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0.1. These are notes for the author’s talk at the 1999 British Topology Meeting in
Swansea, April 6th to 8th.

0.2. T aim to talk about a calculation of the two-primary homotopy type of the
algebraic K-theory space, A(x), of the category of finite pointed CW-complexes, as
constructed by Waldhausen.

(1) How can this homotopy type be defined and interpreted ?
(2) How does the calculation proceed, and what is the result 7
(3) How can the result be explained, or understood ?

1.1. In one interpretation, A(x) is an infinite loop space acting as the target for a
generalized Euler characteristic.

The ordinary Euler characteristic can be defined e.g. for finite CW-complexes,
and takes values in the integers Z viewed as an abelian group. It will be convenient
to work with pointed CW-complexes and the reduced Euler characteristic y. It
satisfies two characterizing properties: homotopy invariance and additivity. For
each pointed CW-complex Y the reduced Euler characteristic x(Y') only depends
on the homotopy type of Y, and for every cofiber sequence Y/ — Y — Y we have
the addition formula

X(Y) =x(Y") +x(Y").
In fact the reduced Euler characteristic is universal among additive homotopy in-
variants of finite CW-complexes taking values in abelian groups.
We now generalize this to an Euler characteristic of diagrams of finite CW-
complexes and homotopy equivalences, taking values in an infinite loop space.
Let hRs(x) be the category of finite pointed CW-complexes and homotopy equiv-
alences. We view a small category C' and a functor

Y:C— hRf(*)

as a diagram of finite pointed CW-complexes and pointed homotopy equivalences,
shaped like the nerve |C| of the category C. The infinite loop space A(*) comes
equipped with a map e: |hRy¢(x)| = A(x). Thus to the diagram Y: C' — hRs(x)
we can associate a map

€] s |hRy ()] < A(x)
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with the following homotopy invariance and additivity properties: Given a map
Y — Y’ of diagrams, i.e., a natural transformation from Y to Y’, the composite
maps e o |Y] and e o |Y’| are homotopic. Given a cofiber sequence

Y Y =Y

of diagrams, i.e., natural transformations yielding a cofiber sequence Y'(c) —
Y(c) — Y"(c) for every object ¢ in C, the composite map e o |Y| is homotopic
to the sum of the composite maps e o |Y’| and e o |Y”| with respect to the (homo-
topy commutative) loop sum in A(x).

The homotopy class x(Y) € [|C|, A(x)] of the composite map e o |Y| is thus an
additive homotopy invariant for small diagrams of finite pointed CW-complexes
and homotopy equivalences, taking values in an infinite loop space. In fact A(x)
and the map e are universal with respect to these properties, and we can think of
A(x*) as the universal receptacle for a generalized Euler characteristic, defined for
diagrams of spaces.

1.2. This generalizes the classical example. When C' is the trivial category with
only one object and one morphism, the diagram Y is a single finite pointed CW-
complex, |C| = * is a point, and the homotopy class x(Y) € [|C|, A(x)] = moA(*) =
Z is the ordinary reduced Euler characteristic of Y.

More generally, if C' has a single object * and a group G of morphisms * — x,
then a diagram Y: C' — hRy(x) is equivalent to the finite pointed CW-complex
Y (%), equipped with a G-action. The nerve |C| is the usual model for the classifying
space BG for principal G-bundles, so the generalized Euler characteristic of such
a G-space Y (x) is a homotopy class of maps BG — A(x). Already this may carry
more information than just the reduced Euler characteristic of the space Y ().

For example, if G = Z, so Y(x) is a space equipped with an automorphism,
then BG ~ S! and x(Y) € [|C|, A(x)] = moA(x) ® m A(x) = Z & Z/2 detects not
only the reduced Euler characteristic of Y (x), but also a Z/2-valued invariant of
the automorphism. The automorphism induces an automorphism on the rational
homology group H;(Y (x);Q), in each dimension ¢ > 0. The Z/2-valued invariants
detects whether an even or odd number of these have negative determinant.

In general, determining the homotopy classes of maps |C| — A(x) can be consid-
ered as an Adams spectral sequence problem, starting with the mod p cohomology
of the nerve |C| and the mod p spectrum cohomology of the spectrum with under-
lying infinite loop space A(x):

By = Bxta(Hpeo(A(x); Fp), H(IC[Fp)) = [|C], A(*)p]i—s -
The Adams spectral sequence will be conditionally convergent to the p-adically
completed homotopy classes of maps, but a separate argument must be made to
check strong convergence in individual cases.

1.3. The infinite loop space A(x) is constructed by an infinite loop space machine,
considered by Waldhausen. It takes as input the category Ry (*) of finite pointed
CW-complexes and pointed maps, equipped with a subcategory of cofibrations,
being the cellular embeddings, and a subcategory of weak equivalences, being the
homotopy equivalences. It yields as output the infinite loop space A(x), together
with the universal map e: |hRs(x)| — A(x). We say that A(x) is the algebraic
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K-theory space of the category of finite pointed CW-complexes. Alternatively we
can think of it as a connective spectrum.

Just as the reduced Euler characteristic is invariant under double suspension,
X(22Y) = x(Y), the double suspension functor ¥?: Rs(x) — R¢(x) induces a map
¥2: A(x) — A(x) which is homotopic to the identity. From this it follows that the
input category for Waldhausen’s infinite loop space machine can be stabilized with
respect to suspensions, i.e., that the category of finite pointed CW-complexes can
be replaced by the category of finite CW-spectra.

Hence A(x) can also be constructed, or described, as the algebraic K-theory
spectrum of the category of finite CW-spectra, with respect to suitable notions of
cofibrations and weak equivalences between such spectra.

There are now several largely equivalent categories of spectra that come equipped
with a symmetric monoidal smash product. The main examples are the S-modules
of Elmendorf, Kriz, Mandell and May, the symmetric spectra of J. Smith, and
the I'-spaces or simplicial functors of G. Segal and M. Lydakis. In each case, the
sphere spectrum S is the neutral element for the smash product, so the respective
categories of spectra can all be interpreted as categories of module spectra over S,
viewed as a ring spectrum. The category of finite CW-spectra then plays the role of
the category of finitely generated projective modules over S, as in ordinary algebraic
K-theory, and so we can also think of A(x) as the algebraic K-theory spectrum of
the ring spectrum S, writing A(x) = K (S).

Since the sphere spectrum S is commutative, its algebraic K-theory A(x) = K (S)
is in turn a ring spectrum.

Finally, any algebraic K-theory spectrum is a module spectrum over A(x) =
K(S). For example, when R is a ring its Eilenberg—Mac Lane spectrum HR is an
algebra spectrum over S. When X = BG is a space, with G a simplicial group,
the suspension spectrum 3°°G is an algebra spectrum over S. In general, any
A ring spectrum admits a model as an algebra spectrum over S, in the spectrum
categories considered above. So the algebraic K-theory of a ring, in the sense of
Quillen, or of a space, in the sense of Waldhausen, or of any A..-ring spectrum, are
all examples of the algebraic K-theory of an S-algebra, and come equipped with a
module action by the ring spectrum K(S) = A(x).

1.4. The original motivation for studying Waldhausen’s algebraic K-theory A(x) =
K (S), or more generally the algebraic K-theory A(X) = K(X>°G.) of a space X =
BG@, stems from geometric topology. When X is a manifold, the spectrum A(X)
provides the link between algebraic K-theory and the geometric topology concerning
the spaces of concordances (= pseudoisotopies), h-cobordisms and automorphisms
of X.

Working in one of the three geometric categories DIFF, PL or TOP of smooth,
piecewise linear or topological manifolds, respectively, Waldhausen constructed nat-
ural cofiber sequences

S°X, 5 A(X) — WhPTFF(X)

and
A(x) A Xy 5 A(X) — WhiL(X).

There is a natural homotopy equivalence Wh'*(X) ~ Wh™°F(X). Furthermore,
he constructed a trace map trx: A(X) — X*°AX,, which shows that the DIFF
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cofiber sequence splits. Here WhCAT(X ) is called the CAT Whitehead spectrum.
Its underlying infinite loop space is more commonly referred to, and is called the
CAT Whitehead space.

Let CYAT(X) = CAT(X x I,X x 1) be the CAT concordance space of a CAT
manifold X. It is the space of CAT automorphisms of the cylinder X x I, fixing a
neighborhood of the part X x 0U0X x I of the boundary. There are stabilization
maps CY4T(X) — CY4T(X x I), which in the direct limit induce a stabilization
map

2GAT . 09T (X)) — hocolim CCAT (X x I*) ~ Q02 WheT (X).
k

Thus the double loop space of the CAT Whitehead space is the stabilized CAT
concordance space. K. Igusa proved, in the DIFF category, that the stabilization
map L.{AT is approximately n/3-connected, when n = dim(X) is the dimension of
X, and similar estimates apply in the PL and TOP categories.

A. Hatcher showed how to recover information about the space CAT(X) of
CAT automorphisms of a manifold X (diffeomorphisms, PL homeomorphisms or
homeomorphisms, respectively), from the concordance space C°47(X) together
with an involution on CY4T(X) thought of as ‘turning a concordance upside-
down.” His spectral sequence was given a space level interpretation by M. Weiss
and B. Williams, who constructed a map

AT . CAT(X)/CAT(X) — Q°(ECay A, QWhEAT (X))

which is also roughly n/3-connected. Here CAT (X) is the block automorphism
space of X, which is a simplicial group accessible through surgery theory. The
involution on concordance spaces stabilizes to a Co-action on Q Whe4T (X), and
the target of @%AT is the underlying space of the spectrum level homotopy orbits
of this action.

Thus from an understanding of A(x) ~ %°89 v WhP'¥¥ (4) we obtain an un-
derstanding of Wh?'*¥(X) up to dimension n/3 for smooth, n-dimensional, n/3-
connected manifolds X. By Igusa’s stability theorem this amounts to knowing the
DIFF concordance space CPIFF(X) in roughly the same range. Assuming the in-
volution on Q Wh? ¥ ¥ (X)) or A(x) can be pinned down, this leads to knowledge of
the DIFF automorphisms space DI FF(X), again roughly up to dimension n/3. Al-
ready with X = D" a disc, this space of diffeomorphisms has a rich and interesting
homotopy type.



