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Chapter One

The stable parametrized h-cobordism theorem

1.1. THE MANIFOLD PART

We write DIFF for the category of C*° smooth manifolds, PL for the category of
piecewise-linear manifolds, and TOP for the category of topological manifolds.
We generically write CAT for any one of these geometric categories. Let [ =
[0,1] and J be two fixed closed intervals in R. We will form collars using I and
stabilize manifolds and polyhedra using J.

In this section, as well as in Chapter 4, we let A7 = {(to,...,tq) | Dot gt =
1,t; > 0} be the standard affine ¢g-simplex.

By a CAT bundle 7: E — A? we mean a CAT locally trivial family, i.e., a
map such that there exists an open cover {U,} of A? and a CAT isomorphism
over U, (= a local trivialization) from 7~!(U,) — U, to a product bundle, for
each a. For m to be a CAT bundle relative to a given product subbundle, we
also ask that each local trivialization restricts to the identity on the product
subbundle. We can always shrink the open cover to a cover by compact subsets
{K,}, whose interiors still cover A%, and this allows us to only work with
compact polyhedra in the PL case.

Definition 1.1.1. (a) Let M be a compact CAT manifold, with empty or
nonempty boundary. We define the CAT h-cobordism space H(M) =
HAT(M) of M as a simplicial set. Its O-simplices are the compact CAT
manifolds W that are h-cobordisms on M, i.e., the boundary

oW =MUN

is a union of two codimension zero submanifolds along their common boundary
OM = ON, and the inclusions

McWDN

are homotopy equivalences. For each ¢ > 0, a g-simplex of H(M) is a CAT
bundle 7: E — A? relative to the trivial subbundle pr: M x A? — A%, such
that each fiber W, = 7! (p) is a CAT h-cobordism on M = M x p, for p € A‘.
(b) We also define a collared CAT h-cobordism space H (M )¢ = HAT (M)¢,
whose 0-simplices are h-cobordisms W on M equipped with a choice of collar,
i.e., a CAT embedding
c:MxI—-W

that identifies M x 0 with M in the standard way, and takes M x [0,1) to
an open neighborhood of M in W. A g-simplex of H(M)¢ is a CAT bundle
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m: E — A7 relative to an embedded subbundle pr: M xIx A? — A9, such that
each fiber is a collared CAT h-cobordism on M. The map H(M)¢ — H(M)
that forgets the choice of collar is a weak homotopy equivalence, because spaces
of collars are contractible.

Remark 1.1.2. To ensure that these collections of simplices are really sets, we
might assume that each bundle £ — A% is embedded in R>* x A? — A%. The
simplicial operator associated to a: AP — A? takes E — A? to the image of
the pullback a*(E) C AP xaq (R*® x A?) under the canonical identification
AP x aq (R x A9) 2 R x AP. See [HTW9O0, 2.1] for a more detailed solution.
To smooth any corners that arise, we interpret DIFF manifolds as coming
equipped with a smooth normal field, as in [Wa82, §6]. The emphasis in this
book will be on the PL case.

To see that the space of CAT collars on M in W is contractible, we note that
[Ar70, Thm. 2] proves that any two TOP collars are ambient isotopic (relative
to the boundary), and the argument generalizes word-for-word to show that
any two parametrized families of collars (over the same base) are connected
by a family of ambient isotopies, which proves the claim for TOP. In the PL
category, the same proof works, once PL isotopies are chosen to replace the
TOP isotopies Fs and Gy given on page 124 of [Ar70]. The proof in the DIFF
case is different, using the convexity of the space of inward pointing normal
fields.

Definition 1.1.3. (a) The stabilization map
o: HM) — H(M x J)

takes an h-cobordism W on M to the h-cobordism W x J on M x J. It is
well-defined, because M x J C W x J and (N x J)U (W x 8J) C W x J are
homotopy equivalences. The stable h-cobordism space of M is the colimit

HAT (M) = colim HOAT(M x J*)

over k > 0, formed with respect to the stabilization maps. Each stabilization
map is a cofibration of simplicial sets, so the colimit has the same homotopy
type as the corresponding homotopy colimit, or mapping telescope.

(b) In the collared case, the stabilization map o: H(M)¢ — H(M x J)¢ takes
a collared h-cobordism (W, ¢) on M to the h-cobordism W x J on M x J with
collar ‘

MxTIxJ 8 W),

Each codimension zero CAT embedding M — M’ induces a map H(M)® —
H(M')¢ that takes (W, c) to the h-cobordism

W/ZM/XIUMX[W,

with the obvious collar ¢/: M’ x I — W'. This makes H(M )¢ and HAT (M)* =
colimy, H(M x J*)¢ covariant functors in M, for codimension zero embeddings
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of CAT manifolds. The forgetful map H T (M) — HAT (M) is also a weak
homotopy equivalence.

We must work with the collared h-cobordism space when functoriality is
required, but will often (for simplicity) just refer to the plain h-cobordism
space. To extend the functoriality from codimension zero embeddings to general
continuous maps M — M’ of topological spaces, one can proceed as in [HaT78,
Prop. 1.3] or [Wa82, p. 152], to which we refer for details.

Remark 1.1.4. For a cobordism to become an h-cobordism after suitable sta-
bilization, weaker homotopical hypotheses suffice. For example, let X C V
be a codimension zero inclusion and homotopy equivalence of compact CAT
manifolds. Let ¢p: X x I — X be an interior collar on the boundary of X, let
My = co(0X x 1) and Wy = ¢o(0X x I)U(V\ X). Then Wy is a cobordism from
My to Ny = 9V, and the inclusion My C Wy is a homology equivalence by ex-
cision, but Wy is in general not an h-cobordism on M. However, if we stabilize
the inclusion X C V three times, and perform the corresponding constructions,
then the resulting cobordism is an h-cobordism.

In more detail, we have a codimension zero inclusion and homotopy equiva-
lence X x J3 C V x J3. Choosing an interior collar ¢: (X x J3) x I — X x J?
on the boundary of X x J3, we let M = c(0(X x J3) x 1), N =9(V x J3) and

W =c(0(X xJ)x UV xJ*\ X x J?).

Then W is a cobordism from M to N. The three inclusions M C X x J3,
N CVxJ>and W C V x J? are all m-isomorphisms (because any null-
homotopy in V x J? of a loop in N can be deformed away from the interior
of V times some interior point of J2, and then into NN, and similarly in the
two other cases). Since X x J2 C V x J? is a homotopy equivalence, it follows
that both M C W and N C W are m-isomorphisms. By excision, it follows
that M C W is a homology equivalence, now with arbitrary local coefficients.
By the universal coefficient theorem, and Lefschetz duality for the compact
manifold W, it follows that N C W is a homology equivalence, again with
arbitrary local coefficients. Hence both M C W and N C W are homotopy
equivalences, and W is an h-cobordism on M.

In the following definitions, we specify one model sgf(M ) for the stable PL
h-cobordism space HEZ (M), based on a category of compact polyhedra and
simple maps. In the next two sections we will re-express this polyhedral model:
first in terms of a category of finite simplicial sets and simple maps, and then
in terms of the algebraic K-theory of spaces.

Definition 1.1.5. A PL map f: K — L of compact polyhedra will be called a
simple map if it has contractible point inverses, i.e., if f~1(p) is contractible
for each point p € L. (A space is contractible if it is homotopy equivalent to a
one-point space. It is, in particular, then non-empty.)

In this context, M. Cohen [Co67, Thm. 11.1] has proved that simple maps
(which he called contractible mappings) are simple homotopy equivalences.
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Two compact polyhedra are thus of the same simple homotopy type if and
only if they can be linked by a finite chain of simple maps. The composite of
two simple maps is always a simple map. This follows from Proposition 2.1.3 in
Chapter 2, in view of the possibility of triangulating polyhedra and PL maps.
Thus we can interpret the simple homotopy types of compact polyhedra as the
path components of (the nerve of) a category of polyhedra and simple maps.

Definition 1.1.6. Let K be a compact polyhedron. We define a simplicial
category s€"(K) of compact polyhedra containing K as a deformation retract,
and simple PL maps between these. In simplicial degree 0, the objects are com-
pact polyhedra L equipped with a PL embedding and homotopy equivalence
K — L. The morphisms f: L — L’ are the simple PL maps that restrict to
the identity on K, via the given embeddings. A deformation retraction L — K
exists for each object, but a choice of such a map is not part of the structure.

In simplicial degree ¢, the objects of SEZ(K) are PL Serre fibrations (= PL
maps whose underlying continuous map of topological spaces is a Serre fibra-
tion) of compact polyhedra 7: B — A9, with a PL embedding and homotopy
equivalence K x A? — E over A? from the product fibration pr: K x A? — A1
The morphisms f: E — E’ of SSZ(K) are the simple PL fiber maps over A?
that restrict to the identity on K x A%, via the given embeddings.

Each PL embedding K — K’ of compact polyhedra induces a (forward)
functor s€M(K) — s€"(K') that takes K — L to K’ — K’ Uy L, and similarly
in parametrized families. The pushout K’ Uy L exists as a polyhedron, because
both K — K’ and K — L are PL embeddings. This makes s&/(K) a covariant
functor in K, for PL embeddings. There is a natural stabilization map

o sEMK) = sEMK x J)

that takes K — L to K x J — L x J, and similarly in parametrized families.
It is a homotopy equivalence by Lemma 4.1.12 in Chapter 4.

As in the following definition, we often regard a simplicial set as a simplicial
category with only identity morphisms, a simplicial category as the bisimplicial
set given by its degreewise nerve (Definition 2.2.1), and a bisimplicial set as
the simplicial set given by its diagonal. A map of categories, i.e., a functor, is a
homotopy equivalence if the induced map of nerves is a weak homotopy equiv-
alence. See [Se68, §2], [Qu73, §1] or [WaT78a, §5] for more on these conventions.

Definition 1.1.7. Let M be a compact PL manifold. There is a natural map
of simplicial categories

w: HPY (M) — sEM(M x 1)

that takes (W,c) to the underlying compact polyhedron of the h-cobordism
W, with the PL embedding and homotopy equivalence provided by the collar
c: M x I — W, and views PL bundles over A? as being particular cases of
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PL Serre fibrations over A?. It commutes with the stabilization maps, and
therefore induces a natural map

w: KPP (M) — co}cimsg?(M x I x J*%).

Here is the PL manifold part of the stable parametrized h-cobordism theorem.

Theorem 1.1.8. Let M be a compact PL manifold. There is a natural homo-
topy equivalence N
HPL(M) ~ s€(M).
More precisely, there is a natural chain of homotopy equivalences
37H(M)" = colim HPH(M x J*)* = colim SEMM x I x JF) << s€M(M),

and HPL(M)® ~ HPE(M).

By the argument of [Wa82, p. 175], which we explain below, it suffices to
prove Theorem 1.1.8 when M is a codimension zero submanifold of Euclidean
space, or a little more generally, when M is stably framed (see Definition 4.1.2).
The proof of the stably framed case will be given in Chapter 4, and is outlined
in Section 4.1. Cf. diagram (4.1.13).

Remark 1.1.9 (Reduction of Theorem 1.1.8 to the stably framed case). Here we
use a second homotopy equivalent model H(M)" for the h-cobordism space
of M, where each h-cobordism W comes equipped with a choice of a CAT
retraction r: W — M, and similarly in parametrized families. The forgetful
map H(M)" — H(M) is a weak homotopy equivalence, because each inclusion
M C W is a cofibration and a homotopy equivalence. For each CAT disc
bundle v: N — M there is a pullback map v': H(M)" — H(N)", which
takes an h-cobordism W on M with retraction r: W — M to the pulled-back
h-cobordism N x; W on N, with the pulled-back retraction.

Mox J5 =y W J* 0 g s gk

AR S

N+—=" s NxyW—N

~

M = %% r M

If 7: M xJ* — N is a second CAT disc bundle, so that the composite v7 equals
the projection pr: M x J¥ — M, then (v7)' equals the k-fold stabilization map

[ . . .
7't = 0. Hence there is a commutative diagram

H(M)" —“ H(N) —T— H(M x J*)"

zl lg

H(M) i H(M x J*).
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According to Haefliger-Wall [HW65, Cor. 4.2], each compact PL manifold M
admits a stable normal disc bundle v: N — M, with N embedded with codi-
mension zero in some Euclidean n-space. Furthermore, PL disc bundles admit
stable inverses. Let 7: M x J¥ — N be the disc bundle in such a stable inverse
to v, such that v7 is isomorphic to the product k-disc bundle over M, and
7(v X id) is isomorphic to the product k-disc bundle over N. By the diagram
above, pullback along v and 7 define homotopy inverse maps

HPL(M) L5 HPE(N) Zs 3P (M)

after stabilization. B B

Likewise, there is a homotopy equivalent variant s€?(M)" of s€M(M), with
a (contractible) choice of PL retraction r: L — M for each polyhedron L
containing M, and similarly in parametrized families. There is a simplicial
functor v/': sgf (M)" — sE"(N)", by the pullback property of simple maps (see
Proposition 2.1.3). It is a homotopy equivalence, because each stabilization
map o is a homotopy equivalence by Lemma 4.1.12. Thus it suffices to prove
Theorem 1.1.8 for N, which is stably framed, in place of M.

Remark 1.1.10. A similar argument lets us reduce the stable parametrized
TOP h-cobordism theorem to the PL case. By [Mi64] and [Ki64] each com-
pact TOP manifold M admits a normal disc bundle v: N — M in some Eu-
clidean space, and v admits a stable inverse. As a codimension zero subman-
ifold of Euclidean space, N can be given a PL structure. By the argument
above, v': HTOP (M) — HTOP(N) is a homotopy equivalence. Furthermore,
HPE(N) — HTOP(N) is a homotopy equivalence for n = dim(N) > 5, by
triangulation theory [BL74, Thm. 6.2] and [KS77, V.5.5]. Thus HP*(N) ~
HTOP(N), and the TOP case of Theorem 0.1 follows from the PL case.

Remark 1.1.11. There are further possible variations in the definition of the h-
cobordism space H(M). For a fixed h-cobordism W on M, the path component
of H(M) containing W is a classifying space for CAT bundles with fiber W,
relative to the product bundle with fiber M. A homotopy equivalent model for
this classifying space is the bar construction BCAT (W rel M) of the simplicial
group of CAT automorphisms of W relative to M. Hence there is a homotopy
equivalence
H(M) ~ [[ BCAT(W rel M),
W]

where [W] ranges over the set of isomorphism classes of CAT h-cobordisms
on M.

In particular, when W = M x [ is the product h-cobordism on M = M x 0,
we are led to the simplicial group

(1.1.12) C(M)=CAT(M x I,M x 1)

of CAT concordances (= pseudo-isotopies) on M. By definition, these are
the CAT automorphisms of M x I that pointwise fix the complement of M x 1
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in (M x I). More generally, we follow the convention of [WWO01, 1.1.2] and
write CAT (W, N) for the simplicial group of CAT automorphisms of W that
agree with the identity on the complement of N in 0W. Here N is assumed
to be a codimension zero CAT submanifold of the boundary OW. When N is
empty we may omit it from the notation, so that CAT (W) = CAT (W rel OW).

The concordances that commute with the projection to I = [0, 1] are the same
as the isotopies of M rel 9M that start from the identity, but concordances are
not required to commute with this projection, hence the name pseudo-isotopy.
The inclusion C'(M) — CAT(M x Irtel M x 0) is a homotopy equivalence, so
the path component of H(M) that contains the trivial h-cobordisms is ho-
motopy equivalent to the bar construction BC'(M). In general, H(M) is a
non-connective delooping of the CAT concordance space C(M).

By the s-cobordism theorem, the set of path components of H(M) is in bijec-
tion with the Whitehead group Why (7)) = K1 (Z[r])/(£7), when d = dim(M) >
5 and M is connected with fundamental group 7. For disconnected M, the
Whitehead group should be interpreted as the sum of the Whitehead groups
associated to its individual path components. For each element 7 € Why(7),
we write H(M), for the path component of H(M) that consists of the h-
cobordisms with Whitehead torsion 7. For example, H(M )y ~ BC(M) is the
s-cobordism space.

Still assuming d > 5, we can find an h-cobordism W; from M to M., with
prescribed Whitehead torsion 7 relative to M, and a second h-cobordism W5y
from M, to M, with Whitehead torsion —7 relative to M,. Then Wy Uy, Wa =
M x I and Wy Uy W1 = M, x I, by the sum formula for Whitehead torsion and
the s-cobordism theorem. Gluing with Wy at M, and with Wy at M., define
homotopy inverse maps

H(M), - HM,)o— H(M),.
Hence

(1.1.13) H(M) =[[HM), ~[[HM:)o ~ [[ BC(M,),

where 7 € Why ().

1.2. THE NON-MANIFOLD PART

In this section, as well as in Chapters 2 and 3, we let A? be the simplicial
g-simplex, the simplicial set with geometric realization |A?| the standard affine
g-simplex.

Definition 1.2.1. A simplicial set X is finite if it is generated by finitely
many simplices, or equivalently, if its geometric realization |X| is compact. A
map f: X — Y of finite simplicial sets will be called a simple map if its
geometric realization |f|: |X| — |Y| has contractible point inverses, i.e., if for
each p € |Y| the preimage |f|~!(p) is contractible.
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A map f: X — Y of simplicial sets is a weak homotopy equivalence if
its geometric realization |f| is a homotopy equivalence. A map f: X — Y of
simplicial sets is a cofibration if it is injective in each degree, or equivalently,
if its geometric realization |f| is an embedding. We say that f is a finite
cofibration if, furthermore, Y is generated by the image of X and finitely
many other simplices.

We shall see in Section 2.1 that simple maps are weak homotopy equivalences,
and that the composite of two simple maps is a simple map. In particular, the
simple maps of finite simplicial sets form a category.

Definition 1.2.2. By the Yoneda lemma, there is a one-to-one correspondence
between the n-simplices x of a simplicial set X and the simplicial maps z: A™ —
X. We call T the representing map of x. A simplicial set X will be called
non-singular if for each non-degenerate simplex « € X the representing map
Z: A™ — X is a cofibration.

In any simplicial set X, the geometric realization |Z|: |A™| — |X]| of the
representing map of a non-degenerate simplex x restricts to an embedding of the
interior of |A™|. The additional condition imposed for non-singular simplicial
sets is that this map is required to be an embedding of the whole of |A™|. Tt
amounts to the same to ask that the images of the (n + 1) vertices of |A"| in
| X| are all distinct.

When viewed as simplicial sets, ordered simplicial complexes provide exam-
ples of non-singular simplicial sets, but not all non-singular simplicial sets arise
this way. For example, the union A! Uga1 Al of two 1-simplices along their
boundary is a non-singular simplicial set, but not an ordered simplicial complex.

Definition 1.2.3. For any simplicial set X, let C(X) be the category of finite
cofibrations y: X — Y. The morphisms from y to y': X — Y’ are the simplicial
maps f: Y — Y’ under X, i.e., those satisfying fy =y’

For finite X, let sC"(X) C C(X) be the subcategory with objects such that
y: X — Y is a weak homotopy equivalence, and morphisms such that f: Y —
Y’ is a simple map. Let D(X) C C(X) and sD"(X) C sC"(X) be the full
subcategories generated by the objects y: X — Y for which Y is non-singular.
Let i: sD"(X) — s€"(X) be the inclusion functor.

The definition of sC"(X) only makes sense, as stated, for finite X, because
we have not defined what it means for f: Y — Y’ to be a simple map when
Y or Y’ are not finite. We will extend the definition of s€*(X) to general
simplicial sets X in Definition 3.1.12, as the colimit of the categories sC"(X,)
where X, ranges over the finite simplicial subsets of X. The categories D(X)
and sD"(X) are only non-empty when X itself is non-singular, because there
can only be a cofibration y: X — Y to a non-singular simplicial set Y when X
is also non-singular.

Definition 1.2.4. The geometric realization | X| of a finite non-singular simpli-
cial set X is canonically a compact polyhedron, which we call the polyhedral
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realization of X. Its polyhedral structure is characterized by the condition
that |Z|: |JA™| — | X|is a PL map for each (non-degenerate) simplex x of X. The
geometric realization |f]: |X| — |Y| of a simplicial map of finite non-singular
simplicial sets is then a PL map.

For any compact polyhedron K, let s€"(K) be the category of PL embed-
dings ¢£: K — L of compact polyhedra, and simple PL maps f: L — L’ under
K. For any finite non-singular simplicial set X let r: sD*(X) — s&"(|X|) be
the polyhedral realization functor that takes y: X — Y to |y|: |X| — |Y], and
similarly for morphisms. Let 7: s€"(K) — s€"(K) be the simplicial functor
that includes s€"(K) as the O-simplices in s&"(K), as introduced in Defini-
tion 1.1.6.

See Definition 3.4.1 for more on compact polyhedra, PL. maps and the poly-
hedral realization functor. The non-manifold parts of the stable parametrized
h-cobordism theorem follow.

Theorem 1.2.5. Let X be a finite non-singular simplicial set. The full inclu-
sion functor
i: sDM(X) = seh(X)

is a homotopy equivalence.

Theorem 1.2.5 will be proved as part of Proposition 3.1.14. Cf. diagram
(3.1.15).

Theorem 1.2.6. Let X be a finite non-singular simplicial set. The composite
for: sDM(X) — sEM(|1X))

of the polyhedral realization functor r and the 0-simplex inclusion 7, is a ho-
motopy equivalence.

Theorem 1.2.6 is proved at the end of Section 3.5. Cf. diagram (3.5.4).
We do not claim that the individual functors r: sD"(X) — s&€"(|X|) and
i sEM(|X|) — sg’}(\X |) are homotopy equivalences, only their composite. The
proof involves factoring the composite in a different way, through a simplicial
category sD"(X), to be introduced in Definition 3.1.7(d).

The construction X + sC"(X) is covariantly functorial in the simplicial
set X. It is homotopy invariant in the sense that any weak homotopy equiv-
alence z: X — X’ induces a homotopy equivalence z,: sC*(X) — sCh(X’).
Union along X defines a sum operation on sC"(X) that makes it a grouplike
monoid, with 7os€"(X) isomorphic to the Whitehead group of m;(X). See
Definition 3.1.11, Corollary 3.2.4 and Proposition 3.2.5 for precise statements
and proofs.

1.3. ALGEBRAIC K-THEORY OF SPACES

For any simplicial set X, let R;(X) be the category of finite retractive spaces
over X, with objects (Y, r,y) where y: X — Y is a finite cofibration of simplicial



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.
16 CHAPTER ONE

sets and r: Y — X is a retraction, so that ry = idx. A morphism from (Y, r,y)
to (Y',r',y’) is a simplicial map f: Y — Y’ over and under X, so that r =r'f
and fy = y'. There is a functor R;(X) — C(X) that forgets the structural
retractions. (The category €(X) was denoted C;(X) in [Wa78b] and [Wa85],
but in this book we omit the subscript to make room for a simplicial direction.)
The two subcategories coR¢(X) and hR;(X) of Rf(X), of maps f: Y —
Y’ that are cofibrations and weak homotopy equivalences, respectively, make
R¢(X) a category with cofibrations and weak equivalences in the sense of
[Wa85, §1.1 and §1.2]. The S,-construction S,R;(X) is then defined as a sim-
plicial category (with cofibrations and weak equivalences), see [Wa85, §1.3],
and the algebraic K-theory of the space X is defined to be the loop space

A(X) = QRS Ry (X)) .

Any weak homotopy equivalence X — X’ induces a homotopy equivalence
A(X) — A(X'), and we can write A(M) for A(X) when M = |X|.
The S,-construction can be iterated, and the sequence of spaces

{n—=|hS,---S.Re(X)| }

n

(with appropriate structure maps) defines a spectrum A (X ), which has A(X) as
its underlying infinite loop space. Let S = {n + 5™} be the sphere spectrum.
In the special case X = * there is a unit map

n:S = A(x),

adjoint to the based map S — |hR¢(x)| that takes the non-base point to the
0-simplex corresponding to the object (Y,r,y) with Y = S°.

These spectra can be given more structure. By [GH99, Prop. 6.1.1] each
A (X) is naturally a symmetric spectrum [HSS00], with the symmetric group ¥,
acting on the n-th space by permuting the S,-constructions. Furthermore, the
smash product of finite based simplicial sets induces a multiplication p: A () A
A(x) = A(x) that, together with the unit map 7, makes A(x) a commutative
symmetric ring spectrum. Each spectrum A (X) is naturally an A (x)-module
spectrum.

For based and connected X, there is a homotopy equivalent definition of
A(X) as the algebraic K-theory K(S[QX]) of the spherical group ring S[QX].
Here QX can be interpreted as the Kan loop group of X, see [Wa96], and S[Q2X]
is its unreduced suspension spectrum Y°(QX),, viewed as a symmetric ring
spectrum, or any other equivalent notion.

Remark 1.3.1. The CAT Whitehead spaces can be defined in several, mostly
equivalent, ways. In early papers on the subject [Wa78b, pp. 46-47], [Wa82,
p. 144], [WWS8S8, pp. 575-576], Wh7T (M) is defined for compact CAT man-
ifolds M as a delooping of the stable h-cobordism space HT (M), making
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Theorem 0.1 a definition rather than a theorem. With that definition in mind,
the reader might justifiably wonder what this book is all about.

On the other hand, in [Ha75, p. 102] and [Ha78, p. 15] the PL Whitehead
space Wh*(K) is defined for polyhedra K as a delooping of the classify-
ing space of the category of simple maps that we denote by s&"(K). (In
Hatcher’s first cited paper, there is no delooping.) In [Wa85, Prop. 3.1.1] the
PL Whitehead space WhPL(X ) is defined for simplicial sets X as the delooping
|sN,C"(X)| of the classifying space of the category sC"(X). We do not know
that Hatcher and Waldhausen’s definitions are equivalent for K = |X]|, but
they do become equivalent if s€"(K) is expanded to the simplicial category
sgi‘(K), see diagram (3.1.8) and Remark 3.1.10.

With Waldhausen’s cited definition, the PL case of Theorem 0.1 becomes the
main result established in this book, asserting that there is a natural equivalence
HPE(|X]) =~ s€"(X) for finite combinatorial manifolds X, by the proof outlined
in diagram (0.4). This definition has the advantage that it provides notation
for stating Theorem 0.1 in the PL case, but it has the disadvantage that it does
not also cover the DIFF case.

To obtain the given statement of Theorem 0.1, and to directly connect the
main result about h-cobordism spaces to algebraic K-theory, we therefore
choose to redefine the CAT Whitehead spaces Wh?7 (X)) directly in terms
of the functor A(X), by analogy with the definition of the Whitehead group
Wh; (7) as a quotient of the algebraic K-group Ki(Z[n]). The role of the geo-
metric category CAT is not apparent in the resulting definition of WhAT (X),
so the superscript in the notation is only justified once Theorem 0.1 has been
proved.

That the K-theoretic definition in the PL case agrees with Waldhausen’s
cited definition is the content of [Wa85, Thm. 3.1.7] and [Wa85, Thm. 3.3.1].
The correctuness of the redefinition in the DIFF case (which is the real content
of the DIFF case of Theorem 0.1) is a consequence of smoothing theory and a
vanishing theorem, and is explained at the end of this section.

By [Wa85, Thm. 3.2.1] and a part of [Wa85, Thm. 3.3.1] (recalled in dia-
gram (1.4.7) below), there is a natural map

a: h(X; A(x)) —» A(X)
of homotopy functors in X, where
h(X; A(x)) = Q% (A(x) A X4)

is the unreduced homological functor associated to the spectrum A(x). The
natural map « is a homotopy equivalence for X = %, which characterizes it up
to homotopy equivalence as the assembly map associated to the homotopy
functor A(X), see [WW95, §1]. The assembly map extends to a map

a: A(x) AN X — A(X)

of (symmetric) spectra, as is seen from [Wa85, Thm. 3.3.1] by iterating the
S, -construction.



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.
18 CHAPTER ONE

Definition 1.3.2. For each simplicial set X, let the PL Whitehead spec-
trum Wht?t (X) be defined as the homotopy cofiber of the spectrum level
assembly map, so that there is a natural cofiber sequence of spectra

A()A X, S5 AX) - WhPE(X).

Let the PL Whitehead space Wh''”(X) be defined as the underlying infinite
loop space WhP*(X) = Q°° Wh'¥(X).

Let the TOP Whitehead spectrum and TOP Whitehead space be
defined in the same way, as Wh' 9" (X) = Wh'%(X) and Wh'°"(Xx) =
WhtE (X), respectively.

With this (revised) definition, there is obviously a natural homotopy fiber
sequence

(1.3.3) h(X; A(x)) 2 A(X) - WhPL(X)

of homotopy functors in X. Continuing the homotopy fiber sequence one step to
the left, we get an identification of the looped PL Whitehead space €2 WhE (X)
with the homotopy fiber of the space level assembly map a: h(X; A(%)) —
A(X), without needing to refer to the previously mentioned spectrum level
constructions.

Summary of proof of the PL case of Theorem 0.1, and Theorem 0.2. By [Wa85,
Thm. 3.1.7] and [Wa85, 3.3.1], the revised definition of Wh'*(X) agrees up to
natural homotopy equivalence with the one given in [Wa85, Prop. 3.1.1]. In
particular, there is a natural chain of homotopy equivalences

sCM(X) ~ QWhPE(X),

also with the revised definition. The proof of [Wa85, Thm. 3.1.7] contains
some forward references to results proved in the present book, which we have
summarized in Remark 1.4.5.
By our Theorems 1.1.8, 1.2.5 and 1.2.6, proved in Sections 4.1-4.3, 3.1
and 3.5, respectively, there is a natural chain of homotopy equivalences
HPL(M) S5 s€M(M) & sDM(X) S s€M(X)

for each compact PL manifold M, triangulated as |X|. This establishes the
homotopy equivalence of Theorem 0.1 in the PL case. The homotopy fiber
sequence of Theorem 0.2 is the Puppe sequence obtained by continuing (1.3.3)
one step to the left. O

The unit map n: S — A(x) induces a natural map of unreduced homological
functors

Q(X4) = 0%(S A X.) B Q%(A(x) A Xy) = h(X; A(¥)).
We define the spectrum map ¢: ¥*° X — A(X) as the composite
DX, =SA X, L A A X, S AX)
and let ¢« = aon: Q(X;) — A(X) be the underlying map of infinite loop spaces.
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Definition 1.3.4. For each simplicial set X let the DIFF Whitehead spec-
trum WhPHF (X) be defined as the homotopy cofiber of the spectrum map ¢,
so that there is a natural cofiber sequence of spectra

X, 5 A(X) - WhPFF (X)),

Let the DIFF Whitehead space Wh”/*'(X) be defined as the underlying
infinite loop space WhDIFF(X) = Q> WhDIFF(X)_

There is obviously a natural homotopy fiber sequence
(1.3.5) Q(X,) 5 A(X) — WhPHFF (X))

of homotopy functors in X. Continuing the homotopy fiber sequence one step
to the left, we get an identification of the looped DIFF Whitehead space
QWhPF(X) with the homotopy fiber of the space level map 1: Q(Xy) —
A(X). However, in this case the splitting of ¢ leads to the attractive formula
A(X) ~ Q(X 1) x WhPFF(X), which is one reason to focus on the unlooped
Whitehead space.

Proof of the DIFF case of Theorem 0.1, and Theorem 0.3. We can deduce The-
orem 0.3 and the DIFF case of Theorem 0.1 from Theorem 0.2. The argument
was explained in [Wa78b, §3] and [Wa82, §2], but we review and comment on
it here for the reader’s convenience.

We consider homotopy functors F' from spaces to based spaces, such that
there is a natural map F(M) — hofib(F(M;) — F(x)). The stabilization
F3 of F (not related to the other kind of stabilization that we use) is an
unreduced homological functor, with

FS(M) ~ colim " hofib(F (X" (My.)) — F(x)).

In the notation of [Go90b], F¥(M) = D,F(M.), where D, F is the differential
of F at . There is a natural map F(M) — F¥(M), which is a homotopy equiv-
alence whenever F itself is a homological functor. This form of stabilization
preserves natural homotopy fiber sequences.

Each term in the homotopy fiber sequence of Theorem 0.2 is such a homotopy
functor. Hence there is a natural homotopy equivalence

Qhofib(A(M) — AS(M)) = hofib(HPE (M) — HPLS (M) .

The stable h-cobordism space HP/FF (M) can also be extended to such a homo-
topy functor. By Morlet’s disjunction lemma [BLR75, §1], cf. [Ha78, Lem. 5.4],
the stabilized functor HPTFF5 (M) is contractible. By smoothing theory, also
known as Morlet’s comparison theorem, the homotopy fiber of the natural map
HPIFF (M) — HPL(M) is a homological functor [BL77, §4]. Hence there is a
natural chain of homotopy equivalences

g_CDIFF(M) é hOﬁb(g'fDIFF (M) N %DIFF,S(M))
= hofib(HPE (M) — HPES(M)).
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The composite map Q(M,) = A(M) — AS(M) is a homotopy equivalence,
by the “vanishing of the mystery homology theory” [Wa87a, Thm.]. Alterna-
tively, this can be deduced from B.I.Dundas’ theorem on relative K-theory
[Du97, p. 224], which implies that the cyclotomic trace map induces a profi-
nite homotopy equivalence A% (M) ~ TCS(M), together with the calculation
TCS(M) ~ Q(M,) of [He94]. The rational result was obtained in [Wa78b,
Prop. 2.9] from work by A.Borel [Bo74], F. T. Farrell and W.-C. Hsiang [FH78].
Either way, it follows that the composite natural map

hofib(A(M) — AS(M)) — A(M) — WhP'F (Ar)

is a homotopy equivalence. In combination, we obtain a natural chain of ho-
motopy equivalences that induces the homotopy equivalence

claimed in Theorem 0.1. The homotopy fiber sequence of Theorem 0.3 is the
Puppe sequence obtained by continuing (1.3.5) one step to the left. The sta-
bilization map A(M) — A%(M) provides a natural splitting of 1: Q(M,) —
A(M), up to homotopy, and together with the map A(M) — Wh?™F (M) it
defines the natural homotopy factorization of the theorem. [

1.4. RELATION TO OTHER LITERATURE

The main assertion in Hatcher’s paper [Ha75] is his Theorem 9.1, saying
that there is a k-connected map from the PL h-cobordism space HPZ(M) to
a classifying space 8(M) for “PL Serre fibrations with homotopy fiber M and
a fiber homotopy trivialization,” provided that n = dim(M) > 3k + 5. The
model for §(M) chosen by Hatcher equals the simplicial set of objects in our
simplicial category sgf‘(M ). In Hatcher’s Proposition 3.1, this space is asserted
to be homotopy equivalent to the nerve of s€"(M). That particular claim
appears to be difficult to prove in the polyhedral context, because the proposed
argument for his Proposition 2.5 makes significant use of chosen triangulations.
However, it follows from [St86, Thm. 1] and our Theorem 1.2.6 that S(M)
is homotopy equivalent to the nerve of the simplicial category SE?(M ), so
in essence, Hatcher’s Theorem 9.1 claims that the map HPL(M) — sEfL(M)
is about (n/3)-connected, for n = dim(AM). Stabilizing with respect to the
dimension, this amounts to the manifold part Theorem 1.1.8 of our stable
parametrized h-cobordism theorem. Thus the stable form of Hatcher’s main
assertion is correct.

The relevance of simple maps to the study of PL homeomorphisms of mani-
folds may be motivated by the following theorem of M. Cohen [Co70, Thm. 1]:
For closed PL n-manifolds M and N with n > 5 each simple PL map M — N
can be uniformly approximated by a PL homeomorphism M = N. A similar
result in the TOP category was proved by L. Siebenmann [Si72].
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The first author’s paper [Wa78b] (from the 1976 Stanford conference) con-
tains in its Section 5 the assertion that Hatcher’s polyhedral model sgf(M ) for
HPL(M) is homotopy equivalent to the model sC"(X) that is defined in terms
of simplicial sets, where M = |X| as usual. This translation is the content of
our non-manifold Theorems 1.2.5 and 1.2.6. Furthermore, Section 5 of that
paper contains the homotopy fiber sequences of Theorems 0.2 and 0.3. Modulo
some forward references to the present work, their proofs appeared in [Wa85],
except for the result that A%(M) ~ Q(M, ), which appeared in [Wa87a]. For
more on these forward references, see Remark 1.4.5.

Hatcher’s paper [Ha78] in the same proceedings surveys, among other things,
how concordance spaces (with their canonical involution) measure the differ-
ence between the “honest” automorphism groups of manifolds and the block
automorphism groups of manifolds, which are determined by surgery theory
[Wa70, §17.A]. The spectral sequence of [Ha78, Prop. 2.1] makes this precise in
the concordance stable range. In [WW88, Thm. A], M. Weiss and B. Williams
express this spectral sequence as coming from the Z/2-homotopy orbit spectral
sequence of an involution on the stable h-cobordism space, with its infinite
loop space structure. Their later survey [WWO01] explains, among many other
things, how this contribution from concordance and h-cobordism spaces also
measures the difference between the “honest” moduli space parametrizing bun-
dles of compact manifolds and the block moduli space given by the surgery
classification of manifolds.

In the meantime, M. Steinberger’s paper [St86] appeared, whose Theorem 1
proves that (the nerve of) sD"(X) is a classifying space for “PL Serre fibrations
with homotopy fiber | X| and a fiber homotopy trivialization.” Thus sD"(X) ~
S(M), which is close to our Theorem 1.2.6. His main tool for proving this is a
special category of finite convex cell complexes in Euclidean space, and certain
piecewise linear maps between these.

Steinberger’s Theorem 2 is the same as our Theorem 1.2.5, but his proof
leaves a significant part to be discovered by the reader. His argument [St86,
p. 19] starts out just as our first (non-functorial) proof of Proposition 3.1.14, and
relies on a result similar to our Proposition 2.5.1. At that point, he appeals
to an analog C(h) of Cohen’s PL mapping cylinder, but defined for general
maps h of simplicial sets. However, he does not establish the existence of this
construction, nor its relevant properties. Presumably the intended C'(h) is our
backward reduced mapping cylinder M (Sd(h)) of the normal subdivision of h,
and the required properties are those established in our Sections 2.1 through 2.4.

The following year, T. A. Chapman’s paper [Ch87] appeared. His Theorem 3
proves the stable form of Hatcher’s main claim, that a version of HFL (M) is
homotopy equivalent to the classifying space 8(M). Modulo the identification
of §(M) with s&"(M), this is equivalent to our Theorem 1.1.8. Combining
Chapman’s Theorem 3 with Steinberger’s Theorems 1 and 2 one obtains a ho-
motopy equivalence HF (M) ~ sC*(X), for M = |X|. When combined with
the homotopy equivalence s€"(X) ~ QWh"*(X) from [Wa85, §3], bringing
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algebraic K-theory into the picture, one recovers the PL case of our Theo-
rem 0.1. In a similar way, Chapman’s Theorem 2 is analogous to our main
geometric Theorem 4.1.14, except that Chapman works with manifolds embed-
ded with codimension zero in some Euclidean space, whereas we have chosen to
work with stably framed manifolds. His main tool is a stable fibered controlled
h-cobordism theorem.

Chapman’s paper omits proofs of several results, because of their similarity
with other results in the literature (his Propositions 2.2 and 2.3), and only
discusses the absolute case of some inductive proofs that rely on a relative
statement for their inductive hypotheses (his Theorems 3.2 and 5.2). Further-
more, some arguments involving careful control estimates are only explained
over the 0- and 1-skeleta of a parameter domain, and it is left to the reader to
extend these over all higher skeleta.

Since Theorem 1.1.8, 1.2.5 and 1.2.6 are fundamental results for the relation
between the stable h-cobordism spaces and the Whitehead spaces, we prefer
to provide proofs that do not leave too many constructions, generalizations or
relativizations to be discovered or filled in by the reader. The tools used in
our presentation are close to those of [Wa85], which provides the connection
onwards from the Whitehead spaces to the algebraic K-theory of spaces. Taken
together, these two works complete the bridge connecting geometric topology
to algebraic K-theory.

The present book is also needed to justify the forward references from [Wa85],
including Theorem 2.3.2 and its consequence Proposition 2.3.3, which were
used in [Wa85, §3.1] on the way to Theorem 0.2. Hence these results from our
Chapter 2 are also required for Theorem 0.3 and the DIFF case of Theorem 0.1,
neither of which are covered by Steinberger and Chapman’s papers.

Returning to Hatcher’s original paper, the unstable form of the main asser-
tion would imply not only the stable conclusion, but also a PL concordance sta-
bility result [Ha78, Cor. 9.2], to the effect that a suspension map o: CPL(M) —
CPE(M x J) is about (n/3)-connected, for n = dim(M). Delooping once, this
would imply that the stabilization map o: HPL(M) — HPE(M x J) is also
about (n/3)-connected. As we discuss in Remark 4.2.3, our methods are essen-
tially stable. In particular, we do not attempt to prove these PL concordance
stability results. However, working in the DIFF category, K.Igusa proved the
following concordance stability result in [Ig88], using Hatcher’s PL argument
as an outline for the proof.

Theorem 1.4.1 (Igusa). The suspension map
o: CPEE(MY — CPIFF (M % )

is k-connected, for all compact smooth n-manifolds M with n > max{2k +
7,3k +4}.

Delooping once, and iterating, it follows that the infinite stabilization map
HPIFE(NY — HPIFE (M) is (k + 1)-connected, for M, n and k as in the
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theorem. When combined with Theorem 0.3 and calculations of the algebraic
K-theory of spaces A(M), this leads to concrete results on the homotopy groups
7, CPIEE (M) and 7, HPTFF (M), for i up to about n/3.

For example, in the case M = D" =~ x there is a rational homotopy equiva-
lence A(M) ~ A(x) — K(Z), and the striking consequences for m; DIFF(D™) ®
Q of Borel’s calculation [Bo74] of K;(Z)®Q were explained in [Wa78b, Thm. 3.2]
and [Ig88, p. 7]. Recall from Remark 1.1.11 the convention that DIFF(D") =
DIFF(D"™rel S"~1). Analogous rational results for Euclidean and spherical
space forms were obtained in [FH78|, [HJ82] and [HJ83]. Calculations of the
p-torsion in m; A(x) were made in [Ro02] for p = 2 and [Ro03] for odd regular
primes, and some consequences concerning the p-torsion in m; DIFF(D"™) were
drawn in Section 6 of the latter paper.

D. Burghelea and R. Lashof [BL77, Thm. C] used smoothing theory and Mor-
let’s disjunction lemma to show that the PL concordance stability theorem
stated by Hatcher would imply a DIFF concordance stability theorem, in about
half the PL concordance stable range. T. Goodwillie has improved on this argu-
ment, using his multiple disjunction lemma from [Go90a], to establish a DIFF
concordance stable range only three less than such an assumed PL concordance
stable range.

However, no proof of a concordance stability theorem for general PL man-
ifolds seems to be known. In the absence of a PL proof, it was observed by
Burghelea and by Goodwillie that for smoothable manifolds M one can deduce
a PL concordance stability theorem from Igusa’s DIFF concordance stability
theorem, with the same concordance stable range. The following argument was
explained to us by Goodwillie. It implies that the optimal DIFF concordance
stable range and the optimal PL concordance stable range for smoothable man-
ifolds are practically the same.

Corollary 1.4.2 (Burghelea, Goodwillie). The suspension map

o: CPE(M) — CPE(M x J)
is k-connected, for compact smoothable n-manifolds M with n > max{2k +
7,3k + 4}.

Proof. Let M be a compact DIFF n-manifold and let P — M be its frame
bundle, i.e., the principal O,-bundle associated to the tangent bundle of M.
By smoothing theory [BL74, Thm. 4.2] there is a homotopy fiber sequence

DIFF(M) — PL(M) — T(M; PL,/O,).

Here I'(M; PL,,/O,,) denotes the space of sections s in the fiber bundle asso-
ciated to P — M with fiber PL,,/O,,, such that s|0M maps to the base point
in each fiber. (The precise statement requires a detour via spaces of piecewise
differentiable maps, which we suppress.) For concordance spaces [BL77, (2.4)]
there is a similar homotopy fiber sequence

(1.4.3) CPIFE (M) — CPE(M) — T(M; Cy),
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where I'(M; C,,) is the space of sections in a bundle over M with fiber
Cy, = hofib(PL,,/O,, = PLp1+1/0p41),

with prescribed behavior on M. (Burghelea—Lashof use the notation F,, for
the TOP/DIFF analog of this homotopy fiber.)
Let
FAAT (M) = hofib(CT (M) 2 CYAT (M x J))

be the homotopy fiber of the suspension map for CAT concordances. By [BL77,
Thm. A] the concordance suspension maps are compatible with a suspension
map ¢: C,, = QCp11, so there is a homotopy fiber sequence

(1.4.4) FPIFE(MY — FPE(M) — T'(M; F,),
where I'(M; F},) is the space of sections in a bundle with fiber
F, = hofib(C, & QCpi1),

still with prescribed behavior on M.
The columns in the following diagram are homotopy fiber sequences:

R SN QChi1

DIFF l

On+1/0n L) Q(On+2/0n+1)

.

PLyy1/PLy ~— Q(PLyyo/PLyiq).

— e — 0

The lower vertical arrows are (n + 2)-connected for n > 5, by the PL/DIFF
stability theorem [KS77, V.5.2]. Hence C,,, QC, 11 and the upper horizontal
map ¢ are all (n 4+ 1)-connected, and the homotopy fiber F), is at least n-
connected.

Igusa’s theorem implies that FPHEF (M) is (k — 1)-connected, for M, n and k
as in the statement of the corollary. In addition, o: CPHFE (M) — CPIFF(M x
J) is O-connected (for n > 7). Since I'(M;QC),+1) is 1-connected, it follows
from (1.4.3) that o: CPL(M) — CPL(M x J) is at least O-connected.

Now consider the special case M = D". The spaces PL(D"), C*E(D") and
FPL(D™) are all contractible, by the Alexander trick. The tangent bundle of
D™ is trivial, so T'(D™; F,,) = Q"F,. Igusa’s theorem and (1.4.4) then imply
that Q" F,, is k-connected. It follows that F, is (n + k)-connected, because we
saw from the PL/DIFF stability theorem that F, is at least n-connected.

Returning to the case of a general smoothable n-manifold M, the section
space ['(M; F,,) is k-connected by obstruction theory. Hence F¥* (M) is (k—1)-
connected by Igusa’s theorem and (1.4.4). Tt follows that the PL concordance
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stabilization map o: CPE(M) — CPE(M x J) is k-connected, because we saw
from Igusa’s theorem and (1.4.3) that it is at least O-connected. [

In a relative way, Igusa’s theorem improves on the cited PL/DIFF stability
theorem, by showing that the PL suspension map

PL
PLy1/PLy “— Q(PLyy2/PLyy1)

is at least (n+k+2)-connected, when n > max{2k+7,3k+4}. For comparison,
the DIFF suspension map

HDIFF
S" On+1/0n —_— Q(On+2/0n+1) = an—H

is precisely (2n — 1)-connected, by Freudenthal’s theorem.

Remark 1.4.5. There are some forward references in [Wa85, §3.1] concerning
simple maps to (an earlier version of) the present work. For the reader’s con-
venience, we make these explicit here. The claim that simple maps form a
category, and satisfy a gluing lemma [Wa85, p. 401] is contained in our Propo-
sition 2.1.3. The claim that the H-space sC*(X) is grouplike [Wa85, p. 402] is
our Corollary 3.2.4.

The proof of [Wa85, Lem. 3.1.4] contains three forward references. The
“well known argument” was implicit in [GZ67], and is made explicit in our
Lemma 3.2.14. The result that the last vertex map is simple is our Proposi-
tion 2.2.18. The fact that subdivision preserves simple maps is our Proposi-
tion 2.3.3. In our proof, the full strength of our Theorem 2.3.2 is used. Thus
that result, on the quasi-naturality of the Fritsch—Puppe homeomorphism, is
presently required for the identification s€"(X) ~ QWh*(X), and thus for
Theorems 0.1, 0.2 and 0.3.

On top of page 405 of [Wa85], use is made of a simplicial deformation re-
traction of [n] — X2"*2" onto [n] — X2", where X is a simplicial set. The
relevant inclusion is induced by the projection pri: A™ x A™ — A™, and we
take the retraction to be induced by the diagonal map diag: A™ — A" x A™.
Then diag o pry is the nerve of the composite functor (= order-preserving func-
tion) f: [n] x [n] = [n] x [n] that takes (7,7) to (i,1), for ¢,j € [n]. There is a
chain of natural transformations

(i,2) < (4, max(i, 7)) > (i, )

relating f to the identity on [n] x [n], which is natural in [n]. Taking nerves,
we get a chain of simplicial homotopies relating diag o pri to the identity on
A™ x A™ which is still natural in [n]. Forming mapping spaces into X, we
obtain the required chain of simplicial homotopies.

There are two references on page 406 of [Wa85] to our Proposition 3.2.5, i.e.,
the fact that the functor X ~ sC"(X) respects weak homotopy equivalences.
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The concluding reformulation [Wa85, Prop. 3.3.2] of [Wa85, Thm. 3.3.1] is
not correct as stated. In the definition of the simplicial category R¢(X),, the
condition on the objects in simplicial degree ¢, that the composite map

Y 5 X x A7 25 A

is locally fiber homotopy trivial, should be replaced with the stronger condition
that the map is a Serre fibration. This leads to the following definition and
corrected proposition.

Definition 1.4.6. To each simplicial set X we associate a simplicial category
R.(X). Insimplicial degree g, it is the full subcategory of R (X x A?) generated
by the objects (Y, r,y) for which the composite map

Y 5 X x A7 25 A

is a Serre fibration. Let f]E’}(X ) be the full simplicial subcategory with objects
such that y: X x A? — Y is also a weak homotopy equivalence, and let s-
and h-prefixes indicate the subcategories of simple maps and weak homotopy
equivalences, respectively.

By [Wa85, Thm. 3.3.1], there is a homotopy cartesian square

J

(1.4.7) sSLRE(XAT) —— 58, Rp(XA7)

hS R (XAT) —— hS,Rp(XAT)
where the entries have the following meaning. Let X denote the mapping
space Map(K, X), with p-simplices the maps AP x K — X. For each ¢, let
XA denote this mapping space (that is, take K = A%). Then the entries in
the diagram need to be taken in the following slightly tricky sense: for each
fixed ¢ evaluate the functor in question on X2”, and then take the simplicial
object that results by varying q.

The upper left hand term is one model for Wh'*(X), the lower left hand
term is contractible, and the loop spaces of the right hand terms are homo-
topy equivalent to h(X; A(x)) and A(X), respectively. The homotopy fiber
sequence (1.3.3) is part of the Puppe fiber sequence derived from this homo-
topy cartesian square.

Proposition 1.4.8. There is a homotopy cartesian square

sS.RMX) —— sS.R.(X)

| |

hS,RH(X) — hS,R,(X)
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and it is homotopy equivalent to the square (1.4.7) by a natural map.

Proof. The natural map of homotopy cartesian squares is induced by the func-
tor Ry (X2") = R,(X) given in simplicial degree ¢ by the composite

Rp(XA") = Rp(XA x AT) = Ry (X x AY),

where the first map is given by product with A?, and the second map is func-
torially induced by
(ev,pr): X2 x AT — X x AY

where ev is the evaluation map. When applied to a retractive space Y over
XA the result is a Serre fibration over X x A9, by the fiber gluing lemma for
Serre fibrations, Lemma 2.7.10. The proof then proceeds as in [Wa85, p. 418],
up to the claim that s€"(X) — s€"(X) is a homotopy equivalence. This will
be proved as Corollary 3.5.2.

Actually, the fiber gluing lemma for Serre fibrations was also used in the veri-
fication that the simplicial category R. (X) in Definition 1.4.6 is a simplicial cat-
egory with cofibrations; in particular, that for every ¢ the category 3~2q(X ) is a
category with cofibrations, as is required for the use of the S,-construction. [

In the “manifold approach” paper [Wa82, Prop. 5.1], a similar (approxi-
mately) homotopy cartesian square is constructed, where the entries are simpli-
cial (sets or) categories of CAT manifolds. As discussed in [Wa82, pp. 178-180],
there is a chain of homotopy equivalences relating the manifold square to the
square of Proposition 1.4.8. This is how one can deduce [Wa82, Prop. 5.5], for
CAT = PL, asserting that the manifold functor that corresponds to

sS.Rp(XAT) ~ 55,R,(X)

is indeed a homological functor in X.





