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1. Γ-spaces and S-algebras

Let Γop be the category of finite pointed sets k+ = {0, 1, . . . , k} for k ≥ 0, and
base-point preserving functions. We often write ∗ = 0+ and S0 = 1+.

Γop admits a wedge sum ∨ : Γop×Γop → Γop taking (k+, l+) to the concatenation
(k+ l)+ ∼= k+ ∨ l+, and a smash product ∧ : Γop×Γop → Γop taking (k+, l+) to the
lexicographically ordered product (kl)+ ∼= k+ ∧ l+.

Let S∗ be the category of spaces, i.e., pointed simplicial sets. A Γ-space X is
a functor X : Γop → S∗ with X(0+) = ∗, i.e., a pointed functor. Let ΓS∗ be the
category of Γ-spaces. The morphisms are the natural transformations of functors.

As an example, let A be an abelian group. A functor HA : k+ 7→ A ⊕ · · · ⊕ A
(k summands A) is given on a morphism f : k+ → l+ by HA(f)(a1, . . . , ak) =
(b1, . . . , bl), where bj =

∑
f(i)=j ai. We call HA the Eilenberg–MacLane Γ-space

of A. This yields an embedding H : Ab→ ΓS∗, where Ab is the category of abelian
groups.

We call X(1+) = X(S0) the underlying space of X. A Γ-space X is special if
the canonical map X(k+ ∨ l+) → X(k+) × X(l+) is a weak equivalence for all k
and l. Equivalently the canonical map X(k+)→ X(1+)

k is a weak equivalence for
all k, so for X special X(k+) has the homotopy type of the product of k copies of
the underlying space of X. In this case π0X(1+) naturally becomes a commutative
monoid. If this monoid has inverses, i.e., is a commutative group, then we say that
X is very special.

A Γ-space X extends to a functor Ens∗ → S∗ taking a pointed set T to the
colimit colimk+→T X(k+). It extends further to an endofunctor S∗ → S∗ taking a
pointed simplicial set K to the diagonal of the simplicial space [q] 7→ X(Kq), i.e.,
the simplicial set [q] 7→ X(Kq)q. We also denote these extensions by X.

There is a natural map X(K)∧L→ X(K∧L) for K,L ∈ S∗. Let S
1 = ∆1/∂∆1.

Taking K = Sn = S1 ∧ · · · ∧ S1 (n factors S1) and L = S1 we obtain the structure
maps of a (pre-)spectrum n 7→ X(Sn), briefly denoted X(S). The homotopy groups
of the Γ-space X are defined as the homotopy groups of this spectrum, i.e., as

πk(X) = πk(X(S)) = colim
n

πk+nX(Sn) .

A map X → Y is called a stable equivalence if the induced map πk(X)→ πk(Y ) is
an isomorphism for all k ∈ Z.
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If X is special then the adjoint structure map X(Sn) → ΩX(Sn+1) is a weak
equivalence for all n ≥ 1 (X is a semi-Ω-spectrum), and if X is very special then
this map is a weak equivalence for all n ≥ 0 (X is an Ω-spectrum).

In the Eilenberg–MacLane example, HA(Sn) is a K(A, n)-space and HA(S) is
the Eilenberg–MacLane spectrum of A. Its homotopy is πk(HA) = A for k = 0
and zero otherwise.

Given two Γ-spaces X and Y , their smash product X ∧ Y is the Γ-space

k+ 7→ colim
m+∧n+→k+

X(m+) ∧ Y (n+) .

This is the left Kan extension of the external smash productX∧̄Y : Γop×Γop → ΓS∗
taking (m+, n+) to X(m+) ∧ Y (n+), over the smash product ∧ : Γop × Γop → Γop.

There is a stable homotopy equivalence X(S)∧Y (S) ≃ (X∧Y )(S), so the smash
product of Γ-spaces models the smash product of spectra in the stable homotopy
category.

Given Γ-spaces X, Y and Z, and a morphism f : X ∧ Y → Z, the composite

X(m+) ∧ Y (n+)→ (X ∧ Y )(m+ ∧ n+)
f
−→ Z(m+ ∧ n+)

is a natural transformation of functors Γop × Γop → S∗, i.e., a morphism of bi-Γ-
spaces. This correspondence is a bijection, so each such morphism X∧̄Y → Z ◦ ∧
of bi-Γ-spaces comes from a unique morphism X ∧ Y → Z of Γ-spaces.

The morphism of bi-Γ-spaces above also extends to a natural transformation

X(K) ∧ Y (L)→ Z(K ∧ L)

of functors S∗ × S∗ → S∗.
The inclusion Γop → S∗ interpreting k+ as a constant pointed simplicial set

defines a Γ-space S called the sphere Γ-space. The extended endo-functor S : S∗ →
S∗ is the identity, and the associated spectrum is the sphere spectrum n 7→ Sn.
Thus its homotopy πk(S) = colimn πk+n(S

n) equals the stable homotopy groups of
spheres.

The category ΓS∗ of Γ-spaces equipped with the smash product pairing ∧ : ΓS∗×
ΓS∗ → ΓS∗ and the unit object S is a symmetric monoidal category (ΓS∗,∧, S).
This thus has similar formal properties to the category Ab of abelian groups, with
the tensor product pairing ⊗ : Ab×Ab→ Ab and the unit object Z.

A monoid (R,µ, η) in (Ab,⊗,Z) is an abelian group R equipped with a product
µ : R⊗R→ R and a unit map η : Z→ R satisfying associativity and unit conditions.
This is precisely an associative ring with unit, or a Z-algebra. It is a commutative
ring, or a commutative Z-algebra if µ ◦ T = µ, where T : R ⊗ R → R ⊗ R is the
twist isomorphism.

Likewise, an S-algebra A is by definition a monoid (A,µ, η) in (ΓS∗,∧, S). It is
thus a Γ-space A, equipped with a product µ : A ∧ A → A and a unit η : S → A,
satisfying associativity and unit conditions. If µ ◦ T = µ, then A is a commutative
S-algebra.

The extended endofunctor A : S∗ → S∗ is now a functor with smash product
(FSP). It comes equipped with a product map

A(K) ∧A(L)→ A(K ∧ L)
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and a unit map K → A(K), which are natural in K,L ∈ S∗. These satisfy strict
associativity and unit conditions.

The associated spectrum A(S) of an S-algebra A becomes a ring spectrum, with
product A(S) ∧ A(S) ≃ (A ∧ A)(S) → A(S) and unit S = S(S) → A(S), but an
S-algebra is a stricter structure, defined in the category of Γ-spaces and strict maps,
not just in the stable homotopy category.

When R is a (commutative) ring, the Eilenberg–MacLane Γ-space HR becomes
a (commutative) S-algebra. The sphere Γ-space S is the initial (commutative) S-
algebra.

2. Cyclic objects

Let Λ be Connes’ cyclic category, with objects {[q] | q ≥ 0} and morphism sets

Λ([p], [q]) = ∆([p], [q])× Cp+1 .

By restriction to ∆op ⊂ Λop, a cyclic object X determines an underlying simplicial
object, whose geometric realization |X| admits a natural circle action (S1-action).

3. Topological Hochschild homology

Let I ⊂ Γop be the subcategory of injective functions k+ → l+. The wedge sum
and smash product functors restrict to the subcategory I.

For x = k+ in I we write

Sx = S1 ∧ · · · ∧ S1

(k factors S1). Let Map(Sx, Y ) ∼= ΩkY be the (based) simplicial mapping space.
Its p-simplices is the set of simplicial maps Sx ∧∆p

+ → Y .
Let A be an S-algebra. For any (q + 1)-tuple x = (x0, . . . , xq) in Iq+1 we define

a Γ-space k+ 7→ G(A, x)(k+) by

G(A, x)(k+) = Map(Sx0 ∧ · · · ∧ Sxq , A(Sx0) ∧ · · · ∧A(Sxq ) ∧ k+) .

The association x 7→ G(A, x) is a functor Iq+1 → ΓS∗, using in part the stabilization
maps A(Sn) ∧ S1 → A(Sn+1). Its homotopy colimit defines the Γ-space

THH(A)q = hocolim
x∈Iq+1

G(A, x) .

There is a stable homotopy equivalence THH(A)q ≃ A∧ · · · ∧A (q + 1 factors A).
There are cyclic structure maps making [q] 7→ THH(A)q a cyclic Γ-space, de-

noted by THH(A). These are analogous to the cyclic structure maps defining the
Hochschild complex. In particular the face maps use the product µ on A, and the
degeneracies use the unit map η.

For example, the face map d0 : THH(A)1 → THH(A)0 takes a map f : Sx0 ∧
Sx1 ∧∆p

+ → A(Sx0) ∧ A(Sx1) ∧ k+ to d0(f) : S
x0∨x1 ∧∆p

+ → A(Sx0∨x1) ∧ k+, by
means of the isomorphism Sx0 ∧Sx1 ∼= Sx0∨x1 and the product A(Sx0)∧A(Sx1)→
A(Sx0∨x1). The face map d1 yields d1(f) : S

x1∨x0 ∧ ∆p
+ → A(Sx1∨x0) ∧ k+, and

involves the twist isomorphism x0 ∨x1
∼= x1 ∨x0 both in the source and the target.

The cyclic structure gives each space THH(A)(k+) a natural S1-action. The
associated spectrum THH(A)(S) is thus a spectrum with S1-action. If A is a
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commutative S-algebra, then there is a product THH(A)∧THH(A)→ THH(A∧
A)→ THH(A) and a unit S→ A→ THH(A), making THH(A) a commutative S-
algebra. The composite A→ THH(A)0 → THH(A) is then a map of commutative
S-algebras, making THH(A) a commutative A-algebra.

For example, when A = S each iterated degeneracy map S ≃ THH(S)0 →
THH(S)q is a stable equivalence. It follows that the inclusion of zero-simplices
THH(S)0 → THH(S) is a stable equivalence, so THH(S) ≃ S.

When A = HR with R a ring, we usually write THH(R) for THH(HR). Ra-
tionally, we have H∗(THH(A)q;Q) ∼= H∗(A;Q) ⊗ · · · ⊗ H∗(A;Q) ((q + 1) fac-
tors H∗(A;Q)), and there is an isomorphism H∗(THH(A);Q) ∼= HH∗(H∗(A;Q)).
When A = HR, H∗(HR;Q) ∼= R⊗Q, so rationally the topological Hochschild ho-
mology of HR agrees with the Hochschild homology of R. The difference consists
of torsion groups.

4. Frobenius maps and TF

Let Cr ⊂ S1 be the cyclic subgroup of order r. Let p be a prime. The S1-action
on THH(A) arising from the cyclic structure restricts to a Cpn -action for each
n ≥ 0. The fixed points for this action is the Γ-space THH(A)Cpn , taking k+ to
the fixed point space THH(A)(k+)

Cpn .
We think of Cpn−1 as a subgroup of Cpn of index p. Then the Cpn -fixed points for

the circle action on THH(A) are contained in the Cpn−1-fixed points, by neglecting
part of the invariance.

The Frobenius map

F = Fp : THH(A)Cpn −→ THH(A)Cpn−1

is defined as the inclusion between these fixed point sets, interpreting a point in
THH(A)(k+) that is fixed by Cpn as in particular being fixed by Cpn−1 .

These assemble to a sequential limit diagram

. . .
F
−→ THH(A)Cpn

F
−→ THH(A)Cpn−1 F

−→ . . .
F
−→ THH(A)Cp

F
−→ THH(A) .

Replacing each map by a fibration and taking the limit, or more precisely taking
the homotopy limit of this diagram, defines the functor TF :

TF (A; p) = holim
n,F

THH(A)Cpn

where the maps in the limit are the Frobenius maps F = Fp.
There are canonical map

Γn : THH(A)Cpn → THH(A)hCpn = Map(ECpn+, THH(A))Cpn

from the fixed points to the homotopy fixed points for the Cpn-action on THH(A).
We obtain maps

TF (A; p) = holim
n

THH(A)Cpn −→ holim
n

THH(A)hCpn .

After p-adic completion, the natural map

THH(A)hS
1

−→ holim
n

THH(A)hCpn
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is a homotopy equivalence. Hence there is a canonical map

Γ: TF (A; p)∧p −→ THH(A)hS
1
∧
p

which in some cases is a homotopy equivalence, or a homotopy equivalence on suit-
able connective covers. Hence TF may be thought of as close to the S1-homotopy
fixed points of THH. In this sense, TF is close to a topological negative cyclic
homology.

Even if THH(A) is of finite type, i.e., each homotopy group is finitely generated,

it is usually not the case that TF (A; p) and THH(A)hS
1

are of finite type. Hence
we shall seek to reduce the size of TF (A; p) further, by taking into account more
structure available in THH(A).

6. Edgewise subdivision

The S1-action on THH(A) is not simplicial. Edgewise subdivision is a method to
replace THH(A) by another simplicial space sdrTHH(A), which admits a simpli-
cial Cr-action, such that there is a natural homeomorphism of geometric realizations

D : |sdrTHH(A)|
∼=
−→ |THH(A)|

identifying the simplicial Cr-action on the left with the Cr-action on the right that
comes from restricting the S1-action to the subgroup Cr ⊂ S1. Hence there is a
homeomorphism

DCr : |(sdrTHH(A))Cr |
∼=
−→ |THH(A)|Cr

and (sdrTHH(A))Cr provides a simplicial model for the Cr-fixed points.

7. Restriction maps and TR

Now consider Cp as a subgroup of Cpn , with quotient group Cpn−1 . The restric-

tion map

R = Rp : THH(A)Cpn −→ THH(A)Cpn−1

is defined by applying Cpn−1-fixed points to the geometric realization of a simplicial
S1-equivariant map

Rp : sdpTHH(A)Cp −→ THH(A) .

On q-simplices, this is a map of Γ-spaces

(Rp)q : (sdpTHH(A)q)
Cp = (THH(A)p(q+1)−1)

Cp −→ THH(A)q .

An r-simplex in the homotopy colimit defining THH(A)p(q+1)−1(k+) is a chain of

maps x0 ← · · · ← xr = x = (x0, . . . , xp(q+1)−1) in Ip(q+1), together with a map

f : Sx0 ∧ · · · ∧ Sxp(q+1)−1 ∧∆r
+ −→ A(Sx0) ∧ · · · ∧A(Sxp(q+1)−1) ∧ k+ .

The generator of the Cp-action permutes the factors in Ip(q+1) by cyclically shifting
them (q + 1) positions to the right, and similarly for the p(q + 1) smash product
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factors in the source and target of the map f . (The final factors ∆r
+ and k+ are

fixed.)
The source of (Rp)q consists of the Cp-invariant chains x0 ← · · · ← xr = x,

together with the Cp-equivariant maps f as above.

A p(q + 1)-tuple x ∈ Ip(q+1) is Cp-invariant precisely when it has the form

∆p(y) = (y, . . . , y) for y ∈ Iq+1. Here ∆p : I
q+1 → Ip(q+1) is the p-fold diagonal

embedding. Thus we may assume that the Cp-invariant chain x0 ← · · · ← xr = x
arises by applying ∆p to a chain y0 ← · · · ← yr = y = (y0, . . . , yq) in Iq+1. So

x = ∆(y) = (y0, . . . , yq, . . . , y0, . . . , yq)

is y repeated p times.
A Cp-equivariant map f : X → Y induces a map fCp : XCp → Y Cp by restriction

to the Cp-fixed point spaces. This is the core of the construction of the restriction
maps. We apply this to the source of f :

X = (Sy0 ∧ · · · ∧ Syq )∧p ∧∆r
+ .

Here the generator of Cp cyclically permutes the p wedge factors, so the Cp-fixed
points are the diagonal copy

XCp ∼= Sy0 ∧ · · · ∧ Syq ∧∆r
+ .

We also apply this to the target of f :

Y = (A(Sy0) ∧ · · · ∧A(Syq ))∧p ∧ k+ .

The Cp-fixed points are the diagonal copy

Y Cp ∼= A(Sy0) ∧ · · · ∧A(Syq ) ∧ k+ .

Via these identifications, Rp takes a Cp-invariant (r, q)-simplex in THH(A)(k+)
determined by ∆p(y

0)← · · · ← ∆p(y
r) = ∆p(y) and a Cp-equivariant map f : X →

Y , to the (r, q)-simplex in THH(A)(k+) determined by y0 ← · · · ← yr = y and the
restricted map fCp : XCp → Y Cp , identified as a map fCp : Sy0 ∧ · · · ∧ Syq ∧∆r

+ →
A(Sy0) ∧ · · · ∧A(Syq ) ∧ k+.

The resulting map Rp : THH(A)Cp → THH(A) is a cyclic map, hence S1-
equivariant. Taking Cpn−1 -fixed points for n ≥ 1 defines the various restriction
maps, as displayed above. They assemble to a sequential limit diagram

. . .
R
−→ THH(A)Cpn

R
−→ THH(A)Cpn−1 R

−→ . . .
R
−→ THH(A)Cp

R
−→ THH(A) .

Taking the homotopy limit of this diagram defines the functor TR:

TR(A; p) = holim
n,R

THH(A)Cpn

where the maps in the limit are the restriction maps R = Rp.
Since the restriction maps arise by taking fixed points of an S1-equivariant map,

they commute with the forgetful Frobenius maps.
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8. Topological cyclic homology TC

Let p be a prime, and let RF be the category with objects 1, p, . . . , pn, . . . for
n ≥ 0, and commuting morphisms r, f : pn → pn−1 for all n ≥ 1. Thus there are
(k + 1) distinct morphisms pn+k → pn, given as the various composites rif j for
i+ j = k. Then

pn 7→ THH(A)Cpn

defines a functor RF → ΓS∗, taking r to the restriction map R = Rp and f to the
Frobenius map F = Fp. We define the p-primary topological cyclic homology of the
S-algebra A to be

TC(A; p) = holim
pn∈RF

THH(A)Cpn .

Alternatively, TC may be described as a homotopy equalizer for maps between
sequential homotopy limits, thus avoiding the details of how this more complicated
homotopy limit is defined.

Since the R- and F -maps commute, the R-maps induce a self-map R of TF (A; p),
and the F -maps induce a self map F of TR(A; p). There are homotopy equalizer
diagrams

TC(A; p)
π

// TF (A; p)
R

//

1
//
TF (A; p)

and

TC(A; p)
π

// TR(A; p)
F

//

1
//
TR(A; p) .

Thus TC is homotopy equivalent to the homotopy fiber of R− 1 acting on TF , or
of F − 1 acting on TR.

9. The norm–restriction sequence

For each n ≥ 1 there is a (homotopy) cofiber sequence of Γ-spaces

THH(A)hCpn

N
−→ THH(A)Cpn

R
−→ THH(A)Cpn−1 .

Here the homotopy orbit construction THH(A)hCpn
is the Γ-space taking k+ to

ECpn+ ∧Cpn
THH(A)(k+), where ECpn is a free contractible Cpn -space. Its un-

derlying spectrum is m 7→ ECpn+ ∧Cpn
THH(A)(Sm).

A map F : A → B of S-algebras inducing a stable equivalence on THH(−),
e.g. a stable equivalence A → B, will induce a stable equivalence on all homotopy
orbit spectra THH(−)hCpn

. By the norm–restriction sequence and induction, it
also induces a stable equivalence on the Cpn -fixed point subspectra of THH, for
each n ≥ 0. Hence it also induces a stable equivalence on TF (−; p), TR(−; p) and
TC(−; p).


