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1 Stable homotopy theory

1.1 Vector fields on spheres

Many topological problems can be formulated as questions about the existence or enumeration of contin-
uous maps with suitable properties. To answer these questions one needs tools to help determine when
such maps exist or how many there are.

An interesting example is the vector fields problem on spheres. Let Sn ⊂ Rn+1 be the unit sphere
in (n+ 1)-space. At each point p ∈ Sn there is an n-dimensional tangent space TpS

n, consisting of the
vectors v ∈ Rn+1 with p ⊥ v. These combine to the total space of the tangent bundle π : TSn → Sn the
n-sphere. A vector field on the sphere is a section in the tangent bundle, i.e., a map X : Sn → TSn with
π ◦X = id. It associates to each point p ∈ Sn a tangent vector X(p) ∈ TpSn at that point.

If n = 2e− 1 is odd, there is an everywhere nonzero vector field on Sn. Identifying Rn+1 = R2e with
Ce, one such field is given in terms of the complex multiplication by X(p) = ip. In coordinates, the
tangent vector at p = (x1, x2, . . . , x2e−1, x2e) ∈ Sn is X(p) = (−x2, x1, . . . ,−x2e, x2e−1). On the other
hand, if n is even there is no everywhere nonzero vector field on Sn. One proof uses that the Euler
characteristic of Sn, which is 2 for n even, can be written as a sum over the zeros of any (reasonably
nice) vector field, and such a sum would be 0 if the vector field had no zeros. Similarly, if n = 4e− 1 is
congruent to 3 mod 4, there are three everywhere linearly independent vector fields on Sn. Identifying
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Rn+1 = R4e with He, these can be given in terms of the quaternionic multiplication by X1(p) = ip,
X2(p) = jp and X3(p) = kp, where H = R{1, i, j, k} and i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj
and ki = j = −ik. On the other hand, if n ≡ 1 mod 4 there is no pair of everywhere independent vector
fields on Sn. Continuing, if n = 8e − 1 ≡ 7 mod 8, then there are 7 independent vector fields on Sn,
given in terms of the octonionic multiplication on Rn+1 = Oe. When n ≡ 3 mod 8 there is no quadruple
of independent vector fields. After this, the pattern changes. There is no division algebra structure on
R16, and the maximum number of independent vector fields on S15 is 8, not 15.

The vector fields on spheres problem is then this: What is the maximal number m of vector fields
X1, . . . , Xm on the n-dimensional sphere Sn such that X1(p), . . . , Xm(p) ∈ TpSn are linearly independent
for each p ∈ Sn? By an application of the Gram–Schmidt process, any m-tuple of everywhere linearly
independent vector fields can be converted into an m-tuple of everywhere orthonormal vector fields. The
problem may therefore be reformulated as: What is the maximal number of everywhere orthonormal
vector fields on the n-sphere? Another reformulation is: What is the maximal dimension of a trivial
subbundle εm ⊂ τSn of the tangent bundle of Sn?

An orthonormal m-tuple of vectors v1, . . . , vm in TpS
n, together with the point p ∈ Sn, constitute an

orthonormal (m+1)-tuple (v1, . . . , vm, p) in Rn+1, and conversely. Any such orthonormal (m+1)-tuple,
also known as an (m + 1)-frame, can be completed to an orthonormal basis (w1, . . . , wk, v1, . . . , vm, p)
by prepending k more vectors, where k = n − m is the complementary dimension of εm in τSn . The
vectors in such an orthonormal basis constitute the column vectors of a matrix in O(n + 1), the Lie
group of (n+1)× (n+1) orthogonal matrices, and the different choices of completing vectors w1, . . . , wk
correspond to an orbit for the right action of the subgroup O(k) ⊂ O(n + 1), placed in the upper left
hand corner. The space of (m + 1)-frames (v1, . . . , vm, p) in Rn+1 is therefore the homogeneous space
O(n + 1)/O(k), also known as a Stiefel manifold. As special cases we have O(n + 1)/O(n) ∼= Sn and
O(n + 1)/O(n − 1) ⊂ TSn is the subspace of unit tangent vectors. The map taking (v1, . . . , vn, p) to
p ∈ Sn corresponds to the map π : O(n + 1)/O(k) → O(n + 1)/O(n) ∼= Sn, induced by the inclusion
O(k) ⊂ O(n). An m-tuple of everywhere orthonormal vector fields X1, . . . , Xm on Sn now defines a
map σ : Sn → O(n + 1)/O(k) taking p to the (m + 1)-frame (X1(p), . . . , Xm(p), p), with the property
that π ◦ σ = id. The vector fields problem is thus: Given n, what is the maximal m, or the minimal
k = n−m, such that there is a map σ : Sn → O(n+ 1)/O(k) with π ◦ σ = id?

The map π : O(n + 1)/O(k) → Sn is a fiber bundle (over a numerable base), which means that it
has the homotopy lifting property. This means that if there exists a map σ′ : Sn → O(n+ 1)/O(k) with
π ◦ σ′ homotopic to the identity map, then the homotopy can be lifted to a homotopy from σ′ to a map
σ : Sn → O(n + 1)/O(k) with π ◦ σ equal to the identity. This means that the vector fields problem
is a question about homotopy classes of maps, rather than about individual maps, and this makes it a
problem in homotopy theory, rather than general topology.

1.2 Homology and homotopy

LetX be a topological space, with a chosen base point x0 ∈ X. Give Sn the base point s0 = (1, 0, . . . , 0) ∈
Rn+1, for n ≥ 0. The n-th homotopy group πn(X) = [Sn, X] is the set of homotopy classes of base-point
preserving maps f : Sn → X. It is a group for n ≥ 1, and an abelian group for n ≥ 2. We usually omit x0
from the notation. We say that X is n-connected, for n ≥ 0, if πi(X) = 0 for all 0 ≤ i ≤ n. A base-point
preserving map f : X → Y is n-connected if f∗ : πi(X) → πi(Y ) is an isomorphism for 0 ≤ i < n and
a surjection for i = n. It is a weak homotopy equivalence if f∗ : πi(X) → πi(Y ) is an isomorphism for
all i ≥ 0. The Hurewicz homomorphism hn : πn(X)→ Hn(X) (integer coefficients) takes the homotopy
class [f ] of a map f : Sn → X to the image f∗[S

n] of the fundamental class [Sn] ∈ Hn(S
n).

Lemma 1.1 (Poincaré). Let X be a 0-connected space. The homomorphism h1 : π1(X) → H1(X) is
surjective with kernel the commutator subgroup of π1(X), inducing an isomorphism π1(X)ab ∼= H1(X).

Theorem 1.2 (Hurewicz). Let X be an (n− 1)-connected space, for some n ≥ 2. Then the homomor-
phism hn : πn(X)→ Hn(X) is an isomorphism.

See Hatcher (2002) Theorem 4.32. ((Also state relative version, for maps of 1-connected spaces.))

Corollary 1.3. Let X be a 1-connected space, with Hi(X) = 0 for all 2 ≤ i ≤ n. Then X is n-connected.
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Let ι : A ⊂ X be a cofibration, so that X ∪A CA→ X/A is a homotopy equivalence. For example, A
might be a subcomplex of a CW complex X. There is a long exact sequence in homology

· · · → Hi(A)→ Hi(X)→ H̃i(X/A)
∂−→ Hi−1(A)→ . . .

for all i (with arbitrary coefficients). There is a corresponding diagram in homotopy, but only in a
restricted range. Let a0 ∈ A ⊂ X. Using relative homotopy groups, there is a long exact sequence

· · · → πi(A)→ πi(X)→ πi(X,A)
∂−→ πi−1(A)→ . . . .

Theorem 1.4 (Homotopy excision). If A is (m − 1)-connected and ι : A → X is n-connected with
m,n ≥ 1, then πi(X,A) → πi(X/A) is an isomorphism for i < m + n and a surjection for i = m + n.
Hence there is an exact sequence

πm+n−1(A)→ · · · → πi(A)→ πi(X)→ πi(X/A)
∂−→ πi−1(A)→ . . . .

See Hatcher (2002) Theorem 4.23.
Dually, let π : E → B be a fibration, so that F = π−1(b0) → E ×B PB is a homotopy equivalence.

For example, E → B might be a numerable fiber bundle. There is a long exact sequence in homotopy

· · · → πi(F )→ πi(E)→ πi(B)
∂−→ πi−1(F )→ . . .

for all i. There is a corresponding diagram in homology, but only in a restricted range. Using relative
homology groups, there is a long exact sequence

· · · → Hi(F )→ Hi(E)→ Hi(E,F )
∂−→ Hi−1(F )→ . . .

(with arbitrary coefficients).

Theorem 1.5 (Serre homology sequence). If B is (m − 1)-connected and F is (n − 1)-connected, with
m,n ≥ 1, then Hi(E,F ) → Hi(B) is an isomorphism for i < m + n and a surjection for i = m + n.
Hence there is an exact sequence

Hm+n−1(F )→ · · · → Hi(F )→ Hi(E)→ Hi(B)
∂−→ Hi−1(F )→ . . . .

This is an easy application of the Serre spectral sequence.

1.3 Stunted projective spaces

The n-sphere Sn is (n − 1)-connected, and hn : πn(S
n) → Hn(S

n) ∼= Z is an isomorphism. The vector
field problem for Sn asks what is the minimal k ≤ n such that π∗ : πn(O(n+ 1)/O(k))→ πn(S

n) ∼= Z is
surjective. The maximal number of orthonormal vector fields on Sn is then m = n− k.

Lemma 1.6. The Stiefel manifold O(n+ 1)/O(k) is (k − 1)-connected.

Proof. This can be seen by induction on m = n − k ≥ 0, using the fiber sequences O(k +m)/O(k) →
O(k +m + 1)/O(k) → Sk+m. Here O(k +m)/O(k) is (k − 1)-connected by inductive hypothesis and
Sk+m is (k +m− 1)-connected, so O(k +m+ 1)/O(k) is (k − 1)-connected by the long exact sequence
in homotopy.

Let RPn be the projective n-space of lines through the origin in Rn+1. Each such line L determines
an orthogonal splitting Rn+1 ∼= L ⊕ L⊥ and an orthonormal reflection rL : Rn+1 → Rn+1 that reverses
L and fixes L⊥. This defines a map rn : RPn → O(n + 1), taking L to the matrix representing rL. If
L ⊂ Rk represents a point in RP k−1 then L⊥ contains {0} × Rm+1 ⊂ Rn+1, so rL lies in the subgroup
O(k). Hence the composite map RPn → O(n+ 1)→ O(n+ 1)/O(k) factors through the quotient space
RPn/RP k−1 = RPnk , known as a stunted projective space.

RP k−1 // //

rk−1

��

RPn //

rn

��

RPnk
rnk
��

O(k) // O(n+ 1) // // O(n+ 1)/O(k)
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The usual CW structure on RPn, with one i-cell for each 0 ≤ i ≤ n, contains RP k−1 as its (k−1)-skeleton
and induces a CW structure on RPnk , with one i-cell for each k ≤ i ≤ n. For k = n, the identifications
RPnn ∼= O(n+1)/O(n) ∼= Sn are compatible. The stunted projective spaces are “smaller” than the Stiefel
manifolds, hence may be easier to analyze. Still, they are large enough to have the same homotopy groups,
in a useful range of dimensions:

Lemma 1.7. The map rnk : RPnk → O(n+ 1)/O(k) is 2k-connected.

Proof. Proof by induction on m = n − k ≥ 0. For m = 0 the map RP kk → O(k + 1)/O(k) is a
homeomorphism. For m > 0 we use the diagram

RP k+m−1
k

// //

rk+m−1
k

��

RP k+mk

p
//

rk+m
k

��

Sk+m

=

��

O(k +m)/O(k) // O(k +m+ 1)/O(k)
π // // Sk+m

where the upper row is a cofiber sequence, and the lower row is a fiber sequence.
Since O(k +m)/O(k) is (k − 1)-connected and Sk+m is (k +m − 1)-connected, the homomorphism

Hi(O(k+m+1)/O(k), O(k+m)/O(k))→ Hi(S
k+m) is an isomorphism for i ≤ 2k by Serre’s homology

sequence. HenceHi(RP k+mk ,RP k+m−1
k )→ Hi(O(k+m+1)/O(k), O(k+m)/O(k)) is also an isomorphism

for i ≤ 2k. By inductive hypothesis, Hi(RP k+m−1
k )→ Hi(O(k+m)/O(k)) is an isomorphism for i < 2k

and surjective for i = 2k, which implies that Hi(RP k+mk ) → Hi(O(k + m + 1)/O(k)) has the same

property. ((Deduce that RP k+mk → O(k +m+ 1)/O(k) is 2k-connected.))

Hence, as long as n ≤ 2k the problem of finding a section σ for the fiber bundle projection π : O(n+
1)/O(k)→ Sn is equivalent to that of finding a section up to homotopy for the pinch map p : RPnk → Sn,
i.e., deciding whether p∗ : πn(RPnk )→ πn(S

n) is surjective.

Sn
s //

σ
&&

RPnk
p

&&

rnk
��

O(n+ 1)/O(k)
π
// // Sn

Except in a few cases, namely n = 1, 3, 7 and 15 ((check)) it turns out that the minimal k such that
p∗ is surjective satisfies n ≤ 2k − 2, so that the fact that πn(RPnk−1)→ πn(S

n) is not surjective implies
that πn(O(n+ 1)/O(k − 1))→ πn(S

n) is not surjective either.
The pinch map p fits in a Puppe cofiber sequence

Sn−1 φ
// RPn−1

k
// // RPnk

p
// Sn

Σφ
// ΣRPn−1

k

Sn

=

OO

s

aa

where φ is the attaching map for the top n-cell in RPnk , and Σ denotes suspension. If the maps p and
Σφ had formed a homotopy fiber sequence, then p would admit a section up to homotopy s if and only
if Σφ were null-homotopic. However, p and φ form a (homotopy) cofiber sequence, and that is in general
something different from a homotopy fiber sequence. Fortunately, in the cases n less than approximately
2k the difference is negligible. This leads us to concentrate on the homotopy groups in dimensions below
2k for (k−1)-connected spaces, and the extent to which homotopy cofiber sequences and homotopy fiber
sequences agree in this range. This is the subject of stable homotopy theory.

1.4 The stable category

The suspension ΣX is the smash product X ∧S1 = (X×S1)/(X×{s0}∪{x0}×S1), based at the image
of (x0, s0). There is a homeomorphism ΣSn ∼= Sn+1, and a suspension homomorphism E : πn(X) →
πn+1(ΣX) (‘E’ for ‘Einhängung’) taking the homotopy class of f : Sn → X to that of Σf : Sn+1 ∼=
ΣSn → ΣX.
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Theorem 1.8 (Freudenthal suspension). Let X be (k − 1)-connected, with k ≥ 1. The homomorphism
E : πn(X)→ πn+1(ΣX) is an isomorphism for n < 2k − 1 and is surjective for n = 2k − 1.

This follows from homotopy excision for the cofibration X → CX, with CX/X ∼= ΣX.
Let πSn (X) = colimi πn+i(Σ

iX) be the n-th stable homotopy group ofX. WhenX is (k−1)-connected
the stabilization homomorphism πn(X) → πSn (X) is an isomorphism for n < 2k − 1 and surjective for
n = 2k − 1.

In the special case X = S0 we call πSn = πSn (S
0) = colimi πn+i(S

i) the n-th stable stem. The
homomorphism πn+i(S

i) → πSn is surjective for i = n + 1 and an isomorphism for i > n + 1. In
particular, πSn = 0 for n < 0, while πS0

∼= Z.

Corollary 1.9. Let X be a CW complex of dimension d and Y a (k−1)-connected space. The suspension
homomorphism E : [X,Y ]→ [ΣX,ΣY ] is bijective if d < 2k − 1 and surjective if d = 2k − 1.

This follows from Freudenthal’s theorem by induction over the cells of X.
Let {X,Y } = colimi[Σ

iX,ΣiY ] be the group of stable homotopy classes of maps X → Y . When
[X,Y ] → {X,Y } is an isomorphism we say that X and Y are in the stable range. With notations as
above, ΣiX is a CW complex of dimension d+ i and ΣiY is (k + i− 1)-connected, so ΣiX and ΣiY are
in the stable range if (d+ i) < 2(k+ i)− 1, which holds for i > d− 2k+1, i.e., for all sufficiently large i.

The homotopy category F of finite based CW complexes has morphism sets F (X,Y ) = [X,Y ].
It maps to the stable homotopy category F [Σ−1] of finite based CW complexes, with morphisms sets
{X,Y }. The suspension induces a full and faithful functor from this category to itself, since E : {X,Y } →
{ΣX,ΣY } is always an isomorphism, but it is not an equivalence of categories, because not every object
is isomorphic to a suspension. This can be arranged by formally adjoining desuspensions Σ−nX for all
n, leading to the Spanier–Whitehead stable category S W . However, this category does still not have
(weak) colimits. This can be arranged by considering formal sequences of desuspensions

X0 → · · · → Σ−nXn → Σ−n−1Xn+1 → . . . ,

which is more commonly encoded by a sequence of spaces {n 7→ Xn} and structure maps ΣXn →
Xn+1, leading to the notion of a (sequential) spectrum. Boardman’s stable category B is the homotopy
category of spectra, with morphism groups B(X,Y) = [X,Y] given by homotopy classes of maps between
spectra X and Y, and contains S W as a full subcategory. This stable category B has “better” formal
properties than the unstable homotopy category F . In particular it is a triangulated category, so that
cofiber sequences and fiber sequences agree (up to a sign in the connecting maps), finite coproducts are
isomorphic to finite products, etc.

Given a diagram in F , we can view it as a diagram in B by applying the suspension spectrum
functor, taking a based space X to the spectrum Σ∞X = {n 7→ ΣnX} with identity maps as structure
maps. We refer to the result as a stable diagram.

The sphere spectrum S = Σ∞S0 is the suspension spectrum on the 0-sphere. There is an n-sphere
spectrum Sn for each integer n, having Sn as 0-th space if n ≥ 0, and having S0 as (−n)-th space if
n ≤ 0. The homotopy groups of a spectrum X are given by the stable morphism groups πn(X) = [Sn,X],
so that πn(Σ

∞X) = πSn (X) for a space X.
Let X and Y be finite CW spectra. These sit in cofiber sequences Sm−1 → X′ → X → Sm and

Sn−1 → Y′ → Y → Sn for smaller such spectra X′ and Y′. The stable morphism group [X,Y] sits in
an exact sequence

[ΣX′,Y]→ [Sm,Y]→ [X,Y]→ [X′,Y]→ [Sm−1,Y] ,

hence is in principle determined by the groups [Sm,Y] = πm(Y). These in turn sit in exact sequences

πm(Sn−1)→ πm(Y′)→ πm(Y)→ πm(Sn)→ πm(ΣY′)

(since a stable cofiber sequence is a stable fiber sequence), hence are in principle determined by the
groups πm(Sn) ∼= πSm−n, i.e., the stable homotopy groups of spheres. Cells, or cones on spheres, are the
basic building blocks for CW complexes, and in the stable category, stable maps between spheres are the
basic building instructions for CW spectra. (This is less pronounced in the unstable category F , since
πm(Y ) is not so directly determined by πm(Y ′) and πm(Sn).)

Whenever it is clear that we are working with stable diagrams, we shall omit the boldface notation
for spectra and the Σ∞ notation for suspension spectra.
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1.5 Thom spectra

When n ≤ 2k − 2, the stabilization homomorphism πn(RPnk ) → πSn (RPnk ) is an isomorphism, as is
the homomorphism πn(S

n) → πSn (S
n) ∼= πS0 , so the question if p∗ : πn(RPnk ) → πn(S

n) is surjective is
equivalent to the stable question if p∗ : π

S
n (RPnk )→ πSn (S

n) is surjective. In other words, does the pinch
map p : RPnk → Sn admit a stable section, so that the top cell on RPnk splits off? If so, we say that RPnk
is stably coreducible.

This is equivalent to the question if the attaching map φ : Sn−1 → RPn−1
k is stably null-homotopic.

In terms of the stable diagram

Sn−1

zz

q

��

φ

$$

RP k−1 // // RPn−1 // RPn−1
k

(the lower row is a cofiber sequence, hence stably a fiber sequence) this is the question how far back the
attaching map q of the top cell in RPn pulls back. In other words, what is the minimal k such that
q : Sn−1 → RPn−1 can be compressed into the (k − 1)-skeleton, as a stable map?

Boardman’s stable category admits function spectra, in the sense that given two spectra X and
Y there is a natural function spectrum F (X,Y ) with suitable properties. For example, πnF (X,Y ) =
[ΣnX,Y ]. Let DX = F (X,S) be the functional dual of X. For example, DSn = S−n. The rule
X → DX induces a contravariant endofunctor D : Bop → B. There is a natural map ρ : X → DDX,
which is an equivalence if X is a finite CW spectrum, in which case we call DX the Spanier–Whitehead
dual of X. When restricted to finite CW spectra, D is a contravariant equivalence of categories.

The question if the map p : RPnk → Sn admits a stable section is thus equivalent to the question if
the dual map Dp : DSn → D(RPnk ) admits a stable retraction.

((Discuss Thom complexes and Thom spectra.))

Lemma 1.10. There is a homeomorphism RP k+mk
∼= Th(kγ1m) where γ1m is the tautological line bundle

over RPm.

Proof. The normal bundle of Sm in Sk+m is trivial, and covers the bundle kγ1m over RPm. It embeds
as the complement Sk+m \ Sk−1, and has one-point compactification Sk+m/Sk−1. Identifying antipodal
points, the quotient space RP k+m/RP k−1 = RP k+mk maps homeomorphically to Th(kγ1m).

Theorem 1.11 (Atiyah duality). LetM be a closed manifold, with tangent bundle τM and virtual normal
bundle νM = −τM . Then D(M+) ∼= Th(νM ).

Lemma 1.12. τRPm ⊕ ε1 ∼= (m+1)γ1m, so νRPm ∼= ε1− (m+1)γ1m and D(RP k+mk ) ∼= Th(ε1− (k+m+

1)γ1m) ∼= ΣRP−k−1
−k−m−1.

The question of stable coreducibility of RPnk is thus equivalent to the question of stable reducibility
of Th(−(n+1)γ1m) ∼= RP−k−1

−n−1 , i.e., whether the inclusion i : S
−n−1 → RP−k−1

−n−1 of the bottom cell admits
a stable retraction up to homotopy.

If (n+1)γ1m
∼= εn+1 as vector bundles over RPm, or more generally, if the sphere bundle S((n+1)γ1m)

is fiber homotopy trivial over RPm, then Th(−(n + 1)γ1m) ' Th(−(εn+1)) ∼= Σ−(n+1)RPm+ , and the
bottom cell does indeed split off.

((Concerned with the additive order of ε1 − γ1m in K̃O(RPm) ∼= Z/2φ(m), where φ(m) = #{1 ≤
i ≤ m | i ≡ 1, 2, 4, 8 mod 8}, or perhaps in the isomorphic image JO(RPm). Computation with
Atiyah–Hirzebruch spectral sequence. Adams conjecture?))

Theorem 1.13 (Adams). RPnk is stably coreducible (if and) only if n + 1 ≡ 0 mod 2φ(m), where
n = k+m. The maximal m with this property is 8c+ 2d − 1, when n+ 1 = 2a · b and a = 4c+ d, with b
odd and 0 ≤ d ≤ 3.

By inspection, n ≥ 2m + 2 except for n = 1, 3, 7, 15, which is equivalent to the stability condition
n ≤ 2k − 2. Hence 8c + 2d − 1 is also the maximal number of everywhere linearly independent vector
fields on Sn. ((Separate check for n = 15, using Toda’s work.))
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2 Spectral sequences

2.1 Exhaustive complete Hausdorff filtrations

Consider a filtered space or spectrum X, i.e., a diagram

· · · → Xs−1
i−→ Xs → · · · → X

with s ∈ Z. For example, we might have a map f : X → Y and Xs = f−1(Y (s)), where Y (s) is the
s-skeleton of a CW complex Y . Applying homology we get a diagram

. . . // H∗(Xs−1)
i∗ // H∗(Xs) //

j∗

��

. . . // H∗(X)

H∗(Xs, Xs−1)

∂

gg

where ∂ has degree −1. We would like to use knowledge of the graded groups H∗(Xs, Xs−1) for all s to
obtain knowledge of the graded group H∗(X). There is an induced increasing filtration

· · · ⊂ Fs−1 ⊂ Fs ⊂ · · · ⊂ H∗(X)

where Fs = FsH∗(X) = im(H∗(Xs)→ H∗(X)). There is a short exact sequence, or extension,

0→ Fs−1 → Fs → Fs/Fs−1 → 0

for each s. If we have inductively determined the subgroup Fs−1H∗(X), and somehow know the quotient
group Fs/Fs−1, then it is an algebraic extension problem to determine the total group Fs. For this to
be useful in determining H∗(X), we must at least assume that the filtration {Fs}s exhausts H∗(X), i.e.,
that

H∗(X) = colim
s

Fs =
⋃
s

Fs .

Furthermore, we apparently need to start the induction somewhere.
The reader who is unfamiliar with limits may prefer to assume that the filtration is bounded, in the

sense that there is a natural number N such that H∗(Xs) = 0 for s < −N and H∗(Xs) = H∗(X) for
s ≥ N . Then Fs/Fs−1 is only nonzero for −N ≤ s ≤ N . We can start the induction with F−N−1 = 0,
and it stops after a finite number of steps at FN = H∗(X).

However, there is a refined approach to this that is a little better. Fix a filtration degree k, until
further notice, and consider the problem of determining the quotients H∗(X)/Fk in place of H∗(X).
There is an extension

0→ Fs−1/Fk → Fs/Fk → Fs/Fs−1 → 0

for each s > k. We know that Fs−1/Fk = 0 for s = k + 1, and this starts the induction. If we know
FsH∗(X)/Fs−1 for each s > k and can resolve each extension problem, then we can determine Fs/Fk for
each s, hence also

H∗(X)/Fk = colim
s

Fs/Fk .

There is an exact sequence

0→ lim
k
Fk → H∗(X)→ lim

k
H∗(X)/Fk → Rlim

k
Fk → 0 ,

where limk Fk =
⋂
k Fk is the limit, and Rlimk Fk is the right derived limit, also known as lim1, of the

sequence
· · · → Fk−1 → Fk → . . . .

These graded groups are the kernel and cokernel, respectively, of the homomorphism

1− i :
∏
k

Fk →
∏
k

Fk
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where 1 is the identity and i is the identification
∏
k Fk =

∏
k Fk−1 combined with the product of the

homomorphisms Fk−1 → Fk. It is known that Rlimk Fk = 0 if each homomorphism Fk−1 → Fk is
surjective, or if each group Fk is finite. (The Mittag–Leffler condition also ensures the vanishing of
Rlim.)

If limk Fk = 0 we say that the filtration {Fs}s is Hausdorff. If Rlimk Fk = 0 we say that it is
complete. The terminology can be justified by thinking of the filtration as a neighborhood basis around
0 and considering the associated linear topology on H∗(X). If {Fs}s is both complete and Hausdorff,
then

H∗(X) ∼= lim
k
H∗(X)/Fk

and we can recover the abutment H∗(X) from the quotients H∗(X)/Fk, as desired.

Lemma 2.1. Let {Fs}s be an exhaustive complete Hausdorff filtration of H∗(X). Then H∗(X) ∼=
limk colims Fs/Fk.

2.2 Spectral sequences of homological type

Definition 2.2. A spectral sequence of homological type is a sequence of bigraded abelian groups Er∗,∗ =

{Ers,t}s,t, differentials dr : Er∗,∗ → Er∗,∗ of bidegree (−r, r − 1), and isomorphisms Er+1
s,t
∼= Hs,t(E

r
∗,∗, d

r)
for all r ≥ 1. We call Er∗,∗ the Er-term, dr the dr-differential, s the filtration degree and s+ t the total
degree of the spectral sequence. Sometimes only the terms for r ≥ 2 are specified.

Making the bigrading explicit, the components of the dr-differential are homomorphisms drs,t : E
r
s,t →

Ers−r,tωn+r−1. Note that the differential reduces the total degree by 1. The condition to be a differential
is that dr ◦ dr = 0, so that im drs+r,t−r+1 ⊂ ker drs,t ⊂ Ers,t. The homology group Hs,t(E

r
∗,∗, d

r) is the

quotient group ker drs,t/ im drs+r,t−r+1, which is required to be isomorphic to Er+1
s,t . In this sense the

Er-term and the dr-differential determine the Er+1-term.
Fix a bidegree (s, t) and consider the sequence of groups {Ers,t} for r ≥ 1. If there is a natural

number N such that drs,t = 0 for all r ≥ N , then there is a sequence of surjective homomorphisms

ENs,t → · · · → Ers,t → . . . for r ≥ N . We then let E∞
s,t = colimr E

r
s,t. ((On the other hand, if there is an

integer N such that drs+t,t−r+1 = 0 for all r ≥ N , then there is a sequence of injective homomorphisms

· · · ⊂ Ers,t ⊂ · · · ⊂ ENs,t for r ≥ N . In that case we let E∞
s,t = limr E

r
s,t.))

Definition 2.3. A spectral sequence {Er∗,∗, dr}r converges strongly to a graded abelian group G∗ if there
is an exhaustive complete Hausdorff filtration · · · ⊂ Fs−1G∗ ⊂ FsG∗ ⊂ . . . of G∗, and isomorphisms

E∞
s,t
∼= FsGs+t/Fs−1Gs+t

for all s and t. We call G∗ the abutment of the spectral sequence.

If one can resolve the extension questions of how to recover FsG∗/FkG∗ from Fs−1G∗/FkG∗ and
E∞
s,∗, then strong convergence suffices to recover the abutment G∗ as limk colims FsG∗/FkG∗.

Definition 2.4. If there is a natural number N such that dr = 0 for all r ≥ N (in all bidegrees (s, t)),
then there are isomorphisms Er∗,∗

∼= Er+1
∗,∗
∼= . . . ∼= E∞

∗,∗ for all r ≥ N . In this case we say that the

spectral sequence collapses at the EN -term.

In many cases one can prove that a spectral sequence collapses at an EN -term by an appeal to the
internal grading t. One needs to check that for each bidegree (s, t) where ENs,t is nonzero, all of the

groups ENs−r,t+r−1 are zero for r ≥ N . Since dr has bidegree (−r, r+1), this will imply that drs,t = 0. In

this case, we may say that the spectral sequence collapses at the EN -term for bidegree reasons.

Definition 2.5. A morphism from a spectral sequence {Er∗,∗}r to a spectral sequence {′Er∗,∗}r is a
sequence of bidegree-preserving homomorphisms

fr : Er∗,∗ −→ ′Er∗,∗
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such that the diagrams

Er∗,∗
fr

//

dr

��

′Er∗,∗

dr

��

Er∗,∗
fr

// ′Er∗,∗

and

H∗,∗(E
r)

fr
∗ //

∼=
��

H∗,∗(
′Er)

∼=
��

Er+1
∗,∗

fr+1

// ′Er+1
∗,∗

commute. In other words, fr is a chain map from (Er∗,∗, d
r) to (′Er∗,∗, d

r), and induces fr+1 on passage
to homology.

A morphism {fr}r of spectral sequences induces a homomorphism f∞ : E∞
∗,∗ → ′E∞

∗,∗ of E∞-terms,
when they are defined as discussed above.

Proposition 2.6. Let {fr : Er∗,∗ → ′Er∗,∗}r be a morphism of spectral sequences. If there is a natural

number N such that fN is an isomorphism, then fr is an isomorphism for all r ≥ N , including r =∞.

Proof. If fr is an isomorphism, then so is the homomorphism fr∗ induced on homology, so fr+1 is an
isomorphism. Proceed by induction, starting at r = N . Pass to (co-)limits to get to r =∞.

Definition 2.7. A morphism {fr : Er∗,∗ → ′Er∗,∗}r of spectral sequences converges to a homomorphism
f : G∗ → G′

∗ if f restricts to homomorphisms FsG∗ → FsG
′
∗ for all s and the induced homomorphisms

FsG∗/Fs−1G∗ → FsG
′
∗/Fs−1G

′
∗ agree with the homomorphisms f∞ : E∞

s,∗ → ′E∞
s,∗ under the isomor-

phisms FsG∗/Fs−1G∗ ∼= E∞
s,∗ and FsG

′
∗/Fs−1G

′
∗
∼= ′E∞

s,∗, for all s.

Proposition 2.8. Let {fr : Er∗,∗ → ′Er∗,∗}r be a morphism of spectral sequences, converging strongly to
a homomorphism f : G∗ → G′

∗. If f∞ : E∞
∗,∗ → ′E∞

∗,∗ is an isomorphism, then so is f : G∗ → G′
∗.

Proof. We use the map of short exact sequences

0 // Fs−1G∗/Fs−rG∗ //

��

FsG∗/Fs−rG∗ //

��

FsG∗/Fs−1G∗ //

��

0

0 // Fs−1G
′
∗/Fs−rG

′
∗

// FsG
′
∗/Fs−rG

′
∗

// FsG
′
∗/Fs−1G

′
∗

// 0

to prove, by induction on r, that FsG∗/Fs−rG∗ → FsG
′
∗/Fs−rG

′
∗ is an isomorphism for all r ≥ 1 and all

s. Passing to limits over r, we get an isomorphism FsG∗ → FsG
′
∗ for all s. Passing to colimits over s we

get the isomorphism f : G∗ → G′
∗.

2.3 Cycles and boundaries

Recall the diagram

. . . // H∗(Xs−1)
i∗ // H∗(Xs) //

j∗

��

. . . // H∗(X)

H∗(Xs, Xs−1)

∂

gg

where the triangle is a rolled-up long exact sequence. The homomorphism H∗(Xs)→ H∗(X) induces an
isomorphism

Fs = im(H∗(Xs)→ H∗(X)) ∼=
H∗(Xs)

ker(H∗(Xs)→ H∗(X))
.
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The image of i∗ maps onto Fs−1, so there is a quotient isomorphism

Fs/Fs−1
∼=

H∗(Xs)

ker(H∗(Xs)→ H∗(X)) + im i∗
.

The homomorphism j∗ induces isomorphisms H∗(Xs)/ im i∗ ∼= im j∗ ∼= ker ∂, and there is a quotient
isomorphism

H∗(Xs)

ker(H∗(Xs)→ H∗(X)) + im i∗
∼=

ker ∂

j∗(ker(H∗(Xs)→ H∗(X)))
.

Lemma 2.9. There is a natural isomorphism

Fs/Fs−1
∼= Zs/Bs

where Zs = ker ∂, Bs = j∗(ker(H∗(Xs)→ H∗(X))), and Bs ⊂ Zs ⊂ H∗(Xs, Xs−1).

The task of a spectral sequence is to start with the groups H∗(Xs, Xs−1) and to determine the
cycle and boundary subgroups Zs and Bs, or more precisely, the quotient groups Zs/Bs ∼= Fs/Fs−1.
The starting groups will be the E1-term, E1

s,∗ = H∗(Xs, Xs−1), while the quotient groups will be the
E∞-term Zs/Bs = E∞

s,∗. The passage from E1 to E∞ can be done in steps, by weakening the condition
that an element in Zs = ker ∂ must map to 0 under ∂, and strengthening the condition that an element
in ker(H∗(Xs)→ H∗(X)) goes to 0 in H∗(X). The intermediate steps give the Er-terms in the spectral
sequence.

Regarding the cycles, we let r ≥ 1 and consider the diagram:

. . .
i∗ // H∗(Xs−r)

ir−1
∗ // H∗(Xs−1)

i∗ // H∗(Xs)

j∗

��

H∗(Xs, Xs−1)

∂

gg

Let
Zrs = ∂−1(im ir−1

∗ : H∗−1(Xs−r)→ H∗−1(Xs−1))

be the r-th cycles in H∗(Xs, Xs−1). Then

Zs = ker ∂ ⊂ Z∞
s ⊂ · · · ⊂ Zrs ⊂ · · · ⊂ Z1

s = H∗(Xs, Xs−1)

where Z∞
s = limr Z

r
s =

⋂
r Z

r
s is the (graded abelian) group of infinite cycles.

There is a subtle point about limits and images here. If the intersection⋂
r

im ir−1
∗ : H∗−1(Xs−r)→ H∗−1(Xs−1)

is zero, then Zs = Z∞
s , so that we can obtain Zs = ker ∂ as the limit over r of the cycle groups Zrs .

This is certainly the case if there is an integer N such that H∗−1(Xs) = 0 for s < −N , but it is not, in
general, enough to assume that limsH∗−1(Xs) = 0. We shall soon return to this in greater generality.

Regarding the boundaries, we let r ≥ 1 and consider the diagram:

H∗(Xs−1)
i∗ // H∗(Xs)

ir−1
∗ //

j∗

��

H∗(Xs+r−1)
i∗ // . . .

H∗(Xs, Xs−1)

∂

gg

Let
Brs = j∗(ker i

r−1
∗ : H∗(Xs)→ H∗(Xs+r−1))

be the r-th boundaries in H∗(Xs, Xs−1). Then

0 = B1
s ⊂ · · · ⊂ Brs ⊂ · · · ⊂ B∞

s ⊂ Bs = j∗(ker(H∗(Xs)→ H∗(X)))
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where B∞
s = colimr B

r
s =

⋃
r B

r
s is the (graded abelian) group of infinite boundaries.

The interaction between colimits and kernels is less subtle. If the union⋃
r

ker ir−1
∗ : H∗(Xs)→ H∗(Xs+r−1)

equals ker(H∗(Xs) → H∗(X)), then B∞
s = Bs, so that we can obtain Bs = j∗(ker(H∗(Xs) → H∗(X)))

as the colimit over r of the boundary groups Brs . In this case it suffices to assume that colimsH∗(Xs) ∼=
H∗(X). This is a reasonable assumption, which also implies that the filtration {Fs}s of H∗(X) is
exhaustive.

We now have a doubly infinite filtration

0 = B1
s ⊂ · · · ⊂ Brs ⊂ · · · ⊂ B∞

s ⊂ Bs ⊂ Zs ⊂ Z∞
s ⊂ · · · ⊂ Zrs ⊂ · · · ⊂ Z1

s = H∗(Xs, Xs−1)

and in favorable cases (this is the subject of convergence), B∞
s = Bs and Zs = Z∞

s . We define the
Er-term

Ers = Zrs/B
r
s

to be given by the r-th cycles modulo the r-th boundaries, for 1 ≤ r ≤ ∞. Then E1
s
∼= H∗(Xs, Xs−1)

and, assuming convergence, E∞
s
∼= Fs/Fs−1. The wonderful algebraic fact is that there is a differential

dr : Ers → Ers−r of degree (r − 1) that makes the collection {Ers , dr}r a spectral sequence, so that there
are isomorphisms Hs(E

r
∗ , d

r) ∼= Er+1
s for all finite r ≥ 1.

Theorem 2.10. Suppose that H∗(Xs) = 0 for s < 0 and that colimsH∗(Xs) ∼= H∗(X). Then there is
a spectral sequence of homological type, with E1

s,t = Hs+t(Xs, Xs−1) and d1 : E1
s,t → E1

s−1,t given by the
composite homomorphism

Hs+t(Xs, Xs−1)
∂−→ Hs+t−1(Xs−1)

j∗−→ Hs+t−1(Xs−1, Xs−2) ,

converging strongly to H∗(X).

2.4 Unrolled exact couples

Following Massey and Boardman, we extract the essential algebraic structure from the discussion above.

Definition 2.11. An unrolled exact couple (of homological type) is a diagram

. . . // As−2
i // As−1

i //

j

��

As
i //

j

��

As+1
//

j

��

. . .

. . . Es−1

∂

cc

Es

∂

bb

Es+1

∂

bb

. . .

of graded abelian groups and homomorphisms, in which each triangle

. . . −→ As−1
i−→ As

j−→ Es
∂−→ As−1 −→ . . .

is a long exact sequence. Usually i and j will be of degree 0 and ∂ of degree −1.
For r ≥ 1, let

Zrs = ∂−1(im ir−1 : As−r → As−1)

be the r-th cycle subgroup of Es, let

Brs = j(ker ir−1 : As → As+r−1)

be the r-th boundary subgroup of Es, and let

Ers = Zrs/B
r
s

be the component of the Er-term in filtration degree s. Let

drs : E
r
s −→ Ers−r

be the r-th differential, given by drs([x]) = [j(y)], where x ∈ Zrs , y ∈ As−r and ∂(x) = ir−1(y).
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Proposition 2.12. dr is well-defined, ker drs
∼= Zr+1

s /Brs and im drs+r
∼= Br+1

s /Brs , so Hs(E
r
∗ , d

r) ∼=
Er+1
s . Hence {Er, dr}r is a spectral sequence of homological type.

Proof. (Straightforward.)

Definition 2.13. Let G = colimsAs be the direct limit. Let Fs = im(As → G), so that there is an
increasing, exhaustive filtration · · · ⊂ Fs−1 ⊂ Fs ⊂ · · · ⊂ G.
Theorem 2.14 (Cartan–Eilenberg(?)). Suppose that As = 0 for s < 0, so that E1

s = 0 for s < 0, and
all but finitely many differentials leaving any fixed bidegree are zero. Then {Fs}s is trivially a complete
Hausdorff filtration, and there are isomorphisms E∞

s
∼= Fs/Fs−1, so that the spectral sequence {Er, dr}r

converges strongly to the colimit G.

2.5 Spectral sequences of cohomological type

If we apply cohomology, in place of homology, to the filtered spectrum X, we get a diagram

H∗(X) // . . . // H∗(Xs)
i∗ // H∗(Xs−1)

δ
ww

// . . .

H∗(Xs, Xs−1)

j∗

OO

where δ has cohomological degree +1. This leads to an unrolled exact couple and a spectral sequence,
where we may be able to recover H∗(X) as the limit group limsH

∗(Xs) under the assumption that
colimsH

∗(Xs) = 0.
We shall instead focus on spectral sequences that converge to the colimit groups. By passing to

relative cohomology groups, we can transform the diagram above as follows:

. . . // H∗(X,Xs)
j∗
// H∗(X,Xs−1) //

i∗

��

. . . // H∗(X)

H∗(Xs, Xs−1)

δ

gg

This leads to an unrolled exact couple and a spectral sequence, with A−s = H∗(X,Xs−1) and E−s =
H∗(Xs, Xs−1), so that i = j∗, j = i∗ have degree 0 and ∂ = δ has (cohomological) degree +1. Note that
the E1-term, given by the relative groups H∗(Xs, Xs−1), is the same as before. The sign change in the
filtration grading is undesirable. We therefore convert to a cohomological indexing, by letting As = A−s
and Es = E−s. In the example above we would then have As = H∗(X,Xs−1) and E

s = H∗(Xs, Xs−1).
If there is an integer N such that H∗(X,Xs) = 0 for s > N , or more subtle limiting conditions

are satisfied (see the subsection on conditional convergence), then the associated spectral sequence will
converge to colimsH

∗(X,Xs). If colimsH
∗(Xs) = 0 then this is isomorphic to the desired abutment

group H∗(X).
We shall mostly be interested in filtered spectra where Xs = Y for all s ≥ 0, so that the E1-term is

concentrated in the region where s ≤ 0. In this case is is also convenient to convert to a cohomological
indexing, by letting Y s = X−s, so that we have a tower

· · · → Y s+1 → Y s → · · · → Y 1 → Y 0 = Y

of spectra. Let Ks be the mapping cone (homotopy cofiber) of the map i : Y s+1 → Y s, so that there is
a cofiber sequence

Y s+1 i−→ Y s
j−→ Ks ∂−→ ΣY s+1

for each s ≥ 0. We may apply any generalized homology theory to this diagram, such as the (stable)
homotopy groups of spectra. This leads to an unrolled exact couple

· · · → π∗(Y
s+1)

i∗ // π∗(Y
s) //

j∗

��

. . . // π∗(Y
1)

i∗ // π∗(Y
0)

j∗

��

π∗(Y )

. . . π∗(K
s)

∂

gg

. . . π∗(K
0)

∂

dd

13



where i∗ and j∗ have degree zero and ∂ has (homotopical) degree −1. We have As = π∗(Y
s) and

Es = π∗(K
s).

Definition 2.15. A spectral sequence of cohomological type is a sequence of bigraded abelian groups
E∗,∗
r = {Es,tr }s,t, differentials dr : E

∗,∗
r → E∗,∗

r of bidegree (r,−r + 1), and isomorphisms Es,tr+1
∼=

Hs,t(E∗,∗
r , dr) for all r ≥ 1. We call E∗,∗

r the Er-term, dr the dr-differential, s the filtration degree
and s+ t the total degree of the spectral sequence.

Definition 2.16. A spectral sequence of Adams type is a sequence of bigraded abelian groups E∗,∗
r =

{Es,tr }s,t, differentials dr : E∗,∗
r → E∗,∗

r of bidegree (r, r − 1), and isomorphisms Es,tr+1
∼= Hs,t(E∗,∗

r , dr)
for all r ≥ 1. We call E∗,∗

r the Er-term, dr the dr-differential, s the filtration degree and t− s the total
degree of the spectral sequence.

Definition 2.17. An unrolled exact couple (of cohomological type, resp. of Adams type) is a diagram

. . . // As+2 i // As+1 i //

j

��

As
i //

j

��

As−1 //

j

��

. . .

. . . Es+1

∂

cc

Es
∂

bb

Es−1

∂

bb

. . .

of graded abelian groups and homomorphisms, in which each triangle

. . . −→ As+1 i−→ As
j−→ Es

∂−→ As+1 −→ . . .

is a long exact sequence. The respective bidegrees of i, j and ∂ are (−1, 1), (0, 0) and (1, 0) in the
cohomological case and (−1,−1), (0, 0) and (1, 0) in the Adams case.

For r ≥ 1 let
Zsr = ∂−1(im ir−1 : As+r → As+1)

be the r-th (co-)cycle subgroup of Es, let

Bsr = j(ker ir−1 : As → As−r+1)

be the r-th (co-)boundary subgroup, and let

Esr = Zsr/B
s
r

be the filtration degree s component of the Er-term. Note that Zs1 = Es and Bs1 = 0 so Es1 = Es. Let

dsr : E
s
r −→ Es+rr

be the r-th differential, satisfying dsr([x]) = [j(y)], where x ∈ Zsr , y ∈ As+r and ∂(x) = ir−1(y). Then dr
has bidegree (r,−r + 1) in the cohomological case and bidegree (r, r − 1) in the Adams case.

Proposition 2.18. dr is well-defined, ker dsr
∼= Zsr+1/B

s
r and im dsr = Bsr+1/B

s
r , so H

s(E∗
r , dr)

∼= Esr+1.
Hence {Er, dr}r is a spectral sequence of cohomological type, resp. of Adams type.

Proposition 2.19. Consider a tower of spectra

. . . // Y s+1 i // Y s //

j

��

. . . // Y 1 i // Y 0

j

��

Y

. . . Ks

∂

bb

. . . K0

∂

aa

where Ks is the mapping cone of i : Y s+1 → Y s, and ∂ : Ks → ΣY s+1 is the cofiber map. Applying
homotopy one obtains an unrolled exact couple of Adams type, giving rise to a spectral sequence of
Adams type with E1-term

Es,t1 = πt−s(K
s)

14
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Figure 1: Adams type differentials

for s ≥ 0, and d1-differential ds,t1 : Es,t1 → Es+1,t
1 given by the composite

πt−s(K
s)

∂−→ πt−s−1(Y
s+1)

j∗−→ πt−s−1(K
s+1) .

If the images F s = im(π∗(Y
s)→ π∗(Y )) define a complete Hausdorff filtration of colims π∗(Ys) = π∗(Y ),

meaning that lims F
s = 0 and Rlims F

s = 0, and there are isomorphisms Es∞
∼= F s/F s+1 for all s ≥ 0,

then the spectral sequence converges strongly to π∗(Y ).

For spectral sequences of Adams type, it is traditional to display the Er-terms in a coordinate system
with the total degree t − s on the horizontal axis, and the filtration degree s on the vertical axis, thus
using (t−s, s)-coordinates, rather than (s, t)-coordinates. The dr-differentials change (t−s, s) by (−1, r),
mapping one unit to the left and r units upwards.

The groups Es,t∞ = Es,s+n∞ contributing to the homotopy group πn(Y ) in the abutment are precisely
those that sit in the column t− s = n, for each integer n.

2.6 Conditional convergence

Following Boardman, we address the issue of convergence for spectral sequences of cohomological type,
or of Adams type. For simplicity, we concentrate on the case when Es1 = 0 for s < 0, so that all but
finitely many differentials entering any fixed bidegree are zero.

Definition 2.20. Consider an unrolled exact couple (of cohomological type, or Adams type)

. . . // As+1 i // As //

j

��

. . . // A1 i // A0

j

��

G

. . . Es
∂

bb

. . . E0

∂

aa

with A0 = As = G and Es = 0 for all s < 0. We say that the resulting spectral sequence converges
conditionally (to G = colimsAs) if limsA

s = 0 and RlimsA
s = 0. Note that conditional convergence is a

condition on the groups As in the unrolled exact couple, not on the filtration groups F s = im(As → G).

Definition 2.21. Let Zs∞ = limr Z
s
r =

⋂
r Z

s
r be the infinite cycles in Es, let Bs∞ = colimr B

s
r =

⋃
r B

s
r

be the infinite boundaries, and let Es∞ = Zs∞/B
s
∞ be the filtration s component of the E∞-term.

As in the homological case we have inclusions Zs = ker ∂ ⊂ Zs∞ and Bs∞ ⊂ Bs = j∗(ker(A
s → G)).

We also have isomorphisms F s/F s+1 ∼= Zs/Bs. We have assumed that Es = 0 for s < 0, so Bsr = Bs∞ =
Bs for all r > s. To establish strong convergence, we therefore need to know that Zs = Zs∞ and that
{F s}s is a complete Hausdorff filtration. The E∞-term is the limit of the sequence of inclusions

Es∞ = lim
r
Esr ⊂ · · · ⊂ Esr+1 ⊂ Esr ⊂ . . .

15



where r > s. The following derived limit group measures the difference between conditional convergence
and strong convergence.

Definition 2.22. Let REs∞ = Rlimr E
s
r be the derived E∞-term.

Lemma 2.23. If there is a natural number N such that E∗
N = E∗

∞ (the spectral sequence collapses at
the EN -term), or such that Es,tN is finite in each bidegree (s, t), then RE∞ = 0.

Consider an unrolled exact couple

. . . // As+1 i // As //

j

��

. . . // A1 i // A0

j

��

G

. . . Es
∂

bb

. . . E0

∂

aa

Theorem 2.24 (Boardman). Suppose that (a) A0 = As for s < 0, so that Es = 0 for s < 0 and all but
finitely many differentials entering any fixed bidegree are zero, (b) The spectral sequence is conditionally
convergent, so that limsA

s = 0 and RlimsA
s = 0, and (c) RE∞ = 0. Then the spectral sequence

converges strongly to A0 = G. In other words, the subgroups F s = im(As → G) form an exhaustive
complete Hausdorff filtration of G, and there are isomorphisms F s/F s+1 ∼= Es∞.

This is part of Boardman’s Theorem 7.3, which builds on his Lemmas 5.6 and 5.9. We omit the proof.
Consider a tower of spectra

. . . // Y s+1 i // Y s //

j

��

. . . // Y 1 i // Y 0

j

��

Y

. . . Ks

∂

bb

. . . K0

∂

aa

where Ks is the mapping cone of i : Y s+1 → Y s, and ∂ : Ks → ΣY s+1 is the cofiber map.

Definition 2.25. The homotopy limit of the tower Y s is the homotopy fiber

holim
s

Y s −→
∏
s

Y s
1−i−→

∏
s

Y s

where 1 is the identity map and i is the composite of the identification
∏
s Y

s ∼=
∏
s Y

s+1 and the product
of the maps i : Y s+1 → Y s.

Proposition 2.26 (Milnor). There is a short exact sequence

0→ Rlim
s

πn+1(Y
s) −→ πn(holim

s
Y s) −→ lim

s
πn(Y

s)→ 0

for each integer n.

Consider the unrolled exact couple with As = π∗(Y
s) and Es = π∗(K

s) associated to a tower of
spectra as above. The following two conditions ensure strong convergence to π∗(Y ).

Corollary 2.27. The associated spectral sequence is conditionally convergent if and only if holims Y
s is

contractible. If πn(K
s) is a finite group, for each s and n, then RE∞ = 0. If both conditions hold then

the spectral sequence is strongly convergent.

Proof. Conditional convergence means that A∞ = lims π∗(Y
s) and RA∞ = Rlims π∗(Y

s) both vanish.
By Milnor’s lim-Rlim sequence this is equivalent to the vanishing of π∗(holims Y

s). We have Es =
π∗(K

s), so if each πn(K
s) is finite then E1 is finite in each bidegree, which implies that RE∞ = 0.
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3 The Steenrod algebra

3.1 Steenrod operations

We start at the prime p = 2. For brevity, we write H∗(X) for H∗(X;F2) and H
∗(X) for H∗(X;F2).

Theorem 3.1 (Steenrod, Cartan). (a) For each pair of integers i, n ≥ 0 there is a natural transforma-
tion Sqi : H̃n(X) −→ H̃n+i(X) of functors from based spaces to abelian groups.

(b) Sq0 = 1 is the identity.

(c) If n = |x| then Sqn(x) = x2 is the cup square.

(d) If i > |x| then Sqi(x) = 0.

(e) (Cartan formula) Sqk(xy) =
∑k
i=0 Sq

i(x)Sqk−i(y).

We call Sqi the i-th Steenrod (reduced) squaring operation. Naturality means that for each base-point
preserving map f : X → Y we have f∗Sqi(x) = Sqi(f∗x), and Sqi is a homomorphism. The Cartan
formula can be rewritten as Sqk(xy) =

∑
i+j=k Sq

i(x)Sqj(y), with the convention that Sqi(x) = 0

for i < 0, or in terms of the smash product ∧ : H̃n(X) ⊗ H̃m(Y ) → H̃n+m(X ∧ Y ) as Sqk(x ∧ y) =∑
i+j=k Sq

i(x) ∧ Sqj(y).
The properties in the theorem can be taken as axioms, and imply the following results. Recall

that the Bockstein homomorphism of the coefficient sequence F2 → Z/4 → F2 is the connecting ho-
momorphism β : H̃n(X)→ H̃n+1(X) in the long exact sequence associated to the short exact sequence
0 → C∗(X;F2) → C∗(X;Z/4) → C∗(X;F2) → 0 of cochain complexes. Let Σ: H̃n(X) → H̃n+1(X) be
the suspension isomorphism.

Theorem 3.2. (a) Sq1 = β is the Bockstein homomorphism.

(b) (Adem relations) If a < 2b then

SqaSqb =

[a/2]∑
j=0

(
b− 1− j
a− 2j

)
Sqa+b−jSqj .

(c) Sqi(Σx) = ΣSqi(x).

With the convention that
(
n
k

)
= 0 for k < 0, the summation limits j ≥ 0 and j ≤ [a/2] can be ignored.

Notice that Sq1Sqb = Sqb+1 for b even, and Sq1Sqb = 0 for b odd. Note also that Sq2b−1Sqb = 0 for all

17



b. The Adem relations in degrees ≤ 11 are:

Sq1Sq1 = 0 Sq1Sq8 = Sq9

Sq1Sq2 = Sq3 Sq2Sq7 = Sq9 + Sq8Sq1

Sq1Sq3 = 0 Sq3Sq6 = 0

Sq2Sq2 = Sq3Sq1 Sq4Sq5 = Sq9 + Sq8Sq1 + Sq7Sq2

Sq1Sq4 = Sq5 Sq5Sq4 = Sq7Sq2

Sq2Sq3 = Sq5 + Sq4Sq1 Sq1Sq9 = 0

Sq3Sq2 = 0 Sq2Sq8 = Sq10 + Sq9Sq1

Sq1Sq5 = 0 Sq3Sq7 = Sq9Sq1

Sq2Sq4 = Sq6 + Sq5Sq1 Sq4Sq6 = Sq10 + Sq8Sq2

Sq3Sq3 = Sq5Sq1 Sq5Sq5 = Sq9Sq1

Sq1Sq6 = Sq7 Sq6Sq4 = Sq7Sq3

Sq2Sq5 = Sq6Sq1 Sq1Sq10 = Sq11

Sq3Sq4 = Sq7 Sq2Sq9 = Sq10Sq1

Sq4Sq3 = Sq5Sq2 Sq3Sq8 = Sq11

Sq1Sq7 = 0 Sq4Sq7 = Sq11 + Sq9Sq2

Sq2Sq6 = Sq7Sq1 Sq5Sq6 = Sq11 + Sq9Sq2

Sq3Sq5 = Sq7Sq1 Sq6Sq5 = Sq9Sq2 + Sq8Sq3

Sq4Sq4 = Sq7Sq1 + Sq6Sq2 Sq7Sq4 = 0

Sq5Sq3 = 0

To prove (a) one considers the case X = RP 2. To prove (b) one considers X = (RP∞)r for large
r, as we will outline below. To prove (c) one uses the smash product form of the Cartan formula for
Y = S1.

Now let p > 2 be an odd prime.

Theorem 3.3 (Steenrod, Cartan). (a) For each pair of integers i, n ≥ 0 there is a natural transforma-
tion P i : H̃n(X;Fp) −→ H̃n+2i(p−1)(X;Fp) of functors from based spaces to abelian groups.

(b) P 0 = 1 is the identity.

(c) If 2k = |x| then P k(x) = xp is the cup p-th power.

(d) If 2k > |x| then P k(x) = 0.

(e) (Cartan formula) P k(xy) =
∑k
i=0 P

i(x)P k−i(y).

Let β : H̃n(X;Fp) → H̃n+1(X;Fp) be the Bockstein homomorphism associated to the coefficient
sequence Fp → Z/p2 → Fp.

Theorem 3.4. (a) (Adem relations) If a < pb then

P aP b =

[a/p]∑
j=0

(−1)a+j
(
(p− 1)(b− j)− 1

a− pj

)
P a+b−jP j .
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(b) If a ≤ pb then

P aβP b =

[a/p]∑
j=0

(−1)a+j
(
(p− 1)(b− j)

a− pj

)
βP a+b−jP j

−
[(a−1)/p]∑
j=0

(−1)a+j
(
(p− 1)(b− j)− 1

a− pj − 1

)
P a+b−jβP j

(c) P i(Σx) = ΣP i(x) and β(Σx) = −Σβ(x).

The first few p-primary Adem relations (for b = 1) are

P aP 1 = (−1)a
(
p− 2

a

)
P a+1

P aβP 1 = (−1)a
(
p− 1

a

)
βP a+1 − (−1)a

(
p− 2

a− 1

)
P a+1β

for 0 < a < p, which imply that (P 1)p = 0, and P pβP 1 = βP pP 1.

3.2 Construction of the reduced squares

We follow Steenrod–Epstein, Chapter VII and Hatcher, Section 4.L.

Definition 3.5. Let Hn = K(F2, n) be an Eilenberg–MacLane complex of type (F2, n), i.e., a space
with πi(Hn) = 0 for i 6= n and πn(Hn) ∼= F2. Such spaces exist, and are uniquely determined up to
weak homotopy equivalence. There is a universal class ιn ∈ H̃n(Hn) that corresponds to the identity
homomorphism F2 → F2 under the isomorphisms Hn(Hn) ∼= Hom(Hn(Hn),F2) ∼= Hom(πn(Hn),F2) ∼=
Hom(F2,F2).

Note that H1 ' RP∞.

Theorem 3.6 (Eilenberg–MacLane). There is a natural isomorphism [X,Hn] ∼= H̃n(X) taking the
homotopy class of a base-point preserving map f : X → Hn to the image f∗(ιn) of the universal class.

See Hatcher (2002) Theorem 4.57.
The smash product ιn∧ιn ∈ H̃2n(Hn∧Hn) is represented by a map φ : Hn∧Hn → H2n. By homotopy

commutativity, there is a homotopy I+∧Hn∧Hn → H2n from φ to φγ, where γ : Hn∧Hn → Hn∧Hn is
the twist map. Thinking of the interval I as the upper half of a circle S1, this homotopy can be thought
of as a C2-equivariant map S1

+ ∧Hn ∧Hn → H2n where C2 = {±1} acts antipodally on S1 and by the
twist on Hn ∧ Hn. Equivalently, it corresponds to a map φ1 : S

1
+ ∧C2

Hn ∧ Hn → H2n. This map φ1
extends (uniquely, up to homotopy) to a map

Φ: S∞
+ ∧C2 Hn ∧Hn → H2n ,

where S∞ has the antipodal action. We call S∞
+ ∧C2 Hn ∧Hn the quadratic construction on Hn.

There is a diagonal map ∆: Hn → Hn ∧Hn, and an induced map

∇ = 1 ∧∆: RP∞
+ ∧Hn → S∞

+ ∧C2 Hn ∧Hn ,

where RP∞ = Sn/C2. The composite map Φ∇ : RP∞
+ ∧Hn −→ H2n induces a map (Φ∇)∗ in cohomology,

taking the universal class ι2n to an element in degree 2n of H̃∗(RP∞
+ ∧ Hn) ∼= H∗(RP∞) ⊗ H̃∗(Hn).

Writing H∗(RP∞) = P (u) = F2[u] with |u| = 1, we can write (Φ∇)∗(ι2n) as a sum of terms

(Φ∇)∗(ι2n) =
n∑
i=0

un−i ⊗ Sqi(ιn)
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where Sqi(ιn) ∈ H̃n+i(Hn). More generally, for any class x ∈ H̃n(X) represented by a map f : X → Hn

we have a commutative diagram

RP∞
+ ∧X

∇ //

1∧f
��

S∞
+ ∧C2 X ∧X

1∧f∧f
��

RP∞
+ ∧Hn

∇ //

Φ∇

DD
S∞
+ ∧C2

Hn ∧Hn
Φ // H2n

In terms of the isomorphism H̃∗(RP∞ ∧X) ∼= P (u) ⊗ H̃∗(X) we can define classes Sqi(x) ∈ H̃n+i(X)
by the formula

(1 ∧ f)∗(Φ∇)∗(ι2n) =
∑
i

un−i ⊗ Sqi(x) .

It is then clear that f∗Sqi(ιn) = Sqi(x), and naturality follows easily. The restriction of Φ∇ to Hn
∼=

RP 0
+ ∧Hn is the diagonal ∆: Hn → Hn ∧Hn followed by φ : Hn ∧Hn → H2n, taking ι2n to ι2n, hence

Sqn(x) = x2.
For the Cartan formula, consider the map µ : Hn ∧ Hm → Hn+m representing the smash product

ιn ∧ ιm. There is a commutative diagram

RP∞
+ ∧Hn+m

∇ // S∞
+ ∧C2

Hn+m ∧Hn+m
Φ // H2(n+m)

RP∞
+ ∧Hn ∧Hm

1∧µ

OO

∇ //

∆∧1

��

S∞
+ ∧C2

Hn ∧Hm ∧Hn ∧Hm

1∧µ∧µ

OO

π

��

RP∞
+ ∧ RP∞

+ ∧Hn ∧Hm
∇∧∇ // S∞

+ ∧C2
Hn ∧Hn ∧ S∞

+ ∧C2
Hm ∧Hm

Φ∧Φ // H2n ∧H2m

µ

OO

where π is induced by the (C2 → C2×C2)-equivariant diagonal embedding S∞
+ → S∞

+ ∧S∞
+ . The right

hand rectangle commutes by a check in H2(n+m)(−) of the central term. Granted this, the class ι2(n+m)

at the upper right pulls back to ι2n⊗ ι2m at the lower right, and across to
∑
i,j u

n−i⊗um−j ⊗Sqi(ιn)⊗
Sqj(ιm) at the lower left. Pulling up the center left term we obtain

∑
i,j u

n+m−i−j ⊗ Sqi(ιn)⊗ Sqj(ιm).

Going the other way around the diagram, we first come to
∑
k u

n+m−k ⊗ Sqk(ιn+m), and then to∑
k u

n+m−kSqk(ιn∧ ιm). Comparing the coefficients of un+m−k we get Sqk(ιn∧ ιm) =
∑
i+j=k Sq

i(ιn)∧
Sqj(ιm). This implies Sqk(x ∧ y) =

∑
i+j=k Sq

i(x) ∧ Sqj(y) and the Cartan formula by naturality.

The fact that Sq0(x) = x can be deduced from the case X = S1.

3.3 Admissible monomials

Again, we start with p = 2. For x ∈ H̃∗(X) let Sq(x) =
∑
i Sq

i(x) be the total squaring operation.
Then Sq(xy) = Sq(x)Sq(y) by the Cartan formula.

Lemma 3.7. The Steenrod operations in H̃∗(RP∞
+ ) = H∗(RP∞) ∼= P (x), with |x| = 1, are given by

Sqi(xn) =
(
n
i

)
xn+i.

Proof. Sq(x) = x + x2 = x(1 + x) since Sq0(x) = x and Sq1(x) = x2. Hence Sq(xn) = Sq(x)n =
xn(1 + x)n. Thus Sqi(xn) =

(
n
i

)
xn+i in degree n+ i.

Let (RP∞)r = RP∞ × · · · × RP∞ be the product of r ≥ 1 copies of RP∞, so that (RP∞)r+ =

RP∞
+ ∧ · · · ∧RP∞

+ . Then H̃∗((RP∞)r+) = H∗((RP∞)r) ∼= P (x1, . . . , xr) with |x1| = · · · = |xr| = 1. The
Cartan formula implies:

Lemma 3.8. The Steenrod operations in H∗((RP∞)r) = P (x1, . . . , xr) are given by

Sqk(xn1
1 · · ·xnr

r ) =
∑

i1+···+ir=k

(
n1
i1

)
· · ·

(
nr
ir

)
xn1+i1
1 · · ·xnr+ir

r .
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Using this, it is matter of algebra to check that the Adem relations hold for the Steenrod squares in
P (x1, . . . , xr), in the sense that for a < 2b the action of Sqa ◦ Sqb equals the sum over j of the actions
of

(
b−1−j
a−2j

)
Sqa+b−j ◦ Sqj .

Definition 3.9. Let the mod 2 Steenrod algebra, A = A (2), be the graded, unital, associative F2-
algebra generated by the symbols Sqi for i ≥ 0, subject to the relation Sq0 = 1 and the Adem relations
SqaSqb =

∑
j

(
b−1−j
a−2j

)
Sqa+b−jSqj for all a < 2b.

For any based space X, the reduced cohomology H̃∗(X) is naturally a left module over the Steenrod
algebra, i.e., an A -module, with SqI(x) = Sqi1(. . . Sqi`(x) . . . ). We write

λ : A ⊗ H̃∗(X) −→ H̃∗(X)

for the left module action map.

Definition 3.10. For each sequence I = (i1, . . . , i`) of non-negative integers, with ` ≥ 0, let SqI =
Sqi1 . . . Sqi` be the product in A = A (2). We say that I has length ` and degree i1 + · · ·+ i`. We say
that I (or SqI) is admissible if is ≥ 2is+1 for all 1 ≤ s < ` and i` ≥ 1. The empty sequence I = () is
admissible, with length ` = 0, and Sq() = 1.

The admissible monomials of degree ≤ 11 are Sq() = 1 in degree 0, and:

(1) Sq1

(2) Sq2

(3) Sq3, Sq2Sq1

(4) Sq4, Sq3Sq1

(5) Sq5, Sq4Sq1

(6) Sq6, Sq5Sq1, Sq4Sq2

(7) Sq7, Sq6Sq1, Sq5Sq2, Sq4Sq2Sq1

(8) Sq8, Sq7Sq1, Sq6Sq2, Sq5Sq2Sq1

(9) Sq9, Sq8Sq1, Sq7Sq2, Sq6Sq3, Sq6Sq2Sq1

(10) Sq10, Sq9Sq1, Sq8Sq2, Sq7Sq3, Sq7Sq2Sq1, Sq6Sq3Sq1

(11) Sq11, Sq10Sq1, Sq9Sq2, Sq8Sq3, Sq8Sq2Sq1, Sq7Sq3Sq1

Theorem 3.11. The admissible monomials form a vector space basis for the Steenrod algebra:

A = F2{SqI | I is admissible} .

See Steenrod and Epstein (1962) Theorem I.3.1.
The Adem relations imply that any inadmissible SqI can be written as a sum of admissible monomials,

so the admissible SqI generate A . To prove that they are linearly independent, one uses the fact that
the Adem relations hold for the Steenrod operations on H∗((RP∞)r) = P (x1, . . . , xr), so that there is a
pairing

A ⊗ P (x1, . . . , xr) −→ P (x1, . . . , xr)

making P (x1, . . . , xr) a graded, left A -module. The action on the product wr = x1 · · ·xr ∈ Hr((RP∞)r)
is particularly useful. This is the top Stiefel–Whitney class of the canonical r-dimensional vector bundle
over (RP∞)r. It defines a homomorphism

A −→ P (x1, . . . , xr)

of degree r, taking SqI to Sqi1(. . . Sqi`(wr) . . . ). It can be checked that this homomorphism takes the
admissible monomials SqI of degree ≤ r to linearly independent elements in P (x1, . . . , xr) (in degrees
r ≤ ∗ ≤ 2r). Letting r grow to infinity, this implies that the admissible SqI are independent.
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Corollary 3.12. The homomorphism A → P (x1, . . . , xr), taking Sq
I to SqI(wr) for wr = x1 · · ·xr, is

injective in degrees ≤ r (in the source).

Hence, in order to verify a formula in A in degrees ≤ r, it suffices to establish this formula for the
action on wr in H∗((RP∞)r). This gives one way to verify the Adem relations.

Definition 3.13. The Steenrod algebra is connected as a graded algebra, in the sense that it is zero
in negative degrees and the unit map η : F2 → A is an isomorphism in degree zero. Let ε : A → F2

be the augmentation, such that εη = 1, and let I(A ) = ker(ε) be the augmentation ideal, i.e., the
positive-degree part of A . The decomposable part of A is the image I(A )2 of I(A ) ⊗ I(A ) under
the algebra multiplication φ : A ⊗ A → A , and the vector space Q(A ) = I(A )/I(A )2 is the set of
indecomposables in A .

Theorem 3.14. Sqk is decomposable if and only if k is not a power of 2. Hence the elements Sq2
i

for
i ≥ 0 (i.e., Sq1, Sq2, Sq4, Sq8, . . . ) generate A as an algebra.

See Steenrod–Epstein (1962) section I.4.
The Adem relation (

b− 1

a

)
Sqa+b = SqaSqb +

[a/2]∑
j=1

(
b− 1− j
a− 2j

)
Sqa+b−jSqj

for 0 < a < 2b shows that Sqa+b is decomposable if
(
b−1
a

)
≡ 1 mod 2. If k is not a power of 2 then

k = a + b with 0 < a < 2i and b = 2i. Then b − 1 = 1 + 2 + · · · + 2i−1, so
(
b−1
a

)
≡ 1 mod 2 by the

following lemma:

Lemma 3.15. Let a = a0 + a12 + · · ·+ a`2
` and b = b0 + b12 + · · ·+ b`2

` with 0 ≤ as, bs ≤ 1. Then(
b

a

)
≡

∏̀
s=0

(
bs
as

)
mod 2 .

For the converse, suppose that Sq2
i

=
∑2i−1
j=1 mjSq

j is decomposable, where each mj ∈ I(A ).

Consider the action on x2
i

in H∗(RP∞) = P (x). On one hand, Sqj(x2
i

) =
(
2i

j

)
xj+2i = 0 for 0 < j < 2i,

while Sq2
i

(x2
i

) = x2
i+1 6= 0. This leads to a contradiction.

Now let p be odd.

Definition 3.16. Let the mod p Steenrod algebra, A = A (p), be the graded, unital, associative
Fp-algebra generated by the symbols P i of degree 2i(p− 1) for i ≥ 0, and β of degree 1, subject to the
relations P 0 = 1, β2 = 0 and the Adem relations.

Definition 3.17. For each sequence I = (ε0, i1, ε1, . . . , i`, ε`, 0, 0, . . . ) of non-negative integers, with
εs ≤ 1, let P I = βε0P i1βε1 . . . P i`βε` be the product in A (p). We say that I is admissible if is ≥ εs+pis+1

for all s ≥ 1.

Theorem 3.18. The admissible monomials P I form a basis for the Steenrod algebra:

A (p) = Fp{P I | I admissible} .

See Steenrod and Epstein (1962) Theorem VI.2.5.

Theorem 3.19. P k is decomposable if and only if k is not a power of p. Hence the elements β and P p
i

for i ≥ 0 generate A (p) as an algebra.
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3.4 Eilenberg–MacLane spectra

Definition 3.20. Let H = {n 7→ Hn} be the mod 2 Eilenberg–MacLane spectrum. The structure maps

ΣHn → Hn+1 are left adjoint to the homotopy equivalences Hn
'−→ ΩHn+1, for all n ≥ 0.

Proposition 3.21 (Whitehead). There are natural isomorphisms Hn(Y ) ∼= πn(H ∧ Y ) = [Sn,H ∧ Y ]
and Hn(Y ) ∼= π−nF (Y,H) = [Y,ΣnH] for all spectra Y and integers n.

The composite RP∞ × · · · × RP∞ → H1 ∧ · · · ∧H1 → Hr induces a homomorphism in cohomology
that takes the universal class ιr ∈ H̃r(Hr) to wr.

Proposition 3.22 (Serre). The homomorphism

ΣrA −→ H̃∗(Hr) ,

taking ΣrSqI to SqI(ιr), induces an isomorphism in degrees ∗ ≤ 2r.

Corollary 3.23. There is an isomorphism

A
∼=−→ H∗(H) = [H,H]−∗

of graded F2-algebras, taking each Sqi to its representing map H → ΣiH.

This shows that the Steenrod operations account for all stable mod 2 cohomology operations. The
mod 2 cohomology of any spectrum Y is a left A -module, and the module action map

λ : A ⊗H∗(Y ) −→ H∗(Y )

can be written as the composition pairing

[H,H]∗ ⊗ [Y,H]∗ −→ [Y,H]∗

taking Sqi : H → ΣiH and x : Y → ΣnH to Σn(Sqi) ◦ x : Y → Σn+iH.
The mod 2 reduction h1 of the Hurewicz homomorphism is the composite

π∗(Y )
h−→ H∗(Y ;Z) −→ H∗(Y ) .

The adjoint
ρ : H∗(Y ) −→ Hom(H∗(Y ),F2)

to the Kronecker pairing is an isomorphism when H∗(Y ) is of finite type, i.e., if Hn(Y ) = Hn(Y ;F2) is
finite-dimensional (= finite) for each integer n. The composite

ρ ◦ h1 : π∗(Y ) −→ Hom(H∗(Y ),F2)

is the homomorphism taking the homotopy class of a map f : Sn → Y to the induced homomorphism
f∗ : H∗(Y )→ H̃∗(Sn) ∼= ΣnF2. By naturality of the Steenrod operations, the homomorphism f∗ is one
of left A -modules, so that ρ ◦ h1 factors as a homomorphism

d : π∗(Y ) −→ HomA (H∗(Y ),F2)

followed by the inclusion HomA (H∗(Y ),F2) ⊂ Hom(H∗(Y ),F2). More generally, there is a homomor-
phism

d : [X,Y ] −→ HomA (H∗(Y ),H∗(X))

(the cohomology d-invariant) taking the homotopy class of f : X → Y to the induced A -module homo-
morphism f∗ : H∗(Y )→ H∗(X).

Lemma 3.24. When Y = ΣnH, for any integer n, the homomorphism

d : π∗(Σ
nH)

∼=−→ HomA (H∗(ΣnH),F2)

is an isomorphism. More generally, there is an isomorphism

d : [X,ΣnH]
∼=−→ HomA (H∗(ΣnH),H∗(X))

for any spectrum X.
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Proof. There is a class ιn ∈ Hn(ΣnH), with ιn = Σnι0, such that [f ] 7→ f∗(ιn) defines an isomorphism
[X,ΣnH] ∼= Hn(X). Since H∗(ΣnH) = ΣnA is the free A -module generated by ιn, the correspondence
f∗ 7→ f∗(ιn) defines another isomorphism HomA (H∗(ΣnH),H∗(X)) ∼= Hn(X). Thus d : [f ] 7→ f∗ is
also an isomorphism.

Definition 3.25. We say that a spectrum Y is bounded below if π∗(Y ) is bounded below, i.e., if there
exists an integer N such that πn(Y ) = 0 for n < N .

Lemma 3.26. Suppose that K =
∨
u Σ

nuH is a wedge sum of suspended Eilenberg–MacLane spectra,
such that {u | nu ≤ N} is finite for each integer N .

Then the canonical map
∨
u Σ

nuH →
∏
u Σ

nuH is a stable equivalence, and

d : π∗(K)
∼=−→ HomA (H∗(K),F2)

is an isomorphism. More generally, there is an isomorphism

d : [X,K]
∼=−→ HomA (H∗(K),H∗(X))

for any spectrum X.

Proof. The finiteness hypothesis is equivalent to asking that π∗(K) is bounded below and H∗(K) is of
finite type. It implies that the canonical map

∨
u Σ

nuH →
∏
u Σ

nuH is a weak equivalence, since the
induced map in homotopy is the isomorphism

⊕
u Σ

nuF2 →
∏
u Σ

nuF2. We deduce that

H∗(K) ∼=
∏
u

ΣnuA ∼=
⊕
u

ΣnuA ∼=
⊕
u

H∗(ΣnuH)

is a free A -module, so

[X,K] ∼= [X,
∏
u

ΣnuH] ∼=
∏
u

[X,ΣnuH]

and

HomA (H∗(K),H∗(X)) ∼=
∏
u

HomA (ΣnuA ,H∗(X)) ∼=
∏
u

HomA (H∗(ΣnuH),H∗(X)) .

Hence d for K is the product of the isomorphisms d for the summands/factors ΣnuH, and is therefore
an isomorphism.

The pairings φ : Hm ∧ Hn → Hm+n (representing the cup product ιm ∪ ιn, or more precisely, its
reduced version ιm ∧ ιn) combine to a map φ : H ∧ H → H of spectra. Together with the unit map
η : S → H coming from the maps Sn → Hn (representing the generator of H̃n(Sn)), these make H a
homotopy commutative ring spectrum. In fact it is a homotopy everything ring spectrum, i.e., an E∞
ring spectrum.

Lemma 3.27. Let Y be bounded below with H∗(Y ) = F2{αu}u of finite type. Let {au}u be the dual
basis for H∗(Y ), with |au| = |αu| = nu. Let αu : S

nu → H ∧ Y and au : Y → ΣnuH be the representing
maps. Then the sum of the composites (φ∧1)(1∧αu) : ΣnuH → H ∧Y and the product of the composites
(φ ∧ 1)(1 ∧ au) : H ∧ Y → ΣnuY are stable equivalences∨

u

ΣnuH
'−→ H ∧ Y '−→

∏
u

ΣnuH .

Corollary 3.28. Let j : Y → K be a map of spectra, where K =
∨
u Σ

nuH and {u | nu ≤ N} is finite for
each N , and suppose that j∗ : H∗(K)→ H∗(Y ) is surjective. Then a map f : X → Y of spectra induces
the zero homomorphism f∗ : H∗(Y )→ H∗(X) if and only if the composite jf : X → K is null-homotopic.

Proof. We have an isomorphism d : [X,K] ∼= HomA (H∗(K),H∗(X)) taking jf to f∗j∗, and an injective
homomorphism HomA (H∗(Y ),H∗(X)) � HomA (H∗(K),H∗(X)) taking f∗ to f∗j∗, so [jf ] = 0 if and
only if f∗ = 0.
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The corollary tells us that in the diagram

X
f−→ Y

j−→ K

the map f induces the zero map in cohomology, if and only if the composite jf is null-homotopic. By
the lemma above, the unit map η : S → H induces a map j : Y = S ∧Y → H ∧Y ' K, where K has the
properties of the corollary when Y is bounded below with H∗(Y ) of finite type. Furthermore, the map
j∗ : H∗(Y )→ H∗(K) is split injective, since it is the homomorphism of homotopy groups represented by
the map

1 ∧ η ∧ 1: H ∧ Y ∼= H ∧ S ∧ Y −→ H ∧H ∧H

which admits the retraction φ∧1. By the universal coefficient theorem, j∗ : H∗(K)→ H∗(Y ) is surjective.
Hence, under these hypotheses on Y we can use the diagram

X
f−→ Y

j−→ H ∧ Y

with j = η ∧ 1 to interpret the vanishing of f∗ in homotopical terms.

4 The Adams spectral sequence

We follow Bruner’s Adams spectral sequence primer. We continue working at p = 2, using the abbrevi-
ations H∗(Y ) = H∗(Y ;F2) and H

∗(Y ) = H∗(Y ;F2).

4.1 Adams resolutions

Definition 4.1. Let Y be a spectrum with π∗(Y ) bounded below and H∗(Y ) = H∗(Y ;F2) of finite type.
An Adams resolution of Y is a diagram of spectra

. . . // Y 2 i //

j

��

Y 1 i //

j

��

Y 0

j

��

Y

K2

∂

aa

K1

∂

aa

K0

∂

aa

where Y s+1 i−→ Y s
j−→ Ks ∂−→ ΣY s+1 is a cofiber sequence, for each s ≥ 0, such that (a) each Ks is

a wedge sum of suspended mod 2 Eilenberg–MacLane spectra that is bounded below and of finite type,
and (b) each homomorphism j∗ : H∗(Ks)→ H∗(Y s) is surjective.

Writing Ks '
∨
u Σ

nuH, the finiteness condition in (a) is the same as asking that {u | nu ≤ N} is
finite for each integer N . By induction on s it implies that each Y s is bounded below with H∗(Y

s) of
finite type. In view of the long exact sequence

· · · → H∗−1(Y s+1)
∂∗

−→ H∗(Ks)
j∗−→ H∗(Y s)

i∗−→ H∗(Y s+1)→ . . .

the condition that j∗ is surjective is equivalent to asking that i∗ = 0 or that ∂∗ is injective. ((Also
homological interpretation, by the universal coefficient theorem.))

Lemma 4.2. Adams resolutions exist.

Proof. Suppose that Y s has been constructed, with π∗(Y
s) bounded below and H∗(Y

s) of finite type.
Let Ks = H ∧ Y s and let j = 1 ∧ η : Y s = S ∧ Y s → H ∧ Y s = Ks. Then Ks is a wedge sum
of Eilenberg–MacLane spectra, bounded below and of finite type, and j∗ is surjective. Let Y s+1 =
hofib(j : Y s → Ks) be the homotopy fiber. Then π∗(Y

s+1) is bounded below by the long exact sequence
in homotopy, and H∗(Y

s+1) is of finite type by the long exact sequence in mod 2 homology. Continue
by induction.
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Let H̄ be the cofiber of the unit map η : S → H, so that there is a cofiber sequence

Σ−1H̄ −→ S
η−→ H −→ H̄

The unit map induces the augmentation ε : A → F2 in cohomology, so H∗(H̄) = I(A ) = ker(ε) is the
augmentation ideal.

Smashing with Y s we get the cofiber sequence

Σ−1H̄ ∧ Y s i−→ Y s
j−→ H ∧ Y s ∂−→ H̄ ∧ Y s

so that the construction in the proof above gives Ks = H ∧ Y s and Y s+1 = Σ−1H̄ ∧ Y s.

Definition 4.3. The canonical Adams resolution of Y is the diagram

. . . // (Σ−1H̄)∧2 ∧ Y i //

j

��

Σ−1H̄ ∧ Y i //

j

��

Y

j

��

H ∧ (Σ−1H̄)∧2 ∧ Y
∂

gg

H ∧ Σ−1H̄ ∧ Y
∂

ii

H ∧ Y
∂

gg

where

Y s = (Σ−1H̄)∧s ∧ Y
Ks = H ∧ (Σ−1H̄)∧s ∧ Y

and i, j and ∂ are induced by Σ−1H̄ → S, η : S → H and H → H̄, respectively. We note that the
canonical resolution is natural in Y .

Lemma 4.4. For any Adams resolution, let

Ps = H∗(ΣsKs)

∂s = ∂∗j∗ : H∗(ΣsKs)→ H∗(Σs−1Ks−1)

and ε = j∗ : H∗(K0)→ H∗(Y ). Then the diagram

· · · → Ps
∂s−→ Ps−1 → · · · → P1

∂1−→ P0
ε−→ H∗(Y )→ 0

is a resolution of H∗(Y ) by free A -modules, each of which is bounded below of finite type.

The homomorphisms ∂s and ε all preserve the cohomological grading of H∗(Y ) and Ps, which is
called the internal grading and usually denoted by t.

Proof. By assumption (a) each j∗ is surjective, so each i∗ is zero and the long exact sequences in
cohomology break up into short exact sequences

0→ H∗(Σs+1Y s+1)
∂∗

−→ H∗(ΣsKs)
j∗−→ H∗(ΣsY s)→ 0

for all s ≥ 0. These splice together to a long exact sequence

. . .
$$

∂∗

$$

H∗(Σ2Y 2)
&&

∂∗

&&

H∗(ΣY 1)
%%

∂∗

%%

H∗(Y )

. . . // H∗(Σ2Ks)

j∗
88 88

∂2 // H∗(ΣK1)

j∗
88 88

∂1 // H∗(K0)

j∗
99 99

along the lower edge of this diagram of A -modules. By assumption (b), each H∗(Ks) is a free A -module.
Hence ε : P∗ → H∗(Y ) is a free resolution of the A -module H∗(Y ).
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The Adams resolution {Y s}s is called a realization of the free resolution {Ps}s of H∗(Y ). The
resolution is induced by passage to cohomology from the diagram

. . . Σ2K2j∂
oo ΣK1j∂

oo K0j∂
oo Y

j
oo

where each composite of two maps is null-homotopic. In the case of the canonical resolution this diagram
appears as follows:

. . . H ∧ (H̄)∧2 ∧ Y
j∂
oo H ∧ H̄ ∧ Y

j∂
oo H ∧ Y

j∂
oo Y

j
oo

The associated free resolution has the form

· · · → A ⊗ I(A )⊗2 ⊗H∗(Y )
∂2−→ A ⊗ I(A )⊗H∗(Y )

∂1−→ A ⊗H∗(Y )
ε−→ H∗(Y )→ 0 ,

where A = H∗(H), and I(A ) = H∗(H̄) is the augmentation ideal. We shall return to this complex
later, in the context of the bar resolution.

4.2 The Adams E2-term

We follows Adams (1958), using the spectrum level reformulation that appears in Moss (1968).
Let Y be a spectrum such that π∗(Y ) is bounded below and H∗(Y ) = H∗(Y ;F2) is of finite type.

Consider any Adams resolution

. . . // Y 2 i //

j

��

Y 1 i //

j

��

Y 0

j

��

Y

K2

∂

aa

K1

∂

aa

K0

∂

aa

of Y . Applying homotopy groups, we get an unrolled exact couple of Adams type

. . . // π∗(Y
2)

i∗ //

j∗

��

π∗(Y
1)

i∗ //

j∗

��

π∗(Y
0)

j∗

��

π∗(Y )

π∗(K
2)

∂∗

bb

π∗(K
1)

∂∗

dd

π∗(K
0)

∂∗

dd

where As = π∗(Y
s), Es = π∗(K

s) are graded abelian groups, i∗ and j∗ have degree 0, and ∂∗ has
degree −1. There is an associated spectral sequence of Adams type

{Er = E∗,∗
r , dr = d∗,∗r }r

with
Es,t1 = πt−s(K

s)

and
ds,t1 = (j∂)∗ : πt−s(K

s)→ πt−s−1(K
s+1) .

The dr-differentials have bidegree (r, r−1). This is the Adams spectral sequence of Y , sometimes denotes
{Er(Y ) = E∗,∗

r (Y )}r. The expected abutment is the graded abelian group G = π∗(Y ), filtered by the
image groups F s = im(is∗ : π∗(Y

s)→ π∗(Y )).
((NOTE: Explain “expected abutment”. Do we mean that there are isomorphisms F s/F s+1 ∼= Es∞,

but that the filtration might not be complete Hausdorff and/or exhaustive? If so, discuss this in the
section on convergence.))

Definition 4.5. An element in Es,tr is said to be of filtration s, total degree t− s and internal degree t.
An element in F s ⊂ π∗(Y ) is said to be of Adams filtration ≥ s.

A class in π∗(Y ) has Adams filtration 0 if it is detected by the d-invariant in π∗(K
0), i.e., if it has

non-zero mod 2 Hurewicz image. If the Hurewicz image is zero, then the class lifts to π∗(Y
1). Then

it has Adams filtration 1 if the lift is detected in π∗(K
1), i.e., if the lift has non-zero mod 2 Hurewicz

image. If also that Hurewicz image is zero, then the class lifts to π∗(Y
2). And so on.
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Theorem 4.6. The E2-term of the Adams spectral sequence of Y is

Es,t2 = Exts,tA (H∗(Y ),F2) .

In particular, it is independent of the choice of Adams resolution.

Proof. The Adams E1-term and d1-differential is the complex

. . . π∗(Σ
2K2)oo π∗(ΣK

1)
(j∂)∗
oo π∗(K

0)
(j∂)∗
oo 0oo

of graded abelian groups. It maps isomorphically, under the d-invariant π∗(K) → HomA (H∗(K),F2),
to the complex

. . . HomA (H∗(Σ2K2),F2)oo HomA (H∗(ΣK1),F2)
((j∂)∗)∗
oo HomA (H∗(K0),F2)

((j∂)∗)∗
oo 0oo

where ((j∂)∗)∗ = HomA ((j∂)∗, 1). With the notation of the previous subsection, this complex can be
rewritten as

. . . HomA (P2,F2)oo HomA (P1,F2)
∂∗
2oo HomA (P0,F2)

∂∗
1oo 0 .oo

This is the complex HomA (P∗,F2) obtained by applying the functor HomA (−,F2) to the resolution
ε : P∗ → H∗(Y ) of H∗(Y ) by free A -modules. Its cohomology groups are by definition, the Ext-groups

ExtsA (H∗(Y ),F2) = Hs(HomA (P∗,F2)) .

At the same time, the cohomology of the E1-term of a spectral sequence is the E2-term. Hence

Es2
∼= ExtsA (H∗(Y ),F2) .

As regards the internal grading, Es,t1 = πt−s(K
s) ∼= πt(Σ

sKs) corresponds to the A -module homo-
morphisms H∗(ΣsKs) → ΣtF2. This is the same as the A -module homomorphisms H∗(ΣsKs) →
F2 that lower the cohomological degrees by t. We denote the group of these homomorphisms by
Homt

A (H∗(ΣsKs),F2) = Homt
A (Ps,F2), and similarly for the derived functors. With these conven-

tions, Es,t2
∼= Exts,tA (H∗(Y ),F2), as asserted.

We are particularly interested in the special case Y = S, with H∗(S) = F2 and π∗(S) = πS∗ equal to
the stable homotopy groups of spheres.

Theorem 4.7. The Adams spectral sequence for S has E2-term

Es,t2 = Exts,tA (F2,F2) .

On the other hand, we can also generalize (following Brinkmann (1968)). Let X be any spectrum
and apply the functor [X,−]∗ to an Adams resolution of Y . This yields an unrolled exact couple

. . . // [X,Y 2]∗
i∗ //

j∗

��

[X,Y 1]∗
i∗ //

j∗

��

[X,Y 0]∗

j∗

��

[X,Y ]∗

[X,K2]∗

∂∗

cc

[X,K1]∗

∂∗

ee

[X,K0]∗

∂∗

ee

where As = [X,Y s]∗, E
s = [X,Ks]∗ are graded abelian groups, i∗ and j∗ have degree 0, and ∂∗ has

degree −1. There is an associated spectral sequence with

Es,t1 = [X,Ks]t−s

and
ds,t1 = (j∂)∗ : [X,K

s]t−s → [X,Ks+1]t−s−1 .

The dr-differentials have bidegree (r, r − 1). The expected abutment is the graded abelian group G =
[X,Y ]∗, filtered by the image groups F s = im(is∗ : [X,Y

s]∗ → [X,Y ]∗).

Theorem 4.8. The Adams spectral sequence {Er(X,Y ) = E∗,∗
r (X,Y )}r of maps X → Y , with expected

abutment [X,Y ]∗, has E2-term
Es,t2 = Exts,tA (H∗(Y ),H∗(X)) .

The proof is the same as for X = S, replacing F2 by H∗(X) in the right hand argument of all HomA -
and ExtsA -groups.
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4.3 A minimal resolution

To compute the Adams E2-term for the sphere spectrum, we need to compute

Ext∗,∗A (F2,F2) = H∗,∗(HomA (P∗,F2))

for any free resolution P∗ of F2. We now construct such a free resolution by hand, in a small range of
degrees.

4.3.1 Filtration s = 0

We need a surjection ε : P0 → F2, so we let P0 = A {g0,0} be the free A -module on a single generator
g0,0 in internal degree 0. We will also use the notation g0,0 = 1. More generally, we will let gs,i denote
the i-th generator in filtration degree s, counting from i = 0 in some order of non-decreasing internal
degrees t.

4.3.2 Filtration s = 1

Next, we need a surjection ∂1 : P1 → ker(ε), where ker(ε) ∼= I(A ). An additive basis for ker(ε) is given
by the admissible monomials SqIg0,0 = SqI for I of length ≥ 1. (We listed these through degree 11 in
the subsection on admissible monomials.)

Starting in low degrees, we first need a generator g1,0 = [Sq1] in internal degree 1 that maps to Sq1.
The free summand A {g1,0} that it will generate in P1 will then map by ∂1 to all classes of the form
SqI ◦Sq1, with I admissible. In view of the Adem relation Sq1 ◦Sq1 = 0, the image consists of all classes
SqJ where J = (j1, . . . , j`) is admissible and j` = 1. See the left hand column in Table 1.

The first class not in the image from A {g1,0} is Sq2 in internal degree 2, so we must add a second
generator g1,1 = [Sq2] to P1, that maps to Sq2 under ∂1. We use the Adem relations to compute the
image SqISq2 of SqI [Sq2]. For example, Sq4Sq2Sq1 ◦ Sq2 = Sq4Sq2Sq3 = Sq4Sq5 + Sq4Sq4Sq1 =
Sq9 + Sq8Sq1 + Sq7Sq2 + Sq6Sq2Sq1 (where we omitted Sq7Sq1Sq1 = 0 at the last step). See the right
hand column in Table 1.

The images of Sq2[Sq1] and Sq1[Sq2] generate ker(ε) in internal degree 3, and Sq3Sq1 is in the
image of ∂1, but the class Sq4 is not in the image from A {g1,0, g1,1}, so we must add a third generator
g1,2 = [Sq4] to P1, mapping to Sq4 under ∂1. See the left hand column in Table 2.

All the admissible monomials in degree 1 ≤ t ≤ 7 are then in the image of ∂1, but Sq
8 is not hit.

We must therefore add a fourth generator g1,3 = [Sq8] with ∂1(g1,3) = Sq8. An inspection then reveals
that ∂1 : A {g1,0, g1,1, g1,2, g1,3} → ker(ε) is surjective in degrees t ≤ 11. See the right hand column in
Table 2.

In general, we need enough A -module generators {g1,i}i for P1 to map surjectively to the indecom-

posables Q(A ) = I(A )/I(A )2 ∼= F2{Sq2
i | i ≥ 0}. This is necessary, since if ∂1 : P1 → ker(ε) = I(A )

is surjective, then so is the composite P1 → I(A ) → Q(A ). It is also sufficient, since if P1 → I(A )
is surjective below degree t and P1 → Q(A ) is surjective in degree t, then all classes in I(A )2 of de-
gree t are in the image of P1, and any class in I(A ) of degree t is congruent modulo I(A )2 to a class

in the image of P1. The full definition of P1 is therefore P1 = A {g1,i | i ≥ 0} with g1,i = [Sq2
i

]

mapping to ∂1(g1,i) = Sq2
i

, for all i ≥ 0. Below internal degree 16 we thus have an isomorphism
P1
∼= A {g1,0, g1,1, g1,2, g1,3}. ((References to Milnor–Moore, Steenrod–Epstein?))

4.3.3 Filtration s = 2

To continue, we ignore classes in degree t > 11. We need a surjection ∂2 : P2 → ker(∂1). First we go
through the linear algebra exercise of computing an additive basis for ker(∂1). See Table 3.

The class in lowest degree in ker(δ1) is Sq
1g1,0 = Sq1[Sq1], which corresponds to the Adem relation

Sq1Sq1 = 0. We put a first generator g2,0 of degree 2 in P2, with ∂2(g2,0) = Sq1[Sq1]. See the left hand
column of Table 4.

The first class in ker(∂1) that is not in the image of ∂2 on A {g2,0} is Sq3[Sq1] + Sq2[Sq2], which
corresponds to the Adem relation Sq2Sq2 = Sq3Sq1. We add a second generator g2,1 to P2, in degree 4,
with ∂2(g2,1) = Sq3[Sq1] + Sq2[Sq2], and compute the value of ∂2(Sq

Ig2,1) = SqI(Sq3[Sq1] + Sq2[Sq2])
in ker(∂1) ⊂ P1 for each admissible I, using the Adem relations. See the right hand column of Table 4.
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g1,0 = [Sq1]
∂17−→ Sq1

Sq1[Sq1] 7−→ 0 g1,1 = [Sq2]
∂17−→ Sq2

Sq2[Sq1] 7−→ Sq2Sq1 Sq1[Sq2] 7−→ Sq3

Sq3[Sq1] 7−→ Sq3Sq1 Sq2[Sq2] 7−→ Sq3Sq1

Sq2Sq1[Sq1] 7−→ 0

Sq4[Sq1] 7−→ Sq4Sq1 Sq3[Sq2] 7−→ 0

Sq3Sq1[Sq1] 7−→ 0 Sq2Sq1[Sq2] 7−→ Sq5 + Sq4Sq1

Sq5[Sq1] 7−→ Sq5Sq1 Sq4[Sq2] 7−→ Sq4Sq2

Sq4Sq1[Sq1] 7−→ 0 Sq3Sq1[Sq2] 7−→ Sq5Sq1

Sq6[Sq1] 7−→ Sq6Sq1 Sq5[Sq2] 7−→ Sq5Sq2

Sq5Sq1[Sq1] 7−→ 0 Sq4Sq1[Sq2] 7−→ Sq5Sq2

Sq4Sq2[Sq1] 7−→ Sq4Sq2Sq1

Sq7[Sq1] 7−→ Sq7Sq1 Sq6[Sq2] 7−→ Sq6Sq2

Sq6Sq1[Sq1] 7−→ 0 Sq5Sq1[Sq2] 7−→ 0

Sq5Sq2[Sq1] 7−→ Sq5Sq2Sq1 Sq4Sq2[Sq2] 7−→ Sq5Sq2Sq1

Sq4Sq2Sq1[Sq1] 7−→ 0

Sq8[Sq1] 7−→ Sq8Sq1 Sq7[Sq2] 7−→ Sq7Sq2

Sq7Sq1[Sq1] 7−→ 0 Sq6Sq1[Sq2] 7−→ Sq6Sq3

Sq6Sq2[Sq1] 7−→ Sq6Sq2Sq1 Sq5Sq2[Sq2] 7−→ 0

Sq5Sq2Sq1[Sq1] 7−→ 0 Sq4Sq2Sq1[Sq2] 7−→ Sq9 + Sq8Sq1 + Sq7Sq2 + Sq6Sq2Sq1

Sq9[Sq1] 7−→ Sq9Sq1 Sq8[Sq2] 7−→ Sq8Sq2

Sq8Sq1[Sq1] 7−→ 0 Sq7Sq1[Sq2] 7−→ Sq7Sq3

Sq7Sq2[Sq1] 7−→ Sq7Sq2Sq1 Sq6Sq2[Sq2] 7−→ Sq6Sq3Sq1

Sq6Sq3[Sq1] 7−→ Sq6Sq3Sq1 Sq5Sq2Sq1[Sq2] 7−→ Sq9Sq1 + Sq7Sq2Sq1

Sq6Sq2Sq1[Sq1] 7−→ 0

Sq10[Sq1] 7−→ Sq10Sq1 Sq9[Sq2] 7−→ Sq9Sq2

Sq9Sq1[Sq1] 7−→ 0 Sq8Sq1[Sq2] 7−→ Sq8Sq3

Sq8Sq2[Sq1] 7−→ Sq8Sq2Sq1 Sq7Sq2[Sq2] 7−→ Sq7Sq3Sq1

Sq7Sq3[Sq1] 7−→ Sq7Sq3Sq1 Sq6Sq3[Sq2] 7−→ 0

Sq7Sq2Sq1[Sq1] 7−→ 0 Sq6Sq2Sq1[Sq2] 7−→ Sq9Sq2 + Sq8Sq3 + Sq7Sq3Sq1

Table 1: ∂1 on A {g1,0, g1,1} ⊂ P1

30



g1,2 = [Sq4]
∂17−→ Sq4

Sq1[Sq4] 7−→ Sq5

Sq2[Sq4] 7−→ Sq6 + Sq5Sq1

Sq3[Sq4] 7−→ Sq7

Sq2Sq1[Sq4] 7−→ Sq6Sq1

Sq4[Sq4] 7−→ Sq7Sq1 + Sq6Sq2 g1,3 = [Sq8]
∂17−→ Sq8

Sq3Sq1[Sq4] 7−→ Sq7Sq1

Sq5[Sq4] 7−→ Sq7Sq2 Sq1[Sq8] 7−→ Sq9

Sq4Sq1[Sq4] 7−→ Sq9 + Sq8Sq1 + Sq7Sq2

Sq6[Sq4] 7−→ Sq7Sq3 Sq2[Sq8] 7−→ Sq10 + Sq9Sq1

Sq5Sq1[Sq4] 7−→ Sq9Sq1

Sq4Sq2[Sq4] 7−→ Sq10 + Sq9Sq1 + Sq8Sq2 + Sq7Sq2Sq1

Sq7[Sq4] 7−→ 0 Sq3[Sq8] 7−→ Sq11

Sq6Sq1[Sq4] 7−→ Sq9Sq2 + Sq8Sq3 Sq2Sq1[Sq8] 7−→ Sq10Sq1

Sq5Sq2[Sq4] 7−→ Sq11 + Sq9Sq2

Sq4Sq2Sq1[Sq4] 7−→ Sq10Sq1 + Sq8Sq2Sq1

Table 2: ∂1 on A {g1,2, g1,3} ⊂ P1

The lowest degree class not in the image of ∂2 on A {g2,0, g2,1} ⊂ P2 is Sq4[Sq1] + Sq2Sq1[Sq2] +
Sq1[Sq4], in degree 5. It corresponds to the Adem relation Sq2Sq3 = Sq5 + Sq4Sq1, in view of the
identities Sq1Sq2 = Sq3 and Sq1Sq4 = Sq5. We add a third generator g2,2 to P2, with ∂2(g2,2) =
Sq4[Sq1] + Sq2Sq1[Sq2] + Sq1[Sq4], and compute ∂2(Sq

Ig2,2), as before. See Table 5.
The first class in ker(∂1) not in the image of ∂2 on A {g2,0, g2,1, g2,2} is Sq7[Sq1]+Sq6[Sq2]+Sq4[Sq4].

We add a fourth generator g2,3 to P2 in degree 8, corresponding to the Adem relation Sq4Sq4 = Sq7Sq1+
Sq6Sq2, and let ∂2(g2,3) = Sq7[Sq1] + Sq6[Sq2] + Sq4[Sq4].

g2,3
∂27−→ Sq7[Sq1] + Sq6[Sq2] + Sq4[Sq4]

Sq1g2,3 7−→ Sq7[Sq2] + Sq5[Sq4]

Sq2g2,3 7−→ (Sq9 + Sq8Sq1)[Sq1] + Sq7Sq1[Sq2] + (Sq6 + Sq5Sq1)[Sq4]

Sq3g2,3 7−→ Sq9Sq1[Sq1] + Sq7[Sq4]

Sq2Sq1g2,3 7−→ (Sq9 + Sq8Sq1)[Sq2] + Sq6Sq1[Sq4]

This still leaves Sq8[Sq1] + Sq7[Sq2] + Sq4Sq1[Sq4] + Sq1[Sq8] not in the image of ∂2, so we add a fifth
generator g2,4 in degree 9, corresponding to the Adem relation Sq4Sq5 = Sq9 + Sq8Sq1 + Sq7Sq2, and
let ∂2(g2,4) = Sq8[Sq1] + Sq7[Sq2] + Sq4Sq1[Sq4] + Sq1[Sq8].

g2,4
∂27−→ Sq8[Sq1] + Sq7[Sq2] + Sq4Sq1[Sq4] + Sq1[Sq8]

Sq1g2,4 7−→ Sq9[Sq1] + Sq5Sq1[Sq4]

Sq2g2,4 7−→ (Sq10 + Sq9Sq1)[Sq1] + (Sq9 + Sq8Sq1)[Sq2] + Sq6Sq1[Sq4] + Sq2Sq1[Sq8]

Finally we need a sixth generator, g2,5 in degree 10, mapping to Sq7Sq2[Sq1]+Sq8[Sq2]+Sq4Sq2[Sq4]+
Sq2[Sq8]. It derives from the Adem relations for Sq2Sq8 and for Sq4Sq6, using the Adem relation for
Sq2Sq4. ((Can we pick a different generator that corresponds to just a single Adem relation?))

g2,5
∂27−→ Sq7Sq2[Sq1] + Sq8[Sq2] + Sq4Sq2[Sq4] + Sq2[Sq8]

Sq1g2,5 7−→ Sq9[Sq2] + Sq5Sq2[Sq4] + Sq3[Sq8]
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Sq1[Sq1] Sq8Sq1[Sq1]

Sq2Sq1[Sq1] Sq6Sq2Sq1[Sq1]

Sq3[Sq1] + Sq2[Sq2] Sq6Sq3[Sq1] + Sq6Sq2[Sq2]

Sq3Sq1[Sq1] (Sq9 + Sq7Sq2)[Sq1] + Sq5Sq2Sq1[Sq2]

Sq3[Sq2] Sq7Sq1[Sq2] + Sq6[Sq4]

Sq4[Sq1] + Sq2Sq1[Sq2] + Sq1[Sq4] Sq9[Sq1] + Sq5Sq1[Sq4]

Sq4Sq1[Sq1] Sq7Sq2[Sq1] + Sq8[Sq2] + Sq4Sq2[Sq4] + Sq2[Sq8]

Sq5[Sq1] + Sq3Sq1[Sq2] Sq7Sq2[Sq1] + Sq8[Sq2] + Sq4Sq2[Sq4] + Sq2[Sq8]

Sq5Sq1[Sq1] Sq9Sq1[Sq1]

(Sq5 + Sq4Sq1)[Sq2] Sq7Sq2Sq1[Sq1]

Sq6[Sq1] + Sq2Sq1[Sq4] Sq6Sq3Sq1[Sq1]

Sq6Sq1[Sq1] Sq7Sq3[Sq1] + Sq7Sq2[Sq2]

Sq4Sq2Sq1[Sq1] Sq6Sq3[Sq2]

Sq5Sq1[Sq2] Sq7Sq3[Sq1] + (Sq9 + Sq8Sq1 + Sq6Sq2Sq1)[Sq2]

Sq5Sq2[Sq1] + Sq4Sq2[Sq2] Sq7[Sq4]

Sq7[Sq1] + Sq6[Sq2] + Sq4[Sq4] (Sq9 + Sq8Sq1)[Sq2] + Sq6Sq1[Sq4]

Sq7[Sq1] + Sq3Sq1[Sq4] (Sq10 + Sq8Sq2)[Sq1] + Sq4Sq2Sq1[Sq4]

Sq7Sq1[Sq1] Sq9[Sq2] + Sq5Sq2[Sq4] + Sq3[Sq8]

Sq5Sq2Sq1[Sq1] Sq10[Sq1] + Sq2Sq1[Sq8]

Sq5Sq2[Sq2]

Sq7[Sq2] + Sq5[Sq4]

Sq6Sq2[Sq1] + Sq4Sq2Sq1[Sq2] + Sq4Sq1[Sq4]

Sq8[Sq1] + Sq7[Sq2] + Sq4Sq1[Sq4] + Sq1[Sq8]

Table 3: A basis for ker(∂1) in degrees ≤ 11
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g2,0
∂27−→ Sq1[Sq1]

Sq1g2,0 7−→ 0

Sq2g2,0 7−→ Sq2Sq1[Sq1] g2,1
∂27−→ Sq3[Sq1] + Sq2[Sq2]

Sq3g2,0 7−→ Sq3Sq1[Sq1] Sq1g2,1 7−→ Sq3[Sq2]

Sq2Sq1g2,0 7−→ 0

Sq4g2,0 7−→ Sq4Sq1[Sq1] Sq2g2,1 7−→ (Sq5 + Sq4Sq1)[Sq1] + Sq3Sq1[Sq2]

Sq3Sq1g2,0 7−→ 0

Sq5g2,0 7−→ Sq5Sq1[Sq1] Sq3g2,1 7−→ Sq5Sq1[Sq1]

Sq4Sq1g2,0 7−→ 0 Sq2Sq1g2,1 7−→ (Sq5 + Sq4Sq1)[Sq2]

Sq6g2,0 7−→ Sq6Sq1[Sq1] Sq4g2,1 7−→ Sq5Sq2[Sq1] + Sq4Sq2[Sq2]

Sq5Sq1g2,0 7−→ 0 Sq3Sq1g2,1 7−→ Sq5Sq1[Sq2]

Sq4Sq2g2,0 7−→ Sq4Sq2Sq1[Sq1]

Sq7g2,0 7−→ Sq7Sq1[Sq1] Sq5g2,1 7−→ Sq5Sq2[Sq2]

Sq6Sq1g2,0 7−→ 0 Sq4Sq1g2,1 7−→ Sq5Sq2[Sq2]

Sq5Sq2g2,0 7−→ Sq5Sq2Sq1[Sq1]

Sq4Sq2Sq1g2,0 7−→ 0

Sq8g2,0 7−→ Sq8Sq1[Sq1] Sq6g2,1 7−→ Sq6Sq3[Sq1] + Sq6Sq2[Sq2]

Sq7Sq1g2,0 7−→ 0 Sq5Sq1g2,1 7−→ 0

Sq6Sq2g2,0 7−→ Sq6Sq2Sq1[Sq1] Sq4Sq2g2,1 7−→ (Sq9 + Sq8Sq1 + Sq7Sq2 + Sq6Sq2Sq1)[Sq1]+

Sq5Sq2Sq1g2,0 7−→ 0 + Sq5Sq2Sq1[Sq2]

Sq9g2,0 7−→ Sq9Sq1[Sq1] Sq7g2,1 7−→ Sq7Sq3[Sq1] + Sq7Sq2[Sq2]

Sq8Sq1g2,0 7−→ 0 Sq6Sq1g2,1 7−→ Sq6Sq3[Sq2]

Sq7Sq2g2,0 7−→ Sq7Sq2Sq1[Sq1] Sq5Sq2g2,1 7−→ (Sq9Sq1 + Sq7Sq2Sq1)[Sq1]

Sq6Sq3g2,0 7−→ Sq6Sq3Sq1[Sq1] Sq4Sq2Sq1g2,1 7−→ (Sq9 + Sq8Sq1 + Sq7Sq2 + Sq6Sq2Sq1)[Sq2]

Sq6Sq2Sq1g2,0 7−→ 0

Table 4: ∂2 on A {g2,0, g2,1} ⊂ P2
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g2,2
∂27−→ Sq4[Sq1] + Sq2Sq1[Sq2] + Sq1[Sq4]

Sq1g2,2 7−→ Sq5[Sq1] + Sq3Sq1[Sq2]

Sq2g2,2 7−→ (Sq6 + Sq5Sq1)[Sq1] + Sq2Sq1[Sq4]

Sq3g2,2 7−→ Sq7[Sq1] + Sq3Sq1[Sq4]

Sq2Sq1g2,2 7−→ Sq6Sq1[Sq1] + Sq5Sq1[Sq2]

Sq4g2,2 7−→ (Sq7Sq1 + Sq6Sq2)[Sq1] + Sq4Sq2Sq1[Sq2] + Sq4Sq1[Sq4]

Sq3Sq1g2,2 7−→ Sq7Sq1[Sq1]

Sq5g2,2 7−→ Sq7Sq2[Sq1] + Sq5Sq2Sq1[Sq2] + Sq5Sq1[Sq4]

Sq4Sq1g2,2 7−→ (Sq9 + Sq8Sq1 + Sq7Sq2)[Sq1] + Sq5Sq2Sq1[Sq2]

Sq6g2,2 7−→ Sq7Sq3[Sq1] + Sq6Sq2Sq1[Sq2] + Sq6Sq1[Sq4]

Sq5Sq1g2,2 7−→ Sq9Sq1[Sq1]

Sq4Sq2g2,2 7−→ (Sq10 + Sq9Sq1 + Sq8Sq2 + Sq7Sq2Sq1)[Sq1] + Sq4Sq2Sq1[Sq4]

Table 5: ∂2 on A {g2,2} ⊂ P2

Now ∂2 : A {g2,0, . . . , g2,5} → ker(∂1) is surjective in degrees t ≤ 11. (In fact, it is surjective below
internal degree 16.)

4.3.4 Filtration s = 3

We carry on to filtration degree s = 3, looking for a surjection ∂3 : P3 → ker(∂2). First we must compute
a basis for ker(∂2) ⊂ P2, in our range of degrees. The result is displayed in Table 6.

As usual, the lowest degree class is Sq1g2,0, so we first put a generator g3,0 of degree 3 in P3 with
∂3(g3,0) = Sq1g2,0. The extension to A {g3,0} is given in the left hand column of Table 7.

The lowest class not in the image of this extension is ∂3(g3,1) = Sq4g2,0+Sq
2g2,1+Sq

1g2,2 in degree 6.
See the right hand column of Table 7.

After this, the only class not in the image of ∂3 on A {g3,0, g3,1} is ∂3(g3,2) = Sq8g2,0 + (Sq5 +
Sq4Sq1)g2,2 + Sq1g2,4 in degree 10:

g3,2
∂37−→ Sq8g2,0 + (Sq5 + Sq4Sq1)g2,2 + Sq1g2,4

Sq1g3,2 7−→ Sq9g2,0 + Sq5Sq1g2,2

Finally, we need a fourth generator, g3,3 in degree 11, with

g3,3
∂37−→ Sq4Sq2Sq1g2,0 + Sq6g2,2 + Sq2Sq1g2,3 .

(This generator will be particularly interesting when we get to the multiplicative structure in the Adams
E2-term.) Then ∂3 : A {g3,0, . . . , g3,3} → ker(∂2) is surjective in degrees t ≤ 11.

4.3.5 Filtration s = 4

In degrees ≤ 11 we have an additive basis

Sq1g3,0 Sq6Sq1g3,0

Sq2Sq1g3,0 Sq4Sq2Sq1g3,0

Sq3Sq1g3,0 Sq7Sq1g3,0

Sq4Sq1g3,0 Sq5Sq2Sq1g3,0

Sq5Sq1g3,0 Sq8g3,0 + (Sq5 + Sq4Sq1)g3,1 + Sq1g3,2

34



Sq1g2,0 Sq7Sq1g2,0

Sq2Sq1g2,0 Sq5Sq2Sq1g2,0

Sq3Sq1g2,0 Sq5Sq1g2,1

Sq4g2,0 + Sq2g2,1 + Sq1g2,2 Sq6Sq2g2,0 + Sq4Sq2g2,1 + Sq4Sq1g2,2

Sq4Sq1g2,0 Sq8g2,0 + (Sq5 + Sq4Sq1)g2,2 + Sq1g2,4

Sq5g2,0 + Sq3g2,1 Sq8Sq1g2,0

Sq5Sq1g2,0 Sq6Sq2Sq1g2,0

Sq6g2,0 + Sq3Sq1g2,1 + Sq2Sq1g2,2 (Sq9 + Sq7Sq2)g2,0 + Sq5Sq2g2,1

Sq6Sq1g2,0 Sq9g2,0 + Sq5Sq1g2,2

Sq4Sq2Sq1g2,0 Sq4Sq2Sq1g2,0 + Sq6g2,2 + Sq2Sq1g2,3

(Sq5 + Sq4Sq1)g2,1

Sq7g2,0 + Sq3Sq1g2,2

Table 6: A basis for ker(∂2) in degrees ≤ 11

g3,0
∂37−→ Sq1g2,0

Sq1g3,0 7−→ 0

Sq2g3,0 7−→ Sq2Sq1g2,0

Sq3g3,0 7−→ Sq3Sq1g2,0 g3,1
∂37−→ Sq4g2,0 + Sq2g2,1 + Sq1g2,2

Sq2Sq1g3,0 7−→ 0

Sq4g3,0 7−→ Sq4Sq1g2,0 Sq1g3,1 7−→ Sq5g2,0 + Sq3g2,1

Sq3Sq1g3,0 7−→ 0

Sq5g3,0 7−→ Sq5Sq1g2,0 Sq2g3,1 7−→ (Sq6 + Sq5Sq1)g2,0 + Sq3Sq1g2,1 + Sq2Sq1g2,2

Sq4Sq1g3,0 7−→ 0

Sq6g3,0 7−→ Sq6Sq1g2,0 Sq3g3,1 7−→ Sq7g2,0 + Sq3Sq1g2,2

Sq5Sq1g3,0 7−→ 0 Sq2Sq1g3,1 7−→ Sq6Sq1g2,0 + (Sq5 + Sq4Sq1)g2,1

Sq4Sq2g3,0 7−→ Sq4Sq2Sq1g2,0

Sq7g3,0 7−→ Sq7Sq1g2,0 Sq4g3,1 7−→ (Sq7Sq1 + Sq6Sq2)g2,0 + Sq4Sq2g2,1 + Sq4Sq1g2,2

Sq6Sq1g3,0 7−→ 0 Sq3Sq1g3,1 7−→ Sq7Sq1g2,0 + Sq5Sq1g2,1

Sq5Sq2g3,0 7−→ Sq5Sq2Sq1g2,0

Sq4Sq2Sq1g3,0 7−→ 0

Sq8g3,0 7−→ Sq8Sq1g2,0 Sq5g3,1 7−→ Sq7Sq2g2,0 + Sq5Sq2g2,1 + Sq5Sq1g2,2

Sq7Sq1g3,0 7−→ 0 Sq4Sq1g3,1 7−→ (Sq9 + Sq8Sq1 + Sq7Sq2)g2,0 + Sq5Sq2g2,1

Sq6Sq2g3,0 7−→ Sq6Sq2Sq1g2,0

Sq5Sq2Sq1g3,0 7−→ 0

Table 7: ∂3 on A {g3,0, g3,1} ⊂ P3
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for ker(∂3), and a surjection ∂4 : P4 = A {g4,0, g4,1} → ker(∂3) where

∂4(g4,0) = Sq1g3,0

in degree 4, and
∂4(g4,1) = Sq8g3,0 + (Sq5 + Sq4Sq1)g3,1 + Sq1g3,2

in degree 11.

4.3.6 Filtration s ≥ 5

Things become quite simple from filtration degree s = 5 and onwards. In degrees ≤ 11 we have an
additive basis

Sq1g4,0 Sq5Sq1g4,0

Sq2Sq1g4,0 Sq6Sq1g4,0

Sq3Sq1g4,0 Sq4Sq2Sq1g4,0

Sq4Sq1g4,0

for ker(∂4), and a surjection ∂5 : P5 = A {g5,0} → ker(∂4) where ∂5(g5,0) = Sq1g4,0 in degree 5. Contin-
uing, we have a surjection ∂s : Ps = A {gs,0} → ker(∂s−1) in degrees ≤ 11, where ∂s(g0,s) = Sq1g0,s−1 in
degree s, for all 5 ≤ s ≤ 11.

Definition 4.9. We say that P∗ is a minimal resolution when im(∂s+1) ⊂ I(A ) · Ps for all s ≥ 0. Then
1 ⊗ ∂s+1 : F2 ⊗A Ps+1 → F2 ⊗A Ps and Hom(∂s+1, 1) : HomA (Ps,F2) → HomA (Ps+1,F2) are the zero
homomorphisms, so that TorAs (F2,F2) ∼= F2 ⊗A Ps and ExtsA (F2,F2) ∼= HomA (Ps,F2), for all s ≥ 0.
Equivalently, the number of generators of Ps is minimal in each degree.

Theorem 4.10. There is a minimal resolution ε : P∗ → F2 with P0 = A {g0,0} and Ps = A {gs,i | i ≥ 0},
where ∂s : Ps → Ps−1 is given in internal degrees t ≤ 11 by

∂1(g1,0) = Sq1g0,0

∂1(g1,1) = Sq2g0,0

∂1(g1,2) = Sq4g0,0

∂1(g1,3) = Sq8g0,0

∂2(g2,0) = Sq1g1,0

∂2(g2,1) = Sq3g1,0 + Sq2g1,1

∂2(g2,2) = Sq4g1,0 + Sq2Sq1g1,1 + Sq1g1,2

∂2(g2,3) = Sq7g1,0 + Sq6g1,1 + Sq4g1,2

∂2(g2,4) = Sq8g1,0 + Sq7g1,1 + Sq4Sq1g1,2 + Sq1g1,3

∂2(g2,5) = Sq7Sq2g1,0 + Sq8g1,1 + Sq4Sq2g1,2 + Sq2g1,3

∂3(g3,0) = Sq1g2,0

∂3(g3,1) = Sq4g2,0 + Sq2g2,1 + Sq1g2,2

∂3(g3,2) = Sq8g2,0 + (Sq5 + Sq4Sq1)g2,2 + Sq1g2,4

∂3(g3,3) = (Sq7 + Sq4Sq2Sq1)g2,1 + Sq6g2,2 + Sq2Sq1g2,3

∂4(g4,0) = Sq1g3,0

∂4(g4,1) = Sq8g3,0 + (Sq5 + Sq4Sq1)g3,1 + Sq1g3,2

∂5(g5,0) = Sq1g4,0

. . .

∂11(g11,0) = Sq1g10,0 .
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Proof. This summarizes the calculations above. The resolution is minimal, since we only added generators
gs,i with ∂s(gs,i) ∈ I(A ) ·Ps−1 = I(A ){gs−1,j}j . It should be clear that we can continue that way, since
A is connected. If any sum involving 1 · gs,n occurs in ker(∂s), then gs,n could be omitted from the basis
for Ps and ∂s : Ps → ker(∂s−1) would still be surjective.

Theorem 4.11. Exts,∗A (F2,F2) ∼= F2{γs,i}i where γs,i : Ps → F2 is the A -module homomorphism dual
to gs,i, for each s ≥ 0. The bidegrees of the generators in internal degrees t ≤ 11 are as displayed in the
following chart. The horizontal coordinate is the topological degree t − s, the vertical coordinate is the
cohomological degree s, and the sum of these coordinates is the internal degree t.

0 2 4 6 8 10

0

2

4

6

8

10

γ0,0

γ1,0 γ1,1 γ1,2 γ1,3

γ2,0 γ2,1 γ2,2 γ2,3 γ2,4 γ2,5

γ3,0 γ3,1 γ3,2 γ3,3

γ4,0 γ4,1

γ5,0

γ6,0

γ7,0

γ8,0

γ9,0

γ10,0

γ11,0

?

? ?

? ? ?

? ? ? ?

. . ? ? ?

. . . . ? ?

. . . . . . ?

. . . . . . . .

. . . . . . . . .

. . . . . . . . . .

. . . . . . . . . . .

We have not yet computed the groups labeled · or ?, but we will prove below that the groups labeled ·
are 0. In fact, many of the groups labeled ? are also zero.

Proof. For each s ≥ 0 we have HomA (Ps,F2) ∼= HomA (A {gs,i}i,F2) ∼=
∏
i F2{γs,i}, where γs,i(gs,j) =

δi,j is 1 if i = j and 0 otherwise. It will be clear later that there are at most finitely many gs,i in a given
bidegree, so this product is finite in each degree. Then γs,i ◦ ∂s+1 = 0, so the cocomplex HomA (P∗,F2)
has trivial coboundary. Hence ExtsA (F2,F2) ∼= HomA (Ps,F2) ∼= F2{γs,i}i, as claimed.

Lemma 4.12. Let ε : P∗ → F2 be a free A -module resolution. Then HomA (Ps,F2) ∼= Hom(F2 ⊗A

Ps,F2), so there is an isomorphism Exts,tA (F2,F2) ∼= Hom(TorAs,t(F2,F2),F2).

4.4 The Hopf–Steenrod invariant

The standard notation for the class γ1,i, dual to the indecomposable Sq2
i

, is hi. See Adams (1958). The
h is for Hopf, since these classes detect the stable maps of spheres with Hopf invariant one.

Lemma 4.13. TorA1 (F2,F2) ∼= I(A )/I(A )2 = Q(A ) ∼= F2{Sq2
i | i ≥ 0} and Ext1A (F2,F2) ∼=

Hom(TorA1 (F2,F2),F2) ∼= F2{hi | i ≥ 0} where hi has bidegree (s, t) = (1, 2i) and is dual to Sq2
i

,
for each i ≥ 0.

Proof. There exists a free resolution · · · → P1 → P0 → F2 → 0 where P0 = A and P1 = A {g1,i}i
with ∂1 : g1,i 7→ Sq2

i

for all i ≥ 0. The resolution is exact at P0 since the Sq2
i

generate the left ideal
I(A ) ⊂ A , and it is minimal there since ∂1(P1) ⊂ I(A )P0. It is also minimal at P1, since the surjection
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P1 → I(A ) induces an isomorphism F2{g1,i}i = F2 ⊗A P1 = P1/I(A )P1 → I(A )/I(A )2 = Q(A ),

so that ∂2(P2) = ker(∂1) ⊂ I(A )P1. Hence TorA1 (F2,F2) ∼= F2 ⊗A P1
∼= Q(A ) and Ext1A (F2,F2) ∼=

HomA (P1,F2) ∼= F2{hi}i, as claimed. ((Proof using bar complex?))

We shall soon prove that the Adams spectral sequence

Es,t2 = Exts,tA (F2,F2) =⇒ πt−s(S)
∧
2

converges to the 2-adic completion of the stable homotopy groups of spheres. The chart in the theorem
above displays the E2-term in the range t ≤ 11. ((EDIT FROM HERE TO TAKE INTO ACCOUNT
THE ADAMS VANISHING LINE.)) We will see later that the pattern above the diagonal line, where s >
t−s, continues. There is an isomorphism Exts,sA (F2,F2) ∼= F2{γs,0} for all s ≥ 0, while Exts,tA (F2,F2) = 0
for t− s < 0 and for 0 < t− s < s. Thus the groups labeled · in the chart are 0. Granting this, the only
possible dr-differentials starting in total degree t − s ≤ 6, for r ≥ 2, are the ones starting on γ1,1 = h1
and landing in the group generated by γr+1,0.

However, these differentials are all 0, as can be seen either by proving that γs,0 detected 2s ∈ π0(S),
or that γ1,1 detects η ∈ π1(S), or by appealing to multiplicative structure in the spectral sequence.
Granting this, we can conclude that E2 = E∞ in this range of degrees, so that the groups F2{γs,i} in
one topological degree n = t− s, for s ≥ 0 and n ≤ 5 are the filtration quotients of a complete Hausdorff
filtration {F s}s that exhausts πn(S)

∧
2 .

For n = 0, we already know that π0(S) = Z so π0(S)
∧
2 = Z2. The only possible filtration is the 2-adic

one, with F s = 2sZ2 ⊂ Z2 and F s/F s+1 ∼= 2sZ2/2
s+1Z2

∼= F2{γs,0} for all s ≥ 0. For n = 1 we deduce
that π1(S)

∧
2
∼= Z/2{γ1,1} = Z/2{h1}. In fact π1(S) = Z/2{η} is generated by the complex Hopf map

η : S1 → S. For n = 2 we deduce that π2(S)
∧
2
∼= Z/2{γ2,1}. We shall see later that π2(S) = Z/2{η2}

is generated by the composite η2 = η ◦ Ση : S2 → S. For n = 3 we deduce that π3(S)
∧
2 is an abelian

group of order 8. We shall see later that π3(S)
∧
2
∼= Z/(8) is the 2-Sylow subgroup of π3(S) ∼= Z/24,

generated by the quaternionic Hopf map ν : S3 → S. Finally, for now, we conclude that π4(S)
∧
2 = 0 and

π5(S)
∧
2 = 0, and in fact π4(S) = π5(S) = 0. ((EDIT TO HERE.))

Lemma 4.14. (Hopf, Steenrod) Let f : Sn → S be a map with 0 = f∗ : H∗(S) → H∗(Sn), and let
Cf = hocofib(f) = S ∪f CSn be its mapping cone. Suppose that Sqn+1 : H0(Cf ) → Hn+1(Cf ) is
nonzero. Then n+ 1 = 2i for some i ≥ 0 and [f ] ∈ πn(S) is detected in the Adams spectral sequence by

hi ∈ E1,2i

2 .

Proof. Consider the canonical Adams tower for Y = S, with Y 0 = S, K0 = H, Y 1 = Σ−1H̄ and
K1 = H ∧ Σ−1H̄. The composite j ◦ f is null-homotopic, since d(f) = f∗ = 0, so we have a map of
cofiber sequences:

Sn
f

//

e

��

S // Cf //

d

��

Sn+1

Σe
��

Σ−1H̄
i //

j

��

S
j
// H

∂ // H̄

H ∧ Σ−1H̄

Here d : Cf → H and e : Sn → Σ−1H̄ are determined by a null-homotopy of f . Applying cohomology to
the right hand part of the diagram, we get a map of A -module extensions:

F2 H∗(Cf )oooo Σn+1F2
oooo

F2 A
j∗

oooo

d∗

OO

I(A )oo∂∗
oo

Σe∗

OO

Here d∗(1) = 1, so by assumption d∗(Sqn+1) 6= 0. Hence Σe∗(Sqn+1) 6= 0. This is impossible if
Sqn+1 is decomposable, so we must have n + 1 = 2i for some i ≥ 0. Then e∗ 6= 0, which implies that
j ◦ e : Sn → H ∧ Σ−1H̄ is essential (= not null-homotopic).
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This proves that [f ] ∈ πn(S) lifts to πn(Y 1) but not to πn(Y
2), hence corresponds under the isomor-

phism F 1/F 2 ∼= E1,∗
∞ to a nonzero class in E1,2i

∞ ⊂ E1,2i

2 = F2{hi}. The only possibility is that [f ] is
detected by hi.

The class of Σe∗◦∂1 : P1 → Σn+1F2 in Ext1,2
i

A (F2,F2) = F2{hi} is called the Hopf–Steenrod invariant,
or the cohomology e-invariant, of [f ]. It is only defined for the [f ] with vanishing d-invariant. More
generally, we have a diagram

F 2 // // F 1 // //

e

��

F 0 = [X,Y ]n

d

��

Ext1,n+1
A (H∗(X),H∗(Y )) Homn

A (H∗(X),H∗(Y )) .

Theorem 4.15. The Hopf maps 2: S → S, η : S1 → S, ν : S3 → S and σ : S7 → S are detected in the
Adams spectral sequence by the classes h0, h1, h2 and h3, respectively. These are infinite cycles in the
spectral sequence.

Proof. In each case, f : Sn → S is the stable form of a fibration Σn+1f : S2n+1 → Sn+1, with mapping
cone a projective plane P 2. Here H∗(P 2) = P (x)/(x3) = F2{1, x, x2}, where |x| = n + 1, by Poincaré
duality Hence Sqn+1(x) = x2 6= 0, and the previous lemma applies. Quite explicitly, ΣC2 = RP 2 has a
nonzero Sq1, Σ2Cη = CP 2 has a nonzero Sq2, Σ4Cν = HP 2 has a nonzero Sq4 and Σ8Cσ = OP 2 has a
nonzero Sq8.

The names η, ν and σ for the Hopf maps detected by h1, h2 and h3 are supposedly unrelated to the
correspondence between the initial phonemes in the Greek letters “eta”, “nu” and “sigma” and in the
first three Japanese numerals “ichi”, “ni” and “san”. We shall see later that none of the classes hi for
i ≥ 4 survive to the E∞-term, so there are no maps Sn → S with nonzero Hopf–Steenrod invariant for
n ≥ 8.

4.5 Naturality

The essential uniqueness of free resolutions lifts to the level of spectral realizations. Consider diagrams

· · · → Y s+1 i−→ Y s → · · · → Y 0 = Y

and
· · · → Zs+1 i−→ Zs → · · · → Z0 = Z

with cofibers Ks = hocofib(Y s+1 → Y s) and Ls = hocofib(Zs+1 → Zs) for all s ≥ 0. There are
associated chain complexes

· · · → P2
∂2−→ P1

∂1−→ P0
ε−→ H∗(Y )→ 0

and
· · · → Q2

∂2−→ Q1
∂1−→ Q0

ε−→ H∗(Z)→ 0

of A -modules, where Ps = H∗(ΣsKs), Qs = H∗(ΣsLs), ∂s = ∂∗j∗ and ε = j∗.

Theorem 4.16. Suppose that (a) each cofiber Ls is a wedge sum of Eilenberg–MacLane spectra that is
bounded below and of finite type, and (b) each map i : Y s+1 → Y s induces the zero map on cohomology.
(For instance, {Y s}s and {Zs}s might be Adams resolutions.) Then each Qs is a free A -module, and
the augmented chain complex ε : P∗ → H∗(Y )→ 0 is exact.

Let f : Y → Z be any map. Then there exists a chain map g∗ : Q∗ → P∗ lifting f∗, in the sense that
the diagram

. . . // P2
∂2 // P1

∂1 // P0
ε // H∗(Y ) // 0

. . . // Q2
∂2 //

g2

OO

Q1
∂1 //

g1

OO

Q0
ε //

g0

OO

H∗(Z)

f∗

OO

// 0
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commutes. Furthermore, there is a map of resolutions {fs : Y s → Zs}s lifting f and realizing g∗, in the
sense that there is a homotopy commutative diagram

. . . // Y 2 i //

f2

��

Y 1 //

f1

��

Y

f

��

. . . // Z2 i // Z1 // Z ,

and given any choice of commuting homotopies, the induced map of homotopy cofibers gs : Ks → Ls

induces gs = (Σsgs)∗ : Qs → Ps, for each s ≥ 0.
If ḡ∗ : Q∗ → P∗ is a second chain map lifting f∗, and {f̄s}s is a map of resolutions lifting f and

realizing ḡ∗, then g∗ and ḡ∗ are chain homotopic, and {fs}s and {f̄s}s are homotopic in the sense that
the composites fs ◦ i and f̄s ◦ i : Y s+1 → Zs are homotopic for all s ≥ 0.

Proof. Freeness of each Qs is clear from the wedge sum decomposition of Ls. Exactness of ε : P∗ →
H∗(Y ) → 0 is clear from the vanishing of i∗. The existence of a chain map g∗ lifting f∗ is standard
homological algebra. We need to construct a diagram

. . .
i // Y 2 i //

j

~~
f2

��

Y 1 i //

j}}

f1

��

Y

j~~

f

��

. . . K1

∂

aa

g1

��

K0

∂

aa

g0

��

. . . // Z2 i //

j

~~

Z1 i //

j
}}

Z

j~~

. . . L1

∂

aa

L0

∂

aa

of spectra, inducing a commutative diagram

H∗(Σ2Y 2)
&&

∂∗

&&

H∗(ΣY 1)
%%

∂∗

%%

H∗(Y )

. . .

j∗
:: ::

// H∗(ΣK1)

j∗
88 88

// H∗(K0)

j∗
99 99

H∗(Σ2Z2)

∂∗

&&

(Σ2f2)∗

OO

H∗(ΣZ1)

∂∗

%%

(Σf1)∗

OO

H∗(Z)

f∗

OO

. . .

j∗
::

// H∗(ΣL1)

j∗
88

//

(Σg1)∗

OO

H∗(L0)

j∗
99

(g0)∗

OO

of A -modules, with gs = (Σsgs)∗.
Inductively, suppose the maps f = f0, . . . , fs and g0, . . . , gs−1 are given, for some s ≥ 0. Then

j∗ ◦ gs = (Σsfs)∗ ◦ j∗, by the assumption that g0 lifts f∗ for s = 0, and by the assumption that
∂∗j∗ ◦ gs = gs−1 ◦ ∂∗j∗ = ∂∗(Σsfs)∗ ◦ j∗ and the injectivity of ∂∗ for s ≥ 1.

We have an isomorphism [Ks, Ls] ∼= HomA (H∗(Ls),H∗(Ks)), so there is a unique homotopy class
of maps gs : Ks → Ls with (Σsgs)∗ = gs. Note that gs ◦ j : Y s → Ls is homotopic to j ◦ fs : Y s → Ls,
because of the isomorphism [Y s, Ls] ∼= HomA (H∗(Ls),H∗(Y s)) and the fact that (gs ◦ j)∗ = (j ◦ fs)∗.
(Both isomorphisms follow from hypothesis (a)).

Choosing a commuting homotopy and passing to mapping cones, or appealing to the triangulated
structure on the stable category of spectra, we can find a map fs+1 : Y s+1 → Zs+1 making the diagram

Y s+1 i //

fs+1

��

Y s
j
//

fs

��

Ks ∂ //

gs

��

ΣY s+1

Σfs+1

��

Zs+1 i // Zs
j
// Ls

∂ // ΣZs+1
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commute up to homotopy. This completes the inductive step.
The uniqueness of g∗ up to chain homotopy, meaning that any other lift ḡ∗ is chain homotopic to g∗, is

standard homological algebra. We prove that fs ◦ i is homotopic to f̄s ◦ i by induction on s. This is clear
for s = 0, since f0 = f̄0 = f . Suppose that i◦fs ' fs−1 ◦ i is homotopic to i◦ f̄s ' f̄s−1 ◦ i : Y s → Zs−1,
for some s ≥ 1.

Y s+1 i // Y s
i //

fs

��

f̄s

��

Y s−1

fs−1

��
f̄s−1

��

Zs
i // Zs−1

Σ−1Ls−1

∂

dd

Then i ◦ (f̄s − fs) is null-homotopic, so that f̄s − fs factors through a map h : Y s → Σ−1Ls−1.
Then f̄s ◦ i − fs ◦ i = (f̄s − fs) ◦ i factors through h ◦ i : Y s+1 → Σ−1Ls−1. This map induces
i∗ ◦ h∗ = 0 in cohomology, hence is null-homotopic because of the isomorphism [Y s+1,Σ−1Ls−1] ∼=
HomA (H∗(Σ−1Ls−1),H∗(Y s+1)). In other words, fs ◦ i ' f̄s ◦ i.

Corollary 4.17. Let f : Y → Z be a map of bounded below spectra with H∗(Y ) and H∗(Z) of finite type.
Then there is a map

f∗ : {Er(Y ), dr}r −→ {Er(Z), dr}r
of Adams spectral sequences, given at the E2-level by the homomorphism

(f∗)∗ : Exts,tA (H∗(Y ),F2) −→ Exts,tA (H∗(Z),F2)

induced by the A -module homomorphism f∗ : H∗(Z) → H∗(Y ), with expected abutment the homomor-
phism

f∗ : π∗(Y )→ π∗(Z) .

(Similarly for the Adams spectral sequences converging to [X,Y ]∗ and [X,Z]∗, for any spectrum X.)

Lemma 4.18. Let {Y s}s and {Zs}s be Adams resolutions of a bounded below spectrum Y with H∗(Y )
of finite type. Then there is a homotopy equivalence holims Y

s ' holims Z
s.

Proof. There are maps {fs : Y s → Zs}s and {f̃s : Zs → Y s}s of resolutions covering the identity map
of Y = Y 0 = Z0, and homotopies f̃s ◦ fs ◦ i ' i : Y s+1 → Y s and fs ◦ f̃s ◦ i ' i : Zs+1 → Zs, for all
s ≥ 0. Hence holims f

s and holims f̃
s are homotopy inverses.

Theorem 4.19. Let {Y s}s be an Adams resolution of Y , and let X be any spectrum. (The case X = S
is of particular interest.) A class [f ] ∈ [X,Y ]n has Adams filtration ≥ s, i.e., is in the image F s

of is : [X,Y s]n → [X,Y ]n, if and only if the representing map f : ΣnX → Y can be factored as the
composite of s maps

ΣnX = Xs
zs−→ Xs−1

zs−1−→ . . .
z2−→ X1

z1−→ X0 = Y

where 0 = z∗u : H
∗(Xu−1) → H∗(Xu) for each 1 ≤ u ≤ s. In particular, F s ⊂ [X,Y ]∗ is independent of

the choice of Adams resolution.

Proof. If [f ] has Adams filtration ≥ s, let g : ΣnX → Y s be a lift, with is ◦ g ' f . Let Xu = Y u and
zu = i for 0 ≤ u ≤ s− 1, and let zs = ig:

Sn
ig−→ Y s−1 i−→ . . .

i−→ Y 1 i−→ Y

Conversely, given a factorization f = z1 ◦ · · · ◦ zs as above, let f0 : Y → Y be the identity map. We
can inductively find lifts fu : Xu → Y u making the diagram

Xs
zs //

fs

��

Xs−1

zs−1
//

fs−1

��

. . .
z2 // X1

z1 //

f1

��

Y

��

Y s
i // Y s−1 i // . . .

i // Y 1 i // Y
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commute, since the obstruction to lifting fu−1 ◦ zu : Xu → Y u−1 over i : Y u → Y u−1 is the homotopy
class of the composite j ◦ fu−1 ◦ zu : Xu → Ku−1, which is zero because z∗u = 0. Let g = fs : ΣnX → Y s.
Then is ◦ g ' f , and [f ] has Adams filtration ≥ s.

4.6 Convergence

Definition 4.20. For each natural number m let the mod m Moore spectrum S/m be defined by the
cofiber sequence

S
m−→ S −→ S/m −→ S1

where the map m induces multiplication by m in integral (co-)homology. Note that H∗(S/m;Z) ∼= Z/m
is concentrated in degree 0. For any spectrum Y let Y/m = Y ∧S/m, so that there is a cofiber sequence

Y
m−→ Y −→ Y/m −→ ΣY .

Applying F (−, Y ) to the cofiber sequence

S−1 −→ S−1/m −→ S
m−→ S

leads to the cofiber sequence
Y

m−→ Y −→ F (S−1/m, Y ) −→ ΣY

and an equivalence Y/m ' F (S−1/m, Y ).

Definition 4.21. For each prime p there is a horizontal tower of vertical cofiber sequences

. . .
p
// S

p
//

pe

��

. . .
p
// S

p
//

p2

��

S

p

��

. . .
= // S

= //

��

. . .
= // S

= //

��

S

��

. . . // S/pe //

��

. . . // S/p2 //

��

S/p

��

. . .
p
// S1 p

// . . .
p
// S1 p

// S1

We define the p-completion of Y as the homotopy limit Y ∧
p = holime Y/p

e of the tower

· · · → Y ∧ S/pe → · · · → Y ∧ S/p2 → Y ∧ S/p .

The maps S → S/pe induce the p-completion map Y → Y ∧
p .

Dually there is a horizontal sequence of vertical cofiber sequence

S−1 p
//

��

S−1 p
//

��

. . .
p
// S−1 p

//

��

. . .

S−1/p //

��

S−1/p2 //

��

. . . // S−1/pe //

��

. . .

S
= //

p

��

S
= //

p2

��

. . .
= // S

= //

pe

��

. . .

S
p

// S
p
// . . .

p
// S

p
// . . .

Let S−1/p∞ = hocolime S
−1/pe. Note that H∗(S

−1/p∞;Z) ∼= Z/p∞ ∼= Q/Z(p)
∼= Qp/Zp. Applying

F (−, Y ) we get the tower defining the p-completion, so

Y ∧
p ' F (S−1/p∞, Y ) .
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The map S−1/p∞ → S induces the p-completion map Y → Y ∧
p .

((See Bousfield.))

Lemma 4.22. The p-completion map induces an equivalence Y/pe → (Y ∧
p )/pe for each e. Hence it

induces an isomorphism H∗(Y ) ∼= H∗(Y
∧
p ) in mod p homology (and cohomology).

Proof. The map S−1/p∞ → S induces an equivalence S−1/pe∧S−1/p∞ → S−1/pe∧S = S−1/pe, for each
e. Apply F (−, Y ) to get the first conclusion. Apply integral homology to the equivalence Y/p→ (Y ∧

p )/p
to get the second conclusion.

Lemma 4.23. The p-completion map for Y ∧
p is an equivalence Y ∧

p → (Y ∧
p )∧p , meaning that p-completion

is idempotent.

Proof. Use that the map S−1/p∞ → S induces an equivalence S−1/p∞ ∧ S−1/p∞ → S−1/p∞, or pass to
the limit over e from the previous lemma.

Lemma 4.24. Let πn(Y )∧p = lime πn(Y )/pe be the algebraic p-completion of πn(Y ). There is a short
exact sequence

0→ πn(Y )∧p → lim
e
πn(Y/p

e)→ Hom(Z/p∞, πn−1(Y ))→ 0

and an isomorphism Rlime πn+1(Y/p
e) ∼= RlimeHom(Z/pe, πn(Y )). If π∗(Y ) is of finite type, i.e., if

πn(Y ) is finitely generated for each n, then πn(Y )⊗ Zp ∼= πn(Y )∧p
∼= πn(Y

∧
p ) for all n.

Proof. ((Straightforward. TBW.))

Example 4.25. (a) H ' H∧
2 and (HZ)∧2 ' (HZ(2))

∧
2 ' HZ2.

(b) For Y = HZ[1/2] or HQ we have Y/2e ' ∗ for all e, so (HZ[1/2])∧2 ' (HQ)∧2 ' ∗.

(c) For Y = H(Z[1/2]/Z) = HZ/2∞ or H(Q/Z) we have Y/2e ' ΣHZ/2e for all e, so H(Z[1/2]/Z)∧2 =
H(Z/2∞)∧2 ' H(Q/Z)∧2 ' ΣHZ2.

Lemma 4.26. Let 0 →
⊕

α Z →
⊕

β Z → Z2 → 0 be a short free resolution of Z2. There is a
corresponding cofiber sequence

∨
α S →

∨
β S → SZ2, where H∗(SZ2;Z) ∼= Z2 is concentrated in degree 0.

Then πn(Y ∧SZ2) ' πn(Y )⊗Z2 for all n. In particular, S∧
2 ' (SZ2)

∧
2 ' SZ2. If π∗(Y ) is of finite type

then the natural map Y ∧ SZ2 → Y ∧
2 is an equivalence, and H∗(Y )→ H∗(Y

∧
2 ) is an isomorphism.

Proof. ((Straightforward. TBW.))

Let HZ be the integral Eilenberg–MacLane spectrum, with π0(HZ) = Z and πi(HZ) = 0 for i 6= 0.
It is a ring spectrum, with multiplication φ : HZ∧HZ→ HZ and unit η : S → HZ. (Not to be confused
with the Hopf map η : S1 → S.) Let HZ = HZ/S be the cofiber.

Lemma 4.27. H∗(HZ) ∼= A /A {Sq1}.

Proof. Since the unit map S → HZ induces an isomorphism on π0 and a surjection on π1, we find that
HZ is 1-connected. Hence H1(HZ) ∼= H1(HZ) = 0.

There is a short exact sequence of A -modules

0←− A /A {Sq1} ←− A ←− ΣA /A {Sq1} ←− 0

where the right hand arrow takes Σ1 to Sq1. It is clear that ΣSqI 7→ SqI ◦Sq1 maps to 0, for admissible
I, if and only if I = (i1, . . . , i`) with i` = 1. These SqI generate precisely the left ideal A {Sq1}.

There is also a cofiber sequence HZ 2−→ HZ −→ H −→ ΣHZ, where 2∗ = 0, so that there is an
associated short exact sequence

0←− H∗(HZ)←− H∗(H)←− ΣH∗(HZ)←− 0 .

in cohomology. Let A → H∗(H) be the isomorphism taking SqI to its value on the generator 1 ∈ H0(H).
The composite ΣA/A{Sq1} → A → H∗(H) → H∗(HZ) is zero, since the source is generated by Σ1 in
degree 1, and H1(HZ) = 0. Hence there is a map from the first short exact sequence of A -modules to the
second one. By induction, we may assume that the left hand homomorphism f : A /A {Sq1} → H∗(HZ)
is an isomorphism in degrees ∗ < t. Then the right hand homomorphism Σf : ΣA /A {Sq1} → ΣH∗(HZ)
is an isomorphism in degrees ∗ ≤ t. Since the middle map is an isomorphism, it follows that the left
hand homomorphism is an isomorphism, also in degree t.
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Recall Boardman’s notion of conditional convergence, meaning that limsA
s = 0 and RlimsA

s = 0,
and the result that strong convergence follows from conditional convergence and the vanishing of the
derived E∞-term RE∞. For the spectral sequence associated to an Adams resolution {Y s}s, conditional
convergence is equivalent to the contractibility of the homotopy limit Y∞ = holims Y

s, in view of Milnor’s
short exact sequence

0→ Rlim
s

πn+1(Y
s)→ πn(holim

s
Y s)→ lim

s
πn(Y

s)→ 0 .

As we have seen before, the condition holims Y
s ' ∗ is independent of the choice of Adams resolution.

Lemma 4.28. Let Y be bounded below with H∗(Y ) of finite type. Then there is an Adams resolution
{Zs}s of Z = Y/2 with holims Z

s ' ∗.

((Enough that Y/2 is bounded below with H∗(Y/2) of finite type?))

Proof. The “canonical HZ-based resolution”

. . . // (Σ−1HZ)∧2 i //

j

��

Σ−1HZ i //

j

��

S

j

��

HZ ∧ (Σ−1HZ)∧2 ∧HZ HZ ∧ Σ−1HZ HZ

is not an Adams resolution, since HZ is not a wedge sum of mod 2 Eilenberg–MacLane spectra, but the
ring spectrum structure ensures that j = η ∧ 1: X → HZ ∧X induces a split injection 1 ∧ j : H ∧X →
H ∧HZ ∧X, so that j∗ : H∗(HZ ∧X)→ H∗(X) is surjective, for each spectrum X.

Smashing this diagram with Z = Y/2, we get a diagram

. . . // (Σ−1HZ)∧2 ∧ Y/2 i //

j

��

Σ−1HZ ∧ Y/2 i //

j

��

Y/2

j

��

H ∧ (Σ−1HZ)∧2 ∧ Y H ∧ Σ−1HZ ∧ Y H ∧ Y

where we have identified HZ ∧ X ∧ Y/2 with H ∧ X ∧ Y , for suitable X. This is the desired Adams
resolution, with Zs = (Σ−1HZ)∧s ∧ Y/2 and cofibers Ls = H ∧ (Σ−1HZ)∧s ∧ Y . The maps j are split
injective, so each j∗ is surjective, as before. Since (HZ)∧s ∧ Y is bounded below and H∗((HZ)∧s ∧
Y ) ∼= H∗(HZ)⊗s ⊗H∗(Y ) is of finite type, it follows that each Ls is a wedge sum of suspended mod 2
Eilenberg–MacLane spectra, satisfying the finiteness condition required for an Adams resolution.

It remains to show that holims Z
s ' ∗. This is true in the strong sense that in each topological

degree n, πn(Z
s) = 0 for all sufficiently large s. By assumption there is an integer N such that πn(Y ) = 0

for all n < N . We have seen that HZ is 1-connected, so that (Σ−1HZ)∧s is (s − 1)-connected. Then
Zs = (Σ−1HZ)∧s∧Y/2 is (N+s−1)-connected. Hence πn(Z

s) = 0 for all n ≤ N+s−1, or equivalently,
for all s > n−N .

Theorem 4.29. Let Y be bounded below with H∗(Y ) of finite type. Then the Adams spectral sequence

Es,t2 = Exts,tA (H∗(Y ),F2) =⇒ πt−s(Y
∧
2 )

is strongly convergent. In particular, there is a strongly convergent Adams spectral sequence

Es,t2 = Exts,tA (F2,F2) =⇒ πt−s(S)
∧
2 .

More generally, the Adams spectral sequence

Es,t2 = Exts,tA (H∗(Y ),H∗(X)) =⇒ [X,Y ∧
2 ]t−s

is conditionally convergent. It is strongly convergent when RE∞ = 0, which happens, for instance, if
H∗(X) is of finite type and bounded above, or if the spectral sequence collapses at a finite stage.
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Proof. Let {Y s}s be an Adams resolution of Y 0 = Y , with cofiber sequences

Y s+1 i−→ Y s
j−→ Ks ∂−→ ΣY s+1 .

Smashing with S/2e for each e ≥ 1, we get a tower of Adams resolutions {Y s/2e}s of Y 0/2e = Y/2e,
with cofiber sequences

Y s+1/2e
i−→ Y s/2e

j−→ Ks/2e
∂−→ ΣY s+1/2e .

(We check that these diagrams satisfy the conditions to be Adams resolutions: Each homomorphism
j∗ : H∗(Ks/2e) → H∗(Y 2/2e) can be rewritten as j∗ ⊗ 1: H∗(Ks) ⊗H∗(S/2e) → H∗(Y s) ⊗H∗(S/2e),
hence remains surjective. Each cofiber Ks/2e sits in a cofiber sequence

Ks 2e−→ Ks −→ Ks/2e −→ ΣKs

where 2e is null-homotopic, so that Ks/2e ' Ks ∨ ΣKs is still a suitably finite wedge sum of mod 2
Eilenberg–MacLane spectra.) Now pass to the homotopy limit over e of these Adams resolutions. The
result is a diagram {(Y s)∧2 }s of spectra, with cofiber sequences

(Y s+1)∧2
i−→ (Y s)∧2

j−→ (Ks)∧2
∂−→ Σ(Y s+1)∧2 .

(Cofiber sequences are fiber sequences, up to a sign, hence are preserved by passage to homotopy limits,
such as completions.) It is again an Adams resolution, since the completion map Ks → (Ks)∧2 is
an equivalence (Ks '

∨
u Σ

nuH '
∏
uΣ

nuH and H → H∧
2 is easily seen to be an equivalence) and

j : (Y s)∧2 → (Ks)∧2 induces the “same” map as j : Y s → Ks in mod 2 cohomology. We get the following
vertical maps of Adams resolutions:

holims Y
s

��

// Y 2 i //

j
zz

��

Y 1 i //

j
zz

��

Y

j
zz

��

K2

'

��

K1

'

��

K0

'

��

holims(Y
s)∧2 //

��

(Y 2)∧2
i //

j
zz

��

(Y 1)∧2
i //

j
zz

��

Y ∧
2

j
{{

��

(K2)∧2

��

(K1)∧2

��

(K0)∧2

��

holims Y
s/2e // Y 2/2e

i //

j
zz

Y 1/2e
i //

j
zz

Y/2e

j
{{

K2/2e K1/2e K0/2e

(We omit the maps ∂ : Ks → ΣY s+1, etc.) By the previous lemma, there exists an Adams resolution
{Zs}s for Y/2 with holims Z

s ' ∗. Since this homotopy limit is independent of the choice of resolution,
we must also have holims Y

s/2 ' ∗.
There are cofiber sequences S/2 → S/2e+1 → Se → ΣS/2, inducing cofiber sequences Y s/2 →

Y s/2e+1 → Y s/2e → ΣY s/2 for all s, hence also

holim
s

Y s/2 −→ holim
s

Y s/2e+1 −→ holim
s

Y s/2e −→ Σholim
s

Y s/2 .

We deduce that holims Y
s/2e ' ∗ for all e ≥ 1, by induction on e. Thus

holim
s

(Y s)∧2 = holim
s

holim
e

Y s/2e ' holim
e

holim
s

Y s/2e ' ∗

by the standard exchange of homotopy limits equivalence.
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Applying homotopy, we get a map of unrolled exact couples from the one for Y to the one for Y ∧
2 :

. . . // π∗(Y
2)

i //

j
xx

��

π∗(Y
1)

i //

j
xx

��

π∗(Y )

j
xx

��

π∗(K
2)

∂

dd

∼=

��

π∗(K
1)

∂

ff

∼=

��

π∗(K
0)

∂

ff

∼=

��

. . . // π∗((Y
2)∧2 )

i //

j
xx

π∗((Y
1)∧2 )

i //

j
xx

π∗(Y
∧
2 )

j
xx

π∗((K
2)∧2 )

∂

dd

π∗((K
1)∧2 )

∂

ff

π∗((K
0)∧2 )

∂

ff

This induces a map of spectral sequences, from the Adams spectral sequence for Y to the one associated
to the lower exact couple. The equivalences Ks → (Ks)∧2 induce isomorphisms

Es,t1 = πt−s(K
s)

∼=−→ πt−s((K
s)∧2 )

of E1-terms between these spectral sequences. By induction on r, it follows that it also induces an
isomorphism of Er-terms, for all r ≥ 1. Hence we have two different exact couples generating the same
spectral sequence. The upper one is the Adams spectral sequence for Y . The lower one is conditionally
convergent to π∗(Y

∧
2 ), since holims(Y

s)∧2 ' ∗. Hence the Adams spectral sequence for Y , with E∗,∗
2 =

Ext∗,∗A (H∗(Y ),F2), is conditionally convergent to π∗(Y
∧
2 ), as asserted. Replacing π∗(−) by [X,−]∗ we

get the same conclusion for the Adams spectral sequence for maps X → Y .
To get strong convergence to π∗(Y

∧
2 ) or [X,Y ∧

2 ]∗, we need to verify Boardman’s criterion RE∞ = 0. In
the first case, this follows since Es,t2 (Y ) is of finite type, i.e., is finite(-dimensional) in each bidegree (s, t).
In fact, this holds already at the E1-term if we use the canonical Adams resolution for Y , with ΣsKs =
H ∧ (H̄)∧s ∧ Y , since then

Es,t1 = πt−s(K
s) ∼= πt(Σ

sKs) ∼= Ht((H̄)∧s ∧ Y ) ∼= [H∗(H̄)⊗s ⊗H∗(Y )]t .

In the case of a general spectrum X, we have

Es,t1 = [X,Ks]t−s ∼= [X,ΣsKs]t ∼= Homt
A (H∗(ΣsKs),H∗(X))

∼= Homt
A (A ⊗ I(A )⊗s ⊗H∗(Y ),H∗(X)) ∼= Homt(I(A )⊗s ⊗H∗(Y ),H∗(X)) .

This group is finite if H∗(X) is of finite type and bounded above, in the sense that there exists an integer
N with Hn(X) = 0 for n > N . For instance, this is the case of X is a finite CW spectrum.

Proposition 4.30. Let Y be bounded below with H∗(Y ) of finite type. There is a cofiber sequence

holim
s

Y s −→ Y −→ Y ∧
2

where {Y s}s is any Adams resolution of Y .

Proof. We use the notation of the proof above. In view of the equivalences Ks ' (Ks)∧2 , we get a chain
of equivalences

holim
s

hofib(Y s → (Y s)∧2 ) ' hofib(Y s → (Y s)∧2 ) ' · · · ' hofib(Y → Y ∧
2 )

for all s. Passing to homotopy limits, we find that

holim
s

Y s ' hofib(holim
s

Y s → holim
s

(Y s)∧2 ) ' holim
s

hofib(Y s → (Y s)∧2 ) ' hofib(Y → Y ∧
2 ) .

In other words, the 2-completion Y → Y ∧
2 precisely annihilates the obstruction holims Y

s to conditional
convergence for the unrolled exact couple associated to the Adams resolution of Y .

((Mention Bousfield’s E-nilpotent completion Y ∧
E = Y/ holims Y

s
E where Y sE = (Σ−1Ē)∧s ∧ Y ?))
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5 Multiplicative structure

5.1 Composition and the Yoneda product

Let X, Y and Z be spectra. We have a composition pairing

◦ : [Y, Z]∗ ⊗ [X,Y ]∗ −→ [X,Z]∗

that takes g : ΣvY → Z and f : ΣtX → Y to the composite g ◦ Σvf : Σv+tX → Z. To simplify the
notation we refer to f and g as maps f : X → Y and g : Y → Z of degree t and v, respectively.

Suppose that Y and Z are bounded below, and that H∗(Y ) and H∗(Z) are of finite type. Let
{Y s}s and {Zu}u be Adams resolutions of Y and Z, respectively, with cofibers Y s/Y s+1 = Ks and
Zu/Zu+1 = Lu. If f and g have Adams filtrations ≥ s and ≥ u, meaning that they factor as f = isf̃
and g = iug̃ with f̃ : X → Y s and g̃ : Y → Zu of degree t and v, respectively, then we can lift g̃ to a map
{gs}s of Adams resolutions

X

f̃

��

Y s
i //

gs

��

. . .
i // Y

g̃

��

Zu+s
i // . . .

i // Zu .

Hence gf = iug̃isf̃ = iu+sgsf factors through iu+s : Zu+s → Z, and has Adams filtration ≥ (u+ s). We
thus get a restricted pairing

Fu[Y, Z]∗ ⊗ F s[X,Y ]∗ −→ Fu+s[X,Z]∗

that induces a pairing
Fu/Fu+1 ⊗ F s/F s+1 −→ Fu+s/Fu+s+1

of filtration subquotients. When the respective spectral sequences converge, we can rewrite this as a
pairing

Eu,∗∞ ⊗ Es,∗∞ −→ Eu+s,∗∞

of E∞-terms. Conversely, this pairing of E∞-terms will determine the restricted pairings Fu⊗F s → Fu+s

modulo Fu+s+1, i.e., modulo higher Adams filtrations. In this way the pairing of E∞-terms determines
the composition pairing [Y, Z]∗ ⊗ [X,Y ]∗ → [X,Z]∗ modulo the Adams filtration.

((Example of this phenomenon: h32 = h21h3 so ν3 ≡ η2σ modulo Adams filtration ≥ 4. In fact,
ν3 = η2σ + ηε.))

Let Ps = H∗(ΣsKs) and Qu = H∗(ΣuLu), so that there are free resolutions

· · · → Ps
∂s−→ · · · → P1

∂1−→ P0
ε−→ H∗(Y )→ 0

and
· · · → Qu

∂u−→ · · · → Q1
∂1−→ Q0

ε−→ H∗(Z)→ 0 .

By definition,

Extu,vA (H∗(Z),H∗(Y )) = Hu(Homv
A (Q∗,H

∗(Y )))

Exts,tA (H∗(Y ),H∗(X)) = Hs(Homt
A (P∗,H

∗(X)))

Extu+s,v+tA (H∗(Z),H∗(X)) = Hu+s(Homv+t
A (Q∗,H

∗(X))) .

The (opposite) Yoneda product is a pairing

Ext∗,∗A (H∗(Z),H∗(Y ))⊗ Ext∗,∗A (H∗(Y ),H∗(X)) −→ Ext∗,∗A (H∗(Z),H∗(X)) ,

and we shall see that the Adams spectral sequence relates the Yoneda product in E2 = ExtA (−,−) to
the composition product in homotopy. (This is the opposite of the usual Yoneda pairing, meaning that
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the two factors in the source have been interchanged. This comes about due to the contravariance of
cohomology. Working at odd primes the interchange introduces a sign, which we ignore here.)

Let f : Ps → ΣtH∗(X) and g : Qu → ΣvH∗(Y ) be A -module homomorphisms. To simplify the
notation, we will refer to these as homomorphisms f : Ps → H∗(X) and g : Qu → H∗(Y ) of degree t and v,
respectively. We also suppose that f and g are cocycles, meaning that 0 = f∂s+1 : Ps+1 → H∗(X) and 0 =
g∂u+1 : Qu+1 → H∗(Y ). The cohomology classes [f ] and [g] are then elements in Exts,tA (H∗(Y ),H∗(X))
and Extu,vA (H∗(Z),H∗(Y )), respectively. Then g lifts to a chain map g∗ = {gn : Qu+n → Pn}n, where
each gn has degree v, making the diagram

H∗(X)

. . . // Ps
∂s //

f

OO

. . . // P1
∂1 // P0

ε // H∗(Y )

. . . // Qu+s

gs

OO

∂u+s
// . . . // Qu+1

g1

OO

∂u+1
// Qu

g0

OO

g

;;

commute. The composite fgs : Qu+s → H∗(X) is then an A -module homomorphism of degree (v + t),
and satisfies fgs∂u+s+1 = 0. It is therefore a cocycle in Homv+t

A (H∗(Z),H∗(X)), and its cohomology

class [fgs] in Extu+s,v+tA (H∗(Z),H∗(X)) is by definition the Yoneda product of [g] and [f ]. It is not hard
to check that a different choice of chain map lifting g only changes the cocycle fgs by a coboundary, i.e., a
homomorphism that factors through ∂u+s : Qu+s → Qu+s−1, so that its cohomology class is unchanged.
Likewise, changing f or g by a coboundary only changes fgs by a coboundary, so that the Yoneda
product is well defined.

Example 5.1. Let X = Y = Z = S and let P∗ = Q∗ be the minimal resolution of F2 computed earlier.
We can compute the Yoneda product

Extu,vA (F2,F2)⊗ Exts,tA (F2,F2) −→ Extu+s,v+tA (F2,F2)

that makes Ext∗,∗A (F2,F2) into a bigraded algebra, by choosing cocycle representatives f : Ps → F2 and
g : Pu → F2, lifting g to a chain map g∗ : Pu+∗ → P∗, and computing the composite fgs.

Let f = γ1,0 = h0 : P1 → F2 be dual to g1,0 ∈ P1 and let g = γ1,2 = h2 : P1 → F2 be dual to g1,2 ∈ P1.
A lift g0 : P1 → P0 of g is given by g1,2 7→ g0,0 and g1,i 7→ 0 for i 6= 2.

F2

P1

f=h0

OO

∂1 // P0
ε // F2

P2

g1

OO

∂2 // P1

g0

OO

g=h2

>>

The composite g0∂2 : P2 → P0 is then given by g2,0 7→ 0, g2,1 7→ 0, g2,2 7→ Sq1g0,0, g2,3 7→ Sq4g0,0 etc. A
lift g1 : P2 → P1 is given by g2,0 7→ 0, g2,1 7→ 0, g2,2 7→ g1,0, g2,3 7→ g1,2 etc. Hence fg1 : P2 → F2 is given
by g2,2 7→ 1 and g2,i 7→ 0 for i 6= 2 (for degree reasons), so that [fg1] = γ2,2. Thus h0h2 = γ2,2 in bidegree
(s, t) = (2, 4) of Ext∗,∗A (F2,F2). In hindsight, this it the only possible nonzero value of the product, and
it is realized because of the summand Sq1g1,2 in ∂2(g2,2) and the summand Sq4g0,0 in ∂1(g1,2), with Sq

1

detecting h0 and Sq4 detecting h2.

Definition 5.2. Consider any two complexes P∗ and Q∗ of A -modules. Let

HOMu,v
A (Q∗, P∗) =

∏
s

Homv
A (Qu+s, Ps)

be the abelian group of sequences {gs : Qu+s → Ps}s of A -module homomorphisms, each of degree v.
Thus HOMu

A (Q∗, P∗) is a graded abelian group. Let

δu : HOMu
A (Q∗, P∗)→ HOMu+1

A (Q∗, P∗)
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map {gs}s to {∂s+1gs+1 + gs∂u+s+1}s. ((We are working mod 2, so there is no sign.)) Then δu+1δu = 0,
so HOM∗

A (Q∗, P∗) is a cocomplex of graded abelian groups.

Lemma 5.3. The kernel
ker(δ0) ⊂ HOM0

A (Q∗, P∗)

consists of the chain maps g∗ : Q∗ → P∗, meaning the sequences {gs : Qs → Ps}s of A -module homo-
morphisms such that ∂s+1gs+1 = gs∂s+1 for all s. The image

im(δ−1) ⊂ ker(δ0)

consists of the chain maps that are chain homotopic to 0, i.e., those of the form {∂s+1hs+1 + hs∂s}s for
some collection of A -module homomorphisms hs+1 : Qs → Ps+1 for all s. Hence the 0-th cohomology

H0(HOM∗
A (Q∗, P∗)) ∼= {g∗ : Q∗ → P∗}/(') = [Q∗, P∗]

is the (graded abelian) group of chain homotopy classes of chain maps Q∗ → P∗. More generally,
Hu(HOM∗

A (Q∗, P∗)) is the group [Qu+∗, P∗] of chain homotopy classes of chain maps Qu+∗ → P∗.

In the special case when P∗ = H∗(Y ) is concentrated in filtration s = 0, so that P0 = H∗(Y )
and Ps = 0 for s 6= 0, then HOMu,v

A (Q∗,H
∗(Y )) ∼= Homv

A (Qu,H
∗(Y )) and δu = (∂u+1)

∗, so that
Hu(HOMA (Q∗,H

∗(Y ))) ∼= Hu(HomA (Q∗,H
∗(Y ))). When Q∗ is a free resolution of H∗(Z), this is

ExtuA (H∗(Z),H∗(Y )).

Proposition 5.4. Let ε : P∗ → H∗(Y ) and ε : Q∗ → H∗(Z) be free A -module resolutions. Then

ε∗ : HOM∗
A (Q∗, P∗)

'−→ HOM∗
A (Q∗,H

∗(Y )) ∼= HomA (Q∗,H
∗(Y ))

is a quasi-isomorphism, in the sense that it induces an isomorphism

ε∗ : H
u(HOM∗

A (Q∗, P∗))
∼=−→ ExtuA (H∗(Z),H∗(Y ))

in cohomology, in each filtration u.

This is standard homological algebra. The first assertion only requires thatQ∗ is free and P∗ → H∗(Y )
is exact, but the identification with the final Ext requires that Q∗ → H∗(Z) is exact.

The composition pairing and the quasi-isomorphism

HOM∗
A (Q∗, P∗)⊗HomA (P∗,H

∗(X)) //

'
��

HomA (Q∗,H
∗(X))

Hom∗
A (Q∗,H

∗(Y ))⊗HomA (P∗,H
∗(X))

thus induce a pairing and an isomorphism

Hu(Hom∗
A (Q∗, P∗))⊗ ExtsA (H∗(Y ),H∗(X)) //

∼=
��

Extu+sA (H∗(Z),H∗(X))

ExtuA (H∗(Z),H∗(Y ))⊗ ExtsA (H∗(Y ),H∗(X))

33

in cohomology, and the Yoneda product is given by the dashed arrow. From this description it is easy
to see that the Yoneda product is associative and unital.

5.2 Smash product and tensor product

Let T , V , Y and Z be spectra. We have a smash product pairing

∧ : [T, Y ]∗ ⊗ [V, Z]∗ −→ [T ∧ V, Y ∧ Z]∗
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taking f : T → Y and g : V → Z to f ∧ g : T ∧ V → Y ∧Z, and similarly for graded maps. In particular,
for T = V = S we have a pairing

∧ : π∗(Y )⊗ π∗(Z) −→ π∗(Y ∧ Z) .

If Y is a ring spectrum, with unit η : S → Y and multiplication µ : Y ∧ Y → Y , we have a unit
homomorphism

η∗ : π∗(S) −→ π∗(Y )

and a product

π∗(Y )⊗ π∗(Y )
∧−→ π∗(Y ∧ Y )

µ∗−→ π∗(Y )

that make π∗(Y ) an algebra over π∗(S). If Y is homotopy commutative, then π∗(Y ) is a (graded)
commutative π∗(S)-algebra.

When Y = S, the smash product ∧ : π∗(S)⊗ π∗(S)→ π∗(S) agrees up to sign with the composition
product ◦ : π∗(S) ⊗ π∗(S) → π∗(S). In detail, the smash product of f : St → S and g : Sv → S is
f ∧ g : St+v ∼= St ∧ Sv → S ∧ S = S, while the composition product is f ◦ Σtg : Sv+t = ΣtSv → ΣtS =
St → S. These agree up to the twist equivalence γ : St∧Sv ∼= Sv∧St, which is a a map of degree (−1)tv.

Now suppose that Y and Z are bounded below with H∗(Y ) and H∗(Z) of finite type, and let {Y s}s
and {Zu}u be Adams resolutions. If f : T → Y and g : V → Z have Adams filtrations ≥ s and ≥ u,
respectively, then they factor as the composites of s maps

T = Ts → · · · → T0 = Y

and u maps
V = Vu → · · · → V0 = Z ,

all inducing zero on cohomology. By the Künneth theorem, the smash product f ∧ g then factors as the
composite of (s+ u) cohomologically trivial maps

T ∧ V = Ts ∧ Vu → · · · → T0 ∧ Vu → · · · → T0 ∧ V0 = Y ∧ Z .

Hence we get a restricted pairing

F s[T, Y ]∗ ⊗ Fu[V, Z]∗ −→ F s+u[T ∧ V, Y ∧ Z]∗

that descends to a pairing
F s/F s+1 ⊗ Fu/Fu+1 −→ F s+u/F s+u+1

of filtration quotients.
((TODO: Discuss tensor product pairing of complexes and Ext, and compare with the Yoneda pair-

ing.))
The Yoneda pairing

Ext∗,∗A (F2,F2)⊗ Ext∗,∗A (F2,F2) −→ Ext∗,∗A (F2,F2)

agrees with the tensor product pairing

Ext∗,∗A (F2,F2)⊗ Ext∗,∗A (F2,F2) −→ Ext∗,∗A (F2,F2) ,

so the two multiplicative structures on the Adams spectral sequence for S agree. ((Give proof?))

5.3 Pairings of spectral sequences

Definition 5.5. Let {′Er}r, {′′Er}r and {Er}r be three spectral sequence. A pairing of these spectral
sequences is a sequence of homomorphisms

φr :
′E∗,∗
r ⊗ ′′E∗,∗

r −→ E∗,∗
r

((for r ≥ 1)) such that the Leibniz rule

dr(φr(x⊗ y)) = φr(dr(x)⊗ y) + (−1)nφr(x⊗ dr(y))
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holds, where n = |x| is the total degree of x, and

φr+1([x]⊗ [y]) = [φr(x⊗ y)]

where [x] ∈ ′E∗,∗
r+1 is the homology class of a dr-cycle x ∈ ′E∗,∗

r , and similarly for [y] and the right hand
side. In other words, the diagrams

′E∗,∗
r ⊗ ′′E∗,∗

r

φr //

dr⊗1±1⊗dr
��

E∗,∗
r

dr

��
′E∗,∗
r ⊗ ′′E∗,∗

r

φr // E∗,∗
r

and

H∗,∗(′Er)⊗H∗,∗(′′Er) //

∼=
��

H∗,∗(′Er ⊗ ′′Er)
(φr)∗

// H∗,∗(Er)

∼=
��

′E∗,∗
r+1 ⊗ ′′E∗,∗

r+1

φr+1
// E∗,∗
r+1

commute.

A spectral sequence pairing {φr}r induces a pairing

φ∞ : ′E∗,∗
∞ ⊗ ′′E∗,∗

∞ −→ E∗,∗
∞

of E∞-terms. ((Clear if each spectral sequence vanishes in negative filtrations, so that in each bidegree
(s, t) the Er-terms eventually form a descending sequence, with intersection equal to the E∞-term.))

When the Künneth homomorphism H∗,∗(′Er)⊗H∗,∗(′′Er)→ H∗,∗(′Er⊗ ′′Er) is an isomorphism, for
all r, one can readily define a tensor product spectral sequence {′Er⊗ ′′Er}r, and the pairing of spectral
sequences is the same as a morphism {′Er ⊗ ′′Er}r → {Er}r of spectral sequences.

Definition 5.6. Suppose that the spectral sequences above converge to the graded abelian groups G′,
G′′ and G, respectively, in the sense that there are filtrations {′F s}s, {′′F s}s and {F s}s of these groups,
and isomorphisms ′F s/′F s+1 ∼= ′Es∞, ′′F s/′′F s+1 ∼= ′′Es∞ and F s/F s+1 ∼= Es∞, for all s.

A pairing {φr}r of spectral sequences, as above, converges to a pairing φ : G′ ⊗ G′′ → G if the
latter pairing restricts to homomorphisms φ : ′Fu ⊗ ′′F s → Fu+s for all u and s, and if the induced
homomorphisms φ : ′Fu/′Fu+1 ⊗ ′′F s/′′F s+1 → Fu+s/Fu+s+1 agree with the limit φ∞ : ′Eu∞ ⊗ ′′Es∞ →
Eu+s∞ of the pairings φr.

In other words, the diagram

′Eu∞ ⊗ ′′Es∞

φ∞

��

′Fu/′Fu+1 ⊗ ′′F s/′′F s+1

φ

��

∼=oo ′Fu ⊗ ′′F s

φ

��

oooo // G′ ⊗G′′

φ

��

Eu+s∞ Fu+s/Fu+s+1
∼=oo Fu+soooo // // G

commutes. ((Consequences?))

Definition 5.7. An algebra spectral sequence is a spectral sequence {Er}r with a spectral sequence
pairing {φr : Er ⊗ Er → Er}r that is associative and unital. It is commutative if the pairing satisfies
φr(y ⊗ x) = (−1)mnφr(x ⊗ y) for all x, y and r, where n = |x| and m = |y| are the total degrees.
((Elaborate?))

5.4 The composition pairing

Adams (1958) defined a join pairing in his spectral sequence for S, which is stably equivalent to a smash
product pairing in that spectral sequence. We shall return to those pairings later, but first look at the
case of composition pairings, since these are most closely related to the Yoneda product. ((We may also
need to look at this for Moss’ later theorem on Toda brackets and Massey products.))
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Theorem 5.8 (Moss (1968)). Let X, Y and Z be spectra, with Y and Z bounded below and H∗(Y ) and
H∗(Z) of finite type. There is a pairing of spectral sequences

E∗,∗
r (Y, Z)⊗ E∗,∗

r (X,Y ) −→ E∗,∗
r (X,Z)

which agrees for r = 2 with the Yoneda pairing

Ext∗,∗A (H∗(Z),H∗(Y ))⊗ Ext∗,∗A (H∗(Y ),H∗(X)) −→ Ext∗,∗A (H∗(Z),H∗(X))

and which converges to the composition pairing

[Y, Z∧
2 ]∗ ⊗ [X,Y ∧

2 ]∗ −→ [X,Z∧
2 ]∗ .

The pairing is associative and unital.

Here is a version of Moss’ original proof.

Proof. Let {Y s}s and {Zu}u be Adams resolutions of Y and Z, respectively, with cofibersKs = Y s/Y s+1

and Lu = Zu/Zu+1.
In the unrolled exact couple for X mapping to {Y s}s, we can write

Zsr (X,Y ) = im([X,Y s/Y s+r]∗ → [X,Ks]∗)

Bsr(X,Y ) = im([X,Σ−1(Y s−r+1/Y s)]∗ → [X,Ks]∗)

as subgroups of Es1(X,Y ) = [X,Ks]∗. The homomorphisms are induced by the maps Y s/Y s+r →
Y s/Y s+1 = Ks and Σ−1(Y s−r+1/Y s)→ Y s → Ks. Similarly,

Zur (Y, Z) = im([Y, Zu/Zu+r]∗ → [Y, Lu]∗)

Bur (Y, Z) = im([Y,Σ−1(Zu−r+1/Zu)]∗ → [Y, Lu]∗)

as subgroups of Eu1 (Y, Z) = [Y, Lu]∗.
We would like to define a pairing

Zu1 (Y, Z)⊗ Zs1(X,Y ) −→ Zu+s1 (X,Z)

that takes Zur (Y, Z) ⊗ Zsr (X,Y ) into Zu+sr (X,Z), and satisfies dr(xy) = dr(x)y + xdr(y). ((Cope with
indeterminacy!))

This implies that the pairing takes Zur (Y, Z)⊗Bsr(X,Y ) and Bur (Y, Z)⊗Zsr (X,Y ) into Bu+sr (X,Z),
so that there is an induced pairing Eur (Y, Z)⊗ Esr(X,Y ) → Eu+sr (X,Z). It follows that dr satisfies the
Leibniz rule, and the pairing of Er-terms induces the pairing of Er+1-terms upon passage to homology.

We must also check that the pairing of E2-terms agrees with the Yoneda product, and that the limit
pairing of E∞-terms is compatible with the composition product.

Let f : X → Ks and g : Y → Lu be maps of degree t and v, respectively, that admit lifts f̃ : X →
Y s/Y s+r and g̃ : Y → Zu/Zu+r across the maps Y s/Y s+r → Ks and Zu/Zu+r → Lu.

There is a map of Adams resolutions {ir : Zn+r → Zn}n, giving a vertical map of cofiber sequences

Zn+1+r i //

ir

��

Zn+r
j
//

ir

��

Ln+r
∂ //

��

ΣZn+1+r

Σir

��

Zn+1 i // Zn
j
// Ln

∂ // ΣZn+1

for each n. It factors through the cofiber sequence Zn+1 → Zn+1 → ∗ → ΣZn+1, since r ≥ 1, so
the map Ln+r → Ln is null-homotopic. Hence its cofiber splits as Ln/Ln+r ' Ln ∨ ΣLn+r. ((At
least we can choose commuting homotopies in this way. Different null-homotopies could give different
splittings.)) Passing to vertical cofibers we get an Adams resolution {Zn/Zn+r}n of Z/Zr with cofibers
Ln/Ln+r ' Ln ∨ ΣLn+r ' Ln × ΣLn+r.
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The map g̃ : Y → Zu/Zu+r now lifts to a map {g̃n : Y n → Zu+n/Zu+n+r}n of Adams resolutions.
Let

[
λn

δn
]
: Kn → Lu+n/Lu+n+r ' Lu+n ∨ ΣLu+n+r be the corresponding map of cofibers.

. . .
i // Y n

in //

j
vv

g̃n

��

Y

j
xx

g̃

��

Kn

[
λn

δn

]

��

K0

[
λ0

δ0

]

��

. . .
i // Zu+n/Zu+n+r

in //

j
vv

Zu/Zu+r

j
xx

Lu+n/Lu+n+r Lu/Lu+r

Then λ0j : Y → K0 → Lu equals g : Y → Zu/Zu+r → Lu, while δ0j : Y → ΣLu+r represents dr(g).
Starting with {Y s}s in place of {Zu}u, we get an Adams resolution {Y n/Y n+r}n of Y/Y r with

cofibers Kn/Kn+r ' Kn ∨ ΣKn+r. We can define a map of cofibers

Kn ∨ ΣKn+r ' Kn/Kn+r −→ Lu+n/Lu+n+r ' Lu+n ∨ ΣLu+n+r

by the matrix [
λn 0
δn Σλn+r

]
.

In other words, onKn it agrees with the cofiber map
[
λn

δn
]
in the map of Adams resolutions lifting g̃, while

on ΣKn+r it agrees with the suspended cofiber map Σ
[
λn+r

δn+r

]
, but projected away from the summand

Σ2Lu+n+2r. We claim that there are maps θn : Y n/Y n+r → Zu+n/Zu+n+r making the diagram

Y n/Y n+r
j

//

θn

��

Kn/Kn+r[
λn 0
δn Σλn+r

]
��

Zu+n+1/Zu+n+1+r i // Zu+n/Zu+n+r
j
// Lu+n/Lu+n+r

∂ // Σ(Zu+n+1/Zu+n+1+r)

commute. ((Do they extend to a map of Adams resolutions lifting Y/Y r → Zu/Zu+r?)) To prove this,
one checks that ∂ ◦

[
λn 0
δn Σλn+r

]
◦ j is null-homotopic.

The pairing of r-th cycles now takes g ∈ Zur (Y, Z) and f ∈ Zsr (X,Y ) to the composite

g · f : X f̃−→ Y s/Y s+r
θs−→ Zu+s/Zu+s+r −→ Lu+s

in Zu+sr (X,Z) ⊂ [X,Lu+s]∗.
It equals the composite

X
f−→ Ks λs

−→ Lu+s ,

and the explicit lift θs ◦ f̃ through Zu+s/Zu+s+r tells us that dr(g · f) is represented by the composite

δsf +Σλs+rdr(f) .

((Relate this to dr(g) · f + g · dr(f).))
((ETC))

5.5 The smash product pairing

Let Y and Z be spectra. We have a smash product pairing

∧ : π∗(Y )⊗ π∗(Z) −→ π∗(Y ∧ Z)
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that takes f : St → Y and g : Sv → Z to the smash product f ∧ g : St+v ∼= St ∧ Sv → Y ∧ Z.
Suppose that Y and Z are bounded below, and that H∗(Y ) and H∗(Z) are of finite type. Let

{Y s}s and {Zu}u be Adams resolutions of Y and Z, respectively, with cofibers Y s/Y s+1 = Ks and
Zu/Zu+1 = Lu. Let Ps = H∗(ΣsKs) and Qu = H∗(ΣuLu) be the A -modules that appear in the usual
free resolutions ε : P∗ → H∗(Y ) and ε : Q∗ → H∗(Z).

Let W = Y ∧ Z be the smash product. Then W is bounded below and H∗(W ) ∼= H∗(Y )⊗H∗(Z) is
of finite type. We shall construct an Adams resolution {Wn}n of W by geometrically mixing the Adams
resolutions for Y and Z.

Traditionally, this is done by first replacing Y , Z and their Adams resolutions by homotopy equivalent
spectra, so that each Y s and Zu is a CW spectrum, and each map i : Y s+1 → Y s and i : Zu+1 → Zu is
the inclusion of a CW subspectrum. Then Y s ∧ Zu is a CW subspectrum of Y ∧ Z, and one can form
the union of these subspectra for all s+ u = n. Hence one defines

Wn =
⋃

s+u=n

Y s ∧Wu .

Then Wn+1 is a CW subspectrum of Wn, and

Wn/Wn+1 ∼=
∨

s+u=n

Ks ∧ Lu .

Lemma 5.9. The diagram

. . . // W 2 i //

j

��

W 1 i //

j

��

W

j

��

W 2/W 3

∂

cc

W 1/W 2

∂

ee

W/W 1

∂

ee

is an Adams resolution of W = Y ∧Z. The associated free resolution R∗ → H∗(W ) is the tensor product
of the free resolutions P∗ → H∗(Y ) and Q∗ → H∗(Z).

Proof. Since each Ks is a wedge sum of suspended copies of H, of finite type, and each Lu is of finite
type, we know that Wn/Wn+1 is a wedge sum of suspended copies of H, of finite type. Let

Rn = H∗(Σn(Wn/Wn+1)) ∼=
⊕

s+u=n

Ps ⊗Qu .

This is a free A -module of finite type, by its geometric origin as the cohomology ofWn/Wn+1. (We shall
discuss the A -module structure on a tensor product of A -modules later.) The composite Wn−1/Wn →
ΣWn → Σ(Wn/Wn+1) splits as the direct sum of the maps j∂∧1: Ks−1∧Lu → ΣKs∧Lu ∼= Σ(Ks∧Lu)
and 1 ∧ j∂ : Ks ∧ Lu−1 → Ks ∧ ΣLu ∼= Σ(Ks ∧ Lu). Hence the boundary map ∂n : Rn → Rn−1 is given
by the usual formula

∂n(x⊗ y) = ∂n(x)⊗ y + x⊗ ∂n(y)
(we work at p = 2, hence there is no sign), so that R∗ = P∗ ⊗ Q∗ is the tensor product of the two
resolutions. By the Künneth theorem, the homology of R∗ is the tensor product of the homologies of P∗
and Q∗, so ε : R∗ → H∗(Y )⊗H∗(Z) ∼= H∗(Y ∧ Z) is a free resolution.

In particular, j : W 0 = Y ∧ Z → K0 ∧ L0 induces a surjection j∗ in cohomology. It follows that
∂ : W/W 1 → ΣW 1 induces an injection ∂∗ in cohomology, with image in R0 = H∗(W/W 1) equal to
the kernel of j∗ = ε. This equal the image of ∂1 = ∂∗j∗ : R1 → R0, by exactness at R0 of the free
resolution, which implies that j∗, induced by j : W 1 → W 1/W 2, is surjective. Suppose inductively that
j : Wn−1 → Wn−1/Wn induces a surjection j∗ in cohomology, for some n ≥ 2. Then ∂ : Wn−1/Wn →
ΣWn induces an injection ∂∗ in cohomology. The image of ∂∗ equals the kernel of j∗, hence lies in the
kernel of ∂n−1 = ∂∗j∗ : Rn−1 → Rn−2. This equals the image of ∂n = ∂∗j∗ : Rn → Rn−1, by exactness
at Rn−1, which implies that j∗, induced by j : Wn →Wn/Wn+1, is surjective.

Granting a little more technology, the substitution by CW spectra can be replaced by the passage to
a homotopy colimit. For a fixed n ≥ 0, one considers the diagram of all spectra Y s ∧ Zu for s+ u ≥ n,
and forms the homotopy colimit

Wn = hocolim
s+u≥n

Y s ∧ Zu .
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There is a natural diagram

· · · →W 2 i−→W 1 i−→W 0 ' Y ∧ Z

and an identification

Wn/Wn+1 ∼=
∨

s+u=n

hocofib(Y s+1 → Y s) ∧ hocofib(Zu+1 → Zu)

where hocofib(Y s+1 → Y s) ' Ks denotes the mapping cone of the given map, etc. The proof of the
lemma goes through in the same way with these conventions.

There is a natural tensor product pairing

Ext∗,∗A (H∗(Y ),F2)⊗ Ext∗,∗A (H∗(Z),F2) −→ Ext∗,∗A (H∗(Y ∧ Z),F2)

induced by passage to cohomology from the pairing

HomA (P∗,F2)⊗HomA (Q∗,F2) −→ HomA (P∗ ⊗Q∗,F2)

that takes f : Ps → ΣtF2 and g : Qu → ΣvF2 to the projection P∗ ⊗ Q∗ → Ps ⊗ Qu, followed by
f ⊗ g : Ps ⊗Qu → F2. ((Compare this to the Yoneda pairing when Y = Z = S.))

The following theorem is similar to that proved in §4 of Adams (1958).

Theorem 5.10. There is a natural pairing

Es,tr (Y )⊗ Eu,vr (Z) −→ Es+u,t+vr (Y ∧ Z)

of Adams spectral sequences, given at the E2-term by the tensor product pairing

Exts,tA (H∗(Y ),F2)⊗ Extu,vA (H∗(Z),F2) −→ Exts+u,t+vA (H∗(Y ∧ Z),F2)

and converging to the smash product pairing

πt−s(Y
∧
2 )⊗ πv−u(Z∧

2 ) −→ πt−s+v−u((Y ∧ Z)∧2 ) .

((Discuss the role of completion in the pairing?))

Proof. Recall that Esr = Zsr/B
s
r , where

Zsr = ∂−1 im(ir−1
∗ : π∗(Y

s+r)→ π∗(Y
s+1))

and
Bsr = j ker(ir−1

∗ : π∗(Y
s)→ π∗(Y

s+r−1))

are subgroups of E1
s = π∗(K

s). For the purpose of this proof, it is convenient to rewrite these groups as

Zsr = im(π∗(Y
s/Y s+r)→ π∗(K

s))

and
Bsr = im(π∗(Σ

−1(Y s−r+1/Y s))→ π∗(K
s)) .

These formulas can be obtained by chases in the diagrams

Y s+r
ir //

��

Y s //

j

��

Y s/Y s+r

��

∗ //

��

Ks = //

∂
��

Ks

��

ΣY s+r
Σir−1

// ΣY s+1 // Σ(Y s+1/Y s+r)
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and
∗ //

��

Σ−1(Y s−r+1/Y s)
= //

��

Σ−1(Y s−r+1/Y s)

��

Y s+1 i //

=

��

Y s
j

//

ir−1

��

Ks

��

Y s+1 ir // Y s−r+1 // Y s−r+1/Y s+1

of horizontal and vertical cofiber sequences.
The differential dsr : E

s
r → Es+rr is determined by the homomorphism δ : π∗(Y

s/Y s+r) → Zs+rr

induced by Y s/Y s+r → ΣKs+r and the surjection π : π∗(Y
s/Y s+r)→ Zsr induced by Y s/Y s+r → Ks:

Es1 Zsroooo

����

π∗(Y
s/Y s+r)

δ //πoooo Zs+tr
// //

����

Es+r1

Esr
dsr // Es+rr

It follows that Bs+rr+1/B
s+r
r ⊂ Es+rr equals the image of dsr.

So far we have discussed the Adams spectral sequence for a single spectrum Y . We now relate the
Adams spectral sequences for Y , Z and W = Y ∧ Z, where W has the Adams resolution obtained from
given Adams resolutions of Y and Z.

There is a preferred inclusion Y s ∧Zu →Wn for all s, u ≥ 0 and n = s+ u. It restricts to inclusions
Y s+r ∧ Zu → Wn+r and Y s ∧ Zu+r → Wn+r, that agree on Y s+r ∧ Zu+r. Hence we have a main
commutative diagram

U //

��

Y s+r ∧ Zu ∪ Y s ∧ Zu+r //

ar

  

��

Y s+1 ∧ Zu ∪ Y s ∧ Zu+1 a1 //

��

Y s ∧ Zu //

��

Y ∧ Z

'
��

Wn+r+1 i // Wn+r

ir

CC
ir−1

// Wn+1 i // Wn // W

where Y s+r ∧Zu ∪Y s ∧Zu+r denotes the pushout of Y s+r ∧Zu and Y s ∧Zu+r along Y s+r ∧Zu+r, and
U is brief notation for a similar union of Y s+r+1 ∧ Zu, Y s+r ∧ Zu+1, Y s+1 ∧ Zu and Y s ∧ Zu+1.

Passing to horizontal cofibers for the middle part of the diagram, we get a commutative diagram

Y s ∧ Zu //

��

Y s/Y s+r ∧ Zu/Zu+r //

��

Ks ∧ Lu

��

Wn // Wn/Wn+r // Wn/Wn+1

(1)

where the maps in the upper row are smash products of the standard maps Y s → Y s/Y s+r, Y s/Y s+r →
Ks, etc. The vertical mapKs∧Lu →Wn/Wn+1 agrees with the inclusion of a summand inWn/Wn+1 ∼=∨
s+u=nK

s ∧ Lu. Hence it induces a pairing

φ1 : E
s
1(Y )⊗ Eu1 (Z) −→ En1 (W )

that corresponds to the previously discussed pairing

HomA (P∗,F2)⊗HomA (Q∗,F2) −→ HomA (P∗ ⊗Q∗,F2)

under the d-invariant isomorphisms πt−s(K
s) ∼= Homt

A (Ps,F2), etc.
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Passing to horizontal cofibers further to the left in the main diagram, we get a commutative diagram

Y s/Y s+r ∧ Zu/Zu+r //

��

Σ(Y s+r ∧ Zu ∪ Y s ∧ Zu+r) //

��

Σ(Ks+r ∧ Lu ∨Ks ∧ Lu+r)

��

Wn/Wn+r // ΣWn+r // Σ(Wn+r/Wn+r+1)

(2)

where the composite map in the upper row is the wedge sum of the smash product of the standard maps
Y s/Y s+r → ΣKs+r and Zu/Zu+r → Lu, and the smash product of the standard maps Y s/Y s+r → Ks

and Zu/Zu+r → ΣLu+r. The right hand vertical map is the suspension of the wedge sum of the pairings
Ks+r ∧ Lu →Wn+r/Wn+r+1 and Ks ∧ Lu+r →Wn+r/Wn+r+1.

We now claim that (a) φ1 = φ̃1 restricts to a pairing

φ̃r : Z
s
r (Y )⊗ Zur (Z) −→ Znr (W ) ,

(b) φ̃r descends to a pairing
φr : E

s
r(Y )⊗ Eur (Z) −→ Enr (W )

and (c) φr satisfies the Leibniz rule

dr(φr(y ⊗ z)) = φr(dr(y)⊗ z) + φr(y ⊗ dr(z)) .

Here r ≥ 1 and n = s+ u.
Assuming these claims, which are similar to the conditions of Lemma 2.2 of Moss (1968), we can

easily finish the proof of the theorem. The pairings (φr)∗ and φr+1 agree, under the identification
Hs(E∗

r , dr)
∼= Esr+1, since they are both induced by a passage to quotients from φ̃r+1. Hence the

sequence {φr}r qualifies as a pairing of spectral sequences. In particular, φ2 = (φ1)∗ is the tensor
product pairing of Ext-groups. This spectral sequence pairing converges to the smash product pairing
in homotopy, since the pairing of E∞-terms is induced by the pairing

π∗(Y
s)⊗ π∗(Zu) −→ π∗(Y

s ∧ Zu) −→ π∗(W
n)

via the surjections π∗(Y
s) → Es∞, etc., and the pairing of filtration quotients is induced by the same

pairing via the surjections π∗(Y
s) → F s → F s/F s+1, etc. These surjections have the same kernel, so

the induced pairings of quotients are compatible under the identifications F s/F s+1 ∼= Es∞.
It remains to prove the three parts of the claim.
(a) Applying π∗(−) to the right hand square in diagram (1), we get the outer rectangle of the following

map of pairings:

π∗(Y
s/Y s+r)⊗ π∗(Zu/Zu+r) // //

��

Zsr (Y )⊗ Zur (Z) // //

φ̃r

��

Es1(Y )⊗ Eu1 (Z)

φ1

��

π∗(W
n/Wn+r)

π // // Znr (W ) // // En1 (W )

In view of the description of Znr (W ) as the image of π∗(W
n/Wn+r) → π∗(W

n/Wn+1) = En1 (W ), and
similarly for Y and Z, it follows that there is a unique pairing φ̃r that makes the whole diagram commute.

(b) To check that φ̃r descends to a pairing φr : E
s
r(Y )⊗ Eur (Z)→ Enr (W ), we use the diagram

Esr(Y )⊗ Eur (Z)

φr

��

Zsr (Y )⊗ Zur (Z)

φ̃r

��

oooo // // Zsr−1(Y )⊗ Zur−1(Z)

φ̃r−1

��

// // Esr−1(Y )⊗ Eur−1(Z)

φr−1

��

Enr (W ) Znr (W )oooo // // Znr−1(W ) // // Enr−1(W ) .

There is only something to prove for r ≥ 2. We assume, by induction on r, that the Leibniz rule in (c)
holds for dr−1 and φr−1.

Given y ∈ Bsr(Y ) ⊂ Zsr (Y ) and z ∈ Zur (Z) we must show that φ̃r(y ⊗ z) ∈ Bnr (W ) ⊂ Znr (W ). The
image of y in Esr−1(Y ) has the form [y] = dr−1(x) for some x ∈ Es−r+1

r−1 (Y ), and the image of z in
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Eur−1(Z) satisfies dr−1([z]) = 0. Then dr−1(φr−1(x⊗ [z])) = φr−1(dr−1(x)⊗ [z]) +φr−1(x⊗ dr−1([z])) =

φr−1([y]⊗ [z]) + 0 = [φ̃r(y⊗ z)]. Hence φ̃r(y⊗ z) is congruent modulo Bnr−1(W ) to a class in Bnr (W ), as

we asserted. The same argument shows that φ̃r maps Zsr (Y )⊗ Bur (Z) into Bnr (W ). Hence φ̃r descends
to φr, and this uniquely determines φr.

(c) Applying π∗(−) to the outer rectangle in diagram (2), we get the outer rectangle of the following
map of pairings:

π∗(Y
s/Y s+r)⊗ π∗(Zu/Zu+r)

��

[
δ⊗π
π⊗δ

]
//
Zs+rr (Y )⊗ Zur (Z)

⊕
Zsr (Y )⊗ Zu+rr (Z)

// //

[φ̃r φ̃r]
��

Es+r1 (Y )⊗ Eu1 (Z)
⊕

Es1(Y )⊗ Eu+r1 (Z)

[φ1 φ1]

��

π∗(W
n/Wn+r)

δ // Zn+rr (W ) // // En+r1 (W )

Since the pairings φ̃r have been defined to make the right hand square commute, the whole diagram
commutes.

Combining parts of four of these diagrams, we have the commutative sprawl:

Esr(Y )⊗ Eur (Z)

[
dsr⊗1
1⊗dur

]
��

φr

&&

Zsr (Y )⊗ Zur (Z)
φ̃r //oooo Znr (W ) // // Enr (W )

dnr

��

π∗(Y
s/Y s+r)⊗ π∗(Zu/Zu+r)

π⊗π
OOOO

//[
δ⊗π
π⊗δ

]
��

π∗(W
n/Wn+r)

π

OOOO

δ

��Es+rr (Y )⊗ Eur (Z)
⊕

Esr(Y )⊗ Eu+rr (Z)

[φr φr]

88

Zs+rr (Y )⊗ Zur (Z)
⊕

Zsr (Y )⊗ Zu+rr (Z)

[φ̃r φ̃r]
//oooo Zn+rr (W ) // // En+rr (W )

Going around the outer boundary of the diagram we see that dnr (φr(y⊗z)) = φr(d
s
r(y)⊗z)+φr(y⊗dur (z)),

proving the Leibniz rule.

Remark 5.11. If y ∈ π∗(K
s) and z ∈ π∗(L

u) lift to ỹ ∈ π∗(Y
s/Y s+r) and z̃ ∈ π∗(Z

u/Zu+r), re-
spectively, with images δy ∈ π∗(ΣK

s+r) and δz ∈ π∗(ΣL
u+r), then y ∧ z ∈ π∗(K

s ∧ Lu) lifts to
ỹ ∧ z̃ ∈ π∗(Y s/Y s+r ∧ Zu/Zu+r).

ΣKs+r Y s/Y s+roo // Ks

ΣKs+r ∧ Lu Ks ∧ Lu Lu

Y s/Y s+r ∧ Zu/Zu+r
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))

Zu/Zu+r

OO

��

ΣKs ∧ Lu+r ΣLu+r

The maps Y s ∧ Zu →W s+u =Wn induce a commutative diagram

ΣKs+r ∧ Lu ∨ ΣKs ∧ Lu+r

��

Y s/Y s+r ∧ Zu/Zu+roo //

��

Ks ∧ Lu

��

Σ(Wn+r/Wn+r+1) Wn/Wn+roo // Wn/Wn+1
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and ỹ ∧ z̃ maps to a lift ỹ · z̃ in π∗(W
n/Wn+r) of the image y · z of y ∧ z in Wn/Wn+1. Hence δ(y · z)

is the image δy · z + y · δz of δy ∧ z + y ∧ δz in π∗(ΣK
s+r ∧ Lu ∨ ΣKs ∧ Lu+r). The key point is that,

even if Y s/Y s+r ∧ Zu/Zu+r is attached to all of Y s+r ∧ Zu ∪ Y s ∧ Zu+r in Y s ∧ Zu, the composite
map to Wn+r → Wn+r/Wn+r+1 factors through the quotient Ks+r ∧ Lu ∨Ks ∧ Lu+r, making the left
hand square above commute. The bookkeeping shows that δy represents dr([y]), and so on, so that
δ(y · z) = δy · z + y · δz implies the Leibniz rule for dr.

Corollary 5.12. Suppose that Y is a ring spectrum, with multiplication µ : Y ∧ Y → Y and unit
η : S → Y . Then there is a natural pairing

E∗,∗
r (Y )⊗ E∗,∗

r −→ E∗,∗
r (Y ) ,

given at the E2-term by the composite

Ext∗,∗A (H∗(Y ),F2)⊗ Ext∗,∗A (H∗(Y ),F2) −→ Ext∗,∗A (H∗(Y ∧ Y ),F2)
µ∗−→ Ext∗,∗A (H∗(Y ),F2) ,

and a unit map

E∗,∗
r (S)

η∗−→ E∗,∗
r (Y ) ,

given at the E2-term by

Ext∗,∗A (F2,F2)
η∗−→ Ext∗,∗A (H∗(Y ),F2) ,

that make the Adams spectral sequence E∗,∗
r (Y ) an algebra spectral sequence over E∗,∗

r (S). If Y is
homotopy commutative, then it is a commutative algebra spectral sequence.

5.6 The composition pairing, revisited

Here is a geometric proof of Moss’ theorem on the composition pairing, close to the one for the smash
product pairing.

Proof. Let {Y s}s and {Zu}u be Adams resolutions of Y and Z, with cofibers Y s/Y s+1 = Ks and
Zu/Zu+1 = Lu, respectively. Let Ps = H∗(Σ

sKs) and Qu = H∗(Σ
uLu), as usual.

Consider the homotopy limit of mapping spectra

Mu = holim
n≤u+s

F (Y s, Zn) .

Restriction from n ≤ u + s + 1 to n ≤ u + s gives a map i : Mu+1 → Mu. Its homotopy fiber is the
product over s of the iterated homotopy fiber in the square

F (Y s, Zu+s+1) //

��

F (Y s, Zu+s)

��

F (Y s+1, Zu+s+1) // F (Y s+1, Zu+s) ,

which is equivalent to F (Ks, Lu+s). Hence we get a tower

. . . // Mu+1 // Mu //

��

. . . // M1 // M0

��∏
s F (K

s, Lu+s)

gg

∏
s F (K

s, Ls) .

ff

Restriction to (s, n) = (0, u) defines a map to the tower

. . . // F (Y, Zu+1) // F (Y, Zu) //

��

. . . // F (Y, Z1) // F (Y, Z)

��

F (Y, Lu)

ff

F (Y, L0) .

ff
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Applying homotopy we get a map of unrolled exact couples, from

. . . // π∗(M
u+1) // π∗(M

u) //

��

. . . // π∗(M
1) // π∗(M

0)

��∏
s[K

s, Lu+s]∗

gg

∏
s[K

s, Ls]∗

ff

to the one generating the Adams spectral sequence {E∗,∗
r (Y, Z)}r. Let {′Eu,∗r }r be the spectral sequence

generated by the unrolled exact couple just displayed. The map ′Eu,∗1 → Eu,∗1 (Y, Z) of E1-terms can be
identified, using the d-invariant isomorphisms∏

s

[Ks, Lu+s]∗ ∼=
∏
s

Hom∗
A (Qu+s, Ps) = HOMu,∗

A (Q∗, P∗)

[Y, Lu]∗ ∼= Hom∗
A (Qu,H

∗(Y )) ,

with the quasi-isomorphism

ε∗ : HOMu,∗
A (Q∗, P∗) −→ Hom∗

A (Qu,H
∗(Y ))

induced by ε : P∗ → H∗(Y ). Hence the map of E2-terms is an isomorphism, identifying ′Eu,∗2 with the
Adams E2-term

Eu,∗2 (Y, Z) = Extu,∗A (H∗(Z),H∗(X)) .

We shall define a pairing of spectral sequences

φr :
′Eu,∗r ⊗ Es,∗r (X,Y ) −→ Eu+s,∗r (X,Z)

for r ≥ 1, which agrees with the composition pairing

HOMu,∗
A (Q∗, P∗)⊗HomA (Ps,H

∗(X))→ HomA (Qu+s,H
∗(X))

for r = 1. For r ≥ 2 the source is isomorphic to

Eu,∗r (Y, Z)⊗ Es,∗r (X,Y )

via ε∗ ⊗ 1, which yields Moss’ pairing and the compatibility with the Yoneda product for r = 2.
The pairing φ1 :

′Eu,∗1 ⊗ Es,∗1 (X,Y )→ Eu+s,∗1 (X,Z) is the composition pairing∏
s

[Ks, Lu+s]∗ ⊗ [X,Ks]∗ −→ [X,Lu+s]∗

that takes (gs)s⊗f to gsf . We show that it restricts to a pairing φ̃r :
′Zu,∗r ⊗Zs,∗r (X,Y )→ Zu+s,∗r (X,Z)

of r-th cycles, that descends to a pairing φr :
′Eu,∗r ⊗ Es,∗r (X,Y )→ Eu+s,∗r (X,Z) satisfying the Leibniz

rule, for each r ≥ 1.
((EDIT FROM HERE))
We shall use the identifications

′Zu,∗r = im(π∗(M
u/Mu+r)→ π∗(M

u/Mu+1))

Zs,∗r (X,Y ) = im([X,Y s/Y s+r]∗ → [X,Ks]∗)

Zs,∗r (X,Z) = im([X,Zu+s/Zu+s+r]∗ → [X,Lu+s]∗)

where Mu/Mu+1 =
∏
s F (K

s, Lu+s).
Consider the commutative square

F (Y s, Zu+s+r) //

��

F (Y s, Zu+s)

��

F (Y s+r, Zu+s+r) // F (Y s+r, Zu+s) .
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There are restriction maps from Mu+r to the upper left hand corner, and from Mu to the homotopy
pullback of the rest of the square. Hence there is a map of homotopy fibers from Σ−1(Mu/Mu+1) to
F (Y s/Y s+r,Σ−1(Zu+s/Zu+s+r)), giving a map

Mu/Mu+r −→ F (Y s/Y s+r, Zu+s/Zu+s+r)

and an adjoint pairing
Mu/Mu+r ∧ Y s/Y s+r −→ Zu+s/Zu+s+r

compatible with the pairing Mu/Mu+1 ∧Ks → Lu+s for r = 1. This leads to the commutative diagram

π∗(M
u/Mu+r)⊗ [X,Y s/Y s+r]∗ //

��

[X,Zu+s/Zu+s+r]∗

��∏
s[K

s, Lu+s]∗ ⊗ [X,Ks]∗
φ1 // [X,Lu+s]∗ .

The induced pairing of vertical images is φr.
((EDIT TO HERE))

6 Calculations

6.1 The minimal resolution, revisited

Recall the minimal resolution ε : P∗ → F2.

Lemma 6.1. The product hi ·γs,n contains the summand γs+1,m if and only if ∂s+1(gs+1,m) =
∑
j ajgs,j

contains the summand Sq2
i

gs,n.

Proof. Let γs,n : Ps → F2 be dual to the generator gs,n ∈ Ps, and let hi = γ1,i : P1 → F2 be dual to

g1,i = [Sq2
i

].

Ps+1

∂s+1

��

γ1 // P1

∂1

��
hi   

Ps
γ0 //

γs,n
""

P0

ε

��

F2

F2

We lift γs,n to γ0 : Ps → P0 mapping gs,n 7→ g0,0 and gs,j 7→ 0 for j 6= n. Then γ0 ◦ ∂s+1 sends gs+1,m

to ang0,0. To lift γ0 to γ1 : Ps+1 → P1 we write an =
∑
k bkSq

2k , with each bk ∈ A . Then we may

take γ1(gs+1,m) =
∑
k bkg1,k, since ∂1(g1,k) = Sq2

k

g0,0. The coefficient of gs+1,m in the Yoneda product
hi ·γs,n is then given by the value of hi ◦γ1 on gs+1,m, which equals hi(

∑
k bkg1,k) = ε(bi). Hence γs+1,m

occurs as a summand in hi · γs,n if and only if Sq2
i

occurs as a summand in an =
∑
k bkSq

2k . This is

equivalent to the condition that Sq2
i

occurs as a summand when an is written as a sum of admissible
monomials.

Proposition 6.2. The Yoneda products in Ext∗,∗A (F2,F2) in internal degrees t ≤ 11 are given by:

· γ0,0 γ1,0 γ1,1 γ1,2 γ1,3 γ2,0 γ2,1 γ2,2 γ2,3 γ2,4 γ2,5 γ3,0 γ3,1 γ3,2 γs,0
h0 γ1,0 γ2,0 0 γ2,2 γ2,4 γ3,0 0 γ3,1 0 γ3,2 0 γ4,0 0 γ4,1 γs+1,0

h1 γ1,1 0 γ2,1 0 γ2,5 0 γ3,1 0 0 0 ? 0 0 ? 0
h2 γ1,2 γ2,2 0 γ2,3 ? γ3,1 0 0 ? ? ? 0 0 ? 0
h3 γ1,3 γ2,4 γ2,5 ? ? γ3,2 ? ? ? ? ? γ4,1 ? ? ?

for 5 ≤ s ≤ 10.

Proof. This can be read off from the minimal resolution ε : P∗ → F2, using the lemma above.
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Remark 6.3. The remaining summands, like Sq3g1,0 in ∂2(g2,1) and Sq
2Sq1g1,1 in ∂2(g2,2), contribute

to higher compositions like Massey products, like h21 ∈ 〈h0, h1, h0〉 and h0h2 ∈ 〈h1, h0, h1〉, which imply
η2 ∈ 〈2, η, 2〉 and 2ν ∈ 〈η, 2, η〉, respectively.

Definition 6.4. Let c0 ∈ Ext3,11A (F2,F2) be the class of the cocycle γ3,3 : P3 → F2 of degree 11, dual to
g3,3.

Corollary 6.5. The algebra unit is 1 = γ0,0. The classes h0 = γ1,0, h1 = γ1,1, h2 = γ1,2, h3 = γ1,3
and c0 = γ3,3 are indecomposable. The remaining additive generators in internal degree t ≤ 11 are
decomposable. These algebra generators commute with one another, so the Yoneda product is commutative
(in this range). The decomposable generators have the following presentations:

γ2,0 = h20 γ3,0 = h30

γ2,1 = h21 γ3,1 = h31 = h20h2

γ2,2 = h0h2 γ3,2 = h20h3

γ2,3 = h22 γ4,1 = h30h3

γ2,4 = h0h3 γs,0 = hs0

γ2,5 = h1h3

for s ≥ 5. The relations h0h1 = 0, h1h2 = 0, h31 = h20h2 and h0h
2
2 = 0 are satisfied, and generate all

other relations for s ≤ 3 and t ≤ 11.

We redraw the Adams E2-term with these standard names for the generators, in the usual chart with
the topological degree t− s on the horizontal axis and the filtration degree s on the vertical axis. (The
class labeled h31 could equally well have been called h20h2.)

0 2 4 6 8 10

0

2

4

1

h0 h1 h2 h3

h20 h21 h0h2 h22 h0h3 h1h3

h30 h31 h20h3

h40 h30h3

h50

?

c0 ? ?

? ? ?

. . ? ?

Another way to draw the chart is to use a • for each additive generator, a vertical line connecting x
to h0x, a line of slope 1 connecting x to h1x, a (dashed) line of slope 1/3 connecting x to h2x, and a
(dotted) line of slope 1/7 connecting x to h3x.

0 2 4 6 8 10

0

2

4

?

? ?

? ? ?

. . ? ?
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Here is the same chart without the h3-multiplications, which tend to clutter the picture, but with
labels for the indecomposables.

0 2 4 6 8 10

0

2

4

h0 h1 h2 h3

c0

?

? ?

? ? ?

. . ? ?

The reader might contemplate the relations hihi+1 = 0, h3i+1 = h2ihi+2 and hih
2
i+2 = 0, in view of this

diagram.
Let us take for granted Adams’ vanishing result, in the form that the groups Es,t2 = 0 for 1 ≤ t−s ≤ 7

and s ≥ 5. Then:

Lemma 6.6. Es,t2 = Es,t∞ for t ≤ 11.

Proof. Since the hi for 0 ≤ i ≤ 3 represent homotopy classes, they are infinite cycles, meaning that
dr(hi) = 0 for all r ≥ 2. By the Leibniz rule, it follows that dr(x) = 0 for each x in the subalgebra
generated by these classes. The only remaining additive generator is c0, but dr(c0) lands in Adams’
vanishing range, for all r ≥ 2.

Theorem 6.7. (a) π0(S)
∧
2
∼= Z2 is generated by the identity map ι : S → S, represented by 1 ∈ E0,0

∞ .
The class of 2sι is represented by hs0 ∈ Es,s∞ , for all s ≥ 0.

(b) π1(S)
∧
2
∼= Z/2 is generated by the complex Hopf map η : S1 → S, represented by h1 ∈ E1,2

∞ .

(c) π2(S)
∧
2
∼= Z/2 is generated by η2, represented by h21 ∈ E2,4

∞ .

(d) π3(S)
∧
2
∼= Z/8 is generated by the quaternionic Hopf map ν : S3 → S, represented by h2 ∈ E1,4

∞ . The
class 2ν is represented by h0h2 ∈ E2,5

∞ , and the class 4ν = η3 is represented by h20h2 = h31 in E3,6
∞ .

(e) π4(S)
∧
2 = 0.

(f) π5(S)
∧
2 = 0.

(g) π6(S)
∧
2
∼= Z/2 is generated by ν2, represented by h22 ∈ E2,8

∞ .

(h) π7(S)
∧
2
∼= Z/16 is generated by the octonionic Hopf map σ : S7 → S, represented by h3 ∈ E1,8

∞ . The
classes 2kσ are represented by hk0h3 ∈ Ek+1,k+8

∞ , for 0 ≤ k ≤ 3.

This gives the additive structure of π∗(S)
∧
2 for ∗ ≤ 7. We can also determine the multiplicative

structure.

Proposition 6.8. 2η = 0, η3 = 4ν, ην = 0, 2ν2 = 0.

Proof. These follow from the relations h0h1 = 0, h31 = h20h2, h1h2 = 0 and h0h
2
2 = 0 in ExtA , together

with the fact that there are no classes of higher Adams filtration, in these cases.

Remark 6.9. By associativity, it is clear that η · ν2 = ην · ν = 0. On the other hand, the vanishing of
h1 · h22 in Ext3,10A (F2,F2) only tells us that η · ν2 is 0 modulo classes of Adams filtration s ≥ 4. There
is one such class, namely 8σ represented by h30h3, but the factorization of ν2 tells us that η · ν2 is not
equal to 8σ, but is 0.
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Figure 2: Adams spectral sequence for S, in degrees 0 ≤ ∗ ≤ 22

6.2 The Toda–Mimura range

Toda (1962) calculated πn+k(S
k) for all n ≤ 19, Mimura and Toda (1963) extended this to n = 20, and

Mimura (1965) carried on to n = 21 and n = 22. For k large, these computations determine the stable
homotopy groups πn(S) for n ≤ 22. ((Maybe better to continue to n ≤ 23, to see νκ̄.))

The Adams E2-term in this range was originally computed by hand (by Adams (1961) for t− s ≤ 17
and Liulevicius (unpublished) for t − s ≤ 23), then by the May spectral sequence (by May (1964) for
t−s ≤ 42 and Tangora (1970) for t−s ≤ 70), but can now quickly be obtained by machine computation.
Bruner’s ext-program yields the chart in Figure 2. The larger chart in Figure 3 was created by Christian
Nassau (2001).

((Show hidden extensions: η times ρ is represented by Pc0, η times ηκ̄ is represented by Pd0, 2 times
2νκ̄ equals ν times 4κ̄ and is represented by h1Pd0, ν times ν2 differs from η2σ by ηε.))

With the exception of f0, each labeled class is the unique nonzero class in its bidegree. The class f0
is, for now, only defined modulo the decomposable class h31h4 = h20h2h4. (A definite choice can be made
using Steenrod operations in Ext.)

In addition to the h0-, h1- and h2-multiplications shown, and the product h3 ·h3 = h23 in E2,16
2 , there

are the following nonzero h3-multiplications:

h3 · Ph1 = h21d0

h3 · h1Ph1 = h22Ph2 = h31d0 = h30e0

h3 · h23 = h22h4

h3 · e0 = h1h4c0

h3 · P 2h1 = h21Pd0

h3 · h1P 2h1 = h22P
2h2 = h31Pd0 = h30Pe0

The last three of these land outside the displayed range of topological degrees. We omit to list the
hi-multiplications for i ≥ 4. ((The multiplicative structure also includes relations like c20 = h21d0.))

The evolution of the Adams spectral sequence in this range is as follows.

Theorem 6.10. The algebra indecomposables in topological degree t− s ≤ 22 of the Adams E2-term are
h0, h1, h2, h3 and h4 in filtration s = 1, c0 and c1 in filtration s = 3, d0, e0, f0 and g = g1 in filtration
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Figure 3: Ext over A by Christian Nassau (2001)
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s = 4, Ph1 and Ph2 in filtration s = 5, Pc0 in filtration s = 7, Pd0 in filtration s = 8, and P 2h1 and
P 2h2 in filtration s = 9.

The classes h0, h1, h2, h3, c0, c1, d0, g, Ph1, Ph2, Pc0, Pd0, P
2h1 and P 2h2 are infinite cycles.

The nonzero d2-differentials affecting this range are:

h4
d27−→ h0h

2
3

e0 7−→ h21d0

f0 7−→ h0h2d0 = h20e0

h1e0 = h0f0 7−→ h31d0 = h30e0

i 7−→ h0Pd0

h0i 7−→ h20Pd0

The list of algebra indecomposables of the E3-term is as for the E2-term, with h4, e0 and f0 deleted,
but with h0h4, h1h4 and h2h4 added. The classes h1h4 and h2h4 are infinite cycles.

The nonzero d3-differentials are:

h0h4
d37−→ h0d0

h20h4 7−→ h20d0

The list of algebra indecomposables of the E4-term is as for the E3-term, with h0h4 deleted, but with
h30h4 added. There are no further differentials, so that E4 = E∞ in this range of topological degrees.

Sketch proof. Use graded commutativity of π∗(S) to see that 2σ2 = 0, but h0h
2
3 6= 0 in E3,17

2 . Since h0h
2
3

is an infinite cycle, it must be a boundary, so d2(h4) = h0h
2
3.

Using the homotopy-everything structure on S, one gets a differential d2(f0) = h20e0, which implies
that d2(h0f0) = h30e0 and d2(e0) = h21d0.

Using the J-homomorphism, we known that π15(S)
∧
2 contains Z/32 as a direct summand. We know

that d2(h0h4) = h20h
2
3 = 0. If also d3(h0h4) = 0, then π15(S)

∧
2 would instead contain a copy of Z/64

(unless d6(h1h4) = h70h4). Deduce that d3(h0h4) = h0d0.

Toda (1962) uses the following notation.

Definition 6.11. Let ε ∈ π8(S)∧2 be the unique class represented by c0 ∈ E3,11
∞ . Then ηε ∈ π9(S)∧2 is

represented by h1c0 ∈ E4,13
∞ . ((Claim: ν3 = η2σ + ηε.))

Let µ = µ9 ∈ π9(S)∧2 be the unique class represented by Ph1 ∈ E5,14
∞ . Then ηµ = µ10 ∈ π10(S)∧2 is

the unique class represented by h1Ph1 ∈ E6,16
∞ .

Let ζ ∈ π11(S)∧2 be a class represented by Ph2 ∈ E5,16
∞ . It is determined up to an odd multiple. Then

4ζ = η2µ.
The class σ2 = θ3 in π14(S)

∧
2 is decomposable. It is represented by h23 ∈ E2,16

∞ .
Let κ ∈ π14(S)∧2 be the unique class represented by d0 ∈ E4,18

∞ . ((Then ηκ ∈ π15(S)∧2 is represented
by h1d0, and νκ ∈ π17(S)∧2 is represented by h2d0, while η

2κ = 0.))
Let ρ ∈ π15(S)∧2 be a class represented by h30h4. It is determined up to an odd multiple. ((There is

a hidden multiplicative extension: ηρ is represented by Pc0.))
Let η∗ = η4 ∈ π16(S)∧2 be a class represented by h1h4. ((This only defines it modulo ηρ.))
Let ν∗ ∈ π18(S)∧2 be a class represented by h2h4. ((This only defines it up to an odd multiple, and

modulo ηµ̄ = µ18. Compare σ3 to νν∗?))
Let µ̄ = µ17 ∈ π17(S)∧2 be the unique class represented by P 2h1 ∈ E9,26

∞ . Then ηµ̄ = µ18 ∈ π18(S)∧2
is the unique class represented by h1P

2h1 ∈ E10,28
∞ .

((Define σ̄, ζ̄.))

Definition 6.12. It is traditional to write θj for a class in π2j+1−2(S) represented by h2j in E2j+1,2
∞ , if

such a class exists, and to write ηj for a class in π2j (S) represented by h1hj ∈ E2j+2,2
∞ .

Remark 6.13. The classes θj are realized for 0 ≤ j ≤ 3 by 22 = 4, η2, ν2 and σ2. It follows from the
computations of Mahowald and Tangora (1967) that h24 is an infinite cycle, so that θ4 ∈ π30(S) exists.
It was proved by Barratt, Jones and Mahowald (1984) that h25 is an infinite cycle, so that θ5 ∈ π62(S)
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exists. It is an open problem whether θ6 ∈ π126(S) exists. Hill, Hopkins and Ravenel (2009, to appear)
showed that θj does not exist for j ≥ 7.

Mahowald (Topology, 1977) proved that the ηj exist (so that h1hj is an infinite cycle) for all j ≥ 3.
It is known (Mahowald and Tangora (1967), plus later calculations) that the only other classes in

filtration s = 2 that survive to the E∞-term are h0h2, h0h3 and h2h4, representing 2ν, 2σ and ν∗ in
π∗(S).

Theorem 6.14. (a) π8(S)
∧
2
∼= (Z/2)2 is generated by ησ and ε, represented by h1h3 ∈ E2,10

∞ and c0 ∈
E3,11

∞ , respectively.

(b) π9(S)
∧
2
∼= (Z/2)3 is generated by η2σ, ηε and µ, represented by h21h3 ∈ E3,12

∞ , h1c0 ∈ E4,13
∞ and

Ph1 ∈ E5,14
∞ , respectively.

(c) π10(S)
∧
2
∼= Z/2 is generated by ηµ, represented by h1Ph1 ∈ E6,16

∞ .

(d) π11(S)
∧
2
∼= Z/8 is generated by ζ, represented by Ph2 ∈ E5,16

∞ . The class 2ζ is represented by
h0Ph2 ∈ E6,17

∞ , and the class 4ζ = η2ρ is represented by h20Ph2 = h21Ph1 ∈ E7,18
∞ .

(e) π12(S)
∧
2 = 0.

(f) π13(S)
∧
2 = 0.

(g) π14(S)
∧
2
∼= (Z/2)2 is generated by σ2 and κ, represented by h23 ∈ E2,16

∞ and d0 ∈ E4,18
∞ , respectively.

(h) π15(S)
∧
2
∼= Z/32 ⊕ Z/2 is generated by ρ and ηκ, represented by h30h3 ∈ E4,19

∞ and h1d0 ∈ E5,20
∞ ,

respectively. The classes 2kρ are represented by hk+3
0 h3 ∈ Ek+4,k+19

∞ for 0 ≤ k ≤ 4.

(i) π16(S)
∧
2
∼= (Z/2)2 is generated by η∗ = η4 and ηρ, represented by h1h4 ∈ E2,18

∞ and Pc0 ∈ E7,23
∞ ,

respectively. ((Note the filtration shift in η · ρ.))

(j) π17(S)
∧
2
∼= (Z/2)4 is generated by ηη∗, νκ, η2ρ and µ̄ = µ17, represented by h21h4 ∈ E3,20

∞ , h2d0 ∈
E5,22

∞ , h1Pc0 ∈ E7,24
∞ and P 2h1 ∈ E9,26

∞ , respectively.

(k) π18(S)
∧
2
∼= Z/8 ⊕ Z/2 is generated by ν∗ and ηµ̄ = µ18, represented by h2h4 ∈ E2,20

∞ and h1P
2h1 ∈

E10,28
∞ , respectively.

(l) π19(S)
∧
2
∼= Z/2⊕ Z/8 is generated by σ̄ and ζ̄, represented by c1 ∈ E3,22

∞ and P 2h2 ∈ E9,28
∞ , respec-

tively.

(m) π20(S)
∧
2
∼= Z/8 is generated by κ̄, represented by g ∈ E4,24

∞ . The class 2κ̄ is represented by h0g ∈
E5,25

∞ , and the class 4κ̄ = ν2κ is represented by h20g = h22d0 ∈ E6,26
∞ .

(n) π21(S)
∧
2
∼= (Z/2)2 ((?)) is generated by νν∗ and ηκ̄, represented by h22h4 ∈ E3,24

∞ and h1g ∈ E5,26
∞ ,

respectively.

(o) π22(S)
∧
2
∼= (Z/2)2 ((?)) is generated by νσ̄ and η2κ̄, represented by h2c1 ∈ E4,26

∞ and Pd0 ∈ E8,30
∞ ,

respectively. ((Note the filtration shift in η · ηκ̄.))

((Discuss additive splittings, by 2η = 0 and associativity, and multiplicative extensions.))

Remark 6.15. There are Steenrod operations Sqi in E∗,∗
2 = Ext∗,∗A (F2,F2), taking E

s,t
2 to Es+i,2t2 . In

particular Sq0 : Es,t2 → Es,2t2 is multiplicative, and maps hi to hi+1 for i ≥ 0. A sequence of elements

x, Sq0(x), Sq0(Sq0(x)), . . .

is called a Sq0-family. In the Sq0-family h0, h1, h2, . . . the first four classes detect 2ι, η, ν and σ, but h4
and all later terms are killed by the Adams differentials d2(hi) = h0h

2
i−1 for i ≥ 4.

In the Sq0-family h20, h
2
1, h

2
2, . . . the first six classes detect 4ι, η2, ν2, σ2, θ4 and θ5, but h27 and

all later terms are killed by (unknown) differentials. The status of h26 is unknown. In the family
h0h2, h1h3, h2h4, . . . the first three classes detect 2ν, ησ and ν∗, but h3h5 and all later terms sup-
port differentials. In the family h0h3, h1h4, h2h5, . . . the first two classes detect 2σ and η∗, but h2h5
and all later terms support differentials. For each i ≥ 4, only the term h1hi+1 survives in the family
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Figure 4: Adams spectral sequence for HZ

h0hi, h1hi+1, h2hi+2, . . . , detecting ηi+1. The classes c0, c1, c2, . . . also form a Sq0-family. The first two
classes detect ε and σ̄, but there are differentials d2(ci) = h0fi−1 for i ≥ 2.

These results leads to the conjecture, called the “New Doomsday Conjecture” by Minami, and the
“Finiteness Conjecture” by Bruner, saying that only a finite number of terms in each Sq0-family detects
nonzero homotopy classes. ((References?))

6.3 Adams vanishing

Lemma 6.16 (Change of rings). Let A be any algebra, let B ⊂ A be a subalgebra such that A is flat
as a right B-module, let M be any left B-module and let N be any left A-module. There is a natural
isomorphism

Exts,tA (A⊗B M,N) ∼= Exts,tB (M,N) .

Proof. Let P∗ → M be a B-free resolution. Then A ⊗B P∗ → A ⊗B M is an A -free resolution. The
isomorphism HomA(A ⊗B P∗, N) ∼= HomB(P∗, N) induces the asserted isomorphism upon passage to
cohomology.

((TODO: Discuss compatibility of multiplicative structure(s) in ExtA and ExtB .))

Definition 6.17. Let A be an algebra and let B ⊂ A be an augmented subalgebra, with augmentation
ideal I(B) = ker(ε). Let

A//B = A⊗B F2
∼= A/A · I(B) .

If B is normal in A, meaning that I(B) ·A = A · I(B), then A//B is a quotient algebra of A.

Recall that we write P (x) = F2[x] and E(x) = P (x)/(x2) for the polynomial algebra and the exterior
algebra, respectively, on a generator x. Let A(0) = E(0) = E(Sq1) ⊂ A be the subalgebra generated by
Sq1. There are isomorphisms H∗(HZ) ∼= A /A Sq1 ∼= A ⊗A(0) F2 = A //A(0).

Proposition 6.18. The Adams spectral sequence for HZ collapses at the E2-term

E∗,∗
2 = Ext∗,∗A (H∗(HZ),F2) ∼= Ext∗,∗A(0)(F2,F2) ∼= P (h0)

where h0 ∈ E1,1
2 , and converges strongly to π∗(HZ2). The class of 2s ∈ π0(HZ2) = Z2 is represented by

hs0 ∈ Es,s∞ , for each s ≥ 0.

Proof. The Steenrod algebra A is free as a right A(0)-module, generated by the admissible monomials
SqI for which I = (i1, . . . , i`) and i` ≥ 2. (This includes the monomial 1 = Sq().)

There is a minimal, free A(0)-module resolution P∗ of F2 with Ps = A(0){gs} = F2{gs, Sq1gs} for
each s ≥ 0, and ∂s(gs) = Sq1gs−1 for each s ≥ 1. Then ExtsA(0)(F2,F2) ∼= HomA(0)(Ps,F2) ∼= F2{γs} is
generated by the dual of gs. It lifts to a chain map γ̃s : P∗+s → P∗ that takes gn+s to gn for each n ≥ 0.
These satisfy γ̃u ◦ γ̃s = γ̃u+s under composition, so γu · γs = γu+s in the Yoneda product. Let h0 = γ1
be dual to g1, in internal degree 1. Then γs = hs0 and we have proved that Ext∗A(0)(F2,F2) ∼= F2{hs0 |
s ≥ 0} = P (h0).

68



The cofiber sequence

S
η−→ HZ→ HZ

induces a short exact sequence

0← F2
η∗←− A //A(0)←− I(A /A Sq1)← 0

in cohomology, and a long exact sequence

Exts−1,t
A (I(A /A Sq1),F2)

δ−→ Exts,tA (F2,F2)
η∗−→ Exts,tA(0)(F2,F2) −→ Exts,tA (I(A /A Sq1),F2)

of Adams E2-terms. The map η∗ is an isomorphism for t− s = 0, so the connecting homomorphism δ is
an isomorphism for t− s 6= 0.

Lemma 6.19. I(A /A Sq1) is free as a left A(0)-module, generated by the admissible SqI for which
I = (i1, . . . , i`), i1 is even and i` ≥ 2. (This excludes the monomial 1 = Sq().) The first few basis
elements are

Sq2, Sq4, Sq6, Sq4Sq2, Sq8, Sq6Sq2, Sq6Sq3, Sq10, Sq8Sq2, Sq8Sq3, . . . .

Proof. When SqI ranges over the admissible monomials with i1 even and i` ≥ 2, then SqI and Sq1SqI

range over the admissible monomials with i` ≥ 2. The only exception occurs for I = ().

Proposition 6.20. Let M be an A -module that is free as an A(0)-module, and concentrated in degrees
∗ ≥ 0. Let

ε(s) =


0 for s ≡ 0 mod 4,

1 for s ≡ 1 mod 4,

2 for s ≡ 2, 3 mod 4.

Then
Exts,tA (M,F2) = 0

for t− s < 2s− ε(s).

Proof. First consider the case M = A(0), with the unique A -module structure realized by H∗(S/2).
There is a minimal free A -module resolution

P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

ε−→ A(0)→ 0

with P0 = A {1}, P1 concentrated in degrees t ≥ 2, P2 concentrated in degrees t ≥ 4, P3 concentrated
in degrees t ≥ 7, and Σ12K = ker(∂3) concentrated in degrees t ≥ 12.

This can be proved by direct calculation, or by using our previous Ext-calculations for the sphere

spectrum, the cofiber sequence S
2−→ S −→ S/2 −→ ΣS = S1, the induced extension 0← F2 ← A(0)←

ΣF2 ← 0 of A -modules, and the associated long exact sequence

· · · → Exts−1,t−1
A (F2,F2)

δ−→ Exts,tA (F2,F2) −→ Exts,tA (A(0),F2) −→ Exts,t−1
A (F2,F2)→ . . .

in Ext. Here each connecting map δ is given by the Yoneda product with h0, which is the class in
Ext1,1A (F2,F2) of the extension above. This leads to the additive structure of the following Adams chart
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for Ext∗,∗A (A(0),F2):
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This proves the claim for M = A(0) and 0 ≤ s < 4.
Next, consider an extension 0 → M ′ → M → M ′′ → 0 of A(0)-free A -modules, all concentrated in

degrees ∗ ≥ 0, and suppose that the claim holds for M ′ and M ′′. Then the claim follows for M , in view
of the long exact sequence

· · · → Exts,tA (M ′′,F2) −→ Exts,tA (M,F2) −→ Exts,tA (M ′,F2)→ . . . .

The claim for general A(0)-free M and 0 ≤ s < 4 then follows.
Since A(0) and each Ps is A(0)-free, it follows that Σ

12K = ker(∂3) is A(0)-free, and concentrated in
degrees ∗ ≥ 12. Thinking of P∗+4 as a resolution of Σ12K, we get an isomorphism

Exts,tA (K,F2) ∼= Exts+4,t+12
A (F2,F2)

for all s ≥ 0. Hence the claim for A(0) and 4 ≤ s < 8 follows from the one for K and 0 ≤ s < 4. The
general claim for A(0)-free M and 4 ≤ s < 8 then follows as above. Continuing this way, the general
claim follows for all s ≥ 0.

Corollary 6.21. Exts,tA (F2,F2) = 0 for 0 < t − s < 2s − ε, where ε = 1 for s ≡ 1 mod 4, ε = 2 for
s ≡ 2 mod 4 and ε = 3 for s ≡ 0, 3 mod 4.

Proof. This follows from the isomorphisms

Exts,tA (F2,F2) ∼= Exts−1,t
A (I(A /A Sq1),F2) ∼= Exts−1,t−2

A (M,F2)

for t− s > 0, where Σ2M = I(A /A Sq1), and the proposition as applied to M .

This result is not quite optimal for s ≡ 0 mod 4. Adams (1966) works a little harder to prove the
optimal vanishing range:

Theorem 6.22 (Adams vanishing). Exts,tA (F2,F2) = 0 for 0 < t − s < 2s − ε, where ε = 1 for s ≡ 0, 1
mod 4, ε = 2 for s ≡ 2 mod 4 and ε = 3 for s ≡ 3 mod 4.

((ETC: Approximation for Ext over A(n) ⊂ A .))

6.4 Topological K-theory

Definition 6.23. Let ku and ko be the complex and real connective K-theory spectra, with underlying
infinite loop spaces Ω∞ku = Z×BU and Ω∞ko = Z×BO, respectively. These are the connective covers
of the complex and real topological K-theory spectra, KU and KO, respectively.

Definition 6.24. Let bu and bsu be the 1- and 3-connected connected covers of ku, respectively, with
Ω∞bu = BU and Ω∞bsu = BSU . Let bo, bso and bspin be the 0-, 1- and 3-connected covers of ko,
respectively, with Ω∞bo = BO, Ω∞bso = BSO and Ω∞bspin = BSpin. We may also use the notations
u = Σ−1bu, su = Σ−1bsu, o = Σ−1bo, so = Σ−1bso and spin = Σ−1bspin, for the desuspended spectra
with infinite loop spaces U , SU , O, SO and Spin, respectively.
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Remark 6.25. This is the notation used by Adams and May. Mahowald and Ravenel write bu and bo
for “our” ku and ko.

Definition 6.26. Let Q1 = [Sq1, Sq2] = Sq3 + Sq2Sq1. Let E(1) = E(Sq1, Q1) ⊂ A be the subalgebra
of A generated by Sq1 and Q1, and let A(1) = 〈Sq1, Sq2〉 ⊂ A be the subalgebra generated by Sq1 and
Sq2. Here is an additive basis for A(1), with the action by Sq1 and Sq2 indicated by arrows:

1

��

// Sq2 //

))

Sq3 // Sq2Sq3

%%

Sq1 // Sq2Sq1 // Sq3Sq1 // Sq1Sq5

For typographical reasons, we write Sq2Sq3 in place of its admissible expansion Sq5 + Sq4Sq1. Note
that E(1)//A(0) ∼= E(Q1), A(1)//E(Q1) ∼= E(Sq1, Sq2) and A(1)//E(1) ∼= E(Sq2).

Proposition 6.27 (Stong). There are A -module isomorphisms

H∗(ku) ∼= A //E(1) = A /A {Sq1, Q1} = A /A {Sq1, Sq3}

and
H∗(ko) ∼= A //A(1) = A /A {Sq1, Sq2} .

Proof. By complex Bott periodicity, there is a cofiber sequence

Σ2ku
β−→ ku→ HZ→ Σ3ku .

Here Σ2ku = bu is the connected cover of ku. The left hand map is a composite

Σ2ku = ku ∧ S2 1∧u−→ ku ∧ ku φ−→ ku

where u ∈ π2(ku) is a generator and φ is the ring spectrum product. It is known that the mod 2 Hurewicz
image of u is zero, so β∗ = 0, and there is a short exact sequence of A -modules

0← H∗(ku)← H∗(HZ)← Σ3H∗(ku)← 0 .

The short exact sequence of E(1)-modules

0← F2 ← E(1)//A(0)← Σ3F2 ← 0

can be induced up to a short exact sequence

0← A //E(1)← A //A(0)← Σ3A //E(1)← 0 ,

since A is free as a right E(1)-module.
The composite HZ→ Σ3ku→ Σ3HZ is known to take Σ31 to Q1 in cohomology, so ku→ HZ takes

Q1 to 0 in cohomology. Hence there is a map of short exact sequences

0 A //E(1)oo

��

A //A(0)oo

∼=
��

Σ3A //E(1)oo

��

0oo

0 H∗(ku)oo H∗(HZ)oo Σ3H∗(ku)oo 0oo

We know that the middle map is an isomorphism, and the right hand map is the triple suspension of
the left hand map. It follows by induction on the internal degree that the latter two maps are also
isomorphisms.
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By real Bott periodicity, there is a cofiber sequence

Σko
η−→ ko→ ku→ Σ2ko .

The left hand map is a composite

Σko = ko ∧ S1 1∧η−→ ko ∧ ko φ−→ ko

where η ∈ π1(ko) is the image of η ∈ π1(S), and φ is the ring spectrum product. The mod 2 Hurewicz
image of η is zero, so η∗ = 0, and there is a short exact sequence of A -modules

0← H∗(ko)← H∗(ku)← Σ2H∗(ko)← 0 .

The short exact sequence of A(1)-modules

0← F2 ← A(1)//E(1)← Σ2F2 ← 0

can be induced up to a short exact sequence

0← A //A(1)← A //E(1)← Σ2A //A(1)← 0 ,

since A is free as a right A(1)-module.
The composite ku → Σ2ko → Σ2ku takes Σ21 to Sq2 in cohomology, so ko → ku takes Sq2 to 0 in

cohomology. Hence there is a map of short exact sequences

0 A //A(1)oo

��

A //E(1)oo

∼=
��

Σ2A //A(1)oo

��

0oo

0 H∗(ko)oo H∗(ku)oo Σ2H∗(ko)oo 0oo

We know that the middle map is an isomorphism, and the right hand map is the double suspension
of the left hand map. It follows by induction on the internal degree that the latter two maps are also
isomorphisms.

Proposition 6.28. The Adams spectral sequence for ku collapses at the E2-term

E∗,∗
2 = Ext∗,∗A (H∗(ku),F2) ∼= Ext∗,∗E(1)(F2,F2) ∼= P (h0, h20)

where h0 ∈ E1,1
2 and h20 ∈ E1,3

2 , and converges strongly to π∗(ku
∧
2 ) = Z2[u]. The class of 2 ∈ π0(ku∧2 ) is

represented by h0, and the class of u ∈ π2(ku∧2 ) is represented by h20.

Proof. We use the change of rings isomorphism Ext∗,∗A (A //E(1),F2) ∼= Ext∗,∗E(1)(F2,F2). ((Must justify

that A is right free, thus flat, over E(1).)) There is a Künneth isomorphism

Ext∗,∗E(1)(F2,F2) ∼= Ext∗,∗E(Sq1)(F2,F2)⊗ Ext∗,∗E(Q1)
(F2,F2)

and Ext∗,∗E(Q1)
(F2,F2) ∼= P (h20) with h20 dual to Q1, by the same argument we used to show that

Ext∗,∗E(1)(F2,F2) ∼= P (h0) with h0 dual to Sq1. (Another name for h20 is v1.) The spectral sequence is

concentrated in even columns, hence collapses for bidegree reasons.

Proposition 6.29. The Adams spectral sequence for ko collapses at the E2-term

E∗,∗
2 = Ext∗,∗A (H∗(ko),F2) ∼= Ext∗,∗A(1)(F2,F2)

∼= P (h0, h1, v, w1)/(h0h1, h
3
1, h1v, v

2 = h20w1)

where h0 ∈ E1,1
2 , h1 ∈ E1,2

2 , v ∈ E3,7
2 and w1 ∈ E4,12

2 , and converges strongly to

π∗(ko
∧
2 ) = Z2[η, α, β]/(2η, η

3, ηα, α2 = 4β) .

The classes 2, η, α and β are represented by h0, h1, v and w1, respectively.

72



0 2 4 6 8 10 12 14 16

0

2

4

6

8

1

h0

h20

h30

h40

h50

h60

h70

h80

h20

h220

h320

h420

h520

h620

h720

h820

Figure 5: Adams spectral sequence for ku

0 2 4 6 8 10 12 14 16

0

2

4

6

8

1

h0 h1

v

w1

h0w1h1w1

vw1

w2
1

Figure 6: Adams spectral sequence for ko

73



Hence

πn(ku
∧
2 )
∼=

{
Z2{ui} for n = 2i

0 otherwise

and

πn(ko
∧
2 )
∼=



Z2{βi} for n = 8i

Z/2{ηβi} for n = 8i+ 1

Z/2{η2βi} for n = 8i+ 2

Z2{αβi} for n = 8i+ 4

0 otherwise

for n ≥ 0.
((The complexification map c : ko→ ku induces h0 7→ h0, h1 7→ 0, v 7→ h0h

2
20 and w1 7→ h420 in Ext,

and similarly in homotopy.))

Remark 6.30. To compute Ext∗,∗A(1)(F2,F2), we can use the Cartan–Eilenberg spectral sequence (1956,

Theorem XVI.6.1). If A is a connected graded algebra, B ⊂ A is a normal subalgebra, and A is projective
as a right B-module, then this is an algebra spectral sequence

Ep,q2 = ExtpA//B(F2,Ext
q
B(F2,F2)) =⇒ Extp+qA (F2,F2)

of cohomological type. In the special case when A = F2[G] is a group algebra, and B = F2[N ] is the group
algebra of a normal subgroup, we have B//A = F2[G/N ] and the Cartan–Eilenberg spectral sequence
agrees with the Lyndon–Hochschild–Serre spectral sequence

Ep,q2 = Hp
gp(G/N ;Hq

gp(N ;F2)) =⇒ Hp+q
gp (G;F2) .

This is again a special case of the Serre spectral sequence in mod 2 singular cohomology, for the fibration
BN → BG→ B(G/N).

First proof. We use the change of rings isomorphism Ext∗,∗A (A //A(1),F2) ∼= Ext∗,∗A(1)(F2,F2). ((Must

justify that A is right free, thus flat, over A(1).)) The subalgebra E(Q1) ⊂ A(1) is normal, with
quotient A(1)//E(Q1) ∼= E(Sq1, Sq2). Hence there is a Cartan–Eilenberg spectral sequence

E∗,∗
2 = Ext∗E(Sq1,Sq2)(F2,Ext

∗
E(Q1)(F2,F2)) =⇒ Ext∗A(1)(F2,F2) .

Here Ext∗E(Q1)(F2,F2) ∼= P (h20). The module action of E(Sq1, Sq2) on P (h20) is (necessarily) trivial, so

E∗,∗
2
∼= P (h0, h1)⊗ P (h20)

with h0 ∈ E1,0
2 dual to Sq1, h1 ∈ E1,0

2 dual to Sq2, and h20 ∈ E0,1
2 dual to Q1. (We are ignoring the

internal degrees here.) There is a d2-differential d2(h20) = h0h1, corresponding to the fact that the
generator Q1 ∈ E(Q1) becomes decomposable in A(1). This leaves the E3-term

E∗,∗
3
∼= P (h0, h1)/(h0h1)⊗ P (h220) .

There is a further d3-differential d2(h
2
20) = h31. This leaves the E3-term

E∗,∗
4
∼=

(
P (h0, h1)/(h0h1, h

3
1)⊕ P (h0){h0h220}

)
⊗ P (h420) .

The spectral sequence collapses at this stage, for bidegree reasons: A d5-differential on h
4
20 could only

hit h50, but the internal degrees do not match. ((No additive or multiplicative extensions.))

Second proof. One might also consider the Cartan–Eilenberg spectral sequence

Ep,q2 = ExtpE(Sq2)(F2,Ext
q
E(1)(F2,F2)) =⇒ Extp+qA(1)(F2,F2)

associated to the isomorphism A(1)//E(1) ∼= E(Sq2), but in this case the E(Sq2)-module action on
Ext∗E(1)(F2,F2) = P (h0, h20) is non-trivial, being given by Sq2 · h20 = h0. With the usual periodic

resolution for Ext over E(Sq2), this gives a d1-differential d1(h20) = h0h1, so that

E∗,∗
2 = P (h0, h1)/(h0h1)⊗ P (h220) .
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Again there is a d3-differential d3(h
2
20) = h31, leaving

E∗,∗
4 = E∗,∗

∞ =
(
P (h0, h1)/(h0h1, h

3
1)⊕ P (h0){h0h220}

)
⊗ P (h420) .

Note that in this case h0, h1 and h20 have bigradings (p, q) = (0, 1), (1, 0) and (0, 1), respectively.

Third proof. For a proof without the Cartan–Eilenberg spectra sequence, we may construct a minimal
resolution of F2 by “almost free” A(1)-modules. Some interesting examples of indecomposable modules
appear along the way. There is an exact sequence

0→ Σ12F2 → Σ7A(1)//A(0)
∂3−→ Σ4A(1)

∂2−→ Σ2A(1)
∂1−→ A(1)//A(0)

ε−→ F2 → 0

of A(1)-modules. The kernel of the augmentation ε from A(1)//A(0) = A(1)/A(1)Sq1:

1 // Sq2 // Sq3 // Sq2Sq3

is the “question mark module”

Sq2 // Sq3
II

Sq2Sq3

which is isomorphic to Σ2(A(1)/A(1)Sq2). Here 1 ⊗ ε : A //A(0) → A //A(1) is induced by the zeroth
Postnikov section ko → HZ, with homotopy fiber bo, so ΣH∗(bo) ∼= A ⊗A(1) ker(ε) and H∗(bo) ∼=
Σ(A /A Sq2).

The kernel of ∂1 : Σ
2A(1)→ ker(ε), taking Σ21 to Sq2, is the double suspension of the “joker module”

Sq2 //

��

Sq3
GG

Sq3Sq1
��

Sq2Sq3 // Sq1Sq5

which is isomorphic to Σ4(A /A Sq3). Here 1⊗∂1 : Σ2A → A ⊗A(1)ker(ε) is induced by the Postnikov sec-
tion bo→ ΣH, with homotopy fiber bso, so Σ2H∗(bso) ∼= A ⊗A(1) ker(∂1) and H

∗(bso) ∼= Σ2(A /A Sq3).
The kernel of ∂2 : Σ

4A(1)→ ker(∂1), taking Σ41 to Σ2Sq2, is the fourfold suspension of the “inverted
question mark module”

Sq3
��

Sq2Sq3 // Sq1Sq5

which is isomorphic to Σ3(A /A {Sq1, Sq2Sq3}). Here 1⊗∂2 : Σ4A → A ⊗A(1) ker(∂1) is induced by the
Postnikov section bso→ Σ2H, with homotopy fiber bspin ∼= Σ4ksp, so Σ3H∗(bspin) ∼= A ⊗A(1) ker(∂2)
and H∗(bspin) ∼= Σ4(A /A {Sq1, Sq2Sq3}).

The kernel of ∂3 : Σ
7A(1)//A(0) → ker(∂2), taking Σ71 to Σ4Sq3, is the sevenfold suspension of the

trivial module
Sq2Sq3

which is isomorphic to Σ5F2. Here 1⊗ ∂3 : Σ7A //A(0)→ A ⊗A(1) ker(∂2) is induced by the Postnikov
section bspin→ Σ4HZ, with homotopy fiber Σ8ko, so Σ4H∗(Σ8ko) ∼= A ⊗A(1) ker(∂3) and H

∗(Σ8ko) ∼=
Σ8(A //A(1)), which we already knew.

From the exact sequence of A(1)-modules, we get short exact sequences

0→ Exts−1,t
A(1) (ker(ε),F2)

δ−→ Exts,tA(1)(F2,F2) −→ Exts,tA(0)(F2,F2)→ 0

0→ Exts−2,t
A(1) (ker(∂1),F2)

δ−→ Exts−1,t
A(1) (ker(ε),F2) −→ Exts−1,t

F2
(Σ2F2,F2)→ 0

0→ Exts−3,t
A(1) (ker(∂2),F2)

δ−→ Exts−2,t
A(1) (ker(∂1),F2) −→ Exts−2,t

F2
(Σ4F2,F2)→ 0

0→ Exts−4,t
A(1) (Σ

12F2,F2)
δ−→ Exts−3,t

A(1) (ker(∂2),F2) −→ Exts−3,t
A(0) (Σ

7F2,F2)→ 0
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This determines Ext∗,∗A(1)(F2,F2).

Corollary 6.31. There are A -module isomorphisms:

H∗(bo) ∼= Σ(A /A Sq2)

H∗(bso) ∼= Σ2(A /A Sq3)

H∗(bspin) ∼= Σ4(A /A {Sq1, Sq2Sq3})

((Also k(1) = ku/2, ko/2.))

7 The dual Steenrod algebra

7.1 Hopf algebras

Let G be a topological group with H∗(G) of finite type. Then the cohomology cross product

H∗(G)⊗H∗(G)
×−→ H∗(G×G)

is an isomorphism. The (cocommutative) diagonal map ∆: G → G × G, and the augmentation G → ∗
induce a pairing

φ : H∗(G)⊗H∗(G) ∼= H∗(G×G) ∆∗

−→ H∗(G)

and a unit map
η : Fp −→ H∗(G)

that make H∗(G) a (graded commutative) algebra. The group multiplication m : G × G → G and the
inclusion {e} → G induce homomorphisms

ψ : H∗(G)
m∗

−→ H∗(G×G) ∼= H∗(G)⊗H∗(G)

and
ε : H∗(G) −→ Fp

that makeH∗(G) a commutative Hopf algebra, and the group inverse i : G→ G induces a homomorphism

χ : H∗(G)
i∗−→ H∗(G)

that makes H∗(G) a commutative Hopf algebra with conjugation, according to the following definitions.
It is connected if and only if G is path connected as a topological space.

Dually, the Pontryagin product φ = m∗ : H∗(G) ⊗H∗(G) → H∗(G), unit inclusion η : Fp → H∗(G),
diagonal coproduct ψ = ∆∗ : H∗(G) → H∗(G) ⊗H∗(G), augmentation ε : H∗(G) → Fp and conjugation
χ = i∗ : H∗(G)→ H∗(G) make H∗(G) a cocommutative Hopf algebra with conjugation.

Let k be any field, and write ⊗ for ⊗k.

Definition 7.1. A k-algebra is a graded k-module A equipped with homomorphisms φ : A⊗A→ A and
η : k → A, such that the diagrams

A⊗A⊗A
φ⊗1
//

1⊗φ
��

A⊗A

φ

��

A⊗A
φ

// A

(associativity) and

k ⊗A
η⊗1
//

∼=
$$

A⊗A

φ

��

A⊗ k
1⊗η
oo

∼=
zz

A
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(unitality) commute. It is commutative if the diagram

A⊗A
γ

∼=
//

φ
""

A⊗A

φ
||

A

commutes, where γ(a⊗b) = (−1)|a||b|b⊗a. A k-algebra homomorphism f : A→ B is a degree-preserving
k-module homomorphism such that the diagram

A⊗A
φ
//

f⊗f
��

A

f

��

k
η
oo

=

��

B ⊗B
φ
// B k

η
oo

commutes.

Definition 7.2. A k-coalgebra is a graded k-module A equipped with homomorphisms ψ : A→ A⊗ A
and ε : A→ k, such that the diagrams

A
ψ

//

ψ

��

A⊗A

1⊗ψ
��

A⊗A
ψ⊗1
// A⊗A⊗A

(coassociativity) and

A
∼=

zz

ψ

��

∼=

$$

k ⊗A A⊗A
ε⊗1
oo

1⊗ε
// A⊗ k

(counitality) commute. It is cocommutative if the diagram

A
ψ

||

ψ

""

A⊗A
γ

∼=
// A⊗A

commutes. A k-coalgebra homomorphism f : A → B is a degree-preserving k-module homomorphism
such that the diagram

k

=

��

A
εoo

ψ
//

f

��

A⊗A

f⊗f
��

k B
εoo

ψ
// B ⊗B

commutes.

Definition 7.3. A k-algebra A is connected if the underlying graded k-module is zero in negative degrees
and η : k → A is an isomorphism in degree 0. A k-coalgebra A is connected if it is zero in negative degrees
and ε : A→ k is an isomorphism in degree 0.

Definition 7.4. An augmented k-algebra is a k-algebra A with a k-algebra homomorphism ε : A → k.
Let I(A) = ker(ε) be the augmentation ideal, and let

Q(A) = I(A)/I(A)2 = k ⊗A I(A)
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be the indecomposable quotient module.

I(A)⊗ I(A) //

��

I(A)
��

��

// // Q(A)

A⊗A
φ

// A

ε
����

k

A homomorphism of augmented algebras is an algebra homomorphism that commutes with the augmen-
tations.

(We make sense of the tensor product over A in the next subsection.)

Proposition 7.5 (Milnor–Moore). Let f : A → B be a homomorphism of augmented algebras, with B
connected. Then f is surjective if and only if Q(f) : Q(A)→ Q(B) is surjective.

Definition 7.6. A coaugmented k-coalgebra is a k-coalgebra A with a k-coalgebra homomorphism
η : k → A. Let J(A) = cok(η) be the coaugmentation coideal, and let

P (A) = {x ∈ A | ψ(x) = x⊗ 1 + 1⊗ x} = k �A J(A)

be the submodule of primitives.

J(A)⊗ J(A) J(A)oo P (A)oooo

A⊗A

OO

A
ψ

oo

OOOO

k
OO

η

OO

A homomorphism of coaugmented coalgebras is a coalgebra homomorphism that commutes with the
coaugmentations.

(We make sense of the cotensor products under A in the next subsection.)

Proposition 7.7 (Milnor–Moore). Let f : A→ B be a homomorphism of coaugmented coalgebras, with
A connected. Then f is injective if and only if P (f) : P (A)→ P (B) is injective.

Definition 7.8. A Hopf algebra (over k) is a k-algebra structure (φ, η) and a k-coalgebra structure
(ψ, ε) on the same graded k-module A, such that ψ and ε are algebra homomorphisms and φ and η are
coalgebra homomorphisms. This means that the diagrams

A⊗A

ψ⊗ψ
��

φ
// A

ψ
// A⊗A

A⊗A⊗A⊗A
1⊗γ⊗1

∼= // A⊗A⊗A⊗A

φ⊗φ

OO

and

A⊗A ε⊗ε
//

φ

��

k ⊗ k
∼=
��

k
η

//

∼=
��

A

ψ

��

A
ε // k k ⊗ k

η⊗η
// A⊗A

commute. A homomorphism if Hopf algebras is an algebra homomorphism that is simultaneously a
coalgebra homomorphism.
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Definition 7.9. A Hopf algebra with conjugation is a Hopf algebra A with a homomorphism χ : A→ A
such that the diagram

A
ε //

ψ

��

k
η
// A

A⊗A
1⊗χ

// A⊗A

ψ

OO

commutes. A homomorphism of Hopf algebras with conjugation is a Hopf algebra homomorphism that
commutes with the conjugation.

Definition 7.10. Let A be a k-algebra, and let B ⊂ A be a subalgebra with an augmentation ε : B → k,
making k a B-module. Then we let

A//B = A⊗B k = A/A · I(B)

and
B\\A = k ⊗B A = A/I(B) ·A .

If A · I(B) = I(B) ·A we say that B is normal in A. Then A//B is a k-algebra, and the canonical map
A→ A//B is an algebra homomorphism.

Theorem 7.11 (Milnor–Moore). Let A be a connected Hopf algebra and B ⊂ A a Hopf subalgebra. Then
there is an isomorphism A ∼= A//B ⊗B of right B-modules, and an isomorphism A ∼= B ⊗B\\A of left
B-modules, so A is free as a left B-module and as a right B-module.

This is part of Theorem 4.4 in Milnor–Moore (1965). More concretely, let i : B → A be the inclusion
and let s : A//B → A be any k-linear section to the projection A→ A//B. Then the composite

A//B ⊗B s⊗i−→ A⊗A φ−→ A

is an isomorphism of right B-modules. It is not usually true that A is free as a B-B-bimodule.

7.2 Actions and coactions

Definition 7.12. Let A be a k-algebra. A left A-module is a graded k-module M with a pairing
λ : A⊗M →M such that the diagrams

A⊗A⊗M 1⊗λ
//

φ⊗1

��

A⊗M

λ

��

k ⊗M
η⊗1
//

∼=
%%

A⊗M

λ

��

A⊗M λ // M M

commute. A right A-module is a graded k-module N with a pairing ρ : N ⊗ A → N such that the
diagrams

N ⊗A⊗A
ρ⊗1
//

1⊗φ
��

N ⊗A

ρ

��

N ⊗ k
1⊗η
//

∼=
%%

N ⊗A
ρ

��

N ⊗A
ρ

// N N

commute. The tensor product N ⊗AM is the coequalizer in the diagram

N ⊗A⊗M
1⊗λ
//

ρ⊗1
// N ⊗M // // N ⊗AM

Definition 7.13. Let A be a k-coalgebra. A left A-comodule is a graded k-module M with a pairing
λ : M → A⊗M such that the diagrams

M
λ //

λ

��

A⊗M

1⊗λ
��

M

λ

��

∼=

%%

A⊗M
ψ⊗1
// A⊗A⊗M A⊗M

ε⊗1
// k ⊗M
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commute. A right A-comodule is a graded k-module N with a pairing ρ : N → N ⊗ A such that the
diagrams

N
ρ

//

ρ

��

N ⊗A

ρ⊗1

��

N

ρ

��

∼=

%%

N ⊗A
1⊗ψ
// N ⊗A⊗A N ⊗A

1⊗ε
// N ⊗ k

commute. The cotensor product N �AM is the equalizer in the diagram

N �AM // // N ⊗M
1⊗λ
//

ρ⊗1
// N ⊗A⊗M

Lemma 7.14. Let M be a left A-module, with action a ·m = λ(a⊗m) for a ∈ A and m ∈M . Then the
linear dualM∗ = Hom(M,k) is a right A-module, with action µ·a = ρ(µ⊗a) given by µ·a : m 7→ µ(a·m),
for µ : M → k in M∗. Likewise, if N is a right A-module then N∗ is a left A-module.

Proof. µ · a : m 7→ µ(a ·m), so (µ · a) · b : m 7→ (µ · a)(b ·m) = µ(a · b ·m) = µ(ab ·m) equals µ · ab.

Lemma 7.15. Let A be a k-algebra, bounded below and of finite type. Then A∗ = Hom(A, k) is a
k-coalgebra with coproduct ψ = φ∗ : A∗ → (A⊗A)∗ ∼= A∗ ⊗A∗ and counit ε = η∗ : A∗ → k. Conversely,
if A is a k-coalgebra then A∗ is a k-algebra. If A was bounded below and of finite type, then so is A∗,
and A ∼= (A∗)∗.

Lemma 7.16. Let A be an augmented k-algebra, bounded below and of finite type. Then A∗ is a
coaugmented k-coalgebra, J(A∗) ∼= I(A)∗ and P (A∗) ∼= Q(A)∗.

Lemma 7.17. Let A be a k-algebra, M a left A-module and N a right A-module, all bounded below and
of finite type. Then M∗ is a left A∗-comodule with coaction λ = λ∗ : M∗ → (A⊗M)∗ ∼= A∗ ⊗M∗, and
N∗ is a right A∗-comodule with coaction ρ = ρ∗ : N∗ → (N ⊗A)∗ ∼= N∗ ⊗A∗.

Conversely, let A be a k-coalgebra, M a left A-comodule and N a right A-comodule. Then M∗ is a
left A∗-module with action λ : A∗ ⊗M∗ → (A ⊗M)∗ → M∗, and N∗ is a right A∗-module with action
ρ : N∗ ⊗A∗ → (N ⊗A)∗ → N∗.

Definition 7.18. Let A be an augmented k-algebra and let M be a left A-module. The A-module
indecomposables in M is the quotient k-module k ⊗AM =M/I(A) ·M .

Definition 7.19. Let A be a coaugmented k-coalgebra and letM be a left A-comodule. The A-comodule
primitives in M is the k-submodule k �AM = {m ∈M | λ(m) = 1⊗m}.

Lemma 7.20. Let A be an augmented k-algebra and M left A-module, both bounded below and of finite
type. Let M∗ be the dual left A∗-comodule. Then there are natural isomorphisms

HomA(M,k) ∼= Hom(k ⊗AM,k) ∼= k �A∗ M∗

that are compatible with the inclusions into Hom(M,k) =M∗.

See Boardman (1982) for more on left/right algebra/coalgebra actions/coactions.

Definition 7.21. Let A be a Hopf algebra, and let M and N be left A-modules. Then M ⊗N is a left
A-module, with the action λ : A⊗M ⊗N defined as the composite

A⊗M ⊗N
ψ⊗1⊗1

// A⊗A⊗M ⊗N
1⊗γ⊗1

∼=
// A⊗M ⊗A⊗N λ⊗λ

// M ⊗N .

Likewise for right A-modules.
Conversely, let M and N be left A-comodules. Then M ⊗N is a left A-comodule, with the coaction

λ : M ⊗N → A⊗M ⊗N defined as the composite

M ⊗N λ⊗λ
// A⊗M ⊗A⊗N

1⊗γ⊗1

∼=
// A⊗A⊗M ⊗N

φ⊗1⊗1
// A⊗M ⊗N .

Likewise for right A-comodules.
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7.3 The coproduct

Let Y and Z be spectra. If Y and Z are bounded below with H∗(Y ) and H∗(Z) of finite type, then the
cohomology smash product

H∗(Y )⊗H∗(Z)
∧−→ H∗(Y ∧ Z)

is an isomorphism. The Cartan formula

Sqk(y ∧ z) =
∑
i+j=k

Sqi(y) ∧ Sqj(z)

implies the more general formula

SqK(y ∧ z) =
∑

I+J=K

SqI(y) ∧ SqJ(z)

for sequences K = (k1, . . . , k`) of non-negative integers, where the sum is over pairs of sequences I =
(ii, . . . , i`) and J = (j1, . . . , j`) of non-negative integers, such that ku = iu + ju for all 1 ≤ u ≤ `. Milnor
proved that the rule

SqK 7−→
∑

I+J=K

SqI ⊗ SqJ

respects the Adem relations, in the sense that it gives a well-defined algebra homomorphism

ψ : A −→ A ⊗A .

Since A is connected, there is a unique homomorphism

χ : A −→ A

with χ(1) = 1 and
∑
a′χ(a′′) = 0 for all a ∈ I(A ) with ψ(a) =

∑
a′ ⊗ a′′. Then χ(ab) = χ(b)χ(a) and

χ2 is the identity.

Theorem 7.22 (Milnor (1958)). The Steenrod algebra A , with the composition coproduct φ, the coprod-
uct ψ and the conjugation χ, is a cocommutative Hopf algebra with conjugation.

Definition 7.23. Let the dual Steenrod algebra A∗ = Hom(A ,F2) be the linear dual of the Steenrod
algebra. Since A is of finite type, there is a natural isomorphism A ∼= Hom(A∗,F2). The algebra
structure maps φ : A ⊗A → A and η : F2 → A dualize to coalgebra structure maps ψ : A∗ → A∗ ⊗A∗
and ε : A∗ → F2. The cocommutative coalgebra structure maps ψ : A → A ⊗A and ε : A → F2 dualize
to commutative algebra structure maps φ : A∗⊗A∗ → A∗ and η : F2 → A∗. The conjugation χ : A → A
dualizes to a conjugation χ : A∗ → A∗. With these structure maps, A∗ is a commutative Hopf algebra.

Remark 7.24. The isomorphism A ∼= H∗(H) is dual to an isomorphism A∗ ∼= H∗(H). This may justify
why we write A∗ instead of A ∗ for the dual Steenrod algebra, thinking of the star as a homological
grading rather than as the symbol for dualization. The ring spectrum product µ : H ∧H → H induces
the product φ : A∗ ⊗A∗ ∼= H∗(H)⊗H∗(H) ∼= H∗(H ∧H)→ H∗(H) ∼= A∗ in homology, and the counit
ε : A∗ = π∗(H ∧ H) → π∗(H) = F2 in homotopy. The ring spectrum unit η : S → H induces a map
H ∼= S ∧H → H ∧H that induces the coproduct ψ : A∗ = H∗(H)→ H∗(H ∧H) ∼= H∗(H)⊗H∗(H) ∼=
A∗ ⊗A∗ in homology. The two maps H ∼= S ∧H → H ∧H and H ∼= H ∧ S → H ∧H both induce the
unit η : F2 → A∗ in homotopy. The twist map γ : H ∧H → H ∧H induces the conjugation χ : A∗ → A∗.
((Reference?))

By definition, ψ : A → A ⊗A makes the diagram

A ⊗A ⊗H∗(Y )⊗H∗(Z)

1⊗γ⊗1 ∼=
��

A ⊗H∗(Y )⊗H∗(Z)
1⊗∧
//

ψ⊗1⊗1
oo

λ

��

A ⊗H∗(Y ∧ Z)

λ

��

A ⊗H∗(Y )⊗A ⊗H∗(Z)
λ⊗λ

// H∗(Y )⊗H∗(Z)
∧ // H∗(Y ∧ Z)
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commute, where λ : A ⊗H∗(Y )→ H∗(Y ) denotes the left A -module action. We defined the A -module
action on the tensor product H∗(Y ) ⊗ H∗(Z) by the dashed composite in this diagram, so that the
Künneth homomorphism ∧ is an A -module homomorphism.

By the Hom-tensor adjunction, the diagram can be reformulated as follows:

Hom(A ,H∗(Y ))⊗Hom(A ,H∗(Z))

⊗
��

H∗(Y )⊗H∗(Z)
λ̃⊗λ̃

oo

λ̃
��

∧ // H∗(Y ∧ Z)

λ̃
��

Hom(A ⊗A ,H∗(Y )⊗H∗(Z))
ψ∗

// Hom(A ,H∗(Y )⊗H∗(Z))
∧∗ // Hom(A ,H∗(Y ∧ Z))

where λ̃ : H∗(Y ) → Hom(A ,H∗(Y )) takes y to the homomorphism a 7→ a(y), etc. If we add the
assumption that H∗(Y ) is bounded above, so that H∗(Y ) is (totally) finite, then there is a natural
isomorphism

H∗(Y )⊗A∗ ∼= Hom(A ,H∗(Y ))

taking y⊗α to a 7→ α(a)y, with y ∈ H∗(Y ), α ∈ A∗ and a ∈ A . We also assume that H∗(Z) is (totally)
finite. Then we can rewrite the diagram as:

H∗(Y )⊗A∗ ⊗H∗(Z)⊗A∗

1⊗γ⊗1 ∼=
��

H∗(Y )⊗H∗(Z)
ρ⊗ρ

oo

ρ

��

∧ // H∗(Y ∧ Z)

ρ

��

H∗(Y )⊗H∗(Z)⊗A∗ ⊗A∗
1⊗1⊗φ

// H∗(Y )⊗H∗(Z)⊗A∗
∧⊗1
// H∗(Y ∧ Z)⊗A∗

where φ is the algebra structure on A∗, dual to the coproduct ψ on A , and ρ : H∗(Y )→ H∗(Y )⊗A∗ is
the right A∗-comodule coaction on H∗(Y ), corresponding to λ̃ via the isomorphism above. We defined
the A∗-coaction on the tensor product H∗(Y ) ⊗ H∗(Z) by the dashed composite. Hence the Künneth
morphism ∧ is an A∗-comodule homomorphism.

Proposition 7.25 (Milnor). Let X be a space with H∗(X) (totally) finite. The right A -comodule
coaction

ρ : H∗(X)→ H∗(X)⊗A∗

is an algebra homomorphism, where H∗(X) has the cup product and A∗ has the product dual to the
coproduct ψ on A .

Proof. Let Y = Z = Σ∞(X+). Then the diagonal ∆: X → X ×X induces the commutative diagram

H∗(X)⊗A∗ ⊗H∗(X)⊗A∗

1⊗γ⊗1 ∼=
��

H∗(X)⊗H∗(X)
∪ //

ρ⊗ρ
oo

ρ

��

H∗(X)

ρ

��

H∗(X)⊗H∗(X)⊗A∗ ⊗A∗
1⊗1⊗φ

// H∗(X)⊗H∗(X)⊗A∗
∪⊗1
// H∗(X)⊗A∗

which says that the cup product ∪ is an A∗-comodule homomorphism, or equivalently, that the coaction
ρ is an algebra homomorphism.

This results encodes the Cartan formula for the Steenrod algebra action on the cohomology of a
product of spaces, in terms of the coaction of the dual Steenrod algebra, in a very convenient form.

7.4 The Milnor generators

Without appealing to the conjugation χ, we have the following four left and right actions and coactions
on the homology and cohomology of a space X with H∗(X) finite:

λ : A ⊗H∗(X) −→ H∗(X)

ρ : H∗(X)⊗A −→ H∗(X)

ρ : H∗(X) −→ H∗(X)⊗A∗

λ : H∗(X) −→ A∗ ⊗H∗(X)
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We specialize to the test object X = RPN ⊂ RP∞ = H1, with H
∗(X) = P (x)/(xN+1) and H∗(X) =

F2{γj | 0 ≤ j ≤ N}, where xj is dual to γj . We are interested in the limit as N → ∞, when
limN H

∗(RPN ) = P (x) and colimN H∗(RPN ) = F2{γj | j ≥ 0}. The limiting right coaction

ρ : P (x) −→ P (x) ⊗̂A∗

was just seen to be an algebra homomorphism, hence is determined by the single value

ρ(x) =
∑
j≥1

xj ⊗ αj

where αj ∈ A∗ has degree (j − 1), for each j ≥ 1.

Lemma 7.26. There are well-defined classes ξi ∈ A∗ such that

ρ(x) =
∑
i≥0

x2
i

⊗ ξi .

Here ξ0 = 1, and ξi has degree 2i − 1, for each i ≥ 0.

Proof. There is a pairing m : RP∞ × RP∞ → RP∞ that represents the tensor product of real line
bundles, or comes from the loop structure on H1 ' ΩH2. It induces a homomorphism

m∗ : P (x) = H∗(RP∞)→ H∗(RP∞ × RP∞) = P (x1, x2)

with m∗(x) = x1 + x2, where x1 = x × 1 and x2 = 1 × x. By naturality of the right A∗-coaction ρ, we
have that

m∗(ρ(x)) =
∑
j≥1

(x1 + x2)
j ⊗ αj

is equal to

ρ(m∗(x)) = ρ(x1 + x2) = ρ(x1) + ρ(x2) =
∑
j≥1

xj1 ⊗ αj +
∑
j≥1

xj2 ⊗ αj

in P (x1, x2) ⊗̂A∗. The product formula for binomial coefficients mod 2 implies that (x1+x2)
j 6= xj1+x

j
2

for all j not of the form j = 2i, i ≥ 0, hence αj = 0 for all such j. We let ξi = α2i for i ≥ 0. Counitality
of the coaction implies that ξ0 = 1.

Let P (ξi | i ≥ 1) = P (ξ1, ξ2, ξ3, . . . ) be the polynomial algebra generated by the classes ξi for i ≥ 0,
only subject to the relation ξ0 = 1.

Theorem 7.27 (Milnor). The canonical homomorphism

P (ξi | i ≥ 1)
∼=−→ A∗

is an algebra isomorphism.

See Milnor (1958) Theorem 2 or Steenrod–Epstein (1962) Theorem 2.2 for the proof. Surjectivity
of P (ξi | i ≥ 1) → A∗ follows by the detection results for A . A count of dimensions then proves
isomorphism.

Theorem 7.28 (Milnor). The Hopf algebra coproduct ψ : A∗ → A∗ ⊗A∗ is given by

ψ(ξk) =
∑
i+j=k

ξ2
j

i ⊗ ξj

where i, j ≥ 0 and ξ0 = 1. Hence the conjugation χ : A∗ → A∗ is determined by∑
i+j=k

ξ2
j

i χ(ξj) = 0

for all k ≥ 1.
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Proof. The coassociativity of the right coaction tells us that

(ρ⊗ 1)ρ(x) = (ρ⊗ 1)(
∑
j≥0

x2
j

⊗ ξj) =
∑
j≥0

ρ(x)2
j

⊗ ξj =
∑
i,j≥0

x2
i+j

⊗ ξ2
j

i ⊗ ξj

is equal to

(1⊗ ψ)ρ(x) =
∑
k≥0

x2
k

⊗ ψ(ξk) .

These formulas for the coproduct in A∗ are often more manageable than the Adem relations for the
product in A . Here is list of ψ(ξk) and χ(ξk) for small k:

ψ(ξ1) = ξ1 ⊗ 1 + 1⊗ ξ1
ψ(ξ2) = ξ2 ⊗ 1 + ξ21 ⊗ ξ1 + 1⊗ ξ2
ψ(ξ3) = ξ3 ⊗ 1 + ξ22 ⊗ ξ1 + ξ41 ⊗ ξ2 + 1⊗ ξ3
ψ(ξ4) = ξ4 ⊗ 1 + ξ23 ⊗ ξ1 + ξ42 ⊗ ξ2 + ξ81 ⊗ ξ3 + 1⊗ ξ4

χ(ξ1) = ξ1

χ(ξ2) = ξ2 + ξ31

χ(ξ3) = ξ3 + ξ1ξ
2
2 + ξ41ξ2 + ξ71

χ(ξ4) = ξ4 + ξ1ξ
2
3 + ξ81ξ3 + ξ52 + ξ31ξ

4
2 + ξ91ξ

2
2 + ξ121 ξ2 + ξ151

We note that ξ2
i

1 is primitive for each i ≥ 0, and that χ(ξk) ≡ ξk modulo decomposables.
We now make the Milnor classes ξi ∈ A∗ a little more explicit. Dualizing the formula for ρ(x), the

right action
ρ : H∗(RP∞)⊗A −→ H∗(RP∞)

is given in total degree 1 by

γj ⊗ a 7−→

{
〈a, ξi〉γ1 for j = 2i

0 otherwise.

Here a ∈ A has degree (j − 1) and 〈−,−〉 : A ⊗ A∗ → F2 is the evaluation pairing. Likewise, the left
action

λ : A ⊗ P (x) −→ P (x)

is given on A ⊗ F2{x} by
a⊗ x 7−→ a(x) =

∑
i≥0

〈a, ξi〉x2
i

.

Lemma 7.29. For admissible sequences I,

SqI(x) =

{
x2

i

for I = (2i−1, 2i−2, . . . , 2, 1), i ≥ 0

0 otherwise.

Hence

〈SqI , ξi〉 =

{
1 for I = (2i−1, 2i−2, . . . , 2, 1)

0 otherwise.

In other words, ξi is dual to Sq2
i−1

Sq2
i−2

. . . Sq2Sq1 when we give A the admissible basis.

The identification of RP∞ with the first space H1 in the Eilenberg–MacLane spectrum H leads to a
stable map f : Σ∞H1 → ΣH. The induced A -module homomorphism

f∗ : ΣA = H∗(ΣH) −→ H̃∗(H1) ⊂ P (x)
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takes the generator Σ1 to x, hence agrees with the A -module homomorphism A ⊗F2{x} → P (x) taking
a⊗ x to

a(x) =
∑
i≥0

〈a, ξi〉x2
i

,

via the isomorphism ΣA ∼= A ⊗ F2{x}. Dually, it follows that the A∗-comodule homomorphism

f∗ : H̃∗(H1) −→ H∗(ΣH) ∼= ΣA∗

is the linear dual mapping

γj 7−→

{
Σξi for j = 2i, i ≥ 0

0 otherwise.

Lemma 7.30. The map f : Σ∞RP∞ → ΣH induces a homomorphism H̃∗+1(RP∞) → A∗ taking γj ∈
H̃j(RP∞) to ξi if j = 2i, i ≥ 0, and to 0 otherwise.

Definition 7.31. The dual Steenrod algebra A∗ ∼= P (ξk | k ≥ 1) has a basis {ξR}R given by the
monomials

ξR = ξr11 ξ
r2
2 · · · ξ

r`
`

where R = (r1, . . . , r`) ranges over all finite sequences of non-negative integers, with r` ≥ 1 if ` ≥ 1. The
Milnor basis {SqR}R for the Steenrod algebra A is the dual basis, defined so that

〈SqR, ξS〉 =

{
1 for R = S

0 otherwise.

Hence |SqR| = |ξR| =
∑`
u=1 ru(2

u − 1). The coproduct is given by ψ(SqT ) =
∑
R+S=T ψ

R ⊗ ψS .

Remark 7.32. One should not confuse the notations SqI and SqR. We let I, J and K range over
admissible sequences, and let SqI , SqJ and SqK denote the corresponding admissible composites of
Steenrod squares. We let R, S and T range over finite sequences of non-negative integers, and let SqR,
SqS and SqT denote the corresponding elements in the Milnor basis.

Example 7.33. It is clear that Sq() = 1, Sq(1) = Sq1 and Sq(2) = Sq2. In degree 3, we have 〈Sq3, ξ2〉 =
0, 〈Sq2Sq1, ξ2〉 = 1, 〈Sq3, ξ31〉 = 1 and 〈Sq2Sq1, ξ31〉 = 1. For example,

〈Sq2Sq1, ξ31〉 = 〈Sq2Sq1, φ(ξ1 ⊗ ξ21)〉 = 〈ψ(Sq2Sq1), ξ1 ⊗ ξ21〉
= 〈(Sq2 ⊗ 1 + Sq1 ⊗ Sq1 + 1⊗ Sq2)(Sq1 ⊗ 1 + 1⊗ Sq1), ξ1 ⊗ ξ21〉
= 〈Sq1 ⊗ (Sq2 + Sq1Sq1), ξ1 ⊗ ξ21〉 = 〈Sq1, ξ1〉〈Sq2, ξ21〉 = 1 .

Hence Sq(3) = Sq3 and Sq(0,1) = Sq3 + Sq2Sq1 = Q1.

Lemma 7.34. The Milnor basis element Sq(r) equals the Steenrod operation Sqr, for each r ≥ 1.

Proof. Let S = (s1, . . . , s`) be a finite sequence of non-negative integers, with s` ≥ 1. We must prove

that 〈Sqr, ξS〉 equals 1 for S = (r) and 0 otherwise. Let Φ be the
∑`
u=1 su-fold product on A∗, and

let Ψ be the
∑`
u=1 su-fold coproduct on A . Writing ξS = Φ(ξa ⊗ · · · ⊗ ξ`) with a ≤ · · · ≤ `, we must

compute 〈Sqr, ξS〉 = 〈Sqr,Φ(ξa ⊗ · · · ⊗ ξ`)〉 = 〈Ψ(Sqr), ξa ⊗ · · · ⊗ ξ`〉. Here Ψ(Sqr) is a sum of tensor

products of factors of the form Sqj . We have 〈Sq2i−1, ξi〉 equals 1 for i = 1 and 0 for i ≥ 2. Hence
〈Ψ(Sqr), ξa⊗· · ·⊗ξ`〉 = 0 if ` ≥ 2. Furthermore, 〈Ψ(Sqr), ξa⊗· · ·⊗ξ`〉 = 1 if S = (r) and a = · · · = ` = 1,
since Ψ(Sqr) contains the summand Sq1 ⊗ · · · ⊗ Sq1 that evaluates to 1 on ξ1 ⊗ · · · ⊗ ξ1.

Theorem 7.35 (Milnor). For each infinite matrix of non-negative integers (almost all zero)

X =


∗ x01 x02 . . .
x10 x11 x12 . . .
x20 x21 x22 . . .
...

...
...

. . .


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let R(X) = (r1, r2, . . . ), S(X) = (s1, s2, . . . ) and T (X) = (t1, t2, . . . ) be given by the sums

ri =
∑
j

2jxij (weighted row sum),

sj =
∑
i

xij (column sum),

tk =
∑
i+j=k

xij (diagonal sum).

Then
SqR · SqS =

∑
X

b(X)SqT

where X ranges over the matrices with R(X) = R and S(X) = S, with T = T (X) and

b(X) =
∏
k

tk!/
∏
i,j

xij ! .

See Milnor (1958) Theorem 4b. To prove this, one must count how often ξR ⊗ ξS ∈ A∗ ⊗A∗ occurs
as a summand in ψ(ξT ) = ψ(ξ1)

t1 · · · · · ψ(ξ`)t` .

Example 7.36. Let k ≥ 2, R = (2k) and S = (0, . . . , 0, 1) with (k− 1) zeroes. Then SqR · SqS is a sum
of terms b(X)SqT , where X ranges over the matrices (xij) with x00 = 0,

∑
j 2

jx1j = 2k,
∑
j 2

jxij = 0
for i ≥ 2,

∑
i xik = 1 and

∑
i xij = 0 for 1 ≤ j ≤ k − 1 and for j ≥ k + 1. There are only two possible

matrices X, namely X ′ with x′1k = 1 and the remaining terms zero, and X ′′ with x′′0k = 1, x′′10 = 2k and
the remaining terms zero. The corresponding sequences are T ′ = T (X ′) = (0, . . . , 0, 1) with k zeroes,
and T ′′ = T (X ′′) = (2k, 0, . . . , 0, 1) with (k − 2) zeroes. The coefficients b(X ′) and b(X ′′) are 1, so

Sq(2
k) · Sq(0,...,0,1) = Sq(0,...,0,0,1) + Sq(2

k,0,...,0,1) .

On the other hand, SqS · SqR is the sum of a single term b(X)SqT , where X has x01 = 2k, xk0 = 1 and
the remaining terms are zero. Again b(X) = 1, so

Sq(0,...,0,1) · Sq(2
k) = Sq(2

k,0,...,0,1) .

Hence the commutator

[Sq(2
k), Sq(0,...,0,1)] = Sq(2

k) · Sq(0,...,0,1) + Sq(0,...,0,1) · Sq(2
k)

((k − 1) zeroes each time) equals the Milnor element Sq(0,...,0,0,1), now with k zeroes.

7.5 Subalgebras of the Steenrod algebra

Definition 7.37. A Hopf ideal in a Hopf algebra A is a two-sided ideal I ⊂ A such that ψ(I) ⊂
A⊗ I + I ⊗A and ε(I) = 0:

0
��

��

I
��

��

//oo A⊗ I + I ⊗A
��

��

k

=

��

A
εoo

ψ
//

����

A⊗A

����

k A/I
ε̄oo

ψ̄
// A/I ⊗A/I

Then ψ and ε induce a coproduct ψ̄ : A/I → A/I ⊗A/I and a counit ε̄ : A/I → k that make A/I a Hopf
algebra, and the canonical surjection A→ A/I is a Hopf algebra homomorphism. Dually, (A/I)∗ → A∗

is a Hopf subalgebra.

Definition 7.38. For each k ≥ 0, let Qk = Sq(0,...,0,1) (k zeroes) denote the Milnor basis element in A
that is dual to ξk+1, in degree 2k+1 − 1.
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These classes are known as the Milnor primitives; see the next lemma. By the sample calculation

above, these classes can also be recursively defined by Q0 = Sq1 and [Sq2
k

, Qk−1] = Qk for all k ≥ 1.
The first few Milnor primitives are:

Q0 = Sq1

Q1 = Sq(0,1) = Sq3 + Sq2Sq1

Q2 = Sq(0,0,1) = Sq7 + Sq6Sq1 + Sq5Sq2 + Sq4Sq2Sq1

Q3 = Sq(0,0,0,1)

Lemma 7.39. The Qk are primitive elements, and they generate an exterior Hopf subalgebra

E = E(Qk | k ≥ 0) ⊂ A

of the Steenrod algebra. In symbols, ψ(Qk) = Qk ⊗ 1 + 1 ⊗ Qk, Q
2
k = 0 and QiQj = QjQi for all

i, j, k ≥ 0. The conjugation is trivial: χ(Qk) = Qk.

Proof. First note that if A = E(ξ) is the primitively generated exterior algebra on one generator, viewed
as a bicommutative Hopf algebra, then the dual Hopf algebra A∗ = E(Q) is also a primitively generated
exterior algebra, with 1 and Q dual to 1 and ξ, respectively.

Now consider the quotient algebra E∗ = A∗/(ξ
2
k | k ≥ 1) of the dual Steenrod algebra. The ideal

J = (ξ2k | k ≥ 1) ⊂ A∗ is a Hopf ideal, since ψ(ξ2k) =
∑
i+j=k ξ

2j+1

i ⊗ ξ2j lies in A∗ ⊗ J + J ⊗ A∗, and

ε(ξ2k) = 0. Hence A∗ → E∗ is a Hopf algebra surjection. The generators ξk are primitive in E∗, since

ψ(ξk) ≡ ξk ⊗ 1 + 1⊗ ξk

modulo A⊗ J + J ⊗ A. It follows that χ(ξk) ≡ ξk modulo J . Hence E∗ = E(ξk | k ≥ 1) =
⊗

k≥1E(ξk)
is a primitively generated exterior Hopf algebra.

Passing to duals, we have a Hopf algebra injection E = (E∗)
∗ → A . Here E = E(Qk | k ≥ 0) =⊗

k≥0E(Qk) is also primitively generated, with Qk dual to ξk+1 in the monomial basis for E∗. Since I
is generated by monomials, it follows that the inclusion maps Qk ∈ E to Qk ∈ A . Hence the Qk are
primitive in A .

Lemma 7.40. Q(A ) ∼= F2{Sq2
i | i ≥ 0}, P (A∗) ∼= F2{ξ2

i

1 | i ≥ 0}, Q(A∗) ∼= F2{ξi+1 | i ≥ 0} and
P (A ) ∼= F2{Qi | i ≥ 0}.

Definition 7.41. For each n ≥ 0, let E(n) = E(Q0, . . . , Qn) ⊂ A be the exterior subalgebra generated
by the Milnor primitives Q0, . . . , Qn. It is a Hopf subalgebra with conjugation. The dual of E(n) is the
quotient Hopf algebra E(n)∗ = A∗/J(n) of A∗ by the Hopf ideal

J(n) = (ξ21 , . . . , ξ
2
n+1, ξk | k ≥ n+ 2) .

Definition 7.42. For each n ≥ 0, let A(n) = 〈Sq1, . . . , Sq2n〉 ⊂ A be the subalgebra generated by the
Steenrod squares Sq1, . . . , Sq2

n

. It is a Hopf subalgebra with conjugation.

Lemma 7.43. The dual of A(n) is the quotient Hopf algebra A(n)∗ = A∗/I(n) of A∗ by the Hopf ideal

I(n) = (ξ2
n+1

1 , ξ2
n

2 , . . . , ξ2
2

n , ξ
2
n+1, ξk | k ≥ n+ 2) .

Proof. The ideal I(n) is generated by the classes ξ2
t

s with s ≥ 1 and s + t ≥ n + 2. It is a Hopf ideal
since

ψ(ξ2
t

s ) =
∑
i+j=s

ξ2
j+t

i ⊗ ξ2
t

j

is a sum of terms in A ⊗ I(n) (for i = 0) and in I(n) ⊗ A (for 1 ≤ i ≤ s). Hence A∗/I(n) is a finite
commutative Hopf algebra, and the dual is a finite cocommutative Hopf subalgebra of A .

We claim that Sqk ∈ A(n) for all 0 ≤ k < 2n+1. Equivalently, we must prove that 〈Sqk, ξ〉 = 0 for
all ξ ∈ I(n). By induction, we may assume that this holds for all smaller values of k. The ideal I(n) is

additively generated by products ξ2
t

s · ξR with s ≥ 1 and s+ t ≥ n+ 2, and

〈Sqk, ξ2
t

s · ξR〉 = 〈Sqk, φ(ξ2
t

s ⊗ ξR)〉 = 〈ψ(Sqk), ξ2
t

s ⊗ ξR〉 =
∑
i+j=k

〈Sqi, ξ2
t

s 〉〈Sqj , ξR〉 .
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By the inductive hypothesis, this equals 〈Sqk, ξ2ts 〉 · 〈1, ξR〉, which is 0 for k < 2n+1 since |ξ2ts | ≥ 2n+1

when s ≥ 1 and s+ t ≥ n+ 2. ((It remains to prove that the Sqk for k ≤ 2n, or for k < 2n+1, generate
all of the dual of A(n)∗.))

Corollary 7.44. A = colimn≥0A(n) is a countable union of finite algebras. Hence each element in
positive degree of A is nilpotent.

Remark 7.45. Steenrod and Epstein (1962) write Ah for our A(h + 1). Adams (Math. Proc. Camb.
Phil. Soc., 1966) writes Ar for our A(r). Clearly E(0) = A(0), and E(n) ⊂ A(n) for n ≥ 1. This can
also be seen from the inclusion I(n) ⊂ J(n).

((Write P ts = Sq(0,...,0,2
t) for the dual of ξ2

t

s , so that P t1 = Sq2
t

and P 0
s+1 = Qs? Review Adams–

Margolis classification of Hopf ideals in A∗ and Hopf subalgebras of A , in terms of profile functions.))

7.6 Spectral realizations

Definition 7.46. Brown and Peterson (Topology, 1966) construct a spectrum BP such that H∗(BP ) ∼=
A //E as an A -module. Johnson and Wilson (Topology, 1973) construct spectra BP 〈n〉 such that
H∗(BP 〈n〉) ∼= A //E(n), for each n ≥ 0. As a convention, one may define BP 〈−1〉 = H.

The connective cover k(n) of the n-th Morava K-theory spectrum K(n) has cohomology H∗(k(n)) ∼=
A //E(Qn), for each n ≥ 1. By convention, k(0) = HZ(2) and K(0) = HQ.

Remark 7.47. Baker and Jeanneret (HHA, 2002), using methods of Lazarev (K-Theory, 2001), show
that there is a diagram

BP → · · · → BP 〈n〉 → · · · → BP 〈0〉 → H

of S-algebras, or equivalently, of A∞ ring spectra, inducing the surjections

A → A //E(0)→ · · · → A //E(n)→ · · · → A

in cohomology. Naumann and Lawson (J. Topology, 2011) prove (for p = 2 only) that BP 〈2〉 can
be realized as a commutative S-algebra, or equivalently as an E∞ ring spectrum, like the realizations
BP 〈0〉∧2 ' HZ2 and BP 〈1〉∧2 ' ku∧2 . It is an open problem whether BP can be realized as a commutative
S-algebra.

Baas and Madsen (Math. Scand., 1972) realize k(n). Angeltveit (Compos. Math., 2011) proves
that K(n) has a unique S-algebra structure. For n = 1 (and p = 2) one can take k(1) = ku/2 and
K(1) = KU/2. None of the k(n) for n ≥ 1 admit commutative S-algebra structures, since the map
k(n) → H induces a homomorphism H∗(k(n)) → A∗ that cannot commute with the Dyer–Lashof
operations in the target.

Proposition 7.48. The Adams spectral sequence for BP collapses at the E2-term

E∗,∗
2
∼= Ext∗,∗E (F2,F2) ∼= P (vk | k ≥ 0)

to the abutment
π∗(BP

∧
2 ) ∼= Z2[vk | k ≥ 1] ,

where vk in degree 2k+1 − 2 is detected in E1,2k+1−1
∞ by the dual of Qk ∈ E.

Similarly, the Adams spectral sequence for BP 〈n〉 collapses at

E∗,∗
2
∼= Ext∗,∗E(n)(F2,F2) ∼= P (v0, . . . , vn)

to the abutment
π∗(BP 〈n〉) = Z2[v1, . . . , vn] ,

and the Adams spectral sequence for k(n) collapses at

E∗,∗
2
∼= Ext∗,∗E(Qn)

(F2,F2) ∼= P (vn)

to the abutment
π∗(k(n)) = F2[vn] .
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Figure 7: Adams spectral sequence for BP

Proof. The E2-term can be computed using change-of-rings:

Ext∗,∗A (H∗(BP ),F2) ∼= Ext∗,∗A (A //E,F2) ∼= Ext∗,∗E (F2,F2) ∼= P (vk | k ≥ 0)

where vk is dual to the indecomposable Qk ∈ E. In particular, v0 = h0 is dual to Q0 = Sq1. Since the
E2-term is concentrated in even total degrees, there is no room for differentials. There is also no room for
other multiplicative extensions than the h0-towers, since Z2[vk | k ≥ 1] is free as a graded commutative
algebra. ((This presumes that π∗(BP ) is commutative.))

Remark 7.49. Let MU be the complex bordism spectrum. Milnor (Ann. Math., 1960) and Novikov
((ref?)) shows that H∗(MU) is a direct sum of suspensions of copies of H∗(BP ) = A //E. Brown
and Peterson (Topology, 1966) showed that MU(p) splits as a wedge sum of suspensions of BP . One
finds that π∗(MU) ∼= Z[xk | k ≥ 1] with |xk| = 2k. Quillen (Bull. Amer. Math. Soc., 1969) relates
π∗(MU) to formal group laws, in such a way that π∗(BP ) corresponds to p-typical formal group laws.
The introduction of spectra like BP 〈n〉, E(n), k(n) and K(n) is then motivated by the classification
of formal group laws according to height, which in turn leads to the chromatic perspective on stable
homotopy theory, which seeks to organize the homotopy groups of S and related spectra in periodic
families of varying wave-lengths.

Remark 7.50. Starting with the Hopkins–Miller obstruction theory for A∞ ring structures, continued
by Goerss–Hopkins–Miller and Lurie for E∞ ring structures, Hopkins and Mahowald (preprint, 1994)
produce a connective E∞ ring spectrum tmf with H∗(tmf) ∼= A //A(2). We have already discussed
the realizations H∗(ko) ∼= A //A(1) and H∗(HZ) ∼= A //A(0). (The Davis–Mahowald proof of the
non-realizability of A //A(2) (Amer. J. Math., 1982) contains an error.)

There is no spectrum with cohomology H∗(X) ∼= A //A(n) for n ≥ 3, since the unit map S → X
would induce a map of Adams spectral sequences

E∗,∗
2 (S) = Ext∗,∗A (F2,F2) −→ Ext∗,∗A(n)(F2,F2) = E∗,∗

2 (X)

mapping hn 7→ hn and hn+1 7→ 0. This contradicts the Adams differential d2(hn+1) = h0h
2
n, since
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h0h
2
n 6= 0 on the right hand side for n ≥ 3. ((Elaborate?))

0

2
h2n

h0h
2
n

hn+1

((B∗ = A∗/(ξ
4
1 , ξ

2
2 , ξ

2
3 , ξ4, ...) has dual B = A(1)⊗ E(Q2) and ExtB is ExtA(1) ⊗ P (v2).))

8 Ext over A(1) and A(2)

8.1 The Iwai–Shimada generators

((Edit.)) Our next aim is to compute the homotopy π∗(tmf)
∧
2 of the spectrum of topological modu-

lar forms, which is a connective commutative S-algebra of finite type, with cohomology H∗(tmf) ∼=
A //A(2). We shall use the Adams spectral sequence

Es,t2 = Exts,tA (H∗(tmf),F2) =⇒ π∗(tmf)
∧
2 .

Using change-of-rings, the E2-term

Exts,tA (H∗(tmf),F2) = Exts,tA (A //A(2),F2) ∼= Exts,tA(2)(F2,F2)

can be rewritten as Ext over the finite Hopf subalgebra

A(2) = 〈Sq1, Sq2, Sq4〉 ⊂ A ,

which is dual to the finite Hopf quotient algebra

A(2)∗ = P (ξ1, ξ2, ξ3)/(ξ
8
1 , ξ

4
2 , ξ

2
3)

of A∗. It has dimension 8 · 4 · 2 = 64 as F2-vector space.
The first computation of Ext over A(2) was done by Iwai and Shimada (Nagoya Math. J., 1967).

The answer is complicated, but interesting. The graded commutative algebra Ext∗,∗A(2)(F2,F2) has 13
generators

gen. (t− s, s) alt.
h0 (0, 1) h0
h1 (1, 1) h1
h2 (3, 1) h2
ω0 (8, 4) w1 = v41
ω1 (20, 4) g
α0 (48, 8) w2 = v82
α1 (8, 3) c0
α2 (12, 3) α
α3 (15, 3) β
α4 (14, 4) d0
α5 (17, 4) e0
α6 (25, 5) γ
α7 (32, 7) δ

that are subject to a list of 54 relations, which we do not list here. In particular, it is a free P (ω0, α0)-
module. The part in topological degrees 0 ≤ t − s ≤ 70 is displayed in Figure 8, which was created by
Christian Nassau (2001).
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Figure 8: Ext over A(2) by Christian Nassau (2001)
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There are (commutative S-algebra) maps S → tmf → BP 〈2〉 that induce surjections A //E(2) →
A //A(2)→ F2 in cohomology, and the restriction homomorphisms

Ext∗,∗A (F2,F2)→ Ext∗,∗A(2)(F2,F2)→ Ext∗,∗E(2)(F2,F2)

at the level of Adams E2-terms. The classes h0, h1, h2, c0, d0, e0 and g in the Adams spectral sequence
for S, detecting 2, η, ν, ε, κ, (no homotopy element) and κ̄, map to the Iwai–Shimada generators h0, h1,
h2, α1, α4, α5 and ω1, respectively. The Iwai–Shimada generators h0, ω0 and α0 map to v0, v

4
1 and v82 in

the Adams spectral sequence for BP 〈2〉, respectively. We may follow notes of André Hernandez (Talbot
workshop, 2007), writing w1 and w2 for ω0 and α1, and writing α, β, γ and δ for the remaining algebra
generators α2, α3, α6 and α7. With this notation, the E2-term for tmf is free as a P (w1, w2)-module.

8.2 The Davis–Mahowald resolution

To make this calculation, we shall instead follow section 5 of Davis and Mahowald (CMS Conf. Proc.,
1982) and use a Koszul-type resolution of F2 by A(2)-modules of the form A(2)//A(1) ⊗ N , with the
diagonal action. By the shearing lemma below, these are isomorphic to induced modules of the form
A(2)⊗A(1) N , and using the change-of-rings isomorphism

Exts,tA(2)(A(2)⊗A(1) N,F2) ∼= Exts,tA(1)(N,F2)

we are reduced to the problem of computing Ext over A(1), which is quite straightforward.

Lemma 8.1 ((Reference?)). Let A be a Hopf algebra with conjugation, N a left A-module and B ⊂ A
a ((Hopf?)) subalgebra. There is an isomorphism of left A-modules

θ : A⊗B N
∼=−→ A//B ⊗N

where the left hand side has the A-module structure induced up from the restricted B-module structure
on N , and the right hand side has the diagonal A-module structure.

Proof. This is analogous to the homeomorphism G×H X ∼= G/H ×X for a G-space X and a subgroup
H. The shear map taking [g, x] to ([g], gx) has inverse taking ([g], y) to [g, g−1y], for g ∈ G, x, y ∈ X.
Similarly, the composite homomorphism

A⊗N ψ⊗1−→ A⊗A⊗N π⊗λ−→ A//B ⊗N

coequalizes the two homomorphisms

A⊗B ⊗N
ρ⊗1
//

1⊗λ
// A⊗N

to induce θ, while the composite homomorphism

A⊗N ψ⊗1−→ A⊗A⊗N 1⊗χ⊗1−→ A⊗A⊗N 1⊗λ−→ A⊗N π−→ A⊗B N

vanishes on A · I(B)⊗N to induce θ−1. These maps are mutual inverses; see Adams (1974, p. 338) and
Anderson, Brown and Peterson (1969, Prop. 3.1). ((Thanks to Bruner for these references.))

Corollary 8.2. Let R and Y be spectra that are bounded below, with H∗(R) and H∗(Y ) of finite type.
Suppose furthermore that H∗(R) ∼= A //B, for some subalgebra B ⊂ A such that A is free as a right
B-module. For instance, B might be a Hopf subalgebra. Then the E2-term for the Adams spectral
sequence converging to π∗(R ∧ Y ) = R∗(Y ) is

E∗,∗
2 = Ext∗,∗A (H∗(R ∧ Y ),F2) ∼= Ext∗,∗B (H∗(Y ),F2) .

In particular, it only depends on the restricted B-module structure on H∗(Y ).
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Proof. H∗(R∧Y ) ∼= H∗(R)⊗H∗(Y ) ∼= A //B⊗H∗(Y ) ∼= A ⊗BH∗(Y ), and Ext∗,∗A (sA⊗BH∗(Y ),F2) ∼=
Ext∗,∗B (H∗(Y ),F2).

Example 8.3. This shows that the E2-terms of the Adams spectral sequences computing H∗(Y ;Z),
ku∗(Y ) and ko∗(Y ) only depend on the A(0)-, E(1)- and A(1)-module structures on H∗(Y ). The later
differentials in the spectral sequences may depend on more than these module structures. See Bayen and
Bruner (1996, p. 2205).

Definition 8.4. Let ξ̄k ∈ A∗ denote the conjugate Milnor generator ξ̄k = χ(ξk), for each k ≥ 0. Thus
ξ̄0 = 1, ξ̄1 = ξ1 (for p = 2) and ξ̄2 = ξ2 + ξ31 . The coproduct ψ : A∗ → A∗ ⊗A∗ satisfies

ψ(ξ̄k) =
∑
i+j=k

ξ̄i ⊗ ξ̄2
i

j .

We are interested in the case n = 2 of the following general result. Recall how the dual of a left
A(n)-module can be viewed as a left A(n)∗-comodule or as a right A(n)-module.

Lemma 8.5. The left A(n)-module A(n)//A(n − 1) = A(n) ⊗A(n−1) F2 of A(n) is dual to the right
A(n)-module subalgebra

(A(n)//A(n− 1))∗ = A(n)∗ �A(n−1)∗ F2 = E(ξ2
n

1 , ξ̄2
n−1

2 , . . . , ξ̄n+1)

of A(n)∗ = P (ξ1, . . . , ξn+1)/(ξ
2n+1

1 , ξ2
n

2 , . . . , ξ2n+1). Hence π : A(n) → A(n)//A(n − 1) is a surjection of
left A(n)-module coalgebras.

Proof. By a dimension count, it suffices to prove that ξ̄2
n−k

k+1 ∈ A(n)∗ lies in A(n)∗ �A(n−1)∗ F2, for each
0 ≤ k ≤ n. The coaction ρ = (1⊗ π)ψ : : A(n)∗ → A(n)∗ ⊗A(n− 1)∗ takes this element to∑

i+j=k+1

ξ̄2
n−k

i ⊗ ξ̄2
i+n−k

j ,

and the terms with j > 0 vanish.

Definition 8.6. Let En = E(ξ2
n

1 , ξ̄2
n−1

2 , . . . , ξ̄n+1) = E(x0, x1, . . . , xn) be the right A(n)-module graded

exterior algebra generated by xk = ξ̄2
n−k

k+1 for 0 ≤ k ≤ n. Here |xk| = 2n−k(2k+1− 1) = 2n+1− 2n−k, and

xk · Sq2
n−k

= xk−1 for 1 ≤ k ≤ n, while x0 · Sq2
n

= 1. The inclusion En → A(n)∗ is a homomorphism
of right A(n)-module algebras.

Lemma 8.7. The left A(n)∗-coaction on En is given by

λ(xk) = ξ̄2
n−k

k+1 ⊗ 1 +
∑
i+j=k

ξ̄2
n−k

i ⊗ xj

for 0 ≤ k ≤ n.

Proof. This is clear from the coproduct on A(n)∗, which is given by the same formula as the coproduct
on A∗.

Example 8.8. For n = 1 we have E1 = E(ξ21 , ξ̄2) = E(x0, x1) concentrated in homological degrees t ∈
{0, 2, 3, 5}, with the right A(1)-module structure:

1 x0

·Sq2

}}
x1

·Sq1
oo x0x1

·Sq2

}}

The left A(1)∗-coaction is given by λ(x0) = 1⊗ x0 + ξ21 ⊗ 1 and λ(x1) = 1⊗ x1 + ξ1 ⊗ x0 + ξ̄2 ⊗ 1.
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For n = 2 we have E2 = E(ξ41 , ξ̄
2
2 , ξ̄3) = E(x0, x1, x2) concentrated in homological degrees t ∈

{0, 4, 6, 7, 10, 11, 13, 17}, with the following right A(2)-module structure:

1 x0

·Sq4





x1

·Sq2

��
x2

·Sq1
oo x0x1

·Sq4

��
x0x2

·Sq1
oo

·Sq4

VV
x1x2

·Sq2

``
x0x1x2

·Sq4

UU

The left A(2)∗-coaction is given by λ(x0) = 1 ⊗ x0 + ξ41 ⊗ 1, λ(x1) = 1 ⊗ x1 + ξ21 ⊗ x0 + ξ̄22 ⊗ 1 and
λ(x2) = 1⊗ x2 + ξ1 ⊗ x1 + ξ̄2 ⊗ x0 + ξ̄3 ⊗ 1.

((NOTE: The part in degrees 4 ≤ ∗ ≤ 13 occurs as L[2] in H∗(THH(tmf)). Get sequences relating
ExtA(2) for L[2] to those for F2 and A(2)//A(1).))

Remark 8.9. A(n−1) is not normal in A(n), so A(n)//A(n−1) is not a quotient Hopf algebra of A(n),
and En is not a Hopf subalgebra of A(n)∗. Nonetheless, En is a primitively generated Hopf algebra on
its own. There is a standard way to resolve En-comodules using a twisted tensor product (Brown, Ann.
of Math., 1959), which in this case specializes to a kind of dual Koszul resolution. This turns out to
produce a useful right A(n)-module resolution. ((What is the general picture behind this??))

Definition 8.10. Let Rn = P (y0, y1, . . . , yn) be the right A(n)-module bigraded polynomial algebra
generated by yk of bigrading (σ, t) = (1, |xk|), for 0 ≤ k ≤ n. It decomposes additively as

Rn =
⊕
σ≥0

Rσn ,

where Rσn is spanned by the monomials of degree σ in the yk’s. In particular, R0
n = F2 and R1

n =

F2{y0, . . . , yn}. The right A(n)-module action on R1
n is given by yk · Sq2

n−k

= yk−1 for 1 ≤ k ≤ n, and
extends to a right A(n)-action on Rσn for each σ ≥ 0, since A(n) is cocommutative.

Lemma 8.11. The left A(n)∗-coaction on Rn is given by

λ(yk) =
∑
i+j=k

ξ̄2
n−k

i ⊗ yj

for 0 ≤ k ≤ n.

Proof. This is clear from the coaction on En, and the fact that d(1) = 0.

Definition 8.12. Let (En ⊗Rn, d) be the right A(n)-module differential bigraded algebra given by the
tensor product of En = E(x0, . . . , xn) (in degree σ = 0) and Rn = P (y0, . . . , yn), with the diagonal right
A(n)-module structure and with the differential given by d(xk) = yk for all 0 ≤ k ≤ n.

Remark 8.13. Our numbering of the xk is reversed compared to that of Davis–Mahowald. Furthermore,
they do not distinguish notationally between the xk and the yk.

Lemma 8.14. The differential d : En ⊗Rσn → En ⊗Rσ+1
n is right A(n)-linear.

Proof. For e ∈ En and r ∈ Rn we have (d(e · r))Sqc =
∑
a+b=c(d(e))Sq

a · (r)Sqb since d(r) = 0, and

d((e · r)Sqc) =
∑
a+b=c d((e)Sq

a) · (r)Sqb since d((r)Sqb) = 0, so it suffices to check that d : En =
En ⊗R0

n → En ⊗R1
n is A(n)-linear. When n = 1 we have that d(x0x1) = x0y1 + x1y0 is mapped by Sq1

to x0y0 + x0y0 = 0 and by Sq2 to y1, while d(x1) = y1 is mapped by Sq1 to y0.
((Check for n = 2, or give general formula.))

Definition 8.15. For a fixed n, let Nσ = (Rσn)
∗ be the dual left A(n)-module, so that N =

⊕
σ Nσ is a

left A(n)-module differential bigraded coalgebra. In particular, N0 = F2.
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Lemma 8.16. H∗(En ⊗Rn, d) ∼= F2, so

0→ F2
η−→ En ⊗R0

n
d−→ En ⊗R1

n
d−→ . . .

d−→ En ⊗Rσn
d−→ . . .

is an exact complex of right A(n)-modules. Dually,

· · · → A(n)//A(n− 1)⊗Nσ
∂σ−→ . . .

∂2−→ A(n)//A(n− 1)⊗N1
∂1−→ A(n)//A(n− 1)⊗N0

ε−→ F2 → 0

is an exact complex of left A(n)-modules.

Proof. It is clear that E(xk)⊗ P (yk) with d(xk) = yk has homology F2{1} concentrated in degree 0, for
each 0 ≤ k ≤ n. The lemma follows from the Künneth formula.

For each σ, the short exact sequence of left A(n)-modules

0→ im(∂σ+1)→ A(n)//A(n− 1)⊗Nσ → im(∂σ)→ 0

(with ∂0 = ε) generates a long exact sequence

→ Exts−1,t
A(n) (im(∂σ+1),F2)

δ−→ Exts,tA(n)(im(∂σ),F2)→

→ Exts,tA(n)(A(n)//A(n− 1)⊗Nσ,F2)→ Exts,tA(n)(im(∂σ+1),F2)→

in Ext. These can be linked together, for varying σ ≥ 0, to an unrolled exact couple of (s, t)-bigraded
abelian groups

. . . // Exts−2,t
A(n) (im(∂2),F2)

��

δ // Exts−1,t
A(n) (im(∂1),F2)

��

δ // Exts,tA(n)(F2,F2)

��

Exts−2,t
A(n−1)(N2,F2)

ff

Exts−1,t
A(n−1)(N1,F2)

ii

Exts,tA(n−1)(N0,F2)

ii

with
Aσ,s,t = Exts−σ,tA(n) (im(∂σ),F2)

and
Eσ,s,t = Exts−σ,tA(n) (A(n)//A(n− 1)⊗Nσ,F2) ∼= Exts−σ,tA(n−1)(Nσ,F2) .

Here we have used the shearing isomorphism A(n)//A(n− 1)⊗Nσ ∼= A(n)⊗A(n−1) Nσ and the change-
of-rings isomorphism for A(n − 1) ⊂ A(n). Note that the E1-term only depends on the restricted
A(n− 1)-module structure of the Nσ’s.

Proposition 8.17 (Davis–Mahowald (1982, Cor. 5.3)). There is an algebra spectral sequence converging
to Ext∗,∗A(n)(F2,F2), with

Eσ,s,t1 = Exts−σ,tA(n−1)(Nσ,F2) .

More generally, let M be a left A(n)-module. There is a spectral sequence converging to Ext∗,∗A(n)(M,F2),

with
Eσ,s,t1 = Exts−σ,tA(n−1)(Nσ ⊗M,F2) .

The differential d1 : E
σ,s,t
1 → Eσ+1,s+1,t

1 is induced on Ext∗,∗A(n)((−) ⊗ M,F2) by the homomorphism

∂σ+1 : A(n)//A(n− 1)⊗Nσ+1 −→ A(n)//A(n− 1)⊗Nσ.

Proof. The algebra structure can be seen from the right A(n)-module algebra resolution η : F2 → En⊗Rn,
which we can also think of as a left A(n)∗-comodule algebra resolution. Applying Ext∗,∗A(n)∗

(F2,−) for

the category of left A(n)∗-comodules, we get an algebra spectral sequence

Eσ,s,t1 = Exts−σ,tA(n)∗
(F2, En ⊗Rσn) =⇒ Exts,tA(n)∗

(F2,F2) .
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((Elaborate??)) The contravariant duality equivalence gives isomorphisms Exts−σ,tA(n)∗
(F2, En ⊗ Rσn)

∼=
Exts−σ,tA(n) (A(n)//A(n− 1)⊗Nσ,F2) and Exts,tA(n)∗

(F2,F2) ∼= Exts,tA(n)(F2,F2), which identify the two spec-

tral sequences.
The case with coefficients in a module M arises in the same way, from the short exact sequences

0→ im(∂σ+1)⊗M → A(n)//A(n− 1)⊗Nσ ⊗M → im(∂σ)⊗M → 0

of left A(n)-modules.

Remark 8.18. ((Added April 25th 2012)) The Davis–Mahowald resolution for n = 2 may be closely
related to the resolution coming from the Amitsur complex for tmf → ko, meaning the cosimplicial
commutative S-algebra

[k] 7→ ko ∧tmf ko ∧tmf · · · ∧tmf ko

with coface maps induced by the unit tmf → ko and codegeneracies induced by the multiplication
ko∧tmfko→ ko. Its totalization is the completion of tmf along ko, which should be tmf again, since ko is
connective with π0(ko) = Z. ((ExplainH∗(ko∧tmf ko) ∼= H∗(ko)⊗H∗(tmf)H∗(ko) = H∗(ko)[y0, y1, y2]/(∼
) where y20 = ξ81 , y

2
1 = ξ̄42 and y22 = ξ̄23 , with A∗-coaction like in E2 ⊗R2. Probably the Amitsur complex

gives a cobar type resolution, while E2 ⊗ R2 is a minimal resolution.)) Similarly for n = 1, using
ko→ HZ.

8.3 Ext over A(1), revisited

As a warm-up, we compute Ext∗,∗A(1)(F2,F2) using the Davis–Mahowald resolution.

Let n = 1. We have R1 = P (y0, y1) with y0 = d(ξ21) and y1 = d(ξ̄2) in bidegrees (σ, t) = (1, 2) and
(1, 3), respectively, with y1 · Sq1 = y0 and (yi0y

j
1)Sq

1 = j · yi+1
0 yj−1

1 . Hence Rσ1 = F2{yi0y
j
1 | i + j = σ}

is dual to Nσ = F2{ai,j | i + j = σ}, where ai,j is dual to yi0y
j
1 of degree 2i + 3j, and Sq1(ai,j) =

(j + 1)ai−1,j+1. Thus Nσ is a sum of free A(0)-modules on generators ai,σ−i for 0 < i ≤ σ with i ≡ σ
mod 2, plus a trivial A(0)-module on the generator a0,σ in the cases when σ is even.

N0 : a0,0

N1 : a1,0
Sq1
// a0,1

N2 : a2,0 // a1,1 a0,2

N3 : a3,0 // a2,1 a1,2 // a0,3

N4 : a4,0 // a3,1 a2,2 // a1,3 a0,4

Thus Ext∗,∗A(0)(Nσ,F2) is the sum of a copy of F2 on the generator yi0y
σ−i
1 in internal degree t = 3σ − i

dual to ai,σ−i, for each 0 < i ≤ σ with i ≡ σ mod 2, plus a copy of Ext∗,∗A(0)(F2,F2) = P (h0) on the

generator yσ1 in internal degree t = 3σ dual to a0,σ, in the cases where σ is even.
The E1-term is displayed in Figure 9 as an Adams chart in the (t− s, s)-plane. Vertical lines indicate

h0-multiplications, and the σ-filtration is indicated at the bottom of each h0-tower.
The d1-differentials d1 : E

σ,s,t → Eσ+1,s+1,t are generated by d1(y0) = 0 and d1(y
2
1) = y30 . This leaves

the E2-term shown in Figure 10.
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Figure 9: E∗,∗,∗
1 =⇒ Ext∗,∗A(1)(F2,F2)
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∞
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There is no room for further differentials, since dr : E
σ,s,t
r → Eσ+r,s+r,tr increases the σ-filtration by

r. It follows that Ext∗,∗A(1)(F2,F2) has the following algebra generators

gen. (t− s, s) rep.
h0 (0, 1) h0
h1 (1, 1) y0
v (3, 4) h0y

2
1

w1 (8, 4) y41

that are subject to the relations h0h1 = 0, h31 = 0, h1v = 0 and v2 = h20w1. In particular, it is free as a
P (w1)-module.

To find the differential, recall that the differential d1 : E
σ,s,t
1 → Eσ+1,s+1,t

1 is the composite homo-
morphism

Exts−σ,tA(n) (A(n)//A(n− 1)⊗Nσ,F2)→ Exts−σ,tA(n) (im(∂σ+1),F2)→ Exts−σ,tA(n) (A(n)//A(n− 1)⊗Nσ+1,F2)

induced by the composite A(n)-module homomorphism

∂σ+1 : A(n)//A(n− 1)⊗Nσ+1
// // im(∂σ+1) // // A(n)//A(n− 1)⊗Nσ .

In the case σ = s, Ext0,∗A(n)(A(n)//A(n − 1) ⊗ Nσ,F2) ∼= HomA(n)(A(n)//A(n − 1) ⊗ Nσ,F2) is the

subspace of (A(n)//A(n − 1) ⊗Nσ)∗ ∼= En ⊗ Rσn where the right A(n)-module action is trivial (factors
through the augmentation). This is the same as the subspace of left A(n)∗-comodule primitives. Hence
the d1-differential is given by the restriction of the composite

d : En ⊗Rσn // // im(d) // // En ⊗Rσ+1
n

to the subspaces of A(n)∗-comodule primitives.

Example 8.19. For n = 1 and σ = s = 2, the class y21 is represented by the A(1)∗-comodule primitive
y21 + x0y

2
0 in E1 ⊗R2

1. Hence d1(y
2
1) is represented by d(y21 + x0y

2
0) = y30 .

The commutative S-algebra maps S → ko → ku induce surjections A //E(1) → A //A(1) → F2 in
cohomology and restriction homomorphisms

Ext∗,∗A (F2,F2)→ Ext∗,∗A(1)(F2,F2)→ Ext∗,∗E(1)(F2,F2)

of Adams E2-terms. The classes h0 and h1 in the Adams spectral sequence for S, detecting 2 and η,
map to the generators with the same names in Ext∗,∗A(1)(F2,F2). The classes v and w1 map to v0v

2
1 and

v41 , respectively, in Ext∗,∗E(1)(F2,F2) = P (v0, v1).

8.4 Ext over A(2)

Let n = 2. We wish to calculate Ext∗,∗A(2)(F2,F2) using the Davis–Mahowald spectral sequence

Eσ,s,t1 = Exts−σ,tA(1) (Nσ ⊗M,F2) =⇒ Exts,tA(2)(M,F2)

for M = F2, where Nσ = (Rσ2 )
∗.

We have R2 = P (y0, y1, y2) with y0 = d(ξ41), y1 = d(ξ̄22) and y2 = d(ξ̄3) in bidegrees (1, 4), (1, 6) and
(1, 7), respectively, with Sq1∗(y2) = y2 · Sq1 = y1 and Sq2∗(y1) = y1 · Sq2 = y0. Hence

(yi0y
j
1y
k
2 ) · Sq1 = k · yi0y

j+1
1 yk−1

2

(yi0y
j
1y
k
2 ) · Sq2 = j · yi+1

0 yj−1
1 yk2 +

(
k

2

)
yi0y

j+2
1 yk−2

2 .
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The yi0y
j
1y
k
2 with i + j + k = σ give a basis for Rσ2 . Let ai,j,k of degree 4i + 6j + 7k be the dual basis

element for Nσ. The left A(1)-module structure on Nσ is given by

Sq1(ai,j,k) = (k + 1)ai,j−1,k+1

Sq2(ai,j,k) = (j + 1)ai−1,j+1,k +

(
k + 2

2

)
ai,j−2,k+2 .

Here are the first few instances, where we abbreviate ai,j,k to aijk:

N0 : a000

N1 : a100

Sq2

��
a010

Sq1
// a001

N2 : a200
��
a110 // a101 Sq2

**
a020 //

==
a011 a002

N3 : a300
��
a210 // a201

!!
a120 //

**

!!
a111 a102

**
a030 //

==
a021 ==

a012 // a003

N4 : a400
��
a310 // a301

!!
a220 //

!!

**

a211 a202

**
a130 //

!!
a121

!!

**

a112 // a103

**
a040 //

==
a031 ==

a022 // a013 a004

In particular, N0 = F2 so that A ⊗A(1) N0 = H∗(ko), and N1 = Σ4(A(1)/A(1){Sq1, Sq2Sq3}) so
that A ⊗A(1) N1

∼= H∗(bspin).
Notice that a0,0,4 is left A(1)-module indecomposable. Dually, y42 is left A(1)∗-comodule primitive.

The same applies to a0,0,k and yk2 for k ≡ 0 mod 4, since R2 is a left A(1)∗-comodule algebra (or by the
formulas above).

Let ′Rσ2 ⊂ Rσ2 be the subspace generated by the yi0y
j
1y
k
2 with 0 ≤ k ≤ 3 (and i+ j + k = σ). Then

R2
∼=

⊕
σ≥0

′Rσ2 ⊗ P (y42)

as bigraded left A(1)∗-comodules, where y42 has bidegree (σ, t) = (4, 28). In filtration σ we get

Rσ2 =
⊕

0≤i≤σ
i≡σ mod 4

′Ri2{yσ−i2 } ∼=
⊕

0≤i≤σ
i≡σ mod 4

Σ7(σ−i)′Ri2 .

Here is the dual statement:

Lemma 8.20. Let N ′
σ = Nσ/F2{ai,j,k | k ≥ 4} be the quotient space generated by ai,j,k with 0 ≤ k ≤ 3

(and i+ j + k = σ). Then

Nσ ∼=
⊕

0≤i≤σ
i≡σ mod 4

Σ7(σ−i)N ′
i

99



0 2 4 6 8 10

0

2

4

6

Figure 11: G0, the Adams chart for ko
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Figure 12: G1, the Adams chart for ksp = Σ−4bspin

as a left A(1)-module. Hence

Ext∗,∗A(1)(Nσ ⊗M,F2) ∼=
⊕

0≤i≤σ
i≡σ mod 4

Ext∗,∗A(1)(Σ
7(σ−i)N ′

i ⊗M,F2) .

Definition 8.21. For i ≥ 0, let Gi be the following Adams chart, with lines indicating h0- and h1-
multiplications. Each chart is free as a P (v41)-module. Let ΣtGi be the same chart as Gi, but shifted t
units to the right.

Proposition 8.22. Ext∗,∗A(1)(N
′
σ,F2) = Σ4σGσ for each σ ≥ 0, so

Ext∗,∗A(1)(Nσ,F2) =
⊕

0≤i≤σ
i≡σ mod 4

Σ7σ−3iGi .

Proof. This is verified directly for 0 ≤ σ ≤ 2. For σ = 0 we haveN ′
0 = N0 = F2 and A ⊗A(1)N0

∼= H∗(ko),
so G0 is the same as the Adams chart for ko. For σ = 1 we have N ′

1 = N1 = Σ4A(1)/A(1){Sq1, Sq2Sq3}
so A ⊗A(1) N1

∼= H∗(bspin) and Σ4G1 is the same as the Adams chart for bspin. Both of these are well
known to be v41-periodic. For σ = 2 we can write N ′

2 = N2 as an extension

0→ Σ12A(1)//E(Q1)→ N2 → Σ8A(1)//A(0)→ 0 ,
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Figure 15: P (v41 , v
4
2)-basis for E

∗,∗,∗
1 =⇒ Ext∗,∗A(2)(F2,F2), 0 ≤ t− s ≤ 24

so G2 sits in a long exact sequence with the Adams charts forHZ and Σ4ku/2 (sinceH∗(HZ) = A //A(0)
and H∗(ku/2) = A //E(Q1)). The connecting homomorphism is trivial for bidegree reasons, so G2 is
additively the sum of these two charts. One only needs to check that the v41-multiplication from bidegree
(0, 0) is nonzero.

For σ ≥ 3 there is an extension

0→ Σ6σA(1)//E(Q1) −→ N ′
σ −→ Σ4N ′

σ−1 → 0 .

The submodule on the left is generated by a0,j,k for j + k = σ and 0 ≤ k ≤ 3. The projection to the
quotient takes ai,j,k to Σ4ai−1,j,k, for i+ j + k = σ, i ≥ 1 and 0 ≤ k ≤ 3

The associated long exact sequence in Ext over A(1) is

· · · → Σ4σGσ−1 → Ext∗,∗A(1)(N
′
σ,F2)→ Σ6σP (v1)→ . . . .

Here Ext∗,∗A(1)(Σ
6σA(1)//E(Q1),F2) ∼= Σ6σ Ext∗,∗E(Q1)

(F2,F2) = Σ6σP (v1). The sequence splits additively,

for degree reasons, but there are nonzero h0-extensions. ((Should discuss these.))

((One should make the pairing Gi ⊗Gj → Gi+j explicit.))

Corollary 8.23. There is an algebra spectral sequence

E∗,∗,∗
1 = P (v42)⊗

⊕
i≥0

Gi{hi2} =⇒ Ext∗,∗A(2)(F2,F2)

where hi2v
4k
2 has σ-filtration i+ 4k and bidegree (t− s, s) = (3i+ 24k, i+ 4k), for i, k ≥ 0.

The Davis–Mahowald E1-term is displayed in degrees 0 ≤ t ≤ 48 in Figures 15 and 16. It is free over
P (v41 , v

4
2), and only the generators are shown (as bullets), with the exception that v41 times a generator

is shown as a circle when it is also h0 times a generator. This way the h0-extensions are not hidden from
the picture.

Theorem 8.24. The classes h0, h1, v
4
1, h2 and v82 are infinite cycles. There are nonzero differentials

d1(α2,0h
2
2) = h32

d1(α5,0h
5
2) = α3,0h

6
2

d1(v
4
2) = α4,0h

5
2
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Figure 16: P (v41 , v
4
2)-basis for E

∗,∗,∗
1 =⇒ Ext∗,∗A(2)(F2,F2), 24 ≤ t− s ≤ 48

where αk,sh
i
2 denotes a generator in bidegree (2k + 3i, s+ i) of Gi{hi2}. The spectral sequence collapses

at the E2-term.

Proof. To determine the d1-differential on classes in Adams filtration s = σ, we use the identification

Eσ,σ,∗1 = Hom∗
A(1)(Nσ,F2) ∼= Hom∗

A(2)(A(2)//A(1)⊗Nσ,F2) ∼= F2 �A(2)∗ (E2 ⊗Rσ2 )

of this part of the E1-term with the left A(2)∗-comodule primitives on the right hand side. The differential
d1 : E

σ,σ,∗
1 → Eσ+1,σ+1,∗

1 is then induced by the derivation

d : E2 ⊗Rσ2 → E2 ⊗Rσ+1
2

by restriction to the left A(2)∗-comodule primitives. The formulas

λ(x0) = 1⊗ x0 + ξ41 ⊗ 1

λ(x1) = 1⊗ x1 + ξ21 ⊗ x0 + ξ̄22 ⊗ 1

λ(x2) = 1⊗ x2 + ξ1 ⊗ x1 + ξ̄2 ⊗ x0 + ξ̄3 ⊗ 1

λ(y0) = 1⊗ y0
λ(y1) = 1⊗ y1 + ξ21 ⊗ y0
λ(y2) = 1⊗ y2 + ξ1 ⊗ y1 + ξ̄2 ⊗ y0

are useful.
The generator α2,0h

2
2 in bidegree (t − s, s) = (10, 2) is represented by the A(1)∗-comodule primitive

y21 in R2
2, which corresponds to the A(2)∗-comodule primitive y21 + x0y

2
0 in E2 ⊗R2

2. The d1-differential
maps this to the A(2)∗-comodule primitive d(y21 + x0y

2
0) = y30 in E2 ⊗R3

2, which represents h32.
The generator α5,0h

5
2 in bidegree (25, 5) is represented by the A(1)∗-comodule primitive y51 + y0y

2
1y

2
2

in R5
2, which corresponds to the A(2)∗-comodule primitive y51 + y0y

2
1y

2
2 + x0y

3
0y

2
2 + ((ETC)) in E2 ⊗R5

2.
The d1-differential maps this to ((ETC)), which represents α3,0h

6
2.

((Exercise: Compute left A(2)∗-coaction in E2⊗R5
2 in internal degree 30 to find the A(2)∗-comodule

primitive.))
When combined with h0-, h1-, h2- and v

4
1-linearity, these two differentials imply many others. The

reader might draw them in Figures 15 and 16. The result is shown in Figures 17 and 18.
Next we bring v42 into the picture. It is represented by the A(1)∗-comodule primitive y42 , which

corresponds to the A(2)∗-comodule primitive y42 + x0y
4
1 . The d1-differential takes this to the class
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Figure 17: E∗,∗,∗
1 after first two d1-differentials, 0 ≤ t− s ≤ 24
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Figure 18: E∗,∗,∗
1 after first two d1-differentials, 24 ≤ t− s ≤ 48

104



23 25 27 29 31 33 35 37 39 41 43 45 47

4

6

8

10

12

4

5

5

6

6

6

7

7 8 8

4

9 9

5

5

5

6

6

6

7

7 8 8

8

9 9

10

Figure 19: E∗,∗,∗
1 last d1-differentials, 23 ≤ t− s ≤ 47
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Figure 20: E∗,∗,∗
∞ =⇒ Ext∗,∗A(2)(F2,F2), 0 ≤ t− s ≤ 24

represented by d(y42 + x0y
4
1) = y0y

4
1 , namely α4,0h

5
2. The further differentials implied by the multicative

structure are illustrated in Figure 19, which is obtained by superimposing Figure 18 with a copy of
Figure 17 shifted by v42 .

The remaining E2-term is displayed in Figures 20 and 21. It is a free P (v41 , v
8
2)-module, and there is

no room for further differentials, so E2 = E∞.

Remark 8.25. The wedge-shaped pattern that begins in bidegree (t − s, s) = (35, 7) can be shown
to continue. It is a free P (v1, h21)-module, where v1 = h20 and h21 are detected by Q1 = Sq(0,1) and
Sq(0,2), dual to ξ2 and ξ22 , respectively. A similar pattern in Ext∗,∗A (F2,F2) was described by Mahowald
and Tangora (Trans. Amer. Math. Soc., 1968).

Davis and Mahowald also determine the h1- and h2-multiplications in Ext∗,∗A(2) that are hidden by

filtration shifts in the E∞-term. These can also be determined by machine computation in this range,
and lead to the charts in Figures 22 and 23. Sometimes v41-multiples become h0-divisible; this is indicated
by the small circles. Remarkably, v41-multiples never become more h1- or h2-divisible.
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Figure 21: E∗,∗,∗
∞ =⇒ Ext∗,∗A(2)(F2,F2), 24 ≤ t− s ≤ 48
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Figure 22: P (v41 , v
8
2)-basis for Ext

∗,∗
A(2)(F2,F2), 0 ≤ t− s ≤ 24
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2)-basis for Ext
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A(2)(F2,F2), 24 ≤ t− s ≤ 48
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Definition 8.26. We name the following generators of Ext∗,∗A(2)(F2,F2).

IS-gen. (t− s, s) alt. DM-rep. ext

h0 (0, 1) h0 h0 10
h1 (1, 1) h1 h1 11
h2 (3, 1) h2 y0 12
ω0 (8, 4) w1 = v41 w1 41
ω1 (20, 4) g y41 48
α0 (48, 8) w2 = v82 y82 819
α1 (8, 3) c0 (?) 32
α2 (12, 3) α (?) 33
α3 (15, 3) β (?) 34
α4 (14, 4) d0 (?) 44
α5 (17, 4) e0 (?) 46
α6 (25, 5) γ h1v

4
2 + (?) 511

α7 (32, 7) δ c0v
4
2 + (?) 711

With the exception of α7 = δ, each class is the unique nonzero class in its bidegree. The class α7 = δ
is characterized by the properties h0δ 6= 0 and h1δ 6= 0. Bruner’s ext-program uses the name sg for the
g’th generator in Adams filtration s, counting from g = 0.

Instead of displaying the module generators, Davis and Mahowald (1982) use the following convention
to encode Adams charts that are free over P (w1) = P (v41). ((They do not take h2-multiples into account.))

Definition 8.27. An indexed chart is a chart in which some elements x are labeled with integers
`(x). Each unlabeled element x is implicitly given the maximal label of a labeled element y such that
x = hi0h

j
1h
k
2y, or 0 if no such y exists. Each indexed chart C generates an Adams chart 〈C〉, consisting

of all elements v4i1 x such that i + `(x) ≥ 0. In other words, each element x in C generates a free

P (v41)-module in 〈C〉 on a generator v
−4`(x)
1 x.

((Use the modified chart, better suited for the tmf -differentials.))

Definition 8.28. Let E0 be the following indexed chart:
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Here is the same chart with named generators:

24 26 28 30 32 34 36 38

6

8

10

12

14

16

w3
1

w2
1α

w2
1d0

w2
1β

w2
1e0

w2
1g

w1α
2

w1γ

w1αβ

w1αd0 w1βd0

w1β
2

w3
1c0

d0e0

αg

δ + αg

d0g

α3

The dashed lines that exit the chart mean that h2 times w1βd0 is w1 times h0αg = h0δ, and similarly
after multiplication by h0.

Theorem 8.29. Ext∗,∗A(2)(F2,F2) is free over P (w2) = P (v82) on 〈E0〉 ⊕ P (v1, h21){g35,7}, where g35,7 =

βg.

This compact statement should be compared with the full Ext chart (in a finite range of degrees), as
in Figure 8.

8.5 Coefficients in A(0)

The Adams E2-term for the homotopy of tmf/2 = tmf ∧ S/2 is

E∗,∗
2 = Ext∗,∗A (H∗(tmf/2),F2) ∼= Ext∗,∗A(2)(A(0),F2)

since H∗(tmf/2) ∼= H∗(tmf) ⊗ H∗(S/2) ∼= A //A(2) ⊗ A(0) ∼= A ⊗A(2) A(0), where A(0) denotes the
A -module H∗(S/2). It is, after all, free of rank 1 as an A(0)-module, and admits a unique A -module
structure. Note that S/2 is not a ring spectrum, and this is not an algebra spectral sequence, but it is a
module spectral sequence over the Adams spectral sequence for tmf .

Computing Ext∗,∗A(2)(A(0),F2) will also be useful in proving Adams periodicity, saying that the part

of Ext∗,∗A (F2,F2) over a line of slope 1/5 repeats periodically along lines (rays) of slope 1/2.
We use the Davis–Mahowald spectral sequence

Eσ,s,t1 = Exts−σ,tA(1) (Nσ ⊗A(0),F2) =⇒ Exts,tA(2)(A(0),F2)

for M = A(0). It is not an algebra spectral sequence, since A(0) is not an A(2)-comodule coalgebra, but
it is a module spectral sequence over the Davis–Mahowald spectral sequence computing Ext∗,∗A(2)(F2,F2).

Let GA(0)i be the chart so that Ext∗,∗A(1)(N
′
i ⊗A(0),F2) = Σ4iGA(0)i. Then

E∗,∗,∗
1 = P (v42)⊗

⊕
i≥0

GA(0)i{hi2} .
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0 2 4 6 8 10 12

0

2

4

6

Figure 24: GA(0)0, the Adams chart for ko/2

0 2 4 6 8 10 12 14 16

0

2

4

6

8

Figure 25: GA(0)1, the Adams chart for Σ−4bspin/2
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0 2 4 6 8 10 12 14 16

0

2

4

6

Figure 26: GA(0)2

0 2 4 6 2i 2i+ 2 2i+ 4 2i+ 6 2i+ 8

0

2

4

6

Figure 27: GA(0)i for i ≥ 2

These charts can be readily computed. The first two are free as P (w1) = P (v41)-modules.
Thereafter there are (i− 1) v41-torsion classes, before periodicity kicks in.
The Davis–Mahowald E1-term for A(0) as A(2)-module is displayed for 0 ≤ t ≤ 48 in Figures 28

and 29. Most classes are only represented by their σ-filtration.
The augmentation A(0) → F2 (corresponding to the map tmf → tmf/2) induces a map of spectral

sequences from the one computed in the previous subsection to this one. The differentials implied by
d1(α2,0h

2
2) = h32 and d1(α5,0h

5
2) = α3,0h

6
2 leave the classes displayed in Figures 30 and 31. Only the

P (v41)-module generators are shown. Most of them generate a free copy of P (v41), but some only generate
a trivial module. The latter are labeled σ′ in place of σ. The circle indicates a v41-multiple that is
h1-divisible.

Superimposing Figure 31 with a copy of Figure 30 multiplied by v42 , and taking the differential
d1(v

4
2) = α4,0h

5
2 into account, we obtain Figure 32. The remaining E2-term is shown in Figures 33

and 34. For σ-filtration reasons, this equals the E∞-term.
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0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

12

v42

0

0

0

0

1

1

1

1

2 2

2

2

2

2

2

2

2

3 3 3

3

3

3

3

4 4 4 4

4

4

5 5 5 5

6 6 6

7

8

Figure 28: P (v42)-basis for E
∗,∗,∗
1 =⇒ Ext∗,∗A(2)(A(0),F2), 0 ≤ t− s ≤ 24

24 26 28 30 32 34 36 38 40 42 44 46 48

5

7

9

11

13

15

17

19

21

0

0

0

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

6 6 6 6

6

6

6

6

6

6

6

6

6

7 7 7 7 7 7

7

7

7

7

7

7

8 8 8 8 8 8 8 8

8

8

8

8

9 9 9 9 9 9 9 9 9

910 10 10 10 10 10 10 10 10

11 11 11 11 11 11 11

12 12 12 12 12 12

13 13 13 13

14 14 14

15

Figure 29: P (v42)-basis for E
∗,∗,∗
1 =⇒ Ext∗,∗A(2)(A(0),F2), 24 ≤ t− s ≤ 48
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0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

v41 v42

0

1

12′

2

2

2

2

3

3

3

3

4′ 4

4

4

5′ 5′

Figure 30: P (v41 , v
4
2)-generators for E

∗,∗,∗
1 after first two differentials, 0 ≤ t− s ≤ 24

24 26 28 30 32 34 36 38 40 42 44 46 48

6

8

10

4

4

5

5

5

5

6′

6

6

6

6

7

7

7

7

8′ 8

8

8

8

9′ 9′

910′

Figure 31: P (v41 , v
4
2)-generators for E

∗,∗,∗
1 after first two differentials, 24 ≤ t− s ≤ 48

23 25 27 29 31 33 35 37 39 41 43 45 47

4

6

8

10

4

4

5′

5

5

5

5

6′

6

6

6

6

7

7

7

7

8′ 8

8

8

8

9′ 9′
910′

4

5

56′

6

6

6

6

7

7

7

7

8′ 8

89′ 9′

Figure 32: E∗,∗,∗
1 last differentials, 23 ≤ t− s ≤ 47
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0 2 4 6 8 10 12 14 16 18 20 22 24
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v41

0
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12′

2
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3

3

3

4′ 4

4

4

5′

Figure 33: P (v41 , v
8
2)-generators for E

∗,∗,∗
∞ =⇒ Ext∗,∗A(2)(A(0),F2), 0 ≤ t− s ≤ 24

24 26 28 30 32 34 36 38 40 42 44 46 48

5

7

9

11

v82

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

4

4

56′

6

6

6

6

7

7

7

7

8

8

9′

Figure 34: P (v41 , v
8
2)-generators for E

∗,∗,∗
∞ =⇒ Ext∗,∗A(2)(A(0),F2), 24 ≤ t− s ≤ 48

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

v41

0

1

2′ 1

2

2

2

2

3

4′

5′

3

3

3

4

4

4

Figure 35: P (v41 , v
8
2)-generators for Ext

∗,∗
A(2)(A(0),F2), 0 ≤ t− s ≤ 24
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4
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6
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4
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7

7
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Figure 36: P (v41 , v
8
2)-generators for Ext

∗,∗
A(2)(A(0),F2), 24 ≤ t− s ≤ 48

Definition 8.30. Let E1 be the following indexed chart, where w1 = v41 is unlabeled:

7 9 11

2

4

6

w1

1 1

and let F1 be the (unindexed) chart:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

1

h2

β

g

Theorem 8.31. Ext∗,∗A(2)(A(0),F2) is free over P (w2) = P (v82) on the direct sum of F1 and the free

P (w1) = P (v41)-module

〈E1〉{1, v42} ⊕ P (v1, h21){g12,3, v42g12,3} ⊕ P (h21){g30,6} .

where v41g30,6 = v31h
4
21g12,3.

Multiplication by h1 takes the class 1 in bidegree (t− s, s) = (0, 0) of F1 into 〈E1〉. Multiplication by
v41 takes the classes 1 and h2 in of F1 into E1, annihilates the classes h22, h2β and h22β = h1g, and takes
the classes β and g into P (v1, h21){g12,3}.

The Ext-homomorphism induced by the augmentation A(0)→ F2 takes α = α2 to g12,3 and β2 = α2
3

to g30,6. The class v42g12,3 is not in the image of this homomorphism.
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8.6 Adams periodicity

We now discuss v1-periodicity in Ext∗,∗A , following Adams (1966), with improved estimates due to Peter
May, as presented in Ravenel (1986, section 3.4). Adams obtained periodicity above a line of slope 1/3
in the (t− s, s)-plane, which May improved to a line of optimal slope 1/5.

Proposition 8.32. Let the functions v and w be defined by

s −2 −1 0 1 2 3 4 5 ≥ 6
v(s) −6 −4 1 8 6 18 18 21 5s+ 3
w(s) −6 −4 1 8 10 18 23 25 5s+ 3

Then Yoneda multiplication by v41 ∈ Ext4,12A(2)(F2,F2) induces an isomorphism

v41 : Exts,tA(2)(A(0),F2) −→ Exts+4,t+12
A(2) (A(0),F2)

for t− s < v(s), and a surjection for v(s) ≤ t− s < w(s).

Proof. This follows by inspection of the calculation of Ext∗,∗A(2)(A(0),F2). Surjectivity fails for s ≥ 6 and

t − s = 5s + 3 since v31h
s−5
21 g30,6 = v21h

s−1
21 g12,3 is not divisible by v41 . The line t − s = 5s + 3 has slope

1/5. The multiples by powers of w2 = v82 lie on the line t − s = 6s of slope 1/6, so they do not reduce
the region of periodicity.

Proposition 8.33. Let the functions ṽ and w̃ be defined by

s −1 0 1 2 3 4 5 6 ≥ 7
ṽ(s) −6 −4 1 6 10 18 21 25 5s− 2
w̃(s) −4 1 7 10 18 22 25 33 5s+ 3

Let M be an A(2)-module that is free as an A(0)-module, and concentrated in degrees ∗ ≥ 0. Then
Yoneda multiplication by v41 ∈ Ext4,12A(2)(F2,F2) induces an isomorphism

v41 : Exts,tA(2)(M,F2) −→ Exts+4,t+12
A(2) (M,F2)

for t− s < ṽ(s), and a surjection for ṽ(s) ≤ t− s < w̃(s).

Proof. Consider an extension 0→M ′ →M →M ′′ → 0 of A(0)-free A(2)-modules, withM ′ concentrated
in degrees ∗ ≥ 1 and M ′′ free on generators in degree 0. We may inductively assume that the result
holds for Σ−1M ′. Multiplication by v41 induces a map of long exact sequences

Exts−1,t
A(2) (M

′) //

v41
��

Exts,tA(2)(M
′′) //

v41
��

Exts,tA(2)(M) //

v41
��

Exts,tA(2)(M
′) //

v41
��

Exts+1,t
A(2) (M

′′)

v41
��

Exts+3,t+12
A(2) (M ′) // Exts+4,t+12

A(2) (M ′′) // Exts+4,t+12
A(2) (M) // Exts+4,t+12

A(2) (M ′) // Exts+5,t+12
A(2) (M ′′)

where the second argument to each Ext-group is F2. We apply the five-lemma: The third (middle) map
is surjective if the second and fourth maps are surjective and the fifth map is injective. This holds if
t − s < w(s) and t − (s + 1) < v(s + 1), so we can let w̃(s) = min{w(s), v(s + 1) + 1}. The third map
is injective if the second and fourth maps are injective and the first map is surjective. This holds if
t− s < v(s) and (t− 1)− (s− 1) < w̃(s− 1), so we can let ṽ(s) = min{v(s), w̃(s− 1)}.

In the following result we may interpret A(n) for n =∞ as A . We are principally interested in the
case r = 2.

Theorem 8.34 (Adams approximation). Let 0 ≤ r ≤ n ≤ ∞ and let M be an A(0)-free A(n)-module
that is concentrated in degrees ∗ ≥ 0. Restriction along A(r) ⊂ A(n) induces an isomorphism

Exts,tA(n)(M,F2)
∼=−→ Exts,tA(r)(M,F2)
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for t− s < 2s+ 2r+1 − ε̃(s), where

ε̃ =


5 for s ≡ 0, 3 mod 4,

3 for s ≡ 1 mod 4,

4 for s ≡ 2 mod 4.

Proof. We have an extension
0→ K → A(n)⊗A(r) M →M → 0

of A(n)-modules, with K concentrated in degrees ∗ ≥ 2r+1, since A(r) → A(n) is an isomorphism in
degrees ∗ < 2r+1. Adams (1966, Proposition 2.6) proves that the assumption that M is free over A(0)
implies that A(n) ⊗A(r) M and K are also A(0)-free. The argument is standard, as Bruner has kindly
pointed out: The A(n)-module structure on M gives an isomorphism A(n)⊗A(r)M ∼= A(n)//A(r)⊗M .
WhenM is A(0)-free, so is the tensor product, hence also the middle term in the extension. This implies
that the kernel K is stably free, but this is the same as free for A(0)-modules.

We have an exact sequence

Exts−1,t
A(n) (K,F2)→ Exts,tA(n)(M,F2)→ Exts,tA(n)(A(n)⊗A(r) M,F2)→ Exts,tA(n)(K,F2) .

Under the change of rings isomorphism

Exts,tA(n)(A(n)⊗A(r) M,F2) ∼= Exts,tA(r)(M,F2)

the middle homomorphism corresponds to the restriction homomorphism. We have a change-of-rings
isomorphism

Exts,tA(n)(K,F2) ∼= Exts,tA (A ⊗A(n) K,F2) ,

with A ⊗A(n)K concentrated in degrees ∗ ≥ 2r+1 and A(0)-free. By Adams vanishing (Proposition 6.20)
the displayed Ext-group is zero for (t− 2r+1)− s < 2s− ε(s), where

ε(s) =


0 for s ≡ 0 mod 4,

1 for s ≡ 1 mod 4,

2 for s ≡ 2, 3 mod 4.

Hence the middle homomorphism is an isomorphism if (t−2r+1)−s < 2s−ε(s) and (t−2r+1)−(s−1) <
2(s− 1)− ε(s− 1). The second condition implies the first, since ε̃(s) = 3 + ε(s− 1) ≥ ε(s).

It follows from the calculations for A(2) that there are isomorphisms

Exts,tA(n)(M,F2)
∼=−→ Exts+4,t+12

A(n) (M,F2)

for s ≥ 0, t− s < ṽ(s) and t− s < 2s+ 8− ε̃(s). The latter condition dominates for s ≥ 3. When n = 2,
this isomorphism is induced by the Yoneda product with v41 ∈ Ext4,12A(2)(F2,F2), but this class does not

lift to ExtA(n) for n ≥ 3. However, there is a power of v41 that does lift to ExtA(n).

Theorem 8.35 (Adams). For each n ≥ 2 there is a class $n ∈ Ext2
n,3·2n
A(n) (F2,F2) that restricts to

w2n−2

1 = v2
n

1 ∈ Ext2
n,3·2n
A(1) (F2,F2).

The proof is given in Adams (1966, Section 4) or Ravenel (1986, Lemma 3.4.10), and uses algebraic
Steenrod operations in the cobar construction on A∗. We must omit it, for now. The periodicity class
$2 is the unique class in its bidegree, also known as w1 = v41 = ω0.

Proposition 8.36. Let the functions v̂ and ŵ be defined by

s 0 1 2 3 4 5 6 7 ≥ 8
v̂(s) −4 0 6 9 16 21 24 31 5s− 3
ŵ(s) 1 7 10 17 22 25 32 38 5s+ 3
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Let n ≥ 2 and let M be an A(0)-free A(n)-module that is concentrated in degrees ∗ ≥ 0. Yoneda

multiplication by $n ∈ Ext2
n,3·2n
A(n) (F2,F2) induces an isomorphism

Exts,tA(n)(M,F2) −→ Exts+2n,t+3·2n
A(n) (M,F2)

for t− s < v̂(s), and a surjection for v̂(s) ≤ t− s < ŵ(s).

Proof. The claim for s = 0 follows by Proposition 8.33 and Adams approximation. For larger s we
proceed by induction. Define K by the short exact sequence

0→ K → A(n)⊗A(2) M →M → 0

of A(n)-modules. Then K is A(0)-free and concentrated in degrees ∗ ≥ 8. By induction on t, we may
assume that the proposition applies to Σ−8K. Multiplication by $n induces a map of exact sequences

Exts−1,t
A(2) (M) //

v2
n

1

��

Exts−1,t
A(n) (K) //

$n

��

Exts,tA(n)(M) //

$n

��

Exts,tA(2)(M) //

v2
n

1

��

Exts,tA(n)(K)

$n

��

Exts
′−1,t′

A(2) (M) // Exts
′−1,t′

A(n) (K) // Exts
′,t′

A(n)(M) // Exts
′,t′

A(2)(M) // Exts
′,t′

A(n)(K)

where we have suppressed F2 in the second arguments, let s′ = s+ 2n and t′ = t+ 3 · 2n, and have used
change-of-rings in the first and fourth columns.

By the five-lemma, the middle map is surjective if (t − 8) − (s − 1) < ŵ(s − 1), t − s < w̃(s) and
(t− 8)− s < v̂(s), so we must have ŵ(s) ≤ min{7 + ŵ(s− 1), w̃(s), 8 + v̂(s)}.

Furthermore, the middle map is injective if (t− 8)− (s− 1) < v̂(s− 1), t− s < ṽ(s) and t− (s− 1) <
w̃(s− 1), so we must have v̂(s) ≤ min{7 + v̂(s− 1), ṽ(s),−1 + w̃(s− 1)}.

The above-defined functions v̂ and ŵ satisfy these conditions. We note that ŵ(s) = v̂(s+ 1)+ 1.

((This agrees with Ravenel (1986, Lemma 3.4.14), except that his surjectivity for t − s < h(s) − 1
should probably be replaced by t− s < h(s+ 2).))

Theorem 8.37. Let M be an A(0)-free A -module, concentrated in degrees ∗ ≥ 0. There is an isomor-
phism

Πn : Exts,tA (M,F2)
∼=−→ Exts+2n,t+3·2n

A (M,F2)

for s ≥ 0 and t− s < min{2s+ 2n+1 − ε̃(s), v̂(s)}.

Remark 8.38. More precisely, the isomorphism is given in this range by the Massey product

Πn(x) = 〈hn+1, h
2n

0 , x〉 .

This follows from a more precise description of the periodicity class $n, namely as the restriction along
A(n) ⊂ A of a cochain with coboundary expressing the relation h2

n

0 hn+1 = 0. Following Tangora (1970),
we write

P (x) = 〈h3, h40, x〉

for this operator in the case n = 2, when defined.

This leads to the following periodicity theorem, in the improved version due to May. See Ravenel
(1986, Theorem 3.4.6).

Theorem 8.39 (Adams periodicity). Let v∗ be defined by

s 1 2 3 4 5 6 7 8 ≥ 9
v∗(s) −3 1 7 10 17 22 25 32 5s− 7

and let

ε∗(s) =


6 for s ≡ 0, 1 mod 4,

4 for s ≡ 2 mod 4,

5 for s ≡ 3 mod 4.
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Let n ≥ 2. There is an isomorphism

Πn : Exts,tA (F2,F2)
∼=−→ Exts+2n,t+3·2n

A (F2,F2)

for s ≥ 1 and 0 < t− s < min{2s+ 2n+1 − ε∗(s), v∗(s)}.

Remark 8.40. A direct computation shows that Π2 is an isomorphism for 1 ≤ s ≤ 4 and 0 < t −
s < 2s + 23 − ε∗(s), so we may improve the result a little by redefining v∗(1) = 4, v∗(2) = 8 and
v∗(3) = 9. A further initial improvement might be possible by computing Π3 for 1 ≤ s ≤ 8 and
0 < t− s < 2s+ 24 − ε∗(s).

Proof. We use the short exact sequence

0→ I(A /A Sq1)→ A /A Sq1 → F2 → 0

with I(A /A Sq1) = Σ2M free over A(0) and concentrated in degrees ∗ ≥ 2. The connecting homomor-
phism

Exts−1,t−2
A (M,F2) −→ Exts,tA (F2,F2)

is then an isomorphism for all t − s > 0. We find that Πn is an isomorphism for s − 1 ≥ 0 and
(t− 2)− (s− 1) < min{2(s− 1) + 2n+1 − ε̃(s− 1), v̂(s− 1)}. This translates to the conditions s ≥ 1 and
t − s < min{2s + 2n+1 − 1 − ε̃(s − 1), 1 + v̂(s − 1)}, so we let ε∗(s) = 1 + ε̃(s − 1) = 4 + ε(s − 2) and
v∗(s) = 1 + v̂(s− 1), as above.

9 The homotopy groups of S and tmf

9.1 The image-of-J spectra

Let KU be the periodic complex K-theory spectrum, with homotopy groups π∗(KU) = KU∗ = Z[u±1],
given by inverting the complex Bott element u in π∗(ku). Similarly, let KO be the periodic real K-theory
spectrum, with homotopy groups

π∗(KO) = Z[η, α, β±1]/(2η, η3, ηα, α2 = 4η)

given by inverting the real Bott element β in π∗(ko), with image u4 in π∗(ku). These spectra represent
complex and real topological K-theory, so that KU0(X) (resp. KO0(X)) is the ring completion of the
semiring of isomorphism classes of complex (resp. real) vector bundles over X, with respect to direct sum
and tensor product, at least for finite CW complexes X. It is known that KU and KO admit (essentially
unique) commutative S-algebra structures that realize these ring structures. The unit map d : S → KO
is related to Adams’ K-theory d-invariant.

For each integer k the Adams operation ψk : KU0(X)→ KU0(X) is a natural ring homomorphism.
By the splitting principle it is characterized by its value on complex line bundles L → X, namely
ψk(L) = L⊗k. Similarly for ψk : KO0(X) → KO0(X), which satisfies the same formula for real line
bundles L→ X. As a consequence of this characterization, we have the relation ψk ◦ ψ` = ψk`. We also
note that ψ−1 = 1 (the identity map) in the real case.

The Adams operations ψk do not commute with Bott periodicity, but map u ∈ K̃U0(S2) to ku
and β ∈ K̃O0(S8) to k4β. Hence it is necessary to localize, by inverting k, in order to extend ψk to
stable operations KU∗(X) → KU∗(X) and KO∗(X) → KO∗(X). For k 6= 0 there are spectrum maps
ψk : KU [1/k]→ KU [1/k] and ψk : KO[1/k]→ KO[1/k], such that ψk ◦ψ` = ψk` after inverting k` 6= 0.

Fix a prime p, and let k be an integer prime to p. After p-completion, ψk : KU∧
p → KU∧

p can be

realized as a map of commutative S-algebras, with ψk∗ : Zp[u±1] → Zp[u±1] taking u to ku. Similarly,
ψk : KO∧

p → KO∧
p maps π∗(KO

∧
p )→ π∗(KO

∧
p ) by taking η to kη, α to k2α and β to k4β. Furthermore,

these operations can be extended to p-adic integer values of k (still prime to p), so as to define an action of
the p-adic units Z×

p on KU∧
p , and similarly on KO∧

p . These actions define multiplicative homomorphisms

Z×
p → (KU∧

p )
0(KU∧

p ) and Z×
p /± 1→ (KO∧

p )
0(KO∧

p ), taking k to the homotopy class of ψk. These can
be combined by the scalar multiplications of (KU∧

p )
∗ = π−∗(KU

∧
p ) and (KO∧

p )
∗ = π−∗(KO

∧
p ), to get

the following ring isomorphisms:
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Theorem 9.1. (KU∧
p )

∗〈〈Z×
p 〉〉 ∼= (KU∧

p )
∗(KU∧

p ) and (KO∧
p )

∗〈〈Z×
p /±1〉〉 ∼= (KO∧

p )
∗(KO∧

p ).

For odd p, any integer k that represents a generator of (Z/p2)× is a topological generator of Z×
p .

Similarly, any integer k that represents a generator of (Z/8)×/±1 is a topological generator of Z×
2 /± 1.

For p = 2 it is traditional in topology to pick k = 3, while the tradition in number theory may be to pick
k = 5. Hereafter we assume that k is chosen as such a generator.

Definition 9.2. For odd p, let J∧
p = (KU∧

p )
hψk

be the homotopy fixed points of the ψk-action on

KU∧
p . For p = 2, let J∧

2 = (KO∧
2 )
hψk

be the homotopy fixed points of the ψk-action on KO∧
2 . These

(p-complete) image-of-J spectra are commutative S-algebras, and there are commutative S-algebra maps
J∧
p → KU∧

p and J∧
2 → KO∧

2 .

((Can get commutative S-algebra actions by Goerss–Hopkins–Miller obstruction theory, which gen-
eralizes from E1 = KU∧

p to the Lubin–Tate spectra En. The formation of homotopy fixed points for
continuous actions by profinite groups (like Z×

p ) is technically complex, see Devinatz–Hopkins, Fausk,
Behrens–Davis. In this case it suffices to work with the action by the free discrete monoid generated by
ψk.))

The homotopy fixed points above can be rewritten as the homotopy equalizers of ψk and 1: KU∧
p →

KU∧
p , or as the homotopy fiber of the difference map ψk − 1: KU∧

p → KU∧
p , and similarly for p = 2.

Applying KU∧
p -cohomology to the cofiber sequence

J∧
p −→ KU∧

p
ψk−1−→ KU∧

p

we get the long exact sequence

· · · → (KU∧
p )

∗〈〈Z×
p 〉〉

ψk−1−→ (KU∧
p )

∗〈〈Z×
p 〉〉 −→ (KU∧

p )
∗(J∧

p )→ . . .

that induces an isomorphism

(KU∧
p )

∗〈〈Z×
p 〉〉/(k ∼ 1) = (KU∧

p )
∗ ∼= (KU∧

p )
∗(J∧

p ) .

It follows that the unit map e : S → J∧
p induces an isomorphism in KU∧

p -cohomology, i.e., that it is a
KU∧

p -local equivalence. Similarly, for p = 2 we get an isomorphism

(KO∧
2 )

∗〈〈Z×
2 /± 1〉〉/(k ∼ 1) = (KO∧

2 )
∗ ∼= (KO∧

2 )
∗(J∧

2 ) ,

so that the unit map e : S → J∧
2 is a KO∧

2 -local equivalence.
((The map e is related to Adams’ K-theory e-invariant. The role of these equivalences can be clarified

in terms of Bousfield localizations. Theorems of Mahowald (for p = 2) and Haynes Miller (for p odd)
prove that e : S → J∧

p induces isomorphisms π∗(S/p)[v
−1
1 ] ∼= π∗(J/p)[v

−1
1 ], where J/p = J∧

p ∧ S/p.))

Theorem 9.3. For p odd,

π∗(J
∧
p )
∼=


Zp if ∗ = 0 or ∗ = −1,
Zp/(ki − 1) if ∗ = 2i− 1 6= −1,
0 otherwise.

For p = 2,

π∗(J
∧
2 )
∼=



Z2 if ∗ = −1,
Z2 ⊕ Z/2 if ∗ = 0,

Z2/(k
4i − 1) if ∗ = 8i− 1 6= −1,

Z/2 if ∗ = 8i 6= 0,

(Z/2)2 if ∗ = 8i+ 1,

Z/2 if ∗ = 8i+ 2,

Z/8 if ∗ = 8i+ 3,

0 otherwise.
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Proof. This is almost straightforward from the long exact sequences

· · · → π∗(J
∧
p ) −→ π∗(KU

∧
p )

ψk
∗−1−→ π∗(KU

∧
p ) −→ . . .

and

· · · → π∗(J
∧
2 ) −→ π∗(KO

∧
2 )

ψk
∗−1−→ π∗(KO

∧
2 ) −→ . . .

where the action ψk∗ of ψk on π∗(KU
∧
p ) and π∗(KO

∧
2 ) has been discussed above. The only thing to check

is that the extension giving π∗(J
∧
2 ) for ∗ = 8i+ 1 is split. ((Prove this!))

Remark 9.4. We have Zp/(ki − 1) = 0 when p − 1 - i, while Zp/(ki − 1) = Z/pv+1 if p − 1 | i and
v = vp(i). Furthermore, Z2/(k

4i − 1) = Z/2v+4 = Z2/(16i) if v = v2(i).

Definition 9.5. For p odd, let the connective image-of-J spectrum j∧p be the connective cover of J∧
p .

For p = 2, let jo∧2 be the connective cover of J∧
2 . These are commutative S-algebras, and there are

commutative S-algebra maps j∧p → ku∧p and jo∧2 → ko∧2 .

((Can also get E∞ ring spectrum structure on j∧p by discrete models, by taking k to be a prime power
and using the algebraic K-theory of a finite field with k elements, following Quillen and May et al.))

There are cofiber sequences

j∧p −→ ku∧p
ψk−1−→ bu∧p

for p odd, and

jo∧2 −→ ko∧2
ψk−1−→ bo∧2

for p = 2, where ψk − 1 denotes the unique lift of ψk − 1: ku∧p → ku∧p through the connected cover
bu∧p → ku∧p , and similarly for the connected cover bo∧2 → ko∧2 .

For p odd the completed unit map S∧
p → j∧p induces a split surjection on homotopy groups, as we

shall discuss below. For p = 2, the lowest homotopy groups π0(jo
∧
2 ) = Z2 ⊕ Z/2 and π1(jo

∧
2 )
∼= (Z/2)2

are too large for this claim to hold, so we make an adjustment in these degrees to define the connective
image-of-J spectrum at p = 2.

Definition 9.6. Let P 1X denote the first Postnikov section of X. We get a diagram of commutative
S-algebras

S∧
2

&&

��

e

""

j∧2 //

��

jo∧2 //

��

ko∧2

��

P 1S∧
2

// P 1jo∧2 // P 1ko∧2

and define j∧2 to be the homotopy pullback in the left hand quadrangle.

The maps S∧
2 → j∧2 → ko∧2 then induce equivalences of first Postnikov sections, which implies that

there is a cofiber sequence

j∧2 −→ ko∧2
ψk−1−→ bspin∧2

where ψk − 1 denotes the unique lift up to homotopy of ψk − 1: ko∧2 → ko∧2 over the 2-connected, hence
3-connected, cover bspin∧2 → ko∧2 . This is usually taken as the definition of j∧2 , but does not make the
commutative S-algebra structure quite clear.

((Can also get E∞ ring spectrum structure on j∧2 by a discrete model, as the algebraic K-theory of
a suitable bipermutative category, following May et al.))
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Proposition 9.7.

π∗(j
∧
2 )
∼=



Z2 if ∗ = 0,

Z/2 if ∗ = 1,

Z/2 if ∗ = 8i+ 2 > 0,

Z/8 if ∗ = 8i+ 3 > 0,

Z2/(k
4i − 1) if ∗ = 8i− 1 > 0,

Z/2 if ∗ = 8i > 0,

(Z/2)2 if ∗ = 8i+ 1 > 1,

0 otherwise.

The connecting homomorphism π∗+1(bspin
∧
2 )→ π∗(j

∧
2 ) is surjective for ∗ > 0, except in degrees ∗ = 8i+r

for i ≥ 0 and r = 1, 2, where the cokernel maps isomorphically to π∗(ko
∧
2 )
∼= Z/2. There are classes

µ8i+r ∈ π8i+r(j∧2 ) of order 2 that map to the generators ηrβi of these groups.

((The classes µ1 = η, µ2 = η2 and µ8i+2 for i > 0 are uniquely determined in π∗(j
∧
2 ). How to

characterize µ8i+1?))
((Name the generators and order 2 classes?))

Corollary 9.8. e : S∧
2 → j∧2 is 6-connected.

To prove that π∗(e) is split surjective, we need a number of unstable (space level) constructions.

Definition 9.9. Let F (n) ⊂ ΩnSn be the monoid of base-point preserving homotopy equivalences Sn →
Sn, and let O(n)→ F (n) be the monoid homomorphism taking an isometry Rn → Rn to the induced map
Sn → Sn of one-point compactifications. These homomorphisms are compatible with the stabilizations
O(n) → O(n + 1) and F (n) → F (n + 1), and induce a monoid homomorphism j : O → F = GL1(S).
The induced homomorphism

J = π∗(j) : π∗(O)→ π∗(F ) ∼= π∗(S)

(for ∗ > 0) is called the J-homomorphism, after J.H.C. Whitehead.

Recall that

π∗(O) ∼= π∗+1(BO) ∼=


Z/2 if ∗ ≡ 0, 1 mod 8,

Z if ∗ ≡ 3, 7 mod 8,

0 otherwise

for ∗ > 0, so that the image im(J) ⊂ π∗(S) is (trivial or) cyclic of order two for ∗ ≡ 0, 1 mod 8 and
(trivial or) finite cyclic for ∗ ≡ 3, 7 mod 8.

We get a Puppe fiber sequence

O
j−→ F −→ F/O −→ BO

Bj−→ BF ,

where F/O is defined as the homotopy fiber of Bj : BO → BF . The right hand map represent a
homomorphism

K̃O
0
(X) = [X,BO]→ [X,BF ]

(for connected CW complexes X), that takes a vector bundle E → X to the stable spherical fibration
class of its fiberwise one-point compactification. Its image is the group J(X) studied by Adams in a
series of papers.

((Discuss how Bj : BO → BF is a map of infinite loop spaces.))
There is a close relation between the subgroup im(J) ⊂ π∗(S) of the stable homotopy groups of

spheres and the homotopy groups of the image-of-J spectrum j, given as quotient group of π∗(S) via the
unit map e : S → j.

We sketch the presentation of May et al. Start with the lift j : Spin → SF = SL1(S) of j : O → F ,
and form the middle horizontal Puppe fiber sequence in the following diagram, implicitly completed at
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a prime p:

J //

αk

��

BO
ψk−1

//

γk

��

BSpin

=

��

Spin
j
// SF //

e

��

SF/Spin //

σk

��

BSpin
Bj

//

ρk

��

BSF

J⊗ // BO⊗
ψk/1

// BSpin⊗

(The solid arrows are infinite loop maps, when the spaces labeled ⊗ are given multiplicative infinite loop
space structures.)

The next step is similar to Thom’s construction of Stiefel–Whitney characteristic classes using Steen-
rod operations in mod 2 cohomology, replacing cohomology and Steenrod operations by real K-theory
and Adams operations, respectively. The Atiyah–Bott–Shapiro ko-orientation of Spin-bundles specifies
a Thom class u : MSpin → ko in the ko-cohomology of the Thom spectrum of the tautological vector
bundle over BSpin. Applying the Adams operation ψk : ko → ko, the composite class ψk(u) corre-
sponds under the ko-cohomology Thom isomorphism ko∗(BSpin) ∼= ko∗(MSpin) to a characteristic
class ρk : Σ∞BSpin+ → ko satisfying u ∪ ρk = ψk(u). The space level adjoint BSpin → BO⊗ lifts
to an infinite loop map ρk : BSpin → BSpin⊗, known as the ((Bott?)) cannibalistic class. There is a
corresponding operation σk : SF/Spin→ BO⊗ making the displayed square commute. The infinite loop
map ψk/1 is the restriction of ψk−1: ko→ bspin to the 1-component BO⊗ = SL1(ko), so its homotopy
fiber is identified with the 1-component J⊗ = SL1(j) of j, all after p-completion.

Turning to the upper half of the diagram, Adams proved that the composite Bj ◦ (ψk − 1) on some

classes in K̃O
0
(X) = [X,BO] is zero in [X,BSF ]∧p , and conjectured that this is always so. The Adams

conjecture, that Bj◦(ψk−1) is null-homotopic after p-completion, was proved by Quillen and by Sullivan,
and leads to the existence of the (p-complete) space level maps αk and γk. Such map αk is sometimes
called a solution to the Adams conjecture. It is known ((Madsen, Tornehave?)) that these maps cannot
be delooped for p = 2. ((Positive result for odd p by Friedlander.)) By Adams’ calculations in the
J(X)-papers, the square with corners BO, BSpin, BO⊗ and BSpin⊗ is homotopy cartesian, so that the
composite map eαk : J → J⊗ of homotopy fibers is a homotopy equivalence.

We write µ8i+r ∈ π8i+r(S) ∼= π8i+r(SF ) for the image under αk∗ of the class with the same name in
π8i+r(J), which is detected by ηrβi ∈ π8i+r(BO⊗) ∼= π8i+r(ko).

Theorem 9.10 (Adams, Quillen, Sullivan). The homomorphism e∗ : π∗(S
∧
p )→ π∗(j

∧
p ) is split surjective.

A section for ∗ > 0 is given (after implicit p-completion) by a solution αk∗ : π∗(J)→ π∗(SF ) ∼= π∗(S) to
the Adams conjecture.

The image im(αk∗)
∼= π∗(J) of that section is the direct sum of two parts: The first part is the

image im(J) of the J-homomorphism J = π∗(j) : π∗(Spin) → π∗(SF ) ∼= π∗(S). The second part is
Z/2{µ8i+r | i ≥ 0, r = 1, 2}, which is detected by d∗ : π∗(S)→ π∗(ko).

Adams calls the µ-classes “honorary members” of the image of J .

Lemma 9.11. (We implicitly work completed at p = 2.) e∗ : π∗(S)→ π∗(j) is an isomorphism in degrees
∗ ≤ 13, except in degrees ∗ = 6, 8 and 9:

π6(e) : π6(S)→ π6(j) takes ν
2 to 0.

π7(e) : π8(S)→ π8(j) takes ησ and ε to ησ.
π9(e) : π9(S)→ π9(j) takes η

2σ and ηε to η2σ, and µ = µ9 to µ.

Proof. The claim about π6(e) is obvious, and implies that π9(e) takes ν
3 = η2σ + ηε to 0. ((Cite Toda

for that relation?)) Hence both η2σ and ηε map to η2σ, which implies the claim for π8(e).

((It follows that ησ must have Adams filtration ≥ 3 in π∗(j).))

9.2 The image of J in the Adams spectral sequence

To describe the role of the image of J as a subgroup of the stable homotopy groups of spheres, viewed
as the abutment of the Adams spectral sequence for S, we need to have an image of the latter in the
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Figure 37: Π3-periodic Adams chart for S

relevant region, which is a diagonal band parallel to the Adams vanishing line of slope 1/2. For this,
we need to appeal to the Adams periodicity theorem, proved above in Theorem 8.39. The contribution
of the image of J at the Adams E∞-term is largely contained in the periodicity range for the operator
P = Π2 that increases t − s by 8. However, some of our arguments involving S/2 fall outside of that
range, so that it seems best to work in the periodicity range for the operator Π3 that increases t− s by
16, and which equals P 2 where the latter is defined.

We use the following form of the Adams periodicity theorem, proved above in Theorem 8.39 for s ≥ 7.
The claim for 3 ≤ s ≤ 6 must be checked directly.

Theorem 9.12. There is an isomorphism

Π3 : Exts,tA (F2,F2)
∼=−→ Exts+8,t+24

A (F2,F2)

for s ≥ 3 and

0 < t− s < 2s+


10 for s ≡ 0, 1 mod 4,

12 for s ≡ 2 mod 4,

11 for s ≡ 3 mod 4.

Hence the pattern above the dashes in Figure 37 repeats every t − s = 16 degrees. We are most
interested in the uppermost part, close to the line t− s = 2s.

As a consequence of the proven Adams conjecture, we get the following theorem. See Ravenel (1986,
Theorem 3.4.16) and Davis–Mahowald (1989, Theorem 1.1).

Theorem 9.13. The classes c0, h1c0, Ph1, h1Ph1, Ph2, h0Ph2 and h20Ph2 = h21Ph1, as well as all
of their images under powers of P , survive to E∞ in the Adams spectral sequence (meaning that they
are infinite cycles and not boundaries). They represent subgroups Z/2 ⊂ π8i(S), (Z/2)2 ⊂ π8i+1(S),
Z/2 ⊂ π8i+2(S) and Z/8 ⊂ π8i+3(S) that map isomorphically to π8i(j

∧
2 ), π8i+1(j

∧
2 ), π8i+2(j

∧
2 ) and

π8i+3(j
∧
2 ), respectively.

In topological degree t − s = 8i − 1, for i ≥ 1, there is a class surviving to E∞ in each of the
(v + 4) Adams filtrations s with 4i − v − 3 ≤ s ≤ 4i, where v = v2(i). These represent a subgroup
Z/2v+4 = Z2/(16i) ⊂ π8i−1(S) that maps isomorphically to π8i−2(j

∧
2 ).
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Figure 38: Π3-periodic Adams chart for S/2

There is a hidden η-multiplication from the generator in degree t−s = 8i−1 and filtration s = 4i−v−3
to P i−1c0.

To prove (a part of) this, we shall compare S and j with S/2 and j/2. We proved the following
version of the periodicity theorem for S/2 in Theorem 8.37, at least for s ≥ 5. The case s = 4 can be
checked directly.

Theorem 9.14. There is an isomorphism

Π3 : Exts,tA (H∗(S/2),F2)
∼=−→ Exts+4,t+12

A (H∗(S/2),F2)

for s ≥ 4 and

t− s < 2s+


10 for s ≡ 0 mod 4,

11 for s ≡ 1, 3 mod 4,

12 for s ≡ 2 mod 4.

Hence the pattern above the dashes in Figure 38 repeats every t− s = 16 degrees.
Associated to the cofiber sequence S → S/2→ ΣS = S1, we have an extension

0→ ΣF2 → H∗(S/2)→ F2 → 0

and a long exact sequence of Ext-groups:

· · · → Exts,tA (F2,F2) −→ Exts,tA (H∗(S/2),F2) −→ Exts,t−1
A (F2,F2)

δ−→ Exts+1,t
A (F2,F2)→ . . .

where the connecting homomorphism is given by the Yoneda product with h0 ∈ Ext1,1A (F2,F2).

Lemma 9.15. The map E∗,∗
2 (S)→ E∗,∗

2 (S/2) of Adams spectral sequences takes the h0-indecomposable
classes c0, h1c0, Ph1, h1Ph1 and Ph2, as well as all of their images under powers of P , injectively to
linearly independent classes in the target.

The morphism E∗,∗
2 (S/2) → E∗,∗

2 (ΣS) ∼= E∗,∗−1
2 (S) maps classes in the source surjectively to the

h0-annihilated classes h30h3, c0, h1c0, Ph1, h1Ph1 and h21Ph1 = h20Ph2, as well as all of their P -power
images.
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Proof. ((By inspection.))

7 9 11

2

4

6

c0

h1c0

Ph2Ph1

h1Ph1

Remark 9.16. This lemma accounts for 11 of the 12 generators in the two uppermost families of
lightning flashes in the Adams chart for S/2. The remaining generator, in degree (8i−1), is exceptional:
The h0-indecomposable class at the bottom of the tower leading up to P i−1(h30h3) can have very low
Adams filtration, and does often not contribute to E∗,∗

2 (S/2) within the Adams periodic range. Instead,

the class h2P
i−1h2 is annihilated by h0 and contributes a class x in E4i−2,12i−3

2 (S/2) with h1x equal to
the image of c0.

We can compare these charts with the Adams charts for j and j/2. See Mahowald–Milgram, Davis
and Angeltveit–Rognes for the following calculation

Proposition 9.17. The lift θ : ko→ bspin of ψ3 − 1 induces the homomorphism

θ∗ : Σ4A /A {Sq1, Sq2Sq3} = H∗(bspin)→ H∗(ko) = A /A {Sq1, Sq2} = A //A(1)

that takes the generator Σ41 to the class of Sq4. There are isomorphisms

ΣK = ker(θ∗) ∼= Σ8A /A {Sq1, Sq7, Sq4Sq6 + Sq6Sq4}
C = cok(θ∗) ∼= A /A {Sq1, Sq2, Sq4} = A //A(2) .

The extension
0→ C → H∗(j)→ K → 0

is nontrivial, and

H∗(j) ∼= A {1, x}/A {Sq1, Sq2, Sq4, Sq8 + Sq1x, Sq7x, (Sq4Sq6 + Sq6Sq4)x}

with generators 1 and x in degrees 0 and 7, respectively.

((The isomorphism C ∼= H∗(tmf) is incidental; there is no map j → tmf inducing the inclusion C →
H∗(j) in cohomology. See also Bruner’s note (2012). Check if Sq4Sq6 + Sq6Sq4 = Sq(0,1,1) + Sq(4,2).))

Proposition 9.18 (Bruner). The map θ/2: ko/2→ bspin/2 induces the homomorphism

(θ/2)∗ : Σ4A /A {Sq2Sq3} = H∗(bspin/2)→ H∗(ko/2) = A /A {Sq2, Q1}

that takes the generator Σ41 to the class of ((ETC)).

The extension
0→ C ⊗H∗(S/2)→ H∗(j/2)→ K ⊗H∗(S/2)→ 0

induces a long exact sequence of Ext-groups:

· · · → Exts,tA (K ⊗H∗(S/2),F2) −→ Exts,tA (H∗(j/2),F2) −→ Exts,tA (C ⊗H∗(S/2),F2)→ . . .

where we can rewrite the right hand term as Exts,tA(2)(H
∗(S/2),F2), which we computed above.

The Adams spectral sequence for j was studied by Davis (1975). The sequence for j/2 is simpler, and
is implicitly described on page 41 of Davis–Mahowald (1989). A more direct argument has been studied
by Bruner:
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Figure 39: Adams chart for j/2

Proposition 9.19 (Bruner). The exact sequence above splits, so that the Adams E2-term for j/2 is

Es,t2 (j/2) ∼= Exts,tA (C ⊗H∗(S/2),F2)⊕ Exts,tA (K ⊗H∗(S/2),F2) .

There is a short exact sequence

0→ Exts−2,t−1
A (K ⊗H∗(S/2),F2) −→ Exts,tA (C ⊗H∗(S/2),F2)

−→ Exts,tA (H∗(ko/2),F2)⊕ Exts−1,t
A (H∗(bspin/2),F2)→ 0

and the Adams d2-differental is given by the left hand homomorphism, so that

Es,t3 (j/2) ∼= Exts,tA (H∗(ko/2),F2)⊕ Exts−1,t
A (H∗(bspin/2),F2)

is concentrated in bidegrees (t− s, s) with t− s ≤ 2s+3. There are no further differentials, so E3 = E∞
for bidegree reasons.

This means that the Adams E2-term for j/2 contains a copy of the charts for ko/2 and for bspin/2
(shifted up one filtration), consisting of two lightning flashes every eight degrees, plus two copies of ExtA
for K ⊗ H∗(S/2), starting in bidegrees (t − s, s) = (7, 0) and (6, 2), respectively. The d2-differentials
make these two copies cancel, leaving only the lightning flashes at E3 and beyond. See Figure 39. ((Add
differentials to chart?))

Lemma 9.20. The map e/2: S/2→ j/2 induces a surjective homomorphism H∗(j/2)→ H∗(S/2), and
the induced homomorphism

Exts,tA (H∗(S/2),F2) −→ Exts,tA (H∗(j/2),F2)

is an isomorphism for s ≥ 4 and t− s ≤ 2s+ 3.

Proof. We write c for the homotopy fiber of e : S → j, so that there is a cofiber sequence

c→ S
e−→ j → Σc

inducing the short exact sequences

0→ H∗(Σc)→ H∗(j)→ H∗(S)→ 0
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and
0→ H∗(Σc/2)→ H∗(j/2)→ H∗(S/2)→ 0 .

We get a long exact sequence

· · · → Exts,tA (H∗(S/2),F2) −→ Exts,tA (H∗(j/2),F2) −→ Exts,tA (H∗(Σc/2),F2)→ . . . .

Here H∗(Σc/2) = H∗(Σc)⊗H∗(S/2) is A(0)-free and concentrated in degrees ∗ ≥ 7, so

Exts,tA (H∗(Σc/2),F2) = 0

for (t− 7)− s < 2s− ε(s), by Adams vanishing in the form of Proposition 6.20. In particular,

Exts,tA (H∗(S/2),F2)→ Exts,tA (H∗(j/2),F2)

is surjective for t− s ≤ 2s+ 3. For s ≥ 4 the dimensions of the Ext-groups agree in this range, so these
surjections are in fact isomorphisms.

Remark 9.21. We call c the cokernel-of-J spectrum, to go with the image-of-J spectrum j. The
composite π∗(c)→ π∗(S)→ cok(J) is almost an isomorphism, except for the µ-classes.

Proposition 9.22. In the Adams spectral sequence

Es,t2 (S/2) = Exts,tA (H∗(S/2),F2) =⇒ πt−s(S/2)

the classes in bidegree (t − s, s) with s ≥ 4 and t − s ≤ 2s + 3 survive to E∞. In degrees t − s ≥ 10
they represent subgroups Z/2 ⊂ π8i−1(S/2), (Z/2)2 ⊂ π8i(S/2), Z/2 ⊕ Z/4 ⊂ π8i+1(S/2), Z/4 ⊕ Z/2 ⊂
π8i+2(S/2), (Z/2)2 ⊂ π8i+3(S/2) and Z/2 ⊂ π8i+4(S/2) that map isomorphically to π8i−1(j/2) through
π8i+4(j/2), respectively.

Proof. The classes are infinite cycles for bidegree reasons. They cannot be boundaries, since we have a
map of Adams spectral sequences

E∗,∗
r (S/2) −→ E∗,∗

r (j/2)

and their images in the Adams spectral sequence for j/2 are not boundaries. They represent subgroups in
the abutment π∗(S/2) that map isomorphically to the corresponding subgroups in the abutment π∗(j/2),
since the map of E∞-terms is an isomorphism in the relevant filtrations.

Proposition 9.23. In the Adams spectral sequence for S, the five classes c0, h1c0, Ph1, h1Ph1 and
Ph2, as well as all of their images under powers of P , survive to E∞. They represent classes in π∗(S

∧
2 )

that map to generators of π∗(j
∧
2 )/2 in degrees 8i ≤ ∗ ≤ 8i+ 3.

((We are omitting the difficult degrees ∗ = 8i− 1 here.)))

Proof. The classes are infinite cycles for bidegree reasons. They cannot be boundaries, since we have a
map of Adams spectral sequences

E∗,∗
r (S) −→ E∗,∗

r (S/2)

that takes these classes to survivors in the right hand spectral sequence. The claim about abutments
follows from the commutative square

π∗(S
∧
2 )/2 //

��

��

π∗(j
∧
2 )/2
��

��

π∗(S/2) // π∗(j/2) .

Let us write A[n] = {x ∈ A | nx = 0} for the exponent n subgroup of an abelian group A.

Proposition 9.24. In the Adams spectral sequence for S, the six classes h30h3, c0, h1c0, Ph1, h1Ph1
and h21Ph1 = h20Ph2, as well as all of their images under powers of P , survive to E∞. They represent
classes (of order 2) in π∗(S

∧
2 ) that map to generators of π∗(j

∧
2 )[2] in degrees 8i− 1 ≤ ∗ ≤ 8i+ 3.
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Figure 40: Adams E2-term for S, 0 ≤ t− s ≤ 24

Proof. The classes are too close to the vanishing line to support differentials. There are infinite survivors
in bidegrees (t − s, s) with t − s ≤ 2s + 3 in the Adams spectral sequence for S/2, that map to these
classes under the map of Adams spectral sequences

E∗,∗
r (S/2) −→ E∗,∗

r (ΣS) = E∗,∗−1
r (S) .

Those infinite survivors represent a subgroup of π∗+1(S/2) that maps isomorphically to the subgroup
π∗(j

∧
2 )[2] of π∗(j

∧
2 ), via the maps S/2 → j/2 → Σj∧2 . Hence the six classes represent a subgroup of

π∗(S
∧
2 )[2] ⊂ π∗(S∧

2 ) that maps onto π∗(j
∧
2 )[2], in view of the commutative square

π∗+1(S/2) //

����

π∗+1(j/2)

����

π∗(S
∧
2 )[2] // π∗(j

∧
2 )[2] .

If follows that the six classes remain linearly independent at E∞, so none of them are hit by Adams
differentials.

((tmf/2 and tmf/(2, v41)?))

9.3 The Adams spectral sequence for S

Machine computation of Ext∗,∗A (F2,F2), e.g. using Bruner’s ext program, gives the Adams E2-term for
the sphere given in Figures 40 and 41.

((Beware: f0 and y ambiguous; e′1 = e1 + h20h3h5 and Q′ = Q+ Pu. Check f1 and B2.))
In this range we have the algebra generators given in Table 8 for the Yoneda product, grouped by

Adams filtration s and topological degree t − s. The generators are named as in Mahowald–Tangora
(1967), Mahowald–Tangora (1968) and Tangora (1970), extending the notation from May’s thesis (1964).
((Explain ext name.))

We now discuss the Adams spectral sequence differentials implied by the image-of-J splitting.
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Figure 41: Adams E2-term for S, 24 ≤ t− s ≤ 48
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Name t− s s t ext

h0 0 1 1 10
h1 1 1 2 11
h2 3 1 4 12
h3 7 1 8 13
h4 15 1 16 14
h5 31 1 32 15
c0 8 3 11 33
c1 19 3 22 39
c2 41 3 44 319
d0 14 4 18 43
e0 17 4 21 45
f0 18 4 22 46(?)
g 20 4 24 48
d1 32 4 36 413
p 33 4 37 414
e1 38 4 42 416 + 417(?)
f1 40 4 44 419 + 420(?)
g2 44 4 48 422
Ph1 9 5 14 51
Ph2 11 5 16 52
n 31 5 36 513
x 37 5 42 517
r 30 6 36 610
q 32 6 38 612
t 36 6 42 614
y 38 6 44 616(?)
Pc0 16 7 23 73
i 23 7 30 75
j 26 7 33 76
k 29 7 36 77
l 32 7 39 710
m 35 7 42 712
B1 46 7 53 720
B2 48 7 55 722(?)

Name t− s s t ext

Pd0 22 8 30 83
Pe0 25 8 33 85
N 46 8 54 820

P 2h1 17 9 26 91
P 2h2 19 9 28 92
u 39 9 48 918
v 42 9 51 919
w 45 9 54 920
z 41 10 51 1014

P 2c0 24 11 35 113
Pj 34 11 45 117
P 2d0 30 12 42 123
P 2e0 33 12 45 125
P 3h1 25 13 38 131
P 3h2 27 13 40 132
Q 47 13 60 1314(?)
Pu 47 13 60 1315(?)
P 3c0 32 15 47 153
P 2i 39 15 54 155
P 2j 42 15 57 156
P 3d0 38 16 54 163
P 3e0 41 16 57 165
P 4h1 33 17 50 171
P 4h2 35 17 52 172
P 4c0 40 19 59 193
P 4d0 46 20 66 203
P 4e0 49 20 69 205
P 5h1 41 21 62 211
P 5h2 43 21 64 212
P 5c0 48 23 71 213

Table 8: Algebra generators of Ext∗,∗A (F2,F2) for t− s ≤ 48

130



Theorem 9.25. There are nontrivial differentials d2(h4) = h0h
2
3, d3(h0h4) = h0d0 and d3(h

2
0h4) = h20d0.

Proof. The image of J in π15(S
∧
2 ) is isomorphic to Z/32, and we know that a generator is represented

in Adams filtration s = 4, where the only nonzero class is h30h4. Hence the classes hi0h4 for 3 ≤ i ≤ 7
survive to E∞, while the classes hi0h4 for 0 ≤ i ≤ 2 do not survive to E∞. They cannot be boundaries
for degree reasons, so they must support differentials.

The Adams differential d2(h4) = h0h
2
3 is a consequence of the homotopy commutativity of S. The

classes 2 and σ are represented by h0 and h3, respectively, so 2σ2 must be represented by the infinite
cycle h0h

2
3. By homotopy commutativity, 2σ2 = 0, which means that h0h

2
3 must represent zero at E∞,

meaning that it is a boundary. The only possible class x to support a differential dr(x) = h0h
2
3 for r ≥ 2

is x = h4, giving the stated Adams differential.
It follows that d2(h0h4) = h20h

2
3 = 0, so h0h4 survives to E3. If d3(h0h4) = 0 then d3(h

2
0h4) = 0,

and then h20h4 would have to be an infinite cycle, since there are no targets for later differentials on that
class. This contradicts the order of the image of J in π15, so we deduce that d3(h0h4) is nonzero. The
only possible value is h0d0. Multiplication by h0 then gives the value of d3(h

2
0h4).

Theorem 9.26. There is a nontrivial d2-differential d2(i) = h0Pd0, which implies the nonzero dif-
ferentials d2(h0i) = h20Pd0, d2(Pe0) = h21Pd0, d2(j) = h0Pe0, d2(h0j) = h20Pe0, d2(h

2
0j) = h30Pe0,

d2(k) = h0Pg, d2(h0k) = h20Pg, d2(l) = h0d0e0, d2(h0l) = h20d0e0, d2(m) = h0e
2
0, d2(h0m) = h20e

2
0,

d2(y) = h30x, d2(h0y) = h40x and d2(h
2
0y) = h50x.

Proof. We know that of the h0-tower in topological degree t− s = 23 starting with i, only the top four
classes survive to E∞, since these generate a cyclic summand Z/16 ⊂ π23(S) that maps isomorphically
to π23(j

∧
2 ). Thus the classes i and h0i cannot survive to E∞. They cannot be boundaries, since any

differential dr(x) = i would imply that dr(h
2
0x) = h20i is a boundary, and similarly any differential

dr(x) = h0i would imply that dr(h0x) = h20i is a boundary. (For this part of the argument, it suffices to
know that the top class, h50i in Adams filtration s = 12 is not a boundary.) Hence i and h0i must support
nonzero differentials. The only possibilities for i are d2(i) = h0Pd0 or (d2(i) = 0 and) d3(i) = h20Pd0. In
the latter case, d2(h0i) = 0 and d3(h0i) = 0, which would make h0i an infinite cycle. Since we know this
does not happen, we must have d2(i) = h0Pdp.

We claim that d2(t) = 0. The alternative, d2(t) = h0m, would imply that d2(h0t) = h20m 6= 0, which
contradicts the relation h0t = 0. It follows that h1y = h2t is a d2-cycle, so h1d2(y) = 0. This implies
that d2(y) = 0 or h30x. Since h20y = h2m supports the nonzero differential d2(h

2
0y) = h50x, we deduce

that d2(y) = h30x.

Theorem 9.27. There are nontrivial differentials d2(h5) = h0h
2
4, d3(h

3
0h5) = h0r and d4(h

8
0h5) =

h0P
2d0, which imply the nonzero differentials d2(h0h5) = h20h

2
4, d2(h

2
0h5) = h40h

2
4, d3(h

4
0h5) = h20r,

d3(h
5
0h5) = h30r, d3(h

6
0h5) = h40r, d3(h

7
0h5) = h50r and d4(h

9
0h5) = h20P

2d0.

Proof. The image of J in π31(S
∧
2 ) is isomorphic to Z/64, hence is represented by six classes in E∞ in

Adams filtrations 11 ≤ s ≤ 16. In particular, a generator is represented by h100 h5, so the classes hi0h5 for
10 ≤ i ≤ 16 survive to E∞, while the ten classes for 0 ≤ i ≤ 9 do not. They cannot be boundaries, as
before, so they must support dr-differentials for r ≥ 2. The possible targets for these differentials are the
12 classes given by h0-power multiples of h0h

2
4, r and P 2d0. The relations h0 · h30h24 = 0 and h0 · h50r = 0

imply that at most one of the two classes h30h
2
4 and r can be hit by these differentials, and likewise at

most one of the two classes h50r and P 2d0 can be hit. Since there are at most ten targets for the ten
classes that must support differentials, it follows that all the other possible targets are hit.

Starting in low filtrations, this tells us that h0h
2
4 is a boundary, and d2(h5) = h0h

2
4 is the only

possibility. This implies d2(h0h5) = h20h
2
4, d2(h

2
0h5) = h30h

2
4 and d2(h

i
0h5) = 0 for i ≥ 3.

The seven remaining classes hi0h5 with 3 ≤ i ≤ 9 must support dr-differentials, for r ≥ 3, that hit all
but one of the eight classes given by h0-multiples of h0r and P 2d0. Since at most one of h50r and P 2d0
can be hit, the other possible targets, including h0r, must be hit, which implies that d3(h

3
0h5) = h0r.

This tells us that d3(h
4
0h5) = h20r, d3(h

5
0h5) = h30r, d3(h

6
0h5) = h40r, d3(h

7
0h5) = h50r and d3(h

i
0h5) = 0

for i ≥ 8. We should argue that all but the last of these are in fact nonzero differentials. This can
only fail if the target classes hi0r for 1 ≤ r ≤ 5 were d2-boundaries. The only candidates for such
d2-differentials would be d2(d0e0) = h40r or d2(h0d0e0) = h50r, but we have seen above that d0e0 = d2(l)
and h0d0e0 = d2(h0l), so this would contradict the fact that d2 ◦ d2 = 0 in any spectral sequence.
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The two remaining classes h80h5 and h90h5 must support dr-differentials for r ≥ 4, and the only
candidates for targets are h0P

2d0 and h20P
2d0. Hence d4(h

8
0h5) = h0P

2d0 and d4(h
9
0h5) = h20P

2d0.

((A more complicated pattern occurs for t− s = 63, where other differentials intervene.))

Theorem 9.28. There is a nontrivial d2-differential d2(P
2i) = h0P

3d0, which implies the nonzero
differentials d2(h0P

2i) = h20P
3d0, d2(P

3e0) = h21P
3d0, d2(P

2j) = h0P
3e0, d2(h0P

2j) = h20P
3e0,

d2(h
2
0P

2j) = h30P
3e0, d2(P

2k) = h0P
3g, d2(h0P

2k) = h20P
3g, d2(P

2l) = h0P
2d0e0, d2(h0P

2l) =
h20P

2d0e0, d2(P
2m) = h0P

2e20, d2(h0P
2m) = h20P

2e20, d2(R1) = h20x
′, d2(h0R1) = h30x

′, d2(h
2
0R1) =

h40x
′, d2(h

3
0R1) = h50x

′, d2(h
4
0R1) = h60x

′, d2(h
5
0R1) = h70x

′, d2(h
6
0R1) = h80x

′, d2(Q1) = h21x
′ and

d2(h1Q1) = h31x
′.

Proof. Up to the statement about d2(R1), this is very similar to the proof of the theorem about d2(i)
and its consequences. ((The rest is easy, given Ext in this range.))

Theorem 9.29. There are nontrivial differentials d2(Q
′) = h0i

2 and d3(h
5
0Q

′) = h0P
4d0, which im-

ply the nonzero differentials d2(h0Q
′) = h20i

2, d2(h
2
0Q

′) = h30i
2, d2(h

3
0Q

′) = h40i
2, d2(h

4
0Q

′) = h50i
2,

d3(h
5
0Q

′) = h0P
4d0 and d3(h

6
0Q

′) = h20P
4d0.

Proof. The image of J in π47(S
∧
2 ) is isomorphic to Z2/96 = Z/32, hence is represented by five classes in

E∞ in Adams filtrations 20 ≤ s ≤ 24. In particular, a generator is represented by h70Q
′, so the classes

hi0Q
′ for 7 ≤ i ≤ 11 survive to E∞, while the seven classes for 0 ≤ i ≤ 6 do not. They cannot be

boundaries, as before, so they must support dr-differentials for r ≥ 2.
The possible targets for these differentials are the eight classes given by h0-power multiples of h0i

2

and P 4d0. The relation h0 · h50i2 = 0 implies that at most one of the two classes h50i
2 and P 4d0 can be

hit by these differentials. Since there are at most seven targets for the seven classes that must support
differentials, it follows that all the other possible targets are hit.

In order of increasing Adams filtration, it follows that h0i
2 must be hit by some dr(h

i
0Q

′) for r ≥ 2,
and d2(Q

′) = h0i
2 is the only possibility. This implies d2(h0Q

′) = h20i
2, d2(h

2
0Q

′) = h30i
2, d2(h

3
0Q

′) = h40i
2

and d2(h
4
0Q

′) = h50i
2, while d2(h

5
0Q

′) = 0. The remaining two classes h50Q
′ and h60Q

′ can now only hit
h0P

4d0 and h20P
4d0, which means that d3(h

5
0Q

′) = h0P
4d0 and d3(h

6
0Q

′) = h20P
4d0.

Theorem 9.30. There is a nontrivial d2-differential d2(P
4i) = h0P

5d0, which implies the nonzero
differentials d2(h0P

4i) = h20P
5d0, d2(P

5e0) = h21P
5d0, d2(P

4j) = h0P
5e0, d2(h0P

4j) = h20P
5e0,

d2(h
2
0P

4j) = h30P
5e0, d2(P

4k) = h0P
5g, d2(h0P

4k) = h20P
5g, d2(P

4l) = h0P
4d0e0, d2(h0P

4l) =
h20P

4d0e0, d2(P
4m) = h0P

4e20, d2(h0P
4m) = h20P

4e20 ((ETC)).

Proof. Through the statement about d2(h0P
4m), this is very similar to the proof of the theorem about

d2(i) and its consequences. ((Need Ext for 69 ≤ t− s ≤ 80+ for full statement.))

Theorem 9.31. There are nontrivial differentials d2(e0) = h21d0, d2(f0) = h20e0 and d2(h0f0) = h30e0.

Proof. There is a multiplicative relation h20y = f0g. Since d2(g) = 0 and d2(h
2
0y) = h50x 6= 0, it follows

from the Leibniz rule that d2(f0) 6= 0. The only possibility is d2(f0) = h20e0. Multiplying by h0 gives
d2(h0f0) = h30e0, and dividing by h1 gives d2(e0) = h21d0.

Theorem 9.32. There is a nontrivial differential d2(h0Pj) = h20P
2e0, which implies the nonzero dif-

ferentials d2(P
2e0) = h21P

2d0, d2(Pj) = h0P
2e0, d2(h

2
0Pj) = h30P

2e0, d2(Pk) = h0P
2g, d2(h0Pk) =

h30P
2g, d2(h

2
0Pk) = h30P

2g, d2(Pl) = h0Pd0e0, d2(h0Pl) = h30Pd0e0, d2(h
2
0Pl) = h30Pd0e0, d2(Pm) =

h0Pe
2
0, d2(h0Pm) = h30Pe

2
0 and d2(h

2
0Pm) = h30Pe

2
0.

Proof. This follows as above from the multiplicative relation h60R1 = g · h0Pj, where d2(h60R1) 6= 0 and
d2(g) = 0.

Theorem 9.33. There is a nontrivial differential d2(h0P
3j) = h20P

4e0, which implies the nonzero
differentials d2(P

4e0) = h21P
4d0, d2(P

3j) = h0P
4e0, d2(h

2
0P

3j) = h30P
4e0 ((ETC)).

Proof. ((Use differential on g · h0P 3j, or periodicity.))

Here are the nonobvious multiplicative consequences of these differentials, for t− s ≤ 49.
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Figure 42: Adams d2-differentials for S, 0 ≤ t− s ≤ 24

Lemma 9.34. d2(d0e0) = h21Pg = 0, d2(h3h5) = h0h3h
2
4 = 0, d2(h5c0) = h0h

2
4c0 = 0, d2(h

3
4) =

h0h
2
3h

2
4 = 0, d2(h5Pc0) = h0h

2
4Pc0 = 0, d2(P

2d0e0) = h21P
3g = 0 and d2(ij) = h0Pd0j + h0Pe0i = 0.

Lemma 9.35. The differential d2 is zero on the remaining algebra generators in degrees t − s ≤ 49,
except for the three cases c2, v and B1.

Proof. The differential d2 is zero on h1, n, d1, q, t, e1, z, Pu by h0-linearity. It is zero on p by
h1-linearity. It vanishes on c1 and r since the possible targets support nonzero d2-differentials. It is zero
on the remaining algebra generators in degrees t− s ≤ 49, with the exception of c2, v and B1, since the
target groups are trivial.

Theorem 9.36. There are nontrivial differentials d2(c2) = h0f1 and d2(v) = h0z, while d2(B1) = 0.
This implies the nonzero differentials d2(h0c2) = h20f1, d2(h3c2) = h0h2g2, d2(h5e0) = h21h5d0 and

d2(h5f0) = h20h5e0.

((Proof postponed.))

Remark 9.37. The differential d2(c2) = h0f1 was overlooked in Mahowald–Tangora (1967), but dis-
covered by means of Steenrod operations in ExtA by Milgram (1972), and also corrected in Barratt–
Mahowald–Tangora (1970).

We draw these d2-differentials in Figures 42 and 44, with bullets replacing the named classes.
This leads to the E3-term given in Figures 43 and 45.

Theorem 9.38. The classes h1h4 and h2h4 survive to E∞.

((Can be proved using H∞ structure, see Bruner (1986) Proposition VI.1.6.))

Theorem 9.39. The class h4c0 survives to E∞.

Proof. Assume, for a contradiction, that d4(h4c0) = Pd0. Then d4(h1h4c0) = h1Pd0 is nonzero at E4.
But h1h4 and c0 are permanent cycles, hence so is their product.
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Figure 43: Adams E3-term for S, 0 ≤ t− s ≤ 24

We draw the d3-differentials in dimensions 0 ≤ t ≤ 24 in Figure 46, leaving the E3 = E∞-term shown
in Figure 47. The dotted lines represent hidden h0- and h1-extensions, to be explained in the following
theorem.

Theorem 9.40. The table lists πn(S
∧
2 ) for 0 ≤ n ≤ 24, together with generators of the cyclic summands
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Figure 44: Adams d2-differentials for S, 24 ≤ t− s ≤ 48
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Figure 45: Adams E3-term for S, 24 ≤ t− s ≤ 48
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Figure 46: Adams d3-differentials for S, 0 ≤ t− s ≤ 24
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Figure 47: Adams E∞-term for S, 0 ≤ t− s ≤ 24
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and Adams E∞ classes representing these generators.

n πn(S
∧
2 ) gen. E∞-rep.

0 Z2 1 1
1 Z/2 η h1
2 Z/2 η2 h21
3 Z/8 ν h2
4 0
5 0
6 Z/2 ν2 h22
7 Z/16 σ h3
8 (Z/2)2 ε, ησ c0, h1h3
9 (Z/2)3 µ, ηε, η2σ Ph1, h1c0, h

2
1h3

10 Z/2 ηµ h1Ph1
11 Z/8 ζ Ph2
12 0
13 0
14 (Z/2)2 κ, σ2 d0, h

2
3

15 Z/2⊕ Z/32 ηκ, ρ h1d0, h
3
0h4

16 (Z/2)2 ηρ, η∗ Pc0, h1h4
17 (Z/2)4 µ̄, η2ρ, νκ, ηη∗ P 2h1, h1Pc0, h2d0, h

2
1h4

18 Z/2⊕ Z/8 ηµ̄, ν∗ h1P
2h1, h2h4

19 Z/8⊕ Z/2 ζ̄, σ̄ P 2h2, c1
20 Z/8 κ̄ g
21 (Z/2)2 ηκ̄, νν∗ h1g, h

2
2h4

22 (Z/2)2 η2κ̄, νσ̄ Pd0, h2c1
23 Z/16⊕ Z/8⊕ Z/2 ?, νκ̄, ? h20i, h2g, h4c0
24 (Z/2)2 P 2c0, h1h4c0

Proof. Using the splitting of π∗(j
∧
2 ) off from π∗(S

∧
2 ), the additive structure in degrees 0 ≤ n ≤ 20 is

straightforward. For instance, 2 · ηη∗ = 0 since 2η = 0. The nontrivial fact is that there is a hidden
η-multiplication from ηκ̄, represented by h1g, to η

2κ̄, represented by Pd0. See Mahowald–Tangora (1967)
Theorem 2.1.1. This implies that 2 · νν∗ = 0, and that 2 · 2νκ̄ 6= 0.

((Explain hidden η-multiplications by comparison with the Adams spectral sequence for Cη = S ∪η
e2?))

Theorem 9.41. There are nontrivial differentials d3(r) = h1Pg, d3(d0e0) = h50r, d3(h2h5) = h0p,
d3(e1) = h1t and d3(i

2) = h1P
3g.

This implies the nonzero differential d3(d0r) = h1Pe
2
0.

Remark 9.42. The differentials on r, e1 and i2 = P 2r can be found from the H∞ structure.

Corollary 9.43. The class h24 survives to E∞, representing θ4 in π30(S
∧
2 ).

Theorem 9.44. There are nontrivial differentials d4(α) = P 2d0, where α = d0e0+h
7
0h5, d4(e0g) = P 2g,

d4(h3h5) = h0x, d4(Pd0e0) = P 3d0 and d4(P
2d0e0) = P 4d0.

This implies the nonzero differentials d4(h1d0e0) = h1P
2d0, d4(h1e0g) = h1P

2g, d4(h0h3h5) = h20x,
d4(h1Pd0e0) = h1P

3d0, d4(d
2
0e0) = P 3g and d4(h1P

2d0e0) = h1P
4d0.

Theorem 9.45. The classes h1h5, h0h2h5, t, f1, h5Ph1, z, h5Ph2 and h34 survive to E∞.

((To be confirmed: Are h5Pc0 and B2 infinite cycles?))
We draw the d3-differentials in dimensions 24 ≤ t ≤ 48 in Figure 48, leaving the E4-term shown in

Figure 49. ((This assumes that d3 = 0 on h5Pc0 and B2.))
Next we draw the d4-differentials in dimensions 24 ≤ t ≤ 48 in Figure 50, leaving the E5-term shown

in Figure 51. If B2 survives to E∞ (as it does according to Kochman), then this is also the E∞-term in
this range of dimensions.
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Figure 48: Adams d3-differentials for S, 24 ≤ t− s ≤ 48
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Figure 49: Adams E4-term for S, 24 ≤ t− s ≤ 48 (α = d0e0 + h70h5)
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Figure 50: Adams d4-differentials for S, 24 ≤ t− s ≤ 48
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Figure 51: Adams E5 = E∞-term for S, 24 ≤ t− s ≤ 48
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Theorem 9.46. The table lists πn(S
∧
2 ) for 25 ≤ n ≤ 31, together with generators of the cyclic summands

and Adams E∞ classes representing these generators.

n πn(S
∧
2 ) gen. E∞-rep.

25 (Z/2)2 ?, ? P 3h1, h1P
2c0

26 (Z/2)2 ?, ν2κ̄ h1P
3h1, h

2
2g

27 Z/8 ? P 3h2
28 Z/2 ? Pg
29 0
30 Z/2 θ4 h24
31 Z/64⊕ (Z/2)2 ?, ?, ηθ4 h100 h5, n, h1h

2
4

9.4 Power operations in π∗(S)

9.5 Steenrod operations in the Adams spectral sequence

The (graded) commutativity of the Yoneda product in the E2-term Ext∗,∗A (F2,F2) of the Adams spectral
sequence for S can be seen as a consequence of the cocommutativity of the Hopf algebra A . Moreover,
this cocommutativity implies that there are Steenrod operations

Sqi : Exts,tA (F2,F2) −→ Exts+t−i,2tA (F2,F2)

that double the internal degree (from t to 2t) and increase the topological degree by i (from t − s to
t− s+ i = 2t− (s+ t− i)). This is the grading convention used by Bruner (1986), which is compatible
with the grading for the power operations in homotopy that come from the H∞ structure on S. (Other
authors let Sqi map Exts to Exts+i.)

It is known that Sqi(x) = 0 for i < t − s, Sqt−s(x) = x2 and Sqi(x) = 0 for i > t. We have

Sq2
i

(hi) = hi+1 for i ≥ 0 and the Cartan formula

Sqk(xy) =
∑
i+j=k

Sqi(x)Sqj(k)

holds.
Suppose that x ∈ Es,t2 survives to Er for r ≥ 2. By work of Kahn (1970), Milgram (1972), Mäkinen

(1973) and Bruner (1986), we have formulas for the generically first differential on Sqi(x), in terms of
dr(x), the Steenrod operations and the Adams spectral sequence representatives of the generators of
im(J) ⊂ π∗(S).

Let B1 u B2 mean B1, B1 + B2 or B2 if B1 has lower, equal or greater Adams filtration than B2,
respectively. Here is the first result in this general direction.

Theorem 9.47. Let x ∈ Es,tr is in topological degree n = t − s, and consider x2 = Sqn(x) ∈ E2s,2t
2 .

Then
dr+1(x

2) = Sqn(dr(x))u h0xdr(x)

if n is even, and
d2r−1(x

2) = Sqn(dr(x))

if n is odd.

These expressions imply that x2 survives to Er+1 in the even case, and to E2r−1 in the odd case.
The expressions may, of course, be zero in particular cases, in which case x2 may survive to even later
terms.

((See Bruner (1986) Theorem VI.1.1 for the general result.))

9.6 The Adams spectral sequence for tmf

The computation of Ext∗,∗A(2)(F2,F2), by Iwai–Shimada, Davis–Mahowald, Bruner or Nassau, gives the

Adams E2-term for tmf given in Figures 52, 53, 54 and 55.
((MT-wedge missing in Figure 55.))
((Recall algebra generators h0, h1, h2, c0, α, β, w1, d0 e0, g, γ, δ and w2. Maybe recall some common

relations not visible in the charts.))
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Figure 52: Adams E2-term for tmf , 0 ≤ t− s ≤ 24

Proposition 9.48. The Steenrod operations Sqi on Exts,tA(2)(F2,F2), for t− s ≤ i ≤ t, are given by

Sq∗(h0) = (h20, h1)

Sq∗(h1) = (h21, h2)

Sq∗(h2) = (h22, 0)

Sq∗(c0) = (0, h0e0, h2β, 0)

Sq∗(α) = (α2, γ, 0, 0)

Sq∗(β) = (β2, 0, 0, 0)

Sq∗(w1) = (w2
1, 0, 0, 0, ?)

Sq∗(d0) = (w1g, 0, β
2, 0, 0)

Sq∗(e0) = (d0g, βg, 0, 0, 0)

Sq∗(g) = (g2, 0, 0, 0, 0)

Sq∗(γ) = (γ2, ?, 0, 0, 0, 0)

Sq∗(δ) = (0, ?, ?, 0, 0, 0, 0, 0)

Sq∗(w2) = (w2
2, 0, 0, 0, 0, 0, 0, 0, 0) .

Proof. Adams gives the Steenrod operations on the hi, where we note that h3 = 0 in Ext over A(2).
Bruner (Theorem VI.1.9) gives the Steenrod operations on c0, d0 and e0, quoting Mukohda (1969)
and Milgram (1972), where we note that c20 = 0, f0 maps to h2β, c1 = 0, d20 = w1g, r maps to
β2, d1 = 0, e20 = d0g and m maps to βg, all in Ext over A(2). Applying Sq14 to h1α = 0 gives
h2α

2 = h21Sq
13(α), which implies Sq13(α) = γ. ((ETC: Is Sq12(w1) = g? What is Sq26(γ)?)) We also

note that γ2 = β2g + h21w2 is nonzero, while δ2 = 0.

Theorem 9.49. There are nontrivial differentials d2(α) = h2w1, d2(h0α) = w1h0h2, d2(h
2
0α) = w1h

2
0h2,

d2(β) = h0d0, d2(h0β) = h20d0, d2(h2β) = h20e0, d2(αd0) = w1h0e0, d2(βd0) = w1h0g, d2(h0βd0) =
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Figure 53: Adams E2-term for tmf , 24 ≤ t− s ≤ 48 (v82-multiplies omitted)
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Figure 54: Adams E2-term for tmf , 48 ≤ t− s ≤ 72 (v82-multiplies omitted)
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Figure 55: Adams E2-term for tmf , 72 ≤ t− s ≤ 96 (v82-multiplies omitted)
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Figure 56: Adams d2-differentials for tmf , 0 ≤ t− s ≤ 24

w1h
2
0g, d2(βg) = h0d0g and d2(α

3) = w1h0αβ, together with all of their w1-power multiples.

Proof. These all follow from the differential d2(h2β) = h20e0, which either follows by naturality with
respect to the map S → tmf (taking f0 to h2β, using the known differential d2(f0) = h20e0 for the
sphere) or directly from the H∞ structure on tmf (using the formula d3(Sq

10(c0)) = h0Sq
9(c0) for the

infinite cycle c0, where Sq
9(c0) = h0d0 and Sq10(c0) = h2β, see Bruner (1986) §VI.1).

((d2 = 0 on h0, h1, h2, c0, w1, d0, e0, g, γ and δ.))

Theorem 9.50. There are nontrivial differentials d2(w2) = αβg, d2(w2α) = α2βg+w2w1h2, d2(w2h0α) =
w2w1h0h2, d2(w2h

2
0α) = w2w1h

2
0h2, d2(w2d0) = αβd0g = α2e0g, d2(w2β) = αβ2g+w2h0d0, d2(w2h0β) =

w2h
2
0d0, d2(w2e0) = αβe0g = α2g2, d2(w2h2β) = w2h

2
0e0, d2(w2g) = αβg2, d2(w2γ) = αβγg = αg3,

d2(w2α
2) = α3βg = d0e0g

2, d2(w2αβ) = α2β2g = d0g
3, d2(w2β

2) = αβ3g = e0g
3, d2(w2αd0) =

α2βd0g+w2w1h0e0, d2(w2βd0) = α3g2+w2w1h0g, d2(w2αg) = α2βg2+w2w1h2g, d2(w2βg) = αβ2g2+
w2h0d0g, ((ETC)), together with all their w1-power multiples.

Proof. We use the relation
γ2 = β2g + w2h

2
1

in ExtA(2). By h0-linearity, γ survives (at least) to E6. We shall prove in Theorem 9.56 below that
d4(β

2g) = w1α
2e0 6= 0. This implies that d4(w2h

2
1) = w1α

2e0 6= 0. Suppose, for a contradiction, that
d2(w2) = 0. Then w2 survives at least to E5, since d3(w2) and d4(w2) live in trivial groups, and this
implies that w2h

2
1 survives to E5, contradicting the fact that d4(w2h

2
1) 6= 0. Hence d2(w2) is nonzero,

and the only possible value is αβg.
The other differentials follow from d2(w2) = αβg by the Leibniz rule.

The d2-differentials are displayed in Figures 56, 57, 58 and ??. The resulting E3-terms appear in
Figures 59, 60, 61 and ??.

Theorem 9.51. There are nontrivial differentials d3(α
2) = w1h1d0, d3(β

2) = w1h1g, d3(e0) = w1c0
and d3(h1e0) = w1h1c0, together with all their w1-power multiples.
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Figure 57: Adams d2-differentials for tmf , 24 ≤ t− s ≤ 48
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Figure 58: Adams d2-differentials for tmf , 48 ≤ t− s ≤ 72
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Figure 59: Adams E3-term for tmf , 0 ≤ t− s ≤ 24

Proof. The first two follow from the H∞ structure on tmf , using Bruner’s formulas d3(Sq
12(α)) =

Sq12(w1h2)+h0 ·α·w1h2 = w1h1d0 (here Sq
12(w1h2) = Sq9(w1)h

2
2 = 0) and d3(Sq

15(β)) = Sq15(h0d0) =
h1d

2
0 = w1h1g.
The other two differentials follow from considerations of the image of J . The class η2ρ in im(J) ⊂

π17(S) is detected by h1Pc0 in the Adams spectral sequence for S, which maps to w1h1c0 in the Adams
spectral sequence for tmf . The class ρ in im(J) ⊂ π15(S) maps to a class in π15(tmf) = Z/2 that is
either 0 or the image of ηκ. Hence η2ρ maps either to 0 or the image of η3κ = 4νκ. But νκ is detected
by h2d0 in Adams filtation 5, and there are no infinite cycles in Adams filtrations 6 or 7 for tmf , so 4νκ
cannot be detected by w1h1c0 in Adams filtration 8. Hence η2ρ maps to 0 in tmf , and w1h1c0 must be
a boundary. The only possibility is d3(h1e0) = w1h1c0, which also implies d3(e0) = w1c0.

Alternatively, we can use the relation ηρ = σµ in π∗(S), and the fact that σ maps to 0 in tmf , do
deduce that ηρ maps to 0 in tmf . This class is detected by Pc0 in S, which maps to w1c0 in the Adams
spectral sequence for tmf , so that infinite cycle cannot survive to E∞, and must be a boundary. The
only possibility is d3(e0) = w1c0.

This accounts for all the possible d3-differentials starting above the Mahowald–Tangora wedge. The
possible d3-differentials going out of that wedge are the w1-power multiples of the following two cases.

Theorem 9.52. d3(α
2e0) = 0 and d3(αβ

2) = w1h1δ.

Proof. We shall prove below that d4(β
2g) = w1α

2e0, so that w1α
2e0 is an infinite cycle. We may divide

by w1 to deduce that α2e0 is an infinite cycle.
We shall prove below that d4(αβ

2g) = w2
1β

3, which is nonzero at E4, by inspection of ExtA(2).
Suppose that d3(αβ

2) = 0. We cannot have d4(αβ
2) = w2

1γ, since h1αβ
2 = 0, but w2

1h1γ 6= 0 at E4.
The other possibility is d4(αβ

2) = 0, which would imply d4(αβ
2g) = 0, contradicting the formula above.

Hence d3(αβ
2) 6= 0, and w1h1δ is the only possible value.

Theorem 9.53. d3(w2h1) = w1g
2 and d3(w

2
2) = βg4. ((ETC: Consequences.))
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Figure 60: Adams E3-term for tmf , 24 ≤ t− s ≤ 48 (h0-tower on w2h0 truncated)
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Figure 61: Adams E3-term for tmf , 48 ≤ t− s ≤ 72
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Figure 62: Adams d3-differentials for tmf , 0 ≤ t− s ≤ 24

Proof. The first differential follows from the relation γ2 = β2g + w2h
2
1. We saw above that d4(w2h

2
1) =

d4(β
2g) = w1α

2e0 6= 0. Suppose for a contradiction that d3(w2h1) = 0. Then d4(w2h1) = 0 by
h0-linearity, which would imply that d4(w2h

2
1) = 0. This shows that d3(w2h1) 6= 0, and by h0-linearity

again the only possible value is w1g
2.

The second differential follows from Bruner’s formula d3(Sq
48(w2)) = Sq48(αβg) + h0 · w2 · αβg =

Sq13(α)β2g2 = βg4, where we use that Sq13(α) = γ and βγ = g2.

((Transport d3-differentials back to S.))
The d3-differentials are displayed in Figures 62, 63, 64 and ??. The resulting E4-terms appear in

Figures 65, 66, ?? and ??.

Remark 9.54. The differential d4(e0g) = P 2g in the Adams spectral sequence for S is one of the key
results of Mahowald–Tangora (1967). One could use naturality with respect to the map S → tmf to
deduce the corresponding differential d4(e0g) = w2

1g in the Adams spectral sequence for tmf , but in fact
it is far easier to deduce the tmf -differential directly. Using naturality in the opposite direction then
gives a simplified proof of the Mahowald–Tangora differential.

Theorem 9.55. There are nontrivial d4-differentials d4(d0e0) = w2
1d0 and d4(e0g) = w2

1g, together with
all their w1-power multiples. ((Also g-multiples. When are these nonzero?))

Proof. We know that κ ∈ π14(S) and η2κ̄ ∈ π22(S) are detected by d0 and Pd0, respectively, in the
Adams spectral sequence for S. The images in π14(tmf) and π22(tmf) are then detected by d0 and
w1d0, respectively, in the Adams spectral sequence for tmf . Hence the product κ · η2κ̄ is detected by
w1d

2
0 = w2

1g in the Adams spectral sequence for tmf . But η2κ = 0 in π16(tmf) ∼= Z2, so this product is
0 and w2

1g must be a boundary. The only possibility is d4(e0g) = w2
1g.

Multiplying with w1, we get d4(w1e0g) = w3
1g. We can rewrite this as d4(d

2
0e0) = w2

1d
2
0. We can

divide by d0 to deduce d4(d0e0) = w2
1d0.

((Display the differential behavior in the indexed chart E0?))
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Figure 63: Adams d3-differentials for tmf , 24 ≤ t− s ≤ 48 (h0-tower on w2h0 truncated)
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Figure 64: Adams d3-differentials for tmf , 48 ≤ t− s ≤ 72 ((incomplete))
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Figure 65: Adams E4 = E∞-term for tmf , 0 ≤ t− s ≤ 24

We can propagate these differentials to cover the Mahowald–Tangora wedge, as in their 1968 paper.
See Figure 67.

Theorem 9.56. There are d4-differentials d4(e0g) = w2
1g, d4(d0e0) = w2

1d0, d4(α
3g) = w2

1α
2β, d4(αβ

2g) =
w2

1β
3, d4(β

2g) = w1α
2e0, d4(α

2g) = w1αβ, d4(βd0g) = w2
1αg and d4(βg

2) = w1αd0g, together with all
their w1- and g-power multiples. Not all of these multiples are nonzero, since the target classes may be
d2- or d3-boundaries.

Proof. The differentials originating in Adams filtration s ≡ 0 mod 4, on d0e0 and e0g, are already
known.

The class α2β ∈ E9,48
4 is an infinite cycle, so we get differentials d4(α

3g2) = w2
1α

2βg and d4(w1αβ
2g) =

w2
1α

2βd0 = w3
1β

3 in filtrations s ≡ 1 mod 4, since α2β · e0g = α3g2 and α2β · d0e0 = w1αβ
2g. We can

divide these by g and w1, respectively.
The class α2e0 ∈ E10,51

4 is an infinite cycle, so we get differentials d4(w1β
2g2) = w2

1α
2e0g and

d4(w1α
2g2) = w4

1α
2d0e0 = w3

1αβg in filtrations s ≡ 2 mod 4, since α2e0 ·e0g = w1β
2g2 and α2e0 ·d0e0) =

w1α
2g2. We can divide both of these by w1g.
The class αg ∈ E7,39

4 is an infinite cycle, so we get differentials d4(βd0g
2) = w2

1αg
2 and d4(w1βg

2) =
w2

1αd0g in filtrations s ≡ 3 mod 4, since αg · e0g = βd0g
2 and αg · d0e0 = w1βg

2. We can divide these
by g and w1, respectively.

Theorem 9.57. d4(w2h0) = w1α
2β and d4(w2h

2
1) = w1α

2e0.

Proof. ((TODO: How to prove the first differential?))
The second differential has been discussed before; it follows from the relation γ2 = β2g + w2h

2
1, the

fact that γ is an infinite cycle, and the Mahowald–Tangora differential d4(β
2g) = w1α

2e0.

The d4-differentials are displayed in Figures 68, ?? and ??. The resulting E5-terms appear in Fig-
ures 69, ?? and ??.
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Figure 66: Adams E4-term for tmf , 24 ≤ t− s ≤ 48 (h0-tower on w2h0 truncated)
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Figure 67: Ideal d4-differentials in Mahowald–Tangora wedge

9.7 The Adams spectral sequences for tmf/2 and tmf/η

((Determine Adams differentials. Get hidden multiplications by 2 or η.))

10 Low filtrations

10.1 Quotient algebras

((Quotients of A dual to P (ξ1, . . . , ξn) ⊂ A∗).))
((Ext-calculations.))

10.2 The bar and cobar complexes

(((Co-)bar resolution. (Co-)bar complex.))
((Discuss the free resolution that arises from the canonical Adams resolution.))
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Figure 68: Adams d4-differentials for tmf , 24 ≤ t− s ≤ 48 (h0-tower on w2h0 truncated)
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Figure 69: Adams E5-term for tmf , 24 ≤ t− s ≤ 48 (h0-tower on w2h
2
0 truncated)
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