TOPOLOGICAL HOCHSCHILD HOMOLOGY OF THE PRIME FIELDS AND THE INTEGERS

JOHN ROGNES

1. Hochschild homology

Let k be a commutative ring. The category of k-modules is tensored over sets, meaning that for each k-module M and set T we can form

$$M \odot T = \bigoplus_{t \in T} M$$

so that

$$\operatorname{Mod}_k(M \odot T, N) \cong \{T \to \operatorname{Mod}_k(M, N)\}$$

Likewise, the category of commutative k-algebras is tensored over sets, meaning that for each commutative k-algebra A and set T we can form

$$A \odot T = \bigotimes_{t \in T} A$$

so that

$$\operatorname{CAlg}_k(A \odot T, B) \cong \{T \to \operatorname{CAlg}_k(A, B)\}.$$

If $T_{\bullet} \colon [q] \mapsto T_q$ is a simplicial set, we can prolong the tensored structure, so that

$$M \odot T_{\bullet} \colon [q] \mapsto M \odot T_q$$

is a simplicial k-module, and

$$A \odot T_{\bullet} \colon [q] \mapsto A \odot T_{q}$$

is a simplicial commutative k-algebra. We can then form the associated normalized chain complexes, and consider their homology. In the k-module case we obtain $H^{cell}_*(|T_{\bullet}|; M)$. In the commutative k-algebra case we focus on the case $T_{\bullet} = S^1 = \Delta^1/\partial\Delta^1$.

Let Δ^1 be the simplicial 1-simplex, with q-simplices

$$\Delta_q^1 = \{ \alpha \colon [q] \to [1] \}$$

the order-preserving functions $\alpha \colon \{0, \ldots, q\} \to \{0, 1\}$. There are q+2 of these. Let $0 \leq s \leq q+1$ correspond to α_s given by

$$\alpha_s(i) = \begin{cases} 0 & \text{for } 0 \le i < s, \\ 1 & \text{for } s \le i \le q. \end{cases}$$

Then

$$1 \odot \Delta_q^1 \cong A \odot \{0, 1, \dots, q, q+1\} \cong A \otimes A^{\otimes q} \otimes A$$

 $A\odot\Delta_q^{\scriptscriptstyle 1}\cong A\odot$ The i-th face map $d_i\colon\Delta_q^{\scriptscriptstyle 1}\to\Delta_{q-1}^{\scriptscriptstyle 1}$ induces

$$d_i(x_0 \otimes x_1 \otimes \cdots \otimes x_q \otimes x_{q+1}) = x_0 \otimes \cdots \otimes x_i x_{i+1} \otimes \cdots \otimes x_{q+1}$$

for $0 \leq i \leq q$. The *j*-th degeneracy map $s_j \colon \Delta^1_q \to \Delta^1_{q+1}$ induces

$$s_j(x_0 \otimes x_1 \otimes \cdots \otimes x_q \otimes x_{q+1}) = x_0 \otimes \cdots \otimes x_j \otimes 1 \otimes x_{j+1} \otimes \cdots \otimes x_{q+1}$$

Let $\partial \Delta^1$ be the simplicial subset with q-simplices

$$\partial \Delta^1 = \{\alpha_0, \alpha_{q+1}\}$$

the constant functions $\alpha \colon \{0, \dots q\} \to \{0, 1\}$. Then

$$A \odot \partial \Delta_q^1 \cong A \odot \{0, q+1\} \cong A \otimes A$$

Date: February 21st 2018.

The pushout square

of simplicial sets induces a pushout square

of commutative k-algebras. Hence

$$HH(A)_{\bullet} := A \odot S^1 \cong A \otimes_{A \otimes A} (A \odot \Delta^1)$$

is a simplicial commutative k-algebra under A, i.e., a simplicial commutative A-algebra, with

$$HH(A)_{\bullet} \colon [q] \mapsto A \otimes_{A \otimes A} (A \odot \Delta^{1}_{a}) \cong A \otimes A^{\otimes q}.$$

The *i*-th face map is given by

$$d_i(x_0 \otimes x_1 \otimes \dots \otimes x_q) = \begin{cases} x_0 x_1 \otimes x_2 \otimes \dots \otimes x_q & \text{for } i = 0, \\ x_0 \otimes \dots \otimes x_i x_{i+1} \otimes \dots \otimes x_q & \text{for } 0 < i < q, \\ x_q x_0 \otimes x_1 \otimes \dots \otimes x_{q-1} & \text{for } i = q. \end{cases}$$

The j-th degeneracy map is given by

$$s_j(x_0 \otimes x_1 \otimes \cdots \otimes x_q) = x_0 \otimes \cdots \otimes x_j \otimes 1 \otimes x_{j+1} \otimes \cdots \otimes x_q$$

The associated chain complex is the Hochschild complex (C(A), b) with

$$C(A)_q = HH(A)_q = A \otimes A^{\otimes q}$$

and $b = \sum_{i=0}^{q} (-1)^{i} d_{i} \colon HH(A)_{q} \to HH(A)_{q-1}$. Its homology groups

$$HH_*(A) = H_*(C(A), b)$$

are the Hochschild homology groups of A. This is a graded commutative A-algebra, with multiplication given by the shuffle product. If A is flat over k, then $A \odot \Delta^1$ is a flat $A \odot \partial \Delta^1 \cong A \otimes A$ -module resolution of $A \odot * \cong A$, and

$$HH_*(A) = \operatorname{Tor}^{A \otimes A}_*(A, A).$$

Example 1.1. Let $A = E(x) = k\{1, x\}$ be the exterior algebra on one generator, with $x^2 = 0$. The normalized Hochschild complex $(NC(A)_*, b)$ is given in degree q bx

$$NC(A)_q = A \otimes \bar{A}^{\otimes q} \cong A\{1 \otimes x^{\otimes q}\}$$

where $\overline{A} = \operatorname{cok}(k \to A) = k\{x\}$. Suppose that A is graded and x is in an odd degree. The face maps d_i for 0 < i < q are zero because $x^2 = 0$, and $d_0 + (-1)^q d_q = 0$ because the cyclic permutation of $x^{\otimes q}$ has sign $(-1)^{q-1}$. Hence b = 0 and

$$HH_q(E(x)) \cong E(x)\{1 \otimes x^{\otimes q}\}$$

for each $q \ge 0$. We write $\sigma x = 1 \otimes x$ for the E(x)-module generator of $HH_1(E(x))$, and more generally write

$$\gamma_q(\sigma x) = 1 \otimes x \otimes \cdots \otimes x,$$

with q copies of x, for the E(x)-module generator of $HH_q(E(x))$. The shuffle product satisfies $\gamma_i(\sigma x) \cdot \gamma_j(\sigma x) = (i, j)\gamma_{i+j}(\sigma x)$, so we have a divided power algebra:

$$HH_*(E(x)) \cong E(x) \otimes \Gamma(\sigma x) \,.$$

2. De Rham forms

In low dimensions,

$$\dots \xrightarrow{b} C(A)_2 = A \otimes A^{\otimes 2} \xrightarrow{b} C(A)_1 = A \otimes A \xrightarrow{b} C(A)_0 = A \to 0.$$

with $b(x_0 \otimes x_1) = x_0 x_1 - x_1 x_0$, and $b(x_0 \otimes x_1 \otimes x_2) = x_0 x_1 \otimes x_2 - x_0 \otimes x_1 x_2 + x_2 x_0 \otimes x_1$.

The Kähler differentials Ω_A of A over k is the A-module generated by symbols dx for $x \in A$, subject to the relations

$$d(xy) = xdy + ydx$$

for $x, y \in A$. In other words, it is the cokernel of

$$b\colon A\otimes A^{\otimes 2}\longrightarrow A\otimes A$$

with $x_0 \otimes x_1$ mapping to $x_0 dx_1$. Hence $HH_0(A) \cong A$ and $HH_1(A) \cong \Omega_A$ for commutative k-algebras A. The Kähler q-forms of A is the exterior power

$$\Omega_A^q = \Omega_A \wedge_A \cdots \wedge_A \Omega_A = \bigwedge_A^q \Omega_A \,,$$

i.e., an A-module generated by symbols

 $dx_1 \wedge \cdots \wedge dx_q$

for $x_1, \ldots, x_q \in A$, subject to suitable relations.

Example 2.1. If $k = \mathbb{R}$ and $A = C^{\infty}(M)$ is the algebra of smooth functions on a differentiable *n*-manifold M, then Ω_A is the $C^{\infty}(M)$ -module of differential 1-forms on M, locally of the form $\sum_{i=1}^{n} f_i dx_i$, and Ω_A^q is the $C^{\infty}(M)$ -module of differential q-forms on M, locally of the form $\sum_{I} f_I dx_I$, where $I = (i_1, \ldots, i_q)$ with $1 \leq i_1 < \cdots < i_q \leq n$.

The isomorphism $\Omega_A \cong HH_1(A)$ extends, using the graded commutative A-algebra structure on $HH_*(A)$, to an A-algebra homomorphism

$$\phi \colon \Omega^*_A \longrightarrow HH_*(A)$$

Theorem 2.2 (Hochschild–Kostant–Rosenberg). If A is a smooth k-algebra, then ϕ is an isomorphism.

Example 2.3. If A = k[x], then $\Omega_A = A\{dx\}$ and

$$HH_*(k[x]) \cong k[x] \otimes E(dx)$$

where $E(dx) = k\{1, dx\}$ is the exterior algebra on dx. Here $dx \in \Omega_A$ corresponds to the class of $\sigma x = 1 \otimes x$ in $HH_1(A)$.

3. DE RHAM COHOMOLOGY AND THE CIRCLE ACTION

The differential $d: A \to \Omega_A$, mapping x to dx, extends to a k-linear derivation

$$d\colon \Omega^q_A \longrightarrow \Omega^{q+}_A$$

with $d \circ d = 0$. In the case $A = C^{\infty}(M)$, this is the exterior (de Rham) differential. Connes defined an operator

$$B: C_q(A) \longrightarrow C_{q+1}(A)$$

that induces a derivation

$$B: HH_q(A) \longrightarrow HH_{q+1}(A)$$

and the exterior differential d and Connes' *B*-operator are compatible under ϕ :

$$\Omega^{q}_{A} \xrightarrow{d} \Omega^{q+1}_{A}$$

$$\downarrow \phi$$

$$HH_{q}(A) \xrightarrow{B} HH_{q+1}(A)$$

$$3$$

Hence there is a natural homomorphism

$$H_q^{dR}(A) = H_q(\Omega_A^*, d) \xrightarrow{\phi} H_q(HH_*(A), B)$$

from the de Rham homology of A to the homology of Hochschild homology with respect to the B-operator. (This is close to Connes' periodic and cyclic homology.)

The simplicial object $HH(A)_{\bullet} = A \odot S^1$: $[q] \mapsto A \otimes A^{\otimes q}$ is a cyclic object, in the sense that the cyclic permutations

$$t_q \colon A \otimes A^{\otimes q} \longrightarrow A \otimes A^{\otimes q}$$

given by

$$t_q(x_0 \otimes x_1 \otimes \cdots \otimes x_q) = x_q \otimes x_0 \otimes \cdots \otimes x_{q-1}$$

satisfy $t_q^{q+1} = id$, and are suitably compatible with the face and degeneracy maps.

For any cyclic set the topological realization of the underlying simplicial set has a natural circle action. In the case of

$$HH(A) := |HH(A)_{\bullet}| = |A \odot S^1|$$

the action

$$\rho \colon HH(A) \land S^1_+ \longrightarrow HH(A)$$

is base-point preserving. The S¹-orbit of a 0-simplex $x \in A = HH(A)_0$ is given by the 1-simplex

$$t_1 s_0(x) = 1 \otimes x \in HH(A)_1$$

which corresponds to a closed loop at x in HH(A). The S¹-orbit of a q-simplex traces through q+1 different q+1-simplices, in a similar manner.

The topological realization HH(A) of the simplicial abelian group underlying $HH(A)_{\bullet}$ has homotopy groups given by the homology of the (normalized) Hochschild complex $NC_*(A)$:

$$\pi_*(HH(A)) \cong HH_*(A)$$

The circle action ρ induces a homomorphism

$$\sigma \colon \pi_q(HH(A)) \longrightarrow \pi_{q+1}(HH(A)) \colon$$

i.e., an operator $\sigma: HH_q(A) \to HH_{q+1}(A)$. For example, if $x \in A = C(A)_0 \cong HH_0(A)$ we deduce that $\sigma x \in HH_1(A)$ is the class of $1 \otimes x$ in $C(A)_1$, corresponding to $dx \in \Omega_A$. In fact, σ is equal to Connes' *B*-operator.

4. TOPOLOGICAL HOCHSCHILD HOMOLOGY

Let $(Sp, \wedge, S, \gamma, F)$ be one of the closed symmetric monoidal categories of structured ring spectra. Examples include symmetric spectra and orthogonal spectra. Let A be a strictly commutative ring spectrum, i.e., a commutative monoid in Sp, with multiplication $\mu: A \wedge A \to A$ and unit $\eta: S \to A$. We refer to A as a commutative S-algebra. The category $CAlg_S$ is tensored over sets, by letting

$$A \odot T = \bigwedge_{t \in T} A$$

so that

$$\operatorname{CAlg}_S(A \odot T, B) \cong \{T \mapsto \operatorname{CAlg}_S(A, B)\}.$$

Let

$$THH(A)_{\bullet} := A \odot S^1 : [q] \mapsto A \odot S^1_q \cong A \land A \land \cdots \land A$$

be the simplicial commutative S-algebra obtained by prolongation, with 1 + q copies of A on the right hand side. The topological realization

$$THH(A) := \prod_{q \ge 0} THH(A)_q \wedge \Delta^q_+ / \sim$$

defines the topological Hochschild homology spectrum of A, which is a commutative S-algebra under $A = A \odot S_0^1$, i.e., a commutative A-algebra. The topological Hochschild homology groups of A are the (spectrum level) homotopy groups

$$THH_q(A) = \pi_q THH(A)$$

Taken together, $\pi_*THH(A)$ is a graded commutative $\pi_*(A)$ -algebra.

The simplicial object $THH(A)_{\bullet}$ is a cyclic object, with additional structure maps

$$t_q = \gamma \colon A^{\wedge q} \wedge A \longrightarrow A \wedge A^{\wedge q}$$

Its geometric realization has a circle action

$$\rho \colon THH(A) \land S^1_+ \longrightarrow THH(A)$$
.

Let $s \in \pi_1^S(S^1_+)$ be a generator with Hurewicz image the fundamental class $\sigma \in H_1(S^1_+)$, such that $s^2 = \eta s$. The group action induces a pairing

$$\rho_* \colon \pi_q THH(A) \otimes \pi_1^S(S^1_+) \longrightarrow \pi_{q+1} THH(A)$$

and we define the homotopical s-operator $s: THH_q(A) \to THH_{q+1}(A)$ by $sx = \rho_*(x \otimes s)$. Passing to homology, there is also a pairing

$$\rho_*: H_qTHH(A) \otimes H_1(S^1_+) \longrightarrow H_{q+1}THH(A)$$

and a homological σ -operator $\sigma: H_qTHH(A) \to H_{q+1}THH(A)$ given by $\sigma x = \rho_*(x \otimes \sigma)$.

5. Dyer-Lashof operations

The circle action has a right adjoint

$$\tilde{\rho} \colon THH(A) \longrightarrow F(S^1_+, THH(A)) \xleftarrow{\simeq} THH(A) \wedge DS^1_+,$$

where $DS_{+}^{1} = F(S_{+}^{1}, S)$ is the functional (Spanier–Whitehead) dual of S_{+}^{1} . These are maps of commutative S-algebras. Passing to homology, we obtain an algebra homomorphism

$$\tilde{\rho}_* \colon H_*THH(A) \longrightarrow H_*F(S^1_+, THH(A)) \cong H_*THH(A) \otimes H_*DS^1_+.$$

Here $H_*DS^1_+ \cong \tilde{H}^{-*}(S^1_+) = E(\iota)$, with $\iota \in H^1(S^1_+)$ dual to $\sigma \in H_1(S^1_+)$, and

$$\tilde{\rho}_*(x) = x \otimes 1 + \sigma x \otimes \iota$$

Proposition 5.1. $\sigma(xy) = x \cdot \sigma y + (-1)^{|y|} \sigma x \cdot y$.

Proof. From $\tilde{\rho}_*(xy) = \tilde{\rho}_*(x)\tilde{\rho}_*(y)$ and $\iota^2 = 0$ we obtain

$$\sigma(xy) \otimes \iota = x \cdot \sigma y \otimes \iota + (-1)^{|y|} \sigma x \cdot y \otimes \iota.$$

Let p be a prime and let $H_*(X) = H_*(X; \mathbb{Z}/p)$ denote mod p homology. For commutative S-algebras A there is a natural Bockstein homomorphism

$$\beta \colon H_q(A) \longrightarrow H_{q-1}(A)$$

satisfying $\beta(xy) = \beta(x)y + (-1)^{|x|}x\beta(y)$. In particular, $\beta(x^p) = 0$. Furthermore, there are natural Dyer-Lashof operations

$$Q^k \colon H_q(A) \longrightarrow H_{q+(2p-2)k}(A)$$

satisfying the Cartan formula

$$Q^k(xy) = \sum_{i+j=k} Q^i(x)Q^j(y) \,.$$

These operations generalize the p-th power homomorphism, and in particular

$$Q^k(x) = x^p$$

if |x| = 2k.

Proposition 5.2 (Bökstedt/Angeltveit-R.). $Q^k(\sigma x) = \sigma Q^k(x)$.

Proof. By naturality, $Q^k(\tilde{\rho}_*(x)) = \tilde{\rho}_*(Q^k(x))$, so

$$Q^k(x \otimes 1 + \sigma x \otimes \iota) = Q^k(x) \otimes 1 + \sigma Q^k(x) \otimes \iota.$$

Here $Q^{j}(1) = 0$ and $Q^{j}(\iota) = 0$ for $j \neq 0$, and $Q^{0}(1) = 1$ and $Q^{0}(\iota) = \iota$, all in $H_{*}(DS^{1}_{+}) \cong \tilde{H}^{-*}(S^{1}_{+}) \cong H^{-*}(S^{1})$. Hence

$$Q^k(\sigma x)\otimes\iota=\sigma Q^k(x)\otimes\iota$$
 .

6. The dual Steenrod Algebra

Let p be an odd prime, and let $H = H\mathbb{Z}/p$ be the mod p Eilenberg–Mac Lane (ring) spectrum, with n-th space a $K(\mathbb{Z}/p, n)$. Write $H_*(X) = \pi_*(H \wedge X)$ for mod p homology.

For n = 1,

$$H^*(K(\mathbb{Z}/p,1)) = E(x) \otimes P(y)$$

with |x| = 1, |y| = 2, $\beta(x) = y$, and

$$H_*(K(\mathbb{Z}/p,1)) = \mathbb{Z}/p\{\alpha_n \mid n \ge 0\}$$

with α_n dual to $x^{\epsilon}y^m$ for $n = 2m + \epsilon$, $m \ge 0$, $\epsilon \in \{0, 1\}$. Here $\alpha_1 \cdot \alpha_{2m} = \alpha_{2m+1}$, and $\alpha_{2i} \cdot \alpha_{2j} = (i, j)\alpha_{2(i+j)}$, so

For
$$n = 2$$
 we use the map $K(\mathbb{Z}, 2) \to K(\mathbb{Z}/p, 2)$, where
 $H^*(K(\mathbb{Z}, 2)) = P(y)$

with |y| = 2, and

$$H_*(K(\mathbb{Z},2)) = \mathbb{Z}/p\{\beta_m \mid m \ge 0\}$$

with β_m dual to y^m . Here $\beta_i \cdot \beta_j = (i, j)\beta_{i+j}$, so

$$H_*(K(\mathbb{Z},2)) = \Gamma(\beta_1).$$

Definition 6.1. For $i \ge 0$ let $\tau_i \in H_*(H)$, with $|\tau_i| = 2p^i - 1$, be the image of $\alpha_{2p^i} = \gamma_{p^i}(\alpha_2)$ under the colimit structure map $H_{*+1}(K(\mathbb{Z}/p, 1)) \longrightarrow H_*(H).$

For $i \ge 1$ let $\xi_i \in H_*(H)$, with $|\xi_i| = 2p^i - 2$, be the image of $\beta_{p^i} = \gamma_{p^i}(\beta_1)$ under the colimit structure map

$$H_{*+2}(K(\mathbb{Z},2)) \longrightarrow H_{*+2}(K(\mathbb{Z}/p,2)) \longrightarrow H_{*}(H)$$

Theorem 6.2 (Milnor).

$$\mathscr{A}_* = H_*(H) \cong E(\tau_i \mid i \ge 0) \otimes P(\xi_i \mid i \ge 1)$$

The coproduct $\psi \colon \mathscr{A}_* \to \mathscr{A}_* \otimes \mathscr{A}_*$, induced by $1 \wedge \eta \wedge 1 \colon H \wedge H \to H \wedge H \wedge H$, is given by

$$\psi(\tau_k) = \tau_k \otimes 1 + \sum_{i+j=k} \xi_i^{p^j} \otimes \tau_j$$

and

$$\psi(\xi_k) = \sum_{i+j=k} \xi_i^{p^j} \otimes \xi_j \,,$$

where $\xi_0 = 1$.

The involution $\chi: \mathscr{A}_* \to \mathscr{A}_*$, induced by the symmetry $\gamma: H \wedge H \to H \wedge H$, can be recursively calculated using

$$\phi(1\otimes\chi)\psi=\eta\epsilon$$

Let $\bar{\tau}_i = \chi(\tau_i)$ and $\bar{\xi}_i = \chi(\xi_i)$ be the conjugate generators of the dual Steenrod algebra.

$$\mathscr{A}_* \cong E(\bar{\tau}_i \mid i \ge 0) \otimes P(\bar{\xi}_i \mid i \ge 1)$$

with

$$\psi(\bar{\tau}_k) = 1 \otimes \bar{\tau}_k + \sum_{i+j=k} \bar{\tau}_i \otimes \bar{\xi}_j^{p^i}$$

and

$$\psi(\bar{\xi}_k) = \sum_{i+j=k} \bar{\xi}_i \otimes \bar{\xi}_j^{p^i} \,.$$

Proposition 6.3 (Kristensen/Steinberger). The action of the Bockstein and Dyer-Lashof operations on $H_*(H) = \mathscr{A}_*$ is known. In particular, $\beta(\bar{\tau}_k) = (\pm)\bar{\xi}_k$ and

$$Q^{p^k}(\bar{\tau}_k) = \bar{\tau}_{k+1}$$

for each $k \geq 0$.

Let $H\mathbb{Z}$ be the integral Eilenberg–Mac Lane (ring) spectrum. The map $H\mathbb{Z} \to H$ induces an injection in homology:

Theorem 6.4.

$$H_*(H\mathbb{Z}) \cong E(\bar{\tau}_i \mid i \ge 1) \otimes P(\xi_i \mid i \ge 1).$$

7. Bökstedt's calculations

For each commutative ring R we write THH(R) for THH(A), where A = HR is the associated Eilenberg–Mac Lane ring spectrum.

Theorem 7.1 (Bökstedt). (a)

(b)

$$\pi_*THH(\mathbb{Z}/p) = P(\mu_0) = \mathbb{Z}/p[\mu_0]$$

 $H_*THH(\mathbb{Z}/p) \cong \mathscr{A}_* \otimes P(\sigma \bar{\tau}_0).$

with $|\mu_0| = 2$. (c)

$$\pi_i THH(\mathbb{Z}/p) \cong \begin{cases} \mathbb{Z}/p & \text{for } i = 2n \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 7.2 (Bökstedt). (a)

$$H_*THH(\mathbb{Z}) \cong H_*(H\mathbb{Z}) \otimes E(\sigma\bar{\xi}_1) \otimes P(\sigma\bar{\tau}_1).$$

(b)

$$\pi_*(THH(\mathbb{Z});\mathbb{Z}/p) = E(\lambda_1) \otimes P(\mu_1) = \Lambda(\lambda_1) \otimes \mathbb{Z}/p[\mu_1]$$

with $|\lambda_1| = 2p - 1$ and $|\mu_1| = 2p$.

$$\pi_i THH(\mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{for } i = 0, \\ \mathbb{Z}/n & \text{for } i = 2n - 1 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

We apply homology to the skeleton filtration

$$A = THH(A)^{(0)} \subset \cdots \subset THH(A)^{(s-1)} \subset THH(A)^{(s)} \subset \cdots \subset THH(A)$$

with quotients

$$THH(A)^{(s)}/THH(A)^{(s-1)} \cong A \wedge \bar{A}^{\wedge s} \wedge \Delta^s / \partial \Delta^s$$

Here \overline{A} denotes the cofiber of $\eta: S \to A$. The resulting Bökstedt spectral sequence has

$$E^1_{s,*} = H_{s+*}(A \wedge \bar{A}^{\wedge s} \wedge \Delta^s / \partial \Delta^s) \cong H_*(A) \otimes H_*(\bar{A})^{\otimes s} = NC(H_*(A))_s$$

and $d_s^1 \colon E_{s,*}^1 \to E_{s-1,*}^1$ agrees with the normalized Hochschild boundary b. Hence

$$E^2_{s,*} \cong HH_s(H_*(A)) \Longrightarrow H_{s+*}THH(A).$$

There is a coproduct

$$\psi: THH(A) \longrightarrow THH(A) \wedge_A THH(A)$$

that makes the spectral sequence an $H_*(A)$ -Hopf algebra spectral sequence, as long as a flatness hypothesis is satisfied, see Angeltveit–R.

Proof of Theorem 7.1. In the case $R = \mathbb{Z}/p$ we have A = H and $H_*(A) = \mathscr{A}_*$. Hence

$$E_{s,*}^2 \cong HH_s(\mathscr{A}_*) \Longrightarrow H_{s+*}THH(\mathbb{Z}/p) +$$

Let p be odd. From

$$\mathscr{A}_* \cong E(\bar{\tau}_k \mid k \ge 0) \otimes P(\bar{\xi}_k \mid k \ge 1)$$

and the Künneth theorem we obtain

$$HH_*(\mathscr{A}_*) \cong \bigotimes_{k \ge 0} HH_*(E(\bar{\tau}_k)) \otimes \bigotimes_{k \ge 1} HH_*(P(\bar{\xi}_k))$$
$$\cong \bigotimes_{k \ge 0} E(\bar{\tau}_k) \otimes \Gamma(\sigma\bar{\tau}_k) \otimes \bigotimes_{k \ge 1} P(\bar{\xi}_k) \otimes E(\sigma\bar{\xi}_k)$$
$$\cong \mathscr{A}_* \otimes \Gamma(\sigma\bar{\tau}_k \mid k \ge 0) \otimes E(\sigma\bar{\xi}_k \mid k \ge 1).$$

Here $\mathscr{A}_* = E_{0,*}^2 = HH_0(\mathscr{A}_*)$. The E^2 -term is generated as a graded commutative \mathscr{A}_* -algebra by the divided powers $\gamma_{p^i}(\sigma \bar{\tau}_k)$

for $i \ge 0$ and $k \ge 0$, in bidegree $p^i(1, 2p^k - 1)$, and the exterior classes

 $\sigma \bar{\xi}_k$

for $k \ge 1$, in bidegree $(1, 2p^k - 2)$.

We claim that there are differentials

(1)
$$d^{p-1}(\gamma_p(\sigma\bar{\tau}_k)) \doteq \sigma\bar{\xi}_{k+1}$$

for each $k \ge 0$. Here \doteq means equality up to multiplication by a unit in \mathbb{Z}/p .

Using the Hopf algebra structure, differential (1) propagates to differentials

$$d^{p-1}(\gamma_m(\sigma\bar{\tau}_k)) \doteq \gamma_{m-p}(\sigma\bar{\tau}_k)\sigma\bar{\xi}_{k+1}$$

for each $m \ge p$ and $k \ge 0$. By the Künneth theorem, this leaves

$$E^p_{*,*} \cong \mathscr{A}_* \otimes P_p(\sigma \bar{\tau}_k \mid k \ge 0)$$

Here

$$P_p(\sigma x) = \mathbb{Z}/p[\sigma x]/(\sigma x)^p \cong \mathbb{Z}/p\{\gamma_m(\sigma x) \mid 0 \le m < p\} \subset \Gamma(\sigma x)$$

is the truncated polynomial algebra on σx of height p. The E^p -term is generated over \mathscr{A}_* by classes in

filtration s = 1, hence there is no room for any further differentials, and $E^p = E^{\infty}$.

Consider the composite

$$H_*(A) \longrightarrow H_*THH(A) \stackrel{\sigma}{\longrightarrow} H_{*+1}THH(A)$$
.

From $Q^{p^k}(\bar{\tau}_k) = \bar{\tau}_{k+1}$, and $|\sigma \bar{\tau}_k| = 2p^k$, we deduce

$$\sigma \bar{\tau}_{k+1} = \sigma Q^{p^k}(\bar{\tau}_k) = Q^{p^k}(\sigma \bar{\tau}_k) = (\sigma \bar{\tau}_k)^p$$

in $H_*THH(\mathbb{Z}/p)$. Hence $P_p(\sigma \bar{\tau}_k \mid k \ge 0)$ is the associated graded of $P(\sigma \bar{\tau}_0)$, and

$$H_*THH(\mathbb{Z}/p) \cong \mathscr{A}_* \otimes P(\sigma\bar{\tau}_0)$$

as \mathscr{A}_* -algebra.

It follows that $THH(\mathbb{Z}/p) \simeq \bigvee_{m>0} \Sigma^{2m} H$, there is a unique class

$$\mu_0 \in \pi_2 THH(\mathbb{Z}/p)$$

with Hurewicz image $\sigma \bar{\tau}_0$, and

$$\pi_* THH(\mathbb{Z}/p) \cong P(\mu_0) = \mathbb{Z}/p[\mu_0].$$

It remains to establish differential (1). Here is a quick argument due to Ausoni. From $\beta(\bar{\tau}_{k+1}) = (\pm)\bar{\xi}_{k+1}$ we deduce

$$\sigma \bar{\xi}_{k+1} = (\pm)\beta(\sigma \bar{\tau}_{k+1}) = \beta((\sigma \bar{\tau}_k)^p) = 0$$

in $H_*THH(\mathbb{Z}/p)$. Hence $\sigma \bar{\xi}_{k+1} \in E^2_{1,2p^{k+1}-2}$ must be a boundary, i.e., the target of a differential. By induction on k, the only possible source of a differential is $\gamma_p(\sigma \bar{\tau}_k) \in E^2_{p,p(2p^k-1)}$.

Proof of Theorem 7.2. In the case $R = \mathbb{Z}$ we have $A = H\mathbb{Z}$. Hence

$$E^2_{s,*} \cong HH_s(H_*(H\mathbb{Z})) \Longrightarrow H_{s+*}THH(\mathbb{Z})$$

Let p be odd. From

$$H_*(H\mathbb{Z}) \cong E(\bar{\tau}_k \mid k \ge 1) \otimes P(\xi_k \mid k \ge 1)$$

we obtain

$$HH_*(H_*(H\mathbb{Z})) \cong \bigotimes_{k\geq 1} HH_*(E(\bar{\tau}_k)) \otimes \bigotimes_{k\geq 1} HH_*(P(\bar{\xi}_k))$$
$$\cong \bigotimes_{k\geq 1} E(\bar{\tau}_k) \otimes \Gamma(\sigma\bar{\tau}_k) \otimes \bigotimes_{k\geq 1} P(\bar{\xi}_k) \otimes E(\sigma\bar{\xi}_k)$$
$$\cong H_*(H\mathbb{Z}) \otimes \Gamma(\sigma\bar{\tau}_k \mid k\geq 1) \otimes E(\sigma\bar{\xi}_k \mid k\geq 1)$$

The E^2 -term is generated as a graded commutative \mathscr{A}_* -algebra by the divided powers

$$\gamma_{p^i}(\sigma \bar{\tau}_k)$$

for $i \ge 0$ and $k \ge 1$, in bidegree $p^i(1, 2p^k - 1)$, and the exterior classes

$$\sigma \bar{\xi}$$

for $k \ge 1$, in bidegree $(1, 2p^k - 2)$.

By naturality with respect to $H\mathbb{Z} \to H$ there are differentials

$$d^{p-1}(\gamma_p(\sigma\bar{\tau}_k)) \doteq \sigma\bar{\xi}_{k+1}$$

for each $k \geq 1$. Using the Hopf algebra structure, they propagate to differentials

$$Q^{p-1}(\gamma_m(\sigma\bar{\tau}_k)) \doteq \gamma_{m-p}(\sigma\bar{\tau}_k)\sigma\bar{\xi}_{k+1}$$

for each $m \ge p$ and $k \ge 1$. By the Künneth theorem, this leaves

$$E_{*,*}^p \cong H_*(H\mathbb{Z}) \otimes P_p(\sigma\bar{\tau}_k \mid k \ge 1) \otimes E(\sigma\bar{\xi}_1)$$

The E^p -term is generated over $H_*(H\mathbb{Z})$ by classes in filtration s = 1, hence there is no room for any further differentials, and $E^p = E^{\infty}$.

From $Q^{p^k}(\bar{\tau}_k) = \bar{\tau}_{k+1}$, or by naturality, we deduce

$$\sigma \bar{\tau}_{k+1} = (\sigma \bar{\tau}_k)^p$$

in $H_*THH(\mathbb{Z})$. Hence $P_p(\sigma \bar{\tau}_k \mid k \geq 1)$ is the associated graded of $P(\sigma \bar{\tau}_1)$. Furthermore, $\sigma \bar{\xi}_1$ is in odd total degree, so $(\sigma \bar{\xi}_1)^2 = 0$ in $H_*THH(\mathbb{Z})$. Hence

$$H_*THH(\mathbb{Z}) \cong H_*(\mathbb{Z}) \otimes P(\sigma\bar{\tau}_1) \otimes E(\sigma\bar{\xi}_1)$$

as $H_*(H\mathbb{Z})$ -algebra.

It follows that $THH(\mathbb{Z}) \wedge S/p$ is a generalized Eilenberg–Mac Lane spectrum, there are unique classes

$$\lambda_1 \in \pi_{2p-1}(THH(\mathbb{Z}); \mathbb{Z}/p)$$
 and $\mu_1 \in \pi_{2p}(THH(\mathbb{Z}); \mathbb{Z}/p)$

with Hurewicz images $\sigma \bar{\xi}_1 \wedge 1$ and $\sigma \bar{\tau}_1 \wedge 1 + \sigma \bar{\xi}_1 \wedge \epsilon_0$, respectively. Here $H_*(S/p) = E(\epsilon_0)$. Hence

$$\pi_*(THH(\mathbb{Z});\mathbb{Z}/p)\cong E(\lambda_1)\otimes P(\mu_1)=\Lambda(\lambda_1)\otimes \mathbb{Z}/p[\mu_1]$$

The integral structure of $\pi_*THH(\mathbb{Z})$ follows by Bockstein spectral sequence arguments.

References

- Vigleik Angeltveit and John Rognes, Hopf algebra structure on topological Hochschild homology, Algebr. Geom. Topol. 5 (2005), 1223–1290. MR2171809
- [2] Christian Ausoni, Topological Hochschild homology of connective complex K-theory, Amer. J. Math. 127 (2005), no. 6, 1261–1313. MR2183525
- [3] Lars Hesselholt and Ib Madsen, On the K-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997), no. 1, 29–101. MR1410465