
FIXED POINTS OF TOPOLOGICAL HOCHSCHILD HOMOLOGY

AND K-THEORY OF THE TWO-ADIC INTEGERS

John Rognes

I will discuss a program to determine the algebraic K-theory of the ring of two-
adic integers which originated with Marcel Bökstedt’s ideas regarding the trace
map

tr : K(Z) −→ T (Z) = THH(Z)

In degree zero, this map takes an idempotent matrix (whose image is a projective
module) to its trace (which is the rank of the module). Hochschild homology is
the global object designed to receive higher–dimensional analogs of such traces,
somewhat like K-theory globalizes the category of projective modules. Topological
Hochschild homology is a refinement of this idea based on working with rings up to
homotopy (algebras over the sphere spectrum) instead of ordinary rings (algebras
over the integers). It turns out that T (Z) is a product of Eilenberg–Mac Lane
spaces, and so is determined by its homotopy groups which are

π∗T (Z) =











Z for ∗ = 0,

Z/i for ∗ = 2i− 1,

0 otherwise.

In particular π3T (Z) = Z/2 and the trace map K3(Z) → π3T (Z) is the surjec-
tion Z/48 → Z/2 detecting the interesting part of K3(Z) not coming from stable
homotopy.

A further refinement of this approach notes that the circle S1 acts on T (Z), and
the trace map factors over the corresponding homotopy fixed points giving a circle
trace map

trS1 : K(Z) −→ T (Z)hS
1

.

This will be a map of ring spectra, and if the Lichtenbaum–Quillen conjecture is
true there should be a ring map from the model JK(Z) for K(Z) based on étale

K-theory to T (Z)hS
1

. In particular there should be an algebra map linking the

mod two spectrum homology algebras Hspec
∗ (JK(Z);Z/2) and Hspec

∗ (T (Z)hS
1

;Z/2)
compatible with the (co-)action of the dual Steenrod algebra A∗.

Here the source is relatively well known, and in the eighties Bökstedt began to
make calculations of the target. He did not get complete answers, but thought
for a while that although there were unresolved extension questions, none of the
possible answers were compatible with the existence of such a ring map. This would
contradict the Lichtenbaum–Quillen conjecture at two (in the form of Dwyer and
Friedlander), but so far the details of such an argument remain unfinished.
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2 JOHN ROGNES

My subjective impression is that there is no contradiction, and that at two K(Z)
and JK(Z) are the same, but I cannot prove this.

For the record, the Lichtenbaum–Quillen conjecture at two for the integers
amounts to the assertion that the square of rings

Z[ 1
2
] //

��

R

��

c

Z3
// C

(for a suitable imbedding of Z3 into C) induces a homotopy cartesian square in K-
theory after completion at two, so that K(Z[ 1

2
]) would be the homotopy pullback

of the maps

K(Z3) −→ K(C)
c←− K(R).

Here we may identify K(Z3) ≃ K(Z/3) ≃ Im JC, K(R) ≃ Z × BO and K(C) ≃
Z × BU after completion. So the candidate for K(Z[ 1

2
]) is also the homotopy

pullback of certain maps

Im JC −→ Z×BU c←− Z×BO.

Then there should be a localization fiber sequence

K(Z/2) −→ K(Z) −→ K(Z[
1

2
])

with K(Z/2) ≃ HZ at two, so in the end the candidate JK(Z) for K(Z) at two fits
into several different fiber sequences

Im JR −→ JK(Z) −→ BBSO

SU −→ JK(Z) −→ Z×BO
BBO −→ JK(Z) −→ Im JC.

Here Im JR is the real image of J , defined by a fibration

Im JR −→ Z×BO ψ3−1−−−→ BSpin

while Im JC is the complex image of J , defined by the fibration

Im JC −→ Z×BU ψ3−1−−−→ BU.

The homotopy groups of these spaces are well known, as are the homotopy groups
of the model JK(Z) for K(Z) at two.

Returning to Bökstedt’s idea, there is now a refined version of the circle trace
map due to Bökstedt, Hsiang and Madsen, called the cyclotomic trace map. Its
construction runs as follows.



K-THEORY OF Z2 3

The circle action on T (Z) determines spaces of fixed points T (Z)Cpn for each
subgroup Cpn ⊂ S1. Here p can be any prime; we will specialize to the case p = 2
a little later. There are natural inclusions

F : T (Z)Cpn −→ T (Z)Cpn−1

which we will call Frobenius maps. These were called D in the old notation. In
addition topological Hochschild homology admit other maps

R : T (Z)Cpn −→ T (Z)Cpn−1

called restriction maps. These were called Φ in the old notation, and arise by re-
stricting a Cpn -equivariant map to its Cp-fixed points, giving a Cpn−1-equivariant
map. Both maps are interesting, and together give T (Z) the structure of a cyclo-
tomic spectrum.

The trace map tr admits lifts

trpn : K(Z) −→ T (Z)Cpn

compatible with both F and R. In fact

F ◦ trpn ≃ R ◦ trpn ≃ trpn−1 .

The cyclotomic trace map combines these lifts into a map to the topological cyclic
homology TC(Z) at p.

K(Z)

yy

trc

tt
tt
tt
tt
tt

��

trpn

&&

tr
pn−1

▼▼
▼▼

▼▼
▼▼

▼▼

TC(Z) // T (Z)Cpn
//F
//

R
T (Z)Cpn−1

//
// . . . //

// T (Z).

So by definition
TC(Z) = holimF,R T (Z)

Cpn

and trc : K(Z) → TC(Z) is the cyclotomic trace map. Here implicitly all spaces
are completed at our chosen prime p. We could also consider the homotopy limit
over only the Frobenius maps

TF (Z) = holimF T (Z)
Cpn

and since F and R commute there is a fiber sequence

. . .
∂−→ TC(Z)

π−→ TF (Z)
R−1−−−→ TF (Z) −→ . . .

The ring map Z → Zp to the ring of p-adic integers induces a nontrivial map
K(Z)→ K(Zp), but after p-adic completion the natural map TC(Z)→ TC(Zp) is a
homotopy equivalence. Hence the cyclotomic trace map K(Z)→ TC(Z) ≃ TC(Zp)
naturally factors through K(Zp), and it is in fact as an invariant of the K-theory of
the p-adic integers, rather than of the rational integers, that TC(Z) is an interesting
invariant.
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Theorem (McCarthy, Hesselholt–Madsen). The cyclotomic trace map

trc : K(Zp) −→ TC(Z)

induces a homotopy equivalence on p-adically completed connective covers.

We say that trc is a connective p-adic equivalence. When p is an odd prime, we
have the following calculation:

Theorem (Bökstedt–Madsen). There is a homotopy equivalence

TC(Z) ≃ Im J ×B Im J ×BBU

on p-adically completed connective covers.

Here Im J is defined by the fiber sequence

Im J −→ Z×BU ψk−1−−−→ BU

where k is a topological generator of the p-adic units. Such a complete description
of the K-theory of a ring was previously essentially only known in the cases of finite
fields (Quillen) and algebraically closed fields (Suslin).

What about the case p = 2 ? For multiplicative reasons the formula above
cannot hold, neither with Im J replaced by Im JR or by Im JC. Instead we have the
following chain of results. Hereafter suppose all spaces are implicitly completed at
two.

The main technical work goes into the following calculation.

Claim 1. The nontrivial mod two homotopy groups of TC(Z) have orders

#π∗(TC(Z);Z/2) =











2 for ∗ = −1 or 0,

4 for ∗ = 1 or ∗ ≥ 2 even,

8 for ∗ ≥ 3 odd.

Hence these are also the orders of π∗(K(Z2);Z/2) for ∗ ≥ 0.
The degree eight Adams map A = v41 acts injectively on the mod two homo-

topy groups above. Inverting A only changes the homotopy groups below degree 1,
so K(Z2) is essentially K-local, in the sense that the localization map K(Z2) →
LKK(Z2) is an equivalence above degree 1.

Let us review the construction of the Galois reduction map,

red : K(Z2)→ Im JC

by adapting ideas of Dwyer and Friedlander to the two-primary case.
We have inclusions

Z2 ⊂ Q2 ⊂ Q2(µ2∞) ⊂ Q̄2

and choose an imbedding Q̄2 → C. Here Q2(µ2∞) is the field obtained by adjoining
all 2nth roots of unity to Q2, for all n, while Q̄2 is the algebraic closure. There is a
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Galois automorphism θ3 of Q2(µ2∞) fixing Q2 and given by θ3(ζ) = ζ3 for each 2nth
root of unity ζ. Next we may choose an extension of θ3 to a Galois automorphism
φ3 of Q̄2. This involves a choice, but we will only require that φ3(

√
3) = +

√
3,

rather than −
√
3. We have this choice because

√
3 /∈ Q2(µ2∞).

Then φ3 induces a self–map of K(Q̄2) compatible under Suslin’s equivalence
K(Q̄2) ≃ K(C) ≃ Z×BU with the Adams operation ψ3. Hence we can arrange to
have maps of ring spectra

K(Z2) −→ K(Q2) −→ K(Q̄2)
hφ3 ≃−→ (Z×BU)hψ

3

where the superscript ( )hf means the homotopy fiber of f−1. Passing to connective
covers we get the reduction map

red : K(Z2) −→ Im JC.

We define the reduced K-theory Kred(Z2) as the homotopy fiber of red.

Claim 2. The reduction map induces surjections on mod two homotopy in all
degrees, and split surjections on integral homotopy in all degrees. The nontrivial
mod two homotopy groups of Kred(Z2) have orders

#π∗(K
red(Z2);Z/2) =

{

2 for ∗ = 1 or ∗ ≥ 2 even,

4 for ∗ ≥ 3 odd.

Note that the two-adic unit 3 in Q̄2 has a square root which is invariant under
φ3. Hence its symbol {3} in K1 is divisible by two, and maps to zero in π1 Im JC ∼=
Z/2. Thus π1K

red(Z2) ∼= Z2 is free on one generator, namely {3}. This class is
represented by an infinite loop map {3} : Q(S1)→ Kred(Z2), and since K(Z2) and
thus Kred(Z2) is essentially K-local, there is a factorization in the diagram

Q(S1) //
{3}

��

Kred(Z2)

��

B Im JR // LKQ(S1) // LKK
red(Z2)

giving a map B Im JR → Kred(Z2) inducing an isomorphism on π1. There is a
complexification map Bc : B Im JR → B Im JC. Briefly let W denote its homotopy
fiber, as in the diagram below:

W // B Im JR

��

//Bc
B Im JC

Kred(Z2)
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Claim 3. The composite W → B Im JR → Kred(Z2) is null homotopic. Hence
there is an extension B Im JC → Kred(Z2) of the map {3}, which induces an iso-
morphism on π1.

The proof uses the description of W = hofib(Bc) as an invertible spectrum in
the K-local category at two, representing an element of order 4 in the Picard group
Pic1 (chromatic type 1) of Hopkins, Mahowald and Sadofsky. These authors give
an inductive procedure for how to construct W from ∗ by successively attaching
mapping cones over LK(Si/2) where Si/2 is a mod two Moore spectrum. So to
check that W → Kred(Z2) is null homotopic it suffices to check that certain maps
Si/2→ LKS

i/2→ Kred(Z2) can be arranged to be null homotopic, which amounts
to questions about πi+1(K

red(Z2);Z/2). This is precisely the kind of information
the TC calculations supplied, and the result can be proved in this way.

Claim 4. The map B Im JC → Kred(Z2) induces an injection on mod two ho-
motopy groups in all degrees, and split injections on all integral homotopy groups.
Hence its (infinite loop space) cofiber X has the mod two homotopy groups of BBU ,
and in fact X ≃ BBU .

Hence we have the following theorem.

Theorem (Rognes). The two-completed homotopy type of K(Z2) as an infinite
loop space is determined by the following diagram of infinite loop space fiber se-
quences

B Im JC

��

Kred(Z2) //

��

K(Z2) //red
Im JC

BBU.

The vertical connecting map f : BU → B Im JC represents a generator of the group
of such infinite loop maps which induce trivial homomorphisms on homotopy. This
group is free of rank one as a module over the two-adic integers.

The horizontal connecting map g : Im JC → BKred(Z2) also represents a gener-
ator of the group of such infinite loop maps, which again is free of rank one as a
module over the two-adic integers.

Both fibrations may thus be viewed as maximally twisted extensions. But looking
at K-groups we have

K∗(Z2) ∼= π∗ Im JC × π∗B Im JC × π∗BBU.

How do we access π∗(TC(Z);Z/2) ? Through the fiber sequence

TC(Z)
π−→ TF (Z)

R−1−−−→ TF (Z).

Here
TF (Z) = holimT (Z)C2n −→ holimT (Z)hC2n ←− T (Z)hS1

.

The last map is a two-complete homotopy equivalence.
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Theorem (Tsalidis). If the natural map Γ1 : T (Z)
Cp → T (Z)hCp is a connective

p-adic equivalence, then so is Γn : T (Z)
Cpn → T (Z)hCpn for all n ≥ 1.

The proof is a reduction to the rank one elementary abelian p-group case, along
the lines of Carlsson’s reduction of the Segal conjecture.

Hence once we check that Γ1 is a connective two-adic equivalence, then the
composite map

K(Z2)
trc−−→ TC(Z)

π−→ TF (Z)

is equivalent to the circle trace map trS1 studied by Bökstedt. The cyclotomic
trace map merely takes into account the additional coherence required by the R-

maps. So we want to understand π∗(TF (Z);Z/2), which equals π∗(T (Z)
hS1

;Z/2)
in nonnegative degrees, and the limiting case of the reduction map R : TF (Z) →
TF (Z) compared to the identity.

We will do this in inductive steps, proceding from the mod two homotopy of
T (Z) to T (Z)C2 , through to that of T (Z)C2n for all n, simultaneously keeping an
eye on R : T (Z)C2n → T (Z)C2n−1 . The inductive approach is made possible by the
following norm–restriction fiber sequence

T (Z)C2n

N−→ T (Z)C2n
R−→ T (Z)C2n−1 .

Here the norm map N followed by a forgetful map gives the C2n -equivariant trans-
fer. Mapping T (Z) to the function spectrum F (ES1

+, T (Z)) takes the fiber sequence
above to the following homotopy norm–restriction sequence

T (Z)C2n

Nh

−−→ T (Z)hC2n
Rh

−−→ Ĥ(C2n , T (Z)).

Here Ĥ(C2n , T (Z)) denotes the Tate construction for the action of C2n on T (Z),
which merges the homotopy orbit and homotopy fixed point constructions to its
left, just like Tate cohomology merges group homology and cohomology.

There is a map of fiber sequences, which is the identity on the left, the natural
map Γn in the middle, and a similar map

Γ̂n : T (Z)
C

2n−1 −→ Ĥ(C2n , T (Z))

on the right. Clearly Γn is a connective two-adic equivalence if and only if Γ̂n is
one. In fact the following theorem

Theorem (Rognes). Γ1 is a connective two-adic equivalence.

is proved by showing that Γ̂1 : T (Z)→ Ĥ(C2, T (Z)) induces an isomorphism on
mod two homotopy in all nonnegative degrees. This is feasible because

π∗(T (Z);Z/2) ∼= Z/2[e3, e4]/(e
2
3 = 0)

is known, and there is a spectral sequence Ê∗(C2):

E2
s,t = Ĥ−s(C2;πt(T (Z);Z/2)) =⇒ πs+t(Ĥ(C2, T (Z));Z/2)
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Here Ĥ−s denotes Tate cohomology. The theorem is proved by a comparison be-
tween the spectral sequence above, which is not an algebra spectral sequence, and
correponding spectral sequences for mod four homotopy and for the action of S1 in
place of C2.

The whole technical problem at two is that the mod two Moore spectrum M =
S0/2 representing mod two homotopy is not a ring spectrum. The obstruction to
finding a retraction to the (left) unital map M → M ∧ M factors through the
Hopf map η, so because multiplication by η is null homotopic on T (Z), there is an
algebra structure on π∗(T (Z);Z/2). But this null homotopy cannot be made even
C2-equivariant, and so there is no natural algebra structure on π∗(T (Z)

C2n ;Z/2)
for n ≥ 1. In particular there is no natural algebra structure on the mod two
homotopy spectral sequences we are considering.

Hence all Γn are connective two-adic equivalences, and we may try to compute
the mod two homotopy of T (Z)C2n from the spectral sequences E∗(C2n):

E2
s,t = H−s(C2n ;πt(T (Z);Z/2)) =⇒ πs+t(T (Z)

hC2n ;Z/2)

Here H−s is ordinary group cohomology, which can be found from Tate cohomology
by truncation.

The inductive scheme goes as follows.
Suppose we know the mod two homotopy of T (Z)C2n−1 . This is the mod two

homotopy of Ĥ(C2n , T (Z)) in nonnegative degrees. Try to backtrack in the spectral

sequence Ê∗(C2n) to determine the differential structure, given the E2-term and the
abutment. Then truncate the spectral sequence to give E∗(C2n). This converges
to the mod two homotopy of T (Z)C2n . And the map R : T (Z)C2n → T (Z)C2n−1 is

induced by the map of spectral sequences E∗(C2n)→ Ê∗(C2n).
How about the Adams A = v41-periodicity ? By an explicit symbol calculation,

and a theorem of Calvin Moore, η3 in π3Q(S0) maps to zero in K3(Z2). Hence ν
maps to a four-torsion class in K3(Z2), which lifts over a mod four Bockstein to
a class ν̃4 ∈ K4(Z2;Z/4). Mod four homotopy acts upon mod two homotopy, and
multiplication by ν̃4 behaves as multiplication by v21 ; as closely as possible. At least
a detailed look at ν̃24 shows that it acts like A.


