
NOTES ON TOPOLOGICAL CYCLIC HOMOLOGY

AND THE CYCLOTOMIC TRACE MAP

John Rognes

We report on the construction of topological Hochschild homology, topological
cyclic homology and the cyclotomic trace map from algebraic K-theory, following
Bökstedt, Hsiang and Madsen’s paper (The cyclotomic trace and algebraic K-

theory of spaces, Invent. math. 111 (1993), 465–540), and Madsen’s book (Algebraic
K-theory and traces, Aarhus University preprint, vol. 26, 1995). Some of these ideas
go back to a letter from Goodwillie to Waldhausen.

1. The Dennis trace map

Recall the bar construction. For a topological monoid M there is a simplicial
monoid N

•
M called the nerve of M , with NqM = Mq and face and degeneracy

maps given by

d0([m1| . . . |mq]) = [m2| . . . |mq]

di([m1| . . . |mq]) = [m1| . . . |mimi+1| . . . |mq] for 0 < i < q

dq([m1| . . . |mq]) = [m1| . . . |mq−1]

sj([m1| . . . |mq]) = [m1| . . . |mj | 1 |mj+1| . . . |mq] .

Its geometric realization is

BM =
∐

q≥0

Mq ×∆q/ ∼

with ∼ generated by the simplicial structure. The inclusion of the simplicial 1-
skeleton ΣM ∼= BM (1) → BM has an adjoint map M → ΩBM which is a weak
equivalence if M is grouplike (the monoid π0(M) is a group), and is a group com-
pletion in general.

Let A be ring, always associative with unit. The disjoint union

∐

k≥0

BGLk(A)

is a topological monoid, with product maps induced by the block sum maps

GLk(A)×GLl(A) → GLk+l(A) .
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Its group completion

K(A) = ΩB
( ∐

k≥0

BGLk(A)
)
≃ Z×BGL(A)+

is the algebraic K-theory space of A, and its homotopy groups πiK(A) = Ki(A)
are the higher algebraic K-groups of A.

Next recall the cyclic construction. It is a simplicial abelian group Z
•
A with

ZqA = A⊗ · · · ⊗A = A⊗q+1 (q + 1 factors) and face and degeneracy maps

di(a0 ⊗ · · · ⊗ aq) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq for 0 ≤ i < q

dq(a0 ⊗ · · · ⊗ aq) = aqa0 ⊗ · · · ⊗ aq−1

sj(a0 ⊗ · · · ⊗ aq) = a0 ⊗ · · · ⊗ aj ⊗ 1⊗ aj+1 ⊗ · · · ⊗ aq .

Its associated chain complex is the Hochschild complex for A, whose homology
groups are the Hochschild homology groups of A:

HHi(A) = Hi(Z∗A) .

The geometric realization of a simplicial abelian group is a product of Eilenberg–
Mac Lane spaces, whose homotopy groups are the homology groups of the associated
chain complex (by a theorem of Moore). We denote the geometric realization of
the cyclic construction by HH(A).

Also recall the cyclic nerve construction. Let M be a topological monoid and
define a simplicial space N cy

•
M by N cy

q M = Mq+1 with face and degeneracy maps
similar to those in the cyclic construction. (We omit the formulas.) Let N cyM
be its geometric realization. There is a natural projection map π : N cy

•
M → N

•
M

that forgets the zeroth coordinate.
The Dennis trace map is induced by maps

BGLk(A) → N cyGLk(A) → HH(Mk(A))

induced by simplicial maps

S
•
◦ I

•
: N

•
GLk(A) → N cy

•
GLk(A) → Z

•
Mk(A)

given by

Iq : [g1| . . . |gq] 7→ (g0, g1, . . . , gq)

Sq : (g0, g1, . . . , gq) 7→ g0 ⊗ g1 ⊗ · · · ⊗ gq

where we let g0 = (g1 . . . gq)
−1 ∈ GLk(A). Note that Sq includes matrices in

GLk(A) into Mk(A). The map I
•
is a section to the natural projection π.

Next Hochschild homology satisfies Morita invariance, meaning that the multi-

trace map Tr(k)
•

: Z
•
Mk(A) → Z

•
A given by

g0 ⊗ · · · ⊗ gq 7→
k∑

i0,...,iq=1

(g0)i0i1 ⊗ · · · ⊗ (gq)iqi0
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induces a homotopy equivalence HH(Mk(A)) → HH(A).
For example, when k = 1 the composite map takes the 1-simplex [g1] in BGL1(A)

to the 1-simplex g−1
1 ⊗ g1 in HH(A).

The composites Tr(k)
•

◦S
•
◦ I

•
determine a map

∐

k≥0

BGLk(A) −→ HH(A)

which (modulo a slight π0-adjustment) extends over the group completion to define
the Dennis trace map

tr : K(A) −→ HH(A) .

Unfortunately the induced homomorphisms Ki(A) → HHi(A) are often zero. For
example when A = Z, the algebraic K-groups Ki(Z) are highly nontrivial, while
HHi(Z) = Z for i = 0 and zero otherwise. In effect, the linearization from GLk(A)
to Mk(A) is too drastic to capture rational information. However torsion informa-
tion, and thus completed information, can be detected, and more so when working
“topologically” rather than homologically.

2. Functors with smash product

Let Top∗ be the category of based spaces and continuous maps. All such spaces
are based at ∗.

A functor with assembly map is a continuous functor L : Top∗ → Top∗ such that
L(∗) = ∗. There is then a (left) assembly map

σX,Y : X ∧ L(Y ) −→ L(X ∧ Y )

natural in X,Y ∈ Top∗, satisfying σX,Y ∧Z ◦ (1X ∧ σY,Z) = σX∧Y,Z . There is also a
(right) assembly map

σ′
X,Y : L(X) ∧ Y → L(X ∧ Y )

equal to L(T ) ◦ σY,X ◦ T , where the T -maps switch factors.
A functor with smash product (FSP for short) is a functor L as above, equipped

with natural transformations

ηX : X → L(X) (unit)

µX,Y : L(X) ∧ L(Y ) → L(X ∧ Y ) (product)

compatible with the assembly maps. This means that ηX∧Y = σX,Y ◦ (ηX ∧ 1Y ),
ηX∧Y = σ′

X,Y ◦(1X∧ηY ), σX,Y = µX,Y ◦(ηX∧1L(Y )) and σ′
X,Y = µX,Y ◦(1L(X)∧ηY ).

The product is assumed to be associative, meaning that µX∧Y,Z ◦ (µX,Y ∧ 1L(Z)) =
µX,Y ∧Z ◦ (1L(X) ∧ µY,Z).

Let I be the full subcategory of the category of finite sets and injective functions,
with objects n = {1, 2, . . . , n} for all integers n ≥ 0. There is an imbedding
I → Top∗ mapping n to Sn = S1 ∧ · · · ∧S1 (n factors). We will only use the values
of FSPs restricted to the image of this imbedding.
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The spaces Ln = L(Sn) and maps σ′
Sn,S1 : ΣLn = L(Sn)∧S1 → L(Sn+1) = Ln+1

define a prespectrum LS underlying the FSP L. The maps ηSn : Sn → Ln and
µSm,Sn : Lm∧Ln → Lm+n make LS into a unital ring (pre-)spectrum. Its homotopy
groups are πiL

S = colimn πi+nLn, which for i ≥ 0 are the homotopy groups of the
underlying infinite loop space

Q(L) = hocolim
n

ΩnLn .

The unit and product maps make π∗L
S into a graded (unital, associative) ring.

Here are two important examples of FSPs.
Let A be ring. Define the FSP Ã by the Dold–Thom construction

Ã(X) = {
∑

i ai · xi | ai ∈ A, xi ∈ X}/ ∼

with a · ∗ ∼ 0 and 0 ·x ∼ 0 for all a ∈ A and x ∈ X. This is the configuration space
of points in X with labels in A. This functor is continuous, has an obvious unit map
X → Ã(X) taking x to 1 · x, and a product map Ã(X)∧ Ã(Y ) → Ã(X ∧ Y ) taking
(
∑

i ai · xi) ∧ (
∑

j bj · yj) to
∑

i,j aibj · xi ∧ yj . The product aibj is formed in the

ring A. Evaluated on spheres Ã(Sn) is an Eilenberg–Mac Lane space of type (A, n),

with πi+nÃ(Sn) = A for i = 0 and 0 otherwise. Hence ÃS is the Eilenberg–Mac

Lane spectrum of A, with homotopy groups π∗Ã
S = A concentrated in degree 0,

as graded rings. We think of Ã as a model for the ring A lifted to the level of
FSPs, with the Eilenberg–Mac Lane spectrum HA for A as the intermediate ring
spectrum.

Let M be a topological monoid. Define the FSP M̃ by

M̃(X) = M+ ∧X .

This functor is also continuous, has a unit map X → M̃(X) taking x to 1 ∧ x, and

a product map M̃(X) ∧ M̃(Y ) → M̃(X ∧ Y ) taking m ∧ x ∧ n ∧ y to mn ∧ x ∧ y,
where the product mn is formed in the topological monoid M . The corresponding
prespectrum G̃S has nth space M+∧Sn = Σn

+M and underlying infinite loop space

Q(M+), with homotopy groups π∗Q(M+) = πS
∗M+ equal to the unreduced stable

homotopy of M . Hence M̃ is an FSP with the suspension spectrum of M as its
associated ring spectrum.

We will assume that our FSPs are connective, meaning that each L(Sn) is (n−1)-
connected, and that the assembly maps ΣL(Sn) → L(Sn+1) are (2n− c)-connected
for some fixed c.

3. Algebraic K-theory

We can now define the algebraic K-theory of an FSP.
Let Mk(L) be the k × k matrix FSP over L defined by

Mk(L)(X) = F (k+,k+ ∧ L(X)) ≃
k∏

j=1

k∨

i=1

L(X) .
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These are really spaces of matrices with at most one non-basepoint entry from L(X)
in each column. The product map

Mk(L)(X) ∧Mk(L)(Y )
µX,Y

−−−→ Mk(X ∧ Y )

takes f ∧ g with f : k+ → k+ ∧ L(X) and g : k+ → k+ ∧ L(Y ) to the composite

k+
g
−→ k+ ∧ L(Y )

f∧1L(Y )
−−−−−→ k+ ∧ L(X) ∧ L(Y )

1k+
∧µX,Y

−−−−−−−→ k+ ∧ L(X ∧ Y ) .

The unit is similar. The inclusion Mk(L)(X) →
∏k

j=1

∏k
i=1 L(X) is (2n − 1)-

connected for X = Sn, so in the limit π∗Q(Mk(L)) ∼= Mk(π∗Q(L)) and the defini-
tion of a matrix FSP is reasonable.

In particular π0Q(Mk(L)) = Mk(π0Q(L)). Let ĜLk(L) be the pullback in the
cartesian square

ĜLk(L)
//

��

Q(Mk(L))

��
GLk(π0Q(L)) // Mk(π0Q(L))

Thus ĜLk(L) is the union of the path components of Q(Mk(L)) consisting of ma-
trices invertible up to homotopy.

Then ĜLk(L) is a topological monoid, and block sum of matrices again defines
a product on ∐

k≥0

BĜLk(L)

making it a topological monoid. The algebraic K-theory space of L is its group
completion

K(L) = ΩB
( ∐

k≥0

BĜLk(L)
)
≃ Z×BĜL(L)+ .

Using Segal’s Γ-spaces again it is possible to make K(L) the underlying space of
a spectrum.

When L = Ã this K(Ã) agrees with Quillen’s K(A). When L = M̃ this K(M̃)
agrees with Waldhausen’s A(BM).

4. Topological Hochschild homology

Next we define the topological Hochschild homology of an FSP.
The prespectrum LS was built from the sequence of spaces F (Sn, L(Sn)) =

ΩnL(Sn) with structure maps induced by the right assembly maps L(Sn) ∧ S1 →
L(Sn+1). We can think of this diagram as indexed on the subcategory N ⊂ I of
objects n and the standard inclusions {1, . . . , n} ⊂ {1, . . . ,m} for 0 ≤ n ≤ m.

The extra structure in an FSP ensures that the functor G : n 7→ F (Sn, L(Sn))
admits an extension over N → I. The added morphisms in I are generated by the
permutations σ : n → n, which act on G(n) by conjugation on the mapping space.
Here σ acts on Sn = S1 ∧ · · · ∧ S1 by permuting factors, and on L(Sn) by the
induced map L(σ).
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Then more generally we may define functors Gq(L) : I
q+1 → Top∗ by

Gq(L, n0, . . . , nq) = F (Sn0 ∧ · · · ∧ Snq , L(Sn0) ∧ · · · ∧ L(Snq )) .

(To simplify typesetting we now denote the objects in I as n in place of n.) On
a suitable level of prespectra Gq(L) is a model for the (q + 1)-fold smash product
of LS with itself. On the level of components, π0Gq(L) is the (q + 1)-fold tensor
product of π0Q(L) with itself. Hence we will take Gq(L) as the q-simplices in the
cyclic construction for the topological Hochschild homology of L.

Furthermore there are face and degeneracy maps

di : Gq(L, n0, . . . , nq) → Gq−1(L, n0, . . . , ni + ni+1, . . . , nq) for 0 ≤ i < q

dq : Gq(L, n0, . . . , nq) → Gq−1(L, nq + n0, . . . , nq−1)

sj : Gq(L, n0, . . . , nq) → Gq+1(L, n0, . . . , nj , 0, nj+1, . . . , nq) .

For instance the two face maps d0, d1 : G1(L) → G0(L) map

F (Sn0 ∧ Sn1 , L(Sn0) ∧ L(Sn1))

to
F (Sn0+n1 , L(Sn0+n1))

and
F (Sn1+n0 , L(Sn1+n0))

respectively. Explicitly d0 identifies Sn0 ∧Sn1 with Sn0+n1 through concatenation,
and maps L(Sn0)∧L(Sn1) to L(Sn0+n1) by the product map. On the other hand d1
identifies Sn0 ∧Sn1 with Sn1+n0 through the twist map followed by concatenation,
and maps L(Sn0)∧L(Sn1) to L(Sn1+n0) by the twist map followed by the product
map.

The degeneracy map s0 : G0(L) → G1(L) uses the unit, and maps

F (Sn0 , L(Sn0)) → F (Sn0 ∧ S0, L(Sn0) ∧ L(S0))

by taking a map f to f ∧ ηS0 . The other simplicial structure maps are similar. In
every case they model the simplicial structure maps in the cyclic complex defining
Hochschild homology.

Hence we can form a simplicial space THH(L)
•
by setting

THH(L)q = hocolim
(ni)∈Iq+1

Gq(L) =

hocolim
(ni)∈Iq+1

F (Sn0 ∧ · · · ∧ Snq , L(Sn0) ∧ · · · ∧ L(Snq )) .

The face and degeneracy maps above induce the face and degeneracy maps of
THH(L)

•
by passage to the homotopy colimit.

The topological Hochschild homology space THH(L) of an FSP L is defined as the
geometric realization of THH(L)

•
. Its homotopy groups πiTHH(L) = THHi(L)

are the topological Hochschild homology groups of F .
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By Segal’s Γ-spaces again it is possible to recover THH(L) as the underlying
space of a spectrum.

For a ring A or topological monoid M we write THH(A) = THH(Ã) and

THH(BM) = THH(M̃). In the ring case Bökstedt made the following computa-
tions:

THH∗(Z/p) =

{
Z/p for ∗ even,

0 otherwise,

and

THH∗(Z) =





Z for ∗ = 0,

Z/i for ∗ = 2i− 1,

0 otherwise.

In the monoid case THH(BM) ≃ Q(ΛBM+), where ΛX = F (S1
+, X) denotes the

free loop space.

5. The Bökstedt trace map

We need to define maps

BĜLk(L)
I
−→ N cyĜLk(L)

S
−→ THH(Mk(L))

Tr(k)

−−−→ THH(L) .

The difficulty with defining I is that in the algebraic case our Iq used g0 =
(g1 . . . gq)

−1 and strict inverses are not available in the grouplike topological monoid

ĜLk(L). Nonetheless a grouplike topological monoid G admits a functorial simpli-
cial resolution by free monoids G′

•
, which is equivalent to a simplicial free group

G′′
•
, where a strict inverse is available. This produces a weak map I, which gives a

section to the natural projection π : N cyĜLk(L) → BĜLk(L)

The map S is easily defined by including ĜLk(L) into Mk(L) and mapping
(g0, g1, . . . , gq) to the smash product g0 ∧ g1 ∧ · · · ∧ gq. Here each gi is a map
gi : S

ni → Mk(L)(S
ni).

To define the multitrace map Tr(k) one may either prove that inclusion of 1× 1
matrices defines a homotopy equivalence THH(L) → THH(Mk(L)) and use a
homotopy inverse, or work with “nonunital FSPs” to restrict to a subspace of
THH(Mk(L)) where the multitrace formula from the algebraic case may be used.

Having overcome these obstacles, a combined weak map

∐

k≥0

BĜLk(L) → THH(L)

extends over the group completion (THH(L) is already group complete) to define
the Bökstedt trace map

tr : K(L) → THH(L)

for an FSP L. This is a natural weak transformation of functors.
This is a better invariant of K-theory. As an example, for every prime p the

first p-torsion in THHi(Z) appears in degree i = 2p− 1, and in fact the trace map
K2p−1(Z) → THH2p−1(Z) = Z/p is surjective. For p = 2 it is the generator in
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K3(Z) ∼= Z/48 not coming from π3Q(S0) ∼= Z/24 which is detected by THH3(Z) =
Z/2. For odd primes p there is a generator of a direct cyclic summand of infinite
order in K2p−1(Z) which maps to THH2p−1(Z) = Z/p. Likewise the trace map
A(X) → Q(ΛX+) (writing X = BM) is a useful invariant of A-theory.

The Bökstedt trace map can be lifted to the spectrum level by means of Γ-spaces.

There are other categorical models for the K-theory and THH of an FSP due
to Dundas and McCarthy, for which the Bökstedt trace map is a natural trans-
formation (in fact a forgetful map). Hence the apparent technical difficulties with
describing the trace map as a direct map in the present terms is only a superficial
problem.

6. The circle action

Recall that a simplicial object in a category C is a functor ∆op → C where ∆ has
objects the finite ordered sets [n] = {0, 1, . . . , n} for integers n ≥ 0, and morphisms
the order-preserving functions. The cyclic construction Z

•
A defining Hochschild

homology is a simplicial abelian group, but in addition to the simplicial structure
maps it admits cyclic maps tq : A

⊗q+1 → A⊗q+1 given by

tq(a0 ⊗ · · · ⊗ aq) = aq ⊗ a0 ⊗ · · · ⊗ aq−1 .

Hence Z
•
A admits an extension from ∆op to Λop where Λ is Connes’ cyclic cate-

gory . This category has the same objects as ∆, but there are additional morphisms
tq : [q] → [q] of order q+1 satisfying certain relations with the face and degeneracy
maps. A cyclic object in a category C is a functor Λop → C.

Likewise THH(L)
•
becomes a cyclic space when we adjoin the cyclic action

tq : THH(L)q → THH(L)q induced on the homotopy colimit over Iq+1 by the
maps

tq : Gq(L, n0, . . . , nq) → Gq(L, nq, n0, . . . , nq−1)

that cyclically permute the factors in the mapping space

Gq(L, n0, . . . , nq) = F (Sn0 ∧ · · · ∧ Snq , L(Sn0) ∧ · · · ∧ L(Snq )) .

For instance t0 is the identity in degree 0, while t1 conjugates a map f : Sn0∧Sn1 →
L(Sn0) ∧ L(Sn1) by the twist map in both the source and target.

For a fixed n, the simplicial set [q] 7→ ∆([q], [n]) has geometric realization
the standard n-simplex ∆n. For the cyclic category, the analogous simplicial set
[q] 7→ Λ([q], [n]) has geometric realization a space Λn, and there is a natural homeo-
morphism

Λn ∼= S1 ×∆n .

A cyclic space Z
•
: Λop → Top determines a simplicial space by restriction over

∆op → Λop. We can form a cyclic realization

‖Z
•
‖ =

∐

q

Zq × Λq/ ≈
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where the identifications ≈ take into account the face maps, degeneracy maps and
cyclic maps. Alternatively we can form a geometric realization

|Z
•
| =

∐

q

Zq ×∆q/ ∼

where the identifications ∼ take into account the face maps and degeneracy maps.
Then the natural S1-action on each Λn extends to determine an S1-action on ‖Z

•
‖,

and furthermore there is a natural homeomorphism |Z
•
| ∼= ‖Z

•
‖. Hence the geo-

metric realization of (the underlying simplicial space of) a cyclic space Z
•
admits

a natural S1-action.
Hence THH(L) comes equipped with a natural S1-action. We shall see below

that for every finite (cyclic) subgroup C ⊂ S1 the Bökstedt trace map can be
factored through the C-fixed points of THH(L):

tr : K(L)
trc−−→ THH(L)C

F
−→ THH(L)

where c is the order of C and F denotes the forgetful map including the fixed points
under the action by C ⊂ S1 into the whole space. To construct the lift trc we need
a simplicial model for the action by C on THH(L). This can be achieved by the
technique of edgewise subdivision.

Let X
•
: ∆op → C be a simplicial object and c ≥ 1 an integer. Define a functor

sdc : ∆ → ∆ by c-fold repetition and concatenation:

sdc([q]) = [c(q + 1)− 1] ∼= [q] ⊔ · · · ⊔ [q] (c summands)

Likewise sdc(f) ∼= f ⊔· · ·⊔f for morphisms f . Then the c-fold edgewise subdivision

sdc X•
of X

•
is the composite X

•
◦ sdopc . This is again a simplicial object in C. Note

that the q-simplices of sdc X•
equal Xc(q+1)−1.

There is a diagonal imbedding of ∆q into the c-fold join ∆q ∗· · ·∗∆q ∼= ∆c(q+1)−1

which induces a natural homeomorphism:

D : | sdc X•
|

∼=
−→ |X

•
|

This homeomorphism is not induced by a simplicial map.
In the case of a cyclic object Z· the c-fold edgewise subdivision sdc Z•

admits a
simplicial action by C. In degree q the q-simplices of sdc Z•

are Zc(q+1)−1 and here

the action of tq+1
c(q+1)−1 is of order c and represents the action by a generator of C.

In the example we are interested in, the cyclic space THH(L)
•
has c-fold edge-

wise subdivision sdc THH(L)
•
with q-simplices

sdc THH(L)q = THH(L)c(q+1)−1 =

hocolim
Ic(q+1)

F (Sn0 ∧ · · · ∧ Snc(q+1)−1 , L(Sn0) ∧ · · · ∧ L(Snc(q+1)−1)) .

The generator of C acts on a map f in the mapping space above by cyclically
shifting each factor in the source and target (q+1) places to the right. This action
has order c.

The restriction of the S1-action on THH(L) = |THH(L)
•
| to C ⊂ S1 precisely

agrees with the geometric realization of the simplicial action by C on sdc THH(L)
•
,

by way of the homeomorphism D.
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7. The restriction and Frobenius maps

We now define two families of maps relating the fixed point spaces THH(L)C

for the various finite subgroups C ⊂ S1, called the restriction and Frobenius maps.
Let B ⊂ C ⊂ S1 be two finite subgroups. Then the Frobenius map

F : THH(L)C −→ THH(L)B

is simply the forgetful map that includes the fixed points of C into the fixed points
of the smaller group B.

The restriction map is also a morphism

R : THH(L)C −→ THH(L)B

but it is different from F . For simplicity we describe this map in the absolute case
when B = 1. The relative cases are similar. Hence we want to define a map

R : THH(L)C −→ THH(L) .

We identify THH(L)C = |THH(L)
•
|C ∼= | sdc THH(L)

•
|C = | sdc THH(L)C

•
|

as explained in the previous section. Then in simplicial degree q

sdc THH(L)Cq = THH(L)Cc(q+1)−1 =

hocolim
Ic(q+1)

F (Sn0 ∧ · · · ∧ Snc(q+1)−1 , L(Sn0) ∧ · · · ∧ L(Snc(q+1)−1))C .

We may diagonally imbed Iq+1 into Ic(q+1) by c-fold repetition and concatenation.
There is then a homotopy equivalence

hocolim
Iq+1

F ((Sn0 ∧ · · · ∧ Snq )∧c, (L(Sn0) ∧ · · · ∧ L(Snq ))∧c)C
≃
−→

hocolim
Ic(q+1)

F (Sn0 ∧ · · · ∧ Snc(q+1)−1 , L(Sn0) ∧ · · · ∧ L(Snc(q+1)−1))C

since the imbedding is cofinal. Here X∧c denotes the c-fold smash product of X
with itself. The group C cyclically permutes the c factors in the source and target
of the first mapping space.

For any group G and G-spaces X, Y there is a natural map r : F (X,Y )G →
F (XG, Y G) taking a G-map f : X → Y to its restriction r(f) = f |XG : XG → Y G.
In our case this map appears as follows:

hocolim
Iq+1

F ((Sn0 ∧ · · · ∧ Snq )∧c, (L(Sn0) ∧ · · · ∧ L(Snq ))∧c)C
r
−→

hocolim
Iq+1

F (∆(Sn0 ∧ · · · ∧ Snq ),∆(L(Sn0) ∧ · · · ∧ L(Snq )))

Here ∆(X) ⊂ X∧c denotes the diagonal subspace left invariant by the cyclic per-
mutation action by C.

Identifying ∆(X) with X in both places, the target above is precisely

hocolim
Iq+1

F (Sn0 ∧ · · · ∧ Snq , L(Sn0) ∧ · · · ∧ L(Snq )) = THH(L)q .
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By composition we obtain a simplicial map THH(L)C
•

→ THH(L)
•
, whose

geometric realization is the restriction map

R : THH(L)C −→ THH(L) .

The intermediate restriction maps R : THH(L)C → THH(L)B are given by re-
stricting suitable C-equivariant maps to their fixed sets for the subgroup of C of
order equal to the index of B in C.

Hesselholt has proved that for L = Ã with A a commutative ring the ring of path
components π0THH(A)Cpn equals the ring Wn+1(A, p) of p-typical Witt vectors of
length n+1 over A. Here Cpn is the cyclic group of order pn. The R- and F -maps
induce the classically named restriction and Frobenius homomorphisms

R,F : Wn+1(A, p) −→ Wn(A, p)

between the truncated Witt rings. Hence the present terminology. (In the case
A = Fp, the ring of Witt vectors equals the p-adic integers Zp, and the truncated
ring Wn(Fp, p) equals Z/p

n.)
The Frobenius maps are also present in the cyclic construction defining the

Hochschild homology space, but the restriction maps are only only known to be
present in the topological setting. In particular any extension of this theory to other
ground ring spectra than the sphere spectrum should have to construct restriction
maps on Hochschild homology in the case when the ground ring spectrum is a usual
ring. These would most likely not have a direct algebraic description.

8. Topological cyclic homology

We can now define the topological cyclic homology of an FSP L. Fix a prime p,
and consider only the cyclic subgroups C = Cpn of order pn for n ≥ 0.

We have the following diagram:

. . . //R
//

F
THH(L)Cpn

//R
//

F

. . . //R
//

F
THH(L)Cp

//R
//

F
THH(L)

The diagram commutes because the restriction and Frobenius maps commute. As
we shall see in the next section the Bökstedt trace map from K-theory admits lifts

trpn : K(L) −→ THH(L)Cpn

which are compatible under the restriction maps, and compatible up to chosen
homotopies under the Frobenius maps. Hence these lifts and chosen homotopies
will define a map from K(L) to the homotopy limit of the diagram above, over both
the restriction and Frobenius maps.

Hence it is natural to define the topological cyclic homology of L at p as

TC(L, p) = holim
R,F

THH(L)Cpn
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where the homotopy limit is formed over the category Ip indexing the diagram
above.

We may also consider the homotopy limit over only the restriction maps

TR(L, p) = holim
R

THH(L)Cpn

or over only the Frobenius maps

TF (L, p) = holim
F

THH(L)Cpn .

These homotopy limits are indexed over the natural numbers, and may be realized
by converting the maps in the diagram to fibrations and forming the space-level
limit.

Since R and F commute there is an induced self-map F of TR(L, p), and an
induced self-map R of TF (L, p). The topological cyclic homology TC may then be
obtained from the fiber sequences

TC(L, p) −→ TR(L, p)
F−1
−−−→ TR(L, p)

and

TC(L, p) −→ TF (L, p)
R−1
−−−→ TF (L, p) .

So TC(L, p) can be identified with the homotopy fixed points for the action of F
on TR(L, p), or for the action of R on TF (L, p).

There are then short exact sequences

0 −→ R1 lim
R

π∗+1THH(L)Cpn −→ π∗TR(L, p) −→ lim
R

π∗THH(L)Cpn −→ 0

and

0 −→ R1 lim
F

π∗+1THH(L)Cpn −→ π∗TF (L, p) −→ lim
F

π∗THH(L)Cpn −→ 0

suitable for computing π∗TR(L, p) and π∗TF (L, p). With a finite generation hy-
potheses on π∗L the derived R1 lim-terms vanish, e.g. when using homotopy with
finite coefficients. Finally there are long exact sequences

. . .
∂
−→ TC∗(L, p)

π
−→ TR∗(L, p)

F−1
−−−→ TR∗(L, p)

∂
−→ . . .

and

. . .
∂
−→ TC∗(L, p)

π
−→ TF∗(L, p)

R−1
−−−→ TF∗(L, p)

∂
−→ . . .

for describing π∗TC(L, p) in terms of π∗TR(L, p) and the Frobenius map, or in
terms of π∗TF (L, p) and the restriction map.

Similarly we might define TC(L) as the homotopy limit over the R and F maps
of the fixed point spaces THH(L)C as C runs over all the finite subgroups of S1,
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rather than just the p-subgroups. However this space carries little or no extra
information, as the natural map

TC(L) −→ TC(L, p)

becomes a homotopy equivalence after p-adic completion. However, Goodwillie has
defined a more refined version of TC(L), which carries more integral information
than the individual TC(L, p) do.

By Hesselholt’s π0-calculations it follows that for L = Ã with A commutative
the spectrum TR(A, p) is connective (the restriction maps are surjective so the
R1 lim-term vanishes) with

π0TR(A, p) = W (A, p)

(the ring of p-typical Witt vectors). Hence TC(A, p) is (−2)-connected, and there
is an exact sequence

TC0(A, p) −→ W (A, p)
F−1
−−−→ W (A, p) −→ TC−1(A, p) −→ 0.

The restriction and Frobenius maps, and hence topological cyclic homology may
be defined on the spectrum level, again using Γ-spaces.

9. The cyclotomic trace map

It remains to define the cyclotomic trace map trc : K(L) −→ TC(L, p).
Let M be a topological monoid and consider the diagonal imbedding

Mq+1 = N cy
q M −→ sdc N

cy
q M = N cy

c(q+1)−1M = M c(q+1)

taking (m0, . . . ,mq) to

(m0, . . . ,mq,m0, . . . ,mq, . . . ,m0, . . . ,mq) .

(The sequence (m0, . . . ,mq) is repeated c times.) This defines a homeomorphism

∆c : N
cyM = |N cy

•
M |

∼=
−→ | sdc N

cy
•
M |C ∼= (N cyM)C .

The lifted trace map trc : K(L) → THH(L)C is induced from the composite
map

(N cyĜLk(L))
C //SC

THH(Mk(L))
C //Tr(k)C

THH(L)C

BĜLk(L)
//I
N cyĜLk(L)

OO

∆c

by means of group completion over k.
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We now have the following fundamental observations:

(1) Let B ⊂ C be finite subgroups of S1, of order b and c. The composite

K(L)
trc−−→ THH(L)C

R
−→ THH(L)B

equals the map trb.
(2) There is a natural explicit homotopy from the composite

K(L)
trc−−→ THH(L)C

F
−→ THH(L)B

to the map trb.

Hence even if R and F differ, they become homotopic when precomposed with
the lifted trace map trc.

Fixing a prime p, the maps trpn now define a map

trR : K(F ) −→ holim
R

THH(L)Cpn = TR(L, p) .

The explicit homotopies determine a homotopy from the composite

K(F )
trR−−→ TR(L, p)

F
−→ TR(L, p)

to trR, which in turn determines a map

trc : K(L) −→ hofib(F − 1: TR(L, p) → TR(L, p)) = TC(L, p) .

This is the cyclotomic trace map at p.
A similar construction defines a map trc : K(L) → TC(L), which agrees with

the map above after p-adic completion.

This map trc is a much better invariant of K-theory than the previous trace
maps. By a theorem of McCarthy the diagram

K(A1) //trc

��
f

TC(A1, p)

��
f

K(A2) //trc
TC(A2, p)

becomes homotopy cartesian after p-adic completion when f : A1 → A2 is a map of
simplicial rings which induces a surjection π0A1 → π0A2 with nilpotent kernel.

Using this result, Hesselholt and Madsen have proved that the cyclotomic trace
map

trc : K(A) −→ TC(A, p)

induces an equivalence on connective covers after p-adic completion when A is a
semi-simple k-algebra over a perfect field k of positive characteristic p, or when A
is a finite-dimensional algebra over the ring W (k, p) of p-typical Witt vectors over
such a field k.

McCarthy’s theorem has been extended by Dundas to apply to the diagram
induced by a map f : L1 → L2 of FSPs inducing a surjection π0Q(L1) → π0Q(L2)
with nilpotent kernel.

There are involutions on K-theory and topological cyclic homology, related to
the involution A 7→ (A−1)t on matrices or to turning pseudo-isotopies upside down.
The explicit homotopy F ◦trc ≃ trb is not involutive, so technical difficulties remain
with the definition of an involutive cyclotomic trace map.

This ends our introduction to the cyclotomic trace map.


