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1. T'-SPACES AND S-ALGEBRAS

Let T°P be the category of finite pointed sets k. = {0,1,...,k} for £ > 0, and
base-point preserving functions. We often write * = 0, and S° = 1.

[P admits a wedge sum V: I'°P xI'°P — T'°P taking (k4,1 ) to the concatenation
(k+1)y 2 ky Vg, and a smash product A: TP x T'P — T'°P taking (ki ,l+) to the
lexicographically ordered product (kl)y = ki Aly.

Let S, be the category of spaces, i.e., pointed simplicial sets. A I'-space X is
a functor X: I'? — S, with X(04) = *, i.e., a pointed functor. Let I'S, be the
category of I'-spaces. The morphisms are the natural transformations of functors.

As an example, let A be an abelian group. A functor HA: ky — A®--- G A
(k summands A) is given on a morphism f: k. — [ by HA(f)(a1,...,ax) =
(b1,...,b;), where b; = Zf(i):j a;. We call HA the Eilenberg-Mac Lane I'-space
of A. This yields an embedding H: Ab — I'S,, where Ab is the category of abelian
groups.

We call X (1) = X(SY) the underlying space of X. A I'-space X is special if
the canonical map X (ky VIy) — X(ky) x X(I4) is a weak equivalence for all k
and [. Equivalently the canonical map X (k;) — X (14)* is a weak equivalence for
all k, so for X special X (k) has the homotopy type of the product of k copies of
the underlying space of X. In this case mpX (14 ) naturally becomes a commutative
monoid. If this monoid has inverses, i.e., is a commutative group, then we say that
X is very special.

A T-space X extends to a functor Ens, — S, taking a pointed set T' to the
colimit colimy, 7 X (k). It extends further to an endofunctor S, — S, taking a
pointed simplicial set K to the diagonal of the simplicial space [q] — X (K,), i.e.,
the simplicial set [q] — X (K,),. We also denote these extensions by X.

There is a natural map X (K)AL — X(KAL) for K, L € S,. Let ST = Al/oAlL
Taking K = S™ = S'A--- A ST (n factors S1) and L = S! we obtain the structure
maps of a (pre-)spectrum n — X (S™), briefly denoted X (5). The homotopy groups
of the I'-space X are defined as the homotopy groups of this spectrum, i.e., as

(X)) = (X (9)) = co}jmwk+nX(S") .

A map X — Y is called a stable equivalence if the induced map 7 (X) — m(Y) is
an isomorphism for all k£ € Z.
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If X is special then the adjoint structure map X (S™) — QX (S™*!) is a weak
equivalence for all n > 1 (X is a semi-{2-spectrum), and if X is very special then
this map is a weak equivalence for all n > 0 (X is an Q-spectrum).

In the Eilenberg-Mac Lane example, HA(S™) is a K (A, n)-space and HA(S) is
the Eilenberg—Mac Lane spectrum of A. Its homotopy is mp(HA) = A for k =0
and zero otherwise.

Given two I'-spaces X and Y, their smash product X AY is the I'-space

ki — colim X(m4)AY(ny).

m4 Ang —>k+

This is the left Kan extension of the external smash product XAY : I'P? xI'°P — I'S,
taking (m4,n4) to X(m4) AY(ng), over the smash product A: I'P x I'P — T'°P.
There is a stable homotopy equivalence X (S)AY (S) ~ (X AY)(S), so the smash
product of I'-spaces models the smash product of spectra in the stable homotopy
category.
Given I'-spaces X, Y and Z, and a morphism f: X AY — Z, the composite

X(mi)AY(ng) = (XAY)(my Ang) ER Z(my Any)

is a natural transformation of functors I'°? x I'? — §,, i.e., a morphism of bi-I'-
spaces. This correspondence is a bijection, so each such morphism XAY — Z o A
of bi-I'-spaces comes from a unique morphism X A'Y — Z of I'-spaces.

The morphism of bi-I'-spaces above also extends to a natural transformation

X(K)ANY (L) = Z(K A L)

of functors S, x S, — S..

The inclusion I'? — &, interpreting k; as a constant pointed simplicial set
defines a I'-space S called the sphere I'-space. The extended endo-functor S: S, —
S, is the identity, and the associated spectrum is the sphere spectrum n — S™.
Thus its homotopy 7 (S) = colim,, x4, (S™) equals the stable homotopy groups of
spheres.

The category I'S, of I'-spaces equipped with the smash product pairing A: 'S, x
'S, — I'S. and the unit object S is a symmetric monoidal category (IS, A,S).
This thus has similar formal properties to the category Ab of abelian groups, with
the tensor product pairing ®: Ab x Ab — Ab and the unit object Z.

A monoid (R, i, n) in (Ab, ®,Z) is an abelian group R equipped with a product
1 RQR — R and a unit map n: Z — R satisfying associativity and unit conditions.
This is precisely an associative ring with unit, or a Z-algebra. It is a commutative
ring, or a commutative Z-algebra if o T = u, where T: R® R — R ® R is the
twist isomorphism.

Likewise, an S-algebra A is by definition a monoid (A, u,n) in (I'Si, A,S). It is
thus a I'-space A, equipped with a product u: AN A — A and a unit n: S — A,
satisfying associativity and unit conditions. If o T = u, then A is a commutative
S-algebra.

The extended endofunctor A: S, — S, is now a functor with smash product
(FSP). It comes equipped with a product map

A(K) ANA(L) — A(K A L)
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and a unit map K — A(K), which are natural in K, L € S,. These satisfy strict
associativity and unit conditions.

The associated spectrum A(S) of an S-algebra A becomes a ring spectrum, with
product A(S) A A(S) ~ (AN A)(S) — A(S) and unit S = S(S) — A(S5), but an
S-algebra is a stricter structure, defined in the category of I'-spaces and strict maps,
not just in the stable homotopy category.

When R is a (commutative) ring, the Eilenberg-Mac Lane I'-space H R becomes
a (commutative) S-algebra. The sphere I'-space S is the initial (commutative) S-
algebra.

2. CYCLIC OBJECTS

Let A be Connes’ cyclic category, with objects {[¢] | ¢ > 0} and morphism sets

A(lp], [g]) = A(lp], la]) < Cpa -

By restriction to A°? C AP, a cyclic object X determines an underlying simplicial
object, whose geometric realization | X | admits a natural circle action (S'-action).

3. TOPOLOGICAL HOCHSCHILD HOMOLOGY

Let I C I'°? be the subcategory of injective functions ky — [. The wedge sum
and smash product functors restrict to the subcategory I.
For z = k4 in I we write

ST =8tA...n 8t

(k factors S'). Let Map(S%,Y) = QFY be the (based) simplicial mapping space.
Its p-simplices is the set of simplicial maps S* A A — Y.

Let A be an S-algebra. For any (¢ + 1)-tuple = (zo,...,z,) in I?t! we define
a ['-space ky — G(A,z)(ky) by

G(A, z)(ky) = Map(S™ A -+ A §%0, A(ST™) A+ A A(S®) Nk.).

The association x — G(A, x) is a functor 19t — I'S,, using in part the stabilization
maps A(S™) A ST — A(S™T1). Its homotopy colimit defines the I'-space

THH(A), =hocolimG(A, z).

xzelatt
There is a stable homotopy equivalence THH (A),; >~ AN--- AN A (g+ 1 factors A).

There are cyclic structure maps making [q] — THH(A), a cyclic I'-space, de-
noted by TTHH(A). These are analogous to the cyclic structure maps defining the
Hochschild complex. In particular the face maps use the product p on A, and the
degeneracies use the unit map 7.

For example, the face map dy: THH(A); — THH(A)y takes a map f: S¥ A
STEN AL — A(STO) A A(STY) A kg to do(f): SToVEL A AL — A(STOVEL) A Ky, by
means of the isomorphism S*° A §¥1 2 §%0V¥1 and the product A(S%)A A(S*) —
A(S®oV*1). The face map dy yields dy(f): S**V* A AL — A(S%1V%0) A k., and
involves the twist isomorphism xg V x1 = x1 V x¢ both in the source and the target.

The cyclic structure gives each space THH (A)(ky) a natural S'-action. The
associated spectrum THH(A)(S) is thus a spectrum with S'-action. If A is a
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commutative S-algebra, then there is a product THH(A)ANTHH(A) - THH (AN
A) - THH(A)and aunit S - A — THH(A), making THH (A) a commutative S-
algebra. The composite A - THH(A)y — THH(A) is then a map of commutative
S-algebras, making THH(A) a commutative A-algebra.

For example, when A = S each iterated degeneracy map S ~ THH(S), —
THH(S), is a stable equivalence. It follows that the inclusion of zero-simplices
THH(S)y — THH(S) is a stable equivalence, so THH(S) ~ S.

When A = HR with R a ring, we usually write THH (R) for THH(HR). Ra-
tionally, we have H,(THH(A);;Q) = H.(4;Q) ® --- ® H.(4;Q) ((¢ + 1) fac-
tors H,(A;Q)), and there is an isomorphism H,(THH(A); Q) = HH.(H.(A;Q)).
When A= HR, H,(HR;Q) = R® Q, so rationally the topological Hochschild ho-
mology of HR agrees with the Hochschild homology of R. The difference consists
of torsion groups.

4. FROBENIUS MAPS AND TF

Let C, C S! be the cyclic subgroup of order r. Let p be a prime. The S'-action
on THH(A) arising from the cyclic structure restricts to a Cpn-action for each
n > 0. The fixed points for this action is the I'-space THH(A)“»" taking k, to
the fixed point space THH(A)(ky )C»".

We think of C,»—1 as a subgroup of Cy» of index p. Then the C)n-fixed points for
the circle action on TH H(A) are contained in the Cj,n-1-fixed points, by neglecting
part of the invariance.

The Frobenius map

F=F,: THH(A)" — THH(A)""

is defined as the inclusion between these fixed point sets, interpreting a point in
THH(A)(ks) that is fixed by Cp» as in particular being fixed by Cpn-1.
These assemble to a sequential limit diagram

B TrHHEAWY S THHA) S S D rHHA) D THH(A).

Replacing each map by a fibration and taking the limit, or more precisely taking
the homotopy limit of this diagram, defines the functor TF"

TF(A;p) = holim THH(A)"

where the maps in the limit are the Frobenius maps F' = F),.
There are canonical map

T,: THH(A)" — THH(A)"“" = Map(ECpn,, THH(A))%"

from the fixed points to the homotopy fixed points for the Cyn-action on THH (A).
We obtain maps

TF(A;p) = holim THH(A)»" — holim THH(A)"“" .
After p-adic completion, the natural map

THH(A)"S" — holim THH(A)hCrm
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is a homotopy equivalence. Hence there is a canonical map

T: TF(A;p)) — THH(A)"S' )

which in some cases is a homotopy equivalence, or a homotopy equivalence on suit-
able connective covers. Hence T'F may be thought of as close to the S!-homotopy
fixed points of THH. In this sense, TF is close to a topological negative cyclic
homology.

Even if THH(A) is of finite type, i.e., each homotopy group is finitely generated,

it is usually not the case that T'F(A;p) and THH(A)hS1 are of finite type. Hence
we shall seek to reduce the size of TF(A;p) further, by taking into account more
structure available in THH (A).

6. EDGEWISE SUBDIVISION

The S!-action on TH H(A) is not simplicial. Edgewise subdivision is a method to
replace THH(A) by another simplicial space sd, T HH(A), which admits a simpli-
cial C.-action, such that there is a natural homeomorphism of geometric realizations

D: |sd, THH(A)| = |[THH(A)|

identifying the simplicial C).-action on the left with the C).-action on the right that
comes from restricting the S'-action to the subgroup C, C S'. Hence there is a
homeomorphism

DO |(sd, THH(A))®"| = [THH(A)|°"
and (sd, THH(A))" provides a simplicial model for the C,-fixed points.

7. RESTRICTION MAPS AND TR

Now consider C), as a subgroup of C)», with quotient group Cpn-1. The restric-
tion map
R=R,: THH(A)®" — THH(A)""

is defined by applying C)»-1-fixed points to the geometric realization of a simplicial
Sl-equivariant map

Ry: sd,THH(A)“>» — THH(A).
On g¢-simplices, this is a map of I'-spaces

(Rp)q: (SdeHH(A)q)CP = (THH(A)p(q+1)—1)CP - THH<A)q .

An r-simplex in the homotopy colimit defining THH (A),(g+1)—1(k+) is a chain of
maps 20 < -+ 2" =z = (x0, . .. s Tp(g+1)—1) I IP(a+1D) together with a map

fo 8PN ANSTR@-L ANAT 5 A(STO) A NA(STRa D) AN Ky

The generator of the C)p-action permutes the factors in I p(a+1) by cyclically shifting
them (¢ 4+ 1) positions to the right, and similarly for the p(¢ + 1) smash product
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factors in the source and target of the map f. (The final factors A’ and k4 are
fixed.)

The source of (R,), consists of the Cp-invariant chains x
together with the C)-equivariant maps f as above.

A p(q + 1D-tuple z € IPla+1) ig Cp-invariant precisely when it has the form
Ay(y) = (y,...,y) for y € 1971, Here A,: 17t — [P(a+1) 5 the p-fold diagonal
embedding. Thus we may assume that the Cp-invariant chain z° + - < 2" =z
arises by applying A, to a chain y° « -+ < y" =y = (yo,...,y,) in I971. So

O i 2" = o,

mZA(y):(y()v"'7yqa"'7y07"'ayq)

is y repeated p times.

A Cp-equivariant map f: X — Y induces a map f: X — Y by restriction
to the C),-fixed point spaces. This is the core of the construction of the restriction
maps. We apply this to the source of f:

X = (8% A ANSY)NPAAT

Here the generator of C), cyclically permutes the p wedge factors, so the C)p-fixed
points are the diagonal copy

X 2 GV A A SYAAT
We also apply this to the target of f:
Y = (A(SY) A -+ AA(SY) P A kg
The C)-fixed points are the diagonal copy
YO 22 A(SYO)A - AA(SY) Ak

Via these identifications, R, takes a Cp-invariant (r, ¢)-simplex in TH H (A)(k4.)
determined by A, (y%) < -+ < A,(y") = Ap(y) and a Cp-equivariant map f: X —
Y, to the (r, q)-simplex in THH (A)(k, ) determined by y° < -+ < y” = y and the
restricted map f¢ : X — Y, identified as a map fCr: SY0 A .- A SYa A Al —
A(SYO) N - NA(SY) N kg

The resulting map R,: THH(A)“» — THH(A) is a cyclic map, hence S'-
equivariant. Taking Cpn-1-fixed points for n > 1 defines the various restriction
maps, as displayed above. They assemble to a sequential limit diagram

B THHAY B THHA) S B B THH(A) B THH(A).

Taking the homotopy limit of this diagram defines the functor T'R:

TR(A; p) = holim THH(A)S"

where the maps in the limit are the restriction maps R = R,,.
Since the restriction maps arise by taking fixed points of an S'-equivariant map,
they commute with the forgetful Frobenius maps.
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8. TOPOLOGICAL CYCLIC HOMOLOGY T1T'C

Let p be a prime, and let RF be the category with objects 1,p,...,p", ... for
n > 0, and commuting morphisms r, f: p® — p"~! for all n > 1. Thus there are
(k + 1) distinct morphisms p"** — p", given as the various composites r?f7 for
i1+ 7 =k. Then
p"— THH(A)C"

defines a functor RF — I'S,, taking r to the restriction map R = R, and f to the
Frobenius map F' = F,,. We define the p-primary topological cyclic homology of the
S-algebra A to be
TC(A;p) = holim THH(A)“" .
C(4;p) holim (A)

Alternatively, TC' may be described as a homotopy equalizer for maps between
sequential homotopy limits, thus avoiding the details of how this more complicated
homotopy limit is defined.

Since the R- and F-maps commute, the R-maps induce a self-map R of TF(A;p),
and the F-maps induce a self map F' of TR(A;p). There are homotopy equalizer
diagrams

R
TC(A;p) ——=TF(A;p) TF(4;p)

_—
1

and
F
TC(A;p) ——TR(A;p) —___ TR(A;p).
1
Thus T'C' is homotopy equivalent to the homotopy fiber of R — 1 acting on T'F', or

of F—1 acting on T'R.

9. THE NORM—RESTRICTION SEQUENCE

For each n > 1 there is a (homotopy) cofiber sequence of I'-spaces
N cn R Con_
THH(A)wc,. — THH(A)~"" — THH(A)"»"".

Here the homotopy orbit construction THH (A)nc,. is the I'-space taking ky to
ECyny No,n THH(A)(ky), where EC)n is a free contractible Cpn-space. Its un-
derlying spectrum is m + ECpny Ac,, THH(A)(S™).

A map F: A — B of S-algebras inducing a stable equivalence on THH (—),
e.g. a stable equivalence A — B, will induce a stable equivalence on all homotopy
orbit spectra THH (—)nc,.. By the norm-restriction sequence and induction, it
also induces a stable equivalence on the Cpn-fixed point subspectra of THH, for
each n > 0. Hence it also induces a stable equivalence on TF(—;p), TR(—;p) and
TC(=;p).



