TOPOLOGICAL HOCHSCHILD HOMOLOGY
OF THE PRIME FIELDS AND THE INTEGERS

JOHN ROGNES

1. HOCHSCHILD HOMOLOGY

Let k& be a commutative ring. The category of k-modules is tensored over sets, meaning that for each
k-module M and set T we can form
MoT=@M
teT
so that
Mody(M ©T,N) = {T — Mody(M,N)}.

Likewise, the category of commutative k-algebras is tensored over sets, meaning that for each commutative
k-algebra A and set T" we can form
AT =@QA

teT
so that
CAlg,(A®T,B) = {T — CAlg,(A,B)}.
If T, : [q] — T, is a simplicial set, we can prolong the tensored structure, so that
MoT,: [¢gl—»MoT,
is a simplicial k-module, and
AoT,: g = AOT,
is a simplicial commutative k-algebra. We can then form the associated normalized chain complexes, and
consider their homology. In the k-module case we obtain H¢!(|T,|; M). In the commutative k-algebra case
we focus on the case T, = S* = Al /AL
Let A! be the simplicial 1-simplex, with g-simplices
Ag = {a: [q] = [1]}
the order-preserving functions a: {0,...,q} — {0,1}. There are g+ 2 of these. Let 0 < s < ¢+ 1 correspond
to a; given by

(i) 0 for0<i<s,
as(i) =
1 fors<i<gq.

Then
A®A§%A®{0717---7q,q+1}%A®A®q®A,

The i-th face map d;: A} — Al ; induces
(o R®xT1 Q- QTERTg41) =T ® -+ A TiTip1 @ - -+ @ Tyt
for 0 <4 < g. The j-th degeneracy map s;: Aé — A;H induces
S0 RT1 R QTR Tgy1) =T ® - VT; 1 QTjp1 ® - QTgy1 -
Let OA! be the simplicial subset with g-simplices
dA! = {ag, g1}
the constant functions «: {0,...¢q} — {0,1}. Then
ACIA = A0{0,q+1} = A A.
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The pushout square
OAY —— Al

| |

* —— S1

of simplicial sets induces a pushout square

A A—— Ao A
ll — A i St
of commutative k-algebras. Hence
HH(A)g = A0 S' = A@ 04 (AO AY)
is a simplicial commutative k-algebra under A, i.e., a simplicial commutative A-algebra, with
HH(A)e: [q) = AQapa (AOA,) = A A%,
The i-th face map is given by

ToT1 QX2 @ - Q Xy for ¢+ =0,
di($o®$1®~-~®xq)= TR QTTi1 @ - Qxy for 0 <i<g,
TgZo QT1 ® - Q Tg—1 for i = gq.

The j-th degeneracy map is given by
5/ (T @T1® BTy =R RT; LT 1 Q- D xq.
The associated chain complex is the Hochschild complex (C(A),b) with
C(A)y,=HH(A), = A® A®1
and b=>"7 ,(—1)'d;: HH(A)q — HH(A)4—1. Its homology groups
HH,(A) = H.(C(A),b)

are the Hochschild homology groups of A. This is a graded commutative A-algebra, with multiplication
given by the shuffle product. If A is flat over k, then A ® Al is a flat A ® A =2 A ® A-module resolution
of A®x = A, and

HH,(A) = Tor2®4(4, A).
Ezample 1.1. Let A = E(z) = k{1, 2} be the exterior algebra on one generator, with 2 = 0. The normalized
Hochschild complex (NC(A),,b) is given in degree g bx

NC(A), = A® A% = A{1 @ 27}
where A = cok(k — A) = k{z}. Suppose that A is graded and x is in an odd degree. The face maps d; for
0 < i < q are zero because z* = 0, and dy + (—1)%d, = 0 because the cyclic permutation of 2®¢ has sign
(—1)971. Hence b = 0 and
HH,(E(x)) = B){1® 251}

for each ¢ > 0. We write oz = 1® z for the F(x)-module generator of HH;(E(x)), and more generally write

vlor)=1Qz® - -Qux,

with ¢ copies of z, for the E(x)-module generator of HH,(E(x)). The shuffle product satisfies v;(ox) -
v;(ox) = (1,7)vi+j(0x), so we have a divided power algebra:

HH.(E(z)) = E(z) © T(ox) .



2. DE RHAM FORMS

In low dimensions,
B C(A)y = AR A% L C(A) = AR A C(A)g=A—0.

with b(zg ® 21) = zox1 — 2120, and bz @ 1 @ T2) = TeT1 @ T3 — To ® T1T2 + ToZp @ X1.
The Kéhler differentials €24 of A over k is the A-module generated by symbols dx for € A, subject to
the relations

d(zy) = xdy + ydx
for z,y € A. In other words, it is the cokernel of
b: AQ A®2 — A A,

with z¢ ® 1 mapping to xodz;. Hence HHy(A) = A and HHq(A) = Q4 for commutative k-algebras A.
The Kéhler g-forms of A is the exterior power

q
QiZQA/\A-“/\AQA:/\QA,
A

i.e., an A-module generated by symbols
dzy A --- Ndxg

for x1,...,24 € A, subject to suitable relations.

Ezample 2.1. If k = R and A = C*°(M) is the algebra of smooth functions on a differentiable n-manifold
M, then Q4 is the C°°(M)-module of differential 1-forms on M, locally of the form Y ;" | fidxz;, and QY is
the C°°(M)-module of differential g-forms on M, locally of the form ", frdxzr, where I = (i1, ...,14) with
1<ip <.+ <ig<n.

The isomorphism Q4 = HH;(A) extends, using the graded commutative A-algebra structure on H H,(A),
to an A-algebra homomorphism

¢: Q% — HH,(A).
Theorem 2.2 (Hochschild-Kostant—Rosenberg). If A is a smooth k-algebra, then ¢ is an isomorphism.
Ezample 2.3. If A = k[z], then Q4 = A{dz} and
HH,(k[z]) = k[z] ® E(dz)
where E(dx) = k{1,dxz} is the exterior algebra on dz. Here dz € Q4 corresponds to the classof cx =1®@
in HH;(A).
3. DE RHAM COHOMOLOGY AND THE CIRCLE ACTION
The differential d: A — Q 4, mapping x to dx, extends to a k-linear derivation
d: Q% — Q4+t
with dod = 0. In the case A = C°°(M), this is the exterior (de Rham) differential. Connes defined an
operator
B: Cy(A) — Cyar(A)
that induces a derivation
B: HH,(A) — HH,1(A),

and the exterior differential d and Connes’ B-operator are compatible under ¢:
) — <4 it
q{ P
HHq(A) L) HHgy1(A)
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Hence there is a natural homomorphism
* ¢
HIR(A) = Hy (. d) > H,(HH.(4), B)
from the de Rham homology of A to the homology of Hochschild homology with respect to the B-operator.
(This is close to Connes’ periodic and cyclic homology.)
The simplicial object HH(A)e = A® S': [¢] = A ® A®Y is a cyclic object, in the sense that the cyclic
permutations
tyr A® A% — A® A®I
given by
tf(zoRTI® - Qxg) =TaRTE® - @ Tg—1
satisfy tg“ = id, and are suitably compatible with the face and degeneracy maps.
For any cyclic set the topological realization of the underlying simplicial set has a natural circle action.
In the case of
HH(A) :=|HH(A)J| = |A® S|
the action
p: HH(A) NS — HH(A)
is base-point preserving. The S'-orbit of a O-simplex z € A = HH(A)o is given by the 1-simplex
tlso(x) =1l®ze HH(A)l

which corresponds to a closed loop at « in HH (A). The S*-orbit of a ¢g-simplex traces through ¢+ 1 different
q + 1-simplices, in a similar manner.

The topological realization HH(A) of the simplicial abelian group underlying HH(A), has homotopy
groups given by the homology of the (normalized) Hochschild complex NC,(A):

m.(HH(A)) =2 HH,.(A).
The circle action p induces a homomorphism
ot my(HH(A)) — mys1 (HH(A))
i.e., an operator o: HH, (A) - HHy41(A). For example, if z € A = C(A)o = HHy(A) we deduce that

ox € HH1(A) is the class of 1 ® z in C(A);, corresponding to dz € Q4. In fact, o is equal to Connes’
B-operator.

4. TOPOLOGICAL HOCHSCHILD HOMOLOGY

Let (Sp, A, S, 7, F) be one of the closed symmetric monoidal categories of structured ring spectra. Exam-
ples include symmetric spectra and orthogonal spectra. Let A be a strictly commutative ring spectrum, i.e.,
a commutative monoid in Sp, with multiplication u: AN A — A and unit n: S — A. We refer to A as a
commutative S-algebra. The category CAlgg is tensored over sets, by letting

AeoT= /A
teT
so that
CAlgs(AOT,B) 2 {T + CAlgg(A, B)}.
Let

THH(A)y :=A0S": [q]» A0S, 2 ANAN---NA
be the simplicial commutative S-algebra obtained by prolongation, with 14 ¢ copies of A on the right hand
side. The topological realization
THH(A) := [[ THH(A)y A AL/~
q=0
defines the topological Hochschild homology spectrum of A, which is a commutative S-algebra under A =
A® 8§, ie., a commutative A-algebra. The topological Hochschild homology groups of A are the (spectrum
level) homotopy groups
THH,(A)=n,THH(A).
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Taken together, 7, THH(A) is a graded commutative m,(A)-algebra.
The simplicial object THH(A), is a cyclic object, with additional structure maps

tg=7: AMANA— ANAN.
Its geometric realization has a circle action
p: THH(A)A S, — THH(A).

Let s € wf(Si) be a generator with Hurewicz image the fundamental class o € H;(SY), such that s? = ns.
The group action induces a pairing

pi: T THH(A) @ 7} (S}) — mq1i THH(A)

and we define the homotopical s-operator s: THH,(A) — THH,11(A) by sz = p.(r ® s). Passing to
homology, there is also a pairing

pe: HTHH(A) ® H1(S}) — Hey1 THH(A)
and a homological o-operator o: HTHH(A) - Hyp1THH(A) given by ox = p.(z ® 0).

5. DYER-LASHOF OPERATIONS
The circle action has a right adjoint
p: THH(A) — F(S1,THH(A)) «— THH(A) A DSL,

where DS = F(S%,S) is the functional (Spanier-Whitehead) dual of S}. These are maps of commutative
S-algebras. Passing to homology, we obtain an algebra homomorphism

p«: HLTHH(A) — H,F(S,,THH(A)) ¥ H.THH(A) ® H. DS}, .
Here H,DSL = H=*(S}) = E(1), with « € H'(S1) dual to o € H;(S}), and
p(z)=2®@1+o0x®¢.
Proposition 5.1. o(zy) =2 - oy + (—1)¥Vox - y.
Proof. From p.(zy) = p.(7)ps(y) and 2 = 0 we obtain
olzy)@i=z-0y@1+ (-)¥oz - yo..
(|

Let p be a prime and let H,(X) = H.(X;Z/p) denote mod p homology. For commutative S-algebras A
there is a natural Bockstein homomorphism

B: Hy(A) — Hy—1(A),

satisfying B(zy) = B(z)y + (—=1)1*lzp(y). In particular, 8(zP) = 0. Furthermore, there are natural Dyer—
Lashof operations

Q"+ Hy(A) — Hyy(2p—2)k(A)
satisfying the Cartan formula
Q (zy) = D Q)Q(y).
i+j=k
These operations generalize the p-th power homomorphism, and in particular
Q" () = a?
if |z| = 2k.

Proposition 5.2 (Bokstedt/Angeltveit-R.). Q¥ (ox) = oQ¥(x).
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Proof. By naturality, Q% (5.(7)) = p.(Q*(z)), so
Qrzol+oz®1)=Q%x)®1+ Q%) ®¢.

Here Q7(1) = 0 and @(1) = 0 for j # 0, and Q°(1) = 1 and Q°(:) = ¢, all in H.(DSL) = H~*(SL)
H=*(S'). Hence

1%

Q¥(ox)@1=0Q%z)®0¢.

6. THE DUAL STEENROD ALGEBRA

Let p be an odd prime, and let H = HZ/p be the mod p Eilenberg-Mac Lane (ring) spectrum, with n-th
space a K(Z/p,n). Write H.(X) = m.(H A X) for mod p homology.
Forn=1,
H*(K(Z/p,1)) = E(z) ® P(y)
with |z| =1, ly| = 2, f(z) =y, and
H.(K(Z/p1)) = Z/p{an | n > 0}
with o, dual to 2°y™ for n = 2m+¢, m >0, € € {0,1}. Here a; - a2 = a2mq1, and ag; - o = (i, )24,
S0
H.(K(Z/p, 1)) = E(a1) ® T(as).
For n = 2 we use the map K(Z,2) — K(Z/p,2), where
H*(K(Z,2)) = P(y)
with |y| = 2, and
H.(K(Z,2)) = Z/p{Bm | m > 0}
with 3, dual to y™. Here §; - 8; = (¢,7)Bi+j, s0
H.(K(Z,2)) =T ().
Definition 6.1. For i > 0 let 7; € H,(H), with |r;| = 2p' — 1, be the image of ay,i = 7pi(az2) under the
colimit structure map
Hao1 (K (Z/p, 1)) — H.(H).
For i > 1let & € H.(H), with || = 2p’ — 2, be the image of 3,; = 7,:(81) under the colimit structure
map
H,2(K(Z,2)) — H.12(K(Z/p,2)) — H.(H).
Theorem 6.2 (Milnor).
S =H,H)2E(r|i>0P¢|i>1)
The coproduct ¢: o, — < @ s, induced by LAnAN1: HANH — HANH A H, is given by
Y =nelts Y & o
itj=k
and ;
be = Y & @,
i+j=k
where & = 1.

The involution x: &/ — 4, induced by the symmetry v: H AN H — H A H, can be recursively calculated
using
) (1@ X) =ne.
Let 7; = x(7;) and &; = x(&;) be the conjugate generators of the dual Steenrod algebra.
A = E(r|i>0)@P(E|i>1).
with »
Y(R) =107+ > 7ol
itj=k
6



and B o
V(&) = D, Lol .

itji=k
Proposition 6.3 (Kristensen/Steinberger). The action of the Bockstein and Dyer—Lashof operations on
H.(H) = &, is known. In particular, 3(7x) = (£)& and

k
Q" (Tk) = Th41

for each k > 0.

Let HZ be the integral Eilenberg—Mac Lane (ring) spectrum. The map HZ — H induces an injection in
homology:

Theorem 6.4. )
H.(HZ)=E(T |i>1)@ P& |i>1).

7. BOKSTEDT’S CALCULATIONS

For each commutative ring R we write THH (R) for THH(A), where A = HR is the associated Eilenberg—
Mac Lane ring spectrum.

Theorem 7.1 (Bokstedt). (a)
H.THH(Z/p) 2 o ® P(c7).
(b)
mTHH(Z/p) = P(uo) = Z/plpo]
with |po| = 2.
(c)
' ~ Z/p fori=2n>0,
mTHH(Z/p) = {0 otherwise.
Theorem 7.2 (Bokstedt). (a)
H.THH(Z) = H,(HZ) ® E(c&) ® P(o7).
(b)
T (THH(Z); Z/p) = E(A1) ® P(p1) = A1) ® Z/pu1]
with |A1| = 2p — 1 and |p1] = 2p.

(c)
/ fori=0,
mTHH(Z) =< Z/n  fori=2n—1>0,
0 otherwise.

We apply homology to the skeleton filtration
A=THH(A)® c...c THH(A)® Y c THH(A)® c ... c THH(A)
with quotients
THH(A)® /THH(A)E™) =2 AN AN AASJOAS.
Here A denotes the cofiber of n: S — A. The resulting Bokstedt spectral sequence has
By, = Hop i (ANA NN JON®) 2 H, (A) © H(A)®* = NC(H.(A))s
and di: E}, — B}

s—1,%

agrees with the normalized Hochschild boundary b. Hence
E?,~ HH,(H,(A)) = H,,THH(A).
There is a coproduct
: THH(A) — THH(A) ANa THH(A)
that makes the spectral sequence an H, (A)-Hopf algebra spectral sequence, as long as a flatness hypothesis
is satisfied, see Angeltveit—R.
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Proof of Theorem 7.1. In the case R = Z/p we have A = H and H,(A) = &/.. Hence
E?, >~ HH (o) = H, ., THH(Z/p).

Let p be odd. From B
A 2 E(T | k>0)@ P& [ k>1)
and the Kiinneth theorem we obtain

HH, () = Q) HH.(E(7,)) ® (X) HH.(P({))

k>0 k>1
=) E(7) @ T(07) @ (R) P () @ E(oy)
k>0 k>1

=, @0(o7 | k>0)® E(cé | k>1).
Here 7, = Egy* = HHy(4.). The E?-term is generated as a graded commutative .7,-algebra by the divided
powers
Vpi (O’f’k)
for i > 0 and k > 0, in bidegree p’(1,2p* — 1), and the exterior classes
ng
for k > 1, in bidegree (1, 2p* — 2).
We claim that there are differentials
(1) &P~ (7p(07k)) = 0€kia
for each k > 0. Here = means equality up to multiplication by a unit in Z/p.
Using the Hopf algebra structure, differential (1) propagates to differentials
dp_l(’}/m (07k)) = 'Ym—p(afk)agk—kl
for each m > p and k£ > 0. By the Kiinneth theorem, this leaves
EQ* > o, ®Pp(07_'k | k> 0)
Here
Py(ox) = Z/plox]/(ox)” = Z/p{ym(ox) [ 0 <m <p} CT(ox)
is the truncated polynomial algebra on ox of height p. The EP-term is generated over .7 by classes in
filtration s = 1, hence there is no room for any further differentials, and EP = E°°.

Consider the composite
H.(A) — H,THH(A) -~ H,.,THH(A).

From Q”k (&) = Tra1, and |o7g| = 2p*, we deduce
o071 = 0QY (7) = Q" (o7) = (07)"
in HL.THH(Z/p). Hence P,(c7y | k > 0) is the associated graded of P(07), and
H.THH(Z/p) = o, @ P(o7)
as of,-algebra.
It follows that THH(Z/p) ~ V>0 ¥2mH, there is a unique class
wo € meTHH(Z/p)

with Hurewicz image o7, and
mTHH(Z/p) = P(uo) = Z/pluo] -
It remains to establish differential (1). Here is a quick argument due to Ausoni. From B(7x11) = (&)&kt1
we deduce
08kt1 = (£)B(0Ti41) = B((07)") =0
in H,THH(Z/p). Hence o€, € EIQ)QP,HL2 must be a boundary, i.e., the target of a differential. By

induction on k, the only possible source of a differential is 7, (07x) € E? |

p,p(2pk—1)
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Proof of Theorem 7.2. In the case R = 7Z we have A = HZ. Hence
E?,~HH/(H.(HZ)) = H,,.THH(Z).

Let p be odd. From ~
H.(HZ)= E(7 | k> 1) ® P& | k> 1)
we obtain

HH,(H,(HZ)) = Q) HH.(E(7)) ® () HH.(P(&))

k>1 k=>1
= ®E(%k) QIL(o7k) ® ®P(5k) ® E(0&)
E>1 k>1

~ H(HZ)@T (o7, | k> 1)@ E(c& | k> 1).
The E%-term is generated as a graded commutative Z-algebra by the divided powers
Vpi (0Tk)
for i > 0 and k > 1, in bidegree p’(1,2p* — 1), and the exterior classes
&

for k > 1, in bidegree (1, 2p* — 2).

By naturality with respect to HZ — H there are differentials

&~ (p(0T)) = 0&p41
for each k£ > 1. Using the Hopf algebra structure, they propagate to differentials
& (Y (07k)) = Ym—p(0Tk) €k 11
for each m > p and k£ > 1. By the Kiinneth theorem, this leaves
E?, = H,(HZ) ® Py(o7 | k> 1) ® E(0&1).

The EP-term is generated over H,(HZ) by classes in filtration s = 1, hence there is no room for any further
differentials, and EP = E*°.

From ka (Tk) = Tk+1, or by naturality, we deduce

OTk+1 = (U?k)p
in H.THH(Z). Hence P,(c7; | k > 1) is the associated graded of P(07). Furthermore, 0¢; is in odd total
degree, so (0€1)? =0 in H,THH(Z). Hence
H.THH(Z) = H,(Z) ® P(oc7) ® E(c&)

as H,(HZ)-algebra.

It follows that THH(Z) A S/p is a generalized Eilenberg—Mac Lane spectrum, there are unique classes

M € mop 1 (THH(Z);Z/p) and w1 € mop(THH(Z);Z/p)
with Hurewicz images 0&; A 1 and o7 A 1+ o€ A €, respectively. Here H,(S/p) = E(¢). Hence
m(THH(Z); Z/p) = E(A\) @ P(p1) = A(A1) ® Z/plpa] -

The integral structure of w, T H H(Z) follows by Bockstein spectral sequence arguments. O
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