The Adams Spectral Sequence

John Rognes

June 5th 2012

Contents

1 Stable homotopy theory 2
1.1 Vector fields on spheres 2
1.2 Homology and homotopy 3
1.3 Stunted projective spaces 4
1.4 The stable category 5
1.5 Thom spectra 7
2 Spectral sequences 8
2.1 Exhaustive complete Hausdorff filtrations 8
2.2 Spectral sequences of homological type 9
2.3 Cycles and boundaries 10
2.4 Unrolled exact couples 12
2.5 Spectral sequences of cohomological type 13
2.6 Conditional convergence 15
3 The Steenrod algebra 17
3.1 Steenrod operations 17
3.2 Construction of the reduced squares 19
3.3 Admissible monomials 20
3.4 Eilenberg-Mac Lane spectra 23
4 The Adams spectral sequence 25
4.1 Adams resolutions 25
4.2 The Adams E_{2}-term 27
4.3 A minimal resolution 29
4.4 The Hopf-Steenrod invariant 37
4.5 Naturality 39
4.6 Convergence 42
5 Multiplicative structure 47
5.1 Composition and the Yoneda product 47
5.2 Smash product and tensor product 49
5.3 Pairings of spectral sequences 50
5.4 The composition pairing 51
5.5 The smash product pairing 53
5.6 The composition pairing, revisited 59
6 Calculations 61
6.1 The minimal resolution, revisited 61
6.2 The Toda-Mimura range 64
6.3 Adams vanishing 68
6.4 Topological K-theory 70
7 The dual Steenrod algebra 76
7.1 Hopf algebras 76
7.2 Actions and coactions 79
7.3 The coproduct 81
7.4 The Milnor generators 82
7.5 Subalgebras of the Steenrod algebra 86
7.6 Spectral realizations 88
8 Ext over $A(1)$ and $A(2)$ 90
8.1 The Iwai-Shimada generators 90
8.2 The Davis-Mahowald resolution 92
8.3 Ext over $A(1)$, revisited 96
8.4 Ext over $A(2)$ 98
8.5 Coefficients in $A(0)$ 108
8.6 Adams periodicity 115
9 The homotopy groups of S and tmf 118
9.1 The image-of- J spectra 118
9.2 The image of J in the Adams spectral sequence 122
9.3 The Adams spectral sequence for S 128
9.4 Power operations in $\pi_{*}(S)$ 143
9.5 Steenrod operations in the Adams spectral sequence 143
9.6 The Adams spectral sequence for tmf 143
9.7 The Adams spectral sequences for $\operatorname{tmf} / 2$ and $t m f / \eta$ 159
10 Low filtrations 159
10.1 Quotient algebras 159
10.2 The bar and cobar complexes 159

Foreword

These are the author's lecture notes for the course MAT9580, Algebraic Topology III, as given at the University of Oslo in the spring term of 2012. Thanks to Tilman Bauer for the sseq package. Thanks to Knut Berg, Håkon Schad Bergsaker, Robert B. Bruner, Eivind Dahl, Christian Schlichtkrull and Sigurd Segtnan for comments, corrections and helpful references.

1 Stable homotopy theory

1.1 Vector fields on spheres

Many topological problems can be formulated as questions about the existence or enumeration of continuous maps with suitable properties. To answer these questions one needs tools to help determine when such maps exist or how many there are.

An interesting example is the vector fields problem on spheres. Let $S^{n} \subset \mathbb{R}^{n+1}$ be the unit sphere in ($n+1$)-space. At each point $p \in S^{n}$ there is an n-dimensional tangent space $T_{p} S^{n}$, consisting of the vectors $v \in \mathbb{R}^{n+1}$ with $p \perp v$. These combine to the total space of the tangent bundle $\pi: T S^{n} \rightarrow S^{n}$ the n-sphere. A vector field on the sphere is a section in the tangent bundle, i.e., a map $X: S^{n} \rightarrow T S^{n}$ with $\pi \circ X=i d$. It associates to each point $p \in S^{n}$ a tangent vector $X(p) \in T_{p} S^{n}$ at that point.

If $n=2 e-1$ is odd, there is an everywhere nonzero vector field on S^{n}. Identifying $\mathbb{R}^{n+1}=\mathbb{R}^{2 e}$ with \mathbb{C}^{e}, one such field is given in terms of the complex multiplication by $X(p)=i p$. In coordinates, the tangent vector at $p=\left(x_{1}, x_{2}, \ldots, x_{2 e-1}, x_{2 e}\right) \in S^{n}$ is $X(p)=\left(-x_{2}, x_{1}, \ldots,-x_{2 e}, x_{2 e-1}\right)$. On the other hand, if n is even there is no everywhere nonzero vector field on S^{n}. One proof uses that the Euler characteristic of S^{n}, which is 2 for n even, can be written as a sum over the zeros of any (reasonably nice) vector field, and such a sum would be 0 if the vector field had no zeros. Similarly, if $n=4 e-1$ is congruent to $3 \bmod 4$, there are three everywhere linearly independent vector fields on S^{n}. Identifying
$\mathbb{R}^{n+1}=\mathbb{R}^{4 e}$ with \mathbb{H}^{e}, these can be given in terms of the quaternionic multiplication by $X_{1}(p)=i p$, $X_{2}(p)=j p$ and $X_{3}(p)=k p$, where $\mathbb{H}=\mathbb{R}\{1, i, j, k\}$ and $i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j$ and $k i=j=-i k$. On the other hand, if $n \equiv 1 \bmod 4$ there is no pair of everywhere independent vector fields on S^{n}. Continuing, if $n=8 e-1 \equiv 7 \bmod 8$, then there are 7 independent vector fields on S^{n}, given in terms of the octonionic multiplication on $\mathbb{R}^{n+1}=\mathbb{O}^{e}$. When $n \equiv 3 \bmod 8$ there is no quadruple of independent vector fields. After this, the pattern changes. There is no division algebra structure on \mathbb{R}^{16}, and the maximum number of independent vector fields on S^{15} is 8 , not 15 .

The vector fields on spheres problem is then this: What is the maximal number m of vector fields X_{1}, \ldots, X_{m} on the n-dimensional sphere S^{n} such that $X_{1}(p), \ldots, X_{m}(p) \in T_{p} S^{n}$ are linearly independent for each $p \in S^{n}$? By an application of the Gram-Schmidt process, any m-tuple of everywhere linearly independent vector fields can be converted into an m-tuple of everywhere orthonormal vector fields. The problem may therefore be reformulated as: What is the maximal number of everywhere orthonormal vector fields on the n-sphere? Another reformulation is: What is the maximal dimension of a trivial subbundle $\epsilon^{m} \subset \tau_{S^{n}}$ of the tangent bundle of S^{n} ?

An orthonormal m-tuple of vectors v_{1}, \ldots, v_{m} in $T_{p} S^{n}$, together with the point $p \in S^{n}$, constitute an orthonormal $(m+1)$-tuple $\left(v_{1}, \ldots, v_{m}, p\right)$ in \mathbb{R}^{n+1}, and conversely. Any such orthonormal $(m+1)$-tuple, also known as an $(m+1)$-frame, can be completed to an orthonormal basis $\left(w_{1}, \ldots, w_{k}, v_{1}, \ldots, v_{m}, p\right)$ by prepending k more vectors, where $k=n-m$ is the complementary dimension of ϵ^{m} in $\tau_{S^{n}}$. The vectors in such an orthonormal basis constitute the column vectors of a matrix in $O(n+1)$, the Lie group of $(n+1) \times(n+1)$ orthogonal matrices, and the different choices of completing vectors w_{1}, \ldots, w_{k} correspond to an orbit for the right action of the subgroup $O(k) \subset O(n+1)$, placed in the upper left hand corner. The space of $(m+1)$-frames $\left(v_{1}, \ldots, v_{m}, p\right)$ in \mathbb{R}^{n+1} is therefore the homogeneous space $O(n+1) / O(k)$, also known as a Stiefel manifold. As special cases we have $O(n+1) / O(n) \cong S^{n}$ and $O(n+1) / O(n-1) \subset T S^{n}$ is the subspace of unit tangent vectors. The map taking $\left(v_{1}, \ldots, v_{n}, p\right)$ to $p \in S^{n}$ corresponds to the map $\pi: O(n+1) / O(k) \rightarrow O(n+1) / O(n) \cong S^{n}$, induced by the inclusion $O(k) \subset O(n)$. An m-tuple of everywhere orthonormal vector fields X_{1}, \ldots, X_{m} on S^{n} now defines a map $\sigma: S^{n} \rightarrow O(n+1) / O(k)$ taking p to the $(m+1)$-frame $\left(X_{1}(p), \ldots, X_{m}(p), p\right)$, with the property that $\pi \circ \sigma=i d$. The vector fields problem is thus: Given n, what is the maximal m, or the minimal $k=n-m$, such that there is a map $\sigma: S^{n} \rightarrow O(n+1) / O(k)$ with $\pi \circ \sigma=i d$?

The map $\pi: O(n+1) / O(k) \rightarrow S^{n}$ is a fiber bundle (over a numerable base), which means that it has the homotopy lifting property. This means that if there exists a map $\sigma^{\prime}: S^{n} \rightarrow O(n+1) / O(k)$ with $\pi \circ \sigma^{\prime}$ homotopic to the identity map, then the homotopy can be lifted to a homotopy from σ^{\prime} to a map $\sigma: S^{n} \rightarrow O(n+1) / O(k)$ with $\pi \circ \sigma$ equal to the identity. This means that the vector fields problem is a question about homotopy classes of maps, rather than about individual maps, and this makes it a problem in homotopy theory, rather than general topology.

1.2 Homology and homotopy

Let X be a topological space, with a chosen base point $x_{0} \in X$. Give S^{n} the base point $s_{0}=(1,0, \ldots, 0) \in$ \mathbb{R}^{n+1}, for $n \geq 0$. The n-th homotopy group $\pi_{n}(X)=\left[S^{n}, X\right]$ is the set of homotopy classes of base-point preserving maps $f: S^{n} \rightarrow X$. It is a group for $n \geq 1$, and an abelian group for $n \geq 2$. We usually omit x_{0} from the notation. We say that X is n-connected, for $n \geq 0$, if $\pi_{i}(X)=0$ for all $0 \leq i \leq n$. A base-point preserving map $f: X \rightarrow Y$ is n-connected if $f_{*}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is an isomorphism for $0 \leq i<n$ and a surjection for $i=n$. It is a weak homotopy equivalence if $f_{*}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is an isomorphism for all $i \geq 0$. The Hurewicz homomorphism $h_{n}: \pi_{n}(X) \rightarrow H_{n}(X)$ (integer coefficients) takes the homotopy class $[f]$ of a map $f: S^{n} \rightarrow X$ to the image $f_{*}\left[S^{n}\right]$ of the fundamental class $\left[S^{n}\right] \in H_{n}\left(S^{n}\right)$.

Lemma 1.1 (Poincaré). Let X be a 0-connected space. The homomorphism $h_{1}: \pi_{1}(X) \rightarrow H_{1}(X)$ is surjective with kernel the commutator subgroup of $\pi_{1}(X)$, inducing an isomorphism $\pi_{1}(X)_{a b} \cong H_{1}(X)$.

Theorem 1.2 (Hurewicz). Let X be an $(n-1)$-connected space, for some $n \geq 2$. Then the homomorphism $h_{n}: \pi_{n}(X) \rightarrow H_{n}(X)$ is an isomorphism.

See Hatcher (2002) Theorem 4.32. ((Also state relative version, for maps of 1-connected spaces.))
Corollary 1.3. Let X be a 1-connected space, with $H_{i}(X)=0$ for all $2 \leq i \leq n$. Then X is n-connected.

Let $\iota: A \subset X$ be a cofibration, so that $X \cup_{A} C A \rightarrow X / A$ is a homotopy equivalence. For example, A might be a subcomplex of a CW complex X. There is a long exact sequence in homology

$$
\cdots \rightarrow H_{i}(A) \rightarrow H_{i}(X) \rightarrow \tilde{H}_{i}(X / A) \xrightarrow{\partial} H_{i-1}(A) \rightarrow \ldots
$$

for all i (with arbitrary coefficients). There is a corresponding diagram in homotopy, but only in a restricted range. Let $a_{0} \in A \subset X$. Using relative homotopy groups, there is a long exact sequence

$$
\cdots \rightarrow \pi_{i}(A) \rightarrow \pi_{i}(X) \rightarrow \pi_{i}(X, A) \xrightarrow{\partial} \pi_{i-1}(A) \rightarrow \ldots
$$

Theorem 1.4 (Homotopy excision). If A is $(m-1)$-connected and $\iota: A \rightarrow X$ is n-connected with $m, n \geq 1$, then $\pi_{i}(X, A) \rightarrow \pi_{i}(X / A)$ is an isomorphism for $i<m+n$ and a surjection for $i=m+n$. Hence there is an exact sequence

$$
\pi_{m+n-1}(A) \rightarrow \cdots \rightarrow \pi_{i}(A) \rightarrow \pi_{i}(X) \rightarrow \pi_{i}(X / A) \xrightarrow{\partial} \pi_{i-1}(A) \rightarrow \ldots
$$

See Hatcher (2002) Theorem 4.23.
Dually, let $\pi: E \rightarrow B$ be a fibration, so that $F=\pi^{-1}\left(b_{0}\right) \rightarrow E \times_{B} P B$ is a homotopy equivalence. For example, $E \rightarrow B$ might be a numerable fiber bundle. There is a long exact sequence in homotopy

$$
\cdots \rightarrow \pi_{i}(F) \rightarrow \pi_{i}(E) \rightarrow \pi_{i}(B) \xrightarrow{\partial} \pi_{i-1}(F) \rightarrow \ldots
$$

for all i. There is a corresponding diagram in homology, but only in a restricted range. Using relative homology groups, there is a long exact sequence

$$
\cdots \rightarrow H_{i}(F) \rightarrow H_{i}(E) \rightarrow H_{i}(E, F) \xrightarrow{\partial} H_{i-1}(F) \rightarrow \ldots
$$

(with arbitrary coefficients).
Theorem 1.5 (Serre homology sequence). If B is $(m-1)$-connected and F is $(n-1)$-connected, with $m, n \geq 1$, then $H_{i}(E, F) \rightarrow H_{i}(B)$ is an isomorphism for $i<m+n$ and a surjection for $i=m+n$. Hence there is an exact sequence

$$
H_{m+n-1}(F) \rightarrow \cdots \rightarrow H_{i}(F) \rightarrow H_{i}(E) \rightarrow H_{i}(B) \xrightarrow{\partial} H_{i-1}(F) \rightarrow \ldots
$$

This is an easy application of the Serre spectral sequence.

1.3 Stunted projective spaces

The n-sphere S^{n} is $(n-1)$-connected, and $h_{n}: \pi_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right) \cong \mathbb{Z}$ is an isomorphism. The vector field problem for S^{n} asks what is the minimal $k \leq n$ such that $\pi_{*}: \pi_{n}(O(n+1) / O(k)) \rightarrow \pi_{n}\left(S^{n}\right) \cong \mathbb{Z}$ is surjective. The maximal number of orthonormal vector fields on S^{n} is then $m=n-k$.
Lemma 1.6. The Stiefel manifold $O(n+1) / O(k)$ is $(k-1)$-connected.
Proof. This can be seen by induction on $m=n-k \geq 0$, using the fiber sequences $O(k+m) / O(k) \rightarrow$ $O(k+m+1) / O(k) \rightarrow S^{k+m}$. Here $O(k+m) / O(k)$ is $(k-1)$-connected by inductive hypothesis and S^{k+m} is $(k+m-1)$-connected, so $O(k+m+1) / O(k)$ is $(k-1)$-connected by the long exact sequence in homotopy.

Let $\mathbb{R} P^{n}$ be the projective n-space of lines through the origin in \mathbb{R}^{n+1}. Each such line L determines an orthogonal splitting $\mathbb{R}^{n+1} \cong L \oplus L^{\perp}$ and an orthonormal reflection $r_{L}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ that reverses L and fixes L^{\perp}. This defines a map $r^{n}: \mathbb{R} P^{n} \rightarrow O(n+1)$, taking L to the matrix representing r_{L}. If $L \subset \mathbb{R}^{k}$ represents a point in $\mathbb{R} P^{k-1}$ then L^{\perp} contains $\{0\} \times \mathbb{R}^{m+1} \subset \mathbb{R}^{n+1}$, so r_{L} lies in the subgroup $O(k)$. Hence the composite map $\mathbb{R} P^{n} \rightarrow O(n+1) \rightarrow O(n+1) / O(k)$ factors through the quotient space $\mathbb{R} P^{n} / \mathbb{R} P^{k-1}=\mathbb{R} P_{k}^{n}$, known as a stunted projective space.

The usual CW structure on $\mathbb{R} P^{n}$, with one i-cell for each $0 \leq i \leq n$, contains $\mathbb{R} P^{k-1}$ as its ($k-1$)-skeleton and induces a CW structure on $\mathbb{R} P_{k}^{n}$, with one i-cell for each $k \leq i \leq n$. For $k=n$, the identifications $\mathbb{R} P_{n}^{n} \cong O(n+1) / O(n) \cong S^{n}$ are compatible. The stunted projective spaces are "smaller" than the Stiefel manifolds, hence may be easier to analyze. Still, they are large enough to have the same homotopy groups, in a useful range of dimensions:

Lemma 1.7. The map $r_{k}^{n}: \mathbb{R} P_{k}^{n} \rightarrow O(n+1) / O(k)$ is $2 k$-connected.
Proof. Proof by induction on $m=n-k \geq 0$. For $m=0$ the map $\mathbb{R} P_{k}^{k} \rightarrow O(k+1) / O(k)$ is a homeomorphism. For $m>0$ we use the diagram

where the upper row is a cofiber sequence, and the lower row is a fiber sequence.
Since $O(k+m) / O(k)$ is $(k-1)$-connected and S^{k+m} is $(k+m-1)$-connected, the homomorphism $H_{i}(O(k+m+1) / O(k), O(k+m) / O(k)) \rightarrow H_{i}\left(S^{k+m}\right)$ is an isomorphism for $i \leq 2 k$ by Serre's homology sequence. Hence $H_{i}\left(\mathbb{R} P_{k}^{k+m}, \mathbb{R} P_{k}^{k+m-1}\right) \rightarrow H_{i}(O(k+m+1) / O(k), O(k+m) / O(k))$ is also an isomorphism for $i \leq 2 k$. By inductive hypothesis, $H_{i}\left(\mathbb{R} P_{k}^{k+m-1}\right) \rightarrow H_{i}(O(k+m) / O(k))$ is an isomorphism for $i<2 k$ and surjective for $i=2 k$, which implies that $H_{i}\left(\mathbb{R} P_{k}^{k+m}\right) \rightarrow H_{i}(O(k+m+1) / O(k))$ has the same property. ((Deduce that $\mathbb{R} P_{k}^{k+m} \rightarrow O(k+m+1) / O(k)$ is $2 k$-connected.))

Hence, as long as $n \leq 2 k$ the problem of finding a section σ for the fiber bundle projection $\pi: O(n+$ 1) $/ O(k) \rightarrow S^{n}$ is equivalent to that of finding a section up to homotopy for the pinch map $p: \mathbb{R} P_{k}^{n} \rightarrow S^{n}$, i.e., deciding whether $p_{*}: \pi_{n}\left(\mathbb{R} P_{k}^{n}\right) \rightarrow \pi_{n}\left(S^{n}\right)$ is surjective.

Except in a few cases, namely $n=1,3,7$ and 15 ((check)) it turns out that the minimal k such that p_{*} is surjective satisfies $n \leq 2 k-2$, so that the fact that $\pi_{n}\left(\mathbb{R} P_{k-1}^{n}\right) \rightarrow \pi_{n}\left(S^{n}\right)$ is not surjective implies that $\pi_{n}(O(n+1) / O(k-1)) \rightarrow \pi_{n}\left(S^{n}\right)$ is not surjective either.

The pinch map p fits in a Puppe cofiber sequence

where ϕ is the attaching map for the top n-cell in $\mathbb{R} P_{k}^{n}$, and Σ denotes suspension. If the maps p and $\Sigma \phi$ had formed a homotopy fiber sequence, then p would admit a section up to homotopy s if and only if $\Sigma \phi$ were null-homotopic. However, p and ϕ form a (homotopy) cofiber sequence, and that is in general something different from a homotopy fiber sequence. Fortunately, in the cases n less than approximately $2 k$ the difference is negligible. This leads us to concentrate on the homotopy groups in dimensions below $2 k$ for ($k-1$)-connected spaces, and the extent to which homotopy cofiber sequences and homotopy fiber sequences agree in this range. This is the subject of stable homotopy theory.

1.4 The stable category

The suspension ΣX is the smash product $X \wedge S^{1}=\left(X \times S^{1}\right) /\left(X \times\left\{s_{0}\right\} \cup\left\{x_{0}\right\} \times S^{1}\right)$, based at the image of $\left(x_{0}, s_{0}\right)$. There is a homeomorphism $\Sigma S^{n} \cong S^{n+1}$, and a suspension homomorphism $E: \pi_{n}(X) \rightarrow$ $\pi_{n+1}(\Sigma X)$ ('E' for 'Einhängung') taking the homotopy class of $f: S^{n} \rightarrow X$ to that of $\Sigma f: S^{n+1} \cong$ $\Sigma S^{n} \rightarrow \Sigma X$.

Theorem 1.8 (Freudenthal suspension). Let X be ($k-1$)-connected, with $k \geq 1$. The homomorphism $E: \pi_{n}(X) \rightarrow \pi_{n+1}(\Sigma X)$ is an isomorphism for $n<2 k-1$ and is surjective for $n=2 k-1$.

This follows from homotopy excision for the cofibration $X \rightarrow C X$, with $C X / X \cong \Sigma X$.
Let $\pi_{n}^{S}(X)=\operatorname{colim}_{i} \pi_{n+i}\left(\Sigma^{i} X\right)$ be the n-th stable homotopy group of X. When X is $(k-1)$-connected the stabilization homomorphism $\pi_{n}(X) \rightarrow \pi_{n}^{S}(X)$ is an isomorphism for $n<2 k-1$ and surjective for $n=2 k-1$.

In the special case $X=S^{0}$ we call $\pi_{n}^{S}=\pi_{n}^{S}\left(S^{0}\right)=\operatorname{colim}_{i} \pi_{n+i}\left(S^{i}\right)$ the n-th stable stem. The homomorphism $\pi_{n+i}\left(S^{i}\right) \rightarrow \pi_{n}^{S}$ is surjective for $i=n+1$ and an isomorphism for $i>n+1$. In particular, $\pi_{n}^{S}=0$ for $n<0$, while $\pi_{0}^{S} \cong \mathbb{Z}$.
Corollary 1.9. Let X be a $C W$ complex of dimension d and Y a $(k-1)$-connected space. The suspension homomorphism $E:[X, Y] \rightarrow[\Sigma X, \Sigma Y]$ is bijective if $d<2 k-1$ and surjective if $d=2 k-1$.

This follows from Freudenthal's theorem by induction over the cells of X.
Let $\{X, Y\}=\operatorname{colim}_{i}\left[\Sigma^{i} X, \Sigma^{i} Y\right]$ be the group of stable homotopy classes of maps $X \rightarrow Y$. When $[X, Y] \rightarrow\{X, Y\}$ is an isomorphism we say that X and Y are in the stable range. With notations as above, $\Sigma^{i} X$ is a CW complex of dimension $d+i$ and $\Sigma^{i} Y$ is $(k+i-1)$-connected, so $\Sigma^{i} X$ and $\Sigma^{i} Y$ are in the stable range if $(d+i)<2(k+i)-1$, which holds for $i>d-2 k+1$, i.e., for all sufficiently large i.

The homotopy category \mathscr{F} of finite based CW complexes has morphism sets $\mathscr{F}(X, Y)=[X, Y]$. It maps to the stable homotopy category $\mathscr{F}\left[\Sigma^{-1}\right]$ of finite based CW complexes, with morphisms sets $\{X, Y\}$. The suspension induces a full and faithful functor from this category to itself, since $E:\{X, Y\} \rightarrow$ $\{\Sigma X, \Sigma Y\}$ is always an isomorphism, but it is not an equivalence of categories, because not every object is isomorphic to a suspension. This can be arranged by formally adjoining desuspensions $\Sigma^{-n} X$ for all n, leading to the Spanier-Whitehead stable category $\mathscr{S} \mathscr{W}$. However, this category does still not have (weak) colimits. This can be arranged by considering formal sequences of desuspensions

$$
X_{0} \rightarrow \cdots \rightarrow \Sigma^{-n} X_{n} \rightarrow \Sigma^{-n-1} X_{n+1} \rightarrow \ldots
$$

which is more commonly encoded by a sequence of spaces $\left\{n \mapsto X_{n}\right\}$ and structure maps $\Sigma X_{n} \rightarrow$ X_{n+1}, leading to the notion of a (sequential) spectrum. Boardman's stable category \mathscr{B} is the homotopy category of spectra, with morphism groups $\mathscr{B}(\mathbf{X}, \mathbf{Y})=[\mathbf{X}, \mathbf{Y}]$ given by homotopy classes of maps between spectra \mathbf{X} and \mathbf{Y}, and contains $\mathscr{S} \mathscr{W}$ as a full subcategory. This stable category \mathscr{B} has "better" formal properties than the unstable homotopy category \mathscr{F}. In particular it is a triangulated category, so that cofiber sequences and fiber sequences agree (up to a sign in the connecting maps), finite coproducts are isomorphic to finite products, etc.

Given a diagram in \mathscr{F}, we can view it as a diagram in \mathscr{B} by applying the suspension spectrum functor, taking a based space X to the spectrum $\Sigma^{\infty} X=\left\{n \mapsto \Sigma^{n} X\right\}$ with identity maps as structure maps. We refer to the result as a stable diagram.

The sphere spectrum $\mathbf{S}=\Sigma^{\infty} S^{0}$ is the suspension spectrum on the 0 -sphere. There is an n-sphere spectrum \mathbf{S}^{n} for each integer n, having S^{n} as 0 -th space if $n \geq 0$, and having S^{0} as $(-n)$-th space if $n \leq 0$. The homotopy groups of a spectrum \mathbf{X} are given by the stable morphism groups $\pi_{n}(\mathbf{X})=\left[\mathbf{S}^{n}, \mathbf{X}\right]$, so that $\pi_{n}\left(\Sigma^{\infty} X\right)=\pi_{n}^{S}(X)$ for a space X.

Let \mathbf{X} and \mathbf{Y} be finite CW spectra. These sit in cofiber sequences $\mathbf{S}^{m-1} \rightarrow \mathbf{X}^{\prime} \rightarrow \mathbf{X} \rightarrow \mathbf{S}^{m}$ and $\mathbf{S}^{n-1} \rightarrow \mathbf{Y}^{\prime} \rightarrow \mathbf{Y} \rightarrow \mathbf{S}^{n}$ for smaller such spectra \mathbf{X}^{\prime} and \mathbf{Y}^{\prime}. The stable morphism group $[\mathbf{X}, \mathbf{Y}]$ sits in an exact sequence

$$
\left[\Sigma \mathbf{X}^{\prime}, \mathbf{Y}\right] \rightarrow\left[\mathbf{S}^{m}, \mathbf{Y}\right] \rightarrow[\mathbf{X}, \mathbf{Y}] \rightarrow\left[\mathbf{X}^{\prime}, \mathbf{Y}\right] \rightarrow\left[\mathbf{S}^{m-1}, \mathbf{Y}\right]
$$

hence is in principle determined by the groups $\left[\mathbf{S}^{m}, \mathbf{Y}\right]=\pi_{m}(\mathbf{Y})$. These in turn sit in exact sequences

$$
\pi_{m}\left(\mathbf{S}^{n-1}\right) \rightarrow \pi_{m}\left(\mathbf{Y}^{\prime}\right) \rightarrow \pi_{m}(\mathbf{Y}) \rightarrow \pi_{m}\left(\mathbf{S}^{n}\right) \rightarrow \pi_{m}\left(\Sigma \mathbf{Y}^{\prime}\right)
$$

(since a stable cofiber sequence is a stable fiber sequence), hence are in principle determined by the groups $\pi_{m}\left(\mathbf{S}^{n}\right) \cong \pi_{m-n}^{S}$, i.e., the stable homotopy groups of spheres. Cells, or cones on spheres, are the basic building blocks for CW complexes, and in the stable category, stable maps between spheres are the basic building instructions for CW spectra. (This is less pronounced in the unstable category \mathscr{F}, since $\pi_{m}(Y)$ is not so directly determined by $\pi_{m}\left(Y^{\prime}\right)$ and $\pi_{m}\left(S^{n}\right)$.)

Whenever it is clear that we are working with stable diagrams, we shall omit the boldface notation for spectra and the Σ^{∞} notation for suspension spectra.

1.5 Thom spectra

When $n \leq 2 k-2$, the stabilization homomorphism $\pi_{n}\left(\mathbb{R} P_{k}^{n}\right) \rightarrow \pi_{n}^{S}\left(\mathbb{R} P_{k}^{n}\right)$ is an isomorphism, as is the homomorphism $\pi_{n}\left(S^{n}\right) \rightarrow \pi_{n}^{S}\left(S^{n}\right) \cong \pi_{0}^{S}$, so the question if $p_{*}: \pi_{n}\left(\mathbb{R} P_{k}^{n}\right) \rightarrow \pi_{n}\left(S^{n}\right)$ is surjective is equivalent to the stable question if $p_{*}: \pi_{n}^{S}\left(\mathbb{R} P_{k}^{n}\right) \rightarrow \pi_{n}^{S}\left(S^{n}\right)$ is surjective. In other words, does the pinch map $p: \mathbb{R} P_{k}^{n} \rightarrow S^{n}$ admit a stable section, so that the top cell on $\mathbb{R} P_{k}^{n}$ splits off? If so, we say that $\mathbb{R} P_{k}^{n}$ is stably coreducible.

This is equivalent to the question if the attaching map $\phi: S^{n-1} \rightarrow \mathbb{R} P_{k}^{n-1}$ is stably null-homotopic. In terms of the stable diagram

(the lower row is a cofiber sequence, hence stably a fiber sequence) this is the question how far back the attaching map q of the top cell in $\mathbb{R} P^{n}$ pulls back. In other words, what is the minimal k such that $q: S^{n-1} \rightarrow \mathbb{R} P^{n-1}$ can be compressed into the $(k-1)$-skeleton, as a stable map?

Boardman's stable category admits function spectra, in the sense that given two spectra X and Y there is a natural function spectrum $F(X, Y)$ with suitable properties. For example, $\pi_{n} F(X, Y)=$ [$\left.\Sigma^{n} X, Y\right]$. Let $D X=F(X, S)$ be the functional dual of X. For example, $D S^{n}=S^{-n}$. The rule $X \rightarrow D X$ induces a contravariant endofunctor $D: \mathscr{B}^{\circ p} \rightarrow \mathscr{B}$. There is a natural map $\rho: X \rightarrow D D X$, which is an equivalence if X is a finite CW spectrum, in which case we call $D X$ the Spanier-Whitehead dual of X. When restricted to finite CW spectra, D is a contravariant equivalence of categories.

The question if the map $p: \mathbb{R} P_{k}^{n} \rightarrow S^{n}$ admits a stable section is thus equivalent to the question if the dual map $D p: D S^{n} \rightarrow D\left(\mathbb{R} P_{k}^{n}\right)$ admits a stable retraction.
((Discuss Thom complexes and Thom spectra.))
Lemma 1.10. There is a homeomorphism $\mathbb{R} P_{k}^{k+m} \cong T h\left(k \gamma_{m}^{1}\right)$ where γ_{m}^{1} is the tautological line bundle over $\mathbb{R} P^{m}$.

Proof. The normal bundle of S^{m} in S^{k+m} is trivial, and covers the bundle $k \gamma_{m}^{1}$ over $\mathbb{R} P^{m}$. It embeds as the complement $S^{k+m} \backslash S^{k-1}$, and has one-point compactification S^{k+m} / S^{k-1}. Identifying antipodal points, the quotient space $\mathbb{R} P^{k+m} / \mathbb{R} P^{k-1}=\mathbb{R} P_{k}^{k+m}$ maps homeomorphically to $\operatorname{Th}\left(k \gamma_{m}^{1}\right)$.

Theorem 1.11 (Atiyah duality). Let M be a closed manifold, with tangent bundle τ_{M} and virtual normal bundle $\nu_{M}=-\tau_{M}$. Then $D\left(M_{+}\right) \cong \operatorname{Th}\left(\nu_{M}\right)$.
Lemma 1.12. $\tau_{\mathbb{R} P^{m}} \oplus \epsilon^{1} \cong(m+1) \gamma_{m}^{1}$, so $\nu_{\mathbb{R} P^{m}} \cong \epsilon^{1}-(m+1) \gamma_{m}^{1}$ and $D\left(\mathbb{R} P_{k}^{k+m}\right) \cong T h\left(\epsilon^{1}-(k+m+\right.$ 1) $\left.\gamma_{m}^{1}\right) \cong \Sigma \mathbb{R} P_{-k-m-1}^{-k-1}$.

The question of stable coreducibility of $\mathbb{R} P_{k}^{n}$ is thus equivalent to the question of stable reducibility of $T h\left(-(n+1) \gamma_{m}^{1}\right) \cong \mathbb{R} P_{-n-1}^{-k-1}$, i.e., whether the inclusion $i: S^{-n-1} \rightarrow \mathbb{R} P_{-n-1}^{-k-1}$ of the bottom cell admits a stable retraction up to homotopy.

If $(n+1) \gamma_{m}^{1} \cong \epsilon^{n+1}$ as vector bundles over $\mathbb{R} P^{m}$, or more generally, if the sphere bundle $S\left((n+1) \gamma_{m}^{1}\right)$ is fiber homotopy trivial over $\mathbb{R} P^{m}$, then $T h\left(-(n+1) \gamma_{m}^{1}\right) \simeq T h\left(-\left(\epsilon^{n+1}\right)\right) \cong \Sigma^{-(n+1)} \mathbb{R} P_{+}^{m}$, and the bottom cell does indeed split off.
((Concerned with the additive order of $\epsilon^{1}-\gamma_{m}^{1}$ in $\widetilde{K O}\left(\mathbb{R} P^{m}\right) \cong \mathbb{Z} / 2^{\phi(m)}$, where $\phi(m)=\#\{1 \leq$ $i \leq m \mid i \equiv 1,2,4,8 \bmod 8\}$, or perhaps in the isomorphic image $J O\left(\mathbb{R} P^{m}\right)$. Computation with Atiyah-Hirzebruch spectral sequence. Adams conjecture?))

Theorem 1.13 (Adams). $\mathbb{R} P_{k}^{n}$ is stably coreducible (if and) only if $n+1 \equiv 0 \bmod 2^{\phi(m)}$, where $n=k+m$. The maximal m with this property is $8 c+2^{d}-1$, when $n+1=2^{a} \cdot b$ and $a=4 c+d$, with b odd and $0 \leq d \leq 3$.

By inspection, $n \geq 2 m+2$ except for $n=1,3,7,15$, which is equivalent to the stability condition $n \leq 2 k-2$. Hence $8 c+2^{d}-1$ is also the maximal number of everywhere linearly independent vector fields on S^{n}. ((Separate check for $n=15$, using Toda's work.))

2 Spectral sequences

2.1 Exhaustive complete Hausdorff filtrations

Consider a filtered space or spectrum X, i.e., a diagram

$$
\cdots \rightarrow X_{s-1} \xrightarrow{i} X_{s} \rightarrow \cdots \rightarrow X
$$

with $s \in \mathbb{Z}$. For example, we might have a map $f: X \rightarrow Y$ and $X_{s}=f^{-1}\left(Y^{(s)}\right)$, where $Y^{(s)}$ is the s-skeleton of a CW complex Y. Applying homology we get a diagram

$$
\cdots \longrightarrow H_{*}\left(X_{s-1}\right) \xrightarrow[r^{2}]{i_{*}} \underset{H_{*}\left(X_{s}, X_{s-1}\right)}{i_{*}\left(X_{s}\right) \longrightarrow \ldots \longrightarrow H_{*}(X)}
$$

where ∂ has degree -1 . We would like to use knowledge of the graded groups $H_{*}\left(X_{s}, X_{s-1}\right)$ for all s to obtain knowledge of the graded group $H_{*}(X)$. There is an induced increasing filtration

$$
\cdots \subset F_{s-1} \subset F_{s} \subset \cdots \subset H_{*}(X)
$$

where $F_{s}=F_{s} H_{*}(X)=\operatorname{im}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)$. There is a short exact sequence, or extension,

$$
0 \rightarrow F_{s-1} \rightarrow F_{s} \rightarrow F_{s} / F_{s-1} \rightarrow 0
$$

for each s. If we have inductively determined the subgroup $F_{s-1} H_{*}(X)$, and somehow know the quotient group F_{s} / F_{s-1}, then it is an algebraic extension problem to determine the total group F_{s}. For this to be useful in determining $H_{*}(X)$, we must at least assume that the filtration $\left\{F_{s}\right\}_{s}$ exhausts $H_{*}(X)$, i.e., that

$$
H_{*}(X)=\underset{s}{\operatorname{colim}} F_{s}=\bigcup_{s} F_{s} .
$$

Furthermore, we apparently need to start the induction somewhere.
The reader who is unfamiliar with limits may prefer to assume that the filtration is bounded, in the sense that there is a natural number N such that $H_{*}\left(X_{s}\right)=0$ for $s<-N$ and $H_{*}\left(X_{s}\right)=H_{*}(X)$ for $s \geq N$. Then F_{s} / F_{s-1} is only nonzero for $-N \leq s \leq N$. We can start the induction with $F_{-N-1}=0$, and it stops after a finite number of steps at $F_{N}=H_{*}(X)$.

However, there is a refined approach to this that is a little better. Fix a filtration degree k, until further notice, and consider the problem of determining the quotients $H_{*}(X) / F_{k}$ in place of $H_{*}(X)$. There is an extension

$$
0 \rightarrow F_{s-1} / F_{k} \rightarrow F_{s} / F_{k} \rightarrow F_{s} / F_{s-1} \rightarrow 0
$$

for each $s>k$. We know that $F_{s-1} / F_{k}=0$ for $s=k+1$, and this starts the induction. If we know $F_{s} H_{*}(X) / F_{s-1}$ for each $s>k$ and can resolve each extension problem, then we can determine F_{s} / F_{k} for each s, hence also

$$
H_{*}(X) / F_{k}=\underset{s}{\operatorname{colim}} F_{s} / F_{k}
$$

There is an exact sequence

$$
0 \rightarrow \lim _{k} F_{k} \rightarrow H_{*}(X) \rightarrow \lim _{k} H_{*}(X) / F_{k} \rightarrow \operatorname{Rlim}_{k} F_{k} \rightarrow 0
$$

where $\lim _{k} F_{k}=\bigcap_{k} F_{k}$ is the limit, and $\operatorname{Rlim} F_{k}$ is the right derived limit, also known as $\lim ^{1}$, of the sequence

$$
\cdots \rightarrow F_{k-1} \rightarrow F_{k} \rightarrow \ldots
$$

These graded groups are the kernel and cokernel, respectively, of the homomorphism

$$
1-i: \prod_{k} F_{k} \rightarrow \prod_{k} F_{k}
$$

where 1 is the identity and i is the identification $\prod_{k} F_{k}=\prod_{k} F_{k-1}$ combined with the product of the homomorphisms $F_{k-1} \rightarrow F_{k}$. It is known that $\operatorname{Rlim}_{k} F_{k}=0$ if each homomorphism $F_{k-1} \rightarrow F_{k}$ is surjective, or if each group F_{k} is finite. (The Mittag-Leffler condition also ensures the vanishing of Rlim.)

If $\lim _{k} F_{k}=0$ we say that the filtration $\left\{F_{s}\right\}_{s}$ is Hausdorff. If $\operatorname{Rlim}_{k} F_{k}=0$ we say that it is complete. The terminology can be justified by thinking of the filtration as a neighborhood basis around 0 and considering the associated linear topology on $H_{*}(X)$. If $\left\{F_{s}\right\}_{s}$ is both complete and Hausdorff, then

$$
H_{*}(X) \cong \lim _{k} H_{*}(X) / F_{k}
$$

and we can recover the abutment $H_{*}(X)$ from the quotients $H_{*}(X) / F_{k}$, as desired.
Lemma 2.1. Let $\left\{F_{s}\right\}_{s}$ be an exhaustive complete Hausdorff filtration of $H_{*}(X)$. Then $H_{*}(X) \cong$ $\lim _{k} \operatorname{colim}_{s} F_{s} / F_{k}$.

2.2 Spectral sequences of homological type

Definition 2.2. A spectral sequence of homological type is a sequence of bigraded abelian groups $E_{*, *}^{r}=$ $\left\{E_{s, t}^{r}\right\}_{s, t}$, differentials $d^{r}: E_{*, *}^{r} \rightarrow E_{*, *}^{r}$ of bidegree $(-r, r-1)$, and isomorphisms $E_{s, t}^{r+1} \cong H_{s, t}\left(E_{*, *}^{r}, d^{r}\right)$ for all $r \geq 1$. We call $E_{*, *}^{r}$ the E^{r}-term, d^{r} the d^{r}-differential, s the filtration degree and $s+t$ the total degree of the spectral sequence. Sometimes only the terms for $r \geq 2$ are specified.

Making the bigrading explicit, the components of the d^{r}-differential are homomorphisms $d_{s, t}^{r}: E_{s, t}^{r} \rightarrow$ $E_{s-r, t_{\omega_{n}}+r-1}^{r}$. Note that the differential reduces the total degree by 1 . The condition to be a differential is that $d^{r} \circ d^{r}=0$, so that $\operatorname{im} d_{s+r, t-r+1}^{r} \subset \operatorname{ker} d_{s, t}^{r} \subset E_{s, t}^{r}$. The homology group $H_{s, t}\left(E_{*, *}^{r}, d^{r}\right)$ is the quotient group ker $d_{s, t}^{r} / \operatorname{im} d_{s+r, t-r+1}^{r}$, which is required to be isomorphic to $E_{s, t}^{r+1}$. In this sense the E^{r}-term and the d^{r}-differential determine the E^{r+1}-term.

Fix a bidegree (s, t) and consider the sequence of groups $\left\{E_{s, t}^{r}\right\}$ for $r \geq 1$. If there is a natural number N such that $d_{s, t}^{r}=0$ for all $r \geq N$, then there is a sequence of surjective homomorphisms $E_{s, t}^{N} \rightarrow \cdots \rightarrow E_{s, t}^{r} \rightarrow \ldots$ for $r \geq N$. We then let $E_{s, t}^{\infty}=\operatorname{colim}_{r} E_{s, t}^{r}$. ($($ On the other hand, if there is an integer N such that $d_{s+t, t-r+1}^{r}=0$ for all $r \geq N$, then there is a sequence of injective homomorphisms $\cdots \subset E_{s, t}^{r} \subset \cdots \subset E_{s, t}^{N}$ for $r \geq N$. In that case we let $\left.\left.E_{s, t}^{\infty}=\lim _{r} E_{s, t}^{r}.\right)\right)$
Definition 2.3. A spectral sequence $\left\{E_{*, *}^{r}, d^{r}\right\}_{r}$ converges strongly to a graded abelian group G_{*} if there is an exhaustive complete Hausdorff filtration $\cdots \subset F_{s-1} G_{*} \subset F_{s} G_{*} \subset \ldots$ of G_{*}, and isomorphisms

$$
E_{s, t}^{\infty} \cong F_{s} G_{s+t} / F_{s-1} G_{s+t}
$$

for all s and t. We call G_{*} the abutment of the spectral sequence.
If one can resolve the extension questions of how to recover $F_{s} G_{*} / F_{k} G_{*}$ from $F_{s-1} G_{*} / F_{k} G_{*}$ and $E_{s, *}^{\infty}$, then strong convergence suffices to recover the abutment G_{*} as $\lim _{k} \operatorname{colim}_{s} F_{s} G_{*} / F_{k} G_{*}$.

Definition 2.4. If there is a natural number N such that $d^{r}=0$ for all $r \geq N$ (in all bidegrees (s, t)), then there are isomorphisms $E_{*, *}^{r} \cong E_{*, *}^{r+1} \cong \ldots \cong E_{*, *}^{\infty}$ for all $r \geq N$. In this case we say that the spectral sequence collapses at the E^{N}-term.

In many cases one can prove that a spectral sequence collapses at an E^{N}-term by an appeal to the internal grading t. One needs to check that for each bidegree (s, t) where $E_{s, t}^{N}$ is nonzero, all of the groups $E_{s-r, t+r-1}^{N}$ are zero for $r \geq N$. Since d^{r} has bidegree $(-r, r+1)$, this will imply that $d_{s, t}^{r}=0$. In this case, we may say that the spectral sequence collapses at the E^{N}-term for bidegree reasons.

Definition 2.5. A morphism from a spectral sequence $\left\{E_{*, *}^{r}\right\}_{r}$ to a spectral sequence $\left\{{ }^{\prime} E_{*, *}^{r}\right\}_{r}$ is a sequence of bidegree-preserving homomorphisms

$$
f^{r}: E_{*, *}^{r} \longrightarrow{ }^{\prime} E_{*, *}^{r}
$$

such that the diagrams

and

commute. In other words, f^{r} is a chain map from $\left(E_{*, *}^{r}, d^{r}\right)$ to ($\left.{ }^{\prime} E_{*, *}^{r}, d^{r}\right)$, and induces f^{r+1} on passage to homology.

A morphism $\left\{f^{r}\right\}_{r}$ of spectral sequences induces a homomorphism $f^{\infty}: E_{*, *}^{\infty} \rightarrow{ }^{\prime} E_{*, *}^{\infty}$ of E^{∞}-terms, when they are defined as discussed above.

Proposition 2.6. Let $\left\{f^{r}: E_{*, *}^{r} \rightarrow{ }^{\prime} E_{*, *}^{r}\right\}_{r}$ be a morphism of spectral sequences. If there is a natural number N such that f^{N} is an isomorphism, then f^{r} is an isomorphism for all $r \geq N$, including $r=\infty$.

Proof. If f^{r} is an isomorphism, then so is the homomorphism f_{*}^{r} induced on homology, so f^{r+1} is an isomorphism. Proceed by induction, starting at $r=N$. Pass to (co-)limits to get to $r=\infty$.

Definition 2.7. A morphism $\left\{f^{r}: E_{*, *}^{r} \rightarrow^{\prime} E_{*, *}^{r}\right\}_{r}$ of spectral sequences converges to a homomorphism $f: G_{*} \rightarrow G_{*}^{\prime}$ if f restricts to homomorphisms $F_{s} G_{*} \rightarrow F_{s} G_{*}^{\prime}$ for all s and the induced homomorphisms $F_{s} G_{*} / F_{s-1} G_{*} \rightarrow F_{s} G_{*}^{\prime} / F_{s-1} G_{*}^{\prime}$ agree with the homomorphisms $f^{\infty}: E_{s, *}^{\infty} \rightarrow{ }^{\prime} E_{s, *}^{\infty}$ under the isomorphisms $F_{s} G_{*} / F_{s-1} G_{*} \cong E_{s, *}^{\infty}$ and $F_{s} G_{*}^{\prime} / F_{s-1} G_{*}^{\prime} \cong{ }^{\prime} E_{s, *}^{\infty}$, for all s.

Proposition 2.8. Let $\left\{f^{r}: E_{*, *}^{r} \rightarrow^{\prime} E_{*, *}^{r}\right\}_{r}$ be a morphism of spectral sequences, converging strongly to a homomorphism $f: G_{*} \rightarrow G_{*}^{\prime}$. If $f^{\infty}: E_{*, *}^{\infty} \rightarrow{ }^{\prime} E_{*, *}^{\infty}$ is an isomorphism, then so is $f: G_{*} \rightarrow G_{*}^{\prime}$.

Proof. We use the map of short exact sequences

to prove, by induction on r, that $F_{s} G_{*} / F_{s-r} G_{*} \rightarrow F_{s} G_{*}^{\prime} / F_{s-r} G_{*}^{\prime}$ is an isomorphism for all $r \geq 1$ and all s. Passing to limits over r, we get an isomorphism $F_{s} G_{*} \rightarrow F_{s} G_{*}^{\prime}$ for all s. Passing to colimits over s we get the isomorphism $f: G_{*} \rightarrow G_{*}^{\prime}$.

2.3 Cycles and boundaries

Recall the diagram

$$
\cdots \longrightarrow H_{*}\left(X_{s-1}\right) \xrightarrow[r^{2}]{i_{*}} \operatorname{H}_{*}\left(X_{s}\right) \longrightarrow \ldots \longrightarrow H_{*}(X)
$$

where the triangle is a rolled-up long exact sequence. The homomorphism $H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)$ induces an isomorphism

$$
F_{s}=\operatorname{im}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right) \cong \frac{H_{*}\left(X_{s}\right)}{\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)}
$$

The image of i_{*} maps onto F_{s-1}, so there is a quotient isomorphism

$$
F_{s} / F_{s-1} \cong \frac{H_{*}\left(X_{s}\right)}{\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)+\operatorname{im} i_{*}} .
$$

The homomorphism j_{*} induces isomorphisms $H_{*}\left(X_{s}\right) / \operatorname{im} i_{*} \cong \operatorname{im} j_{*} \cong \operatorname{ker} \partial$, and there is a quotient isomorphism

$$
\frac{H_{*}\left(X_{s}\right)}{\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)+\operatorname{im} i_{*}} \cong \frac{\operatorname{ker} \partial}{j_{*}\left(\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)\right)} .
$$

Lemma 2.9. There is a natural isomorphism

$$
F_{s} / F_{s-1} \cong Z_{s} / B_{s}
$$

where $Z_{s}=\operatorname{ker} \partial, B_{s}=j_{*}\left(\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)\right)$, and $B_{s} \subset Z_{s} \subset H_{*}\left(X_{s}, X_{s-1}\right)$.
The task of a spectral sequence is to start with the groups $H_{*}\left(X_{s}, X_{s-1}\right)$ and to determine the cycle and boundary subgroups Z_{s} and B_{s}, or more precisely, the quotient groups $Z_{s} / B_{s} \cong F_{s} / F_{s-1}$. The starting groups will be the E^{1}-term, $E_{s, *}^{1}=H_{*}\left(X_{s}, X_{s-1}\right)$, while the quotient groups will be the E^{∞} _term $Z_{s} / B_{s}=E_{s, *}^{\infty}$. The passage from E^{1} to E^{∞} can be done in steps, by weakening the condition that an element in $Z_{s}=\operatorname{ker} \partial$ must map to 0 under ∂, and strengthening the condition that an element in $\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)$ goes to 0 in $H_{*}(X)$. The intermediate steps give the E^{r}-terms in the spectral sequence.

Regarding the cycles, we let $r \geq 1$ and consider the diagram:

Let

$$
Z_{s}^{r}=\partial^{-1}\left(\operatorname{im} i_{*}^{r-1}: H_{*-1}\left(X_{s-r}\right) \rightarrow H_{*-1}\left(X_{s-1}\right)\right)
$$

be the r-th cycles in $H_{*}\left(X_{s}, X_{s-1}\right)$. Then

$$
Z_{s}=\operatorname{ker} \partial \subset Z_{s}^{\infty} \subset \cdots \subset Z_{s}^{r} \subset \cdots \subset Z_{s}^{1}=H_{*}\left(X_{s}, X_{s-1}\right)
$$

where $Z_{s}^{\infty}=\lim _{r} Z_{s}^{r}=\bigcap_{r} Z_{s}^{r}$ is the (graded abelian) group of infinite cycles
There is a subtle point about limits and images here. If the intersection

$$
\bigcap_{r} \operatorname{im} i_{*}^{r-1}: H_{*-1}\left(X_{s-r}\right) \rightarrow H_{*-1}\left(X_{s-1}\right)
$$

is zero, then $Z_{s}=Z_{s}^{\infty}$, so that we can obtain $Z_{s}=\operatorname{ker} \partial$ as the limit over r of the cycle groups Z_{s}^{r}. This is certainly the case if there is an integer N such that $H_{*-1}\left(X_{s}\right)=0$ for $s<-N$, but it is not, in general, enough to assume that $\lim _{s} H_{*-1}\left(X_{s}\right)=0$. We shall soon return to this in greater generality.

Regarding the boundaries, we let $r \geq 1$ and consider the diagram:

Let

$$
B_{s}^{r}=j_{*}\left(\operatorname{ker} i_{*}^{r-1}: H_{*}\left(X_{s}\right) \rightarrow H_{*}\left(X_{s+r-1}\right)\right)
$$

be the r-th boundaries in $H_{*}\left(X_{s}, X_{s-1}\right)$. Then

$$
0=B_{s}^{1} \subset \cdots \subset B_{s}^{r} \subset \cdots \subset B_{s}^{\infty} \subset B_{s}=j_{*}\left(\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)\right)
$$

where $B_{s}^{\infty}=\operatorname{colim}_{r} B_{s}^{r}=\bigcup_{r} B_{s}^{r}$ is the (graded abelian) group of infinite boundaries.
The interaction between colimits and kernels is less subtle. If the union

$$
\bigcup_{r} \operatorname{ker} i_{*}^{r-1}: H_{*}\left(X_{s}\right) \rightarrow H_{*}\left(X_{s+r-1}\right)
$$

equals $\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)$, then $B_{s}^{\infty}=B_{s}$, so that we can obtain $B_{s}=j_{*}\left(\operatorname{ker}\left(H_{*}\left(X_{s}\right) \rightarrow H_{*}(X)\right)\right)$ as the colimit over r of the boundary groups B_{s}^{r}. In this case it suffices to assume that $\operatorname{colim}_{s} H_{*}\left(X_{s}\right) \cong$ $H_{*}(X)$. This is a reasonable assumption, which also implies that the filtration $\left\{F_{s}\right\}_{s}$ of $H_{*}(X)$ is exhaustive.

We now have a doubly infinite filtration

$$
0=B_{s}^{1} \subset \cdots \subset B_{s}^{r} \subset \cdots \subset B_{s}^{\infty} \subset B_{s} \subset Z_{s} \subset Z_{s}^{\infty} \subset \cdots \subset Z_{s}^{r} \subset \cdots \subset Z_{s}^{1}=H_{*}\left(X_{s}, X_{s-1}\right)
$$

and in favorable cases (this is the subject of convergence), $B_{s}^{\infty}=B_{s}$ and $Z_{s}=Z_{s}^{\infty}$. We define the E^{r}-term

$$
E_{s}^{r}=Z_{s}^{r} / B_{s}^{r}
$$

to be given by the r-th cycles modulo the r-th boundaries, for $1 \leq r \leq \infty$. Then $E_{s}^{1} \cong H_{*}\left(X_{s}, X_{s-1}\right)$ and, assuming convergence, $E_{s}^{\infty} \cong F_{s} / F_{s-1}$. The wonderful algebraic fact is that there is a differential $d^{r}: E_{s}^{r} \rightarrow E_{s-r}^{r}$ of degree $(r-1)$ that makes the collection $\left\{E_{s}^{r}, d^{r}\right\}_{r}$ a spectral sequence, so that there are isomorphisms $H_{s}\left(E_{*}^{r}, d^{r}\right) \cong E_{s}^{r+1}$ for all finite $r \geq 1$.

Theorem 2.10. Suppose that $H_{*}\left(X_{s}\right)=0$ for $s<0$ and that $\operatorname{colim}_{s} H_{*}\left(X_{s}\right) \cong H_{*}(X)$. Then there is a spectral sequence of homological type, with $E_{s, t}^{1}=H_{s+t}\left(X_{s}, X_{s-1}\right)$ and $d^{1}: E_{s, t}^{1} \rightarrow E_{s-1, t}^{1}$ given by the composite homomorphism

$$
H_{s+t}\left(X_{s}, X_{s-1}\right) \xrightarrow{\partial} H_{s+t-1}\left(X_{s-1}\right) \xrightarrow{j_{*}} H_{s+t-1}\left(X_{s-1}, X_{s-2}\right),
$$

converging strongly to $H_{*}(X)$.

2.4 Unrolled exact couples

Following Massey and Boardman, we extract the essential algebraic structure from the discussion above.
Definition 2.11. An unrolled exact couple (of homological type) is a diagram

of graded abelian groups and homomorphisms, in which each triangle

$$
\ldots \longrightarrow A_{s-1} \xrightarrow{i} A_{s} \xrightarrow{j} E_{s} \xrightarrow{\partial} A_{s-1} \longrightarrow \ldots
$$

is a long exact sequence. Usually i and j will be of degree 0 and ∂ of degree -1 .
For $r \geq 1$, let

$$
Z_{s}^{r}=\partial^{-1}\left(\mathrm{im} i^{r-1}: A_{s-r} \rightarrow A_{s-1}\right)
$$

be the r-th cycle subgroup of E_{s}, let

$$
B_{s}^{r}=j\left(\operatorname{ker} i^{r-1}: A_{s} \rightarrow A_{s+r-1}\right)
$$

be the r-th boundary subgroup of E_{s}, and let

$$
E_{s}^{r}=Z_{s}^{r} / B_{s}^{r}
$$

be the component of the E^{r}-term in filtration degree s. Let

$$
d_{s}^{r}: E_{s}^{r} \longrightarrow E_{s-r}^{r}
$$

be the r-th differential, given by $d_{s}^{r}([x])=[j(y)]$, where $x \in Z_{s}^{r}, y \in A_{s-r}$ and $\partial(x)=i^{r-1}(y)$.

Proposition 2.12. d^{r} is well-defined, $\operatorname{ker} d_{s}^{r} \cong Z_{s}^{r+1} / B_{s}^{r}$ and $\operatorname{im} d_{s+r}^{r} \cong B_{s}^{r+1} / B_{s}^{r}$, so $H_{s}\left(E_{*}^{r}, d^{r}\right) \cong$ E_{s}^{r+1}. Hence $\left\{E^{r}, d^{r}\right\}_{r}$ is a spectral sequence of homological type.
Proof. (Straightforward.)
Definition 2.13. Let $G=\operatorname{colim}_{s} A_{s}$ be the direct limit. Let $F_{s}=\operatorname{im}\left(A_{s} \rightarrow G\right)$, so that there is an increasing, exhaustive filtration $\cdots \subset F_{s-1} \subset F_{s} \subset \cdots \subset G$.

Theorem 2.14 (Cartan-Eilenberg(?)). Suppose that $A_{s}=0$ for $s<0$, so that $E_{s}^{1}=0$ for $s<0$, and all but finitely many differentials leaving any fixed bidegree are zero. Then $\left\{F_{s}\right\}_{s}$ is trivially a complete Hausdorff filtration, and there are isomorphisms $E_{s}^{\infty} \cong F_{s} / F_{s-1}$, so that the spectral sequence $\left\{E^{r}, d^{r}\right\}_{r}$ converges strongly to the colimit G.

2.5 Spectral sequences of cohomological type

If we apply cohomology, in place of homology, to the filtered spectrum X, we get a diagram

where δ has cohomological degree +1 . This leads to an unrolled exact couple and a spectral sequence, where we may be able to recover $H^{*}(X)$ as the limit group $\lim _{s} H^{*}\left(X_{s}\right)$ under the assumption that $\operatorname{colim}_{s} H^{*}\left(X_{s}\right)=0$.

We shall instead focus on spectral sequences that converge to the colimit groups. By passing to relative cohomology groups, we can transform the diagram above as follows:

$$
\cdots \longrightarrow H^{*}\left(X, X_{s}\right) \xrightarrow[\delta^{-}]{j^{*}} H^{*}\left(X, X_{s-1}\right) \longrightarrow \cdots \longrightarrow H^{*}(X)
$$

This leads to an unrolled exact couple and a spectral sequence, with $A_{-s}=H^{*}\left(X, X_{s-1}\right)$ and $E_{-s}=$ $H^{*}\left(X_{s}, X_{s-1}\right)$, so that $i=j^{*}, j=i^{*}$ have degree 0 and $\partial=\delta$ has (cohomological) degree +1 . Note that the E^{1}-term, given by the relative groups $H^{*}\left(X_{s}, X_{s-1}\right)$, is the same as before. The sign change in the filtration grading is undesirable. We therefore convert to a cohomological indexing, by letting $A^{s}=A_{-s}$ and $E^{s}=E_{-s}$. In the example above we would then have $A^{s}=H^{*}\left(X, X_{s-1}\right)$ and $E^{s}=H^{*}\left(X_{s}, X_{s-1}\right)$.

If there is an integer N such that $H^{*}\left(X, X_{s}\right)=0$ for $s>N$, or more subtle limiting conditions are satisfied (see the subsection on conditional convergence), then the associated spectral sequence will converge to $\operatorname{colim}_{s} H^{*}\left(X, X_{s}\right)$. If $\operatorname{colim}_{s} H^{*}\left(X_{s}\right)=0$ then this is isomorphic to the desired abutment group $H^{*}(X)$.

We shall mostly be interested in filtered spectra where $X_{s}=Y$ for all $s \geq 0$, so that the E^{1}-term is concentrated in the region where $s \leq 0$. In this case is is also convenient to convert to a cohomological indexing, by letting $Y^{s}=X_{-s}$, so that we have a tower

$$
\cdots \rightarrow Y^{s+1} \rightarrow Y^{s} \rightarrow \cdots \rightarrow Y^{1} \rightarrow Y^{0}=Y
$$

of spectra. Let K^{s} be the mapping cone (homotopy cofiber) of the map $i: Y^{s+1} \rightarrow Y^{s}$, so that there is a cofiber sequence

$$
Y^{s+1} \xrightarrow{i} Y^{s} \xrightarrow{j} K^{s} \xrightarrow{\partial} \Sigma Y^{s+1}
$$

for each $s \geq 0$. We may apply any generalized homology theory to this diagram, such as the (stable) homotopy groups of spectra. This leads to an unrolled exact couple

where i_{*} and j_{*} have degree zero and ∂ has (homotopical) degree -1 . We have $A^{s}=\pi_{*}\left(Y^{s}\right)$ and $E^{s}=\pi_{*}\left(K^{s}\right)$.

Definition 2.15. A spectral sequence of cohomological type is a sequence of bigraded abelian groups $E_{r}^{*, *}=\left\{E_{r}^{s, t}\right\}_{s, t}$, differentials $d_{r}: E_{r}^{*, *} \rightarrow E_{r}^{*, *}$ of bidegree $(r,-r+1)$, and isomorphisms $E_{r+1}^{s, t} \cong$ $H^{s, t}\left(E_{r}^{*, *}, d_{r}\right)$ for all $r \geq 1$. We call $E_{r}^{*, *}$ the E_{r}-term, d_{r} the d_{r}-differential, s the filtration degree and $s+t$ the total degree of the spectral sequence.

Definition 2.16. A spectral sequence of Adams type is a sequence of bigraded abelian groups $E_{r}^{*, *}=$ $\left\{E_{r}^{s, t}\right\}_{s, t}$, differentials $d_{r}: E_{r}^{*, *} \rightarrow E_{r}^{*, *}$ of bidegree $(r, r-1)$, and isomorphisms $E_{r+1}^{s, t} \cong H^{s, t}\left(E_{r}^{*, *}, d_{r}\right)$ for all $r \geq 1$. We call $E_{r}^{*, *}$ the E_{r}-term, d_{r} the d_{r}-differential, s the filtration degree and $t-s$ the total degree of the spectral sequence.

Definition 2.17. An unrolled exact couple (of cohomological type, resp. of Adams type) is a diagram

of graded abelian groups and homomorphisms, in which each triangle

$$
\ldots \longrightarrow A^{s+1} \xrightarrow{i} A^{s} \xrightarrow{j} E^{s} \xrightarrow{\partial} A^{s+1} \longrightarrow \ldots
$$

is a long exact sequence. The respective bidegrees of i, j and ∂ are $(-1,1),(0,0)$ and $(1,0)$ in the cohomological case and $(-1,-1),(0,0)$ and $(1,0)$ in the Adams case.

For $r \geq 1$ let

$$
Z_{r}^{s}=\partial^{-1}\left(\operatorname{im} i^{r-1}: A^{s+r} \rightarrow A^{s+1}\right)
$$

be the r-th (co-)cycle subgroup of E^{s}, let

$$
B_{r}^{s}=j\left(\operatorname{ker} i^{r-1}: A^{s} \rightarrow A^{s-r+1}\right)
$$

be the r-th (co-)boundary subgroup, and let

$$
E_{r}^{s}=Z_{r}^{s} / B_{r}^{s}
$$

be the filtration degree s component of the E_{r}-term. Note that $Z_{1}^{s}=E^{s}$ and $B_{1}^{s}=0$ so $E_{1}^{s}=E^{s}$. Let

$$
d_{r}^{s}: E_{r}^{s} \longrightarrow E_{r}^{s+r}
$$

be the r-th differential, satisfying $d_{r}^{s}([x])=[j(y)]$, where $x \in Z_{r}^{s}, y \in A^{s+r}$ and $\partial(x)=i^{r-1}(y)$. Then d_{r} has bidegree $(r,-r+1)$ in the cohomological case and bidegree $(r, r-1)$ in the Adams case.

Proposition 2.18. d_{r} is well-defined, $\operatorname{ker} d_{r}^{s} \cong Z_{r+1}^{s} / B_{r}^{s}$ and $\operatorname{im} d_{r}^{s}=B_{r+1}^{s} / B_{r}^{s}$, so $H^{s}\left(E_{r}^{*}, d_{r}\right) \cong E_{r+1}^{s}$. Hence $\left\{E_{r}, d_{r}\right\}_{r}$ is a spectral sequence of cohomological type, resp. of Adams type.

Proposition 2.19. Consider a tower of spectra

where K^{s} is the mapping cone of $i: Y^{s+1} \rightarrow Y^{s}$, and $\partial: K^{s} \rightarrow \Sigma Y^{s+1}$ is the cofiber map. Applying homotopy one obtains an unrolled exact couple of Adams type, giving rise to a spectral sequence of Adams type with E_{1}-term

$$
E_{1}^{s, t}=\pi_{t-s}\left(K^{s}\right)
$$

Figure 1: Adams type differentials
for $s \geq 0$, and d^{1}-differential $d_{1}^{s, t}: E_{1}^{s, t} \rightarrow E_{1}^{s+1, t}$ given by the composite

$$
\pi_{t-s}\left(K^{s}\right) \xrightarrow{\partial} \pi_{t-s-1}\left(Y^{s+1}\right) \xrightarrow{j_{*}} \pi_{t-s-1}\left(K^{s+1}\right) .
$$

If the images $F^{s}=\operatorname{im}\left(\pi_{*}\left(Y^{s}\right) \rightarrow \pi_{*}(Y)\right)$ define a complete Hausdorff filtration of $\operatorname{colim}_{s} \pi_{*}\left(Y_{s}\right)=\pi_{*}(Y)$, meaning that $\lim _{s} F^{s}=0$ and $\operatorname{Rlim}_{s} F^{s}=0$, and there are isomorphisms $E_{\infty}^{s} \cong F^{s} / F^{s+1}$ for all $s \geq 0$, then the spectral sequence converges strongly to $\pi_{*}(Y)$.

For spectral sequences of Adams type, it is traditional to display the E_{r}-terms in a coordinate system with the total degree $t-s$ on the horizontal axis, and the filtration degree s on the vertical axis, thus using $(t-s, s)$-coordinates, rather than (s, t)-coordinates. The d_{r}-differentials change $(t-s, s)$ by $(-1, r)$, mapping one unit to the left and r units upwards.

The groups $E_{\infty}^{s, t}=E_{\infty}^{s, s+n}$ contributing to the homotopy group $\pi_{n}(Y)$ in the abutment are precisely those that sit in the column $t-s=n$, for each integer n.

2.6 Conditional convergence

Following Boardman, we address the issue of convergence for spectral sequences of cohomological type, or of Adams type. For simplicity, we concentrate on the case when $E_{1}^{s}=0$ for $s<0$, so that all but finitely many differentials entering any fixed bidegree are zero.
Definition 2.20. Consider an unrolled exact couple (of cohomological type, or Adams type)

with $A^{0}=A^{s}=G$ and $E^{s}=0$ for all $s<0$. We say that the resulting spectral sequence converges conditionally (to $G=\operatorname{colim}_{s} A_{s}$) if $\lim _{s} A^{s}=0$ and $\operatorname{Rlim}_{s} A^{s}=0$. Note that conditional convergence is a condition on the groups A^{s} in the unrolled exact couple, not on the filtration groups $F^{s}=\operatorname{im}\left(A^{s} \rightarrow G\right)$.

Definition 2.21. Let $Z_{\infty}^{s}=\lim _{r} Z_{r}^{s}=\bigcap_{r} Z_{r}^{s}$ be the infinite cycles in E^{s}, let $B_{\infty}^{s}=\operatorname{colim}_{r} B_{r}^{s}=\bigcup_{r} B_{r}^{s}$ be the infinite boundaries, and let $E_{\infty}^{s}=Z_{\infty}^{s} / B_{\infty}^{s}$ be the filtration s component of the E_{∞}-term.

As in the homological case we have inclusions $Z^{s}=\operatorname{ker} \partial \subset Z_{\infty}^{s}$ and $B_{\infty}^{s} \subset B^{s}=j_{*}\left(\operatorname{ker}\left(A^{s} \rightarrow G\right)\right)$. We also have isomorphisms $F^{s} / F^{s+1} \cong Z^{s} / B^{s}$. We have assumed that $E^{s}=0$ for $s<0$, so $B_{r}^{s}=B_{\infty}^{s}=$ B^{s} for all $r>s$. To establish strong convergence, we therefore need to know that $Z^{s}=Z_{\infty}^{s}$ and that $\left\{F^{s}\right\}_{s}$ is a complete Hausdorff filtration. The E_{∞}-term is the limit of the sequence of inclusions

$$
E_{\infty}^{s}=\lim _{r} E_{r}^{s} \subset \cdots \subset E_{r+1}^{s} \subset E_{r}^{s} \subset \ldots
$$

where $r>s$. The following derived limit group measures the difference between conditional convergence and strong convergence.

Definition 2.22. Let $R E_{\infty}^{s}=\operatorname{Rlim}_{r} E_{r}^{s}$ be the derived E_{∞}-term.
Lemma 2.23. If there is a natural number N such that $E_{N}^{*}=E_{\infty}^{*}$ (the spectral sequence collapses at the E_{N}-term), or such that $E_{N}^{s, t}$ is finite in each bidegree (s, t), then $R E_{\infty}=0$.

Consider an unrolled exact couple

Theorem 2.24 (Boardman). Suppose that (a) $A^{0}=A^{s}$ for $s<0$, so that $E^{s}=0$ for $s<0$ and all but finitely many differentials entering any fixed bidegree are zero, (b) The spectral sequence is conditionally convergent, so that $\lim _{s} A^{s}=0$ and $\operatorname{Rlim}_{s} A^{s}=0$, and (c) $R E_{\infty}=0$. Then the spectral sequence converges strongly to $A^{0}=G$. In other words, the subgroups $F^{s}=\operatorname{im}\left(A^{s} \rightarrow G\right)$ form an exhaustive complete Hausdorff filtration of G, and there are isomorphisms $F^{s} / F^{s+1} \cong E_{\infty}^{s}$.

This is part of Boardman's Theorem 7.3, which builds on his Lemmas 5.6 and 5.9. We omit the proof. Consider a tower of spectra

where K^{s} is the mapping cone of $i: Y^{s+1} \rightarrow Y^{s}$, and $\partial: K^{s} \rightarrow \Sigma Y^{s+1}$ is the cofiber map.
Definition 2.25. The homotopy limit of the tower Y^{s} is the homotopy fiber

$$
\underset{s}{\operatorname{holim}} Y^{s} \longrightarrow \prod_{s} Y^{s} \xrightarrow{1-i} \prod_{s} Y^{s}
$$

where 1 is the identity map and i is the composite of the identification $\prod_{s} Y^{s} \cong \prod_{s} Y^{s+1}$ and the product of the maps $i: Y^{s+1} \rightarrow Y^{s}$.

Proposition 2.26 (Milnor). There is a short exact sequence

$$
0 \rightarrow \operatorname{Rlim}_{s} \pi_{n+1}\left(Y^{s}\right) \longrightarrow \pi_{n}\left(\operatorname{holim}_{s} Y^{s}\right) \longrightarrow \lim _{s} \pi_{n}\left(Y^{s}\right) \rightarrow 0
$$

for each integer n.
Consider the unrolled exact couple with $A^{s}=\pi_{*}\left(Y^{s}\right)$ and $E^{s}=\pi_{*}\left(K^{s}\right)$ associated to a tower of spectra as above. The following two conditions ensure strong convergence to $\pi_{*}(Y)$.

Corollary 2.27. The associated spectral sequence is conditionally convergent if and only if $\operatorname{holim}_{s} Y^{s}$ is contractible. If $\pi_{n}\left(K^{s}\right)$ is a finite group, for each s and n, then $R E_{\infty}=0$. If both conditions hold then the spectral sequence is strongly convergent.

Proof. Conditional convergence means that $A^{\infty}=\lim _{s} \pi_{*}\left(Y^{s}\right)$ and $R A^{\infty}=\operatorname{Rlim}_{s} \pi_{*}\left(Y^{s}\right)$ both vanish. By Milnor's lim-Rlim sequence this is equivalent to the vanishing of $\pi_{*}\left(\operatorname{holim}_{s} Y^{s}\right)$. We have $E^{s}=$ $\pi_{*}\left(K^{s}\right)$, so if each $\pi_{n}\left(K^{s}\right)$ is finite then E_{1} is finite in each bidegree, which implies that $R E_{\infty}=0$.

3 The Steenrod algebra

3.1 Steenrod operations

We start at the prime $p=2$. For brevity, we write $H_{*}(X)$ for $H_{*}\left(X ; \mathbb{F}_{2}\right)$ and $H^{*}(X)$ for $H^{*}\left(X ; \mathbb{F}_{2}\right)$.
Theorem 3.1 (Steenrod, Cartan). (a) For each pair of integers $i, n \geq 0$ there is a natural transformation $S q^{i}: \tilde{H}^{n}(X) \longrightarrow \tilde{H}^{n+i}(X)$ of functors from based spaces to abelian groups.
(b) $S q^{0}=1$ is the identity.
(c) If $n=|x|$ then $S q^{n}(x)=x^{2}$ is the cup square.
(d) If $i>|x|$ then $S q^{i}(x)=0$.
(e) (Cartan formula) $S q^{k}(x y)=\sum_{i=0}^{k} S q^{i}(x) S q^{k-i}(y)$.

We call $S q^{i}$ the i-th Steenrod (reduced) squaring operation. Naturality means that for each base-point preserving map $f: X \rightarrow Y$ we have $f^{*} S q^{i}(x)=S q^{i}\left(f^{*} x\right)$, and $S q^{i}$ is a homomorphism. The Cartan formula can be rewritten as $S q^{k}(x y)=\sum_{i+j=k} S q^{i}(x) S q^{j}(y)$, with the convention that $S q^{i}(x)=0$ for $i<0$, or in terms of the smash product $\wedge: \tilde{H}^{n}(X) \otimes \tilde{H}^{m}(Y) \rightarrow \tilde{H}^{n+m}(X \wedge Y)$ as $S q^{k}(x \wedge y)=$ $\sum_{i+j=k} S q^{i}(x) \wedge S q^{j}(y)$.

The properties in the theorem can be taken as axioms, and imply the following results. Recall that the Bockstein homomorphism of the coefficient sequence $\mathbb{F}_{2} \rightarrow \mathbb{Z} / 4 \rightarrow \mathbb{F}_{2}$ is the connecting homomorphism $\beta: \tilde{H}^{n}(X) \rightarrow \tilde{H}^{n+1}(X)$ in the long exact sequence associated to the short exact sequence $0 \rightarrow C^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow C^{*}(X ; \mathbb{Z} / 4) \rightarrow C^{*}\left(X ; \mathbb{F}_{2}\right) \rightarrow 0$ of cochain complexes. Let $\Sigma: \tilde{H}^{n}(X) \rightarrow \tilde{H}^{n+1}(X)$ be the suspension isomorphism.

Theorem 3.2. (a) $S q^{1}=\beta$ is the Bockstein homomorphism.
(b) (Adem relations) If $a<2 b$ then

$$
S q^{a} S q^{b}=\sum_{j=0}^{[a / 2]}\binom{b-1-j}{a-2 j} S q^{a+b-j} S q^{j}
$$

(c) $S q^{i}(\Sigma x)=\Sigma S q^{i}(x)$.

With the convention that $\binom{n}{k}=0$ for $k<0$, the summation limits $j \geq 0$ and $j \leq[a / 2]$ can be ignored. Notice that $S q^{1} S q^{b}=S q^{b+1}$ for b even, and $S q^{1} S q^{b}=0$ for b odd. Note also that $S q^{2 b-1} S q^{b}=0$ for all
b. The Adem relations in degrees ≤ 11 are:

$$
\begin{aligned}
& S q^{1} S q^{1}=0 \\
& S q^{1} S q^{2}=S q^{3} \\
& S q^{1} S q^{3}=0 \\
& S q^{2} S q^{2}=S q^{3} S q^{1} \\
& S q^{1} S q^{4}=S q^{5} \\
& S q^{2} S q^{3}=S q^{5}+S q^{4} S q^{1} \\
& S q^{3} S q^{2}=0 \\
& S q^{1} S q^{5}=0 \\
& S q^{2} S q^{4}=S q^{6}+S q^{5} S q^{1} \\
& S q^{3} S q^{3}=S q^{5} S q^{1} \\
& S q^{1} S q^{6}=S q^{7} \\
& S q^{2} S q^{5}=S q^{6} S q^{1} \\
& S q^{3} S q^{4}=S q^{7} \\
& S q^{4} S q^{3}=S q^{5} S q^{2} \\
& S q^{1} S q^{7}=0 \\
& S q^{2} S q^{6}=S q^{7} S q^{1} \\
& S q^{3} S q^{5}=S q^{7} S q^{1} \\
& S q^{4} S q^{4}=S q^{7} S q^{1}+S q^{6} S q^{2} \\
& S q^{5} S q^{3}=0
\end{aligned}
$$

To prove (a) one considers the case $X=\mathbb{R} P^{2}$. To prove (b) one considers $X=\left(\mathbb{R} P^{\infty}\right)^{r}$ for large r, as we will outline below. To prove (c) one uses the smash product form of the Cartan formula for $Y=S^{1}$.

Now let $p>2$ be an odd prime.
Theorem 3.3 (Steenrod, Cartan). (a) For each pair of integers $i, n \geq 0$ there is a natural transforma-
tion $P^{i}: \tilde{H}^{n}\left(X ; \mathbb{F}_{p}\right) \longrightarrow \tilde{H}^{n+2 i(p-1)}\left(X ; \mathbb{F}_{p}\right)$ of functors from based spaces to abelian groups.
(b) $P^{0}=1$ is the identity.
(c) If $2 k=|x|$ then $P^{k}(x)=x^{p}$ is the cup p-th power.
(d) If $2 k>|x|$ then $P^{k}(x)=0$.
(e) (Cartan formula) $P^{k}(x y)=\sum_{i=0}^{k} P^{i}(x) P^{k-i}(y)$.

Let $\beta: \tilde{H}^{n}\left(X ; \mathbb{F}_{p}\right) \rightarrow \tilde{H}^{n+1}\left(X ; \mathbb{F}_{p}\right)$ be the Bockstein homomorphism associated to the coefficient sequence $\mathbb{F}_{p} \rightarrow \mathbb{Z} / p^{2} \rightarrow \mathbb{F}_{p}$.

Theorem 3.4. (a) (Adem relations) If $a<p b$ then

$$
P^{a} P^{b}=\sum_{j=0}^{[a / p]}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P^{a+b-j} P^{j}
$$

(b) If $a \leq p b$ then

$$
\begin{aligned}
& P^{a} \beta P^{b}=\sum_{j=0}^{[a / p]}(-1)^{a+j}\binom{(p-1)(b-j)}{a-p j} \beta P^{a+b-j} P^{j} \\
&-\sum_{j=0}^{[(a-1) / p]}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j-1} P^{a+b-j} \beta P^{j}
\end{aligned}
$$

(c) $P^{i}(\Sigma x)=\Sigma P^{i}(x)$ and $\beta(\Sigma x)=-\Sigma \beta(x)$.

The first few p-primary Adem relations (for $b=1$) are

$$
\begin{aligned}
P^{a} P^{1} & =(-1)^{a}\binom{p-2}{a} P^{a+1} \\
P^{a} \beta P^{1} & =(-1)^{a}\binom{p-1}{a} \beta P^{a+1}-(-1)^{a}\binom{p-2}{a-1} P^{a+1} \beta
\end{aligned}
$$

for $0<a<p$, which imply that $\left(P^{1}\right)^{p}=0$, and $P^{p} \beta P^{1}=\beta P^{p} P^{1}$.

3.2 Construction of the reduced squares

We follow Steenrod-Epstein, Chapter VII and Hatcher, Section 4.L.
Definition 3.5. Let $H_{n}=K\left(\mathbb{F}_{2}, n\right)$ be an Eilenberg-Mac Lane complex of type $\left(\mathbb{F}_{2}, n\right)$, i.e., a space with $\pi_{i}\left(H_{n}\right)=0$ for $i \neq n$ and $\pi_{n}\left(H_{n}\right) \cong \mathbb{F}_{2}$. Such spaces exist, and are uniquely determined up to weak homotopy equivalence. There is a universal class $\iota_{n} \in \tilde{H}^{n}\left(H_{n}\right)$ that corresponds to the identity homomorphism $\mathbb{F}_{2} \rightarrow \mathbb{F}_{2}$ under the isomorphisms $H^{n}\left(H_{n}\right) \cong \operatorname{Hom}\left(H_{n}\left(H_{n}\right), \mathbb{F}_{2}\right) \cong \operatorname{Hom}\left(\pi_{n}\left(H_{n}\right), \mathbb{F}_{2}\right) \cong$ $\operatorname{Hom}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.

Note that $H_{1} \simeq \mathbb{R} P^{\infty}$.
Theorem 3.6 (Eilenberg-Mac Lane). There is a natural isomorphism $\left[X, H_{n}\right] \cong \tilde{H}^{n}(X)$ taking the homotopy class of a base-point preserving map $f: X \rightarrow H_{n}$ to the image $f^{*}\left(\iota_{n}\right)$ of the universal class.

See Hatcher (2002) Theorem 4.57.
The smash product $\iota_{n} \wedge \iota_{n} \in \tilde{H}^{2 n}\left(H_{n} \wedge H_{n}\right)$ is represented by a map $\phi: H_{n} \wedge H_{n} \rightarrow H_{2 n}$. By homotopy commutativity, there is a homotopy $I_{+} \wedge H_{n} \wedge H_{n} \rightarrow H_{2 n}$ from ϕ to $\phi \gamma$, where $\gamma: H_{n} \wedge H_{n} \rightarrow H_{n} \wedge H_{n}$ is the twist map. Thinking of the interval I as the upper half of a circle S^{1}, this homotopy can be thought of as a C_{2}-equivariant map $S_{+}^{1} \wedge H_{n} \wedge H_{n} \rightarrow H_{2 n}$ where $C_{2}=\{ \pm 1\}$ acts antipodally on S^{1} and by the twist on $H_{n} \wedge H_{n}$. Equivalently, it corresponds to a map $\phi_{1}: S_{+}^{1} \wedge_{C_{2}} H_{n} \wedge H_{n} \rightarrow H_{2 n}$. This map ϕ_{1} extends (uniquely, up to homotopy) to a map

$$
\Phi: S_{+}^{\infty} \wedge_{C_{2}} H_{n} \wedge H_{n} \rightarrow H_{2 n}
$$

where S^{∞} has the antipodal action. We call $S_{+}^{\infty} \wedge_{C_{2}} H_{n} \wedge H_{n}$ the quadratic construction on H_{n}.
There is a diagonal map $\Delta: H_{n} \rightarrow H_{n} \wedge H_{n}$, and an induced map

$$
\nabla=1 \wedge \Delta: \mathbb{R} P_{+}^{\infty} \wedge H_{n} \rightarrow S_{+}^{\infty} \wedge_{C_{2}} H_{n} \wedge H_{n}
$$

where $\mathbb{R} P^{\infty}=S^{n} / C_{2}$. The composite map $\Phi \nabla: \mathbb{R} P_{+}^{\infty} \wedge H_{n} \longrightarrow H_{2 n}$ induces a map $(\Phi \nabla)^{*}$ in cohomology, taking the universal class $\iota_{2 n}$ to an element in degree $2 n$ of $\tilde{H}^{*}\left(\mathbb{R} P_{+}^{\infty} \wedge H_{n}\right) \cong H^{*}\left(\mathbb{R} P^{\infty}\right) \otimes \tilde{H}^{*}\left(H_{n}\right)$. Writing $H^{*}\left(\mathbb{R} P^{\infty}\right)=P(u)=\mathbb{F}_{2}[u]$ with $|u|=1$, we can write $(\Phi \nabla)^{*}\left(\iota_{2 n}\right)$ as a sum of terms

$$
(\Phi \nabla)^{*}\left(\iota_{2 n}\right)=\sum_{i=0}^{n} u^{n-i} \otimes S q^{i}\left(\iota_{n}\right)
$$

where $S q^{i}\left(\iota_{n}\right) \in \tilde{H}^{n+i}\left(H_{n}\right)$. More generally, for any class $x \in \tilde{H}^{n}(X)$ represented by a map $f: X \rightarrow H_{n}$ we have a commutative diagram

In terms of the isomorphism $\tilde{H}^{*}\left(\mathbb{R} P^{\infty} \wedge X\right) \cong P(u) \otimes \tilde{H}^{*}(X)$ we can define classes $S q^{i}(x) \in \tilde{H}^{n+i}(X)$ by the formula

$$
(1 \wedge f)^{*}(\Phi \nabla)^{*}\left(\iota_{2 n}\right)=\sum_{i} u^{n-i} \otimes S q^{i}(x)
$$

It is then clear that $f^{*} S q^{i}\left(\iota_{n}\right)=S q^{i}(x)$, and naturality follows easily. The restriction of $\Phi \nabla$ to $H_{n} \cong$ $\mathbb{R} P_{+}^{0} \wedge H_{n}$ is the diagonal $\Delta: H_{n} \rightarrow H_{n} \wedge H_{n}$ followed by $\phi: H_{n} \wedge H_{n} \rightarrow H_{2 n}$, taking $\iota_{2 n}$ to ι_{n}^{2}, hence $S q^{n}(x)=x^{2}$.

For the Cartan formula, consider the map $\mu: H_{n} \wedge H_{m} \rightarrow H_{n+m}$ representing the smash product $\iota_{n} \wedge \iota_{m}$. There is a commutative diagram

where π is induced by the ($C_{2} \rightarrow C_{2} \times C_{2}$)-equivariant diagonal embedding $S_{+}^{\infty} \rightarrow S_{+}^{\infty} \wedge S_{+}^{\infty}$. The right hand rectangle commutes by a check in $H^{2(n+m)}(-)$ of the central term. Granted this, the class $\iota_{2(n+m)}$ at the upper right pulls back to $\iota_{2 n} \otimes \iota_{2 m}$ at the lower right, and across to $\sum_{i, j} u^{n-i} \otimes u^{m-j} \otimes S q^{i}\left(\iota_{n}\right) \otimes$ $S q^{j}\left(\iota_{m}\right)$ at the lower left. Pulling up the center left term we obtain $\sum_{i, j} u^{n+m-i-j} \otimes S q^{i}\left(\iota_{n}\right) \otimes S q^{j}\left(\iota_{m}\right)$. Going the other way around the diagram, we first come to $\sum_{k} u^{n+m-k} \otimes S q^{k}\left(\iota_{n+m}\right)$, and then to $\sum_{k} u^{n+m-k} S q^{k}\left(\iota_{n} \wedge \iota_{m}\right)$. Comparing the coefficients of u^{n+m-k} we get $S q^{k}\left(\iota_{n} \wedge \iota_{m}\right)=\sum_{i+j=k} S q^{i}\left(\iota_{n}\right) \wedge$ $S q^{j}\left(\iota_{m}\right)$. This implies $S q^{k}(x \wedge y)=\sum_{i+j=k} S q^{i}(x) \wedge S q^{j}(y)$ and the Cartan formula by naturality.

The fact that $S q^{0}(x)=x$ can be deduced from the case $X=S^{1}$.

3.3 Admissible monomials

Again, we start with $p=2$. For $x \in \tilde{H}^{*}(X)$ let $S q(x)=\sum_{i} S q^{i}(x)$ be the total squaring operation. Then $S q(x y)=S q(x) S q(y)$ by the Cartan formula.
Lemma 3.7. The Steenrod operations in $\tilde{H}^{*}\left(\mathbb{R} P_{+}^{\infty}\right)=H^{*}\left(\mathbb{R} P^{\infty}\right) \cong P(x)$, with $|x|=1$, are given by $S q^{i}\left(x^{n}\right)=\binom{n}{i} x^{n+i}$.
Proof. $S q(x)=x+x^{2}=x(1+x)$ since $S q^{0}(x)=x$ and $S q^{1}(x)=x^{2}$. Hence $S q\left(x^{n}\right)=S q(x)^{n}=$ $x^{n}(1+x)^{n}$. Thus $S q^{i}\left(x^{n}\right)=\binom{n}{i} x^{n+i}$ in degree $n+i$.

Let $\left(\mathbb{R} P^{\infty}\right)^{r}=\mathbb{R} P^{\infty} \times \cdots \times \mathbb{R} P^{\infty}$ be the product of $r \geq 1$ copies of $\mathbb{R} P^{\infty}$, so that $\left(\mathbb{R} P^{\infty}\right)_{+}^{r}=$ $\mathbb{R} P_{+}^{\infty} \wedge \cdots \wedge \mathbb{R} P_{+}^{\infty}$. Then $\tilde{H}^{*}\left(\left(\mathbb{R} P^{\infty}\right)_{+}^{r}\right)=H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{r}\right) \cong P\left(x_{1}, \ldots, x_{r}\right)$ with $\left|x_{1}\right|=\cdots=\left|x_{r}\right|=1$. The Cartan formula implies:
Lemma 3.8. The Steenrod operations in $H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{r}\right)=P\left(x_{1}, \ldots, x_{r}\right)$ are given by

$$
S q^{k}\left(x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}\right)=\sum_{i_{1}+\cdots+i_{r}=k}\binom{n_{1}}{i_{1}} \cdots\binom{n_{r}}{i_{r}} x_{1}^{n_{1}+i_{1}} \cdots x_{r}^{n_{r}+i_{r}}
$$

Using this, it is matter of algebra to check that the Adem relations hold for the Steenrod squares in $P\left(x_{1}, \ldots, x_{r}\right)$, in the sense that for $a<2 b$ the action of $S q^{a} \circ S q^{b}$ equals the sum over j of the actions of $\binom{b-1-j}{a-2 j} S q^{a+b-j} \circ S q^{j}$.

Definition 3.9. Let the mod 2 Steenrod algebra, $\mathscr{A}=\mathscr{A}(2)$, be the graded, unital, associative $\mathbb{F}_{2^{-}}$ algebra generated by the symbols $S q^{i}$ for $i \geq 0$, subject to the relation $S q^{0}=1$ and the Adem relations $S q^{a} S q^{b}=\sum_{j}\binom{b-1-j}{a-2 j} S q^{a+b-j} S q^{j}$ for all $a<2 b$.

For any based space X, the reduced cohomology $\tilde{H}^{*}(X)$ is naturally a left module over the Steenrod algebra, i.e., an \mathscr{A}-module, with $S q^{I}(x)=S q^{i_{1}}\left(\ldots S q^{i_{\ell}}(x) \ldots\right)$. We write

$$
\lambda: \mathscr{A} \otimes \tilde{H}^{*}(X) \longrightarrow \tilde{H}^{*}(X)
$$

for the left module action map.
Definition 3.10. For each sequence $I=\left(i_{1}, \ldots, i_{\ell}\right)$ of non-negative integers, with $\ell \geq 0$, let $S q^{I}=$ $S q^{i_{1}} \ldots S q^{i_{\ell}}$ be the product in $\mathscr{A}=\mathscr{A}(2)$. We say that I has length ℓ and degree $i_{1}+\cdots+i_{\ell}$. We say that I (or $S q^{I}$) is admissible if $i_{s} \geq 2 i_{s+1}$ for all $1 \leq s<\ell$ and $i_{\ell} \geq 1$. The empty sequence $I=()$ is admissible, with length $\ell=0$, and $S q^{()}=1$.

The admissible monomials of degree ≤ 11 are $S q^{()}=1$ in degree 0 , and:
(1) $S q^{1}$
(2) $S q^{2}$
(3) $S q^{3}, S q^{2} S q^{1}$
(4) $S q^{4}, S q^{3} S q^{1}$
(5) $S q^{5}, S q^{4} S q^{1}$
(6) $S q^{6}, S q^{5} S q^{1}, S q^{4} S q^{2}$
(7) $S q^{7}, S q^{6} S q^{1}, S q^{5} S q^{2}, S q^{4} S q^{2} S q^{1}$
(8) $S q^{8}, S q^{7} S q^{1}, S q^{6} S q^{2}, S q^{5} S q^{2} S q^{1}$
(9) $S q^{9}, S q^{8} S q^{1}, S q^{7} S q^{2}, S q^{6} S q^{3}, S q^{6} S q^{2} S q^{1}$
(10) $S q^{10}, S q^{9} S q^{1}, S q^{8} S q^{2}, S q^{7} S q^{3}, S q^{7} S q^{2} S q^{1}, S q^{6} S q^{3} S q^{1}$
(11) $S q^{11}, S q^{10} S q^{1}, S q^{9} S q^{2}, S q^{8} S q^{3}, S q^{8} S q^{2} S q^{1}, S q^{7} S q^{3} S q^{1}$

Theorem 3.11. The admissible monomials form a vector space basis for the Steenrod algebra:

$$
\mathscr{A}=\mathbb{F}_{2}\left\{S q^{I} \mid I \text { is admissible }\right\}
$$

See Steenrod and Epstein (1962) Theorem I.3.1.
The Adem relations imply that any inadmissible $S q^{I}$ can be written as a sum of admissible monomials, so the admissible $S q^{I}$ generate \mathscr{A}. To prove that they are linearly independent, one uses the fact that the Adem relations hold for the Steenrod operations on $H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{r}\right)=P\left(x_{1}, \ldots, x_{r}\right)$, so that there is a pairing

$$
\mathscr{A} \otimes P\left(x_{1}, \ldots, x_{r}\right) \longrightarrow P\left(x_{1}, \ldots, x_{r}\right)
$$

making $P\left(x_{1}, \ldots, x_{r}\right)$ a graded, left \mathscr{A}-module. The action on the product $w_{r}=x_{1} \cdots x_{r} \in H^{r}\left(\left(\mathbb{R} P^{\infty}\right)^{r}\right)$ is particularly useful. This is the top Stiefel-Whitney class of the canonical r-dimensional vector bundle over $\left(\mathbb{R} P^{\infty}\right)^{r}$. It defines a homomorphism

$$
\mathscr{A} \longrightarrow P\left(x_{1}, \ldots, x_{r}\right)
$$

of degree r, taking $S q^{I}$ to $S q^{i_{1}}\left(\ldots S q^{i_{\ell}}\left(w_{r}\right) \ldots\right)$. It can be checked that this homomorphism takes the admissible monomials $S q^{I}$ of degree $\leq r$ to linearly independent elements in $P\left(x_{1}, \ldots, x_{r}\right)$ (in degrees $r \leq * \leq 2 r)$. Letting r grow to infinity, this implies that the admissible $S q^{I}$ are independent.

Corollary 3.12. The homomorphism $\mathscr{A} \rightarrow P\left(x_{1}, \ldots, x_{r}\right)$, taking $S q^{I}$ to $S q^{I}\left(w_{r}\right)$ for $w_{r}=x_{1} \cdots x_{r}$, is injective in degrees $\leq r$ (in the source).

Hence, in order to verify a formula in \mathscr{A} in degrees $\leq r$, it suffices to establish this formula for the action on w_{r} in $H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{r}\right)$. This gives one way to verify the Adem relations.

Definition 3.13. The Steenrod algebra is connected as a graded algebra, in the sense that it is zero in negative degrees and the unit map $\eta: \mathbb{F}_{2} \rightarrow \mathscr{A}$ is an isomorphism in degree zero. Let $\epsilon: \mathscr{A} \rightarrow \mathbb{F}_{2}$ be the augmentation, such that $\epsilon \eta=1$, and let $I(\mathscr{A})=\operatorname{ker}(\epsilon)$ be the augmentation ideal, i.e., the positive-degree part of \mathscr{A}. The decomposable part of \mathscr{A} is the image $I(\mathscr{A})^{2}$ of $I(\mathscr{A}) \otimes I(\mathscr{A})$ under the algebra multiplication $\phi: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A}$, and the vector space $Q(\mathscr{A})=I(\mathscr{A}) / I(\mathscr{A})^{2}$ is the set of indecomposables in \mathscr{A}.

Theorem 3.14. $S q^{k}$ is decomposable if and only if k is not a power of 2 . Hence the elements $S q^{2^{i}}$ for $i \geq 0$ (i.e., $S q^{1}, S q^{2}, S q^{4}, S q^{8}, \ldots$) generate \mathscr{A} as an algebra.

See Steenrod-Epstein (1962) section I.4.
The Adem relation

$$
\binom{b-1}{a} S q^{a+b}=S q^{a} S q^{b}+\sum_{j=1}^{[a / 2]}\binom{b-1-j}{a-2 j} S q^{a+b-j} S q^{j}
$$

for $0<a<2 b$ shows that $S q^{a+b}$ is decomposable if $\binom{b-1}{a} \equiv 1 \bmod 2$. If k is not a power of 2 then $k=a+b$ with $0<a<2^{i}$ and $b=2^{i}$. Then $b-1=1+2+\cdots+2^{i-1}$, so $\binom{b-1}{a} \equiv 1 \bmod 2$ by the following lemma:

Lemma 3.15. Let $a=a_{0}+a_{1} 2+\cdots+a_{\ell} 2^{\ell}$ and $b=b_{0}+b_{1} 2+\cdots+b_{\ell} 2^{\ell}$ with $0 \leq a_{s}, b_{s} \leq 1$. Then

$$
\binom{b}{a} \equiv \prod_{s=0}^{\ell}\binom{b_{s}}{a_{s}} \bmod 2 .
$$

For the converse, suppose that $S q^{2^{i}}=\sum_{j=1}^{2^{i}-1} m_{j} S q^{j}$ is decomposable, where each $m_{j} \in I(\mathscr{A})$. Consider the action on $x^{2^{i}}$ in $H^{*}\left(\mathbb{R} P^{\infty}\right)=P(x)$. On one hand, $S q^{j}\left(x^{2^{i}}\right)=\binom{2^{i}}{j} x^{j+2^{i}}=0$ for $0<j<2^{i}$, while $S q^{2^{i}}\left(x^{2^{i}}\right)=x^{2^{i+1}} \neq 0$. This leads to a contradiction.

Now let p be odd.
Definition 3.16. Let the mod p Steenrod algebra, $\mathscr{A}=\mathscr{A}(p)$, be the graded, unital, associative \mathbb{F}_{p}-algebra generated by the symbols P^{i} of degree $2 i(p-1)$ for $i \geq 0$, and β of degree 1 , subject to the relations $P^{0}=1, \beta^{2}=0$ and the Adem relations.

Definition 3.17. For each sequence $I=\left(\epsilon_{0}, i_{1}, \epsilon_{1}, \ldots, i_{\ell}, \epsilon_{\ell}, 0,0, \ldots\right)$ of non-negative integers, with $\epsilon_{s} \leq 1$, let $P^{I}=\beta^{\epsilon_{0}} P^{i_{1}} \beta^{\epsilon_{1}} \ldots P^{i_{\ell}} \beta^{\epsilon_{\ell}}$ be the product in $\mathscr{A}(p)$. We say that I is admissible if $i_{s} \geq \epsilon_{s}+p i_{s+1}$ for all $s \geq 1$.

Theorem 3.18. The admissible monomials P^{I} form a basis for the Steenrod algebra:

$$
\mathscr{A}(p)=\mathbb{F}_{p}\left\{P^{I} \mid I \text { admissible }\right\}
$$

See Steenrod and Epstein (1962) Theorem VI.2.5.
Theorem 3.19. P^{k} is decomposable if and only if k is not a power of p. Hence the elements β and $P^{p^{i}}$ for $i \geq 0$ generate $\mathscr{A}(p)$ as an algebra.

3.4 Eilenberg-Mac Lane spectra

Definition 3.20. Let $H=\left\{n \mapsto H_{n}\right\}$ be the mod 2 Eilenberg-Mac Lane spectrum. The structure maps $\Sigma H_{n} \rightarrow H_{n+1}$ are left adjoint to the homotopy equivalences $H_{n} \xrightarrow{\simeq} \Omega H_{n+1}$, for all $n \geq 0$.
Proposition 3.21 (Whitehead). There are natural isomorphisms $H_{n}(Y) \cong \pi_{n}(H \wedge Y)=\left[S^{n}, H \wedge Y\right]$ and $H^{n}(Y) \cong \pi_{-n} F(Y, H)=\left[Y, \Sigma^{n} H\right]$ for all spectra Y and integers n.

The composite $\mathbb{R} P^{\infty} \times \cdots \times \mathbb{R} P^{\infty} \rightarrow H_{1} \wedge \cdots \wedge H_{1} \rightarrow H_{r}$ induces a homomorphism in cohomology that takes the universal class $\iota_{r} \in \tilde{H}^{r}\left(H_{r}\right)$ to w_{r}.

Proposition 3.22 (Serre). The homomorphism

$$
\Sigma^{r} \mathscr{A} \longrightarrow \tilde{H}^{*}\left(H_{r}\right)
$$

taking $\Sigma^{r} S q^{I}$ to $S q^{I}\left(\iota_{r}\right)$, induces an isomorphism in degrees $* \leq 2 r$.
Corollary 3.23. There is an isomorphism

$$
\mathscr{A} \stackrel{\cong}{\cong} H^{*}(H)=[H, H]_{-*}
$$

of graded \mathbb{F}_{2}-algebras, taking each $S q^{i}$ to its representing map $H \rightarrow \Sigma^{i} H$.
This shows that the Steenrod operations account for all stable mod 2 cohomology operations. The $\bmod 2$ cohomology of any spectrum Y is a left \mathscr{A}-module, and the module action map

$$
\lambda: \mathscr{A} \otimes H^{*}(Y) \longrightarrow H^{*}(Y)
$$

can be written as the composition pairing

$$
[H, H]_{*} \otimes[Y, H]_{*} \longrightarrow[Y, H]_{*}
$$

taking $S q^{i}: H \rightarrow \Sigma^{i} H$ and $x: Y \rightarrow \Sigma^{n} H$ to $\Sigma^{n}\left(S q^{i}\right) \circ x: Y \rightarrow \Sigma^{n+i} H$.
The mod 2 reduction h_{1} of the Hurewicz homomorphism is the composite

$$
\pi_{*}(Y) \xrightarrow{h} H_{*}(Y ; \mathbb{Z}) \longrightarrow H_{*}(Y)
$$

The adjoint

$$
\rho: H_{*}(Y) \longrightarrow \operatorname{Hom}\left(H^{*}(Y), \mathbb{F}_{2}\right)
$$

to the Kronecker pairing is an isomorphism when $H_{*}(Y)$ is of finite type, i.e., if $H_{n}(Y)=H_{n}\left(Y ; \mathbb{F}_{2}\right)$ is finite-dimensional ($=$ finite) for each integer n. The composite

$$
\rho \circ h_{1}: \pi_{*}(Y) \longrightarrow \operatorname{Hom}\left(H^{*}(Y), \mathbb{F}_{2}\right)
$$

is the homomorphism taking the homotopy class of a map $f: S^{n} \rightarrow Y$ to the induced homomorphism $f^{*}: H^{*}(Y) \rightarrow \tilde{H}^{*}\left(S^{n}\right) \cong \Sigma^{n} \mathbb{F}_{2}$. By naturality of the Steenrod operations, the homomorphism f^{*} is one of left \mathscr{A}-modules, so that $\rho \circ h_{1}$ factors as a homomorphism

$$
d: \pi_{*}(Y) \longrightarrow \operatorname{Hom}_{\mathscr{A}}\left(H^{*}(Y), \mathbb{F}_{2}\right)
$$

followed by the inclusion $\operatorname{Hom}_{\mathscr{A}}\left(H^{*}(Y), \mathbb{F}_{2}\right) \subset \operatorname{Hom}\left(H^{*}(Y), \mathbb{F}_{2}\right)$. More generally, there is a homomorphism

$$
d:[X, Y] \longrightarrow \operatorname{Hom}_{\mathscr{A}}\left(H^{*}(Y), H^{*}(X)\right)
$$

(the cohomology d-invariant) taking the homotopy class of $f: X \rightarrow Y$ to the induced \mathscr{A}-module homomorphism $f^{*}: H^{*}(Y) \rightarrow H^{*}(X)$.

Lemma 3.24. When $Y=\Sigma^{n} H$, for any integer n, the homomorphism

$$
d: \pi_{*}\left(\Sigma^{n} H\right) \xrightarrow{\cong} \operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(\Sigma^{n} H\right), \mathbb{F}_{2}\right)
$$

is an isomorphism. More generally, there is an isomorphism

$$
d:\left[X, \Sigma^{n} H\right] \stackrel{\cong}{\leftrightarrows} \operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(\Sigma^{n} H\right), H^{*}(X)\right)
$$

for any spectrum X.

Proof. There is a class $\iota_{n} \in H^{n}\left(\Sigma^{n} H\right)$, with $\iota_{n}=\Sigma^{n} \iota_{0}$, such that $[f] \mapsto f^{*}\left(\iota_{n}\right)$ defines an isomorphism $\left[X, \Sigma^{n} H\right] \cong H^{n}(X)$. Since $H^{*}\left(\Sigma^{n} H\right)=\Sigma^{n} \mathscr{A}$ is the free \mathscr{A}-module generated by ι_{n}, the correspondence $f^{*} \mapsto f^{*}\left(\iota_{n}\right)$ defines another isomorphism $\operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(\Sigma^{n} H\right), H^{*}(X)\right) \cong H^{n}(X)$. Thus $d:[f] \mapsto f^{*}$ is also an isomorphism.

Definition 3.25. We say that a spectrum Y is bounded below if $\pi_{*}(Y)$ is bounded below, i.e., if there exists an integer N such that $\pi_{n}(Y)=0$ for $n<N$.

Lemma 3.26. Suppose that $K=\bigvee_{u} \Sigma^{n_{u}} H$ is a wedge sum of suspended Eilenberg-Mac Lane spectra, such that $\left\{u \mid n_{u} \leq N\right\}$ is finite for each integer N.

Then the canonical map $\bigvee_{u} \Sigma^{n_{u}} H \rightarrow \prod_{u} \Sigma^{n_{u}} H$ is a stable equivalence, and

$$
d: \pi_{*}(K) \xrightarrow{\cong} \operatorname{Hom}_{\mathscr{A}}\left(H^{*}(K), \mathbb{F}_{2}\right)
$$

is an isomorphism. More generally, there is an isomorphism

$$
d:[X, K] \stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathscr{A}}\left(H^{*}(K), H^{*}(X)\right)
$$

for any spectrum X.
Proof. The finiteness hypothesis is equivalent to asking that $\pi_{*}(K)$ is bounded below and $H_{*}(K)$ is of finite type. It implies that the canonical map $\bigvee_{u} \Sigma^{n_{u}} H \rightarrow \prod_{u} \Sigma^{n_{u}} H$ is a weak equivalence, since the induced map in homotopy is the isomorphism $\bigoplus_{u} \Sigma^{n_{u}} \mathbb{F}_{2} \rightarrow \prod_{u} \Sigma^{n_{u}} \mathbb{F}_{2}$. We deduce that

$$
H^{*}(K) \cong \prod_{u} \Sigma^{n_{u}} \mathscr{A} \cong \bigoplus_{u} \Sigma^{n_{u}} \mathscr{A} \cong \bigoplus_{u} H^{*}\left(\Sigma^{n_{u}} H\right)
$$

is a free \mathscr{A}-module, so

$$
[X, K] \cong\left[X, \prod_{u} \Sigma^{n_{u}} H\right] \cong \prod_{u}\left[X, \Sigma^{n_{u}} H\right]
$$

and

$$
\operatorname{Hom}_{\mathscr{A}}\left(H^{*}(K), H^{*}(X)\right) \cong \prod_{u} \operatorname{Hom}_{\mathscr{A}}\left(\Sigma^{n_{u}} \mathscr{A}, H^{*}(X)\right) \cong \prod_{u} \operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(\Sigma^{n_{u}} H\right), H^{*}(X)\right)
$$

Hence d for K is the product of the isomorphisms d for the summands/factors $\Sigma^{n_{u}} H$, and is therefore an isomorphism.

The pairings $\phi: H_{m} \wedge H_{n} \rightarrow H_{m+n}$ (representing the cup product $\iota_{m} \cup \iota_{n}$, or more precisely, its reduced version $\iota_{m} \wedge \iota_{n}$) combine to a map $\phi: H \wedge H \rightarrow H$ of spectra. Together with the unit map $\eta: S \rightarrow H$ coming from the maps $S^{n} \rightarrow H_{n}$ (representing the generator of $H^{n}\left(S^{n}\right)$), these make H a homotopy commutative ring spectrum. In fact it is a homotopy everything ring spectrum, i.e., an E_{∞} ring spectrum.

Lemma 3.27. Let Y be bounded below with $H_{*}(Y)=\mathbb{F}_{2}\left\{\alpha_{u}\right\}_{u}$ of finite type. Let $\left\{a_{u}\right\}_{u}$ be the dual basis for $H^{*}(Y)$, with $\left|a_{u}\right|=\left|\alpha_{u}\right|=n_{u}$. Let $\alpha_{u}: S^{n_{u}} \rightarrow H \wedge Y$ and $a_{u}: Y \rightarrow \Sigma^{n_{u}} H$ be the representing maps. Then the sum of the composites $(\phi \wedge 1)\left(1 \wedge \alpha_{u}\right): \Sigma^{n_{u}} H \rightarrow H \wedge Y$ and the product of the composites $(\phi \wedge 1)\left(1 \wedge a_{u}\right): H \wedge Y \rightarrow \Sigma^{n_{u}} Y$ are stable equivalences

$$
\bigvee_{u} \Sigma^{n_{u}} H \xrightarrow{\simeq} H \wedge Y \xrightarrow{\simeq} \prod_{u} \Sigma^{n_{u}} H
$$

Corollary 3.28. Let $j: Y \rightarrow K$ be a map of spectra, where $K=\bigvee_{u} \Sigma^{n_{u}} H$ and $\left\{u \mid n_{u} \leq N\right\}$ is finite for each N, and suppose that $j^{*}: H^{*}(K) \rightarrow H^{*}(Y)$ is surjective. Then a map $f: X \rightarrow Y$ of spectra induces the zero homomorphism $f^{*}: H^{*}(Y) \rightarrow H^{*}(X)$ if and only if the composite $j f: X \rightarrow K$ is null-homotopic.

Proof. We have an isomorphism $d:[X, K] \cong \operatorname{Hom}_{\mathscr{A}}\left(H^{*}(K), H^{*}(X)\right)$ taking $j f$ to $f^{*} j^{*}$, and an injective homomorphism $\operatorname{Hom}_{\mathscr{A}}\left(H^{*}(Y), H^{*}(X)\right) \longmapsto \operatorname{Hom}_{\mathscr{A}}\left(H^{*}(K), H^{*}(X)\right)$ taking f^{*} to $f^{*} j^{*}$, so $[j f]=0$ if and only if $f^{*}=0$.

The corollary tells us that in the diagram

$$
X \xrightarrow{f} Y \xrightarrow{j} K
$$

the map f induces the zero map in cohomology, if and only if the composite $j f$ is null-homotopic. By the lemma above, the unit map $\eta: S \rightarrow H$ induces a map $j: Y=S \wedge Y \rightarrow H \wedge Y \simeq K$, where K has the properties of the corollary when Y is bounded below with $H_{*}(Y)$ of finite type. Furthermore, the map $j_{*}: H_{*}(Y) \rightarrow H_{*}(K)$ is split injective, since it is the homomorphism of homotopy groups represented by the map

$$
1 \wedge \eta \wedge 1: H \wedge Y \cong H \wedge S \wedge Y \longrightarrow H \wedge H \wedge H
$$

which admits the retraction $\phi \wedge 1$. By the universal coefficient theorem, $j^{*}: H^{*}(K) \rightarrow H^{*}(Y)$ is surjective. Hence, under these hypotheses on Y we can use the diagram

$$
X \xrightarrow{f} Y \xrightarrow{j} H \wedge Y
$$

with $j=\eta \wedge 1$ to interpret the vanishing of f^{*} in homotopical terms.

4 The Adams spectral sequence

We follow Bruner's Adams spectral sequence primer. We continue working at $p=2$, using the abbreviations $H_{*}(Y)=H_{*}\left(Y ; \mathbb{F}_{2}\right)$ and $H^{*}(Y)=H^{*}\left(Y ; \mathbb{F}_{2}\right)$.

4.1 Adams resolutions

Definition 4.1. Let Y be a spectrum with $\pi_{*}(Y)$ bounded below and $H_{*}(Y)=H_{*}\left(Y ; \mathbb{F}_{2}\right)$ of finite type. An Adams resolution of Y is a diagram of spectra

where $Y^{s+1} \xrightarrow{i} Y^{s} \xrightarrow{j} K^{s} \xrightarrow{\partial} \Sigma Y^{s+1}$ is a cofiber sequence, for each $s \geq 0$, such that (a) each K^{s} is a wedge sum of suspended mod 2 Eilenberg-Mac Lane spectra that is bounded below and of finite type, and (b) each homomorphism $j^{*}: H^{*}\left(K^{s}\right) \rightarrow H^{*}\left(Y^{s}\right)$ is surjective.

Writing $K^{s} \simeq \bigvee_{u} \Sigma^{n_{u}} H$, the finiteness condition in (a) is the same as asking that $\left\{u \mid n_{u} \leq N\right\}$ is finite for each integer N. By induction on s it implies that each Y^{s} is bounded below with $H_{*}\left(Y^{s}\right)$ of finite type. In view of the long exact sequence

$$
\cdots \rightarrow H^{*-1}\left(Y^{s+1}\right) \xrightarrow{\partial^{*}} H^{*}\left(K^{s}\right) \xrightarrow{j^{*}} H^{*}\left(Y^{s}\right) \xrightarrow{i^{*}} H^{*}\left(Y^{s+1}\right) \rightarrow \ldots
$$

the condition that j^{*} is surjective is equivalent to asking that $i^{*}=0$ or that ∂^{*} is injective. ((Also homological interpretation, by the universal coefficient theorem.))

Lemma 4.2. Adams resolutions exist.
Proof. Suppose that Y^{s} has been constructed, with $\pi_{*}\left(Y^{s}\right)$ bounded below and $H_{*}\left(Y^{s}\right)$ of finite type. Let $K^{s}=H \wedge Y^{s}$ and let $j=1 \wedge \eta: Y^{s}=S \wedge Y^{s} \rightarrow H \wedge Y^{s}=K^{s}$. Then K^{s} is a wedge sum of Eilenberg-Mac Lane spectra, bounded below and of finite type, and j^{*} is surjective. Let $Y^{s+1}=$ $\operatorname{hofib}\left(j: Y^{s} \rightarrow K^{s}\right)$ be the homotopy fiber. Then $\pi_{*}\left(Y^{s+1}\right)$ is bounded below by the long exact sequence in homotopy, and $H_{*}\left(Y^{s+1}\right)$ is of finite type by the long exact sequence in $\bmod 2$ homology. Continue by induction.

Let \bar{H} be the cofiber of the unit map $\eta: S \rightarrow H$, so that there is a cofiber sequence

$$
\Sigma^{-1} \bar{H} \longrightarrow S \xrightarrow{\eta} H \longrightarrow \bar{H}
$$

The unit map induces the augmentation $\epsilon: \mathscr{A} \rightarrow \mathbb{F}_{2}$ in cohomology, so $H^{*}(\bar{H})=I(\mathscr{A})=\operatorname{ker}(\epsilon)$ is the augmentation ideal.

Smashing with Y^{s} we get the cofiber sequence

$$
\Sigma^{-1} \bar{H} \wedge Y^{s} \xrightarrow{i} Y^{s} \xrightarrow{j} H \wedge Y^{s} \xrightarrow{\partial} \bar{H} \wedge Y^{s}
$$

so that the construction in the proof above gives $K^{s}=H \wedge Y^{s}$ and $Y^{s+1}=\Sigma^{-1} \bar{H} \wedge Y^{s}$.
Definition 4.3. The canonical Adams resolution of Y is the diagram

where

$$
\begin{aligned}
Y^{s} & =\left(\Sigma^{-1} \bar{H}\right)^{\wedge s} \wedge Y \\
K^{s} & =H \wedge\left(\Sigma^{-1} \bar{H}\right)^{\wedge s} \wedge Y
\end{aligned}
$$

and i, j and ∂ are induced by $\Sigma^{-1} \bar{H} \rightarrow S, \eta: S \rightarrow H$ and $H \rightarrow \bar{H}$, respectively. We note that the canonical resolution is natural in Y.

Lemma 4.4. For any Adams resolution, let

$$
\begin{aligned}
P_{s} & =H^{*}\left(\Sigma^{s} K^{s}\right) \\
\partial_{s} & =\partial^{*} j^{*}: H^{*}\left(\Sigma^{s} K^{s}\right) \rightarrow H^{*}\left(\Sigma^{s-1} K^{s-1}\right)
\end{aligned}
$$

and $\epsilon=j^{*}: H^{*}\left(K^{0}\right) \rightarrow H^{*}(Y)$. Then the diagram

$$
\cdots \rightarrow P_{s} \xrightarrow{\partial_{s}} P_{s-1} \rightarrow \cdots \rightarrow P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\epsilon} H^{*}(Y) \rightarrow 0
$$

is a resolution of $H^{*}(Y)$ by free \mathscr{A}-modules, each of which is bounded below of finite type.
The homomorphisms ∂_{s} and ϵ all preserve the cohomological grading of $H^{*}(Y)$ and P_{s}, which is called the internal grading and usually denoted by t.

Proof. By assumption (a) each j^{*} is surjective, so each i^{*} is zero and the long exact sequences in cohomology break up into short exact sequences

$$
0 \rightarrow H^{*}\left(\Sigma^{s+1} Y^{s+1}\right) \xrightarrow{\partial^{*}} H^{*}\left(\Sigma^{s} K^{s}\right) \xrightarrow{j^{*}} H^{*}\left(\Sigma^{s} Y^{s}\right) \rightarrow 0
$$

for all $s \geq 0$. These splice together to a long exact sequence

along the lower edge of this diagram of \mathscr{A}-modules. By assumption (b), each $H^{*}\left(K^{s}\right)$ is a free \mathscr{A}-module. Hence $\epsilon: P_{*} \rightarrow H^{*}(Y)$ is a free resolution of the \mathscr{A}-module $H^{*}(Y)$.

The Adams resolution $\left\{Y^{s}\right\}_{s}$ is called a realization of the free resolution $\left\{P_{s}\right\}_{s}$ of $H^{*}(Y)$. The resolution is induced by passage to cohomology from the diagram

$$
\ldots \stackrel{j \partial}{\longleftarrow} \Sigma^{2} K^{2} \stackrel{j \partial}{\longleftarrow} \Sigma K^{1} \stackrel{j \partial}{\longleftarrow} K^{0} \stackrel{j}{\longleftarrow} Y
$$

where each composite of two maps is null-homotopic. In the case of the canonical resolution this diagram appears as follows:

$$
\ldots \stackrel{j \partial}{\longleftarrow} H \wedge(\bar{H})^{\wedge 2} \wedge Y \stackrel{j \partial}{\longleftarrow} H \wedge \bar{H} \wedge Y \stackrel{j \partial}{\longleftarrow} H \wedge Y{ }^{j}{ }^{j}-Y
$$

The associated free resolution has the form

$$
\cdots \rightarrow \mathscr{A} \otimes I(\mathscr{A})^{\otimes 2} \otimes H^{*}(Y) \xrightarrow{\partial_{2}} \mathscr{A} \otimes I(\mathscr{A}) \otimes H^{*}(Y) \xrightarrow{\partial_{1}} \mathscr{A} \otimes H^{*}(Y) \xrightarrow{\epsilon} H^{*}(Y) \rightarrow 0
$$

where $\mathscr{A}=H^{*}(H)$, and $I(\mathscr{A})=H^{*}(\bar{H})$ is the augmentation ideal. We shall return to this complex later, in the context of the bar resolution.

4.2 The Adams E_{2}-term

We follows Adams (1958), using the spectrum level reformulation that appears in Moss (1968).
Let Y be a spectrum such that $\pi_{*}(Y)$ is bounded below and $H_{*}(Y)=H_{*}\left(Y ; \mathbb{F}_{2}\right)$ is of finite type. Consider any Adams resolution

of Y. Applying homotopy groups, we get an unrolled exact couple of Adams type

where $A^{s}=\pi_{*}\left(Y^{s}\right), E^{s}=\pi_{*}\left(K^{s}\right)$ are graded abelian groups, i_{*} and j_{*} have degree 0 , and ∂_{*} has degree -1 . There is an associated spectral sequence of Adams type

$$
\left\{E_{r}=E_{r}^{*, *}, d_{r}=d_{r}^{*, *}\right\}_{r}
$$

with

$$
E_{1}^{s, t}=\pi_{t-s}\left(K^{s}\right)
$$

and

$$
d_{1}^{s, t}=(j \partial)_{*}: \pi_{t-s}\left(K^{s}\right) \rightarrow \pi_{t-s-1}\left(K^{s+1}\right) .
$$

The d_{r}-differentials have bidegree $(r, r-1)$. This is the Adams spectral sequence of Y, sometimes denotes $\left\{E_{r}(Y)=E_{r}^{*, *}(Y)\right\}_{r}$. The expected abutment is the graded abelian group $G=\pi_{*}(Y)$, filtered by the image groups $F^{s}=\operatorname{im}\left(i_{*}^{s}: \pi_{*}\left(Y^{s}\right) \rightarrow \pi_{*}(Y)\right)$.
((NOTE: Explain "expected abutment". Do we mean that there are isomorphisms $F^{s} / F^{s+1} \cong E_{\infty}^{s}$, but that the filtration might not be complete Hausdorff and/or exhaustive? If so, discuss this in the section on convergence.))

Definition 4.5. An element in $E_{r}^{s, t}$ is said to be of filtration s, total degree $t-s$ and internal degree t. An element in $F^{s} \subset \pi_{*}(Y)$ is said to be of Adams filtration $\geq s$.

A class in $\pi_{*}(Y)$ has Adams filtration 0 if it is detected by the d-invariant in $\pi_{*}\left(K^{0}\right)$, i.e., if it has non-zero mod 2 Hurewicz image. If the Hurewicz image is zero, then the class lifts to $\pi_{*}\left(Y^{1}\right)$. Then it has Adams filtration 1 if the lift is detected in $\pi_{*}\left(K^{1}\right)$, i.e., if the lift has non-zero mod 2 Hurewicz image. If also that Hurewicz image is zero, then the class lifts to $\pi_{*}\left(Y^{2}\right)$. And so on.

Theorem 4.6. The E_{2}-term of the Adams spectral sequence of Y is

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Y), \mathbb{F}_{2}\right)
$$

In particular, it is independent of the choice of Adams resolution.
Proof. The Adams E_{1}-term and d_{1}-differential is the complex

$$
\ldots \longleftarrow \pi_{*}\left(\Sigma^{2} K^{2}\right) \longleftarrow{ }^{(j \partial)_{*}} \pi_{*}\left(\Sigma K^{1}\right) \stackrel{(j \partial)_{*}}{\longleftarrow} \pi_{*}\left(K^{0}\right) \longleftarrow 0
$$

of graded abelian groups. It maps isomorphically, under the d-invariant $\pi_{*}(K) \rightarrow \operatorname{Hom}_{\mathscr{A}}\left(H^{*}(K), \mathbb{F}_{2}\right)$, to the complex

$$
\ldots \longleftarrow \operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(\Sigma^{2} K^{2}\right), \mathbb{F}_{2}\right) \stackrel{\left((j \partial)^{*}\right)^{*}}{\longleftarrow} \operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(\Sigma K^{1}\right), \mathbb{F}_{2}\right) \stackrel{\left((j \partial)^{*}\right)^{*}}{\longleftarrow} \operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(K^{0}\right), \mathbb{F}_{2}\right) \longleftarrow 0
$$

where $\left((j \partial)^{*}\right)^{*}=\operatorname{Hom}_{\mathscr{A}}\left((j \partial)^{*}, 1\right)$. With the notation of the previous subsection, this complex can be rewritten as

$$
\ldots \longleftarrow \operatorname{Hom}_{\mathscr{A}}\left(P_{2}, \mathbb{F}_{2}\right) \stackrel{\partial_{2}^{*}}{\longleftarrow} \operatorname{Hom}_{\mathscr{A}}\left(P_{1}, \mathbb{F}_{2}\right) \stackrel{\partial_{1}^{*}}{\longleftarrow} \operatorname{Hom}_{\mathscr{A}}\left(P_{0}, \mathbb{F}_{2}\right) \longleftarrow 0
$$

This is the complex $\operatorname{Hom}_{\mathscr{A}}\left(P_{*}, \mathbb{F}_{2}\right)$ obtained by applying the functor $\operatorname{Hom}_{\mathscr{A}}\left(-, \mathbb{F}_{2}\right)$ to the resolution $\epsilon: P_{*} \rightarrow H^{*}(Y)$ of $H^{*}(Y)$ by free \mathscr{A}-modules. Its cohomology groups are by definition, the Ext-groups

$$
\operatorname{Ext}_{\mathscr{A}}^{s}\left(H^{*}(Y), \mathbb{F}_{2}\right)=H^{s}\left(\operatorname{Hom}_{\mathscr{A}}\left(P_{*}, \mathbb{F}_{2}\right)\right) .
$$

At the same time, the cohomology of the E_{1}-term of a spectral sequence is the E_{2}-term. Hence

$$
E_{2}^{s} \cong \operatorname{Ext}_{\mathscr{A}}^{s}\left(H^{*}(Y), \mathbb{F}_{2}\right)
$$

As regards the internal grading, $E_{1}^{s, t}=\pi_{t-s}\left(K^{s}\right) \cong \pi_{t}\left(\Sigma^{s} K^{s}\right)$ corresponds to the \mathscr{A}-module homomorphisms $H^{*}\left(\Sigma^{s} K^{s}\right) \rightarrow \Sigma^{t} \mathbb{F}_{2}$. This is the same as the \mathscr{A}-module homomorphisms $H^{*}\left(\Sigma^{s} K^{s}\right) \rightarrow$ \mathbb{F}_{2} that lower the cohomological degrees by t. We denote the group of these homomorphisms by $\operatorname{Hom}_{\mathscr{A}}^{t}\left(H^{*}\left(\Sigma^{s} K^{s}\right), \mathbb{F}_{2}\right)=\operatorname{Hom}_{\mathscr{A}}^{t}\left(P_{s}, \mathbb{F}_{2}\right)$, and similarly for the derived functors. With these conventions, $E_{2}^{s, t} \cong \mathrm{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Y), \mathbb{F}_{2}\right)$, as asserted.

We are particularly interested in the special case $Y=S$, with $H^{*}(S)=\mathbb{F}_{2}$ and $\pi_{*}(S)=\pi_{*}^{S}$ equal to the stable homotopy groups of spheres.
Theorem 4.7. The Adams spectral sequence for S has E_{2}-term

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

On the other hand, we can also generalize (following Brinkmann (1968)). Let X be any spectrum and apply the functor $[X,-]_{*}$ to an Adams resolution of Y. This yields an unrolled exact couple

where $A^{s}=\left[X, Y^{s}\right]_{*}, E^{s}=\left[X, K^{s}\right]_{*}$ are graded abelian groups, i_{*} and j_{*} have degree 0 , and ∂_{*} has degree -1 . There is an associated spectral sequence with

$$
E_{1}^{s, t}=\left[X, K^{s}\right]_{t-s}
$$

and

$$
d_{1}^{s, t}=(j \partial)_{*}:\left[X, K^{s}\right]_{t-s} \rightarrow\left[X, K^{s+1}\right]_{t-s-1}
$$

The d_{r}-differentials have bidegree $(r, r-1)$. The expected abutment is the graded abelian group $G=$ $[X, Y]_{*}$, filtered by the image groups $F^{s}=\operatorname{im}\left(i_{*}^{s}:\left[X, Y^{s}\right]_{*} \rightarrow[X, Y]_{*}\right)$.
Theorem 4.8. The Adams spectral sequence $\left\{E_{r}(X, Y)=E_{r}^{*, *}(X, Y)\right\}_{r}$ of maps $X \rightarrow Y$, with expected abutment $[X, Y]_{*}$, has E_{2}-term

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Y), H^{*}(X)\right)
$$

The proof is the same as for $X=S$, replacing \mathbb{F}_{2} by $H^{*}(X)$ in the right hand argument of all Hom \mathscr{A}^{-} and $\mathrm{Ext}_{\mathscr{A}^{-}}^{s}$-groups.

4.3 A minimal resolution

To compute the Adams E_{2}-term for the sphere spectrum, we need to compute

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=H^{*, *}\left(\operatorname{Hom}_{\mathscr{A}}\left(P_{*}, \mathbb{F}_{2}\right)\right)
$$

for any free resolution P_{*} of \mathbb{F}_{2}. We now construct such a free resolution by hand, in a small range of degrees.

4.3.1 Filtration $s=0$

We need a surjection $\epsilon: P_{0} \rightarrow \mathbb{F}_{2}$, so we let $P_{0}=\mathscr{A}\left\{g_{0,0}\right\}$ be the free \mathscr{A}-module on a single generator $g_{0,0}$ in internal degree 0 . We will also use the notation $g_{0,0}=1$. More generally, we will let $g_{s, i}$ denote the i-th generator in filtration degree s, counting from $i=0$ in some order of non-decreasing internal degrees t.

4.3.2 Filtration $s=1$

Next, we need a surjection $\partial_{1}: P_{1} \rightarrow \operatorname{ker}(\epsilon)$, where $\operatorname{ker}(\epsilon) \cong I(\mathscr{A})$. An additive basis for $\operatorname{ker}(\epsilon)$ is given by the admissible monomials $S q^{I} g_{0,0}=S q^{I}$ for I of length ≥ 1. (We listed these through degree 11 in the subsection on admissible monomials.)

Starting in low degrees, we first need a generator $g_{1,0}=\left[S q^{1}\right]$ in internal degree 1 that maps to $S q^{1}$. The free summand $\mathscr{A}\left\{g_{1,0}\right\}$ that it will generate in P_{1} will then map by ∂_{1} to all classes of the form $S q^{I} \circ S q^{1}$, with I admissible. In view of the Adem relation $S q^{1} \circ S q^{1}=0$, the image consists of all classes $S q^{J}$ where $J=\left(j_{1}, \ldots, j_{\ell}\right)$ is admissible and $j_{\ell}=1$. See the left hand column in Table 1.

The first class not in the image from $\mathscr{A}\left\{g_{1,0}\right\}$ is $S q^{2}$ in internal degree 2 , so we must add a second generator $g_{1,1}=\left[S q^{2}\right]$ to P_{1}, that maps to $S q^{2}$ under ∂_{1}. We use the Adem relations to compute the image $S q^{I} S q^{2}$ of $S q^{I}\left[S q^{2}\right]$. For example, $S q^{4} S q^{2} S q^{1} \circ S q^{2}=S q^{4} S q^{2} S q^{3}=S q^{4} S q^{5}+S q^{4} S q^{4} S q^{1}=$ $S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}+S q^{6} S q^{2} S q^{1}$ (where we omitted $S q^{7} S q^{1} S q^{1}=0$ at the last step). See the right hand column in Table 1.

The images of $S q^{2}\left[S q^{1}\right]$ and $S q^{1}\left[S q^{2}\right]$ generate $\operatorname{ker}(\epsilon)$ in internal degree 3 , and $S q^{3} S q^{1}$ is in the image of ∂_{1}, but the class $S q^{4}$ is not in the image from $\mathscr{A}\left\{g_{1,0}, g_{1,1}\right\}$, so we must add a third generator $g_{1,2}=\left[S q^{4}\right]$ to P_{1}, mapping to $S q^{4}$ under ∂_{1}. See the left hand column in Table 2.

All the admissible monomials in degree $1 \leq t \leq 7$ are then in the image of ∂_{1}, but $S q^{8}$ is not hit. We must therefore add a fourth generator $g_{1,3}=\left[\bar{S} q^{8}\right]$ with $\partial_{1}\left(g_{1,3}\right)=S q^{8}$. An inspection then reveals that $\partial_{1}: \mathscr{A}\left\{g_{1,0}, g_{1,1}, g_{1,2}, g_{1,3}\right\} \rightarrow \operatorname{ker}(\epsilon)$ is surjective in degrees $t \leq 11$. See the right hand column in Table 2.

In general, we need enough \mathscr{A}-module generators $\left\{g_{1, i}\right\}_{i}$ for P_{1} to map surjectively to the indecomposables $Q(\mathscr{A})=I(\mathscr{A}) / I(\mathscr{A})^{2} \cong \mathbb{F}_{2}\left\{S q^{2^{i}} \mid i \geq 0\right\}$. This is necessary, since if $\partial_{1}: P_{1} \rightarrow \operatorname{ker}(\epsilon)=I(\mathscr{A})$ is surjective, then so is the composite $P_{1} \rightarrow I(\mathscr{A}) \rightarrow Q(\mathscr{A})$. It is also sufficient, since if $P_{1} \rightarrow I(\mathscr{A})$ is surjective below degree t and $P_{1} \rightarrow Q(\mathscr{A})$ is surjective in degree t, then all classes in $I(\mathscr{A})^{2}$ of degree t are in the image of P_{1}, and any class in $I(\mathscr{A})$ of degree t is congruent modulo $I(\mathscr{A})^{2}$ to a class in the image of P_{1}. The full definition of P_{1} is therefore $P_{1}=\mathscr{A}\left\{g_{1, i} \mid i \geq 0\right\}$ with $g_{1, i}=\left[S q^{2^{i}}\right]$ mapping to $\partial_{1}\left(g_{1, i}\right)=S q^{2^{i}}$, for all $i \geq 0$. Below internal degree 16 we thus have an isomorphism $P_{1} \cong \mathscr{A}\left\{g_{1,0}, g_{1,1}, g_{1,2}, g_{1,3}\right\} .(($ References to Milnor-Moore, Steenrod-Epstein?))

4.3.3 Filtration $s=2$

To continue, we ignore classes in degree $t>11$. We need a surjection $\partial_{2}: P_{2} \rightarrow \operatorname{ker}\left(\partial_{1}\right)$. First we go through the linear algebra exercise of computing an additive basis for $\operatorname{ker}\left(\partial_{1}\right)$. See Table 3.

The class in lowest degree in $\operatorname{ker}\left(\delta_{1}\right)$ is $S q^{1} g_{1,0}=S q^{1}\left[S q^{1}\right]$, which corresponds to the Adem relation $S q^{1} S q^{1}=0$. We put a first generator $g_{2,0}$ of degree 2 in P_{2}, with $\partial_{2}\left(g_{2,0}\right)=S q^{1}\left[S q^{1}\right]$. See the left hand column of Table 4.

The first class in $\operatorname{ker}\left(\partial_{1}\right)$ that is not in the image of ∂_{2} on $\mathscr{A}\left\{g_{2,0}\right\}$ is $S q^{3}\left[S q^{1}\right]+S q^{2}\left[S q^{2}\right]$, which corresponds to the Adem relation $S q^{2} S q^{2}=S q^{3} S q^{1}$. We add a second generator $g_{2,1}$ to P_{2}, in degree 4, with $\partial_{2}\left(g_{2,1}\right)=S q^{3}\left[S q^{1}\right]+S q^{2}\left[S q^{2}\right]$, and compute the value of $\partial_{2}\left(S q^{I} g_{2,1}\right)=S q^{I}\left(S q^{3}\left[S q^{1}\right]+S q^{2}\left[S q^{2}\right]\right)$ in $\operatorname{ker}\left(\partial_{1}\right) \subset P_{1}$ for each admissible I, using the Adem relations. See the right hand column of Table 4.

$$
\begin{aligned}
& g_{1,0}=\left[S q^{1}\right] \stackrel{\partial_{1}}{\longmapsto} S q^{1} \\
& S q^{1}\left[S q^{1}\right] \longmapsto 0 \quad g_{1,1}=\left[S q^{2}\right] \stackrel{\partial_{1}}{\longmapsto} S q^{2} \\
& S q^{2}\left[S q^{1}\right] \longmapsto S q^{2} S q^{1} \quad S q^{1}\left[S q^{2}\right] \longmapsto S q^{3} \\
& S q^{3}\left[S q^{1}\right] \longmapsto S q^{3} S q^{1} \quad S q^{2}\left[S q^{2}\right] \longmapsto S q^{3} S q^{1} \\
& S q^{2} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{4}\left[S q^{1}\right] \longmapsto S q^{4} S q^{1} \\
& S q^{3} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{5}\left[S q^{1}\right] \longmapsto S q^{5} S q^{1} \\
& S q^{4} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{6}\left[S q^{1}\right] \longmapsto S q^{6} S q^{1} \\
& S q^{5} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{4} S q^{2}\left[S q^{1}\right] \longmapsto S q^{4} S q^{2} S q^{1} \\
& S q^{7}\left[S q^{1}\right] \longmapsto S q^{7} S q^{1} \\
& S q^{6} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{6}\left[S q^{2}\right] \longmapsto S q^{6} S q^{2} \\
& S q^{5} S q^{2}\left[S q^{1}\right] \longmapsto S q^{5} S q^{2} S q^{1} \\
& S q^{4} S q^{2} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{8}\left[S q^{1}\right] \longmapsto S q^{8} S q^{1} \\
& S q^{7} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{5} S q^{1}\left[S q^{2}\right] \longmapsto 0 \\
& S q^{2} S q^{1}\left[S q^{2}\right] \longmapsto S q^{5}+S q^{4} S q^{1} \\
& S q^{4}\left[S q^{2}\right] \longmapsto S q^{4} S q^{2} \\
& S q^{3} S q^{1}\left[S q^{2}\right] \longmapsto S q^{5} S q^{1} \\
& S q^{5}\left[S q^{2}\right] \longmapsto S q^{5} S q^{2} \\
& S q^{4} S q^{1}\left[S q^{2}\right] \longmapsto S q^{5} S q^{2} \\
& S q^{6} S q^{2}\left[S q^{1}\right] \longmapsto S q^{6} S q^{2} S q^{1} \\
& S q^{4} S q^{2}\left[S q^{2}\right] \longmapsto S q^{5} S q^{2} S q^{1} \\
& S q^{7}\left[S q^{2}\right] \longmapsto S q^{7} S q^{2} \\
& S q^{6} S q^{1}\left[S q^{2}\right] \longmapsto S q^{6} S q^{3} \\
& S q^{5} S q^{2} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{9}\left[S q^{1}\right] \longmapsto S q^{9} S q^{1} \\
& S q^{8} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{5} S q^{2}\left[S q^{2}\right] \longmapsto 0 \\
& S q^{4} S q^{2} S q^{1}\left[S q^{2}\right] \longmapsto S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}+S q^{6} S q^{2} S q^{1} \\
& S q^{8}\left[S q^{2}\right] \longmapsto S q^{8} S q^{2} \\
& S q^{7} S q^{2}\left[S q^{1}\right] \longmapsto S q^{7} S q^{2} S q^{1} \\
& S q^{7} S q^{1}\left[S q^{2}\right] \longmapsto S q^{7} S q^{3} \\
& S q^{6} S q^{3}\left[S q^{1}\right] \longmapsto S q^{6} S q^{3} S q^{1} \\
& S q^{6} S q^{2}\left[S q^{2}\right] \longmapsto S q^{6} S q^{3} S q^{1} \\
& S q^{6} S q^{2} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{10}\left[S q^{1}\right] \longmapsto S q^{10} S q^{1} \\
& S q^{9}\left[S q^{2}\right] \longmapsto S q^{9} S q^{2} \\
& S q^{9} S q^{1}\left[S q^{1}\right] \longmapsto 0 \\
& S q^{8} S q^{1}\left[S q^{2}\right] \longmapsto S q^{8} S q^{3} \\
& S q^{8} S q^{2}\left[S q^{1}\right] \longmapsto S q^{8} S q^{2} S q^{1} \\
& S q^{7} S q^{2}\left[S q^{2}\right] \longmapsto S q^{7} S q^{3} S q^{1} \\
& S q^{6} S q^{3}\left[S q^{2}\right] \longmapsto 0 \\
& S q^{6} S q^{2} S q^{1}\left[S q^{2}\right] \longmapsto S q^{9} S q^{2}+S q^{8} S q^{3}+S q^{7} S q^{3} S q^{1}
\end{aligned}
$$

Table 1: ∂_{1} on $\mathscr{A}\left\{g_{1,0}, g_{1,1}\right\} \subset P_{1}$

$$
\begin{aligned}
& g_{1,2}=\left[S q^{4}\right] \stackrel{\partial_{1}}{\longmapsto} S q^{4} \\
& S q^{1}\left[S q^{4}\right] \longmapsto S q^{5} \\
& S q^{2}\left[S q^{4}\right] \longmapsto S q^{6}+S q^{5} S q^{1} \\
& S q^{3}\left[S q^{4}\right] \longmapsto S q^{7} \\
& S q^{2} S q^{1}\left[S q^{4}\right] \longmapsto S q^{6} S q^{1} \\
& S q^{4}\left[S q^{4}\right] \longmapsto S q^{7} S q^{1}+S q^{6} S q^{2} \\
& g_{1,3}=\left[S q^{8}\right] \stackrel{\partial_{1}}{\longmapsto} S q^{8} \\
& S q^{3} S q^{1}\left[S q^{4}\right] \longmapsto S q^{7} S q^{1} \\
& S q^{5}\left[S q^{4}\right] \longmapsto S q^{7} S q^{2} \\
& S q^{4} S q^{1}\left[S q^{4}\right] \longmapsto S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2} \\
& S q^{6}\left[S q^{4}\right] \longmapsto S q^{7} S q^{3} \\
& S q^{1}\left[S q^{8}\right] \longmapsto S q^{9} \\
& { }^{5} q^{1}\left[q^{4}\right] \rightarrow S q q^{4} \\
& S q^{5} S q^{1}\left[S q^{4}\right] \longmapsto S q^{9} S q^{1} \\
& S q^{4} S q^{2}\left[S q^{4}\right] \longmapsto S q^{10}+S q^{9} S q^{1}+S q^{8} S q^{2}+S q^{7} S q^{2} S q^{1} \\
& S q^{7}\left[S q^{4}\right] \longmapsto 0 \\
& S q^{6} S q^{1}\left[S q^{4}\right] \longmapsto S q^{9} S q^{2}+S q^{8} S q^{3} \\
& S q^{3}\left[S q^{8}\right] \longmapsto S q^{11} \\
& S q^{2} S q^{1}\left[S q^{8}\right] \longmapsto S q^{10} S q^{1} \\
& S q^{5} S q^{2}\left[S q^{4}\right] \longmapsto S q^{11}+S q^{9} S q^{2} \\
& S q^{4} S q^{2} S q^{1}\left[S q^{4}\right] \longmapsto S q^{10} S q^{1}+S q^{8} S q^{2} S q^{1} \\
& S q^{2}\left[S q^{8}\right] \longmapsto S q^{10}+S q^{9} S q^{1}
\end{aligned}
$$

Table 2: ∂_{1} on $\mathscr{A}\left\{g_{1,2}, g_{1,3}\right\} \subset P_{1}$

The lowest degree class not in the image of ∂_{2} on $\mathscr{A}\left\{g_{2,0}, g_{2,1}\right\} \subset P_{2}$ is $S q^{4}\left[S q^{1}\right]+S q^{2} S q^{1}\left[S q^{2}\right]+$ $S q^{1}\left[S q^{4}\right]$, in degree 5. It corresponds to the Adem relation $S q^{2} S q^{3}=S q^{5}+S q^{4} S q^{1}$, in view of the identities $S q^{1} S q^{2}=S q^{3}$ and $S q^{1} S q^{4}=S q^{5}$. We add a third generator $g_{2,2}$ to P_{2}, with $\partial_{2}\left(g_{2,2}\right)=$ $S q^{4}\left[S q^{1}\right]+S q^{2} S q^{1}\left[S q^{2}\right]+S q^{1}\left[S q^{4}\right]$, and compute $\partial_{2}\left(S q^{I} g_{2,2}\right)$, as before. See Table 5 .

The first class in $\operatorname{ker}\left(\partial_{1}\right)$ not in the image of ∂_{2} on $\mathscr{A}\left\{g_{2,0}, g_{2,1}, g_{2,2}\right\}$ is $S q^{7}\left[S q^{1}\right]+S q^{6}\left[S q^{2}\right]+S q^{4}\left[S q^{4}\right]$. We add a fourth generator $g_{2,3}$ to P_{2} in degree 8, corresponding to the Adem relation $S q^{4} S q^{4}=S q^{7} S q^{1}+$ $S q^{6} S q^{2}$, and let $\partial_{2}\left(g_{2,3}\right)=S q^{7}\left[S q^{1}\right]+S q^{6}\left[S q^{2}\right]+S q^{4}\left[S q^{4}\right]$.

$$
\begin{aligned}
& g_{2,3} \longmapsto \partial_{2} \\
& S q^{7}\left[S q^{1}\right]+S q^{6}\left[S q^{2}\right]+S q^{4}\left[S q^{4}\right] \\
& S q^{1} g_{2,3} \longmapsto S q^{7}\left[S q^{2}\right]+S q^{5}\left[S q^{4}\right] \\
& S q^{2} g_{2,3} \longmapsto\left(S q^{9}+S q^{8} S q^{1}\right)\left[S q^{1}\right]+S q^{7} S q^{1}\left[S q^{2}\right]+\left(S q^{6}+S q^{5} S q^{1}\right)\left[S q^{4}\right] \\
& S q^{3} g_{2,3} \longmapsto S q^{9} S q^{1}\left[S q^{1}\right]+S q^{7}\left[S q^{4}\right] \\
& S q^{2} S q^{1} g_{2,3} \longmapsto\left(S q^{9}+S q^{8} S q^{1}\right)\left[S q^{2}\right]+S q^{6} S q^{1}\left[S q^{4}\right]
\end{aligned}
$$

This still leaves $S q^{8}\left[S q^{1}\right]+S q^{7}\left[S q^{2}\right]+S q^{4} S q^{1}\left[S q^{4}\right]+S q^{1}\left[S q^{8}\right]$ not in the image of ∂_{2}, so we add a fifth generator $g_{2,4}$ in degree 9, corresponding to the Adem relation $S q^{4} S q^{5}=S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}$, and let $\partial_{2}\left(g_{2,4}\right)=S q^{8}\left[S q^{1}\right]+S q^{7}\left[S q^{2}\right]+S q^{4} S q^{1}\left[S q^{4}\right]+S q^{1}\left[S q^{8}\right]$.

$$
\begin{aligned}
g_{2,4} & \stackrel{\partial_{2}}{\longmapsto} S q^{8}\left[S q^{1}\right]+S q^{7}\left[S q^{2}\right]+S q^{4} S q^{1}\left[S q^{4}\right]+S q^{1}\left[S q^{8}\right] \\
S q^{1} g_{2,4} & \longmapsto S q^{9}\left[S q^{1}\right]+S q^{5} S q^{1}\left[S q^{4}\right] \\
S q^{2} g_{2,4} & \longmapsto\left(S q^{10}+S q^{9} S q^{1}\right)\left[S q^{1}\right]+\left(S q^{9}+S q^{8} S q^{1}\right)\left[S q^{2}\right]+S q^{6} S q^{1}\left[S q^{4}\right]+S q^{2} S q^{1}\left[S q^{8}\right]
\end{aligned}
$$

Finally we need a sixth generator, $g_{2,5}$ in degree 10, mapping to $S q^{7} S q^{2}\left[S q^{1}\right]+S q^{8}\left[S q^{2}\right]+S q^{4} S q^{2}\left[S q^{4}\right]+$ $S q^{2}\left[S q^{8}\right]$. It derives from the Adem relations for $S q^{2} S q^{8}$ and for $S q^{4} S q^{6}$, using the Adem relation for $S q^{2} S q^{4}$. ((Can we pick a different generator that corresponds to just a single Adem relation?))

$$
\begin{aligned}
g_{2,5} & \stackrel{\partial_{2}}{\longmapsto} S q^{7} S q^{2}\left[S q^{1}\right]+S q^{8}\left[S q^{2}\right]+S q^{4} S q^{2}\left[S q^{4}\right]+S q^{2}\left[S q^{8}\right] \\
S q^{1} g_{2,5} & \longmapsto S q^{9}\left[S q^{2}\right]+S q^{5} S q^{2}\left[S q^{4}\right]+S q^{3}\left[S q^{8}\right]
\end{aligned}
$$

```
\(S q^{1}\left[S q^{1}\right]\)
\(S q^{2} S q^{1}\left[S q^{1}\right]\)
\(S q^{3}\left[S q^{1}\right]+S q^{2}\left[S q^{2}\right]\)
\(S q^{3} S q^{1}\left[S q^{1}\right]\)
\(S q^{3}\left[S q^{2}\right]\)
\(S q^{4}\left[S q^{1}\right]+S q^{2} S q^{1}\left[S q^{2}\right]+S q^{1}\left[S q^{4}\right]\)
\(S q^{4} S q^{1}\left[S q^{1}\right]\)
\(S q^{5}\left[S q^{1}\right]+S q^{3} S q^{1}\left[S q^{2}\right]\)
\(S q^{5} S q^{1}\left[S q^{1}\right]\)
\(\left(S q^{5}+S q^{4} S q^{1}\right)\left[S q^{2}\right]\)
\(S q^{6}\left[S q^{1}\right]+S q^{2} S q^{1}\left[S q^{4}\right]\)
\(S q^{6} S q^{1}\left[S q^{1}\right]\)
\(S q^{4} S q^{2} S q^{1}\left[S q^{1}\right]\)
\(S q^{5} S q^{1}\left[S q^{2}\right]\)
\(S q^{5} S q^{2}\left[S q^{1}\right]+S q^{4} S q^{2}\left[S q^{2}\right]\)
\(S q^{7}\left[S q^{1}\right]+S q^{6}\left[S q^{2}\right]+S q^{4}\left[S q^{4}\right]\)
\(S q^{7}\left[S q^{1}\right]+S q^{3} S q^{1}\left[S q^{4}\right]\)
\(S q^{7} S q^{1}\left[S q^{1}\right]\)
\(S q^{5} S q^{2} S q^{1}\left[S q^{1}\right]\)
\(S q^{5} S q^{2}\left[S q^{2}\right]\)
\(S q^{7}\left[S q^{2}\right]+S q^{5}\left[S q^{4}\right]\)
\(S q^{6} S q^{2}\left[S q^{1}\right]+S q^{4} S q^{2} S q^{1}\left[S q^{2}\right]+S q^{4} S q^{1}\left[S q^{4}\right]\)
\(S q^{8}\left[S q^{1}\right]+S q^{7}\left[S q^{2}\right]+S q^{4} S q^{1}\left[S q^{4}\right]+S q^{1}\left[S q^{8}\right]\)
    \(S q^{8} S q^{1}\left[S q^{1}\right]\)
    \(S q^{6} S q^{2} S q^{1}\left[S q^{1}\right]\)
    \(S q^{6} S q^{3}\left[S q^{1}\right]+S q^{6} S q^{2}\left[S q^{2}\right]\)
    \(\left(S q^{9}+S q^{7} S q^{2}\right)\left[S q^{1}\right]+S q^{5} S q^{2} S q^{1}\left[S q^{2}\right]\)
    \(S q^{7} S q^{1}\left[S q^{2}\right]+S q^{6}\left[S q^{4}\right]\)
\(S q^{9}\left[S q^{1}\right]+S q^{5} S q^{1}\left[S q^{4}\right]\)
    \(S q^{7} S q^{2}\left[S q^{1}\right]+S q^{8}\left[S q^{2}\right]+S q^{4} S q^{2}\left[S q^{4}\right]+S q^{2}\left[S q^{8}\right]\)
\(S q^{7} S q^{2}\left[S q^{1}\right]+S q^{8}\left[S q^{2}\right]+S q^{4} S q^{2}\left[S q^{4}\right]+S q^{2}\left[S q^{8}\right]\)
\(S q^{9} S q^{1}\left[S q^{1}\right]\)
\(S q^{7} S q^{2} S q^{1}\left[S q^{1}\right]\)
\(S q^{6} S q^{3} S q^{1}\left[S q^{1}\right]\)
\(S q^{7} S q^{3}\left[S q^{1}\right]+S q^{7} S q^{2}\left[S q^{2}\right]\)
\(S q^{6} S q^{3}\left[S q^{2}\right]\)
\(S q^{7} S q^{3}\left[S q^{1}\right]+\left(S q^{9}+S q^{8} S q^{1}+S q^{6} S q^{2} S q^{1}\right)\left[S q^{2}\right]\)
\(S q^{7}\left[S q^{4}\right]\)
\(\left(S q^{9}+S q^{8} S q^{1}\right)\left[S q^{2}\right]+S q^{6} S q^{1}\left[S q^{4}\right]\)
\(\left(S q^{10}+S q^{8} S q^{2}\right)\left[S q^{1}\right]+S q^{4} S q^{2} S q^{1}\left[S q^{4}\right]\)
\(S q^{9}\left[S q^{2}\right]+S q^{5} S q^{2}\left[S q^{4}\right]+S q^{3}\left[S q^{8}\right]\)
\(S q^{10}\left[S q^{1}\right]+S q^{2} S q^{1}\left[S q^{8}\right]\)
```

Table 3: A basis for $\operatorname{ker}\left(\partial_{1}\right)$ in degrees ≤ 11

$$
\begin{aligned}
& g_{2,0} \stackrel{\partial_{2}}{\longleftrightarrow} S q^{1}\left[S q^{1}\right] \\
& S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{2} g_{2,0} \longmapsto S q^{2} S q^{1}\left[S q^{1}\right] \\
& S q^{3} g_{2,0} \longmapsto S q^{3} S q^{1}\left[S q^{1}\right] \\
& g_{2,1} \stackrel{\partial_{2}}{\longleftrightarrow} S q^{3}\left[S q^{1}\right]+S q^{2}\left[S q^{2}\right] \\
& S q^{2} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{4} g_{2,0} \longmapsto S q^{4} S q^{1}\left[S q^{1}\right] \quad S q^{2} g_{2,1} \longmapsto\left(S q^{5}+S q^{4} S q^{1}\right)\left[S q^{1}\right]+S q^{3} S q^{1}\left[S q^{2}\right] \\
& S q^{3} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{5} g_{2,0} \longmapsto S q^{5} S q^{1}\left[S q^{1}\right] \\
& S q^{4} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{6} g_{2,0} \longmapsto S q^{6} S q^{1}\left[S q^{1}\right] \\
& S q^{2} S q^{1} g_{2,1} \longmapsto\left(S q^{5}+S q^{4} S q^{1}\right)\left[S q^{2}\right] \\
& S q^{5} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{4} S q^{2} g_{2,0} \longmapsto S q^{4} S q^{2} S q^{1}\left[S q^{1}\right] \\
& S q^{7} g_{2,0} \longmapsto S q^{7} S q^{1}\left[S q^{1}\right] \\
& S q^{6} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{5} S q^{2} g_{2,0} \longmapsto S q^{5} S q^{2} S q^{1}\left[S q^{1}\right] \\
& S q^{4} S q^{2} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{8} g_{2,0} \longmapsto S q^{8} S q^{1}\left[S q^{1}\right] \\
& S q^{7} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{6} S q^{2} g_{2,0} \longmapsto S q^{6} S q^{2} S q^{1}\left[S q^{1}\right] \\
& S q^{5} S q^{2} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{9} g_{2,0} \longmapsto S q^{9} S q^{1}\left[S q^{1}\right] \\
& S q^{8} S q^{1} g_{2,0} \longmapsto 0 \\
& S q^{6} g_{2,1} \longmapsto S q^{6} S q^{3}\left[S q^{1}\right]+S q^{6} S q^{2}\left[S q^{2}\right] \\
& S q^{5} S q^{1} g_{2,1} \longmapsto 0 \\
& S q^{4} S q^{2} g_{2,1} \longmapsto\left(S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}+S q^{6} S q^{2} S q^{1}\right)\left[S q^{1}\right]+ \\
& +S q^{5} S q^{2} S q^{1}\left[S q^{2}\right] \\
& S q^{7} S q^{2} g_{2,0} \longmapsto S q^{7} S q^{2} S q^{1}\left[S q^{1}\right] \\
& S q^{7} g_{2,1} \longmapsto S q^{7} S q^{3}\left[S q^{1}\right]+S q^{7} S q^{2}\left[S q^{2}\right] \\
& S q^{6} S q^{1} g_{2,1} \longmapsto S q^{6} S q^{3}\left[S q^{2}\right] \\
& S q^{6} S q^{3} g_{2,0} \longmapsto S q^{6} S q^{3} S q^{1}\left[S q^{1}\right] \quad S q^{4} S q^{2} S q^{1} g_{2,1} \longmapsto\left(S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}+S q^{6} S q^{2} S q^{1}\right)\left[S q^{2}\right] \\
& S q^{6} S q^{2} S q^{1} g_{2,0} \longmapsto 0
\end{aligned}
$$

$$
\begin{aligned}
& g_{2,2} \longmapsto \partial_{2} \\
& S q^{4}\left[S q^{1}\right]+S q^{2} S q^{1}\left[S q^{2}\right]+S q^{1}\left[S q^{4}\right] \\
& S q^{2} g_{2,2} \longmapsto S q^{5}\left[S q^{1}\right]+S q^{3} S q^{1}\left[S q^{2}\right] \\
& S q^{3} g_{2,2}\left.\longmapsto S q^{6}+S q^{5} S q^{1}\right)\left[S q^{1}\right]+S q^{3} S q^{1}\left[S q^{4}\right] \\
& S q^{2} S q^{1} g_{2,2}\left.\longmapsto S q^{4}\right] \\
& S q^{4} g_{2,2} \longmapsto\left(S q^{6} S q^{1}\left[S q^{1}\right]+S q^{5} S q^{1}\left[S q^{2}\right]\right. \\
& S q^{3} S q^{1} g_{2,2}\left.\longmapsto S q^{6} S q^{2}\right)\left[S q^{1}\right]+S q^{4} S q^{2} S q^{1}\left[S q^{2}\right]+S q^{4} S q^{1}\left[S q^{4}\right] \\
& S q^{5} g_{2,2} \longmapsto S q^{7} S q^{2}\left[S q^{1}\right]+S q^{5} S q^{2} S q^{1}\left[S q^{2}\right]+S q^{5} S q^{1}\left[S q^{4}\right] \\
& S q^{4} S q^{1} g_{2,2} \longmapsto\left(S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}\right)\left[S q^{1}\right]+S q^{5} S q^{2} S q^{1}\left[S q^{2}\right] \\
& S q^{6} g_{2,2} \longmapsto S q^{7} S q^{3}\left[S q^{1}\right]+S q^{6} S q^{2} S q^{1}\left[S q^{2}\right]+S q^{6} S q^{1}\left[S q^{4}\right] \\
& S q^{5} S q^{1} g_{2,2} \longmapsto S q^{9} S q^{1}\left[S q^{1}\right] \\
& S q^{4} S q^{2} g_{2,2} \longmapsto\left(S q^{10}+S q^{9} S q^{1}+S q^{8} S q^{2}+S q^{7} S q^{2} S q^{1}\right)\left[S q^{1}\right]+S q^{4} S q^{2} S q^{1}\left[S q^{4}\right]
\end{aligned}
$$

Table 5: ∂_{2} on $\mathscr{A}\left\{g_{2,2}\right\} \subset P_{2}$

Now $\partial_{2}: \mathscr{A}\left\{g_{2,0}, \ldots, g_{2,5}\right\} \rightarrow \operatorname{ker}\left(\partial_{1}\right)$ is surjective in degrees $t \leq 11$. (In fact, it is surjective below internal degree 16.)

4.3.4 Filtration $s=3$

We carry on to filtration degree $s=3$, looking for a surjection $\partial_{3}: P_{3} \rightarrow \operatorname{ker}\left(\partial_{2}\right)$. First we must compute a basis for $\operatorname{ker}\left(\partial_{2}\right) \subset P_{2}$, in our range of degrees. The result is displayed in Table 6.

As usual, the lowest degree class is $S q^{1} g_{2,0}$, so we first put a generator $g_{3,0}$ of degree 3 in P_{3} with $\partial_{3}\left(g_{3,0}\right)=S q^{1} g_{2,0}$. The extension to $\mathscr{A}\left\{g_{3,0}\right\}$ is given in the left hand column of Table 7 .

The lowest class not in the image of this extension is $\partial_{3}\left(g_{3,1}\right)=S q^{4} g_{2,0}+S q^{2} g_{2,1}+S q^{1} g_{2,2}$ in degree 6 . See the right hand column of Table 7.

After this, the only class not in the image of ∂_{3} on $\mathscr{A}\left\{g_{3,0}, g_{3,1}\right\}$ is $\partial_{3}\left(g_{3,2}\right)=S q^{8} g_{2,0}+\left(S q^{5}+\right.$ $\left.S q^{4} S q^{1}\right) g_{2,2}+S q^{1} g_{2,4}$ in degree 10:

$$
\begin{aligned}
g_{3,2} & \stackrel{\partial_{3}}{\longmapsto} S q^{8} g_{2,0}+\left(S q^{5}+S q^{4} S q^{1}\right) g_{2,2}+S q^{1} g_{2,4} \\
S q^{1} g_{3,2} & \longmapsto S q^{9} g_{2,0}+S q^{5} S q^{1} g_{2,2}
\end{aligned}
$$

Finally, we need a fourth generator, $g_{3,3}$ in degree 11, with

$$
g_{3,3} \stackrel{\partial_{3}}{\longmapsto} S q^{4} S q^{2} S q^{1} g_{2,0}+S q^{6} g_{2,2}+S q^{2} S q^{1} g_{2,3}
$$

(This generator will be particularly interesting when we get to the multiplicative structure in the Adams E_{2}-term.) Then $\partial_{3}: \mathscr{A}\left\{g_{3,0}, \ldots, g_{3,3}\right\} \rightarrow \operatorname{ker}\left(\partial_{2}\right)$ is surjective in degrees $t \leq 11$.

4.3.5 Filtration $s=4$

In degrees ≤ 11 we have an additive basis

$$
\begin{array}{ll}
S q^{1} g_{3,0} & S q^{6} S q^{1} g_{3,0} \\
S q^{2} S q^{1} g_{3,0} & S q^{4} S q^{2} S q^{1} g_{3,0} \\
S q^{3} S q^{1} g_{3,0} & S q^{7} S q^{1} g_{3,0} \\
S q^{4} S q^{1} g_{3,0} & S q^{5} S q^{2} S q^{1} g_{3,0} \\
S q^{5} S q^{1} g_{3,0} & S q^{8} g_{3,0}+\left(S q^{5}+S q^{4} S q^{1}\right) g_{3,1}+S q^{1} g_{3,2}
\end{array}
$$

$$
\begin{array}{ll}
S q^{1} g_{2,0} & S q^{7} S q^{1} g_{2,0} \\
S q^{2} S q^{1} g_{2,0} & S q^{5} S q^{2} S q^{1} g_{2,0} \\
S q^{3} S q^{1} g_{2,0} & S q^{5} S q^{1} g_{2,1} \\
S q^{4} g_{2,0}+S q^{2} g_{2,1}+S q^{1} g_{2,2} & S q^{6} S q^{2} g_{2,0}+S q^{4} S q^{2} g_{2,1}+S q^{4} S q^{1} g_{2,2} \\
S q^{4} S q^{1} g_{2,0} & S q^{8} g_{2,0}+\left(S q^{5}+S q^{4} S q^{1}\right) g_{2,2}+S q^{1} g_{2,4} \\
S q^{5} g_{2,0}+S q^{3} g_{2,1} & S q^{8} S q^{1} g_{2,0} \\
S q^{5} S q^{1} g_{2,0} & S q^{6} S q^{2} S q^{1} g_{2,0} \\
S q^{6} g_{2,0}+S q^{3} S q^{1} g_{2,1}+S q^{2} S q^{1} g_{2,2} & \left(S q^{9}+S q^{7} S q^{2}\right) g_{2,0}+S q^{5} S q^{2} g_{2,1} \\
S q^{6} S q^{1} g_{2,0} & S q^{9} g_{2,0}+S q^{5} S q^{1} g_{2,2} \\
S q^{4} S q^{2} S q^{1} g_{2,0} & S q^{4} S q^{2} S q^{1} g_{2,0}+S q^{6} g_{2,2}+S q^{2} S q^{1} g_{2,3} \\
\left(S q^{5}+S q^{4} S q^{1}\right) g_{2,1} & \\
S q^{7} g_{2,0}+S q^{3} S q^{1} g_{2,2} &
\end{array}
$$

Table 6: A basis for $\operatorname{ker}\left(\partial_{2}\right)$ in degrees ≤ 11

$$
\begin{aligned}
& g_{3,0} \stackrel{\partial_{3}}{\longmapsto} S q^{1} g_{2,0} \\
& S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{2} g_{3,0} \longmapsto S q^{2} S q^{1} g_{2,0} \\
& S q^{3} g_{3,0} \longmapsto S q^{3} S q^{1} g_{2,0} \\
& S q^{2} S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{4} g_{3,0} \longmapsto S q^{4} S q^{1} g_{2,0} \quad S q^{1} g_{3,1} \longmapsto S q^{5} g_{2,0}+S q^{3} g_{2,1} \\
& S q^{3} S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{5} g_{3,0} \longmapsto S q^{5} S q^{1} g_{2,0} \quad S q^{2} g_{3,1} \longmapsto\left(S q^{6}+S q^{5} S q^{1}\right) g_{2,0}+S q^{3} S q^{1} g_{2,1}+S q^{2} S q^{1} g_{2,2} \\
& S q^{4} S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{6} g_{3,0} \longmapsto S q^{6} S q^{1} g_{2,0} \\
& S q^{3} g_{3,1} \longmapsto S q^{7} g_{2,0}+S q^{3} S q^{1} g_{2,2} \\
& S q^{5} S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{2} S q^{1} g_{3,1} \longmapsto S q^{6} S q^{1} g_{2,0}+\left(S q^{5}+S q^{4} S q^{1}\right) g_{2,1} \\
& S q^{4} S q^{2} g_{3,0} \longmapsto S q^{4} S q^{2} S q^{1} g_{2,0} \\
& S q^{7} g_{3,0} \longmapsto S q^{7} S q^{1} g_{2,0} \\
& S q^{4} g_{3,1} \longmapsto\left(S q^{7} S q^{1}+S q^{6} S q^{2}\right) g_{2,0}+S q^{4} S q^{2} g_{2,1}+S q^{4} S q^{1} g_{2,2} \\
& S q^{6} S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{3} S q^{1} g_{3,1} \longmapsto S q^{7} S q^{1} g_{2,0}+S q^{5} S q^{1} g_{2,1} \\
& S q^{5} S q^{2} g_{3,0} \longmapsto S q^{5} S q^{2} S q^{1} g_{2,0} \\
& S q^{4} S q^{2} S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{8} g_{3,0} \longmapsto S q^{8} S q^{1} g_{2,0} \\
& S q^{7} S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{5} g_{3,1} \longmapsto S q^{7} S q^{2} g_{2,0}+S q^{5} S q^{2} g_{2,1}+S q^{5} S q^{1} g_{2,2} \\
& S q^{6} S q^{2} g_{3,0} \longmapsto S q^{6} S q^{2} S q^{1} g_{2,0} \\
& S q^{5} S q^{2} S q^{1} g_{3,0} \longmapsto 0 \\
& S q^{4} S q^{1} g_{3,1} \longmapsto\left(S q^{9}+S q^{8} S q^{1}+S q^{7} S q^{2}\right) g_{2,0}+S q^{5} S q^{2} g_{2,1}
\end{aligned}
$$

Table 7: ∂_{3} on $\mathscr{A}\left\{g_{3,0}, g_{3,1}\right\} \subset P_{3}$
for $\operatorname{ker}\left(\partial_{3}\right)$, and a surjection $\partial_{4}: P_{4}=\mathscr{A}\left\{g_{4,0}, g_{4,1}\right\} \rightarrow \operatorname{ker}\left(\partial_{3}\right)$ where

$$
\partial_{4}\left(g_{4,0}\right)=S q^{1} g_{3,0}
$$

in degree 4 , and

$$
\partial_{4}\left(g_{4,1}\right)=S q^{8} g_{3,0}+\left(S q^{5}+S q^{4} S q^{1}\right) g_{3,1}+S q^{1} g_{3,2}
$$

in degree 11.

4.3.6 Filtration $s \geq 5$

Things become quite simple from filtration degree $s=5$ and onwards. In degrees ≤ 11 we have an additive basis

$$
\begin{array}{ll}
S q^{1} g_{4,0} & S q^{5} S q^{1} g_{4,0} \\
S q^{2} S q^{1} g_{4,0} & S q^{6} S q^{1} g_{4,0} \\
S q^{3} S q^{1} g_{4,0} & S q^{4} S q^{2} S q^{1} g_{4,0} \\
S q^{4} S q^{1} g_{4,0} &
\end{array}
$$

for $\operatorname{ker}\left(\partial_{4}\right)$, and a surjection $\partial_{5}: P_{5}=\mathscr{A}\left\{g_{5,0}\right\} \rightarrow \operatorname{ker}\left(\partial_{4}\right)$ where $\partial_{5}\left(g_{5,0}\right)=S q^{1} g_{4,0}$ in degree 5. Continuing, we have a surjection $\partial_{s}: P_{s}=\mathscr{A}\left\{g_{s, 0}\right\} \rightarrow \operatorname{ker}\left(\partial_{s-1}\right)$ in degrees ≤ 11, where $\partial_{s}\left(g_{0, s}\right)=S q^{1} g_{0, s-1}$ in degree s, for all $5 \leq s \leq 11$.

Definition 4.9. We say that P_{*} is a minimal resolution when $\operatorname{im}\left(\partial_{s+1}\right) \subset I(\mathscr{A}) \cdot P_{s}$ for all $s \geq 0$. Then $1 \otimes \partial_{s+1}: \mathbb{F}_{2} \otimes_{\mathscr{A}} P_{s+1} \rightarrow \mathbb{F}_{2} \otimes_{\mathscr{A}} P_{s}$ and $\operatorname{Hom}\left(\partial_{s+1}, 1\right): \operatorname{Hom}_{\mathscr{A}}\left(P_{s}, \mathbb{F}_{2}\right) \rightarrow \operatorname{Hom}_{\mathscr{A}}\left(P_{s+1}, \mathbb{F}_{2}\right)$ are the zero homomorphisms, so that $\operatorname{Tor}_{s}^{\mathscr{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2} \otimes_{\mathscr{A}} P_{s}$ and $\operatorname{Ext}_{\mathscr{A}}^{s}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}_{\mathscr{A}}\left(P_{s}, \mathbb{F}_{2}\right)$, for all $s \geq 0$. Equivalently, the number of generators of P_{s} is minimal in each degree.

Theorem 4.10. There is a minimal resolution $\epsilon: P_{*} \rightarrow \mathbb{F}_{2}$ with $P_{0}=\mathscr{A}\left\{g_{0,0}\right\}$ and $P_{s}=\mathscr{A}\left\{g_{s, i} \mid i \geq 0\right\}$, where $\partial_{s}: P_{s} \rightarrow P_{s-1}$ is given in internal degrees $t \leq 11$ by

$$
\begin{aligned}
\partial_{1}\left(g_{1,0}\right) & =S q^{1} g_{0,0} \\
\partial_{1}\left(g_{1,1}\right) & =S q^{2} g_{0,0} \\
\partial_{1}\left(g_{1,2}\right) & =S q^{4} g_{0,0} \\
\partial_{1}\left(g_{1,3}\right) & =S q^{8} g_{0,0} \\
\partial_{2}\left(g_{2,0}\right) & =S q^{1} g_{1,0} \\
\partial_{2}\left(g_{2,1}\right) & =S q^{3} g_{1,0}+S q^{2} g_{1,1} \\
\partial_{2}\left(g_{2,2}\right) & =S q^{4} g_{1,0}+S q^{2} S q^{1} g_{1,1}+S q^{1} g_{1,2} \\
\partial_{2}\left(g_{2,3}\right) & =S q^{7} g_{1,0}+S q^{6} g_{1,1}+S q^{4} g_{1,2} \\
\partial_{2}\left(g_{2,4}\right) & =S q^{8} g_{1,0}+S q^{7} g_{1,1}+S q^{4} S q^{1} g_{1,2}+S q^{1} g_{1,3} \\
\partial_{2}\left(g_{2,5}\right) & =S q^{7} S q^{2} g_{1,0}+S q^{8} g_{1,1}+S q^{4} S q^{2} g_{1,2}+S q^{2} g_{1,3} \\
\partial_{3}\left(g_{3,0}\right) & =S q^{1} g_{2,0} \\
\partial_{3}\left(g_{3,1}\right) & =S q^{4} g_{2,0}+S q^{2} g_{2,1}+S q^{1} g_{2,2} \\
\partial_{3}\left(g_{3,2}\right) & =S q^{8} g_{2,0}+\left(S q^{5}+S q^{4} S q^{1}\right) g_{2,2}+S q^{1} g_{2,4} \\
\partial_{3}\left(g_{3,3}\right) & =\left(S q^{7}+S q^{4} S q^{2} S q^{1}\right) g_{2,1}+S q^{6} g_{2,2}+S q^{2} S q^{1} g_{2,3} \\
\partial_{4}\left(g_{4,0}\right) & =S q^{1} g_{3,0} \\
\partial_{4}\left(g_{4,1}\right) & =S q^{8} g_{3,0}+\left(S q^{5}+S q^{4} S q^{1}\right) g_{3,1}+S q^{1} g_{3,2} \\
\partial_{5}\left(g_{5,0}\right) & =S q^{1} g_{4,0} \\
& \cdots \\
\partial_{11}\left(g_{11,0}\right) & =S q^{1} g_{10,0} .
\end{aligned}
$$

Proof. This summarizes the calculations above. The resolution is minimal, since we only added generators $g_{s, i}$ with $\partial_{s}\left(g_{s, i}\right) \in I(\mathscr{A}) \cdot P_{s-1}=I(\mathscr{A})\left\{g_{s-1, j}\right\}_{j}$. It should be clear that we can continue that way, since \mathscr{A} is connected. If any sum involving $1 \cdot g_{s, n}$ occurs in $\operatorname{ker}\left(\partial_{s}\right)$, then $g_{s, n}$ could be omitted from the basis for P_{s} and $\partial_{s}: P_{s} \rightarrow \operatorname{ker}\left(\partial_{s-1}\right)$ would still be surjective.
Theorem 4.11. $\operatorname{Ext}_{\mathscr{A}}^{s, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left\{\gamma_{s, i}\right\}_{i}$ where $\gamma_{s, i}: P_{s} \rightarrow \mathbb{F}_{2}$ is the \mathscr{A}-module homomorphism dual to $g_{s, i}$, for each $s \geq 0$. The bidegrees of the generators in internal degrees $t \leq 11$ are as displayed in the following chart. The horizontal coordinate is the topological degree $t-s$, the vertical coordinate is the cohomological degree s, and the sum of these coordinates is the internal degree t.

We have not yet computed the groups labeled • or ?, but we will prove below that the groups labeled are 0 . In fact, many of the groups labeled ? are also zero.

Proof. For each $s \geq 0$ we have $\operatorname{Hom}_{\mathscr{A}}\left(P_{s}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}_{\mathscr{A}}\left(\mathscr{A}\left\{g_{s, i}\right\}_{i}, \mathbb{F}_{2}\right) \cong \prod_{i} \mathbb{F}_{2}\left\{\gamma_{s, i}\right\}$, where $\gamma_{s, i}\left(g_{s, j}\right)=$ $\delta_{i, j}$ is 1 if $i=j$ and 0 otherwise. It will be clear later that there are at most finitely many $g_{s, i}$ in a given bidegree, so this product is finite in each degree. Then $\gamma_{s, i} \circ \partial_{s+1}=0$, so the cocomplex $\operatorname{Hom}_{\mathscr{A}}\left(P_{*}, \mathbb{F}_{2}\right)$ has trivial coboundary. Hence $\operatorname{Ext}_{\mathscr{A}}^{s}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}_{\mathscr{A}}\left(P_{s}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left\{\gamma_{s, i}\right\}_{i}$, as claimed.

Lemma 4.12. Let $\epsilon: P_{*} \rightarrow \mathbb{F}_{2}$ be a free \mathscr{A}-module resolution. Then $\operatorname{Hom}_{\mathscr{A}}\left(P_{s}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}\left(\mathbb{F}_{2} \otimes_{\mathscr{A}}\right.$ $\left.P_{s}, \mathbb{F}_{2}\right)$, so there is an isomorphism $\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}\left(\operatorname{Tor}_{s, t}^{\mathscr{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), \mathbb{F}_{2}\right)$.

4.4 The Hopf-Steenrod invariant

The standard notation for the class $\gamma_{1, i}$, dual to the indecomposable $S q^{2^{i}}$, is h_{i}. See Adams (1958). The h is for Hopf, since these classes detect the stable maps of spheres with Hopf invariant one.

Lemma 4.13. $\operatorname{Tor}_{1}^{\mathscr{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong I(\mathscr{A}) / I(\mathscr{A})^{2}=Q(\mathscr{A}) \cong \mathbb{F}_{2}\left\{S q^{2^{i}} \mid i \geq 0\right\}$ and $\operatorname{Ext}_{\mathscr{A}}^{1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong$ $\operatorname{Hom}\left(\operatorname{Tor}_{1}^{\mathscr{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left\{h_{i} \mid i \geq 0\right\}$ where h_{i} has bidegree $(s, t)=\left(1,2^{i}\right)$ and is dual to $S q^{2^{i}}$, for each $i \geq 0$.

Proof. There exists a free resolution $\cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow \mathbb{F}_{2} \rightarrow 0$ where $P_{0}=\mathscr{A}$ and $P_{1}=\mathscr{A}\left\{g_{1, i}\right\}_{i}$ with $\partial_{1}: g_{1, i} \mapsto S q^{2^{i}}$ for all $i \geq 0$. The resolution is exact at P_{0} since the $S q^{2^{i}}$ generate the left ideal $I(\mathscr{A}) \subset \mathscr{A}$, and it is minimal there since $\partial_{1}\left(P_{1}\right) \subset I(\mathscr{A}) P_{0}$. It is also minimal at P_{1}, since the surjection
$P_{1} \rightarrow I(\mathscr{A})$ induces an isomorphism $\mathbb{F}_{2}\left\{g_{1, i}\right\}_{i}=\mathbb{F}_{2} \otimes_{\mathscr{A}} P_{1}=P_{1} / I(\mathscr{A}) P_{1} \rightarrow I(\mathscr{A}) / I(\mathscr{A})^{2}=Q(\mathscr{A})$, so that $\partial_{2}\left(P_{2}\right)=\operatorname{ker}\left(\partial_{1}\right) \subset I(\mathscr{A}) P_{1}$. Hence $\operatorname{Tor}_{1}^{\mathscr{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2} \otimes_{\mathscr{A}} P_{1} \cong Q(\mathscr{A})$ and $\operatorname{Ext}_{\mathscr{A}}^{1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong$ $\operatorname{Hom}_{\mathscr{A}}\left(P_{1}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left\{h_{i}\right\}_{i}$, as claimed. ((Proof using bar complex?))

We shall soon prove that the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \Longrightarrow \pi_{t-s}(S)_{2}^{\wedge}
$$

converges to the 2-adic completion of the stable homotopy groups of spheres. The chart in the theorem above displays the E_{2}-term in the range $t \leq 11$. ((EDIT FROM HERE TO TAKE INTO ACCOUNT THE ADAMS VANISHING LINE.)) We will see later that the pattern above the diagonal line, where $s>$ $t-s$, continues. There is an isomorphism $\operatorname{Ext}_{\mathscr{A}}^{s, s}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left\{\gamma_{s, 0}\right\}$ for all $s \geq 0$, while Ext ${ }_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=0$ for $t-s<0$ and for $0<t-s<s$. Thus the groups labeled • in the chart are 0 . Granting this, the only possible d_{r}-differentials starting in total degree $t-s \leq 6$, for $r \geq 2$, are the ones starting on $\gamma_{1,1}=h_{1}$ and landing in the group generated by $\gamma_{r+1,0}$.

However, these differentials are all 0 , as can be seen either by proving that $\gamma_{s, 0}$ detected $2^{s} \in \pi_{0}(S)$, or that $\gamma_{1,1}$ detects $\eta \in \pi_{1}(S)$, or by appealing to multiplicative structure in the spectral sequence. Granting this, we can conclude that $E_{2}=E_{\infty}$ in this range of degrees, so that the groups $\mathbb{F}_{2}\left\{\gamma_{s, i}\right\}$ in one topological degree $n=t-s$, for $s \geq 0$ and $n \leq 5$ are the filtration quotients of a complete Hausdorff filtration $\left\{F^{s}\right\}_{s}$ that exhausts $\pi_{n}(S)_{2}^{\wedge}$.

For $n=0$, we already know that $\pi_{0}(S)=\mathbb{Z}$ so $\pi_{0}(S)_{2}=\mathbb{Z}_{2}$. The only possible filtration is the 2-adic one, with $F^{s}=2^{s} \mathbb{Z}_{2} \subset \mathbb{Z}_{2}$ and $F^{s} / F^{s+1} \cong 2^{s} \mathbb{Z}_{2} / 2^{s+1} \mathbb{Z}_{2} \cong \mathbb{F}_{2}\left\{\gamma_{s, 0}\right\}$ for all $s \geq 0$. For $n=1$ we deduce that $\pi_{1}(S)_{2}^{\wedge} \cong \mathbb{Z} / 2\left\{\gamma_{1,1}\right\}=\mathbb{Z} / 2\left\{h_{1}\right\}$. In fact $\pi_{1}(S)=\mathbb{Z} / 2\{\eta\}$ is generated by the complex Hopf map $\eta: S^{1} \rightarrow S$. For $n=2$ we deduce that $\pi_{2}(S)_{2}^{\wedge} \cong \mathbb{Z} / 2\left\{\gamma_{2,1}\right\}$. We shall see later that $\pi_{2}(S)=\mathbb{Z} / 2\left\{\eta^{2}\right\}$ is generated by the composite $\eta^{2}=\eta \circ \Sigma \eta: S^{2} \rightarrow S$. For $n=3$ we deduce that $\pi_{3}(S)_{2}^{\wedge}$ is an abelian group of order 8 . We shall see later that $\pi_{3}(S)_{2}^{\wedge} \cong \mathbb{Z} /(8)$ is the 2-Sylow subgroup of $\pi_{3}(S) \cong \mathbb{Z} / 24$, generated by the quaternionic Hopf map $\nu: S^{3} \rightarrow S$. Finally, for now, we conclude that $\pi_{4}(S)_{2}=0$ and $\pi_{5}(S)_{2}^{\wedge}=0$, and in fact $\pi_{4}(S)=\pi_{5}(S)=0$. ((EDIT TO HERE.) $)$

Lemma 4.14. (Hopf, Steenrod) Let $f: S^{n} \rightarrow S$ be a map with $0=f^{*}: H^{*}(S) \rightarrow H^{*}\left(S^{n}\right)$, and let $C_{f}=\operatorname{hocofib}(f)=S \cup_{f} C S^{n}$ be its mapping cone. Suppose that $S q^{n+1}: H^{0}\left(C_{f}\right) \rightarrow H^{n+1}\left(C_{f}\right)$ is nonzero. Then $n+1=2^{i}$ for some $i \geq 0$ and $[f] \in \pi_{n}(S)$ is detected in the Adams spectral sequence by $h_{i} \in E_{2}^{1,2^{i}}$.

Proof. Consider the canonical Adams tower for $Y=S$, with $Y^{0}=S, K^{0}=H, Y^{1}=\Sigma^{-1} \bar{H}$ and $K^{1}=H \wedge \Sigma^{-1} \bar{H}$. The composite $j \circ f$ is null-homotopic, since $d(f)=f^{*}=0$, so we have a map of cofiber sequences:

Here $d: C_{f} \rightarrow H$ and $e: S^{n} \rightarrow \Sigma^{-1} \bar{H}$ are determined by a null-homotopy of f. Applying cohomology to the right hand part of the diagram, we get a map of \mathscr{A}-module extensions:

Here $d^{*}(1)=1$, so by assumption $d^{*}\left(S q^{n+1}\right) \neq 0$. Hence $\Sigma e^{*}\left(S q^{n+1}\right) \neq 0$. This is impossible if $S q^{n+1}$ is decomposable, so we must have $n+1=2^{i}$ for some $i \geq 0$. Then $e^{*} \neq 0$, which implies that $j \circ e: S^{n} \rightarrow H \wedge \Sigma^{-1} \bar{H}$ is essential (= not null-homotopic).

This proves that $[f] \in \pi_{n}(S)$ lifts to $\pi_{n}\left(Y^{1}\right)$ but not to $\pi_{n}\left(Y^{2}\right)$, hence corresponds under the isomorphism $F^{1} / F^{2} \cong E_{\infty}^{1, *}$ to a nonzero class in $E_{\infty}^{1,2^{i}} \subset E_{2}^{1,2^{i}}=\mathbb{F}_{2}\left\{h_{i}\right\}$. The only possibility is that $[f]$ is detected by h_{i}.

The class of $\Sigma e^{*} \circ \partial_{1}: P_{1} \rightarrow \Sigma^{n+1} \mathbb{F}_{2}$ in $\operatorname{Ext}_{\mathscr{A}}^{1,2^{i}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left\{h_{i}\right\}$ is called the Hopf-Steenrod invariant, or the cohomology e-invariant, of $[f]$. It is only defined for the $[f]$ with vanishing d-invariant. More generally, we have a diagram

Theorem 4.15. The Hopf maps $2: S \rightarrow S, \eta: S^{1} \rightarrow S, \nu: S^{3} \rightarrow S$ and $\sigma: S^{7} \rightarrow S$ are detected in the Adams spectral sequence by the classes h_{0}, h_{1}, h_{2} and h_{3}, respectively. These are infinite cycles in the spectral sequence.

Proof. In each case, $f: S^{n} \rightarrow S$ is the stable form of a fibration $\Sigma^{n+1} f: S^{2 n+1} \rightarrow S^{n+1}$, with mapping cone a projective plane P^{2}. Here $H^{*}\left(P^{2}\right)=P(x) /\left(x^{3}\right)=\mathbb{F}_{2}\left\{1, x, x^{2}\right\}$, where $|x|=n+1$, by Poincaré duality Hence $S q^{n+1}(x)=x^{2} \neq 0$, and the previous lemma applies. Quite explicitly, $\Sigma C_{2}=\mathbb{R} P^{2}$ has a nonzero $S q^{1}, \Sigma^{2} C_{\eta}=\mathbb{C} P^{2}$ has a nonzero $S q^{2}, \Sigma^{4} C_{\nu}=\mathbb{H} P^{2}$ has a nonzero $S q^{4}$ and $\Sigma^{8} C_{\sigma}=\mathbb{O} P^{2}$ has a nonzero $S q^{8}$.

The names η, ν and σ for the Hopf maps detected by h_{1}, h_{2} and h_{3} are supposedly unrelated to the correspondence between the initial phonemes in the Greek letters "eta", "nu" and "sigma" and in the first three Japanese numerals "ichi", "ni" and "san". We shall see later that none of the classes h_{i} for $i \geq 4$ survive to the E_{∞}-term, so there are no maps $S^{n} \rightarrow S$ with nonzero Hopf-Steenrod invariant for $n \geq 8$.

4.5 Naturality

The essential uniqueness of free resolutions lifts to the level of spectral realizations. Consider diagrams

$$
\cdots \rightarrow Y^{s+1} \xrightarrow{i} Y^{s} \rightarrow \cdots \rightarrow Y^{0}=Y
$$

and

$$
\cdots \rightarrow Z^{s+1} \xrightarrow{i} Z^{s} \rightarrow \cdots \rightarrow Z^{0}=Z
$$

with cofibers $K^{s}=\operatorname{hocofib}\left(Y^{s+1} \rightarrow Y^{s}\right)$ and $L^{s}=\operatorname{hocofib}\left(Z^{s+1} \rightarrow Z^{s}\right)$ for all $s \geq 0$. There are associated chain complexes

$$
\cdots \rightarrow P_{2} \xrightarrow{\partial_{2}} P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\epsilon} H^{*}(Y) \rightarrow 0
$$

and

$$
\cdots \rightarrow Q_{2} \xrightarrow{\partial_{2}} Q_{1} \xrightarrow{\partial_{1}} Q_{0} \xrightarrow{\epsilon} H^{*}(Z) \rightarrow 0
$$

of \mathscr{A}-modules, where $P_{s}=H^{*}\left(\Sigma^{s} K^{s}\right), Q_{s}=H^{*}\left(\Sigma^{s} L^{s}\right), \partial_{s}=\partial^{*} j^{*}$ and $\epsilon=j^{*}$.
Theorem 4.16. Suppose that (a) each cofiber L^{s} is a wedge sum of Eilenberg-Mac Lane spectra that is bounded below and of finite type, and (b) each map $i: Y^{s+1} \rightarrow Y^{s}$ induces the zero map on cohomology. (For instance, $\left\{Y^{s}\right\}_{s}$ and $\left\{Z^{s}\right\}_{s}$ might be Adams resolutions.) Then each Q_{s} is a free \mathscr{A}-module, and the augmented chain complex $\epsilon: P_{*} \rightarrow H^{*}(Y) \rightarrow 0$ is exact.

Let $f: Y \rightarrow Z$ be any map. Then there exists a chain map $g_{*}: Q_{*} \rightarrow P_{*}$ lifting f^{*}, in the sense that the diagram

commutes. Furthermore, there is a map of resolutions $\left\{f^{s}: Y^{s} \rightarrow Z^{s}\right\}_{s}$ lifting f and realizing g_{*}, in the sense that there is a homotopy commutative diagram

and given any choice of commuting homotopies, the induced map of homotopy cofibers $g^{s}: K^{s} \rightarrow L^{s}$ induces $g_{s}=\left(\Sigma^{s} g^{s}\right)^{*}: Q_{s} \rightarrow P_{s}$, for each $s \geq 0$.

If $\bar{g}_{*}: Q_{*} \rightarrow P_{*}$ is a second chain map lifting f^{*}, and $\left\{\bar{f}^{s}\right\}_{s}$ is a map of resolutions lifting f and realizing \bar{g}_{*}, then g_{*} and \bar{g}_{*} are chain homotopic, and $\left\{f^{s}\right\}_{s}$ and $\left\{\bar{f}^{s}\right\}_{s}$ are homotopic in the sense that the composites $f^{s} \circ i$ and $\bar{f}^{s} \circ i: Y^{s+1} \rightarrow Z^{s}$ are homotopic for all $s \geq 0$.

Proof. Freeness of each Q_{s} is clear from the wedge sum decomposition of L^{s}. Exactness of $\epsilon: P_{*} \rightarrow$ $H^{*}(Y) \rightarrow 0$ is clear from the vanishing of i^{*}. The existence of a chain map g_{*} lifting f^{*} is standard homological algebra. We need to construct a diagram

of spectra, inducing a commutative diagram

of \mathscr{A}-modules, with $g_{s}=\left(\Sigma^{s} g^{s}\right)^{*}$.
Inductively, suppose the maps $f=f^{0}, \ldots, f^{s}$ and g^{0}, \ldots, g^{s-1} are given, for some $s \geq 0$. Then $j^{*} \circ g_{s}=\left(\Sigma^{s} f^{s}\right)^{*} \circ j^{*}$, by the assumption that g_{0} lifts f^{*} for $s=0$, and by the assumption that $\partial^{*} j^{*} \circ g_{s}=g_{s-1} \circ \partial^{*} j^{*}=\partial^{*}\left(\Sigma^{s} f^{s}\right)^{*} \circ j^{*}$ and the injectivity of ∂^{*} for $s \geq 1$.

We have an isomorphism $\left[K^{s}, L^{s}\right] \cong \operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(L^{s}\right), H^{*}\left(K^{s}\right)\right)$, so there is a unique homotopy class of maps $g^{s}: K^{s} \rightarrow L^{s}$ with $\left(\Sigma^{s} g^{s}\right)^{*}=g_{s}$. Note that $g^{s} \circ j: Y^{s} \rightarrow L^{s}$ is homotopic to $j \circ f^{s}: Y^{s} \rightarrow L^{s}$, because of the isomorphism $\left[Y^{s}, L^{s}\right] \cong \operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(L^{s}\right), H^{*}\left(Y^{s}\right)\right)$ and the fact that $\left(g^{s} \circ j\right)^{*}=\left(j \circ f^{s}\right)^{*}$. (Both isomorphisms follow from hypothesis (a)).

Choosing a commuting homotopy and passing to mapping cones, or appealing to the triangulated structure on the stable category of spectra, we can find a map $f^{s+1}: Y^{s+1} \rightarrow Z^{s+1}$ making the diagram

commute up to homotopy. This completes the inductive step.
The uniqueness of g_{*} up to chain homotopy, meaning that any other lift \bar{g}_{*} is chain homotopic to g_{*}, is standard homological algebra. We prove that $f^{s} \circ i$ is homotopic to $\bar{f}^{s} \circ i$ by induction on s. This is clear for $s=0$, since $f_{0}=\bar{f}_{0}=f$. Suppose that $i \circ f^{s} \simeq f^{s-1} \circ i$ is homotopic to $i \circ \bar{f}^{s} \simeq \bar{f}^{s-1} \circ i: Y^{s} \rightarrow Z^{s-1}$, for some $s \geq 1$.

Then $i \circ\left(\bar{f}^{s}-f^{s}\right)$ is null-homotopic, so that $\bar{f}^{s}-f^{s}$ factors through a map $h: Y^{s} \rightarrow \Sigma^{-1} L^{s-1}$. Then $\bar{f}^{s} \circ i-f^{s} \circ i=\left(\bar{f}^{s}-f^{s}\right) \circ i$ factors through $h \circ i: Y^{s+1} \rightarrow \Sigma^{-1} L^{s-1}$. This map induces $i^{*} \circ h^{*}=0$ in cohomology, hence is null-homotopic because of the isomorphism $\left[Y^{s+1}, \Sigma^{-1} L^{s-1}\right] \cong$ $\operatorname{Hom}_{\mathscr{A}}\left(H^{*}\left(\Sigma^{-1} L^{s-1}\right), H^{*}\left(Y^{s+1}\right)\right)$. In other words, $f^{s} \circ i \simeq \bar{f}^{s} \circ i$.

Corollary 4.17. Let $f: Y \rightarrow Z$ be a map of bounded below spectra with $H_{*}(Y)$ and $H_{*}(Z)$ of finite type. Then there is a map

$$
f_{*}:\left\{E_{r}(Y), d_{r}\right\}_{r} \longrightarrow\left\{E_{r}(Z), d_{r}\right\}_{r}
$$

of Adams spectral sequences, given at the E_{2}-level by the homomorphism

$$
\left(f^{*}\right)^{*}: \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Y), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Z), \mathbb{F}_{2}\right)
$$

induced by the \mathscr{A}-module homomorphism $f^{*}: H^{*}(Z) \rightarrow H^{*}(Y)$, with expected abutment the homomorphism

$$
f_{*}: \pi_{*}(Y) \rightarrow \pi_{*}(Z) .
$$

(Similarly for the Adams spectral sequences converging to $[X, Y]_{*}$ and $[X, Z]_{*}$, for any spectrum X.)
Lemma 4.18. Let $\left\{Y^{s}\right\}_{s}$ and $\left\{Z^{s}\right\}_{s}$ be Adams resolutions of a bounded below spectrum Y with $H_{*}(Y)$ of finite type. Then there is a homotopy equivalence $\operatorname{holim}_{s} Y^{s} \simeq \operatorname{holim}_{s} Z^{s}$.

Proof. There are maps $\left\{f^{s}: Y^{s} \rightarrow Z^{s}\right\}_{s}$ and $\left\{\tilde{f}^{s}: Z^{s} \rightarrow Y^{s}\right\}_{s}$ of resolutions covering the identity map of $Y=Y^{0}=Z^{0}$, and homotopies $\tilde{f}^{s} \circ f^{s} \circ i \simeq i: Y^{s+1} \rightarrow Y^{s}$ and $f^{s} \circ \tilde{f}^{s} \circ i \simeq i: Z^{s+1} \rightarrow Z^{s}$, for all $s \geq 0$. Hence holim ${ }_{s} f^{s}$ and $\operatorname{holim}_{s} \tilde{f}^{s}$ are homotopy inverses.

Theorem 4.19. Let $\left\{Y^{s}\right\}_{s}$ be an Adams resolution of Y, and let X be any spectrum. (The case $X=S$ is of particular interest.) A class $[f] \in[X, Y]_{n}$ has Adams filtration \geq s, i.e., is in the image F^{s} of $i^{s}:\left[X, Y^{s}\right]_{n} \rightarrow[X, Y]_{n}$, if and only if the representing map $f: \Sigma^{n} X \rightarrow Y$ can be factored as the composite of s maps

$$
\Sigma^{n} X=X_{s} \xrightarrow{z_{s}} X_{s-1} \xrightarrow{z_{s-1}} \ldots \xrightarrow{z_{2}} X_{1} \xrightarrow{z_{1}} X_{0}=Y
$$

where $0=z_{u}^{*}: H^{*}\left(X_{u-1}\right) \rightarrow H^{*}\left(X_{u}\right)$ for each $1 \leq u \leq s$. In particular, $F^{s} \subset[X, Y]_{*}$ is independent of the choice of Adams resolution.

Proof. If $[f]$ has Adams filtration $\geq s$, let $g: \Sigma^{n} X \rightarrow Y^{s}$ be a lift, with $i^{s} \circ g \simeq f$. Let $X_{u}=Y^{u}$ and $z_{u}=i$ for $0 \leq u \leq s-1$, and let $z_{s}=i g$:

$$
S^{n} \xrightarrow{i g} Y^{s-1} \xrightarrow{i} \ldots \xrightarrow{i} Y^{1} \xrightarrow{i} Y
$$

Conversely, given a factorization $f=z_{1} \circ \cdots \circ z_{s}$ as above, let $f^{0}: Y \rightarrow Y$ be the identity map. We can inductively find lifts $f^{u}: X_{u} \rightarrow Y^{u}$ making the diagram

commute, since the obstruction to lifting $f^{u-1} \circ z_{u}: X_{u} \rightarrow Y^{u-1}$ over $i: Y^{u} \rightarrow Y^{u-1}$ is the homotopy class of the composite $j \circ f^{u-1} \circ z_{u}: X_{u} \rightarrow K^{u-1}$, which is zero because $z_{u}^{*}=0$. Let $g=f^{s}: \Sigma^{n} X \rightarrow Y^{s}$. Then $i^{s} \circ g \simeq f$, and $[f]$ has Adams filtration $\geq s$.

4.6 Convergence

Definition 4.20. For each natural number m let the $\bmod m$ Moore spectrum S / m be defined by the cofiber sequence

$$
S \xrightarrow{m} S \longrightarrow S / m \longrightarrow S^{1}
$$

where the map m induces multiplication by m in integral (co-)homology. Note that $H_{*}(S / m ; \mathbb{Z}) \cong \mathbb{Z} / m$ is concentrated in degree 0 . For any spectrum Y let $Y / m=Y \wedge S / m$, so that there is a cofiber sequence

$$
Y \xrightarrow{m} Y \longrightarrow Y / m \longrightarrow \Sigma Y .
$$

Applying $F(-, Y)$ to the cofiber sequence

$$
S^{-1} \longrightarrow S^{-1} / m \longrightarrow S \xrightarrow{m} S
$$

leads to the cofiber sequence

$$
Y \xrightarrow{m} Y \longrightarrow F\left(S^{-1} / m, Y\right) \longrightarrow \Sigma Y
$$

and an equivalence $Y / m \simeq F\left(S^{-1} / m, Y\right)$.
Definition 4.21. For each prime p there is a horizontal tower of vertical cofiber sequences

We define the p-completion of Y as the homotopy limit $Y_{p}^{\wedge}=\operatorname{holim}_{e} Y / p^{e}$ of the tower

$$
\cdots \rightarrow Y \wedge S / p^{e} \rightarrow \cdots \rightarrow Y \wedge S / p^{2} \rightarrow Y \wedge S / p
$$

The maps $S \rightarrow S / p^{e}$ induce the p-completion map $Y \rightarrow Y_{p}^{\wedge}$.
Dually there is a horizontal sequence of vertical cofiber sequence

Let $S^{-1} / p^{\infty}=\operatorname{hocolim}_{e} S^{-1} / p^{e}$. Note that $H_{*}\left(S^{-1} / p^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z} / p^{\infty} \cong \mathbb{Q} / \mathbb{Z}_{(p)} \cong \mathbb{Q}_{p} / \mathbb{Z}_{p}$. Applying $F(-, Y)$ we get the tower defining the p-completion, so

$$
Y_{p}^{\wedge} \simeq F\left(S^{-1} / p^{\infty}, Y\right)
$$

The map $S^{-1} / p^{\infty} \rightarrow S$ induces the p-completion map $Y \rightarrow Y_{p}^{\wedge}$.
((See Bousfield.))
Lemma 4.22. The p-completion map induces an equivalence $Y / p^{e} \rightarrow\left(Y_{p}^{\wedge}\right) / p^{e}$ for each e. Hence it induces an isomorphism $H_{*}(Y) \cong H_{*}\left(Y_{p}^{\wedge}\right)$ in mod p homology (and cohomology).
Proof. The map $S^{-1} / p^{\infty} \rightarrow S$ induces an equivalence $S^{-1} / p^{e} \wedge S^{-1} / p^{\infty} \rightarrow S^{-1} / p^{e} \wedge S=S^{-1} / p^{e}$, for each e. Apply $F(-, Y)$ to get the first conclusion. Apply integral homology to the equivalence $Y / p \rightarrow\left(Y_{p}^{\wedge}\right) / p$ to get the second conclusion.

Lemma 4.23. The p-completion map for Y_{p}^{\wedge} is an equivalence $Y_{p}^{\wedge} \rightarrow\left(Y_{p}^{\wedge}\right)_{p}^{\wedge}$, meaning that p-completion is idempotent.

Proof. Use that the map $S^{-1} / p^{\infty} \rightarrow S$ induces an equivalence $S^{-1} / p^{\infty} \wedge S^{-1} / p^{\infty} \rightarrow S^{-1} / p^{\infty}$, or pass to the limit over e from the previous lemma.

Lemma 4.24. Let $\pi_{n}(Y)_{p}^{\wedge}=\lim _{e} \pi_{n}(Y) / p^{e}$ be the algebraic p-completion of $\pi_{n}(Y)$. There is a short exact sequence

$$
0 \rightarrow \pi_{n}(Y)_{p}^{\wedge} \rightarrow \lim _{e} \pi_{n}\left(Y / p^{e}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z} / p^{\infty}, \pi_{n-1}(Y)\right) \rightarrow 0
$$

and an isomorphism $\operatorname{Rlim}_{e} \pi_{n+1}\left(Y / p^{e}\right) \cong \operatorname{Rlim}_{e} \operatorname{Hom}\left(\mathbb{Z} / p^{e}, \pi_{n}(Y)\right)$. If $\pi_{*}(Y)$ is of finite type, i.e., if $\pi_{n}(Y)$ is finitely generated for each n, then $\pi_{n}(Y) \otimes \mathbb{Z}_{p} \cong \pi_{n}(Y)_{p}^{\wedge} \cong \pi_{n}\left(Y_{p}^{\wedge}\right)$ for all n.
Proof. ((Straightforward. TBW.))
Example 4.25. (a) $H \simeq H_{2}^{\wedge}$ and $(H \mathbb{Z})_{2}^{\wedge} \simeq\left(H \mathbb{Z}_{(2)}\right)_{2}^{\wedge} \simeq H \mathbb{Z}_{2}$.
(b) For $Y=H \mathbb{Z}[1 / 2]$ or $H \mathbb{Q}$ we have $Y / 2^{e} \simeq *$ for all e, so $(H \mathbb{Z}[1 / 2])_{2}^{\wedge} \simeq(H \mathbb{Q})_{2}^{\wedge} \simeq *$.
(c) For $Y=H(\mathbb{Z}[1 / 2] / \mathbb{Z})=H \mathbb{Z} / 2^{\infty}$ or $H(\mathbb{Q} / \mathbb{Z})$ we have $Y / 2^{e} \simeq \Sigma H \mathbb{Z} / 2^{e}$ for all e, so $H(\mathbb{Z}[1 / 2] / \mathbb{Z})_{2}^{\wedge}=$ $H\left(\mathbb{Z} / 2^{\infty}\right)_{2}^{\wedge} \simeq H(\mathbb{Q} / \mathbb{Z})_{2}^{\wedge} \simeq \Sigma H \mathbb{Z}_{2}$.
Lemma 4.26. Let $0 \rightarrow \bigoplus_{\alpha} \mathbb{Z} \rightarrow \bigoplus_{\beta} \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow 0$ be a short free resolution of \mathbb{Z}_{2}. There is a corresponding cofiber sequence $\bigvee_{\alpha} S \rightarrow \bigvee_{\beta} S \rightarrow S \mathbb{Z}_{2}$, where $H_{*}\left(S \mathbb{Z}_{2} ; \mathbb{Z}\right) \cong \mathbb{Z}_{2}$ is concentrated in degree 0 . Then $\pi_{n}\left(Y \wedge S \mathbb{Z}_{2}\right) \simeq \pi_{n}(Y) \otimes \mathbb{Z}_{2}$ for all n. In particular, $S_{2}^{\wedge} \simeq\left(S \mathbb{Z}_{2}\right)_{2} \simeq S \mathbb{Z}_{2}$. If $\pi_{*}(Y)$ is of finite type then the natural map $Y \wedge S \mathbb{Z}_{2} \rightarrow Y_{2}^{\wedge}$ is an equivalence, and $H_{*}(Y) \rightarrow H_{*}\left(Y_{2}^{\wedge}\right)$ is an isomorphism.
Proof. ((Straightforward. TBW.))
Let $H \mathbb{Z}$ be the integral Eilenberg-Mac Lane spectrum, with $\pi_{0}(H \mathbb{Z})=\mathbb{Z}$ and $\pi_{i}(H \mathbb{Z})=0$ for $i \neq 0$. It is a ring spectrum, with multiplication $\phi: H \mathbb{Z} \wedge H \mathbb{Z} \rightarrow H \mathbb{Z}$ and unit $\eta: S \rightarrow H \mathbb{Z}$. (Not to be confused with the Hopf map $\eta: S^{1} \rightarrow S$.) Let $\overline{H \mathbb{Z}}=H \mathbb{Z} / S$ be the cofiber.
Lemma 4.27. $H^{*}(H \mathbb{Z}) \cong \mathscr{A} / \mathscr{A}\left\{S q^{1}\right\}$.
Proof. Since the unit map $S \rightarrow H \mathbb{Z}$ induces an isomorphism on π_{0} and a surjection on π_{1}, we find that $\overline{H \mathbb{Z}}$ is 1 -connected. Hence $H^{1}(H \mathbb{Z}) \cong H^{1}(\overline{H \mathbb{Z}})=0$.

There is a short exact sequence of \mathscr{A}-modules

$$
0 \longleftarrow \mathscr{A} / \mathscr{A}\left\{S q^{1}\right\} \longleftarrow \mathscr{A} \longleftarrow \Sigma \mathscr{A} / \mathscr{A}\left\{S q^{1}\right\} \longleftarrow 0
$$

where the right hand arrow takes $\Sigma 1$ to $S q^{1}$. It is clear that $\Sigma S q^{I} \mapsto S q^{I} \circ S q^{1}$ maps to 0, for admissible I, if and only if $I=\left(i_{1}, \ldots, i_{\ell}\right)$ with $i_{\ell}=1$. These $S q^{I}$ generate precisely the left ideal $\mathscr{A}\left\{S q^{1}\right\}$.

There is also a cofiber sequence $H \mathbb{Z} \xrightarrow{2} H \mathbb{Z} \longrightarrow H \longrightarrow \Sigma H \mathbb{Z}$, where $2^{*}=0$, so that there is an associated short exact sequence

$$
0 \longleftarrow H^{*}(H \mathbb{Z}) \longleftarrow H^{*}(H) \longleftarrow \Sigma H^{*}(H \mathbb{Z}) \longleftarrow 0
$$

in cohomology. Let $\mathscr{A} \rightarrow H^{*}(H)$ be the isomorphism taking $S q^{I}$ to its value on the generator $1 \in H^{0}(H)$. The composite $\Sigma A / A\left\{S q^{1}\right\} \rightarrow \mathscr{A} \rightarrow H^{*}(H) \rightarrow H^{*}(H \mathbb{Z})$ is zero, since the source is generated by $\Sigma 1$ in degree 1 , and $H^{1}(H \mathbb{Z})=0$. Hence there is a map from the first short exact sequence of \mathscr{A}-modules to the second one. By induction, we may assume that the left hand homomorphism $f: \mathscr{A} / \mathscr{A}\left\{S q^{1}\right\} \rightarrow H^{*}(H \mathbb{Z})$ is an isomorphism in degrees $*<t$. Then the right hand homomorphism $\Sigma f: \Sigma \mathscr{A} / \mathscr{A}\left\{S q^{1}\right\} \rightarrow \Sigma H^{*}(H \mathbb{Z})$ is an isomorphism in degrees $* \leq t$. Since the middle map is an isomorphism, it follows that the left hand homomorphism is an isomorphism, also in degree t.

Recall Boardman's notion of conditional convergence, meaning that $\lim _{s} A^{s}=0$ and $\operatorname{Rlim}_{s} A^{s}=0$, and the result that strong convergence follows from conditional convergence and the vanishing of the derived E_{∞}-term $R E_{\infty}$. For the spectral sequence associated to an Adams resolution $\left\{Y^{s}\right\}_{s}$, conditional convergence is equivalent to the contractibility of the homotopy limit $Y^{\infty}=\operatorname{holim}_{s} Y^{s}$, in view of Milnor's short exact sequence

$$
0 \rightarrow \operatorname{Rlim}_{s} \pi_{n+1}\left(Y^{s}\right) \rightarrow \pi_{n}\left(\operatorname{holim}_{s} Y^{s}\right) \rightarrow \lim _{s} \pi_{n}\left(Y^{s}\right) \rightarrow 0
$$

As we have seen before, the condition $\operatorname{holim}_{s} Y^{s} \simeq *$ is independent of the choice of Adams resolution.
Lemma 4.28. Let Y be bounded below with $H_{*}(Y)$ of finite type. Then there is an Adams resolution $\left\{Z^{s}\right\}_{s}$ of $Z=Y / 2$ with $\operatorname{holim}_{s} Z^{s} \simeq *$.
((Enough that $Y / 2$ is bounded below with $H_{*}(Y / 2)$ of finite type?))
Proof. The "canonical HZ-based resolution"

is not an Adams resolution, since $H \mathbb{Z}$ is not a wedge sum of mod 2 Eilenberg-Mac Lane spectra, but the ring spectrum structure ensures that $j=\eta \wedge 1: X \rightarrow H \mathbb{Z} \wedge X$ induces a split injection $1 \wedge j: H \wedge X \rightarrow$ $H \wedge H \mathbb{Z} \wedge X$, so that $j^{*}: H^{*}(H \mathbb{Z} \wedge X) \rightarrow H^{*}(X)$ is surjective, for each spectrum X.

Smashing this diagram with $Z=Y / 2$, we get a diagram

where we have identified $H \mathbb{Z} \wedge X \wedge Y / 2$ with $H \wedge X \wedge Y$, for suitable X. This is the desired Adams resolution, with $Z^{s}=\left(\Sigma^{-1} \overline{H \mathbb{Z}}\right)^{\wedge s} \wedge Y / 2$ and cofibers $L^{s}=H \wedge\left(\Sigma^{-1} \overline{H \mathbb{Z}}\right)^{\wedge s} \wedge Y$. The maps j are split injective, so each j^{*} is surjective, as before. Since $(\overline{H \mathbb{Z}})^{\wedge s} \wedge Y$ is bounded below and $H_{*}\left((\overline{H \mathbb{Z}})^{\wedge s} \wedge\right.$ $Y) \cong H_{*}(\overline{H Z})^{\otimes s} \otimes H_{*}(Y)$ is of finite type, it follows that each L^{s} is a wedge sum of suspended mod 2 Eilenberg-Mac Lane spectra, satisfying the finiteness condition required for an Adams resolution.

It remains to show that $\operatorname{holim}_{s} Z^{s} \simeq *$. This is true in the strong sense that in each topological degree $n, \pi_{n}\left(Z^{s}\right)=0$ for all sufficiently large s. By assumption there is an integer N such that $\pi_{n}(Y)=0$ for all $n<N$. We have seen that $\overline{H \mathbb{Z}}$ is 1-connected, so that $\left(\Sigma^{-1} \overline{H \mathbb{Z}}\right)^{\wedge s}$ is $(s-1)$-connected. Then $Z^{s}=\left(\Sigma^{-1} \overline{H Z}\right)^{\wedge s} \wedge Y / 2$ is $(N+s-1)$-connected. Hence $\pi_{n}\left(Z^{s}\right)=0$ for all $n \leq N+s-1$, or equivalently, for all $s>n-N$.

Theorem 4.29. Let Y be bounded below with $H_{*}(Y)$ of finite type. Then the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Y), \mathbb{F}_{2}\right) \Longrightarrow \pi_{t-s}\left(Y_{2}^{\wedge}\right)
$$

is strongly convergent. In particular, there is a strongly convergent Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \Longrightarrow \pi_{t-s}(S)_{2}^{\wedge} .
$$

More generally, the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Y), H^{*}(X)\right) \Longrightarrow\left[X, Y_{2}^{\wedge}\right]_{t-s}
$$

is conditionally convergent. It is strongly convergent when $R E_{\infty}=0$, which happens, for instance, if $H^{*}(X)$ is of finite type and bounded above, or if the spectral sequence collapses at a finite stage.

Proof. Let $\left\{Y^{s}\right\}_{s}$ be an Adams resolution of $Y^{0}=Y$, with cofiber sequences

$$
Y^{s+1} \xrightarrow{i} Y^{s} \xrightarrow{j} K^{s} \xrightarrow{\partial} \Sigma Y^{s+1} .
$$

Smashing with $S / 2^{e}$ for each $e \geq 1$, we get a tower of Adams resolutions $\left\{Y^{s} / 2^{e}\right\}_{s}$ of $Y^{0} / 2^{e}=Y / 2^{e}$, with cofiber sequences

$$
Y^{s+1} / 2^{e} \xrightarrow{i} Y^{s} / 2^{e} \xrightarrow{j} K^{s} / 2^{e} \xrightarrow{\partial} \Sigma Y^{s+1} / 2^{e} .
$$

(We check that these diagrams satisfy the conditions to be Adams resolutions: Each homomorphism $j^{*}: H^{*}\left(K^{s} / 2^{e}\right) \rightarrow H^{*}\left(Y^{2} / 2^{e}\right)$ can be rewritten as $j^{*} \otimes 1: H^{*}\left(K^{s}\right) \otimes H^{*}\left(S / 2^{e}\right) \rightarrow H^{*}\left(Y^{s}\right) \otimes H^{*}\left(S / 2^{e}\right)$, hence remains surjective. Each cofiber $K^{s} / 2^{e}$ sits in a cofiber sequence

$$
K^{s} \xrightarrow{2^{e}} K^{s} \longrightarrow K^{s} / 2^{e} \longrightarrow \Sigma K^{s}
$$

where 2^{e} is null-homotopic, so that $K^{s} / 2^{e} \simeq K^{s} \vee \Sigma K^{s}$ is still a suitably finite wedge sum of mod 2 Eilenberg-Mac Lane spectra.) Now pass to the homotopy limit over e of these Adams resolutions. The result is a diagram $\left\{\left(Y^{s}\right)_{2}^{\wedge}\right\}_{s}$ of spectra, with cofiber sequences

$$
\left(Y^{s+1}\right)_{2}^{\wedge} \xrightarrow{i}\left(Y^{s}\right)_{2}^{\wedge} \xrightarrow{j}\left(K^{s}\right)_{2}^{\wedge} \xrightarrow{\partial} \Sigma\left(Y^{s+1}\right)_{2}^{\wedge} .
$$

(Cofiber sequences are fiber sequences, up to a sign, hence are preserved by passage to homotopy limits, such as completions.) It is again an Adams resolution, since the completion map $K^{s} \rightarrow\left(K^{s}\right)_{2}^{\wedge}$ is an equivalence ($K^{s} \simeq \bigvee_{u} \Sigma^{n_{u}} H \simeq \prod_{u} \Sigma^{n_{u}} H$ and $H \rightarrow H_{2}^{\wedge}$ is easily seen to be an equivalence) and $j:\left(Y^{s}\right)_{2}^{\wedge} \rightarrow\left(K^{s}\right)_{2}^{\wedge}$ induces the "same" map as $j: Y^{s} \rightarrow K^{s}$ in mod 2 cohomology. We get the following vertical maps of Adams resolutions:

(We omit the maps $\partial: K^{s} \rightarrow \Sigma Y^{s+1}$, etc.) By the previous lemma, there exists an Adams resolution $\left\{Z^{s}\right\}_{s}$ for $Y / 2$ with holim $Z^{s} \simeq *$. Since this homotopy limit is independent of the choice of resolution, we must also have $\operatorname{holim}_{s} Y^{s} / 2 \simeq *$.

There are cofiber sequences $S / 2 \rightarrow S / 2^{e+1} \rightarrow S^{e} \rightarrow \Sigma S / 2$, inducing cofiber sequences $Y^{s} / 2 \rightarrow$ $Y^{s} / 2^{e+1} \rightarrow Y^{s} / 2^{e} \rightarrow \Sigma Y^{s} / 2$ for all s, hence also

$$
\underset{s}{\operatorname{holim}} Y^{s} / 2 \longrightarrow \underset{s}{\operatorname{holim}} Y^{s} / 2^{e+1} \longrightarrow \underset{s}{\operatorname{holim}} Y^{s} / 2^{e} \longrightarrow \Sigma \underset{s}{\operatorname{holim}} Y^{s} / 2
$$

We deduce that $\operatorname{holim}_{s} Y^{s} / 2^{e} \simeq *$ for all $e \geq 1$, by induction on e. Thus

$$
\underset{s}{\operatorname{holim}}\left(Y^{s}\right)_{2}^{\wedge}=\underset{s}{\operatorname{holim}} \operatorname{holim}_{e} Y^{s} / 2^{e} \simeq \underset{e}{\operatorname{holim}} \operatorname{holim}_{s} Y^{s} / 2^{e} \simeq *
$$

by the standard exchange of homotopy limits equivalence.

Applying homotopy, we get a map of unrolled exact couples from the one for Y to the one for Y_{2}^{\wedge} :

This induces a map of spectral sequences, from the Adams spectral sequence for Y to the one associated to the lower exact couple. The equivalences $K^{s} \rightarrow\left(K^{s}\right)_{2}^{\wedge}$ induce isomorphisms

$$
E_{1}^{s, t}=\pi_{t-s}\left(K^{s}\right) \xrightarrow{\cong} \pi_{t-s}\left(\left(K^{s}\right)_{2}^{\wedge}\right)
$$

of E_{1}-terms between these spectral sequences. By induction on r, it follows that it also induces an isomorphism of E_{r}-terms, for all $r \geq 1$. Hence we have two different exact couples generating the same spectral sequence. The upper one is the Adams spectral sequence for Y. The lower one is conditionally convergent to $\pi_{*}\left(Y_{2}^{\wedge}\right)$, since $\operatorname{holim}_{s}\left(Y^{s}\right)_{2}^{\wedge} \simeq *$. Hence the Adams spectral sequence for Y, with $E_{2}^{*, *}=$ $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y), \mathbb{F}_{2}\right)$, is conditionally convergent to $\pi_{*}\left(Y_{2}^{\wedge}\right)$, as asserted. Replacing $\pi_{*}(-)$ by $[X,-]_{*}$ we get the same conclusion for the Adams spectral sequence for maps $X \rightarrow Y$.

To get strong convergence to $\pi_{*}\left(Y_{2}^{\wedge}\right)$ or $\left[X, Y_{2}^{\wedge}\right]_{*}$, we need to verify Boardman's criterion $R E_{\infty}=0$. In the first case, this follows since $E_{2}^{s, t}(Y)$ is of finite type, i.e., is finite(-dimensional) in each bidegree (s, t). In fact, this holds already at the E_{1}-term if we use the canonical Adams resolution for Y, with $\Sigma^{s} K^{s}=$ $H \wedge(\bar{H})^{\wedge s} \wedge Y$, since then

$$
E_{1}^{s, t}=\pi_{t-s}\left(K^{s}\right) \cong \pi_{t}\left(\Sigma^{s} K^{s}\right) \cong H_{t}\left((\bar{H})^{\wedge s} \wedge Y\right) \cong\left[H_{*}(\bar{H})^{\otimes s} \otimes H_{*}(Y)\right]_{t} .
$$

In the case of a general spectrum X, we have

$$
\begin{aligned}
E_{1}^{s, t} & =\left[X, K^{s}\right]_{t-s} \cong\left[X, \Sigma^{s} K^{s}\right]_{t} \cong \operatorname{Hom}_{\mathscr{A}}^{t}\left(H^{*}\left(\Sigma^{s} K^{s}\right), H^{*}(X)\right) \\
& \cong \operatorname{Hom}_{\mathscr{A}}^{t}\left(\mathscr{A} \otimes I(\mathscr{A})^{\otimes s} \otimes H^{*}(Y), H^{*}(X)\right) \cong \operatorname{Hom}^{t}\left(I(\mathscr{A})^{\otimes s} \otimes H^{*}(Y), H^{*}(X)\right) .
\end{aligned}
$$

This group is finite if $H^{*}(X)$ is of finite type and bounded above, in the sense that there exists an integer N with $H^{n}(X)=0$ for $n>N$. For instance, this is the case of X is a finite CW spectrum.

Proposition 4.30. Let Y be bounded below with $H_{*}(Y)$ of finite type. There is a cofiber sequence

$$
\underset{s}{\operatorname{holim}} Y^{s} \longrightarrow Y \longrightarrow Y_{2}^{\wedge}
$$

where $\left\{Y^{s}\right\}_{s}$ is any Adams resolution of Y.
Proof. We use the notation of the proof above. In view of the equivalences $K^{s} \simeq\left(K^{s}\right)_{2}^{\wedge}$, we get a chain of equivalences

$$
\underset{s}{\operatorname{holim} \operatorname{hofib}\left(Y^{s} \rightarrow\left(Y^{s}\right)_{2}^{\wedge}\right) \simeq \operatorname{hofib}\left(Y^{s} \rightarrow\left(Y^{s}\right)_{2}^{\wedge}\right) \simeq \cdots \simeq \operatorname{hofib}\left(Y \rightarrow Y_{2}^{\wedge}\right), ~}
$$

for all s. Passing to homotopy limits, we find that

$$
\underset{s}{\operatorname{holim}} Y^{s} \simeq \operatorname{hofib}\left(\operatorname{holim}_{s} Y^{s} \rightarrow \operatorname{holim}_{s}\left(Y^{s}\right)_{2}^{\wedge}\right) \simeq \underset{s}{\operatorname{holim}} \operatorname{hofib}\left(Y^{s} \rightarrow\left(Y^{s}\right)_{2}^{\wedge}\right) \simeq \operatorname{hofib}\left(Y \rightarrow Y_{2}^{\wedge}\right)
$$

In other words, the 2-completion $Y \rightarrow Y_{2}^{\wedge}$ precisely annihilates the obstruction holim ${ }_{s} Y^{s}$ to conditional convergence for the unrolled exact couple associated to the Adams resolution of Y.
$\left(\left(\right.\right.$ Mention Bousfield's E-nilpotent completion $Y_{E}^{\wedge}=Y / \operatorname{holim}_{s} Y_{E}^{s}$ where $\left.\left.Y_{E}^{s}=\left(\Sigma^{-1} \bar{E}\right)^{\wedge s} \wedge Y ?\right)\right)$

5 Multiplicative structure

5.1 Composition and the Yoneda product

Let X, Y and Z be spectra. We have a composition pairing

$$
\circ:[Y, Z]_{*} \otimes[X, Y]_{*} \longrightarrow[X, Z]_{*}
$$

that takes $g: \Sigma^{v} Y \rightarrow Z$ and $f: \Sigma^{t} X \rightarrow Y$ to the composite $g \circ \Sigma^{v} f: \Sigma^{v+t} X \rightarrow Z$. To simplify the notation we refer to f and g as maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ of degree t and v, respectively.

Suppose that Y and Z are bounded below, and that $H_{*}(Y)$ and $H_{*}(Z)$ are of finite type. Let $\left\{Y^{s}\right\}_{s}$ and $\left\{Z^{u}\right\}_{u}$ be Adams resolutions of Y and Z, respectively, with cofibers $Y^{s} / Y^{s+1}=K^{s}$ and $Z^{u} / Z^{u+1}=L^{u}$. If f and g have Adams filtrations $\geq s$ and $\geq u$, meaning that they factor as $f=i^{s} \tilde{f}$ and $g=i^{u} \tilde{g}$ with $\tilde{f}: X \rightarrow Y^{s}$ and $\tilde{g}: Y \rightarrow Z^{u}$ of degree t and v, respectively, then we can lift \tilde{g} to a map $\left\{g^{s}\right\}_{s}$ of Adams resolutions

Hence $g f=i^{u} \tilde{g} i^{s} \tilde{f}=i^{u+s} g^{s} f$ factors through $i^{u+s}: Z^{u+s} \rightarrow Z$, and has Adams filtration $\geq(u+s)$. We thus get a restricted pairing

$$
F^{u}[Y, Z]_{*} \otimes F^{s}[X, Y]_{*} \longrightarrow F^{u+s}[X, Z]_{*}
$$

that induces a pairing

$$
F^{u} / F^{u+1} \otimes F^{s} / F^{s+1} \longrightarrow F^{u+s} / F^{u+s+1}
$$

of filtration subquotients. When the respective spectral sequences converge, we can rewrite this as a pairing

$$
E_{\infty}^{u, *} \otimes E_{\infty}^{s, *} \longrightarrow E_{\infty}^{u+s, *}
$$

of E_{∞}-terms. Conversely, this pairing of E_{∞}-terms will determine the restricted pairings $F^{u} \otimes F^{s} \rightarrow F^{u+s}$ modulo F^{u+s+1}, i.e., modulo higher Adams filtrations. In this way the pairing of E_{∞}-terms determines the composition pairing $[Y, Z]_{*} \otimes[X, Y]_{*} \rightarrow[X, Z]_{*}$ modulo the Adams filtration.
((Example of this phenomenon: $h_{2}^{3}=h_{1}^{2} h_{3}$ so $\nu^{3} \equiv \eta^{2} \sigma$ modulo Adams filtration ≥ 4. In fact, $\left.\left.\nu^{3}=\eta^{2} \sigma+\eta \epsilon.\right)\right)$

Let $P_{s}=H^{*}\left(\Sigma^{s} K^{s}\right)$ and $Q_{u}=H^{*}\left(\Sigma^{u} L^{u}\right)$, so that there are free resolutions

$$
\cdots \rightarrow P_{s} \xrightarrow{\partial_{s}} \cdots \rightarrow P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\epsilon} H^{*}(Y) \rightarrow 0
$$

and

$$
\cdots \rightarrow Q_{u} \xrightarrow{\partial_{u}} \cdots \rightarrow Q_{1} \xrightarrow{\partial_{1}} Q_{0} \xrightarrow{\epsilon} H^{*}(Z) \rightarrow 0 .
$$

By definition,

$$
\begin{aligned}
\operatorname{Ext}_{\mathscr{A}}^{u, v}\left(H^{*}(Z), H^{*}(Y)\right) & =H^{u}\left(\operatorname{Hom}_{\mathscr{A}}^{v}\left(Q_{*}, H^{*}(Y)\right)\right) \\
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Y), H^{*}(X)\right) & =H^{s}\left(\operatorname{Hom}_{\mathscr{A}}^{t}\left(P_{*}, H^{*}(X)\right)\right) \\
\operatorname{Ext}_{\mathscr{A}}^{u+s, v+t}\left(H^{*}(Z), H^{*}(X)\right) & =H^{u+s}\left(\operatorname{Hom}_{\mathscr{A}}^{v+t}\left(Q_{*}, H^{*}(X)\right)\right) .
\end{aligned}
$$

The (opposite) Yoneda product is a pairing

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Z), H^{*}(Y)\right) \otimes \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y), H^{*}(X)\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Z), H^{*}(X)\right),
$$

and we shall see that the Adams spectral sequence relates the Yoneda product in $E_{2}=\operatorname{Ext}_{\mathscr{A}}(-,-)$ to the composition product in homotopy. (This is the opposite of the usual Yoneda pairing, meaning that
the two factors in the source have been interchanged. This comes about due to the contravariance of cohomology. Working at odd primes the interchange introduces a sign, which we ignore here.)

Let $f: P_{s} \rightarrow \Sigma^{t} H^{*}(X)$ and $g: Q_{u} \rightarrow \Sigma^{v} H^{*}(Y)$ be \mathscr{A}-module homomorphisms. To simplify the notation, we will refer to these as homomorphisms $f: P_{s} \rightarrow H^{*}(X)$ and $g: Q_{u} \rightarrow H^{*}(Y)$ of degree t and v, respectively. We also suppose that f and g are cocycles, meaning that $0=f \partial_{s+1}: P_{s+1} \rightarrow H^{*}(X)$ and $0=$ $g \partial_{u+1}: Q_{u+1} \rightarrow H^{*}(Y)$. The cohomology classes $[f]$ and $[g]$ are then elements in Ext ${ }_{\mathscr{A}}^{s, t}\left(H^{*}(Y), H^{*}(X)\right)$ and $\operatorname{Ext}_{\mathscr{A}}^{u, v}\left(H^{*}(Z), H^{*}(Y)\right)$, respectively. Then g lifts to a chain map $g_{*}=\left\{g_{n}: Q_{u+n} \rightarrow P_{n}\right\}_{n}$, where each g_{n} has degree v, making the diagram

commute. The composite $f g_{s}: Q_{u+s} \rightarrow H^{*}(X)$ is then an \mathscr{A}-module homomorphism of degree $(v+t)$, and satisfies $f g_{s} \partial_{u+s+1}=0$. It is therefore a cocycle in $\operatorname{Hom}_{\mathscr{A}}^{v+t}\left(H^{*}(Z), H^{*}(X)\right)$, and its cohomology class $\left[f g_{s}\right]$ in $\operatorname{Ext}_{\mathscr{A}}^{u+s, v+t}\left(H^{*}(Z), H^{*}(X)\right)$ is by definition the Yoneda product of $[g]$ and $[f]$. It is not hard to check that a different choice of chain map lifting g only changes the cocycle $f g_{s}$ by a coboundary, i.e., a homomorphism that factors through $\partial_{u+s}: Q_{u+s} \rightarrow Q_{u+s-1}$, so that its cohomology class is unchanged. Likewise, changing f or g by a coboundary only changes $f g_{s}$ by a coboundary, so that the Yoneda product is well defined.

Example 5.1. Let $X=Y=Z=S$ and let $P_{*}=Q_{*}$ be the minimal resolution of \mathbb{F}_{2} computed earlier. We can compute the Yoneda product

$$
\operatorname{Ext}_{\mathscr{A}}^{u, v}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \otimes \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{u+s, v+t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

that makes Ext ${ }_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ into a bigraded algebra, by choosing cocycle representatives $f: P_{s} \rightarrow \mathbb{F}_{2}$ and $g: P_{u} \rightarrow \mathbb{F}_{2}$, lifting g to a chain map $g_{*}: P_{u+*} \rightarrow P_{*}$, and computing the composite $f g_{s}$.

Let $f=\gamma_{1,0}=h_{0}: P_{1} \rightarrow \mathbb{F}_{2}$ be dual to $g_{1,0} \in P_{1}$ and let $g=\gamma_{1,2}=h_{2}: P_{1} \rightarrow \mathbb{F}_{2}$ be dual to $g_{1,2} \in P_{1}$. A lift $g_{0}: P_{1} \rightarrow P_{0}$ of g is given by $g_{1,2} \mapsto g_{0,0}$ and $g_{1, i} \mapsto 0$ for $i \neq 2$.

The composite $g_{0} \partial_{2}: P_{2} \rightarrow P_{0}$ is then given by $g_{2,0} \mapsto 0, g_{2,1} \mapsto 0, g_{2,2} \mapsto S q^{1} g_{0,0}, g_{2,3} \mapsto S q^{4} g_{0,0}$ etc. A lift $g_{1}: P_{2} \rightarrow P_{1}$ is given by $g_{2,0} \mapsto 0, g_{2,1} \mapsto 0, g_{2,2} \mapsto g_{1,0}, g_{2,3} \mapsto g_{1,2}$ etc. Hence $f g_{1}: P_{2} \rightarrow \mathbb{F}_{2}$ is given by $g_{2,2} \mapsto 1$ and $g_{2, i} \mapsto 0$ for $i \neq 2$ (for degree reasons), so that $\left[f g_{1}\right]=\gamma_{2,2}$. Thus $h_{0} h_{2}=\gamma_{2,2}$ in bidegree $(s, t)=(2,4)$ of $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$. In hindsight, this it the only possible nonzero value of the product, and it is realized because of the summand $S q^{1} g_{1,2}$ in $\partial_{2}\left(g_{2,2}\right)$ and the summand $S q^{4} g_{0,0}$ in $\partial_{1}\left(g_{1,2}\right)$, with $S q^{1}$ detecting h_{0} and $S q^{4}$ detecting h_{2}.

Definition 5.2. Consider any two complexes P_{*} and Q_{*} of \mathscr{A}-modules. Let

$$
\operatorname{HOM}_{\mathscr{A}}^{u, v}\left(Q_{*}, P_{*}\right)=\prod_{s} \operatorname{Hom}_{\mathscr{A}}^{v}\left(Q_{u+s}, P_{s}\right)
$$

be the abelian group of sequences $\left\{g_{s}: Q_{u+s} \rightarrow P_{s}\right\}_{s}$ of \mathscr{A}-module homomorphisms, each of degree v. Thus $\operatorname{HOM}_{\mathscr{A}}^{u}\left(Q_{*}, P_{*}\right)$ is a graded abelian group. Let

$$
\delta_{u}: \operatorname{HOM}_{\mathscr{A}}^{u}\left(Q_{*}, P_{*}\right) \rightarrow \operatorname{HOM}_{\mathscr{A}}^{u+1}\left(Q_{*}, P_{*}\right)
$$

$\operatorname{map}\left\{g_{s}\right\}_{s}$ to $\left\{\partial_{s+1} g_{s+1}+g_{s} \partial_{u+s+1}\right\}_{s}$. ((We are working mod 2 , so there is no sign.)) Then $\delta_{u+1} \delta_{u}=0$, so $\mathrm{HOM}_{\mathscr{A}}^{*}\left(Q_{*}, P_{*}\right)$ is a cocomplex of graded abelian groups.

Lemma 5.3. The kernel

$$
\operatorname{ker}\left(\delta_{0}\right) \subset \operatorname{HOM}_{\mathscr{A}}^{0}\left(Q_{*}, P_{*}\right)
$$

consists of the chain maps $g_{*}: Q_{*} \rightarrow P_{*}$, meaning the sequences $\left\{g_{s}: Q_{s} \rightarrow P_{s}\right\}_{s}$ of \mathscr{A}-module homomorphisms such that $\partial_{s+1} g_{s+1}=g_{s} \partial_{s+1}$ for all s. The image

$$
\operatorname{im}\left(\delta_{-1}\right) \subset \operatorname{ker}\left(\delta_{0}\right)
$$

consists of the chain maps that are chain homotopic to 0 , i.e., those of the form $\left\{\partial_{s+1} h_{s+1}+h_{s} \partial_{s}\right\}_{s}$ for some collection of \mathscr{A}-module homomorphisms $h_{s+1}: Q_{s} \rightarrow P_{s+1}$ for all s. Hence the 0 -th cohomology

$$
H^{0}\left(\operatorname{HOM}_{\mathscr{A}}^{*}\left(Q_{*}, P_{*}\right)\right) \cong\left\{g_{*}: Q_{*} \rightarrow P_{*}\right\} /(\simeq)=\left[Q_{*}, P_{*}\right]
$$

is the (graded abelian) group of chain homotopy classes of chain maps $Q_{*} \rightarrow P_{*}$. More generally, $H^{u}\left(\operatorname{HOM}_{\mathscr{A}}^{*}\left(Q_{*}, P_{*}\right)\right)$ is the group $\left[Q_{u+*}, P_{*}\right]$ of chain homotopy classes of chain maps $Q_{u+*} \rightarrow P_{*}$.

In the special case when $P_{*}=H^{*}(Y)$ is concentrated in filtration $s=0$, so that $P_{0}=H^{*}(Y)$ and $P_{s}=0$ for $s \neq 0$, then $\operatorname{HOM}_{\mathscr{A}}^{u, v}\left(Q_{*}, H^{*}(Y)\right) \cong \operatorname{Hom}_{\mathscr{A}}^{v}\left(Q_{u}, H^{*}(Y)\right)$ and $\delta_{u}=\left(\partial_{u+1}\right)^{*}$, so that $H^{u}\left(\operatorname{HOM}_{\mathscr{A}}\left(Q_{*}, H^{*}(Y)\right)\right) \cong H^{u}\left(\operatorname{Hom}_{\mathscr{A}}\left(Q_{*}, H^{*}(Y)\right)\right)$. When Q_{*} is a free resolution of $H^{*}(Z)$, this is $\operatorname{Ext}_{\mathscr{A}}^{u}\left(H^{*}(Z), H^{*}(Y)\right)$.

Proposition 5.4. Let $\epsilon: P_{*} \rightarrow H^{*}(Y)$ and $\epsilon: Q_{*} \rightarrow H^{*}(Z)$ be free \mathscr{A}-module resolutions. Then

$$
\epsilon_{*}: \operatorname{HOM}_{\mathscr{A}}^{*}\left(Q_{*}, P_{*}\right) \xrightarrow{\simeq} \operatorname{HOM}_{\mathscr{A}}^{*}\left(Q_{*}, H^{*}(Y)\right) \cong \operatorname{Hom}_{\mathscr{A}}\left(Q_{*}, H^{*}(Y)\right)
$$

is a quasi-isomorphism, in the sense that it induces an isomorphism

$$
\epsilon_{*}: H^{u}\left(\operatorname{HOM}_{\mathscr{A}}^{*}\left(Q_{*}, P_{*}\right)\right) \xrightarrow{\cong} \operatorname{Ext}_{\mathscr{A}}^{u}\left(H^{*}(Z), H^{*}(Y)\right)
$$

in cohomology, in each filtration u.
This is standard homological algebra. The first assertion only requires that Q_{*} is free and $P_{*} \rightarrow H^{*}(Y)$ is exact, but the identification with the final Ext requires that $Q_{*} \rightarrow H^{*}(Z)$ is exact.

The composition pairing and the quasi-isomorphism

$$
\begin{aligned}
\operatorname{HOM}_{\mathscr{A}}^{*}\left(Q_{*}, P_{*}\right) & \otimes \operatorname{Hom}_{\mathscr{A}}\left(P_{*}, H^{*}(X)\right) \longrightarrow \operatorname{Hom}_{\mathscr{A}}\left(Q_{*}, H^{*}(X)\right) \\
& \simeq \downarrow \\
\operatorname{Hom}_{\mathscr{A}}^{*}\left(Q_{*}, H^{*}(Y)\right) & \otimes \operatorname{Hom}_{\mathscr{A}}\left(P_{*}, H^{*}(X)\right)
\end{aligned}
$$

thus induce a pairing and an isomorphism

in cohomology, and the Yoneda product is given by the dashed arrow. From this description it is easy to see that the Yoneda product is associative and unital.

5.2 Smash product and tensor product

Let T, V, Y and Z be spectra. We have a smash product pairing

$$
\wedge:[T, Y]_{*} \otimes[V, Z]_{*} \longrightarrow[T \wedge V, Y \wedge Z]_{*}
$$

taking $f: T \rightarrow Y$ and $g: V \rightarrow Z$ to $f \wedge g: T \wedge V \rightarrow Y \wedge Z$, and similarly for graded maps. In particular, for $T=V=S$ we have a pairing

$$
\wedge: \pi_{*}(Y) \otimes \pi_{*}(Z) \longrightarrow \pi_{*}(Y \wedge Z)
$$

If Y is a ring spectrum, with unit $\eta: S \rightarrow Y$ and multiplication $\mu: Y \wedge Y \rightarrow Y$, we have a unit homomorphism

$$
\eta_{*}: \pi_{*}(S) \longrightarrow \pi_{*}(Y)
$$

and a product

$$
\pi_{*}(Y) \otimes \pi_{*}(Y) \xrightarrow{\wedge} \pi_{*}(Y \wedge Y) \xrightarrow{\mu_{*}} \pi_{*}(Y)
$$

that make $\pi_{*}(Y)$ an algebra over $\pi_{*}(S)$. If Y is homotopy commutative, then $\pi_{*}(Y)$ is a (graded) commutative $\pi_{*}(S)$-algebra.

When $Y=S$, the smash product $\wedge: \pi_{*}(S) \otimes \pi_{*}(S) \rightarrow \pi_{*}(S)$ agrees up to sign with the composition product $\circ: \pi_{*}(S) \otimes \pi_{*}(S) \rightarrow \pi_{*}(S)$. In detail, the smash product of $f: S^{t} \rightarrow S$ and $g: S^{v} \rightarrow S$ is $f \wedge g: S^{t+v} \cong S^{t} \wedge S^{v} \rightarrow S \wedge S=S$, while the composition product is $f \circ \Sigma^{t} g: S^{v+t}=\Sigma^{t} S^{v} \rightarrow \Sigma^{t} S=$ $S^{t} \rightarrow S$. These agree up to the twist equivalence $\gamma: S^{t} \wedge S^{v} \cong S^{v} \wedge S^{t}$, which is a a map of degree $(-1)^{t v}$.

Now suppose that Y and Z are bounded below with $H_{*}(Y)$ and $H_{*}(Z)$ of finite type, and let $\left\{Y^{s}\right\}_{s}$ and $\left\{Z^{u}\right\}_{u}$ be Adams resolutions. If $f: T \rightarrow Y$ and $g: V \rightarrow Z$ have Adams filtrations $\geq s$ and $\geq u$, respectively, then they factor as the composites of s maps

$$
T=T_{s} \rightarrow \cdots \rightarrow T_{0}=Y
$$

and u maps

$$
V=V_{u} \rightarrow \cdots \rightarrow V_{0}=Z
$$

all inducing zero on cohomology. By the Künneth theorem, the smash product $f \wedge g$ then factors as the composite of $(s+u)$ cohomologically trivial maps

$$
T \wedge V=T_{s} \wedge V_{u} \rightarrow \cdots \rightarrow T_{0} \wedge V_{u} \rightarrow \cdots \rightarrow T_{0} \wedge V_{0}=Y \wedge Z
$$

Hence we get a restricted pairing

$$
F^{s}[T, Y]_{*} \otimes F^{u}[V, Z]_{*} \longrightarrow F^{s+u}[T \wedge V, Y \wedge Z]_{*}
$$

that descends to a pairing

$$
F^{s} / F^{s+1} \otimes F^{u} / F^{u+1} \longrightarrow F^{s+u} / F^{s+u+1}
$$

of filtration quotients.
((TODO: Discuss tensor product pairing of complexes and Ext, and compare with the Yoneda pairing.))

The Yoneda pairing

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \otimes \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

agrees with the tensor product pairing

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \otimes \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

so the two multiplicative structures on the Adams spectral sequence for S agree. ((Give proof?))

5.3 Pairings of spectral sequences

Definition 5.5. Let $\left.\left\{{ }^{\prime} E_{r}\right\}_{r},{ }^{\prime \prime} E_{r}\right\}_{r}$ and $\left\{E_{r}\right\}_{r}$ be three spectral sequence. A pairing of these spectral sequences is a sequence of homomorphisms

$$
\phi_{r}:^{\prime} E_{r}^{*, *} \otimes{ }^{\prime \prime} E_{r}^{*, *} \longrightarrow E_{r}^{*, *}
$$

((for $r \geq 1))$ such that the Leibniz rule

$$
d_{r}\left(\phi_{r}(x \otimes y)\right)=\phi_{r}\left(d_{r}(x) \otimes y\right)+(-1)^{n} \phi_{r}\left(x \otimes d_{r}(y)\right)
$$

holds, where $n=|x|$ is the total degree of x, and

$$
\phi_{r+1}([x] \otimes[y])=\left[\phi_{r}(x \otimes y)\right]
$$

where $[x] \in^{\prime} E_{r+1}^{*, *}$ is the homology class of a d_{r}-cycle $x \in^{\prime} E_{r}^{*, *}$, and similarly for $[y]$ and the right hand side. In other words, the diagrams

and

commute.
A spectral sequence pairing $\left\{\phi_{r}\right\}_{r}$ induces a pairing

$$
\phi_{\infty}:^{\prime} E_{\infty}^{*, *} \otimes^{\prime \prime} E_{\infty}^{*, *} \longrightarrow E_{\infty}^{*, *}
$$

of E_{∞}-terms. ((Clear if each spectral sequence vanishes in negative filtrations, so that in each bidegree (s, t) the E_{r}-terms eventually form a descending sequence, with intersection equal to the E_{∞}-term.))

When the Künneth homomorphism $H^{*, *}\left({ }^{\prime} E_{r}\right) \otimes H^{*, *}\left({ }^{\prime \prime} E_{r}\right) \rightarrow H^{*, *}\left({ }^{\prime} E_{r} \otimes^{\prime \prime} E_{r}\right)$ is an isomorphism, for all r, one can readily define a tensor product spectral sequence $\left\{{ }^{\prime} E_{r} \otimes^{\prime \prime} E_{r}\right\}_{r}$, and the pairing of spectral sequences is the same as a morphism $\left\{{ }^{\prime} E_{r} \otimes{ }^{\prime \prime} E_{r}\right\}_{r} \rightarrow\left\{E_{r}\right\}_{r}$ of spectral sequences.

Definition 5.6. Suppose that the spectral sequences above converge to the graded abelian groups G^{\prime}, $G^{\prime \prime}$ and G, respectively, in the sense that there are filtrations $\left\{{ }^{\prime} F^{s}\right\}_{s},\left\{^{\prime \prime} F^{s}\right\}_{s}$ and $\left\{F^{s}\right\}_{s}$ of these groups, and isomorphisms ${ }^{\prime} F^{s} /{ }^{\prime} F^{s+1} \cong{ }^{\prime} E_{\infty}^{s},{ }^{\prime \prime} F^{s} /{ }^{\prime \prime} F^{s+1} \cong{ }^{\prime \prime} E_{\infty}^{s}$ and $F^{s} / F^{s+1} \cong E_{\infty}^{s}$, for all s.

A pairing $\left\{\phi_{r}\right\}_{r}$ of spectral sequences, as above, converges to a pairing $\phi: G^{\prime} \otimes G^{\prime \prime} \rightarrow G$ if the latter pairing restricts to homomorphisms $\phi:^{\prime} F^{u} \otimes^{\prime \prime} F^{s} \rightarrow F^{u+s}$ for all u and s, and if the induced homomorphisms $\phi:{ }^{\prime} F^{u} /{ }^{\prime} F^{u+1} \otimes^{\prime \prime} F^{s} /{ }^{\prime \prime} F^{s+1} \rightarrow F^{u+s} / F^{u+s+1}$ agree with the limit $\phi_{\infty}:{ }^{\prime} E_{\infty}^{u} \otimes^{\prime \prime} E_{\infty}^{s} \rightarrow$ E_{∞}^{u+s} of the pairings ϕ_{r}.

In other words, the diagram

commutes. ((Consequences?))
Definition 5.7. An algebra spectral sequence is a spectral sequence $\left\{E_{r}\right\}_{r}$ with a spectral sequence pairing $\left\{\phi_{r}: E_{r} \otimes E_{r} \rightarrow E_{r}\right\}_{r}$ that is associative and unital. It is commutative if the pairing satisfies $\phi_{r}(y \otimes x)=(-1)^{m n} \phi_{r}(x \otimes y)$ for all x, y and r, where $n=|x|$ and $m=|y|$ are the total degrees. ((Elaborate?))

5.4 The composition pairing

Adams (1958) defined a join pairing in his spectral sequence for S, which is stably equivalent to a smash product pairing in that spectral sequence. We shall return to those pairings later, but first look at the case of composition pairings, since these are most closely related to the Yoneda product. ((We may also need to look at this for Moss' later theorem on Toda brackets and Massey products.))

Theorem 5.8 (Moss (1968)). Let X, Y and Z be spectra, with Y and Z bounded below and $H_{*}(Y)$ and $H_{*}(Z)$ of finite type. There is a pairing of spectral sequences

$$
E_{r}^{*, *}(Y, Z) \otimes E_{r}^{*, *}(X, Y) \longrightarrow E_{r}^{*, *}(X, Z)
$$

which agrees for $r=2$ with the Yoneda pairing

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Z), H^{*}(Y)\right) \otimes \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y), H^{*}(X)\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Z), H^{*}(X)\right)
$$

and which converges to the composition pairing

$$
\left[Y, Z_{2}^{\wedge}\right]_{*} \otimes\left[X, Y_{2}^{\wedge}\right]_{*} \longrightarrow\left[X, Z_{2}^{\wedge}\right]_{*}
$$

The pairing is associative and unital.
Here is a version of Moss' original proof.
Proof. Let $\left\{Y^{s}\right\}_{s}$ and $\left\{Z^{u}\right\}_{u}$ be Adams resolutions of Y and Z, respectively, with cofibers $K^{s}=Y^{s} / Y^{s+1}$ and $L^{u}=Z^{u} / Z^{u+1}$.

In the unrolled exact couple for X mapping to $\left\{Y^{s}\right\}_{s}$, we can write

$$
\begin{aligned}
& Z_{r}^{s}(X, Y)=\operatorname{im}\left(\left[X, Y^{s} / Y^{s+r}\right]_{*} \rightarrow\left[X, K^{s}\right]_{*}\right) \\
& B_{r}^{s}(X, Y)=\operatorname{im}\left(\left[X, \Sigma^{-1}\left(Y^{s-r+1} / Y^{s}\right)\right]_{*} \rightarrow\left[X, K^{s}\right]_{*}\right)
\end{aligned}
$$

as subgroups of $E_{1}^{s}(X, Y)=\left[X, K^{s}\right]_{*}$. The homomorphisms are induced by the maps $Y^{s} / Y^{s+r} \rightarrow$ $Y^{s} / Y^{s+1}=K^{s}$ and $\Sigma^{-1}\left(Y^{s-r+1} / Y^{s}\right) \rightarrow Y^{s} \rightarrow K^{s}$. Similarly,

$$
\begin{aligned}
& Z_{r}^{u}(Y, Z)=\operatorname{im}\left(\left[Y, Z^{u} / Z^{u+r}\right]_{*} \rightarrow\left[Y, L^{u}\right]_{*}\right) \\
& B_{r}^{u}(Y, Z)=\operatorname{im}\left(\left[Y, \Sigma^{-1}\left(Z^{u-r+1} / Z^{u}\right)\right]_{*} \rightarrow\left[Y, L^{u}\right]_{*}\right)
\end{aligned}
$$

as subgroups of $E_{1}^{u}(Y, Z)=\left[Y, L^{u}\right]_{*}$.
We would like to define a pairing

$$
Z_{1}^{u}(Y, Z) \otimes Z_{1}^{s}(X, Y) \longrightarrow Z_{1}^{u+s}(X, Z)
$$

that takes $Z_{r}^{u}(Y, Z) \otimes Z_{r}^{s}(X, Y)$ into $Z_{r}^{u+s}(X, Z)$, and satisfies $d_{r}(x y)=d_{r}(x) y+x d_{r}(y)$. (Cope with indeterminacy!))

This implies that the pairing takes $Z_{r}^{u}(Y, Z) \otimes B_{r}^{s}(X, Y)$ and $B_{r}^{u}(Y, Z) \otimes Z_{r}^{s}(X, Y)$ into $B_{r}^{u+s}(X, Z)$, so that there is an induced pairing $E_{r}^{u}(Y, Z) \otimes E_{r}^{s}(X, Y) \rightarrow E_{r}^{u+s}(X, Z)$. It follows that d_{r} satisfies the Leibniz rule, and the pairing of E_{r}-terms induces the pairing of E_{r+1}-terms upon passage to homology.

We must also check that the pairing of E_{2}-terms agrees with the Yoneda product, and that the limit pairing of E_{∞}-terms is compatible with the composition product.

Let $f: X \rightarrow K^{s}$ and $g: Y \rightarrow L^{u}$ be maps of degree t and v, respectively, that admit lifts $\tilde{f}: X \rightarrow$ Y^{s} / Y^{s+r} and $\tilde{g}: Y \rightarrow Z^{u} / Z^{u+r}$ across the maps $Y^{s} / Y^{s+r} \rightarrow K^{s}$ and $Z^{u} / Z^{u+r} \rightarrow L^{u}$.

There is a map of Adams resolutions $\left\{i^{r}: Z^{n+r} \rightarrow Z^{n}\right\}_{n}$, giving a vertical map of cofiber sequences

for each n. It factors through the cofiber sequence $Z^{n+1} \rightarrow Z^{n+1} \rightarrow * \rightarrow \Sigma Z^{n+1}$, since $r \geq 1$, so the map $L^{n+r} \rightarrow L^{n}$ is null-homotopic. Hence its cofiber splits as $L^{n} / L^{n+r} \simeq L^{n} \vee \Sigma L^{n+r}$. ((At least we can choose commuting homotopies in this way. Different null-homotopies could give different splittings.)) Passing to vertical cofibers we get an Adams resolution $\left\{Z^{n} / Z^{n+r}\right\}_{n}$ of Z / Z^{r} with cofibers $L^{n} / L^{n+r} \simeq L^{n} \vee \Sigma L^{n+r} \simeq L^{n} \times \Sigma L^{n+r}$.

The map $\tilde{g}: Y \rightarrow Z^{u} / Z^{u+r}$ now lifts to a map $\left\{\tilde{g}^{n}: Y^{n} \rightarrow Z^{u+n} / Z^{u+n+r}\right\}_{n}$ of Adams resolutions. Let $\left[\begin{array}{c}\lambda^{n} \\ \delta^{n}\end{array}\right]: K^{n} \rightarrow L^{u+n} / L^{u+n+r} \simeq L^{u+n} \vee \Sigma L^{u+n+r}$ be the corresponding map of cofibers.

Then $\lambda^{0} j: Y \rightarrow K^{0} \rightarrow L^{u}$ equals $g: Y \rightarrow Z^{u} / Z^{u+r} \rightarrow L^{u}$, while $\delta^{0} j: Y \rightarrow \Sigma L^{u+r}$ represents $d_{r}(g)$.
Starting with $\left\{Y^{s}\right\}_{s}$ in place of $\left\{Z^{u}\right\}_{u}$, we get an Adams resolution $\left\{Y^{n} / Y^{n+r}\right\}_{n}$ of Y / Y^{r} with cofibers $K^{n} / K^{n+r} \simeq K^{n} \vee \Sigma K^{n+r}$. We can define a map of cofibers

$$
K^{n} \vee \Sigma K^{n+r} \simeq K^{n} / K^{n+r} \longrightarrow L^{u+n} / L^{u+n+r} \simeq L^{u+n} \vee \Sigma L^{u+n+r}
$$

by the matrix

$$
\left[\begin{array}{cc}
\lambda^{n} & 0 \\
\delta^{n} & \Sigma \lambda^{n+r}
\end{array}\right]
$$

In other words, on K^{n} it agrees with the cofiber map $\left[\begin{array}{c}\lambda^{n} \\ \delta^{n}\end{array}\right]$ in the map of Adams resolutions lifting \tilde{g}, while on ΣK^{n+r} it agrees with the suspended cofiber map $\Sigma\left[\begin{array}{c}\lambda^{n+r} \\ \delta^{n+r}\end{array}\right]$, but projected away from the summand $\Sigma^{2} L^{u+n+2 r}$. We claim that there are maps $\theta^{n}: Y^{n} / Y^{n+r} \rightarrow Z^{u+n} / Z^{u+n+r}$ making the diagram
commute. ((Do they extend to a map of Adams resolutions lifting $\left.Y / Y^{r} \rightarrow Z^{u} / Z^{u+r} ?\right)$) To prove this, one checks that $\partial \circ\left[\begin{array}{cc}\lambda^{n} & 0 \\ \delta^{n} & \Sigma \lambda^{n+r}\end{array}\right] \circ j$ is null-homotopic.

The pairing of r-th cycles now takes $g \in Z_{r}^{u}(Y, Z)$ and $f \in Z_{r}^{s}(X, Y)$ to the composite

$$
g \cdot f: X \xrightarrow{\tilde{f}} Y^{s} / Y^{s+r} \xrightarrow{\theta^{s}} Z^{u+s} / Z^{u+s+r} \longrightarrow L^{u+s}
$$

in $Z_{r}^{u+s}(X, Z) \subset\left[X, L^{u+s}\right]_{*}$.
It equals the composite

$$
X \xrightarrow{f} K^{s} \xrightarrow{\lambda^{s}} L^{u+s},
$$

and the explicit lift $\theta^{s} \circ \tilde{f}$ through Z^{u+s} / Z^{u+s+r} tells us that $d_{r}(g \cdot f)$ is represented by the composite

$$
\delta^{s} f+\Sigma \lambda^{s+r} d_{r}(f)
$$

((Relate this to $\left.\left.d_{r}(g) \cdot f+g \cdot d_{r}(f).\right)\right)$
((ETC))

5.5 The smash product pairing

Let Y and Z be spectra. We have a smash product pairing

$$
\wedge: \pi_{*}(Y) \otimes \pi_{*}(Z) \longrightarrow \pi_{*}(Y \wedge Z)
$$

that takes $f: S^{t} \rightarrow Y$ and $g: S^{v} \rightarrow Z$ to the smash product $f \wedge g: S^{t+v} \cong S^{t} \wedge S^{v} \rightarrow Y \wedge Z$.
Suppose that Y and Z are bounded below, and that $H_{*}(Y)$ and $H_{*}(Z)$ are of finite type. Let $\left\{Y^{s}\right\}_{s}$ and $\left\{Z^{u}\right\}_{u}$ be Adams resolutions of Y and Z, respectively, with cofibers $Y^{s} / Y^{s+1}=K^{s}$ and $Z^{u} / Z^{u+1}=L^{u}$. Let $P_{s}=H^{*}\left(\Sigma^{s} K^{s}\right)$ and $Q_{u}=H^{*}\left(\Sigma^{u} L^{u}\right)$ be the \mathscr{A}-modules that appear in the usual free resolutions $\epsilon: P_{*} \rightarrow H^{*}(Y)$ and $\epsilon: Q_{*} \rightarrow H^{*}(Z)$.

Let $W=Y \wedge Z$ be the smash product. Then W is bounded below and $H_{*}(W) \cong H_{*}(Y) \otimes H_{*}(Z)$ is of finite type. We shall construct an Adams resolution $\left\{W^{n}\right\}_{n}$ of W by geometrically mixing the Adams resolutions for Y and Z.

Traditionally, this is done by first replacing Y, Z and their Adams resolutions by homotopy equivalent spectra, so that each Y^{s} and Z^{u} is a CW spectrum, and each map $i: Y^{s+1} \rightarrow Y^{s}$ and $i: Z^{u+1} \rightarrow Z^{u}$ is the inclusion of a CW subspectrum. Then $Y^{s} \wedge Z^{u}$ is a CW subspectrum of $Y \wedge Z$, and one can form the union of these subspectra for all $s+u=n$. Hence one defines

$$
W^{n}=\bigcup_{s+u=n} Y^{s} \wedge W^{u}
$$

Then W^{n+1} is a CW subspectrum of W^{n}, and

$$
W^{n} / W^{n+1} \cong \bigvee_{s+u=n} K^{s} \wedge L^{u}
$$

Lemma 5.9. The diagram

is an Adams resolution of $W=Y \wedge Z$. The associated free resolution $R_{*} \rightarrow H^{*}(W)$ is the tensor product of the free resolutions $P_{*} \rightarrow H^{*}(Y)$ and $Q_{*} \rightarrow H^{*}(Z)$.
Proof. Since each K^{s} is a wedge sum of suspended copies of H, of finite type, and each L^{u} is of finite type, we know that W^{n} / W^{n+1} is a wedge sum of suspended copies of H, of finite type. Let

$$
R_{n}=H^{*}\left(\Sigma^{n}\left(W^{n} / W^{n+1}\right)\right) \cong \bigoplus_{s+u=n} P_{s} \otimes Q_{u}
$$

This is a free \mathscr{A}-module of finite type, by its geometric origin as the cohomology of W^{n} / W^{n+1}. (We shall discuss the \mathscr{A}-module structure on a tensor product of \mathscr{A}-modules later.) The composite $W^{n-1} / W^{n} \rightarrow$ $\Sigma W^{n} \rightarrow \Sigma\left(W^{n} / W^{n+1}\right)$ splits as the direct sum of the maps $j \partial \wedge 1: K^{s-1} \wedge L^{u} \rightarrow \Sigma K^{s} \wedge L^{u} \cong \Sigma\left(K^{s} \wedge L^{u}\right)$ and $1 \wedge j \partial: K^{s} \wedge L^{u-1} \rightarrow K^{s} \wedge \Sigma L^{u} \cong \Sigma\left(K^{s} \wedge L^{u}\right)$. Hence the boundary map $\partial_{n}: R_{n} \rightarrow R_{n-1}$ is given by the usual formula

$$
\partial_{n}(x \otimes y)=\partial_{n}(x) \otimes y+x \otimes \partial_{n}(y)
$$

(we work at $p=2$, hence there is no sign), so that $R_{*}=P_{*} \otimes Q_{*}$ is the tensor product of the two resolutions. By the Künneth theorem, the homology of R_{*} is the tensor product of the homologies of P_{*} and Q_{*}, so $\epsilon: R_{*} \rightarrow H^{*}(Y) \otimes H^{*}(Z) \cong H^{*}(Y \wedge Z)$ is a free resolution.

In particular, $j: W^{0}=Y \wedge Z \rightarrow K^{0} \wedge L^{0}$ induces a surjection j^{*} in cohomology. It follows that $\partial: W / W^{1} \rightarrow \Sigma W^{1}$ induces an injection ∂^{*} in cohomology, with image in $R_{0}=H^{*}\left(W / W^{1}\right)$ equal to the kernel of $j^{*}=\epsilon$. This equal the image of $\partial_{1}=\partial^{*} j^{*}: R_{1} \rightarrow R_{0}$, by exactness at R_{0} of the free resolution, which implies that j^{*}, induced by $j: W^{1} \rightarrow W^{1} / W^{2}$, is surjective. Suppose inductively that $j: W^{n-1} \rightarrow W^{n-1} / W^{n}$ induces a surjection j^{*} in cohomology, for some $n \geq 2$. Then $\partial: W^{n-1} / W^{n} \rightarrow$ ΣW^{n} induces an injection ∂^{*} in cohomology. The image of ∂^{*} equals the kernel of j^{*}, hence lies in the kernel of $\partial_{n-1}=\partial^{*} j^{*}: R_{n-1} \rightarrow R_{n-2}$. This equals the image of $\partial_{n}=\partial^{*} j^{*}: R_{n} \rightarrow R_{n-1}$, by exactness at R_{n-1}, which implies that j^{*}, induced by $j: W^{n} \rightarrow W^{n} / W^{n+1}$, is surjective.

Granting a little more technology, the substitution by CW spectra can be replaced by the passage to a homotopy colimit. For a fixed $n \geq 0$, one considers the diagram of all spectra $Y^{s} \wedge Z^{u}$ for $s+u \geq n$, and forms the homotopy colimit

$$
W^{n}=\underset{s+u \geq n}{\operatorname{hocolim}} Y^{s} \wedge Z^{u}
$$

There is a natural diagram

$$
\cdots \rightarrow W^{2} \xrightarrow{i} W^{1} \xrightarrow{i} W^{0} \simeq Y \wedge Z
$$

and an identification

$$
W^{n} / W^{n+1} \cong \bigvee_{s+u=n} \operatorname{hocofib}\left(Y^{s+1} \rightarrow Y^{s}\right) \wedge \operatorname{hocofib}\left(Z^{u+1} \rightarrow Z^{u}\right)
$$

where hocofib $\left(Y^{s+1} \rightarrow Y^{s}\right) \simeq K^{s}$ denotes the mapping cone of the given map, etc. The proof of the lemma goes through in the same way with these conventions.

There is a natural tensor product pairing

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y), \mathbb{F}_{2}\right) \otimes \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Z), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y \wedge Z), \mathbb{F}_{2}\right)
$$

induced by passage to cohomology from the pairing

$$
\operatorname{Hom}_{\mathscr{A}}\left(P_{*}, \mathbb{F}_{2}\right) \otimes \operatorname{Hom}_{\mathscr{A}}\left(Q_{*}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Hom}_{\mathscr{A}}\left(P_{*} \otimes Q_{*}, \mathbb{F}_{2}\right)
$$

that takes $f: P_{s} \rightarrow \Sigma^{t} \mathbb{F}_{2}$ and $g: Q_{u} \rightarrow \Sigma^{v} \mathbb{F}_{2}$ to the projection $P_{*} \otimes Q_{*} \rightarrow P_{s} \otimes Q_{u}$, followed by $f \otimes g: P_{s} \otimes Q_{u} \rightarrow \mathbb{F}_{2}$. ((Compare this to the Yoneda pairing when $\left.\left.Y=Z=S.\right)\right)$

The following theorem is similar to that proved in $\S 4$ of Adams (1958).
Theorem 5.10. There is a natural pairing

$$
E_{r}^{s, t}(Y) \otimes E_{r}^{u, v}(Z) \longrightarrow E_{r}^{s+u, t+v}(Y \wedge Z)
$$

of Adams spectral sequences, given at the E_{2}-term by the tensor product pairing

$$
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(Y), \mathbb{F}_{2}\right) \otimes \operatorname{Ext}_{\mathscr{A}}^{u, v}\left(H^{*}(Z), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s+u, t+v}\left(H^{*}(Y \wedge Z), \mathbb{F}_{2}\right)
$$

and converging to the smash product pairing

$$
\pi_{t-s}\left(Y_{2}^{\wedge}\right) \otimes \pi_{v-u}\left(Z_{2}^{\wedge}\right) \longrightarrow \pi_{t-s+v-u}\left((Y \wedge Z)_{2}^{\wedge}\right)
$$

((Discuss the role of completion in the pairing?))
Proof. Recall that $E_{r}^{s}=Z_{r}^{s} / B_{r}^{s}$, where

$$
Z_{r}^{s}=\partial^{-1} \operatorname{im}\left(i_{*}^{r-1}: \pi_{*}\left(Y^{s+r}\right) \rightarrow \pi_{*}\left(Y^{s+1}\right)\right)
$$

and

$$
B_{r}^{s}=j \operatorname{ker}\left(i_{*}^{r-1}: \pi_{*}\left(Y^{s}\right) \rightarrow \pi_{*}\left(Y^{s+r-1}\right)\right)
$$

are subgroups of $E_{s}^{1}=\pi_{*}\left(K^{s}\right)$. For the purpose of this proof, it is convenient to rewrite these groups as

$$
Z_{r}^{s}=\operatorname{im}\left(\pi_{*}\left(Y^{s} / Y^{s+r}\right) \rightarrow \pi_{*}\left(K^{s}\right)\right)
$$

and

$$
B_{r}^{s}=\operatorname{im}\left(\pi_{*}\left(\Sigma^{-1}\left(Y^{s-r+1} / Y^{s}\right)\right) \rightarrow \pi_{*}\left(K^{s}\right)\right)
$$

These formulas can be obtained by chases in the diagrams

and

of horizontal and vertical cofiber sequences.
The differential $d_{r}^{s}: E_{r}^{s} \rightarrow E_{r}^{s+r}$ is determined by the homomorphism $\delta: \pi_{*}\left(Y^{s} / Y^{s+r}\right) \rightarrow Z_{r}^{s+r}$ induced by $Y^{s} / Y^{s+r} \rightarrow \Sigma K^{s+r}$ and the surjection $\pi: \pi_{*}\left(Y^{s} / Y^{s+r}\right) \rightarrow Z_{r}^{s}$ induced by $Y^{s} / Y^{s+r} \rightarrow K^{s}:$

It follows that $B_{r+1}^{s+r} / B_{r}^{s+r} \subset E_{r}^{s+r}$ equals the image of d_{r}^{s}.
So far we have discussed the Adams spectral sequence for a single spectrum Y. We now relate the Adams spectral sequences for Y, Z and $W=Y \wedge Z$, where W has the Adams resolution obtained from given Adams resolutions of Y and Z.

There is a preferred inclusion $Y^{s} \wedge Z^{u} \rightarrow W^{n}$ for all $s, u \geq 0$ and $n=s+u$. It restricts to inclusions $Y^{s+r} \wedge Z^{u} \rightarrow W^{n+r}$ and $Y^{s} \wedge Z^{u+r} \rightarrow W^{n+r}$, that agree on $Y^{s+r} \wedge Z^{u+r}$. Hence we have a main commutative diagram

where $Y^{s+r} \wedge Z^{u} \cup Y^{s} \wedge Z^{u+r}$ denotes the pushout of $Y^{s+r} \wedge Z^{u}$ and $Y^{s} \wedge Z^{u+r}$ along $Y^{s+r} \wedge Z^{u+r}$, and U is brief notation for a similar union of $Y^{s+r+1} \wedge Z^{u}, Y^{s+r} \wedge Z^{u+1}, Y^{s+1} \wedge Z^{u}$ and $Y^{s} \wedge Z^{u+1}$.

Passing to horizontal cofibers for the middle part of the diagram, we get a commutative diagram

where the maps in the upper row are smash products of the standard maps $Y^{s} \rightarrow Y^{s} / Y^{s+r}, Y^{s} / Y^{s+r} \rightarrow$ K^{s}, etc. The vertical map $K^{s} \wedge L^{u} \rightarrow W^{n} / W^{n+1}$ agrees with the inclusion of a summand in $W^{n} / W^{n+1} \cong$ $\bigvee_{s+u=n} K^{s} \wedge L^{u}$. Hence it induces a pairing

$$
\phi_{1}: E_{1}^{s}(Y) \otimes E_{1}^{u}(Z) \longrightarrow E_{1}^{n}(W)
$$

that corresponds to the previously discussed pairing

$$
\operatorname{Hom}_{\mathscr{A}}\left(P_{*}, \mathbb{F}_{2}\right) \otimes \operatorname{Hom}_{\mathscr{A}}\left(Q_{*}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Hom}_{\mathscr{A}}\left(P_{*} \otimes Q_{*}, \mathbb{F}_{2}\right)
$$

under the d-invariant isomorphisms $\pi_{t-s}\left(K^{s}\right) \cong \operatorname{Hom}_{\mathscr{A}}^{t}\left(P_{s}, \mathbb{F}_{2}\right)$, etc.

Passing to horizontal cofibers further to the left in the main diagram, we get a commutative diagram

where the composite map in the upper row is the wedge sum of the smash product of the standard maps $Y^{s} / Y^{s+r} \rightarrow \Sigma K^{s+r}$ and $Z^{u} / Z^{u+r} \rightarrow L^{u}$, and the smash product of the standard maps $Y^{s} / Y^{s+r} \rightarrow K^{s}$ and $Z^{u} / Z^{u+r} \rightarrow \Sigma L^{u+r}$. The right hand vertical map is the suspension of the wedge sum of the pairings $K^{s+r} \wedge L^{u} \rightarrow W^{n+r} / W^{n+r+1}$ and $K^{s} \wedge L^{u+r} \rightarrow W^{n+r} / W^{n+r+1}$.

We now claim that (a) $\phi_{1}=\tilde{\phi}_{1}$ restricts to a pairing

$$
\tilde{\phi}_{r}: Z_{r}^{s}(Y) \otimes Z_{r}^{u}(Z) \longrightarrow Z_{r}^{n}(W),
$$

(b) $\tilde{\phi}_{r}$ descends to a pairing

$$
\phi_{r}: E_{r}^{s}(Y) \otimes E_{r}^{u}(Z) \longrightarrow E_{r}^{n}(W)
$$

and (c) ϕ_{r} satisfies the Leibniz rule

$$
d_{r}\left(\phi_{r}(y \otimes z)\right)=\phi_{r}\left(d_{r}(y) \otimes z\right)+\phi_{r}\left(y \otimes d_{r}(z)\right) .
$$

Here $r \geq 1$ and $n=s+u$.
Assuming these claims, which are similar to the conditions of Lemma 2.2 of Moss (1968), we can easily finish the proof of the theorem. The pairings $\left(\phi_{r}\right)_{*}$ and ϕ_{r+1} agree, under the identification $H^{s}\left(E_{r}^{*}, d_{r}\right) \cong E_{r+1}^{s}$, since they are both induced by a passage to quotients from $\tilde{\phi}_{r+1}$. Hence the sequence $\left\{\phi_{r}\right\}_{r}$ qualifies as a pairing of spectral sequences. In particular, $\phi_{2}=\left(\phi_{1}\right)_{*}$ is the tensor product pairing of Ext-groups. This spectral sequence pairing converges to the smash product pairing in homotopy, since the pairing of E_{∞}-terms is induced by the pairing

$$
\pi_{*}\left(Y^{s}\right) \otimes \pi_{*}\left(Z^{u}\right) \longrightarrow \pi_{*}\left(Y^{s} \wedge Z^{u}\right) \longrightarrow \pi_{*}\left(W^{n}\right)
$$

via the surjections $\pi_{*}\left(Y^{s}\right) \rightarrow E_{\infty}^{s}$, etc., and the pairing of filtration quotients is induced by the same pairing via the surjections $\pi_{*}\left(Y^{s}\right) \rightarrow F^{s} \rightarrow F^{s} / F^{s+1}$, etc. These surjections have the same kernel, so the induced pairings of quotients are compatible under the identifications $F^{s} / F^{s+1} \cong E_{\infty}^{s}$.

It remains to prove the three parts of the claim.
(a) Applying $\pi_{*}(-)$ to the right hand square in diagram (1), we get the outer rectangle of the following map of pairings:

In view of the description of $Z_{r}^{n}(W)$ as the image of $\pi_{*}\left(W^{n} / W^{n+r}\right) \rightarrow \pi_{*}\left(W^{n} / W^{n+1}\right)=E_{1}^{n}(W)$, and similarly for Y and Z, it follows that there is a unique pairing $\tilde{\phi}_{r}$ that makes the whole diagram commute.
(b) To check that $\tilde{\phi}_{r}$ descends to a pairing $\phi_{r}: E_{r}^{s}(Y) \otimes E_{r}^{u}(Z) \rightarrow E_{r}^{n}(W)$, we use the diagram

There is only something to prove for $r \geq 2$. We assume, by induction on r, that the Leibniz rule in (c) holds for d_{r-1} and ϕ_{r-1}.

Given $y \in B_{r}^{s}(Y) \subset Z_{r}^{s}(Y)$ and $z \in Z_{r}^{u}(Z)$ we must show that $\tilde{\phi}_{r}(y \otimes z) \in B_{r}^{n}(W) \subset Z_{r}^{n}(W)$. The image of y in $E_{r-1}^{s}(Y)$ has the form $[y]=d_{r-1}(x)$ for some $x \in E_{r-1}^{s-r+1}(Y)$, and the image of z in
$E_{r-1}^{u}(Z)$ satisfies $d_{r-1}([z])=0$. Then $d_{r-1}\left(\phi_{r-1}(x \otimes[z])\right)=\phi_{r-1}\left(d_{r-1}(x) \otimes[z]\right)+\phi_{r-1}\left(x \otimes d_{r-1}([z])\right)=$ $\phi_{r-1}([y] \otimes[z])+0=\left[\tilde{\phi}_{r}(y \otimes z)\right]$. Hence $\tilde{\phi}_{r}(y \otimes z)$ is congruent modulo $B_{r-1}^{n}(W)$ to a class in $B_{r}^{n}(W)$, as we asserted. The same argument shows that $\tilde{\phi}_{r}$ maps $Z_{r}^{s}(Y) \otimes B_{r}^{u}(Z)$ into $B_{r}^{n}(W)$. Hence $\tilde{\phi}_{r}$ descends to ϕ_{r}, and this uniquely determines ϕ_{r}.
(c) Applying $\pi_{*}(-)$ to the outer rectangle in diagram (2), we get the outer rectangle of the following map of pairings:

Since the pairings $\tilde{\phi}_{r}$ have been defined to make the right hand square commute, the whole diagram commutes.

Combining parts of four of these diagrams, we have the commutative sprawl:

Going around the outer boundary of the diagram we see that $d_{r}^{n}\left(\phi_{r}(y \otimes z)\right)=\phi_{r}\left(d_{r}^{s}(y) \otimes z\right)+\phi_{r}\left(y \otimes d_{r}^{u}(z)\right)$, proving the Leibniz rule.
Remark 5.11. If $y \in \pi_{*}\left(K^{s}\right)$ and $z \in \pi_{*}\left(L^{u}\right)$ lift to $\tilde{y} \in \pi_{*}\left(Y^{s} / Y^{s+r}\right)$ and $\tilde{z} \in \pi_{*}\left(Z^{u} / Z^{u+r}\right)$, respectively, with images $\delta y \in \pi_{*}\left(\Sigma K^{s+r}\right)$ and $\delta z \in \pi_{*}\left(\Sigma L^{u+r}\right)$, then $y \wedge z \in \pi_{*}\left(K^{s} \wedge L^{u}\right)$ lifts to $\tilde{y} \wedge \tilde{z} \in \pi_{*}\left(Y^{s} / Y^{s+r} \wedge Z^{u} / Z^{u+r}\right)$.

The maps $Y^{s} \wedge Z^{u} \rightarrow W^{s+u}=W^{n}$ induce a commutative diagram

and $\tilde{y} \wedge \tilde{z}$ maps to a lift $\tilde{y} \cdot \tilde{z}$ in $\pi_{*}\left(W^{n} / W^{n+r}\right)$ of the image $y \cdot z$ of $y \wedge z$ in W^{n} / W^{n+1}. Hence $\delta(y \cdot z)$ is the image $\delta y \cdot z+y \cdot \delta z$ of $\delta y \wedge z+y \wedge \delta z$ in $\pi_{*}\left(\Sigma K^{s+r} \wedge L^{u} \vee \Sigma K^{s} \wedge L^{u+r}\right)$. The key point is that, even if $Y^{s} / Y^{s+r} \wedge Z^{u} / Z^{u+r}$ is attached to all of $Y^{s+r} \wedge Z^{u} \cup Y^{s} \wedge Z^{u+r}$ in $Y^{s} \wedge Z^{u}$, the composite map to $W^{n+r} \rightarrow W^{n+r} / W^{n+r+1}$ factors through the quotient $K^{s+r} \wedge L^{u} \vee K^{s} \wedge L^{u+r}$, making the left hand square above commute. The bookkeeping shows that δy represents $d_{r}([y])$, and so on, so that $\delta(y \cdot z)=\delta y \cdot z+y \cdot \delta z$ implies the Leibniz rule for d_{r}.

Corollary 5.12. Suppose that Y is a ring spectrum, with multiplication $\mu: Y \wedge Y \rightarrow Y$ and unit $\eta: S \rightarrow Y$. Then there is a natural pairing

$$
E_{r}^{*, *}(Y) \otimes E_{r}^{*, *} \longrightarrow E_{r}^{*, *}(Y)
$$

given at the E_{2}-term by the composite

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y), \mathbb{F}_{2}\right) \otimes \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y \wedge Y), \mathbb{F}_{2}\right) \xrightarrow{\mu_{*}} \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y), \mathbb{F}_{2}\right),
$$

and a unit map

$$
E_{r}^{*, *}(S) \xrightarrow{\eta_{*}} E_{r}^{*, *}(Y),
$$

given at the E_{2}-term by

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \xrightarrow{\eta_{*}} \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(Y), \mathbb{F}_{2}\right),
$$

that make the Adams spectral sequence $E_{r}^{*, *}(Y)$ an algebra spectral sequence over $E_{r}^{*, *}(S)$. If Y is homotopy commutative, then it is a commutative algebra spectral sequence.

5.6 The composition pairing, revisited

Here is a geometric proof of Moss' theorem on the composition pairing, close to the one for the smash product pairing.
Proof. Let $\left\{Y^{s}\right\}_{s}$ and $\left\{Z^{u}\right\}_{u}$ be Adams resolutions of Y and Z, with cofibers $Y^{s} / Y^{s+1}=K^{s}$ and $Z^{u} / Z^{u+1}=L^{u}$, respectively. Let $P_{s}=H_{*}\left(\Sigma^{s} K^{s}\right)$ and $Q_{u}=H_{*}\left(\Sigma^{u} L^{u}\right)$, as usual.

Consider the homotopy limit of mapping spectra

$$
M^{u}=\underset{n \leq u+s}{\operatorname{holim}} F\left(Y^{s}, Z^{n}\right)
$$

Restriction from $n \leq u+s+1$ to $n \leq u+s$ gives a map $i: M^{u+1} \rightarrow M^{u}$. Its homotopy fiber is the product over s of the iterated homotopy fiber in the square

which is equivalent to $F\left(K^{s}, L^{u+s}\right)$. Hence we get a tower

Restriction to $(s, n)=(0, u)$ defines a map to the tower

Applying homotopy we get a map of unrolled exact couples, from

to the one generating the Adams spectral sequence $\left\{E_{r}^{*, *}(Y, Z)\right\}_{r}$. Let $\left\{{ }^{\prime} E_{r}^{u, *}\right\}_{r}$ be the spectral sequence generated by the unrolled exact couple just displayed. The map ${ }^{\prime} E_{1}^{u, *} \rightarrow E_{1}^{u, *}(Y, Z)$ of E_{1}-terms can be identified, using the d-invariant isomorphisms

$$
\begin{aligned}
\prod_{s}\left[K^{s}, L^{u+s}\right]_{*} & \cong \prod_{s} \operatorname{Hom}_{\mathscr{A}}^{*}\left(Q_{u+s}, P_{s}\right)=\operatorname{HOM}_{\mathscr{A}}^{u, *}\left(Q_{*}, P_{*}\right) \\
{\left[Y, L^{u}\right]_{*} } & \cong \operatorname{Hom}_{\mathscr{A}}^{*}\left(Q_{u}, H^{*}(Y)\right),
\end{aligned}
$$

with the quasi-isomorphism

$$
\epsilon_{*}: \operatorname{HOM}_{\mathscr{A}}^{u, *}\left(Q_{*}, P_{*}\right) \longrightarrow \operatorname{Hom}_{\mathscr{A}}^{*}\left(Q_{u}, H^{*}(Y)\right)
$$

induced by $\epsilon: P_{*} \rightarrow H^{*}(Y)$. Hence the map of E_{2}-terms is an isomorphism, identifying ' $E_{2}^{u, *}$ with the Adams E_{2}-term

$$
E_{2}^{u, *}(Y, Z)=\operatorname{Ext}_{\mathscr{A}}^{u, *}\left(H^{*}(Z), H^{*}(X)\right)
$$

We shall define a pairing of spectral sequences

$$
\phi_{r}:^{\prime} E_{r}^{u, *} \otimes E_{r}^{s, *}(X, Y) \longrightarrow E_{r}^{u+s, *}(X, Z)
$$

for $r \geq 1$, which agrees with the composition pairing

$$
\operatorname{HOM}_{\mathscr{A}}^{u, *}\left(Q_{*}, P_{*}\right) \otimes \operatorname{Hom}_{\mathscr{A}}\left(P_{s}, H^{*}(X)\right) \rightarrow \operatorname{Hom}_{\mathscr{A}}\left(Q_{u+s}, H^{*}(X)\right)
$$

for $r=1$. For $r \geq 2$ the source is isomorphic to

$$
E_{r}^{u, *}(Y, Z) \otimes E_{r}^{s, *}(X, Y)
$$

via $\epsilon_{*} \otimes 1$, which yields Moss' pairing and the compatibility with the Yoneda product for $r=2$.
The pairing $\phi_{1}:^{\prime} E_{1}^{u, *} \otimes E_{1}^{s, *}(X, Y) \rightarrow E_{1}^{u+s, *}(X, Z)$ is the composition pairing

$$
\prod_{s}\left[K^{s}, L^{u+s}\right]_{*} \otimes\left[X, K^{s}\right]_{*} \longrightarrow\left[X, L^{u+s}\right]_{*}
$$

that takes $\left(g^{s}\right)_{s} \otimes f$ to $g^{s} f$. We show that it restricts to a pairing $\tilde{\phi}_{r}:{ }^{\prime} Z_{r}^{u, *} \otimes Z_{r}^{s, *}(X, Y) \rightarrow Z_{r}^{u+s, *}(X, Z)$ of r-th cycles, that descends to a pairing $\phi_{r}:^{\prime} E_{r}^{u, *} \otimes E_{r}^{s, *}(X, Y) \rightarrow E_{r}^{u+s, *}(X, Z)$ satisfying the Leibniz rule, for each $r \geq 1$.
((EDIT FROM HERE))
We shall use the identifications

$$
\begin{aligned}
& ' \\
& Z_{r}^{u, *}=\operatorname{im}\left(\pi_{*}\left(M^{u} / M^{u+r}\right) \rightarrow \pi_{*}\left(M^{u} / M^{u+1}\right)\right) \\
& Z_{r}^{s, *}(X, Y)=\operatorname{im}\left(\left[X, Y^{s} / Y^{s+r}\right]_{*} \rightarrow\left[X, K^{s}\right]_{*}\right) \\
& Z_{r}^{s, *}(X, Z)=\operatorname{im}\left(\left[X, Z^{u+s} / Z^{u+s+r}\right]_{*} \rightarrow\left[X, L^{u+s}\right]_{*}\right)
\end{aligned}
$$

where $M^{u} / M^{u+1}=\prod_{s} F\left(K^{s}, L^{u+s}\right)$.
Consider the commutative square

There are restriction maps from M^{u+r} to the upper left hand corner, and from M^{u} to the homotopy pullback of the rest of the square. Hence there is a map of homotopy fibers from $\Sigma^{-1}\left(M^{u} / M^{u+1}\right)$ to $F\left(Y^{s} / Y^{s+r}, \Sigma^{-1}\left(Z^{u+s} / Z^{u+s+r}\right)\right)$, giving a map

$$
M^{u} / M^{u+r} \longrightarrow F\left(Y^{s} / Y^{s+r}, Z^{u+s} / Z^{u+s+r}\right)
$$

and an adjoint pairing

$$
M^{u} / M^{u+r} \wedge Y^{s} / Y^{s+r} \longrightarrow Z^{u+s} / Z^{u+s+r}
$$

compatible with the pairing $M^{u} / M^{u+1} \wedge K^{s} \rightarrow L^{u+s}$ for $r=1$. This leads to the commutative diagram

The induced pairing of vertical images is ϕ_{r}.
((EDIT TO HERE))

6 Calculations

6.1 The minimal resolution, revisited

Recall the minimal resolution $\epsilon: P_{*} \rightarrow \mathbb{F}_{2}$.
Lemma 6.1. The product $h_{i} \cdot \gamma_{s, n}$ contains the summand $\gamma_{s+1, m}$ if and only if $\partial_{s+1}\left(g_{s+1, m}\right)=\sum_{j} a_{j} g_{s, j}$ contains the summand $S q^{2^{i}} g_{s, n}$.

Proof. Let $\gamma_{s, n}: P_{s} \rightarrow \mathbb{F}_{2}$ be dual to the generator $g_{s, n} \in P_{s}$, and let $h_{i}=\gamma_{1, i}: P_{1} \rightarrow \mathbb{F}_{2}$ be dual to $g_{1, i}=\left[S q^{2^{i}}\right]$.

We lift $\gamma_{s, n}$ to $\gamma_{0}: P_{s} \rightarrow P_{0}$ mapping $g_{s, n} \mapsto g_{0,0}$ and $g_{s, j} \mapsto 0$ for $j \neq n$. Then $\gamma_{0} \circ \partial_{s+1}$ sends $g_{s+1, m}$ to $a_{n} g_{0,0}$. To lift γ_{0} to $\gamma_{1}: P_{s+1} \rightarrow P_{1}$ we write $a_{n}=\sum_{k} b_{k} S q^{2^{k}}$, with each $b_{k} \in \mathscr{A}$. Then we may take $\gamma_{1}\left(g_{s+1, m}\right)=\sum_{k} b_{k} g_{1, k}$, since $\partial_{1}\left(g_{1, k}\right)=S q^{2^{k}} g_{0,0}$. The coefficient of $g_{s+1, m}$ in the Yoneda product $h_{i} \cdot \gamma_{s, n}$ is then given by the value of $h_{i} \circ \gamma_{1}$ on $g_{s+1, m}$, which equals $h_{i}\left(\sum_{k} b_{k} g_{1, k}\right)=\epsilon\left(b_{i}\right)$. Hence $\gamma_{s+1, m}$ occurs as a summand in $h_{i} \cdot \gamma_{s, n}$ if and only if $S q^{2^{i}}$ occurs as a summand in $a_{n}=\sum_{k} b_{k} S q^{2^{k}}$. This is equivalent to the condition that $S q^{2^{i}}$ occurs as a summand when a_{n} is written as a sum of admissible monomials.

Proposition 6.2. The Yoneda products in $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ in internal degrees $t \leq 11$ are given by:

\cdot	$\gamma_{0,0}$	$\gamma_{1,0}$	$\gamma_{1,1}$	$\gamma_{1,2}$	$\gamma_{1,3}$	$\gamma_{2,0}$	$\gamma_{2,1}$	$\gamma_{2,2}$	$\gamma_{2,3}$	$\gamma_{2,4}$	$\gamma_{2,5}$	$\gamma_{3,0}$	$\gamma_{3,1}$	$\gamma_{3,2}$	$\gamma_{s, 0}$
h_{0}	$\gamma_{1,0}$	$\gamma_{2,0}$	0	$\gamma_{2,2}$	$\gamma_{2,4}$	$\gamma_{3,0}$	0	$\gamma_{3,1}$	0	$\gamma_{3,2}$	0	$\gamma_{4,0}$	0	$\gamma_{4,1}$	$\gamma_{s+1,0}$
h_{1}	$\gamma_{1,1}$	0	$\gamma_{2,1}$	0	$\gamma_{2,5}$	0	$\gamma_{3,1}$	0	0	0	$?$	0	0	$?$	0
h_{2}	$\gamma_{1,2}$	$\gamma_{2,2}$	0	$\gamma_{2,3}$	$?$	$\gamma_{3,1}$	0	0	$?$	$?$	$?$	0	0	$?$	0
h_{3}	$\gamma_{1,3}$	$\gamma_{2,4}$	$\gamma_{2,5}$	$?$	$?$	$\gamma_{3,2}$	$?$	$?$	$?$	$?$	$?$	$\gamma_{4,1}$	$?$	$?$	$?$

for $5 \leq s \leq 10$.
Proof. This can be read off from the minimal resolution $\epsilon: P_{*} \rightarrow \mathbb{F}_{2}$, using the lemma above.

Remark 6.3. The remaining summands, like $S q^{3} g_{1,0}$ in $\partial_{2}\left(g_{2,1}\right)$ and $S q^{2} S q^{1} g_{1,1}$ in $\partial_{2}\left(g_{2,2}\right)$, contribute to higher compositions like Massey products, like $h_{1}^{2} \in\left\langle h_{0}, h_{1}, h_{0}\right\rangle$ and $h_{0} h_{2} \in\left\langle h_{1}, h_{0}, h_{1}\right\rangle$, which imply $\eta^{2} \in\langle 2, \eta, 2\rangle$ and $2 \nu \in\langle\eta, 2, \eta\rangle$, respectively.
Definition 6.4. Let $c_{0} \in \operatorname{Ext}_{\mathscr{A}}^{3,11}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ be the class of the cocycle $\gamma_{3,3}: P_{3} \rightarrow \mathbb{F}_{2}$ of degree 11, dual to $g_{3,3}$.
Corollary 6.5. The algebra unit is $1=\gamma_{0,0}$. The classes $h_{0}=\gamma_{1,0}, h_{1}=\gamma_{1,1}, h_{2}=\gamma_{1,2}, h_{3}=\gamma_{1,3}$ and $c_{0}=\gamma_{3,3}$ are indecomposable. The remaining additive generators in internal degree $t \leq 11$ are decomposable. These algebra generators commute with one another, so the Yoneda product is commutative (in this range). The decomposable generators have the following presentations:

$$
\begin{array}{ll}
\gamma_{2,0}=h_{0}^{2} & \gamma_{3,0}=h_{0}^{3} \\
\gamma_{2,1}=h_{1}^{2} & \gamma_{3,1}=h_{1}^{3}=h_{0}^{2} h_{2} \\
\gamma_{2,2}=h_{0} h_{2} & \gamma_{3,2}=h_{0}^{2} h_{3} \\
\gamma_{2,3}=h_{2}^{2} & \gamma_{4,1}=h_{0}^{3} h_{3} \\
\gamma_{2,4}=h_{0} h_{3} & \gamma_{s, 0}=h_{0}^{s}
\end{array}
$$

for $s \geq 5$. The relations $h_{0} h_{1}=0, h_{1} h_{2}=0, h_{1}^{3}=h_{0}^{2} h_{2}$ and $h_{0} h_{2}^{2}=0$ are satisfied, and generate all other relations for $s \leq 3$ and $t \leq 11$.

We redraw the Adams E_{2}-term with these standard names for the generators, in the usual chart with the topological degree $t-s$ on the horizontal axis and the filtration degree s on the vertical axis. (The class labeled h_{1}^{3} could equally well have been called $h_{0}^{2} h_{2}$.)

Another way to draw the chart is to use a \bullet for each additive generator, a vertical line connecting x to $h_{0} x$, a line of slope 1 connecting x to $h_{1} x$, a (dashed) line of slope $1 / 3$ connecting x to $h_{2} x$, and a (dotted) line of slope $1 / 7$ connecting x to $h_{3} x$.

Here is the same chart without the h_{3}-multiplications, which tend to clutter the picture, but with labels for the indecomposables.

The reader might contemplate the relations $h_{i} h_{i+1}=0, h_{i+1}^{3}=h_{i}^{2} h_{i+2}$ and $h_{i} h_{i+2}^{2}=0$, in view of this diagram.

Let us take for granted Adams' vanishing result, in the form that the groups $E_{2}^{s, t}=0$ for $1 \leq t-s \leq 7$ and $s \geq 5$. Then:

Lemma 6.6. $E_{2}^{s, t}=E_{\infty}^{s, t}$ for $t \leq 11$.
Proof. Since the h_{i} for $0 \leq i \leq 3$ represent homotopy classes, they are infinite cycles, meaning that $d_{r}\left(h_{i}\right)=0$ for all $r \geq 2$. By the Leibniz rule, it follows that $d_{r}(x)=0$ for each x in the subalgebra generated by these classes. The only remaining additive generator is c_{0}, but $d_{r}\left(c_{0}\right)$ lands in Adams' vanishing range, for all $r \geq 2$.

Theorem 6.7. (a) $\pi_{0}(S)_{2}^{\wedge} \cong \mathbb{Z}_{2}$ is generated by the identity map $\iota: S \rightarrow S$, represented by $1 \in E_{\infty}^{0,0}$. The class of $2^{s} \iota$ is represented by $h_{0}^{s} \in E_{\infty}^{s, s}$, for all $s \geq 0$.
(b) $\pi_{1}(S)_{2}^{\wedge} \cong \mathbb{Z} / 2$ is generated by the complex Hopf map $\eta: S^{1} \rightarrow S$, represented by $h_{1} \in E_{\infty}^{1,2}$.
(c) $\pi_{2}(S)_{2}^{\wedge} \cong \mathbb{Z} / 2$ is generated by η^{2}, represented by $h_{1}^{2} \in E_{\infty}^{2,4}$.
(d) $\pi_{3}(S)_{2} \cong \mathbb{Z} / 8$ is generated by the quaternionic Hopf map $\nu: S^{3} \rightarrow S$, represented by $h_{2} \in E_{\infty}^{1,4}$. The class 2ν is represented by $h_{0} h_{2} \in E_{\infty}^{2,5}$, and the class $4 \nu=\eta^{3}$ is represented by $h_{0}^{2} h_{2}=h_{1}^{3}$ in $E_{\infty}^{3,6}$.
(e) $\pi_{4}(S)_{2}^{\wedge}=0$.
(f) $\pi_{5}(S)_{2}^{\wedge}=0$.
(g) $\pi_{6}(S)_{2}^{\wedge} \cong \mathbb{Z} / 2$ is generated by ν^{2}, represented by $h_{2}^{2} \in E_{\infty}^{2,8}$.
(h) $\pi_{7}(S)_{2}^{\wedge} \cong \mathbb{Z} / 16$ is generated by the octonionic Hopf map $\sigma: S^{7} \rightarrow S$, represented by $h_{3} \in E_{\infty}^{1,8}$. The classes $2^{k} \sigma$ are represented by $h_{0}^{k} h_{3} \in E_{\infty}^{k+1, k+8}$, for $0 \leq k \leq 3$.

This gives the additive structure of $\pi_{*}(S)_{2}^{\wedge}$ for $* \leq 7$. We can also determine the multiplicative structure.

Proposition 6.8. $2 \eta=0, \eta^{3}=4 \nu, \eta \nu=0,2 \nu^{2}=0$.
Proof. These follow from the relations $h_{0} h_{1}=0, h_{1}^{3}=h_{0}^{2} h_{2}, h_{1} h_{2}=0$ and $h_{0} h_{2}^{2}=0$ in Ext \mathscr{A}, together with the fact that there are no classes of higher Adams filtration, in these cases.

Remark 6.9. By associativity, it is clear that $\eta \cdot \nu^{2}=\eta \nu \cdot \nu=0$. On the other hand, the vanishing of $h_{1} \cdot h_{2}^{2}$ in $\operatorname{Ext}_{\mathscr{A}}^{3,10}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ only tells us that $\eta \cdot \nu^{2}$ is 0 modulo classes of Adams filtration $s \geq 4$. There is one such class, namely 8σ represented by $h_{0}^{3} h_{3}$, but the factorization of ν^{2} tells us that $\eta \cdot \nu^{2}$ is not equal to 8σ, but is 0 .

Figure 2: Adams spectral sequence for S, in degrees $0 \leq * \leq 22$

6.2 The Toda-Mimura range

Toda (1962) calculated $\pi_{n+k}\left(S^{k}\right)$ for all $n \leq 19$, Mimura and Toda (1963) extended this to $n=20$, and Mimura (1965) carried on to $n=21$ and $n=22$. For k large, these computations determine the stable homotopy groups $\pi_{n}(S)$ for $n \leq 22$. ((Maybe better to continue to $n \leq 23$, to see $\nu \bar{\kappa}$.))

The Adams E_{2}-term in this range was originally computed by hand (by Adams (1961) for $t-s \leq 17$ and Liulevicius (unpublished) for $t-s \leq 23$), then by the May spectral sequence (by May (1964) for $t-s \leq 42$ and Tangora (1970) for $t-s \leq 70$), but can now quickly be obtained by machine computation. Bruner's ext-program yields the chart in Figure 2. The larger chart in Figure 3 was created by Christian Nassau (2001).
((Show hidden extensions: η times ρ is represented by $P c_{0}, \eta$ times $\eta \bar{\kappa}$ is represented by $P d_{0}, 2$ times $2 \nu \bar{\kappa}$ equals ν times $4 \bar{\kappa}$ and is represented by $h_{1} P d_{0}, \nu$ times ν^{2} differs from $\eta^{2} \sigma$ by $\eta \epsilon$.))

With the exception of f_{0}, each labeled class is the unique nonzero class in its bidegree. The class f_{0} is, for now, only defined modulo the decomposable class $h_{1}^{3} h_{4}=h_{0}^{2} h_{2} h_{4}$. (A definite choice can be made using Steenrod operations in Ext.)

In addition to the $h_{0^{-}}, h_{1^{-}}$and h_{2}-multiplications shown, and the product $h_{3} \cdot h_{3}=h_{3}^{2}$ in $E_{2}^{2,16}$, there are the following nonzero h_{3}-multiplications:

$$
\begin{aligned}
h_{3} \cdot P h_{1} & =h_{1}^{2} d_{0} \\
h_{3} \cdot h_{1} P h_{1} & =h_{2}^{2} P h_{2}=h_{1}^{3} d_{0}=h_{0}^{3} e_{0} \\
h_{3} \cdot h_{3}^{2} & =h_{2}^{2} h_{4} \\
h_{3} \cdot e_{0} & =h_{1} h_{4} c_{0} \\
h_{3} \cdot P^{2} h_{1} & =h_{1}^{2} P d_{0} \\
h_{3} \cdot h_{1} P^{2} h_{1} & =h_{2}^{2} P^{2} h_{2}=h_{1}^{3} P d_{0}=h_{0}^{3} P e_{0}
\end{aligned}
$$

The last three of these land outside the displayed range of topological degrees. We omit to list the h_{i}-multiplications for $i \geq 4$. ((The multiplicative structure also includes relations like $\left.c_{0}^{2}=h_{1}^{2} d_{0}.\right)$)

The evolution of the Adams spectral sequence in this range is as follows.
Theorem 6.10. The algebra indecomposables in topological degree $t-s \leq 22$ of the Adams E_{2}-term are $h_{0}, h_{1}, h_{2}, h_{3}$ and h_{4} in filtration $s=1, c_{0}$ and c_{1} in filtration $s=3, d_{0}, e_{0}, f_{0}$ and $g=g_{1}$ in filtration

Figure 3: Ext over \mathscr{A} by Christian Nassau (2001)
$s=4, P h_{1}$ and $P h_{2}$ in filtration $s=5, P c_{0}$ in filtration $s=7, P d_{0}$ in filtration $s=8$, and $P^{2} h_{1}$ and $P^{2} h_{2}$ in filtration $s=9$.

The classes $h_{0}, h_{1}, h_{2}, h_{3}, c_{0}, c_{1}, d_{0}, g, P h_{1}, P h_{2}, P c_{0}, P d_{0}, P^{2} h_{1}$ and $P^{2} h_{2}$ are infinite cycles.
The nonzero d_{2}-differentials affecting this range are:

$$
\begin{aligned}
& h_{4} \stackrel{d_{2}}{\longmapsto} h_{0} h_{3}^{2} \\
& e_{0} \longmapsto h_{1}^{2} d_{0} \\
& f_{0} \longmapsto h_{0} h_{2} d_{0}=h_{0}^{2} e_{0} \\
& h_{1} e_{0}=h_{0} f_{0} \longmapsto h_{1}^{3} d_{0}=h_{0}^{3} e_{0} \\
& i \longmapsto h_{0} P d_{0} \\
& h_{0} i \longmapsto h_{0}^{2} P d_{0}
\end{aligned}
$$

The list of algebra indecomposables of the E_{3}-term is as for the E_{2}-term, with h_{4}, e_{0} and f_{0} deleted, but with $h_{0} h_{4}, h_{1} h_{4}$ and $h_{2} h_{4}$ added. The classes $h_{1} h_{4}$ and $h_{2} h_{4}$ are infinite cycles.

The nonzero d_{3}-differentials are:

$$
\begin{aligned}
& h_{0} h_{4} \stackrel{d_{3}}{\longmapsto} h_{0} d_{0} \\
& h_{0}^{2} h_{4} \longmapsto h_{0}^{2} d_{0}
\end{aligned}
$$

The list of algebra indecomposables of the E_{4}-term is as for the E_{3}-term, with $h_{0} h_{4}$ deleted, but with $h_{0}^{3} h_{4}$ added. There are no further differentials, so that $E_{4}=E_{\infty}$ in this range of topological degrees.
Sketch proof. Use graded commutativity of $\pi_{*}(S)$ to see that $2 \sigma^{2}=0$, but $h_{0} h_{3}^{2} \neq 0$ in $E_{2}^{3,17}$. Since $h_{0} h_{3}^{2}$ is an infinite cycle, it must be a boundary, so $d_{2}\left(h_{4}\right)=h_{0} h_{3}^{2}$.

Using the homotopy-everything structure on S, one gets a differential $d_{2}\left(f_{0}\right)=h_{0}^{2} e_{0}$, which implies that $d_{2}\left(h_{0} f_{0}\right)=h_{0}^{3} e_{0}$ and $d_{2}\left(e_{0}\right)=h_{1}^{2} d_{0}$.

Using the J-homomorphism, we known that $\pi_{15}(S)_{2}$ contains $\mathbb{Z} / 32$ as a direct summand. We know that $d_{2}\left(h_{0} h_{4}\right)=h_{0}^{2} h_{3}^{2}=0$. If also $d_{3}\left(h_{0} h_{4}\right)=0$, then $\pi_{15}(S)_{2}^{\wedge}$ would instead contain a copy of $\mathbb{Z} / 64$ (unless $\left.d_{6}\left(h_{1} h_{4}\right)=h_{0}^{7} h_{4}\right)$. Deduce that $d_{3}\left(h_{0} h_{4}\right)=h_{0} d_{0}$.

Toda (1962) uses the following notation.
Definition 6.11. Let $\epsilon \in \pi_{8}(S)_{2}^{\wedge}$ be the unique class represented by $c_{0} \in E_{\infty}^{3,11}$. Then $\eta \epsilon \in \pi_{9}(S)_{2}^{\wedge}$ is represented by $h_{1} c_{0} \in E_{\infty}^{4,13}$. ((Claim: $\nu^{3}=\eta^{2} \sigma+\eta \epsilon$.))

Let $\mu=\mu_{9} \in \pi_{9}(S)_{2}^{\wedge}$ be the unique class represented by $P h_{1} \in E_{\infty}^{5,14}$. Then $\eta \mu=\mu_{10} \in \pi_{10}(S)_{2}^{\wedge}$ is the unique class represented by $h_{1} P h_{1} \in E_{\infty}^{6,16}$.

Let $\zeta \in \pi_{11}(S)_{2}^{\wedge}$ be a class represented by $P h_{2} \in E_{\infty}^{5,16}$. It is determined up to an odd multiple. Then $4 \zeta=\eta^{2} \mu$.

The class $\sigma^{2}=\theta_{3}$ in $\pi_{14}(S)_{2}^{\wedge}$ is decomposable. It is represented by $h_{3}^{2} \in E_{\infty}^{2,16}$.
Let $\kappa \in \pi_{14}(S)_{2}^{\wedge}$ be the unique class represented by $d_{0} \in E_{\infty}^{4,18}$. ((Then $\eta \kappa \in \pi_{15}(S)_{2}$ is represented by $h_{1} d_{0}$, and $\nu \kappa \in \pi_{17}(S)_{2}^{\wedge}$ is represented by $h_{2} d_{0}$, while $\eta^{2} \kappa=0$.))

Let $\rho \in \pi_{15}(S)_{2}^{\wedge}$ be a class represented by $h_{0}^{3} h_{4}$. It is determined up to an odd multiple. ((There is a hidden multiplicative extension: $\eta \rho$ is represented by $P c_{0}$.))

Let $\eta^{*}=\eta_{4} \in \pi_{16}(S)_{2}^{\wedge}$ be a class represented by $h_{1} h_{4}$. ((This only defines it modulo $\left.\eta \rho.\right)$)
Let $\nu^{*} \in \pi_{18}(S)_{2}^{\wedge}$ be a class represented by $h_{2} h_{4}$. ((This only defines it up to an odd multiple, and modulo $\eta \bar{\mu}=\mu_{18}$. Compare σ^{3} to $\nu \nu^{*}$?))

Let $\bar{\mu}=\mu_{17} \in \pi_{17}(S)_{2}^{\wedge}$ be the unique class represented by $P^{2} h_{1} \in E_{\infty}^{9,26}$. Then $\eta \bar{\mu}=\mu_{18} \in \pi_{18}(S)_{2}^{\wedge}$ is the unique class represented by $h_{1} P^{2} h_{1} \in E_{\infty}^{10,28}$.
$(($ Define $\bar{\sigma}, \bar{\zeta})$.
Definition 6.12. It is traditional to write θ_{j} for a class in $\pi_{2^{j+1}-2}(S)$ represented by h_{j}^{2} in $E_{\infty}^{2^{j+1}, 2}$, if such a class exists, and to write η_{j} for a class in $\pi_{2^{j}}(S)$ represented by $h_{1} h_{j} \in E_{\infty}^{2^{j}+2,2}$.
Remark 6.13. The classes θ_{j} are realized for $0 \leq j \leq 3$ by $2^{2}=4, \eta^{2}, \nu^{2}$ and σ^{2}. It follows from the computations of Mahowald and Tangora (1967) that h_{4}^{2} is an infinite cycle, so that $\theta_{4} \in \pi_{30}(S)$ exists. It was proved by Barratt, Jones and Mahowald (1984) that h_{5}^{2} is an infinite cycle, so that $\theta_{5} \in \pi_{62}(S)$
exists. It is an open problem whether $\theta_{6} \in \pi_{126}(S)$ exists. Hill, Hopkins and Ravenel (2009, to appear) showed that θ_{j} does not exist for $j \geq 7$.

Mahowald (Topology, 1977) proved that the η_{j} exist (so that $h_{1} h_{j}$ is an infinite cycle) for all $j \geq 3$.
It is known (Mahowald and Tangora (1967), plus later calculations) that the only other classes in filtration $s=2$ that survive to the E_{∞}-term are $h_{0} h_{2}, h_{0} h_{3}$ and $h_{2} h_{4}$, representing $2 \nu, 2 \sigma$ and ν^{*} in $\pi_{*}(S)$.

Theorem 6.14. (a) $\pi_{8}(S)_{2} \cong(\mathbb{Z} / 2)^{2}$ is generated by $\eta \sigma$ and ϵ, represented by $h_{1} h_{3} \in E_{\infty}^{2,10}$ and $c_{0} \in$ $E_{\infty}^{3,11}$, respectively.
(b) $\pi_{9}(S)_{2}^{\wedge} \cong(\mathbb{Z} / 2)^{3}$ is generated by $\eta^{2} \sigma$, $\eta \epsilon$ and μ, represented by $h_{1}^{2} h_{3} \in E_{\infty}^{3,12}, h_{1} c_{0} \in E_{\infty}^{4,13}$ and $P h_{1} \in E_{\infty}^{5,14}$, respectively.
(c) $\pi_{10}(S)_{2}^{\wedge} \cong \mathbb{Z} / 2$ is generated by $\eta \mu$, represented by $h_{1} P h_{1} \in E_{\infty}^{6,16}$.
(d) $\pi_{11}(S)_{2}^{\wedge} \cong \mathbb{Z} / 8$ is generated by ζ, represented by $P h_{2} \in E_{\infty}^{5,16}$. The class 2ζ is represented by $h_{0} P h_{2} \in E_{\infty}^{6,17}$, and the class $4 \zeta=\eta^{2} \rho$ is represented by $h_{0}^{2} P h_{2}=h_{1}^{2} P h_{1} \in E_{\infty}^{7,18}$.
(e) $\pi_{12}(S)_{2}^{\wedge}=0$.
(f) $\pi_{13}(S)_{2}^{\wedge}=0$.
(g) $\pi_{14}(S)_{2}^{\wedge} \cong(\mathbb{Z} / 2)^{2}$ is generated by σ^{2} and κ, represented by $h_{3}^{2} \in E_{\infty}^{2,16}$ and $d_{0} \in E_{\infty}^{4,18}$, respectively.
(h) $\pi_{15}(S)_{2}^{\wedge} \cong \mathbb{Z} / 32 \oplus \mathbb{Z} / 2$ is generated by ρ and $\eta \kappa$, represented by $h_{0}^{3} h_{3} \in E_{\infty}^{4,19}$ and $h_{1} d_{0} \in E_{\infty}^{5,20}$, respectively. The classes $2^{k} \rho$ are represented by $h_{0}^{k+3} h_{3} \in E_{\infty}^{k+4, k+19}$ for $0 \leq k \leq 4$.
(i) $\pi_{16}(S)_{2}^{\wedge} \cong(\mathbb{Z} / 2)^{2}$ is generated by $\eta^{*}=\eta_{4}$ and $\eta \rho$, represented by $h_{1} h_{4} \in E_{\infty}^{2,18}$ and $P c_{0} \in E_{\infty}^{7,23}$, respectively. ((Note the filtration shift in $\eta \cdot \rho)$.
(j) $\pi_{17}(S)_{2}^{\wedge} \cong(\mathbb{Z} / 2)^{4}$ is generated by $\eta \eta^{*}, \nu \kappa, \eta^{2} \rho$ and $\bar{\mu}=\mu_{17}$, represented by $h_{1}^{2} h_{4} \in E_{\infty}^{3,20}, h_{2} d_{0} \in$ $E_{\infty}^{5,22}, h_{1} P c_{0} \in E_{\infty}^{7,24}$ and $P^{2} h_{1} \in E_{\infty}^{9,26}$, respectively.
(k) $\pi_{18}(S)_{2} \cong \mathbb{Z} / 8 \oplus \mathbb{Z} / 2$ is generated by ν^{*} and $\eta \bar{\mu}=\mu_{18}$, represented by $h_{2} h_{4} \in E_{\infty}^{2,20}$ and $h_{1} P^{2} h_{1} \in$ $E_{\infty}^{10,28}$, respectively.
(l) $\pi_{19}(S)_{2}^{\wedge} \cong \mathbb{Z} / 2 \oplus \mathbb{Z} / 8$ is generated by $\bar{\sigma}$ and $\bar{\zeta}$, represented by $c_{1} \in E_{\infty}^{3,22}$ and $P^{2} h_{2} \in E_{\infty}^{9,28}$, respectively.
(m) $\pi_{20}(S)_{2}^{\wedge} \cong \mathbb{Z} / 8$ is generated by $\bar{\kappa}$, represented by $g \in E_{\infty}^{4,24}$. The class $2 \bar{\kappa}$ is represented by $h_{0} g \in$ $E_{\infty}^{5,25}$, and the class $4 \bar{\kappa}=\nu^{2} \kappa$ is represented by $h_{0}^{2} g=h_{2}^{2} d_{0} \in E_{\infty}^{6,26}$.
(n) $\pi_{21}(S)_{2}^{\wedge} \cong(\mathbb{Z} / 2)^{2}((?))$ is generated by $\nu \nu^{*}$ and $\eta \bar{\kappa}$, represented by $h_{2}^{2} h_{4} \in E_{\infty}^{3,24}$ and $h_{1} g \in E_{\infty}^{5,26}$, respectively.
(o) $\pi_{22}(S)_{2}^{\wedge} \cong(\mathbb{Z} / 2)^{2}((?))$ is generated by $\nu \bar{\sigma}$ and $\eta^{2} \bar{\kappa}$, represented by $h_{2} c_{1} \in E_{\infty}^{4,26}$ and $P d_{0} \in E_{\infty}^{8,30}$, respectively. ((Note the filtration shift in $\eta \cdot \eta \bar{\kappa})$.
((Discuss additive splittings, by $2 \eta=0$ and associativity, and multiplicative extensions.))
Remark 6.15. There are Steenrod operations $S q^{i}$ in $E_{2}^{*, *}=\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, taking $E_{2}^{s, t}$ to $E_{2}^{s+i, 2 t}$. In particular $S q^{0}: E_{2}^{s, t} \rightarrow E_{2}^{s, 2 t}$ is multiplicative, and maps h_{i} to h_{i+1} for $i \geq 0$. A sequence of elements

$$
x, S q^{0}(x), S q^{0}\left(S q^{0}(x)\right), \ldots
$$

is called a $S q^{0}$-family. In the $S q^{0}$-family $h_{0}, h_{1}, h_{2}, \ldots$ the first four classes detect $2 \iota, \eta, \nu$ and σ, but h_{4} and all later terms are killed by the Adams differentials $d_{2}\left(h_{i}\right)=h_{0} h_{i-1}^{2}$ for $i \geq 4$.

In the $S q^{0}$-family $h_{0}^{2}, h_{1}^{2}, h_{2}^{2}, \ldots$ the first six classes detect $4 \iota, \eta^{2}, \nu^{2}, \sigma^{2}, \theta_{4}$ and θ_{5}, but h_{7}^{2} and all later terms are killed by (unknown) differentials. The status of h_{6}^{2} is unknown. In the family $h_{0} h_{2}, h_{1} h_{3}, h_{2} h_{4}, \ldots$ the first three classes detect $2 \nu, \eta \sigma$ and ν^{*}, but $h_{3} h_{5}$ and all later terms support differentials. In the family $h_{0} h_{3}, h_{1} h_{4}, h_{2} h_{5}, \ldots$ the first two classes detect 2σ and η^{*}, but $h_{2} h_{5}$ and all later terms support differentials. For each $i \geq 4$, only the term $h_{1} h_{i+1}$ survives in the family

Figure 4: Adams spectral sequence for $H \mathbb{Z}$
$h_{0} h_{i}, h_{1} h_{i+1}, h_{2} h_{i+2}, \ldots$, detecting η_{i+1}. The classes $c_{0}, c_{1}, c_{2}, \ldots$ also form a $S q^{0}$-family. The first two classes detect ϵ and $\bar{\sigma}$, but there are differentials $d_{2}\left(c_{i}\right)=h_{0} f_{i-1}$ for $i \geq 2$.

These results leads to the conjecture, called the "New Doomsday Conjecture" by Minami, and the "Finiteness Conjecture" by Bruner, saying that only a finite number of terms in each $S q^{0}$-family detects nonzero homotopy classes. ((References?))

6.3 Adams vanishing

Lemma 6.16 (Change of rings). Let A be any algebra, let $B \subset A$ be a subalgebra such that A is flat as a right B-module, let M be any left B-module and let N be any left A-module. There is a natural isomorphism

$$
\operatorname{Ext}_{A}^{s, t}\left(A \otimes_{B} M, N\right) \cong \operatorname{Ext}_{B}^{s, t}(M, N)
$$

Proof. Let $P_{*} \rightarrow M$ be a B-free resolution. Then $A \otimes_{B} P_{*} \rightarrow A \otimes_{B} M$ is an \mathscr{A}-free resolution. The isomorphism $\operatorname{Hom}_{A}\left(A \otimes_{B} P_{*}, N\right) \cong \operatorname{Hom}_{B}\left(P_{*}, N\right)$ induces the asserted isomorphism upon passage to cohomology.
((TODO: Discuss compatibility of multiplicative structure(s) in Ext_{A} and $\left.\operatorname{Ext}_{B}.\right)$)
Definition 6.17. Let A be an algebra and let $B \subset A$ be an augmented subalgebra, with augmentation ideal $I(B)=\operatorname{ker}(\epsilon)$. Let

$$
A / / B=A \otimes_{B} \mathbb{F}_{2} \cong A / A \cdot I(B)
$$

If B is normal in A, meaning that $I(B) \cdot A=A \cdot I(B)$, then $A / / B$ is a quotient algebra of A.
Recall that we write $P(x)=\mathbb{F}_{2}[x]$ and $E(x)=P(x) /\left(x^{2}\right)$ for the polynomial algebra and the exterior algebra, respectively, on a generator x. Let $A(0)=E(0)=E\left(S q^{1}\right) \subset \mathscr{A}$ be the subalgebra generated by $S q^{1}$. There are isomorphisms $H^{*}(H \mathbb{Z}) \cong \mathscr{A} / \mathscr{A} S q^{1} \cong \mathscr{A} \otimes_{A(0)} \mathbb{F}_{2}=\mathscr{A} / / A(0)$.
Proposition 6.18. The Adams spectral sequence for $H \mathbb{Z}$ collapses at the E_{2}-term

$$
E_{2}^{*, *}=\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(H \mathbb{Z}), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(0)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(h_{0}\right)
$$

where $h_{0} \in E_{2}^{1,1}$, and converges strongly to $\pi_{*}\left(H \mathbb{Z}_{2}\right)$. The class of $2^{s} \in \pi_{0}\left(H \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$ is represented by $h_{0}^{s} \in E_{\infty}^{s, s}$, for each $s \geq 0$.

Proof. The Steenrod algebra \mathscr{A} is free as a right $A(0)$-module, generated by the admissible monomials $S q^{I}$ for which $I=\left(i_{1}, \ldots, i_{\ell}\right)$ and $i_{\ell} \geq 2$. (This includes the monomial $1=S q^{()}$.)

There is a minimal, free $A(0)$-module resolution P_{*} of \mathbb{F}_{2} with $P_{s}=A(0)\left\{g_{s}\right\}=\mathbb{F}_{2}\left\{g_{s}, S q^{1} g_{s}\right\}$ for each $s \geq 0$, and $\partial_{s}\left(g_{s}\right)=S q^{1} g_{s-1}$ for each $s \geq 1$. Then $\operatorname{Ext}_{A(0)}^{s}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}_{A(0)}\left(P_{s}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left\{\gamma_{s}\right\}$ is generated by the dual of g_{s}. It lifts to a chain map $\tilde{\gamma}_{s}: P_{*+s} \rightarrow P_{*}$ that takes g_{n+s} to g_{n} for each $n \geq 0$. These satisfy $\tilde{\gamma}_{u} \circ \tilde{\gamma}_{s}=\tilde{\gamma}_{u+s}$ under composition, so $\gamma_{u} \cdot \gamma_{s}=\gamma_{u+s}$ in the Yoneda product. Let $h_{0}=\gamma_{1}$ be dual to g_{1}, in internal degree 1 . Then $\gamma_{s}=h_{0}^{s}$ and we have proved that Ext ${ }_{A(0)}^{*}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left\{h_{0}^{s} \mid\right.$ $s \geq 0\}=P\left(h_{0}\right)$.

The cofiber sequence

$$
S \xrightarrow{\eta} H \mathbb{Z} \rightarrow \overline{H \mathbb{Z}}
$$

induces a short exact sequence

$$
0 \leftarrow \mathbb{F}_{2} \stackrel{\eta}{ }_{\eta^{*}}^{\mathscr{A}} / / A(0) \longleftarrow I\left(\mathscr{A} / \mathscr{A} S q^{1}\right) \leftarrow 0
$$

in cohomology, and a long exact sequence

$$
\operatorname{Ext}_{\mathscr{A}}^{s-1, t}\left(I\left(\mathscr{A} / \mathscr{A} S q^{1}\right), \mathbb{F}_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \xrightarrow{\eta_{*}} \operatorname{Ext}_{A(0)}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(I\left(\mathscr{A} / \mathscr{A} S q^{1}\right), \mathbb{F}_{2}\right)
$$

of Adams E_{2}-terms. The map η_{*} is an isomorphism for $t-s=0$, so the connecting homomorphism δ is an isomorphism for $t-s \neq 0$.

Lemma 6.19. $I\left(\mathscr{A} / \mathscr{A} S q^{1}\right)$ is free as a left $A(0)$-module, generated by the admissible $S q^{I}$ for which $I=\left(i_{1}, \ldots, i_{\ell}\right), i_{1}$ is even and $i_{\ell} \geq 2$. (This excludes the monomial $1=S q^{()}$.) The first few basis elements are

$$
S q^{2}, S q^{4}, S q^{6}, S q^{4} S q^{2}, S q^{8}, S q^{6} S q^{2}, S q^{6} S q^{3}, S q^{10}, S q^{8} S q^{2}, S q^{8} S q^{3}, \ldots
$$

Proof. When $S q^{I}$ ranges over the admissible monomials with i_{1} even and $i_{\ell} \geq 2$, then $S q^{I}$ and $S q^{1} S q^{I}$ range over the admissible monomials with $i_{\ell} \geq 2$. The only exception occurs for $I=()$.

Proposition 6.20. Let M be an \mathscr{A}-module that is free as an $A(0)$-module, and concentrated in degrees * ≥ 0. Let

$$
\epsilon(s)= \begin{cases}0 & \text { for } s \equiv 0 \quad \bmod 4 \\ 1 & \text { for } s \equiv 1 \quad \bmod 4 \\ 2 & \text { for } s \equiv 2,3 \quad \bmod 4\end{cases}
$$

Then

$$
E x t_{\mathscr{A}}^{s, t}\left(M, \mathbb{F}_{2}\right)=0
$$

for $t-s<2 s-\epsilon(s)$.
Proof. First consider the case $M=A(0)$, with the unique \mathscr{A}-module structure realized by $H^{*}(S / 2)$. There is a minimal free \mathscr{A}-module resolution

$$
P_{3} \xrightarrow{\partial_{3}} P_{2} \xrightarrow{\partial_{2}} P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\epsilon} A(0) \rightarrow 0
$$

with $P_{0}=\mathscr{A}\{1\}, P_{1}$ concentrated in degrees $t \geq 2, P_{2}$ concentrated in degrees $t \geq 4, P_{3}$ concentrated in degrees $t \geq 7$, and $\Sigma^{12} K=\operatorname{ker}\left(\partial_{3}\right)$ concentrated in degrees $t \geq 12$.

This can be proved by direct calculation, or by using our previous Ext-calculations for the sphere spectrum, the cofiber sequence $S \xrightarrow{2} S \longrightarrow S / 2 \longrightarrow \Sigma S=S^{1}$, the induced extension $0 \leftarrow \mathbb{F}_{2} \leftarrow A(0) \leftarrow$ $\Sigma \mathbb{F}_{2} \leftarrow 0$ of \mathscr{A}-modules, and the associated long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{\mathscr{A}}^{s-1, t-1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(A(0), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t-1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow \ldots
$$

in Ext. Here each connecting map δ is given by the Yoneda product with h_{0}, which is the class in $\operatorname{Ext}_{\mathscr{A}}^{1,1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ of the extension above. This leads to the additive structure of the following Adams chart
for $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(A(0), \mathbb{F}_{2}\right)$:

This proves the claim for $M=A(0)$ and $0 \leq s<4$.
Next, consider an extension $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of $A(0)$-free \mathscr{A}-modules, all concentrated in degrees $* \geq 0$, and suppose that the claim holds for M^{\prime} and $M^{\prime \prime}$. Then the claim follows for M, in view of the long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(M^{\prime \prime}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(M, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(M^{\prime}, \mathbb{F}_{2}\right) \rightarrow \ldots
$$

The claim for general $A(0)$-free M and $0 \leq s<4$ then follows.
Since $A(0)$ and each P_{s} is $A(0)$-free, it follows that $\Sigma^{12} K=\operatorname{ker}\left(\partial_{3}\right)$ is $A(0)$-free, and concentrated in degrees $* \geq 12$. Thinking of P_{*+4} as a resolution of $\Sigma^{12} K$, we get an isomorphism

$$
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(K, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{\mathscr{A}}^{s+4, t+12}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

for all $s \geq 0$. Hence the claim for $A(0)$ and $4 \leq s<8$ follows from the one for K and $0 \leq s<4$. The general claim for $A(0)$-free M and $4 \leq s<8$ then follows as above. Continuing this way, the general claim follows for all $s \geq 0$.

Corollary 6.21. $\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=0$ for $0<t-s<2 s-\epsilon$, where $\epsilon=1$ for $s \equiv 1 \bmod 4, \epsilon=2$ for $s \equiv 2 \bmod 4$ and $\epsilon=3$ for $s \equiv 0,3 \bmod 4$.

Proof. This follows from the isomorphisms

$$
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{\mathscr{A}}^{s-1, t}\left(I\left(\mathscr{A} / \mathscr{A} S q^{1}\right), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{\mathscr{A}}^{s-1, t-2}\left(M, \mathbb{F}_{2}\right)
$$

for $t-s>0$, where $\Sigma^{2} M=I\left(\mathscr{A} / \mathscr{A} S q^{1}\right)$, and the proposition as applied to M.
This result is not quite optimal for $s \equiv 0 \bmod 4$. Adams (1966) works a little harder to prove the optimal vanishing range:
Theorem 6.22 (Adams vanishing). Ext $_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=0$ for $0<t-s<2 s-\epsilon$, where $\epsilon=1$ for $s \equiv 0,1$ $\bmod 4, \epsilon=2$ for $s \equiv 2 \bmod 4$ and $\epsilon=3$ for $s \equiv 3 \bmod 4$.
$(($ ETC: Approximation for Ext over $A(n) \subset \mathscr{A})$.

6.4 Topological K-theory

Definition 6.23. Let $k u$ and $k o$ be the complex and real connective K-theory spectra, with underlying infinite loop spaces $\Omega^{\infty} k u=\mathbb{Z} \times B U$ and $\Omega^{\infty} k o=\mathbb{Z} \times B O$, respectively. These are the connective covers of the complex and real topological K-theory spectra, $K U$ and $K O$, respectively.

Definition 6.24. Let $b u$ and $b s u$ be the 1- and 3-connected connected covers of $k u$, respectively, with $\Omega^{\infty} b u=B U$ and $\Omega^{\infty} b s u=B S U$. Let bo, bso and bspin be the 0 -, 1- and 3 -connected covers of ko, respectively, with $\Omega^{\infty} b o=B O, \Omega^{\infty} b s o=B S O$ and $\Omega^{\infty} b$ spin $=B$ Spin. We may also use the notations $u=\Sigma^{-1} b u$, su $=\Sigma^{-1} b s u$, o $=\Sigma^{-1} b o$, so $=\Sigma^{-1} b$ so and spin $=\Sigma^{-1}$ bspin, for the desuspended spectra with infinite loop spaces $U, S U, O, S O$ and Spin, respectively.

Remark 6.25. This is the notation used by Adams and May. Mahowald and Ravenel write $b u$ and bo for "our" $k u$ and $k o$.

Definition 6.26. Let $Q_{1}=\left[S q^{1}, S q^{2}\right]=S q^{3}+S q^{2} S q^{1}$. Let $E(1)=E\left(S q^{1}, Q_{1}\right) \subset \mathscr{A}$ be the subalgebra of \mathscr{A} generated by $S q^{1}$ and Q_{1}, and let $A(1)=\left\langle S q^{1}, S q^{2}\right\rangle \subset \mathscr{A}$ be the subalgebra generated by $S q^{1}$ and $S q^{2}$. Here is an additive basis for $A(1)$, with the action by $S q^{1}$ and $S q^{2}$ indicated by arrows:

For typographical reasons, we write $S q^{2} S q^{3}$ in place of its admissible expansion $S q^{5}+S q^{4} S q^{1}$. Note that $E(1) / / A(0) \cong E\left(Q_{1}\right), A(1) / / E\left(Q_{1}\right) \cong E\left(S q^{1}, S q^{2}\right)$ and $A(1) / / E(1) \cong E\left(S q^{2}\right)$.

Proposition 6.27 (Stong). There are \mathscr{A}-module isomorphisms

$$
H^{*}(k u) \cong \mathscr{A} / / E(1)=\mathscr{A} / \mathscr{A}\left\{S q^{1}, Q_{1}\right\}=\mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{3}\right\}
$$

and

$$
H^{*}(k o) \cong \mathscr{A} / / A(1)=\mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{2}\right\}
$$

Proof. By complex Bott periodicity, there is a cofiber sequence

$$
\Sigma^{2} k u \xrightarrow{\beta} k u \rightarrow H \mathbb{Z} \rightarrow \Sigma^{3} k u
$$

Here $\Sigma^{2} k u=b u$ is the connected cover of $k u$. The left hand map is a composite

$$
\Sigma^{2} k u=k u \wedge S^{2} \xrightarrow{1 \wedge u} k u \wedge k u \xrightarrow{\phi} k u
$$

where $u \in \pi_{2}(k u)$ is a generator and ϕ is the ring spectrum product. It is known that the mod 2 Hurewicz image of u is zero, so $\beta^{*}=0$, and there is a short exact sequence of \mathscr{A}-modules

$$
0 \leftarrow H^{*}(k u) \leftarrow H^{*}(H \mathbb{Z}) \leftarrow \Sigma^{3} H^{*}(k u) \leftarrow 0
$$

The short exact sequence of $E(1)$-modules

$$
0 \leftarrow \mathbb{F}_{2} \leftarrow E(1) / / A(0) \leftarrow \Sigma^{3} \mathbb{F}_{2} \leftarrow 0
$$

can be induced up to a short exact sequence

$$
0 \leftarrow \mathscr{A} / / E(1) \leftarrow \mathscr{A} / / A(0) \leftarrow \Sigma^{3} \mathscr{A} / / E(1) \leftarrow 0
$$

since \mathscr{A} is free as a right $E(1)$-module.
The composite $H \mathbb{Z} \rightarrow \Sigma^{3} k u \rightarrow \Sigma^{3} H \mathbb{Z}$ is known to take $\Sigma^{3} 1$ to Q_{1} in cohomology, so $k u \rightarrow H \mathbb{Z}$ takes Q_{1} to 0 in cohomology. Hence there is a map of short exact sequences

We know that the middle map is an isomorphism, and the right hand map is the triple suspension of the left hand map. It follows by induction on the internal degree that the latter two maps are also isomorphisms.

By real Bott periodicity, there is a cofiber sequence

$$
\Sigma k o \xrightarrow{\eta} k o \rightarrow k u \rightarrow \Sigma^{2} k o .
$$

The left hand map is a composite

$$
\Sigma k o=k o \wedge S^{1} \xrightarrow{1 \wedge \eta} k o \wedge k o \xrightarrow{\phi} k o
$$

where $\eta \in \pi_{1}(k o)$ is the image of $\eta \in \pi_{1}(S)$, and ϕ is the ring spectrum product. The mod 2 Hurewicz image of η is zero, so $\eta^{*}=0$, and there is a short exact sequence of \mathscr{A}-modules

$$
0 \leftarrow H^{*}(k o) \leftarrow H^{*}(k u) \leftarrow \Sigma^{2} H^{*}(k o) \leftarrow 0
$$

The short exact sequence of $A(1)$-modules

$$
0 \leftarrow \mathbb{F}_{2} \leftarrow A(1) / / E(1) \leftarrow \Sigma^{2} \mathbb{F}_{2} \leftarrow 0
$$

can be induced up to a short exact sequence

$$
0 \leftarrow \mathscr{A} / / A(1) \leftarrow \mathscr{A} / / E(1) \leftarrow \Sigma^{2} \mathscr{A} / / A(1) \leftarrow 0
$$

since \mathscr{A} is free as a right $A(1)$-module.
The composite $k u \rightarrow \Sigma^{2} k o \rightarrow \Sigma^{2} k u$ takes $\Sigma^{2} 1$ to $S q^{2}$ in cohomology, so $k o \rightarrow k u$ takes $S q^{2}$ to 0 in cohomology. Hence there is a map of short exact sequences

We know that the middle map is an isomorphism, and the right hand map is the double suspension of the left hand map. It follows by induction on the internal degree that the latter two maps are also isomorphisms.

Proposition 6.28. The Adams spectral sequence for $k u$ collapses at the E_{2}-term

$$
E_{2}^{*, *}=\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(k u), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{E(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(h_{0}, h_{20}\right)
$$

where $h_{0} \in E_{2}^{1,1}$ and $h_{20} \in E_{2}^{1,3}$, and converges strongly to $\pi_{*}\left(k u_{2}^{\wedge}\right)=\mathbb{Z}_{2}[u]$. The class of $2 \in \pi_{0}\left(k u_{2}^{\wedge}\right)$ is represented by h_{0}, and the class of $u \in \pi_{2}\left(k u_{2}^{\wedge}\right)$ is represented by h_{20}.

Proof. We use the change of rings isomorphism $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathscr{A} / / E(1), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{E(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$. ((Must justify that \mathscr{A} is right free, thus flat, over $E(1))$.$) There is a Künneth isomorphism$

$$
\operatorname{Ext}_{E(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{E\left(S q^{1}\right)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \otimes \operatorname{Ext}_{E\left(Q_{1}\right)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

and $\operatorname{Ext}_{E\left(Q_{1}\right)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(h_{20}\right)$ with h_{20} dual to Q_{1}, by the same argument we used to show that $\operatorname{Ext}_{E(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(h_{0}\right)$ with h_{0} dual to $S q^{1}$. (Another name for h_{20} is v_{1}.) The spectral sequence is concentrated in even columns, hence collapses for bidegree reasons.

Proposition 6.29. The $A d a m s$ spectral sequence for $k o$ collapses at the E_{2}-term

$$
\begin{aligned}
E_{2}^{*, *} & =\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(k o), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(1)}^{* *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \\
& \cong P\left(h_{0}, h_{1}, v, w_{1}\right) /\left(h_{0} h_{1}, h_{1}^{3}, h_{1} v, v^{2}=h_{0}^{2} w_{1}\right)
\end{aligned}
$$

where $h_{0} \in E_{2}^{1,1}, h_{1} \in E_{2}^{1,2}, v \in E_{2}^{3,7}$ and $w_{1} \in E_{2}^{4,12}$, and converges strongly to

$$
\pi_{*}\left(k o_{2}^{\wedge}\right)=\mathbb{Z}_{2}[\eta, \alpha, \beta] /\left(2 \eta, \eta^{3}, \eta \alpha, \alpha^{2}=4 \beta\right) .
$$

The classes $2, \eta, \alpha$ and β are represented by h_{0}, h_{1}, v and w_{1}, respectively.

Figure 5: Adams spectral sequence for $k u$

Figure 6: Adams spectral sequence for $k o$

Hence

$$
\pi_{n}\left(k u_{2}^{\wedge}\right) \cong \begin{cases}\mathbb{Z}_{2}\left\{u^{i}\right\} & \text { for } n=2 i \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\pi_{n}\left(k o_{2}^{\wedge}\right) \cong \begin{cases}\mathbb{Z}_{2}\left\{\beta^{i}\right\} & \text { for } n=8 i \\ \mathbb{Z} / 2\left\{\eta \beta^{i}\right\} & \text { for } n=8 i+1 \\ \mathbb{Z} / 2\left\{\eta^{2} \beta^{i}\right\} & \text { for } n=8 i+2 \\ \mathbb{Z}_{2}\left\{\alpha \beta^{i}\right\} & \text { for } n=8 i+4 \\ 0 & \text { otherwise }\end{cases}
$$

for $n \geq 0$.
 and similarly in homotopy.))

Remark 6.30. To compute $\operatorname{Ext}_{A(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, we can use the Cartan-Eilenberg spectral sequence (1956, Theorem XVI.6.1). If A is a connected graded algebra, $B \subset A$ is a normal subalgebra, and A is projective as a right B-module, then this is an algebra spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{A / / B}^{p}\left(\mathbb{F}_{2}, \operatorname{Ext}_{B}^{q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right) \Longrightarrow \operatorname{Ext}_{A}^{p+q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

of cohomological type. In the special case when $A=\mathbb{F}_{2}[G]$ is a group algebra, and $B=\mathbb{F}_{2}[N]$ is the group algebra of a normal subgroup, we have $B / / A=\mathbb{F}_{2}[G / N]$ and the Cartan-Eilenberg spectral sequence agrees with the Lyndon-Hochschild-Serre spectral sequence

$$
E_{2}^{p, q}=H_{g p}^{p}\left(G / N ; H_{g p}^{q}\left(N ; \mathbb{F}_{2}\right)\right) \Longrightarrow H_{g p}^{p+q}\left(G ; \mathbb{F}_{2}\right)
$$

This is again a special case of the Serre spectral sequence in mod 2 singular cohomology, for the fibration $B N \rightarrow B G \rightarrow B(G / N)$.
First proof. We use the change of rings isomorphism $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathscr{A} / / A(1), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$. ((Must justify that \mathscr{A} is right free, thus flat, over $A(1)$.$)) The subalgebra E\left(Q_{1}\right) \subset A(1)$ is normal, with quotient $A(1) / / E\left(Q_{1}\right) \cong E\left(S q^{1}, S q^{2}\right)$. Hence there is a Cartan-Eilenberg spectral sequence

$$
E_{2}^{*, *}=\operatorname{Ext}_{E\left(S q^{1}, S q^{2}\right)}^{*}\left(\mathbb{F}_{2}, \operatorname{Ext}_{E\left(Q_{1}\right)}^{*}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right) \Longrightarrow \operatorname{Ext}_{A(1)}^{*}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

Here $\operatorname{Ext}_{E\left(Q_{1}\right)}^{*}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(h_{20}\right)$. The module action of $E\left(S q^{1}, S q^{2}\right)$ on $P\left(h_{20}\right)$ is (necessarily) trivial, so

$$
E_{2}^{*, *} \cong P\left(h_{0}, h_{1}\right) \otimes P\left(h_{20}\right)
$$

with $h_{0} \in E_{2}^{1,0}$ dual to $S q^{1}, h_{1} \in E_{2}^{1,0}$ dual to $S q^{2}$, and $h_{20} \in E_{2}^{0,1}$ dual to Q_{1}. (We are ignoring the internal degrees here.) There is a d_{2}-differential $d_{2}\left(h_{20}\right)=h_{0} h_{1}$, corresponding to the fact that the generator $Q_{1} \in E\left(Q_{1}\right)$ becomes decomposable in $A(1)$. This leaves the E_{3}-term

$$
E_{3}^{*, *} \cong P\left(h_{0}, h_{1}\right) /\left(h_{0} h_{1}\right) \otimes P\left(h_{20}^{2}\right)
$$

There is a further d_{3}-differential $d_{2}\left(h_{20}^{2}\right)=h_{1}^{3}$. This leaves the E_{3}-term

$$
E_{4}^{*, *} \cong\left(P\left(h_{0}, h_{1}\right) /\left(h_{0} h_{1}, h_{1}^{3}\right) \oplus P\left(h_{0}\right)\left\{h_{0} h_{20}^{2}\right\}\right) \otimes P\left(h_{20}^{4}\right) .
$$

The spectral sequence collapses at this stage, for bidegree reasons: A d_{5}-differential on h_{20}^{4} could only hit h_{0}^{5}, but the internal degrees do not match. ((No additive or multiplicative extensions.))

Second proof. One might also consider the Cartan-Eilenberg spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{E\left(S q^{2}\right)}^{p}\left(\mathbb{F}_{2}, \operatorname{Ext}_{E(1)}^{q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)\right) \Longrightarrow \operatorname{Ext}_{A(1)}^{p+q}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

associated to the isomorphism $A(1) / / E(1) \cong E\left(S q^{2}\right)$, but in this case the $E\left(S q^{2}\right)$-module action on $\operatorname{Ext}_{E(1)}^{*}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=P\left(h_{0}, h_{20}\right)$ is non-trivial, being given by $S q^{2} \cdot h_{20}=h_{0}$. With the usual periodic resolution for Ext over $E\left(S q^{2}\right)$, this gives a d_{1}-differential $d_{1}\left(h_{20}\right)=h_{0} h_{1}$, so that

$$
E_{2}^{*, *}=P\left(h_{0}, h_{1}\right) /\left(h_{0} h_{1}\right) \otimes P\left(h_{20}^{2}\right) .
$$

Again there is a d_{3}-differential $d_{3}\left(h_{20}^{2}\right)=h_{1}^{3}$, leaving

$$
E_{4}^{*, *}=E_{\infty}^{*, *}=\left(P\left(h_{0}, h_{1}\right) /\left(h_{0} h_{1}, h_{1}^{3}\right) \oplus P\left(h_{0}\right)\left\{h_{0} h_{20}^{2}\right\}\right) \otimes P\left(h_{20}^{4}\right)
$$

Note that in this case h_{0}, h_{1} and h_{20} have bigradings $(p, q)=(0,1),(1,0)$ and (0,1), respectively.
Third proof. For a proof without the Cartan-Eilenberg spectra sequence, we may construct a minimal resolution of \mathbb{F}_{2} by "almost free" $A(1)$-modules. Some interesting examples of indecomposable modules appear along the way. There is an exact sequence

$$
0 \rightarrow \Sigma^{12} \mathbb{F}_{2} \rightarrow \Sigma^{7} A(1) / / A(0) \xrightarrow{\partial_{3}} \Sigma^{4} A(1) \xrightarrow{\partial_{2}} \Sigma^{2} A(1) \xrightarrow{\partial_{1}} A(1) / / A(0) \xrightarrow{\epsilon} \mathbb{F}_{2} \rightarrow 0
$$

of $A(1)$-modules. The kernel of the augmentation ϵ from $A(1) / / A(0)=A(1) / A(1) S q^{1}$:

$$
1 \longrightarrow S q^{2} \longrightarrow S q^{3} \longrightarrow S q^{2} S q^{3}
$$

is the "question mark module"

which is isomorphic to $\Sigma^{2}\left(A(1) / A(1) S q^{2}\right)$. Here $1 \otimes \epsilon: \mathscr{A} / / A(0) \rightarrow \mathscr{A} / / A(1)$ is induced by the zeroth Postnikov section $k o \rightarrow H \mathbb{Z}$, with homotopy fiber bo, so $\Sigma H^{*}(b o) \cong \mathscr{A} \otimes_{A(1)} \operatorname{ker}(\epsilon)$ and $H^{*}(b o) \cong$ $\Sigma\left(\mathscr{A} / \mathscr{A} S q^{2}\right)$.

The kernel of $\partial_{1}: \Sigma^{2} A(1) \rightarrow \operatorname{ker}(\epsilon)$, taking $\Sigma^{2} 1$ to $S q^{2}$, is the double suspension of the "joker module"

which is isomorphic to $\Sigma^{4}\left(\mathscr{A} / \mathscr{A} S q^{3}\right)$. Here $1 \otimes \partial_{1}: \Sigma^{2} \mathscr{A} \rightarrow \mathscr{A} \otimes_{A(1)} \operatorname{ker}(\epsilon)$ is induced by the Postnikov section $b o \rightarrow \Sigma H$, with homotopy fiber bso, so $\Sigma^{2} H^{*}(b s o) \cong \mathscr{A} \otimes_{A(1)} \operatorname{ker}\left(\partial_{1}\right)$ and $H^{*}(b s o) \cong \Sigma^{2}\left(\mathscr{A} / \mathscr{A} S q^{3}\right)$.

The kernel of $\partial_{2}: \Sigma^{4} A(1) \rightarrow \operatorname{ker}\left(\partial_{1}\right)$, taking $\Sigma^{4} 1$ to $\Sigma^{2} S q^{2}$, is the fourfold suspension of the "inverted question mark module"

which is isomorphic to $\Sigma^{3}\left(\mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{2} S q^{3}\right\}\right)$. Here $1 \otimes \partial_{2}: \Sigma^{4} \mathscr{A} \rightarrow \mathscr{A} \otimes_{A(1)} \operatorname{ker}\left(\partial_{1}\right)$ is induced by the Postnikov section bso $\rightarrow \Sigma^{2} H$, with homotopy fiber bspin $\cong \Sigma^{4} k s p$, so $\Sigma^{3} H^{*}(b s p i n) \cong \mathscr{A} \otimes_{A(1)} \operatorname{ker}\left(\partial_{2}\right)$ and $H^{*}($ bspin $) \cong \Sigma^{4}\left(\mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{2} S q^{3}\right\}\right)$.

The kernel of $\partial_{3}: \Sigma^{7} A(1) / / A(0) \rightarrow \operatorname{ker}\left(\partial_{2}\right)$, taking $\Sigma^{7} 1$ to $\Sigma^{4} S q^{3}$, is the sevenfold suspension of the trivial module

$$
S q^{2} S q^{3}
$$

which is isomorphic to $\Sigma^{5} \mathbb{F}_{2}$. Here $1 \otimes \partial_{3}: \Sigma^{7} \mathscr{A} / / A(0) \rightarrow \mathscr{A} \otimes_{A(1)} \operatorname{ker}\left(\partial_{2}\right)$ is induced by the Postnikov section bspin $\rightarrow \Sigma^{4} H \mathbb{Z}$, with homotopy fiber $\Sigma^{8} k o$, so $\Sigma^{4} H^{*}\left(\Sigma^{8} k o\right) \cong \mathscr{A} \otimes_{A(1)} \operatorname{ker}\left(\partial_{3}\right)$ and $H^{*}\left(\Sigma^{8} k o\right) \cong$ $\Sigma^{8}(\mathscr{A} / / A(1))$, which we already knew.

From the exact sequence of $A(1)$-modules, we get short exact sequences

$$
\begin{aligned}
0 & \rightarrow \operatorname{Ext}_{A(1)}^{s-1, t}\left(\operatorname{ker}(\epsilon), \mathbb{F}_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{A(1)}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{A(0)}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow 0 \\
0 & \rightarrow \operatorname{Ext}_{A(1)}^{s-2, t}\left(\operatorname{ker}\left(\partial_{1}\right), \mathbb{F}_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{A(1)}^{s-1, t}\left(\operatorname{ker}(\epsilon), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathbb{F}_{2}}^{s-1, t}\left(\Sigma^{2} \mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow 0 \\
0 & \rightarrow \operatorname{Ext}_{A(1)}^{s-3, t}\left(\operatorname{ker}\left(\partial_{2}\right), \mathbb{F}_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{A(1)}^{s-2, t}\left(\operatorname{ker}\left(\partial_{1}\right), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathbb{F}_{2}}^{s-2, t}\left(\Sigma^{4} \mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow 0 \\
0 & \rightarrow \operatorname{Ext}_{A(1)}^{s-4, t}\left(\Sigma^{12} \mathbb{F}_{2}, \mathbb{F}_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{A(1)}^{s-3, t}\left(\operatorname{ker}\left(\partial_{2}\right), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{A(0)}^{s-3, t}\left(\Sigma^{7} \mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow 0
\end{aligned}
$$

This determines $\operatorname{Ext}_{A(1)}^{*}{ }^{*}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.
Corollary 6.31. There are \mathscr{A}-module isomorphisms:

$$
\begin{aligned}
H^{*}(b o) & \cong \Sigma\left(\mathscr{A} / \mathscr{A} S q^{2}\right) \\
H^{*}(b s o) & \cong \Sigma^{2}\left(\mathscr{A} / \mathscr{A} S q^{3}\right) \\
H^{*}(b s p i n) & \cong \Sigma^{4}\left(\mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{2} S q^{3}\right\}\right)
\end{aligned}
$$

$(($ Also $k(1)=k u / 2, k o / 2)$.

7 The dual Steenrod algebra

7.1 Hopf algebras

Let G be a topological group with $H_{*}(G)$ of finite type. Then the cohomology cross product

$$
H^{*}(G) \otimes H^{*}(G) \xrightarrow{\times} H^{*}(G \times G)
$$

is an isomorphism. The (cocommutative) diagonal map $\Delta: G \rightarrow G \times G$, and the augmentation $G \rightarrow *$ induce a pairing

$$
\phi: H^{*}(G) \otimes H^{*}(G) \cong H^{*}(G \times G) \xrightarrow{\Delta^{*}} H^{*}(G)
$$

and a unit map

$$
\eta: \mathbb{F}_{p} \longrightarrow H^{*}(G)
$$

that make $H^{*}(G)$ a (graded commutative) algebra. The group multiplication $m: G \times G \rightarrow G$ and the inclusion $\{e\} \rightarrow G$ induce homomorphisms

$$
\psi: H^{*}(G) \xrightarrow{m^{*}} H^{*}(G \times G) \cong H^{*}(G) \otimes H^{*}(G)
$$

and

$$
\epsilon: H^{*}(G) \longrightarrow \mathbb{F}_{p}
$$

that make $H^{*}(G)$ a commutative Hopf algebra, and the group inverse $i: G \rightarrow G$ induces a homomorphism

$$
\chi: H^{*}(G) \xrightarrow{i^{*}} H^{*}(G)
$$

that makes $H^{*}(G)$ a commutative Hopf algebra with conjugation, according to the following definitions. It is connected if and only if G is path connected as a topological space.

Dually, the Pontryagin product $\phi=m_{*}: H_{*}(G) \otimes H_{*}(G) \rightarrow H_{*}(G)$, unit inclusion $\eta: \mathbb{F}_{p} \rightarrow H_{*}(G)$, diagonal coproduct $\psi=\Delta_{*}: H_{*}(G) \rightarrow H_{*}(G) \otimes H_{*}(G)$, augmentation $\epsilon: H_{*}(G) \rightarrow \mathbb{F}_{p}$ and conjugation $\chi=i_{*}: H_{*}(G) \rightarrow H_{*}(G)$ make $H_{*}(G)$ a cocommutative Hopf algebra with conjugation.

Let k be any field, and write \otimes for \otimes_{k}.
Definition 7.1. A k-algebra is a graded k-module A equipped with homomorphisms $\phi: A \otimes A \rightarrow A$ and $\eta: k \rightarrow A$, such that the diagrams

(associativity) and

(unitality) commute. It is commutative if the diagram

commutes, where $\gamma(a \otimes b)=(-1)^{|a||b|} b \otimes a$. A k-algebra homomorphism $f: A \rightarrow B$ is a degree-preserving k-module homomorphism such that the diagram

commutes.
Definition 7.2. A k-coalgebra is a graded k-module A equipped with homomorphisms $\psi: A \rightarrow A \otimes A$ and $\epsilon: A \rightarrow k$, such that the diagrams

(coassociativity) and

(counitality) commute. It is cocommutative if the diagram

commutes. A k-coalgebra homomorphism $f: A \rightarrow B$ is a degree-preserving k-module homomorphism such that the diagram

commutes.
Definition 7.3. A k-algebra A is connected if the underlying graded k-module is zero in negative degrees and $\eta: k \rightarrow A$ is an isomorphism in degree 0 . A k-coalgebra A is connected if it is zero in negative degrees and $\epsilon: A \rightarrow k$ is an isomorphism in degree 0 .

Definition 7.4. An augmented k-algebra is a k-algebra A with a k-algebra homomorphism $\epsilon: A \rightarrow k$. Let $I(A)=\operatorname{ker}(\epsilon)$ be the augmentation ideal, and let

$$
Q(A)=I(A) / I(A)^{2}=k \otimes_{A} I(A)
$$

be the indecomposable quotient module.

A homomorphism of augmented algebras is an algebra homomorphism that commutes with the augmentations.
(We make sense of the tensor product over A in the next subsection.)
Proposition 7.5 (Milnor-Moore). Let $f: A \rightarrow B$ be a homomorphism of augmented algebras, with B connected. Then f is surjective if and only if $Q(f): Q(A) \rightarrow Q(B)$ is surjective.

Definition 7.6. A coaugmented k-coalgebra is a k-coalgebra A with a k-coalgebra homomorphism $\eta: k \rightarrow A$. Let $J(A)=\operatorname{cok}(\eta)$ be the coaugmentation coideal, and let

$$
P(A)=\{x \in A \mid \psi(x)=x \otimes 1+1 \otimes x\}=k \square_{A} J(A)
$$

be the submodule of primitives.

A homomorphism of coaugmented coalgebras is a coalgebra homomorphism that commutes with the coaugmentations.
(We make sense of the cotensor products under A in the next subsection.)
Proposition 7.7 (Milnor-Moore). Let $f: A \rightarrow B$ be a homomorphism of coaugmented coalgebras, with A connected. Then f is injective if and only if $P(f): P(A) \rightarrow P(B)$ is injective.

Definition 7.8. A Hopf algebra (over k) is a k-algebra structure (ϕ, η) and a k-coalgebra structure (ψ, ϵ) on the same graded k-module A, such that ψ and ϵ are algebra homomorphisms and ϕ and η are coalgebra homomorphisms. This means that the diagrams

and

commute. A homomorphism if Hopf algebras is an algebra homomorphism that is simultaneously a coalgebra homomorphism.

Definition 7.9. A Hopf algebra with conjugation is a Hopf algebra A with a homomorphism $\chi: A \rightarrow A$ such that the diagram

commutes. A homomorphism of Hopf algebras with conjugation is a Hopf algebra homomorphism that commutes with the conjugation.

Definition 7.10. Let A be a k-algebra, and let $B \subset A$ be a subalgebra with an augmentation $\epsilon: B \rightarrow k$, making k a B-module. Then we let

$$
A / / B=A \otimes_{B} k=A / A \cdot I(B)
$$

and

$$
B \backslash \backslash A=k \otimes_{B} A=A / I(B) \cdot A
$$

If $A \cdot I(B)=I(B) \cdot A$ we say that B is normal in A. Then $A / / B$ is a k-algebra, and the canonical map $A \rightarrow A / / B$ is an algebra homomorphism.

Theorem 7.11 (Milnor-Moore). Let A be a connected Hopf algebra and $B \subset A$ a Hopf subalgebra. Then there is an isomorphism $A \cong A / / B \otimes B$ of right B-modules, and an isomorphism $A \cong B \otimes B \backslash \backslash A$ of left B-modules, so A is free as a left B-module and as a right B-module.

This is part of Theorem 4.4 in Milnor-Moore (1965). More concretely, let $i: B \rightarrow A$ be the inclusion and let $s: A / / B \rightarrow A$ be any k-linear section to the projection $A \rightarrow A / / B$. Then the composite

$$
A / / B \otimes B \xrightarrow{s \otimes i} A \otimes A \xrightarrow{\phi} A
$$

is an isomorphism of right B-modules. It is not usually true that A is free as a B - B-bimodule.

7.2 Actions and coactions

Definition 7.12. Let A be a k-algebra. A left A-module is a graded k-module M with a pairing $\lambda: A \otimes M \rightarrow M$ such that the diagrams

commute. A right A-module is a graded k-module N with a pairing $\rho: N \otimes A \rightarrow N$ such that the diagrams

commute. The tensor product $N \otimes_{A} M$ is the coequalizer in the diagram

$$
N \otimes A \otimes M \underset{\rho \otimes 1}{\stackrel{1 \otimes \lambda}{\longrightarrow}} N \otimes M \longrightarrow N \otimes_{A} M
$$

Definition 7.13. Let A be a k-coalgebra. A left A-comodule is a graded k-module M with a pairing $\lambda: M \rightarrow A \otimes M$ such that the diagrams

commute. A right A-comodule is a graded k-module N with a pairing $\rho: N \rightarrow N \otimes A$ such that the diagrams

commute. The cotensor product $N \square_{A} M$ is the equalizer in the diagram

Lemma 7.14. Let M be a left A-module, with action $a \cdot m=\lambda(a \otimes m)$ for $a \in A$ and $m \in M$. Then the linear dual $M^{*}=\operatorname{Hom}(M, k)$ is a right A-module, with action $\mu \cdot a=\rho(\mu \otimes a)$ given by $\mu \cdot a: m \mapsto \mu(a \cdot m)$, for $\mu: M \rightarrow k$ in M^{*}. Likewise, if N is a right A-module then N^{*} is a left A-module.

Proof. $\mu \cdot a: m \mapsto \mu(a \cdot m)$, so $(\mu \cdot a) \cdot b: m \mapsto(\mu \cdot a)(b \cdot m)=\mu(a \cdot b \cdot m)=\mu(a b \cdot m)$ equals $\mu \cdot a b$.
Lemma 7.15. Let A be a k-algebra, bounded below and of finite type. Then $A^{*}=\operatorname{Hom}(A, k)$ is a k-coalgebra with coproduct $\psi=\phi^{*}: A^{*} \rightarrow(A \otimes A)^{*} \cong A^{*} \otimes A^{*}$ and counit $\epsilon=\eta^{*}: A^{*} \rightarrow k$. Conversely, if A is a k-coalgebra then A^{*} is a k-algebra. If A was bounded below and of finite type, then so is A^{*}, and $A \cong\left(A^{*}\right)^{*}$.

Lemma 7.16. Let A be an augmented k-algebra, bounded below and of finite type. Then A^{*} is a coaugmented k-coalgebra, $J\left(A^{*}\right) \cong I(A)^{*}$ and $P\left(A^{*}\right) \cong Q(A)^{*}$.

Lemma 7.17. Let A be a k-algebra, M a left A-module and N a right A-module, all bounded below and of finite type. Then M^{*} is a left A^{*}-comodule with coaction $\lambda=\lambda^{*}: M^{*} \rightarrow(A \otimes M)^{*} \cong A^{*} \otimes M^{*}$, and N^{*} is a right A^{*}-comodule with coaction $\rho=\rho^{*}: N^{*} \rightarrow(N \otimes A)^{*} \cong N^{*} \otimes A^{*}$.

Conversely, let A be a k-coalgebra, M a left A-comodule and N a right A-comodule. Then M^{*} is a left A^{*}-module with action $\lambda: A^{*} \otimes M^{*} \rightarrow(A \otimes M)^{*} \rightarrow M^{*}$, and N^{*} is a right A^{*}-module with action $\rho: N^{*} \otimes A^{*} \rightarrow(N \otimes A)^{*} \rightarrow N^{*}$.
Definition 7.18. Let A be an augmented k-algebra and let M be a left A-module. The A-module indecomposables in M is the quotient k-module $k \otimes_{A} M=M / I(A) \cdot M$.

Definition 7.19. Let A be a coaugmented k-coalgebra and let M be a left A-comodule. The A-comodule primitives in M is the k-submodule $k \square_{A} M=\{m \in M \mid \lambda(m)=1 \otimes m\}$.

Lemma 7.20. Let A be an augmented k-algebra and M left A-module, both bounded below and of finite type. Let M^{*} be the dual left A^{*}-comodule. Then there are natural isomorphisms

$$
\operatorname{Hom}_{A}(M, k) \cong \operatorname{Hom}\left(k \otimes_{A} M, k\right) \cong k \square_{A^{*}} M^{*}
$$

that are compatible with the inclusions into $\operatorname{Hom}(M, k)=M^{*}$.
See Boardman (1982) for more on left/right algebra/coalgebra actions/coactions.
Definition 7.21. Let A be a Hopf algebra, and let M and N be left A-modules. Then $M \otimes N$ is a left A-module, with the action $\lambda: A \otimes M \otimes N$ defined as the composite

$$
A \otimes M \otimes N \xrightarrow{\psi \otimes 1 \otimes 1} A \otimes A \otimes M \otimes N \xrightarrow{\cong} A \otimes \gamma \otimes 1 .
$$

Likewise for right A-modules.
Conversely, let M and N be left A-comodules. Then $M \otimes N$ is a left A-comodule, with the coaction $\lambda: M \otimes N \rightarrow A \otimes M \otimes N$ defined as the composite

$$
M \otimes N \xrightarrow{\lambda \otimes \lambda} A \otimes M \otimes A \otimes N \xrightarrow[\cong]{\cong} A \otimes A \otimes 11 \otimes N \xrightarrow{\phi \otimes 1 \otimes 1} A \otimes M \otimes N .
$$

Likewise for right A-comodules.

7.3 The coproduct

Let Y and Z be spectra. If Y and Z are bounded below with $H_{*}(Y)$ and $H_{*}(Z)$ of finite type, then the cohomology smash product

$$
H^{*}(Y) \otimes H^{*}(Z) \xrightarrow{\wedge} H^{*}(Y \wedge Z)
$$

is an isomorphism. The Cartan formula

$$
S q^{k}(y \wedge z)=\sum_{i+j=k} S q^{i}(y) \wedge S q^{j}(z)
$$

implies the more general formula

$$
S q^{K}(y \wedge z)=\sum_{I+J=K} S q^{I}(y) \wedge S q^{J}(z)
$$

for sequences $K=\left(k_{1}, \ldots, k_{\ell}\right)$ of non-negative integers, where the sum is over pairs of sequences $I=$ $\left(i_{i}, \ldots, i_{\ell}\right)$ and $J=\left(j_{1}, \ldots, j_{\ell}\right)$ of non-negative integers, such that $k_{u}=i_{u}+j_{u}$ for all $1 \leq u \leq \ell$. Milnor proved that the rule

$$
S q^{K} \longmapsto \sum_{I+J=K} S q^{I} \otimes S q^{J}
$$

respects the Adem relations, in the sense that it gives a well-defined algebra homomorphism

$$
\psi: \mathscr{A} \longrightarrow \mathscr{A} \otimes \mathscr{A}
$$

Since \mathscr{A} is connected, there is a unique homomorphism

$$
\chi: \mathscr{A} \longrightarrow \mathscr{A}
$$

with $\chi(1)=1$ and $\sum a^{\prime} \chi\left(a^{\prime \prime}\right)=0$ for all $a \in I(\mathscr{A})$ with $\psi(a)=\sum a^{\prime} \otimes a^{\prime \prime}$. Then $\chi(a b)=\chi(b) \chi(a)$ and χ^{2} is the identity.

Theorem 7.22 (Milnor (1958)). The Steenrod algebra \mathscr{A}, with the composition coproduct ϕ, the coproduct ψ and the conjugation χ, is a cocommutative Hopf algebra with conjugation.

Definition 7.23. Let the dual Steenrod algebra $\mathscr{A}_{*}=\operatorname{Hom}\left(\mathscr{A}, \mathbb{F}_{2}\right)$ be the linear dual of the Steenrod algebra. Since \mathscr{A} is of finite type, there is a natural isomorphism $\mathscr{A} \cong \operatorname{Hom}\left(\mathscr{A}_{*}, \mathbb{F}_{2}\right)$. The algebra structure maps $\phi: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A}$ and $\eta: \mathbb{F}_{2} \rightarrow \mathscr{A}$ dualize to coalgebra structure maps $\psi: \mathscr{A}_{*} \rightarrow \mathscr{A}_{*} \otimes \mathscr{A}_{*}$ and $\epsilon: \mathscr{A}_{*} \rightarrow \mathbb{F}_{2}$. The cocommutative coalgebra structure maps $\psi: \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ and $\epsilon: \mathscr{A} \rightarrow \mathbb{F}_{2}$ dualize to commutative algebra structure maps $\phi: \mathscr{A}_{*} \otimes \mathscr{A}_{*} \rightarrow \mathscr{A}_{*}$ and $\eta: \mathbb{F}_{2} \rightarrow \mathscr{A}_{*}$. The conjugation $\chi: \mathscr{A} \rightarrow \mathscr{A}$ dualizes to a conjugation $\chi: \mathscr{A}_{*} \rightarrow \mathscr{A}_{*}$. With these structure maps, \mathscr{A}_{*} is a commutative Hopf algebra.

Remark 7.24. The isomorphism $\mathscr{A} \cong H^{*}(H)$ is dual to an isomorphism $\mathscr{A}_{*} \cong H_{*}(H)$. This may justify why we write \mathscr{A}_{*} instead of \mathscr{A}^{*} for the dual Steenrod algebra, thinking of the star as a homological grading rather than as the symbol for dualization. The ring spectrum product $\mu: H \wedge H \rightarrow H$ induces the product $\phi: \mathscr{A}_{*} \otimes \mathscr{A}_{*} \cong H_{*}(H) \otimes H_{*}(H) \cong H_{*}(H \wedge H) \rightarrow H_{*}(H) \cong \mathscr{A}_{*}$ in homology, and the counit $\epsilon: \mathscr{A}_{*}=\pi_{*}(H \wedge H) \rightarrow \pi_{*}(H)=\mathbb{F}_{2}$ in homotopy. The ring spectrum unit $\eta: S \rightarrow H$ induces a map $H \cong S \wedge H \rightarrow H \wedge H$ that induces the coproduct $\psi: \mathscr{A}_{*}=H_{*}(H) \rightarrow H_{*}(H \wedge H) \cong H_{*}(H) \otimes H_{*}(H) \cong$ $\mathscr{A}_{*} \otimes \mathscr{A}_{*}$ in homology. The two maps $H \cong S \wedge H \rightarrow H \wedge H$ and $H \cong H \wedge S \rightarrow H \wedge H$ both induce the unit $\eta: \mathbb{F}_{2} \rightarrow \mathscr{A}_{*}$ in homotopy. The twist map $\gamma: H \wedge H \rightarrow H \wedge H$ induces the conjugation $\chi: \mathscr{A}_{*} \rightarrow \mathscr{A}_{*}$. ((Reference?))

By definition, $\psi: \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ makes the diagram

commute, where $\lambda: \mathscr{A} \otimes H^{*}(Y) \rightarrow H^{*}(Y)$ denotes the left \mathscr{A}-module action. We defined the \mathscr{A}-module action on the tensor product $H^{*}(Y) \otimes H^{*}(Z)$ by the dashed composite in this diagram, so that the Künneth homomorphism \wedge is an \mathscr{A}-module homomorphism.

By the Hom-tensor adjunction, the diagram can be reformulated as follows:

where $\tilde{\lambda}: H^{*}(Y) \rightarrow \operatorname{Hom}\left(\mathscr{A}, H^{*}(Y)\right)$ takes y to the homomorphism $a \mapsto a(y)$, etc. If we add the assumption that $H^{*}(Y)$ is bounded above, so that $H_{*}(Y)$ is (totally) finite, then there is a natural isomorphism

$$
H^{*}(Y) \otimes \mathscr{A}_{*} \cong \operatorname{Hom}\left(\mathscr{A}, H^{*}(Y)\right)
$$

taking $y \otimes \alpha$ to $a \mapsto \alpha(a) y$, with $y \in H^{*}(Y), \alpha \in \mathscr{A}_{*}$ and $a \in \mathscr{A}$. We also assume that $H_{*}(Z)$ is (totally) finite. Then we can rewrite the diagram as:

where ϕ is the algebra structure on \mathscr{A}_{*}, dual to the coproduct ψ on \mathscr{A}, and $\rho: H^{*}(Y) \rightarrow H^{*}(Y) \otimes \mathscr{A}_{*}$ is the right \mathscr{A}_{*}-comodule coaction on $H^{*}(Y)$, corresponding to $\tilde{\lambda}$ via the isomorphism above. We defined the \mathscr{A}_{*}-coaction on the tensor product $H^{*}(Y) \otimes H^{*}(Z)$ by the dashed composite. Hence the Künneth morphism \wedge is an \mathscr{A}_{*}-comodule homomorphism.

Proposition 7.25 (Milnor). Let X be a space with $H_{*}(X)$ (totally) finite. The right \mathscr{A}-comodule coaction

$$
\rho: H^{*}(X) \rightarrow H^{*}(X) \otimes \mathscr{A}_{*}
$$

is an algebra homomorphism, where $H^{*}(X)$ has the cup product and \mathscr{A}_{*} has the product dual to the coproduct ψ on \mathscr{A}.

Proof. Let $Y=Z=\Sigma^{\infty}\left(X_{+}\right)$. Then the diagonal $\Delta: X \rightarrow X \times X$ induces the commutative diagram

which says that the cup product \cup is an \mathscr{A}_{*}-comodule homomorphism, or equivalently, that the coaction ρ is an algebra homomorphism.

This results encodes the Cartan formula for the Steenrod algebra action on the cohomology of a product of spaces, in terms of the coaction of the dual Steenrod algebra, in a very convenient form.

7.4 The Milnor generators

Without appealing to the conjugation χ, we have the following four left and right actions and coactions on the homology and cohomology of a space X with $H_{*}(X)$ finite:

$$
\begin{aligned}
& \lambda: \mathscr{A} \otimes H^{*}(X) \longrightarrow H^{*}(X) \\
& \rho: H_{*}(X) \otimes \mathscr{A} \longrightarrow H_{*}(X) \\
& \rho: H^{*}(X) \longrightarrow H^{*}(X) \otimes \mathscr{A}_{*} \\
& \lambda: H_{*}(X) \longrightarrow \mathscr{A}_{*} \otimes H_{*}(X)
\end{aligned}
$$

We specialize to the test object $X=\mathbb{R} P^{N} \subset \mathbb{R} P^{\infty}=H_{1}$, with $H^{*}(X)=P(x) /\left(x^{N+1}\right)$ and $H_{*}(X)=$ $\mathbb{F}_{2}\left\{\gamma_{j} \mid 0 \leq j \leq N\right\}$, where x^{j} is dual to γ_{j}. We are interested in the limit as $N \rightarrow \infty$, when $\lim _{N} H^{*}\left(\mathbb{R} P^{N}\right)=P(x)$ and $\operatorname{colim}_{N} H_{*}\left(\mathbb{R} P^{N}\right)=\mathbb{F}_{2}\left\{\gamma_{j} \mid j \geq 0\right\}$. The limiting right coaction

$$
\rho: P(x) \longrightarrow P(x) \widehat{\otimes} \mathscr{A}_{*}
$$

was just seen to be an algebra homomorphism, hence is determined by the single value

$$
\rho(x)=\sum_{j \geq 1} x^{j} \otimes \alpha_{j}
$$

where $\alpha_{j} \in \mathscr{A}_{*}$ has degree $(j-1)$, for each $j \geq 1$.
Lemma 7.26. There are well-defined classes $\xi_{i} \in \mathscr{A}_{*}$ such that

$$
\rho(x)=\sum_{i \geq 0} x^{2^{i}} \otimes \xi_{i}
$$

Here $\xi_{0}=1$, and ξ_{i} has degree $2^{i}-1$, for each $i \geq 0$.
Proof. There is a pairing $m: \mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty} \rightarrow \mathbb{R} P^{\infty}$ that represents the tensor product of real line bundles, or comes from the loop structure on $H_{1} \simeq \Omega H_{2}$. It induces a homomorphism

$$
m^{*}: P(x)=H^{*}\left(\mathbb{R} P^{\infty}\right) \rightarrow H^{*}\left(\mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty}\right)=P\left(x_{1}, x_{2}\right)
$$

with $m^{*}(x)=x_{1}+x_{2}$, where $x_{1}=x \times 1$ and $x_{2}=1 \times x$. By naturality of the right \mathscr{A}_{*}-coaction ρ, we have that

$$
m^{*}(\rho(x))=\sum_{j \geq 1}\left(x_{1}+x_{2}\right)^{j} \otimes \alpha_{j}
$$

is equal to

$$
\rho\left(m^{*}(x)\right)=\rho\left(x_{1}+x_{2}\right)=\rho\left(x_{1}\right)+\rho\left(x_{2}\right)=\sum_{j \geq 1} x_{1}^{j} \otimes \alpha_{j}+\sum_{j \geq 1} x_{2}^{j} \otimes \alpha_{j}
$$

in $P\left(x_{1}, x_{2}\right) \widehat{\otimes} \mathscr{A}_{*}$. The product formula for binomial coefficients mod 2 implies that $\left(x_{1}+x_{2}\right)^{j} \neq x_{1}^{j}+x_{2}^{j}$ for all j not of the form $j=2^{i}, i \geq 0$, hence $\alpha_{j}=0$ for all such j. We let $\xi_{i}=\alpha_{2^{i}}$ for $i \geq 0$. Counitality of the coaction implies that $\xi_{0}=1$.

Let $P\left(\xi_{i} \mid i \geq 1\right)=P\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)$ be the polynomial algebra generated by the classes ξ_{i} for $i \geq 0$, only subject to the relation $\xi_{0}=1$.

Theorem 7.27 (Milnor). The canonical homomorphism

$$
P\left(\xi_{i} \mid i \geq 1\right) \xrightarrow{\cong} \mathscr{A}_{*}
$$

is an algebra isomorphism.
See Milnor (1958) Theorem 2 or Steenrod-Epstein (1962) Theorem 2.2 for the proof. Surjectivity of $P\left(\xi_{i} \mid i \geq 1\right) \rightarrow \mathscr{A}_{*}$ follows by the detection results for \mathscr{A}. A count of dimensions then proves isomorphism.

Theorem 7.28 (Milnor). The Hopf algebra coproduct $\psi: \mathscr{A}_{*} \rightarrow \mathscr{A}_{*} \otimes \mathscr{A}_{*}$ is given by

$$
\psi\left(\xi_{k}\right)=\sum_{i+j=k} \xi_{i}^{2^{j}} \otimes \xi_{j}
$$

where $i, j \geq 0$ and $\xi_{0}=1$. Hence the conjugation $\chi: \mathscr{A}_{*} \rightarrow \mathscr{A}_{*}$ is determined by

$$
\sum_{i+j=k} \xi_{i}^{2^{j}} \chi\left(\xi_{j}\right)=0
$$

for all $k \geq 1$.

Proof. The coassociativity of the right coaction tells us that

$$
(\rho \otimes 1) \rho(x)=(\rho \otimes 1)\left(\sum_{j \geq 0} x^{2^{j}} \otimes \xi_{j}\right)=\sum_{j \geq 0} \rho(x)^{2^{j}} \otimes \xi_{j}=\sum_{i, j \geq 0} x^{2^{i+j}} \otimes \xi_{i}^{2^{j}} \otimes \xi_{j}
$$

is equal to

$$
(1 \otimes \psi) \rho(x)=\sum_{k \geq 0} x^{2^{k}} \otimes \psi\left(\xi_{k}\right)
$$

These formulas for the coproduct in \mathscr{A}_{*} are often more manageable than the Adem relations for the product in \mathscr{A}. Here is list of $\psi\left(\xi_{k}\right)$ and $\chi\left(\xi_{k}\right)$ for small k :

$$
\begin{aligned}
& \psi\left(\xi_{1}\right)=\xi_{1} \otimes 1+1 \otimes \xi_{1} \\
& \psi\left(\xi_{2}\right)=\xi_{2} \otimes 1+\xi_{1}^{2} \otimes \xi_{1}+1 \otimes \xi_{2} \\
& \psi\left(\xi_{3}\right)=\xi_{3} \otimes 1+\xi_{2}^{2} \otimes \xi_{1}+\xi_{1}^{4} \otimes \xi_{2}+1 \otimes \xi_{3} \\
& \psi\left(\xi_{4}\right)=\xi_{4} \otimes 1+\xi_{3}^{2} \otimes \xi_{1}+\xi_{2}^{4} \otimes \xi_{2}+\xi_{1}^{8} \otimes \xi_{3}+1 \otimes \xi_{4} \\
& \chi\left(\xi_{1}\right)=\xi_{1} \\
& \chi\left(\xi_{2}\right)=\xi_{2}+\xi_{1}^{3} \\
& \chi\left(\xi_{3}\right)=\xi_{3}+\xi_{1} \xi_{2}^{2}+\xi_{1}^{4} \xi_{2}+\xi_{1}^{7} \\
& \chi\left(\xi_{4}\right)=\xi_{4}+\xi_{1} \xi_{3}^{2}+\xi_{1}^{8} \xi_{3}+\xi_{2}^{5}+\xi_{1}^{3} \xi_{2}^{4}+\xi_{1}^{9} \xi_{2}^{2}+\xi_{1}^{12} \xi_{2}+\xi_{1}^{15}
\end{aligned}
$$

We note that $\xi_{1}^{2^{i}}$ is primitive for each $i \geq 0$, and that $\chi\left(\xi_{k}\right) \equiv \xi_{k}$ modulo decomposables.
We now make the Milnor classes $\xi_{i} \in \mathscr{A}_{*}$ a little more explicit. Dualizing the formula for $\rho(x)$, the right action

$$
\rho: H_{*}\left(\mathbb{R} P^{\infty}\right) \otimes \mathscr{A} \longrightarrow H_{*}\left(\mathbb{R} P^{\infty}\right)
$$

is given in total degree 1 by

$$
\gamma_{j} \otimes a \longmapsto \begin{cases}\left\langle a, \xi_{i}\right\rangle \gamma_{1} & \text { for } j=2^{i} \\ 0 & \text { otherwise }\end{cases}
$$

Here $a \in \mathscr{A}$ has degree $(j-1)$ and $\langle-,-\rangle: \mathscr{A} \otimes \mathscr{A}_{*} \rightarrow \mathbb{F}_{2}$ is the evaluation pairing. Likewise, the left action

$$
\lambda: \mathscr{A} \otimes P(x) \longrightarrow P(x)
$$

is given on $\mathscr{A} \otimes \mathbb{F}_{2}\{x\}$ by

$$
a \otimes x \longmapsto a(x)=\sum_{i \geq 0}\left\langle a, \xi_{i}\right\rangle x^{2^{i}}
$$

Lemma 7.29. For admissible sequences I,

$$
S q^{I}(x)= \begin{cases}x^{2^{i}} & \text { for } I=\left(2^{i-1}, 2^{i-2}, \ldots, 2,1\right), i \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
\left\langle S q^{I}, \xi_{i}\right\rangle=\left\{\begin{array}{l}
1 \quad \text { for } I=\left(2^{i-1}, 2^{i-2}, \ldots, 2,1\right) \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

In other words, ξ_{i} is dual to $S q^{2^{i-1}} S q^{2^{i-2}} \ldots S q^{2} S q^{1}$ when we give \mathscr{A} the admissible basis.
The identification of $\mathbb{R} P^{\infty}$ with the first space H_{1} in the Eilenberg-Mac Lane spectrum H leads to a stable map $f: \Sigma^{\infty} H_{1} \rightarrow \Sigma H$. The induced \mathscr{A}-module homomorphism

$$
f^{*}: \Sigma \mathscr{A}=H^{*}(\Sigma H) \longrightarrow \tilde{H}^{*}\left(H_{1}\right) \subset P(x)
$$

takes the generator $\Sigma 1$ to x, hence agrees with the \mathscr{A}-module homomorphism $\mathscr{A} \otimes \mathbb{F}_{2}\{x\} \rightarrow P(x)$ taking $a \otimes x$ to

$$
a(x)=\sum_{i \geq 0}\left\langle a, \xi_{i}\right\rangle x^{2^{i}},
$$

via the isomorphism $\Sigma \mathscr{A} \cong \mathscr{A} \otimes \mathbb{F}_{2}\{x\}$. Dually, it follows that the \mathscr{A}_{*}-comodule homomorphism

$$
f_{*}: \tilde{H}_{*}\left(H_{1}\right) \longrightarrow H_{*}(\Sigma H) \cong \Sigma \mathscr{A}_{*}
$$

is the linear dual mapping

$$
\gamma_{j} \longmapsto \begin{cases}\Sigma \xi_{i} & \text { for } j=2^{i}, i \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 7.30. The map $f: \Sigma^{\infty} \mathbb{R} P^{\infty} \rightarrow \Sigma H$ induces a homomorphism $\tilde{H}_{*+1}\left(\mathbb{R} P^{\infty}\right) \rightarrow \mathscr{A}_{*}$ taking $\gamma_{j} \in$ $\tilde{H}_{j}\left(\mathbb{R} P^{\infty}\right)$ to ξ_{i} if $j=2^{i}, i \geq 0$, and to 0 otherwise.

Definition 7.31. The dual Steenrod algebra $\mathscr{A}_{*} \cong P\left(\xi_{k} \mid k \geq 1\right)$ has a basis $\left\{\xi^{R}\right\}_{R}$ given by the monomials

$$
\xi^{R}=\xi_{1}^{r_{1}} \xi_{2}^{r_{2}} \cdots \xi_{\ell}^{r_{\ell}}
$$

where $R=\left(r_{1}, \ldots, r_{\ell}\right)$ ranges over all finite sequences of non-negative integers, with $r_{\ell} \geq 1$ if $\ell \geq 1$. The Milnor basis $\left\{S q^{R}\right\}_{R}$ for the Steenrod algebra \mathscr{A} is the dual basis, defined so that

$$
\left\langle S q^{R}, \xi^{S}\right\rangle= \begin{cases}1 & \text { for } R=S \\ 0 & \text { otherwise }\end{cases}
$$

Hence $\left|S q^{R}\right|=\left|\xi^{R}\right|=\sum_{u=1}^{\ell} r_{u}\left(2^{u}-1\right)$. The coproduct is given by $\psi\left(S q^{T}\right)=\sum_{R+S=T} \psi^{R} \otimes \psi^{S}$.
Remark 7.32. One should not confuse the notations $S q^{I}$ and $S q^{R}$. We let I, J and K range over admissible sequences, and let $S q^{I}, S q^{J}$ and $S q^{K}$ denote the corresponding admissible composites of Steenrod squares. We let R, S and T range over finite sequences of non-negative integers, and let $S q^{R}$, $S q^{S}$ and $S q^{T}$ denote the corresponding elements in the Milnor basis.

Example 7.33. It is clear that $S q^{()}=1, S q^{(1)}=S q^{1}$ and $S q^{(2)}=S q^{2}$. In degree 3, we have $\left\langle S q^{3}, \xi_{2}\right\rangle=$ $0,\left\langle S q^{2} S q^{1}, \xi_{2}\right\rangle=1,\left\langle S q^{3}, \xi_{1}^{3}\right\rangle=1$ and $\left\langle S q^{2} S q^{1}, \xi_{1}^{3}\right\rangle=1$. For example,

$$
\begin{aligned}
\left\langle S q^{2} S q^{1}, \xi_{1}^{3}\right\rangle & =\left\langle S q^{2} S q^{1}, \phi\left(\xi_{1} \otimes \xi_{1}^{2}\right)\right\rangle=\left\langle\psi\left(S q^{2} S q^{1}\right), \xi_{1} \otimes \xi_{1}^{2}\right\rangle \\
& =\left\langle\left(S q^{2} \otimes 1+S q^{1} \otimes S q^{1}+1 \otimes S q^{2}\right)\left(S q^{1} \otimes 1+1 \otimes S q^{1}\right), \xi_{1} \otimes \xi_{1}^{2}\right\rangle \\
& =\left\langle S q^{1} \otimes\left(S q^{2}+S q^{1} S q^{1}\right), \xi_{1} \otimes \xi_{1}^{2}\right\rangle=\left\langle S q^{1}, \xi_{1}\right\rangle\left\langle S q^{2}, \xi_{1}^{2}\right\rangle=1 .
\end{aligned}
$$

Hence $S q^{(3)}=S q^{3}$ and $S q^{(0,1)}=S q^{3}+S q^{2} S q^{1}=Q_{1}$.
Lemma 7.34. The Milnor basis element $S q^{(r)}$ equals the Steenrod operation $S q^{r}$, for each $r \geq 1$.
Proof. Let $S=\left(s_{1}, \ldots, s_{\ell}\right)$ be a finite sequence of non-negative integers, with $s_{\ell} \geq 1$. We must prove that $\left\langle S q^{r}, \xi^{S}\right\rangle$ equals 1 for $S=(r)$ and 0 otherwise. Let Φ be the $\sum_{u=1}^{\ell} s_{u}$-fold product on \mathscr{A}_{*}, and let Ψ be the $\sum_{u=1}^{\ell} s_{u}$-fold coproduct on \mathscr{A}. Writing $\xi^{S}=\Phi\left(\xi_{a} \otimes \cdots \otimes \xi_{\ell}\right)$ with $a \leq \cdots \leq \ell$, we must compute $\left\langle S q^{r}, \xi^{S}\right\rangle=\left\langle S q^{r}, \Phi\left(\xi_{a} \otimes \cdots \otimes \xi_{\ell}\right)\right\rangle=\left\langle\Psi\left(S q^{r}\right), \xi_{a} \otimes \cdots \otimes \xi_{\ell}\right\rangle$. Here $\Psi\left(S q^{r}\right)$ is a sum of tensor products of factors of the form $S q^{j}$. We have $\left\langle S q^{2^{i}-1}, \xi_{i}\right\rangle$ equals 1 for $i=1$ and 0 for $i \geq 2$. Hence $\left\langle\Psi\left(S q^{r}\right), \xi_{a} \otimes \cdots \otimes \xi_{\ell}\right\rangle=0$ if $\ell \geq 2$. Furthermore, $\left\langle\Psi\left(S q^{r}\right), \xi_{a} \otimes \cdots \otimes \xi_{\ell}\right\rangle=1$ if $S=(r)$ and $a=\cdots=\ell=1$, since $\Psi\left(S q^{r}\right)$ contains the summand $S q^{1} \otimes \cdots \otimes S q^{1}$ that evaluates to 1 on $\xi_{1} \otimes \cdots \otimes \xi_{1}$.

Theorem 7.35 (Milnor). For each infinite matrix of non-negative integers (almost all zero)

$$
X=\left[\begin{array}{cccc}
* & x_{01} & x_{02} & \ldots \\
x_{10} & x_{11} & x_{12} & \ldots \\
x_{20} & x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

let $R(X)=\left(r_{1}, r_{2}, \ldots\right), S(X)=\left(s_{1}, s_{2}, \ldots\right)$ and $T(X)=\left(t_{1}, t_{2}, \ldots\right)$ be given by the sums

$$
\begin{aligned}
r_{i} & =\sum_{j} 2^{j} x_{i j} & \text { (weighted row sum), } \\
s_{j} & =\sum_{i} x_{i j} & \text { (column sum) }, \\
t_{k} & =\sum_{i+j=k} x_{i j} & \text { (diagonal sum). }
\end{aligned}
$$

Then

$$
S q^{R} \cdot S q^{S}=\sum_{X} b(X) S q^{T}
$$

where X ranges over the matrices with $R(X)=R$ and $S(X)=S$, with $T=T(X)$ and

$$
b(X)=\prod_{k} t_{k}!/ \prod_{i, j} x_{i j}!
$$

See Milnor (1958) Theorem 4b. To prove this, one must count how often $\xi^{R} \otimes \xi^{S} \in \mathscr{A}_{*} \otimes \mathscr{A}_{*}$ occurs as a summand in $\psi\left(\xi^{T}\right)=\psi\left(\xi_{1}\right)^{t_{1}} \cdots \cdots \psi\left(\xi_{\ell}\right)^{t_{\ell}}$.
Example 7.36. Let $k \geq 2, R=\left(2^{k}\right)$ and $S=(0, \ldots, 0,1)$ with $(k-1)$ zeroes. Then $S q^{R} \cdot S q^{S}$ is a sum of terms $b(X) S q^{T}$, where X ranges over the matrices $\left(x_{i j}\right)$ with $x_{00}=0, \sum_{j} 2^{j} x_{1 j}=2^{k}, \sum_{j} 2^{j} x_{i j}=0$ for $i \geq 2, \sum_{i} x_{i k}=1$ and $\sum_{i} x_{i j}=0$ for $1 \leq j \leq k-1$ and for $j \geq k+1$. There are only two possible matrices X, namely X^{\prime} with $x_{1 k}^{\prime}=1$ and the remaining terms zero, and $X^{\prime \prime}$ with $x_{0 k}^{\prime \prime}=1, x_{10}^{\prime \prime}=2^{k}$ and the remaining terms zero. The corresponding sequences are $T^{\prime}=T\left(X^{\prime}\right)=(0, \ldots, 0,1)$ with k zeroes, and $T^{\prime \prime}=T\left(X^{\prime \prime}\right)=\left(2^{k}, 0, \ldots, 0,1\right)$ with $(k-2)$ zeroes. The coefficients $b\left(X^{\prime}\right)$ and $b\left(X^{\prime \prime}\right)$ are 1 , so

$$
S q^{\left(2^{k}\right)} \cdot S q^{(0, \ldots, 0,1)}=S q^{(0, \ldots, 0,0,1)}+S q^{\left(2^{k}, 0, \ldots, 0,1\right)}
$$

On the other hand, $S q^{S} \cdot S q^{R}$ is the sum of a single term $b(X) S q^{T}$, where X has $x_{01}=2^{k}, x_{k 0}=1$ and the remaining terms are zero. Again $b(X)=1$, so

$$
S q^{(0, \ldots, 0,1)} \cdot S q^{\left(2^{k}\right)}=S q^{\left(2^{k}, 0, \ldots, 0,1\right)}
$$

Hence the commutator

$$
\left[S q^{\left(2^{k}\right)}, S q^{(0, \ldots, 0,1)}\right]=S q^{\left(2^{k}\right)} \cdot S q^{(0, \ldots, 0,1)}+S q^{(0, \ldots, 0,1)} \cdot S q^{\left(2^{k}\right)}
$$

$\left((k-1)\right.$ zeroes each time) equals the Milnor element $S q^{(0, \ldots, 0,0,1)}$, now with k zeroes.

7.5 Subalgebras of the Steenrod algebra

Definition 7.37. A Hopf ideal in a Hopf algebra A is a two-sided ideal $I \subset A$ such that $\psi(I) \subset$ $A \otimes I+I \otimes A$ and $\epsilon(I)=0$:

Then ψ and ϵ induce a coproduct $\bar{\psi}: A / I \rightarrow A / I \otimes A / I$ and a counit $\bar{\epsilon}: A / I \rightarrow k$ that make A / I a Hopf algebra, and the canonical surjection $A \rightarrow A / I$ is a Hopf algebra homomorphism. Dually, $(A / I)^{*} \rightarrow A^{*}$ is a Hopf subalgebra.
Definition 7.38. For each $k \geq 0$, let $Q_{k}=S q^{(0, \ldots, 0,1)}$ (k zeroes) denote the Milnor basis element in \mathscr{A} that is dual to ξ_{k+1}, in degree $2^{k+1}-1$.

These classes are known as the Milnor primitives; see the next lemma. By the sample calculation above, these classes can also be recursively defined by $Q_{0}=S q^{1}$ and $\left[S q^{2^{k}}, Q_{k-1}\right]=Q_{k}$ for all $k \geq 1$. The first few Milnor primitives are:

$$
\begin{aligned}
& Q_{0}=S q^{1} \\
& Q_{1}=S q^{(0,1)}=S q^{3}+S q^{2} S q^{1} \\
& Q_{2}=S q^{(0,0,1)}=S q^{7}+S q^{6} S q^{1}+S q^{5} S q^{2}+S q^{4} S q^{2} S q^{1} \\
& Q_{3}=S q^{(0,0,0,1)}
\end{aligned}
$$

Lemma 7.39. The Q_{k} are primitive elements, and they generate an exterior Hopf subalgebra

$$
E=E\left(Q_{k} \mid k \geq 0\right) \subset \mathscr{A}
$$

of the Steenrod algebra. In symbols, $\psi\left(Q_{k}\right)=Q_{k} \otimes 1+1 \otimes Q_{k}, Q_{k}^{2}=0$ and $Q_{i} Q_{j}=Q_{j} Q_{i}$ for all $i, j, k \geq 0$. The conjugation is trivial: $\chi\left(Q_{k}\right)=Q_{k}$.
Proof. First note that if $A=E(\xi)$ is the primitively generated exterior algebra on one generator, viewed as a bicommutative Hopf algebra, then the dual Hopf algebra $A^{*}=E(Q)$ is also a primitively generated exterior algebra, with 1 and Q dual to 1 and ξ, respectively.

Now consider the quotient algebra $E_{*}=\mathscr{A}_{*} /\left(\xi_{k}^{2} \mid k \geq 1\right)$ of the dual Steenrod algebra. The ideal $J=\left(\xi_{k}^{2} \mid k \geq 1\right) \subset \mathscr{A}_{*}$ is a Hopf ideal, since $\psi\left(\xi_{k}^{2}\right)=\sum_{i+j=k} \xi_{i}^{2^{j+1}} \otimes \xi_{j}^{2}$ lies in $\mathscr{A}_{*} \otimes J+J \otimes \mathscr{A}_{*}$, and $\epsilon\left(\xi_{k}^{2}\right)=0$. Hence $\mathscr{A}_{*} \rightarrow E_{*}$ is a Hopf algebra surjection. The generators ξ_{k} are primitive in E_{*}, since

$$
\psi\left(\xi_{k}\right) \equiv \xi_{k} \otimes 1+1 \otimes \xi_{k}
$$

modulo $A \otimes J+J \otimes A$. It follows that $\chi\left(\xi_{k}\right) \equiv \xi_{k}$ modulo J. Hence $E_{*}=E\left(\xi_{k} \mid k \geq 1\right)=\bigotimes_{k \geq 1} E\left(\xi_{k}\right)$ is a primitively generated exterior Hopf algebra.

Passing to duals, we have a Hopf algebra injection $E=\left(E_{*}\right)^{*} \rightarrow \mathscr{A}$. Here $E=E\left(Q_{k} \mid k \geq 0\right)=$ $\bigotimes_{k \geq 0} E\left(Q_{k}\right)$ is also primitively generated, with Q_{k} dual to ξ_{k+1} in the monomial basis for E_{*}. Since I is generated by monomials, it follows that the inclusion maps $Q_{k} \in E$ to $Q_{k} \in \mathscr{A}$. Hence the Q_{k} are primitive in \mathscr{A}.
Lemma 7.40. $Q(\mathscr{A}) \cong \mathbb{F}_{2}\left\{S q^{2^{i}} \mid i \geq 0\right\}, P\left(\mathscr{A}_{*}\right) \cong \mathbb{F}_{2}\left\{\xi_{1}^{2^{i}} \mid i \geq 0\right\}, Q\left(\mathscr{A}_{*}\right) \cong \mathbb{F}_{2}\left\{\xi_{i+1} \mid i \geq 0\right\}$ and $P(\mathscr{A}) \cong \mathbb{F}_{2}\left\{Q_{i} \mid i \geq 0\right\}$.
Definition 7.41. For each $n \geq 0$, let $E(n)=E\left(Q_{0}, \ldots, Q_{n}\right) \subset \mathscr{A}$ be the exterior subalgebra generated by the Milnor primitives Q_{0}, \ldots, Q_{n}. It is a Hopf subalgebra with conjugation. The dual of $E(n)$ is the quotient Hopf algebra $E(n)_{*}=\mathscr{A}_{*} / J(n)$ of \mathscr{A}_{*} by the Hopf ideal

$$
J(n)=\left(\xi_{1}^{2}, \ldots, \xi_{n+1}^{2}, \xi_{k} \mid k \geq n+2\right)
$$

Definition 7.42. For each $n \geq 0$, let $A(n)=\left\langle S q^{1}, \ldots, S q^{2^{n}}\right\rangle \subset \mathscr{A}$ be the subalgebra generated by the Steenrod squares $S q^{1}, \ldots, S q^{2^{n}}$. It is a Hopf subalgebra with conjugation.
Lemma 7.43. The dual of $A(n)$ is the quotient Hopf algebra $A(n)_{*}=\mathscr{A}_{*} / I(n)$ of \mathscr{A}_{*} by the Hopf ideal

$$
I(n)=\left(\xi_{1}^{2^{n+1}}, \xi_{2}^{2^{n}}, \ldots, \xi_{n}^{2^{2}}, \xi_{n+1}^{2}, \xi_{k} \mid k \geq n+2\right)
$$

Proof. The ideal $I(n)$ is generated by the classes $\xi_{s}^{2^{t}}$ with $s \geq 1$ and $s+t \geq n+2$. It is a Hopf ideal since

$$
\psi\left(\xi_{s}^{2^{t}}\right)=\sum_{i+j=s} \xi_{i}^{2^{j+t}} \otimes \xi_{j}^{2^{t}}
$$

is a sum of terms in $\mathscr{A} \otimes I(n)$ (for $i=0$) and in $I(n) \otimes \mathscr{A}$ (for $1 \leq i \leq s)$. Hence $\mathscr{A}_{*} / I(n)$ is a finite commutative Hopf algebra, and the dual is a finite cocommutative Hopf subalgebra of \mathscr{A}.

We claim that $S q^{k} \in A(n)$ for all $0 \leq k<2^{n+1}$. Equivalently, we must prove that $\left\langle S q^{k}, \xi\right\rangle=0$ for all $\xi \in I(n)$. By induction, we may assume that this holds for all smaller values of k. The ideal $I(n)$ is additively generated by products $\xi_{s}^{2^{t}} \cdot \xi^{R}$ with $s \geq 1$ and $s+t \geq n+2$, and

$$
\left\langle S q^{k}, \xi_{s}^{2^{t}} \cdot \xi^{R}\right\rangle=\left\langle S q^{k}, \phi\left(\xi_{s}^{2^{t}} \otimes \xi^{R}\right)\right\rangle=\left\langle\psi\left(S q^{k}\right), \xi_{s}^{2^{t}} \otimes \xi^{R}\right\rangle=\sum_{i+j=k}\left\langle S q^{i}, \xi_{s}^{2^{t}}\right\rangle\left\langle S q^{j}, \xi^{R}\right\rangle
$$

By the inductive hypothesis, this equals $\left\langle S q^{k}, \xi_{s}^{2^{t}}\right\rangle \cdot\left\langle 1, \xi^{R}\right\rangle$, which is 0 for $k<2^{n+1}$ since $\left|\xi_{s}^{2^{t}}\right| \geq 2^{n+1}$ when $s \geq 1$ and $s+t \geq n+2$. ((It remains to prove that the $S q^{k}$ for $k \leq 2^{n}$, or for $k<2^{n+1}$, generate all of the dual of $\left.A(n)_{*}.\right)$)

Corollary 7.44. $\mathscr{A}=\operatorname{colim}_{n \geq 0} A(n)$ is a countable union of finite algebras. Hence each element in positive degree of \mathscr{A} is nilpotent.

Remark 7.45. Steenrod and Epstein (1962) write \mathscr{A}_{h} for our $A(h+1)$. Adams (Math. Proc. Camb. Phil. Soc., 1966) writes A_{r} for our $A(r)$. Clearly $E(0)=A(0)$, and $E(n) \subset A(n)$ for $n \geq 1$. This can also be seen from the inclusion $I(n) \subset J(n)$.
$\left(\left(\right.\right.$ Write $P_{s}^{t}=S q^{\left(0, \ldots, 0,2^{t}\right)}$ for the dual of $\xi_{s}^{2^{t}}$, so that $P_{1}^{t}=S q^{2^{t}}$ and $P_{s+1}^{0}=Q_{s}$? Review AdamsMargolis classification of Hopf ideals in \mathscr{A}_{*} and Hopf subalgebras of \mathscr{A}, in terms of profile functions.))

7.6 Spectral realizations

Definition 7.46. Brown and Peterson (Topology, 1966) construct a spectrum $B P$ such that $H^{*}(B P) \cong$ $\mathscr{A} / / E$ as an \mathscr{A}-module. Johnson and Wilson (Topology, 1973) construct spectra $B P\langle n\rangle$ such that $H^{*}(B P\langle n\rangle) \cong \mathscr{A} / / E(n)$, for each $n \geq 0$. As a convention, one may define $B P\langle-1\rangle=H$.

The connective cover $k(n)$ of the n-th Morava K-theory spectrum $K(n)$ has cohomology $H^{*}(k(n)) \cong$ $\mathscr{A} / / E\left(Q_{n}\right)$, for each $n \geq 1$. By convention, $k(0)=H \mathbb{Z}_{(2)}$ and $K(0)=H \mathbb{Q}$.

Remark 7.47. Baker and Jeanneret (HHA, 2002), using methods of Lazarev (K-Theory, 2001), show that there is a diagram

$$
B P \rightarrow \cdots \rightarrow B P\langle n\rangle \rightarrow \cdots \rightarrow B P\langle 0\rangle \rightarrow H
$$

of S-algebras, or equivalently, of A_{∞} ring spectra, inducing the surjections

$$
\mathscr{A} \rightarrow \mathscr{A} / / E(0) \rightarrow \cdots \rightarrow \mathscr{A} / / E(n) \rightarrow \cdots \rightarrow \mathscr{A}
$$

in cohomology. Naumann and Lawson (J. Topology, 2011) prove (for $p=2$ only) that $B P\langle 2\rangle$ can be realized as a commutative S-algebra, or equivalently as an E_{∞} ring spectrum, like the realizations $B P\langle 0\rangle_{2}^{\wedge} \simeq H \mathbb{Z}_{2}$ and $B P\langle 1\rangle_{2}^{\wedge} \simeq k u_{2}^{\wedge}$. It is an open problem whether $B P$ can be realized as a commutative S-algebra.

Baas and Madsen (Math. Scand., 1972) realize $k(n)$. Angeltveit (Compos. Math., 2011) proves that $K(n)$ has a unique S-algebra structure. For $n=1$ (and $p=2$) one can take $k(1)=k u / 2$ and $K(1)=K U / 2$. None of the $k(n)$ for $n \geq 1$ admit commutative S-algebra structures, since the map $k(n) \rightarrow H$ induces a homomorphism $H_{*}(k(n)) \rightarrow \mathscr{A}_{*}$ that cannot commute with the Dyer-Lashof operations in the target.

Proposition 7.48. The $A d a m s$ spectral sequence for $B P$ collapses at the E_{2}-term

$$
E_{2}^{*, *} \cong \operatorname{Ext}_{E}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(v_{k} \mid k \geq 0\right)
$$

to the abutment

$$
\pi_{*}\left(B P_{2}^{\wedge}\right) \cong \mathbb{Z}_{2}\left[v_{k} \mid k \geq 1\right]
$$

where v_{k} in degree $2^{k+1}-2$ is detected in $E_{\infty}^{1,2^{k+1}-1}$ by the dual of $Q_{k} \in E$.
Similarly, the Adams spectral sequence for $B P\langle n\rangle$ collapses at

$$
E_{2}^{*, *} \cong \operatorname{Ext}_{E(n)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(v_{0}, \ldots, v_{n}\right)
$$

to the abutment

$$
\pi_{*}(B P\langle n\rangle)=\mathbb{Z}_{2}\left[v_{1}, \ldots, v_{n}\right]
$$

and the Adams spectral sequence for $k(n)$ collapses at

$$
E_{2}^{*, *} \cong \operatorname{Ext}_{E\left(Q_{n}\right)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(v_{n}\right)
$$

to the abutment

$$
\pi_{*}(k(n))=\mathbb{F}_{2}\left[v_{n}\right] .
$$

Figure 7: Adams spectral sequence for $B P$

Proof. The E_{2}-term can be computed using change-of-rings:

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(B P), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathscr{A} / / E, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{E}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong P\left(v_{k} \mid k \geq 0\right)
$$

where v_{k} is dual to the indecomposable $Q_{k} \in E$. In particular, $v_{0}=h_{0}$ is dual to $Q_{0}=S q^{1}$. Since the E_{2}-term is concentrated in even total degrees, there is no room for differentials. There is also no room for other multiplicative extensions than the h_{0}-towers, since $\mathbb{Z}_{2}\left[v_{k} \mid k \geq 1\right]$ is free as a graded commutative algebra. ((This presumes that $\pi_{*}(B P)$ is commutative.))

Remark 7.49. Let $M U$ be the complex bordism spectrum. Milnor (Ann. Math., 1960) and Novikov ((ref?)) shows that $H^{*}(M U)$ is a direct sum of suspensions of copies of $H^{*}(B P)=\mathscr{A} / / E$. Brown and Peterson (Topology, 1966) showed that $M U_{(p)}$ splits as a wedge sum of suspensions of $B P$. One finds that $\pi_{*}(M U) \cong \mathbb{Z}\left[x_{k} \mid k \geq 1\right]$ with $\left|x_{k}\right|=2 k$. Quillen (Bull. Amer. Math. Soc., 1969) relates $\pi_{*}(M U)$ to formal group laws, in such a way that $\pi_{*}(B P)$ corresponds to p-typical formal group laws. The introduction of spectra like $B P\langle n\rangle, E(n), k(n)$ and $K(n)$ is then motivated by the classification of formal group laws according to height, which in turn leads to the chromatic perspective on stable homotopy theory, which seeks to organize the homotopy groups of S and related spectra in periodic families of varying wave-lengths.

Remark 7.50. Starting with the Hopkins-Miller obstruction theory for A_{∞} ring structures, continued by Goerss-Hopkins-Miller and Lurie for E_{∞} ring structures, Hopkins and Mahowald (preprint, 1994) produce a connective E_{∞} ring spectrum tmf with $H^{*}(\operatorname{tm} f) \cong \mathscr{A} / / A(2)$. We have already discussed the realizations $H^{*}(k o) \cong \mathscr{A} / / A(1)$ and $H^{*}(H \mathbb{Z}) \cong \mathscr{A} / / A(0)$. (The Davis-Mahowald proof of the non-realizability of $\mathscr{A} / / A(2)$ (Amer. J. Math., 1982) contains an error.)

There is no spectrum with cohomology $H^{*}(X) \cong \mathscr{A} / / A(n)$ for $n \geq 3$, since the unit map $S \rightarrow X$ would induce a map of Adams spectral sequences

$$
E_{2}^{*, *}(S)=\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{A(n)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=E_{2}^{*, *}(X)
$$

mapping $h_{n} \mapsto h_{n}$ and $h_{n+1} \mapsto 0$. This contradicts the Adams differential $d_{2}\left(h_{n+1}\right)=h_{0} h_{n}^{2}$, since
$h_{0} h_{n}^{2} \neq 0$ on the right hand side for $n \geq 3$. ((Elaborate?))

$$
\left(\left(B_{*}=A_{*} /\left(\xi_{1}^{4}, \xi_{2}^{2}, \xi_{3}^{2}, \xi_{4}, \ldots\right) \text { has dual } B=A(1) \otimes E\left(Q_{2}\right) \text { and } \operatorname{Ext}_{B} \text { is } E x t_{A(1)} \otimes P\left(v_{2}\right) .\right)\right)
$$

8 Ext over $A(1)$ and $A(2)$

8.1 The Iwai-Shimada generators

((Edit.)) Our next aim is to compute the homotopy $\pi_{*}(\operatorname{tmf})_{2}^{\wedge}$ of the spectrum of topological modular forms, which is a connective commutative S-algebra of finite type, with cohomology $H^{*}(\operatorname{tmf}) \cong$ $\mathscr{A} / / A(2)$. We shall use the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(t m f), \mathbb{F}_{2}\right) \Longrightarrow \pi_{*}(t m f)_{2}^{\wedge}
$$

Using change-of-rings, the E_{2}-term

$$
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(t m f), \mathbb{F}_{2}\right)=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathscr{A} / / A(2), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(2)}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

can be rewritten as Ext over the finite Hopf subalgebra

$$
A(2)=\left\langle S q^{1}, S q^{2}, S q^{4}\right\rangle \subset \mathscr{A}
$$

which is dual to the finite Hopf quotient algebra

$$
A(2)_{*}=P\left(\xi_{1}, \xi_{2}, \xi_{3}\right) /\left(\xi_{1}^{8}, \xi_{2}^{4}, \xi_{3}^{2}\right)
$$

of \mathscr{A}_{*}. It has dimension $8 \cdot 4 \cdot 2=64$ as \mathbb{F}_{2}-vector space.
The first computation of Ext over $A(2)$ was done by Iwai and Shimada (Nagoya Math. J., 1967). The answer is complicated, but interesting. The graded commutative algebra Ext ${ }_{A(2)}^{* *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ has 13 generators

gen.	$(t-s, s)$	alt.
h_{0}	$(0,1)$	h_{0}
h_{1}	$(1,1)$	h_{1}
h_{2}	$(3,1)$	h_{2}
ω_{0}	$(8,4)$	$w_{1}=v_{1}^{4}$
ω_{1}	$(20,4)$	g
α_{0}	$(48,8)$	$w_{2}=v_{2}^{8}$
α_{1}	$(8,3)$	c_{0}
α_{2}	$(12,3)$	α
α_{3}	$(15,3)$	β
α_{4}	$(14,4)$	d_{0}
α_{5}	$(17,4)$	e_{0}
α_{6}	$(25,5)$	γ
α_{7}	$(32,7)$	δ

that are subject to a list of 54 relations, which we do not list here. In particular, it is a free $P\left(\omega_{0}, \alpha_{0}\right)$ module. The part in topological degrees $0 \leq t-s \leq 70$ is displayed in Figure 8, which was created by Christian Nassau (2001).

Figure 8: Ext over $A(2)$ by Christian Nassau (2001)

There are (commutative S-algebra) maps $S \rightarrow \operatorname{tmf} \rightarrow B P\langle 2\rangle$ that induce surjections $\mathscr{A} / / E(2) \rightarrow$ $\mathscr{A} / / A(2) \rightarrow \mathbb{F}_{2}$ in cohomology, and the restriction homomorphisms

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{E(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

at the level of Adams E_{2}-terms. The classes $h_{0}, h_{1}, h_{2}, c_{0}, d_{0}, e_{0}$ and g in the Adams spectral sequence for S, detecting $2, \eta, \nu, \epsilon, \kappa$, (no homotopy element) and $\bar{\kappa}$, map to the Iwai-Shimada generators h_{0}, h_{1}, $h_{2}, \alpha_{1}, \alpha_{4}, \alpha_{5}$ and ω_{1}, respectively. The Iwai-Shimada generators h_{0}, ω_{0} and α_{0} map to v_{0}, v_{1}^{4} and v_{2}^{8} in the Adams spectral sequence for $B P\langle 2\rangle$, respectively. We may follow notes of André Hernandez (Talbot workshop, 2007), writing w_{1} and w_{2} for ω_{0} and α_{1}, and writing α, β, γ and δ for the remaining algebra generators $\alpha_{2}, \alpha_{3}, \alpha_{6}$ and α_{7}. With this notation, the E_{2}-term for $\operatorname{tm} f$ is free as a $P\left(w_{1}, w_{2}\right)$-module.

8.2 The Davis-Mahowald resolution

To make this calculation, we shall instead follow section 5 of Davis and Mahowald (CMS Conf. Proc., 1982) and use a Koszul-type resolution of \mathbb{F}_{2} by $A(2)$-modules of the form $A(2) / / A(1) \otimes N$, with the diagonal action. By the shearing lemma below, these are isomorphic to induced modules of the form $A(2) \otimes_{A(1)} N$, and using the change-of-rings isomorphism

$$
\operatorname{Ext}_{A(2)}^{s, t}\left(A(2) \otimes_{A(1)} N, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(1)}^{s, t}\left(N, \mathbb{F}_{2}\right)
$$

we are reduced to the problem of computing Ext over $A(1)$, which is quite straightforward.
Lemma 8.1 ((Reference?)). Let A be a Hopf algebra with conjugation, N a left A-module and $B \subset A$ a ((Hopf?)) subalgebra. There is an isomorphism of left A-modules

$$
\theta: A \otimes_{B} N \xrightarrow{\cong} A / / B \otimes N
$$

where the left hand side has the A-module structure induced up from the restricted B-module structure on N, and the right hand side has the diagonal A-module structure.

Proof. This is analogous to the homeomorphism $G \times_{H} X \cong G / H \times X$ for a G-space X and a subgroup H. The shear map taking $[g, x]$ to $([g], g x)$ has inverse taking $([g], y)$ to $\left[g, g^{-1} y\right]$, for $g \in G, x, y \in X$. Similarly, the composite homomorphism

$$
A \otimes N \xrightarrow{\psi \otimes 1} A \otimes A \otimes N \xrightarrow{\pi \otimes \lambda} A / / B \otimes N
$$

coequalizes the two homomorphisms

$$
A \otimes B \otimes N \underset{1 \otimes \lambda}{\stackrel{\rho \otimes 1}{\longrightarrow}} A \otimes N
$$

to induce θ, while the composite homomorphism

$$
A \otimes N \xrightarrow{\psi \otimes 1} A \otimes A \otimes N \xrightarrow{1 \otimes \chi \otimes 1} A \otimes A \otimes N \xrightarrow{1 \otimes \lambda} A \otimes N \xrightarrow{\pi} A \otimes_{B} N
$$

vanishes on $A \cdot I(B) \otimes N$ to induce θ^{-1}. These maps are mutual inverses; see Adams (1974, p. 338) and Anderson, Brown and Peterson (1969, Prop. 3.1). ((Thanks to Bruner for these references.))

Corollary 8.2. Let R and Y be spectra that are bounded below, with $H_{*}(R)$ and $H_{*}(Y)$ of finite type. Suppose furthermore that $H^{*}(R) \cong \mathscr{A} / / B$, for some subalgebra $B \subset \mathscr{A}$ such that \mathscr{A} is free as a right B-module. For instance, B might be a Hopf subalgebra. Then the E_{2}-term for the Adams spectral sequence converging to $\pi_{*}(R \wedge Y)=R_{*}(Y)$ is

$$
E_{2}^{*, *}=\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(R \wedge Y), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{B}^{*, *}\left(H^{*}(Y), \mathbb{F}_{2}\right)
$$

In particular, it only depends on the restricted B-module structure on $H^{*}(Y)$.

Proof. $H^{*}(R \wedge Y) \cong H^{*}(R) \otimes H^{*}(Y) \cong \mathscr{A} / / B \otimes H^{*}(Y) \cong \mathscr{A} \otimes_{B} H^{*}(Y)$, and $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(s A \otimes_{B} H^{*}(Y), \mathbb{F}_{2}\right) \cong$ $\operatorname{Ext}_{B}^{*, *}\left(H^{*}(Y), \mathbb{F}_{2}\right)$.

Example 8.3. This shows that the E_{2}-terms of the Adams spectral sequences computing $H_{*}(Y ; \mathbb{Z})$, $k u_{*}(Y)$ and $k o_{*}(Y)$ only depend on the $A(0)-, E(1)$ - and $A(1)$-module structures on $H^{*}(Y)$. The later differentials in the spectral sequences may depend on more than these module structures. See Bayen and Bruner (1996, p. 2205).

Definition 8.4. Let $\bar{\xi}_{k} \in \mathscr{A}_{*}$ denote the conjugate Milnor generator $\bar{\xi}_{k}=\chi\left(\xi_{k}\right)$, for each $k \geq 0$. Thus $\bar{\xi}_{0}=1, \bar{\xi}_{1}=\xi_{1}$ (for $p=2$) and $\bar{\xi}_{2}=\xi_{2}+\xi_{1}^{3}$. The coproduct $\psi: \mathscr{A}_{*} \rightarrow \mathscr{A}_{*} \otimes \mathscr{A}_{*}$ satisfies

$$
\psi\left(\bar{\xi}_{k}\right)=\sum_{i+j=k} \bar{\xi}_{i} \otimes \bar{\xi}_{j}^{2^{i}}
$$

We are interested in the case $n=2$ of the following general result. Recall how the dual of a left $A(n)$-module can be viewed as a left $A(n)_{*}$-comodule or as a right $A(n)$-module.
Lemma 8.5. The left $A(n)$-module $A(n) / / A(n-1)=A(n) \otimes_{A(n-1)} \mathbb{F}_{2}$ of $A(n)$ is dual to the right $A(n)$-module subalgebra

$$
(A(n) / / A(n-1))^{*}=A(n)_{*} \square_{A(n-1)_{*}} \mathbb{F}_{2}=E\left(\xi_{1}^{2^{n}}, \bar{\xi}_{2}^{2^{n-1}}, \ldots, \bar{\xi}_{n+1}\right)
$$

of $A(n)_{*}=P\left(\xi_{1}, \ldots, \xi_{n+1}\right) /\left(\xi_{1}^{2^{n+1}}, \xi_{2}^{2^{n}}, \ldots, \xi_{n+1}^{2}\right)$. Hence $\pi: A(n) \rightarrow A(n) / / A(n-1)$ is a surjection of left $A(n)$-module coalgebras.

Proof. By a dimension count, it suffices to prove that $\bar{\xi}_{k+1}^{2^{n-k}} \in A(n)_{*}$ lies in $A(n)_{*} \square_{A(n-1)_{*}} \mathbb{F}_{2}$, for each $0 \leq k \leq n$. The coaction $\rho=(1 \otimes \pi) \psi:: A(n)_{*} \rightarrow A(n)_{*} \otimes A(n-1)_{*}$ takes this element to

$$
\sum_{i+j=k+1} \bar{\xi}_{i}^{2^{n-k}} \otimes \bar{\xi}_{j}^{2^{i+n-k}}
$$

and the terms with $j>0$ vanish.
Definition 8.6. Let $E_{n}=E\left(\xi_{1}^{2^{n}}, \bar{\xi}_{2}^{2^{n-1}}, \ldots, \bar{\xi}_{n+1}\right)=E\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be the right $A(n)$-module graded exterior algebra generated by $x_{k}=\bar{\xi}_{k+1}^{2 n-k}$ for $0 \leq k \leq n$. Here $\left|x_{k}\right|=2^{n-k}\left(2^{k+1}-1\right)=2^{n+1}-2^{n-k}$, and $x_{k} \cdot S q^{2^{n-k}}=x_{k-1}$ for $1 \leq k \leq n$, while $x_{0} \cdot S q^{2^{n}}=1$. The inclusion $E_{n} \rightarrow A(n)_{*}$ is a homomorphism of right $A(n)$-module algebras.

Lemma 8.7. The left $A(n)_{*}$-coaction on E_{n} is given by

$$
\lambda\left(x_{k}\right)=\bar{\xi}_{k+1}^{2^{n-k}} \otimes 1+\sum_{i+j=k} \bar{\xi}_{i}^{2^{n-k}} \otimes x_{j}
$$

for $0 \leq k \leq n$.
Proof. This is clear from the coproduct on $A(n)_{*}$, which is given by the same formula as the coproduct on \mathscr{A}_{*}.

Example 8.8. For $n=1$ we have $E_{1}=E\left(\xi_{1}^{2}, \bar{\xi}_{2}\right)=E\left(x_{0}, x_{1}\right)$ concentrated in homological degrees $t \in$ $\{0,2,3,5\}$, with the right $A(1)$-module structure:

The left $A(1)_{*}$-coaction is given by $\lambda\left(x_{0}\right)=1 \otimes x_{0}+\xi_{1}^{2} \otimes 1$ and $\lambda\left(x_{1}\right)=1 \otimes x_{1}+\xi_{1} \otimes x_{0}+\bar{\xi}_{2} \otimes 1$.

For $n=2$ we have $E_{2}=E\left(\xi_{1}^{4}, \bar{\xi}_{2}^{2}, \bar{\xi}_{3}\right)=E\left(x_{0}, x_{1}, x_{2}\right)$ concentrated in homological degrees $t \in$ $\{0,4,6,7,10,11,13,17\}$, with the following right $A(2)$-module structure:

The left $A(2)_{*}$-coaction is given by $\lambda\left(x_{0}\right)=1 \otimes x_{0}+\xi_{1}^{4} \otimes 1, \lambda\left(x_{1}\right)=1 \otimes x_{1}+\xi_{1}^{2} \otimes x_{0}+\bar{\xi}_{2}^{2} \otimes 1$ and $\lambda\left(x_{2}\right)=1 \otimes x_{2}+\xi_{1} \otimes x_{1}+\bar{\xi}_{2} \otimes x_{0}+\bar{\xi}_{3} \otimes 1$.
((NOTE: The part in degrees $4 \leq * \leq 13$ occurs as $L[2]$ in $H_{*}(T H H(t m f))$. Get sequences relating $\operatorname{Ext}_{A(2)}$ for $L[2]$ to those for \mathbb{F}_{2} and $\left.\left.A(2) / / A(1).\right)\right)$

Remark 8.9. $A(n-1)$ is not normal in $A(n)$, so $A(n) / / A(n-1)$ is not a quotient Hopf algebra of $A(n)$, and E_{n} is not a Hopf subalgebra of $A(n)_{*}$. Nonetheless, E_{n} is a primitively generated Hopf algebra on its own. There is a standard way to resolve E_{n}-comodules using a twisted tensor product (Brown, Ann. of Math., 1959), which in this case specializes to a kind of dual Koszul resolution. This turns out to produce a useful right $A(n)$-module resolution. ((What is the general picture behind this??))

Definition 8.10. Let $R_{n}=P\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ be the right $A(n)$-module bigraded polynomial algebra generated by y_{k} of bigrading $(\sigma, t)=\left(1,\left|x_{k}\right|\right)$, for $0 \leq k \leq n$. It decomposes additively as

$$
R_{n}=\bigoplus_{\sigma \geq 0} R_{n}^{\sigma}
$$

where R_{n}^{σ} is spanned by the monomials of degree σ in the y_{k} 's. In particular, $R_{n}^{0}=\mathbb{F}_{2}$ and $R_{n}^{1}=$ $\mathbb{F}_{2}\left\{y_{0}, \ldots, y_{n}\right\}$. The right $A(n)$-module action on R_{n}^{1} is given by $y_{k} \cdot S q^{2^{n-k}}=y_{k-1}$ for $1 \leq k \leq n$, and extends to a right $A(n)$-action on R_{n}^{σ} for each $\sigma \geq 0$, since $A(n)$ is cocommutative.

Lemma 8.11. The left $A(n)_{*}$-coaction on R_{n} is given by

$$
\lambda\left(y_{k}\right)=\sum_{i+j=k} \bar{\xi}_{i}^{2^{n-k}} \otimes y_{j}
$$

for $0 \leq k \leq n$.
Proof. This is clear from the coaction on E_{n}, and the fact that $d(1)=0$.
Definition 8.12. Let $\left(E_{n} \otimes R_{n}, d\right)$ be the right $A(n)$-module differential bigraded algebra given by the tensor product of $E_{n}=E\left(x_{0}, \ldots, x_{n}\right)$ (in degree $\left.\sigma=0\right)$ and $R_{n}=P\left(y_{0}, \ldots, y_{n}\right)$, with the diagonal right $A(n)$-module structure and with the differential given by $d\left(x_{k}\right)=y_{k}$ for all $0 \leq k \leq n$.

Remark 8.13. Our numbering of the x_{k} is reversed compared to that of Davis-Mahowald. Furthermore, they do not distinguish notationally between the x_{k} and the y_{k}.

Lemma 8.14. The differential $d: E_{n} \otimes R_{n}^{\sigma} \rightarrow E_{n} \otimes R_{n}^{\sigma+1}$ is right $A(n)$-linear.
Proof. For $e \in E_{n}$ and $r \in R_{n}$ we have $(d(e \cdot r)) S q^{c}=\sum_{a+b=c}(d(e)) S q^{a} \cdot(r) S q^{b}$ since $d(r)=0$, and $d\left((e \cdot r) S q^{c}\right)=\sum_{a+b=c} d\left((e) S q^{a}\right) \cdot(r) S q^{b}$ since $d\left((r) S q^{b}\right)=0$, so it suffices to check that $d: E_{n}=$ $E_{n} \otimes R_{n}^{0} \rightarrow E_{n} \otimes R_{n}^{1}$ is $A(n)$-linear. When $n=1$ we have that $d\left(x_{0} x_{1}\right)=x_{0} y_{1}+x_{1} y_{0}$ is mapped by $S q^{1}$ to $x_{0} y_{0}+x_{0} y_{0}=0$ and by $S q^{2}$ to y_{1}, while $d\left(x_{1}\right)=y_{1}$ is mapped by $S q^{1}$ to y_{0}.
((Check for $n=2$, or give general formula.))
Definition 8.15. For a fixed n, let $N_{\sigma}=\left(R_{n}^{\sigma}\right)^{*}$ be the dual left $A(n)$-module, so that $N=\bigoplus_{\sigma} N_{\sigma}$ is a left $A(n)$-module differential bigraded coalgebra. In particular, $N_{0}=\mathbb{F}_{2}$.

Lemma 8.16. $H_{*}\left(E_{n} \otimes R_{n}, d\right) \cong \mathbb{F}_{2}$, so

$$
0 \rightarrow \mathbb{F}_{2} \xrightarrow{\eta} E_{n} \otimes R_{n}^{0} \xrightarrow{d} E_{n} \otimes R_{n}^{1} \xrightarrow{d} \ldots \xrightarrow{d} E_{n} \otimes R_{n}^{\sigma} \xrightarrow{d} \ldots
$$

is an exact complex of right $A(n)$-modules. Dually,

$$
\cdots \rightarrow A(n) / / A(n-1) \otimes N_{\sigma} \xrightarrow{\partial_{\sigma}} \ldots \xrightarrow{\partial_{2}} A(n) / / A(n-1) \otimes N_{1} \xrightarrow{\partial_{1}} A(n) / / A(n-1) \otimes N_{0} \xrightarrow{\epsilon} \mathbb{F}_{2} \rightarrow 0
$$

is an exact complex of left $A(n)$-modules.
Proof. It is clear that $E\left(x_{k}\right) \otimes P\left(y_{k}\right)$ with $d\left(x_{k}\right)=y_{k}$ has homology $\mathbb{F}_{2}\{1\}$ concentrated in degree 0 , for each $0 \leq k \leq n$. The lemma follows from the Künneth formula.

For each σ, the short exact sequence of left $A(n)$-modules

$$
0 \rightarrow \operatorname{im}\left(\partial_{\sigma+1}\right) \rightarrow A(n) / / A(n-1) \otimes N_{\sigma} \rightarrow \operatorname{im}\left(\partial_{\sigma}\right) \rightarrow 0
$$

(with $\partial_{0}=\epsilon$) generates a long exact sequence

$$
\begin{aligned}
& \rightarrow \operatorname{Ext}_{A(n)}^{s-1, t}\left(\operatorname{im}\left(\partial_{\sigma+1}\right), \mathbb{F}_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{A(n)}^{s, t}\left(\operatorname{im}\left(\partial_{\sigma}\right), \mathbb{F}_{2}\right) \rightarrow \\
& \rightarrow \operatorname{Ext}_{A(n)}^{s, t}\left(A(n) / / A(n-1) \otimes N_{\sigma}, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(n)}^{s, t}\left(\operatorname{im}\left(\partial_{\sigma+1}\right), \mathbb{F}_{2}\right) \rightarrow
\end{aligned}
$$

in Ext. These can be linked together, for varying $\sigma \geq 0$, to an unrolled exact couple of (s, t)-bigraded abelian groups

with

$$
A^{\sigma, s, t}=\operatorname{Ext}_{A(n)}^{s-\sigma, t}\left(\operatorname{im}\left(\partial_{\sigma}\right), \mathbb{F}_{2}\right)
$$

and

$$
E^{\sigma, s, t}=\operatorname{Ext}_{A(n)}^{s-\sigma, t}\left(A(n) / / A(n-1) \otimes N_{\sigma}, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(n-1)}^{s-\sigma, t}\left(N_{\sigma}, \mathbb{F}_{2}\right)
$$

Here we have used the shearing isomorphism $A(n) / / A(n-1) \otimes N_{\sigma} \cong A(n) \otimes_{A(n-1)} N_{\sigma}$ and the change-of-rings isomorphism for $A(n-1) \subset A(n)$. Note that the E_{1}-term only depends on the restricted $A(n-1)$-module structure of the N_{σ} 's.

Proposition 8.17 (Davis-Mahowald (1982, Cor. 5.3)). There is an algebra spectral sequence converging to $\operatorname{Ext}_{A(n)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, with

$$
E_{1}^{\sigma, s, t}=\operatorname{Ext}_{A(n-1)}^{s-\sigma, t}\left(N_{\sigma}, \mathbb{F}_{2}\right)
$$

More generally, let M be a left $A(n)$-module. There is a spectral sequence converging to $\operatorname{Ext}_{A(n)}^{* *}\left(M, \mathbb{F}_{2}\right)$, with

$$
E_{1}^{\sigma, s, t}=\operatorname{Ext}_{A(n-1)}^{s-\sigma, t}\left(N_{\sigma} \otimes M, \mathbb{F}_{2}\right)
$$

The differential $d_{1}: E_{1}^{\sigma, s, t} \rightarrow E_{1}^{\sigma+1, s+1, t}$ is induced on $\operatorname{Ext}_{A(n)}^{*, *}\left((-) \otimes M, \mathbb{F}_{2}\right)$ by the homomorphism $\partial_{\sigma+1}: A(n) / / A(n-1) \otimes N_{\sigma+1} \longrightarrow A(n) / / A(n-1) \otimes N_{\sigma}$.
Proof. The algebra structure can be seen from the right $A(n)$-module algebra resolution $\eta: \mathbb{F}_{2} \rightarrow E_{n} \otimes R_{n}$, which we can also think of as a left $A(n)_{*}$-comodule algebra resolution. Applying $\operatorname{Ext}_{A(n) *}^{* * *}\left(\mathbb{F}_{2},-\right)$ for the category of left $A(n)_{*}$-comodules, we get an algebra spectral sequence

$$
E_{1}^{\sigma, s, t}=\operatorname{Ext}_{A(n)_{*}}^{s-\sigma, t}\left(\mathbb{F}_{2}, E_{n} \otimes R_{n}^{\sigma}\right) \Longrightarrow \operatorname{Ext}_{A(n)_{*}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

$\left(\left(\right.\right.$ Elaborate??)) The contravariant duality equivalence gives isomorphisms $\operatorname{Ext}_{A(n)_{*}}^{s-\sigma, t}\left(\mathbb{F}_{2}, E_{n} \otimes R_{n}^{\sigma}\right) \cong$ $\operatorname{Ext}_{A(n)}^{s-\sigma, t}\left(A(n) / / A(n-1) \otimes N_{\sigma}, \mathbb{F}_{2}\right)$ and $\operatorname{Ext}_{A(n)_{*}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(n)}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, which identify the two spectral sequences.

The case with coefficients in a module M arises in the same way, from the short exact sequences

$$
0 \rightarrow \operatorname{im}\left(\partial_{\sigma+1}\right) \otimes M \rightarrow A(n) / / A(n-1) \otimes N_{\sigma} \otimes M \rightarrow \operatorname{im}\left(\partial_{\sigma}\right) \otimes M \rightarrow 0
$$

of left $A(n)$-modules.
Remark 8.18. ((Added April 25th 2012)) The Davis-Mahowald resolution for $n=2$ may be closely related to the resolution coming from the Amitsur complex for $t m f \rightarrow k o$, meaning the cosimplicial commutative S-algebra

$$
[k] \mapsto k o \wedge_{t m f} k o \wedge_{t m f} \cdots \wedge_{t m f} k o
$$

with coface maps induced by the unit $\operatorname{tmf} \rightarrow k o$ and codegeneracies induced by the multiplication $k o \wedge_{t m f} k o \rightarrow k o$. Its totalization is the completion of tmf along $k o$, which should be $t m f$ again, since $k o$ is connective with $\pi_{0}(k o)=\mathbb{Z}$. (Explain $H_{*}\left(k o \wedge_{t m f} k o\right) \cong H_{*}(k o) \otimes_{H_{*}(t m f)} H_{*}(k o)=H_{*}(k o)\left[y_{0}, y_{1}, y_{2}\right] /(\sim$) where $y_{0}^{2}=\xi_{1}^{8}, y_{1}^{2}=\bar{\xi}_{2}^{4}$ and $y_{2}^{2}=\bar{\xi}_{3}^{2}$, with \mathscr{A}_{*}-coaction like in $E_{2} \otimes R_{2}$. Probably the Amitsur complex gives a cobar type resolution, while $E_{2} \otimes R_{2}$ is a minimal resolution.)) Similarly for $n=1$, using $k o \rightarrow H \mathbb{Z}$.

8.3 Ext over $A(1)$, revisited

As a warm-up, we compute $\operatorname{Ext}_{A(1)}^{* *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ using the Davis-Mahowald resolution.
Let $n=1$. We have $R_{1}=P\left(y_{0}, y_{1}\right)$ with $y_{0}=d\left(\xi_{1}^{2}\right)$ and $y_{1}=d\left(\bar{\xi}_{2}\right)$ in bidegrees $(\sigma, t)=(1,2)$ and $(1,3)$, respectively, with $y_{1} \cdot S q^{1}=y_{0}$ and $\left(y_{0}^{i} y_{1}^{j}\right) S q^{1}=j \cdot y_{0}^{i+1} y_{1}^{j-1}$. Hence $R_{1}^{\sigma}=\mathbb{F}_{2}\left\{y_{0}^{i} y_{1}^{j} \mid i+j=\sigma\right\}$ is dual to $N_{\sigma}=\mathbb{F}_{2}\left\{a_{i, j} \mid i+j=\sigma\right\}$, where $a_{i, j}$ is dual to $y_{0}^{i} y_{1}^{j}$ of degree $2 i+3 j$, and $S q^{1}\left(a_{i, j}\right)=$ $(j+1) a_{i-1, j+1}$. Thus N_{σ} is a sum of free $A(0)$-modules on generators $a_{i, \sigma-i}$ for $0<i \leq \sigma$ with $i \equiv \sigma$ $\bmod 2$, plus a trivial $A(0)$-module on the generator $a_{0, \sigma}$ in the cases when σ is even.

$N_{0}:$	$a_{0,0}$	
$N_{1}:$	$a_{1,0} \xrightarrow{S q^{1}} a_{0,1}$	
$N_{2}:$	$a_{2,0} \longrightarrow a_{1,1}$	$a_{0,2}$
$N_{3}:$	$a_{3,0} \longrightarrow a_{2,1}$	$a_{1,2} \longrightarrow a_{0,3}$
$N_{4}:$	$a_{4,0} \longrightarrow a_{3,1}$	$a_{2,2} \longrightarrow a_{1,3}$

Thus $\operatorname{Ext}_{A(0)}^{* * *}\left(N_{\sigma}, \mathbb{F}_{2}\right)$ is the sum of a copy of \mathbb{F}_{2} on the generator $y_{0}^{i} y_{1}^{\sigma-i}$ in internal degree $t=3 \sigma-i$ dual to $a_{i, \sigma-i}$, for each $0<i \leq \sigma$ with $i \equiv \sigma \bmod 2$, plus a copy of $\operatorname{Ext}_{A(0)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=P\left(h_{0}\right)$ on the generator y_{1}^{σ} in internal degree $t=3 \sigma$ dual to $a_{0, \sigma}$, in the cases where σ is even.

The E_{1}-term is displayed in Figure 9 as an Adams chart in the $(t-s, s)$-plane. Vertical lines indicate h_{0}-multiplications, and the σ-filtration is indicated at the bottom of each h_{0}-tower.

The d_{1}-differentials $d_{1}: E^{\sigma, s, t} \rightarrow E^{\sigma+1, s+1, t}$ are generated by $d_{1}\left(y_{0}\right)=0$ and $d_{1}\left(y_{1}^{2}\right)=y_{0}^{3}$. This leaves the E_{2}-term shown in Figure 10.

Figure 9: $E_{1}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$

Figure 10: $E_{2}^{*, *, *}=E_{\infty}^{*, *, *}$

There is no room for further differentials, since $d_{r}: E_{r}^{\sigma, s, t} \rightarrow E_{r}^{\sigma+r, s+r, t}$ increases the σ-filtration by r. It follows that $\operatorname{Ext}_{A(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ has the following algebra generators

gen.	$(t-s, s)$	rep.
h_{0}	$(0,1)$	h_{0}
h_{1}	$(1,1)$	y_{0}
v	$(3,4)$	$h_{0} y_{1}^{2}$
w_{1}	$(8,4)$	y_{1}^{4}

that are subject to the relations $h_{0} h_{1}=0, h_{1}^{3}=0, h_{1} v=0$ and $v^{2}=h_{0}^{2} w_{1}$. In particular, it is free as a $P\left(w_{1}\right)$-module.

To find the differential, recall that the differential $d_{1}: E_{1}^{\sigma, s, t} \rightarrow E_{1}^{\sigma+1, s+1, t}$ is the composite homomorphism

$$
\operatorname{Ext}_{A(n)}^{s-\sigma, t}\left(A(n) / / A(n-1) \otimes N_{\sigma}, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(n)}^{s-\sigma, t}\left(\operatorname{im}\left(\partial_{\sigma+1}\right), \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(n)}^{s-\sigma, t}\left(A(n) / / A(n-1) \otimes N_{\sigma+1}, \mathbb{F}_{2}\right)
$$

induced by the composite $A(n)$-module homomorphism

$$
\partial_{\sigma+1}: A(n) / / A(n-1) \otimes N_{\sigma+1} \longrightarrow \operatorname{im}\left(\partial_{\sigma+1}\right) \longleftrightarrow A(n) / / A(n-1) \otimes N_{\sigma} .
$$

In the case $\sigma=s, \operatorname{Ext}_{A(n)}^{0, *}\left(A(n) / / A(n-1) \otimes N_{\sigma}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}_{A(n)}\left(A(n) / / A(n-1) \otimes N_{\sigma}, \mathbb{F}_{2}\right)$ is the subspace of $\left(A(n) / / A(n-1) \otimes N_{\sigma}\right)^{*} \cong E_{n} \otimes R_{n}^{\sigma}$ where the right $A(n)$-module action is trivial (factors through the augmentation). This is the same as the subspace of left $A(n)_{*}$-comodule primitives. Hence the d_{1}-differential is given by the restriction of the composite

$$
d: E_{n} \otimes R_{n}^{\sigma} \longrightarrow \operatorname{im}(d) \longmapsto E_{n} \otimes R_{n}^{\sigma+1}
$$

to the subspaces of $A(n)_{*}$-comodule primitives.
Example 8.19. For $n=1$ and $\sigma=s=2$, the class y_{1}^{2} is represented by the $A(1)_{*}$-comodule primitive $y_{1}^{2}+x_{0} y_{0}^{2}$ in $E_{1} \otimes R_{1}^{2}$. Hence $d_{1}\left(y_{1}^{2}\right)$ is represented by $d\left(y_{1}^{2}+x_{0} y_{0}^{2}\right)=y_{0}^{3}$.

The commutative S-algebra maps $S \rightarrow k o \rightarrow k u$ induce surjections $\mathscr{A} / / E(1) \rightarrow \mathscr{A} / / A(1) \rightarrow \mathbb{F}_{2}$ in cohomology and restriction homomorphisms

$$
\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{E(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

of Adams E_{2}-terms. The classes h_{0} and h_{1} in the Adams spectral sequence for S, detecting 2 and η, map to the generators with the same names in $\operatorname{Ext}_{A(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$. The classes v and w_{1} map to $v_{0} v_{1}^{2}$ and v_{1}^{4}, respectively, in $\operatorname{Ext}_{E(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=P\left(v_{0}, v_{1}\right)$.

8.4 Ext over $A(2)$

Let $n=2$. We wish to calculate $\operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ using the Davis-Mahowald spectral sequence

$$
E_{1}^{\sigma, s, t}=\operatorname{Ext}_{A(1)}^{s-\sigma, t}\left(N_{\sigma} \otimes M, \mathbb{F}_{2}\right) \Longrightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(M, \mathbb{F}_{2}\right)
$$

for $M=\mathbb{F}_{2}$, where $N_{\sigma}=\left(R_{2}^{\sigma}\right)^{*}$.
We have $R_{2}=P\left(y_{0}, y_{1}, y_{2}\right)$ with $y_{0}=d\left(\xi_{1}^{4}\right), y_{1}=d\left(\bar{\xi}_{2}^{2}\right)$ and $y_{2}=d\left(\bar{\xi}_{3}\right)$ in bidegrees $(1,4),(1,6)$ and $(1,7)$, respectively, with $S q_{*}^{1}\left(y_{2}\right)=y_{2} \cdot S q^{1}=y_{1}$ and $S q_{*}^{2}\left(y_{1}\right)=y_{1} \cdot S q^{2}=y_{0}$. Hence

$$
\begin{aligned}
& \left(y_{0}^{i} y_{1}^{j} y_{2}^{k}\right) \cdot S q^{1}=k \cdot y_{0}^{i} y_{1}^{j+1} y_{2}^{k-1} \\
& \left(y_{0}^{i} y_{1}^{j} y_{2}^{k}\right) \cdot S q^{2}=j \cdot y_{0}^{i+1} y_{1}^{j-1} y_{2}^{k}+\binom{k}{2} y_{0}^{i} y_{1}^{j+2} y_{2}^{k-2}
\end{aligned}
$$

The $y_{0}^{i} y_{1}^{j} y_{2}^{k}$ with $i+j+k=\sigma$ give a basis for R_{2}^{σ}. Let $a_{i, j, k}$ of degree $4 i+6 j+7 k$ be the dual basis element for N_{σ}. The left $A(1)$-module structure on N_{σ} is given by

$$
\begin{aligned}
& S q^{1}\left(a_{i, j, k}\right)=(k+1) a_{i, j-1, k+1} \\
& S q^{2}\left(a_{i, j, k}\right)=(j+1) a_{i-1, j+1, k}+\binom{k+2}{2} a_{i, j-2, k+2} .
\end{aligned}
$$

Here are the first few instances, where we abbreviate $a_{i, j, k}$ to $a_{i j k}$:
$N_{0}: \quad a_{000}$
$N_{1}:$

N_{2} :

$N_{3}:$

N_{4} :

In particular, $N_{0}=\mathbb{F}_{2}$ so that $\mathscr{A} \otimes_{A(1)} N_{0}=H^{*}(k o)$, and $N_{1}=\Sigma^{4}\left(A(1) / A(1)\left\{S q^{1}, S q^{2} S q^{3}\right\}\right)$ so that $\mathscr{A} \otimes_{A(1)} N_{1} \cong H^{*}($ bspin $)$.

Notice that $a_{0,0,4}$ is left $A(1)$-module indecomposable. Dually, y_{2}^{4} is left $A(1)_{*}$-comodule primitive. The same applies to $a_{0,0, k}$ and y_{2}^{k} for $k \equiv 0 \bmod 4$, since R_{2} is a left $A(1)_{*}$-comodule algebra (or by the formulas above).

Let ' $R_{2}^{\sigma} \subset R_{2}^{\sigma}$ be the subspace generated by the $y_{0}^{i} y_{1}^{j} y_{2}^{k}$ with $0 \leq k \leq 3$ (and $i+j+k=\sigma$). Then

$$
R_{2} \cong \bigoplus_{\sigma \geq 0}^{\prime} R_{2}^{\sigma} \otimes P\left(y_{2}^{4}\right)
$$

as bigraded left $A(1)_{*}$-comodules, where y_{2}^{4} has bidegree $(\sigma, t)=(4,28)$. In filtration σ we get

$$
R_{2}^{\sigma}=\bigoplus_{\substack{0 \leq i \leq \sigma \\ i \equiv \sigma \\ \bmod 4}} R_{2}^{i}\left\{y_{2}^{\sigma-i}\right\} \cong \bigoplus_{\substack{0 \leq i \leq \sigma \\ i \equiv \sigma}} \Sigma^{7(\sigma-i) \prime} R_{2}^{i}
$$

Here is the dual statement:
Lemma 8.20. Let $N_{\sigma}^{\prime}=N_{\sigma} / \mathbb{F}_{2}\left\{a_{i, j, k} \mid k \geq 4\right\}$ be the quotient space generated by $a_{i, j, k}$ with $0 \leq k \leq 3$ (and $i+j+k=\sigma$). Then

$$
N_{\sigma} \cong \bigoplus_{\substack{0 \leq i \leq \sigma \\ i \equiv \sigma \\ \bmod 4}} \Sigma^{7(\sigma-i)} N_{i}^{\prime}
$$

Figure 11: G_{0}, the Adams chart for $k o$

Figure 12: G_{1}, the Adams chart for $k s p=\Sigma^{-4} b s p i n$
as a left A(1)-module. Hence

$$
\operatorname{Ext}_{A(1)}^{* * *}\left(N_{\sigma} \otimes M, \mathbb{F}_{2}\right) \cong \bigoplus_{\substack{0 \leq i \leq \sigma \\ i \equiv \sigma \\ \bmod 4}} \operatorname{Ext}_{A(1)}^{*, *}\left(\Sigma^{7(\sigma-i)} N_{i}^{\prime} \otimes M, \mathbb{F}_{2}\right)
$$

Definition 8.21. For $i \geq 0$, let G_{i} be the following Adams chart, with lines indicating $h_{0}{ }^{-}$and h_{1-} multiplications. Each chart is free as a $P\left(v_{1}^{4}\right)$-module. Let $\Sigma^{t} G_{i}$ be the same chart as G_{i}, but shifted t units to the right.

Proposition 8.22. $\operatorname{Ext}_{A(1)}^{*, *}\left(N_{\sigma}^{\prime}, \mathbb{F}_{2}\right)=\Sigma^{4 \sigma} G_{\sigma}$ for each $\sigma \geq 0$, so

$$
\operatorname{Ext}_{A(1)}^{* * *}\left(N_{\sigma}, \mathbb{F}_{2}\right)=\bigoplus_{\substack{0 \leq i \leq \sigma \\ i \equiv \sigma \\ \bmod 4}} \Sigma^{7 \sigma-3 i} G_{i}
$$

Proof. This is verified directly for $0 \leq \sigma \leq 2$. For $\sigma=0$ we have $N_{0}^{\prime}=N_{0}=\mathbb{F}_{2}$ and $\mathscr{A} \otimes_{A(1)} N_{0} \cong H^{*}(k o)$, so G_{0} is the same as the Adams chart for $k o$. For $\sigma=1$ we have $N_{1}^{\prime}=N_{1}=\Sigma^{4} A(1) / A(1)\left\{S q^{1}, S q^{2} S q^{3}\right\}$ so $\mathscr{A} \otimes_{A(1)} N_{1} \cong H^{*}($ bspin $)$ and $\Sigma^{4} G_{1}$ is the same as the Adams chart for bspin. Both of these are well known to be v_{1}^{4}-periodic. For $\sigma=2$ we can write $N_{2}^{\prime}=N_{2}$ as an extension

$$
0 \rightarrow \Sigma^{12} A(1) / / E\left(Q_{1}\right) \rightarrow N_{2} \rightarrow \Sigma^{8} A(1) / / A(0) \rightarrow 0
$$

Figure 13: G_{2}

Figure 14: G_{i} for $i \geq 2$

Figure 15: $P\left(v_{1}^{4}, v_{2}^{4}\right)$-basis for $E_{1}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), 0 \leq t-s \leq 24$
so G_{2} sits in a long exact sequence with the Adams charts for $H \mathbb{Z}$ and $\Sigma^{4} k u / 2$ (since $H^{*}(H \mathbb{Z})=\mathscr{A} / / A(0)$ and $\left.H^{*}(k u / 2)=\mathscr{A} / / E\left(Q_{1}\right)\right)$. The connecting homomorphism is trivial for bidegree reasons, so G_{2} is additively the sum of these two charts. One only needs to check that the v_{1}^{4}-multiplication from bidegree $(0,0)$ is nonzero.

For $\sigma \geq 3$ there is an extension

$$
0 \rightarrow \Sigma^{6 \sigma} A(1) / / E\left(Q_{1}\right) \longrightarrow N_{\sigma}^{\prime} \longrightarrow \Sigma^{4} N_{\sigma-1}^{\prime} \rightarrow 0
$$

The submodule on the left is generated by $a_{0, j, k}$ for $j+k=\sigma$ and $0 \leq k \leq 3$. The projection to the quotient takes $a_{i, j, k}$ to $\Sigma^{4} a_{i-1, j, k}$, for $i+j+k=\sigma, i \geq 1$ and $0 \leq k \leq 3$

The associated long exact sequence in Ext over $A(1)$ is

$$
\cdots \rightarrow \Sigma^{4 \sigma} G_{\sigma-1} \rightarrow \operatorname{Ext}_{A(1)}^{*, *}\left(N_{\sigma}^{\prime}, \mathbb{F}_{2}\right) \rightarrow \Sigma^{6 \sigma} P\left(v_{1}\right) \rightarrow \ldots
$$

Here $\operatorname{Ext}_{A(1)}^{*, *}\left(\Sigma^{6 \sigma} A(1) / / E\left(Q_{1}\right), \mathbb{F}_{2}\right) \cong \Sigma^{6 \sigma} \operatorname{Ext}_{E\left(Q_{1}\right)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)=\Sigma^{6 \sigma} P\left(v_{1}\right)$. The sequence splits additively, for degree reasons, but there are nonzero h_{0}-extensions. ((Should discuss these.))
((One should make the pairing $G_{i} \otimes G_{j} \rightarrow G_{i+j}$ explicit.))
Corollary 8.23. There is an algebra spectral sequence

$$
E_{1}^{*, *, *}=P\left(v_{2}^{4}\right) \otimes \bigoplus_{i \geq 0} G_{i}\left\{h_{2}^{i}\right\} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

where $h_{2}^{i} v_{2}^{4 k}$ has σ-filtration $i+4 k$ and bidegree $(t-s, s)=(3 i+24 k, i+4 k)$, for $i, k \geq 0$.
The Davis-Mahowald E_{1}-term is displayed in degrees $0 \leq t \leq 48$ in Figures 15 and 16. It is free over $P\left(v_{1}^{4}, v_{2}^{4}\right)$, and only the generators are shown (as bullets), with the exception that v_{1}^{4} times a generator is shown as a circle when it is also h_{0} times a generator. This way the h_{0}-extensions are not hidden from the picture.
Theorem 8.24. The classes $h_{0}, h_{1}, v_{1}^{4}, h_{2}$ and v_{2}^{8} are infinite cycles. There are nonzero differentials

$$
\begin{aligned}
d_{1}\left(\alpha_{2,0} h_{2}^{2}\right) & =h_{2}^{3} \\
d_{1}\left(\alpha_{5,0} h_{2}^{5}\right) & =\alpha_{3,0} h_{2}^{6} \\
d_{1}\left(v_{2}^{4}\right) & =\alpha_{4,0} h_{2}^{5}
\end{aligned}
$$

Figure 16: $P\left(v_{1}^{4}, v_{2}^{4}\right)$-basis for $E_{1}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), 24 \leq t-s \leq 48$
where $\alpha_{k, s} h_{2}^{i}$ denotes a generator in bidegree $(2 k+3 i, s+i)$ of $G_{i}\left\{h_{2}^{i}\right\}$. The spectral sequence collapses at the E_{2}-term.

Proof. To determine the d_{1}-differential on classes in Adams filtration $s=\sigma$, we use the identification

$$
E_{1}^{\sigma, \sigma, *}=\operatorname{Hom}_{A(1)}^{*}\left(N_{\sigma}, \mathbb{F}_{2}\right) \cong \operatorname{Hom}_{A(2)}^{*}\left(A(2) / / A(1) \otimes N_{\sigma}, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2} \square_{A(2)_{*}}\left(E_{2} \otimes R_{2}^{\sigma}\right)
$$

of this part of the E_{1}-term with the left $A(2)_{*}$-comodule primitives on the right hand side. The differential $d_{1}: E_{1}^{\sigma, \sigma, *} \rightarrow E_{1}^{\sigma+1, \sigma+1, *}$ is then induced by the derivation

$$
d: E_{2} \otimes R_{2}^{\sigma} \rightarrow E_{2} \otimes R_{2}^{\sigma+1}
$$

by restriction to the left $A(2)_{*}$-comodule primitives. The formulas

$$
\begin{aligned}
& \lambda\left(x_{0}\right)=1 \otimes x_{0}+\xi_{1}^{4} \otimes 1 \\
& \lambda\left(x_{1}\right)=1 \otimes x_{1}+\xi_{1}^{2} \otimes x_{0}+\bar{\xi}_{2}^{2} \otimes 1 \\
& \lambda\left(x_{2}\right)=1 \otimes x_{2}+\xi_{1} \otimes x_{1}+\bar{\xi}_{2} \otimes x_{0}+\bar{\xi}_{3} \otimes 1 \\
& \lambda\left(y_{0}\right)=1 \otimes y_{0} \\
& \lambda\left(y_{1}\right)=1 \otimes y_{1}+\xi_{1}^{2} \otimes y_{0} \\
& \lambda\left(y_{2}\right)=1 \otimes y_{2}+\xi_{1} \otimes y_{1}+\bar{\xi}_{2} \otimes y_{0}
\end{aligned}
$$

are useful.
The generator $\alpha_{2,0} h_{2}^{2}$ in bidegree $(t-s, s)=(10,2)$ is represented by the $A(1)_{*}$-comodule primitive y_{1}^{2} in R_{2}^{2}, which corresponds to the $A(2)_{*}$-comodule primitive $y_{1}^{2}+x_{0} y_{0}^{2}$ in $E_{2} \otimes R_{2}^{2}$. The d_{1}-differential maps this to the $A(2)_{*}$-comodule primitive $d\left(y_{1}^{2}+x_{0} y_{0}^{2}\right)=y_{0}^{3}$ in $E_{2} \otimes R_{2}^{3}$, which represents h_{2}^{3}.

The generator $\alpha_{5,0} h_{2}^{5}$ in bidegree $(25,5)$ is represented by the $A(1)_{*}$-comodule primitive $y_{1}^{5}+y_{0} y_{1}^{2} y_{2}^{2}$ in R_{2}^{5}, which corresponds to the $A(2)_{*}$-comodule primitive $y_{1}^{5}+y_{0} y_{1}^{2} y_{2}^{2}+x_{0} y_{0}^{3} y_{2}^{2}+((E T C))$ in $E_{2} \otimes R_{2}^{5}$. The d_{1}-differential maps this to ((ETC)), which represents $\alpha_{3,0} h_{2}^{6}$.
((Exercise: Compute left $A(2)_{*}$-coaction in $E_{2} \otimes R_{2}^{5}$ in internal degree 30 to find the $A(2)_{*}$-comodule primitive.))

When combined with $h_{0^{-}}, h_{1^{-}}, h_{2^{-}}$and v_{1}^{4}-linearity, these two differentials imply many others. The reader might draw them in Figures 15 and 16. The result is shown in Figures 17 and 18.

Next we bring v_{2}^{4} into the picture. It is represented by the $A(1)_{*}$-comodule primitive y_{2}^{4}, which corresponds to the $A(2)_{*}$-comodule primitive $y_{2}^{4}+x_{0} y_{1}^{4}$. The d_{1}-differential takes this to the class

Figure 17: $E_{1}^{*, *, *}$ after first two d_{1}-differentials, $0 \leq t-s \leq 24$

Figure 18: $E_{1}^{*, *, *}$ after first two d_{1}-differentials, $24 \leq t-s \leq 48$

Figure 19: $E_{1}^{*, *, *}$ last d_{1}-differentials, $23 \leq t-s \leq 47$

Figure 20: $E_{\infty}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), 0 \leq t-s \leq 24$
represented by $d\left(y_{2}^{4}+x_{0} y_{1}^{4}\right)=y_{0} y_{1}^{4}$, namely $\alpha_{4,0} h_{2}^{5}$. The further differentials implied by the multicative structure are illustrated in Figure 19, which is obtained by superimposing Figure 18 with a copy of Figure 17 shifted by v_{2}^{4}.

The remaining E_{2}-term is displayed in Figures 20 and 21. It is a free $P\left(v_{1}^{4}, v_{2}^{8}\right)$-module, and there is no room for further differentials, so $E_{2}=E_{\infty}$.

Remark 8.25. The wedge-shaped pattern that begins in bidegree $(t-s, s)=(35,7)$ can be shown to continue. It is a free $P\left(v_{1}, h_{21}\right)$-module, where $v_{1}=h_{20}$ and h_{21} are detected by $Q_{1}=S q^{(0,1)}$ and $S q^{(0,2)}$, dual to ξ_{2} and ξ_{2}^{2}, respectively. A similar pattern in $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ was described by Mahowald and Tangora (Trans. Amer. Math. Soc., 1968).

Davis and Mahowald also determine the $h_{1^{-}}$and h_{2}-multiplications in $\operatorname{Ext}_{A(2)}^{*, *}$ that are hidden by filtration shifts in the E_{∞}-term. These can also be determined by machine computation in this range, and lead to the charts in Figures 22 and 23. Sometimes v_{1}^{4}-multiples become h_{0}-divisible; this is indicated by the small circles. Remarkably, v_{1}^{4}-multiples never become more h_{1} - or h_{2}-divisible.

Figure 21: $E_{\infty}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), 24 \leq t-s \leq 48$

Figure 22: $P\left(v_{1}^{4}, v_{2}^{8}\right)$-basis for $\operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), 0 \leq t-s \leq 24$

Figure 23: $P\left(v_{1}^{4}, v_{2}^{8}\right)$-basis for $\operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), 24 \leq t-s \leq 48$

Definition 8.26. We name the following generators of $\operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.

IS-gen.	$(t-s, s)$	alt.	DM-rep.	ext
h_{0}	$(0,1)$	h_{0}	h_{0}	1_{0}
h_{1}	$(1,1)$	h_{1}	h_{1}	1_{1}
h_{2}	$(3,1)$	h_{2}	y_{0}	1_{2}
ω_{0}	$(8,4)$	$w_{1}=v_{1}^{4}$	w_{1}	4_{1}
ω_{1}	$(20,4)$	g	y_{1}^{4}	4_{8}
α_{0}	$(48,8)$	$w_{2}=v_{2}^{8}$	y_{2}^{8}	8_{19}
α_{1}	$(8,3)$	c_{0}	$(?)$	3_{2}
α_{2}	$(12,3)$	α	$(?)$	3_{3}
α_{3}	$(15,3)$	β	$(?)$	3_{4}
α_{4}	$(14,4)$	d_{0}	$(?)$	4_{4}
α_{5}	$(17,4)$	e_{0}	$(?)$	4_{6}
α_{6}	$(25,5)$	γ	$h_{1} v_{2}^{4}+(?)$	5_{11}
α_{7}	$(32,7)$	δ	$c_{0} v_{2}^{4}+(?)$	7_{11}

With the exception of $\alpha_{7}=\delta$, each class is the unique nonzero class in its bidegree. The class $\alpha_{7}=\delta$ is characterized by the properties $h_{0} \delta \neq 0$ and $h_{1} \delta \neq 0$. Bruner's ext-program uses the name s_{g} for the g 'th generator in Adams filtration s, counting from $g=0$.

Instead of displaying the module generators, Davis and Mahowald (1982) use the following convention to encode Adams charts that are free over $P\left(w_{1}\right)=P\left(v_{1}^{4}\right)$. ((They do not take h_{2}-multiples into account.))

Definition 8.27. An indexed chart is a chart in which some elements x are labeled with integers $\ell(x)$. Each unlabeled element x is implicitly given the maximal label of a labeled element y such that $x=h_{0}^{i} h_{1}^{j} h_{2}^{k} y$, or 0 if no such y exists. Each indexed chart C generates an Adams chart $\langle C\rangle$, consisting of all elements $v_{1}^{4 i} x$ such that $i+\ell(x) \geq 0$. In other words, each element x in C generates a free $P\left(v_{1}^{4}\right)$-module in $\langle C\rangle$ on a generator $v_{1}^{-4 \ell(x)} x$.
((Use the modified chart, better suited for the $t m f$-differentials.))
Definition 8.28. Let E_{0} be the following indexed chart:

Here is the same chart with named generators:

The dashed lines that exit the chart mean that h_{2} times $w_{1} \beta d_{0}$ is w_{1} times $h_{0} \alpha g=h_{0} \delta$, and similarly after multiplication by h_{0}.

Theorem 8.29. $\operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ is free over $P\left(w_{2}\right)=P\left(v_{2}^{8}\right)$ on $\left\langle E_{0}\right\rangle \oplus P\left(v_{1}, h_{21}\right)\left\{g_{35,7}\right\}$, where $g_{35,7}=$ βg.

This compact statement should be compared with the full Ext chart (in a finite range of degrees), as in Figure 8.

8.5 Coefficients in $A(0)$

The Adams E_{2}-term for the homotopy of $t m f / 2=t m f \wedge S / 2$ is

$$
E_{2}^{*, *}=\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(H^{*}(t m f / 2), \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right)
$$

since $H^{*}(t m f / 2) \cong H^{*}(t m f) \otimes H^{*}(S / 2) \cong \mathscr{A} / / A(2) \otimes A(0) \cong \mathscr{A} \otimes_{A(2)} A(0)$, where $A(0)$ denotes the \mathscr{A}-module $H^{*}(S / 2)$. It is, after all, free of rank 1 as an $A(0)$-module, and admits a unique \mathscr{A}-module structure. Note that $S / 2$ is not a ring spectrum, and this is not an algebra spectral sequence, but it is a module spectral sequence over the Adams spectral sequence for tmf.

Computing $\operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right)$ will also be useful in proving Adams periodicity, saying that the part of $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ over a line of slope $1 / 5$ repeats periodically along lines (rays) of slope $1 / 2$.

We use the Davis-Mahowald spectral sequence

$$
E_{1}^{\sigma, s, t}=\operatorname{Ext}_{A(1)}^{s-\sigma, t}\left(N_{\sigma} \otimes A(0), \mathbb{F}_{2}\right) \Longrightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(A(0), \mathbb{F}_{2}\right)
$$

for $M=A(0)$. It is not an algebra spectral sequence, since $A(0)$ is not an $A(2)$-comodule coalgebra, but it is a module spectral sequence over the Davis-Mahowald spectral sequence computing Ext ${ }_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.

Let $G A(0)_{i}$ be the chart so that $\operatorname{Ext}_{A(1)}^{*, *}\left(N_{i}^{\prime} \otimes A(0), \mathbb{F}_{2}\right)=\Sigma^{4 i} G A(0)_{i}$. Then

$$
E_{1}^{*, *, *}=P\left(v_{2}^{4}\right) \otimes \bigoplus_{i \geq 0} G A(0)_{i}\left\{h_{2}^{i}\right\}
$$

Figure 24: $G A(0)_{0}$, the Adams chart for $k o / 2$

Figure 25: $G A(0)_{1}$, the Adams chart for $\Sigma^{-4} b \operatorname{spin} / 2$

Figure 26: $G A(0)_{2}$

Figure 27: $G A(0)_{i}$ for $i \geq 2$

These charts can be readily computed. The first two are free as $P\left(w_{1}\right)=P\left(v_{1}^{4}\right)$-modules.
Thereafter there are $(i-1) v_{1}^{4}$-torsion classes, before periodicity kicks in.
The Davis-Mahowald E_{1}-term for $A(0)$ as $A(2)$-module is displayed for $0 \leq t \leq 48$ in Figures 28 and 29. Most classes are only represented by their σ-filtration.

The augmentation $A(0) \rightarrow \mathbb{F}_{2}$ (corresponding to the map $\operatorname{tmf} \rightarrow t m f / 2$) induces a map of spectral sequences from the one computed in the previous subsection to this one. The differentials implied by $d_{1}\left(\alpha_{2,0} h_{2}^{2}\right)=h_{2}^{3}$ and $d_{1}\left(\alpha_{5,0} h_{2}^{5}\right)=\alpha_{3,0} h_{2}^{6}$ leave the classes displayed in Figures 30 and 31 . Only the $P\left(v_{1}^{4}\right)$-module generators are shown. Most of them generate a free copy of $P\left(v_{1}^{4}\right)$, but some only generate a trivial module. The latter are labeled σ^{\prime} in place of σ. The circle indicates a v_{1}^{4}-multiple that is h_{1}-divisible.

Superimposing Figure 31 with a copy of Figure 30 multiplied by v_{2}^{4}, and taking the differential $d_{1}\left(v_{2}^{4}\right)=\alpha_{4,0} h_{2}^{5}$ into account, we obtain Figure 32. The remaining E_{2}-term is shown in Figures 33 and 34 . For σ-filtration reasons, this equals the E_{∞}-term.

Figure 28: $P\left(v_{2}^{4}\right)$-basis for $E_{1}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right), 0 \leq t-s \leq 24$

Figure 29: $P\left(v_{2}^{4}\right)$-basis for $E_{1}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right), 24 \leq t-s \leq 48$

Figure 30: $P\left(v_{1}^{4}, v_{2}^{4}\right)$-generators for $E_{1}^{*, *, *}$ after first two differentials, $0 \leq t-s \leq 24$

Figure 31: $P\left(v_{1}^{4}, v_{2}^{4}\right)$-generators for $E_{1}^{*, *, *}$ after first two differentials, $24 \leq t-s \leq 48$

Figure 32: $E_{1}^{*, *, *}$ last differentials, $23 \leq t-s \leq 47$

Figure 33: $P\left(v_{1}^{4}, v_{2}^{8}\right)$-generators for $E_{\infty}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right), 0 \leq t-s \leq 24$

Figure 34: $P\left(v_{1}^{4}, v_{2}^{8}\right)$-generators for $E_{\infty}^{*, *, *} \Longrightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right), 24 \leq t-s \leq 48$

Figure 35: $P\left(v_{1}^{4}, v_{2}^{8}\right)$-generators for $\operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right), 0 \leq t-s \leq 24$

11																							8	7	
																		7	6		8	7		9	8
9										5		-	6			7	6		8	7		9	8		
								5	4					7	6		8	7							v_{2}^{8}
7			4		\cdots	5			6			7	6												
	4			5			6	5																	
5			-																						
	24		26		28		30		32		34		36		38		40		42		44		46		48

Figure 36: $P\left(v_{1}^{4}, v_{2}^{8}\right)$-generators for $\operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right), 24 \leq t-s \leq 48$

Definition 8.30. Let E_{1} be the following indexed chart, where $w_{1}=v_{1}^{4}$ is unlabeled:

and let F_{1} be the (unindexed) chart:

Theorem 8.31. $\operatorname{Ext}_{A(2)}^{* *}\left(A(0), \mathbb{F}_{2}\right)$ is free over $P\left(w_{2}\right)=P\left(v_{2}^{8}\right)$ on the direct sum of F_{1} and the free $P\left(w_{1}\right)=P\left(v_{1}^{4}\right)$-module

$$
\left\langle E_{1}\right\rangle\left\{1, v_{2}^{4}\right\} \oplus P\left(v_{1}, h_{21}\right)\left\{g_{12,3}, v_{2}^{4} g_{12,3}\right\} \oplus P\left(h_{21}\right)\left\{g_{30,6}\right\} .
$$

where $v_{1}^{4} g_{30,6}=v_{1}^{3} h_{21}^{4} g_{12,3}$.
Multiplication by h_{1} takes the class 1 in bidegree $(t-s, s)=(0,0)$ of F_{1} into $\left\langle E_{1}\right\rangle$. Multiplication by v_{1}^{4} takes the classes 1 and h_{2} in of F_{1} into E_{1}, annihilates the classes $h_{2}^{2}, h_{2} \beta$ and $h_{2}^{2} \beta=h_{1} g$, and takes the classes β and g into $P\left(v_{1}, h_{21}\right)\left\{g_{12,3}\right\}$.

The Ext-homomorphism induced by the augmentation $A(0) \rightarrow \mathbb{F}_{2}$ takes $\alpha=\alpha_{2}$ to $g_{12,3}$ and $\beta^{2}=\alpha_{3}^{2}$ to $g_{30,6}$. The class $v_{2}^{4} g_{12,3}$ is not in the image of this homomorphism.

8.6 Adams periodicity

We now discuss v_{1}-periodicity in Ext ${ }_{\mathscr{A}}^{*, *}$, following Adams (1966), with improved estimates due to Peter May, as presented in Ravenel (1986, section 3.4). Adams obtained periodicity above a line of slope $1 / 3$ in the $(t-s, s)$-plane, which May improved to a line of optimal slope $1 / 5$.
Proposition 8.32. Let the functions v and w be defined by

s	-2	-1	0	1	2	3	4	5	≥ 6
$v(s)$	-6	-4	1	8	6	18	18	21	$5 s+3$
$w(s)$	-6	-4	1	8	10	18	23	25	$5 s+3$

Then Yoneda multiplication by $v_{1}^{4} \in \operatorname{Ext}_{A(2)}^{4,12}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ induces an isomorphism

$$
v_{1}^{4}: \operatorname{Ext}_{A(2)}^{s, t}\left(A(0), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{A(2)}^{s+4, t+12}\left(A(0), \mathbb{F}_{2}\right)
$$

for $t-s<v(s)$, and a surjection for $v(s) \leq t-s<w(s)$.
Proof. This follows by inspection of the calculation of $\operatorname{Ext}_{A(2)}^{*, *}\left(A(0), \mathbb{F}_{2}\right)$. Surjectivity fails for $s \geq 6$ and $t-s=5 s+3$ since $v_{1}^{3} h_{21}^{s-5} g_{30,6}=v_{1}^{2} h_{21}^{s-1} g_{12,3}$ is not divisible by v_{1}^{4}. The line $t-s=5 s+3$ has slope $1 / 5$. The multiples by powers of $w_{2}=v_{2}^{8}$ lie on the line $t-s=6 s$ of slope $1 / 6$, so they do not reduce the region of periodicity.

Proposition 8.33. Let the functions \tilde{v} and \tilde{w} be defined by

s	-1	0	1	2	3	4	5	6	≥ 7
$\tilde{v}(s)$	-6	-4	1	6	10	18	21	25	$5 s-2$
$\tilde{w}(s)$	-4	1	7	10	18	22	25	33	$5 s+3$

Let M be an $A(2)$-module that is free as an $A(0)$-module, and concentrated in degrees $* \geq 0$. Then Yoneda multiplication by $v_{1}^{4} \in \operatorname{Ext}_{A(2)}^{4,12}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ induces an isomorphism

$$
v_{1}^{4}: \operatorname{Ext}_{A(2)}^{s, t}\left(M, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{A(2)}^{s+4, t+12}\left(M, \mathbb{F}_{2}\right)
$$

for $t-s<\tilde{v}(s)$, and a surjection for $\tilde{v}(s) \leq t-s<\tilde{w}(s)$.
Proof. Consider an extension $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of $A(0)$-free $A(2)$-modules, with M^{\prime} concentrated in degrees $* \geq 1$ and $M^{\prime \prime}$ free on generators in degree 0 . We may inductively assume that the result holds for $\Sigma^{-1} M^{\prime}$. Multiplication by v_{1}^{4} induces a map of long exact sequences

where the second argument to each Ext-group is \mathbb{F}_{2}. We apply the five-lemma: The third (middle) map is surjective if the second and fourth maps are surjective and the fifth map is injective. This holds if $t-s<w(s)$ and $t-(s+1)<v(s+1)$, so we can let $\tilde{w}(s)=\min \{w(s), v(s+1)+1\}$. The third map is injective if the second and fourth maps are injective and the first map is surjective. This holds if $t-s<v(s)$ and $(t-1)-(s-1)<\tilde{w}(s-1)$, so we can let $\tilde{v}(s)=\min \{v(s), \tilde{w}(s-1)\}$.

In the following result we may interpret $A(n)$ for $n=\infty$ as \mathscr{A}. We are principally interested in the case $r=2$.

Theorem 8.34 (Adams approximation). Let $0 \leq r \leq n \leq \infty$ and let M be an $A(0)$-free $A(n)$-module that is concentrated in degrees $* \geq 0$. Restriction along $A(r) \subset A(n)$ induces an isomorphism

$$
\operatorname{Ext}_{A(n)}^{s, t}\left(M, \mathbb{F}_{2}\right) \xrightarrow{\cong} \operatorname{Ext}_{A(r)}^{s, t}\left(M, \mathbb{F}_{2}\right)
$$

for $t-s<2 s+2^{r+1}-\tilde{\epsilon}(s)$, where

$$
\tilde{\epsilon}= \begin{cases}5 & \text { for } s \equiv 0,3 \quad \bmod 4, \\ 3 & \text { for } s \equiv 1 \quad \bmod 4 \\ 4 & \text { for } s \equiv 2 \quad \bmod 4\end{cases}
$$

Proof. We have an extension

$$
0 \rightarrow K \rightarrow A(n) \otimes_{A(r)} M \rightarrow M \rightarrow 0
$$

of $A(n)$-modules, with K concentrated in degrees $* \geq 2^{r+1}$, since $A(r) \rightarrow A(n)$ is an isomorphism in degrees $*<2^{r+1}$. Adams (1966, Proposition 2.6) proves that the assumption that M is free over $A(0)$ implies that $A(n) \otimes_{A(r)} M$ and K are also $A(0)$-free. The argument is standard, as Bruner has kindly pointed out: The $A(n)$-module structure on M gives an isomorphism $A(n) \otimes_{A(r)} M \cong A(n) / / A(r) \otimes M$. When M is $A(0)$-free, so is the tensor product, hence also the middle term in the extension. This implies that the kernel K is stably free, but this is the same as free for $A(0)$-modules.

We have an exact sequence

$$
\operatorname{Ext}_{A(n)}^{s-1, t}\left(K, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(n)}^{s, t}\left(M, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(n)}^{s, t}\left(A(n) \otimes_{A(r)} M, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{A(n)}^{s, t}\left(K, \mathbb{F}_{2}\right)
$$

Under the change of rings isomorphism

$$
\operatorname{Ext}_{A(n)}^{s, t}\left(A(n) \otimes_{A(r)} M, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{A(r)}^{s, t}\left(M, \mathbb{F}_{2}\right)
$$

the middle homomorphism corresponds to the restriction homomorphism. We have a change-of-rings isomorphism

$$
\operatorname{Ext}_{A(n)}^{s, t}\left(K, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathscr{A} \otimes_{A(n)} K, \mathbb{F}_{2}\right),
$$

with $\mathscr{A} \otimes_{A(n)} K$ concentrated in degrees $* \geq 2^{r+1}$ and $A(0)$-free. By Adams vanishing (Proposition 6.20) the displayed Ext-group is zero for $\left(t-2^{r+1}\right)-s<2 s-\epsilon(s)$, where

$$
\epsilon(s)= \begin{cases}0 & \text { for } s \equiv 0 \quad \bmod 4 \\ 1 & \text { for } s \equiv 1 \quad \bmod 4 \\ 2 & \text { for } s \equiv 2,3 \quad \bmod 4\end{cases}
$$

Hence the middle homomorphism is an isomorphism if $\left(t-2^{r+1}\right)-s<2 s-\epsilon(s)$ and $\left(t-2^{r+1}\right)-(s-1)<$ $2(s-1)-\epsilon(s-1)$. The second condition implies the first, since $\tilde{\epsilon}(s)=3+\epsilon(s-1) \geq \epsilon(s)$.

It follows from the calculations for $A(2)$ that there are isomorphisms

$$
\operatorname{Ext}_{A(n)}^{s, t}\left(M, \mathbb{F}_{2}\right) \xrightarrow{\cong} \operatorname{Ext}_{A(n)}^{s+4, t+12}\left(M, \mathbb{F}_{2}\right)
$$

for $s \geq 0, t-s<\tilde{v}(s)$ and $t-s<2 s+8-\tilde{\epsilon}(s)$. The latter condition dominates for $s \geq 3$. When $n=2$, this isomorphism is induced by the Yoneda product with $v_{1}^{4} \in \operatorname{Ext}_{A(2)}^{4,12}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, but this class does not lift to $\operatorname{Ext}_{A(n)}$ for $n \geq 3$. However, there is a power of v_{1}^{4} that does lift to $\operatorname{Ext}_{A(n)}$.

Theorem 8.35 (Adams). For each $n \geq 2$ there is a class $\varpi_{n} \in \operatorname{Ext}_{A(n)}^{2^{n}, 3 \cdot 2^{n}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ that restricts to $w_{1}^{2^{n-2}}=v_{1}^{2^{n}} \in \operatorname{Ext}_{A(1)}^{2^{n}, 3 \cdot 2^{n}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.

The proof is given in Adams (1966, Section 4) or Ravenel (1986, Lemma 3.4.10), and uses algebraic Steenrod operations in the cobar construction on \mathscr{A}_{*}. We must omit it, for now. The periodicity class ϖ_{2} is the unique class in its bidegree, also known as $w_{1}=v_{1}^{4}=\omega_{0}$.

Proposition 8.36. Let the functions \hat{v} and \hat{w} be defined by

s	0	1	2	3	4	5	6	7	≥ 8
$\hat{v}(s)$	-4	0	6	9	16	21	24	31	$5 s-3$
$\hat{w}(s)$	1	7	10	17	22	25	32	38	$5 s+3$

Let $n \geq 2$ and let M be an $A(0)$-free $A(n)$-module that is concentrated in degrees $* \geq 0$. Yoneda multiplication by $\varpi_{n} \in \operatorname{Ext}_{A(n)}^{2^{n}, 3 \cdot 2^{n}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ induces an isomorphism

$$
\operatorname{Ext}_{A(n)}^{s, t}\left(M, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{A(n)}^{s+2^{n}, t+3 \cdot 2^{n}}\left(M, \mathbb{F}_{2}\right)
$$

for $t-s<\hat{v}(s)$, and a surjection for $\hat{v}(s) \leq t-s<\hat{w}(s)$.
Proof. The claim for $s=0$ follows by Proposition 8.33 and Adams approximation. For larger s we proceed by induction. Define K by the short exact sequence

$$
0 \rightarrow K \rightarrow A(n) \otimes_{A(2)} M \rightarrow M \rightarrow 0
$$

of $A(n)$-modules. Then K is $A(0)$-free and concentrated in degrees $* \geq 8$. By induction on t, we may assume that the proposition applies to $\Sigma^{-8} K$. Multiplication by ϖ_{n} induces a map of exact sequences

$$
\begin{gathered}
\operatorname{Ext}_{A(2)}^{s-1, t}(M) \longrightarrow \operatorname{Ext}_{A(n)}^{s-1, t}(K) \longrightarrow \operatorname{Ext}_{A(n)}^{s, t}(M) \rightarrow \operatorname{Ext}_{A(2)}^{s, t}(M) \rightarrow \operatorname{Ext}_{A(n)}^{s, t}(K) \\
\left.v_{1}^{2_{1}^{n}}\right|_{\operatorname{Ext}_{A(2)}^{s^{\prime}-1, t^{\prime}}}(M) \rightarrow \operatorname{Ext}_{A(n)}^{s^{\prime}-1, t^{\prime}}(K) \rightarrow \operatorname{Ext}_{A(n)}^{s^{s^{\prime}, t^{\prime}}}(M) \rightarrow \operatorname{Ext}_{A(2)}^{s^{\prime}, t^{\prime}}(M) \rightarrow \operatorname{Ext}_{A(n)}^{s^{\prime}, t^{\prime}}(K)
\end{gathered}
$$

where we have suppressed \mathbb{F}_{2} in the second arguments, let $s^{\prime}=s+2^{n}$ and $t^{\prime}=t+3 \cdot 2^{n}$, and have used change-of-rings in the first and fourth columns.

By the five-lemma, the middle map is surjective if $(t-8)-(s-1)<\hat{w}(s-1), t-s<\tilde{w}(s)$ and $(t-8)-s<\hat{v}(s)$, so we must have $\hat{w}(s) \leq \min \{7+\hat{w}(s-1), \tilde{w}(s), 8+\hat{v}(s)\}$.

Furthermore, the middle map is injective if $(t-8)-(s-1)<\hat{v}(s-1), t-s<\tilde{v}(s)$ and $t-(s-1)<$ $\tilde{w}(s-1)$, so we must have $\hat{v}(s) \leq \min \{7+\hat{v}(s-1), \tilde{v}(s),-1+\tilde{w}(s-1)\}$.

The above-defined functions \hat{v} and \hat{w} satisfy these conditions. We note that $\hat{w}(s)=\hat{v}(s+1)+1$.
((This agrees with Ravenel (1986, Lemma 3.4.14), except that his surjectivity for $t-s<h(s)-1$ should probably be replaced by $t-s<h(s+2)$.))
Theorem 8.37. Let M be an $A(0)$-free \mathscr{A}-module, concentrated in degrees $* \geq 0$. There is an isomorphism

$$
\Pi_{n}: \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(M, \mathbb{F}_{2}\right) \xrightarrow{\cong} \operatorname{Ext}_{\mathscr{A}}^{s+2^{n}, t+3 \cdot 2^{n}}\left(M, \mathbb{F}_{2}\right)
$$

for $s \geq 0$ and $t-s<\min \left\{2 s+2^{n+1}-\tilde{\epsilon}(s), \hat{v}(s)\right\}$.
Remark 8.38. More precisely, the isomorphism is given in this range by the Massey product

$$
\Pi_{n}(x)=\left\langle h_{n+1}, h_{0}^{2^{n}}, x\right\rangle .
$$

This follows from a more precise description of the periodicity class ϖ_{n}, namely as the restriction along $A(n) \subset \mathscr{A}$ of a cochain with coboundary expressing the relation $h_{0}^{2^{n}} h_{n+1}=0$. Following Tangora (1970), we write

$$
P(x)=\left\langle h_{3}, h_{0}^{4}, x\right\rangle
$$

for this operator in the case $n=2$, when defined.
This leads to the following periodicity theorem, in the improved version due to May. See Ravenel (1986, Theorem 3.4.6).
Theorem 8.39 (Adams periodicity). Let v^{*} be defined by

$$
\begin{array}{c|ccccccccc}
s & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \geq 9 \\
\hline v^{*}(s) & -3 & 1 & 7 & 10 & 17 & 22 & 25 & 32 & 5 s-7
\end{array}
$$

and let

$$
\epsilon^{*}(s)= \begin{cases}6 & \text { for } s \equiv 0,1 \quad \bmod 4 \\ 4 & \text { for } s \equiv 2 \quad \bmod 4 \\ 5 & \text { for } s \equiv 3 \quad \bmod 4\end{cases}
$$

Let $n \geq 2$. There is an isomorphism

$$
\Pi_{n}: \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \xrightarrow{\cong} \operatorname{Ext}_{\mathscr{A}}^{s+2^{n}, t+3 \cdot 2^{n}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

for $s \geq 1$ and $0<t-s<\min \left\{2 s+2^{n+1}-\epsilon^{*}(s), v^{*}(s)\right\}$.
Remark 8.40. A direct computation shows that Π_{2} is an isomorphism for $1 \leq s \leq 4$ and $0<t-$ $s<2 s+2^{3}-\epsilon^{*}(s)$, so we may improve the result a little by redefining $v^{*}(1)=4, v^{*}(2)=8$ and $v^{*}(3)=9$. A further initial improvement might be possible by computing Π_{3} for $1 \leq s \leq 8$ and $0<t-s<2 s+2^{4}-\epsilon^{*}(s)$.
Proof. We use the short exact sequence

$$
0 \rightarrow I\left(\mathscr{A} / \mathscr{A} S q^{1}\right) \rightarrow \mathscr{A} / \mathscr{A} S q^{1} \rightarrow \mathbb{F}_{2} \rightarrow 0
$$

with $I\left(\mathscr{A} / \mathscr{A} S q^{1}\right)=\Sigma^{2} M$ free over $A(0)$ and concentrated in degrees $* \geq 2$. The connecting homomorphism

$$
\operatorname{Ext}_{\mathscr{A}}^{s-1, t-2}\left(M, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

is then an isomorphism for all $t-s>0$. We find that Π_{n} is an isomorphism for $s-1 \geq 0$ and $(t-2)-(s-1)<\min \left\{2(s-1)+2^{n+1}-\tilde{\epsilon}(s-1), \hat{v}(s-1)\right\}$. This translates to the conditions $s \geq 1$ and $t-s<\min \left\{2 s+2^{n+1}-1-\tilde{\epsilon}(s-1), 1+\hat{v}(s-1)\right\}$, so we let $\epsilon^{*}(s)=1+\tilde{\epsilon}(s-1)=4+\epsilon(s-2)$ and $v^{*}(s)=1+\hat{v}(s-1)$, as above.

9 The homotopy groups of S and tmf

9.1 The image-of- J spectra

Let $K U$ be the periodic complex K-theory spectrum, with homotopy groups $\pi_{*}(K U)=K U_{*}=\mathbb{Z}\left[u^{ \pm 1}\right]$, given by inverting the complex Bott element u in $\pi_{*}(k u)$. Similarly, let $K O$ be the periodic real K-theory spectrum, with homotopy groups

$$
\pi_{*}(K O)=\mathbb{Z}\left[\eta, \alpha, \beta^{ \pm 1}\right] /\left(2 \eta, \eta^{3}, \eta \alpha, \alpha^{2}=4 \eta\right)
$$

given by inverting the real Bott element β in $\pi_{*}(k o)$, with image u^{4} in $\pi_{*}(k u)$. These spectra represent complex and real topological K-theory, so that $K U^{0}(X)$ (resp. $K O^{0}(X)$) is the ring completion of the semiring of isomorphism classes of complex (resp. real) vector bundles over X, with respect to direct sum and tensor product, at least for finite CW complexes X. It is known that $K U$ and $K O$ admit (essentially unique) commutative S-algebra structures that realize these ring structures. The unit map $d: S \rightarrow K O$ is related to Adams' K-theory d-invariant.

For each integer k the Adams operation $\psi^{k}: K U^{0}(X) \rightarrow K U^{0}(X)$ is a natural ring homomorphism. By the splitting principle it is characterized by its value on complex line bundles $L \rightarrow X$, namely $\psi^{k}(L)=L^{\otimes k}$. Similarly for $\psi^{k}: K O^{0}(X) \rightarrow K O^{0}(X)$, which satisfies the same formula for real line bundles $L \rightarrow X$. As a consequence of this characterization, we have the relation $\psi^{k} \circ \psi^{\ell}=\psi^{k \ell}$. We also note that $\psi^{-1}=1$ (the identity map) in the real case.

The Adams operations ψ^{k} do not commute with Bott periodicity, but map $u \in \tilde{K} U^{0}\left(S^{2}\right)$ to $k u$ and $\beta \in \tilde{K} O^{0}\left(S^{8}\right)$ to $k^{4} \beta$. Hence it is necessary to localize, by inverting k, in order to extend ψ^{k} to stable operations $K U^{*}(X) \rightarrow K U^{*}(X)$ and $K O^{*}(X) \rightarrow K O^{*}(X)$. For $k \neq 0$ there are spectrum maps $\psi^{k}: K U[1 / k] \rightarrow K U[1 / k]$ and $\psi^{k}: K O[1 / k] \rightarrow K O[1 / k]$, such that $\psi^{k} \circ \psi^{\ell}=\psi^{k \ell}$ after inverting $k \ell \neq 0$.

Fix a prime p, and let k be an integer prime to p. After p-completion, $\psi^{k}: K U_{p}^{\wedge} \rightarrow K U_{p}^{\wedge}$ can be realized as a map of commutative S-algebras, with $\psi_{*}^{k}: \mathbb{Z}_{p}\left[u^{ \pm 1}\right] \rightarrow \mathbb{Z}_{p}\left[u^{ \pm 1}\right]$ taking u to $k u$. Similarly, $\psi^{k}: K O_{p}^{\wedge} \rightarrow K O_{p}^{\wedge}$ maps $\pi_{*}\left(K O_{p}^{\wedge}\right) \rightarrow \pi_{*}\left(K O_{p}^{\wedge}\right)$ by taking η to $k \eta, \alpha$ to $k^{2} \alpha$ and β to $k^{4} \beta$. Furthermore, these operations can be extended to p-adic integer values of k (still prime to p), so as to define an action of the p-adic units \mathbb{Z}_{p}^{\times}on $K U_{p}^{\wedge}$, and similarly on $K O_{p}^{\wedge}$. These actions define multiplicative homomorphisms $\mathbb{Z}_{p}^{\times} \rightarrow\left(K U_{p}^{\wedge}\right)^{0}\left(K U_{p}^{\wedge}\right)$ and $\mathbb{Z}_{p}^{\times} / \pm 1 \rightarrow\left(K O_{p}^{\wedge}\right)^{0}\left(K O_{p}^{\wedge}\right)$, taking k to the homotopy class of ψ^{k}. These can be combined by the scalar multiplications of $\left(K U_{p}^{\wedge}\right)^{*}=\pi_{-*}\left(K U_{p}^{\wedge}\right)$ and $\left(K O_{p}^{\wedge}\right)^{*}=\pi_{-*}\left(K O_{p}^{\wedge}\right)$, to get the following ring isomorphisms:

Theorem 9.1. $\left(K U_{p}^{\wedge}\right)^{*}\left\langle\left\langle\mathbb{Z}_{p}^{\times}\right\rangle\right\rangle \cong\left(K U_{p}^{\wedge}\right)^{*}\left(K U_{p}^{\wedge}\right)$ and $\left(K O_{p}^{\wedge}\right)^{*}\left\langle\left\langle\mathbb{Z}_{p}^{\times} / \pm 1\right\rangle\right\rangle \cong\left(K O_{p}^{\wedge}\right)^{*}\left(K O_{p}^{\wedge}\right)$.
For odd p, any integer k that represents a generator of $\left(\mathbb{Z} / p^{2}\right)^{\times}$is a topological generator of \mathbb{Z}_{p}^{\times}. Similarly, any integer k that represents a generator of $(\mathbb{Z} / 8)^{\times} / \pm 1$ is a topological generator of $\mathbb{Z}_{2}^{\times} / \pm 1$. For $p=2$ it is traditional in topology to pick $k=3$, while the tradition in number theory may be to pick $k=5$. Hereafter we assume that k is chosen as such a generator.
Definition 9.2. For odd p, let $J_{p}^{\wedge}=\left(K U_{p}^{\wedge}\right)^{h \psi^{k}}$ be the homotopy fixed points of the ψ^{k}-action on $K U_{p}^{\wedge}$. For $p=2$, let $J_{2}^{\wedge}=\left(K O_{2}^{\wedge}\right)^{h \psi^{k}}$ be the homotopy fixed points of the ψ^{k}-action on $K O_{2}^{\wedge}$. These (p-complete) image-of-J spectra are commutative S-algebras, and there are commutative S-algebra maps $J_{p}^{\wedge} \rightarrow K U_{p}^{\wedge}$ and $J_{2}^{\wedge} \rightarrow K O_{2}^{\wedge}$.
((Can get commutative S-algebra actions by Goerss-Hopkins-Miller obstruction theory, which generalizes from $E_{1}=K U_{p}^{\wedge}$ to the Lubin-Tate spectra E_{n}. The formation of homotopy fixed points for continuous actions by profinite groups (like \mathbb{Z}_{p}^{\times}) is technically complex, see Devinatz-Hopkins, Fausk, Behrens-Davis. In this case it suffices to work with the action by the free discrete monoid generated by ψ^{k}.))

The homotopy fixed points above can be rewritten as the homotopy equalizers of ψ^{k} and $1: K U_{p}^{\wedge} \rightarrow$ $K U_{p}^{\wedge}$, or as the homotopy fiber of the difference map $\psi^{k}-1: K U_{p}^{\wedge} \rightarrow K U_{p}^{\wedge}$, and similarly for $p=2$. Applying $K U_{p}^{\wedge}$-cohomology to the cofiber sequence

$$
J_{p}^{\wedge} \longrightarrow K U_{p}^{\wedge} \xrightarrow{\psi^{k}-1} K U_{p}^{\wedge}
$$

we get the long exact sequence

$$
\cdots \rightarrow\left(K U_{p}^{\wedge}\right)^{*}\left\langle\left\langle\mathbb{Z}_{p}^{\times}\right\rangle\right\rangle \xrightarrow{\psi^{k}-1}\left(K U_{p}^{\wedge}\right)^{*}\left\langle\left\langle\mathbb{Z}_{p}^{\times}\right\rangle\right\rangle \longrightarrow\left(K U_{p}^{\wedge}\right)^{*}\left(J_{p}^{\wedge}\right) \rightarrow \ldots
$$

that induces an isomorphism

$$
\left(K U_{p}^{\wedge}\right)^{*}\left\langle\left\langle\mathbb{Z}_{p}^{\times}\right\rangle\right\rangle /(k \sim 1)=\left(K U_{p}^{\wedge}\right)^{*} \cong\left(K U_{p}^{\wedge}\right)^{*}\left(J_{p}^{\wedge}\right)
$$

It follows that the unit map $e: S \rightarrow J_{p}^{\wedge}$ induces an isomorphism in $K U_{p}^{\wedge}$-cohomology, i.e., that it is a $K U_{p}^{\wedge}$-local equivalence. Similarly, for $p=2$ we get an isomorphism

$$
\left(K O_{2}^{\wedge}\right)^{*}\left\langle\left\langle\mathbb{Z}_{2}^{\times} / \pm 1\right\rangle\right\rangle /(k \sim 1)=\left(K O_{2}^{\wedge}\right)^{*} \cong\left(K O_{2}^{\wedge}\right)^{*}\left(J_{2}^{\wedge}\right)
$$

so that the unit map $e: S \rightarrow J_{2}^{\wedge}$ is a $K O_{2}^{\wedge}$-local equivalence.
((The map e is related to Adams' K-theory e-invariant. The role of these equivalences can be clarified in terms of Bousfield localizations. Theorems of Mahowald (for $p=2$) and Haynes Miller (for p odd) prove that $e: S \rightarrow J_{p}^{\wedge}$ induces isomorphisms $\pi_{*}(S / p)\left[v_{1}^{-1}\right] \cong \pi_{*}(J / p)\left[v_{1}^{-1}\right]$, where $\left.J / p=J_{p}^{\wedge} \wedge S / p.\right)$)
Theorem 9.3. For p odd,

$$
\pi_{*}\left(J_{p}^{\wedge}\right) \cong \begin{cases}\mathbb{Z}_{p} & \text { if } *=0 \text { or } *=-1 \\ \mathbb{Z}_{p} /\left(k^{i}-1\right) & \text { if } *=2 i-1 \neq-1 \\ 0 & \text { otherwise } .\end{cases}
$$

For $p=2$,

$$
\pi_{*}\left(J_{2}^{\wedge}\right) \cong \begin{cases}\mathbb{Z}_{2} & \text { if } *=-1 \\ \mathbb{Z}_{2} \oplus \mathbb{Z} / 2 & \text { if } *=0 \\ \mathbb{Z}_{2} /\left(k^{4 i}-1\right) & \text { if } *=8 i-1 \neq-1, \\ \mathbb{Z} / 2 & \text { if } *=8 i \neq 0, \\ (\mathbb{Z} / 2)^{2} & \text { if } *=8 i+1 \\ \mathbb{Z} / 2 & \text { if } *=8 i+2 \\ \mathbb{Z} / 8 & \text { if } *=8 i+3 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. This is almost straightforward from the long exact sequences

$$
\cdots \rightarrow \pi_{*}\left(J_{p}^{\wedge}\right) \longrightarrow \pi_{*}\left(K U_{p}^{\wedge}\right) \xrightarrow{\psi_{*}^{k}-1} \pi_{*}\left(K U_{p}^{\wedge}\right) \longrightarrow \ldots
$$

and

$$
\cdots \rightarrow \pi_{*}\left(J_{2}^{\wedge}\right) \longrightarrow \pi_{*}\left(K O_{2}^{\wedge}\right) \xrightarrow{\psi_{*}^{k}-1} \pi_{*}\left(K O_{2}^{\wedge}\right) \longrightarrow \ldots
$$

where the action ψ_{*}^{k} of ψ^{k} on $\pi_{*}\left(K U_{p}^{\wedge}\right)$ and $\pi_{*}\left(K O_{2}^{\wedge}\right)$ has been discussed above. The only thing to check is that the extension giving $\pi_{*}\left(J_{2}^{\wedge}\right)$ for $*=8 i+1$ is split. ((Prove this!))

Remark 9.4. We have $\mathbb{Z}_{p} /\left(k^{i}-1\right)=0$ when $p-1 \nmid i$, while $\mathbb{Z}_{p} /\left(k^{i}-1\right)=\mathbb{Z} / p^{v+1}$ if $p-1 \mid i$ and $v=v_{p}(i)$. Furthermore, $\mathbb{Z}_{2} /\left(k^{4 i}-1\right)=\mathbb{Z} / 2^{v+4}=\mathbb{Z}_{2} /(16 i)$ if $v=v_{2}(i)$.

Definition 9.5. For p odd, let the connective image-of- J spectrum j_{p}^{\wedge} be the connective cover of J_{p}^{\wedge}. For $p=2$, let $j o_{2}^{\wedge}$ be the connective cover of J_{2}^{\wedge}. These are commutative S-algebras, and there are commutative S-algebra maps $j_{p}^{\wedge} \rightarrow k u_{p}^{\wedge}$ and $j o_{2}^{\wedge} \rightarrow k o_{2}^{\wedge}$.
((Can also get E_{∞} ring spectrum structure on j_{p}^{\wedge} by discrete models, by taking k to be a prime power and using the algebraic K-theory of a finite field with k elements, following Quillen and May et al.))

There are cofiber sequences

$$
j_{p}^{\wedge} \longrightarrow k u_{p}^{\wedge} \xrightarrow{\psi^{k}-1} b u_{p}^{\wedge}
$$

for p odd, and

$$
j o_{2}^{\wedge} \longrightarrow k o_{2}^{\wedge} \xrightarrow{\psi^{k}-1} b o_{2}^{\wedge}
$$

for $p=2$, where $\psi^{k}-1$ denotes the unique lift of $\psi^{k}-1: k u_{p}^{\wedge} \rightarrow k u_{p}^{\wedge}$ through the connected cover $b u_{p}^{\wedge} \rightarrow k u_{p}^{\wedge}$, and similarly for the connected cover $b o_{2}^{\wedge} \rightarrow k o_{2}^{\wedge}$.

For p odd the completed unit map $S_{p}^{\wedge} \rightarrow j_{p}^{\wedge}$ induces a split surjection on homotopy groups, as we shall discuss below. For $p=2$, the lowest homotopy groups $\pi_{0}\left(j o_{2}^{\wedge}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z} / 2$ and $\pi_{1}\left(j o_{2}^{\wedge}\right) \cong(\mathbb{Z} / 2)^{2}$ are too large for this claim to hold, so we make an adjustment in these degrees to define the connective image-of- J spectrum at $p=2$.

Definition 9.6. Let $P^{1} X$ denote the first Postnikov section of X. We get a diagram of commutative S-algebras

and define j_{2}^{\wedge} to be the homotopy pullback in the left hand quadrangle.
The maps $S_{2}^{\wedge} \rightarrow j_{2}^{\wedge} \rightarrow k o_{2}^{\wedge}$ then induce equivalences of first Postnikov sections, which implies that there is a cofiber sequence

$$
j_{2}^{\wedge} \longrightarrow k o_{2}^{\wedge} \xrightarrow{\psi^{k}-1} \operatorname{bspin}_{2}^{\wedge}
$$

where $\psi^{k}-1$ denotes the unique lift up to homotopy of $\psi^{k}-1: k o_{2}^{\wedge} \rightarrow k o_{2}^{\wedge}$ over the 2 -connected, hence 3 -connected, cover $b s p i n_{2}^{\wedge} \rightarrow k o_{2}^{\wedge}$. This is usually taken as the definition of j_{2}^{\wedge}, but does not make the commutative S-algebra structure quite clear.
((Can also get E_{∞} ring spectrum structure on j_{2}^{\wedge} by a discrete model, as the algebraic K-theory of a suitable bipermutative category, following May et al.))

Proposition 9.7.

$$
\pi_{*}\left(j_{2}^{\wedge}\right) \cong \begin{cases}\mathbb{Z}_{2} & \text { if } *=0, \\ \mathbb{Z} / 2 & \text { if } *=1, \\ \mathbb{Z} / 2 & \text { if } *=8 i+2>0, \\ \mathbb{Z} / 8 & \text { if } *=8 i+3>0, \\ \mathbb{Z}_{2} /\left(k^{4 i}-1\right) & \text { if } *=8 i-1>0, \\ \mathbb{Z} / 2 & \text { if } *=8 i>0, \\ (\mathbb{Z} / 2)^{2} & \text { if } *=8 i+1>1, \\ 0 & \text { otherwise. }\end{cases}
$$

The connecting homomorphism $\pi_{*+1}\left(b \operatorname{spin}_{2}^{\wedge}\right) \rightarrow \pi_{*}\left(j_{2}^{\wedge}\right)$ is surjective for $*>0$, except in degrees $*=8 i+r$ for $i \geq 0$ and $r=1,2$, where the cokernel maps isomorphically to $\pi_{*}\left(k o_{2}^{\wedge}\right) \cong \mathbb{Z} / 2$. There are classes $\mu_{8 i+r} \in \pi_{8 i+r}\left(j_{2}^{\wedge}\right)$ of order 2 that map to the generators $\eta^{r} \beta^{i}$ of these groups.
((The classes $\mu_{1}=\eta, \mu_{2}=\eta^{2}$ and $\mu_{8 i+2}$ for $i>0$ are uniquely determined in $\pi_{*}\left(j_{2}^{\wedge}\right)$. How to characterize $\mu_{8 i+1}$?))
((Name the generators and order 2 classes?))
Corollary 9.8. $e: S_{2}^{\wedge} \rightarrow j_{2}^{\wedge}$ is 6-connected.
To prove that $\pi_{*}(e)$ is split surjective, we need a number of unstable (space level) constructions.
Definition 9.9. Let $F(n) \subset \Omega^{n} S^{n}$ be the monoid of base-point preserving homotopy equivalences $S^{n} \rightarrow$ S^{n}, and let $O(n) \rightarrow F(n)$ be the monoid homomorphism taking an isometry $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to the induced map $S^{n} \rightarrow S^{n}$ of one-point compactifications. These homomorphisms are compatible with the stabilizations $O(n) \rightarrow O(n+1)$ and $F(n) \rightarrow F(n+1)$, and induce a monoid homomorphism $j: O \rightarrow F=G L_{1}(S)$. The induced homomorphism

$$
J=\pi_{*}(j): \pi_{*}(O) \rightarrow \pi_{*}(F) \cong \pi_{*}(S)
$$

(for $*>0$) is called the J-homomorphism, after J.H.C. Whitehead.
Recall that

$$
\pi_{*}(O) \cong \pi_{*+1}(B O) \cong \begin{cases}\mathbb{Z} / 2 & \text { if } * \equiv 0,1 \\ \mathbb{Z} & \text { if } * \equiv 3,7 \\ \bmod 8 \\ 0 & \text { otherwise }\end{cases}
$$

for $*>0$, so that the image $\operatorname{im}(J) \subset \pi_{*}(S)$ is (trivial or) cyclic of order two for $* \equiv 0,1 \bmod 8$ and (trivial or) finite cyclic for $* \equiv 3,7 \bmod 8$.

We get a Puppe fiber sequence

$$
O \xrightarrow{j} F \longrightarrow F / O \longrightarrow B O \xrightarrow{B j} B F,
$$

where F / O is defined as the homotopy fiber of $B j: B O \rightarrow B F$. The right hand map represent a homomorphism

$$
\widetilde{K O}^{0}(X)=[X, B O] \rightarrow[X, B F]
$$

(for connected CW complexes X), that takes a vector bundle $E \rightarrow X$ to the stable spherical fibration class of its fiberwise one-point compactification. Its image is the group $J(X)$ studied by Adams in a series of papers.
((Discuss how Bj: BO $\rightarrow B F$ is a map of infinite loop spaces.))
There is a close relation between the subgroup $\operatorname{im}(J) \subset \pi_{*}(S)$ of the stable homotopy groups of spheres and the homotopy groups of the image-of- J spectrum j, given as quotient group of $\pi_{*}(S)$ via the unit map $e: S \rightarrow j$.

We sketch the presentation of May et al. Start with the lift $j: S p i n \rightarrow S F=S L_{1}(S)$ of $j: O \rightarrow F$, and form the middle horizontal Puppe fiber sequence in the following diagram, implicitly completed at
a prime p :

(The solid arrows are infinite loop maps, when the spaces labeled \otimes are given multiplicative infinite loop space structures.)

The next step is similar to Thom's construction of Stiefel-Whitney characteristic classes using Steenrod operations in mod 2 cohomology, replacing cohomology and Steenrod operations by real K-theory and Adams operations, respectively. The Atiyah-Bott-Shapiro ko-orientation of Spin-bundles specifies a Thom class $u: M S p i n \rightarrow k o$ in the ko-cohomology of the Thom spectrum of the tautological vector bundle over BSpin. Applying the Adams operation $\psi^{k}: k o \rightarrow k o$, the composite class $\psi^{k}(u)$ corresponds under the $k o$-cohomology Thom isomorphism $k o^{*}(B S p i n) \cong k o^{*}(M S p i n)$ to a characteristic class $\rho^{k}: \Sigma^{\infty} B$ Spin $_{+} \rightarrow k o$ satisfying $u \cup \rho^{k}=\psi^{k}(u)$. The space level adjoint $B S$ pin $\rightarrow B O_{\otimes}$ lifts to an infinite loop map $\rho^{k}: B \operatorname{Spin} \rightarrow B \operatorname{Spin}_{\otimes}$, known as the ((Bott?)) cannibalistic class. There is a corresponding operation $\sigma^{k}: S F / S p i n \rightarrow B O_{\otimes}$ making the displayed square commute. The infinite loop map $\psi^{k} / 1$ is the restriction of $\psi^{k}-1: k o \rightarrow b s p i n$ to the 1 -component $B O_{\otimes}=S L_{1}(k o)$, so its homotopy fiber is identified with the 1-component $J_{\otimes}=S L_{1}(j)$ of j, all after p-completion.

Turning to the upper half of the diagram, Adams proved that the composite $B j \circ\left(\psi^{k}-1\right)$ on some classes in $\widetilde{K O}^{0}(X)=[X, B O]$ is zero in $[X, B S F]_{p}^{\wedge}$, and conjectured that this is always so. The Adams conjecture, that $B j \circ\left(\psi^{k}-1\right)$ is null-homotopic after p-completion, was proved by Quillen and by Sullivan, and leads to the existence of the (p-complete) space level maps α^{k} and γ^{k}. Such map α^{k} is sometimes called a solution to the Adams conjecture. It is known ((Madsen, Tornehave?)) that these maps cannot be delooped for $p=2$. ((Positive result for odd p by Friedlander.)) By Adams' calculations in the $J(X)$-papers, the square with corners $B O, B S p i n, B O_{\otimes}$ and $B S p i n_{\otimes}$ is homotopy cartesian, so that the composite map e $e \alpha^{k}: J \rightarrow J_{\otimes}$ of homotopy fibers is a homotopy equivalence.

We write $\mu_{8 i+r} \in \pi_{8 i+r}(S) \cong \pi_{8 i+r}(S F)$ for the image under α_{*}^{k} of the class with the same name in $\pi_{8 i+r}(J)$, which is detected by $\eta^{r} \beta^{i} \in \pi_{8 i+r}\left(B O_{\otimes}\right) \cong \pi_{8 i+r}(k o)$.

Theorem 9.10 (Adams, Quillen, Sullivan). The homomorphism $e_{*}: \pi_{*}\left(S_{p}^{\wedge}\right) \rightarrow \pi_{*}\left(j_{p}^{\wedge}\right)$ is split surjective. A section for $*>0$ is given (after implicit p-completion) by a solution $\alpha_{*}^{k}: \pi_{*}(J) \rightarrow \pi_{*}(S F) \cong \pi_{*}(S)$ to the Adams conjecture.

The image $\operatorname{im}\left(\alpha_{*}^{k}\right) \cong \pi_{*}(J)$ of that section is the direct sum of two parts: The first part is the image $\operatorname{im}(J)$ of the J-homomorphism $J=\pi_{*}(j): \pi_{*}(\operatorname{Spin}) \rightarrow \pi_{*}(S F) \cong \pi_{*}(S)$. The second part is $\mathbb{Z} / 2\left\{\mu_{8 i+r} \mid i \geq 0, r=1,2\right\}$, which is detected by $d_{*}: \pi_{*}(S) \rightarrow \pi_{*}(k o)$.

Adams calls the μ-classes "honorary members" of the image of J.
Lemma 9.11. (We implicitly work completed at $p=2$.) $e_{*}: \pi_{*}(S) \rightarrow \pi_{*}(j)$ is an isomorphism in degrees $* \leq 13$, except in degrees $*=6,8$ and 9 :

```
\(\pi_{6}(e): \pi_{6}(S) \rightarrow \pi_{6}(j)\) takes \(\nu^{2}\) to 0.
\(\pi_{7}(e): \pi_{8}(S) \rightarrow \pi_{8}(j)\) takes \(\eta \sigma\) and \(\epsilon\) to \(\eta \sigma\).
\(\pi_{9}(e): \pi_{9}(S) \rightarrow \pi_{9}(j)\) takes \(\eta^{2} \sigma\) and \(\eta \epsilon\) to \(\eta^{2} \sigma\), and \(\mu=\mu_{9}\) to \(\mu\).
```

Proof. The claim about $\pi_{6}(e)$ is obvious, and implies that $\pi_{9}(e)$ takes $\nu^{3}=\eta^{2} \sigma+\eta \epsilon$ to 0 . ((Cite Toda for that relation?)) Hence both $\eta^{2} \sigma$ and $\eta \epsilon$ map to $\eta^{2} \sigma$, which implies the claim for $\pi_{8}(e)$.
((It follows that $\eta \sigma$ must have Adams filtration ≥ 3 in $\left.\pi_{*}(j).\right)$)

9.2 The image of J in the Adams spectral sequence

To describe the role of the image of J as a subgroup of the stable homotopy groups of spheres, viewed as the abutment of the Adams spectral sequence for S, we need to have an image of the latter in the

Figure 37: Π_{3}-periodic Adams chart for S
relevant region, which is a diagonal band parallel to the Adams vanishing line of slope $1 / 2$. For this, we need to appeal to the Adams periodicity theorem, proved above in Theorem 8.39. The contribution of the image of J at the Adams E_{∞}-term is largely contained in the periodicity range for the operator $P=\Pi_{2}$ that increases $t-s$ by 8 . However, some of our arguments involving $S / 2$ fall outside of that range, so that it seems best to work in the periodicity range for the operator Π_{3} that increases $t-s$ by 16 , and which equals P^{2} where the latter is defined.

We use the following form of the Adams periodicity theorem, proved above in Theorem 8.39 for $s \geq 7$. The claim for $3 \leq s \leq 6$ must be checked directly.

Theorem 9.12. There is an isomorphism

$$
\Pi_{3}: \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \xrightarrow{\cong} \operatorname{Ext}_{\mathscr{A}}^{s+8, t+24}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

for $s \geq 3$ and

$$
0<t-s<2 s+ \begin{cases}10 & \text { for } s \equiv 0,1 \bmod 4 \\ 12 & \text { for } s \equiv 2 \bmod 4 \\ 11 & \text { for } s \equiv 3 \bmod 4\end{cases}
$$

Hence the pattern above the dashes in Figure 37 repeats every $t-s=16$ degrees. We are most interested in the uppermost part, close to the line $t-s=2 s$.

As a consequence of the proven Adams conjecture, we get the following theorem. See Ravenel (1986, Theorem 3.4.16) and Davis-Mahowald (1989, Theorem 1.1).

Theorem 9.13. The classes $c_{0}, h_{1} c_{0}, P h_{1}, h_{1} P h_{1}, P h_{2}, h_{0} P h_{2}$ and $h_{0}^{2} P h_{2}=h_{1}^{2} P h_{1}$, as well as all of their images under powers of P, survive to E_{∞} in the Adams spectral sequence (meaning that they are infinite cycles and not boundaries). They represent subgroups $\mathbb{Z} / 2 \subset \pi_{8 i}(S)$, $(\mathbb{Z} / 2)^{2} \subset \pi_{8 i+1}(S)$, $\mathbb{Z} / 2 \subset \pi_{8 i+2}(S)$ and $\mathbb{Z} / 8 \subset \pi_{8 i+3}(S)$ that map isomorphically to $\pi_{8 i}\left(j_{2}^{\wedge}\right), \pi_{8 i+1}\left(j_{2}^{\wedge}\right), \pi_{8 i+2}\left(j_{2}^{\wedge}\right)$ and $\pi_{8 i+3}\left(j_{2}^{\wedge}\right)$, respectively.

In topological degree $t-s=8 i-1$, for $i \geq 1$, there is a class surviving to E_{∞} in each of the $(v+4)$ Adams filtrations s with $4 i-v-3 \leq s \leq 4 i$, where $v=v_{2}(i)$. These represent a subgroup $\mathbb{Z} / 2^{v+4}=\mathbb{Z}_{2} /(16 i) \subset \pi_{8 i-1}(S)$ that maps isomorphically to $\pi_{8 i-2}\left(j_{2}^{\wedge}\right)$.

Figure 38: Π_{3}-periodic Adams chart for $S / 2$

There is a hidden η-multiplication from the generator in degree $t-s=8 i-1$ and filtration $s=4 i-v-3$ to $P^{i-1} c_{0}$.

To prove (a part of) this, we shall compare S and j with $S / 2$ and $j / 2$. We proved the following version of the periodicity theorem for $S / 2$ in Theorem 8.37 , at least for $s \geq 5$. The case $s=4$ can be checked directly.

Theorem 9.14. There is an isomorphism

$$
\Pi_{3}: \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(S / 2), \mathbb{F}_{2}\right) \xrightarrow{\cong} \operatorname{Ext}_{\mathscr{A}}^{s+4, t+12}\left(H^{*}(S / 2), \mathbb{F}_{2}\right)
$$

for $s \geq 4$ and

$$
t-s<2 s+ \begin{cases}10 & \text { for } s \equiv 0 \quad \bmod 4 \\ 11 & \text { for } s \equiv 1,3 \bmod 4 \\ 12 & \text { for } s \equiv 2 \quad \bmod 4\end{cases}
$$

Hence the pattern above the dashes in Figure 38 repeats every $t-s=16$ degrees.
Associated to the cofiber sequence $S \rightarrow S / 2 \rightarrow \Sigma S=S^{1}$, we have an extension

$$
0 \rightarrow \Sigma \mathbb{F}_{2} \rightarrow H^{*}(S / 2) \rightarrow \mathbb{F}_{2} \rightarrow 0
$$

and a long exact sequence of Ext-groups:

$$
\cdots \rightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(S / 2), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t-1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \xrightarrow{\delta} \operatorname{Ext}_{\mathscr{A}}^{s+1, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow \ldots
$$

where the connecting homomorphism is given by the Yoneda product with $h_{0} \in \operatorname{Ext}_{\mathscr{A}}^{1,1}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.
Lemma 9.15. The map $E_{2}^{*, *}(S) \rightarrow E_{2}^{*, *}(S / 2)$ of Adams spectral sequences takes the h_{0}-indecomposable classes $c_{0}, h_{1} c_{0}, P h_{1}, h_{1} P h_{1}$ and $P h_{2}$, as well as all of their images under powers of P, injectively to linearly independent classes in the target.

The morphism $E_{2}^{*, *}(S / 2) \rightarrow E_{2}^{*, *}(\Sigma S) \cong E_{2}^{*, *-1}(S)$ maps classes in the source surjectively to the h_{0}-annihilated classes $h_{0}^{3} h_{3}, c_{0}, h_{1} c_{0}, P h_{1}, h_{1} P h_{1}$ and $h_{1}^{2} P h_{1}=h_{0}^{2} P h_{2}$, as well as all of their P-power images.

Proof. ((By inspection.))

Remark 9.16. This lemma accounts for 11 of the 12 generators in the two uppermost families of lightning flashes in the Adams chart for $S / 2$. The remaining generator, in degree $(8 i-1)$, is exceptional: The h_{0}-indecomposable class at the bottom of the tower leading up to $P^{i-1}\left(h_{0}^{3} h_{3}\right)$ can have very low Adams filtration, and does often not contribute to $E_{2}^{*, *}(S / 2)$ within the Adams periodic range. Instead, the class $h_{2} P^{i-1} h_{2}$ is annihilated by h_{0} and contributes a class x in $E_{2}^{4 i-2,12 i-3}(S / 2)$ with $h_{1} x$ equal to the image of c_{0}.

We can compare these charts with the Adams charts for j and $j / 2$. See Mahowald-Milgram, Davis and Angeltveit-Rognes for the following calculation

Proposition 9.17. The lift $\theta: k o \rightarrow b s p i n$ of $\psi^{3}-1$ induces the homomorphism

$$
\theta^{*}: \Sigma^{4} \mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{2} S q^{3}\right\}=H^{*}(\text { bspin }) \rightarrow H^{*}(k o)=\mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{2}\right\}=\mathscr{A} / / A(1)
$$

that takes the generator $\Sigma^{4} 1$ to the class of $S q^{4}$. There are isomorphisms

$$
\begin{aligned}
& \Sigma K=\operatorname{ker}\left(\theta^{*}\right) \\
& \cong \Sigma^{8} \mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{7}, S q^{4} S q^{6}+S q^{6} S q^{4}\right\} \\
& C=\operatorname{cok}\left(\theta^{*}\right)
\end{aligned} \subseteq \mathscr{A} / \mathscr{A}\left\{S q^{1}, S q^{2}, S q^{4}\right\}=\mathscr{A} / / A(2) .
$$

The extension

$$
0 \rightarrow C \rightarrow H^{*}(j) \rightarrow K \rightarrow 0
$$

is nontrivial, and

$$
H^{*}(j) \cong \mathscr{A}\{1, x\} / \mathscr{A}\left\{S q^{1}, S q^{2}, S q^{4}, S q^{8}+S q^{1} x, S q^{7} x,\left(S q^{4} S q^{6}+S q^{6} S q^{4}\right) x\right\}
$$

with generators 1 and x in degrees 0 and 7, respectively.
((The isomorphism $C \cong H^{*}(t m f)$ is incidental; there is no map $j \rightarrow t m f$ inducing the inclusion $C \rightarrow$ $H^{*}(j)$ in cohomology. See also Bruner's note (2012). Check if $S q^{4} S q^{6}+S q^{6} S q^{4}=S q^{(0,1,1)}+S q^{(4,2)}$.))

Proposition 9.18 (Bruner). The map $\theta / 2: k o / 2 \rightarrow b s p i n / 2$ induces the homomorphism

$$
(\theta / 2)^{*}: \Sigma^{4} \mathscr{A} / \mathscr{A}\left\{S q^{2} S q^{3}\right\}=H^{*}(\text { bspin } / 2) \rightarrow H^{*}(k o / 2)=\mathscr{A} / \mathscr{A}\left\{S q^{2}, Q_{1}\right\}
$$

that takes the generator $\Sigma^{4} 1$ to the class of ((ETC)).
The extension

$$
0 \rightarrow C \otimes H^{*}(S / 2) \rightarrow H^{*}(j / 2) \rightarrow K \otimes H^{*}(S / 2) \rightarrow 0
$$

induces a long exact sequence of Ext-groups:

$$
\cdots \rightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(K \otimes H^{*}(S / 2), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(j / 2), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(C \otimes H^{*}(S / 2), \mathbb{F}_{2}\right) \rightarrow \ldots
$$

where we can rewrite the right hand term as $\operatorname{Ext}_{A(2)}^{s, t}\left(H^{*}(S / 2), \mathbb{F}_{2}\right)$, which we computed above.
The Adams spectral sequence for j was studied by Davis (1975). The sequence for $j / 2$ is simpler, and is implicitly described on page 41 of Davis-Mahowald (1989). A more direct argument has been studied by Bruner:

Figure 39: Adams chart for $j / 2$

Proposition 9.19 (Bruner). The exact sequence above splits, so that the Adams E_{2}-term for $j / 2$ is

$$
E_{2}^{s, t}(j / 2) \cong \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(C \otimes H^{*}(S / 2), \mathbb{F}_{2}\right) \oplus \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(K \otimes H^{*}(S / 2), \mathbb{F}_{2}\right)
$$

There is a short exact sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}_{\mathscr{A}}^{s-2, t-1}\left(K \otimes H^{*}(S / 2), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(C \otimes H^{*}(S / 2), \mathbb{F}_{2}\right) \\
& \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(k o / 2), \mathbb{F}_{2}\right) \oplus \operatorname{Ext}_{\mathscr{A}}^{s-1, t}\left(H^{*}(b s p i n / 2), \mathbb{F}_{2}\right) \rightarrow 0
\end{aligned}
$$

and the Adams d_{2}-differental is given by the left hand homomorphism, so that

$$
E_{3}^{s, t}(j / 2) \cong E x t_{\mathscr{A}}^{s, t}\left(H^{*}(k o / 2), \mathbb{F}_{2}\right) \oplus \operatorname{Ext}_{\mathscr{A}}^{s-1, t}\left(H^{*}(b s p i n / 2), \mathbb{F}_{2}\right)
$$

is concentrated in bidegrees $(t-s, s)$ with $t-s \leq 2 s+3$. There are no further differentials, so $E_{3}=E_{\infty}$ for bidegree reasons.

This means that the Adams E_{2}-term for $j / 2$ contains a copy of the charts for $k o / 2$ and for bspin $/ 2$ (shifted up one filtration), consisting of two lightning flashes every eight degrees, plus two copies of Ext \mathscr{A} for $K \otimes H^{*}(S / 2)$, starting in bidegrees $(t-s, s)=(7,0)$ and $(6,2)$, respectively. The d_{2}-differentials make these two copies cancel, leaving only the lightning flashes at E_{3} and beyond. See Figure 39. ((Add differentials to chart?))

Lemma 9.20. The map e/2: $S / 2 \rightarrow j / 2$ induces a surjective homomorphism $H^{*}(j / 2) \rightarrow H^{*}(S / 2)$, and the induced homomorphism

$$
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(S / 2), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(j / 2), \mathbb{F}_{2}\right)
$$

is an isomorphism for $s \geq 4$ and $t-s \leq 2 s+3$.
Proof. We write c for the homotopy fiber of $e: S \rightarrow j$, so that there is a cofiber sequence

$$
c \rightarrow S \xrightarrow{e} j \rightarrow \Sigma c
$$

inducing the short exact sequences

$$
0 \rightarrow H^{*}(\Sigma c) \rightarrow H^{*}(j) \rightarrow H^{*}(S) \rightarrow 0
$$

and

$$
0 \rightarrow H^{*}(\Sigma c / 2) \rightarrow H^{*}(j / 2) \rightarrow H^{*}(S / 2) \rightarrow 0
$$

We get a long exact sequence

$$
\cdots \rightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(S / 2), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(j / 2), \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(\Sigma c / 2), \mathbb{F}_{2}\right) \rightarrow \ldots
$$

Here $H^{*}(\Sigma c / 2)=H^{*}(\Sigma c) \otimes H^{*}(S / 2)$ is $A(0)$-free and concentrated in degrees $* \geq 7$, so

$$
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(\Sigma c / 2), \mathbb{F}_{2}\right)=0
$$

for $(t-7)-s<2 s-\epsilon(s)$, by Adams vanishing in the form of Proposition 6.20. In particular,

$$
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(S / 2), \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(j / 2), \mathbb{F}_{2}\right)
$$

is surjective for $t-s \leq 2 s+3$. For $s \geq 4$ the dimensions of the Ext-groups agree in this range, so these surjections are in fact isomorphisms.

Remark 9.21. We call c the cokernel-of- J spectrum, to go with the image-of- J spectrum j. The composite $\pi_{*}(c) \rightarrow \pi_{*}(S) \rightarrow \operatorname{cok}(J)$ is almost an isomorphism, except for the μ-classes.
Proposition 9.22. In the Adams spectral sequence

$$
E_{2}^{s, t}(S / 2)=\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(H^{*}(S / 2), \mathbb{F}_{2}\right) \Longrightarrow \pi_{t-s}(S / 2)
$$

the classes in bidegree $(t-s, s)$ with $s \geq 4$ and $t-s \leq 2 s+3$ survive to E_{∞}. In degrees $t-s \geq 10$ they represent subgroups $\mathbb{Z} / 2 \subset \pi_{8 i-1}(S / 2),(\mathbb{Z} / 2)^{2} \subset \pi_{8 i}(S / 2), \mathbb{Z} / 2 \oplus \mathbb{Z} / 4 \subset \pi_{8 i+1}(S / 2), \mathbb{Z} / 4 \oplus \mathbb{Z} / 2 \subset$ $\pi_{8 i+2}(S / 2),(\mathbb{Z} / 2)^{2} \subset \pi_{8 i+3}(S / 2)$ and $\mathbb{Z} / 2 \subset \pi_{8 i+4}(S / 2)$ that map isomorphically to $\pi_{8 i-1}(j / 2)$ through $\pi_{8 i+4}(j / 2)$, respectively.

Proof. The classes are infinite cycles for bidegree reasons. They cannot be boundaries, since we have a map of Adams spectral sequences

$$
E_{r}^{*, *}(S / 2) \longrightarrow E_{r}^{*, *}(j / 2)
$$

and their images in the Adams spectral sequence for $j / 2$ are not boundaries. They represent subgroups in the abutment $\pi_{*}(S / 2)$ that map isomorphically to the corresponding subgroups in the abutment $\pi_{*}(j / 2)$, since the map of E_{∞}-terms is an isomorphism in the relevant filtrations.

Proposition 9.23. In the Adams spectral sequence for S, the five classes $c_{0}, h_{1} c_{0}, P h_{1}, h_{1} P h_{1}$ and $P h_{2}$, as well as all of their images under powers of P, survive to E_{∞}. They represent classes in $\pi_{*}\left(S_{2}^{\wedge}\right)$ that map to generators of $\pi_{*}\left(j_{2}^{\wedge}\right) / 2$ in degrees $8 i \leq * \leq 8 i+3$.
$(($ We are omitting the difficult degrees $*=8 i-1$ here. $)))$
Proof. The classes are infinite cycles for bidegree reasons. They cannot be boundaries, since we have a map of Adams spectral sequences

$$
E_{r}^{*, *}(S) \longrightarrow E_{r}^{*, *}(S / 2)
$$

that takes these classes to survivors in the right hand spectral sequence. The claim about abutments follows from the commutative square

Let us write $A[n]=\{x \in A \mid n x=0\}$ for the exponent n subgroup of an abelian group A.
Proposition 9.24. In the Adams spectral sequence for S, the six classes $h_{0}^{3} h_{3}, c_{0}, h_{1} c_{0}, P h_{1}, h_{1} P h_{1}$ and $h_{1}^{2} P h_{1}=h_{0}^{2} P h_{2}$, as well as all of their images under powers of P, survive to E_{∞}. They represent classes (of order 2) in $\pi_{*}\left(S_{2}^{\wedge}\right)$ that map to generators of $\pi_{*}\left(j_{2}^{\wedge}\right)[2]$ in degrees $8 i-1 \leq * \leq 8 i+3$.

Figure 40: Adams E_{2}-term for $S, 0 \leq t-s \leq 24$

Proof. The classes are too close to the vanishing line to support differentials. There are infinite survivors in bidegrees $(t-s, s)$ with $t-s \leq 2 s+3$ in the Adams spectral sequence for $S / 2$, that map to these classes under the map of Adams spectral sequences

$$
E_{r}^{*, *}(S / 2) \longrightarrow E_{r}^{*, *}(\Sigma S)=E_{r}^{*, *-1}(S)
$$

Those infinite survivors represent a subgroup of $\pi_{*+1}(S / 2)$ that maps isomorphically to the subgroup $\pi_{*}\left(j_{2}^{\wedge}\right)[2]$ of $\pi_{*}\left(j_{2}^{\wedge}\right)$, via the maps $S / 2 \rightarrow j / 2 \rightarrow \Sigma j_{2}^{\wedge}$. Hence the six classes represent a subgroup of $\pi_{*}\left(S_{2}^{\wedge}\right)[2] \subset \pi_{*}\left(S_{2}^{\wedge}\right)$ that maps onto $\pi_{*}\left(j_{2}^{\wedge}\right)[2]$, in view of the commutative square

If follows that the six classes remain linearly independent at E_{∞}, so none of them are hit by Adams differentials.
$\left(\left(t m f / 2\right.\right.$ and $\left.\left.t m f /\left(2, v_{1}^{4}\right) ?\right)\right)$

9.3 The Adams spectral sequence for S

Machine computation of $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, e.g. using Bruner's ext program, gives the Adams E_{2}-term for the sphere given in Figures 40 and 41.
((Beware: f_{0} and y ambiguous; $e_{1}^{\prime}=e_{1}+h_{0}^{2} h_{3} h_{5}$ and $Q^{\prime}=Q+P u$. Check f_{1} and $\left.\left.B_{2}.\right)\right)$
In this range we have the algebra generators given in Table 8 for the Yoneda product, grouped by Adams filtration s and topological degree $t-s$. The generators are named as in Mahowald-Tangora (1967), Mahowald-Tangora (1968) and Tangora (1970), extending the notation from May's thesis (1964). ((Explain ext name.))

We now discuss the Adams spectral sequence differentials implied by the image-of- J splitting.

Figure 41: Adams E_{2}-term for $S, 24 \leq t-s \leq 48$

Name	$t-s$	s	t	ext
h_{0}	0	1	1	1_{0}
h_{1}	1	1	2	1_{1}
h_{2}	3	1	4	1_{2}
h_{3}	7	1	8	1_{3}
h_{4}	15	1	16	1_{4}
h_{5}	31	1	32	1_{5}
c_{0}	8	3	11	3_{3}
c_{1}	19	3	22	3_{9}
c_{2}	41	3	44	3_{19}
d_{0}	14	4	18	4_{3}
e_{0}	17	4	21	4_{5}
f_{0}	18	4	22	$4_{6}(?)$
g	20	4	24	4_{8}
d_{1}	32	4	36	4_{13}
p	33	4	37	4_{14}
e_{1}	38	4	42	$4_{16}+4_{17}(?)$
f_{1}	40	4	44	$4_{19}+4_{20}(?)$
g_{2}	44	4	48	4_{22}
$P h_{1}$	9	5	14	5_{1}
$P h_{2}$	11	5	16	5_{2}
n	31	5	36	5_{13}
x	37	5	42	5_{17}
r	30	6	36	6_{10}
q	32	6	38	6_{12}
t	36	6	42	6_{14}
y	38	6	44	$6_{16}(?)$
$P c_{0}$	16	7	23	7_{3}
i	23	7	30	7_{5}
j	26	7	33	7_{6}
k	29	7	36	7_{7}
l	32	7	39	7_{10}
m	35	7	42	7_{12}
B_{1}	46	7	53	7_{20}
B_{2}	48	7	55	$7_{22}(?)$

Name	$t-s$	s	t	ext
$P d_{0}$	22	8	30	8_{3}
$P e_{0}$	25	8	33	8_{5}
N	46	8	54	8_{20}
$P^{2} h_{1}$	17	9	26	9_{1}
$P^{2} h_{2}$	19	9	28	9_{2}
u	39	9	48	9_{18}
v	42	9	51	9_{19}
w	45	9	54	9_{20}
z	41	10	51	10_{14}
$P^{2} c_{0}$	24	11	35	11_{3}
$P j$	34	11	45	11_{7}
$P^{2} d_{0}$	30	12	42	12_{3}
$P^{2} e_{0}$	33	12	45	12_{5}
$P^{3} h_{1}$	25	13	38	13_{1}
$P^{3} h_{2}$	27	13	40	13_{2}
Q	47	13	60	$13_{14}(?)$
$P u$	47	13	60	$13_{15}(?)$
$P^{3} c_{0}$	32	15	47	15_{3}
$P^{2} i$	39	15	54	15_{5}
$P^{2} j$	42	15	57	15_{6}
$P^{3} d_{0}$	38	16	54	16_{3}
$P^{3} e_{0}$	41	16	57	16_{5}
$P^{4} h_{1}$	33	17	50	17_{1}
$P^{4} h_{2}$	35	17	52	17_{2}
$P^{4} c_{0}$	40	19	59	19_{3}
$P^{4} d_{0}$	46	20	66	20_{3}
$P^{4} e_{0}$	49	20	69	20_{5}
$P^{5} h_{1}$	41	21	62	21_{1}
$P^{5} h_{2}$	43	21	64	21_{2}
$P^{5} c_{0}$	48	23	71	21_{3}

Table 8: Algebra generators of $\mathrm{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ for $t-s \leq 48$

Theorem 9.25. There are nontrivial differentials $d_{2}\left(h_{4}\right)=h_{0} h_{3}^{2}, d_{3}\left(h_{0} h_{4}\right)=h_{0} d_{0}$ and $d_{3}\left(h_{0}^{2} h_{4}\right)=h_{0}^{2} d_{0}$.
Proof. The image of J in $\pi_{15}\left(S_{2}^{\wedge}\right)$ is isomorphic to $\mathbb{Z} / 32$, and we know that a generator is represented in Adams filtration $s=4$, where the only nonzero class is $h_{0}^{3} h_{4}$. Hence the classes $h_{0}^{i} h_{4}$ for $3 \leq i \leq 7$ survive to E_{∞}, while the classes $h_{0}^{i} h_{4}$ for $0 \leq i \leq 2$ do not survive to E_{∞}. They cannot be boundaries for degree reasons, so they must support differentials.

The Adams differential $d_{2}\left(h_{4}\right)=h_{0} h_{3}^{2}$ is a consequence of the homotopy commutativity of S. The classes 2 and σ are represented by h_{0} and h_{3}, respectively, so $2 \sigma^{2}$ must be represented by the infinite cycle $h_{0} h_{3}^{2}$. By homotopy commutativity, $2 \sigma^{2}=0$, which means that $h_{0} h_{3}^{2}$ must represent zero at E_{∞}, meaning that it is a boundary. The only possible class x to support a differential $d_{r}(x)=h_{0} h_{3}^{2}$ for $r \geq 2$ is $x=h_{4}$, giving the stated Adams differential.

It follows that $d_{2}\left(h_{0} h_{4}\right)=h_{0}^{2} h_{3}^{2}=0$, so $h_{0} h_{4}$ survives to E_{3}. If $d_{3}\left(h_{0} h_{4}\right)=0$ then $d_{3}\left(h_{0}^{2} h_{4}\right)=0$, and then $h_{0}^{2} h_{4}$ would have to be an infinite cycle, since there are no targets for later differentials on that class. This contradicts the order of the image of J in π_{15}, so we deduce that $d_{3}\left(h_{0} h_{4}\right)$ is nonzero. The only possible value is $h_{0} d_{0}$. Multiplication by h_{0} then gives the value of $d_{3}\left(h_{0}^{2} h_{4}\right)$.

Theorem 9.26. There is a nontrivial d_{2}-differential $d_{2}(i)=h_{0} P d_{0}$, which implies the nonzero differentials $d_{2}\left(h_{0} i\right)=h_{0}^{2} P d_{0}, d_{2}\left(P e_{0}\right)=h_{1}^{2} P d_{0}, d_{2}(j)=h_{0} P e_{0}, d_{2}\left(h_{0} j\right)=h_{0}^{2} P e_{0}, d_{2}\left(h_{0}^{2} j\right)=h_{0}^{3} P e_{0}$, $d_{2}(k)=h_{0} P g, d_{2}\left(h_{0} k\right)=h_{0}^{2} P g, d_{2}(l)=h_{0} d_{0} e_{0}, d_{2}\left(h_{0} l\right)=h_{0}^{2} d_{0} e_{0}, d_{2}(m)=h_{0} e_{0}^{2}, d_{2}\left(h_{0} m\right)=h_{0}^{2} e_{0}^{2}$, $d_{2}(y)=h_{0}^{3} x, d_{2}\left(h_{0} y\right)=h_{0}^{4} x$ and $d_{2}\left(h_{0}^{2} y\right)=h_{0}^{5} x$.
Proof. We know that of the h_{0}-tower in topological degree $t-s=23$ starting with i, only the top four classes survive to E_{∞}, since these generate a cyclic summand $\mathbb{Z} / 16 \subset \pi_{23}(S)$ that maps isomorphically to $\pi_{23}\left(j_{2}^{\wedge}\right)$. Thus the classes i and $h_{0} i$ cannot survive to E_{∞}. They cannot be boundaries, since any differential $d_{r}(x)=i$ would imply that $d_{r}\left(h_{0}^{2} x\right)=h_{0}^{2} i$ is a boundary, and similarly any differential $d_{r}(x)=h_{0} i$ would imply that $d_{r}\left(h_{0} x\right)=h_{0}^{2} i$ is a boundary. (For this part of the argument, it suffices to know that the top class, $h_{0}^{5} i$ in Adams filtration $s=12$ is not a boundary.) Hence i and $h_{0} i$ must support nonzero differentials. The only possibilities for i are $d_{2}(i)=h_{0} P d_{0}$ or $\left(d_{2}(i)=0\right.$ and) $d_{3}(i)=h_{0}^{2} P d_{0}$. In the latter case, $d_{2}\left(h_{0} i\right)=0$ and $d_{3}\left(h_{0} i\right)=0$, which would make $h_{0} i$ an infinite cycle. Since we know this does not happen, we must have $d_{2}(i)=h_{0} P d_{p}$.

We claim that $d_{2}(t)=0$. The alternative, $d_{2}(t)=h_{0} m$, would imply that $d_{2}\left(h_{0} t\right)=h_{0}^{2} m \neq 0$, which contradicts the relation $h_{0} t=0$. It follows that $h_{1} y=h_{2} t$ is a d_{2}-cycle, so $h_{1} d_{2}(y)=0$. This implies that $d_{2}(y)=0$ or $h_{0}^{3} x$. Since $h_{0}^{2} y=h_{2} m$ supports the nonzero differential $d_{2}\left(h_{0}^{2} y\right)=h_{0}^{5} x$, we deduce that $d_{2}(y)=h_{0}^{3} x$.

Theorem 9.27. There are nontrivial differentials $d_{2}\left(h_{5}\right)=h_{0} h_{4}^{2}, d_{3}\left(h_{0}^{3} h_{5}\right)=h_{0} r$ and $d_{4}\left(h_{0}^{8} h_{5}\right)=$ $h_{0} P^{2} d_{0}$, which imply the nonzero differentials $d_{2}\left(h_{0} h_{5}\right)=h_{0}^{2} h_{4}^{2}, d_{2}\left(h_{0}^{2} h_{5}\right)=h_{0}^{4} h_{4}^{2}, d_{3}\left(h_{0}^{4} h_{5}\right)=h_{0}^{2} r$, $d_{3}\left(h_{0}^{5} h_{5}\right)=h_{0}^{3} r, d_{3}\left(h_{0}^{6} h_{5}\right)=h_{0}^{4} r, d_{3}\left(h_{0}^{7} h_{5}\right)=h_{0}^{5} r$ and $d_{4}\left(h_{0}^{9} h_{5}\right)=h_{0}^{2} P^{2} d_{0}$.

Proof. The image of J in $\pi_{31}\left(S_{2}^{\wedge}\right)$ is isomorphic to $\mathbb{Z} / 64$, hence is represented by six classes in E_{∞} in Adams filtrations $11 \leq s \leq 16$. In particular, a generator is represented by $h_{0}^{10} h_{5}$, so the classes $h_{0}^{i} h_{5}$ for $10 \leq i \leq 16$ survive to E_{∞}, while the ten classes for $0 \leq i \leq 9$ do not. They cannot be boundaries, as before, so they must support d_{r}-differentials for $r \geq 2$. The possible targets for these differentials are the 12 classes given by h_{0}-power multiples of $h_{0} h_{4}^{2}, r$ and $P^{2} d_{0}$. The relations $h_{0} \cdot h_{0}^{3} h_{4}^{2}=0$ and $h_{0} \cdot h_{0}^{5} r=0$ imply that at most one of the two classes $h_{0}^{3} h_{4}^{2}$ and r can be hit by these differentials, and likewise at most one of the two classes $h_{0}^{5} r$ and $P^{2} d_{0}$ can be hit. Since there are at most ten targets for the ten classes that must support differentials, it follows that all the other possible targets are hit.

Starting in low filtrations, this tells us that $h_{0} h_{4}^{2}$ is a boundary, and $d_{2}\left(h_{5}\right)=h_{0} h_{4}^{2}$ is the only possibility. This implies $d_{2}\left(h_{0} h_{5}\right)=h_{0}^{2} h_{4}^{2}, d_{2}\left(h_{0}^{2} h_{5}\right)=h_{0}^{3} h_{4}^{2}$ and $d_{2}\left(h_{0}^{i} h_{5}\right)=0$ for $i \geq 3$.

The seven remaining classes $h_{0}^{i} h_{5}$ with $3 \leq i \leq 9$ must support d_{r}-differentials, for $r \geq 3$, that hit all but one of the eight classes given by h_{0}-multiples of $h_{0} r$ and $P^{2} d_{0}$. Since at most one of $h_{0}^{5} r$ and $P^{2} d_{0}$ can be hit, the other possible targets, including $h_{0} r$, must be hit, which implies that $d_{3}\left(h_{0}^{3} h_{5}\right)=h_{0} r$. This tells us that $d_{3}\left(h_{0}^{4} h_{5}\right)=h_{0}^{2} r, d_{3}\left(h_{0}^{5} h_{5}\right)=h_{0}^{3} r, d_{3}\left(h_{0}^{6} h_{5}\right)=h_{0}^{4} r, d_{3}\left(h_{0}^{7} h_{5}\right)=h_{0}^{5} r$ and $d_{3}\left(h_{0}^{i} h_{5}\right)=0$ for $i \geq 8$. We should argue that all but the last of these are in fact nonzero differentials. This can only fail if the target classes $h_{0}^{i} r$ for $1 \leq r \leq 5$ were d_{2}-boundaries. The only candidates for such d_{2}-differentials would be $d_{2}\left(d_{0} e_{0}\right)=h_{0}^{4} r$ or $d_{2}\left(h_{0} d_{0} e_{0}\right)=h_{0}^{5} r$, but we have seen above that $d_{0} e_{0}=d_{2}(l)$ and $h_{0} d_{0} e_{0}=d_{2}\left(h_{0} l\right)$, so this would contradict the fact that $d_{2} \circ d_{2}=0$ in any spectral sequence.

The two remaining classes $h_{0}^{8} h_{5}$ and $h_{0}^{9} h_{5}$ must support d_{r}-differentials for $r \geq 4$, and the only candidates for targets are $h_{0} P^{2} d_{0}$ and $h_{0}^{2} P^{2} d_{0}$. Hence $d_{4}\left(h_{0}^{8} h_{5}\right)=h_{0} P^{2} d_{0}$ and $d_{4}\left(h_{0}^{9} h_{5}\right)=h_{0}^{2} P^{2} d_{0}$.
((A more complicated pattern occurs for $t-s=63$, where other differentials intervene.))
Theorem 9.28. There is a nontrivial d_{2}-differential $d_{2}\left(P^{2} i\right)=h_{0} P^{3} d_{0}$, which implies the nonzero differentials $d_{2}\left(h_{0} P^{2} i\right)=h_{0}^{2} P^{3} d_{0}, d_{2}\left(P^{3} e_{0}\right)=h_{1}^{2} P^{3} d_{0}, d_{2}\left(P^{2} j\right)=h_{0} P^{3} e_{0}, d_{2}\left(h_{0} P^{2} j\right)=h_{0}^{2} P^{3} e_{0}$, $d_{2}\left(h_{0}^{2} P^{2} j\right)=h_{0}^{3} P^{3} e_{0}, d_{2}\left(P^{2} k\right)=h_{0} P^{3} g, d_{2}\left(h_{0} P^{2} k\right)=h_{0}^{2} P^{3} g, d_{2}\left(P^{2} l\right)=h_{0} P^{2} d_{0} e_{0}, d_{2}\left(h_{0} P^{2} l\right)=$ $h_{0}^{2} P^{2} d_{0} e_{0}, d_{2}\left(P^{2} m\right)=h_{0} P^{2} e_{0}^{2}, d_{2}\left(h_{0} P^{2} m\right)=h_{0}^{2} P^{2} e_{0}^{2}, d_{2}\left(R_{1}\right)=h_{0}^{2} x^{\prime}, d_{2}\left(h_{0} R_{1}\right)=h_{0}^{3} x^{\prime}, d_{2}\left(h_{0}^{2} R_{1}\right)=$ $h_{0}^{4} x^{\prime}, d_{2}\left(h_{0}^{3} R_{1}\right)=h_{0}^{5} x^{\prime}, d_{2}\left(h_{0}^{4} R_{1}\right)=h_{0}^{6} x^{\prime}, d_{2}\left(h_{0}^{5} R_{1}\right)=h_{0}^{7} x^{\prime}, d_{2}\left(h_{0}^{6} R_{1}\right)=h_{0}^{8} x^{\prime}, d_{2}\left(Q_{1}\right)=h_{1}^{2} x^{\prime}$ and $d_{2}\left(h_{1} Q_{1}\right)=h_{1}^{3} x^{\prime}$.

Proof. Up to the statement about $d_{2}\left(R_{1}\right)$, this is very similar to the proof of the theorem about $d_{2}(i)$ and its consequences. ((The rest is easy, given Ext in this range.))

Theorem 9.29. There are nontrivial differentials $d_{2}\left(Q^{\prime}\right)=h_{0} i^{2}$ and $d_{3}\left(h_{0}^{5} Q^{\prime}\right)=h_{0} P^{4} d_{0}$, which imply the nonzero differentials $d_{2}\left(h_{0} Q^{\prime}\right)=h_{0}^{2} i^{2}, d_{2}\left(h_{0}^{2} Q^{\prime}\right)=h_{0}^{3} i^{2}, d_{2}\left(h_{0}^{3} Q^{\prime}\right)=h_{0}^{4} i^{2}, d_{2}\left(h_{0}^{4} Q^{\prime}\right)=h_{0}^{5} i^{2}$, $d_{3}\left(h_{0}^{5} Q^{\prime}\right)=h_{0} P^{4} d_{0}$ and $d_{3}\left(h_{0}^{6} Q^{\prime}\right)=h_{0}^{2} P^{4} d_{0}$.
Proof. The image of J in $\pi_{47}\left(S_{2}^{\wedge}\right)$ is isomorphic to $\mathbb{Z}_{2} / 96=\mathbb{Z} / 32$, hence is represented by five classes in E_{∞} in Adams filtrations $20 \leq s \leq 24$. In particular, a generator is represented by $h_{0}^{7} Q^{\prime}$, so the classes $h_{0}^{i} Q^{\prime}$ for $7 \leq i \leq 11$ survive to E_{∞}, while the seven classes for $0 \leq i \leq 6$ do not. They cannot be boundaries, as before, so they must support d_{r}-differentials for $r \geq 2$.

The possible targets for these differentials are the eight classes given by h_{0}-power multiples of $h_{0} i^{2}$ and $P^{4} d_{0}$. The relation $h_{0} \cdot h_{0}^{5} i^{2}=0$ implies that at most one of the two classes $h_{0}^{5} i^{2}$ and $P^{4} d_{0}$ can be hit by these differentials. Since there are at most seven targets for the seven classes that must support differentials, it follows that all the other possible targets are hit.

In order of increasing Adams filtration, it follows that $h_{0} i^{2}$ must be hit by some $d_{r}\left(h_{0}^{i} Q^{\prime}\right)$ for $r \geq 2$, and $d_{2}\left(Q^{\prime}\right)=h_{0} i^{2}$ is the only possibility. This implies $d_{2}\left(h_{0} Q^{\prime}\right)=h_{0}^{2} i^{2}, d_{2}\left(h_{0}^{2} Q^{\prime}\right)=h_{0}^{3} i^{2}, d_{2}\left(h_{0}^{3} Q^{\prime}\right)=h_{0}^{4} i^{2}$ and $d_{2}\left(h_{0}^{4} Q^{\prime}\right)=h_{0}^{5} i^{2}$, while $d_{2}\left(h_{0}^{5} Q^{\prime}\right)=0$. The remaining two classes $h_{0}^{5} Q^{\prime}$ and $h_{0}^{6} Q^{\prime}$ can now only hit $h_{0} P^{4} d_{0}$ and $h_{0}^{2} P^{4} d_{0}$, which means that $d_{3}\left(h_{0}^{5} Q^{\prime}\right)=h_{0} P^{4} d_{0}$ and $d_{3}\left(h_{0}^{6} Q^{\prime}\right)=h_{0}^{2} P^{4} d_{0}$.
Theorem 9.30. There is a nontrivial d_{2}-differential $d_{2}\left(P^{4} i\right)=h_{0} P^{5} d_{0}$, which implies the nonzero differentials $d_{2}\left(h_{0} P^{4} i\right)=h_{0}^{2} P^{5} d_{0}, d_{2}\left(P^{5} e_{0}\right)=h_{1}^{2} P^{5} d_{0}, d_{2}\left(P^{4} j\right)=h_{0} P^{5} e_{0}, d_{2}\left(h_{0} P^{4} j\right)=h_{0}^{2} P^{5} e_{0}$, $d_{2}\left(h_{0}^{2} P^{4} j\right)=h_{0}^{3} P^{5} e_{0}, d_{2}\left(P^{4} k\right)=h_{0} P^{5} g, d_{2}\left(h_{0} P^{4} k\right)=h_{0}^{2} P^{5} g, d_{2}\left(P^{4} l\right)=h_{0} P^{4} d_{0} e_{0}, d_{2}\left(h_{0} P^{4} l\right)=$ $h_{0}^{2} P^{4} d_{0} e_{0}, d_{2}\left(P^{4} m\right)=h_{0} P^{4} e_{0}^{2}, d_{2}\left(h_{0} P^{4} m\right)=h_{0}^{2} P^{4} e_{0}^{2} \quad((E T C))$.

Proof. Through the statement about $d_{2}\left(h_{0} P^{4} m\right)$, this is very similar to the proof of the theorem about $d_{2}(i)$ and its consequences. ((Need Ext for $69 \leq t-s \leq 80+$ for full statement.))

Theorem 9.31. There are nontrivial differentials $d_{2}\left(e_{0}\right)=h_{1}^{2} d_{0}, d_{2}\left(f_{0}\right)=h_{0}^{2} e_{0}$ and $d_{2}\left(h_{0} f_{0}\right)=h_{0}^{3} e_{0}$.
Proof. There is a multiplicative relation $h_{0}^{2} y=f_{0} g$. Since $d_{2}(g)=0$ and $d_{2}\left(h_{0}^{2} y\right)=h_{0}^{5} x \neq 0$, it follows from the Leibniz rule that $d_{2}\left(f_{0}\right) \neq 0$. The only possibility is $d_{2}\left(f_{0}\right)=h_{0}^{2} e_{0}$. Multiplying by h_{0} gives $d_{2}\left(h_{0} f_{0}\right)=h_{0}^{3} e_{0}$, and dividing by h_{1} gives $d_{2}\left(e_{0}\right)=h_{1}^{2} d_{0}$.

Theorem 9.32. There is a nontrivial differential $d_{2}\left(h_{0} P j\right)=h_{0}^{2} P^{2} e_{0}$, which implies the nonzero differentials $d_{2}\left(P^{2} e_{0}\right)=h_{1}^{2} P^{2} d_{0}, d_{2}(P j)=h_{0} P^{2} e_{0}, d_{2}\left(h_{0}^{2} P j\right)=h_{0}^{3} P^{2} e_{0}, d_{2}(P k)=h_{0} P^{2} g, d_{2}\left(h_{0} P k\right)=$ $h_{0}^{3} P^{2} g, d_{2}\left(h_{0}^{2} P k\right)=h_{0}^{3} P^{2} g, d_{2}(P l)=h_{0} P d_{0} e_{0}, d_{2}\left(h_{0} P l\right)=h_{0}^{3} P d_{0} e_{0}, d_{2}\left(h_{0}^{2} P l\right)=h_{0}^{3} P d_{0} e_{0}, d_{2}(P m)=$ $h_{0} P e_{0}^{2}, d_{2}\left(h_{0} P m\right)=h_{0}^{3} P e_{0}^{2}$ and $d_{2}\left(h_{0}^{2} P m\right)=h_{0}^{3} P e_{0}^{2}$.

Proof. This follows as above from the multiplicative relation $h_{0}^{6} R_{1}=g \cdot h_{0} P j$, where $d_{2}\left(h_{0}^{6} R_{1}\right) \neq 0$ and $d_{2}(g)=0$.

Theorem 9.33. There is a nontrivial differential $d_{2}\left(h_{0} P^{3} j\right)=h_{0}^{2} P^{4} e_{0}$, which implies the nonzero differentials $d_{2}\left(P^{4} e_{0}\right)=h_{1}^{2} P^{4} d_{0}, d_{2}\left(P^{3} j\right)=h_{0} P^{4} e_{0}, d_{2}\left(h_{0}^{2} P^{3} j\right)=h_{0}^{3} P^{4} e_{0} \quad((E T C))$.

Proof. ((Use differential on $g \cdot h_{0} P^{3} j$, or periodicity.))
Here are the nonobvious multiplicative consequences of these differentials, for $t-s \leq 49$.

Figure 42: Adams d_{2}-differentials for $S, 0 \leq t-s \leq 24$

Lemma 9.34. $d_{2}\left(d_{0} e_{0}\right)=h_{1}^{2} P g=0, d_{2}\left(h_{3} h_{5}\right)=h_{0} h_{3} h_{4}^{2}=0, d_{2}\left(h_{5} c_{0}\right)=h_{0} h_{4}^{2} c_{0}=0, d_{2}\left(h_{4}^{3}\right)=$ $h_{0} h_{3}^{2} h_{4}^{2}=0, d_{2}\left(h_{5} P c_{0}\right)=h_{0} h_{4}^{2} P c_{0}=0, d_{2}\left(P^{2} d_{0} e_{0}\right)=h_{1}^{2} P^{3} g=0$ and $d_{2}(i j)=h_{0} P d_{0} j+h_{0} P e_{0} i=0$.

Lemma 9.35. The differential d_{2} is zero on the remaining algebra generators in degrees $t-s \leq 49$, except for the three cases c_{2}, v and B_{1}.

Proof. The differential d_{2} is zero on $h_{1}, n, d_{1}, q, t, e_{1}, z, P u$ by h_{0}-linearity. It is zero on p by h_{1}-linearity. It vanishes on c_{1} and r since the possible targets support nonzero d_{2}-differentials. It is zero on the remaining algebra generators in degrees $t-s \leq 49$, with the exception of c_{2}, v and B_{1}, since the target groups are trivial.

Theorem 9.36. There are nontrivial differentials $d_{2}\left(c_{2}\right)=h_{0} f_{1}$ and $d_{2}(v)=h_{0} z$, while $d_{2}\left(B_{1}\right)=0$.
This implies the nonzero differentials $d_{2}\left(h_{0} c_{2}\right)=h_{0}^{2} f_{1}, d_{2}\left(h_{3} c_{2}\right)=h_{0} h_{2} g_{2}, d_{2}\left(h_{5} e_{0}\right)=h_{1}^{2} h_{5} d_{0}$ and $d_{2}\left(h_{5} f_{0}\right)=h_{0}^{2} h_{5} e_{0}$.
((Proof postponed.))
Remark 9.37. The differential $d_{2}\left(c_{2}\right)=h_{0} f_{1}$ was overlooked in Mahowald-Tangora (1967), but discovered by means of Steenrod operations in Ext \mathscr{A} by Milgram (1972), and also corrected in Barratt-Mahowald-Tangora (1970).

We draw these d_{2}-differentials in Figures 42 and 44, with bullets replacing the named classes.
This leads to the E_{3}-term given in Figures 43 and 45.
Theorem 9.38. The classes $h_{1} h_{4}$ and $h_{2} h_{4}$ survive to E_{∞}.
((Can be proved using H_{∞} structure, see Bruner (1986) Proposition VI.1.6.))
Theorem 9.39. The class $h_{4} c_{0}$ survives to E_{∞}.
Proof. Assume, for a contradiction, that $d_{4}\left(h_{4} c_{0}\right)=P d_{0}$. Then $d_{4}\left(h_{1} h_{4} c_{0}\right)=h_{1} P d_{0}$ is nonzero at E_{4}. But $h_{1} h_{4}$ and c_{0} are permanent cycles, hence so is their product.

Figure 43: Adams E_{3}-term for $S, 0 \leq t-s \leq 24$

We draw the d_{3}-differentials in dimensions $0 \leq t \leq 24$ in Figure 46 , leaving the $E_{3}=E_{\infty}$-term shown in Figure 47. The dotted lines represent hidden $h_{0^{-}}$and h_{1}-extensions, to be explained in the following theorem.

Theorem 9.40. The table lists $\pi_{n}\left(S_{2}^{\wedge}\right)$ for $0 \leq n \leq 24$, together with generators of the cyclic summands

Figure 44: Adams d_{2}-differentials for $S, 24 \leq t-s \leq 48$

Figure 45: Adams E_{3}-term for $S, 24 \leq t-s \leq 48$

Figure 46: Adams d_{3}-differentials for $S, 0 \leq t-s \leq 24$

Figure 47: Adams E_{∞}-term for $S, 0 \leq t-s \leq 24$
and Adams E_{∞} classes representing these generators.

n	$\pi_{n}\left(S_{2}^{\wedge}\right)$	gen.	E_{∞}-rep.
0	\mathbb{Z}_{2}	1	1
1	$\mathbb{Z} / 2$	η	h_{1}
2	$\mathbb{Z} / 2$	η^{2}	h_{1}^{2}
3	$\mathbb{Z} / 8$	ν	h_{2}
4	0		
5	0	ν^{2}	h_{2}^{2}
6	$\mathbb{Z} / 2$	σ	h_{3}
7	$\mathbb{Z} / 16$	$\epsilon, \eta \sigma$	$c_{0}, h_{1} h_{3}$
8	$(\mathbb{Z} / 2)^{2}$	$\mu, \eta \epsilon, \eta^{2} \sigma$	$P h_{1}, h_{1} c_{0}, h_{1}^{2} h_{3}$
9	$(\mathbb{Z} / 2)^{3}$	$\eta \mu$	$h_{1} P h_{1}$
10	$\mathbb{Z} / 2$	ζ	$P h_{2}$
11	$\mathbb{Z} / 8$		
12	0	κ, σ^{2}	
13	0	$\eta \kappa, \rho$	d_{0}, h_{3}^{2}
14	$(\mathbb{Z} / 2)^{2}$	$\eta \rho, \eta^{*}$	$h_{1} d_{0}, h_{0}^{3} h_{4}$
15	$\mathbb{Z} / 2 \oplus \mathbb{Z} / 32$	$P_{0}, h_{1} h_{4}$	
16	$(\mathbb{Z} / 2)^{2}$	$\eta^{2} \rho, \nu \kappa, \eta \eta^{*}$	$P^{2} h_{1}, h_{1} P c_{0}, h_{2} d_{0}, h_{1}^{2} h_{4}$
17	$(\mathbb{Z} / 2)^{4}$	$\eta \bar{\mu}, \nu^{*}$	$h_{1} P^{2} h_{1}, h_{2} h_{4}$
18	$\mathbb{Z} / 2 \oplus \mathbb{Z} / 8$	$\bar{\zeta}, \bar{\sigma}$	$P^{2} h_{2}, c_{1}$
19	$\mathbb{Z} / 8 \oplus \mathbb{Z} / 2$	$\bar{\kappa}$	g
20	$\mathbb{Z} / 8$	$\eta \bar{\kappa}, \nu \nu^{*}$	$h_{1} g, h_{2}^{2} h_{4}$
21	$(\mathbb{Z} / 2)^{2}$	$\eta^{2} \bar{\kappa}, \nu \bar{\sigma}$	$P d_{0}, h_{2} c_{1}$
22	$(\mathbb{Z} / 2)^{2}$	$?, \nu \bar{\kappa}, ?$	$h_{0}^{2} i, h_{2} g, h_{4} c_{0}$
23	$\mathbb{Z} / 16 \oplus \mathbb{Z} / 8 \oplus \mathbb{Z} / 2$	$P^{2} c_{0}, h_{1} h_{4} c_{0}$	
24	$(\mathbb{Z} / 2)^{2}$		

Proof. Using the splitting of $\pi_{*}\left(j_{2}^{\wedge}\right)$ off from $\pi_{*}\left(S_{2}^{\wedge}\right)$, the additive structure in degrees $0 \leq n \leq 20$ is straightforward. For instance, $2 \cdot \eta \eta^{*}=0$ since $2 \eta=0$. The nontrivial fact is that there is a hidden η-multiplication from $\eta \bar{\kappa}$, represented by $h_{1} g$, to $\eta^{2} \bar{\kappa}$, represented by $P d_{0}$. See Mahowald-Tangora (1967) Theorem 2.1.1. This implies that $2 \cdot \nu \nu^{*}=0$, and that $2 \cdot 2 \nu \bar{\kappa} \neq 0$.
((Explain hidden η-multiplications by comparison with the Adams spectral sequence for $C \eta=S \cup_{\eta}$ $\left.e^{2} ?\right)$)

Theorem 9.41. There are nontrivial differentials $d_{3}(r)=h_{1} P g, d_{3}\left(d_{0} e_{0}\right)=h_{0}^{5} r, d_{3}\left(h_{2} h_{5}\right)=h_{0} p$, $d_{3}\left(e_{1}\right)=h_{1} t$ and $d_{3}\left(i^{2}\right)=h_{1} P^{3} g$.

This implies the nonzero differential $d_{3}\left(d_{0} r\right)=h_{1} P e_{0}^{2}$.
Remark 9.42. The differentials on r, e_{1} and $i^{2}=P^{2} r$ can be found from the H_{∞} structure.
Corollary 9.43. The class h_{4}^{2} survives to E_{∞}, representing θ_{4} in $\pi_{30}\left(S_{2}^{\wedge}\right)$.
Theorem 9.44. There are nontrivial differentials $d_{4}(\alpha)=P^{2} d_{0}$, where $\alpha=d_{0} e_{0}+h_{0}^{7} h_{5}, d_{4}\left(e_{0} g\right)=P^{2} g$, $d_{4}\left(h_{3} h_{5}\right)=h_{0} x, d_{4}\left(P d_{0} e_{0}\right)=P^{3} d_{0}$ and $d_{4}\left(P^{2} d_{0} e_{0}\right)=P^{4} d_{0}$.

This implies the nonzero differentials $d_{4}\left(h_{1} d_{0} e_{0}\right)=h_{1} P^{2} d_{0}, d_{4}\left(h_{1} e_{0} g\right)=h_{1} P^{2} g, d_{4}\left(h_{0} h_{3} h_{5}\right)=h_{0}^{2} x$, $d_{4}\left(h_{1} P d_{0} e_{0}\right)=h_{1} P^{3} d_{0}, d_{4}\left(d_{0}^{2} e_{0}\right)=P^{3} g$ and $d_{4}\left(h_{1} P^{2} d_{0} e_{0}\right)=h_{1} P^{4} d_{0}$.

Theorem 9.45. The classes $h_{1} h_{5}, h_{0} h_{2} h_{5}, t, f_{1}, h_{5} P h_{1}, z, h_{5} P h_{2}$ and h_{4}^{3} survive to E_{∞}.
((To be confirmed: Are $h_{5} P c_{0}$ and B_{2} infinite cycles?))
We draw the d_{3}-differentials in dimensions $24 \leq t \leq 48$ in Figure 48, leaving the E_{4}-term shown in Figure 49. ((This assumes that $d_{3}=0$ on $h_{5} P c_{0}$ and $\left.\left.B_{2}.\right)\right)$

Next we draw the d_{4}-differentials in dimensions $24 \leq t \leq 48$ in Figure 50, leaving the E_{5}-term shown in Figure 51. If B_{2} survives to E_{∞} (as it does according to Kochman), then this is also the E_{∞}-term in this range of dimensions.

Figure 48: Adams d_{3}-differentials for $S, 24 \leq t-s \leq 48$

Figure 49: Adams E_{4}-term for $S, 24 \leq t-s \leq 48\left(\alpha=d_{0} e_{0}+h_{0}^{7} h_{5}\right)$

Figure 50: Adams d_{4}-differentials for $S, 24 \leq t-s \leq 48$

Figure 51: Adams $E_{5}=E_{\infty}$-term for $S, 24 \leq t-s \leq 48$

Theorem 9.46. The table lists $\pi_{n}\left(S_{2}^{\wedge}\right)$ for $25 \leq n \leq 31$, together with generators of the cyclic summands and Adams E_{∞} classes representing these generators.

n	$\pi_{n}\left(S_{2}^{\wedge}\right)$	gen.	E_{∞}-rep.
25	$(\mathbb{Z} / 2)^{2}$	$?, ?$	$P^{3} h_{1}, h_{1} P^{2} c_{0}$
26	$(\mathbb{Z} / 2)^{2}$	$?, \nu^{2} \bar{\kappa}$	$h_{1} P^{3} h_{1}, h_{2}^{2} g$
27	$\mathbb{Z} / 8$	$?$	$P^{3} h_{2}$
28	$\mathbb{Z} / 2$	$?$	$P g$
29	0		
30	$\mathbb{Z} / 2$	θ_{4}	h_{4}^{2}
31	$\mathbb{Z} / 64 \oplus(\mathbb{Z} / 2)^{2}$	$?, ?, \eta \theta_{4}$	$h_{0}^{10} h_{5}, n, h_{1} h_{4}^{2}$

9.4 Power operations in $\pi_{*}(S)$

9.5 Steenrod operations in the Adams spectral sequence

The (graded) commutativity of the Yoneda product in the E_{2}-term $\operatorname{Ext}_{\mathscr{A}}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ of the Adams spectral sequence for S can be seen as a consequence of the cocommutativity of the Hopf algebra \mathscr{A}. Moreover, this cocommutativity implies that there are Steenrod operations

$$
S q^{i}: \operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathscr{A}}^{s+t-i, 2 t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

that double the internal degree (from t to $2 t$) and increase the topological degree by i (from $t-s$ to $t-s+i=2 t-(s+t-i))$. This is the grading convention used by Bruner (1986), which is compatible with the grading for the power operations in homotopy that come from the H_{∞} structure on S. (Other authors let $S q^{i}$ map Ext^{s} to Ext^{s+i}.)

It is known that $S q^{i}(x)=0$ for $i<t-s, S q^{t-s}(x)=x^{2}$ and $S q^{i}(x)=0$ for $i>t$. We have $S q^{2^{i}}\left(h_{i}\right)=h_{i+1}$ for $i \geq 0$ and the Cartan formula

$$
S q^{k}(x y)=\sum_{i+j=k} S q^{i}(x) S q^{j}(k)
$$

holds.
Suppose that $x \in E_{2}^{s, t}$ survives to E_{r} for $r \geq 2$. By work of Kahn (1970), Milgram (1972), Mäkinen (1973) and Bruner (1986), we have formulas for the generically first differential on $S q^{i}(x)$, in terms of $d_{r}(x)$, the Steenrod operations and the Adams spectral sequence representatives of the generators of $\operatorname{im}(J) \subset \pi_{*}(S)$.

Let $B_{1} \dot{+} B_{2}$ mean $B_{1}, B_{1}+B_{2}$ or B_{2} if B_{1} has lower, equal or greater Adams filtration than B_{2}, respectively. Here is the first result in this general direction.

Theorem 9.47. Let $x \in E_{r}^{s, t}$ is in topological degree $n=t-s$, and consider $x^{2}=S q^{n}(x) \in E_{2}^{2 s, 2 t}$. Then

$$
d_{r+1}\left(x^{2}\right)=S q^{n}\left(d_{r}(x)\right) \dot{+} h_{0} x d_{r}(x)
$$

if n is even, and

$$
d_{2 r-1}\left(x^{2}\right)=S q^{n}\left(d_{r}(x)\right)
$$

if n is odd.
These expressions imply that x^{2} survives to E_{r+1} in the even case, and to $E_{2 r-1}$ in the odd case. The expressions may, of course, be zero in particular cases, in which case x^{2} may survive to even later terms.
((See Bruner (1986) Theorem VI.1.1 for the general result.))

9.6 The Adams spectral sequence for tmf

The computation of $\operatorname{Ext}_{A(2)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, by Iwai-Shimada, Davis-Mahowald, Bruner or Nassau, gives the Adams E_{2}-term for $t m f$ given in Figures 52, 53, 54 and 55.
((MT-wedge missing in Figure 55.))
((Recall algebra generators $h_{0}, h_{1}, h_{2}, c_{0}, \alpha, \beta, w_{1}, d_{0} e_{0}, g, \gamma, \delta$ and w_{2}. Maybe recall some common relations not visible in the charts.))

Figure 52: Adams E_{2}-term for $\operatorname{tmf}, 0 \leq t-s \leq 24$

Proposition 9.48. The Steenrod operations $S q^{i}$ on $\operatorname{Ext}_{A(2)}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$, for $t-s \leq i \leq t$, are given by

$$
\begin{aligned}
S q^{*}\left(h_{0}\right) & =\left(h_{0}^{2}, h_{1}\right) \\
S q^{*}\left(h_{1}\right) & =\left(h_{1}^{2}, h_{2}\right) \\
S q^{*}\left(h_{2}\right) & =\left(h_{2}^{2}, 0\right) \\
S q^{*}\left(c_{0}\right) & =\left(0, h_{0} e_{0}, h_{2} \beta, 0\right) \\
S q^{*}(\alpha) & =\left(\alpha^{2}, \gamma, 0,0\right) \\
S q^{*}(\beta) & =\left(\beta^{2}, 0,0,0\right) \\
S q^{*}\left(w_{1}\right) & =\left(w_{1}^{2}, 0,0,0, ?\right) \\
S q^{*}\left(d_{0}\right) & =\left(w_{1} g, 0, \beta^{2}, 0,0\right) \\
S q^{*}\left(e_{0}\right) & =\left(d_{0} g, \beta g, 0,0,0\right) \\
S q^{*}(g) & =\left(g^{2}, 0,0,0,0\right) \\
S q^{*}(\gamma) & =\left(\gamma^{2}, ?, 0,0,0,0\right) \\
S q^{*}(\delta) & =(0, ?, ?, 0,0,0,0,0) \\
S q^{*}\left(w_{2}\right) & =\left(w_{2}^{2}, 0,0,0,0,0,0,0,0\right)
\end{aligned}
$$

Proof. Adams gives the Steenrod operations on the h_{i}, where we note that $h_{3}=0$ in Ext over $A(2)$. Bruner (Theorem VI.1.9) gives the Steenrod operations on c_{0}, d_{0} and e_{0}, quoting Mukohda (1969) and Milgram (1972), where we note that $c_{0}^{2}=0, f_{0}$ maps to $h_{2} \beta, c_{1}=0, d_{0}^{2}=w_{1} g$, r maps to $\beta^{2}, d_{1}=0, e_{0}^{2}=d_{0} g$ and m maps to βg, all in Ext over $A(2)$. Applying $S q^{14}$ to $h_{1} \alpha=0$ gives $h_{2} \alpha^{2}=h_{1}^{2} S q^{13}(\alpha)$, which implies $S q^{13}(\alpha)=\gamma$. ((ETC: Is $S q^{12}\left(w_{1}\right)=g$? What is $S q^{26}(\gamma)$?)) We also note that $\gamma^{2}=\beta^{2} g+h_{1}^{2} w_{2}$ is nonzero, while $\delta^{2}=0$.

Theorem 9.49. There are nontrivial differentials $d_{2}(\alpha)=h_{2} w_{1}, d_{2}\left(h_{0} \alpha\right)=w_{1} h_{0} h_{2}, d_{2}\left(h_{0}^{2} \alpha\right)=w_{1} h_{0}^{2} h_{2}$, $d_{2}(\beta)=h_{0} d_{0}, d_{2}\left(h_{0} \beta\right)=h_{0}^{2} d_{0}, d_{2}\left(h_{2} \beta\right)=h_{0}^{2} e_{0}, d_{2}\left(\alpha d_{0}\right)=w_{1} h_{0} e_{0}, d_{2}\left(\beta d_{0}\right)=w_{1} h_{0} g, d_{2}\left(h_{0} \beta d_{0}\right)=$

Figure 53: Adams E_{2}-term for $t m f, 24 \leq t-s \leq 48\left(v_{2}^{8}\right.$-multiplies omitted)

Figure 54: Adams E_{2}-term for $t m f, 48 \leq t-s \leq 72\left(v_{2}^{8}\right.$-multiplies omitted)

Figure 55: Adams E_{2}-term for $t m f, 72 \leq t-s \leq 96\left(v_{2}^{8}\right.$-multiplies omitted $)$

Figure 56: Adams d_{2}-differentials for $t m f, 0 \leq t-s \leq 24$
$w_{1} h_{0}^{2} g, d_{2}(\beta g)=h_{0} d_{0} g$ and $d_{2}\left(\alpha^{3}\right)=w_{1} h_{0} \alpha \beta$, together with all of their w_{1}-power multiples.
Proof. These all follow from the differential $d_{2}\left(h_{2} \beta\right)=h_{0}^{2} e_{0}$, which either follows by naturality with respect to the map $S \rightarrow \operatorname{tmf}$ (taking f_{0} to $h_{2} \beta$, using the known differential $d_{2}\left(f_{0}\right)=h_{0}^{2} e_{0}$ for the sphere) or directly from the H_{∞} structure on tmf (using the formula $d_{3}\left(S q^{10}\left(c_{0}\right)\right)=h_{0} S q^{9}\left(c_{0}\right)$ for the infinite cycle c_{0}, where $S q^{9}\left(c_{0}\right)=h_{0} d_{0}$ and $S q^{10}\left(c_{0}\right)=h_{2} \beta$, see Bruner (1986) \S VI.1).

$$
\left(\left(d_{2}=0 \text { on } h_{0}, h_{1}, h_{2}, c_{0}, w_{1}, d_{0}, e_{0}, g, \gamma \text { and } \delta .\right)\right)
$$

Theorem 9.50. There are nontrivial differentials $d_{2}\left(w_{2}\right)=\alpha \beta g$, $d_{2}\left(w_{2} \alpha\right)=\alpha^{2} \beta g+w_{2} w_{1} h_{2}, d_{2}\left(w_{2} h_{0} \alpha\right)=$ $w_{2} w_{1} h_{0} h_{2}, d_{2}\left(w_{2} h_{0}^{2} \alpha\right)=w_{2} w_{1} h_{0}^{2} h_{2}, d_{2}\left(w_{2} d_{0}\right)=\alpha \beta d_{0} g=\alpha^{2} e_{0} g, d_{2}\left(w_{2} \beta\right)=\alpha \beta^{2} g+w_{2} h_{0} d_{0}, d_{2}\left(w_{2} h_{0} \beta\right)=$ $w_{2} h_{0}^{2} d_{0}, d_{2}\left(w_{2} e_{0}\right)=\alpha \beta e_{0} g=\alpha^{2} g^{2}, d_{2}\left(w_{2} h_{2} \beta\right)=w_{2} h_{0}^{2} e_{0}, d_{2}\left(w_{2} g\right)=\alpha \beta g^{2}, d_{2}\left(w_{2} \gamma\right)=\alpha \beta \gamma g=\alpha g^{3}$, $d_{2}\left(w_{2} \alpha^{2}\right)=\alpha^{3} \beta g=d_{0} e_{0} g^{2}, d_{2}\left(w_{2} \alpha \beta\right)=\alpha^{2} \beta^{2} g=d_{0} g^{3}, d_{2}\left(w_{2} \beta^{2}\right)=\alpha \beta^{3} g=e_{0} g^{3}, d_{2}\left(w_{2} \alpha d_{0}\right)=$ $\alpha^{2} \beta d_{0} g+w_{2} w_{1} h_{0} e_{0}, d_{2}\left(w_{2} \beta d_{0}\right)=\alpha^{3} g^{2}+w_{2} w_{1} h_{0} g, d_{2}\left(w_{2} \alpha g\right)=\alpha^{2} \beta g^{2}+w_{2} w_{1} h_{2} g, d_{2}\left(w_{2} \beta g\right)=\alpha \beta^{2} g^{2}+$ $w_{2} h_{0} d_{0} g,((E T C))$, together with all their w_{1}-power multiples.

Proof. We use the relation

$$
\gamma^{2}=\beta^{2} g+w_{2} h_{1}^{2}
$$

in $\operatorname{Ext}_{A(2)}$. By h_{0}-linearity, γ survives (at least) to E_{6}. We shall prove in Theorem 9.56 below that $d_{4}\left(\beta^{2} g\right)=w_{1} \alpha^{2} e_{0} \neq 0$. This implies that $d_{4}\left(w_{2} h_{1}^{2}\right)=w_{1} \alpha^{2} e_{0} \neq 0$. Suppose, for a contradiction, that $d_{2}\left(w_{2}\right)=0$. Then w_{2} survives at least to E_{5}, since $d_{3}\left(w_{2}\right)$ and $d_{4}\left(w_{2}\right)$ live in trivial groups, and this implies that $w_{2} h_{1}^{2}$ survives to E_{5}, contradicting the fact that $d_{4}\left(w_{2} h_{1}^{2}\right) \neq 0$. Hence $d_{2}\left(w_{2}\right)$ is nonzero, and the only possible value is $\alpha \beta g$.

The other differentials follow from $d_{2}\left(w_{2}\right)=\alpha \beta g$ by the Leibniz rule.
The d_{2}-differentials are displayed in Figures $56,57,58$ and ??. The resulting E_{3}-terms appear in Figures 59, 60, 61 and ??.
Theorem 9.51. There are nontrivial differentials $d_{3}\left(\alpha^{2}\right)=w_{1} h_{1} d_{0}, d_{3}\left(\beta^{2}\right)=w_{1} h_{1} g$, $d_{3}\left(e_{0}\right)=w_{1} c_{0}$ and $d_{3}\left(h_{1} e_{0}\right)=w_{1} h_{1} c_{0}$, together with all their w_{1}-power multiples.

Figure 57: Adams d_{2}-differentials for $t m f, 24 \leq t-s \leq 48$

Figure 58: Adams d_{2}-differentials for $t m f, 48 \leq t-s \leq 72$

Figure 59: Adams E_{3}-term for $\operatorname{tmf}, 0 \leq t-s \leq 24$

Proof. The first two follow from the H_{∞} structure on $t m f$, using Bruner's formulas $d_{3}\left(S q^{12}(\alpha)\right)=$ $S q^{12}\left(w_{1} h_{2}\right)+h_{0} \cdot \alpha \cdot w_{1} h_{2}=w_{1} h_{1} d_{0}\left(\right.$ here $\left.S q^{12}\left(w_{1} h_{2}\right)=S q^{9}\left(w_{1}\right) h_{2}^{2}=0\right)$ and $d_{3}\left(S q^{15}(\beta)\right)=S q^{15}\left(h_{0} d_{0}\right)=$ $h_{1} d_{0}^{2}=w_{1} h_{1} g$.

The other two differentials follow from considerations of the image of J. The class $\eta^{2} \rho$ in $\operatorname{im}(J) \subset$ $\pi_{17}(S)$ is detected by $h_{1} P c_{0}$ in the Adams spectral sequence for S, which maps to $w_{1} h_{1} c_{0}$ in the Adams spectral sequence for tmf. The class ρ in $\operatorname{im}(J) \subset \pi_{15}(S)$ maps to a class in $\pi_{15}(t m f)=\mathbb{Z} / 2$ that is either 0 or the image of $\eta \kappa$. Hence $\eta^{2} \rho$ maps either to 0 or the image of $\eta^{3} \kappa=4 \nu \kappa$. But $\nu \kappa$ is detected by $h_{2} d_{0}$ in Adams filtation 5, and there are no infinite cycles in Adams filtrations 6 or 7 for $t m f$, so $4 \nu \kappa$ cannot be detected by $w_{1} h_{1} c_{0}$ in Adams filtration 8. Hence $\eta^{2} \rho$ maps to 0 in $t m f$, and $w_{1} h_{1} c_{0}$ must be a boundary. The only possibility is $d_{3}\left(h_{1} e_{0}\right)=w_{1} h_{1} c_{0}$, which also implies $d_{3}\left(e_{0}\right)=w_{1} c_{0}$.

Alternatively, we can use the relation $\eta \rho=\sigma \mu$ in $\pi_{*}(S)$, and the fact that σ maps to 0 in $\operatorname{tm} f$, do deduce that $\eta \rho$ maps to 0 in tmf. This class is detected by $P c_{0}$ in S, which maps to $w_{1} c_{0}$ in the Adams spectral sequence for $t m f$, so that infinite cycle cannot survive to E_{∞}, and must be a boundary. The only possibility is $d_{3}\left(e_{0}\right)=w_{1} c_{0}$.

This accounts for all the possible d_{3}-differentials starting above the Mahowald-Tangora wedge. The possible d_{3}-differentials going out of that wedge are the w_{1}-power multiples of the following two cases.

Theorem 9.52. $d_{3}\left(\alpha^{2} e_{0}\right)=0$ and $d_{3}\left(\alpha \beta^{2}\right)=w_{1} h_{1} \delta$.
Proof. We shall prove below that $d_{4}\left(\beta^{2} g\right)=w_{1} \alpha^{2} e_{0}$, so that $w_{1} \alpha^{2} e_{0}$ is an infinite cycle. We may divide by w_{1} to deduce that $\alpha^{2} e_{0}$ is an infinite cycle.

We shall prove below that $d_{4}\left(\alpha \beta^{2} g\right)=w_{1}^{2} \beta^{3}$, which is nonzero at E_{4}, by inspection of $\operatorname{Ext}_{A(2)}$. Suppose that $d_{3}\left(\alpha \beta^{2}\right)=0$. We cannot have $d_{4}\left(\alpha \beta^{2}\right)=w_{1}^{2} \gamma$, since $h_{1} \alpha \beta^{2}=0$, but $w_{1}^{2} h_{1} \gamma \neq 0$ at E_{4}. The other possibility is $d_{4}\left(\alpha \beta^{2}\right)=0$, which would imply $d_{4}\left(\alpha \beta^{2} g\right)=0$, contradicting the formula above. Hence $d_{3}\left(\alpha \beta^{2}\right) \neq 0$, and $w_{1} h_{1} \delta$ is the only possible value.
Theorem 9.53. $d_{3}\left(w_{2} h_{1}\right)=w_{1} g^{2}$ and $d_{3}\left(w_{2}^{2}\right)=\beta g^{4}$. ((ETC: Consequences. $\left.)\right)$

Figure 60: Adams E_{3}-term for $\operatorname{tmf}, 24 \leq t-s \leq 48$ (h_{0}-tower on $w_{2} h_{0}$ truncated)

Figure 61: Adams E_{3}-term for $t m f, 48 \leq t-s \leq 72$

Figure 62: Adams d_{3}-differentials for $\operatorname{tmf}, 0 \leq t-s \leq 24$

Proof. The first differential follows from the relation $\gamma^{2}=\beta^{2} g+w_{2} h_{1}^{2}$. We saw above that $d_{4}\left(w_{2} h_{1}^{2}\right)=$ $d_{4}\left(\beta^{2} g\right)=w_{1} \alpha^{2} e_{0} \neq 0$. Suppose for a contradiction that $d_{3}\left(w_{2} h_{1}\right)=0$. Then $d_{4}\left(w_{2} h_{1}\right)=0$ by h_{0}-linearity, which would imply that $d_{4}\left(w_{2} h_{1}^{2}\right)=0$. This shows that $d_{3}\left(w_{2} h_{1}\right) \neq 0$, and by h_{0}-linearity again the only possible value is $w_{1} g^{2}$.

The second differential follows from Bruner's formula $d_{3}\left(S q^{48}\left(w_{2}\right)\right)=S q^{48}(\alpha \beta g)+h_{0} \cdot w_{2} \cdot \alpha \beta g=$ $S q^{13}(\alpha) \beta^{2} g^{2}=\beta g^{4}$, where we use that $S q^{13}(\alpha)=\gamma$ and $\beta \gamma=g^{2}$.
((Transport d_{3}-differentials back to $\left.S.\right)$)
The d_{3}-differentials are displayed in Figures $62,63,64$ and ??. The resulting E_{4}-terms appear in Figures $65,66, ? ?$ and ??.

Remark 9.54. The differential $d_{4}\left(e_{0} g\right)=P^{2} g$ in the Adams spectral sequence for S is one of the key results of Mahowald-Tangora (1967). One could use naturality with respect to the map $S \rightarrow t m f$ to deduce the corresponding differential $d_{4}\left(e_{0} g\right)=w_{1}^{2} g$ in the Adams spectral sequence for $\operatorname{tm} f$, but in fact it is far easier to deduce the $t m f$-differential directly. Using naturality in the opposite direction then gives a simplified proof of the Mahowald-Tangora differential.

Theorem 9.55. There are nontrivial d_{4}-differentials $d_{4}\left(d_{0} e_{0}\right)=w_{1}^{2} d_{0}$ and $d_{4}\left(e_{0} g\right)=w_{1}^{2} g$, together with all their w_{1}-power multiples. ((Also g-multiples. When are these nonzero?))

Proof. We know that $\kappa \in \pi_{14}(S)$ and $\eta^{2} \bar{\kappa} \in \pi_{22}(S)$ are detected by d_{0} and $P d_{0}$, respectively, in the Adams spectral sequence for S. The images in $\pi_{14}(t m f)$ and $\pi_{22}(t m f)$ are then detected by d_{0} and $w_{1} d_{0}$, respectively, in the Adams spectral sequence for tmf. Hence the product $\kappa \cdot \eta^{2} \bar{\kappa}$ is detected by $w_{1} d_{0}^{2}=w_{1}^{2} g$ in the Adams spectral sequence for $\operatorname{tm} f$. But $\eta^{2} \kappa=0$ in $\pi_{16}(\operatorname{tm} f) \cong \mathbb{Z}_{2}$, so this product is 0 and $w_{1}^{2} g$ must be a boundary. The only possibility is $d_{4}\left(e_{0} g\right)=w_{1}^{2} g$.

Multiplying with w_{1}, we get $d_{4}\left(w_{1} e_{0} g\right)=w_{1}^{3} g$. We can rewrite this as $d_{4}\left(d_{0}^{2} e_{0}\right)=w_{1}^{2} d_{0}^{2}$. We can divide by d_{0} to deduce $d_{4}\left(d_{0} e_{0}\right)=w_{1}^{2} d_{0}$.
((Display the differential behavior in the indexed chart $\left.E_{0} ?\right)$)

Figure 63: Adams d_{3}-differentials for $t m f, 24 \leq t-s \leq 48$ (h_{0}-tower on $w_{2} h_{0}$ truncated)

Figure 64: Adams d_{3}-differentials for $\operatorname{tmf}, 48 \leq t-s \leq 72$ ((incomplete))

Figure 65: Adams $E_{4}=E_{\infty}$-term for $\operatorname{tmf}, 0 \leq t-s \leq 24$

We can propagate these differentials to cover the Mahowald-Tangora wedge, as in their 1968 paper. See Figure 67.

Theorem 9.56. There are d_{4}-differentials $d_{4}\left(e_{0} g\right)=w_{1}^{2} g, d_{4}\left(d_{0} e_{0}\right)=w_{1}^{2} d_{0}, d_{4}\left(\alpha^{3} g\right)=w_{1}^{2} \alpha^{2} \beta, d_{4}\left(\alpha \beta^{2} g\right)=$ $w_{1}^{2} \beta^{3}, d_{4}\left(\beta^{2} g\right)=w_{1} \alpha^{2} e_{0}, d_{4}\left(\alpha^{2} g\right)=w_{1} \alpha \beta, d_{4}\left(\beta d_{0} g\right)=w_{1}^{2} \alpha g$ and $d_{4}\left(\beta g^{2}\right)=w_{1} \alpha d_{0} g$, together with all their w_{1} - and g-power multiples. Not all of these multiples are nonzero, since the target classes may be d_{2} - or d_{3}-boundaries.

Proof. The differentials originating in Adams filtration $s \equiv 0 \bmod 4$, on $d_{0} e_{0}$ and $e_{0} g$, are already known.

The class $\alpha^{2} \beta \in E_{4}^{9,48}$ is an infinite cycle, so we get differentials $d_{4}\left(\alpha^{3} g^{2}\right)=w_{1}^{2} \alpha^{2} \beta g$ and $d_{4}\left(w_{1} \alpha \beta^{2} g\right)=$ $w_{1}^{2} \alpha^{2} \beta d_{0}=w_{1}^{3} \beta^{3}$ in filtrations $s \equiv 1 \bmod 4$, since $\alpha^{2} \beta \cdot e_{0} g=\alpha^{3} g^{2}$ and $\alpha^{2} \beta \cdot d_{0} e_{0}=w_{1} \alpha \beta^{2} g$. We can divide these by g and w_{1}, respectively.

The class $\alpha^{2} e_{0} \in E_{4}^{10,51}$ is an infinite cycle, so we get differentials $d_{4}\left(w_{1} \beta^{2} g^{2}\right)=w_{1}^{2} \alpha^{2} e_{0} g$ and $d_{4}\left(w_{1} \alpha^{2} g^{2}\right)=w_{1}^{4} \alpha^{2} d_{0} e_{0}=w_{1}^{3} \alpha \beta g$ in filtrations $s \equiv 2 \bmod 4$, since $\alpha^{2} e_{0} \cdot e_{0} g=w_{1} \beta^{2} g^{2}$ and $\left.\alpha^{2} e_{0} \cdot d_{0} e_{0}\right)=$ $w_{1} \alpha^{2} g^{2}$. We can divide both of these by $w_{1} g$.

The class $\alpha g \in E_{4}^{7,39}$ is an infinite cycle, so we get differentials $d_{4}\left(\beta d_{0} g^{2}\right)=w_{1}^{2} \alpha g^{2}$ and $d_{4}\left(w_{1} \beta g^{2}\right)=$ $w_{1}^{2} \alpha d_{0} g$ in filtrations $s \equiv 3 \bmod 4$, since $\alpha g \cdot e_{0} g=\beta d_{0} g^{2}$ and $\alpha g \cdot d_{0} e_{0}=w_{1} \beta g^{2}$. We can divide these by g and w_{1}, respectively.
Theorem 9.57. $d_{4}\left(w_{2} h_{0}\right)=w_{1} \alpha^{2} \beta$ and $d_{4}\left(w_{2} h_{1}^{2}\right)=w_{1} \alpha^{2} e_{0}$.
Proof. ((TODO: How to prove the first differential?))
The second differential has been discussed before; it follows from the relation $\gamma^{2}=\beta^{2} g+w_{2} h_{1}^{2}$, the fact that γ is an infinite cycle, and the Mahowald-Tangora differential $d_{4}\left(\beta^{2} g\right)=w_{1} \alpha^{2} e_{0}$.

The d_{4}-differentials are displayed in Figures 68, ?? and ??. The resulting E_{5}-terms appear in Figures 69, ?? and ??.

Figure 66: Adams E_{4}-term for $\operatorname{tmf}, 24 \leq t-s \leq 48$ (h_{0}-tower on $w_{2} h_{0}$ truncated)

Figure 67: Ideal d_{4}-differentials in Mahowald-Tangora wedge
9.7 The Adams spectral sequences for $\operatorname{tmf} / 2$ and $t m f / \eta$
((Determine Adams differentials. Get hidden multiplications by 2 or η.$))$

10 Low filtrations

10.1 Quotient algebras

$\left(\left(\right.\right.$ Quotients of \mathscr{A} dual to $\left.\left.\left.P\left(\xi_{1}, \ldots, \xi_{n}\right) \subset \mathscr{A}_{*}\right).\right)\right)$
((Ext-calculations.))

10.2 The bar and cobar complexes

(((Co-)bar resolution. (Co-)bar complex.))
((Discuss the free resolution that arises from the canonical Adams resolution.))

Figure 68: Adams d_{4}-differentials for $t m f, 24 \leq t-s \leq 48$ (h_{0}-tower on $w_{2} h_{0}$ truncated)

Figure 69: Adams E_{5}-term for $\operatorname{tmf}, 24 \leq t-s \leq 48$ (h_{0}-tower on $w_{2} h_{0}^{2}$ truncated)

