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1. Introduction

The work to be presented in this paper has been inspired by several of Pro-
fessor Graeme Segal’s papers. Our search for a geometrically defined elliptic
cohomology theory with associated elliptic objects obviously stems from his
Bourbaki seminar [28]. Our readiness to form group completions of symmetric
monoidal categories by passage to algebraic K-theory spectra derives from his
Topology paper [27]. Our inclination to invoke 2-functors to the 2-category
of 2-vector spaces generalizes his model for topological K-theory in terms of
functors from a path category to the category of vector spaces. We offer him
our admiration.

Among all generalized (co-)homology theories, a few hold a special position
because they are, in some sense, geometrically defined. For example, de Rham
cohomology of manifolds is defined in terms of cohomology classes of closed
differential forms, topological K-theory of finite CW complexes is defined in
terms of equivalence classes of complex vector bundles, and complex bordism
is defined in terms of bordism classes of maps from stably complex manifolds.
The geometric origin of these theories makes them particularly well suited to
the analysis of many key problems. For example, Chern–Weil theory asso-
ciates differential forms related to the curvature tensor to manifolds with a
connection, whose de Rham cohomology classes are the Chern classes of the
tangent bundle of the manifold. The Atiyah–Segal index theory [2] associates
formal differences of vector bundles to parametrized families of Fredholm oper-
ators, arising e.g. from complexes of elliptic pseudo-differential operators, and
their isomorphism classes live in topological K-theory. Moduli spaces of iso-
morphism classes of solutions to e.g. Yang–Mills gauge-theoretic problems can
generically yield maps from suitably structured manifolds, with well-defined
bordism classes in the corresponding form of bordism homology. On the other
hand, Quillen’s theorem that the coefficient ring π∗(MU) for complex bordism
theory is the Lazard ring that corepresents (commutative 1-dimensional) formal
group laws has no direct manifold-geometric interpretation, and may seem to
be a fortuitous coincidence in this context.

From the chromatic point of view of stable homotopy theory, related to the
various periodicity operators vn for n ≥ 0 that act in many cohomology theo-
ries, these three geometrically defined cohomology theories detect an increasing
amount of information. De Rham cohomology or real singular cohomology sees
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only rational phenomena, because for each prime p multiplication by p = v0

acts invertibly on H∗(X;R). Topological K-theory only picks up Bott periodic
phenomena, because multiplication by the Bott class u ∈ π2(KU) acts invert-
ibly on KU∗(X), and up−1 = v1 for each prime p. Complex bordism MU∗(X)
instead detects all levels of periodic phenomena. We can say that real cohomo-
logy, topological K-theory and complex bordism have chromatic filtration 0, 1
and∞, respectively. A precise interpretation of this is that the spectra HR and
KU are Bousfield local with respect to the Johnson–Wilson spectra E(n) for
n = 0 and 1, respectively, while MU is not E(n)-local for any finite n. Tradi-
tionally, an elliptic cohomology theory is a complex oriented Landweber exact
cohomology theory associated to the formal group law of an elliptic curve. It
will have chromatic filtration 2 when the elliptic curve admits a supersingular
specialization, and so any cohomology theory of chromatic filtration 2 might
loosely be called a form of elliptic cohomology. However, the formal group law
origin of traditional elliptic cohomology is not of a directly geometric nature,
and so there has been some lasting interest in finding a truly geometrically
defined form of elliptic cohomology.

It is the aim of the present paper to introduce a geometrically defined coho-
mology theory that is essentially of chromatic filtration 2, or more precisely, a
connective form of such a theory. It therefore extends the above list of distin-
guished cohomology theories one step beyond topological K-theory, to a theory
that will detect v2-periodic phenomena, but will ignore the complexity of all
higher vn-periodicities for n ≥ 3.

The theory that we will present is represented by the algebraic K-theory
spectrum K(V) of the Kapranov–Voevodsky 2-category of 2-vector spaces [15].
A 2-vector space is much like a complex vector space, but with all occurrences of
complex numbers, sums, products and equalities replaced by finite-dimensional
complex vector spaces, direct sums, tensor products and coherent isomorphisms,
respectively. It is geometrically defined in the sense that the 0-th cohomology
group K(V)0(X) of a space X can be defined in terms of equivalence classes
of 2-vector bundles over X (or more precisely, over the total space Y of a
Serre fibration Y → X with acyclic homotopy fibers, i.e., an acyclic fibration).
Cf. theorem 4.10. A 2-vector bundle over X is a suitable bundle of categories,
defined much like a complex vector bundle over X, but subject to the same
replacements as above. The previously studied notion of a gerbe over X with
band C∗ is a special case of a 2-vector bundle, corresponding in the same way
to a complex line bundle.

We conjecture in 5.1 that the spectrum K(V) is equivalent to the algebraic
K-theory spectrum K(ku) of the connective topological K-theory spectrum ku,
considered as a “brave new ring”, i.e., as an S-algebra. This is a special case of a
more general conjecture, where for a symmetric bimonoidal category B (which
is a generalization of a commutative semi-ring) we compare the category of
finitely generated free modules over B to the category of finitely generated free
modules over the commutative S-algebra A = Spt(B) (which is a generalization
of a commutative ring) associated to B. The conjecture amounts to a form
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of “positive thinking”, asserting that for the purpose of forming algebraic K-
theory spectra it should not matter whether we start with a semi-ring-like
object (such as the symmetric bimonoidal category B) or the ring-like object
given by its additive Grothendieck group completion (such as the commutative
S-algebra A). This idea originated with Marcel Bökstedt, and we are indebted
to him for suggesting this approach. We have verified the conjecture in the
case of actual commutative semi-rings, interpreted as symmetric bimonoidal
categories that only have identity morphisms, and view this as strong support
in favor of the conjecture.

Continuing, we know that K(ku), or rather a spectrum very closely related
to it, is essentially of chromatic filtration 2. For connective spectra, such as all
those arising from algebraic K-theory, there is a more appropriate and flexi-
ble variation of the chromatic filtration that we call the telescopic complexity
of the spectrum; cf. definition 6.1. For example, integral and real cohomology
have telescopic complexity 0, connective and periodic topological K-theory have
telescopic complexity 1, and traditional elliptic cohomology has telescopic com-
plexity 2.

It is known, by direct nontrivial calculations [3], that K(`∧p ) has telescopic
complexity 2, where `∧p is the connective p-complete Adams summand of topo-
logical K-theory and p ≥ 5. The use of the Adams summand in place of the
full connective p-complete topological K-theory spectrum ku∧p , as well as the
hypothesis p ≥ 5, are mostly technical assumptions that make the calculations
manageable, and it seems very likely that also K(ku∧p ) will have telescopic
complexity 2 for any prime p. It then follows from [9], if we assume the highly
respectable Lichtenbaum–Quillen conjecture for K(Z) at p, that also K(ku)
has telescopic complexity 2. In this sense we shall allow ourselves to think of
K(ku), and conjecturally K(V), as a connective form of elliptic cohomology.

The definition of a 2-vector bundle is sufficiently explicit that it may carry
independent interest. In particular, it may admit notions of connective structure
and curving, generalizing the notions for gerbes [8, §5.3], such that to each 2-
vector bundle E over X with connective structure there is an associated virtual
vector bundle H over the free loop space LX = Map(S1, X), generalizing the
anomaly line bundle for gerbes [8, §6.2]. If E is equipped with a curving,
there probably arises an action functional for oriented compact surfaces over
X (loc. cit.), providing a construction of an elliptic object over X in the sense
of Segal [28]. Thus 2-vector bundles over X (with extra structure) may have
naturally associated elliptic objects overX. However, we have not yet developed
this theory properly, and shall therefore postpone its discussion to a later joint
paper, which will also contain proofs of the results announced in the present
paper. Some of the basic ideas presented here were sketched by the first author
in [4].

The paper is organized as follows. In §2 we define a charted 2-vector bundle
of rank n over a space X with respect to an open cover U that is indexed
by a suitably partially ordered set I. This corresponds to a Steenrod-style
definition of a fiber bundle, with standard fiber the category Vn of n-tuples of
finite-dimensional complex vector spaces, chosen trivializations over the chart
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domains in U, gluing data that compare the trivializations over the intersection
of two chart domains and coherence isomorphisms that systematically relate
the two possible comparisons that result over the intersection of three chart
domains. We also discuss when two such charted 2-vector bundles are to be
viewed as equivalent, i.e., when they define the same abstract object.

In §3 we think of a symmetric bimonoidal category B as a generalized semi-
ring, and make sense of the algebraic K-theory K(B) of its 2-category of finitely
generated free “modules” Bn. We define the weak equivalences Bn → Bn to
be given by a monoidal category M = GLn(B) of weakly invertible matrices
over B, cf. definition 3.6, in line with analogous constructions for simplicial
rings and S-algebras [33]. It is a key point that we allow GLn(B) to contain
more matrices than the strictly invertible ones, of which there are too few to
yield an interesting theory. We also present an explicit bar construction BM

that is appropriate for such monoidal categories. Our principal example is the
symmetric bimonoidal category V of finite-dimensional complex vector spaces
under direct sum and tensor product, for which the modules Vn are the 2-vector
spaces of Kapranov and Voevodsky.

In §4 we bring these two developments together, by showing that the equiva-
lence classes of charted 2-vector bundles of rank n over a (reasonable) space X
is in natural bijection (theorem 4.5) with the homotopy classes of maps from X
to the geometric realization |BGLn(V)| of the bar construction on the monoidal
category of weakly invertible n × n matrices over V. The group of homotopy
classes of maps from X to the algebraic K-theory space K(V) is naturally iso-
morphic (theorem 4.10) to the Grothendieck group completion of the abelian
monoid of virtual 2-vector bundles over X, i.e., the 2-vector bundles E ↓ Y over
spaces Y that come equipped with an acyclic fibration a : Y → X. Hence the
contravariant homotopy functor represented by K(V) is geometrically defined,
in the sense that virtual 2-vector bundles over X are the (effective) cycles for
this functor at X.

In §5 we compare the algebraic K-theory of the generalized semi-ring B to
the algebraic K-theory of its additive group completion. To make sense of the
latter as a ring object, as is necessary to form its algebraic K-theory, we pass to
structured ring spectra, i.e., to the commutative S-algebra A = Spt(B). We pro-
pose that the resulting algebraic K-theory spectra K(B) and K(A) are weakly
equivalent (conjecture 5.1), and support this assertion by confirming that it
holds true in the special case of a discrete symmetric bimonoidal category B,
i.e., a commutative semi-ring in the usual sense. In the special case of 2-vector
spaces the conjecture asserts that K(V) is the algebraic K-theory K(ku) of
connective topological K-theory ku viewed as a commutative S-algebra.

In §6 we relate the spectrum K(ku) to the algebraic K-theory spectrum
K(`∧p ) of the connective p-complete Adams summand `∧p of ku∧p . The latter
theory K(`∧p ) is known (theorem 6.4, [3]) to have telescopic complexity 2, and
this section makes it plausible that also the former theory K(ku) has telescopic
complexity 2, and hence is a connective form of elliptic cohomology. Together
with conjecture 5.1 this says that (a) the generalized cohomology theory repre-
sented by K(ku) is geometrically defined, because its 0-th cohomology group,
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which is then represented by K(V), is defined in terms of formal differences
of virtual 2-vector bundles, and (b) that it has telescopic complexity 2, mean-
ing that it captures one more layer of chromatic complexity than topological
K-theory does.

2. Charted two-vector bundles

Definition 2.1. Let X be a topological space. An ordered open cover (U, I)
of X is a collection U = {Uα | α ∈ I} of open subsets Uα ⊂ X, indexed by a
partially ordered set I, such that

(1) the Uα cover X in the sense that
⋃
α Uα = X, and

(2) the partial ordering on I restricts to a total ordering on each finite subset
{α0, . . . , αp} of I for which the intersection Uα0...αp = Uα0 ∩ · · · ∩Uαp is
nonempty.

The partial ordering on I makes the nerve of the open cover U an ordered
simplicial complex, rather than just a simplicial complex. We say that U is a
good cover if each finite intersection Uα0...αp is either empty or contractible.

Definition 2.2. Let X be a topological space, with an ordered open cover
(U, I), and let n ∈ N = {0, 1, 2, . . . } be a non-negative integer. A charted
2-vector bundle E of rank n over X consists of

(1) an n× n matrix

Eαβ = (Eαβij )ni,j=1

of complex vector bundles over Uαβ, for each pair α < β in I, such that
over each point x ∈ Uαβ the integer matrix of fiber dimensions

dim(Eαβx ) = (dimEαβij,x)ni,j=1

is invertible, i.e., has determinant ±1, and
(2) an n× n matrix

φαβγ = (φαβγik )ni,k=1 : Eαβ · Eβγ
∼=−−−−→ Eαγ

of vector bundle isomorphisms

φαβγik :
⊕n

j=1E
αβ
ij ⊗ E

βγ
jk

∼=−−−−→ Eαγik

over Uαβγ , for each triple α < β < γ in I, such that
(3) the diagram

Eαβ · (Eβγ · Eγδ)
α //

id·φβγδ
��

(Eαβ · Eβγ) · Eγδ

φαβγ ·id
��

Eαβ · Eβδ
φαβδ

// Eαδ Eαγ · Eγδ
φαγδ

oo

of vector bundle isomorphisms over Uαβγδ commutes, for each chain
α < β < γ < δ in I.
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Here α denotes the (coherent) natural associativity isomorphism for the matrix
product · derived from the tensor product ⊗ of vector bundles. We call the n×n
matrices Eαβ and φαβγ the gluing bundles and the coherence isomorphisms of
the charted 2-vector bundle E ↓ X, respectively.

Definition 2.3. Let E and F be two charted 2-vector bundles of rank n over X,
with respect to the same ordered open cover (U, I), with gluing bundles Eαβ and
Fαβ and coherence isomorphisms φαβγ and ψαβγ , respectively. An elementary
change of trivializations (Tα, ταβ) from E to F is given by

(1) an n× n matrix Tα = (Tαij)
n
i,j=1 of complex vector bundles over Uα, for

each α in I, such that over each point x ∈ Uα the integer matrix of fiber
dimensions dim(Tαx ) has determinant ±1, and

(2) an n× n matrix of vector bundle isomorphisms

ταβ = (ταβij )ni,j=1 : Fαβ · T β
∼=−−−−→ Tα · Eαβ

over Uαβ, for each pair α < β in I, such that
(3) the diagram

Fαβ · F βγ · T γ id·τβγ //

ψαβγ ·id
��

Fαβ · T β · Eβγ ταβ ·id// Tα · Eαβ · Eβγ

id·φαβγ
��

Fαγ · T γ
ταγ

// Tα · Eαγ

(natural associativity isomorphisms suppressed) of vector bundle iso-
morphisms over Uαβγ commutes, for each triple α < β < γ in I.

Definition 2.4. Let (U, I) and (U′, I′) be two ordered open covers of X. Sup-
pose that there is an order-preserving carrier function c : I′ → I such that for
each α ∈ I′ there is an inclusion U ′α ⊂ Uc(α). Then (U′, I′) is a refinement of
(U, I).

Let E be a charted 2-vector bundle of rank n over X with respect to (U, I),
with gluing bundles Eαβ and coherence isomorphisms φαβγ . Let

c∗Eαβ = Ec(α)c(β)|U ′αβ
for α < β in I′ and

c∗φαβγ = φc(α)c(β)c(γ)|U ′αβγ
for α < β < γ in I′, be n × n matrices of vector bundles and vector bundle
isomorphisms over U ′αβ and U ′αβγ , respectively. Then there is a charted 2-

vector bundle c∗E of rank n over X with respect to (U′, I′), with gluing bundles
c∗Eαβ and coherence isomorphisms c∗φαβγ . We say that c∗E is an elementary
refinement of E.

More generally, two charted 2-vector bundles of rank n over X are said to be
equivalent 2-vector bundles if they can be linked by a finite chain of elementary
changes of trivializations and elementary refinements. (This is the notion of
equivalence that appears to be appropriate for our representability theorem 4.5.)
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Remark 2.5. A charted 2-vector bundle of rank 1 consists of precisely the
data defining a gerbe over X with band C∗, as considered e.g. by Giraud [10],
Brylinski [8] and Hitchin [13, §1]. There is a unitary form of the definition
above, with Hermitian gluing bundles and unitary coherence isomorphisms,
and a unitary 2-vector bundle of rank 1 is nothing but a gerbe with band U(1).
In either case, the set of equivalence classes of C∗-gerbes or U(1)-gerbes over X
is in natural bijection with the third integral cohomology group H3(X;Z) [8,
5.2.10].

Definition 2.6. Let E ↓ X be a charted 2-vector bundle of rank n, with
notation as above, and let a : Y → X be a map of topological spaces. Then
there is a charted 2-vector bundle a∗E ↓ Y of rank n obtained from E by
pullback along a. It is charted with respect to the ordered open cover (U′, I)
with U′ = {U ′α = a−1(Uα) | α ∈ I}. It has gluing bundles a∗Eαβ obtained
by pullback of the matrix of vector bundles Eαβ along a : U ′αβ → Uαβ, and

coherence isomorphisms a∗φαβγ obtained by pullback of the matrix of vector
bundle isomorphisms φαβγ along a : U ′αβγ → Uαβγ . By definition there is then
a map of charted 2-vector bundles â : a∗E→ E covering a : Y → X.

Definition 2.7. Let E ↓ X and F ↓ X be charted 2-vector bundles with respect
to the same ordered open cover (U, I) of X, of ranks n and m, with gluing
bundles Eαβ and Fαβ and coherence isomorphisms φαβγ and ψαβγ , respectively.
Their Whitney sum E⊕F ↓ X is then the charted 2-vector bundle of rank (n+m)
with gluing bundles given by the (n+m)× (n+m) matrix of vector bundles(

Eαβ 0
0 Fαβ

)
and coherence isomorphisms given by the (n + m) × (n + m) matrix of vector
bundle isomorphisms(

φαβγ 0
0 ψαβγ

)
:

(
Eαβ 0

0 Fαβ

)
·
(
Eβγ 0

0 F βγ

)
∼=−−−−→

(
Eαγ 0

0 Fαγ

)
.

There is an elementary change of trivializations from E⊕ F to F ⊕ E given by
the (n+m)× (n+m) matrix

Tα =

(
0 Im
In 0

)
for each α in I, and identity isomorphisms ταβ. Here In denotes the identity
n× n matrix, with the trivial rank 1 vector bundle in each diagonal entry and
zero bundles elsewhere.

3. Algebraic K-theory of two-vector spaces

Let (B,⊕,⊗, 0, 1) be a symmetric bimonoidal category, with sum and tensor
functors

⊕,⊗ : B×B −−−−→ B ,
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and zero and unit objects 0, 1 in B. These satisfy associative, commutative and
distributive laws, etc., up to a list of natural isomorphisms, and these isomor-
phisms are coherent in the sense that they fulfill a (long) list of compatibility
conditions, as presented by Laplaza in [17, §1]. We say that B is a bipermutative
category if the natural isomorphisms are almost all identity morphisms, except
for the commutative laws for ⊕ and ⊗ and the left distributive law, and these
in turn fulfill the (shorter) list of compatibility conditions listed by May in [20,
§VI.3].

Suppose that B is small, i.e., that the class of objects of B is in fact a set. Let
π0(B) be the set of path components of the geometric realization of B. (Two
objects of B are in the same path component if and only if they can be linked
by a finite chain of morphisms in B.) Then the sum and tensor functors induce
sum and product pairings that make π0(B) into a commutative semi-ring with
zero and unit. We can therefore think of the symmetric bimonoidal category B

as a kind of generalized commutative semi-ring. Conversely, any commutative
semi-ring may be viewed as a discrete category, with only identity morphisms,
which is then a symmetric bimonoidal category.

The additive Grothendieck group completion Gr(π0(B)) of the commutative
semi-ring π0(B) is a commutative ring. Likewise, the geometric realization
|B| can be group completed with respect to the symmetric monoidal pairing
induced by the sum functor ⊕, and this group completion can take place at
the categorical level, say by Quillen’s construction B−1B [11] or its general-
ization B+ = EB ×B B2 due to Thomason [31, 4.3.1]. However, the tensor
functor ⊗ does not readily extend to B−1B, as was pointed out by Thomason
[32]. So B−1B is a symmetric monoidal category, but usually not a symmetric
bimonoidal category.

Example 3.1. Let V be the topological bipermutative category of finite dimen-
sional complex vector spaces, with set of objects N = {0, 1, 2, . . . } with d ∈ N
interpreted as the complex vector space Cd, and morphism spaces

V(d, e) =

{
U(d) if d = e,

∅ otherwise

from d to e. The sum functor ⊕ takes (d, e) to d+ e and embeds U(d)× U(e)
into U(d+e) by the block sum of matrices. The tensor functor ⊗ takes (d, e) to
de and maps U(d)×U(e) to U(de) by means of the left lexicographic ordering,
which identifies {1, . . . , d} × {1, . . . , e} with {1, . . . , de}. Both of these functors
are continuous. The zero and unit objects are 0 and 1, respectively.

In this case, the semi-ring π0(V) = N is that of the non-negative integers,
with additive group completion Gr(N) = Z. The geometric realization |V| =∐
d≥0BU(d) is the classifying space for complex vector bundles, while its group

completion |V−1V| ' Z×BU classifies virtual vector bundles. The latter space
is the infinite loop space underlying the spectrum ku = Spt(V) that represents
connective complex topological K-theory, which is associated to either of the
symmetric monoidal categories V or V−1V by the procedure of Segal [27], as
generalized by Shimada and Shimakawa [29] and Thomason [31, 4.2.1].
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Definition 3.2. Let (B,⊕,⊗, 0, 1) be a symmetric bimonoidal category. The
category Mn(B) of n×n matrices over B has objects the matrices V = (Vij)

n
i,j=1

with entries that are objects of B, and morphisms the matrices φ = (φij)
n
i,j=1

with entries that are morphisms in B. The source (domain) of φ is the matrix
of sources of the entries φij , and similarly for targets (codomains).

There is a matrix multiplication functor

Mn(B)×Mn(B)
·−−−−→ Mn(B)

that takes two matrices U = (Uij)
n
i,j=1 and V = (Vjk)

n
j,k=1 to the matrix W =

U · V = (Wik)
n
i,k=1 with

Wik =
n⊕
j=1

Uij ⊗ Vjk

for i, k = 1, . . . , n. In general, we need to make a definite choice of how the
n-fold sum is to be evaluated, say by bracketing from the left. When the direct
sum functor is strictly associative, as in the bipermutative case, the choice does
not matter.

The unit object In of Mn(B) is the n × n matrix with unit entries 1 on the
diagonal and zero entries 0 everywhere else.

Proposition 3.3. (Mn(B), ·, In) is a monoidal category.

In other words, the functor · is associative up to a natural associativity
isomorphism

α : U · (V ·W )
∼=−−−−→ (U · V ) ·W

and unital with respect to In up to natural left and right unitality isomor-
phisms. These are coherent, in the sense that they fulfill a list of compatibility
conditions, including the Mac Lane–Stasheff pentagon axiom. The proof of the
proposition is a direct application of Laplaza’s first coherence theorem from [17,
§7].

Definition 3.4. Let B be a commutative semi-ring with additive Grothendieck
group completion the commutative ring A = Gr(B). Let Mn(A) and Mn(B) be
the multiplicative monoids of n × n matrices with entries in A and B, respec-
tively, and let GLn(A) ⊂ Mn(A) be the subgroup of invertible n × n matrices
with entries in A, i.e., those whose determinant is a unit in A. Let the sub-
monoid GLn(B) ⊂Mn(B) be the pullback in the diagram

GLn(B) //

��

��

GLn(A)
��

��
Mn(B) // Mn(A) .

Example 3.5. When B = N and A = Z, GLn(N) = Mn(N) ∩ GLn(Z) is the
monoid of n × n matrices with non-negative integer entries that are invertible
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as integer matrices, i.e., have determinant ±1. It contains the elementary ma-
trices that have entries 1 on the diagonal and in one other place, and 0 entries
elsewhere. This is a larger monoid than the subgroup of units in Mn(N), which
only consists of the permutation matrices.

Definition 3.6. Let B be a symmetric bimonoidal category. Let GLn(B) ⊂
Mn(B) be the full subcategory with objects the matrices V = (Vij)

n
i,j=1 whose

matrix of path components [V ] = ([Vij ])
n
i,j=1 lies in the submonoidGLn(π0(B)) ⊂

Mn(π0(B)). We call GLn(B) the category of weakly invertible n × n matrices
over B.

Corollary 3.7. (GLn(B), ·, In) is a monoidal category.

Definition 3.8. Let (M, ·, e) be a monoidal category, and write [p] = {0 <
1 < · · · < p}. The bar construction BM is a simplicial category [p] 7→ BpM. In
simplicial degree p the category BpM has objects consisting of

(1) triangular arrays of objects Mαβ of M, for all α < β in [p], and
(2) isomorphisms

µαβγ : Mαβ ·Mβγ
∼=−−−−→ Mαγ

in M, for all α < β < γ in [p], such that
(3) the diagram of isomorphisms

Mαβ · (Mβγ ·Mγδ)
α //

id·µβγδ
��

(Mαβ ·Mβγ) ·Mγδ

µαβγ ·id
��

Mαβ ·Mβδ

µαβδ
// Mαδ Mαγ ·Mγδ

µαγδ
oo

commutes, for all α < β < γ < δ in [p].

Here α is the associativity isomorphism for the monoidal operation · in M.

The morphisms in BpM from one object (Mαβ
0 , µαβγ0 ) to another (Mαβ

1 , µαβγ1 )

consist of a triangular array of morphisms φαβ : Mαβ
0 →Mαβ

1 in M for all α < β
in [p], such that the diagram

Mαβ
0 ·Mβγ

0

µαβγ0 //

φαβ ·φβγ
��

Mαγ
0

φαγ

��
Mαβ

1 ·Mβγ
1

µαβγ1

// Mαγ
1

commutes, for all α < β < γ in [p].
To allow for degeneracy operators f in the following paragraph, let Mαα = e

be the unit object of M, let µααβ and µαββ be the left and right unitality
isomorphisms for ·, respectively, and let φαα be the identity morphism on e.

The simplicial structure on BM is given as follows. For each order-preserving
function f : [q]→ [p] let the functor f∗ : BpM→ BqM take the object (Mαβ, µαβγ)
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of BpM to the object of BqM that consists of the triangular array of objects

Mf(α)f(β) for α < β in [q] and the isomorphisms µf(α)f(β)f(γ) for α < β < γ
in [q].

Each monoidal category M can be rigidified to an equivalent strict monoidal
category Ms, i.e., one for which the associativity isomorphism and the left and
right unitality isomorphisms are all identity morphisms [18, XI.3.1]. The usual
strict bar construction for Ms is a simplicial category [p] 7→ M

p
s, and corre-

sponds in simplicial degree p to the full subcategory of BpMs where all the

isomorphisms µαβγ are identity morphisms.

Proposition 3.9. The bar construction BM is equivalent to the strict bar
construction [p] 7→M

p
s for any strictly monoidal rigidification Ms of M.

This justifies calling BM the bar construction. The proof is an application
of Quillen’s theorem A [22] and the coherence theory for monoidal categories.

Definition 3.10. Let ArM = Fun([1],M) be the arrow category of M, with
the morphisms of M as objects and commutative square diagrams in M as
morphisms. There are obvious source and target functors s, t : ArM→M. Let
IsoM ⊂ ArM be the full subcategory with objects the isomorphisms of M.

Lemma 3.11. Let (M, ·, e) be a monoidal category. The category B2M is the
limit of the diagram

M×M
·−−−−→ M

s←−−−− IsoM
t−−−−→ M .

For p ≥ 2 each object or morphism of BpM is uniquely determined by the
collection of its 2-faces in B2M, which is indexed by the set of monomorphisms
f : [2]→ [p].

Consider the symmetric bimonoidal category B as a kind of generalized semi-
ring. The sum and tensor operations in B make the product category Bn

a generalized (right) module over B, for each non-negative integer n. The
collection of B-module homomorphisms Bn → Bn is encoded in terms of (left)
matrix multiplication by the monoidal category Mn(B), and we shall interpret

the monoidal subcategory GLn(B) as a category of weak equivalences Bn ∼−→
Bn. This motivates the following definition.

Definition 3.12. Let B be a symmetric bimonoidal category. The algebraic
K-theory of the 2-category of (finitely generated free) modules over B is the
loop space

K(B) = ΩB
(∐
n≥0

|BGLn(B)|
)
.

Here |BGLn(B)| is the geometric realization of the bar construction on the
monoidal category GLn(B) of weakly invertible n × n matrices over B. The
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block sum of matrices GLn(B) × GLm(B) → GLn+m(B) makes the coprod-
uct

∐
n≥0 |BGLn(B)| a topological monoid. The looped bar construction ΩB

provides a group completion of this topological monoid.
When B = V is the category of finite dimensional complex vector spaces, the

(finitely generated free) modules over V are called 2-vector spaces, and K(V) is
the algebraic K-theory of the 2-category of 2-vector spaces.

Let GL∞(B) = colimnGLn(B) be the infinite stabilization with respect to
block sum with the unit object in GL1(B), and write B = π0(B) and A =
Gr(B). Then K(B) ' Z×|BGL∞(B)|+ by the McDuff–Segal group completion
theorem [21]. Here the superscript ‘+’ refers to Quillen’s plus-construction
with respect to the (maximal perfect) commutator subgroup of GL∞(A) ∼=
π1|BGL∞(B)|; cf. proposition 5.3 below.

4. Represented two-vector bundles

Let X be a topological space, with an ordered open cover (U, I). Recall that
all morphisms in V are isomorphisms, so ArGLn(V) = IsoGLn(V).

Definition 4.1. A represented 2-vector bundle E of rank n over X consists of

(1) a gluing map

gαβ : Uαβ −−−−→ |GLn(V)|
for each pair α < β in I, and

(2) a coherence map

hαβγ : Uαβγ −−−−→ |ArGLn(V)|

satisfying s ◦ hαβγ = gαβ · gβγ and t ◦ hαβγ = gαγ over Uαβγ , for each
triple α < β < γ in I, such that

(3) the 2-cocycle condition

hαγδ ◦ (hαβγ · id) ◦ α = hαβδ ◦ (id · hβγδ)

holds over Uαβγδ for all α < β < γ < δ in I.

There is a suitably defined notion of equivalence of represented 2-vector bun-
dles, which we omit to formulate here, but cf. definitions 2.3 and 2.4.

Definition 4.2. Let E(d) = EU(d) ×U(d) Cd ↓ BU(d) be the universal Cd-
bundle over BU(d). There is a universal n× n matrix

E = (Eij)
n
i,j=1

of Hermitian vector bundles over |GLn(V)|. Over the path component

|GLn(V)D| =
n∏

i,j=1

BU(dij)

for D = (dij)
n
i,j=1 in GLn(N), the (i, j)-th entry in E is the pullback of the

universal bundle E(dij) along the projection |GLn(V)D| → BU(dij).
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Let |ArU(d)| be the geometric realization of the arrow category ArU(d),
where U(d) is viewed as a topological groupoid with one object. Each pair
(A,B) ∈ U(d)2 defines a morphism from C to (A,B) · C = BCA−1, so

|ArU(d)| ∼= EU(d)2 ×U(d)2 U(d)

equals the Borel construction for this (left) action of U(d)2 on U(d). There are
source and target maps s, t : |ArU(d)| → BU(d), which take the 1-simplex rep-
resented by a morphism (A,B) to the 1-simplices represented by the morphisms
A and B, respectively. By considering each element in U(d) as a unitary iso-
morphism Cd → Cd one obtains a universal unitary vector bundle isomorphism

φ(d) : s∗E(d)
∼=−→ t∗E(d)

There is a universal n× n matrix of unitary vector bundle isomorphisms

φ : s∗E ∼= t∗E

over |ArGLn(V)|. Over the path component |ArGLn(V)D| =
∏n
i,j=1 |ArU(dij)|

for D as above, the (i, j)-th entry in φ is the pullback of the universal isomor-
phism φ(dij) along the projection |ArGLn(V)D| → |ArU(dij)|.

Lemma 4.3. Let E be a represented 2-vector bundle with gluing maps gαβ

and coherence maps hαβγ . There is an associated charted 2-vector bundle with
gluing bundles

Eαβ = (gαβ)∗(E)

over Uαβ and coherence isomorphisms

φαβγ = (hαβγ)∗(φ) : Eαβ · Eβγ = (gαβ · gβγ)∗(E)
∼=−−−−→ (gαγ)∗(E) = Eαγ

over Uαβγ . The association induces a bijection between the equivalence classes
of represented 2-vector bundles and the equivalence classes of charted 2-vector
bundles of rank n over X.

Definition 4.4. Let 2-Vectn(X) be the set of equivalence classes of 2-vector
bundles of rank n over X. For path-connected X let

2-Vect(X) =
∐
n≥0

2-Vectn(X) .

Whitney sum (definition 2.7) defines a pairing that makes 2-Vect(X) an abelian
monoid.

Theorem 4.5. Let X be a finite CW complex. There are natural bijections

2-Vectn(X) ∼= [X, |BGLn(V)|]

and

2-Vect(X) ∼= [X,
∐
n≥0

|BGLn(V)|] .

To explain the first correspondence, from which the second follows, we use
the following construction.
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Definition 4.6. Let (U, I) be an ordered open cover of X. The Mayer–Vietoris
blow-up MV (U) of X with respect to U is the simplicial space with p-simplices

MVp(U) =
∐

α0≤···≤αp

Uα0...αp

with α0 ≤ · · · ≤ αp in I. The i-th simplicial face map is a coproduct of inclusions
Uα0...αp ⊂ Uα0...α̂i...αp , and similarly for the degeneracy maps. The inclusions
Uα0...αp ⊂ X combine to a natural map e : |MV (U)| → X, which is a (weak)
homotopy equivalence.

Sketch of proof of theorem 4.5. By lemma 3.11, a simplicial map g : MV (U)→
|BGLn(V)| is uniquely determined by its components in simplicial degrees 1
and 2. The first of these is a map

g1 : MV1(U) =
∐
α≤β Uαβ −−−−→ |B1GLn(V)| = |GLn(V)|

which is a coproduct of gluing maps gαβ : Uαβ → |GLn(V)|. The second is a
map

g2 : MV2(U) =
∐

α≤β≤γ
Uαβγ → |B2GLn(V)| .

The simplicial identities and lemma 3.11 imply that g2 is determined by g1

and a coproduct of coherence maps hαβγ : Uαβγ → |ArGLn(V)|. Hence such
a simplicial map g corresponds bijectively to a represented 2-vector bundle of
rank n over X.

Any map f : X → |BGLn(V)| can be composed with the weak equivalence
e : |MV (U)| → X to give a map of spaces fe : |MV (U)| → |BGLn(V)|, which
is homotopic to a simplicial map g if U is a good cover, and for reasonable
X any open ordered cover can be refined to a good one. The homotopy class
of f corresponds to the equivalence class of the represented 2-vector bundle
determined by the simplicial map g. �

Remark 4.7. We wish to interpret the 2-vector bundles over X as (effective)
0-cycles for some cohomology theory at X. Such theories are group-valued,
so a first approximation to the 0-th cohomology group at X could be the
Grothendieck group Gr(2-Vect(X)) of formal differences of 2-vector bundles
over X. The analogous construction for ordinary vector bundles works well to
define topological K-theory, but for 2-vector bundles this algebraically group
completed functor is not even representable, like in the case of the algebraic
K-theory of a discrete ring. We thank Haynes Miller for reminding us of this
issue.

Instead we follow Quillen and perform the group completion at the space
level, which leads to the algebraic K-theory space

K(V) = ΩB
(∐
n≥0

|BGLn(V)|
)

' Z× |BGL∞(V)|+

from definition 3.12. But what theory does this loop space represent? One
interpretation is provided by the theory of virtual flat fibrations, presented by
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Karoubi in [16, Ch. III], leading to what we shall call virtual 2-vector bundles.
Another interpretation could be given using the homology bordism theory of
Hausmann and Vogel [12].

Definition 4.8. Let X be a space. An acyclic fibration over X is a Serre
fibration a : Y → X such that the homotopy fiber at each point x ∈ X has
the integral homology of a point, i.e., H̃∗(hofibx(a);Z) = 0. A map of acyclic
fibrations from a′ : Y ′ → X to a : Y → X is a map f : Y ′ → Y with af = a′.

A virtual 2-vector bundle over X is described by an acyclic fibration a : Y →
X and a 2-vector bundle E ↓ Y . We write E ↓ Y a−→ X. Given a map f : Y ′ →
Y of acyclic fibrations over X there is an induced 2-vector bundle f∗E ↓ Y ′.
The virtual 2-vector bundles described by E ↓ Y a−→ X and f∗E ↓ Y ′ a′−→ X
are declared to be equivalent as virtual 2-vector bundles over X.

Lemma 4.9. The abelian monoid of equivalence classes of virtual 2-vector
bundles over X is the colimit

colim
a : Y→X

2-Vect(Y )

where a : Y → X ranges over the category of acyclic fibrations over X. Its
Grothendieck group completion is isomorphic to the colimit

colim
a : Y→X

Gr(2-Vect(Y )) .

The functor Y 7→ 2-Vect(Y ) factors through the homotopy category of acyclic
fibrations over X, which is directed.

The following result says that formal differences of virtual 2-vector bundles
over X are the geometric objects that constitute cycles for the contravariant
homotopy functor represented by the algebraic K-theory space K(V). Compare
[16, III.3.11]. So K(V) represents sheaf cohomology for the topology of acyclic
fibrations, with coefficients in the abelian presheaf Y 7→ Gr(2-Vect(Y )) given
by the Grothendieck group completion of the abelian monoid of equivalence
classes of 2-vector bundles.

Theorem 4.10. Let X be a finite CW complex. There is a natural group
isomorphism

colim
a : Y→X

Gr(2-Vect(Y )) ∼= [X,K(V)]

where a : Y → X ranges over the category of acyclic fibrations over X. Re-
stricted to Gr(2-Vect(X)) (with a = id) the isomorphism extends the canonical
monoid homomorphism 2-Vect(X) ∼= [X,

∐
n≥0 |BGLn(V)|]→ [X,K(V)].

Remark 4.11. The passage to sheaf cohomology would be unnecessary if we
replaced V by a different symmetric bimonoidal category B such that each
π0(GLn(B)) is abelian. This might entail an extension of the category of vector
spaces to allow generalized vector spaces of arbitrary real, or even complex,
dimension, parallel to the inclusion of the integers into the real or complex
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numbers. Such an extension is reminiscent of a category of representations of
a suitable C∗-algebra, but we know of no clear interpretation of this approach.

5. Algebraic K-theory of topological K-theory

Is the contravariant homotopy functor X 7→ [X,K(V)] = K(V)0(X) part of
a cohomology theory, and if so, what is the spectrum representing that theory?

The topological symmetric bimonoidal category V plays the role of a gen-
eralized commutative semi-ring in our definition of K(V). Its additive group
completion V−1V correspondingly plays the role of a generalized commutative
ring. This may be tricky to realize at the level of symmetric bimonoidal cate-
gories, but the connective topological K-theory spectrum ku = Spt(V) associ-
ated to the additive topological symmetric monoidal structure of V is an E∞
ring spectrum, and hence a commutative algebra over the sphere spectrum S.

The algebraic K-theory of an S-algebra A can on one hand be defined as the
Waldhausen algebraic K-theory [34] of a category with cofibrations and weak
equivalences, with objects the finite cell A-modules, morphisms the A-module
maps and weak equivalences the stable equivalences. Alternatively, it can be
defined as a group completion

K(A) = ΩB
(∐
n≥0

BĜLn(A)
)

where ĜLn(A) is essentially the topological monoid of A-module maps An → An
that are stable equivalences. The former definition produces a spectrum, so the
space K(A) is in fact an infinite loop space, and its deloopings represent a
cohomology theory.

The passage from modules over the semi-ring object V to modules over the

ring object ku corresponds to maps |GLn(V)| → ĜLn(ku) and a map K(V)→
K(ku).

Conjecture 5.1. There is a weak equivalence K(V) ' K(ku). More gener-
ally, K(B) ' K(A) for each symmetric bimonoidal category B with associated
commutative S-algebra A = Spt(B).

Remark 5.2. The conjecture asserts that the contravariant homotopy functor
X 7→ [X,K(V)] with 0-cycles given by the virtual 2-vector bundles over X is the
0-th cohomology group for the cohomology theory represented by the spectrum
K(ku) given by the algebraic K-theory of connective topological K-theory.
We consider the virtual 2-vector bundles over X to be sufficiently geometric
objects (like complex vector bundles), that this cohomology theory then admits
as geometric an interpretation as the classical examples of de Rham cohomology,
topological K-theory and complex bordism.

As a first (weak) justification of this conjecture, recall that to the eyes of
algebraic K-theory the block sum operation (g, h) 7→

[
g 0
0 h

]
is identified with

the stabilized matrix multiplication (g, h) 7→
[
gh 0
0 I

]
, where I is an identity

matrix. The group completion in the definition of algebraic K-theory adjoins
inverses to the block sum operation, and thus also to the stabilized matrix
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multiplication. In particular, for each elementary n × n matrix eij(V ) over B

with (i, j)-th off-diagonal entry equal to an object V of B, the inverse matrix
eij(−V ) is formally adjoined as far as algebraic K-theory is concerned. Hence
the formal negatives −V in B−1B are already present, in this weak sense.

A stronger indication that the conjecture should hold true is provided by the
following special case. Recall that a commutative semi-ring is the same as a
(small) symmetric bimonoidal category that is discrete, i.e., has only identity
morphisms.

Proposition 5.3. LetB be a commutative semi-ring, with additive Grothendieck
group completion A = Gr(B). The semi-ring homomorphism B → A induces a
weak equivalence

BGL∞(B)
'−−−−→ BGL∞(A)

and thus a weak equivalence K(B) ' K(A). In particular, there is a weak
equivalence K(N) ' K(Z).

A proof uses the following application of Quillen’s theorem B [22].

Lemma 5.4. Let f : M → G be a monoid homomorphism from a monoid M
to a group G. Write mg = f(m) · g. Let Q = B(∗,M,G) be the category with
objects g ∈ G and morphisms (m, g) ∈M ×G from mg to g:

mg
(m,g)−−−−→ g .

Then there is a fiber sequence up to homotopy

|Q| −−−−→ BM
Bf−−−−→ BG .

Sketch of proof of proposition 5.3. Applying lemma 5.4 to the monoids Mn =
GLn(B) and groups Gn = GLn(A) we obtain categories Qn for each natural
number n. There are stabilization maps i : Qn → Qn+1, Mn → Mn+1 and
Gn → Gn+1, with (homotopy) colimits Q∞, M∞ and G∞, and a quasi-fibration

|Q∞| −−−−→ BGL∞(B) −−−−→ BGL∞(A) .

It suffices to show that each stabilization map i : |Qn| → |Qn+1| is weakly null-
homotopic, because then |Q∞| is weakly contractible.

For each full subcategory K ⊂ Qn with finitely many objects, the restricted
stabilization functor i|K takes g to i(g) =

[
g 0
0 1

]
. It receives a natural trans-

formation from a functor j : K → Qn+1 that maps g to j(g) = [ g v0 1 ] for some
column vector v = v(g) with positive entries in B. The trick is to construct
v(g) inductively for the finite set of objects g of K, so that v(mg) is sufficiently
positive with respect to m · v(g) for all morphisms mg → g in K.

Furthermore, the finiteness of K ensures that there is a row vector w with
entries in B and an object h =

[
In 0
−w 1

]
of Qn+1 such that there is a natural

transformation from j to the constant functor to h. These two natural transfor-
mations provide a homotopy from i|K to a constant map. As K was arbitrary
with finitely many objects, this means that i is weakly null-homotopic. �
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Remark 5.5. If there exists a symmetric bimonoidal category W and a functor
V→W of symmetric bimonoidal categories that induces an additive equivalence
from V−1V to W, then most likely the line of argument sketched above in the
case of commutative semi-rings can be adapted to the symmetric bimonoidal
situation. This could provide one line of proof toward conjecture 5.1. Similar
remarks apply for a general symmetric bimonoidal category B in place of V.

6. Forms of elliptic cohomology

In this section we shall view the algebraic K-theory K(A) of an S-algebra A
as a spectrum, rather than as a space.

We shall argue that the algebraic K-theory K(ku) of the connective topolog-
ical K-theory spectrum ku is a connective form of elliptic cohomology, in the
sense that it detects homotopy theoretic phenomena related to v2-periodicity,
much like how topological K-theory detects phenomena related to v1-periodicity
(which is really the same as Bott periodicity) and how rational cohomology de-
tects phenomena related to v0-periodicity. Furthermore, from this point of view
the homotopy type of K(ku) is robust with respect to changes in the interpre-
tation of the phrase “algebraic K-theory of topological K-theory”.

We first introduce a filtration of the class of spectra that is related to the
chromatic filtration given by the property of being Bousfield local with respect
to some Johnson–Wilson theory E(n) (cf. Ravenel [24, §7]), but is more appro-
priate for the connective spectra that arise from algebraic K-theory. Our notion
is also more closely linked to aspects of vn-periodicity than to being E(n)-local.

Let p be a prime, K(n) the n-th Morava K-theory at p and F a p-local
finite CW spectrum. The least number 0 ≤ n <∞ such that K(n)∗(F ) is non-
trivial is called the chromatic type of F . (Only contractible spectra have infinite
chromatic type.) By the Hopkins–Smith periodicity theorem [14, Thm. 9], F
admits a vn-self map v : ΣdF → F such that K(m)∗(v) is an isomorphism for
m = n and zero for m 6= n. The vn-self map is sufficiently unique for the
mapping telescope

v−1F = Tel
(
F

v−−−−→ Σ−dF
v−−−−→ . . .

)
to be well-defined up to homotopy. The class of all p-local finite CW spectra of
chromatic type ≥ n is closed under weak equivalences and the formation of ho-
motopy cofibers, desuspensions and retracts, so we say that the full subcategory
that it generates is a thick subcategory. By the Hopkins–Smith thick subcat-
egory theorem [14, Thm. 7], any thick subcategory of the category of p-local
finite CW spectra has this precise form, for a unique number 0 ≤ n ≤ ∞.

Definition 6.1. Let X be a spectrum, and let TX be the full subcategory of
p-local finite CW spectra F for which the localization map

F ∧X −−−−→ v−1F ∧X
induces an isomorphism on homotopy groups in all sufficiently high degrees.
Then TX is a thick subcategory, hence consists of the spectra F of chro-
matic type ≥ n for some unique number 0 ≤ n ≤ ∞. We call this number
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n = telecom(X) the telescopic complexity of X. (This abbreviation is due to
Matthew Ando.)

Lemma 6.2. If Y is the k-connected cover of X, for some integer k, then X
and Y have the same telescopic complexity.

LetX → Y → Z be a cofiber sequence andm = max{telecom(X), telecom(Y )}.
If telecom(X) 6= telecom(Y ) then telecom(Z) = m, otherwise telecom(Z) ≤ m.

If Y is a (de-)suspension of X then X and Y have the same telescopic com-
plexity.

If Y is a retract of X then telecom(Y ) ≤ telecom(X).
If X is an E(n)-local spectrum then X has telescopic complexity ≤ n.

Examples 6.3. (1) Integral, rational, real and complex cohomology (HZ, HQ,
HR or HC) all have telescopic complexity 0.

(2) Connective or periodic, real or complex topological K-theory (ko, ku,
KO or KU) all have telescopic complexity 1. The étale K-theory Ket(R) of
a ring R = OF,S of S-integers in a local or global number field has telescopic
complexity 1, and so does the algebraic K-theory K(R) if the Lichtenbaum–
Quillen conjecture holds for the ring R.

(3) An Ando–Hopkins–Strickland [1] elliptic spectrum (E,C, t) has telescopic
complexity ≤ 2, and the telescopic complexity equals 2 if and only if the elliptic
curve C over R = π0(E) has a supersingular specialization over some point of
Spec(R).

(4) The Hopkins–Mahowald–Miller topological modular forms spectra tmf
and TMF have telescopic complexity 2.

(5) The Johnson–Wilson spectrum E(n) and its connective form, the Brown–
Peterson spectrum BP 〈n〉, both have telescopic complexity n.

(6) The sphere spectrum S and the complex bordism spectrum MU have
infinite telescopic complexity.

Let V (1) be the four-cell Smith–Toda spectrum withBP∗(V (1)) = BP∗/(p, v1).
For p ≥ 5 it exists as a commutative ring spectrum. It has chromatic type 2,

and there is a v2-self map v : Σ2p2−2V (1) → V (1) inducing multiplication by
the class v2 ∈ π2p2−2V (1). We write V (1)∗(X) = π∗(V (1) ∧ X) for the V (1)-
homotopy groups of X, which are naturally a graded module over P (v2) =
Fp[v2].

Let X(p) and X∧p denote the p-localization and p-completion of a spectrum X,
respectively. The first Brown–Peterson spectrum ` = BP 〈1〉 is the connective
p-local Adams summand of ku(p), and its p-completion `∧p is the connective
p-complete Adams summand of ku∧p . These are all known to be commutative
S-algebras.

The spectrum TC(`∧p ) occurring in the following statement is the topological
cyclic homology of `∧p , as defined by Bökstedt, Hsiang and Madsen [5]. The
theorem is proved in [3, 0.3] by an elaborate but explicit computation of its
V (1)-homotopy groups, starting from the corresponding V (1)-homotopy groups
of the topological Hochschild homology THH(`∧p ).
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Theorem 6.4 (Ausoni–Rognes). Let p ≥ 5. The algebraic K-theory spec-
trum K(`∧p ) of the connective p-complete Adams summand `∧p has telescopic
complexity 2. More precisely, there is an exact sequence of P (v2)-modules

0→ Σ2p−3Fp → V (1)∗K(`∧p )
trc−−−−→ V (1)∗TC(`∧p )→ Σ−1Fp → 0

and an isomorphism of P (v2)-modules

V (1)∗TC(`∧p ) ∼= P (v2)⊗(
E(∂, λ1, λ2)⊕ E(λ2){λ1t

d | 0 < d < p} ⊕ E(λ1){λ2t
dp | 0 < d < p}

)
.

Here ∂, t, λ1 and λ2 have degrees −1, −2, 2p − 1 and 2p2 − 1, respectively.
Hence V (1)∗TC(`∧p ) is free of rank (4p + 4) over P (v2), and agrees with its
v2-localization in sufficiently high degrees.

Since K(`∧p ) has telescopic complexity 2, it has a chance to detect v2-periodic
families in π∗V (1). This is indeed the case. Let α1 ∈ π2p−3V (1) and β′1 ∈
π2p2−2p−1V (1) be the classes represented in the Adams spectral sequence by

the cobar 1-cycles h10 = [ξ̄1] and h11 = [ξ̄p1 ], respectively. There are maps

V (1)→ v−1
2 V (1)→ L2V (1), and Ravenel [23, 6.3.22] computed

π∗L2V (1) ∼= P (v2, v
−1
2 )⊗ E(ζ){1, h10, h11, g0, g1, h11g0 = h10g1}

for p ≥ 5. Hence π∗L2V (1) contains twelve v2-periodic families. The telescope
conjecture asserted that v−1

2 V (1)→ L2V (1) might be an equivalence, but this
is now considered to be unlikely [19]. The following detection result can be
read off from [3, 4.8], and shows that K(`∧p ) detects the same kind of homotopy
theoretic phenomena as E(2) or an elliptic spectrum.

Proposition 6.5. The unit map S → K(`∧p ) induces a P (v2)-module homo-
morphism π∗V (1)→ V (1)∗K(`∧p ) which takes 1, α1 and β′1 to 1, tλ1 and tpλ2,
respectively. Hence V (1)∗K(`∧p ) detects the v2-periodic families in π∗V (1) gen-
erated by these three classes.

Turning to the whole connective p-complete topological K-theory spectrum
ku∧p , there is a map `∧p → ku∧p of commutative S-algebras. It induces a natural
map K(`∧p ) → K(ku∧p ), and there is a transfer map K(ku∧p ) → K(`∧p ) such
that the composite self-map of K(`∧p ) is multiplication by (p − 1). Hence the
composite map is a p-local equivalence.

Lemma 6.6. The algebraicK-theory spectrumK(ku∧p ) of connective p-complete
topological K-theory ku∧p contains K(`∧p ) as a p-local retract, hence has tele-
scopic complexity ≥ 2.

Most likely K(ku∧p ) also has telescopic complexity exactly 2. It may be
possible to prove this directly by computing V (1)∗TC(ku∧p ), by similar methods
as in [3], but the algebra involved for ku∧p is much more intricate than it was for
the Adams summand. Some progress in this direction has recently been made
by Ausoni.
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The following consequence of a theorem of the second author [9, p. 224] allows
us to compare the algebraic K-theory of ku∧p to that of the integral spectra ku
and K(C).

Theorem 6.7 (Dundas). Let A be a connective S-algebra. The commutative
square

K(A) //

��

K(A∧p )

��
K(π0(A)) // K(π0(A∧p ))

becomes homotopy Cartesian after p-completion.

We apply this with A = ku or A = K(C). Also in the second case A∧p ' ku∧p ,
by Suslin’s theorem on the algebraic K-theory of algebraically closed fields [30].
Then π0(A) = Z and π0(A∧p ) = Zp. It is known that K(Zp) has telescopic
complexity 1, by Bökstedt–Madsen [6], [7] for p odd and by the third author
[26] for p = 2. It is also known that K(Z) has telescopic complexity 1 for p = 2,
by Voevodsky’s proof of the Milnor conjecture and Rognes–Weibel [25]. For
p odd it would follow from the Lichtenbaum–Quillen conjecture for K(Z) at p
that K(Z) has telescopic complexity 1, and this now seems to be close to a
theorem by the work of Voevodsky, Rost and Positselski.

Proposition 6.8. Suppose that K(Z) has telescopic complexity 1 at a prime
p ≥ 5. Then K(ku) and K(K(C)) have the same telescopic complexity as
K(ku∧p ), which is ≥ 2.

More generally it is natural to expect that K(K(R)) has telescopic complex-
ity 2 for each ring of S-integers R = OF,S in a local or global number field F ,
including the initial case K(K(Z)). A discussion of such a conjecture has been
given in lectures by the third author, but should take place in the context of
étale covers or Galois extensions of commutative S-algebras, which would take
us too far afield here.

The difference between the connective and periodic topological K-theory
spectra ku and KU may also not affect their algebraic K-theories greatly. There
is a (localization) fiber sequence

K(CKU (ku))→ K(ku)→ K(KU)

where CKU (ku) is the category of finite cell ku-module spectra that become
contractible when induced up to KU -modules [34, 1.6.4]. Such spectra have
finite Postnikov towers with layers that are induced from finite cell HZ-module
spectra via the map ku → HZ, and so it is reasonable to expect that a gener-
alized form of the devissage theorem in algebraic K-theory applies to identify
K(CKU (ku)) with K(Z).

Proposition 6.9. If there is a fiber sequence K(Z) → K(ku) → K(KU) and
K(Z) has telescopic complexity 1, at a prime p ≥ 5, then the algebraic K-theory
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spectrum K(KU) of the periodic topological K-theory spectrum KU has the
same telescopic complexity as K(ku), which is ≥ 2.

Remark 6.10. Unlike traditional elliptic cohomology, the spectrum K(ku) is
not complex orientable. For the unit map of K(Z) detects η ∈ π1(S) and
factors as S → K(ku) → K(Z), where the first map is the unit of K(ku) and
the second map is induced by the map ku → HZ of S-algebras. Hence the
unit map for K(ku) detects η and cannot factor through the complex bordism
spectrum MU , since π1(MU) = 0. This should not be perceived as a problem,
however, as e.g. also the topological modular forms spectrum tmf is not complex
orientable. It seems more likely that K(KU) can be complex oriented, where
KU is an “algebraic closure” of KU in the category of commutative S-algebras.
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