Topological logarithmic structures

JOHN ROGNES

We develop a theory of logarithmic structures on structuiregispectra, including
constructions of logarithmic topological ArkQuillen homology and logarithmic
topological Hochschild homology.
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1 Introduction

1.1 Logarithmic algebraic geometry

A logarithmic structure on a commutative rirfgis a commutative monoid with

a homomorphism to the underlying multiplicative monoidAf This determines a
localization AIM~1] of A. In algebro-geometric terms, we might say thatcuts
out a divisorD from Specf), and AIM~1] is the ring of regular functions on the
open complement. In general the logarithmic structure carries more infornthtion
the localization. For example, thealler differentials ofA form an A-module Q}\,
generated by differentials of the fordm, which are globally defined over Spég(
The Kahler differentials of the localization form thM—1]-module Q}A[M,l], which
also contains differentials of the form~da, having poles of arbitrary degree along
D. The logarithmic structure specifies an intermedfteodule of logarithmic Khler
diﬁerentials,Q(lAyM), generated by differentials of the forda anddlogm = m~1dm,
having only poles of simple, or logarithmic, type aloBg The logarithmic structure
is therefore a more moderate way of specifying a localization than the actadizled
ring. See Kato35] and lllusie [34] for introductions to logarithmic algebraic geometry.

1.2 Algebraic K-theory of rings and S-algebras

We wish to apply the ideas of logarithmic geometry to the study of the algebraic
K -theory of structured ring spectra, also known as commut&iadgebras. Typical
examples of commutativ8-algebras are the sphere spectr8nthe spherical group
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ring of the integersgZ], the complex bordism spectruMU, the complexK -theory
spectrumKU and the Eilenberg—Mac Lane spectritiR of a commutative ringR.
Modern foundations are discussed in EImendorf-Kriz—Mandell-Nedy, [Hovey—
Shipley—Smith 82] and Schwede73]. In the two first examples, K§) = A(x)
and KgZ]) = A(SY) agree with Waldhausen’s algebraic-theory of the spaces
« and S, respectively, which are closely related to the diffeomorphism groups of
high-dimensional manifolds. More preciself(x) and A(S!) determine the stable
smooth pseudoisotopy spaces<adndSt, respectively, and these in turn determine the
stable smooth pseudoisotopy spaces of all closed non-positively cRieatannian
manifolds, via their points and closed geodesics. See Waldha8@gifrarrell-Jones
[22] and Waldhausen—Jahren—Rogn@&H.[

In the third example, K{IU) remains mysterious, but appears to be an interesting
half-way house between the earlier and the later examples. A key stepdfoitgar
determination is the homotopy limit property for cyclic group actions on its topabgic
Hochschild homology THH{IU), which has been established by Lunge-Nielsen and
Rognes in 43]. In the fourth example, K{U) classifies virtual 2-vector bundles,
and is related to a form of elliptic cohomology. See Ausoni—-Rog6kdT], Baas—
Dundas—Rogned{)], and Baas—Dundas-Richter—Rogn&s[9]. In the fifth example,
K(HR) = K(R) agrees with Quillen’s algebraik -theory, and wherR is a local or
global number ring, this captures a great deal of the arithmetic, or nutieeretic, in-
variants of that number ring. See Quillegl], Dwyer—Friedlander—Snaith—Thomason
[20] and Rognes—Weibebp], plus the work of Voevodsky and Rost on the Milnor-
and Bloch—Kato conjectures.

We would like to understand the algebr#ietheory of commutativeés-algebras in the
same kind of conceptual terms as we understand the algelirdiieory of number
rings. This includes the principles that algebr&ietheory satisfiegtale descent and
localization properties, with certain modifications, like a restriction to finite coefits
and sufficiently high degrees in the caseé&hle descent. See Quille62 and
Thomason—-Trobaugh78]. Two approaches have been successful in proving that
algebraicK -theory is close to satisfyingtale descent. One is based on Voevodsky’s
motivic cohomology and its relation ttale cohomology, as explained by the Milnor-
and Bloch—Kato conjectures just mentioned. However, this theory degersbme
extent on resolution of singularities, and any theory that is hard to exterag® of
positive characteristic will also be hard to extend to commut&e®hedgebras.
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1.3 Topological cyclic homology and the de Rham—-Witt compbe

The other approach is based on the cyclotomic trace map from algdb+idieory to
the topological cyclic homology of &stedt—Hsiang—Madse]. This is the tool of
choice for the study of the-adically completed algebraig-theory of ap-complete
ring, and more generally, for a connectiyecomplete commutativ8-algebraA, since
it is a natural map

trc: K(A) — TC(A; p)

(of spaces, say, for simplicity), that becomes a homotopy equivaleteepadic
completion wheneverrg(A) is a finite algebra over the Witt vectors of a perfect
field k of characteristicp. See Hesselholt-Madse@§. This approach suffices
for the determination of th@-complete algebraid-theory K@), in some cases,
such as the sphere spectrdim= S whenp is a regular prime, see Rognexl], [65].
Furthermore, there is a very close relationship between the topologidialltymology

of a commutative ringh and the de Rham—-Witt complék. 24, which is built upon the
de Rham comple; given by the exterior algebra on théaKler differentials23 that
we started with. See lllusie8B] and Hesselholt7]. The relationship is the closest
whenA is a smooth algebra over the perfect fiéld

The condition thatA is connective ang-complete of suitably finite type is almost
orthogonal to our desire to understand the algebkaitheory of commutativeS-
algebras in terms d@tale descent and localization properties. &afe descentinvolves
the formation of homotopy limits, specializing to the formation of homotopy fixed
points in the case of Galois descent, and such limits often take us out of theryadé
connective spectra. Similarly, localization opacomplete ring by inverting will give

a rational algebra, whoge-completion is trivial, leaving no information to be seen by
topological cyclic homology. Furthermore, localization of a commutefhadgebra by
inverting a positive-dimensional element, or by more general Bousfieltizatans,

will most often give a non-connective result.

1.4 Algebraic K-theory of local fields

In the context of discrete valuation rings, Hesselholt-Madsh ¢vercome this
difficulty by the use of logarithmic structures and logarithmic differentials. Wetilate
by their main example. Le be ap-adic number field, i.e., a finite extension@f,

let A C K be its valuation ring, and lek be the residue field. The maximal ideal of
A is generated by an uniformizer, so thatk = Alr~1] andk = A/(r). There is a



4 John Rognes

localization sequence
K(K) 2 K(A) 1 K(K)

in Quillen K-theory 61]. Herei., is the transfer map (= direct image) associated to the
surjectioni: A — k, we writej* for the natural map (= inverse image) associated to
the inclusionj: A — K, and the sequence is a homotopy fiber sequence of spaces. The
cyclotomic trace maps Kj — TC(k; p) and K@) — TC(A; p) arep-adic equivalences

of spaces, as explained above, so Hesselholt-Madsen constrdetigeréorm of
topological cyclic homology, denoted TAK; p), that sits in a similar homotopy fiber
sequence

TCK; p) = TC(A p) = TCAK: p) |

(where TCA|K;p) is not the same as the-adically trivial TCK;p)). Much as

the de Rham-Witt compleXV.Q2 is built on top of the de Rham compleXy, the
topological cyclic homology TQX; p) is built on top of the topological Hochschild
homology THH@). So the homotopy fiber sequence above is in fact extracted from a
homotopy fiber sequence

THH(K) % THH(A) L THHAK)

of so-called cyclotomic spectra. The Hesselholt-Madsen constructiomBi{A|K)
doesa priori not have anything to do with logarithmic geometry, but under these
hypotheses, they are able to compute the homotopy of AHj(@and TCA|K; p) (with

mod p coefficients), and to express the answers in terms of a logarithmic de Rhidm-w
complexesW.((, \y associated to the valuation rigwith the logarithmic structure
given by the multiplicative monoitl = AN K* of non-zero elements iA. The first

sign of this is seen in the long exact sequence in homotopy associated to the latte
homotopy fiber sequence, which contains the extension

O — Qi& —>7Tl(j*) Q%A,M) E) k — 0

in dimensions 1 and 0. The first map is the inclusion ahker forms among logarith-
mic Kahler forms, while the residue map res takdeg« to 1 and is realized as the
connecting map in the long exact sequence. For THH, the result is that

m(THH(AK); Z/p) = Q(a k) @ Z/plro]

where |kg| = 2. The algebraic theory of logarithmic de Rham—-Witt complexes is
developed further in Hesselholt—-Mads&0][and Langer—Zink38]. The passage from
TC(A; p) to TC(AIK; p) is an essential step to make these calculations manageable. As
a consequence of the calculations, one sees thaA[KC) satisfies descent for Galois
extensionK — L to the extent expected for algebrdictheory. This is obscure, at
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best, in the comparison of T&(p) with TC(B; p), whereB is the valuation ring ot..
Hence TCAK; p) and W.Q7, y are essential ingredients in the Hesselholt-Madsen
proof of Galois descent fop-completed KK), andétale descent fop-completed
K(A), for these local fields and rings.

1.5 Algebraic contents of the present paper

In this paper we give a sense to THKM) for general commutative rings with
logarithmic structure 4, M), as a cyclic commutativA-algebra. We expect that

THH(A, M) ~ THH(AIK)

in all cases when the right hand side is defined, but we only prove thatdke ho-
motopy algebras are isomorphic. We give two equivalent constructiondd{A, M).
The first is given in Definitior8.11in terms of thaeplete bar construction BPM of
M, and therepletion map

BYM — B"PM

from the usual cyclic bar construction. The second is given in Definiti®niQ in
terms of the suspension in the category of augmented commugMjalgebras of
ashear map

sh: gM] A §M] — gM] A MP],

symbolically given by X, y) — (xy,v(y)). Here~y: M — M9 is the group completion
homomorphism. The comparison of TH&XM) with THH(AK) is discussed in
Example8.14and Propositior8.15

In this paper we also give a sense to the logarithmic topological@+@uillen homo-
logy TAQ(A, M) for logarithmic rings A, M), as anA-module. The relation of
THH(A, M) to TAQ(A, M) is like that of the logarithmic de Rham compléx,

to the logarithmic Khler differentiaIsQ(lAjM), especially in the smooth, or logarith-
mically smooth, cases. We review the ordinary theory of topological &rQuillen
homology in Sectiori0, give one construction of TA@( M) in Definition11.19 and

give a second, equivalent, construction in Definit13 The latter is expressed

in terms of the infinite suspension of the shear map, in the category of auginente
commutative§M]-algebras.

We approach these definitions in several stages, to motivate and justify thiesn.
we think of Kahler differentials as corepresenting derivations, and we follow Quillen
[60Q] in thinking of derivations as homomorphisms into abelian group objects. This
leads us to consider abelian group objects in suitable categories of logarithgsc
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to define logarithmic derivations as morphisms in these categories, and toucbns
logarithmic Kahler differentials as corepresenting objects for logarithmic derivations.
This way we recover Kato’s definition (St(lAyM) as a pushout oA-modules, in Defi-
nition 4.25 In Section5 we make a corresponding analysis for “associative ring maps
between commutative rings”, which leads to a definition of logarithmic Hochschild
homology HHA, M) as a pushout of commutative-algebras, with a comparison map
Qiam — HHL(A,M). The analogous discussion for logarithn8ealgebras leads to
the initial definitions of the corepresenting objects TAQY) and THH@A, M), as
suitable homotopy pushouts.

In Section3 we argue that certain features of the traditional algebro-geometric theory
of logarithmic rings, namely that one works within the full subcategory otaited

fine and saturatedlogarithmic rings, can constructively be replaced by a different
condition that is better suited for topological generalization. The alternaugittan

is a relative one, i.e., it is a condition on logarithmic rings N1) over a fixed base
logarithmic ring R, P), and asks that the monoid homomorphisin— P to the base
commutative monoid is an exact surjection. Here exactness mearid thaP is the
pullback of M9P — P9P along~: P — P9P. We say that such logarithmic ring8,(M)
arereplete over R, P), and we prove in Lemma.8 (with a topological analogue in
Proposition8.3) that there is aepletion functor for quite general logarithmic rings

(A, M) over R, P). The repletion of the cyclic bar constructi&YM of a commutative
monoid is, by definition, the replete bar construct®f’M, and the cyclic structure on
B“YM carries over to a cyclic structure @&¥PM. This leads to a revised Definitiél11

of THH(A, M), in terms of repletion. Its advantage over the previous characterization
is that THHA, M) now is a cyclic object in commutativ&-algebras, which is a first
step towards a cyclotomic structure.

In a third and final iteration, we note that the repletion map required for theititen

of TAQ(A, M) is the infinite stabilization of the repletion map required for THEHY),

and that this in turn is a single stabilization of a shear AapgM] — A A SMP)

in the category of augmented commutat&ealgebras. We are therefore able to give
quite short and direct definitions of the logarithmic Hochschild homology AiM),
higher order versions HF (A, M), and their stabilizatiotHI'(A,M) asn — oo, in
Section13. These give logarithmic forms of constructions of Pirash\sib|[and
Robinson—-Whitehouse6B]. This all adds to the belief that for each logarithmic
ring (A, M), the stable category of spectra formed in the category of simplicial replete
logarithmic rings under and oveA(M) will be an appropriate category igarithmic

(A, M)-modules Note that working in the subcategory of replete logarithmic rings
replaces all non-empty colimits (= tensor products) formed in logarithmic ripgsdir
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repletions, hence the tensored structure and suspension in simplici&t tegkrithmic
rings will be different from those in simplicial logarithmic rings. See Renaildfor
some further discussion.

1.6 Algebraic K-theory of topological K -theory

Moving on from discrete rings to commutati&algebras, the examples that are the
closest to algebra are given by the topologi€atheory spectrunKU and its variants.
Let KU, be itsp-completion, let, be the Adams summand &y, and let/,, andku,

be the respective connective covers. These are all commu&#ilgebras. The mod
reductionsL/p = K(1), KU/p, ¢/p = k(1) andku/p are associativ&-algebras, but
not commutativeS-algebras. The-complete algebrai& -theory of £, ku, and//p
was computed in Ausoni—Rognéd,[Ausoni [4] and Ausoni—Rogned$], respectively,

in each case using the equivalence with topological cyclic homology. Fotisityp
we focus on the Adams summand cases. There are localization sequences

K(Zp) = K(£p) 2 K(Lyp)

K(Z/p) ™ K(£/p) = K(L/p)
established by Blumberg and Mandel¥]. Here =, denotes the transfer maps asso-
ciated to the 1-connected maps ¢, — HZ, andn: ¢/p — HZ/p, andp* denotes
the natural map associated to the localization mapg, — L, andp: ¢/p — L/p.
The cyclotomic trace mali(A) — TC(A, p) is a p-adic equivalence in all of the cases
A =HZy, ¢y, HZ/p and//p, butnot for the non-connective spectha= L, andL/p.
We would therefore like to construct relative forms of topological cyclimbiogy,
denoted TC{p|Lp; p) and TC{¢/p|L/p; p), that sit in homotopy fiber sequences

TC(Zp; P) = TC(lp; P) = TC(p|Lp:P)
TC(/p;p) = TC((/p;p) 2= TCE/pIL/P; P)
and are extracted by a limiting process from homotopy fiber sequences
THH(Zp) = THH(Zp) 2 THH(G|Lp)
THH(Z/p) == THH(¢/p) 2 THH(/p|L/p)

of cyclotomic spectra. The Hesselholt—-Madsen construction of P)(for discrete
valuation rings does not easily generalize to this topological setting of steakctu
ring spectra, so we seek instead to generalize the construction of A NHi(to this
topological setting, so as to realize THH|L,), and perhaps THH(p|L/p), in that
form.
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1.7 Topological contents of the present paper

We expect this algebro-geometric theory to be most useful in the commutatitext,
where we replace the commutative ridgby a commutativeS-algebra. Experience
from structured ring spectrum theory tells us that we should replace thenatative
monoid M by the kind of space that arises as the underlying space of a commutative
S-algebra, with its multiplicative structure. These are, a little informally, known as
E.. spaces. More precisely, when commutat&algebras are interpreted in the
sense of EImendorf—Kriz—Mandell-Mag1], they areL-spacesvhere, is the linear
isometries operad, and when commutati«lgebras are interpreted in the sense of
Hovey—-Shipley—Smith32], they arecommutative Z-space monoids A logarithmic
structure on a commutativealgebraA is then arkE,, spaceM with anE,, map to the
underlying multiplicativeE,,, spaceQ2g’A of A. In fact, the underlying multiplicative
spaces of commutativé-algebras are somewhat spectal, spaces, because the
additive base point of the underlying space acts as a zero, or bade fooithe
multiplication. This leads us to work withasedE,, spacesalso known a&., spaces
with zero. A further justification for working with basel,, spaces is illustrated
by thinking of L, as the localization of,, obtained by inverting the element ¢
mlp = Zplva]. Let f: ST — QX ¢, be a map representing in homotopy, where

= 2p — 2. Itis not the individual multiplication map2)-: ¢, — ¢, for ze 1,
that become equivalences after base changds,tdout the combined multiplication
mapf - STA £, — £p. To induce this map from the smash produdcimust be thought
of as a base-point preserving map. When we extenal a multiplicative map, that
must be a map of basdgl,, spaces.

We define based and unbased topological logarithmic structures in S&ctaiter
discussing the available choices of technical foundations in Se&tibhe definitions of
logarithmic topological Hochschild homology given in Secti@end13immediately
generalize from the case of a discrete commutative mombido the case of an
unbasedE., spaceM, and similarly for the definitions of logarithmic topological
André—Quillen homology in Sectiorisl and13. However, for baseé., spacedN we
need to make a topological assumption about the local structure near thediag
namely that the based,, space isonically based see Definitior6.21 This ensures
that the spaces of based logarithmic derivations are corepresentibleganmad 2.3
and12.4 and lets us define a based logarithmic topological &rQuillen homology
TAQq(A,N) in Definition 12.6 with a companion definition of based logarithmic
topological Hochschild homology THHA, N) in Definition8.17. For conically based
E. spaces\ the base point complement is anE,, space, there is a conical diagonal
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mapd: N — N AN/, and there is dased shear map

sh: N A XN — N A gN']
of augmented commutativE>°N-algebras. In Sectioh3 we give streamlined defini-
tions of based logarithmic topological Hochschild homology T N) as a cyclic
commutativeA-algebra, and based logarithmic topological A&dRuillen homology

TAQy(A, N) as anA-module, using single and infinite suspensions of this based shear
map.

1.8 Logarithmic structures on topological K -theory

Returning to the desired logarithmic model FglLy; p) for the p-completed KL,),
we seek a based logarithmic structiNeon ¢, so that

THH(4p|Lp) ~ THHo(¢p, N).

We have not yet been able to find a suitahlén the current set-up, but some patrtial
information is available, which we discuss in this paper. First, the periodien&da
summandL,, is obtained from¢, by inverting the mapv,-: X9¢, — ¢,, given by
multiplication by a magd : S — Q>/, that represents; € 7./,. Letting

N~ \/ s

j>0

be the free baseéft., space generated b$?, we obtain a based (pre-)logarithmic
structureN — Q/p. In view of the calculations by &stedt (unpublished) and
McClure—Staffeldt 49|, see also Ausoni—Rognes§][the homotopy of THHE,;) and
THH(¢p) with coefficients in the Smith—Toda compl®¥1) = S/(p, v1) is known, and
this lets us compute the desired homotopy of TH(,). We have not calculated
THHo(¢p, N) in this case, but related calculations in the context of JASee Exam-
ples12.16and12.17 show that this free basdgl,, spaceN is not the desired based
E.. space. There may be a better baggd space, built fromN by attaching further
free basedE, cells, but this remains to be determined.

We now discuss two alternative approaches to this problem. The first es/@lork-

ing with less commutative ring spectra th&g, ring spectra. Algebraid-theory,
topological cyclic homology and topological Hochschild homology are alheefffor
associatives-algebras, oA, ring spectra, but the question is how much commutativity
is needed to make good sense of a logarithmic geometry. If we take

Nf:\/qu

>0
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to be the free baseA., space generated b§f, we can extend the scope of based
logarithmic topological Hochschild homology to make sense of §EIF°N, N). With
some more commutativity ilN, so that THHE°N) is an associativ&-algebra, this
lets us make sense of THH,, N), in such a way that THH{|L,) ~ THHo(¢p, N). In
Section9 we discuss evidence that has a baseé, space structure, related to braid
groups, which would suffice for this purpose.

The second approach involves working with commutatitd -algebras in place of
commutativeS-algebras. WithN ~ \/;.,S¥, as above, the suspension spectrum
»*°N is an associative but not a commutatbalgebra. However, its base change

MU AN ~ \/ »AIMU
>0

to MU is a commutativeMU -algebra. This can be seen by a geometric construction
similar to that of Neil Strickland {7, Appendix A]. There is then a commutative
MU -algebra magMu A N — ¢, which we view as specifying a complex oriented
logarithmic structure, that permits us to define a cyclic commutatiNg-algebra
model for THH{,|L,). More generally, this works to define THeJE) for periodic
commutativeMU -algebrasE with connective covere. For the purpose of using
logarithmic geometry to bridge the gap frok(MU) to K(Z), this appears to be a
viable route. For time reasons we are unable to include the discussion ofesomp
oriented logarithmic structures in this paper, but we plan to return to it in a later
publication.

1.9 The fraction field of topological K-theory

The calculations of Ausoni—Rognées Ehow that the diagrams

K(¢/p) 1= K(tp) L K(eQyp)
K(L/p) 1= K(Lp) L K(LQy)

are not homotopy fiber sequences. Hef@, = ¢p[1/p] and LQp = Lp[1/p] are
the commutativeHQ-algebra spectra that are obtained by inverginigy ¢, and L,
respectively. Indeed, the calculations essentially show that the mappieg ob the
two transfer maps., which we denoteK(O) and K(F) for brevity, have larges,-
periodic V(1)-homotopy, whereak (Q,) and any algebra over it ig-torsion. With
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this notation, we have a 8 3 square of homotopy fiber sequences

K(Z/p) > K(Zp) > K(Qp)

K(¢/p) —== K(fp) — = K(O)

p*l lp* lp*

K(L/p) —= K(Lp) ——= K(F)

where theV(1)-homotopy of all four corners in the upper left hand square haea b
computed using topological cyclic homology.

This leads to the question of what kind of objeésand F are. Considering the
lower row, we viewF as a milder localization of,, away from its non-commutative
residueS-algebral /p than the algebraic localization that invefs Since this is the
only non-trivial residueS-algebra ofL,, we think of 7 as specifying arS-algebraic
fraction field of L, and O as a connective valuatioB-algebra of 7. Furthermore,
it appears that the Galois cohomology of this objg&ctwith V(1)-coefficients, is a
Poincaé duality algebra with fundamental cIaSSH@aI(}“; F2(2)), indicating that?
is a kind of S-algebraic higher local field satisfyirgrithmetic duality Milne [50].
We explain these calculations in greater detail in Ausoni—Rodses [

Given the thrust of the present paper, it should come as no surprisedlexpect to be
able to realize® and F as logarithmicS-algebras, so that there should be bakgd
spacesS’ = {0,1}, (v1), (p) and (p,v1) mapping to2°¢,, so that the lower right
hand square above is realized as the algebfaibeory of the commutative square

(lp;10,1}) —— (4p, (P))

| !

(Epv <Vl>) - (fpa <p> Vl>)

of based logarithmicS-algebras. A similar triple division of approaches arises as
in the discussion of logarithmic structures on (the Adams summand of) topological
K-theory, and again there is a discussion of homological obstructions adah
hypotheses in Sectidgh As in that case, a complex oriented (pre-)logarithmic structure
MU A (p,v1) — ¢, appears to be the best commutative model for the fraction field
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The V(1)-homotopy of the corresponding>33 square of homotopy fiber sequences

THH(Z/p) —~ THH(Zp) — = THH(Zp, (p))

THH(E/P) — = THH(f) —— " THH(, (p))

THH(E/p, (V1)) —*—~ THH(Cp, (V1)) —= THH(Zp, (p, V1))

(as well as its analogue for TC) is computed in Ausoni—Rogbgssfarting from
calculations of the upper left hand square. In the fraction field cotimegonclusion

V(1) THH(¢p, (p,v1)) = E(dlogp, dlogvi) ® Z/p[ ko]

with |dlogp| = [dlogvi| = 1 and|xo| = 2 is nicely compatible with the Hesselholt—
Madsen result forr, (THH(A|K); Z/p).
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Part |

Logarithmic structures on commutative
rngs

2 Commutative logarithmic structures

We begin by reviewing some basic definitions about the log structures w#Nac
Fontaine and Luc lllusie, adapting Kazuya Kato’s introducti8g, §1] to the affine
case. For simplicity we work with commutative rings, but it is just about as &asy
work with commutativeR-algebras over some base commutative g

Definition 2.1 Let A be a commutative ring. Adre-log structure on A is a pair
(M, o) consisting of a commutative monoM and a monoid homomorphism

a: M —(A)

to the underlying multiplicative monoid oA. A pre-log ring (A, M, «) is a com-
mutative ring A with a pre-log structure M, o), often abbreviated toA{M). A
homomorphism

f,£): (AM,a) — (B,N, 3)

of pre-log rings consists of a ring homomorphi$mA — B and a monoid homomor-
phismf”: M — N, such that the square

M —2> (A, )

fbi l(fv)
B

commutes. Heref(:): (A,-) — (B,-) denotes the underlying multiplicative monoid
homomorphism of . Pre-log rings and homomorphisms form a category, which we
denotePreLog. There are obvious forgetful functors froRreLog to the categories
CRing andC.Mon of commutative rings and commutative monoids, respectively.



14 John Rognes

Remark 2.2 Let Z[M] denote the monoid ring d¥. The functorM — Z[M], from
commutative monoids to commutative rings, is left adjoint to the funétes (A, -).
i R
CMon CRing
(_7')
Hence a pre-log structurdl( «©) can equally well be defined in terms of the ring ho-
momorphismn Z[M] — A that is left adjoint tor. A pair (f, ") of ring and monoid
homomorphisms, respectively, then defines a pre-log homomorplaidvh) (— (B, N)
if and only if the square

Z[M] —2~ A

Z[fb]l B lf

7ZIN] -2~ B
commutes.

Definition 2.3 Let.: GL1(A) C (A, -) denote the inclusion of the multiplicative group
of units inA. Let a~1GL1(A) € M be defined by the pullback square

a~1GLy(A) —> GLi(A)
M = (Av )
of commutative monoids. The pre-log structuhd, ¢) is alog structure on A if the

restricted homomorphism :~a~1GLy(A) — GL1(A) is an isomorphism. Log rings
generate a full subcategory gfreLog, which we denoteCog.

Remark 2.4 The forgetful functorAb — CMon, from abelian groups to commu-
tative monoids, has a right and a left adjoint. The right adjoint takes a cortiveuta
monoid M to its subgroupM* of units, while the left adjoint takes a commutative
monoidM to its group completioM9. For a commutative rindg\, GL1(A) = (A, -)*.
These remarks also apply to groups, monoids and rings that are nesagbecom-
mutative.

Remark 2.5 For alogring A M, o) we can factor the inclusionas
by inverting the isomorphisna..” The log condition asserts that the partMf that
sits over the units oA (via «) is isomorphic to those units, and we view this as a

normalization condition. The emphasis in a log structure is therefore on thefpdr
that maps to the non-units &.
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Definition 2.6 Let (A, M, o) be a pre-log ring. Thassociated log ring(A, M3, o)
consists ofA with the log structureNl, «)® = (M2, o?), whereM? is defined by the
upper left hand pushout square in the following diagram

a~1GLy(A) —> GLy(A)

] l

M ma

a (A) )
of commutative monoids, and?: M® — (A, ) is the canonical homomorphism
induced bya: M — (A,-) and:: GL1(A) — (A, -). The next remark shows that
(A, M2, o?) is indeed a log ring. A homomorphisnf, {”) of pre-log rings induces a
homomorphismf(, f’2): (A, M2, o) — (B, N2, 32) of associated log rings. We obtain
alogification functor (—)2: PreLog — Log.

Remark 2.7 SinceGL4(A) is an abelian group, the pushout
M® =M @&,-161,(a GL1(A)

can be described as the balanced prodMck (GL1(A))/ ~, where (n, g) ~ (', g) if
and only ifm-7(hy) = n-7(hy) anddi(hy)-g = &(h1)-g', for somehy, hy € a~1GL1(A).
See Kato 85, page 193]. We writer, g] for the equivalence class ofn(g). The
homomorphism? takes fn,g] € M2 to a(m) - «(g) € (A, ), soa?([m, g]) € GL1(A)

if and only if o(m) € GL1(A), hence n, g] has a unique representative of the form
(1, h) with h = a(m)~g € GLy(A), and M3, o?) is really a log structure oA.

Lemma 2.8 The logification functor(—)2: PreLog — Log is left adjoint to the
forgetful functorLog — PreLog. O

Definition 2.9 The trivial pre-log structure on A is given by the trivial monoid
M = {1} and the unique monoid homomorphism {1} — (A,:). Thetrivial
log structure on A is the associated log structure, wit = GL;(A) and a =
v GL1(A) — (A, ).

Lemma 2.10 The functor(—)"" : CRing — PreLog takingA to the trivial pre-log
ring (A, {1}) is left adjoint to the forgetful functoPreLog — CRing. Hence the
functor (—)"V-2: CRing — Log taking A to the trivial log ring(A, GL1(A)) is left
adjoint to the forgetful functo£og — CRing. O
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Remark 2.11 In algebro-geometric language, we can think of the opposite category
LogPP as the category of affine log schemes, with a forgetful functor to the @ateg
Aff = CRIing°P of affine schemes. The trivial log structure defines a right adjoint to
the forgetful functor, embedding affine schemes into affine log schemes.

Definition 2.12 Let M be a commutative monoid arid[M] its monoid ring. The
canonical pre-log structure on Z[M] is the pair M, (), where(: M — (Z[M], ")
takesm € M to 1- m € Z[M]. Thecanonical log structureon Z[M] is the associated
log structure i1, ¢)2.

Lemma 2.13 The functor(—)®@": C.Mon — PreLog takingM to the canonical pre-
log ring (Z[M], M) is left adjoint to the forgetful functoPreLog — C.Mon. Hence
the functor(—)®@"2: CMon — Log takingM to the canonical log ringZ[M], M%)
is left adjoint to the forgetful functo£og — CMon. |

Remark 2.14 We can summarize these adjunctions in the following diagram, where
the unlabeled arrows denote forgetful functors:
CRing
(_)trivl T
(=) (-)?
CMon ~ PreLog
Any pre-log ring @, M) is the pushout
(ZIM],{1}) — (Z[M], M)

| |

AA{1) ——AM)

L£0og

of a diagram of trivial and canonical pre-log rings. In this sense, ihltiand the
canonical pre-log rings generate all pre-log rings.

Definition 2.15 For a pre-log ring A, M), the trivial locus is the pre-log ring
(AIM~1], M9P) where
AIM ™Y = A@zpmy Z[M9P] .

There is a canonical homomorphistA, M) — (AIM~1], M%), and the associated
log structure A[M—1], M9P)@ equals the trivial one. For log ring#&\(M) the functor
(A, M) — AIM~1] is left adjoint to (-)"V-2, which therefore has both a left and a right
adjoint.
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Example 2.16 (This example is prominent in Lars Hesselholt and Ib Madsen’s work
[29].) Let A be a discrete valuation ring, with uniformizer LetM = (r) = {a |
j > 0} be the free commutative monoid generatedihyand leta: M — (A, ) be the
inclusion. Then A,/ M) = (A, (7)) is a pre-log ring. The associated log rindy, %)
has

M2 = A\ {0} = () x GLy(A)

equal to the multiplicative monoid of nonzero elementsAinand o?: M — (A, -)
equals the inclusion. Lettingt = A[x—1] be the fraction field ofA, we note that
M2 = AN GLy(K) € GLy(K). The trivial locus of A, (7)) is (K, (m,771)). A
concrete example of interest to us is the case whenZ,, the ring ofp-adic integers,
m = pandK = Qp is thep-adic field. See Serrgp, §1.1] for other examples.

Remark 2.17 When we embed commutative rings into log rings (using the trivial log
structures), the localization homomorphigm A — K maps to the homomorphism
(f,£%): (A, GL1(A)) — (K, GL1(K)). One essential feature of the categdiyy is that

the latter homomorphism factors as the composite

(A, GL1(A) — (A, M?) — (K, GLy(K))

where the middle term is a log ring with a non-trivial log structure. In geometmade
the open inclusion: U = SpecK) — Specf) = X of the generic point does not
factor in any nontrivial way inAff , but when viewed as a map of affine log schemes it
factors as

U — A = SpecfA, M?) — X,

where A = Specf, M?) is properly a log scheme. Heuristicallyy is a kind of
compactification o, and A — X specifies a less dramatic localizationXf(in log
schemes) than the open inclusibh— X (in schemes). See Kato—Nakayan3®,|
(1.2)] and lllusie B4, §5.5] for a more precise interpretation (in a complex analytic
setting) of the log scheme as a compactification of the trivial locus.

Remark 2.18 (I learned of this point of view from Clark Barwick.) Following Martin
Olsson p4, Theorem 1.1], one can embed the category of log schemes into the 2-
category of algebraic stacks, by taking a log scheimi® a suitable moduli category
Log(A) = strLog/A of log schemes ovek and “strict” morphisms between these (see
Definition 2.22). To be precise, Kato and Olsson only work with “fine” log structures
(see Definition3.1). This means that Spec of a fine log ring acquires a geometric
meaning in the context of algebraic stacks, and, in particular, that therifatton

U — A — X of j can be viewed as taking place in that context. Geometric notions



18 John Rognes

like flat, smooth, unramifiecgtale and fppf (= faithfully flat and finitely presented)
morphisms of log rings, or log schemes, then become special cases afiastons
for algebraic stacks.

Definition 2.19 Letf: A — B be aring homomorphism and le¥( «) be a pre-log
structure orA. Theinverse image log structure

(fF*M,f*a) = (M, (f,-) o a)?

on B is the log structure associated to the pre-log structure given by the composite
monoid homomorphism

VIEN/NS RN

There is a canonical homomorphisf () : (A, M) — (B, f*M) of (pre-)log rings.

Remark 2.20 Note that M, (f, ) o ) is usually not a log structure oB, before
logification, even if M, «) is a log structure orA. The variance of the terminology
and notation (inverse imagé?) is compatible with that used in algebraic geometry,
whenf is viewed as a map Spd&)(— Spech) in Aff and the log structure is a sheaf
over Spech). The variance is perhaps counterintuitive in the context of commutative
rings, but switching the roles d¢f andf. (defined below) would make the comparison
with the algebro-geometric literature prohibitively confusing.

Lemma 2.21 The log homomorphism@, M) — (B, N) covering a fixed ring homo-
morphismt : A — B are in natural bijection with the log homomorphis(Bsf*M) —
(B, N) covering the identitydg on B. O

Definition 2.22 A homomorphism (,f?): (A,M) — (B, N) of log rings isstrict if
the corresponding monoid homomorphigiM — N is an isomorphism. We write
str£og C Log for the subcategory of strict homomorphisms.

Definition 2.23 Letf: A — B be aring homomorphism and letl(3) be a pre-log
structure orB. Thedirect image pre-log structure (f.N, f,3) on A is defined by the
pullback square

£N -7 (A
l l(fu)
N—"~ (8,

of commutative monoids. Whem( ) is a log structure o, (f.N, f.3) will also be a
log structure, thdirectimage log structureon A. There is a canonical homomorphism
(f,°): (A, f.N) — (B,N) of (pre-)log rings.
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Lemma 2.24 The log homomorphism@, M) — (B, N) covering a fixed ring homo-
morphismf : A — B are in natural bijection with the log homomorphis(#s M) —
(A, f.N) covering the identityda on A. O

Remark 2.25 For a discrete valuation ring\, the log structuraVM® = A\ {0} =
AN GLy(K) from Example2.16is the same as direct imadeGL;(K) of the trivial

log structure onK, along the homomorphisrh: A — K. Hence the direct image
construction naturally produces the factorization in log schemes from Re2nHF.
More generally, for ring homomorphisnis A — B the direct imageM = f,GL;(B)

of the trivial log structure orB provides a log ring A, M) that may serve as an
approximation taB. In the topological setting of the following sections, this provides
a useful log structure oA in the cases wherB exists, but it will be less useful when
the desired does not exist and we are trying to construstNl) as a replacement for
the non-existenB.

3 Replete logarithmic structures

Definition 3.1 We now review some desirable properties of log rings and log schemes,
with the aim to motivate the introduction in DefinitioBs6 and3.12 of another such
property. See Kata3p, §2] and NakayamabP, §1].

In the affine cases that we consider, every log structMren{ on a commutative ring
Ais quasi-coherent. Itisoherentif M is finitely generated as a commutative monoid.
A commutative monoidM is integral if the canonical homomorphism: M — M9

to its group completion is injective. It fine if it is finitely generated and integral. An
integral M is saturated if the only a € M9 with a" € M for somen € N are the

ac M. ltisfsifitis fine and saturated. We say that a pre-log structiied(), or a
pre-log ring @&, M), is integral, fine, saturated or fs, respectively, if the commutative
monoid M has the corresponding property. A log ring is said to have one of these
properties ifitis isomorphic to the logification of a pre-log ring with the giverperty.

Let Mt = ~(M) ¢ M9 be the image oM, and letMsa'  M9P consist of alla € M9P

with a" € M for somen € N. These constructions preserve the subcategories of
finitely generated commutative monoids, and restrict to define left adjoif§y=
(=)™ ¢ rrorfe @Nd () = (—)53 ;- \(onine tO the forgetful functors

fs __\fine

CMons = cMon"e = cMon[®
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between fs, fine and finitely generated commutative monoids, respectiMeéycat-
egory CMon has all finite colimits. The left adjoint functors-§i"® and () can
therefore be used to create finite colimits in the subcateg6ule®n andCMon's.

Finite colimits in the category of fine pre-log rings are constructed by firstifug
the finite colimit in coherent pre-log rings. The resul, 1) say, is then replaced by
the fine base changd\,(M)™® = (A @zpv; Z[M™€], MN€). Similarly, finite colimits
in the category of fs pre-log rings are constructed by first formBd\N) = (A, M)fne
as above, and then replacing it by the fs base chaBgs)E = (B @zyn; Z[N™], N).
The corresponding construction in fine (resp. fs) log rings is obtairyedpiplying
logification at the end.

Remark 3.2 In the study of smoothness properties and deformation theory for log
rings or log schemes (Kat8¥], Olsson p5]), it is common to work with thickenings
(9,¢"): (A, M) — (R, P) that are strict morphisms to a fixed base log rifyR),

i.e., such thag*M = P, whereA/J = R for some square zero (or nil) idedl The
strictness hypothesis leads to the key property that the diagram

M — > M9P

gbl lgbygp
Y

P—— P9p

is a pullback square of commutative monoids. In other wogtls,M — P is “exact”
(see Definitior.3).

Furthermore, it is common to work within the subcategaiygi™® of fine log rings
(resp. fine log schemes). This ensures that the canonical logWifij§ = (Z[M], M@)
have underlying rings of finite type, as is convenient in algebraic geométglso
ensures that the natural homomorphism

%212 (ZIM], M) — (Z[MPP], M9P2) = Z[MIP]"
describes an embedding of the diagonalizable (affine, commutative) ghgme
D(M9%) = Specl[M]) (a product of Gn’s and un’s) in the affine log scheme
Specl[M],M?) that is “dense” in a suitable sense, rather than one that properly

factors through a closed log subscheme Sppd{™], M), This leads to the close
connection between logarithmic geometry and the theory of toroidal embedding

Definition 3.3 A monoid homomorphisna: M — P is exactif the diagram

M ——> M9P

P—— p9p
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is a pullback square.

Remark 3.4 In the study of logetale cohomology, Kummeatale K -theory and log
K-theory (see Nakayam®Z2], Hagihara R6], Niziot [53]), it is common to restrict
further to the subcategomod® of fs log rings. To illustrate why, we focus on the case
of a log G-Galois extensionf(f?): (A, M) — (B, N), whereG = SpecH) is a finite
étale group scheme over Spajthat acts on SpeB(N) over Spech, M). For {,f°)

to belog G-Galois, we require that the canonical map

h: (B,N) @ (B.N) — H ®a (B,N)

is an isomorphism, plus th&t A — B is faithfully flat. The interpretation of the log
ring tensor product (= pushout) in the sourcenas now dependent on the categorical
context. Infs log rings, the underlying monoid will be the integral saturatibnyg N)S

of the pushoutN &y N formed in commutative monoids. Similarly, the underlying
commutative ring will be the base changeBubaB alongZ[NouN] — Z[(N&uN)™S].
This saturation significantly extends the range of examples of log Galoissgoesn

For example, suppose thét: M — N is an injective homomorphism of fs com-
mutative monoids, and that there is a natural numbewuch thatf’(M) contains
Nk = {nk | n € N} ¢ N. Such homomorphisms are call&immer homomor-
phisms The cokernelC of f»9: M9 — N9 js then a finite group of exponent
k. Lety: N — C be the canonical monoid homomorphism. llet= Z[1/K][M],

B = Z[1/K][N] andH = A[C]. ThenH is anétale (bi-)commutative Hopf algebra
over A, which coacts ong, N) by the log ring homomorphism

(B,N) — H ®a (B,N)

under @& M) induced by the monoid homomorphishkh — C x N that takesn to
((n),n). Kato showed (see lllusie3f, Proposition 3.2]) thatf(f"): (A, M3 —
(B,N®) is a (Kummerétale) G-Galois extension, wittG = Spec) = D(C)specp) -
The main point is that the monoid homomorphidinby N — C x N that takes the
class ofny @ ny to (y(n1), N1ny) is usually not surjective, but the induced map from its
integral saturation

(NowN)® = Cx N

is always an isomorphism. As a simple example, the reader might wish to cotisder
caseM = (y) andN = (x), with f?(y) = x* for somek > 2. This example makes
it clear that it is the Kummer condition off: M — N that makes all the elements
in C x N have a positive power that is in the image frdimey N, so that saturation
suffices to extendN @y N to cover all ofC x N.
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In the setting of a Kummer homomorphisf: M — N, the integral saturation
(N @m N)s has a different characterization. We vieW@y N as a commutative
monoid oveN, viae: N@&y N — N taking the class ofi; @ n, to niny, and note that
the factorization ofy: N @y N — (N @u N)9 through (N @y N)' has the property
that the right hand square in the commutative diagram

N &m N — (N @p N)s — (N &m N)9P

[k

N — N NeP

is a pullback square of commutative monoids. This is clear, because the geesima
(¢")~1(n) of n € N is identified withC x {n} under the isomorphism\N(@y N)™ =

C x N, and the preimage{?) " 1(v(n)) is identified withC & ~v(n) under the splitting

(N &m N)9P =2 NOP g0 NP =2 C @ N9 that comes from the inclusion df9 in

the second summand &% @ye N9, The induced mapN @y N)™ — (N @y N)9P
identifiesC x {n} with C & ~(n), for eachn € N.

It also follows that N @u N)9P is the group completion ofN @u N)'S, so€™: (N @p
N)’ — N is exact.

Remark 3.5 When generalizing the algebraic theory of log rings to the topological
setting, it is not so clear what should replace the properties of being ahtegd
saturated. It also appears restrictive to only work with finitely generaigdrautative
monoids. Given the observations in Rema&® and 3.4, we are therefore led to
focus on the exact homomorphissas M — P. We view exactness as a condition
on a commutative monoid/ relative to a base commutative monoil In the
applications we have in mind, such as abelian group objectditon/P, or coproducts
of multiple copies oP, the structuralmap: M — P will have a (sometimes preferred)
sectionn: P — M. However, the following definition has a topologically meaningful
generalization as soon a%’: M9 — P9 s surjective (see Propositi@3), so that

is what we will assume.

Definition 3.6 Lete: M — P be a homomorphism of commutative monoids, viewed
as an object in the catego6/Mon/P of commutative monoids ove?. We say that

e: M — P isvirtually surjective if the induced homomorphisnfP: M9 — PP of
abelian groups is surjective. Lef.f1on/P)'s"" C C Mon/P be the full subcategory
of virtually surjectiveM overP. We say that a virtually surjectiviél over P isreplete
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if it is also exact, i.e., if the commutative diagram

M — > MP

I

P—— p9p

is a pullback square. LeC(Mon/P)*®P C (C.Mon/P)¥s"" be the full subcategory of
replete commutative monoidd over P

For a general virtually surjective: M — P, let therepletion of M over P be the
pullback
Mrep =P X pgp Mgp

in the diagram above, with the canonical structure righ M™P — P. The following
diagram commutes, where the right hand square is a pullback by constructio

M Mmrep M9P
€ l l erep l €9p
P——>pP > pp

We callM — M'™P therepletion map, and show in Lemm&.8 below thatM™P is
replete.

Remark 3.7 For M to be replete oveP is equivalent toc: M — P being an exact
surjection. We view repleteness as a property of virtually surjedtivever P, since it

is for suchM that we will prove that repletion is an idempotent functor. We also prefer
to distinguish between “replete” and “exact”, because exactness ibyusikan to be

a property of homomorphisms between integral commutative monoids.

Lemma 3.8 For virtually surjectivec: M — P, the homomorphismsl — M™P —
M9P induce isomorphisms

MYP 2 (MTeP)IP = (\|9P)IP

upon group completion. Hend@"™P is replete oveP.

Proof It is easy to see thaM™P)9 — (MIP)9P is surjective, since every element of
(M9P)8P =2 M9 is the difference of two elements coming frdvh To prove injectivity,
consider a formal differencep{, m;) & (p2, mp) in (M™P)9P with p; € P, m € M
and~(pi) = €%°(m) for i = 1, 2, and assume that its image © m is zero in (M9P)9P,
Thenm; = mp, sovy(p1) = v(p2), and there exists & € P with p; + k = pp + k.



24 John Rognes

Using the surjectivity ofe%®, we can chose afn € M% with ¢9P(¢) = ~(k). Then
(P1, My) + (K, £) = (p2, M) + (K, £), SO (o1, My) © (p2, M) is zero in (U™eP)9P.

To see thaM™P is replete, note that it is isomorphic to the pullbackyaf P — PP
and M"™P)8 — PYP since the latter map is isomorphic¢®: M9 — P9P, O

Lemma 3.9 The functor(—)"P: (CMon/P)¥sY" — (CMon/P)™P js left adjoint to
the forgetful functor. Colimits of non-empty diagrams(thMon/P)VsY" exist and are
created inCMon/P. Colimits of non-empty diagrams also exist (@ Mon/P)"P,
and are constructed by first forming the colimit(iMon/P)VsY" and then applying
(=)*®P. O

Definition 3.10 Let P/C.Mon/P be the category of commutative monoids under and
over P, i.e., triples M, n,¢) wheren: P — M ande: M — P are commutative
monoid homomorphisms witlh o = id. The forgetful functorP/C Mon/P —
CMon/P factors through the full subcategorg.fton/P)"U". We say that M, 7, €)

is replete over P if the underlying virtually surjective: M — P is replete.

Lemma 3.11 An object(M,n,€) in P/CMon/P is replete if and only if it is iso-
morphic to an object of the forfP x K, no, €g), whereK is an abelian group with
unit elemente, no(p) = (p,€) and eo(p,k) = p. If so, there are isomorphisms
K = ker(e9P) = cok(n®P), and the isomorphis = P x K takesm to (e(m), v(m)),
wherey: M — M — K js the canonical map. In particulaiM™P, 1P, P) js
always replete.

Proof In this split caseM®P is isomorphic toP x K, so to be repleteM must be
isomorphic toP x K. Conversely, ifM is isomorphic taP x K, thenM®P is isomorphic
to P9 x K, andM will be replete. O

Definition 3.12 Let (R,P) be a base pre-log ring. A pre-log ringA,M) over

(R, P) is virtually surjective if the underlying commutative monoitl over P is
virtually surjective. It is areplete pre-log ring if the underlying commutative
monoid M over P is replete. It is areplete log ring if (A,M) is also a log
ring. By Proposition3.14 the logification of a replete pre-log ring over an inte-
gral log ring is a replete log ring. LetAreLog/(R, P))'*"" be the full subcategory

of PreLog/(R,P) generated by the pre-log rings that are virtually surjective over
(R, P), and let PreLog/(R, P))*P be the full subcategory generated by the replete pre-
log rings. The forgetful functorR, P)/PreLog/(R,P) — PreLog/(R, P) naturally
factors throughPreLog/(R, P))'s"". Let therepletion functor

(-)"*P: (PreLog/(R P))**" — (PreCog/(R, P))"*?
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be the left adjoint to the forgetful functor, taking a virtually surjective-jog ring
(A, M) over R, P) to the replete pre-log ring

(A, M)®P = (A @zpmy Z[M™F], M™P)

over R, P). Colimits over non-empty diagrams exist ifreL£og/(R, P))"*'', and are
created inPreLog/(R, P). Non-empty colimits in PreLog/(R, P))*P are constructed
by first forming the colimit in PreLog/(R, P))'s"", and then applying-{)"P.

Lemma 3.13 Let (A, M, «) be a replete pre-log ring over a log rig, P, p). Then
M* = a~1GLy(A).

Proof Consider the following diagram

M* — o~ 1GLy(A) —= M —> M9P

T

P* —— p~1GL(R) ——= P ——P%

of commutative monoids. The left hand and middle horizontal maps are inctusion
By hypothesis the group homomorphisf is surjective, with kerneK, say, the right
hand square is a pullback, and the inclus®n— p~1GLy(R) is the identity.

We first prove thaM* — P* is surjective, with kerneK. If p € P* with inverseq,
we can findm,n € M with ¢(m) = p ande(n) = g. Thene(mn = e, somn = k
lies in e 1(e) = K. Now K is a group, so we can formk-1 € M, which is inverse
to m. Hencem € M*, and m maps top, so M* — P* is surjective. Its kernel
is M* N e 1(e) = e X(e) = K, where the inclusion-—1(e) ¢ M* holds because
e~ 1(e) = K is a group.

It follows thatM* is the pullback oM andP* over P. On the other handy 1GLy(A)
is contained in the pullback dfl andp~'GL1(R) overP, sinceGLy(A) C (A, -) maps
to GL1(R) C (R, ). By assumptionP* = p~1GLy(R), soM* = a~1GLy(A). O

Proposition 3.14 Let (A, M) be a replete pre-log ring over an integral log r{fgP).
Then the associated log ririg, M?) is a replete log ring ove(R, P).

Proof By assumption;y: P — P9 is injective, so its pullback : M — M9 is also
injective. Hence &, M) is integral, andvi* acts freely oM and M9P.
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By Lemmag3.13 M? is the pushout oM and GL;(A) along M*, so M9 is the
pushout ofM9 and GL;(A) alongM*.

M* M —L > M9P

N

GL]_(A) — M2 L) Ma39p

| lg léw

GL(R) ——=P pop

Y

The composite
P M9 _, M39P _, popP

is surjective, hence®: M2 — P is virtually surjective. In the commutative diagram
M x GL1(A) —— M9 x GL1(A)

l l

M2 Magp
T
P 7 paP

the outer rectangle is a pullback, and the middle row is obtained from the upper
by dividing out by a freeM*-action, hence the lower square is a pullback. This proves
that (A, M?@) is a replete log ring overR;, P). |

Example 3.15 Let (A, M) be a pre-log ring and a non-empty set. The-fold replete
tensor producy @"P (A, M) is the replete pre-log ringv(@"P A, [[S° M) over @, M)
given by the pushout

ZITTyM] — Z[[[¥"M]

Y®&l lg

Y®A Y ®@"EPA
of commutative rings, and the pre-log structure
rep

& [IM—vera
Y

right adjoint tog_, whereY ® M = [[y M — M is the cartesian product (= coproduct)
in CMon/M of Y copies ofid: M — M, [[¥"M = ([[y M)® = M x [[, M% is
its repletion, whereX is the complement of one elementYh andY ® A= QA is
the tensor product (= coproduct) {lRing of Y copies ofA.



Topological logarithmic structures 27

Definition 3.16 Let M be a commutative monoid, and 1§ = Al/0Al be the
simplicial circle. Thecyclic bar construction BYM = S' ® M (called thecyclic
nerve N®M in Waldhausen{9, §2.3]) is the simplicial commutative monoid given
by the categorical tensor product

%@M:HMQMXMX---XM
S
((g+ 1) copies ofM) in simplicial degreeq. We write a typical element d8“YM as

(Mo, My, ..., My).

There are natural structure maps M — BYM and e¢: BYM — M induced by
the base point inclusion — S' and the collapse magt — *. The mapn equals
the inclusion of the zero-simplices iB®M, while e takes (o, m, ..., my) to the
productmom - - - mgq. These maps makB®M a simplicial object inM/CMon/M.
There is a natural cyclic structure @M, generated by the operatty that takes
(Mo, My, ..., M) to (Mg, Mo, ..., Mg—1). We giveM the constant cyclic structure, and
thene (butnotn) is a cyclic morphism. There is a natural projection BYM — BM to
the ordinary bar construction avi, taking (o, my, . . ., mg) to [my| ... |mg], forgetting
the copy ofM that corresponds to the base poingh

Thereplete bar construction B®PM = (B®M)™P is the repletion of the cyclic bar
construction, given by the lower right hand pullback square

M——>M— = Mo

nl l"mp lngp

BYM —— B"PM —— BYM 9P

M——>M—" > M9P

of simplicial commutative monoids. Hereande9 are cyclic maps, so the definition
as a pullback giveB™PM a natural cyclic structure, and all maps in the lower two rows
of the diagram are cyclic.

s

Lemma 3.17 The composite homomorphisker(®) c BYMI — BMP js an
isomorphism. Hence there is a natural isomorphigfi, 7'P) : BPM =~ M x BM9P,
of simplicial commutative monoids under and owér

When combined with the weak equivaler8® — BM9, we obtain a weak equiva-
lenceM xBM = BPM. The repletion maB®YM — B®PM factors afe, 7). BYM —
M x BM, followed by the latter weak equivalence.
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The inclusionn: M — B™PM factors throughyp: M — M x BM, induced by the
inclusion of the base point iBM.

Proof The first claim is well known, sinc#9 is a group. The inverse isomorphism

BM9 —; ker(e9) takes [m]. .. |mg] to (mo,my, ..., my) wheremgp = (my - --mg) L,
The rest is clear from Lemna 1l |

Remark 3.18 By its definition as a pullbackB™PM is the simplicial commuta-
tive monoid with g-simplices (o, 91,...,9q) With m € M and g € M9 for

all i, such thaty(m) = gog1---9q. When v is injective, m is determined by
the @o,d1,...,09q), and these are only subject to the condition that their product
god1---0gq lies in the image ofy. We note that the cyclic operator 0B“PM
takes (M do,01,-..,0q) t0 (M g, 0o, - --,0q—1). This is acceptable becausé, or
ratherM9, is commutative:y(m) = gqy(m)gal = 0q% - -Jg—1. The isomorphism
(e,m): B®PM = M x BM takes (m;Qo,01,--.,0q) to (M, [g1]...|0q]), SO go can
be recovered as(m)(g1---dq)*. In these terms the cyclic operator &h x BMIP
takes M, [g1] - - - [9q]) to (M, [v(M)(91 - - - Og) 2| - - - |gg—1]), Where we again use that
~(m) = gqy(m)gal. Note that the cyclic operator uses the group inverdd9h. Hence
there is in general no natural cyclic structure BNl such that the weak equivalence
M x BM — M x BM9 = BPM is a map of cyclic sets. For later work, when we
study the cyclic and cyclotomic structure on log topological Hochschild horgplbg
will therefore be important to work witlBBM®P rather thanBM, even if the two are
naturally equivalent as spaces.

Definition 3.19 Let Ai~1 denote the cyclicj(— 1)-simplex, represented by the object
[[ — 1] in Connes’ categoryA. Its geometric realization, as a simplicial set, is
|AI=Y 2 gt x AI71. The cyclic groupC; of orderj acts on [ — 1] in A, hence also
on AI=1, and the induced action o\/~1| balances the subgroup action 8h with
the action onAl~? that cyclically permutes the vertices. See Hesselholt—Ma®&n [
§7.2].

Proposition 3.20 LetM = (x) = {¥ | j > 0} be the free commutative monoid on
one generatox. The cyclic bar constructioB®YM decomposes as a disjoint union
BYM = [ [ B¥(M;))
j>0
of cyclic sets, wher®%¥(M: ) = ¢ 1(xX) consists of the simplice@ry, . . ., my) with
my---my = X. HereBYM;0) = * is a single point, while foij > 1 there is



Topological logarithmic structures 29

a cyclic isomorphism\i—1 /C;j = BY¥(M;j). After geometric realization there is an
St-equivariant homeomorphism

St xg AT S BY(M; ).
Hence there is aB'-equivariant deformation retraction
BYM = «u [ S'0).
j>1
whereS'(j) = St/Cj. Thel-simplex(¥~1,x) forms a closed loop a&d) that maps
by an equivalence t8'(j).

Proof This follows from the proof of Hesselholf, 2.2.3]. Forj > 1 the { — 1)-
simplex &, X, ...,X) generatedB”Y(M;|) as a cyclic set. Hence there is a surjective
cyclic mapAi=1 — BY(M;j). The restriction of the canonic&!-action on|BYM|

to Cj C S acts on thej(— 1)-simplices by cyclic permutation, and fixes X, . . ., X).
Hence the cyclic map factors ovﬁf—l/Cj . There are no further relations B¥Y(M; j),
giving the asserted cyclic isomorphism ag8-equivariant homeomorphism. The
simplex Al~1 is Cj-equivariantly contractible to its barycenter, giving the asserted
St-equivariant homotopy equivalence. O

Proposition 3.21 Let M = (x), with group completioM%® = (x,x 1) = {xX | j €
Z} . The cyclic bar constructioBYM®P decomposes as a disjoint union
BYMIP — H BY(MP; j) ~ H S'(j)
i€z 1/
of cyclic sets, wherd8¥Y(M%®;j) = (¢9°)~1(x), and (¥~1,x) forms a closed loop
mapping by an equivalence 8(j). Hence
B™M = ] B¥(MPj) ~ [ [ S')
j=0 j=0
and the repletion map“YM — B"®PM decomposes as the disjoint union of the inclu-
sions
B¥(M;j) — BY(M%;))
forj > 0. For eachj > 1, this inclusion is arSt-equivariant homotopy equivalence.
Forj = 0, the map
* = BY(M; 0) — BY(M9P; 0)

identifies the source with th@* -fixed points of the target.
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There is a cyclic isomorphisB%Y(M9; 0) = BM%, whereBM% ~ S'(0) has the
cyclic structure takingmy| ... |mg] to [(my---mg)~my|...|mg_1]. The associated
circle action

S' x BM%® — BM%P

is homotopic to the trivial action. Furthermore, for each finite subg@ug S' there
is a homeomorphisrBY(M9; 0) = BY(M; 0>, which is equivariant with respect
to the canonical group homomorphissh— S'/C,. Hence there is aB' -equivariant
homotopy pushout square

* BMIP

L

BYM —— B"PM

of simplicial sets, wher8M9 ~ S'(0).

Proof For eachj > 0, the projectiont: BYM% — BM9 restricts to a cyclic
isomorphism
BY(M: j) = BMP,

when the target is given the cyclic structure that takef [. . |mg] to

DA(my - mg) Y my ... [my-a] -

The closed 1-simplex{1,x) < [X] induces a homotopy equivalen& — BM%,
and the circle action oB%M is compatible, up to homotopy, with the circle action
St x St — St given by g w) — Zw. See Loday42, 7.3.4, 7.4.5].

Forj > 1, the circle action oB%(M;j) ~ Sk(j) takes the 0-simplexx) once around
the 1-simplex (1¥), which deformation retracts to a loop windijtimes arounds'(j).
By inspection of the simplicial structure, the loop ¥f)) is homotopic to the composite
of j copies of the loop¥~—1,x). Hence the mafs' ~ BY(M;j) — BY(M9;j) ~ St
has degree 1, and is a homotopy equivalence, fgralll.

To check that this map is a8 -equivariant equivalence, we check that the mapief
fixed points is a homotopy equivalence for each closed subgdfotpS'. The St-fixed
points of a cyclic seZ consists of the 0-simpliceswith t;59z = spz. In B®¥(M;j) and
BSY(MYP: j) the only O-simplex iz = (), with s)z = (1, %) andtisoz = (¥, 1), so
both fixed point spaces are empty for 1, whereas foj = 0 both fixed point spaces
consist of the single point (1).

To study the fixed points for finite subgrous C S', we use ther-fold edge-
wise subdivision functoiZ — sdZ of Bokstedt—-Hsiang—Madseri%, §1], with
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(sd2)q = Zi(g+1)-1 for g > 0. Recall that there is aB'-equivariant homeomor-
phismD,: |sdZ| = |Z| for cyclic setsZ, and theC, -action on|sdZ| is induced by
a simplicial action orsdZ. There is a simplicial isomorphisfB*M 22 (sdBYM)
given by ther -th power map

Ar: (Mg, ..., Mg) — (M, ..., Mg, ..., Mo, ..., M)
(repeating its argumemttimes), which leads to the chain of homeomorphisms

Cr
BYM 27, |(sdt BYM)%| = |sd BYM|S 2, (BYM)C:

The composite homeomorphism is equivariant with respect to the canomaab g
homomorphisnSt — St/C;. Sincee(Ar(2)) = €(2)", this homeomorphism restricts
to a homeomorphism
BY(M; i) = BY(M;ri)< ,

whereasB%(M; j) has noC; -fixed points wherr 1 j.
Similar results hold foiM9, so by naturality we can identify

,YCr : BCY(M;j)Cr — BCy(Mgp;j)Cr
with the homotopy equivalendg®¥(M; i) — B%Y(M%;i) for j = ri, and with the trivial

equivalence) — 0 for r { j. HenceB%¥(M;j) — BY(M%;j) is an S'-equivariant
homotopy equivalence, fgr> 1. |

Definition 3.22 Let A be a commutative ring. Suppose first tiiais flat overZ. The
Hochschild homologyof A is the simplicial ring HHRA) = St ® A, with

HH(A) 2 ARA® - @ A

((g+ 1) copies ofA) in simplicial degreeq. The Hochschild homology groupsof

A are the homotopy groups HfA) = 7 HH(A). The natural mapg: A — HH(A)
ande: HH(A) — A make HH@) a simplicial object inA/CRing/A, and e makes
HH(A) a cyclic object inCRing/A. If A is not flat overZ, we replaceA by a Z-flat
simplicial resolution, form HH{) degreewise, and pass to the diagonal of the resulting
bisimplicial ring.

Definition 3.23 Let (A, M, a) be a pre-log ring. There is a natural pre-log structure

BYM — (HH(A), )

with left adjoint St ® a: Z[BYM] — HH(A). It makes (HHA), BYM) a simplicial
objectin A, M)/PreLog/(A, M), and a cyclic object irPreLog"""/(A, M).
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Suppose firsttha is flat overZ[M], so that HHR) is flat over HHZ[M]) = Z[BYM].
By definition, thelog Hochschild homology (HH(A, M), BPM, &) of (A, M) is the
replete simplicial pre-log rin@ ®'P (A, M). Here HH@A, M) is given by the pushout
square

Z[S,l ® |\/|] . Z[S_l ®'ep |\/|]

sl®al l

S®A HH(A, M)

of simplicial commutative rings, which we can rewrite as the pushout square

Z[BYM] —= Z[B'ePM]

Sea l B lé_
P

HH(A) —— HH(A, M)
in the same category. The pre-log structure map
£: B®*M — (HH(A, M), )

is right adjoint to the right hand vertical ma_p Thelog Hochschild homology groups
of (A, M) are the homotopy groups HA, M) = = HH(A, M).

Then HHA, M) is naturally a simplicial pre-log ring under and ovér (1), and a cyclic
pre-log ring over A, M). The comparison homomorphisth: HH(A) — HH(A, M)

is a morphism in each of these two categoriesA ik not flat overZ[M], we replace
A by a Z[M]-flat simplicial resolution, form HH{, M) degreewise, and pass to the
diagonal of the resulting bisimplicial ring.

Remark 3.24 We can also rewrite the pushout squares in Definiicd8as follows

HH(Z[M]) —> HH(Z[M], M)

g

HH(A)

HH(A, M)

where Z[M] has the canonical pre-log structure. In this sense the log Hochschild
homology of the canonical pre-log ringZ[M], M) (together with the Hochschild
homology of ordinary rings) determines the log Hochschild homology of igépee-

log rings. It can also be convenient to base change the top row of thégesglong
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a: Z[M] — A, to obtain a pushout square
A&z HHZIM]) —~ A @zm) HHZIM], M)
¢>i B l%
HH(A) v HH(A, M)
of simplicial commutativeA-algebras. Heré @z HH(Z[M], M) = A ® Z[BM9P].

4  Logarithmic K ahler differentials

We return to a review of the logahler forms in algebra, modifying Kato’s discussion
[35, 81, 83]to emphasize Dan Quillen’s view on commutative ring derivationsnmster
of abelian group object$, §2]. Again, we restrict attention to commutative rings,
but the generalization to commutatifRalgebras over a base commutative riRds
easy.

Definition 4.1 Let A be a commutative ring and lek be a left A-module. Since
A is commutative, we can also think dfas a rightA-module, withja = aj. The
square-zero extensiomA & J is the commutative ring with multiplication map

A x(ADI) — (AdJ)

that takesd; ®j1, a2Pj2) to apax®(j1a2+a1j2). The obvious projection: A®J — A
makesA ¢ J a commutative ring oveA, with augmentation ideal having the zero
multiplicationJ x J — J.

Remark 4.2 The inclusionn: A — A @ J taking a to a & 0, the multiplication
u: AeJdI = (A d) xa(A®J) — A Jdtakingadji dj2 toad (j1+]j2), and the
conjugationy: A®J — AdJtakinga®j to ad (—j), makeAd J an abelian group
object in the categorgRing/A of commutative rings oveA. As Quillen remarks, the
functorJ — A @ J is an equivalence from the categafods of A-modules to the
category CRing/A)ap of abelian group objects i@Ring/A.

Definition 4.3 Let A andJ be as above. Thaerivations of A with values inJ is the
abelian group
Der(A,J) = (CRing/A)(A,A® J)

of ring homomorphism® : A — A$J overA. These all have the forid(a) = a®d(a)
whered(ab) = d(a)b + ad(b), so the additive group homomorphistn A — J is
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a derivation in the more elementary sense. Rihler differentials of A is the
A-module
Q3 = A{da| a € A}/(d(ab) = (da)b + a(db))

generated by symbol$a for a € A, subject to the relationd(ab) = (da)b + a(db) for
all a,b € A. It corepresents derivations, in the following sense.
Lemma 4.4 The universal derivatio®: A — A® Q%, takinga to D(a) = a® da,
induces a natural isomorphism

Homa(Q4, J) = Der(A, J).

|

Lemma 4.5 Let g: C — A be a homomorphism of commutative rings, andJet
be anA-module. Writeg”J for J viewed as aC-module viag. Composition with
godid: C®J — Ad J induces an isomorphism

Der(C, g"J) = (CRing/A)(C,A® J).

Proof This is clear, since: C & J — C is the pullback ofe: A® J — A along
g. O

Lemma 4.6 LetM = (X) be the free commutative monoid on a ¥etThen
Qv = Z[M] @ MOP

is the fre€Z[M]-module induced up frotV9, with dx corresponding td  ~(x), for
allxe X c M.

Proof For eachZ[M]-moduleJ, there are natural isomorphisms
Der(Z[M], J) = {functionsd: M — J with d(ab) = d(a)b + ad(b)}
= {functionsX — J}
=~ CMon(M, (3, +)) = Ab(M%, (3, +))
=~ Homypmy (Z[M] @ M9P_J).
HenceZ[M] @ M9P corepresents derivations @{M]. O
Remark 4.7 When extended to simplicial commutative rings, the functor—

Der(A,J) admits homotopical right derived functors, known as the &nuillen
cohomology groupP9(A, J), see Quillen 0, 84]. These are corepresented as the
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cohomology group#i9(Homa(LLQ3, J)) of (the chain complex associated to) the sim-
plicial A-moduleLOL = A®p, Q%_ , known as theotangent complexwhereP. =A

is a cofibrant simplicial commutative ring resolutionff (Cofibrant effectively means
that P. is a free commutative ring, i.e., a polynomial ring, in each simplicial degree.)
The homology groups of the cotangent complex are the &AQuillen homology
groups Dg(A,J) = Hq(J ®a LQ3). As special casesD’(A,J) = Der(A,J) and
Do(A, J) = J®aQ%. When we pass from the algebraic to the topological context in the
next sections, we will automatically be working with mapping spaces that incaie
these derived functors. Therefore the natural generalization ofdhéeKdifferentials

will be the topological form of the cotangent compl&x2%, namely the topological
André—Quillen homology spectrum TAGY.

Lemma 4.8 Let M be a commutative monoid, and 1Bt => M be a cofibrant
simplicial commutative monoid resolution bf. Then

LQv ~ ZIM] ® F2.

Proof Cofibrancy effectively means th&t is a free commutative monoid in each
simplicial degree. The®. = Z[F.] = Z[M] is a cofibrant simplicial ring resolution
of Z[M], and Qf = Z[F.] @ F*, by Lemma4.6. HencelQj, ~ Z[M] @z,
(Z[F.] @ F9%) =~ Z[M] ® F, whereF2 denotes the degreewise group completion on
F.. |

Remark 4.9 Inthe notation of Lemm4d.6, dme Q%[M] does typically not correspond

to 1®~(m) € Z[M] @ M% whenm € M\ X. For exampled(x?) = 2x dx corresponds

to 2x ® v(x) rather than 1 ~v(x?), whenx € X. It follows that the simplicialZ[M]-
module structure ofZ[M] ® F% in Lemma4.8 is usually not induced up from the
simplicial abelian group structure oR?®. It would be if the simplicial operators

on F. took monoid generators to monoid generators, but this is rarely the case. Fo
example, if a face of € Fy is X2 € Fo, wherey and x are monoid generators, then
the corresponding face ofd y(y) is 2x® v(x), not 1® v(x?).

The zero-th homotopy group dMQ%[M] recovers the Ehler diﬁerentialsﬂ%w] , which
also does not need to be an extendgi]-module. It will be a finitely generated
projectiveZ[M]-module whenZ[M] is smooth ovelZ, but as we have just discussed,
the face map&[M] @ F1* = Z[M] ® Fg” with coequalizerolLQ}, are not extended
Z[M]-module maps in general. In the same way, the topological &-Quillen
homology TAQEM]) to be discussed in Definitioh0.3 will not in general be an
extendedgM]-module, even if this is so wheNl is a grouplike or free commutative
Z-space monoid. See Remédr@.11
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Remark 4.10 To define log derivations and logaKler differentials, we should deter-
mine the abelian group objects in a category of log rings over a fixed logAng). A
maximal choice is the categorog/(A, M) of all log rings overA. A minimal choice
is the subcategorgtrLog/(A, M) of log rings with a strict homomorphism té&\(M),
and strict homomorphisms between these. An intermediate choice, and lgrtieab
most interesting one, is the categafpdg©P/(A, M) of replete log rings overA, M).

The forgetful functors fromZog to PreLog, CRing and CMon are right adjoints,
hence preserve limits. It follows that the categorical produgiag/ (A, M) of two log
rings B1,N1) and B2, N,), both over A, M), is the log ring B1 xa Bz, N1 xm N2)
over (A,M). HereB; xa By C B1 x By andNz xp N2 € N1 x Np are the usual fiber
products.

When both augmentation8;( N;) — (A, M) are strict, and both projection84 xa
B>, N1 xpm N2) — (Bj, N;) are strict, then By xa Bz, N1 x Np) is the product of
(B1,N1) and B2, Ny) in the subcategorgtr£og/(A, M). When both augmentations
(Bi,N;) — (A,M) are replete, the fiber producByq xa B2, N1 xm N2) is replete
over A,M) (by Lemmag3.1]), so this is the product ofBi, N1) and B2, N>) in
Lod®P /(A M).

Definition 4.11 Let (A, M) be alog ring and led be anA-module. Thesquare-zero
extension (A @ J,n*M) is the log ring withA @ J as its underlying commutative
ring, and the inverse image*M of M along the inclusior: A — A& J as its
underlying commutative monoid. The projectien A ¢ J — A induces a strict
homomorphismd, €): (A® J,*M) — (A, e*n*M) = (A, M), sinceen = ida, which
makes A @ J, n*M) an object ofstrLog/(A, M).

Lemma 4.12 Let (A, M) andJ be as above. There is an isomorphism
M x (J,+) =n'M
of commutative monoids, whefg, +) denotes the underlying additive monoidf
Under this isomorphism, the log structure mgp: n*M — A @ J takes(m,j) to
am - -Aaj)) =alm o a(m)-j.
Proof We have a commutative diagram
{1} ——GLi(A) M——(A)

N

(1+J,) —GLi(A®J) 7'M = (A® J, )
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of commutative monoids. The preimage®if;(AcJ) C (A®Jd,-) in (A, ) is GL1(A),

S0 its preimage iftM is also isomorphic t@sL;(A), since M, a) is a log structure. It
follows that the middle square is the pushout defining the logificagiovM. The left
hand square is also a pushout, sit@le (A ® J) = GL1(A) x (1 + J,-). This gives an
isomorphismM x (1 + J,-) = n*M. When combined with the monoid isomorphism
(J,+) =1+, ) thattakeg € Jto 1+ € 1+ J, we obtain the isomorphism of the
lemma. O

Lemma 4.13 Let (A,M) be a log ring. The functor taking aft-moduled to the
square-zero extensidi ® J, n*M) is an equivalence from the categaktoda of A-
modules to the category @gtrLog/ (A, M))ap of abelian group objects strLog/ (A, M).

Proof The two projections from
A2IPeIMxIxINZ(ADI) xa(AB ), n"M xm n*M)

to (A J,n*M) = (A® J,M x J) are strict, hence D J) xa (AD ), n*M xm n*M)
is the product of A © J, n*M) with itself in strLog/(A, M).

The inverse image d¥l alongn: A — A®J, the inverse image of*M xyn*M along

e (AGJd) xa(A®J) — (AdJ), andthe inverse image gfM alongy : A®J — AdJ,

are all canonically isomorphic tg*M. Hence the abelian group object structure maps
n, p andy of A®J in CRing/A are all covered by strict homomorphisms of log rings
(n,1°), (u, *) and , x°), specifying how A@ J, n*M) is an abelian group object in
strCog/(A, M).

Conversely, an abelian group objeBt N) in str£og/(A, M) must map by the forgetful
functor to an abelian group object #iRing, so B = A & J must be a square-zero
extension. For the unit homomorphism, {°): (A,M) — (B,N) to be strict, we
must haveN = n*M. Hence Modsy — (str£og/(A, M))ap is an equivalence of
categories. |

Remark 4.14 By the previous lemma, the category of abelian group objects in
str£og/(A, M) does not depend on the log structure An It is plausible that the
larger category of abelian group objects ftog/(A, M), where the morphisms are
not required to be strict, provides a more interesting category of “log metaier

(A, M). Inthis case, the underlying commutative ring of an abelian group oligebt)(

in £og/(A, M) must still be a square-zero extensiBriz A @ J, while the underlying
commutative monoid must be an abelian group ob¢a CMon/M.

The latter objects must have the form N — M, wheree~1(m) ¢ N is an abelian
group for eachm € M, and the monoidal pairingl x N — N is given by group
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homomorphismse 1(my) x e 1(mp) — e 1(mump), for my,my € M. For ex-
ample, each abelian groug determines an abelian group objedt= M x K in
CMon/M, with structure maps(m, k) = m, n(m) = (m, e), u(m, ki, ko) = (M, kiky)
andy(m, k) = (m, k~1). However, in the current generality there are also abelian group
objects that do not have this form. For exampleiif= (Np, +) andK = (Z, +), the
commutative submonoitl ¢ M x K with e~1(e) = {e} ande~%(m) = K for m# e,

is an abelian group object ilMon/M. In this exampleN is integral but not finitely
generated. Replacing = (Z,+) by K = Z/2 we get a fine (= finitely generated and
integral) exampleN that is not saturated.

It therefore appears that the full categoryo€y/ (A, M))ap is rather complicated. By
restricting attention to fs (= fine and saturated) mondidsndM, or by working only
with N that are replete ove, one may ensure that the abelian group objects in the
restricted subcategory @fAMon/M all have the formN = M x K, for an abelian
group K. This seems to lead to more manageable categofleg™((A, M))a, and
(Lodg®P/(A, M))ap, respectively. For example, an object 86g°P/(A, M) will have
the form A ¢ J,M x K, ~) for someA-moduleJ, some abelian grou and some
pre-log structure

v MxK—=(A®J,").

This leads to questions like whichspecify (replete) log structures, and which objects
(A® J,M x K, ~) are abelian group objects ifiog®P/(A, M). We think these abelian
objects in replete log rings oveA(M) constitute a good candidate for a category of
log modules over4, M).

In the topological context, it is more natural to consider stable objects, emtrsp
rather than abelian group objects. The slogan is that “stabilization is abaliamniz
as seen e.g. in Schwedg?]. We view replete log rings under and ovek, M) as a
based (= pointed) category, and can form non-empty coproducts wiikindtegory,
as in Definition3.12 Passing to simplicial replete log rings under and o¥eM), we
can form tensor products with non-empty simplicial sets, and tensor prodtincthe
simplicial circleS! specifies a suspension functor on this category. The stable category
of (symmetric) spectra

Sp™((A,M)/Log®®/(A, M)

of simplicial replete log rings under and ovek, (M), with respect to this suspension
functor, appears to be the best algebraic category of log modules Aygr).( In
joint work with Steffen Sagave we are investigating the Quillertheory 1] of
this category, and its relation to the Quilléhrtheory of the localizatiolA[M 1] =

A ®zimp ZIMP].
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Definition 4.15 Let (A, M) be a log ring and an A-module. Thdog derivations of
(A, M) with values inJ is the abelian group

Der((A, M), J) = (Log/(A, M))(A, M), (A® J,n"M))

of homomorphisms[§, D%): (A, M) — (A@ J, n*M) of log rings over A, M).

More precisely, we should form the abelian group of strict log homomonmhisver
(A, M), but this is no restriction, as the following lemma shows.

Lemma4.16 Everylog homomorphisrtD,D?): (A, M) — (A®J,n*M) over(A, M)
is strict.

Proof The inverse image®*M andn*M are the pushouts d&L;(A) — M along
GL1(D) and GL1(n): GL1(A) — GL1(A & J), respectively. Heré&sLi(A @ J) is the
coproduct ofGL;(A) and (1+ J,-) both alongGL;(D) and alongGL;(n), so both
D*M and *M are coproducts oM and (1+ J,-), and D” induces the canonical
isomorphism between them. |

To corepresent log derivations by a module of log differentials, wessshe group of
log derivations as a pullback of the groups of ring derivations and mateidations,
subject to a compatibility condition. This uses the following definition.

Definition 4.17 Let M be a commutative monoid, arld an abelian group. The
commutative monoid derivationsof M with values inK is the abelian group

DerP (M, K) = (CMon/M)(M, M x K)

of monoid homomorphism®’: M — M x K over M. These all have the form
D’(m) = (m, d’(m)), whered’: M — K is a monoid homomorphism, and correspond
bijectively to the group homomorphisnw?® — K, whereM9 is the group completion
of M. We might call the abelian groul®P the commutative monoid differentials

of M. Recall that we writey: M — M for the canonical monoid homomorphism.

Lemma 4.18 The universal monoid derivatioB’: M — M x M9, taking m to
D’(m) = (m, v(m)), induces a natural isomorphism

Ab(M%, K) =~ Derf(M, K).
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Remark 4.19 In other words,M® corepresents commutative monoid derivations.
Unlike in the commutative ring case, this construction is already derivede $inc
F. = M is a cofibrant simplicial commutative monoid resolution (wkh a free
commutative monoid in each simplicial degree), then the degreewise groupetmmp
FI is still weakly equivalent taVi%. For a proof, see Pupp&§, §3.6, Satz 13]
or Quillen’s appendix in Friedlander-Maz4]. In other words, theommutative
monoid cotangent complexLM9% = F% is weakly equivalent to the commutative
monoid differentialsvI9P.

Proposition 4.20 Let (A, M, «) be a log ring and anA-module. There is a pullback
square

Der((A, M), J) Der(A, J)

| |+

Der (M, (3, +)) ——= DerZ[M], &*J)

of abelian groups. Her&),+) denotes the underlying abelian groupJfand a*J
denotes) viewed as &[M]-module via the adjoint log structure map Z[M] — A.

The homomorphisng* is induced by the ring homomorphism, taking a derivation
D: A — A®J to the compositdD o o. The homomorphism)* is induced by
the monoid homomorphism*«.: M — (A ® J,-), taking a monoid derivation
D’: M — 5*M to the ring homomorphisri[M] — A @ J that is left adjoint to the
composite monoid homomorphisgia o D”.

Proof Recall from Lemma4.5 the identification of Deff[M], &*J) with the ring
homomorphism#[M] — A& J over A, and from Lemmat.12the identification of
Der (M, (J, +)) with the monoid homomorphismd — 7*M overM. Alog derivation
(D,D"): (A,M) — (A @ J,n*M) consists of a ring derivatioD: A — A@ J and

a monoid derivatiorD’: M — n*M, subject to the compatibility condition that the
diagram

M < (Aa )
D’ ;)

M- (A 3,

of commutative monoids commutes. By adjunction, this is equivalent to the commu-
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tativity of the diagram

ZIM] —2— A
Z[D"]l lD

e

ZIf*M] —=A® J
of commutative rings. Hence the paiD,[D’) defines a derivation homomorphism
precisely whery*(D) = ¢/*(D"). O

Lemma 4.21 Let (A,M,«) be a log ring. The functors frorA-modules to abelian
groups that také to Der(A, J) andDer(Z[M], &™J) are corepresented by theiKler
differentialsQj and the induced-moduleA ©zpv) Qg , respectively. The natural
homomorphismp* is corepresented by the-module homomorphism

¢: Azm Wy — QA

given by
o(a® dm) = a- da(m)

fora € A andm e M. Itis left adjoint to theZ[M] -module homomorphisrﬁ%[,v,] —
Q3% induced bya: Z[M] — A.

Proof Thisis clear. ]

Lemma 4.22 Let (A,M, a) be a log ring. The functors frorA-modules to abelian
groups that také to Der(M, (J,+)) and Der(Z[M], a™J) are corepresented by the
inducedA-modulesA @ M andA @z Q%[M] , respectively, The natural homomor-
phism* is corepresented by the-module homomorphism

Wi ARz Ly — A MP

given by
Ya®dm = a- a(m) @ y(m)

forac Aandme M.

Proof For eachA-moduled there are natural chains of isomorphisms
Homa(A @ M, J) = Ab(M, (3, +))
=~ CMon(M, (J3,+))
=~ Der (M, (J, +))
= (CMon/M)(M, n*M)
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(using the identificatiom*M = M x (J,+) from Lemma4.12) and
(CMon/(A, )M, (As J, ")) = (CRing/A)(Z[M],As J)
~ Der@Z[M], &"J)
= (CRing/Z[M])(Z[M], Z[M] & J)
= Homyzqwm) (g J)
= Homa(A ®zpmy Uipps ) -

To find the corepresenting homomorphigimwe letJ = A ® M9 and note that the
identity homomorphism oA ® M9P corresponds, under the first chain of isomorphisms
above, to the monoid homomorphidi: M — n*M = M x (J, +) over M that takes
mto D’(m) = (m, 1 ® v(m)). By Proposition4.20, * takes thisD’ to the monoid
homomorphism*a o D”: M — (A® (A® M%), .) over (A, -) that takesm to

a(m) - (1& (1© (M) = a(m) & (a(m) @ (m).

Under the second chain of isomorphisms above, this corresponds #-thedule
homomorphism): A®zm Q%[M] — A® M9 that takesa® dmto a- a(m) @ v(m),
for m € M. Hence thisy is the A-module homomorphism that corepresents O

Remark 4.23 The elementsn € M generateZ[M] as a ring, so theimfor m e M
generateQ%[M] as aZ[M]-module, and the formula/(1 ® dm) = a(m) ® ~v(m)
determines théd-module homomorphismy. To see that it is well defined, we may
checkthat)(1od(mn)) = a(mnN®~y(mn) equals) (1 ((dmn+m(dn))) = a(m)a(n)®
(M) + a(m)er(n) @ ~(n).

Remark 4.24 The A-module homomorphismy is induced by theZ[M]-module
homomorphisnﬂ%w] — Z[M] @ M9 that takesdimto ¢(m) ®~(m), in the notation of
Definitions2.12and3.1 As we shall explain in Remad@.7, the latter homomorphism
corresponds to the stabilization of the repletion mapZ[M] ® Z[M] — Z[M] @'®P

ZIM] = Z[M] ® Z[M9], in the stable category associated to the based category
Z[M]/CRing/Z[M].

Definition 4.25 Let (A,M,«) be a pre-log ring. Théog Kahler differentials of
(A, M) is theA—moduIeQ(lAyM) defined by the pushout square

P
A®Z[M] Q%[M] —— A® M9P

% ; la

O ——— Qawm
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in A-modules of the homomorphismsand v from Lemmas4.21and4.22 respec-
tively. We write da for @z)_(da) anddlogm for g;(l ® v(m)), witha € Aandm e M,
where¢ and+ are the canonical homomorphisms. Note tti@b) = (da)b + a(db),
dlog(mn) = dlogm+dlogn, andda(m) = a(m)dlogm, fora,b € Aandm,n € M.

Remark 4.26 In other words,

Qamy = % & (AR MP)/ ~
where~ is A-linearly generated by the relatiaa(m) = ¢(1 ® dm) ~ (1@ dm) =
a(m) ® v(m) for m € M. Thus we recover Kato’s definition of log differentiaB5y
(1.7)]. The relationda(m) = «(m) dlogm, which shows thatllogm has the formal

properties of théogarithmic differential a~ldafor a = a(m), is the main reason for
the use of the adjective “log”, or “logarithmic”, in this theory.

Like in Kato’s introduction, we permit\, «) to be a pre-log structure in the definition
of Q(lA,M). When M, «) (or its logification M, «)?) is the trivial log structurey) and
¢ are isomorphisms, s, y = Q4. See also Lemmal.27

Proposition 4.27 Let (A, M, a) be a log ring. The universal log derivation
(D,D"): (A M) — (A® Qapy, 1"M)

takinga € A to D(a) = (a, da), and takingm € M to D°(m) = (m,dlogm), induces
a natural isomorphism

HOMA(2{a ). J) = Der((A, M), J).
Proof Use Propositiod.20 Lemmas4.21and4.22 and Definition4.25 O

Lemma 4.28 Let X C XUI'Y be a pair of sets, ldfl = (X) be the free commutative
monoid generated by, and letA = Z[(XUY)] be the free commutative ring generated
by XUY. Leta: M — (A, -) be the monoid homomorphism extending the composite
inclusionX € XUY — A. ThenM®® = 7Z{X} is the free abelian group generated
by X, ¢: A® Z{X} — A® Z{X U Y} is the inclusion induced bX C XUY,

v AR Z{X} — A® Z{X} is the sum overx € X of the injective A-module
homomorphisms::. A — A takinga to xa, and

Qam = A{X} & A{Y}

wherex € X andy € Y correspond tallogx anddy in Q%A,M)’ respectively. There is
a short exact sequence

res

0— 0k % 0bow =2 PAaxa-o,
XeX
where the residue mags takesdlogx to 1 € A/xA, anddy to 0. O
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Remark 4.29 Following Ofer Gabber, see OlssobS §8], we can define thiag
cotangent complexof a pre-log ring A, M) as the simplicialA-module

Ly =A@ k) Up. k) »

where P.,F.) = (A, M) is a cofibrant simplicial pre-log ring resolution of,(M).
Cofibrancy ensures that in each simplicial degyethe pre-log ring Ry, Fq) is freely
generated by a pair of se¥g C Xq L Yq, as in the lemma above. Our log topological
André—Quillen homology spectrum TA@(M) will be the generalization to pre-log
S-algebras of this log cotangent complex.

Remark 4.30 For a map R P,p) — (A, M, a) of pre-log rings, Kato also defines

an A-module Q(lA M)/(RP) of relative log Kahler differentials, which agrees with the

absolute log Khler differentials whenR, P) = (Z,{1}). The logification maps
(R,P) — (R, P? and A, M) — (A, M?) induce isomorphisms

1 = ol = 0l

Qam/®p) = Lamare) — Lamay/rp)
Formaps R, P, p) — (A,M, «) — (B, N, j3) of fine pre-log rings there is a transitivity
exact sequence
1 1 1
B ®a Qam/re) — Leny/re) — Lenam — 0

of B-modules, see Kat@p, Proposition 3.12]. For a pushout square

of pre-log rings, withB = A®r T, N = M $p Q and A flat overR, there is a base
change isomorphism
BT Qfr.0/mP) = Usny/am

of B-modules, see3b, page 196]. We say th# — B is formally étaleif Qé/A =0,

and A, M) — (B,N) is formally log étale if Q(lB N)/(AM) = 0. We shall discuss
topological analogues of these results later in the paper.

Remark 4.31 The log Kahler differentials of the canonical log structure satisfy

Uy my = ZIM] @ MOP.
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Hence, for a general pre-log ring\,(M) there is a pushout square
¥
A @z Vg — A @z Lzmg my

qsl |5

v
Q% Uamy

of A-modules. The localization mag\(M) — (AIM~1], M%) induces a further map
1 1 ~ Ol
Q(A,M) - Q(A[M—lLMgP) = QA[M—l] )

where the last isomorphism uses th#"2 is the trivial log structure or\[M—1].

Example 4.32 We continue the discussion of log structures on discrete valuation rings
from Example2.16 referring to Serre?5, §1.6] and Hesselholt-Madse9, §2.2]

for more details. LetA — B be a finite extension of discrete valuation rings, with
uniformizerst andx, fraction fieldsK — L, and residue fieldgk — ¢, respectively.

In particular, B is the integral closure oA in L. We assume thaK and L are of
characteristic 0, and th&atand ¢ are perfect fields of characteristic

We can writer = ux® in B, whereu is a unit ande is the ramification index. For
simplicity we may assume that= 1, since the pre-log structurés) and (x°) on A
have the same logification. Le{(X) € A[X] be the minimal polynomial ok over A,
so thatB = A[X]/(¢(X)). Then

Qf/a = B/(¢/(0), & ){dx}
and
Ve, )/ = B/ (x¢'(¥), ©){dlogx}
sincedd(x) = ¢'(x) dx, dr = d(x®) = e~ 1dx anddlogr = dlog(x¥) = e dlogx.

- . g _ 1 _ 1 _
!f A—Bis l,Jnramlfled, s@ =1, th?nQB/A =0 andQg ) (A = 0, SOA— B
is (formally) étale and (formally) logtale.

If A — B is totally ramified, see = [L : K], then ¢(X) is an Eisenstein polynomial
P(X) = X — 70(X)
wheref(X) € A[X] has degree< e, andf(0) is a unitinA. Then
(¢'(x), @Y = (x0'(x), &)

is contained in X) unlesse = 1, so QE/A = 0 only if A — B is an isomorphism.
Furthermore,
X¢'(X) = e — xm6'(X) = 7(ed(X) — x6' (X))
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S0 k¢'(x)) C (m) C (¥). HenceQ(lBKX»/(A’(ﬂ» = 0 if and only if e is a unit in
B/(X) =¢,i.e. ifand only ifpt e.

A general finite extensio® — B is the composite of an unramified and a totally
ramified extension, s& — B is étale if and only ife = 1, and @, (7)) — (B, (X))

is log étale if and only ifp t e, i.e., if and only if A — B is tamely ramified. In

this way, log geometry extends the rangetdleness (and smoothness) to allow tame
ramification.

5 Symmetric logarithmic structures

We recall an interpretation of the Hochschild homology of a ring, baseduite@[60,
§3], which is similar to the interpretation of theéKler differentials as a corepresenting
object for derivations. Thereafter we extend this point of view to the &sgc

Definition 5.1 Let A be an associative ring, always with unit, andAét= A @ A°P,
so thatA®-modules are the same @sbimodules. LetK be anA-bimodule. The
square-zero extensiorA @ K is the associative ring with multiplication

(a1 @ k) (2 © k) = agax @ (kiap + arky) -
The augmentation: A® K — A takinga @ k to a makesA @ K an associative ring

over A, with two-sided augmentation idel having the zero multiplication.

Remark 5.2 The structure maps, i and x, defined as in Remark 2 makeA ¢ K

an abelian group object in the catega#yRing/A of associative rings oveA. The
functorK — A @ K is an equivalence from the categafodae 0f A-bimodules to
the category ARIinNg/A)ap. See Quillen§0, §3].

Definition 5.3 Theassociative derivationf A with values inK is the abelian group

ADer(A,K) = (ARIing/A)(A,A® K)

of associative ring homomorphisnis: A — A K over A. Define theA-bimodule
Da of associative differentialsby the short exact sequence

0—>DAi—>A®Am>A—>O

of A-bimodules, wheren(a ® b) = ab. It corepresents associative derivations, in the
following sense.
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Lemma 5.4 The universal associative derivatidh. A — A @ Da, taking a to
D(a) = a® da wherei(da) = 1® a— a® 1, induces a natural isomorphism

HomAe(DA, K) = ADEI'(A, K) .

WhenA = T(X) is the free associative ring generated by aXefDer(T(X), K) =
{functionsX — K}, soDtx) = T(X)® ® Z{X} is a freeT(X)®-module. O

Definition 5.5 If A is a commutative ring, so tham: A® A — A is a ring homo-
morphism, we say that afi-bimoduleK is symmetric if the left and rightA-module
actions onK agree:a-k = k-afor a € A, k € K. Equivalently,K is symmetric
if K = m"J, wherel is the underlying leftA-module of K and m*J denotes the
A-bimodule obtained frond by restriction alongm. Let

SDer@, J) = ADer(A, m"J)

be thesymmetric derivations of A with values inJ.

Lemma 5.6 The restriction functom?: Moda — Modae is compatible with the
forgetful functor (CRINg/A)an — (ARING/A)ap under the equivalencestoda ~
(CRiIng/A)ap and Modae ~ (ARING/A)ab-

Proof The forgetful functor between abelian group objects exists becaukededful
functor CRing/A — ARIng/A preserves finite products. The compatibility amounts
to the fact thatA @ J in Definition 4.1 agrees withA @ m*J in Definition 5.3. O

Lemma 5.7 Let A be a commutative ring, let be anA-module, and leti?J be the
corresponding symmetris-bimodule. There is a natural isomorphism

Homa(A @ae Da, J) = ADer(A, ni'J).

In other words, the symmetric derivations Afare corepresented by thhe-module
A ®ae Da of symmetric differentials. ]

Remark 5.8 For a commutative ringh and anA-moduleJ, a symmetric derivation
D: A— A& "] over A is the same as an ordinary derivatibn A — A& J over
A. Hence the symmetric differentiafs®ae Da = DA/Di are canonically isomorphic
to the Kahler diﬁerentialsﬂ}\. However, sincéD, is defined for associative rings and
Q3% for commutative rings, their homotopically derived functors will be différen

The case of Khler differentials and the cotangent complex was discussed in Re-
mark4.7. In the associative setting the functdr— ADer(A, K) acquires homotopical
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right derived functors when extended to simplicial rings. These fuscog corep-
resented by the simpliciah-bimodule LDy = A® ®te Dt,, where T. = Ais a
cofibrant simplicial ring resolution of. As usual, cofibrant effectively means that
T. is a free associative ring, i.e., a tensor algebra d&elin each simplicial de-
gree. We callLDp theassociative cotangent complexXWhen the composite functor

A — SDer@, J) = ADer(A, m"J) is derived in the same way, the corepresenting object
is the simplicial A-module A ®ae LDa = A ®Te Dr., which we call thesymmetric
cotangent complex

Remark 5.9 By Lemma5.4, LD, is a freeA®-module in each simplicial degree. If
we assume thaA is flat overZ, thenT® =s A®, soLDs — Da is a freeA®-module
resolution. LetB. = B(A,A,A) = Al ® A be the two-sided bar construction én
Since we are assuming thais flat overZ, ¢: B. = A is a flatA¢-module resolution,
and there is a weak equivalengexae LDa ~ B. ®ac Da. Hence the short exact
sequence oA-bimodules definind, yields a homotopy cofiber sequence

A ®Rpe LDa — B. — HH(A)

of simplicial A-modules, where we use thBt @ae A = HH(A). The left (or right)
unit inclusionA — A® A = By — B. is a weak equivalence, and the composite
map A — HH(A) equals the usual structure mgp We might therefore, somewhat
imprecisely, say that

A@pe LDA — AL HH(A)

is a cofiber sequence up to homotopy, wheiie split injective. In particular, there are
isomorphisms

HHq1(A) 2 (A @ae LD) = Torg (A, Dp)

for q > 0.

Definition5.10 Let A be an associative ring. Aassociative pre-log structuregM, «)
on A is an associative monoidl and a monoid homomorphism: M — (A, -) to the
underlying multiplicative monoid. It is aassociative log structureif the restricted
homomorphismy1GL1(A) — GL1(A) is an isomorphism. Amssociative (pre-)log
ring is an associative ring with an associative (pre-)log structureomomorphism
(f,f%): (A,M) — (B, N) of associative pre-log rings is a ring homomorphismA —
B and a monoid homomorphisfii: M — N such that{,-)oa = 8o f”. Associative
log rings generate a full subcategady/Cog of the category4PreLog of associative
pre-log rings.
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Lemmab.11 Let(A, M) be alog ring, and lel be anA-module. Ther{A, M) is also
an associative log ring, and the forgetful functéog/(A, M))ap — (AL0g/(A, M))ap
takes the abelian group objeét® J, n*M) in Log/(A, M) to an abelian group object
(A m?d, n*M) in ALog/(A,M). Heren*M = M x (J, +).

Proof The underlying associative ring of a commutative log ridgNl) is an asso-
ciative log ring, since the forgetful functor preserves the formatio8bf(A) C (A, )
and the pullbacky—1GL1(A) C M. There is a forgetful functor between abelian group
objects because the forgetful functéog/(A, M) — ALog/(A, M) preserves finite
products. The factorization ofM is from Lemma4.12 O

Remark 5.12 We omit to discuss inverse images of associative log structures, general
abelian group objects ilLog/(A, M), associative log derivations, and associative log
differentials.

Definition 5.13 Let (A, M) be a (commutative) log ring, and létbe anA-module.
Thelog symmetric derivationsof (A, M) with values inJ is the abelian group

SDer(@, M), J) = (ALog/(A, M))((A, M), (A& m"J, *M))
of homomorphisms[}, D"): (A, M) — (A& ni*J, n*M) of associative log rings over
(A, M).

Definition 5.14 Let M be an associative monoid, arl an abelian group. The
associative monoid derivation®f M with values inK is the abelian group

ADer' (M, K) = (AMon/M)(M, M x K)
of monoid homomorphismB’: M — M x K overM. Let H,(BM) 2 M229P pe the
abelian group oéssociative monoid differentialsof M.

If M is commutative, thsymmetric monoid derivations of M with values inK is
the abelian group
SDer(M, K) = (AMon/M)(M, M x K)

of monoid homomorphismB”: M — M x K over M. Let H{(BM) = M% be the
symmetric monoid differentials of M.

Lemma 5.15 There is a universal associative monoid derivatidn M — M x
H1(BM), takingm to D’(m) = m& [m] where[m] is the homology class af viewed
as al-simplex inBM. It induces a natural isomorphism

Ab(H1(BM), K) =2 ADer’ (A, K)..



50 John Rognes

WhenM is a free associative monoid, there is a weak equivalence
SH1(BM) ~ Z{BM}

of simplicial abelian groups, whergH1(BM) is the simplicial suspension of the
constant simplicial abelian grotth (BM), Z{BM} is the degreewise free abelian group
on the simplicial seBM, andZ{BM} is the kernel of the augmentati@{BM} — Z.

Proof For each abelian grould, there is a natural chain of isomorphisms
(AMon/M)(M, M x K) = AMon(M, K)
>~ ¢ Mon(M?, K)
>~ Ab(M3%P K) = Ab(H1(BM),K).

WhenM is the free associative monoid on a ¥etBM is weakly equivalent to a wedge
sum ofX circles, soZ{BM} has homotopy concentrated in dimension 1, which makes
it weakly equivalent to the suspensidiHi (BM). O

Remark 5.16 As for derivations of rings, symmetric monoid derivations and commu-
tative monoid derivations are the same, but their homotopically deriveddisnare
different. Theassociative monoid cotangent compleaf M is the simplicial abelian
groupLH1(BM) = H1(BF.), whereF. = M is a simplicial resolution oM by free as-
sociative monoids. By Lemnal5there is a weak equivalenééHq(BF.) ~ Z{BF. },
andZ{BF.} ~ Z{BM} by the Hurewicz theorem, so

SLH1(BM) ~ Z{BM}
has homotopy groupsqLH1(BM) = Hq1(BM) for g > 0, isomorphic to the higher
homology groups oBM.

When M is a commutative monoid, th&ymmetric monoid cotangent complexof
M is the same simplicial abelian groliH1(BM) = Hy(BF.), whereF. = M is a
cofibrant associative monoid resolution f, so the formulaZLH;(BM) ~ Z{BM}
continues to hold.

Proposition 5.17 Let (A,M, ) be a (commutative) log ring andl an A-module.
There is a pullback square
SDer(@, M), J) SDer@, J)
l |-
SDef(M, (3, +)) ——= SDerg[M], &)

of abelian groups. The homomorphism is induced bya: Z[M] — A, and the
homomorphism)* is induced byn*a:: M x (J,+) = n*M — (A® J, ). O
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Lemma5.18 The functors fromA-modules to abelian groups that takéo SDer@, J)
andSDerZ[M], &™J) are corepresented by the symmetric differenthaispe Da and
the inducedA-moduleA ®@zpvje Dz, respectively. The natural homomorphisin
is corepresented by the-module homomorphism

¢ A®zmpe Dzim; — A ®pe Da
induced bya: Z[M] — A. 0

Lemma 5.19 The functors fromA-modules to abelian groups that take¢o

SDef(M,(J,+)) and  SDerg[M],a"J)
are corepresented by M9 and A @zimje Dz, respectively. The natural homo-
morphismm)* is corepresented by the-module homomorphism

¥ A®zme Dzpv) — A@ MOP
given by
Y(@®dm =a- a(m) @ y(m)

forac A andme M.

Proof We have a natural chain of isomorphisms
(AMon/(A, )M, (A® J, ) = (ARIng/A)Z[M], A J)

~ ADer(Z[M], &'J)

= (ARIng/A)(Z[M], Z[M] & J)

= Modzmie(Dzmy, J)

= Moda(A ®@zmie Dz, J) -
Let J = A® M9 and note, as in the proof of Lemma22 that the identity homomor-
phism of A ® M9 corresponds to & € SDer(M, (J, +)) that maps undet* to the
monoid homomorphism*aoD” over (A, -) that takesnin M to a(m)& (a(m) @v(m))
in (A® J,-). Under the chain of isomorphisms above, this corresponds t@ [thig-

bimodule homomorphism that takein Dzpv; to a(m) @ y(m) in J, and thus to the
assertedA-module homomorphism. |

Definition 5.20 Let (A, M, «) be a (commutative) pre-log ring. Tleymmetric log
Kahler differentials of (A, M) is the A-module A @ae D(a M) defined by the pushout
square

Y

A @zmpe Dzim A® M9P

‘| E

A ®pe Da Y LA ®pe D(am)
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in A-modules.

Proposition 5.21 There is a natural isomorphism
Homa(A ®@ae Damy, J) = SDer(@A, M), J).

|

Remark 5.22 Thesymmetric log cotangent complexshould now be constructed as
L(A ®ae Dam)) = A®Te D(r. F.)

using a cofibrant replacement.(F.) = (A, M) in a (closed) model structure on
simplicial associative log rings, in the sense of Quillé][ We have not worked out
the details of such a model structure, but it is clear that the simplicial objeceaaill
be the pushout in a suitable category of the maps

A® LH1(BM) <~ A @zmpe LDz —2 A ®pc LD

connecting the symmetric cotangent comple¥{f1] to the symmetric monoid cotan-
gent complex oMM and the symmetric cotangent complexAaf

Recall the cofiber sequence up to homotopy
A®pe LDa — A L HH(A)

from Remarks.9, wheren is split injective as a map of simplicial commutative rings.
The analogous sequence f8fM] takes the form

A Xz[M]e LDZ[M] — A MR A®Z[M] HH(Z[M]) ,

after base change along: Z[M] — A. By Lemmab.15 there is also a cofiber
sequence up to homotopy

A®LH1(BM) — AL A Z[BM],

wheren is again split injective, with mapping core® YLH1(BM) ~ A® Z{BM}.
Here Z[BM] = Z{BM} as simplicial abelian groups, but sin&M is a simplicial
commutative monoid, we can also think BiBM] as a simplicial commutative ring,
and therefore we switch to the monoid ring notation.

This suggests that theg Hochschild homologyof (A, M) should sit in a cofiber
sequence up to homotopy

L(A®a Diamy) — A L HH(A, M)
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with n split injective. In particular, HH§ M) should be a homotopy pushout of
homomorphisms

A® Z[BM] <& A @z HH(ZIM]) 2 HH(A)

in a suitable category.

Lemma 5.23 The extensionp: A @z HH(Z[M]) — HH(A) of (the suspension
of) Lo: A®gzme LDzim; — A ®ae LDa is homotopy equivalent to the natural ho-
momorphism of simplicial commutative rings induceddy Z[M] — A. Itis given
by

Pp(@a®@ (Mo, my, ..., My)) = (ac(mo), a(my), . . .., (M)

in simplicial degreey. O

Lemma5.24 The extension) . A®zm HH(Z[M]) — A®Z[BM] of (the suspension
of) Ly A®@zmje LDz — A ® LH1(BM) is homotopy equivalent to the natural
homomorphism of simplicial commutative rings obtained from

Zl(e,m)]: HH(Z[M]) = Z[BYM] — Z[M x BM] = Z[M] @ Z[BM]

by base change along: Z[M] — A. Heree: BYM — M andrw: BYM — BM
are the natural maps takir{@o, M, ..., mg) in simplicial degreeq to ]_[iqzo m;, and
[my] ... |my], respectively. The simplicial ring homomorphism is given by

q
1/J(a® (rTb, m, .. 7%)) = aHOé(rT‘E) ® [ml‘ s |rnQ]

i=0
in simplicial degreey.

Proof BylLemmab5.19 ¢: A®zmje Dziv) — A® M9 takes v dmto a(m) @ ~(m).
The identificationA @z mje Dzim) = A®zm) HH1(Z[M]) takes 1o dmto 1® (1, m) =
1®om, and the identificatiod®@ M9 = A®H,(BM) takesa(m)®~(m) to a(m)®[m].
Hencey: A®zm HH(Z[M]) — A® Z[BM] takes 1 ocmto a(m) ® [m], and agrees
with the claimed formula in dimensions 1.

WhenM is an associative monoid, we interpletzv; HH(Z[M]) as HHEZ[M], A),
i.e., the Hochschild homology é&£[M] with coefficients in the bimodulé&. WhenM
is free associative, both HA[M], A) and A ® Z[BM] are trivial in dimensions> 2,
hencey agrees with the claimed formula in all dimensions.

Returning to the case of acommutative mondidet F. = M be aresolution by a sim-
plicial associative monoid that is free associative in each degree. THEA[R.], A) —
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A® Z[BF.] agrees with the claimed formula forin all degrees and dimensions. It fol-
lows (modulo coherence) that: A®zpv HH(Z[M]) = HH(Z[M], A) — A® Z[BM]
is given by the asserted formula, since both mapsZAH(, A) — HH(Z[M], A) and
Z|BF.] — Z[BM] are weak equivalences. |

Remark 5.25 Given Lemmas.23and5.24 it is quite clear that HH, M) should
be the pushout o and+ in the category of simplicial commutative rings, so that we
have the following three (homotopy) pushout squares

A e — 29 7im « BM]

ZM] —Z
A A @z HHEZIM]D) —Y > A Z[BM]

o . |5

HH(A) HH(A, M)

in that category. Up to the weak equivalerBex BM — B x BM9 = BPM of
Lemma3.17, the composite of the two right hand squares is exactly the same as the
second pushout square of DefinitiBr23 where HHA, M) was defined as the replete
tensor product ofS' copies of A, M). We view this agreement of constructions,
one in terms of replete pre-log structures, and the other in terms of a symmetric
log derivations, as a confirmation that both notions are meaningful ano@mgte.
However, the former definition has the advantage that it produces a opgéict, and

the structure mapg and+ defining the pushout are not just defined up to homotopy.
These features will be essential when we proceed to consider cyclottomgtuse in

the topological context.

Remark5.26 One may reverse engineer the passage between the symmetric log cotan-
gent complex and the log Hochschild homology, to determine that the morphigms
andLy in Remark5.22should be viewed as morphisms in a category of desuspended
simplicial non-unital commutative rings, and the pushout defirfifig ®ae D(am))

should be formed in that category. In other words, the suspensigA ©ae D m))

is the pushout obLL¢ and XL+ in simplicial non-unital commutative rings. This fits

with the degree zero paft®ae D(am) being the pushout op ands) in A-modules, as

in Definition5.20

Definition 5.27 Let R — A be a homomorphism of commutative rings. TeRham
complex
* * 1
QA/R = AAQA/R
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is the exterior algebra ovek on the Kahler differentials ofA relative toR. It is the

free graded commutativA-algebra generated by trmmoduleQ}i/R. WhenR =7

we omit it from the notation. As in Rematk8there are identifications
Q%\/R =~ A®pe Dpjr = HHT(A),

taking adb to the Hochschild class o @ b. In view of the graded commutative
A-algebra structure on HHA) there is a canonical map

Qa/r — HHEA) .

By the Hochschild—Kostant—Rosenberg theor@ij,[see also Loday42, 3.4.4], this
map is an isomorphism wheh is smooth oveR.

Let (R,P) — (A, M) be a homomorphism of pre-log rings. Tlog de Rham complex

* _ AxO1l
Qamy/rp) = Aa2amy/rP)

is the exterior algebra ovéY on the log Kahler differentials of & M) relative to R, P).
Itis the free graded commutative-algebra generated kfy(lA M)/(RP)" When R P) =
(Z,{1}) (the absolute case) we omit it from the notation. There are identifications

Qawy/rp) = A@ae Damy/re) = HHEP(A M)

taking adb andadlogm to the log Hochschild classes &}(a ® b) and d?(a ® [m]),
respectively. See RemaBk24and Definitiongt.25and5.20 Hence there is a canonical
map

(5.1) Qamy/wrp — HHEP(A M)
of graded commutativé-algebras.

Proposition 5.28 When (A, M) is log smooth ovefR, P), so thatQ(lA M)/(R.P) is a
finitely generated projectiv&-module, then the canonical mdpl) is an isomorphism

Remark 5.29 We plan to prove this result, together with its topological generalization
forlog THH smooth R, P) — (A, M), in joint work with Philipp Reinhard. The ideais
to construct a log Quillen spectral sequence, analogous to Qulte(d.2)], Minasian

[51, 2.7] and McCarthy—Minasiarg, 1.1] in the classical cases.



56 John Rognes
Part Il

Logarithmic structures on structured ring
spectra

6 Topological foundations

We now promote the algebraic theory of the previous part to a topologitialgsevhere
rings are replaced by structured ring spectra and monoids are refigpctdictured
H-spaces. In fact, we have at least two choices of topological foumdattmased
on the work of Peter May et al[l] and of Jeff Smith et al32], respectively, so we
begin by reviewing these. We emphasize the topological analogues oftdgoias,
functors and adjunctions that played key roles in Sectdhsoughb. A third choice of
foundations, in the context of infinity-categories, with better formal pribggewhen it
comes to adjunctions, has been contemplated by Clark Barwick, but wetaiisouss
its details in this review.

Definition 6.1 Let I/ be the category of (compactly generated weak Hausdorff) un-
based topological spaces and continuous mapsZLke the category of (compactly
generated weak Hausdorff) based topological spaces and biad@gserving contin-
uous maps. LetMs be the category o8-modules in the sense of EImendorf—Kriz—
Mandell-May P1, §11.1]. There are adjunctions

(=)+ »oo
g-1: U T Msg: Q=
QOO

with the left adjoints on top, where the unlabeled arrow is the forgetfultéundVe
write X — §X] = »%*°(Xy.) for the composite functa/ — Mg, andE — Q>E for
the composite functoM s — U, so thatg—] is left adjoint to2>°.

The suspension spectrum funcor®: 7 — Ms is the composite of the suspension
prespectrum functoE>° from 7 to Lewis—May prespectr&U on a fixed universe
U (a countably infinite dimensional inner product space), the spectrificttiaror L

to Lewis—May spectr&U, the free functoil to LL-spectra, and the funct@ A, (—)

to S-modules. BylLewis—May (pre-)spectra we mean the non-equivariant form of
the G-(pre-)spectra discussed in Lewis—May—Steinberg8r §1.2]. The underlying
infinite loop space functaR*>: Mg — 7 is the composite of the functét. (S, —) to
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L-spectra, the forgetful functors to spectra and prespectra, ahtéea at the zero-th
indexing space 0 in the universe.

Definition 6.2 The cartesian product of spaces, resp. the smash products of based
spaces and o8-modules, turni, x, ), (7,A,S) and (Ms, A, S into symmetric
monoidal categories. Leafs be the category ofommutative S-algebras i.e., the
commutative monoids ioVs. For a fixed commutativ&-algebraA, let Ca = A/Cs

be the category ofommutative A-algebras i.e., the commutativ&-algebras under

A.

Let £ be thelinear isometriesoperad (in &/, x, *)) associated to the fixed universe
U, with j-th spaceL(j) equal to the contractible space of linear isomettigs— U.
Following May 47, §3] we let£ . be the operad inT, A, ) with j-th spacel(j),
adding a disjoint zero. The underlying Lewis—May spectrum of each cdativel
S-algebraA has a canonicaf -action, with structure map

\/ £G) x5 AV — A,

j>0
making it anE., ring spectrum for theE,, operadL, see R1, §11.4]. These are
homotopy commutative ring spectra satisfying coherence conditions of dgrsor
Evaluating on zero-th spaces, one finds th&tA has a canonical ;. -action

V £0)+ Asy QWY — Q=A
j>0
in (7, A, SO) that makes it anCg-space Applying the forgetful functor to unbased
spaces, there is a canonigalaction
TT£6) x5 Q<A — Q>A
j>0
in (U, x,*) that makes2>°A an L-space To emphasize that we retain the (multi-
plicative) £- or £, -action on{2>°A, we denote it by A.

Let Lo[7] be the category ofp-spaces ir?, less formally known ag&., spaces with
zeroMay [46, §1V.1], and letL[/] be the category of -spaces iri/, similarly known
as E,, spaces These are homotopy commutati¥é-spaces satisfying coherence
conditions of all orders. There are two composable adjunctions

(=)+ noe
S-1: LU] " Lo[T] " Cs: QF
QOO

®
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as before, where all functors are compatible with those in Definiidnvia the
functors that forget the multiplicative structure. For example, gives @paceM, the
unreduced suspension spectr§fiv] is the commutatives-algebra with£-action

V £G) x5y (5M)Y = 52(J ] £G) x M)y — 5*M,
j=0 i>0

on its underlying Lewis—May spectrum.

Definition 6.3 There are free functors: U — L[U], Lo: T — Lo[7] and
P: Ms — Cs, defined byLX = [[j50£() x5 X, LoY = V50 L0)+ As; Y/
and PE = \/;5oEN/Yj, for X'in ¢, Y in T andE in Ms. These three functors
are left adjoint to the forgetful functors[U{] — U, Lo[7] — T and(Cs — Ms,
respectively.

Remark 6.4 There are topological model structures on the categdfies and Mg,
such that cofibrations are retracts of relative cell objects, weak &guives have the
usual meaning, and fibrations are Serre fibrati@is § VII.4]. The two composable
adjunctions in Definition6.1 form Quillen pairs, hence induce weak equivalences
between the derived (= homotopically meaningful) mapping spaces, such as

Ms(SX],E) ~ T (X, Q°E) ~ U(X, QE) .

Furthermore, there are topological model structures on the categtjids Lo[7]
and Cs, as explained in41, 8VII.4], such that the two composable adjunctions in
Definition 6.2 consist of Quillen pairs. Hence there are weak equivalences ovéd@ri
mapping spaces

CS(SIM], A) = Lol )M, QZA) = LIUI(M, QT A).

Lastly, the three adjunctions in Definitiah3 are also given by Quillen pairs, in-
ducing weak equivalenceS[U](LX, M) ~ U(X,M) for X in ¢/ and M in L[],
Lo[T](LoY,N) ~ 7T(Y,N) for Y in 7 andN in Lo[7], and Cs(PE, A) ~ M<(E, A)
for E in MsandA in Cs.

Lemma 6.5 The categoryL[U] is complete and cocomplete, and the formation of
limits commutes with the forgetful functor té. The colimit of a diagram of -spaces
i — M; is given by the coequalizer
polk
L(colim; LM;) _; L(colim; M;)
Lg
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formed inU, wherecolim is the colimit inU, : colim; LM; — L(colim; M;) is the
canonical mapy.: LL — L expresses composition iy, and¢ is the colimit of the
structure mapsg;: LM; — M;.

The coproduct of cofibranil, andM» in L[U] is weakly equivalent to the cartesian
productM; x My, via the canonical mapi [[ M2 — My x Ma.

Similar statements hold for limits, colimits and coproductLii7], relative toT,
using the limits, colimits and smash products/in

Proof Being a right adjoint, the forgetful functor commutes with limits. The exis-
tence of colimits inL[L/], and the expression for the colimit in terms of a (reflexive)
coequalizer, follow as inq1, 11.7.4]. The monad. preserves reflexive coequalizers by
[21, 11.7.2]. See Basterra—Mandell3, 6.8] for the weak equivalence of the coproduct
and cartesian product. |

Definition 6.6 Let L[U]% c L[U] be the full subcategory ajrouplike L£-spaces.
For eachl-spaceM let FM be the grouplike sulf -space consisting of the homotopy
invertible elements iMM. See May 46, §l111.2]. The inclusion.: FM — M is the
embedding of a set of full path components, and is therefore a fibratlwsresulting
functorF: L[U] — L[U]® is right adjoint to the forgetful functor, with: FM — M
as the adjunction counit. For each commutat/algebraA we write GL1(A) for the
grouplike £-spaceFQg’A. There is a pullback square

GL1(A) ——= QXA

GL1(moA) — moA

of L-spaces, where the vertical maps take a point to its path component, and the
horizontal maps are inclusions.

Definition 6.7 Let C,, be thelittle oo-cubesoperad, withj-th spaceC.(j) the
colimit over n of the space’y(j) of j little n-cubes inI" = [0,1]". See May 45,
84]. Like L, C is an E,, operad. LetC[U] be the category o€, -spaces,
and letCo.[U/]°P be the full subcategory of groupliké,.-spaces. To eacl..[U/]-
spaceM there is an associated prespectrBMM = {n — B"M}, with n-th space
B"M given by a monadic bar constructi@(>", C,, M). See May {5, §9, §13]. Here
CX = ]_[1-20 Cn(j) xx; X"/ ~1 denotes the fre€,-space on a unit-pointed spacg (),
50 CnS = [1;>(Cn(j)/%;, for example. The adjoint structure maBm — QB 1M
are weak equivalences for> 1. The associated infinite loop spakkl = Q°B>*M
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is grouplike, and this construction definegraup completion functorI': C..[U] —
Coo[U]9P. At the level of homotopy categorieblo(I') : Ho(Coo[U]) — HO(Coo[U4]9P)

is left adjoint to the forgetful functoHo(C [14]9°) — Ho(Coo[Uf]), but this adjunction
does not strictly lift toC..[U/] and C.[U4]%P. Still, there is a natural group completion
map v: M — I'M, which induces the adjunction unit at the level of homotopy
categories.

Using the chairC,, < Co x £ — L of maps ofE., operads, it is possible to define
two adjunctions

LIU = (Coo x LUl __~ CoolU]
that induce a chain of equivalences at the level of homotopy categbuieghich do
not compose to a direct adjunction betwe@sspaces and,, -spaces. Stringing these
constructions together we get a group completion funEtorL[U/] — L[U]%P, with
a natural mapy: M — I'M that is a weak equivalence whéh is grouplike. Again,
this Ho(I) is left adjoint to the forgetful functoHo(L[1/]%P) — Ho(L[U/]), but its lift
T" is not an adjoint in the strict sense.

Remark 6.8 We may also viewl as a non¥ operad, in which case it is aA,
operad. The underlying Lewis—May spectrum of an associdératgebraA has a
canonical nonx £-action, so2g’Ais anon Lo-space, i.e., al,, space with zero.
Forgetting the special role of 0, it is also a nBhL-space, i.e., al\,, space. The
homotopy unitd=Qg'A = GL1(A) form a grouplike nont £-space, and we can group
complete a nor= L-space by passing fromd to the non: operad of “little ordered
intervals”, which has the same algebras as the ordinary opg&raBor C1-spacedM,
BM = B(X, C;, M) andI'M = Q2BM still make sense.

Definition 6.9 Let S be the category of simplicial sets, |8y be the category of
based simplicial sets, and I8p* be the category afymmetric spectrain the sense

of Hovey—-Shipley—Smith32]. We view symmetric spectra as right modules over the
sphere spectrurs.

We now follow Schlichtkrull 9, §2] and [f0, 82]. LetZ be the skeleton category
of finite sets and injective functions, with one objettfor each integem > 0,
and morphism setg(m, n) equal to the set of injective functions: {1,...,m} —
{1,...,n}. Let ST be the category of -spacesi.e., functorsX: Z — S, and let
ST be the category dbasedZ-spacesi.e., functorsY: Z — Sp. The permutations
Yn = Z(n, n) actfromthe leftor¥(n), and the inclusiod 1,...,n} — {1,...,n,n+1}
induces a stabilization mag, — Yni1. There are two composable adjunctions

=)+ oy
g-1: ST "S5 Spt
o
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where the unlabeled arrow is the forgetful functor. The functer,(takesX in S* to

X4 with X5 (n) = X(n). The functory® takesY in SOZ to the symmetric spectrum
with n-th spaceX"Y, = Y, A S, with the diagonal>,-action and structure maps
o 2(Ya A S) = Ynrr A S induced by the stabilization map above. The functor
Q" takesE in Sp™ to a based -spaceQ’ E, with n-th spaceQ"E,,. Eacha in Z(m, n)
induces the map,: QMEy, — Q"E, takingf: S — En, to the composite

-1
S g g M e AL E L E,,

wherev: n — nis any choice of permutation that extenas

Remark 6.10 The colimit-overZ functor coliny: S? — S is left adjoint to the
constantZ -space functoS — S”. In the model structures of Christian Schlichtkrull
and Steffen Sagaveés§], [67], this adjoint pair is a Quillen equivalence, so that we
can viewZ-spaces as an equivalent model for simplicial sets (or topological space
Similar remarks apply for basefi-spaces, based simplicial sets and based spaces.

The reason for working witlT -spaces in place of spaces has to do with the monoidal
structures, since commutative monoid€ispaces model arbitraBy, spaces, whereas
commutative monoids in ordinary spaces become products of Eilenberd-avlac
spaces upon group completion.

For non-cofibranf -spaces the correct homotopy type is computed by the colimit over
7 of a cofibrant replacement, i.e., by the homotopy coliXit = hocolimz X. In
particular, a mapX — Y of Z-spaces is aveak equivalencef and only if Xoz — Yz

is a weak equivalence of simplicial sets (or spaces). In line with this clesization,

the homotopy groups oK are defined to be the homotopy groupsXefz. An Z-
spaceX is positively fibrant if each simplicial setX(n) is fibrant, and for each
morphisma: m — nin Z with m > 1 the mapa, = X(a): X(m) — X(n) is a
weak equivalence. Lel C Z be the subcategory with the same objects, but only
the inclusionsa: {1,...,m} — {1,...,n} (with «(i) =i for all i) as morphisms.
An Z-spaceX is semi-stableif the canonical map hocolism X — hocolim; X is a
weak equivalence. Positively fibrafitspaces are semi-stable, since the nervé of
contractible. See Schwedg3 §1.4.5] for a discussion of semi-stability in the context
of symmetric spectra, and Schlichtkrulig] for the case off -spaces.

Definition 6.11 The concatenationl of finite sets turns4, LI, 0) into a symmetric
monoidal category, so the functor categori®s and S¢ inherit symmetric monoidal
pairings from the cartesian product & and the smash product iy, respectively.
For X; and X in S, we write X3 X X, for this product,

(X1 B X2)(n) = n?L%IZITn Xa(n1) x Xa(n2) ,
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defined as the left Kan extension of the compogite 7 % sws A S along

L: Z xZ — Z. Inlack of a better symbol, we writ¥; [ Y, for the smash product in
Sg of two basedZ -spacesy; andY,. We keep the standard notati@ A E, for the
smash product of two symmetric spectra.

Let CST be the category of commutative monoidsZnspaces and le€SZ be the
category of commutative monoids in baséespaces. We usually refer to these as
commutative 7 -space monoidsandcommutative basedZ -space monoidsrespec-
tively. Let CSp™ be the category of commutative monoids in symmetric spectra, i.e.,
the commutative symmetric ring spectra For a fixed commutative symmetric ring
spectrumR, let Cr = R/CSp™ be the category afommutative R-algebras i.e., the
commutative symmetric ring spectra undrer

The left adjoints ), and X* in Definition 6.9 are strong monoidal, and the right
adjoints (the forgetful functor anf2*) are (lax) monoidal, see Mac Lané4, §XI.2].
Hence there are composable adjunctions
=)+ by
g-]: ¢s? csg CSp¥:

g

relating the three categories of commutative monoids. Note that we @Li® for
Q" A equipped with the commutative monoidal structure inherited from tha&.on

Remark 6.12 For a commutative monoit¥l in Z-spacesMnz = hocoliny M has a
canonical action by the Barratt—Eccles opeEad, with j-th spaceEY; Schlichtkrull
[71, 6.5]. This is anE,, operad, and the functor hocolimCS? — EX[U/] induces
an equivalence of homotopy- and infinity-categories. Hence we cancdaewnutative
monoids inZ-spaces as a model f&,, spaces. Similarly, commutative monoids in
basedZ -spaces are a model f&,, spaces with zero.

Definition 6.13 There are free functor€: §7 — CS%, Co: S§ — CSE and

P: Sp¥ — CSp¥, defined byCX = [[;5oX™/%;, CoY = V50 Y™/%; and
PE = \/j20 EN/3;. These are left adjoint to the respective forgetful functors. In
the definition ofCX, X® denotes th¢-fold productX X - - - X X formed inSZ, and
similarly for Y = Y@ -.- @Y in SF.

Remark 6.14 There are simplicial model structures on the categafiés S and
Sp> Sagave-Schlichtkrullg7], Schwede T3, §l11.2], such that the adjunctions in
Definition 6.9 form Quillen pairs, with induced weak equivalences

Sp™(9X], E) ~ S§(X;, CE) ~ S*(X, X'E)
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(after cofibrant and fibrant replacementsXofand E, respectively). Here we have in
mind the positive (projective, stable) model structures, where a symmegatrsm
E is positively fibrant if each simplicial séf, is fibrant forn > 0, and each adjoint
structure mafe, — QEq;1 is a weak equivalence far > 1.

There are corresponding (projective) model structure€&h, CS¢ andCSp™, such
that the adjunctions in Definitior& 11and6.13form Quillen pairs. Hence there are
weak equivalences of derived mapping spaces

CSP™(SIM], A) = CS5 (M, U A) = CST(M, Q3 A)

and CST(CX,M) ~ ST(X,M), CSE(CoY,N) ~ SZ(Y,N) and CSp™(PE,A) ~
Sp*(E, A).

Lemma 6.15 The categonCS” is complete and cocomplete, and the formation of
limits commutes with the forgetful functor t8%. The coproducMy X M, of My
andM, in CST is weakly equivalent to the cartesian prodet x M,, for cofibrant
and semi-stablél; andM,. Similar statements hold fatSZ , where the coproduct
N1 N2 of N1 andN; is weakly equivalent to the smash prodbgth\ N, , for cofibrant
and semi-stabl®&; andN,.

Proof The unit mapsx — M; and * — M, induce the structure maplsl; =
M1 K% — M XMy and My = « X My — M1 X My that expresdvi; X M, as
the coproduct inCS? of My andM,. The pairingM; X M; — M; specifies maps
M1(n;) x M1(n2) — M1(ny U ny), and similarly forM,, so there are maps

(M1 x M2)(ng) x (M1 x M2)(nz) = (M1(ng) x M1(ng)) x (M2(n1) x Mz(nz))
— My(ng L n2) x Ma(ng L np) = (Mg x M2)(ng U np)
that makeM; x M, a commutativeZ -space monoid. There is a natural equivalence
(Mhz X (M2)hz — (M1 X Mg)nz
for cofibrantM; andM>, and a natural map
(M1 x M2)rz — (Ma)nz X (M2)nz ,
which is a weak equivalence whéy and M, are semi-stable. See Schlichtkri8g]

for more details. O

Definition 6.16 Let (CST)% be the full subcategory ofirouplike commutative
monoids inZ-spaces. These are the commutative monoidg igpacesM such
that the commutative monoidoMpz is an abelian group. The forgetful functor
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(CST)® — ST admits a left adjoinf: CST — (CS?)9, defined in Schlichtkrull
[69]. It takes a commutative monoid to the grouplike commutative submondidi
with FM(n) € M(n) consisting of the simplices iM(n) that have invertible image
in the multiplicative commutative monoidoM;z. We write .. FM — M for the
adjunction counit. It is a fibration, since each incluski(n) C M(n) is the embed-
ding of a set of full path components. For each commutative symmetric rirtyspe
A we write GL1(A) for the grouplike commutative monoid ih-spaces=Q;, A. For
positively fibrant (or semi-stabled there is a pullback square

GLy(A) — > QLA

Wl lﬂ'
GLi(moA) —— moA
of commutative monoids i -spaces, sinceo(2;,A)nz = moA.

Definition 6.17 We can use the (iterated) bar construction to deloop and group com-
plete commutative monoids ifi-spaces. For a not necessarily commutative monoid
(M, 11,m) in (ST,[¥, %), let thebar construction BM = BgM be the based -space
obtained by diagonalization from the simpliciatspace

[~ MK KM

(g copies ofM), with face maps induced by and the unique mapl — x, and with
degeneracy maps induced hyin the usual way. The levelwise suspensiod of M,
with (XM)(n) = X(M(n)), includes intoBM as the simplicial 1-skeleton, and there is
an adjoint map

v: M — QBM

whereQ)BM is the levelwise loop space, witfkBM)(n) = Q(BM(n)). For positively
fibrant (or semi-stableM we get that (BM)nz ~ QB(Mpz), sov: M — QBM is a
weak equivalence if and only M is grouplike.
In this generality is not obvious how to use loop sum to maBa a strictly associative
and/or commutative monoid ih-spaces. However, for commutatiZespace monoids
M the multiplicationy: M XM — M is anZ-space monoid map, $8M is itself a
commutativeZ -space monoid, with multiplicatioBy.: BM X BM = B(M X M) —
BM. This pairing corresponds to natural maps

Bu(ng, n2): BM(ng) x BM(nz) — BM(ny Liny).
The pointwise product of loops iIBM now makes2BM a commutativeZ -monoid,
with multiplication QBM X 2BM — QBM given by the maps

QBu(ng, np): QBM(ng) x QBM(nz) — QBM(ng LI np)
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obtained by looping the maps above. See also Lima-FdBpdage 134]. Thef)BM
is a commutativeZ -space monoid, and: M — QBM is a commutativeZ -space
monoid homomorphism. We give

I'™M = QBM

this commutativeZ -space monoid structure. This defines ti@up completion
functorl': ¢St — (CST)9, which atthe level of homotopy categories is left adjoint to
the forgetful functor. The group completion map M — I'M induces the adjunction
unit at the level of homotopy categories. See Schlichtk@®] for more on group
completion of commutativ& -space monoids.

For commutativeZ -space monoid$1 the bar construction can be iterated arbitrarily
often. LettingB°™M = M and B"M = B(B""'M) for n > 1 we get a symmetric
spectrum

B'M = {n— B"M}

in the category of base@-spaces, wher&,, acts onB"M by permuting the order of
the n bar constructions. Applying the homotopy colimit ov&y we get a symmetric
spectrum

B*M = (B'M)yz = {n+— (B"M)nz}

in (based) simplicial sets. For the positively fibrant (or semi-stableinentioned
above, the adjoint structure map8M — QB""IM are weak equivalences for> 1,
so we get a weak equivalence

(CM)nr — hocrglimQ”(B”M)hI.

We think of B*°M = (B'M)yz as the prespectrum associated to the commutétive
space monoidv, with underlying infinite loop space weakly equivalent to the group
completion TM)pz of Myz.

Remark 6.18 ForM as above andll a grouplike commutativ& -space monoid, there
is a chain of weak equivalences
CST(M,N) ~ (CSHP(ITM, T'N) ~ (CST)IP(I'M, N)

sincey: N — I'N is a weak equivalence, d0is left adjoint to the forgetful functor
in the infinity-categorical sense.

Definition 6.19 We can also apply a bar construction to certain monoids in based
Z-spaces, but these do not produce deloopings in the usual senseunittior the
symmetric monoidal pairindd in basedZ-spaces is the constafi-spaceS® =



66 John Rognes

{0,1}. For each objectY ¢) in the categorySZ /S’ of basedZ -spaces ovef® we

let Yo = ¢71(0) andY; = ¢~%(1). A not necessarily commutative monoi, ¢, ¢, €)

in this category consists of maps S — N, u: NEON — N ande: N — &,

subject to unitality and associativity conditions ov@t. For suchN we let the
based bar constructionB,N = BN be theZ-space under and ové&P obtained by
diagonalization from the simplicial bas@dspace

[ — NE---EON=N",

with face maps induced by: and ¢ and degeneracy maps induced by in the
usual way. The inclusion of zero-simplices defines a n$8p— B.N, and the
product 4: NHFI — ()M =~ S defines the retractioB,N — S°. Note that
(BAN)1 = B(Ny) is the usual bar construction, whereds I{)o depends both oiNg
andN;z. The simplicial 1-skeleton dB,N is the disjoint union

Lo(N) = X(No) L X(Ny) .

The right adjoint toX.g is Qg, with Qo(Y) = Q(Yo) U ©(Y1). The inclusion of the
simplicial 1-skeletor9N — BAN is left adjoint to a map

v N —>F/\N :QSJB/\N,

which is the disjoint union of a magy: No — 2(BAN)o and the usual group comple-
tion map~y1: N1 — Q(BAN)1 = QB(Ny).

Now suppose thaN is a commutative based-space monoid ove&’. Then the
multiplication : NEN — N is a basedZ -space monoid map oveé®, soB,N is
itself a commutative basefl-space monoid ove®’, with multiplication z: (BAN) [
(BAN) = BA(NEIN) — BAN. The pointwise product of loops iB\N makesQ2oBAN
a commutative basefl-space monoid ove®’, and~ is a morphism in that category.

In the commutative case, the based bar construction can be iterated infifiiegly o
Letting BN = N andB7N = BA(BNIN) for n > 1 we get a symmetric spectrum

in the category off -spaces under and ov&?, with suspension operatéig. We can
view this as a pair of symmetric spectra in bagedpaces, witm-th terms B\N)o
and B2\N); = B"(Ny), respectively. Doing a base change aldg— * we get a
symmetric spectrum

B.N = {n— BN = (B'N)/S"}

in basedZ-spaces. HereBiN)/S® = (BYN)o v (BYN);. Applying the homotopy
colimit over Z we get the ordinary symmetric spect{N)o = {n — (BAN)onz}.
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(BXN)1 = {n+ (BAN)1hr} = B*(N1), and
BN = {n — (BT N)nz}
in (based) simplicial sets.

WhenN = M, is obtained from a commutative-space monoid by adding a disjoint
zero, withe: N — S defined so thallp = {0} andN; = M, thenNEIN = (MXM)
BYN = (B"M),. forall n > 0, I'yN = (I'M),, and B®°’N = B*M. In particular,
~v: N — I'AN is an equivalence if and only ¥ is grouplike.

Remark 6.20 An obvious problem is to determine for whid (with non-isolated
zero) the mapy: N — I''N = Q9BAN is an equivalence. The submondid must
be grouplike, sincel{,N); = Q2B(N;), but the analogous condition dxdy with its
N; -action does not seem to be known.

Definition 6.21 We say that a baseflspaceY isconically basedfitcan be expressed
as a pushou¥ = cone() U. Y’ in Z-spaces, where corig(is the unreduced cone
on anZ-spacelL, so that the cone point of cong(corresponds to the base point of
Y. We callL thelink of the base point. The unreduced cone of/aspace is defined
pointwise: cond()(n) = cone((n)) = L(n); AAL. We think of Y’ as the complement
of the base pointiry, obtained bypuncturing Y at«. The property of being conically
based is obviously not preserved by most homotopy equivalenc&s=IX, has an
isolated base point, it is conically based with= () the emptyZ -space and’ = X.

If Y1 andY> are conically based, with linkls; andL,, thenYy [1Y> is also conically
based, with link
(Y1 K Lo) Upymi, (L1 K Y5)

and (Y1 0 Yy) = Y] XY, By induction, CoY is conically based ifY is, and
(CoY) = C(Y').

We say that a based commutatiZespace monoidN = conel) U. N’ is conically
based if the multiplication:: NN — N takesN' XN’ € NN to N’ € N. In
this case\’ is a commutativel -space monoid. IN is a commutative conically based
Z-space monoid ove®’, then so isBNN for all n > 0, and BYN)' = B"(N').

Lemma 6.22 Let M = CX be free on arf -spaceX, and letN = CyY be free on
a basedr -spaceY. We viewN = CpY as augmented ové&® = Cy(x) by the map
induced byY — x, soN; = {1}. Then there are weak equivalend&SM ~ X]
andB°N ~ $°Y,

If Y = conel) UL Y’ is conically based, thell = CyY is conically based with
N = C(Y’), soB>*(N') ~ JY'].
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Proof In the based casB,\N = B\CpY = CoXY, soB)N = COE”\Q The inclusion
(XZ"Y)4+ — CoX"Y is (2n—1)-connected (for cofibrant), soX"Y — B}, N is a (stable)
equivalence. Passing to homotopy colimits oZewe get the claimed equivalence
Y°Y ~ BYN.

The unbased case follows from the based case by seftingX,., so thatN = M.,
and noting thaB’N = B>*M and>"Y = gX].

The conically based case then follows from the unbased case by s¥ttingy’, so
thatM = N'. 0

7  Logarithmic structures in topology

We now discuss topological analogues of log rings, where the commutatiye r
are replaced by structured ring spectra (meaning commut&iakyebras or com-
mutative symmetric ring spectra) and the commutative monoids are repladég by
spaces (meaning-spaces or commutative-space monoids), d€., spaces with zero
(meaningLo-spaces or commutative baséespace monoids).

Definition 7.1 Let A be a commutative symmetric ring spectrumpi&-log structure
onAis a pair M, ) consisting of a commutativé-space monoidV and a map

a: M — QA
of commutativeZ -space monoids. Specifying is equivalent to specifying the left

adjoint map
a: QM] — A

of commutative symmetric ring spectra.pfe-log symmetric ring spectrum (A, M, ),
often abbreviated toA; M), is a commutative symmetric ring spectrémvith a pre-log
structure M1, o). A map

(f,f): (A/M,a) — (B,N, )

of pre-log symmetric ring spectra consists of a mfapA — B of commutative
symmetric ring spectra and a mdp: M — N of commutativeZ -space monoids,
such that the square

M —2= QLA

fbt lQ‘g)f
B



Topological logarithmic structures 69

of commutativeZ -space monoids commutes. In adjoint terms, the condition is that the
square

gM] 2= A

S[fbll lf
B

SN —B

of commutative symmetric ring spectra commutes. A nfaf’} of pre-log symmetric
ring spectra is aveak equivalencef f andf’ are both weak equivalences.

Let PreLog(S) be the resulting category of pre-log symmetric ring spectra. It is equal
to the comma-category (or under-categafyy” / ), associated to

Q: CSp” — CST.
and isomorphic to the comma-category (or over-categ8iy)] /CSp™ associated to
g-1: ¢St — cSp*.

See Mac Lane44, §11.6]. There are forgetful functors froreLog(S) to CSp™ and
CS?, taking (A, M) to A and M, respectively. For a fixed pre-log symmetric ring
spectrum A, M), let PreLog(A, M) = (A, M)/PreLog(S) be the category gbre-log
(A, M)-algebras i.e., pre-log symmetric ring spectra undéx; i1).

Definition 7.2 Let A be a commutative symmetric ring spectrum.based pre-log
structure on A is a pair (N, «) consisting of a commutative basgdspace monoidN
and a map: N — Q3 A of commutative based -space monoids. Equivalently, a
pre-log structure specifiesamap ~°'N — A of commutative symmetric ring spectra.
The categoryPreLog(S) of based pre-log symmetric ring spectrais the comma-
categoryCS%/Q'@, which is isomorphic to the comma-categadty/CSp™. There are
obvious forgetful functors fronPreLogy(S) to CSp*, CSE andPreLog(S).

Remark 7.3 Working in commutativeS-algebras, one may define the category
PreLog(S) of pre-log S-algebras as L[U/]/QY, where Q' : Cs — L[U]. ltis
isomorphic to§—]/Cs, where§—]: L[U] — Cs. In the based setting, the cate-
gory PreLog(S) of based pre-logS-algebrasis defined to belo[7]/Q3, where
0¥ Cs — Lo[T]. Itis isomorphic tox>/Cs, where¥>: Lo[7] — Cs. See also
Definition 9.1 below.

For definiteness, we shall mostly work with commutative symmetric ring speatra an
commutativeZ -space monoids, since the description of the coproducts and deloopings
of the latter (Definition$.11and6.17) is notationally a little more convenient than for
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L-spaces (Lemm@.5and Definition6.7). On the other hand, for more general work
with E, ring spectra an, spaces for k n < oo, as in Sectior®, the operadic point
of view is more convenient. Since we are principally interested in multiplicdiye
spaces (with or without zero), rather thankg, ring spaces May46, 8VI.1], we are
not directly affected by the consistency issues raised in M)y flthough some care
in the comparison of definitions is certainly required.

Definition 7.4 Let a~1GLy(A) C M be defined by the pullback square

a~1GLy(A) — > GLy(A)

M @ QLA

of commutativeZ -space monoids. The pullback is weakly equivalent to the homotopy
pullback, since is a fibration. The pre-log structurdi( «) on A is said to be dog
structure if the restricted map ™ o ~GLy(A) — GLy(A) is a weak equivalence. A
log symmetric ring spectrum is a commutative symmetric ring spectrum with a log
structure. The log symmetric ring spectra generate a full subcategootedsCog(S),

of PreLog(9).

A based pre-log structureN(«a) on A is a based log structureif the underlying
(unbased) pre-log structure is a log structure.

Remark 7.5 It might seem more natural to define based log structures in terms of a
pullback square in the category of commutative baespace monoids. If we replace
GL1(A) by GL1(A)., by adding a disjoint zero, the extended map GL;(A). —
QA will usually not be a fibration, and the pullback ceases to be homotopy invaria
If we take the homotopy pullback, or equivalently, replace the disjointlzgtbe path
space of the zero-th component, then it appears that the resulting ddzesed log
derivations (see Definitioh1.8 will not be a corepresentable functor, so that we get
no good notion of based log differentials. If we add the full path compoofrero

in 2, A to GL1(A), then the log condition also normalizes the parivbimapping by

« to the zero-component, which is undesirable in some topological applicatieas (
Example7.18).

Definition 7.6 To each pre-log structureM( «) on A there is anassociated log
structure (M, a)? = (M3, a?), whereM? is defined by the upper left hand pushout
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square in the following diagram

a~1GLy(A) —2> GLi(A)

] |

M M2

o

a 0LA

of commutativeZ -space monoids, and®: M#® — Q A is the canonical map induced
by a and .. Whena1GLy(A) is trivial, the pushout is the coprodubt? =2 M X
GL1(A), which is weakly equivalent to the cartesian prodMick GL;(A) (for cofibrant
and semi-stabl®l andA).

Lemma 7.7 The associated log structufd?, o?) is a log structure oi. If (A, M, «)
is a cofibrant log symmetric ring spectrum, then the canonical (faM, o) —
(A,M? «?) is a cofibration and a weak equivalence.

Proof A product inM? maps to a homotopy unit i}, A if and only if each factor
maps to a homotopy unit. Hence the preimag® (*GL;(A) ¢ M2 is the pushout of
the preimages ‘

a~1GLI(A) <L o 1GLi(A) & GLy(A),
and it is therefore isomorphic GL;(A).

If QA is obtained by attachingS?-cells of the form CA", COA") to M, then
each cell either lies withilsL;(A), or meetsGL;(A) only at the monoid unit. Hence
GL1(A) is obtained froma—1GL1(A) by attaching the cells of the first kind, only, so
& is a cofibration. Hence the pushout definidd is homotopically meaningful when
(A, M, «) is cofibrant.

If, furthermore, M, «) is a log structure oA, then «’ is a cofibration and a weak
equivalence, so its pushoht — M2 is also a cofibration and a weak equivalencel

Lemma 7.8 The logification functor (—)2: PreLog(S) — Log(S) induces a left
adjoint to the forgetful functor, at the level of homotopy categories.ré Fea natural
chain of weak equivalences

Log(S)((A,M?), (B,N)) ~ PreLog(S)((A, M), (B,N))
~ PreLog(S)((A, M), (B, N?))

for (A, M) a pre-log symmetric ring spectrum afil N) a log symmetric ring spectrum.
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Proof Givenamapf(,f’): (A,M,a) — (B, N, ) of pre-log symmetric ring spectra,
where {, ) is a log structure o8, we get a commutative diagram

M <— o~ 1GLy(A) —> GLy(A)

T

L

N ~'— 3-1GLy(B) —~ GL1(B)

and a chain of maps

fb,a

M2 — N2 «—— N.

When B, N, () is cofibrant, the right hand map is a weak equivalence. Hence we get
a well-defined right adjoint morphisnf,¢”2): (A,M3) — (B,N), in the homotopy
category. O

Definition 7.9 To each based pre-log structub¢, () on A we associate amssociated
based log structure(N, «)? = (N2, o?), whereN? is defined by the pushout square

a~1GLy(A): — = GLy(A)+

“| |

N N&
of commutative based -space monoids. The mag: N* — Qf A is the pushout of
the mapsy and:; : GL1(A);+ — QL A. Whena1GLy(A) is trivial the pushout is the
coproductN? = N 1 GL1(A)., which for reasonabl®&l andA is weakly equivalent to

N A GL1(A), . The analogues of Lemm@&s7 and7.8 hold for based log structures.

Definition 7.10 Let A be acommutative symmetric ring spectrum. Tingal pre-log
structure on A is the pair {1}, «), where{1} is the initial and terminal commutative
Z-space monoid, and: {1} — Q Aisthe unique map. Theivial log structure on
Ais the associated log structurgl§, «)® = (GL1(A), ¢). We say thatA, GL1(A), ) is
atrivial log symmetric ring spectrum . We get functors{)'"V : ¢Sp> — PreLog(S
and (-)'V-2: cSp> — Log(9), left adjoint to the forgetful functors.

Remark 7.11 We view the opposite categorgog(S°° as the category of affine
derived log schemes, with a forgetful functor to the categdff(S) = (CSp>)°P of
affine derived schemes, in the sense of Jacob Lurie. It is no moraudifidormulate
the global notion of a derived log scheme, which is locally glued together &ffine
derived log schemes, than it is to define derived classical schemes indegafime
derived schemes. We will only work locally, i.e., on affine pieces, in thigpap
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Definition 7.12 Let M be a commutative monoid ih-spaces. Theanonical pre-log
structure on §M] is the pair M, ¢), where¢: M — Qi M] is right adjoint to the
identity ongM]. Thecanonical log structureon §M] is the associated log structure

M, ).

Let N be a commutative monoid in bas€dspaces. Theanonical based pre-log
structure on XN is the pair N, ¢), where¢: N — QXN is right adjoint to the
identity onX*N. Thecanonical based log structureon >°N is the associated based
log structure N, ¢)2.

We get free functors «)%": CST — PreLoy(S), (—)": CST — PreLogy(9),
(—)eana: ST — Log(S) and ()°na: CST — Logy(9), left adjoint to the forgetful
functors.

Lemma7.13 Thefunctor(—). : PreLog(S) — PreLogy(S), taking(A, M) to (A, M),
and its restrictiof—). : £Log(S) — Log(S), are left adjoint to the respective forgetful
functors. O

Remark 7.14 We can summarize these adjunctions in the following diagram, where
the co-symbols indicates an adjunction only in an infinity-categorical sense. ved,us
the left adjoints are either on the left hand side, or on top.

CcSp*
()trivl T
(=)en (=32
cST_ " PrefLogS_ = " LoyS
(—)+l T (—)+l T (—)+l T
(=)ean (-2
csE PreLogy(S) < Log(S

The unlabeled arrows are forgetful functors.

Definition 7.15 For a pre-log symmetric ring spectrumy, (M), thetrivial locus is the
pre-log symmetric ring spectrund(M 1], 'M), where

AIM™Y = AAgwy STM] .

There is a canonical map\(M) — (AIM~],I'M), and A[M—1],TM)? is the trivial

log structure. For log symmetric ring spectra 1) the functor A, M) — A[M~1] is

left adjoint to ()"V-2 (at the level of homotopy- or infinity-categories), which therefore
has both a left and a right adjoint.
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Example 7.16 Let (A, M, a) be a (discrete) pre-log ring, and ket CMon — CS? be
the “constantZ -space” functor that views a commutative monoid as a commutative
space monoid. The Eilenberg—Mac Lane symmetric ring specttdnhasn-th space
HA, ~ K(A,n), and there is a natural equivalenc@, -) — Q°HA of commutative
Z-space monoids. Furthermore, there is a natural equivaleBtgA) — GL1(HA),
and ¢ commutes with pullbacks. Henc&lg, cM, ca) is a pre-log symmetric ring
spectrum, and it is a log symmetric spectrum if and onhAifMl, «) is a log ring. We
usually write HA, M, «) in place of HA, cM, ca).

Example 7.17 Let A be a commutativés-algebra, and le¥ € 7 be a based space.
Choose abased map Y — QFA, and extend freely to amapyo: LoY — QA of
Lo-spaces (£, spaces with zero). TheA(LoY, o) is a based pre-lo&-algebra.
We call oY, Yo) thefree E., based pre-log structureon A generated by.

WhenX € U is an unbased space, X — g’A an unbased map, and LX — QFA
its free extension to a map d@f-spaces (£, spaces), we get tifeee E, (unbased)
pre-log structure (LX, X) on A generated by.

WhenY = X, has a disjoint base point, 49Y = (LX), the freeE,, based pre-log
structure generated yy. Y — QA restricts to the fre&,, unbased pre-log structure
generated bx: X — QFA, wherex = y|X. When the base point of is not isolated,
there is no such overlap of definitions.

Example 7.18 As special cases of the previous example, we consider the commutative
S-algebrasA = ¢ andB = ku or kug). Hereku is the connective comple -theory
spectrum, with2>°ku ~ BU x Z andr.ku = Z[u] with |u| = 2. For afixed primep, ¢

is the Adams summand of tipelocal K -theory spectrunkug, , with Q°°¢ ~ W x Zp)

and . = Z(p)[va] with |v1| = q=2p — 2.

We have based and unbased pre-log structugs (o) and (S, U) on ku, generated
by a mapS® — Qg ku representingl € m2ku. Similarly, we have based and unbased
pre-log structuresLES?, vy 0) and (SY,vy) on ¢, generated by a mag! — Qg/
representing; € mql. HereLoS" = \/5o £()+Ax; S andLs! = [T £() x55(S).
Note that these pre-log structures map entirely into the zero-compBhkert BU x {0}
(resp.W = W x {0}), with the single exception that tHe,, space unit in thg = 0
summand of the source maps to the space unit 1 irBU x {1} (resp.W x {1}).

Thereisamap : ¢ — kup of commutativeS-algebras, inducing the ring homomor-
phismf,: Zg)[vi] — Z)[u] that takesv, to uP~L. In the based category, this lifts to
a map

(F,£°): (¢,LoS%, V1) — (KUp), Lo, Uo)
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of based pre-logS-algebras, wherd”: Lo — LoS is freely generated by the
composite mags! = (§)\P-D — L(p — 1), Ay, , (P)NP~Y — LS. The middle
map depends on a contractible choice of a poinf{p — 1). To make the diagram

LoS! —> W x Z

fbl lﬂ%ﬁ’f

Lo —2> BUg x Zy

strictly commute, we must assume that the representing$hap W x Z, for vy is
chosen to lift the composite ma& — LoS* — BU(p) x Z(y. See the examples at the
end of §3.3 for more on this map of based pre-$glgebras.

Remark 7.19 In the unbased category, there is no map
(F,): (¢, LS, W) £ (Kup), LS, 1)

of (unbased) pre-log-algebras lifting the usual map ¢ — kup,, for odd primesp.
Forf’: LS — LS must freely extend a map

S LS = [] £0) xx (S

j=0

that takesS* to thej = p — 1 summand in a rationally nontrivial way. But any map
from S to £(j) x5, () lifts through £(j) x () ~ (S, andry((S)) is torsion.

This is an unsatisfactory feature of the unbased theory, since wetexpéc— kup,

to behave as a tamely ramified extension of commut&iedgebras, with ramification
locus corresponding tov{) C m./ downstairs, andu) C m.Kup upstairs. The
ramification should be tame, since = (u)P~! and the ramification indeg = p — 1

is prime to the residue characteristic. By analogy with Exan#pB?, we might
therefore expect there to be log structures@ndkuy, such that lifts to a logétale
map. Further evidence in this direction is given by Christian Ausoni’s disonsn [3,
810]. As Example&/.18and this remark shows, this is plausible in the context of based
log structures, but not so for unbased log structures.

However, as in Exampl&2.16 the freeE,, based log structures ohand ky, are
too simple to realizd as part of a locgetale map. In a later paper, we will describe
a recently found modification of the current theory, working with commutatiNe-
algebras in place of commutati&algebras, where this logtale realization problem
has a positive solution. HefdU is the complex bordism spectrum.
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Example 7.20 Amongthe based pre-log structurég () on a commutativé&-algebra
A, such thatr takes all but the identity element éfto the zero-th path component of
A, there is a terminal example. It hdb= (2A) U {1}, whereQyA C QA denotes
the full path component of the base point 0. Note tNahas the multiplicativeE,
structure, not the additive one. THidl zero-th path component pre-log structure

is canonically associated &, and each map liké: ¢ — kug of commutativeS-
algebras is covered by a corresponding pre-log map. However hitssteebe difficult
to determine the associated based deloopBif§N), and we have not been able to
analyze any interesting cases.

Example 7.21 Let A be a commutative symmetric ring spectrum, andiée a based
T-space. Choose a bas#dspace magy: Y — Q A, and extendy freely to a map
Yo: CoY — QyA. Then @, CoY, Yo) is a based pre-log symmetric ring spectrum. A
homotopy classy] in m4(A), for d > 0, is realized at some level in the 7-space
QL A, by a mapu: S — Q"A,. WhenA is positively fibrant, we may assunme= 1.
Letting Y = F,§ be the freeZ-space generated ' at leveln, we get anZ-space
mapy: Y = F,§ — O, A, which generates a based pre-log struct@gY(yo) on

A, as above. We call this the free commutative pre-log structur& ganerated by.
There is, of course, a corresponding unbased construction.

Definition 7.22 Letf: A — B be a map of commutative symmetric ring spectra, and
let (M, ) be a pre-log structure oA. Theinverse image log structure

(f*M,f*a) = (M, Q. f o a)?
on B is the log structure associated to the pre-log structure given by the compagite
a e p F .
M— QoA — QB

of commutativeZ -space monoids. Hence there is a commutative diagram

(f 0 a)~1GLy(B) M —% = QLA
l fbl lQ'®f
GLy(B) M 0B

where the left hand square is a pushout square. In particular, theeiisonical map
(f,£°): (A, M) — (B,f*M) of (pre-)log symmetric ring spectra.

Similar definitions can be made for based (pre-)log structures, using soeiat®d
based log structure from Definitioh9.
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Lemma 7.23 The space of log mafg#, M) — (B, N) covering afixed map: A — B
of commutative symmetric ring spectra is weakly equivalent to the space of Ipg ma
(B,f*M) — (B, N) coveringidg, the identity onB.

Proof The space of commutativé -space monoid mapM — N that make the
following diagram commute

agrees with the space of pre-log maps frdvh (2, f o ) to (N, 3) coveringidg, and
this is weakly equivalent to the space of log maps fravh f(*«) to (N, 5) covering
idg, essentially by Lemma.8. O

Lemma 7.24 The canonical magM, «) — (M3, a?) from a pre-log structure oA
to the associated log structure induces a weak equivalence
("M, Fa) = (f*(M?),f*(a%)

of inverse image log structures @&

Proof The part Qi,f o a®)~1GLy(B) of the pushoutM? that sits oveiGL; (B) is the

pushout of the parts dfl — a~1GL;(A) — GL1(A) that sit overGL,(B), i.e., the

pushout of Q;,f o a) 'GL1(B) « o !GL1(A) — GL1(A). So in the commutative
diagram

a~1GLi(A) = GL1(A)

| |

(Qf 0 @) 1GL(B) —— (24 f 0 a®)~1GL1(B) — GL41(B)

| | |

M M@ £(M2)

the upper left hand square, the rectangle formed by the two left hamdesgjuand the
lower right hand square are pushout squares. It follows that the leftéand square,
and the rectangle formed by the two lower squares, are pushout sqtiecef *M,
which is the pushout of the latter rectangle, is equivalerit{v?). O
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Definition 7.25 A map (,f%): (A,M) — (B,N) of log symmetric ring spectra is
strict if the corresponding commutative-space monoid map*M — N is a weak
equivalence. We writstr£og(S) C Log(S) for the subcategory of strict maps.

Definition 7.26 Letf: A — B be a map of commutative symmetric ring spectra and
let (N, 3) be a pre-log structure oB. Thedirect image pre-log structure (f.N, f.3)
on A is defined by the pullback square

£.N oA

|

of commutativeZ -space monoids. WheiN( 5) is a log structure oB, (f.N,f.5) will
also be alog structure o, called thalirectimage log structure, since the part of,N
sitting overGLy(A) C QA is the pullback of3~1GLB and GLy(A) over GL1(B),
which then is isomorphic t&Li(A). There is a canonical mag,°): (A f.N) —
(B, N) of (pre-)log symmetric ring spectra.

Lemma 7.27 The space oflog mafgé, M) — (B, N) covering afixed map: A — B
of commutative symmetric ring spectra is weakly equivalent to the space of Ipg ma
(A, M) — (A, f.N) coveringida, the identity onA.

Proof The space of commutativé-space monoid mapsl — f,N that make the
upper square commute

agrees, by the universal property of pullbacks, with the space of coaties -space
monoid mapdM — N that make the outer rectangle commute. O

Remark 7.28 The present definition of a pre-log structure on a commut&iatgebra
A is only really suitable for connectivR, since the functor§)z’ and GL; ignore the
negative homotopy groups &. In other words, the pre-log structures fnare the
same as the pre-log structures on its connective cover, and this is @afdiesir some
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topological applications. For example, the based Bott pre-log structy®?. (ip)

on the connectiveK -theory spectrunku is generated by a map: & — QFku.

It gives a non-trivial log structure ofu, since multiplication byu induces a map
¥2ku — ku that is not a weak equivalence. However, the corresponding pre-log
structure (oS, QioUg) on the periodiK -theory spectruniKU , wherei : ku — KU

is the connective covering map, should ideally be viewed as a trivial logtatey since
multiplication by u induces a weak equivalen&#KU — KU.

We hope to resolve this point in a later paper, as an application of the gvadgdn
of 7-spaces developed in Sagave—Schlichtk&if] [ Conversely, the Bott structure on
ku should arise as the direct imag&sL;(KU) of the trivial “graded” log structure on
KU. More generally, the connective coverof any commutativeS-algebraE with
periodic homotopy groups should inherit a non-trivial canonical giddg structure
i.GL1(E) from E, as the direct image along the connective covering magp— E.

8 Logarithmic topological Hochschild homology

Definition 8.1 A mape: M — P of commutativeZ -space monoids iexactif the
diagram

M —=T'M

l 7 lpe

P— TP

is a homotopy pullback square. Amap M — P of commutativeZ -space monoids is
virtually surjective if the induced homomorphismgl'e: mI'M — 7oI'P of abelian
groups is surjective. Let

(Cs* /Py ccst/p

be the full subcategory of virtually surjectivél over P. We say that a virtually
surjective M over P is replete if it is also exact, i.e., if the diagram above is a
homotopy pullback square. Let

(CSI/P)rep C (CSI/P)vsur
be the full subcategory of repletd overP.
Definition 8.2 For a virtually surjective:: M — P, let therepletion of M overP be

the pullback
M™P = P xp I'M
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in the square diagram above, with the canonical structure ¢fi8p M™P — P. The
following diagram of commutativ& -space monoids commutes, where the right hand
square is a pullback by construction:

M MreP 'M
El lerep lf‘e
P——>P—>TP

We call the magM — M'™P therepletion map.

Proposition 8.3 For virtually surjectivec: M — P, the maps
M — M™ — TM
induce weak equivalences
I'M = I(M™P) = T(T'M)
upon group completion. Hend@™" js replete oveP.
Proof We start with the pullback square definitgj®P, from Definition8.2 For each
g > 0, the square of-fold X-products

MeP ... KM ——TMX ---XTM

l l

PX..-®P IPX...KTP

is a homotopy pullback square, siné& P);,; ~ Pnz x Pnz, and similarly in the three
other corners of the square. More precisely, this equivalence hoRissifn cofibrant
Z-space, and similarly for the three other corners, so we should first apfibrant
replacement to the pullback square definM{§P. This does not affect the homotopy
type of M™P T'M, etc., and will therefore be suppressed in the rest of the argument.

We now wish to apply the Bousfield—Friedlander theorel, [Theorem B.4], to
conclude that the diagonalized square

B(M'®P) —~ B('M)

|

BP— B(I'P)
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is a homotopy pullback square of commutati#espace monoids. Assuming this, we
can pass to pointwise loop spaces to get the homotopy pullback square

T(M™P) —~ T(I'M)

.

P———>T(I'P).

Here the lower horizontal map is a weak equivalence, hence so is thehgpmntal
map. It follows that
M'eP —— T'(M™P)

L

P——TIP
is a homotopy pullback square, 80P is replete.
To apply the Bousfield—Friedlander theorem, we need to know that
X.:[q—TMX-. . KI'M

andY.: [q] — I'PX---XTI'P (q copies of'M, resp.I'P) satisfy ther,. -Kan condition
(see [L6, §B.3]), and thatrj(X.) — 7(Y.) is a (Kan) fibration. The bar construction
on any group (or groupoid) is fibrant, and the same argument showXthaid Y.
satisfy ther, -Kan condition. The zero-th vertical homotopy groupsofandY. are

mo(X.): [d] — mo(Xg) = (meI'M)9

andm(Y.) = (moI'P)9, somy(X.) — mg(Y.) isthe map of bar constructio@grol'M) —
B(moI'P) induced by the group homomorphisml'e: mgI'M — moI'P. By assump-
tion e: M — P is virtually surjective, sargl'c is surjective, and this precisely ensures
that B(mpI'M) — B(moI'P) is a fibration. O

Lemma 8.4 The functor(—)*®P: (CS%/P)'S\" — (CST/P)™P is left adjoint to the
forgetful functor, at the level of homotopy- or infinity-categories. (imopy) colimits
of non-empty diagrams exist {€S* /P)'S, and are formed i€S* /P. Homotopy
colimits of non-empty diagrams exist {€S* /P)®P, and are constructed by first
forming the homotopy colimit ifCS” /P)VSU" and then applying—)"P. O

Definition 8.5 Let (R,P) be a base pre-log symmetric ring spectrum. A pre-log
symmetric ring spectrumA( M) over R, P) is virtually surjective if the underlying
commutativeZ -space monoidM is virtually surjective ovelP. Itis areplete pre-log
symmetric ring spectrum if the underlying commutativé -space monoid is replete
overP.
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Let (PreLog(9/(R, P))s"" and (PreLog(S)/(R, P))*P be the full subcategories of
PreLog(9/(R,P) generated by the virtually surjective and the replete pre-log sym-
metric ring spectra, respectively. Let

(=)P: (PreLoy(§)/(R. P))™™ — (PreLoy(S)/(R P))""
be the functor that takes a virtually surjectivi 1) over R, P) to the replete pre-log
symmetric ring spectrum

(A, M)®P = (A Agmy SIM™F], M™P)

over R, P).
Homotopy colimits of non-empty diagrams iPeLog(S)/(R, P))'P are constructed

by first forming the homotopy colimit irfPreLog(S)/(R, P), thereby remaining within
(PreLog(9)/(R, P))¥sY", and then applying—)™P.

Lemma 8.6 Let (A, M, «) be a replete pre-log symmetric ring spectrum over a log
symmetric ring spectrurtR, P, p). ThenFM = a~1GLy(A).

Proof Consider the diagram

FM — o 1GLy(A) —= M —>TM

N

FP—> p~1GL4(R) —>P —~>TP

of commutativeZ-space monoids. The left hand and middle horizontal maps are
inclusions of a full set of path components. The homomorphisgie is surjective,
the right hand square is a homotopy pullback, and the inclusien— p~1GL1(R)
is the identity. With these modifications, the proof proceeds just like the proof o
Lemma3.13 |

Proposition 8.7 Let (A, M) be a replete pre-log symmetric ring spectrum over a log
symmetric ring spectruniR, P). Then the associated log symmetric ring spectrum
(A,M?) is a replete log symmetric ring spectrum oy P).

Proof The proof proceeds like that of Propositi8ri4 except that we do not need to
assume thak is “integral” in order to know that

M X GLy(A) — = I'M X GL1(A)

l l

ma rma
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is a homotopy pullback square, since the lower row is obtained by forminghe
homotopy orbits of the upper row, up to weak equivalence. O

Remark 8.8 In joint work with Steffen Sagave we develop a theoryagf modules
over alog symmetric ring spectrurR,(P), given as the stable model category of spectra
in the based categorR(P)/Lod®P/(R, P) of replete log symmetric ring spectra under
and over R, P).

Example 8.9 Let (A, M) be a pre-log symmetric ring spectrum aKd a simplicial
set. TheX.-fold X-productX. ® M is the diagonal of the simplicial commutative
Z-space monoid

[ = Xg&M=MX---KM

(with one copy ofM for each element 0K;). There is a natural weak equivalence
I'X. @ M) ~ X, @ M.

Let Y. be a non-empty simplicial set. Thé-fold repleteX-productY. ®™P M over
M is the pullback
Y. "M —Y. @ I'M

Lk

M '™

of commutativeZ-space monoids. IfY. = (X.),+ has a disjoint base point, then
Y. @®PM ~ M x (X. ® 'M). The. -fold replete smash produdt @™P (A, M) is the
replete pre-log symmetric ring spectrum P A, Y. @P M) over (A, M) given by
the pushout

gY. ® M] —— 9Y. @"®P M]
Y. A——=Y. QP A
of commutative symmetric ring spectra.
Definition 8.10 Let M be a commutativg -space monoid. Theyclic bar construc-
tion on M is the commutative -space monoid®M = St @M, whereS! = Al/9AL

and the tensor product is formed IS, X, ). The replete bar construction
B®PM = S ®"®P M is the repletion oB%YM over M, given as the pullback

B®PM —— B%YT'M

L

M I'™M
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of commutativeZ-space monoids. Both and e are maps of cyclic commutative
Z-space monoids, whergl and I'M have the trivial cyclic structure, sBPM is a
cyclic commutativeZ -space monoid, anBYM — B™PM is a cyclic map.

There are natural weak equivalend@¥T'M ~ I'M X B(I'M) and B*"M ~ M X
BM ~ M X B(I'M). The latter depends on the equivaleMde<ry (I'M X B(I'M)) ~
M X B(I'M), which can be seen by using th&ll{ X M2)nz ~ (M1)nz X (M2)nz. The
repletion map

BYM — B®PM ~ M x B(I'M)

is homotopic to the composite
(e,7): BYM 25 BYM x BYM 7. M x BM ~ M x B(I'M)
wheree is the augmentation and is the usual projection map.

Thetopological Hochschild homologyof a commutative symmetric ring spectruin
is the commutativeh-algebra THHA) = St @ A. If A= gM] then

THH(EM]) = S' ® IM] = 95 ® M] = SBYM].
Definition 8.11 Let (A,M,«) be a pre-log symmetric ring spectrum. Ty

topological Hochschild homologyof (A, M), denoted THHA, M), is defined to be
St ®'P (A, M). Hence there is a pushout square

A Agm) THHEM]) —Y~ A Aquy SIBPM]
¢l B la?
THH(A) v THH(A, M)
of commutativeA-algebras. The map is induced bya: §M] — A, and the map

1) is induced by the repletion magfYM — B™PM. Both ¢ and+ are maps of cyclic
commutativeA-algebras, so THHY, M) is a cyclic commutativé\-algebra.

Remark 8.12 In view of the identification THHHM]) = §B%M], THH(A, M) can
also be defined by the pushout square

gBYM] —Y - gBPM]
THH(A) — THH(A, M)

of commutative symmetric ring spectra, where the upper horizontalynagnduced
by the repletion map.
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Example 8.13 Let A = HZ, be the Eilenberg—Mac Lane spectrum, Mt= (p) =
{P |j >0}, and leta: (p) — Z, ~ QA be the inclusion. Applying base change
alongS — HZp — H = HIF,, to the pushout square of Rem&@Hk 2we get a pushout
square

H A (BY(p)+ ————H A (B®P(p))+

| |

H Anz, THH(Zp) —— H Anz, THH(Zp, (p))
of commutativeH -algebras. Recall from PropositioB20and3.21that
BY(p) ~«UJ[S'G) and  B*P(p) ~ []S"0)-
j>1 j>0
The homotopy algebras in the upper row are

H..(BY(p)) = P(9) ® E(dp)
H..(B®P(p)) = P(g) ® E(dlogp)
whereg is the generator oflo(S'(1)) that corresponds to the 0-simple® (dp is the
generator oH1(S'(1)) that corresponds to the loop, (), andd logp is the generator
of H1(S'(0)) that corresponds to the loop (¢, p). The repletion map induces— g
anddp+— gdlogp. Furthermore,
T«(H Anz, THH(Zp)) = m.(THH(Zp); Z/p) = E(A1) @ P(u1)

where|A1| = 2p — 1 and|u1| = 2p. This calculation is due to Marceld&stedt (un-
published, ca. 1987). For a proof close t@kBtedt’s original argument, see Angeltveit—
Rognes 2, Theorem 5.12(a)] fom = 1, using the conventioBP(0) = HZ,. For an
earlier reference, see Franjou—Pirashvi][

The mapa inducesg — 0 anddp — 0. Hence the Kinneth spectral sequence
E2, = Tor:® P, (THH(Zp); Z/p), H.(B*P(p)))
— m(THH(Zp, (P); Z/P)
hasE?-term
EZ, = TortO“EP(E(\) @ P(u1), P(g) ® E(dlogp)
= E(\) ® P(u1) ® E(dlogp) ® Tors (I, Fy)
= E(dlogp, A1) ® P(u1) @ I'(ko)
where the generators have bidegrégkgp| = (0,1), [\1] = (0,2p — 1), |u1| =
(0, 2p) and|ro| = (1,1). Herekg is represented bydp] in the bar complex computing
Tor, andI'(ko) = Fp{7i(ko) | i > O} denotes the divided power algebra e
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The inclusion THHE,) — THH(Zy, (p)) takes\; to zero, so there is a differential
dP(yp(k0)) = A1
up to a unit inFFp,, leaving theE> -term
EZX = E(dlogp) ® P(u1) ® Pp(ro)

where Pp(ko) = P(mo)/(ng) is the truncated polynomial algebra ag of height p.
There is a multiplicative extension

Ko = H1
in total degree g, so that
T (THH(Zp, (p)); Z/p) = E(dlogp) @ P(xo)

as an algebra, witfdlogp| = 1 and|xg| = 2. Hence there is an abstract isomorphism

T (THH(Zp, (p)); Z/p) = . (THH(Zp|Qp); Z/p)

where THHEZ|Qp) is as defined by Hesselholt-Madseé9,[§1.5]. We conjecture
that this isomorphism is realized by an equivalence

THH(Zp, (p)) ~ THH(Zp|Qp)

of cyclic commutative THHZ)-algebras.

Example 8.14 More generally, Hesselholt and Mads&9][ consider local fieldK
(complete discrete valuation fields of characteristic zero with perfectuedield
k of characteristicp # 2) with valuation ringA C K and uniformizerw. Let
a: M = () — (A ) be the inclusion, and le®v = W(k) be the Witt ring. As
explained in Serre7p, §1.6, Prop. 18], the minimal polynomial(x) of = € A over
W has the formp(x) = x® — pA(x), wheree is the ramification index oK and 6(x)
is of degree< e with #(0) a unit. The Khler diﬁerentialsleﬁ/w =~ A/(¢/(m)){dr}
are generated byr with annihilator ideal the differentg{(7)) c A, while the log
Kahler differentials,52(1A7,\,|)/W ~ A/(r¢/(r)){dlogn} are generated bylognw with
annihilator ideal £¢'(7)) C (p) C A. As explained in 29, §2.2] there is a natural
short exact sequence

0— w2 Yy =k —0

wherey)—(dw) = mndlogw and resflogw) = 1. In[29, 1.5.5], Hesselholt and Madsen
define a usefuhd hocmodel THHA|K) for the log topological Hochschild homology
of (A, M), such that there is a homotopy cofiber sequence

THH(K) = THH(A) L THHAK)
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wherei., is the transfer map associated to the surjectiodA — A/(r) = k, andj* is
the natural map associated to the inclusjorA — A[7~1] = K. In[29, 2.4.1] they
prove that

m(THH(AIK); Z/p) = A/p ® E(dlog ) @ P(ko)

whereA/pE(dlog ) = Q;‘AyM)/p is the modp reduction of the log de Rham complex
of (A,M), and|ko| = 2.

Conjecturally, the following isomorphism is induced by an equivalence
THH(A, (7)) ~ THH(AIK)

of cyclic commutative THHA)-algebras.

Proposition 8.15 LetA, (r) andK be as above. There is an isomorphism
m(THH(A, (7)); Z/p) = m.(THH(AIK); Z/p)
of m.(THH(A); Z/p) -algebras.

Proof We will only prove this in the wildly ramified case, wheae. One can use
descent arguments, like in Hesselholt—-Mads29 g2.4], to deal with the tamely
ramified (p 1 €) and unramified¢ = 1) cases.

We have a pushout square
HA/p A B¥(m)+ HA/p A B®P() 1

| |

HA/p Ana THH(A) —— HA/p Apa THH(A, (7))

of commutativeHA/p-algebras, and an associatedriieth spectral sequence
E2, = Tor s "W AP (e (THH(A); Z/p), H.(B*P(r); A/p))
= m.(THH(A, (m)); Z/p) .
In the wildly ramified case,
m(THH(A); Z/p) = A/p @ E(a1) @ P(az)

by Lindenstrauss—MadseAl, Theorem 4.4(ii)], with|a1| = 1 and|az| = 2, andj*
takesas to a unit timeskg. Hence theE2-term is isomorphic to

E2, = Torf")(A/p @ E(c1) ® P(az), E(dlog))
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wheredr — a1 anddr — wdlogr in the respective factors. Hence tBé-term is
concentrated on the vertical axis, thérdheth spectral sequence collapses, and we get
the isomorphism
m(THH(A, (m)); Z/p) = (A/p ® E(a1) ® P(a2)) ®g(dr) E(dlog )
>~ A/p® E(dlogn) ® P(ay) .
The abstract isomorphism with,(THH(A|K); Z/p) takesas to a unit timesxp.

|

Definition 8.16 Let N be a commutative basé&dspace monoid ove®, as in Defini-
tion6.19 Thebased cyclic bar constructioron N is BYN = St@ N, where the tensor
product is formed in §Z, 0, S°). The suspension spectruR™N is a commutative
symmetric ring spectrum, and

THH(EZ'N) = S @ N~ 2 (S @ N) = 2 BIN.

Now suppose tha = cone() U N’ is a commutative conically basef-space
monoid. Based on discussions of symmetric conically b&segpace monoid deriva-
tions, like Definition5.14and Lemmal2.4 we are led to declare thHeased replete
bar construction of N to be
BYPN = NEB(I'N').. .
Discussions similar to Lemm&a19and Propositiori 2.7 specify the repletion map
¥ BYN — BXPN

up to homotopy, but it is best described as the suspension of the basadrsap
sh: NN — N (I'N), given in Definition13.14 Here the suspension is formed
in the category of commutativeé-space monoids under and ower

Definition 8.17 Let (A, N, ) be a conically based pre-log symmetric ring spectrum.
The based log topological Hochschild homologyrHHg(A, M) of (A, M) is defined
by the pushout square

AAsn THHE'N) —2= A Asen 57BN

‘| . |5

THH(A) THHo(A,N)

of commutativeA-algebras. Heré As-n S°BPN ~ AAB(I'N') . ~ AABN,.
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9 Operadic logarithmic structures

Definition 9.1 Let A be a commutativés-algebra and leb: O — L be an operad
augmented over the linear isometries operad, so that@agaceM has an underlying
O-spaceo”M. By an O pre-log structure on A we mean a pairNl, a), whereM is
an £-space andv: oM — o#Q%?A is a map of the underlyin@-spaces. Anap

(f.f7): (AM) — (B,N)

of O pre-log S-algebras is a map: A — B of commutativeS-algebras, and a map
f>: M — N of £-spaces, such that the square

oM —— 0*QFA

o#fbt lo#ﬂfej’f

o*N L 0*QXB

commutes inO[U/]. To make homotopy-theoretic sense of this structure, we will need
to cofibrantly replac®”M (ando”N) in the category of?-spaces. The category 6f
pre-log S-algebras is the comma category

OPreLoy(S) = (0", 0"QY)
whered”: L[U] — O[U] and o#Qg,?: Cs — O[U], see Mac Lane44, §11.6].

WhenQ is anE, operad, like the littlen-cubes operad,,, we say thatil, «) is anE,
pre-log structure on A. To makeC,, augmented ovef , we will implicitly replace it by
the product operad, x L. Similarly, the category 0® based pre-logS-algebrasis
defined to bed, 0*Q%), where nowo”: Lo[7] — Oo[7] ando?*QL: Cs — Oo[7T].

Remark 9.2 In view of the fact thatC,_1-algebras in associativ€-algebras are
E, ring spectra, see Brun—Fiedorowicz—Vod¥| Theorem C], we might modet,, -
algebras inZ-spaces byC,_1-algebras in associativé-monoids, to get a definition
of an E,, pre-log structure on a commutative symmetric ring spectuntrorn = 2,
this would consist of a commutative-space monoid and a mapx: M — QA of
Cy-algebras in associative-space monoids.

Remark 9.3 When discussing topological AnekQuillen homology foA andgM],

we will needA andM to be commutative oE., objects, and in order to form the log
topological Ande—Quillen homology TAQ4, M) for (A, M) we will need thata is

an E., map. On the other hand, when discussing topological Hochschild homology
of A and §M], we only needA and M to be associative oA, objects. However,
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to form the log topological Hochschild homology ofA,(M) we will make use of
the repletionB™PM of the cyclic bar constructioBYM as a space ovevl. For an
augmentatiore: BYM — M to exist, extending the identity on the zero-simplices
M C B%M, itis necessary and sufficient thdtis acyclic A, spaceas defined e.g. by
Vigleik Angeltveit, see ], 4.1, 4.4] and Getzler—Kaprano®4]. This means thaM is
homotopy-commutative in a somewhat strong sense. For examptest take each
1-simplex @, b) to a homotopyyap from ab to ba, and it must take each 2-simplex
(a,b,c)

abc

>
—————~cab

bca Yea,b

to a second order homotopy (= 2-cell) connecting the composite homoigpy vcab
from abc via cab to bcato the direct homotopyya e from abcto bca

a b /C a b Cc
X / /

C/ a b —

\/ — /

b/ C a b C/ a

A generalE; spaceM will admit the homotopiesy, b, but might not admit the second
order homotopy, since the full twish ¢ x ¢ b is often not homotopic to the identity. An

E3z spaceM will admit the second homotopy, but also satisfies coherence conditions
for non-cyclic permutations that may not be required in a cyélic structure. To
extend a retraction td/ from the 2-skeleton to the 3-skeleton BfYM part of an

E4 structure will be needed, and so on. It would be interesting to know inadjer
terms what it means fd8“YM to admit a retraction td, but for our purposes it seems
reasonable just to assume thdtis E.,, so that we can rectify it to a commutative
Z-space monoid, for which the retractien BYM — M always exists.

In the case of grouplikéM, Thomas Kragh has pointed out thatNf = QX, with

X an H-group, we haveBYM ~ AX and QX — AX admits a retraction, since the
homotopy fiber sequenc@X — AX — X admits a section and X is an H-group.
Hence for grouplikeM it suffices thaBBM is anH-group. For example, this applies to
all grouplike Ex-spaces.

Assuming thatM is cyclic A, or E., we will need thatA and o are associative
in order to define THHA, M), but more commutativity iPA and o will give more
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multiplicative structure to THH{, M). If « is a map ofE, spaces, or more precisely, a
map ofC,_1-algebras in associative monoids, then THAH{) will be aC,_1-algebra

in spectra, i.e., afE,_1 ring spectrum. As the following lemmas show, this seems to
be a relevant setting for topological log geometry over the sphere spectru

Definition 9.4 Let A be an associativB-algebra, and let € 2&°A be a chosen point.
Let M = Hizo L(j) be the free nor= L£-space on a single poirftl}, and extend
the map 1— x freely to a mapx: M — QA of non-X L-spaces (FA,, spaces),
taking the contractible spac&(j) to the path component of, for eachj > 0. Let
(x) = {1,x, %%, ...} be the free associative (and commutative) monoid generatgd by
The collapse maM — (x) is an equivalence o, spaces. We callM, x) thefree
A pre-log structure on A generated by, and usually denote it by(X), X) or (x).

If Ais an E, ring spectrum, or more precisely &,_1-algebra in associativ&-
algebras, thef2A is a Cy-1-algebra in nonx L£-spaces, hence is equivalent to
a Cp-space. Suppressing this equivalence, each pomtQ A specifies aCy-map

X: ChS — QFA, whereC,S is the freeC,,-space on one generator. We c&hg’, X)
thefree E, pre-log structure on A generated by.

Lemma 9.5 Letp be a prime and writéd,.(X) for H.(X;Fp). Let A be anE; ring
spectrum anck € QA a point. Ifp is odd, assume thgk] € Ho(Q2XA) has trivial
Browder operatiom\1([x],[X]) = 0 in Hi(QFA). If p = 2, assume that Cohen’s
“top” operation1([X]) = O in Hi(QZFA). Both hypotheses are trivially satisfied if
H1(2g°A) = 0. Then the algebra homomorphism

X1 Hi(C2S) — HL(QZA)

induced by the fre€, pre-log structure: C,S® — QA is zero in positive degrees,
hence factors through the augmentation

H.(C2S%) — H.((X)) = P(e).

In other words, there is no mgolhomological obstruction to there being Bs pre-log
structureM, ) onA, with M ~ (x), so that the composie;S® — (x) ~ M = QXA
is homotopic tox.

Proof By Fred Cohen’s calculatiorlp, I1l.A.1],

H.(C2S) = P(e) @ E(hi | i > 0)® P(gi | i > 1)

for p odd, whereP and E indicate the polynomial and exterior algebras on the listed
generators, respectively. Heee= [1], hg = A\1(e €), hi = &1(hi—1) andg; = Sh; for
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all i > 1, where the Browder operatioxy (which is O for allEz spaces) and the top
operationé; are defined in18, §l1l1.1], while g is the Bockstein operation. See also
Yamaguchi 82, page 522]. Thé&,-mapXx takese to [x] and hg to A\1([X], [X]), which

is 0 by assumption. By naturality of the operations it follows that &sand g; map

to O, for alli > 1, sox, factors through the augmentation Bge) = H..((x)). The
proof for p = 2 is very similar. O

Lemma9.6 Thereis ndes pre-log structuréM, o) onku with M ~ (p), such that the
(homotopy) generator maps to a point in fhh component of2g°ku ~ (BU x Z)g .
The same conclusion applies for thecompletionku, of ku. Hence there is no suék
pre-log structure on any other commutat8«lgebraA with a commutativés-algebra
map tokuy.

Proof ForCs-spacedM there is a top operatiofy : Ho(M) — Hop_2(M) that agrees
with Q! for E4 spaces. The generater= [1] € Ho(M) maps to p] € Ho(BU x Z),
soif a is aCz-map the clasgz(€) in Hap 2(M) = 0 maps toQ'[p] in Hzp 2(BU x Z),
whereQ'" denotes the multiplicative Dyer—Lashof operation. Now

Q'[p] = —Q'[1] * [p° — p]
modulo x-decomposables by Cohen-Lada—Ma§,[11.2.8], and

Q1] = —(—1) brp-1) * [p]

modulox-decomposables b8, 11.7.1]. HereH..(BU) = P(b; | i > 1) with |bj| = 2i,
where b; is the image of a generator ¢i,(BU(1)) under the inclusiorBU(1) C
BU x {0} C BU x Z. HenceQ'[p] = —bp_1 * [pP] # 0 in Hzp_2(BU x Z). In
particular, it cannot be the image under of &2(e) = 0.

These modp homological calculations hardly distinguish betwdenand ku,. The
last conclusion follows by naturality, since &3 pre-log structuren: M — QA
composed with arE,, map QA — Qg’ku, would produce arks pre-log structure
on Kup. |

Lemma 9.7 Let A be a commutatives-algebra such that the unit ma&p — A
takes the Hopf map) € m1(S) to zero inm1(A)[1/p]. For simplicity assume that
= mo(S) — mo(A) Is injective, and writeN x (p) C QXA for the subL-space
consisting of the path components correspondingtoC mo(A). Consider the group

completion

L(p): T(C2S) — I'(N x (p))
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oftheCy-mapp: C,S® — N x (p) freely generated by — p. Herel'(C,S°) ~ 0?S?
andI’(N x (p)) ~ N[1/p] x (p,p~ ). Restricted to th®-th component in the source,

To(p): ©5S° — N[1/p]

is null-homotopic as &,-map.

Proof The additive group completion equivalencéC,S’) ~ 02’ is due to Graeme
Segal [f4, Theorem 1], see also Cohen-Lada—Ma8, [I11.3.3]. The multiplicative
group completion equivalend&N x (p)) ~ N[1/p] x (p,p~!) is due to Peter May
[46, VII.5.3], generalizing a result of Jargen Tornehave. The Hopf fi@®uence
St — L 2 loops to a fiber sequendeS® — QO — S with a section, so there
are equivalences

0’ x 7 = Q*S x st = 0*F

of Q-spaces. The inclusio®?: 0?S® — Q23 of the zero-th component is an
02-equivalence, and the composite

CSt 5 028 = 03 — I'i(N x (p)) ~ N[1/p]
is the freeCo-map generated by its restricti® — N[1/p], representing the image of
nin w1 (N[1/p]) = m1(A)[1/p]. By assumption the map froig" is null-homotopic as
a based map, hence the fréemap it generates is null-homotopic a€amap. O

We view these lemmas as motivation for the following hypothesis.

Hypothesis 9.8 Let A be ank; ring spectrum withr1(A) = 0, and letx € QFA.
Then the freéA, pre-log structurd(x),x) on A generated bx lifts to anE, pre-log
structure(M, o) on A, with M ~ (x) anda homotopic tox.

Definition 9.9 Let A be a commutativéS-algebra, letY = ¥ be a sphere, and let
y: & — Qg A be a based map representing a homotopy clasg(#y) with Hurewicz
image ] € Hq(25'A). There are canonical maps

CroS = \/Cl(j)+ Nsy SLEN \/de

j=0 j=0

— CpoS = \/Cz(j)+ As; S \/ ﬂgj

j>0 i>0

—>LoSd:\/[,(j)+/\Ej sjj:\/$j2j7

j>0 i>0



94 John Rognes

whereB; is thej-th braid group. Let; be theR!-bundle overBY}; associated to the
usual inclusions; — O(), and let, be theR!-bundle overBB; associated to the
composite homomorphisig; — ¥; — O(j), so thatg; is the pullback ofr; along the
usual mapBBj — BYj;. Then Sﬂ‘zj = EXjy Ax; S = Th(doj) is the Thom complex
of d timesoj, andﬂgﬁ_ = EBj; Ag SY = Th(dg) is the Thom complex ofl times .
From here on we assume thats even.

Proposition 9.10 WhenY = ' is an even sphere each vector bundifi over BB,
is trivial, so ﬂ% =~ »4i(BB,). Hence each inclusios — ﬂg‘ admits a retraction

r: S?B] — SU, and these combine to a retraction of based spaces

r: Cz,osd — Cl’osj.

Proof Ford = 2 there is atrivialization of 3, given in Cohen—Mahowald—-Milgram
[19, Theorem 1] by an explicit map

vi Co()) xx; (R — (R?Y.

To eachj-tuplec = (cy, ..., ) of little squares (= 2-cubes) itf we can associate a
j-tuplez = (z,...,z) of distinct points inl? C R2, given by the barycenters of the
squares. IdentifyindR? with C, we let

vz =0Q 6. a&.....y 47%)

for &€ = (¢1,...,§) in (R?) = C). Simultaneously reordering the and & by a
permutation inY; does not change these sums,s4s well-defined. For a fixed
Z=(z,...,z) the linear magt — v(z &) is given by a Vandermonde matrix, which
is nonsingular because tlzeare all distinct. Taking the Whitney sum al 2) copies
of this trivialization we get a trivialization ofi3; . ]

Remark 9.11 We would like to know if there is a baseh structure onCLoSQI ~
Viso Sf such that the retraction: Cp0S' — C10S is anE; map. The composite

C2,0(C1,05") 5 C20(C20S) £ Cpo” & Cy oS

wherei in induced by the inclusion, and expresses composition in the opeiad
decomposes as a wedge sum of maps

Coi)+ Aa (S A - A Sy — ST

whereG C jj is the stabilizer ofig, . . . ,ij) and|i| = i1+ - - +ij. This can be modeled
by cabling, taking Ca(j) to Ca(]i|), and using the retractiofi(|i|) Ag S — il
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For a more rigid model, we might replack(j) by the homotopy-equivalent space
BP;, whereP; C B; is the pure braid group op strings, and use the cabling map
BP, — BPjj;. We do not know if there is a map

BP A (S A ASH) - il

that generates a baség structure on\/;. IR

Lemma 9.12 If Ay([y],[y]) = 0 in Hzq11(Q2FA), as itis for anyEs ring spectrumA,
then the algebra homomorphism

()70)* : |:Lk(CZ,OSj) - H*(Q%JA)
induced by the fre&, based pre-log structure factors through the retraction
re: H(C20") — A.(CLoS") = P(e),

wheree € Hy(S") ¢ H.(C10S) is the fundamental class.

Proof We have isomorphisms

H.(C20S") = €D H.(BB; Fp{€})

>0
~ Pe) @ E(h |i > 0)@ P(g | i >1).

Sinced is even,B; acts trivially onIFp{ei}. We havehg = A\1(g, €), hj = &1(hj—1) and
g = phi fori > 1. Herele| = d, |hj| = 2p'(d + 1) — 1 and|gj| = 2p'(d + 1) — 2.
(These conventions specialize to those used in the proof of Legabvehend = 0.)
The retractiorr, takese to e and maps each; andg; to zero. TheC,-mapyp takese
to [y], so if A1([y], [y]) = O then allh; andg; map to zero irH,(Q'A). Hence Yo)-
factors througtr,, as claimed O

Lemma 9.13 There is noEs pre-log structurg(M, o)) on ku with M ~ CLOSZ,
such that the generaterof Hy(M) C H.(C10S) = P(e) maps to[u] in Hy(BU) C
H.(BU x Z), where[u] is the Hurewicz image of the Bott class & — BU.

Proof We write H.(BU) = P(b; | i > 1), as in the proof of Lemm@.6, so [u] = b;.
There is a natural operati@a: Ha(M) — Hap_2(M) for Cz-spaces, which agrees with
Q? for E4 spaces by Cohen—Lada-Mabg 111.1.3]. The Bott class] is primitive, so

Q' ([ul * [1]) = (Q'[uD) * [1] + (QTuD) * [1]
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by [18, 11.8.6]. HereQ'([u] *[1]) = O for r > 0 by [18, 11.7.2], sinceBU(1) x 1 —
Qg kuis anE,, map from a strictly commutative monoid. Furthermore,

Q'[ul = (=1)'(r — Dbrp-1)41

modulo x-decomposables by Kochman’s calculatioBg, [Theorem 6], saQ?[u] =
—b2p—1 # 0 modulox-decomposables. In particul&?[u] cannot be the image under
oy Of &2(6) = 0 in Hy(M). O

Remark 9.14 The graded analogue of LemnSa7 is presently hypothetical. The
stable Snaith splitting76] of C,S” induces an isomorphism

H.(C08") = H.(C:S) = P(@ @ E(hi | i > 0)@ P(gi | i > 1).

There is no obvious notion of group completion in the category of b&sgdpaces,
but there may be a suitable category of graledspaces, or commutative monoids in
gradedZ -spaces, where this makes sense. See Sagave—Schlictgkfull [

To recover the summandfl;*(sﬂJ ) = H.(BB; IE‘p{e'}) in A.(Cy, oSd) one introduces

a weight functionw, with w(e) = 1, w(h;)) = 2p' andw(g;) = 2p'. The monomials

of total weight]j then form a basis foH..(BB;; Fp{€'}). If we assume that this (non-
connective) graded group completion has the effect of inverting theafuental class
e, the weight zero component of the result has homology

H.([oC20SY) = E(hi | 1 > 0)@ P(Gi | i > 1)

whereh;, = —2p hi andg; = —Zpigi all have weight zero. This algebra is isomorphic
to
H.(C20S") = H.(CoSh) = H,(2%S).

We can reach the same result from a different point of view, involvingctivecally
based spaces. Withl = CoS! ~ \/J>O$‘B the base point complemem’ ~

]_[J>0 BB, ~ C,S” has group completiof N’ ~ 25, and its zero-th path component
is ToN’ ~ 3% ~ (2S®. Hence the obstruction, in the base point component after
group completion, to improving a free basag, pre-log structure generated by a map
St — QXA into a basedE, pre-log structure, lies in th& map 2S* — QPA
generated by).

Hypothesis 9.15 Let A be anE, ring spectrum withr1(A) = 0, and lety: & —
Qg A, whered > 0 is even. Then the free baséd, pre-log structure(Cl,oSd,Yo) on
A generated by lifts to a basede, pre-log structurdM, o) on A, with M ~ CLOSJI
anda homotopic toyyp.
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Example 9.16 Let (017032, Uo) be the freeA, based pre-log structure dayg gen-
erated by a maf® — QXkug) representings € mokug), and let €107, v10) be
the freeA,, based pre-log structure ahgenerated by a mag? — QX7 represent-
ing vi € mgl. Letf: ¢ — Kup be the usual map of commutati&algebras. The
inclusionS? = P~ . C; oS to thej = p — 1 summand extends to &, map

fb . C]_,osq — Cl,osz

that makesf( f*): (¢, C10S") — (Kup), CLOSZ) amap ofA., based pre-lo&-algebras.
Note that the natural map

¢ /\200017051 EOOCL()SZ — kU(p)

is an equivalence, since the left hand side is equivaler\\tl}cl:q)l ¥2¢, and compare
with Lemmal2.15 Assuming some uniqueness or other compatibility ofEadifts
in Hypothesi9.15 the map {, f”) can be promoted to be a map Bf based pre-log
S-algebras. If so, THH{>C,S") and THH(EOOC17OS2) becomeA,, ring spectra,
we can construct THH(Cy 0S") and THHKup,), cl,osz), and

THH(¢, C1,0S") — THH(Kug), C1,0SY)

becomes a map &, ring spectra.

Remark 9.17 We summarize the results of these calculations. &oe ku and

M = (p), Lemmas9.5 9.6 and 9.7 consider the existence &, pre-log structures

a: M — Q%Ag taking the monoid generator to thgeth component of2>°A; . An

A.. = E; pre-log structure certainly exists, and there is no homological obstruction to
the existence of ak, pre-log structure, but n&s pre-log structure exists.

For A= kuandM = \/;54 $?, Propositiond.10and Lemma®.12and9.13concern

E, pre-log structuresy: M — Q>®Ag mappingS” c M to Q™A to represent the
Bott classu € mku. An A, = E; pre-log structure certainly exists, and there is no
homological obstruction to the existence oflanpre-log structure, but n&s pre-log
structure exists.

In Hypothese®.8 and9.15 we propose a natural generality for the existenc&pf
pre-log structures. In Examp16 we discuss the consequences for the existence
of a map (,M) — (Kup),N) of E> pre-log S-algebras, withM ~ \/,., S and
N~ Vo . -
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Part Il

Logarithmic topological Andr e—Quillen
homology

10 Topological André—Quillen homology

We now extend the construction of logikler forms and the log cotangent complex to
the topological context.

Definition 10.1 Let A be a commutative symmetric ring spectrum andJebe a
left A-module spectrum. SincA is commutative, we can also think dfas a right
A-module. Thesquare-zero extensionA Vv J is the commutative symmetric ring
spectrum with multiplication map

AVINAVI)ZAANAVAANIDVEIAAVEAAT) —AAND
given by the multiplication:: AAA — A on the first wedge summand, by the module

actionsAAJ — J andJA A — J on the second and third summands, and by the trivial
mapJ A J — % on the fourth summand. We have maps

ALAVISA
of commutative symmetric ring spectra, whekes the unit inclusion and collapses
J to *. We think of J as the kernel o, making it a square-zero ideal &V J.

Definition 10.2 Let A be commutative symmetric ring spectrum, andJebe an
A-module. Aderivation of A with valuesinJ isamapd: A — AV J of commutative
symmetric ring spectra ovek. We let

Ders(A,J) = (CSp™/A)(A, AV J)
be the (homotopy invariant) mapping space of all such derivations.

More generally, for a map: R — A of commutative symmetric ring spectra, we say
that aderivation of A over R with valuesinJ isamapd: A — AV J of commutative
symmetric ring spectra und& and overA. Itis a dashed arrow making the following
diagram

(10.1) R—E-AVJ
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commute, in the category of commutative symmetric ring spectra. We let
Derx(A, J) = (R/CSp™ /A)A, AV J)

be the mapping space of all such derivations. We usually abbreRjat&p> and
R/CSp” /A to Cr andCr/A, respectively.

Definition 10.3 The following definition is due to Maria Basterrdd. Thetopolog-
ical Andr é-Quillen homologyof A over R is the A-module

TAQR(A) = TAQ(A/R) = LQARIA(AAE A) .

In other words, it is the homotopy invariant form @ala(A AR A). Here AAR A
is viewed as a commutative symmetric ring spectrum under andAyeia the left
unit mapid A e: A =2 AARR — A AR A and the multiplicationu: AARA — A.
The augmentation ideal functor Ia: Cao/A — Na, to the category of non-unital
commutativeA-algebras, is right adjoint to the functir— AV N, and this adjoint pair
forms a Quillen equivalence. Tledecomposable quotienfunctorQa: Na — Ma,
to the category oA-modules, is left adjoint to the functor that gives Armodule the
trivial multiplication.

We say thaie: R — A isformally étaleif TAQR(A) is contractible. WherR = Siis
the sphere spectrum, we simply write TAQfor TAQS(A).
Proposition 10.4 The topological Ande—Quillen homology corepresents derivations,
in the sense that there is a natural weak equivalence
MA(TAQR(A), J) ~ Derr(A, J)
of homotopy invariant mapping spaces. There is a universal derivation
du: A— AV TAQR(A)

of A overR that corresponds to the identity mapTQR(A).

Proof This is essentially Basterra’s resuli 3.2]. By the (Quillen) adjunctions

Qa Av(-)
Mpa— Na - Ca/A

Ia

one gets equivalences

MA(TAQR(A), J) =~ Na(Ia(A AR A),J) =~ (Ca/A)ANRA AV J),
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and by the left hand pushout square in the diagram

e n

R A AV J
/7

T

A= AARA—" = A

of commutative symmetric ring spectra, the dashed arrows correspondvatiders
of A over R with values inJ. O

Remark 10.5 Implicit in Proposition10.4is the result that
Derr(A, J) ~ Q" Derr(A, £"J)

is an infinite loop space, sinc81a(TAQR(A),J) ~ Q" MA(TAQR(A), x"J), for all
n > 0. Hence the square-zero extens®v J is an “infinite loop object” inCr/A,
topologically analogous to the role &f@® J as an abelian group object #RRing/A.
See Remarkd.2

Lemma 10.6 Let g: C — A be a map of commutativR-algebras, and led be
an A-module. Writeg?J for J viewed as aC-module viag. Composition with
gVvid: CVvJ— AV Jinduces a weak equivalence

Derk(C, g"J) = (Cr/A)(C,AV J).

Proof This follows since the right hand square in the diagram

gvid
R CcvlJ AvJ
Ll
c-=-c—2—=A
is a homotopy pullback. |

Proposition 10.7 LetR 5A A B be maps of commutative symmetric ring spectra.
There is a natural homotopy cofiber sequence

B Aa TAQR(A) — TAQR(B) — TAQA(B)

of B-modules, known as theansitivity sequencefor e andf .

Proof See BasterralP, 4.2] for this topological analogue of Quillen'6¢, 5.1]. O
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Proposition 10.8 Lete: R— A andg:. R — T be maps of commutative symmetric
ring spectra. There is a natural weak equivalence

T AR TAQR(A) = TAQ(T ARA)

of (T Ar A)-modules, known aiat base changealongg.

Proof See BasterralP, 4.6] for this topological analogue of Quillen'6¢, 5.3]. O

Lemma10.9 LetM = CX=[]j>q X¥ /5 be the free commutative-space monoid
on anZ-spaceX, so thatM] = PIX] = \/120 gX]" /% is the free commutative
symmetric ring spectrum on the symmetric spect@ix]. Then

TAQ(EM]) ~ §M] A §X]

and the universal derivatiott,: JM] — JM] vV (SM] A §X]) is the commutative
symmetric ring spectrum map that extends the symmetric spectrum map

iv(nAid): §X] — gM] Vv (SM] A X))

given as the wedge sum of the inclusion §X] — JM] and the unit mam A
id: gX] =2 SAgX] — gM] A 9X].

Similarly, letN = CoY = \/j5q Y /% be the free commutative basgespace monoid
on a based -spaceY, so that>*N = PX"Y s the free commutative symmetric ring
spectrum on the symmetric spectrithY . Then

TAQ(E'N) ~ S'N A XY

and the universal derivatiod,: >*'N — >NV (X°N A X°Y) is the commutative
symmetric ring spectrum map that extends the symmetric spectrum map

iV(npAid): XY — XNV (EZ'NAXY)
given as the wedge sum of the inclusion 'Y — Y°N and the unit mam A
id: XX NZSAXY - S NAXY.
Proof For eachgM]-moduleJ, the space De{M], J) of dashed maps
S——9M] VvJ

7
7
- €
re
7

gM] —— gM]
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in the category of commutative symmetric ring spectra is equivalent to the space
dashed maps

gM] v

7

7
e €

SX] SM]

7
in the category of symmetric spectra, which by projection alpnggM] vJ — Jis
equivalent to the space of symmetric spectrum mgpg§ — J. In particular, these
are corepresented by the symmetric spect8iK], and by the inducedM]-module

TAQ(IM]) = gM] A §X].

The universal derivatiom, corresponds to the identity cfM] A §X] as angM]-
module map, which corresponds oA id: X] — JM] A §X] as a symmetric
spectrum map, and to the multiplicative extension of (n A id): §X] — gM] v
(SM] A §X]) as a symmetric ring spectrum map o\gM].

The proof in the based case is identical. O

Remark 10.10 For more general commutativé-space monoidsvi, built as cell
complexes by attaching copies 6fX along CA for suitableZ-spacesA C X, one
can inductively compute TAQGM]) by combining Proposition40.7 and 10.8 with
Lemmal0.9 For example, ifN is a CW complex in commutative basddspace
monoids, so that thie-skeletonN is obtained fromNy_1 by attachingCX along CA
for X ~ \/ DX andA ~ \/ 1, then there is a homotopy cofiber sequence

SN Asrn_; TAQ(E Ne-1) — XN Asrn, TAQ(Z'Ni) — Z'N A\ / &
of ¥X*N-modules. The homotopy colimit

TAQ(X'N) = hocIPIim(E'N Asrng TAQ(EZ'Nk))

can then be assembled from the filtration quotientsl A \/ S, in the usual manner
known from cellular homology and the Atiyah—Hirzebruch spectral secgiesee
Baker—Gilmour—ReinhardLfl].

Remark 10.11 For grouplikeE,, spacedM, Basterra and MandellLB, Theorem 5]
prove that TAQEM]) ~ JM] A B®M as an extende§ M]-module. The condition
that M is grouplike is omitted in the published statement, but was needed for their
intended argument, as Mike Mandell has kindly pointed out. We therefpredace

part of their argument here, to show where the grouplike hypothesigdede
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The shear mag'™M x M — I'M x M, given on elements byn{ n) — (my(n),n),
induces a weak equivalence

SIM] A SM] — STM] A IM]

of commutative§JI'M]-algebras. This is a map of augmentgd'M]-algebras, where

the augmentation on the left hand side is induced by the multiplicdtdnx M —

I'M x 'M — T'M, and the augmentation on the right hand side is induced by the
projectionI'M x M — I'M x x = I'M that collapsesM to x. By [13, The-
orem 6.1] the commutativgI’'M]-algebra indecomposables of the two sides are
SI'M] Agm; TAQ(SM]) and the extended modufgI'M] AB*M, respectively. Hence
TAQ(SM]) ~ gM] A B>M whenM is grouplike, but for generail this only holds
after base change alorgiM] — JI'M].

Since pre-log structures mappidyinto GL;(A) only give rise to trivial log structures,
the Basterra—Mandell result for groupliké is not directly relevant to our discussion.
Also the extended version is of modest direct use, since a pr&lalgebra A, M)
becomes log trivial after base change £oAgv) SI'M], M) or (A Agm; STM], T'M).
However, a slightly modified version of the shear map above is of fundaheuar-
tance in the general description of repletion maps given in Set8drelow.

11 Logarithmic topological André—Quillen homology

Definition 11.1 Define the grouplike commutativé-space monoid (% ©°J)gy by
the homotopy fiber sequence
1+ 2 J)e — GL(AV J) 229, GLy(A)
whereGLj(e) is split by GL1(n). More explicitly, itsn-th space is the homotopy fiber
atnn: S' — A, of the projectionQ"(A, Vv Jn) — Q"A,. We get a weak equivalence
GL1(A) X (1+ Q') — GL1(AV J)
(for semi-stabled andJ) expressingsLi (AV J) as the homotopy coproduct GiL;(A)
and (1+ Q' J)g .
Lemma 11.2 The projectiorA Vv J — J induces a weak equivalence
1+ Qg — QI
of T-spaces, which is compatible up to preferred homotopy with the grouplike
structures on(1 + 'J)g nr and (' J)nz. Hence the spectrum associated to the

commutativeZ -space monoidl + €2'J)g is weakly equivalent to the underlying
spectrum ofl.
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Proof The inclusionAv J — A x J is a stable equivalence, so the map of homotopy
fibers
Q+)g — QI

(for the projections td\) is also a weak equivalence.

For brevity, writeF,, for the homotopy fiber of2"(A, Vv J,) — Q"A" at 5. Given a
pinch mapS™" — SNy SN the compositd=m x Fn — Fman — Q™ "Jn.n has
a preferred homotopy to the composite

Fm X Fn — Qme X Qan — Qm+n\]m+n X Qm+n\]m+n — Qm+n\]m+n,

where the middle map is the product of the stabilization mags and the right hand

map is the loop sum specified by the pinch map. Parametrizing the pinch maps by
pairs of little (m+ n)-cubes, and generalizing to products with more than two factors,
we get the desired equivalence®f, structures. O

Remark 11.3 An alternative argument in the languagebfpaces can be given using
[13, Theorem 6.1]. Basterra and Mandell construct a weak equivatgngenodules
LQsRIsgN*>°J] — J, which is left adjoint to a maRIsg2>°J] — J of non-unital
commutativeS-algebras, which in turn is right adjoint to a m&x2>°J] — Sv J

of commutativeS-algebras ovefS, which finally is left adjoint to a map of grouplike
L-spaces fron2>°J to the homotopy fiber oGL1(SV J) — GL1(9), and the latter
is equivalent to (L Q°°J)s. This map of grouplikeL-spaces is the desired weak
equivalence.

Definition 11.4 Let (M, «) be alog structure oA. Theinverse image log structure
(n*M,n*a) on AV J is given by the upper central pushout square in the following
diagram of commutativ€ -space monoids.

1 GL1(A) M—% = QLA

| e e

b
1+ 0y —= GLy(AV J) 7ML 0 (AV D)

e ke

1 GL1(A) M—2 QLA

Sinceen = id we can identifye*n*M with M.

Lemma 11.5 There is a chain of weak equivalences

Mx A+ QNg —MRA+ Qg — n'M
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andn*a maps(m, 1+ j) to a(m) - (1 +j) = a(m) + a(m)j. The natural maps® and
¢” correspond to the product of the identity &h with the base point inclusion and
collapse mapg — (1 + Q' J)g — 1, respectively.

Proof The upper left hand square in Definitidd.4is a homotopy pushout, hence so
is the rectangle with vertices M, (1+ Q2'J)g, andn*M. O
Definition 11.6 When M, «) is a pre-log structure oA, we define

"M =MKX 1+ QJ)g.

In view of Lemmall.2 there is a weak equivalenegM ~ M x Q°J. We define the
pre-log structure

n a: n*M — Qg (AV J)

as the coproduct in commutative-space monoids of the pre-log structu,n o
a: M — Qp(AV J) and the composite

i3: (L+ Qg — GLi(AV ) = QL (AV J).

There results a commutative diagram

1 M @ QLA

l b e
1+ Qe M AV J)

e

1 M @ QLA

of commutativeZ -space monoids, where the two left hand squares are pushouts.

Lemma 11.7 Let (M, «) be a pre-log structure o, andJ an A-module. There is
an equivalence

(n*"M)? ~ n*(M?)

of log structures irfA vV J.

Proof The proof is similar to that for Lemma 24 O
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Definition 11.8 Let (A, M) be a pre-log symmetric ring spectrum, and Jebe an
A-module. Alog derivation of (A, M) with values inJ is a map

d,d): (A M) — (AV I, 7*M)
of pre-log symmetric ring spectra ovek,M). Let
Ders((A, M), J) = (PreLog(S)/(A, M))((A, M), (AV I, n*M))
be the mapping space of all such log derivations.

More generally, for a mape(e’): (R, P) — (A, M) of pre-log symmetric ring spectra
we say that dog derivation of (A, M) over R, P) with values in theA-moduleJ is a
map

d,d): (AM) — (AV I, n*M)

of pre-log symmetric ring spectra undé®, P) and over A, M). In other words, itis a
dashed arrow making the diagram of pre-log symmetric ring spectra

(11.1) (RP)——= (AV J,n*M)
ddy -7
(e,eb)l (/ /)/ l(e,eb)
commute. The top horizontal map ig, (°) o (e, €) = (ne, n°€’). We let
Der(R,P)((A7 M)7 ‘]) = (PreEOQ(R, P)/(A7 M))((A7 M)7 (A \ ‘J7 U*M))
be the mapping space of all such log derivations.
Lemma 11.9 The logification map$R, P) — (R, P?) and(A,M) — (A, M?) induce
weak equivalences

Der(R,Pa)((Av Ma)7 ‘]) i Der(R,F’)((Aa Ma)v J) i Der(R,P)((A7 M)7 ‘]) .

Proof Let Z be the space of dashed arrows making the diagram
(R P)——(AV I, n*M?)
(eveb)l 7 . l&,eb)
(A, M) (A, M)

-~

commute, in the category of pre-log symmetric ring spectra. The first mapleftimea,
and the natural map Dgip)((A, M?),J) — Z, are weak equivalences by Lemma,
since we are considering spaces of pre-log maps into the log symmetric gotyasp
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(AV J,n*M®) and @, M?). The natural map Degp)((A,M),J) — Z is also a weak
equivalence, because

U*M n*Ma

|
Ma
is @ homotopy pullback square. Hence the second map in the lemma is also a weak
equivalence. |

Definition 11.10 Let M andK be commutativel -space monoids, witK grouplike.
The space ofommutative Z-space monoid derivationsof M with values inK is the
mapping space

Der (M, K) = (CS*/M)(M,M x K)

of commutativeZ -space monoid homomorphisrds: M — M x K overM.

More generally, let?’: P — M be a map of commutativé -space monoids. The
space
Ders(M,K) = (P/CST /M)(M, M x K)

of commutative Z-space monoid derivationsof M over P with values inK is the
space of dashed arrov#® making the diagram

b
(11.2) P M xK
| &
eb // eb
M= =M

of commutativeZ -space monoids commute.

Lemma 11.11 There are natural equivalences
Der(M, K) ~ CST(M, K) ~ Sp*(B®M, B¥K)

and
Ders(M, K) ~ Sp*(B*M /B>*P, B*K) .

The universal commutative-space monoid derivation
d: M —MxTM
of M corresponds to the identity map Bf°M, and is given by the composite

MEMxM- P M<TM.
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More generally, the universal commutatizespace monoid derivation
d: M—MxQ(BM/BP)
of M overP corresponds to the identity map Bf°M /B>P.

Proof Itis clear that commutativé -space monoid homomorphisrds: M — M x K
under P and overM correspond to commutativé-space monoid homomorphisms
M — K that takeP to .

P—s %
o |
M- ->K

SinceK is grouplike, the latter are equivalent to mag¥M — B*>°K of symmetric
spectra, that come with a nullhomotopy of the restrictiotoP. These are in turn
equivalent to maps from the homotopy cofiberBSfP — B°>°M, which we write as
B>~M/B>*P. O

Remark 11.12 Implicitin Lemmall.11is the result that
Der(M, K) ~ Q"Der (A, B'K)

is an infinite loop space, sinc8p>(B*M, B*K) ~ Q"Sp*(B*M, B*B"K), for all
n > 0, and similarly for non-triviaP. The productM x K is an “infinite loop object”
in CST/M.

Proposition 11.13 Let (e,€): (R, P, p) — (A, M, o) be a map of pre-log symmetric
ring spectra, and let be anA-module. There is a homotopy pullback square
Derrp)((A, M), J) ——— Derr(A, J)

| #

Ders(M, (1 + 2" J)s) ——> Dergpy(SM], 3J)

Proof A log derivation ¢, d’) as in diagram 11.1) is equivalent to a pair of log
derivationsd and d”, as in diagrams1(0.1) and (11.2), respectively, subject to the
compatibility conditionQ2i,d o o = n*a o d” in the space of dashed arrows

(11.3) P~ (AV )

/1
ebt // lQ®E

M—>— QLA
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making this a commutative diagram @sS?, or equivalently, in the space of dashed
arrows

(11.4) SP] —>;A\/J
qeb]l /// le
gM] —2—~ A

making this a commutative diagramd@&p* . The upper horizontal arrows areyn)o
ao@ andnoao g€, respectively. By Lemmdo0.§ the latter space is weakly
equivalent to Degp(SM], a™J), since there is a homotopy pullback square

gM]vI-YL Ay g

gM] — < A,

The mape* takes a derivation of A over R with values inJ to €, do o, which under
these identifications correspondstoa: §M] — AV J and its lift (up to contractible
choice) to a derivation c§M].

The mapy* takes a commutativé -space monoid derivatiod” of M over P with
values in (14+ Q' J)g to n*a o d”, which corresponds tg*a o d’]: gM] — AV J,
and to its lift to a derivation o§M]. |

Remark 11.14 In view of Remarksl0.5and11.12
Der(R,P)((A7 M)7 ‘]) = Qn Der(R,P)((Av M)7 En‘J)
for all n > 0, so the square-zero extensiods\(J, n*M) are infinite loop objects in

Log§/(A,M).

Lemma 11.15 Let (e,€): (R P,p) — (A,M,) be a map of pre-log symmetric
ring spectra. The functors frold-modules to (infinite loop) spaces that takeo
Derr(A, J) andDergp(SM], a*J) are corepresented by themodulesTAQR(A) and
AAgM] TAQIFI(gMY)), respectively. The natural map is corepresented by the map

¢: AAgm TAQIP(IM]) — TAQR(A)

of A-modules, induced by the maps JP] — R anda: M] — A of commutative
symmetric ring spectra. FER, P) = (S, 1), itis left adjoint to thegM] -module map
TAQ(§M]) — TAQ(A) induced byc.
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Proof The functorJ — Derg(A,J) is corepresented by TARA), by Proposi-
tion 10.4 The functorK — Dergp(§M], K), from §M]-modules, is corepresented
by TAQIFI(§M]), hence its composite witl — &*J is corepresented by the base
changeA Agvy TAQIP(SM)).

Modulo the identifications given by Lemmni®.6 the map¢* is given by composi-
tion with o, as discussed at the end of the proof of Proposifiari3 Hence the
corepresenting magp is also induced byy. O

Lemma 11.16 Let (e,€): (RP,p) — (A,M,) be a map of pre-log symmetric
ring spectra. The functors frol-modules to (infinite loop) spaces that takgo
Der‘,’;(M, (1 + Q'J)g) and Dergp(SM], a™J) are corepresented by the-modules
A A (B*M/B>*P) andA Agv TAQIFI(SM]), respectively. The natural map' is
corepresented by a map

¥ Angm TAQIP(GM]) — A A (BM/B>P)

of A-modules.

Proof By Lemmasll.2and11.11we have a natural chain of equivalences
Ders(M, (1 + °J)g) ~ Dery(M, Q' J)
~ Sp™(B>*M/B>P, J) ~ Ma(A A (B*°M/B>°P), J).

HenceA A (B>°M/B>°P) corepresents the first functor. The existence of a corepre-
senting map follows from the Yoneda lemma. |

Proposition 11.17 Let (A,M, «) be a pre-log symmetric ring spectrum, and assume
thatM = CX is the free commutativé -space monoid on afi-spaceX. Let ay =
aoi: §X] — A be the restriction of the adjoint structure map §M] — A over the
inclusioni: §X] — §M]. The corepresenting map
¥ AAgm TAQ(EM]) — AN B®M
factors as
A ngm) TAQ(SIM]) =~ AA X
ANSAL A A X x X] =~ AASX] A SX]
dnaxnid, A n ]

uAid

HNC AN GX] ~ AAB®M

whereA: X — X x X is theZ-space diagonal and: AN A — A is the symmetric
ring spectrum product.
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Proof The first and last weak equivalences follow from Lemnifs9 and 6.22
respectively.

To identify the A-module mapi), we view it as corepresenting a derivatidnof
gM] with values in the underlyinggM]-module o*J of the extendedA-module
J = AAB®M, as in diagrami1.4. We fix this value ofJ for the rest of the proof.
By adjunction, such a derivation corresponds to a commut&dtigpace monoid map
M — Q5 (AV J) over Qi A, as in diagram11.3. The relevant commutativé-space
monoid map is the composiig a o d” in the following diagram

M @ QLA

n’ lQ?@’?
1+ 1M 0 AV J)
@ -7
e leb lﬂ(@e
M= M—2 > QLA

of commutativeZ -space monoids. Here’ is the map that is corepresented by the
identity map ofJ = A A B®M, more-or-less as in Lemmniil.11 Modulo the weak
equivalence

M =MK@1+Qsy —Mx 1+

(for reasonabléV andJ), we can writed” as the composite
MiMxMMMx(l—i—QJ)@
where (1+ +’) is the composite
M2 B M EPND oA ABM) = 03~ (L4 Q).
Here ~ is the group completion mapa: S — A is the unit map forA, and the last
equivalence uses Lemni4..2
The mapn*« is the coproduct of the ma@},n o o« and the inclusion
i3: I+ Q2 — Qp(AV ),
hence can be written as the composite
M B (1+ 2 d)s 225 0L ARQL AV J) 25 QL (AV J)

where )\ is the pairing induced from th&-module action oA v J. The composite
n*a o o’ therefore factors as

M2 MxMaMEM S8, o As0r (Av ) 25 LAV ).
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Passing to left adjoints, we find that the derivatidncorepresented by) is the
composite map

d: gM] 22L gM x M] ~ gM] A IM] ZLEED A A AV I) D AV
where (1+ €’) is the composite
gM] S BXM P ANBEM =3 — AV J

using the unit ofA. Heree is left adjoint to~, and \ is the left A-module action on
AvJ.

So far we did not use thatl = CX is free. Now we use this, and the proof of
Lemmal0.9, to see that the derivatiath is corepresented by the composite map

W gX] L gMl L Aava R
of symmetric spectra. The factorization @fgives the following factorization
gx] 5 gM] AL gM x M] ~ M) A SM] 225 A A BEM
of ¢'. We can rewrite this as
X1 8L gx x X] =~ X A GX] 29 AN GX] ~ AABEM,
by noting that the composite
gX] - gM] S B*M

is the weak equivalence of Lemr622 The mapy is the A-module extension of’,
hence is given by the composite

AAGX] IEL A A X x X~ AASX] A 9X]

idAaxAid puAid
e

AAAASX] MY AngX].

|

Remark 11.18 For a map R P) — (A, M) of pre-log symmetric ring spectra, such
that (A, R) is a CW pair in commutative symmetric ring spectra akd ) is a CW
pair in commutativeZ -space monoids, we can determifeAgy) TAQIPl(gMY)),

A A (B*°M/B>*P) and+) modulo the skeleton filtration, as in Remar®.1Q

Definition 11.19 Let (e, €): (R P,p) — (A,M,a) be a map of pre-log symmetric
ring spectra. Théog topological André—Quillen homologyof (A, M) over R, P),
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denoted TAGP)/(A, M) or TAQ((A, M)/(R, P)), is defined by the homotopy pushout
square

A g TAQSPIM]) — = AN (B*M/B<P)

‘| ) E

TAQR(A) TAQRP(A, M)

of A-modules. Here» is induced by € €) and corepresents* as in Lemmal1.15
while 1) corepresents* as in Lemmal1.16 We say thaté, €) is formally log étale
if TAQ RP)(A, M) is contractible. WhenR, P) = (S, 1) we simply write TAQA, M)
for TAQRP)(A, M).

Remark 11.20 By analogy with the notation in DefinitioA.25 we think of qﬁ_: AN
(B*M/B*P) — TAQRP(A M) as generating the log differentials, symbolically
taking a A y(m) to adlogm. We think of »: TAQR(A) — TAQRP)(A M) as the
inclusion of the ordinary differentials among the log differentials. The pushlong
Angv TAQIP(SM]) imposes the symbolic relatiomisy(m) = a(m) dlogm between
these differentials.

Proposition 11.21 The log topological Andg&—Quillen homology corepresents log
derivations, in the sense that there is a natural weak equivalence
MaTAQRPI(A, M), J) = Derrp)((A M), )
of mapping spaces. There is a universal log derivation
(dy, &) (A M) — (AV TAQRPI(A M), n*M)
of (A, M) over (R, P) that corresponds to the identity mapT¥Q®RP)(A, M).

Proof This is clear from Propositiohl.13and Lemmad1.15and11.16 |

Corollary 11.22 A map (e,€): (R,P,p) — (A,M,a) of pre-log symmetric ring
spectra is formally loggtale if and only if all spaces of log derivations @%, M)
over (R,P) are contractible, i.e., if the space of dashed arrows in diagtdmi)(is
contractible for eacl\-moduleJ. O

Corollary 11.23 The logification maps
(RP)— RP) and (AM)— (AM?
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induce weak equivalences
TAQRP(A M) = TAQRP(A, M?) = TAQRPI(A M)
Hence the log topological AnérQuillen homology isnsensitive to logification

In particular,»: TAQR(A) — TAQRP)(A M) is a weak equivalence for each strict
log map(e,€): (R,P) — (A,M), so a strict map of log symmetric ring spectra is
formally log étale if and only if the underlying map of commutative symmetric ring
spectra is formallyetale.

Proof The first claims are clear from Propositith.21and Lemmal1.9 The second
claims follow, since for a strict mall ~ e*P = P?, and itis clear from Definitiod1.19
that TAQR(A) ~ TAQRP (A, P).

For an alternative proof, starting with the free cdde= CX, note that by Proposi-
tion 11.17the mapy is an equivalence when: M — Q A factors througrGL;(A).
A homotopy inverse can be constructed by replacing §X] — A with a multiplica-
tive inverse. Hence): TAQ(A) — TAQ(A, M) is a weak equivalence wheM(«)?
is trivial. The general case follows by CW approximation and induction,guiie
transitivity and flat base change results of Proposittbh28and11.29 |

Remark 11.24 WhenA = §M], both maps
¢ Ahgu TAQ(EIM]) — TAQ(A)
¢: AAB®M — TAQ(IM], M)
are weak equivalences, so the comparison map

v TAQ(EM]) — TAQ(SM], M)
is identified with the map) that was described in Propositiad.17for free M.

Lemma 11.25 Let (e,€): (R,P) — (A,M) be a map of pre-log symmetric ring
spectra, and le€ = R Agp; SM], so that the left hand square is a pushout in the
following diagram

gp] XL gm) =~ g

(R

of commutative symmetric ring spectra. Then there is a natural homotopy rcofibe
sequence

AN (B=M/B*P) % TAQRP(A M) — TAQS(A)
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of A-modules. Henc&R, P) — (A, M) is formally logétale if and only ifthe connecting
map
d: TAQE(A) — LA A (B*M/B>P)

is an equivalence.

Proof By the homotopy pushout square of Definitibh.19 the homotopy cofiber of
¢ AAgm TAQTPI(SM]) — TAQR(A)
is equivalent to the homotopy cofiber of
¢: AN (B®M/B*P) — TAQRP(A M).
By flat base change along §P] — R we have an equivalence
C Agm) TAQIFI(M]) ~ TAQR(0),
SO we can rewrite as the map
A Ac TAQR(C) — TAQR(A)
with homotopy cofiber TAG(A), by the transitivity sequence f&® — C — A. |

Remark 11.26 Itis clear that R P) — (A, M) will be formally log étale if B°P —
B>M is an A-homology equivalence (s& A (B*°M/B*P) ~ %) andC — A is
formally étale (so TAG(A) ~ *). The converse holds in the algebraic context of fine
log schemes (or fine log rings), as proved by K&, [3.5]. In the topological context

it remains to be determined wheth#ican be an equivalence, in cases where F60
andA A (B*M/B>P) are not trivial.

Lemma 11.27 Let (A, M, «) be a pre-log symmetric ring spectrum. The map
¥ TAQ(A) — TAQ(A, M)

is a weak equivalence if and only if the logificati@d, «)? is equivalent to the trivial
log structure.

Proof The mapz/jis aweak equivalence if and only if the map of Propositiorl1.13
is a weak equivalence, for al-modules]. Here* takes a section’: M — 7*M
to its composite withy*«, shown as dashed arrows in the diagram

M -0 0 AV J)

A 7
d & 7 lQ@)e
e
7

N
N

M @ QLA
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of commutativeZ -space monoids. Henaeg* is a weak equivalence if and only if the
solid square is homotopy cartesian. NgfiM ~ M x (1 + Q' J)g ~ M x Q°'J by
Lemmall.2 andQ, (AVJ) ~ QL Ax Q' J. By Lemmall.5 n*a maps the homotopy
fiber 2°J over m to the homotopy fibef2"J over a(m) by multiplication by a:(m).
Hence this is an equivalence, for &kmodulesJ, if and only if a(m) is homotopy
invertible for all m. In other words, this holds precisely when M — Q¢ A has
image contained itGL;(A), which is equivalent to the condition tha¥l(«)? agrees
with the trivial log structure orA\. |

b
Proposition 11.28 Let (R, P) ), (A, M) &, (B,N) be maps of pre-log symmet-

ric ring spectra. There is a natural homotopy cofiber sequence
B Aa TAQRP(A M) — TAQRP(B,N) — TAQAM) (B, N)

of B-modules, known as theansitivity sequencefor (e, &) and(f,f").

Proof The sequence corepresents a homotopy fiber sequence
Deram)((B, N), K) — Dergrp)((B, N), K) — Derrp)((A M), %K),

for all B-modulesK, hence is a homotopy cofiber sequence. For a different argument,
consider the commutative diagram:

B Aa TAQR(A) -’ B Agm) TAQIPI(SM]) Y BA(B*M /B>®P)

| l |

TAQR(B) ~—~— B Aqy) TAQIPI(SN]) —2~ B A (BXN/B>P)

l l |

TAQAB) < B Agny TAQIMI(GN]) —2> B A (B*N/B*M)
The left hand and middle columns are homotopy cofiber sequences bysRiapl0.7,
and this is clear for the right hand column. Hence the column of homotopyoptssh
is also a homotopy cofiber sequence. O

Proposition 11.29 Let

b
RP)-99 (1. Q)
(e€)

b
am) B N)



Topological logarithmic structures 117

be a pushout square of pre-log symmetric ring spectr,-sol ARA andN = Q@&pM.
There is a natural weak equivalence

B Aa TAQRP(A M) = T Ag TAQRP(A, M)
= TAQT (T AR A, Q @p M) = TAQTI(B, N)

known adflat base changealong(g, o).

Proof By the pushout property of the left hand square below

R P (9.9) .
(R P) (T,Q (BVK,n*N)
/7
(eveb) -~ - l(eveb)
(7. .
(A, M) (B,N) (B,N)

whereK is aB-module, the space of dashed lifts is equivalent to the space
(PreLog(R, P)/(B,N))((A, M), (BV K, n*N))
of lifts across the outer rectangle, which is weakly equivalent to
Derrp)((A, M), F7K)
by the log analogue of LemniD.6§ since

(fFvid,n*f*)
_—

(AV K, n*M) (BV K,n*N)
(aeb)l l(eveb)
b
(AM) .0 (B.N)

is a homotopy pullback square. Hence Rgj((B, N), K) is corepresented by
B Aa TAQRP(A M) 22 T Ag TAQRP (A M).

For an alternative proof, note that there is a pushout square

P 9 gq]

S l l
Sl

SM] — 9N]

of commutative symmetric ring spectra, and a homotopy pushout square

BP — % BXQ
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of symmetric spectra. Hence the vertical maps in the following diagram

T AR TAQR(A) <2 B Agqw) TAQIPH(SM]) —2= B A (BXM/B=P)

| | l

TAQ'(B) <~ B Aqn TAQIA(SN]) —~ B A (BXN/B*Q)

are weak equivalences, by Propositibd.8 Hence the induced map of homotopy
pushouts is also a weak equivalence. Repla@ngy T Ar A in the upper row, we
obtain the flat base change equivalence. |

Proposition 11.30 Let (A,M) — (R,P) be a virtually surjective map of pre-log
symmetric ring spectra, in the sense thaM)®® = moI'M — ml'P = (moP)% is
surjective. LetM™P = P xpp I'M be the repletion oM over P, and letA™P =
A Agm SM™P]. Then there is a weak equivalence

AP A x TAQ(A, M) = TAQ(A™P, M'®P) |

and the repletion mafA, M) — (AP, M'®P) is formally log étale. In this sense, log
topological Andé—Quillen homologgommutes with repletion

Proof Consider the following diagram

AP A TAQA) < AP Aqy TAQEIM]) — ¥~ AP 4 BM

. | ¥

TAQ(A™P) AP A quren) TAQ(IM™®P]) — = Arep o Boopire

| |

TAQA(Arep) o~ Alep /\quep] TAQS[M](QMFEF’])

of A®P-modules. The left hand and middle columns are homotopy cofiber sequence
by transitivity (Propositiorf1.28. The right hand vertical map is an equivalence by
Proposition8.3, sinceI'M — T'(M™P) is an equivalence. The bottom horizontal map
is an equivalence by flat base change al&lg] — A. Hence the induced map of
horizontal homotopy pushouts

AP A x TAQ(A, M) = TAQ(A™P, M™P)

is a weak equivalence. By transitivity, TAGY) (AP, M"P) is contractible. O
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Corollary 11.31 Let (Ry, Pg) be a base pre-log symmetric ring spectrum and let

(9.9°)
(e,eb)l
(A, M) —— (B"P,N'P)

be a pushout square of replete pre-log symmetric ring spectra(Bygry), so that
NP = Q 5" M is the repletion ofN = Q @p M over Py, B = T AR A and
B'*P = B Agn) SN™]. In other words(B"P, N'P) = (T, Q) Agp (A, M). Then there
is a natural weak equivalence

B"P Aa TAQ(R’P)(A, M) = TAQ(TfQ)(BfeP’ N'eP)
of B'®P-modules, which we cafeplete base changalong(g, ). O

12 Based logarithmic topological Andé—Quillen homology

We now turn to based log derivations.

Definition 12.1 Let (N,«) be a based log structure on a commutative symmetric

ring spectrumA, and letJ be anA-module. Thanverse image based log structure

(n*N,n*«) of (N, ) alongn: A — AV J is given by the upper central pushout square

in the diagram

L GL1(A)+ N—>— QLA

l GL1(?7)+l lnb lQng
1+ Qg4 —> GLy(AV ), 7N (A J)

l GLl(e)+l lgb lsr@e

9 GL1(A)+ N— QLA

of commutative based -space monoids. The upper left hand square is a homotopy

pushout, so we get weak equivalences

n*N ~ N D (l+ Q.J)®7+
~ N A (1"‘ Q.J)@),_’_ ~ N A (Q.J)+ .

When (N, «) is only a based pre-log structure, we defiff® by these formulas.



120 John Rognes

Definition 12.2 Let N be a commutative basé&tspace monoid and lé&t be a group-
like Z-space monoid. The spaceafmmutative basedZ -space monoid derivations
of N with values inK is the space Dg(N, K) of dashed arrows’ making the diagram

@ 7
// ¢
Ve

N———N
of commutative based-space monoids commute.

The space Dg((A, N), J) of based log derivationsof a based pre-log symmetric ring
spectrum A, N) with values inJ is defined similarly, consisting of pairgl,(d”) where
d: A— AV Jis aderivation and’: N — n*N ~ N A (Q°J), is a commutative
basedZ -space monoid derivation, such that the diagram

N e« Q'®A
d Q:gd
7N - QL (AV )

commutes.

Lemma 12.3 LetY = conel) U, Y’ be a conically basedi-space, and léfl = CpY.
There are natural equivalences

Der(N, K) ~ SE(Y',K) ~ Sp*(JY'], B*K)

for all grouplike commutativd -space monoidk .

Proof SinceN = CyY is free, the commutative basé@dspace monoid derivations
d: N — N A K, are equivalent to the basétspace map¥ — (CoY) A K. over
CoY, or equivalently, to the basefl-space mapé: Y — Y A K, overY. We think

of such maps as graphs of majgs— K, except that special care is required near
the base point 0 o¥. Using the cone coordinate in cohg¢(C Y, any such mag

can deformed to a mag that is constant in the cone direction over cane(The
deformation collapses a growing neighborhood of the cone vertex toehaiywhile
stretching a complementary neighborhood of the base to cover the cosevahthe
graph over coné( flows into the special fiber @ K C Y x K, gradually becoming
independent of the cone coordinate. The deformation is constantYévefFhe end
mapg is simplicial/continuous at the base point\¥obecause the special fiber has been
collapsed inY A K. By restriction overY’ C Y we get an equivalence between these
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mapsg and the space df-space map¥’ — Y’ x K overY’, which we identify with
the space of -space map¥’ — K.

This deformation retraction provides the first natural equivalence sébend equiva-
lence is standard, sind€ ~ Q°'B'K for grouplikeK. O

Lemma 12.4 Let N = conel) U. N’ be a commutative conically basédspace
monoid. There are natural equivalences

Der(N, K) ~ CST(N',K) ~ Sp”(B>(N'), B*K)

for all grouplike commutativ& -space monoidk .

Proof By a deformation retraction like that in the proof of Lemmh23 the space
Del%(N, K) is equivalent to the space of commutati¥espace monoid maphkl —
N A Ky overN that are constant in the cone direction over cahe{ N. This space
is identified with the space of commutatiZespace monoid maph’ — K, and is
equivalent to the space of symmetric spectrum mBpgN’) — B>*K, sinceK is
grouplike. O

Proposition 12.5 Let (A,N) be a based pre-log symmetric ring spectrum, arah
A-module. There is a homotopy pullback square

Derp((A,N), J) Der(A, J)

A

Der(N, (L + 0 J)s) —— Der(="N, #J) .

Here ¢* is corepresented by the map A As-n TAQ(X'N) — TAQ(A) induced by
a: ©'N — A, andy* takes a commutative basgdspace derivatiod’: N — NAK
to the composite*aod” with n*a: NAK, — 0% (AV ), interpreted in adjoint form
as a commutative symmetric ring spectrum mapl — Av J overA, or equivalently,
as a derivation oE*N with values ina™J. |

Definition 12.6 Let (A,N,«) be a based pre-log symmetric ring spectrum, with
N = cone() U. N’ conically based. We define thmsed log topological Andé—
Quillen homology of (A, N), denoted TAQ(A, N), by the pushout square

A Asen TAQ(E'N) —Y = A A B(N)

‘| . |5

TAQ(A) TAQq(A, N)
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of A-modules. Herep is induced by«, and ) corepresents the natural majp
described in Propositioh2.5

More generally, for a mape(€’): (R, Q,p) — (A, N, ) of conically based pre-log
symmetric ring spectra, define T/S@Q)(A, N) by the pushout square

AAs-n TAQT Q(E°N) —V AN (BEN'/B>Q)

¢l ) |3

TAQR(A) TAQF (A, N)

of A-modules. When TA@Q)(A, N) ~ %, we say thatR Q) — (A, N) is formally
based logétale

Proposition 12.7 Let (A,N,«) be a based pre-log symmetric ring spectrum, and
assume thall = CpY is the free commutative bas@dspace monoid on a conically
basedI -spaceY = cone() UL Y'. Letay = aoi be the composite

Y LN S AL
The corepresenting map
Y1 AAsen TAQ(E'N) — AA B¥(N)
factors as
AAsn TAQ(E'N) ~ AA Y
T AN (YAYL) ~ AASTY A SY]
idAayAid AAAA S[Y’]
A A Y] ~ AABX(N)

where theconical diagonal mapd: Y — Y A Y/ restricts to the diagonal oveéf',
and is constant in the cone direction ogene() C Y.

Proof The proof is similar to that of Propositiatil.17 LetJ = AA B>(N’). The
commutative base@l-space derivatiod”: N — n*N = NEQ' J, ~ NAQ"J, factors
asd: N — N AN/, composed withd A+, , wherey': N — Q" (AAB'N') ~ O J.
Hence the composite

o eq M oo P, oo
N—NAQJ — QFAVI) = Q]
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is right adjoint to the composite
SN 8 SN A N A9 AN BR(NY).

Using thatN = CgY is free, we find (as in Lemm#0.9 thatn*« o d is right adjoint
to the derivatiord of X*N that is corepresented by the composite map
avyAid

WY 20 sy A gY] N AN g Y

of symmetric spectra. The equivalenB&®(N’) ~ JY’] is from Lemma6.22 The
map+ is the A-module extension of/’, giving the claimed factorization. O

Lemma 12.8 If N = M. has a disjoint zero, thePAQq(A, N) = TAQ(A, M).

Proof This is clear fromN’ = M and Definitionsl1.19and12.6 O

Example 12.9 Let Y = conel) U. Y’ be a conically based -space. It can be
expressed as a pushout
>k+ _— Y+

|

* —>Y

in the category of basefl-spaces, where, = S, Y, andx = {0} all have disjoint
zeros. However, this is usually not a pushout of conically basegpace. Applying
Cp we get a pushout square

(A, (T)Jr) —(A (EY)+)
(A 1y) (A, CoY)

of based pre-log symmetric ring spectra, for any pre-log strueturé&yY — QF A.
There is no base change formula for based log TAQ in this case, sincquhmef
symmetric spectra

S~ BXCx —— B*CY ~ §Y]

| |

* = B¥1——=B>Co(Y) =~ Y]

can only be a homotopy pushout3°(cone()/L) ~ S, which mostly happens for
L = (). Here we have used Lemn6a22in every corner. On the other hand there is a
base change formula for pushouts of conically based pre-log stracture
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b
Proposition 12.10 Let (R,P) ﬂ (A, M) &, (B,N) be maps of conically based

pre-log symmetric ring spectra. There is a natural homotopy cofiber segue
B Aa TAQRP(A M) — TAQEP) (B, N) — TAQM (B, N)

of B-modules, known as tHeased transitivity sequence

Proof The proof is practically identical to that of Propositibh.28 using the homo-
topy cofiber sequence

(BM'/B*P') — (B*N'/B*P') — (B*N'/B*M)

of symmetric spectra. |

Proposition 12.11 Let

RP) 9L (T.q)

(e7e")l l
b
Aam) L B)N)

be a pushout square in the category of conically based pre-log symniegrgpectra.
There is a natural weak equivalence

T AR TAQRP(A M) = TAQU (B, N)

known ashased flat base change

Proof The proof is practically identical to that of Propositibh.29 using the homo-
topy pushout square

B>®p! ﬂ) B Q’

o] |
Bef

BooM/ - 5 BooN/

of symmetric spectra. O

Example 12.12 Let B = ku be the connective complég-theory spectrum, lef ~ S
be a conically based@-space, and lell = CoY ~ CoS? be the free commutative con-
ically basedZ -space monoid generated by Let 5: N — Q°ku be the commutative
basedZ-space monoid map that extends a baZegpace map: Y — Q°ku that
represents the generatorafiku) = Z[u], with [u] = 2. Then TAQE'N) ~ X'NAS?
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by Lemmal0.9 FurthermoreY’ ~ () ~ %, N’ ~ C($?)’ ~ Cx, andB*N’ ~ S,
by Lemma6.22 By Propositionl2.7the map

¥ KuA S ~ kuAs-n TAQ(E'N) — kuA BN ~ ku
is the multiplication-byu map defined as the composite
U kun 29 kua ku s ku.

This uses that

5P PRN(F, RN
is homotopic to the identity. Hence we have a homotopy pushout square

kup 2 ———ku
¢l B lq?
TAQ(KUY) —~ TAQ(Ku, CoS)

of ku-modules.

Example 12.13 Let A = /¢ be thep-local Adams summand of the connective complex
K-theory spectrum, letj = 2p — 2, let X ~ S be a conically based -space, and
let M = CoX ~ CoS* be the free commutative conically baséespace monoid. Let
a: M — Q/ be the commutative basefispace monoid map that extends a based
Z-space mapi: X — '/ that represents the generatormf(¢) = Z)[vi], with

[vi| = g. Then TAQE'M) ~ ¥X*"MAS! by Lemmal0.9 FurthermoreX’ ~ () ~ x,

M’ ~ C(S) ~ Cx, andB>*M’ ~ S, by Lemma6.22 By Propositionl2.7the map

P OAS >0 Ao TAQ(E'M) — ¢ AB®M ~ ¢
is the multiplication-byv; map defined as the composite
Vi CAST VL g g

This uses that
5: SN, 2 FNL e

is homotopic to the identity. Hence we have a homotopy pushout square

V1

NS l

o, s

TAQ() —> TAQ(L, CoS)

of /-modules.
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Example 12.14 We can compare Exampl2.13and thep-local version of Exam-
ple 12.12in terms of the based transitivity sequence of PropositiriQ We have
amap {,f"): (¢,M) — (kup), N) given by the usual inclusiof: ¢ — kuyp) and the
commutativeZ -space monoid maff : M — N, with M ~ CoS andN ~ CoS?, that
extends the usual ma@ — ()“P-D/x, ; — CoS.

Applying base change alorfg ¢ — ku, to the mapv;-, we are led to compare it to
the mapu- via the following commutative square

p—1.
Kugp) A S =— kug)
(p—l)upzl :l(p—l)
kup) A S —= kup)

of kup)-modules. Heres”~1. is obtained by base change from. The right hand
vertical map is induced by the punctured migp: M’ — N/, whereM’ ~ Cx and
N’ ~ Cx andf’”’ takes the generator &’ to the  — 1)-th power of the generator of
N’. Hence the maj$ ~ B*M’ — B>*N’ ~ S corepresenting

(f°)*: DeR(N,K) — Der(M,K)

has degreep(— 1). Since the square homotopy commutes, the left hand vertical map
must be multiplication by the differenp(~ 1)uP~2 of v; = uP~1. This is compatible
with its description as the map of (topologically derivedfer differentials

KUy As-cost TAQ(E CoS) — kup) Asr e, TAQ(E' CoSY),
induced byf”, takingdv; = d(uP~1) to (p — 1)uP—2du.

We have a similar commutative square

ki) Ar TAQ(Y) v, Kugpy Ar TAQ(L, M)
asl B l&
TAQ(kup) ——— TAQ(Kup. N)

and the vertical homotopy cofibers of the cube formed from these twoesjassemble
to a homotopy pushout square

(X2kug) / (S%Kup)) *

| |

TAQ(Kug) /) — > TAQ((Kug), CoS?)/(£, CoS)
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of Kup)-modules. Here

p—2

(Z%kugy)/(E%ug) ~ \/ SAHZ,
=1

is the homotopy cofiber of the different map € L)uP=2-: kuygp A S — kup) A S,
while the homotopy cofiber of multiplication by & 1) is p-locally contractible.

Hence the mapf(f°): (¢,CoS", o) — (kup), CoS, B(p) is (formally) based logtale
if and only if the map

6 (ZPkup)/(S%kup) — TAQ(KYp)/H) = TAQ' (kug)
(induced bya: ¥'CoS' — ¢ and B : X"CoS* — Kup) is a weak equivalence.

Lemma 12.15 Let (e,€): (R,Q) — (A,N) be a map of conically based pre-log
symmetric ring spectra, and I& = R As-q X°N, so that the left hand square is a
pushout in the following diagram

Q2% v N == N
TR B
R C A

of commutative symmetric ring spectra. Then there is a natural homotopy rcofibe
sequence

AA (BEN'/B*Q) 2 TAQR(A N) — TAQS(A)

of A-modules. HencéR, Q) — (A,N) is formally based logetale if and only if the
connecting map
d: TAQS(A) — ZAA (B*N'/B*Q)

is an equivalence.

Proof The proof is practically identical to that of Lemma.25 |

Example 12.16 We apply Lemmal2.15to the map {, CoS?) — (ku(p),COSZ). In
this caseS ~ B®Cy(S) — B>*Cy(S?)’ ~ Sis multiplication by f — 1), which is a
p-local equivalence. Hence the targef A (B*°N’/B>Q’) of 0 is contractible, and
(f,°) is formally based logtale only if the map

C=/ A5+ CoS Z’COSZ — kU(p) =A
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is formally étale. Now bothiC andA are connective, and the map isgisomorphism,
so this will only happen ifC — A is an equivalence. See Basteri2,[Lemma 8.2],
or the corrected statement in Baker—Gilmour—Reinhatdllemma 1.2]. HoweveiC
andA are not equivalent.

To see this, consider the base change alBng ¢ — H = HF,. If C — Alis an
equivalence, then so is

H AS o< E'COSZ — H Ay kU(p) ,

where the right hand side has homotdy. 1(u) = P(u)/(uP~1) concentrated in even
dimensions < x < (2p — 4). The homotopy of the left hand side can be computed
by the Kiinneth spectral sequence

E2, = Tort=Co(F, A,(CoS)) = m.(H Agcom X" CoSY).

By the Snaith splittingH.,.(CoS") = H,(CS') can be computed as in Cohen—Lada—May
[18, 1.4.1]. It is isomorphic to the free graded commutative algebra on gemgrato

Lq, ﬁQqu, Qqu7 e

in dimensionsy = 2p — 2, 202 — 3, 2p? — 2, etc. Similarly,H,(CoS?) = H.(CS) is
isomorphic to the free graded commutative algebra on generators

L2, ﬁQ2L27 QZLZ7 cee

in dimensions 2, @ — 3, 4p — 4, etc. Hence, in dimensions < (2p? — 3) the
algebraH, (CoS") agrees withP(.q), and H,(CoS?) is flat overP(.q). In this range of
dimensions the spectral sequence is therefore concentrated on thal\axit¢c where
in addition to the term$(:2) ®p() Fp = Pp-1(:2) there are further terms, starting
with Fp{3Q%2} in dimension (4 — 3). Hence the mat — A = kuy, is precisely
(4p — 3)-connected, and is not an equivalence.

Example 12.17 There is an action on the-complete connectiv& -theory spectrum
ku, by the groupA = GLy(Z/p) = Z/(p — 1) of roots of unity inZp, with k € A
acting as thep-adic Adams operation’X. The mapf: ¢, — ku, identifies thep-
complete Adams summand with the homotopy fixed pdi:ltl@sA of this action. There
is a similar A-action on thep-complete sphersg, and the mag”: C0$ — Cosg
factors through the homotopy fixed points

M=CoH)™ = \/ (s

(P—1)j=0
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Furthermore, the pre-log structur@dﬁ ap) on /), factors through a pre-log structure
(M,BEA), Whereﬁg1A is given as theA -homotopy fixed points of the map

Bp: N =CoS — Q'Kup.
Now M’ =~ [ ;_1yj>0 BEj maps toN’ =~ [ ;. , BY; by the inclusion, which identifies
B>°M’ with the subspectrum dB*°N’ ~ S such thatQ?>*°B>*M’ ~ ]_[(pfl)“- Q) c
Q() = Q>S. HenceB>*M’ — BN’ becomes an equivalence after smashing with
Kup, SO

(4o, M) = (6p, (Co)™) — (Ki, CoS)) = (kwp, N)

is formally based logtale only if the map

D = {p Asem XN — Ky
is an equivalence. As in Exampl2.16 we are led to calculate the maps

H.(CS) — H.(CD)* — H.(CD)

in a range of dimensions. Heid,(N) = H,(CS)? agrees withP((:2)*~1) up to
dimension (@ — 7), where a new cIas@f2 - BQ%1, enters. Fomp > 5 this range of
dimensions contains the extra cla$®?:., in H.(CS) that contributes tor, (D), so
D — ku, is also precisely (@ — 3)-connected, and is not an equivalence.

Remark 12.18 The previous two examples show that neitie0pSY) — (Kup), CoS)
nor (fp, (CoSH)™) — (Kup, CoS?) are formally based logtale. On the other hand, Au-
soni [3, §10] has shown that when THE)L,) and THHKu,|KU,) are defined so as
to sit in homotopy cofiber sequences

THH(Zp) = THH(Zp) 25 THH(G L)

THH(Zp) == THH(KW) 2 THH(KW|KUp)
of spectra, where the two maps labetedare transfer maps, then there is an equivalence

ktp A, THH((p|Lp) = THH(KU|KUp) .
If there are conically based pre-log structuMsand N on ¢, andku,, respectively,
such that
THH(£p|Lp) =~ THH(Zp, M)
THH(kuy|KUp) ~ THH(Kuy, N),

then this equivalence is effectively equivalent to the condition that\) — (kup, M)
is formally based logtale.
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Examplesl2.16and12.17show that this is not the case for the free commutative based
pre-log structureN = CoS? on ku, that is generated by the Bott clags (SN KUy,
when M is either CoS? or (CoS)"®. This does not exclude the possibility that
a conically based pre-log structube on ku, with THH(kus|KUp) ~ THH(ku,, N)
exists, but if it does, it will require more (free commutative) cells than thelsioge
generated by the Bott class. The calculations above suggest that theeheeeded

is a (4 — 2)-cell, attached to cancélQ?.,.

The search for a suitable log structideon ku, seems to be related to the question of
how to presenHZp as a commutativiu,-algebra. One possibility is that should be
built as a CW commutative conically basédspace monoid, with cells in one-to-one
correspondence with a model fBiZ, as a CW commutativku,-algebra.

13 Shear maps and repletion

Definition 13.1 Let M be a commutative monoid. We view the diagonal map
A M—-=MxM

as a map of commutative monoids over, where the source is augmented by the
identity mapM — M, and the target is augmented by the projecpoit M xM — M

to the first factor. For reasons related to the cyclic structures discirsBemnark3.18

we compose the diagonal map with the group completion map

idx~y: MxM— M x M%P

inthe second factor. Thistargetis also augmented by the projgationM x M — M
to the first factor, andd x ~ is a map of commutative monoids over. The extension
of the composite magd x v)A to a map of commutative monoids under and over
is theshear map

sh: M x M X2, M x M x M 2225 M x M9P

given bysh(x,y) = (xy, v(y)), wherey is the multiplication map. Both the source and
target are commutative monoids undér, by the inclusionsgn;: M — M x M and
in: M — M x M® on the respective first factors. The source is augmentedMver
by 1, and the target is augmented oWwrby pr;.

Passing to monoid rings, there is a shear map

¢ =Z[sH: Z[M] ® Z[M] — Z[M] ® Z[M%]
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of augmented commutativé[M]-algebras, given by linearly extending the formula
(X y) = (Xy,v(y)) for x,y € M. On both sides th&[M]-algebra unit is the inclusion
on the first tensor factor, the source is augmented by the ring multiplicatidrthan
target is augmented by the projecti@fiM] ® Z[M®] — Z[M] ® Z = Z[M] induced
by M9 — x. Either shear map is an isomorphism if and onliifis an abelian group.

Definition 13.2 The categoryM/C Mon/M of commutative monoids under and over
M has tensor products with based sets, whékg;N is the base change of thée-fold
coproductEB,\\(,| N = N@&y --- dm N along the augmentatioN — M in the base
point summand. Hence the category of simplicial object®lif¢ Mon/M has tensor
productsY®uN with based simplicial sets. In the case of the cirle= A'/0A!

we obtain the suspensi@t&yN in this category, and more generally, tensor product
with the n-sphereS’ realizesn-fold suspensior§'&yN in this category.

Lemma 13.3 The suspension
S'&mM x M, 1) = BYM
of M x M augmented by. is the cyclic bar construction, whereas the suspension
S'@um(M x M%P, pri) = M x BM9P

of M x M9 augmented bypr, is M times the suspension di®? in simplicial
commutative monoids, i.e., the bar construct®iM9. The suspension of the shear
map

S'&msh: BYM — M x BM9P = BPM

equals the composite of
(e,7): BYM 25 BYM x BYM ™. M x BM

with the weak equivalencel x By: M x BM — M x BM®. |t takes theg-simplex

(Mo, My, ..., my) to the pair consisting afpm, - - - my and[~(my)| . .. |y(mg)]. Hence
St&wsh equals the repletion magFYM — B'€PM.

The suspension i&[M] /CRing/Z[M] takes the shear map
Y ZIM] ® Z[M] — Z[M] ® Z[MP]
to the corepresenting map
¢ =M HH(Z[M]) = Z[BYM] — Z[M x BM] = Z[B"PM]
from Remark3.24and Lemméb.24 whereZ[B"*PM] = HH(Z[M], M). O
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Definition 13.4 The Hochschild homology oZ[M], the log Hochschild homology
of (Z[M], M), and the repletion homomorphism

v HH(Z[M]) — HH(Z[M], M)

can be (re-)defined as the suspension in augmented commufitijealgebras of the
shear maZ[M] @ Z[M] — Z[M] @ Z[M?P].

The log Hochschild homology of a general pre-log riffg N1, ) is (re-)defined by
the homotopy pushout

HH(Z[M]) —> HH(Z[M], M)
¢l B l¢>

HH(A) — = HH(A, M)

in simplicial commutative rings, where is induced by the pre-log structure map
a: ZIM] — A.
Lemma 13.5 Forn > 1, then-fold suspension
SEMM x M, 1) 2 S @ M
is then-th order cyclic bar construction dv,
S'@u(M x M% pri) = M x B"M9P

is M times then-fold bar construction o9, and then-th suspension of the shear
map
S'@ush: @M — M x B'TM%® = S g™P M

equals the repletion map. |

Definition 13.6 The n-fold suspension itZ[M]/CRing/Z[M] takes the shear map to
the repletion map

¢ =M HRHN(Z[M]) = Z[S' @ M] — Z[M x B"MP] = HHI"(Z[M], M)

from Pirashvili’s n-th order Hochschild homology of Z[M] (see b6, §5.1]) to an
n-th order log Hochschild homology ofZ{M], M). In general, then-th order log
Hochschild homology HHI(A, M) of (A, M) is defined by a homotopy pushout of
simplicial commutative rings, like that in DefinitidtB.4
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Remark 13.7 In[63], Robinson and Whitehouse definEehomology group$iI'.(A),
which are theE,, DGA analogue of the And@-Quillen homology groupb..(A) for
commutative (simplicial) rings. In particulaHT'o(A) = Do(A) = Q%. By a the-
orem of Pirashvili and Richterb[7, Theorem 1], the groups I-[ﬂn(A) stabilize to
the I"'-homology groupHI'.(A) whenn — oco. Hence stabilization of higher order
Hochschild homology does not quite give AggQuillen homology in the context of
commutative rings (unlessis aQ-algebra), but it DGA analogue. Inthe topolog-
ical setting there is no essential difference betwEgnring spectra and commutative
S-algebras, and stabilization of higher order topological Hochschild haygaloes,
indeed, give topological Ané—Quillen homology, as proved by Basterra and Mandell
[13, Theorem 4]. See Propositidr3.12below.

Definition 13.8 Let M be a commutativeZ -space monoid, with group completion
I'M. There is a chain of maps

MEM A MEMxMEMEMEM 2, MR TM

where the middle map is a weak equivalence for reasonable (cofibihaean-stable)
M. These are maps of commutati¢espace monoids under and ovdr, where the
left handM X M is augmented by the commutative monoid multiplicatiorand the
right handM X I'M is augmented by the projectioi XK IT'M — M X« = M.

There is a chain of maps

b1 GM] A GM] IEL gpmp A gM x M]

Z gM] A gM] A gM] 25 gM] A STM]

of augmented commutativgM]-algebras, with augmentations induced from those in
the commutativeZ -space monoid case.

Lemma 13.9 The suspension
Stégm(SIM] A SM], 1) = St @ SM] = THH(IM])

of §M] A gM] augmented by, is the topological Hochschild homology &M].
The suspension

Sl®s[M](S[M] A §I'M], pri1) ~ §M] A BI'M = THH(§M], M)

of §M] A §I'M] augmented bypr; is the §M]-module extended up from the bar
constructiorB(S, T'M], S) = §BI'M]. HereTHH(§M], M) = §B"*PM] is the log
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topological Hochschild homology d§M], M). The suspension of the shear map
is the corepresenting map

¢ =M THHEM]) — THH(IM], M)

from Definition8.11

Proof This is clear by a comparison with Definiti@10Q O

Definition 13.10 The topological Hochschild homology &M], the log topological
Hochschild homology of §M], M), and the repletion map
: THH(gM]) — THH(SM], M)

can be (re-)defined as the suspension in commutative augmgiégenlgebras of the
shear map

w: M] A GM] — SM] A STM].

More precisely, the shear map is a chain of maps, and the repletion map ispeedad
chain of maps. Théog topological Hochschild homologyof a pre-log symmetric
ring spectrum A, M, «) is defined by the homotopy pushout

THH(SM]) —~ THH(SM], M)

o . |5

THH(A) THH(A, M)

of commutative symmetric ring spectra, wherés induced bya.: §M] — A.

Definition 13.11 Forn > 1, then-th order topological Hochschild homology
THHI(SM]) = S'Ggqm(SIM] A SM], 11)
of §M], the n-th order log topological Hochschild homology
THHIN(SM], M) = S"Egqm(SM] A STM], pr1) = SM] A B'TM,,
of (§M], M), and the repletion map
¢ =" THH(GM]) — THHIT(GM], M)

are defined as the-fold suspensions in commutative augmen$gd]-algebras of the
source and target of the shear map, and the shear map itself. Forlgekédaa),
the n-th order log topological Hochschild homology THHI" (A, M) is defined by a
homotopy pushout, like in Definitioh3.1Q
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Proposition 13.12 The stabilization as — oo of the repletion map)™ in n-th
order topological Hochschild homology is the corepresenting map

¢ =yl TAQ(EM]) — TAQ(SIM], M) = SM] A B*I'M

in topological Andé—Quillen homology, from Lemm#l.16 This equals the map of
commutativegM] -algebra indecomposables

LAbG (SIM] A SM], 1) — LAZVH(SIM] A STM], pry) ~ SIM] A LAbZSIM]

induced by the shear map.

Proof (See Basterra—MandellB, §2] for the definition of the commutative algebra
indecomposables functdrAb.) Let THA" (A) be the (homotopy) cofiber of the unit
n: A— THHIM(A). The sequence

{n— THA™(A)}

defines a spectrum @&-modules. The category é&-modules is already stable, so this
spectrum corresponds to themodule given by the homotopy colimit

hocolims: ~"TH HY(A).

By [13, Theorem 4], this homotopy colimit is equivalent to the commutadivalgebra
indecomposableE.AbA(A A A, 1) ~ TAQ(A), as anA-module. In the special case
A = gM], this gives the claim for TACgM]).

It is clear that the spectrum
{n— THA™(YM], M) = M] A B'TM}
stabilizes to TAQEM], M) = §M] A B*T'M, and that this equals
LAbI(SM] A STM], pr1) = §M] A LABESIM] ~ §M] A B¥TM,
by [13, 6.1].

By Propositionl1.17in the case whe\ = §M], we have checked that the corepre-
senting map agrees with the stabilized shear map, WhenCX is a free commutative
Z-space monoid. The general comparison result can be deduced fifmtdulo
coherence issues) by freely resolving a general commutdtigpace monoid. For
an alternative proof, we can start with the comparison for topologicahstdtld
homology in Lemmad.3.9and stabilize. O
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Definition 13.13 Thelog topological André—Quillen homologyof a pre-log symmet-
ric ring spectrum A, M, o), denoted TAQA, M), can be (re-)defined as the homotopy
pushout

A Aqm) TAQ(SIM]) —~ A Agy TAQ(SIM], M)

¢l ; l&
TAQ(A) TAQ(A, M)

of A-modules, where) is the stable shear maff>! extended alongr: gM] — A,
and¢ is induced by«

Definition 13.14 Let N be a commutative conically basd€dspace monoid. Hence
N = cone() U N/, and the multiplication.: NEIN — N restricts to a multiplication
N’ X N — N’ making N’ a commutativeZ -space monoid, with group completion
I'N’. Let

§: N— NAN,

be theconical diagonal map This is a map of commutative basg&dspace monoids

over N, where the source is augmented by the identity and the target is augmented by
the projectionpry: N AN, — N A s, = N, induced by the unique mal’ — x.
OverN’ c N the mapd equals the diagonal map

SIN: N' 2 N x N c NAN,
and over coné() the mapo is constant in the cone direction.
Thebased shear map
sh: NON 22 NN AN, < NENDN, 2% NOTN,

is a chain of maps of commutative-space monoids under and oMdt The source
N DN is augmented by: and the targeN [D T'N’, is augmented byr;. Itinduces a
chain of maps

P SINA SN Y SN A S (N ANY)
S YNAYNAGNT 2% 5N A SN
of augmented commutative®N-algebras.
Definition 13.15 Let N be a commutative conically basédspace monoid. The

suspension
Sléz'N(Z.N A E.N7 M) = E' B(/:\yN — THH(E. N)
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of XN A XN augmented by: is the topological Hochschild homology & N. The
based log topological Hochschild homology &i*(N, N) can be (re-)defined as the
suspension

S'&sn(ZN A JIN], pri) = °N A BI'N'),. = THHo(Z'N, N)
of ¥*N A §T'N’] augmented byr;. The repletion map
¢ =M THH(Z'N) — THHo(X'N, N)

can be (re-)defined as the suspension of the shearymdpebased log topological
Hochschild homologyof a conically based pre-log symmetric ring spectridinN, «)
is defined by the homotopy pushout

THH(Z'N) —> THHo('N, N)
aﬁl B l&
THH(A) — Y~ THHo(A, N)
of commutative symmetric ring spectra, wherés induced bya: 3'N — A,

Similarly, we definen-th order based log topological Hochschild homologyof
(A,N), denoted THI{-]‘] (A,N), by starting with the cas& = ¥°N and considering the
n-fold suspension in the categoFN/CSp* /%" N of (the target of) the shear majp.

Proposition 13.16 The stabilization as — oo of the repletion map!™ = S'&s-n1)
is the corepresenting map
¥ =Y TAQ(E'N) — TAQy(X'N, N) = =°N A B¥T'N/

in based topological Ané~Quillen homology, as in Definitioh2.6 This equals the
map of commutativé:® N -algebra indecomposables

LAbER(Z'N A XN, p) — LAbEN(Z'N A JI'N'], pry) ~ X°N A BTN/
induced by the shear map. |

Definition 13.17 Thebased log topological Andé—Quillen homology TAQ(A, N)
of a conically based pre-log symmetric ring spectridN, «) can be (re-)defined as
the homotopy pushout

AAsen TAQ(E'N) —2= A Asen TAQo(E'N, N)
¢>l B lqﬁ
TAQ(A) ! TAQq(A, N)

of A-modules, where) is the stable shear map>! extended along:: ©°'N — A,
and¢ is induced by«
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