degree t = 30 — i

dual to a;,—;, for each 0 < i < o with i = 0 mod 2, plus a copy of EXtX:O)(FQ,FQ) = P(hg) on the
generator y{ in internal degree t = 30 dual to ag ., in the cases where o is even.

The E;-term is displayed in Figure 9 as an Adams chart in the (¢ — s, s)-plane. Vertical lines indicate
ho-multiplications, and the o-filtration is indicated at the bottom of each hg-tower.

The d;-differentials dy : E7%t — EotLsTht are generated by di(yo) = 0 and d; (%) = 3. This leaves
the Ea-term shown in Figure 10.
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There is no room for further differentials, since d,.: EZ>*t — EZT™5T"t increases the o-filtration by
r. It follows that EthEkl)(IFg,Fg) has the following algebra generators

gen. (t—s,s) rep.

ho (0,1) ho
hl (17 1) Yo
v (37 4) hOy%

w1 (87 4) y%

that are subject to the relations hohy = 0, h$ = 0, hyv = 0 and v? = hZw,. In particular, it is free as a
P (w1 )-module.

To find the differential, recall that the differential dy: E*" — EZT1*T is the composite homo-
morphism

EXti{(s)’t(A(n)//A(n — ]_) X Na" Fz) — Exti‘*(;)’t(im(agﬂ), IFQ) — EXtZ?ZSt(A(n)//A(n — ]_) X Na’+1, Fz)

induced by the composite A(n)-module homomorphism
Oot1: A(n)//A(n —1) @ Nyy1 —» im(0py1) —— A(n)//A(n —1) @ N, .

In the case 0 = s, Exti’z‘n)(A(n)//A(n — 1) ® Ng,F2) = Homy,)(A(n)//A(n — 1) ® N,,Fo) is the
subspace of (A(n)//A(n —1) ® N,)* =& E,, ® R% where the right A(n)-module action is trivial (factors
through the augmentation). This is the same as the subspace of left A(n).-comodule primitives. Hence
the d;-differential is given by the restriction of the composite

d: E, ® R — im(d) —— E, ® Ro+1

to the subspaces of A(n).-comodule primitives.

Example 8.19. For n =1 and 0 = s = 2, the class y? is represented by the A(1).-comodule primitive
Y3 + zoy2 in By @ R2. Hence d; (y?) is represented by d(y3 + zoyd) = v -

The commutative S-algebra maps S — ko — ku induce surjections <7 //E(1) — «///A(1) — Fy in
cohomology and restriction homomorphisms

Ext;;,* (F27 ]FQ) — EXtZEkl)(FQ, ]FQ) — EXt*E’,Ekl)(FQ, Fg)

of Adams Fs-terms. The classes hg and h; in the Adams spectral sequence for S, detecting 2 and 7,
map to the generators with the same names in EXtZEkl)(FQ,FQ). The classes v and w; map to vov? and

v}, respectively, in Ext ) (F2,F2) = P(vo, v1).

8.4 Ext over A(2)

Let n = 2. We wish to calculate EXtZé)(FQ,Fg) using the Davis—Mahowald spectral sequence

ES* = Ext® 7Y (N, @ M, Fy) = Ext®%’

A(1) A(2)(M’ F2)

for M = Fy, where N, = (R3)*. B B
We have Ry = P(yo,y1,y2) with yo = d(£1), 11 = d(£2) and yo = d(&3) in bidegrees (1,4), (1,6) and
(1,7), respectively, with Sql(y2) = y2 - S¢* = y1 and S¢2(y1) = y1 - Sq? = yo. Hence
(Wowlvs) - St =k - youl T 5!

. F —1 2 —
(oylys) - Sa*> =j -y ™yl 'yk + (2> voul s 2
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The y})y{y’g‘ with ¢ 4+ j + k = o give a basis for RS. Let a; ; of degree 4i + 65 + 7k be the dual basis
element for N,. The left A(1)-module structure on N, is given by

Sq*(ai k) = (k+ 1)a; j—1,5+1

. k+2
Sq*(aijk) = (G + 1)ai—1 11,6 + ( 9 )az‘,j2,k+2-

Here are the first few instances, where we abbreviate a; j 1 to a;j:

No:  agoo
Sq2
/\ Sqt
Ni:  aigo ap10 — ao1
Ny azo a110 — G101 2

%
@020 ap11 apo2

SN T oI

N3 :  asp a210 — G201 G120 — Q111 G102

ap30 — 421 ap12 — apo3

Ny: @400 as1o — a3o1 Q220 — A211 a202

ai3o — ai121 aii2 — 4103

@040 @031 @022 a013 @004

In particular, No = F3 so that &/ ® 41y No = H*(ko), and N; = YA /A(){Sq, S¢?Sq}) so
that & ® 4(1) N1 = H*(bspin).

Notice that ag 4 is left A(1)-module indecomposable. Dually, y3 is left A(1).-comodule primitive.
The same applies to ag o and y& for k =0 mod 4, since Ry is a left A(1),-comodule algebra (or by the
formulas above). ‘

Let 'R C RS be the subspace generated by the yiylys with 0 <k <3 (and i+ j + k = o). Then

Ry = PR3 @ P(y3)

>0

as bigraded left A(1).-comodules, where y3 has bidegree (o,t) = (4,28). In filtration o we get

o __ I, 0—i ~v T(o—1i)! Pt
2 = @ 2{ys P @ by Ry .
0<i<o 0<i<o
i=c mod 4 i=c mod 4

Here is the dual statement:
Lemma 8.20. Let N, = N, /Fo{a; ;i | k > 4} be the quotient space generated by a; ;1 with 0 <k <3
(andi+j+k=0c). Then

N, = @ 7= N/

0<i<o
i=oc mod 4
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Figure 12: Gy, the Adams chart for ksp = X "*bspin

as a left A(1)-module. Hence

Ext’y()) (Ny © M, Fa) = . Ext’y",, (270N, @ M,F,).

0<i<o
i=c mod 4

Definition 8.21. For i > 0, let G; be the following Adams chart, with lines indicating hg- and hi-
multiplications. Each chart is free as a P(v{)-module. Let ¥!G; be the same chart as G, but shifted ¢
units to the right.

Proposition 8.22. Ext;,(N;,F2) = XG, for each 0 >0, so

Exty (No,Fa) = @ =779,

0<i<o
i=c mod 4

Proof. This is verified directly for 0 < o < 2. For o = 0 we have Ny = Ny = F3 and &/ ® 4(1)No = H*(ko),
so G is the same as the Adams chart for ko. For ¢ = 1 we have N = Ny = 4 A(1)/A(1){Sq', S¢®>Sq3}
$0 o ® (1) N1 = H*(bspin) and $*G is the same as the Adams chart for bspin. Both of these are well
known to be vi-periodic. For o = 2 we can write N} = Ny as an extension

0— X2A1)//E(Q1) — Ny — %8A(1)//A(0) — 0,
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Figure 14: G; for i > 2
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Figure 15: P(v$,v3)-basis for E}""" = Ext:é) (Fy,F3), 0 <t —5<24

so G sits in a long exact sequence with the Adams charts for HZ and X*ku/2 (since H*(HZ) = <7 /] A(0)
and H*(ku/2) = «///FE(Q1)). The connecting homomorphism is trivial for bidegree reasons, so G is
additively the sum of these two charts. One only needs to check that the v{-multiplication from bidegree
(0,0) is nonzero.

For o > 3 there is an extension

0— X%A1)//E(Q,) — N, — ¥*N!_, —0.

The submodule on the left is generated by ag ;; for j + %k = 0 and 0 < k < 3. The projection to the
quotient takes a; ;x to Xa;_q1 k. fori+j+k=0,i>1and 0 <k <3
The associated long exact sequence in Ext over A(1) is

=BG, = Exty ) (Ny, F2) = S P(vr) — ...

Here Ext’y ), (%7 A(1)//E(Q1), F2) = X% Exty ) (F2,F2) = X% P(v1). The sequence splits additively,

for degree reasons, but there are nonzero hg-extensions. ((Should discuss these.)) O
((One should make the pairing G; ® G; — G;4; explicit.))
Corollary 8.23. There is an algebra spectral sequence
EP* = P(vy) © @ Gilhb} = Ext’yl, (Fy, Fy)
>0
where hiv3¥ has o-filtration i + 4k and bidegree (t — s,s) = (3i + 24k, i + 4k), for i,k > 0.

The Davis—Mahowald E:-term is displayed in degrees 0 < t < 48 in Figures 15 and 16. It is free over
P(vi,v3), and only the generators are shown (as bullets), with the exception that v{ times a generator
is shown as a circle when it is also hgy times a generator. This way the hg-extensions are not hidden from
the picture.

Theorem 8.24. The classes ho, hi, v}, ha and v§ are infinite cycles. There are nonzero differentials
dy(az,0h3) = h3
di(as,0h3) = azohs

dy(vy) = g b3

102



SRR IR R TR
e e e
SRR STt AL AL AL R AE
'(\'( RSN IRER T"F ‘ﬁ\é 1181176167119 "f T8 89 s
R A
Mo ab (e blas| b ]d] 44 i
A7 4 L\ [ 87 [ | 7167 7
6les| b | 4184 ]
46 l 61516 6
5)
)
2

24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 16: P(v{,v3)-basis for B} = EXtZE;)(]F27]F2), 24 <t —s5<48

where oy shb denotes a generator in bidegree (2k + 3i,s + i) of G;{h4}. The spectral sequence collapses

at the Es-term.

Proof. To determine the d;-differential on classes in Adams filtration s = o, we use the identification
E77" = Hom’y(q)(Ny, F2) = Hom’ 5 (A(2)//A(1) ® Ny, Fa) = Fy Oaa), (B2 @ RS)

of this part of the Fq-term with the left A(2).-comodule primitives on the right hand side. The differential
dy: EP7* — EJTH7TH* s then induced by the derivation

d: By ® Ry — E; @ R3™

by restriction to the left A(2).-comodule primitives. The formulas

Mzo) =1®@ a0+ @1

Mz)=1@m +&Qr+E&5®1

Maz) =1Qa2+&E @1+ &£ @m0+ 6 ®1
Ayo) =1®yo

A1) =1®@y1+ £ @ yo

Ay2) =1@y2+ 6 @1+ & @Yo

are useful.

The generator as oh3 in bidegree (t — s, s) = (10,2) is represented by the A(1).-comodule primitive
y? in R3, which corresponds to the A(2).-comodule primitive y7 + zoy3 in Es ® R3. The d;-differential
maps this to the A(2).-comodule primitive d(y? + zoyd) = y§ in F2 ® R3, which represents h3.

The generator a5 gh3 in bidegree (25,5) is represented by the A(1).-comodule primitive y? + yoy3y3
in RS, which corresponds to the A(2).-comodule primitive 5 + yoyiys + zoydys + (ETC)) in B> ® RS.
The dy-differential maps this to ((ETC)), which represents as ohS.

((Exercise: Compute left A(2),-coaction in Es ® R3 in internal degree 30 to find the A(2).-comodule
primitive.))

When combined with hg-, hi-, ho- and v}-linearity, these two differentials imply many others. The
reader might draw them in Figures 15 and 16. The result is shown in Figures 17 and 18.

Next we bring v into the picture. It is represented by the A(1).-comodule primitive y3, which
corresponds to the A(2).-comodule primitive y5 + zoyi. The dj-differential takes this to the class
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Figure 17: E{™" after first two d;-differentials, 0 <t — s < 24
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Figure 18: E7"™™ after first two dj-differentials, 24 < t — s < 48
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Figure 19: E}"™" last dy-differentials, 23 < ¢ — s < 47
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4| e . [} [} [ b Zi
. . i E [ ]
21 o ° i
O] s
0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 20: E%** —> EthEFQ)(]FQ,FQ), 0<t—s<24

represented by d(y3 + zoyi) = yoyi, namely ay oh3. The further differentials implied by the multicative
structure are illustrated in Figure 19, which is obtained by superimposing Figure 18 with a copy of
Figure 17 shifted by v3.
The remaining Fs-term is displayed in Figures 20 and 21. It is a free P(v{,v§)-module, and there is
no room for further differentials, so Fy = F.
O

Remark 8.25. The wedge-shaped pattern that begins in bidegree (t — s,s) = (35,7) can be shown
to continue. It is a free P(v1, ho1)-module, where vy = hgy and ho; are detected by Q1 = Sq(®1) and
Sq(%2) dual to & and &2, respectively. A similar pattern in Extz,*(lﬁ‘g, Fs) was described by Mahowald
and Tangora (Trans. Amer. Math. Soc., 1968).

*

Davis and Mahowald also determine the hq- and ho-multiplications in Extj{@) that are hidden by
filtration shifts in the E.-term. These can also be determined by machine computation in this range,
and lead to the charts in Figures 22 and 23. Sometimes v;-multiples become hg-divisible; this is indicated
by the small circles. Remarkably, v{-multiples never become more h;- or hp-divisible.
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Figure 21: B — Ext:a) (Fy,Fy), 24 <t —s <48
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Figure 22: P(v},v§)-basis for Exti"(*Q) (Fy,F3), 0 <t —5<24
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Figure 23: P(v{,v5)-basis for Ext)y ;) (F2,F2), 24 <t — 5 < 48
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Definition 8.26. We name the following generators of Ext ;) (F2,F2).

IS-gen. (t —s,s) alt. DM-rep.  ext
ho (0,1) ho ho 1o
hl (1, 1) hl hl 11
h2 (3, 1) hg Yo 12
wo (8, 4) w1 = Uil w1 41
o (204) g v 4
ap (48,8)  wo =15 yS 819
aq (8, 3) Co (7) 32
(0%} (12, 3) (67 (?) 33
a5 (153) 8 0 3
ar  (144)  do () 4
(0% (17, 4) €0 (7) 46
Qg (25, 5) Y hl’l)é1 + <7> 511
ary (32, 7) 1) CovéL + (?) T11

With the exception of ay = 4, each class is the unique nonzero class in its bidegree. The class a7 = §
is characterized by the properties hod # 0 and h;6 # 0. Bruner’s ext-program uses the name s, for the
g’th generator in Adams filtration s, counting from g = 0.

Instead of displaying the module generators, Davis and Mahowald (1982) use the following convention

to encode Adams charts that are free over P(w;) = P(v}). ((They do not take ho-multiples into account.))

Definition 8.27. An indexed chart is a chart in which some elements x are labeled with integers
{(x). Each unlabeled element x is implicitly given the maximal label of a labeled element y such that
x = hjhihby, or 0 if no such y exists. Each indexed chart C' generates an Adams chart (C), consisting
of all elements v{'z such that i + £(z) > 0. In other words, each element x in C generates a free

P(v})-module in (C) on a generator Ul*4l(z)x'

((Use the modified chart, better suited for the ¢m f-differentials.))
Definition 8.28. Let Ej be the following indexed chart:

16 ° [} % / .
° 3 ° < { cR
14 ° ° . ) . . 'y x»
° . . [ . ® n/ n/ ' 3 n’ - X) ’»— i /b
12 31 - o[ ’2’1:_’:’:,«"/ [ ’2’1’—’::,.«/'/ 21:{]»/ ’,4;/'/
21r 2tr o ]:lr’: B .Z 1|r -
T |
10 11r 10 [} 10
e _ ’1’ g °
1 1
6
24 26 28 30 32 34 36 38
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Here is the same chart with named generators:

|
16 . [} /v / °
<M’Co \
14| e ° ) B .. \i” .. /’,/ 1 \'
° ) _. T e . » . > » ’“/w o
12 wi"" ' S w%do e e wieQ O S 1 4
e ¥ ]
wia wipf| e 1adg '/ 18dq
T
10 wio? wiaf) e wy 37
wl?/’ . a3
T
8 do(i’o: ,} dog
T ag
0+ ag
6
24 26 28 30 32 34 36 38

The dashed lines that exit the chart mean that ho times wi8dy is wy times hgag = hod, and similarly
after multiplication by hyg.

Theorem 8.29. EX‘GZ’E‘Q) (Fa,F2) is free over P(ws) = P(v§) on (Eo) ® P(v1, ho1){gss,7}, where gss 7 =
Bg-

This compact statement should be compared with the full Ext chart (in a finite range of degrees), as
in Figure 8.

8.5 Coefficients in A(0)
The Adams Es-term for the homotopy of tmf/2 =tmf A S/2 is

3™ = Exty) (H* (tmf/2),F2) = Ext’’, (A(0), F2)

since H*(tm f/2) = H*(tmf) @ H*(S/2) = o/ //A(2) ® A(0) = &/ ®4(2) A(0), where A(0) denotes the
o/-module H*(S/2). It is, after all, free of rank 1 as an A(0)-module, and admits a unique </-module
structure. Note that S/2 is not a ring spectrum, and this is not an algebra spectral sequence, but it is a
module spectral sequence over the Adams spectral sequence for tmf.

Computing Extza)(A(O), Fy) will also be useful in proving Adams periodicity, saying that the part
of Ext?)" (Fo,F2) over a line of slope 1/5 repeats periodically along lines (rays) of slope 1/2.

We use the Davis-Mahowald spectral sequence

E7™" = Ext’y [ (Ny @ A(0), F2) = Ext’y(, (A(0), F2)

for M = A(0). It is not an algebra spectral sequence, since A(0) is not an A(2)-comodule coalgebra, but
it is a module spectral sequence over the Davis—-Mahowald spectral sequence computing Ext:'a)(lﬁ'g, Fs).

Let GA(0); be the chart so that Ext’y (V] ® A(0),F2) = S4 G A(0);. Then
B[ = P(v3) @ @ GA(0)i{hb} -
i>0
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0 2 4 6 8 10 12

Figure 24: GA(0)g, the Adams chart for ko/2

2 4 6 8 10 12 14 16

Figure 25: GA(0)y, the Adams chart for S~4bspin/2
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Figure 26: GA(0)

0 e . . °

0 2 4 6 2t 29+2 20+4 2i+6 20+38

Figure 27: GA(0); for i > 2

These charts can be readily computed. The first two are free as P(w;) = P(v})-modules.

Thereafter there are (i — 1) vi-torsion classes, before periodicity kicks in.

The Davis—-Mahowald E;-term for A(0) as A(2)-module is displayed for 0 < ¢ < 48 in Figures 28
and 29. Most classes are only represented by their o-filtration.

The augmentation A(0) — Fy (corresponding to the map tmf — tmf/2) induces a map of spectral
sequences from the one computed in the previous subsection to this one. The differentials implied by
di(a2,0h3) = h3 and di(as,0h3) = asohS leave the classes displayed in Figures 30 and 31. Only the
P(v})-module generators are shown. Most of them generate a free copy of P(v}), but some only generate
a trivial module. The latter are labeled o’ in place of o. The circle indicates a v{-multiple that is
hq-divisible.

Superimposing Figure 31 with a copy of Figure 30 multiplied by v3, and taking the differential
d1(v3) = auoh} into account, we obtain Figure 32. The remaining Fs-term is shown in Figures 33
and 34. For o-filtration reasons, this equals the F,-term.
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Figure 28: P(v3)-basis for E]"™" = EthZ;)(A(O),]Fg), 0<t—s<24
21 2
0 2
19 2 3
1 2 3 4
17 2 3 4
0 9 3 4 5
5
15 9 3 4 1 6
1 9 3 4 145 VEREY
13 9 3 4113 5 131613 |7
1 6 =
0 2 3 12 5012 12 12] 712 19
11 2 3 11 4 16 PEIEREE
3/10] 4| |10/5]1w0] 54 |w0]7]w0] 8, |10]9]10
9| 2 49 %y 969 Ty 98109 9
1 6
8 s 8|58 < 8|78 8
74 A lTle|T 7
6 6 6
5
2% 2% 30 32 34 36 38 40 42 44 46 48

Figure 29: P(v3)-basis for B} = Ext’," J(A(0),F2), 24 <t —s <48
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6 2 3 4
2 3 5045
4 ‘ 2 34 4
9 3
2 2|1
1

0/ 0

0 2 4 6 ) 10 12 14 16 18 20 22 24

Figure 30: P(v{,v3)-generators for E;"™" after first two differentials, 0 < ¢ — s < 24

10 6 7 8 10 9

4 5) 6 7

6| 4 6|5

24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 31: P(v},v3)-generators for E]"™" after first two differentials, 24 < ¢t — s < 48

8
10 6 716 8| 7109
5 P 6 7698 9|8y
8 50 1204 7 B 8| 7% 8
TR 6/« 1]e 7
6 4] [F5P 4 6 5
5 s
4 [

23 25 27 29 31 33 35 37 39 41 43 45 47

Figure 32: E"™" last differentials, 23 <t — s < 47
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2 3 5 1 4
4 2 3|4 4
‘ 2 3
2 2" 1
V11
0] 0
0 2 4 6 8 10 12 14 16 18 20 22 24
Figure 33: P(v},v$)-generators for EX** = EXtZE;)(A(O)7]F2), 0<t—s<24
11 8
6 716 817 8
9 A 7.6 87 |8
5478 0y 716 8|7
7 TRE S/« 16
4 2 6| 5
50 |47+
24 26 28 30 32 34 36 38 40 42 44 46 48
Figure 34: P(v},v$)-generators for EX** = Ext}y(5)(A(0),F2), 24 <t — s <48
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2 3 b4
4 2 34 |4
2 3
2 ‘ 2001
--17 I-
0 07"
0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 35: P(v},v§)-generators for Ext’y(5)(A(0),F2), 0 <t —s <24
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11 8
716 8 7 8
9 5/0’/7 6 716 8|7 98
5478 0y 716 8|7
7 TRE 6 /e 716
4 5 / 65
5 |47«

24 26 28 30 32 34 36 38 40 42 44 46
Figure 36: P(v},v§)-generators for Ext}y(5)(A(0),F2), 24 <t — s <48

Definition 8.30. Let E; be the following indexed chart, where w; = v} is unlabeled:

6
111
4 w1
2
7 9 11
and let Fy be the (unindexed) chart:
4 ’ L g
o
61
2 .
0 r7 )
0 2 4 6 8 10 12 14 16 18 20

48

Theorem 8.31. Etha) (A(0),F3) is free over P(wy) = P(v§) on the direct sum of Fy and the free

P(wy) = P(v})-module

(E1){1,v5} ® P(v1,ho1){g12.3,v5912.3} @ P(h21){g30.6} -

4 _ 374
where v1g30,6 = Vi h31912,3-

Multiplication by hy takes the class 1 in bidegree (t — s,s) = (0,0) of Fy into (E1). Multiplication by
v} takes the classes 1 and hy in of Fy into By, annihilates the classes h3, hof3 and h3B3 = h1g, and takes

the classes 8 and g into P(v1,ha1){g12.3}-

The Ext-homomorphism induced by the augmentation A(0) — Fo takes o = ag to g1a,3 and B2 = a§

to gso,6. The class v%gmg is mot in the image of this homomorphism.
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8.6 Adams periodicity

We now discuss vq-periodicity in Ext?)", following Adams (1966), with improved estimates due to Peter
May, as presented in Ravenel (1986, section 3.4). Adams obtained periodicity above a line of slope 1/3
in the (t — s, s)-plane, which May improved to a line of optimal slope 1/5.

Proposition 8.32. Let the functions v and w be defined by

s |2 -1 01 2 3 4 5 >6
v(is) | -6 —4 1 8 6 18 18 21 5s5+3
w(s) | -6 —4 1 8 10 18 23 25 5s+3

Then Yoneda multiplication by vi € Exti’g) (Fo,F2) induces an isomorphism

vl Exti, (A(0),Fa) — Ext’i " (A(0), F2)

fort —s <w(s), and a surjection for v(s) <t —s < w(s).

Proof. This follows by inspection of the calculation of Exti{&) (A(0),TF3). Surjectivity fails for s > 6 and

t —s = 5s+ 3 since v}hi °gs0.6 = vfhzl g12,3 is not divisible by v{. The line t — s = 5s + 3 has slope
1/5. The multiples by powers of ws = v§ lie on the line t — s = 6s of slope 1/6, so they do not reduce
the region of periodicity. O

Proposition 8.33. Let the functions v and w be defined by

s ‘ -1 0 1 2 3 4 5 6 > 7
o(s) | -6 —4 1 6 10 18 21 25 b5s—2
w(s) | -4 1 7 10 18 22 25 33 5s5+3

Let M be an A(2)-module that is free as an A(0)-module, and concentrated in degrees x > 0. Then
Yoneda multiplication by vi € Exti’g) (Fo,Fs) induces an isomorphism

vl s Ext’(y) (M, Fa) — Extii (M, F,)

fort —s < 0(s), and a surjection for 0(s) <t —s < w(s).

Proof. Consider an extension 0 — M’ — M — M" — 0 of A(0)-free A(2)-modules, with M’ concentrated
in degrees * > 1 and M" free on generators in degree 0. We may inductively assume that the result
holds for =1 M’. Multiplication by v} induces a map of long exact sequences

s—1,t s s+1,t
Exty o (M") —)ExtA(z)(M”) %ExtA(z)(M) *>ExtA(2)(M ) — Ext’, A2) (M")

4 4 4 4 4
’UIJ/ ’Ull ’UIJ/ ’Ull ’Ull

Ext’f 5 12 (M) — Bxt 3512 (M) — Ext iy 2 (M) — Ext 2 (M) — Ext iy 1% (M)
where the second argument to each Ext-group is Fy. We apply the five-lemma: The third (middle) map
is surjective if the second and fourth maps are surjective and the fifth map is injective. This holds if
t—s<w(s)and t — (s+ 1) < v(s+ 1), so we can let w(s) = min{w(s),v(s + 1) + 1}. The third map
is injective if the second and fourth maps are injective and the first map is surjective. This holds if
t—s<wv(s)and (t—1)— (s —1) <w(s —1), so we can let 9(s) = min{v(s),w(s —1)}. O

In the following result we may interpret A(n) for n = oo as «/. We are principally interested in the
case r = 2.

Theorem 8.34 (Adams approximation). Let 0 < r < n < oo and let M be an A(0)-free A(n)-module
that is concentrated in degrees = > 0. Restriction along A(r) C A(n) induces an isomorphism

o

Ext3y(,,) (M, Fa) — Exti( ) (M, Fs)

A(n)
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fort —s < 2s+ 2"t — &(s), where

5 fors=0,3 mod 4,
€=413 fors=1 mod 4,
4 fors=2 mod 4.

Proof. We have an extension
0= K—=An) @4y M =M —0

of A(n)-modules, with K concentrated in degrees x > 2"+ since A(r) — A(n) is an isomorphism in
degrees * < 2"t1. Adams (1966, Proposition 2.6) proves that the assumption that M is free over A(0)
implies that A(n) ® 4,y M and K are also A(0)-free. The argument is standard, as Bruner has kindly
pointed out: The A(n)-module structure on M gives an isomorphism A(n) ® 4,y M = A(n)//A(r) ® M.
When M is A(0)-free, so is the tensor product, hence also the middle term in the extension. This implies
that the kernel K is stably free, but this is the same as free for A(0)-modules.

We have an exact sequence

Ext’yoi (K, Fa) = Bxtyy(,) (M, F2) = Ext’y(, (A(n) @a(y M, Fz) = Exty(, (K, Fa).
Under the change of rings isomorphism

Ext’i(, (A(n) ©a() M, Fa) = Ext’yl ) (M, F2)

the middle homomorphism corresponds to the restriction homomorphism. We have a change-of-rings
isomorphism
EXtZEn) (K’ IFQ) = Ethz;(’Qf ®A(n) K7 ]FZ) ;

with &/ ® 4(,) K concentrated in degrees * > 2"t and A(0)-free. By Adams vanishing (Proposition 6.20)
the displayed Ext-group is zero for (¢t — 2"71) — s < 25 — €(s), where

0 for s=0 mod 4,
€(s)=¢1 fors=1 mod 4,
2 for s=2,3 mod 4.

Hence the middle homomorphism is an isomorphism if (t —2"t1) —s < 2s—¢(s) and (t—2""1) —(s—1) <
2(s —1) —e(s — 1). The second condition implies the first, since é(s) =3+ €e(s — 1) > €(s). O

It follows from the calculations for A(2) that there are isomorphisms

Ext’y(,) (M, Fa) — Bxt’ 12 (M, Fy)

for s >0,t—s < 0(s) and t —s < 25+ 8 — €(s). The latter condition dominates for s > 3. When n = 2,

this isomorphism is induced by the Yoneda product with v} € Exti’g) (F3,F5), but this class does not

lift to Ext 5(,) for n > 3. However, there is a power of v} that does lift to Ext o(n)-

Theorem 8.35 (Adams). For each n > 2 there is a class w, € Exti:(;f’)gn (Fy,Fy) that restricts to

wi' =0} € Bxt} 7 (Fs, Fa).
The proof is given in Adams (1966, Section 4) or Ravenel (1986, Lemma 3.4.10), and uses algebraic
Steenrod operations in the cobar construction on 7. We must omit it, for now. The periodicity class

@y is the unique class in its bidegree, also known as w; = v} = wy.

Proposition 8.36. Let the functions v and w be defined by

s [0 1 2 3 4 5 6 7 >8
o(s) [ -4 0 6 9 16 21 24 31 5s—3
w(s) | 17 10 17 22 25 32 38 b5s+3
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Let n > 2 and let M be an A(0)-free A(n)-module that is concentrated in degrees * > 0. Yoneda

multiplication by w,, € Extf(;f’)an (Fy,Fs) induces an isomorphism

(Ma ]FQ) — EXtS+2n,t+3.2n (M7 FQ)

s,t
Ext A(n)

A(n)
fort—s < 0(s), and a surjection for 0(s) <t —s < w(s).

Proof. The claim for s = 0 follows by Proposition 8.33 and Adams approximation. For larger s we
proceed by induction. Define K by the short exact sequence

0= K= An) @M - M —0

of A(n)-modules. Then K is A(0)-free and concentrated in degrees * > 8. By induction on ¢, we may
assume that the proposition applies to X~8K. Multiplication by w,, induces a map of exact sequences

s—1,t s—1,t s,t s,t s,t
Ext} o) (M) — Exty ;) (K)— ExtA(n)(M) — ExtA(Q)(M) — ExtA(n)(K)

n n
'U% \L wnl wnl 'Uf J w"lJ{

Ext’y o) " (M) — Extyy " (K) — Bxt' ) (M) — Bxt’y b (M) — Ext’ ! (K)
where we have suppressed Fs in the second arguments, let s’ = s + 2™ and t' = ¢ + 3 - 2", and have used
change-of-rings in the first and fourth columns.

By the five-lemma, the middle map is surjective if (¢t —8) — (s — 1) < w(s — 1), t —s < w(s) and
(t —8) — s < 0(s), so we must have w(s) < min{7 + w(s —1),w(s),8 + v(s)}.

Furthermore, the middle map is injective if (t —8) —(s—1) < d(s—1),t—s < v(s) and t — (s —1) <
w(s — 1), so we must have 0(s) < min{7 + o(s — 1), 9(s), =1 + w(s — 1)}.

The above-defined functions ¥ and @ satisfy these conditions. We note that w(s) =o(s+1)+1. O

((This agrees with Ravenel (1986, Lemma 3.4.14), except that his surjectivity for t — s < h(s) — 1
should probably be replaced by t — s < h(s + 2).))

Theorem 8.37. Let M be an A(0)-free o7 -module, concentrated in degrees x > 0. There is an isomor-
phism
I, : Ext®)(M,Fy) — Ext® 232" (M, Fy)

for s >0 and t — s < min{2s + 2" — &(s),6(s)}.
Remark 8.38. More precisely, the isomorphism is given in this range by the Massey product
Hn(‘r) = <hn+1a h8n7x> .

This follows from a more precise description of the periodicity class w,,, namely as the restriction along
A(n) C o of a cochain with coboundary expressing the relation h2"h,, 11 = 0. Following Tangora (1970),
we write

P(z) = (h3, hy, )
for this operator in the case n = 2, when defined.

This leads to the following periodicity theorem, in the improved version due to May. See Ravenel
(1986, Theorem 3.4.6).

Theorem 8.39 (Adams periodicity). Let v* be defined by

4 5 6 7 8 >9

3
7 10 17 22 25 32 55—-7

s |1 2
v*(s) | =3 1
and let
6 fors=0,1 mod 4,
€(s)=<4 fors=2 mod 4,
5 fors=3 mod4.
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Let n > 2. There is an isomorphism
o Ext®(Fy, Fy) —» Ext®f2 32" (7, F,)

for s >1and 0 <t—s < min{2s + 2"t — e*(s),v*(s)}.

Remark 8.40. A direct computation shows that Ils is an isomorphism for 1 < s < 4 and 0 < ¢t —
s < 28+ 2% — €*(s), so we may improve the result a little by redefining v*(1) = 4, v*(2) = 8 and
v*(3) = 9. A further initial improvement might be possible by computing I3 for 1 < s < 8 and
0<t—s<2s+2%—€*(s).

Proof. We use the short exact sequence
0— I(o)ASq") — o |/ Sq" — TFy =0

with I(e/ /7 Sq') = $2M free over A(0) and concentrated in degrees * > 2. The connecting homomor-
phism
Ext?, "' "* (M, Fa) — Ext) (Fa,F>)

is then an isomorphism for all t — s > 0. We find that II,, is an isomorphism for s —1 > 0 and
(t—2)—(s—1) <min{2(s — 1) + 2"t — &(s — 1), 9(s — 1)}. This translates to the conditions s > 1 and
t—s < min{2s+ 2"t — 1 —&(s —1),1+9(s — 1)}, so we let €*(s) =1+ ¢&(s — 1) =4+ ¢(s — 2) and
v*(s) =1+ 9(s—1), as above. O

9 The homotopy groups of S and tmf

9.1 The image-of-J spectra

Let KU be the periodic complex K-theory spectrum, with homotopy groups 7.(KU) = KU, = Z[u*!],
given by inverting the complex Bott element u in 7, (ku). Similarly, let KO be the periodic real K-theory
spectrum, with homotopy groups

T (KO) = Z[n, o, B/(20, 7, nav, o* = 4n)

given by inverting the real Bott element 3 in 7, (ko), with image u* in 7, (ku). These spectra represent
complex and real topological K-theory, so that KU?(X) (resp. KO°(X)) is the ring completion of the
semiring of isomorphism classes of complex (resp. real) vector bundles over X, with respect to direct sum
and tensor product, at least for finite CW complexes X. It is known that KU and KO admit (essentially
unique) commutative S-algebra structures that realize these ring structures. The unit map d: S — KO
is related to Adams’ K-theory d-invariant.

For each integer k the Adams operation *: KU%(X) — KU°(X) is a natural ring homomorphism.
By the splitting principle it is characterized by its value on complex line bundles L — X, namely
YF(L) = L®. Similarly for ¥*: KO°(X) — KO°(X), which satisfies the same formula for real line
bundles L — X. As a consequence of this characterization, we have the relation ¥* o 1/ = ¢*¢. We also
note that 1~ = 1 (the identity map) in the real case.

The Adams operations ¢* do not commute with Bott periodicity, but map u € K’UO(SQ) to ku
and § € f(OO(S’S) to k*B. Hence it is necessary to localize, by inverting k, in order to extend ¥* to
stable operations KU*(X) — KU*(X) and KO*(X) — KO*(X). For k # 0 there are spectrum maps
Yk KU[1/k] — KU[1/k] and ¢*: KO[1/k] — KO[1/k], such that 1* o y* = ¢)** after inverting k¢ # 0.

Fix a prime p, and let k be an integer prime to p. After p-completion, " : KU, — KU, can be
realized as a map of commutative S-algebras, with ¥¥: Z,[u*!] — Z,[u*!] taking u to ku. Similarly,
Y*: KO — KO} maps m,(KO)) = m,.(KOp) by taking 7 to kn, o to k?a and 3 to k*3. Furthermore,
these operations can be extended to p-adic integer values of k (still prime to p), so as to define an action of
the p-adic units Z; on K U;\, and similarly on K OI/,\. These actions define multiplicative homomorphisms
L} — (KUD)Y(KUp) and % / £1 — (KOp)°(KO}), taking k to the homotopy class of ¢*. These can
be combined by the scalar multiplications of (KU,)* = 7_.(KU}') and (KO))* = 7_.(KOp), to get
the following ring isomorphisms:
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Theorem 9.1. (KU)\)*(Z))) = (KU\)*(KU)) and (KOp)*(Z) /£1)) = (KO,)*(KO)).

For odd p, any integer k that represents a generator of (Z/p®)* is a topological generator of /o
Similarly, any integer k that represents a generator of (Z/8)* /%1 is a topological generator of Z5 / + 1.
For p = 2 it is traditional in topology to pick k& = 3, while the tradition in number theory may be to pick
k = 5. Hereafter we assume that k is chosen as such a generator.

Definition 9.2. For odd p, let J} = (KUIf)hwk be the homotopy fixed points of the *-action on

KU). For p =2, let J5 = (KO»)"" be the homotopy fixed points of the y*-action on KO$. These

-complete) image-of-J spectra are commutative S-algebras, and there are commutative S-algebra maps
p p g /4 g ) g p
J]DA — KU;\ and J§ — KO%.

((Can get commutative S-algebra actions by Goerss—Hopkins—Miller obstruction theory, which gen-
eralizes from F; = K UpA to the Lubin—Tate spectra F,. The formation of homotopy fixed points for
continuous actions by profinite groups (like Zy) is technically complex, see Devinatz—Hopkins, Fausk,
Behrens—Dayvis. In this case it suffices to work with the action by the free discrete monoid generated by
)

The homotopy fixed points above can be rewritten as the homotopy equalizers of ¢* and 1: K UI;\ —
KU}, or as the homotopy fiber of the difference map Pk —1: KU} — KU},
Applying K Ulf—cohomology to the cofiber sequence

and similarly for p = 2.

A AYE-1 A
J, — KU, — KU,
we get the long exact sequence

= (KU (Z) wk;f (KU (2 ) — (KU (J)) = ...

that induces an isomorphism
(KU (Zy )/ (k ~ 1) = (KUp)" = (KU)"(J;).-

It follows that the unit map e: S — Jlé\ induces an isomorphism in K UPA—cohomology7 i.e., that it is a
K Uzﬁ\—local equivalence. Similarly, for p = 2 we get an isomorphism

(KO3)"(Z3 ) £1)/(k ~ 1) = (KO3)" = (KO3)"(J3) ,

so that the unit map e: S — J4§* is a K04-local equivalence.

((The map e is related to Adams’ K-theory e-invariant. The role of these equivalences can be clarified
in terms of Bousfield localizations. Theorems of Mahowald (for p = 2) and Haynes Miller (for p odd)
prove that e: S — J/* induces isomorphisms 7. (S/p) [ Y] = 7. (J/p) vy Y], where J/p = J)NNS/p.))

Theorem 9.3. For p odd,

Zy, ifx=0o0r*x=—1,
T(J)) =S Ly /(K —1) ifx=2i—1#—1,
0 otherwise.
Forp=2,
ZQ Zf* = 71,

Zo®Z)2  ifx=0,
Zo) (k% —1) ifx=8i—1#—1,

(D) & Z]2 z:f*:8z:7é0,
(Z)2)? if ¥ = 8i+1,
Z)2 if * =81+ 2,
Z/8 if x = 8i+ 3,
0 otherwise.

119



Proof. This is almost straightforward from the long exact sequences

k_
e (D) o (KUY S (KUY —

and
k_
(D) — m(KOD) S m (KOD) — ..

where the action ¢} of ¥ on 7, (KU}') and m,(KO%) has been discussed above. The only thing to check
is that the extension giving . (J3') for x = 8 + 1 is split. ((Prove this!)) O

Remark 9.4. We have Z,/(k' — 1) = 0 when p — 1 {4, while Z,/(k' — 1) = Z/p**' if p— 1 | i and
v = v,(i). Furthermore, Zs/(k* — 1) = Z/2°" = Z5/(16i) if v = va(i).

Definition 9.5. For p odd, let the connective image-of-J spectrum jz/a\ be the connective cover of Jzﬁ\.
For p = 2, let jo} be the connective cover of J5'. These are commutative S-algebras, and there are
commutative S-algebra maps j,' — ku;, and joy — koj.

((Can also get E ring spectrum structure on jl’)\ by discrete models, by taking k to be a prime power
and using the algebraic K-theory of a finite field with & elements, following Quillen and May et al.))
There are cofiber sequences
k_
gy — k) S b))
for p odd, and
A A1 A
joy —> koy — boj

for p = 2, where ¥* — 1 denotes the unique lift of ¥* — 1: kup — kuj through the connected cover
buj, — kuy,, and similarly for the connected cover boy — koy.

For p odd the completed unit map Sg — jﬁ induces a split surjection on homotopy groups, as we
shall discuss below. For p = 2, the lowest homotopy groups m(j0%) = Zs & Z/2 and 71 (job) = (Z/2)?
are too large for this claim to hold, so we make an adjustment in these degrees to define the connective
image-of-J spectrum at p = 2.

Definition 9.6. Let P!X denote the first Postnikov section of X. We get a diagram of commutative
S-algebras

j2 = = = > joy ———koy

ool

PLs) Pljod Plkob

and define 75 to be the homotopy pullback in the left hand quadrangle.

The maps S5 — j§ — ko) then induce equivalences of first Postnikov sections, which implies that
there is a cofiber sequence

A A PF—1 A
Jj5 — koy — bspin,

where 1% — 1 denotes the unique lift up to homotopy of ¥* — 1: ko — ko) over the 2-connected, hence
3-connected, cover bspiny — ko%. This is usually taken as the definition of j5', but does not make the
commutative S-algebra structure quite clear.

((Can also get F« ring spectrum structure on j43 by a discrete model, as the algebraic K-theory of
a suitable bipermutative category, following May et al.))
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Proposition 9.7.

Zs if x=0,

7)2 ifx=1,

Z)]2 if x=8+2>0,
P N e

Zo)(k*¥ —1) ifx =8 —1>0,

Z]2 if x=8i >0,

(Z)2)? if«=8i+1>1,

0 otherwise.

The connecting homomorphism .1 (bsping) — m.(32) is surjective for x > 0, except in degrees * = 8i+r
for i > 0 and r = 1,2, where the cokernel maps isomorphically to m.(koy) = Z/2. There are classes
Usitr € Tsirr(35) of order 2 that map to the generators n"B° of these groups.

((The classes pu; = 1, uz = n? and g2 for i > 0 are uniquely determined in . (j5). How to
characterize pg;+17))
((Name the generators and order 2 classes?))

Corollary 9.8. e¢: S — j5 is 6-connected.
To prove that ,(e) is split surjective, we need a number of unstable (space level) constructions.

Definition 9.9. Let F'(n) C 2™S™ be the monoid of base-point preserving homotopy equivalences S™ —
S™ and let O(n) — F(n) be the monoid homomorphism taking an isometry R” — R"™ to the induced map
S™ — 8™ of one-point compactifications. These homomorphisms are compatible with the stabilizations
O(n) - O(n+1) and F(n) - F(n + 1), and induce a monoid homomorphism j: O — F = GL(S5).
The induced homomorphism

J =7(J): m(0) = mo(F) 2, (5)

(for * > 0) is called the J-homomorphism, after J.H.C. Whitechead.

Recall that
Z/2 ifx=0,1 mod 8,
7(0) 2 1 41(BO) 2 < Z if ¥ =3,7 mod 8,

0 otherwise

for * > 0, so that the image im(J) C m.(S5) is (trivial or) cyclic of order two for * = 0,1 mod 8 and
(trivial or) finite cyclic for *x = 3,7 mod 8.
We get a Puppe fiber sequence

0 -1 F— F/O — BO 25 BF,

where F/O is defined as the homotopy fiber of Bj: BO — BF. The right hand map represent a
homomorphism

KO'(X) = [X, BO] — [X, BF]

(for connected CW complexes X), that takes a vector bundle £ — X to the stable spherical fibration
class of its fiberwise one-point compactification. Its image is the group J(X) studied by Adams in a
series of papers.

((Discuss how Bj: BO — BF is a map of infinite loop spaces.))

There is a close relation between the subgroup im(J) C 7.(S) of the stable homotopy groups of
spheres and the homotopy groups of the image-of-J spectrum j, given as quotient group of m,(.5) via the
unit map e: S — j.

We sketch the presentation of May et al. Start with the lift j: Spin — SF = SLi(S) of j: O — F,
and form the middle horizontal Puppe fiber sequence in the following diagram, implicitly completed at
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a prime p:
Yr-1

J BO BSpin
I
I

I
aP ’Yk ‘ _J
+ 4

Spin % SF —— SF/Spin —— BSpin L BSF

A R
P*/1

J® BO@ BSpZ’l’L@)

(The solid arrows are infinite loop maps, when the spaces labeled ® are given multiplicative infinite loop
space structures.)

The next step is similar to Thom’s construction of Stiefel-Whitney characteristic classes using Steen-
rod operations in mod 2 cohomology, replacing cohomology and Steenrod operations by real K-theory
and Adams operations, respectively. The Atiyah—Bott—Shapiro ko-orientation of Spin-bundles specifies
a Thom class u: M Spin — ko in the ko-cohomology of the Thom spectrum of the tautological vector
bundle over BSpin. Applying the Adams operation 1*: ko — ko, the composite class 1*(u) corre-
sponds under the ko-cohomology Thom isomorphism ko*(BSpin) = ko*(MSpin) to a characteristic
class p¥: ©°BSpin, — ko satisfying u U p¥ = ¢*(u). The space level adjoint BSpin — BOg lifts
to an infinite loop map p¥: BSpin — BSping, known as the ((Bott?)) cannibalistic class. There is a
corresponding operation o*: SF/Spin — BOg making the displayed square commute. The infinite loop
map ¥ /1 is the restriction of ¢)* —1: ko — bspin to the 1-component BOg = SL;(ko), so its homotopy
fiber is identified with the 1-component Jg = SL1(j) of j, all after p-completion.

Turning to the upper half of the diagram, Adams proved that the composite Bj o (1)* — 1) on some

classes in If(\ao(X) = [X, BO] is zero in [X, BSF];, and conjectured that this is always so. The Adams
conjecture, that Bjo (¥ —1) is null-homotopic after p-completion, was proved by Quillen and by Sullivan,
and leads to the existence of the (p-complete) space level maps a® and *. Such map o is sometimes
called a solution to the Adams conjecture. It is known ((Madsen, Tornehave?)) that these maps cannot
be delooped for p = 2. ((Positive result for odd p by Friedlander.)) By Adams’ calculations in the
J(X)-papers, the square with corners BO, BSpin, BOg and BSping is homotopy cartesian, so that the
composite map ea®: J — Jg of homotopy fibers is a homotopy equivalence.

We write pgitr € Tgitr(S) = mgit(SF) for the image under a® of the class with the same name in
wgi+r(J), which is detected by 7" 3¢ € 7gi1,(BOg) =2 msitr (ko).

Theorem 9.10 (Adams, Quillen, Sullivan). The homomorphism e.: 7.(S}) — m.(j,) is split surjective.
A section for * > 0 is given (after implicit p-completion) by a solution oF: m.(J) — 7. (SF) = m.(S) to
the Adams conjecture.

The image im(a¥) = m,(J) of that section is the direct sum of two parts: The first part is the
image im(J) of the J-homomorphism J = m.(j): m(Spin) — 7. (SF) = m.(S). The second part is
Z/2{psgitr | © > 0,7 = 1,2}, which is detected by d.: m.(S) — m.(ko).

Adams calls the p-classes “honorary members” of the image of J.

Lemma 9.11. (We implicitly work completed at p = 2.) ey: m(S) — 7. () is an isomorphism in degrees
x < 13, except in degrees x =6, 8 and 9:

mg(e): m6(S) — me(4) takes v? to 0.

mr(e): mg(S) — ws(j) takes no and € to no.

mg(e): m9(S) — mo(j) takes n?c and ne to n*o, and p = ug to .

Proof. The claim about 7g(e) is obvious, and implies that mg(e) takes v®> = n?c + ne to 0. ((Cite Toda
for that relation?)) Hence both n?c and ne map to 7?0, which implies the claim for 7g(e). O

((It follows that no must have Adams filtration > 3 in m.(j).))

9.2 The image of J in the Adams spectral sequence

To describe the role of the image of J as a subgroup of the stable homotopy groups of spheres, viewed
as the abutment of the Adams spectral sequence for S, we need to have an image of the latter in the
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Figure 37: II3-periodic Adams chart for S

relevant region, which is a diagonal band parallel to the Adams vanishing line of slope 1/2. For this,
we need to appeal to the Adams periodicity theorem, proved above in Theorem 8.39. The contribution
of the image of J at the Adams E-term is largely contained in the periodicity range for the operator
P =TI, that increases t — s by 8. However, some of our arguments involving S/2 fall outside of that
range, so that it seems best to work in the periodicity range for the operator I3 that increases t — s by
16, and which equals P? where the latter is defined.

We use the following form of the Adams periodicity theorem, proved above in Theorem 8.39 for s > 7.
The claim for 3 < s < 6 must be checked directly.

Theorem 9.12. There is an isomorphism

Is: Ext®f(Fa,Fy) — Ext® 524 (Fy, Fy)

for s >3 and
10 for s=0,1 mod 4,
0<t—s5<254+412 fors=2 mod 4,
11 fors=3 mod 4.

Hence the pattern above the dashes in Figure 37 repeats every t — s = 16 degrees. We are most
interested in the uppermost part, close to the line t — s = 2s.

As a consequence of the proven Adams conjecture, we get the following theorem. See Ravenel (1986,
Theorem 3.4.16) and Davis—Mahowald (1989, Theorem 1.1).

Theorem 9.13. The classes cg, hico, Phi, hiPhy, Pha, hoPhs and h%Phg = h%Phl, as well as all
of their images under powers of P, survive to Eo in the Adams spectral sequence (meaning that they
are infinite cycles and not boundaries). They represent subgroups Z/2 C 7g;(S), (Z/2)? C 7msiy1(S),
Z]2 C 7gir2(S) and Z/8 C wsi+3(S) that map isomorphically to ms;(5%), msi+1(J5), Tsit2(33) and
msir3(75), respectively.

In topological degree t — s = 8i — 1, for i > 1, there is a class surviving to E. in each of the
(v +4) Adams filtrations s with 41 — v — 3 < s < 4i, where v = vy(i). These represent a subgroup
7)2v = 75 /(160) C 7;—1(S) that maps isomorphically to wg;—2(j5)-
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Figure 38: II3-periodic Adams chart for S/2

There is a hidden n-multiplication from the generator in degree t—s = 8i—1 and filtration s = 4i—v—3
to P 1¢g.

To prove (a part of) this, we shall compare S and j with S/2 and j/2. We proved the following
version of the periodicity theorem for S/2 in Theorem 8.37, at least for s > 5. The case s = 4 can be
checked directly.

Theorem 9.14. There is an isomorphism
Is: Ext®f(H*(S/2),Fa) — Ext® *"T2(H*(5/2), Fy)

for s >4 and
10 for s=0 mod 4,
t—s5<25+<11 fors=1,3 mod 4,
12 for s=2 mod 4.

Hence the pattern above the dashes in Figure 38 repeats every t — s = 16 degrees.
Associated to the cofiber sequence S — S/2 — £.S = S, we have an extension

0— XFy — H*(S/2) > F2 — 0
and a long exact sequence of Ext-groups:
oo = ExtS} (Fa, Fy) — ExtSH(H*(5/2), Fa) — Ext® " (Fy, Fy) —2 Ext® V4 (Fy, Fy) — ..

where the connecting homomorphism is given by the Yoneda product with hg € Ext}Qi{l (Fy, Fy).

Lemma 9.15. The map Ey"(S) — E3"(S/2) of Adams spectral sequences takes the ho-indecomposable
classes cg, hico, Phy, h1Phy and Phs, as well as all of their images under powers of P, injectively to
linearly independent classes in the target.

The morphism Ey*(S/2) — Ey*(£8) = E3*7'(S) maps classes in the source surjectively to the
ho-annihilated classes h(?;hg, co, hicg, Phi, hiPhy and h%Phl = h%Phg, as well as all of their P-power
images.
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Proof. ((By inspection.))

6 lllTh
Phy| ¥ | Phy
4 "’ﬁ{‘é;) ‘
co
2
7 9 11

O

Remark 9.16. This lemma accounts for 11 of the 12 generators in the two uppermost families of
lightning flashes in the Adams chart for S/2. The remaining generator, in degree (8; — 1), is exceptional:
The ho-indecomposable class at the bottom of the tower leading up to P~1(h3h3) can have very low
Adams filtration, and does often not contribute to £ (5/2) within the Adams periodic range. Instead,
the class ho P~ 1h, is annihilated by hg and contributes a class z in Egi_Q’lgi_?’(S/Q) with hiz equal to
the image of c¢y.

We can compare these charts with the Adams charts for j and j/2. See Mahowald-Milgram, Davis
and Angeltveit—Rognes for the following calculation

Proposition 9.17. The lift 0: ko — bspin of ¥> — 1 induces the homomorphism
0*: Yot )/ {Sq", Sq*Sq>} = H* (bspin) — H* (ko) = o |o/{Sq*, S¢*} = o/ /JA(1)
that takes the generator £*1 to the class of Sq*. There are isomorphisms
YK =ker(0*) = X807 /7 {Sq*, Sq7, Sq*Sq® + Sq°Sq*}
C = cok(0) = o/ |/ {Sq",Sq%, Sq*} = /] A(2).

The extension
0—-C—H"(GJ)—>K—=0

is nontrivial, and
H*(j) = o/ {1,2}//{Sq",S¢% 54", S¢® + Sq'w,Sq"x, (Sq"S¢° + S¢°Sq")x}
with generators 1 and x in degrees 0 and 7, respectively.

((The isomorphism C' = H*(tmf) is incidental; there is no map j — tmf inducing the inclusion C' —
H*(j) in cohomology. See also Bruner’s note (2012). Check if Sq*Sq® 4+ Sq8Sq* = Sq(%11) 4 §¢(+:2)))

Proposition 9.18 (Bruner). The map 0/2: ko/2 — bspin/2 induces the homomorphism
(0/2)*: X4t | {Sq*Sq®} = H*(bspin/2) — H*(ko/2) = o/ |/ {Sq*,Q:1}
that takes the generator %*1 to the class of ((ETC)).

The extension
0—-C®H"(S/2) - H*(j/2) = KQ H*(5/2) = 0

induces a long exact sequence of Ext-groups:
= BExt®) (K @ H*(S/2),F2) — Bxt®) (H*(j/2),F2) — Ext®)(C @ H*(S/2),F2) — ...

where we can rewrite the right hand term as EX‘LZEQ)(H *(5/2),F3), which we computed above.

The Adams spectral sequence for j was studied by Davis (1975). The sequence for j/2 is simpler, and
is implicitly described on page 41 of Davis—Mahowald (1989). A more direct argument has been studied
by Bruner:
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Proposition 9.19 (Bruner). The ezact sequence above splits, so that the Adams Ea-term for j/2 is
Ey'(j/2) = Ext> (C ® H*(S/2),Fs) @ Ext™) (K ® H*(S/2),Fs).
There is a short exact sequence
0 — Ext® "N (K ® H*(5/2),Fy) — Ext®}(C @ H*(S/2),Fa)
— Ext® (H*(ko/2),F2) ® Ext®, V" (H* (bspin/2),Fa) — 0
and the Adams ds-differental is given by the left hand homomorphism, so that
E'(j/2) = Bat®) (H* (ko/2),Fa) @ Ext®, " (H* (bspin/2), Fs)

is concentrated in bidegrees (t — s, s) witht —s < 2s+ 3. There are no further differentials, so E3 = E
for bidegree reasons.

This means that the Adams Es-term for j/2 contains a copy of the charts for ko/2 and for bspin/2
(shifted up one filtration), consisting of two lightning flashes every eight degrees, plus two copies of Ext o
for K ® H*(S/2), starting in bidegrees (t — s,s) = (7,0) and (6,2), respectively. The dy-differentials
make these two copies cancel, leaving only the lightning flashes at E3 and beyond. See Figure 39. ((Add
differentials to chart?))

Lemma 9.20. The map e/2: S/2 — j/2 induces a surjective homomorphism H*(j/2) — H*(S/2), and
the induced homomorphism

Exty; (H*(5/2),F2) — Ext}/(H"(j/2),F2)
is an isomorphism for s >4 and t —s < 2s + 3.
Proof. We write ¢ for the homotopy fiber of e: S — j, so that there is a cofiber sequence
c— 85— e
inducing the short exact sequences

0— H"(3c) - H*(j) » H*(S) = 0
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and
0— H*(Xc¢/2) = H*(j/2) —» H*(S/2) = 0.

We get a long exact sequence
o= Ext®) (H*(S/2),F2) — BExt®) (H*(j/2),Fo) — Ext®/ (H*(Xc/2),F2) — ... .
Here H*(3c¢/2) = H*(Xc) ® H*(S/2) is A(0)-free and concentrated in degrees * > 7, so
Ext®) (H*(Xc/2),F2) =0
for (t —7) — s < 2s — e(s), by Adams vanishing in the form of Proposition 6.20. In particular,
Ext®! (H*(S/2),Fa) — Ext®) (H*(j/2),F2)

is surjective for t — s < 2s 4 3. For s > 4 the dimensions of the Ext-groups agree in this range, so these
surjections are in fact isomorphisms. O

Remark 9.21. We call ¢ the cokernel-of-J spectrum, to go with the image-of-J spectrum j. The
composite 7, (¢) — 7. (S) — cok(J) is almost an isomorphism, except for the p-classes.

Proposition 9.22. In the Adams spectral sequence
ES’t(S/2) = Extfz’;(H*(S/Q),IFg) = m—s(5/2)

the classes in bidegree (t — s,s) with s > 4 and t — s < 2s + 3 survive to Es. In degrees t —s > 10
they represent subgroups Z/2 C msi—1(S/2), (Z/2)* C 78:(S/2), Z/2 ® Z/4 C 78i+1(S/2), Z/AD L2 C
78i+2(5/2), (Z/2)? C 78i+3(S/2) and Z/2 C ms;+4(S/2) that map isomorphically to ms;—1(j/2) through
msi+a(j/2), respectively.

Proof. The classes are infinite cycles for bidegree reasons. They cannot be boundaries, since we have a

map of Adams spectral sequences
E(S/2) — EX7(5/2)

and their images in the Adams spectral sequence for j/2 are not boundaries. They represent subgroups in
the abutment 7, (S/2) that map isomorphically to the corresponding subgroups in the abutment 7. (5/2),
since the map of E,-terms is an isomorphism in the relevant filtrations. O

Proposition 9.23. In the Adams spectral sequence for S, the five classes co, hicg, Phy, hiPhy and
Pha, as well as all of their images under powers of P, survive to Es,. They represent classes in my(S5)
that map to generators of w.(j5')/2 in degrees 8 < x < 8 + 3.

((We are omitting the difficult degrees * = 8i — 1 here.)))

Proof. The classes are infinite cycles for bidegree reasons. They cannot be boundaries, since we have a
map of Adams spectral sequences
E(S) — Er7(S/2)

that takes these classes to survivors in the right hand spectral sequence. The claim about abutments
follows from the commutative square

T (52)/2 —— m(42) /2

| I

7. (S/2) —— 7.(j/2).

Let us write A[n] = {x € A | nz = 0} for the exponent n subgroup of an abelian group A.

Proposition 9.24. In the Adams spectral sequence for S, the six classes hihs, co, hico, Ph1, hiPhy
and h2Phy = h3Phay, as well as all of their images under powers of P, survive to En,. They represent
classes (of order 2) in m.(S5) that map to generators of m.(j5)[2] in degrees 8 —1 < x < 8i + 3.
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Figure 40: Adams Fs-term for S, 0 <t —s <24

Proof. The classes are too close to the vanishing line to support differentials. There are infinite survivors
in bidegrees (t — s,s) with ¢ — s < 2s + 3 in the Adams spectral sequence for S/2, that map to these
classes under the map of Adams spectral sequences

Er*(8/2) — B (38) = EX*7(S).

Those infinite survivors represent a subgroup of m,11(S5/2) that maps isomorphically to the subgroup
4 (32)[2] of T (j4), via the maps S/2 — j/2 — ¥j2. Hence the six classes represent a subgroup of
4 (55)[2] C 7 (S5) that maps onto m,(j5)[2], in view of the commutative square

Tt1(5/2) —— mt1(5/2)

i |

™ (99) 2] —— 7. (35)[2] -

If follows that the six classes remain linearly independent at FE.,, so none of them are hit by Adams
differentials. O

((tmf/2 and tmf/(2,v})?))

9.3 The Adams spectral sequence for S

Machine computation of Ext;‘;,*(]Fg, Fs), e.g. using Bruner’s ext program, gives the Adams Fs-term for
the sphere given in Figures 40 and 41.

((Beware: fo and y ambiguous; €] = e; + hZhshs and Q' = Q + Pu. Check f; and Bs.))

In this range we have the algebra generators given in Table 8 for the Yoneda product, grouped by
Adams filtration s and topological degree ¢t — s. The generators are named as in Mahowald—Tangora
(1967), Mahowald—-Tangora (1968) and Tangora (1970), extending the notation from May’s thesis (1964).
((Explain ext name.))

We now discuss the Adams spectral sequence differentials implied by the image-of-J splitting.
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Name t—s s t ext
ho 0 1 1 1p
h1 1 1 2 11
ho 3 1 4 15
hs 7 1 8 13
hy 15 1 16 14
hs 31 1 32 15
Co 8 3 11 33
c1 19 3 22 39
C2 41 3 44 319
do 14 4 18 43
€o 17 4 21 45
fo 18 4 22 46(?)
g 20 4 24 4g
dy 32 4 36 443
D 33 4 37 414
€1 38 4 42 416 + 417(?)
f 40 4 44 419+ 490(?7)
g2 44 4 48 422

Phq 9 5 14 51
Phso 11 5 16 Do
n 31 5 36 913
x 37 5 42 517
T 30 6 36 610
q 32 6 38 612
t 36 6 42 614
Y 38 6 44 616(?)
PCO 16 7 23 73
) 23 7 30 75
j 26 7 33 76
k 29 7 36 7
l 32 7 39 710
m 35 7 42 T12
By 46 7 53 720
By 48 7 55 722(?)

Table 8: Algebra generators of Ext’)"(Fo, Fy) for t — s < 48
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Name t—s s t ext
Pd, 22 8 30 83
Peg 25 8 33 85

N 46 8 54 820
P2%h, 17 9 26 9
P?hy, 19 9 28 9

u 39 9 48 913

v 42 9 51 919

w 45 9 54 920

z 41 10 51 1014
P?¢ 24 11 35 115

Pj 34 11 45 11,

P%2dy, 30 12 42 125
P%2ey 33 12 45 125
P3h; 25 13 38 13,
P3hy 27 13 40 13,

Q 47 13 60 1314(7)

Pu 47 13 60 1315(?)

P3¢y 32 15 47 155
PZ 39 15 54 155
P2 42 15 57 156
P3dy 38 16 54 165
P3¢y 41 16 57 165
P*hy 33 17 50 17,
P*hy 35 17 52 17,
Plcy 40 19 59 193
P*dy 46 20 66 205
Pley 49 20 69 205
P°h, 41 21 62 21,
P°hy 43 21 64 21,
Pocy 48 23 T1 213




Theorem 9.25. There are nontrivial differentials dz(hy) = hoh3, d3(hohs) = hodo and dz(h3hy) = h3dy.

Proof. The image of J in m15(5%) is isomorphic to Z/32, and we know that a generator is represented
in Adams filtration s = 4, where the only nonzero class is hjhs. Hence the classes hihy for 3 <i <7
survive to F., while the classes hf)h4 for 0 <4 < 2 do not survive to F. They cannot be boundaries
for degree reasons, so they must support differentials.

The Adams differential da(hy) = hoh3 is a consequence of the homotopy commutativity of S. The
classes 2 and o are represented by hg and hs, respectively, so 202 must be represented by the infinite
cycle hoh3. By homotopy commutativity, 202 = 0, which means that hoh? must represent zero at E..,
meaning that it is a boundary. The only possible class = to support a differential d,.(x) = hoh% for r > 2
is & = hy, giving the stated Adams differential.

It follows that da(hohys) = h3h3 = 0, so hohy survives to Es. If d3(hohs) = 0 then ds(h2hy) = 0,
and then h3hs would have to be an infinite cycle, since there are no targets for later differentials on that
class. This contradicts the order of the image of J in 715, so we deduce that d3(hohy) is nonzero. The
only possible value is hodg. Multiplication by hg then gives the value of dz(h3hy). O

Theorem 9.26. There is a nontrivial do-differential da(i) = hoPdy, which implies the nonzero dif-
ferentials dg(hoz) = hgpdo, dQ(Peo) = h%Pdo, d2(j) = hoP@o, dg(ho]) = h%P@o, d2(h%]) = theo,
dg(k) = hopg, dg(hok) = h(z)Pg, dg(l) = hodoeo, dg(hol) = h%doeo, dz(m) = ho@%, dg(hom) = h(2)6(2),
da(y) = h3z, da(hoy) = hix and da(hdy) = hjz.

Proof. We know that of the hg-tower in topological degree t — s = 23 starting with ¢, only the top four
classes survive to Eo, since these generate a cyclic summand Z/16 C me3(S) that maps isomorphically
to ma3(j5). Thus the classes i and hgi cannot survive to E. They cannot be boundaries, since any
differential d,(x) = i would imply that d.(hiz) = h3i is a boundary, and similarly any differential
d.(z) = hoi would imply that d,.(hox) = h3i is a boundary. (For this part of the argument, it suffices to
know that the top class, h3i in Adams filtration s = 12 is not a boundary.) Hence i and hgi must support
nonzero differentials. The only possibilities for i are da(i) = hoPdy or (d2(i) = 0 and) d3(i) = h3Pdy. In
the latter case, da(hoi) = 0 and d3(hoi) = 0, which would make hgi an infinite cycle. Since we know this
does not happen, we must have da(i) = hoPd,.

We claim that da(t) = 0. The alternative, da(t) = hom, would imply that da(hot) = him # 0, which
contradicts the relation hot = 0. It follows that h;y = hot is a da-cycle, so h1da(y) = 0. This implies
that da(y) = 0 or hjz. Since h3y = ham supports the nonzero differential da(h3y) = h3z, we deduce
that da(y) = hjr. O

Theorem 9.27. There are nontrivial differentials da(hs)
hoP2%dy, which imply the nonzero differentials do(hohs) =
dg(hghg,) = hg’l“, d3(hgh5) = hé’l‘, d3(hgh5) = hg’l“ cmd d4( 8

= ho dd(h%h5) = ho?" and d4(h8h5) =
h3h3, dg(h%h5) = hah3, ds(hghs) = Rh3r,
5) = h2P%d,.

Proof. The image of J in m31(5%) is isomorphic to Z/64, hence is represented by six classes in Foo in
Adams filtrations 11 < s < 16. In particular, a generator is represented by hi’hs, so the classes hjhs for
10 < ¢ < 16 survive to E, while the ten classes for 0 < ¢ < 9 do not. They cannot be boundaries, as
before, so they must support d,-differentials for » > 2. The possible targets for these differentials are the
12 classes given by hg-power multiples of hohi, r and P?dy. The relations hg - h%hi =0 and ho - hgr =0
imply that at most one of the two classes h3h% and r can be hit by these differentials, and likewise at
most one of the two classes hjr and P?dy can be hit. Since there are at most ten targets for the ten
classes that must support differentials, it follows that all the other possible targets are hit.

Starting in low filtrations, this tells us that hoh? is a boundary, and da(hs) = hoh? is the only
possibility. This implies da(hohs) = h2h3, d2(h3hs) = h3h3 and da(hihs) = 0 for i > 3.

The seven remaining classes hihs with 3 < i < 9 must support d,-differentials, for r > 3, that hit all
but one of the eight classes given by hg-multiples of hor and P2dy. Since at most one of hjr and P?dy
can be hit, the other possible targets, including hor, must be hit, which implies that dz(h3hs) = hor.
This tells us that dz(hihs) = hir, ds(hghs) = hir, d3(hShs) = hir, d3(hihs) = hir and ds(hihs) = 0
for ¢ > 8. We should argue that all but the last of these are in fact nonzero differentials. This can
only fail if the target classes hér for 1 < r < 5 were ds-boundaries. The only candidates for such
do-differentials would be da(doeg) = hir or da(hodgeg) = hjr, but we have seen above that doeq = da (1)
and hodgeg = da(hol), so this would contradict the fact that ds o dy = 0 in any spectral sequence.
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The two remaining classes h§hs and h)hs must support d,.-differentials for r > 4, and the only
candidates for targets are hoP?dy and h3P%dy. Hence dy(hShs) = hoP%dy and dy(hQhs) = h3P%dy. O

((A more complicated pattern occurs for ¢t — s = 63, where other differentials intervene.))

Theorem 9.28. There is a nontrivial ds-differential dg(PQi) = hoP3dy, which implies the nonzero
diﬁerentials dg(hopzi) = h%P3d0, d2(P3eo) = h%PSdO, dg(PQJ) = h0P3eo, dg(hoPQj) = h%Pgeo,
dQ(thQJ) = h%Pgeo, dg(sz) = hopgg, dg(hoPQk) = hgpgg, d2(P2l) = hoPQdoeo, dg(hgp2l) =
thzdoeg, dQ(sz) = h0P2€%, dg(hoPQm) = h%PQGg, dQ(Rl) = h%x’, dg(hoRl) = hgl’l, dg(h%Rl) =
héx’, d2(th1) = hg.’t’, dQ(héRl) = hgl'/, dg(thl) = hg.’bl, dg(thl) = hgl’l, dQ(Ql) = h%x’ and
dg(thl) = h:{’m’

Proof. Up to the statement about dz(R;), this is very similar to the proof of the theorem about da(7)
and its consequences. ((The rest is easy, given Ext in this range.)) O

Theorem 9.29. There are nontrivial diﬁerentials dx(Q') = hoi and d3(h3Q') = hoP*dy, which im-
ply the nonzero differentials da(hoQ') = h3i%, do(h2Q") = h3i?, do(h3Q') = hgi?, da(haQ') = hjiZ,
dg(th ) = h0P4d0 and d3(th ) h2p4d0.

Proof. The image of J in m47(5%") is isomorphic to Zs/96 = Z/32, hence is represented by five classes in
E. in Adams filtrations 20 < s < 24. In particular, a generator is represented by hlQ’, so the classes
hf)Q’ for 7 < i < 11 survive to F,, while the seven classes for 0 < ¢ < 6 do not. They cannot be
boundaries, as before, so they must support d,.-differentials for r > 2.

The possible targets for these differentials are the eight classes given by hg- power multiples of hgi?
and P*dy. The relation hg - hgz = 0 implies that at most one of the two classes h 2 and P*dy can be
hit by these differentials. Since there are at most seven targets for the seven classes that must support
differentials, it follows that all the other possible targets are hit.

In order of increasing Adams filtration, it follows that hgi? must be hit by some d (hy Q") for r > 2

and d2(Q') = hoz 1s the only possibility. This implies da(hoQ’) = h2i?, do(h2Q') = hi?, d2(h3Q') =
and da(h$Q') = , while da(h3Q’) = 0. The remaining two classes h3@Q’ and hGQ’ can now only hlt
hoPtdy and h2P do, ‘which means that ds(h3Q") = hoPidy and ds(h8Q) = h2Pidy. O

Theorem 9.30. There is a nontrivial da-differential do(P*i) = hoP>%dy, which implies the nonzero
dijj”erentials d2(h0P4Z) = h%Psdo, dQ(Pseo) = h%Psdo, dQ(P4]) = h0P5€0, d2(h0P4]) = h(%PSeo,
dg(h%P4j) = h(?szeO, dQ(P4k) = h0P5g, dg(h0P4]€) = h%P5g, d2(P4l) = h0P4d060, dg(hop4l) =
h(Q)P4d0€0, d2(P4m) = h0P46(2), dg(h0P4m) = h(2)P46(2) ((ETC))

Proof. Through the statement about do(hoP*m), this is very similar to the proof of the theorem about
dy (i) and its consequences. ((Need Ext for 69 <t — s < 80+ for full statement.)) O

Theorem 9.31. There are nontrivial differentials da(eq) = h3dy, do(fo) = hieo and da(ho fo) = hieo.

Proof. There is a multiplicative relation h3y = fog. Since d2(g) = 0 and da(h3y) = hiz # 0, it follows
from the Leibniz rule that da(fy) # 0. The only possibility is da(fo) = h3eg. Multiplying by hg gives
da(hofo) = hieo, and dividing by hy gives da(eg) = h2d. O

Theorem 9.32. There is a nontrivial differential do(hoPj) = h3P%eq, which implies the nonzero dif-
ferem‘mls d2(P260) = h%P2d0, dQ(P]) = hoPQGO, dg(hgpj) = thQEO, dQ(Pk) = hong, dg(hopk) =
thQQ, dg(h%Pk’) = h%PQQ, dQ(Pl) = hopdoeo, dg(hopl) = h%Pdoeo, dg(hgpl) = h%Pdoeo, dg(Pm) =
hoPe3, do(hoPm) = h3Pe3 and dg(h3Pm) = h} Pe3.

Proof. This follows as above from the multiplicative relation h§R; = g - hoPj, where da(h§R1) # 0 and
d2 (g) =0. ]

Theorem 9.33. There is a nontrivial differential dg(hoP3j) = h3Peq, which implies the nonzero
differentials do(P*eq) = h2 P*dy, do(P3j) = hoPeq, d2(h3P3j) = h3P*ey ((ETC)).

Proof. ((Use differential on g - hgP3j, or periodicity.)) O

Here are the nonobvious multiplicative consequences of these differentials, for ¢t — s < 49.
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Figure 42: Adams do-differentials for S, 0 <t —s <24

Lemma 9.34. dg(doeo) = h%Pg = 0, dg(h3h5> = hohghi = 0, dg(h5CO) = hohiCQ = 0, dg(hi) =
hoh%hi = 0, d2(h5PCO) = hohiPCo = O, d2(P2d0€0) = h%ng =0 and dg(lj) = hoPdoj + hoP@oi =0.

Lemma 9.35. The differential ds is zero on the remaining algebra generators in degrees t — s < 49,
except for the three cases co, v and Bi.

Proof. The differential dy is zero on hi, n, dy, q, t, e1, z, Pu by hg-linearity. It is zero on p by
hi-linearity. It vanishes on ¢; and r since the possible targets support nonzero ds-differentials. It is zero
on the remaining algebra generators in degrees t — s < 49, with the exception of ¢y, v and By, since the
target groups are trivial. O

Theorem 9.36. There are nontrivial differentials da(c2) = hof1 and d2(v) = hoz, while d2(B1) = 0.
This implies the nonzero differentials da(hocz) = h2f1, da(hsca) = hohaga, da(hseo) = h3hsdy and
dg(hg)fo) = hghg,e().

((Proof postponed.))

Remark 9.37. The differential ds(c2) = hof1 was overlooked in Mahowald—Tangora (1967), but dis-
covered by means of Steenrod operations in Ext, by Milgram (1972), and also corrected in Barratt—
Mahowald-Tangora (1970).

We draw these do-differentials in Figures 42 and 44, with bullets replacing the named classes.
This leads to the Es-term given in Figures 43 and 45.

Theorem 9.38. The classes hihy and hohy survive to Eo.
((Can be proved using H structure, see Bruner (1986) Proposition VI.1.6.))
Theorem 9.39. The class hycy survives to E.

Proof. Assume, for a contradiction, that dy4(hsco) = Pdy. Then dg(hihsco) = h1Pdy is nonzero at Ej.
But hi1hy and ¢y are permanent cycles, hence so is their product. O]
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Figure 43: Adams Fs-term for S, 0 <t —s <24

We draw the ds-differentials in dimensions 0 < ¢ < 24 in Figure 46, leaving the E3 = E.-term shown
in Figure 47. The dotted lines represent hidden hg- and hj-extensions, to be explained in the following
theorem.

Theorem 9.40. The table lists 7, (55) for 0 < n < 24, together with generators of the cyclic summands

134



P \ [ [ ,
. v Y v
A \ \ \ \
\ T8 | . .yA\O/ —e—
, R e Bt L
< < v
i < ? § s
° o— L [ 5 - //. /. .
. T e —e— uNNnﬁ&u\,VTwwo/Vo . /-/ | e<C—e
. . | \ \ \
v v v \ = N \
PR D (R 0 0 0= (P . o N N
/ \ ,/ / / 3y \|
n Y M N \ \
| ee— e . ° T\V\\Vf \e——e
\ & d " \ \
T T v v v
) o< L,Rﬂ%,, . V| e ° /w
\ \ VY Y
v v v
. . Y L \ o« —e— e
\ \ " d \
Y VR \ | \
A v v T v
el | | &I o \ ol ol &
7 N hd e |- e e
o< o \ \ [ o ol o I o
o o< \ \ \
v T v v
§ § | §
(R el | @ . Ne_t e
| R \ VN Y T 0/, ./
\ \ > v
5 0 < 0 v
o eS| b | e[ e % Vel
v v v
Bav o TN h S e
X : iR \ = N S ——e—"
\ N N \ 1A \ \
v ; v v T — v
| el | o P PRSI
REEUE R Y .
\_,\ v A \ \ \ \ N \
T T v v AN v
0\ VI-N,,\ . ,, ,, / ,, ,, ,_ / / \
d \ \
\ / VY Y Y \ \ Y /
v v T A A v S v
. » . N \ R e »
\ \ & d \ d \
N \ \/« /\ \ \ \
v v v T v v v
oo b Y Lt ) Y e—t—e——o
\‘ \‘ af— / \ \ \ \
\ | |
] " \ v \ \ \ N |
° \ i \ NP
NI % \ R @ e \
N v \ L L \
v v T v o O A
< \ e—fra——b " o |\
| \ N \ v
< < v
§ oo L DXy \ »
o' o o o9 PR Y o« —
e T e 3 \WV,.
\ \ \ \ \ \
v v v v v D
. 3 /,» . ol o'l e lie o o = o vAu
" \ \
\ N Mo \
v v
e ,\w. P
\ & d
\ v A
T T
\«rk,\ )
\ e
\ VY Y
v v
ol ol & N
,—, \
\ \
v v
pr ,\,\W \W °
\ A \
< < <
Rt '
=0
)\ \ o
v <
§
<7 \
\
| S
<t N o 00 © <t N =) %0 © <t ™
(o] [a] (] — — — — —

48

46

44

42

40

38

36

34

32

30

28

26

24

24 <t —5<48

Figure 44: Adams dy-differentials for .S,

135



24

22

20

18

16

14

12

10

. s P
| R
Py P ¢ /)
. plal 4
. o P4 o
l « hoQ
Py Pl £ p . r
. P34 P3 B%dydo
o Py
. 'K 72
P, N Pi
Py PZ% Pdyep Peg d3eq d%g
P2 o | s 9J
o | o z dor eor
gy 3K o |
Pg . 066; ed €od g2 » N 7{5Péj'
e e T
. Tl . 7y WPl BsPhy | | 4| a | L
hol T | AVAVEL, ! fhada
e e
¢ 4 \ h3
B2 mRy hohd hahs
24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 45: Adams Fs-term for S, 24 <t — s <48

136



14

12

10

14

12

10

) [ c(L

[ [ ) /

) . /

) . 4»\ 4( e e ,I _
[ L2 0\ /}‘ . o [ 2 |-

) L L ’I . L -

° . L \r - -e o~ .

[ 28 . -® _o L . \r e o .

0 6 8 10 12 14 16 18 20 22 24

Figure 46: Adams ds-differentials for S, 0 <t —s <24

. 3 . P2CO
) ® ‘(‘

’ P%h Py .5

) . Pdo

° > [} PCO .

° ° ° ) Iy

e Tz

° Phl Ph2 /01/’ p B [ |

' [ do' FLS h4 » g1 o hy Cq

° _® L CQ/,, e | C1” -

I Ve sl h3 1h4 2hy
h‘o"hl Lo hs

0 6 8 10 12 14 16 18 20 22 24

Figure 47: Adams E.-term for S, 0 <t —s<24

137



and Adams E classes representing these generators.

n T (S5) gen. E.-rep.

0 Zo 1 1

1 Z/2 n h1

2 Z/2 n? hi

3 7,8 v ho

4 0

5 0

6 Z]2 v? h3

7 7/16 o hs

8 (Z)2)? €, No co, h1hs

9 (Z)2)3 w, me, nro Phy, hico, h3hs
11 /8 ¢ Phs

12 0

13 0

14 (Z)2)? K, o2 do, h3

15 Z/]267/32 nK, p hido, hgha
16 (z/2) np, n* Pcg, hihy
17 (Z)2)* i, n%p, v, qn*  P2hy, h1Pco, hady, h3hy
18 Z/2 (5 Z/S nit, v* h1P2h1, hohy
19 7/80 7,2 (o P2h, 1
20 Z/8 3 g

21 (7.)2)? Nk, v hig, h3hy
22 (Z/2)2 772,‘%, Vo Pdy, hacy
23 Z/16Z/8DZ/2 ?, VR, ? h3i, hag, haco
24 (Z/2)2 PQCO, h1h460

Proof. Using the splitting of 7, (j4') off from 7,(S%), the additive structure in degrees 0 < n < 20 is
straightforward. For instance, 2 - nn* = 0 since 2n = 0. The nontrivial fact is that there is a hidden
n-multiplication from n&, represented by h;g, to n?&, represented by Pdy. See Mahowald—Tangora (1967)
Theorem 2.1.1. This implies that 2 - vv* = 0, and that 2 - 2vk # 0. O

2?)()(Explaim hidden n-multiplications by comparison with the Adams spectral sequence for Cnp = S U,
€47

Theorem 9.41. There are nontrivial differentials d3(r) = h1Pg, ds(doeo) = hyr, dz(hahs) = hop,
d3(€1) = hlt and d3(i2) = hlpgg.
This implies the nonzero differential d3(dor) = hyPe3.

Remark 9.42. The differentials on r, e; and i = P%r can be found from the H., structure.
Corollary 9.43. The class h3 survives to E.,, representing 04 in m30(S5).

Theorem 9.44. There are nontrivial differentials dy(a) = P%dy, where a = dgeg+hlhs, di(eog) = P?g,
d4(h3h5) = hox, d4(Pd060) = P3d0 and d4(P2d060) = P4d0.

This implies the nonzero differentials dy(hidoeg) = h1P?dy, di(hieog) = h1P?g, ds(hohshs) = hix,
d4(h1Pd0€0) = h1P3d0, d4<d%€0) = ng and d4(h1P2d0€0) = h1P4d0.

Theorem 9.45. The classes hihs, hohohs, t, fi, hsPhy, z, hsPhy and hZ survive to F.

((To be confirmed: Are hsPcy and Bs infinite cycles?))

We draw the ds-differentials in dimensions 24 < ¢t < 48 in Figure 48, leaving the F -term shown in
Figure 49. ((This assumes that ds = 0 on hsPcy and Bs.))

Next we draw the dy-differentials in dimensions 24 < ¢ < 48 in Figure 50, leaving the E5-term shown
in Figure 51. If By survives to Eo (as it does according to Kochman), then this is also the Fo.-term in
this range of dimensions.
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Figure 48: Adams ds-differentials for S, 24 <t — s < 48
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Figure 49: Adams E,-term for S, 24 <t — s < 48 (a = dpeg + hihs)
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Figure 50: Adams dy4-differentials for S, 24 <t — s < 48
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Figure 51: Adams FE5 = E-term for S, 24 <t — s <48
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Theorem 9.46. The table lists m,(S5%) for 25 < n < 31, together with generators of the cyclic summands
and Adams E classes representing these generators.

n T (S5 gen. E -rep.
25 (Z/2)2 ?, ? P3h17 h1P200
26 (Z.)2)* ?, V2R hiP3hy, h3g
27 Z/8 ? P3hy

28 7]2 ? Pg

29 0

30 Z7]2 04 h3

31 Z/64® (Z/2)% 7,7, n0s hilhs, n, hih3

9.4 Power operations in 7.(5)

9.5 Steenrod operations in the Adams spectral sequence

The (graded) commutativity of the Yoneda product in the Es-term Ext?)"(Fa,F2) of the Adams spectral
sequence for S can be seen as a consequence of the cocommutativity of the Hopf algebra /. Moreover,
this cocommutativity implies that there are Steenrod operations

Sq': Ext®f(Fg, Fa) — Ext’ "% (Fy, Fy)

that double the internal degree (from ¢ to 2t) and increase the topological degree by i (from ¢ — s to
t—s+i=2t—(s+t—1)). This is the grading convention used by Bruner (1986), which is compatible
with the grading for the power operations in homotopy that come from the H,, structure on S. (Other
authors let Sq¢’ map Ext® to Ext®'"))

It is known that Sq¢'(z) = 0 for i < t — s, S¢'~%(z) = 2% and Sq¢’(z) = 0 for i > t. We have
Sq% (h;) = hitq for i > 0 and the Cartan formula

S¢¥(zy) = Y Sq¢'(x)Sq’ (k)
itj=k
holds.

Suppose that = € Ej"* survives to E, for r > 2. By work of Kahn (1970), Milgram (1972), Mikinen
(1973) and Bruner (1986), we have formulas for the generically first differential on Sq*(z), in terms of
d,(x), the Steenrod operations and the Adams spectral sequence representatives of the generators of
im(J) C m.(9).

Let By + By mean B;, By + By or By if By has lower, equal or greater Adams filtration than B,
respectively. Here is the first result in this general direction.

Theorem 9.47. Let x € E! is in topological degree n =t — s, and consider x*> = Sq"(x) € E;s’%.
Then

dri1(22) = Sq"(dr () + howd, (2)
if n is even, and
d2r71($2) = Sq"(dr(z))
if n is odd.

These expressions imply that 22 survives to E,. ;1 in the even case, and to Es,._; in the odd case.
The expressions may, of course, be zero in particular cases, in which case 2 may survive to even later
terms.

((See Bruner (1986) Theorem VI.1.1 for the general result.))

9.6 The Adams spectral sequence for tmf

The computation of Exti{é) (Fq,F2), by Iwai-Shimada, Davis-Mahowald, Bruner or Nassau, gives the
Adams Es-term for tmf given in Figures 52, 53, 54 and 55.

((MT-wedge missing in Figure 55.))

((Recall algebra generators hg, h1, ha, co, a, 8, w1, dg eg, g, 7y, § and wy. Maybe recall some common
relations not visible in the charts.))
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Figure 52: Adams Fs-term for tmf, 0 <t —s<24

Proposition 9.48. The Steenrod operations Sq' on Exti{'(g) (Fo,Fs), fort —s <i<t, are given by

q*(ho) = (g, )
*(h1)=( h2)
*(h2)=( )
q"(co) = (0, hoeo,hzﬂ 0)
*(Oé) (@?,7,0,0)
Sq*(8) = (6%,0,0,0)
¢ (wy) = (0?,0,0,0,?)
*(do) = (w19,0,5%,0,0)
Sq*(eo) = (dog, 89,0,0,0)
Sq*(9) = (4*,0,0,0,0)
*(7) (7*,7,0,0,0,0)
q*(0) =1(0,7,7,0,0,0,0,0)
( ) = (wQ,OOOOOOOO)

Proof. Adams gives the Steenrod operations on the h;, where we note that hy = 0 in Ext over A(2).
Bruner (Theorem VI.1.9) gives the Steenrod operations on ¢y, dp and ey, quoting Mukohda (1969)
and Milgram (1972), where we note that ¢ = 0, fo maps to hof3, ¢ = 0, d3 = wig, r maps to

B% dy = 0, €2 = dog and m maps to Bg, all in Ext over A(2).

Applying S¢'* to hia = 0 gives

hoa? = h2S¢*3 (), which implies Sq'3(a) = 7. ((ETC: Is Sq¢'?(wy) = g? What is Sq¢?°(v)?)) We also
note that 42 = 3%2g + h2w, is nonzero, while §2 = 0.

Theorem 9.49. There are nontrivial differentials do(a) =

O

hg’wl, dg(hoa) = wlhohg, d/g(hoa) = wlh%hg,

da(B) = hodo, da(hofB) = hido, da(hef) = hieo, da(ady) = wihgeq, da(Bdo) = wihog, da(hofdo) =
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Figure 53: Adams Ep-term for tmf, 24 <t — s < 48 (v§-multiplies omitted)
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Figure 56: Adams dy-differentials for tmf, 0 <t —s <24

wih3g, d2(Bg) = hodog and da(a®) = wihoa3, together with all of their wy-power multiples.

Proof. These all follow from the differential do(h23) = h3eg, which either follows by naturality with
respect to the map S — tmf (taking fo to hof3, using the known differential da(fo) = h3eo for the
sphere) or directly from the Hy, structure on tmf (using the formula d3(Sq'%(co)) = hoSq®(co) for the
infinite cycle cg, where Sq°(co) = hodg and Sq*°(co) = ha/3, see Bruner (1986) §VI.1). O

((d2 = 0 on hOa hla h2a COa w17 do; 607 g7 ’Y and 6))

Theorem 9.50. There are nontrivial differentials da(w2) = afg, da(wea) = a? Bg+wawyha, da(wahoa) =
wowyhoha, dz(waha) = wawihhs, dz(wady) = afdog = aPeng, da(w2) = af?g+wahodo, da(wahof) =

wah3dy, da(waeo) = afBeqg = a?g?, da(wahafB) = wahdeo, da(wag) = aBg?, da(wey) = afyg = ag?,

da(we0?) = By = doeog?, da(woaf) = &?B%g = dog®, da(w2f?) = afg = eog®, da(wpady) =

o2 Bdog + wawrhoeg, dz(wafdy) = adg? +wowrhog, da(waag) = o?Bg* +wawihag, d2(wa2fyg) = af?g* +

wahodog, ((ETC)), together with all their wi-power multiples.

Proof. We use the relation
v = B2+ wah3

in Ext(g). By ho-linearity, v survives (at least) to Es. We shall prove in Theorem 9.56 below that
ds(B%g9) = wia®ey # 0. This implies that dy(wsh?) = wia?ey # 0. Suppose, for a contradiction, that
da(wz) = 0. Then wy survives at least to Ej, since ds(wsz) and dy(ws) live in trivial groups, and this
implies that wyh? survives to Es, contradicting the fact that dy(woh?) # 0. Hence da(wy) is nonzero,
and the only possible value is afg.

The other differentials follow from dz(ws) = aBg by the Leibniz rule. O

The ds-differentials are displayed in Figures 56, 57, 58 and ??. The resulting Fs-terms appear in
Figures 59, 60, 61 and ?7.

Theorem 9.51. There are nontrivial differentials dz(a?) = wihidy, d3(8%) = wih1g, ds(ep) = wicy
and ds(hieg) = wihico, together with all their wy-power multiples.
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Proof. The first two follow from the H,, structure on tmf, using Bruner’s formulas dz(Sq'?(a))
Sq'2(w1hg)+ho-a-wihy = wihidy (here Sq*2(w1h2) = S¢°(w1)h3 = 0) and d3(Sq'(B)) = Sq'°(hodo) =
hld% = W1 hlg

The other two differentials follow from considerations of the image of J. The class 1?p in im(J) C
m17(5) is detected by hiPcy in the Adams spectral sequence for S, which maps to wihicg in the Adams
spectral sequence for tmf. The class p in im(J) C m15(S) maps to a class in m5(¢tmf) = Z/2 that is
either 0 or the image of nx. Hence 1%p maps either to 0 or the image of n°k = 4vk. But vk is detected
by hadp in Adams filtation 5, and there are no infinite cycles in Adams filtrations 6 or 7 for tmf, so 4vk
cannot be detected by wihico in Adams filtration 8. Hence n?p maps to 0 in tmf, and wyhico must be
a boundary. The only possibility is ds(hieg) = w1hico, which also implies ds(eg) = wicp.

Alternatively, we can use the relation np = op in m,(S), and the fact that o maps to 0 in tmf, do
deduce that np maps to 0 in tmf. This class is detected by Pcg in S, which maps to wicg in the Adams
spectral sequence for ¢tmf, so that infinite cycle cannot survive to F.,, and must be a boundary. The
only possibility is ds(ep) = wico. O

This accounts for all the possible ds-differentials starting above the Mahowald-Tangora wedge. The
possible ds-differentials going out of that wedge are the w;-power multiples of the following two cases.

Theorem 9.52. d3(a’eg) = 0 and d3(aB?) = wihid.

2eq is an infinite cycle. We may divide

Proof. We shall prove below that d4(%g) = wia?eq, so that wia
by w; to deduce that a?ey is an infinite cycle.

We shall prove below that dy(afB%g) = w?B3, which is nonzero at Ej, by inspection of Exta(2)-
Suppose that d3(af?) = 0. We cannot have dy4(af?) = w?v, since hya? = 0, but wihyy # 0 at Ej.
The other possibility is ds(a3?) = 0, which would imply d4(a%g) = 0, contradicting the formula above.
Hence d3(a3?) # 0, and wyhy§ is the only possible value. O

Theorem 9.53. d3(wahy) = w1g? and d3(w3) = Bg*. ((ETC: Consequences.))
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Figure 60: Adams Fs-term for tmf, 24 <t — s < 48 (ho-tower on wahg truncated)
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Figure 61: Adams Fs-term for tmf, 48 <t —s < 72
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Figure 62: Adams dg-differentials for tmf, 0 <t —s <24

Proof. The first differential follows from the relation v* = 52g + woh?. We saw above that dg(weh?) =
di(B%g) = wia?ey # 0. Suppose for a contradiction that ds(wohi) = 0. Then dy(wohy) = 0 by
ho-linearity, which would imply that ds(wsh?) = 0. This shows that d3(wsh1) # 0, and by ho-linearity
again the only possible value is w1 ¢2.

The second differential follows from Bruner’s formula dz(Sq*(ws)) = Sq*®(aBg) + ho - wa - afg =
Sq'3(a)p%g* = Bg*, where we use that Sq'*(a) = v and By = g% O

((Transport dz-differentials back to S.))
The ds-differentials are displayed in Figures 62, 63, 64 and ??. The resulting F4-terms appear in
Figures 65, 66, 7?7 and 77.

Remark 9.54. The differential dy(egg) = P?g in the Adams spectral sequence for S is one of the key
results of Mahowald—Tangora (1967). One could use naturality with respect to the map S — tmf to
deduce the corresponding differential dy(eog) = w?g in the Adams spectral sequence for tm f, but in fact
it is far easier to deduce the ¢tm f-differential directly. Using naturality in the opposite direction then
gives a simplified proof of the Mahowald-Tangora differential.

Theorem 9.55. There are nontrivial dy-differentials dy(doeg) = w%do and dy(egg) = w%g, together with
all their wy-power multiples. ((Also g-multiples. When are these nonzero?))

Proof. We know that x € m14(S) and n?& € maa(S) are detected by do and Pdy, respectively, in the
Adams spectral sequence for S. The images in m4(tmf) and moo(tmf) are then detected by dy and
widp, respectively, in the Adams spectral sequence for tmf. Hence the product & - n?& is detected by
wid3 = wig in the Adams spectral sequence for tmf. But n?s = 0 in m6(tmf) = Zs, so this product is
0 and wfg must be a boundary. The only possibility is d4(eog) = w?g.

Multiplying with wy, we get dy(wiepg) = w3g. We can rewrite this as dy(d2eq) = wid3. We can
divide by d() to deduce d4 (doeo) = w%do L]

((Display the differential behavior in the indexed chart Ey?))
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We can propagate these differentials to cover the Mahowald—Tangora wedge, as in their 1968 paper.
See Figure 67.

Theorem 9.56. There are dy-differentials dy(eog) = wig, da(doey) = widy, ds(ag) = wia?B, dy(aB?g) =
wiB3, dy(B?g) = wia?ey, di(a?g) = wiaB, da(Bdog) = wiag and dy(Bg?) = wiadog, together with all
their wy- and g-power multiples. Not all of these multiples are nonzero, since the target classes may be
do- or ds-boundaries.

Proof. The differentials originating in Adams filtration s = 0 mod 4, on dyey and eqgg, are already
known.

The class a3 € E2’48 is an infinite cycle, so we get differentials dy(a®g?) = wia?Bg and dy(wiaf%g) =
wia?Bdy = w3B? in filtrations s = 1 mod 4, since a?f3 - egg = ag? and o2 - dpeg = wiafB?g. We can
divide these by g and wy, respectively.

The class a?ep € E,;”°! is an infinite cycle, so we get differentials dy(w;8%2¢%) = w?a?egg and
dy(w102g?) = wia?doeg = wiaBg in filtrations s = 2 mod 4, since a?eg-egg = w1 B2g? and a?eqy-doey) =
wia?g?. We can divide both of these by w1 g.

The class ag € E-* is an infinite cycle, so we get differentials dy(8dog?) = w2ag? and dy(wiBg®) =
wiadyg in filtrations s = 3 mod 4, since ag - egg = Bdog? and ag - dpeg = w1 Bg%. We can divide these
by ¢ and wy, respectively. O

Theorem 9.57. dy(waho) = wia?B and dy(wah?) = wia’ey.
Proof. ((TODO: How to prove the first differential?))

The second differential has been discussed before; it follows from the relation v2 = 32g + woh?, the

fact that + is an infinite cycle, and the Mahowald-Tangora differential dy(82g) = waeq. O

The d4-differentials are displayed in Figures 68, 7?7 and ??7. The resulting Es-terms appear in Fig-
ures 69, 77 and 77.
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Figure 66: Adams Ey-term for tmf, 24 <t — s < 48 (ho-tower on wahg truncated)
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Figure 67: Ideal d4-differentials in Mahowald—-Tangora wedge

9.7 The Adams spectral sequences for tmf/2 and tmf/n
((Determine Adams differentials. Get hidden multiplications by 2 or 7.))

10 Low filtrations

10.1 Quotient algebras

((Quotients of &7 dual to P(&1,...,&,) C ).))
((Ext-calculations.))

10.2 The bar and cobar complexes

(((Co-)bar resolution. (Co-)bar complex.))
((Discuss the free resolution that arises from the canonical Adams resolution.))
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Figure 68: Adams dy-differentials for tmf, 24 <t — s < 48 (ho-tower on wyhy truncated)
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Figure 69: Adams Es-term for tmf, 24 <t — s < 48 (ho-tower on woh3 truncated)



