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We develop a theory of logarithmic structures on structuredring spectra, including
constructions of logarithmic topological André–Quillen homology and logarithmic
topological Hochschild homology.
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1 Introduction

1.1 Logarithmic algebraic geometry

A logarithmic structure on a commutative ringA is a commutative monoidM with
a homomorphism to the underlying multiplicative monoid ofA. This determines a
localization A[M−1] of A. In algebro-geometric terms, we might say thatM cuts
out a divisorD from Spec(A), and A[M−1] is the ring of regular functions on the
open complement. In general the logarithmic structure carries more informationthan
the localization. For example, the Kähler differentials ofA form an A-moduleΩ1

A,
generated by differentials of the formda, which are globally defined over Spec(A).
The Kähler differentials of the localization form theA[M−1]-moduleΩ1

A[M−1] , which

also contains differentials of the formm−1da, having poles of arbitrary degree along
D. The logarithmic structure specifies an intermediateA-module of logarithmic K̈ahler
differentials,Ω1

(A,M) , generated by differentials of the formda andd logm = m−1dm,
having only poles of simple, or logarithmic, type alongD. The logarithmic structure
is therefore a more moderate way of specifying a localization than the actual localized
ring. See Kato [35] and Illusie [34] for introductions to logarithmic algebraic geometry.

1.2 Algebraic K -theory of rings and S-algebras

We wish to apply the ideas of logarithmic geometry to the study of the algebraic
K -theory of structured ring spectra, also known as commutativeS-algebras. Typical
examples of commutativeS-algebras are the sphere spectrumS, the spherical group
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ring of the integersS[Z], the complex bordism spectrumMU , the complexK -theory
spectrumKU and the Eilenberg–Mac Lane spectrumHR of a commutative ringR.
Modern foundations are discussed in Elmendorf–Kriz–Mandell–May [21], Hovey–
Shipley–Smith [32] and Schwede [73]. In the two first examples, K(S) = A(∗)
and K(S[Z]) = A(S1) agree with Waldhausen’s algebraicK -theory of the spaces
∗ and S1, respectively, which are closely related to the diffeomorphism groups of
high-dimensional manifolds. More precisely,A(∗) and A(S1) determine the stable
smooth pseudoisotopy spaces of∗ andS1, respectively, and these in turn determine the
stable smooth pseudoisotopy spaces of all closed non-positively curvedRiemannian
manifolds, via their points and closed geodesics. See Waldhausen [80], Farrell–Jones
[22] and Waldhausen–Jahren–Rognes [81].

In the third example, K(MU) remains mysterious, but appears to be an interesting
half-way house between the earlier and the later examples. A key step towards its
determination is the homotopy limit property for cyclic group actions on its topological
Hochschild homology THH(MU), which has been established by Lunøe-Nielsen and
Rognes in [43]. In the fourth example, K(KU) classifies virtual 2-vector bundles,
and is related to a form of elliptic cohomology. See Ausoni–Rognes [6], [7], Baas–
Dundas–Rognes [10], and Baas–Dundas-Richter–Rognes [8], [9]. In the fifth example,
K(HR) = K(R) agrees with Quillen’s algebraicK -theory, and whenR is a local or
global number ring, this captures a great deal of the arithmetic, or number-theoretic, in-
variants of that number ring. See Quillen [61], Dwyer–Friedlander–Snaith–Thomason
[20] and Rognes–Weibel [66], plus the work of Voevodsky and Rost on the Milnor-
and Bloch–Kato conjectures.

We would like to understand the algebraicK -theory of commutativeS-algebras in the
same kind of conceptual terms as we understand the algebraicK -theory of number
rings. This includes the principles that algebraicK -theory satisfieśetale descent and
localization properties, with certain modifications, like a restriction to finite coefficients
and sufficiently high degrees in the case ofétale descent. See Quillen [62] and
Thomason–Trobaugh [78]. Two approaches have been successful in proving that
algebraicK -theory is close to satisfyinǵetale descent. One is based on Voevodsky’s
motivic cohomology and its relation tóetale cohomology, as explained by the Milnor-
and Bloch–Kato conjectures just mentioned. However, this theory depends to some
extent on resolution of singularities, and any theory that is hard to extend torings of
positive characteristic will also be hard to extend to commutativeS-algebras.
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1.3 Topological cyclic homology and the de Rham–Witt complex

The other approach is based on the cyclotomic trace map from algebraicK -theory to
the topological cyclic homology of B̈okstedt–Hsiang–Madsen [15]. This is the tool of
choice for the study of thep-adically completed algebraicK -theory of ap-complete
ring, and more generally, for a connective,p-complete commutativeS-algebraA, since
it is a natural map

trc : K(A) → TC(A; p)

(of spaces, say, for simplicity), that becomes a homotopy equivalence after p-adic
completion wheneverπ0(A) is a finite algebra over the Witt vectors of a perfect
field k of characteristicp. See Hesselholt–Madsen [28]. This approach suffices
for the determination of thep-complete algebraicK -theory K(A)p in some cases,
such as the sphere spectrumA = S whenp is a regular prime, see Rognes [64], [65].
Furthermore, there is a very close relationship between the topological cyclic homology
of a commutative ringA and the de Rham–Witt complexW•Ω

∗
A, which is built upon the

de Rham complexΩ∗
A given by the exterior algebra on the Kähler differentialsΩ1

A that
we started with. See Illusie [33] and Hesselholt [27]. The relationship is the closest
whenA is a smooth algebra over the perfect fieldk.

The condition thatA is connective andp-complete of suitably finite type is almost
orthogonal to our desire to understand the algebraicK -theory of commutativeS-
algebras in terms of́etale descent and localization properties. Forétale descent involves
the formation of homotopy limits, specializing to the formation of homotopy fixed
points in the case of Galois descent, and such limits often take us out of the category of
connective spectra. Similarly, localization of ap-complete ring by invertingp will give
a rational algebra, whosep-completion is trivial, leaving no information to be seen by
topological cyclic homology. Furthermore, localization of a commutativeS-algebra by
inverting a positive-dimensional element, or by more general Bousfield localizations,
will most often give a non-connective result.

1.4 Algebraic K -theory of local fields

In the context of discrete valuation rings, Hesselholt–Madsen [29] overcome this
difficulty by the use of logarithmic structures and logarithmic differentials. We illustrate
by their main example. LetK be ap-adic number field, i.e., a finite extension ofQp,
let A ⊂ K be its valuation ring, and letk be the residue field. The maximal ideal of
A is generated by an uniformizerπ , so thatK = A[π−1] and k = A/(π). There is a
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localization sequence

K(k)
i∗−→ K(A)

j∗
−→ K(K)

in Quillen K -theory [61]. Here i∗ is the transfer map (= direct image) associated to the
surjectioni : A → k, we write j∗ for the natural map (= inverse image) associated to
the inclusionj : A → K , and the sequence is a homotopy fiber sequence of spaces. The
cyclotomic trace maps K(k) → TC(k; p) and K(A) → TC(A; p) arep-adic equivalences
of spaces, as explained above, so Hesselholt–Madsen construct a relative form of
topological cyclic homology, denoted TC(A|K; p), that sits in a similar homotopy fiber
sequence

TC(k; p)
i∗−→ TC(A; p)

j∗
−→ TC(A|K; p) ,

(where TC(A|K; p) is not the same as thep-adically trivial TC(K; p)). Much as
the de Rham–Witt complexW•Ω

∗
A is built on top of the de Rham complexΩ∗

A, the
topological cyclic homology TC(A; p) is built on top of the topological Hochschild
homology THH(A). So the homotopy fiber sequence above is in fact extracted from a
homotopy fiber sequence

THH(k)
i∗−→ THH(A)

j∗
−→ THH(A|K)

of so-called cyclotomic spectra. The Hesselholt–Madsen construction of THH(A|K)
doesa priori not have anything to do with logarithmic geometry, but under these
hypotheses, they are able to compute the homotopy of THH(A|K) and TC(A|K; p) (with
modp coefficients), and to express the answers in terms of a logarithmic de Rham–Witt
complexesW•Ω

∗
(A,M) associated to the valuation ringA with the logarithmic structure

given by the multiplicative monoidM = A∩ K∗ of non-zero elements inA. The first
sign of this is seen in the long exact sequence in homotopy associated to the latter
homotopy fiber sequence, which contains the extension

0 → Ω
1
A

π1(j∗)
−−−→ Ω

1
(A,M)

res
−→ k → 0

in dimensions 1 and 0. The first map is the inclusion of Kähler forms among logarith-
mic Kähler forms, while the residue map res takesd logπ to 1 and is realized as the
connecting map in the long exact sequence. For THH, the result is that

π∗(THH(A|K); Z/p) ∼= Ω
∗
(A,K) ⊗ Z/p[κ0]

where |κ0| = 2. The algebraic theory of logarithmic de Rham–Witt complexes is
developed further in Hesselholt–Madsen [30] and Langer–Zink [38]. The passage from
TC(A; p) to TC(A|K; p) is an essential step to make these calculations manageable. As
a consequence of the calculations, one sees that TC(A|K; p) satisfies descent for Galois
extensionsK → L to the extent expected for algebraicK -theory. This is obscure, at
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best, in the comparison of TC(A; p) with TC(B; p), whereB is the valuation ring ofL.
Hence TC(A|K; p) and W•Ω

∗
(A,M) are essential ingredients in the Hesselholt–Madsen

proof of Galois descent forp-completed K(K), and étale descent forp-completed
K(A), for these local fields and rings.

1.5 Algebraic contents of the present paper

In this paper we give a sense to THH(A, M) for general commutative rings with
logarithmic structure (A, M), as a cyclic commutativeA-algebra. We expect that

THH(A, M) ≃ THH(A|K)

in all cases when the right hand side is defined, but we only prove that themod p ho-
motopy algebras are isomorphic. We give two equivalent constructions ofTHH(A, M).
The first is given in Definition8.11in terms of thereplete bar construction BrepM of
M , and therepletion map

BcyM → BrepM

from the usual cyclic bar construction. The second is given in Definition13.10, in
terms of the suspension in the category of augmented commutativeS[M]-algebras of
ashear map

sh: S[M] ∧ S[M] → S[M] ∧ S[Mgp] ,

symbolically given by (x, y) 7→ (xy, γ(y)). Hereγ : M → Mgp is the group completion
homomorphism. The comparison of THH(A, M) with THH(A|K) is discussed in
Example8.14and Proposition8.15.

In this paper we also give a sense to the logarithmic topological André–Quillen homo-
logy TAQ(A, M) for logarithmic rings (A, M), as anA-module. The relation of
THH(A, M) to TAQ(A, M) is like that of the logarithmic de Rham complexΩ∗

(A,M)
to the logarithmic K̈ahler differentialsΩ1

(A,M) , especially in the smooth, or logarith-
mically smooth, cases. We review the ordinary theory of topological André–Quillen
homology in Section10, give one construction of TAQ(A, M) in Definition11.19, and
give a second, equivalent, construction in Definition13.13. The latter is expressed
in terms of the infinite suspension of the shear map, in the category of augmented
commutativeS[M]-algebras.

We approach these definitions in several stages, to motivate and justify them.First
we think of Kähler differentials as corepresenting derivations, and we follow Quillen
[60] in thinking of derivations as homomorphisms into abelian group objects. This
leads us to consider abelian group objects in suitable categories of logarithmicrings,
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to define logarithmic derivations as morphisms in these categories, and to construct
logarithmic K̈ahler differentials as corepresenting objects for logarithmic derivations.
This way we recover Kato’s definition ofΩ1

(A,M) as a pushout ofA-modules, in Defi-
nition 4.25. In Section5 we make a corresponding analysis for “associative ring maps
between commutative rings”, which leads to a definition of logarithmic Hochschild
homology HH(A, M) as a pushout of commutativeA-algebras, with a comparison map
Ω∗

(A,M) → HH∗(A, M). The analogous discussion for logarithmicS-algebras leads to
the initial definitions of the corepresenting objects TAQ(A, M) and THH(A, M), as
suitable homotopy pushouts.

In Section3 we argue that certain features of the traditional algebro-geometric theory
of logarithmic rings, namely that one works within the full subcategory of so-called
fine and saturated logarithmic rings, can constructively be replaced by a different
condition that is better suited for topological generalization. The alternate condition
is a relative one, i.e., it is a condition on logarithmic rings (A, M) over a fixed base
logarithmic ring (R, P), and asks that the monoid homomorphismM → P to the base
commutative monoid is an exact surjection. Here exactness means thatM → P is the
pullback ofMgp → Pgp alongγ : P → Pgp. We say that such logarithmic rings (A, M)
arereplete over (R, P), and we prove in Lemma3.8 (with a topological analogue in
Proposition8.3) that there is arepletion functor for quite general logarithmic rings
(A, M) over (R, P). The repletion of the cyclic bar constructionBcyM of a commutative
monoid is, by definition, the replete bar constructionBrepM , and the cyclic structure on
BcyM carries over to a cyclic structure onBrepM . This leads to a revised Definition8.11
of THH(A, M), in terms of repletion. Its advantage over the previous characterization
is that THH(A, M) now is a cyclic object in commutativeA-algebras, which is a first
step towards a cyclotomic structure.

In a third and final iteration, we note that the repletion map required for the definition
of TAQ(A, M) is the infinite stabilization of the repletion map required for THH(A, M),
and that this in turn is a single stabilization of a shear mapA∧ S[M] → A∧ S[Mgp]
in the category of augmented commutativeA-algebras. We are therefore able to give
quite short and direct definitions of the logarithmic Hochschild homology HH(A, M),
higher order versions HH[n](A, M), and their stabilizationHΓ(A, M) as n → ∞, in
Section13. These give logarithmic forms of constructions of Pirashvili [56] and
Robinson–Whitehouse [63]. This all adds to the belief that for each logarithmic
ring (A, M), the stable category of spectra formed in the category of simplicial replete
logarithmic rings under and over (A, M) will be an appropriate category oflogarithmic
(A, M)-modules. Note that working in the subcategory of replete logarithmic rings
replaces all non-empty colimits (= tensor products) formed in logarithmic rings by their
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repletions, hence the tensored structure and suspension in simplicial replete logarithmic
rings will be different from those in simplicial logarithmic rings. See Remark4.14for
some further discussion.

1.6 Algebraic K -theory of topological K -theory

Moving on from discrete rings to commutativeS-algebras, the examples that are the
closest to algebra are given by the topologicalK -theory spectrumKU and its variants.
Let KUp be itsp-completion, letLp be the Adams summand ofKUp, and letℓp andkup

be the respective connective covers. These are all commutativeS-algebras. The modp
reductionsL/p = K(1), KU/p, ℓ/p = k(1) andku/p are associativeS-algebras, but
not commutativeS-algebras. Thep-complete algebraicK -theory ofℓp, kup andℓ/p
was computed in Ausoni–Rognes [6], Ausoni [4] and Ausoni–Rognes [5], respectively,
in each case using the equivalence with topological cyclic homology. For simplicity,
we focus on the Adams summand cases. There are localization sequences

K(Zp)
π∗−→ K(ℓp)

ρ∗
−→ K(Lp)

K(Z/p)
π∗−→ K(ℓ/p)

ρ∗
−→ K(L/p)

established by Blumberg and Mandell [14]. Here π∗ denotes the transfer maps asso-
ciated to the 1-connected mapsπ : ℓp → HZp andπ : ℓ/p → HZ/p, andρ∗ denotes
the natural map associated to the localization mapsρ : ℓp → Lp andρ : ℓ/p → L/p.
The cyclotomic trace mapK(A) → TC(A; p) is a p-adic equivalence in all of the cases
A = HZp, ℓp, HZ/p andℓ/p, butnot for the non-connective spectraA = Lp andL/p.
We would therefore like to construct relative forms of topological cyclic homology,
denoted TC(ℓp|Lp; p) and TC(ℓ/p|L/p; p), that sit in homotopy fiber sequences

TC(Zp; p)
π∗−→ TC(ℓp; p)

ρ∗
−→ TC(ℓp|Lp; p)

TC(Z/p; p)
π∗−→ TC(ℓ/p; p)

ρ∗
−→ TC(ℓ/p|L/p; p)

and are extracted by a limiting process from homotopy fiber sequences

THH(Zp)
π∗−→ THH(ℓp)

ρ∗
−→ THH(ℓp|Lp)

THH(Z/p)
π∗−→ THH(ℓ/p)

ρ∗
−→ THH(ℓ/p|L/p)

of cyclotomic spectra. The Hesselholt–Madsen construction of THH(A|K) for discrete
valuation rings does not easily generalize to this topological setting of structured
ring spectra, so we seek instead to generalize the construction of THH(A, M) to this
topological setting, so as to realize THH(ℓp|Lp), and perhaps THH(ℓ/p|L/p), in that
form.
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1.7 Topological contents of the present paper

We expect this algebro-geometric theory to be most useful in the commutative context,
where we replace the commutative ringA by a commutativeS-algebra. Experience
from structured ring spectrum theory tells us that we should replace the commutative
monoid M by the kind of space that arises as the underlying space of a commutative
S-algebra, with its multiplicative structure. These are, a little informally, known as
E∞ spaces. More precisely, when commutativeS-algebras are interpreted in the
sense of Elmendorf–Kriz–Mandell–May [21], they areL-spaceswhereL is the linear
isometries operad, and when commutativeS-algebras are interpreted in the sense of
Hovey–Shipley–Smith [32], they arecommutative I -space monoids. A logarithmic
structure on a commutativeS-algebraA is then anE∞ spaceM with anE∞ map to the
underlying multiplicativeE∞ spaceΩ∞

⊗ A of A. In fact, the underlying multiplicative
spaces of commutativeS-algebras are somewhat specialE∞ spaces, because the
additive base point of the underlying space acts as a zero, or base point, for the
multiplication. This leads us to work withbasedE∞ spaces, also known asE∞ spaces
with zero. A further justification for working with basedE∞ spaces is illustrated
by thinking of Lp as the localization ofℓp obtained by inverting the elementv1 ∈

π∗ℓp = Zp[v1]. Let f : Sq → Ω∞
⊗ ℓp be a map representingv1 in homotopy, where

q = 2p− 2. It is not the individual multiplication mapsf (z)· : ℓp → ℓp, for z ∈ Sq,
that become equivalences after base change toLp, but the combined multiplication
map f · Sq ∧ ℓp → ℓp. To induce this map from the smash product,f must be thought
of as a base-point preserving map. When we extendf to a multiplicative map, that
must be a map of basedE∞ spaces.

We define based and unbased topological logarithmic structures in Section7, after
discussing the available choices of technical foundations in Section6. The definitions of
logarithmic topological Hochschild homology given in Sections8 and13 immediately
generalize from the case of a discrete commutative monoidM to the case of an
unbasedE∞ spaceM , and similarly for the definitions of logarithmic topological
André–Quillen homology in Sections11and13. However, for basedE∞ spacesN we
need to make a topological assumption about the local structure near the base point,
namely that the basedE∞ space isconically based, see Definition6.21. This ensures
that the spaces of based logarithmic derivations are corepresentable, as in Lemmas12.3
and12.4, and lets us define a based logarithmic topological André–Quillen homology
TAQ0(A, N) in Definition 12.6, with a companion definition of based logarithmic
topological Hochschild homology THH0(A, N) in Definition8.17. For conically based
E∞ spacesN the base point complementN′ is anE∞ space, there is a conical diagonal
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mapδ : N → N ∧ N′
+ , and there is abased shear map

sh: Σ
∞N ∧ Σ

∞N → Σ
∞N ∧ S[N′]

of augmented commutativeΣ∞N-algebras. In Section13 we give streamlined defini-
tions of based logarithmic topological Hochschild homology THH0(A, N) as a cyclic
commutativeA-algebra, and based logarithmic topological André–Quillen homology
TAQ0(A, N) as anA-module, using single and infinite suspensions of this based shear
map.

1.8 Logarithmic structures on topologicalK -theory

Returning to the desired logarithmic model TC(ℓp|Lp; p) for the p-completed K(Lp),
we seek a based logarithmic structureN on ℓp so that

THH(ℓp|Lp) ≃ THH0(ℓp, N) .

We have not yet been able to find a suitableN in the current set-up, but some partial
information is available, which we discuss in this paper. First, the periodic Adams
summandLp is obtained fromℓp by inverting the mapv1· : Σqℓp → ℓp, given by
multiplication by a mapf : Sq → Ω∞ℓp that representsv1 ∈ π∗ℓp. Letting

N ≃
∨

j≥0

Sqj
hΣj

be the free basedE∞ space generated bySq, we obtain a based (pre-)logarithmic
structureN → Ω∞

⊗ ℓp. In view of the calculations by B̈okstedt (unpublished) and
McClure–Staffeldt [49], see also Ausoni–Rognes [6], the homotopy of THH(Zp) and
THH(ℓp) with coefficients in the Smith–Toda complexV(1) = S/(p, v1) is known, and
this lets us compute the desired homotopy of THH(ℓp|Lp). We have not calculated
THH0(ℓp, N) in this case, but related calculations in the context of TAQ0, see Exam-
ples12.16and12.17, show that this free basedE∞ spaceN is not the desired based
E∞ space. There may be a better basedE∞ space, built fromN by attaching further
free basedE∞ cells, but this remains to be determined.

We now discuss two alternative approaches to this problem. The first involves work-
ing with less commutative ring spectra thanE∞ ring spectra. AlgebraicK -theory,
topological cyclic homology and topological Hochschild homology are all defined for
associativeS-algebras, orA∞ ring spectra, but the question is how much commutativity
is needed to make good sense of a logarithmic geometry. If we take

N ≃
∨

j≥0

Sqj
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to be the free basedA∞ space generated bySq, we can extend the scope of based
logarithmic topological Hochschild homology to make sense of THH0(Σ∞N, N). With
some more commutativity inN, so that THH(Σ∞N) is an associativeS-algebra, this
lets us make sense of THH0(ℓp, N), in such a way that THH(ℓp|Lp) ≃ THH0(ℓp, N). In
Section9 we discuss evidence thatN has a basedE2 space structure, related to braid
groups, which would suffice for this purpose.

The second approach involves working with commutativeMU -algebras in place of
commutativeS-algebras. WithN ≃

∨

j≥0 Sqj , as above, the suspension spectrum
Σ∞N is an associative but not a commutativeS-algebra. However, its base change

MU ∧ N ≃
∨

j≥0

Σ
qjMU

to MU is a commutativeMU -algebra. This can be seen by a geometric construction
similar to that of Neil Strickland [77, Appendix A]. There is then a commutative
MU -algebra mapMU ∧ N → ℓp, which we view as specifying a complex oriented
logarithmic structure, that permits us to define a cyclic commutativeMU -algebra
model for THH(ℓp|Lp). More generally, this works to define THH(e|E) for periodic
commutativeMU -algebrasE with connective covere. For the purpose of using
logarithmic geometry to bridge the gap fromK(MU) to K(Z), this appears to be a
viable route. For time reasons we are unable to include the discussion of complex
oriented logarithmic structures in this paper, but we plan to return to it in a later
publication.

1.9 The fraction field of topologicalK -theory

The calculations of Ausoni–Rognes [5] show that the diagrams

K(ℓ/p)
i∗−→ K(ℓp)

j∗
−→ K(ℓQp)

K(L/p)
i∗−→ K(Lp)

j∗
−→ K(LQp)

are not homotopy fiber sequences. HereℓQp = ℓp[1/p] and LQp = Lp[1/p] are
the commutativeHQp-algebra spectra that are obtained by invertingp in ℓp and Lp,
respectively. Indeed, the calculations essentially show that the mapping cones of the
two transfer mapsi∗ , which we denoteK(O) and K(F) for brevity, have largev2-
periodicV(1)-homotopy, whereasK(Qp) and any algebra over it isv2-torsion. With
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this notation, we have a 3× 3 square of homotopy fiber sequences

K(Z/p)
i∗ //

π∗

²²

K(Zp)
j∗ //

π∗

²²

K(Qp)

π∗

²²
K(ℓ/p)

i∗ //

ρ∗

²²

K(ℓp)
j∗ //

ρ∗

²²

K(O)

ρ∗

²²
K(L/p)

i∗ // K(Lp)
j∗ // K(F)

where theV(1)-homotopy of all four corners in the upper left hand square have been
computed using topological cyclic homology.

This leads to the question of what kind of objectsO and F are. Considering the
lower row, we viewF as a milder localization ofLp away from its non-commutative
residueS-algebraL/p than the algebraic localization that invertsp. Since this is the
only non-trivial residueS-algebra ofLp, we think ofF as specifying anS-algebraic
fraction field of Lp, andO as a connective valuationS-algebra ofF . Furthermore,
it appears that the Galois cohomology of this objectF , with V(1)-coefficients, is a
Poincaŕe duality algebra with fundamental class inH3

Gal(F ; Fp2(2)), indicating thatF
is a kind of S-algebraic higher local field satisfyingarithmetic duality Milne [50].
We explain these calculations in greater detail in Ausoni–Rognes [5].

Given the thrust of the present paper, it should come as no surprise that we expect to be
able to realizeO andF as logarithmicS-algebras, so that there should be basedE∞

spacesS0 = {0, 1}, 〈v1〉, 〈p〉 and 〈p, v1〉 mapping toΩ∞
⊗ ℓp, so that the lower right

hand square above is realized as the algebraicK -theory of the commutative square

(ℓp, {0, 1}) //

²²

(ℓp, 〈p〉)

²²
(ℓp, 〈v1〉) // (ℓp, 〈p, v1〉)

of based logarithmicS-algebras. A similar triple division of approaches arises as
in the discussion of logarithmic structures on (the Adams summand of) topological
K -theory, and again there is a discussion of homological obstructions and natural
hypotheses in Section9. As in that case, a complex oriented (pre-)logarithmic structure
MU ∧ 〈p, v1〉 → ℓp appears to be the best commutative model for the fraction fieldF .
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The V(1)-homotopy of the corresponding 3× 3 square of homotopy fiber sequences

THH(Z/p)
i∗ //

π∗

²²

THH(Zp)
j∗ //

π∗

²²

THH(Zp, 〈p〉)

π∗

²²
THH(ℓ/p)

i∗ //

ρ∗

²²

THH(ℓp)
j∗ //

ρ∗

²²

THH(ℓp, 〈p〉)

ρ∗

²²
THH(ℓ/p, 〈v1〉)

i∗ // THH(ℓp, 〈v1〉)
j∗ // THH(ℓp, 〈p, v1〉)

(as well as its analogue for TC) is computed in Ausoni–Rognes [5], starting from
calculations of the upper left hand square. In the fraction field corner,the conclusion

V(1)∗ THH(ℓp, 〈p, v1〉) ∼= E(d logp, d logv1) ⊗ Z/p[κ0]

with |d logp| = |d logv1| = 1 and|κ0| = 2 is nicely compatible with the Hesselholt–
Madsen result forπ∗(THH(A|K); Z/p).
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The length of this paper is unfortunate. It stems from the desire to both discuss the
algebraic background, where we can give explicit formulas for maps and study inter-
esting examples, but also to reach the based topological structures that are required
to describe the fraction field of topologicalK -theory. It also stems from the iterated
approach to the definitions, starting from logarithmic derivations and their corepre-
senting logarithmic differentials, via the introduction of replete logarithmic structures,
to the final quick definitions using the shear map. The author believes that a record
of this transition has some value, even if later applications of logarithmic topological
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Hochschild homology may just start from the end. Still, the author feels that thereader
deserves an apology for the length of the exposition.

Part I

Logarithmic structures on commutative
rings

2 Commutative logarithmic structures

We begin by reviewing some basic definitions about the log structures of Jean–Marc
Fontaine and Luc Illusie, adapting Kazuya Kato’s introduction [35, §1] to the affine
case. For simplicity we work with commutative rings, but it is just about as easyto
work with commutativeR-algebras over some base commutative ringR.

Definition 2.1 Let A be a commutative ring. Apre-log structure on A is a pair
(M, α) consisting of a commutative monoidM and a monoid homomorphism

α : M → (A, ·)

to the underlying multiplicative monoid ofA. A pre-log ring (A, M, α) is a com-
mutative ring A with a pre-log structure (M, α), often abbreviated to (A, M). A
homomorphism

(f , f ♭) : (A, M, α) → (B, N, β)

of pre-log rings consists of a ring homomorphismf : A → B and a monoid homomor-
phism f ♭ : M → N, such that the square

M
α //

f ♭

²²

(A, ·)

(f ,·)
²²

N
β // (B, ·)

commutes. Here (f , ·) : (A, ·) → (B, ·) denotes the underlying multiplicative monoid
homomorphism off . Pre-log rings and homomorphisms form a category, which we
denotePreLog. There are obvious forgetful functors fromPreLog to the categories
CRing andCMon of commutative rings and commutative monoids, respectively.
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Remark 2.2 Let Z[M] denote the monoid ring ofM . The functorM 7→ Z[M], from
commutative monoids to commutative rings, is left adjoint to the functorA 7→ (A, ·).

CMon
Z[−] //

CRing
(−,·)

oo

Hence a pre-log structure (M, α) can equally well be defined in terms of the ring ho-
momorphism ¯α : Z[M] → A that is left adjoint toα. A pair (f , f ♭) of ring and monoid
homomorphisms, respectively, then defines a pre-log homomorphism (A, M) → (B, N)
if and only if the square

Z[M] ᾱ //

Z[f ♭]
²²

A

f

²²
Z[N]

β̄ // B

commutes.

Definition 2.3 Let ι : GL1(A) ⊂ (A, ·) denote the inclusion of the multiplicative group
of units in A. Let α−1GL1(A) ⊂ M be defined by the pullback square

α−1GL1(A)
α̃ //

ι̃

²²

GL1(A)

ι

²²
M

α // (A, ·)

of commutative monoids. The pre-log structure (M, α) is a log structure on A if the
restricted homomorphism ˜α : α−1GL1(A) → GL1(A) is an isomorphism. Log rings
generate a full subcategory ofPreLog, which we denoteLog.

Remark 2.4 The forgetful functorAb → CMon, from abelian groups to commu-
tative monoids, has a right and a left adjoint. The right adjoint takes a commutative
monoid M to its subgroupM∗ of units, while the left adjoint takes a commutative
monoidM to its group completionMgp. For a commutative ringA, GL1(A) = (A, ·)∗ .
These remarks also apply to groups, monoids and rings that are not necessarily com-
mutative.

Remark 2.5 For a log ring (A, M, α) we can factor the inclusionι as

GL1(A) → M
α
−→ (A, ·) ,

by inverting the isomorphism ˜α. The log condition asserts that the part ofM that
sits over the units ofA (via α) is isomorphic to those units, and we view this as a
normalization condition. The emphasis in a log structure is therefore on the part of M
that maps to the non-units ofA.
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Definition 2.6 Let (A, M, α) be a pre-log ring. Theassociated log ring(A, Ma, αa)
consists ofA with the log structure (M, α)a = (Ma, αa), whereMa is defined by the
upper left hand pushout square in the following diagram

α−1GL1(A)
α̃ //

ι̃

²²

GL1(A)

²²
ι

³³

M //

α //

Ma

αa

$$IIIIIIIII

(A, ·)

of commutative monoids, andαa : Ma → (A, ·) is the canonical homomorphism
induced byα : M → (A, ·) and ι : GL1(A) → (A, ·). The next remark shows that
(A, Ma, αa) is indeed a log ring. A homomorphism (f , f ♭) of pre-log rings induces a
homomorphism (f , f ♭a) : (A, Ma, αa) → (B, Na, βa) of associated log rings. We obtain
a logification functor (−)a : PreLog→ Log.

Remark 2.7 SinceGL1(A) is an abelian group, the pushout

Ma
= M ⊕α−1GL1(A) GL1(A)

can be described as the balanced product (M ×GL1(A))/ ∼, where (m, g) ∼ (m′, g′) if
and only ifm·ι̃(h1) = m′ ·ι̃(h2) andα̃(h2)·g = α̃(h1)·g′ , for someh1, h2 ∈ α−1GL1(A).
See Kato [35, page 193]. We write [m, g] for the equivalence class of (m, g). The
homomorphismαa takes [m, g] ∈ Ma to α(m) · ι(g) ∈ (A, ·), soαa([m, g]) ∈ GL1(A)
if and only if α(m) ∈ GL1(A), hence [m, g] has a unique representative of the form
(1, h) with h = α(m)−1g ∈ GL1(A), and (Ma, αa) is really a log structure onA.

Lemma 2.8 The logification functor(−)a : PreLog → Log is left adjoint to the
forgetful functorLog→ PreLog.

Definition 2.9 The trivial pre-log structure on A is given by the trivial monoid
M = {1} and the unique monoid homomorphismα : {1} → (A, ·). The trivial
log structure on A is the associated log structure, withM = GL1(A) and α =

ι : GL1(A) → (A, ·).

Lemma 2.10 The functor(−)triv : CRing → PreLog taking A to the trivial pre-log
ring (A, {1}) is left adjoint to the forgetful functorPreLog → CRing. Hence the
functor (−)triv,a : CRing → Log taking A to the trivial log ring (A, GL1(A)) is left
adjoint to the forgetful functorLog→ CRing.
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Remark 2.11 In algebro-geometric language, we can think of the opposite category
Logop as the category of affine log schemes, with a forgetful functor to the category
Aff = CRingop of affine schemes. The trivial log structure defines a right adjoint to
the forgetful functor, embedding affine schemes into affine log schemes.

Definition 2.12 Let M be a commutative monoid andZ[M] its monoid ring. The
canonical pre-log structure on Z[M] is the pair (M, ζ), whereζ : M → (Z[M], ·)
takesm∈ M to 1·m∈ Z[M]. Thecanonical log structureon Z[M] is the associated
log structure (M, ζ)a.

Lemma 2.13 The functor(−)can: CMon→ PreLog takingM to the canonical pre-
log ring (Z[M], M) is left adjoint to the forgetful functorPreLog → CMon. Hence
the functor(−)can,a : CMon → Log taking M to the canonical log ring(Z[M], Ma)
is left adjoint to the forgetful functorLog→ CMon.

Remark 2.14 We can summarize these adjunctions in the following diagram, where
the unlabeled arrows denote forgetful functors:

CRing

(−)triv

²²
CMon

(−)can
//
PreLogoo

(−)a
//

OO

Logoo

Any pre-log ring (A, M) is the pushout

(Z[M], {1}) //

²²

(Z[M], M)

²²
(A, {1}) // (A, M)

of a diagram of trivial and canonical pre-log rings. In this sense, the trivial and the
canonical pre-log rings generate all pre-log rings.

Definition 2.15 For a pre-log ring (A, M), the trivial locus is the pre-log ring
(A[M−1], Mgp) where

A[M−1] = A⊗Z[M] Z[Mgp] .

There is a canonical homomorphism (A, M) → (A[M−1], Mgp), and the associated
log structure (A[M−1], Mgp)a equals the trivial one. For log rings (A, M) the functor
(A, M) 7→ A[M−1] is left adjoint to (−)triv,a, which therefore has both a left and a right
adjoint.
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Example 2.16 (This example is prominent in Lars Hesselholt and Ib Madsen’s work
[29].) Let A be a discrete valuation ring, with uniformizerπ . Let M = 〈π〉 = {πj |

j ≥ 0} be the free commutative monoid generated byπ , and letα : M → (A, ·) be the
inclusion. Then (A, M) = (A, 〈π〉) is a pre-log ring. The associated log ring (A, Ma)
has

Ma
= A \ {0} ∼= 〈π〉 × GL1(A)

equal to the multiplicative monoid of nonzero elements inA, and αa : M → (A, ·)
equals the inclusion. LettingK = A[π−1] be the fraction field ofA, we note that
Ma = A ∩ GL1(K) ⊂ GL1(K). The trivial locus of (A, 〈π〉) is (K, 〈π, π−1〉). A
concrete example of interest to us is the case whenA = Zp the ring ofp-adic integers,
π = p andK = Qp is thep-adic field. See Serre [75, §I.1] for other examples.

Remark 2.17 When we embed commutative rings into log rings (using the trivial log
structures), the localization homomorphismf : A → K maps to the homomorphism
(f , f ♭) : (A, GL1(A)) → (K, GL1(K)). One essential feature of the categoryLog is that
the latter homomorphism factors as the composite

(A, GL1(A)) → (A, Ma) → (K, GL1(K)) ,

where the middle term is a log ring with a non-trivial log structure. In geometric terms,
the open inclusionj : U = Spec(K) → Spec(A) = X of the generic point does not
factor in any nontrivial way inAff , but when viewed as a map of affine log schemes it
factors as

U → Λ = Spec(A, Ma) → X ,

where Λ = Spec(A, Ma) is properly a log scheme. Heuristically,Λ is a kind of
compactification ofU , andΛ → X specifies a less dramatic localization ofX (in log
schemes) than the open inclusionU → X (in schemes). See Kato–Nakayama [36,
(1.2)] and Illusie [34, §5.5] for a more precise interpretation (in a complex analytic
setting) of the log scheme as a compactification of the trivial locus.

Remark 2.18 (I learned of this point of view from Clark Barwick.) Following Martin
Olsson [54, Theorem 1.1], one can embed the category of log schemes into the 2-
category of algebraic stacks, by taking a log schemeΛ to a suitable moduli category
Log(Λ) = strLog/Λ of log schemes overΛ and “strict” morphisms between these (see
Definition 2.22). To be precise, Kato and Olsson only work with “fine” log structures
(see Definition3.1). This means that Spec of a fine log ring acquires a geometric
meaning in the context of algebraic stacks, and, in particular, that the factorization
U → Λ → X of j can be viewed as taking place in that context. Geometric notions
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like flat, smooth, unramified,́etale and fppf (= faithfully flat and finitely presented)
morphisms of log rings, or log schemes, then become special cases of the same notions
for algebraic stacks.

Definition 2.19 Let f : A → B be a ring homomorphism and let (M, α) be a pre-log
structure onA. Theinverse image log structure

(f ∗M, f ∗α) = (M, (f , ·) ◦ α)a

on B is the log structure associated to the pre-log structure given by the composite
monoid homomorphism

M
α
−→ (A, ·)

(f ,·)
−−→ (B, ·) .

There is a canonical homomorphism (f , f ♭) : (A, M) → (B, f ∗M) of (pre-)log rings.

Remark 2.20 Note that (M, (f , ·) ◦ α) is usually not a log structure onB, before
logification, even if (M, α) is a log structure onA. The variance of the terminology
and notation (inverse image,f ∗ ) is compatible with that used in algebraic geometry,
when f is viewed as a map Spec(B) → Spec(A) in Aff and the log structure is a sheaf
over Spec(A). The variance is perhaps counterintuitive in the context of commutative
rings, but switching the roles off ∗ andf∗ (defined below) would make the comparison
with the algebro-geometric literature prohibitively confusing.

Lemma 2.21 The log homomorphisms(A, M) → (B, N) covering a fixed ring homo-
morphismf : A → B are in natural bijection with the log homomorphisms(B, f ∗M) →
(B, N) covering the identityidB on B.

Definition 2.22 A homomorphism (f , f ♭) : (A, M) → (B, N) of log rings isstrict if
the corresponding monoid homomorphismf ∗M → N is an isomorphism. We write
strLog⊂ Log for the subcategory of strict homomorphisms.

Definition 2.23 Let f : A → B be a ring homomorphism and let (N, β) be a pre-log
structure onB. Thedirect image pre-log structure (f∗N, f∗β) on A is defined by the
pullback square

f∗N
f∗β //

²²

(A, ·)

(f ,·)
²²

N
β // (B, ·)

of commutative monoids. When (N, β) is a log structure onB, (f∗N, f∗β) will also be a
log structure, thedirect image log structureonA. There is a canonical homomorphism
(f , f ♭) : (A, f∗N) → (B, N) of (pre-)log rings.
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Lemma 2.24 The log homomorphisms(A, M) → (B, N) covering a fixed ring homo-
morphismf : A → B are in natural bijection with the log homomorphisms(A, M) →
(A, f∗N) covering the identityidA on A.

Remark 2.25 For a discrete valuation ringA, the log structureMa = A \ {0} =

A ∩ GL1(K) from Example2.16 is the same as direct imagef∗GL1(K) of the trivial
log structure onK , along the homomorphismf : A → K . Hence the direct image
construction naturally produces the factorization in log schemes from Remark 2.17.
More generally, for ring homomorphismsf : A → B the direct imageM = f∗GL1(B)
of the trivial log structure onB provides a log ring (A, M) that may serve as an
approximation toB. In the topological setting of the following sections, this provides
a useful log structure onA in the cases whereB exists, but it will be less useful when
the desiredB does not exist and we are trying to construct (A, M) as a replacement for
the non-existentB.

3 Replete logarithmic structures

Definition 3.1 We now review some desirable properties of log rings and log schemes,
with the aim to motivate the introduction in Definitions3.6 and3.12of another such
property. See Kato [35, §2] and Nakayama [52, §1].

In the affine cases that we consider, every log structure (M, α) on a commutative ring
A is quasi-coherent. It iscoherentif M is finitely generated as a commutative monoid.
A commutative monoidM is integral if the canonical homomorphismγ : M → Mgp

to its group completion is injective. It isfine if it is finitely generated and integral. An
integral M is saturated if the only a ∈ Mgp with an ∈ M for somen ∈ N are the
a ∈ M . It is fs if it is fine and saturated. We say that a pre-log structure (M, α), or a
pre-log ring (A, M), is integral, fine, saturated or fs, respectively, if the commutative
monoid M has the corresponding property. A log ring is said to have one of these
properties if it is isomorphic to the logification of a pre-log ring with the given property.

Let Mint = γ(M) ⊂ Mgp be the image ofM , and letMsat ⊂ Mgp consist of alla ∈ Mgp

with an ∈ M for somen ∈ N. These constructions preserve the subcategories of
finitely generated commutative monoids, and restrict to define left adjoints (−)fine =

(−)int|CMonfg and (−)fs = (−)sat|CMonfine to the forgetful functors

CMonfs // CMonfine
(−)fs

oo
// CMonfg

(−)fine
oo
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between fs, fine and finitely generated commutative monoids, respectively.The cat-
egoryCMonfg has all finite colimits. The left adjoint functors (−)fine and (−)fs can
therefore be used to create finite colimits in the subcategoriesCMonfine andCMonfs.

Finite colimits in the category of fine pre-log rings are constructed by first forming
the finite colimit in coherent pre-log rings. The result, (A, M) say, is then replaced by
the fine base change (A, M)fine = (A⊗Z[M] Z[Mfine], Mfine). Similarly, finite colimits
in the category of fs pre-log rings are constructed by first forming (B, N) = (A, M)fine

as above, and then replacing it by the fs base change (B, N)fs = (B⊗Z[N] Z[Nfs], Nfs).
The corresponding construction in fine (resp. fs) log rings is obtained by applying
logification at the end.

Remark 3.2 In the study of smoothness properties and deformation theory for log
rings or log schemes (Kato [35], Olsson [55]), it is common to work with thickenings
(g, g♭) : (A, M) → (R, P) that are strict morphisms to a fixed base log ring (R, P),
i.e., such thatg∗M ∼= P, whereA/J ∼= R for some square zero (or nil) idealJ. The
strictness hypothesis leads to the key property that the diagram

M
γ //

g♭

²²

Mgp

g♭,gp

²²
P

γ // Pgp

is a pullback square of commutative monoids. In other words,g♭ : M → P is “exact”
(see Definition3.3).

Furthermore, it is common to work within the subcategoryLogfine of fine log rings
(resp. fine log schemes). This ensures that the canonical log ringsMcan,a = (Z[M], Ma)
have underlying rings of finite type, as is convenient in algebraic geometry. It also
ensures that the natural homomorphism

γcan,a : (Z[M], Ma) → (Z[Mgp], Mgp,a) = Z[Mgp]triv

describes an embedding of the diagonalizable (affine, commutative) groupscheme
D(Mgp) = Spec(Z[Mgp]) (a product of Gm’s and µn ’s) in the affine log scheme
Spec(Z[M], Ma) that is “dense” in a suitable sense, rather than one that properly
factors through a closed log subscheme Spec(Z[Mint], Mint,a). This leads to the close
connection between logarithmic geometry and the theory of toroidal embeddings.

Definition 3.3 A monoid homomorphismǫ : M → P is exact if the diagram

M
γ //

ǫ

²²

Mgp

ǫgp

²²
P

γ // Pgp
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is a pullback square.

Remark 3.4 In the study of loǵetale cohomology, KummeŕetaleK -theory and log
K -theory (see Nakayama [52], Hagihara [26], Nizioł [ 53]), it is common to restrict
further to the subcategoryLogfs of fs log rings. To illustrate why, we focus on the case
of a log G-Galois extension (f , f ♭) : (A, M) → (B, N), whereG = Spec(H) is a finite
étale group scheme over Spec(A) that acts on Spec(B, N) over Spec(A, M). For (f , f ♭)
to belog G-Galois, we require that the canonical map

h: (B, N) ⊗fs
(A,M) (B, N) → H ⊗A (B, N)

is an isomorphism, plus thatf : A → B is faithfully flat. The interpretation of the log
ring tensor product (= pushout) in the source ofh is now dependent on the categorical
context. In fs log rings, the underlying monoid will be the integral saturation (N⊕M N)fs

of the pushoutN ⊕M N formed in commutative monoids. Similarly, the underlying
commutative ring will be the base change ofB⊗AB alongZ[N⊕MN] → Z[(N⊕MN)fs].
This saturation significantly extends the range of examples of log Galois extensions.

For example, suppose thatf ♭ : M → N is an injective homomorphism of fs com-
mutative monoids, and that there is a natural numberk such thatf ♭(M) contains
Nk = {nk | n ∈ N} ⊂ N. Such homomorphisms are calledKummer homomor-
phisms. The cokernelC of f ♭,gp : Mgp → Ngp is then a finite group of exponent
k. Let γ̄ : N → C be the canonical monoid homomorphism. LetA = Z[1/k][M],
B = Z[1/k][N] and H = A[C]. Then H is anétale (bi-)commutative Hopf algebra
over A, which coacts on (B, N) by the log ring homomorphism

(B, N) → H ⊗A (B, N)

under (A, M) induced by the monoid homomorphismN → C × N that takesn to
(γ̄(n), n). Kato showed (see Illusie [34, Proposition 3.2]) that (f , f ♭) : (A, Ma) →

(B, Na) is a (Kummerétale)G-Galois extension, withG = Spec(H) = D(C)Spec(A) .
The main point is that the monoid homomorphismN ⊕M N → C × N that takes the
class ofn1 ⊕ n2 to (γ̄(n1), n1n2) is usually not surjective, but the induced map from its
integral saturation

(N ⊕M N)fs ∼=
−→ C× N

is always an isomorphism. As a simple example, the reader might wish to considerthe
caseM = 〈y〉 and N = 〈x〉, with f ♭(y) = xk for somek ≥ 2. This example makes
it clear that it is the Kummer condition onf ♭ : M → N that makes all the elements
in C × N have a positive power that is in the image fromN ⊕M N, so that saturation
suffices to extendN ⊕M N to cover all ofC× N.
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In the setting of a Kummer homomorphismf ♭ : M → N, the integral saturation
(N ⊕M N)fs has a different characterization. We viewN ⊕M N as a commutative
monoid overN, via ǫ : N⊕M N → N taking the class ofn1⊕n2 to n1n2, and note that
the factorization ofγ : N ⊕M N → (N ⊕M N)gp through (N ⊕M N)fs has the property
that the right hand square in the commutative diagram

N ⊕M N //

ǫ

²²

(N ⊕M N)fs //

ǫfs

²²

(N ⊕M N)gp

ǫgp

²²
N

= // N
γ // Ngp

is a pullback square of commutative monoids. This is clear, because the preimage
(ǫfs)−1(n) of n ∈ N is identified withC × {n} under the isomorphism (N ⊕M N)fs ∼=
C× N, and the preimage (ǫgp)−1(γ(n)) is identified withC⊕ γ(n) under the splitting
(N ⊕M N)gp ∼= Ngp ⊕Mgp Ngp ∼= C ⊕ Ngp that comes from the inclusion ofNgp in
the second summand ofNgp ⊕Mgp Ngp. The induced map (N ⊕M N)fs → (N ⊕M N)gp

identifiesC× {n} with C⊕ γ(n), for eachn ∈ N.

It also follows that (N⊕M N)gp is the group completion of (N⊕M N)fs, soǫfs : (N⊕M

N)fs → N is exact.

Remark 3.5 When generalizing the algebraic theory of log rings to the topological
setting, it is not so clear what should replace the properties of being integral and
saturated. It also appears restrictive to only work with finitely generated commutative
monoids. Given the observations in Remarks3.2 and 3.4, we are therefore led to
focus on the exact homomorphismsǫ : M → P. We view exactness as a condition
on a commutative monoidM relative to a base commutative monoidP. In the
applications we have in mind, such as abelian group objects inCMon/P, or coproducts
of multiple copies ofP, the structural mapǫ : M → P will have a (sometimes preferred)
sectionη : P → M . However, the following definition has a topologically meaningful
generalization as soon asǫgp : Mgp → Pgp is surjective (see Proposition8.3), so that
is what we will assume.

Definition 3.6 Let ǫ : M → P be a homomorphism of commutative monoids, viewed
as an object in the categoryCMon/P of commutative monoids overP. We say that
ǫ : M → P is virtually surjective if the induced homomorphismǫgp : Mgp → Pgp of
abelian groups is surjective. Let (CMon/P)vsur ⊂ CMon/P be the full subcategory
of virtually surjectiveM overP. We say that a virtually surjectiveM overP is replete
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if it is also exact, i.e., if the commutative diagram

M
γ //

ǫ

²²

Mgp

ǫgp

²²
P

γ // Pgp

is a pullback square. Let (CMon/P)rep ⊂ (CMon/P)vsur be the full subcategory of
replete commutative monoidsM over P

For a general virtually surjectiveǫ : M → P, let therepletion of M over P be the
pullback

Mrep
= P×Pgp Mgp

in the diagram above, with the canonical structure mapǫrep : Mrep → P. The following
diagram commutes, where the right hand square is a pullback by construction:

M //

ǫ

²²

Mrep //

ǫrep

²²

Mgp

ǫgp

²²
P

= // P
γ // Pgp

We call M → Mrep the repletion map, and show in Lemma3.8 below thatMrep is
replete.

Remark 3.7 For M to be replete overP is equivalent toǫ : M → P being an exact
surjection. We view repleteness as a property of virtually surjectiveM overP, since it
is for suchM that we will prove that repletion is an idempotent functor. We also prefer
to distinguish between “replete” and “exact”, because exactness is usually taken to be
a property of homomorphisms between integral commutative monoids.

Lemma 3.8 For virtually surjectiveǫ : M → P, the homomorphismsM → Mrep →

Mgp induce isomorphisms

Mgp ∼= (Mrep)gp ∼= (Mgp)gp

upon group completion. HenceMrep is replete overP.

Proof It is easy to see that (Mrep)gp → (Mgp)gp is surjective, since every element of
(Mgp)gp ∼= Mgp is the difference of two elements coming fromM . To prove injectivity,
consider a formal difference (p1, m̄1) ⊖ (p2, m̄2) in (Mrep)gp, with pi ∈ P, m̄i ∈ Mgp

andγ(pi) = ǫgp(m̄i) for i = 1, 2, and assume that its imagēm1⊖m̄2 is zero in (Mgp)gp.
Then m̄1 = m̄2, so γ(p1) = γ(p2), and there exists ak ∈ P with p1 + k = p2 + k.
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Using the surjectivity ofǫgp, we can chose an̄ℓ ∈ Mgp with ǫgp(ℓ̄) = γ(k). Then
(p1, m̄1) + (k, ℓ̄) = (p2, m̄2) + (k, ℓ̄), so (p1, m̄1) ⊖ (p2, m̄2) is zero in (Mrep)gp.

To see thatMrep is replete, note that it is isomorphic to the pullback ofγ : P → Pgp

and (Mrep)gp → Pgp, since the latter map is isomorphic toǫgp : Mgp → Pgp.

Lemma 3.9 The functor(−)rep : (CMon/P)vsur → (CMon/P)rep is left adjoint to
the forgetful functor. Colimits of non-empty diagrams in(CMon/P)vsur exist and are
created inCMon/P. Colimits of non-empty diagrams also exist in(CMon/P)rep,
and are constructed by first forming the colimit in(CMon/P)vsur and then applying
(−)rep.

Definition 3.10 Let P/CMon/P be the category of commutative monoids under and
over P, i.e., triples (M, η, ǫ) where η : P → M and ǫ : M → P are commutative
monoid homomorphisms withǫ ◦ η = id . The forgetful functorP/CMon/P →

CMon/P factors through the full subcategory (CMon/P)vsur. We say that (M, η, ǫ)
is repleteover P if the underlying virtually surjectiveǫ : M → P is replete.

Lemma 3.11 An object (M, η, ǫ) in P/CMon/P is replete if and only if it is iso-
morphic to an object of the form(P × K, η0, ǫ0), whereK is an abelian group with
unit elemente, η0(p) = (p, e) and ǫ0(p, k) = p. If so, there are isomorphisms
K ∼= ker(ǫgp) ∼= cok(ηgp), and the isomorphismM ∼= P× K takesm to (ǫ(m), γ̄(m)),
where γ̄ : M → Mgp → K is the canonical map. In particular,(Mrep, ηrep, ǫrep) is
always replete.

Proof In this split case,Mgp is isomorphic toPgp × K , so to be replete,M must be
isomorphic toP×K . Conversely, ifM is isomorphic toP×K , thenMgp is isomorphic
to Pgp × K , andM will be replete.

Definition 3.12 Let (R, P) be a base pre-log ring. A pre-log ring (A, M) over
(R, P) is virtually surjective if the underlying commutative monoidM over P is
virtually surjective. It is areplete pre-log ring if the underlying commutative
monoid M over P is replete. It is areplete log ring if (A, M) is also a log
ring. By Proposition3.14, the logification of a replete pre-log ring over an inte-
gral log ring is a replete log ring. Let (PreLog/(R, P))vsur be the full subcategory
of PreLog/(R, P) generated by the pre-log rings that are virtually surjective over
(R, P), and let (PreLog/(R, P))rep be the full subcategory generated by the replete pre-
log rings. The forgetful functor (R, P)/PreLog/(R, P) → PreLog/(R, P) naturally
factors through (PreLog/(R, P))vsur. Let therepletion functor

(−)rep : (PreLog/(R, P))vsur → (PreLog/(R, P))rep
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be the left adjoint to the forgetful functor, taking a virtually surjective pre-log ring
(A, M) over (R, P) to the replete pre-log ring

(A, M)rep
= (A⊗Z[M] Z[Mrep], Mrep)

over (R, P). Colimits over non-empty diagrams exist in (PreLog/(R, P))vsur, and are
created inPreLog/(R, P). Non-empty colimits in (PreLog/(R, P))rep are constructed
by first forming the colimit in (PreLog/(R, P))vsur, and then applying (−)rep.

Lemma 3.13 Let (A, M, α) be a replete pre-log ring over a log ring(R, P, ρ). Then
M∗ = α−1GL1(A).

Proof Consider the following diagram

M∗ //

ǫ∗

²²

α−1GL1(A) //

²²

M
γ //

ǫ

²²

Mgp

ǫgp

²²
P∗ = // ρ−1GL1(R) // P

γ // Pgp

of commutative monoids. The left hand and middle horizontal maps are inclusions.
By hypothesis the group homomorphismǫgp is surjective, with kernelK , say, the right
hand square is a pullback, and the inclusionP∗ → ρ−1GL1(R) is the identity.

We first prove thatM∗ → P∗ is surjective, with kernelK . If p ∈ P∗ with inverseq,
we can findm, n ∈ M with ǫ(m) = p and ǫ(n) = q. Then ǫ(mn) = e, so mn = k
lies in ǫ−1(e) ∼= K . Now K is a group, so we can formnk−1 ∈ M , which is inverse
to m. Hencem ∈ M∗ , and m maps top, so M∗ → P∗ is surjective. Its kernel
is M∗ ∩ ǫ−1(e) = ǫ−1(e) ∼= K , where the inclusionǫ−1(e) ⊂ M∗ holds because
ǫ−1(e) ∼= K is a group.

It follows thatM∗ is the pullback ofM andP∗ overP. On the other hand,α−1GL1(A)
is contained in the pullback ofM andρ−1GL1(R) overP, sinceGL1(A) ⊂ (A, ·) maps
to GL1(R) ⊂ (R, ·). By assumption,P∗ = ρ−1GL1(R), soM∗ = α−1GL1(A).

Proposition 3.14 Let (A, M) be a replete pre-log ring over an integral log ring(R, P).
Then the associated log ring(A, Ma) is a replete log ring over(R, P).

Proof By assumption,γ : P → Pgp is injective, so its pullbackγ : M → Mgp is also
injective. Hence (A, M) is integral, andM∗ acts freely onM andMgp.
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By Lemma3.13, Ma is the pushout ofM and GL1(A) along M∗ , so Ma,gp is the
pushout ofMgp andGL1(A) alongM∗ .

M∗ //

²²

M
γ //

²²

Mgp

²²
GL1(A) //

²²

Ma γ //

ǫa

²²

Ma,gp

ǫa,gp

²²
GL1(R)

∼= // P
γ // Pgp

The composite
ǫgp : Mgp → Ma,gp → Pgp

is surjective, henceǫa : Ma → P is virtually surjective. In the commutative diagram

M × GL1(A) //

²²

Mgp × GL1(A)

²²
Ma γ //

ǫa

²²

Ma,gp

ǫa,gp

²²
P

γ // Pgp

the outer rectangle is a pullback, and the middle row is obtained from the upperrow
by dividing out by a freeM∗ -action, hence the lower square is a pullback. This proves
that (A, Ma) is a replete log ring over (R, P).

Example 3.15 Let (A, M) be a pre-log ring andY a non-empty set. TheY-fold replete
tensor productY⊗rep (A, M) is the replete pre-log ring (Y⊗rep A,

∏rep
Y M) over (A, M)

given by the pushout
Z[

∏

Y M] //

Y⊗ᾱ

²²

Z[
∏rep

Y M]

ξ̄

²²
Y⊗ A // Y⊗rep A

of commutative rings, and the pre-log structure

ξ :
rep
∏

Y

M → (Y⊗rep A, ·)

right adjoint toξ̄ , whereY⊗ M =
∏

Y M → M is the cartesian product (= coproduct)
in CMon/M of Y copies ofid : M → M ,

∏rep
Y M = (

∏

Y M)rep ∼= M ×
∏

X Mgp is
its repletion, whereX is the complement of one element inY, andY ⊗ A =

⊗

Y A is
the tensor product (= coproduct) inCRing of Y copies ofA.
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Definition 3.16 Let M be a commutative monoid, and letS1
• = ∆1

•/∂∆1
• be the

simplicial circle. Thecyclic bar construction BcyM = S1
• ⊗ M (called thecyclic

nerve NcyM in Waldhausen [79, §2.3]) is the simplicial commutative monoid given
by the categorical tensor product

S1
q ⊗ M =

∏

S1
q

M ∼= M × M × · · · × M

((q + 1) copies ofM ) in simplicial degreeq. We write a typical element ofBcyM as
(m0, m1, . . . , mq).

There are natural structure mapsη : M → BcyM and ǫ : BcyM → M induced by
the base point inclusion∗ → S1 and the collapse mapS1 → ∗. The mapη equals
the inclusion of the zero-simplices inBcyM , while ǫ takes (m0, m1, . . . , mq) to the
productm0m1 · · ·mq. These maps makeBcyM a simplicial object inM/CMon/M .
There is a natural cyclic structure onBcyM , generated by the operatortq that takes
(m0, m1, . . . , mq) to (mq, m0, . . . , mq−1). We giveM the constant cyclic structure, and
thenǫ (but notη ) is a cyclic morphism. There is a natural projectionπ : BcyM → BM to
the ordinary bar construction onM , taking (m0, m1, . . . , mq) to [m1| . . . |mq], forgetting
the copy ofM that corresponds to the base point inS1

• .

The replete bar construction BrepM = (BcyM)rep is the repletion of the cyclic bar
construction, given by the lower right hand pullback square

M
= //

η

²²

M
γ //

ηrep

²²

Mgp

ηgp

²²
BcyM //

ǫ

²²

BrepM //

ǫrep

²²

BcyMgp

ǫgp

²²
M

= // M
γ // Mgp

of simplicial commutative monoids. Hereγ andǫgp are cyclic maps, so the definition
as a pullback givesBrepM a natural cyclic structure, and all maps in the lower two rows
of the diagram are cyclic.

Lemma 3.17 The composite homomorphismker(ǫgp) ⊂ BcyMgp π
−→ BMgp is an

isomorphism. Hence there is a natural isomorphism(ǫrep, πrep) : BrepM ∼= M ×BMgp,
of simplicial commutative monoids under and overM .

When combined with the weak equivalenceBM → BMgp, we obtain a weak equiva-
lenceM×BM

≃
−→ BrepM . The repletion mapBcyM → BrepM factors as(ǫ, π) : BcyM →

M × BM, followed by the latter weak equivalence.
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The inclusionη : M → BrepM factors throughη0 : M → M × BM, induced by the
inclusion of the base point inBM.

Proof The first claim is well known, sinceMgp is a group. The inverse isomorphism
BMgp → ker(ǫgp) takes [m1| . . . |mq] to (m0, m1, . . . , mq) wherem0 = (m1 · · ·mq)−1.
The rest is clear from Lemma3.11.

Remark 3.18 By its definition as a pullback,BrepM is the simplicial commuta-
tive monoid with q-simplices (m; g0, g1, . . . , gq) with m ∈ M and gi ∈ Mgp for
all i , such thatγ(m) = g0g1 · · ·gq. When γ is injective, m is determined by
the (g0, g1, . . . , gq), and these are only subject to the condition that their product
g0g1 · · ·gq lies in the image ofγ . We note that the cyclic operator onBrepM
takes (m; g0, g1, . . . , gq) to (m; gq, g0, . . . , gq−1). This is acceptable becauseM , or
ratherMgp, is commutative:γ(m) = gqγ(m)g−1

q = gqg0 · · ·gq−1. The isomorphism
(ǫ, π) : BrepM ∼= M × BMgp takes (m; g0, g1, . . . , gq) to (m, [g1| . . . |gq]), so g0 can
be recovered asγ(m)(g1 · · ·gq)−1. In these terms the cyclic operator onM × BMgp

takes (m, [g1| . . . |gq]) to (m, [γ(m)(g1 · · ·gq)−1|g1| . . . |gq−1]), where we again use that
γ(m) = gqγ(m)g−1

q . Note that the cyclic operator uses the group inverse inMgp. Hence
there is in general no natural cyclic structure onBM such that the weak equivalence
M × BM → M × BMgp ∼= BrepM is a map of cyclic sets. For later work, when we
study the cyclic and cyclotomic structure on log topological Hochschild homology, it
will therefore be important to work withBMgp rather thanBM, even if the two are
naturally equivalent as spaces.

Definition 3.19 Let Λj−1 denote the cyclic (j −1)-simplex, represented by the object
[j − 1] in Connes’ categoryΛ. Its geometric realization, as a simplicial set, is
|Λj−1| ∼= S1 × ∆j−1. The cyclic groupCj of order j acts on [j − 1] in Λ, hence also
on Λj−1, and the induced action on|Λj−1| balances the subgroup action onS1 with
the action on∆j−1 that cyclically permutes the vertices. See Hesselholt–Madsen [28,
§7.2].

Proposition 3.20 Let M = 〈x〉 = {xj | j ≥ 0} be the free commutative monoid on
one generatorx. The cyclic bar constructionBcyM decomposes as a disjoint union

BcyM =
∐

j≥0

Bcy(M; j)

of cyclic sets, whereBcy(M; j) = ǫ−1(xj) consists of the simplices(m0, . . . , mq) with
m0 · · ·mq = xj . Here Bcy(M; 0) = ∗ is a single point, while forj ≥ 1 there is
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a cyclic isomorphismΛj−1/Cj
∼= Bcy(M; j). After geometric realization there is an

S1-equivariant homeomorphism

S1 ×Cj ∆
j−1 ∼=

−→ Bcy(M; j) .

Hence there is anS1-equivariant deformation retraction

BcyM
≃
−→ ∗ ⊔

∐

j≥1

S1(j) ,

whereS1(j) = S1/Cj . The 1-simplex (xj−1, x) forms a closed loop at(xj) that maps
by an equivalence toS1(j).

Proof This follows from the proof of Hesselholt [27, 2.2.3]. Forj ≥ 1 the (j − 1)-
simplex (x, x, . . . , x) generatesBcy(M; j) as a cyclic set. Hence there is a surjective
cyclic mapΛj−1 → Bcy(M; j). The restriction of the canonicalS1-action on|BcyM|

to Cj ⊂ S1 acts on the (j − 1)-simplices by cyclic permutation, and fixes (x, x, . . . , x).
Hence the cyclic map factors overΛj−1/Cj . There are no further relations inBcy(M; j),
giving the asserted cyclic isomorphism andS1-equivariant homeomorphism. The
simplex ∆j−1 is Cj -equivariantly contractible to its barycenter, giving the asserted
S1-equivariant homotopy equivalence.

Proposition 3.21 Let M = 〈x〉, with group completionMgp = 〈x, x−1〉 = {xj | j ∈
Z}. The cyclic bar constructionBcyMgp decomposes as a disjoint union

BcyMgp
=

∐

j∈Z

Bcy(Mgp; j) ≃
∐

j∈Z

S1(j)

of cyclic sets, whereBcy(Mgp; j) = (ǫgp)−1(xj), and (xj−1, x) forms a closed loop
mapping by an equivalence toS1(j). Hence

BrepM =
∐

j≥0

Bcy(Mgp; j) ≃
∐

j≥0

S1(j)

and the repletion mapBcyM → BrepM decomposes as the disjoint union of the inclu-
sions

Bcy(M; j) → Bcy(Mgp; j)

for j ≥ 0. For eachj ≥ 1, this inclusion is anS1-equivariant homotopy equivalence.
For j = 0, the map

∗ = Bcy(M; 0) → Bcy(Mgp; 0)

identifies the source with theS1-fixed points of the target.
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There is a cyclic isomorphismBcy(Mgp; 0) ∼= BMgp, whereBMgp ≃ S1(0) has the
cyclic structure taking[m1| . . . |mq] to [(m1 · · ·mq)−1|m1| . . . |mq−1] . The associated
circle action

S1 × BMgp → BMgp

is homotopic to the trivial action. Furthermore, for each finite subgroupCr ⊂ S1 there
is a homeomorphismBcy(Mgp; 0) ∼= Bcy(Mgp; 0)Cr , which is equivariant with respect
to the canonical group homomorphismS1 → S1/Cr . Hence there is anS1-equivariant
homotopy pushout square

∗ //

²²

BMgp

²²
BcyM // BrepM

of simplicial sets, whereBMgp ≃ S1(0).

Proof For eachj ≥ 0, the projectionπ : BcyMgp → BMgp restricts to a cyclic
isomorphism

Bcy(Mgp; j)
∼=
−→ BMgp ,

when the target is given the cyclic structure that takes [m1| . . . |mq] to

[xj(m1 · · ·mq)−1|m1| . . . |mq−1] .

The closed 1-simplex (xj−1, x) ↔ [x] induces a homotopy equivalenceS1 → BMgp,
and the circle action onBgpM is compatible, up to homotopy, with the circle action
S1 × S1 → S1 given by (z, w) 7→ zjw. See Loday [42, 7.3.4, 7.4.5].

For j ≥ 1, the circle action onBcy(M; j) ≃ S1(j) takes the 0-simplex (xj) once around
the 1-simplex (1, xj), which deformation retracts to a loop windingj times aroundS1(j).
By inspection of the simplicial structure, the loop (1, xj) is homotopic to the composite
of j copies of the loop (xj−1, x). Hence the mapS1 ≃ Bcy(M; j) → Bcy(Mgp; j) ≃ S1

has degree 1, and is a homotopy equivalence, for allj ≥ 1.

To check that this map is anS1-equivariant equivalence, we check that the map ofH -
fixed points is a homotopy equivalence for each closed subgroupH ⊆ S1. TheS1-fixed
points of a cyclic setZ consists of the 0-simplicesz with t1s0z = s0z. In Bcy(M; j) and
Bcy(Mgp; j) the only 0-simplex isz = (xj), with s0z = (1, xj) and t1s0z = (xj , 1), so
both fixed point spaces are empty forj ≥ 1, whereas forj = 0 both fixed point spaces
consist of the single point (1).

To study the fixed points for finite subgroupsCr ⊂ S1, we use ther -fold edge-
wise subdivision functorZ 7→ sdrZ of Bökstedt–Hsiang–Madsen [15, §1], with



Topological logarithmic structures 31

(sdrZ)q = Zr(q+1)−1 for q ≥ 0. Recall that there is anS1-equivariant homeomor-
phismDr : |sdrZ| ∼= |Z| for cyclic setsZ, and theCr -action on|sdrZ| is induced by
a simplicial action onsdrZ. There is a simplicial isomorphismBcy

• M ∼= (sdrB
cy
• M)Cr

given by ther -th power map

∆r : (m0, . . . , mq) 7→ (m0, . . . , mq, . . . , m0, . . . , mq)

(repeating its argumentr times), which leads to the chain of homeomorphisms

BcyM
|∆r |
−−→
∼=

|(sdrB
cy
• M)Cr | ∼= |sdrB

cy
• M|Cr DCr

r−−→
∼=

(BcyM)Cr .

The composite homeomorphism is equivariant with respect to the canonical group
homomorphismS1 → S1/Cr . Sinceǫ(∆r (z)) = ǫ(z)r , this homeomorphism restricts
to a homeomorphism

Bcy(M; i)
∼=
−→ Bcy(M; ri )Cr ,

whereasBcy(M; j) has noCr -fixed points whenr ∤ j .

Similar results hold forMgp, so by naturality we can identify

γCr : Bcy(M; j)Cr → Bcy(Mgp; j)Cr

with the homotopy equivalenceBcy(M; i) → Bcy(Mgp; i) for j = ri , and with the trivial
equivalence∅ → ∅ for r ∤ j . HenceBcy(M; j) → Bcy(Mgp; j) is an S1-equivariant
homotopy equivalence, forj ≥ 1.

Definition 3.22 Let A be a commutative ring. Suppose first thatA is flat overZ. The
Hochschild homologyof A is the simplicial ring HH(A) = S1

• ⊗ A, with

HH(A)q
∼= A⊗ A⊗ · · · ⊗ A

((q + 1) copies ofA) in simplicial degreeq. TheHochschild homology groupsof
A are the homotopy groups HHi(A) = πi HH(A). The natural mapsη : A → HH(A)
and ǫ : HH(A) → A make HH(A) a simplicial object inA/CRing/A, and ǫ makes
HH(A) a cyclic object inCRing/A. If A is not flat overZ, we replaceA by a Z-flat
simplicial resolution, form HH(−) degreewise, and pass to the diagonal of the resulting
bisimplicial ring.

Definition 3.23 Let (A, M, α) be a pre-log ring. There is a natural pre-log structure

BcyM → (HH(A), ·)

with left adjoint S1
• ⊗ ᾱ : Z[BcyM] → HH(A). It makes (HH(A), BcyM) a simplicial

object in (A, M)/PreLog/(A, M), and a cyclic object inPreLogvsur/(A, M).
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Suppose first thatA is flat overZ[M], so that HH(A) is flat over HH(Z[M]) = Z[BcyM].
By definition, thelog Hochschild homology(HH(A, M), BrepM, ξ) of (A, M) is the
replete simplicial pre-log ringS1

• ⊗
rep (A, M). Here HH(A, M) is given by the pushout

square

Z[S1
• ⊗ M] //

S1
•⊗ᾱ

²²

Z[S1
• ⊗

rep M]

²²
S1

• ⊗ A // HH(A, M)

of simplicial commutative rings, which we can rewrite as the pushout square

Z[BcyM] //

S1
•⊗ᾱ

²²

Z[BrepM]

ξ̄
²²

HH(A)
ψ̄ // HH(A, M)

in the same category. The pre-log structure map

ξ : BrepM → (HH(A, M), ·)

is right adjoint to the right hand vertical map̄ξ . Thelog Hochschild homology groups
of (A, M) are the homotopy groups HHi(A, M) = πi HH(A, M).

Then HH(A, M) is naturally a simplicial pre-log ring under and over (A, M), and a cyclic
pre-log ring over (A, M). The comparison homomorphism̄ψ : HH(A) → HH(A, M)
is a morphism in each of these two categories. IfA is not flat overZ[M], we replace
A by a Z[M]-flat simplicial resolution, form HH(−, M) degreewise, and pass to the
diagonal of the resulting bisimplicial ring.

Remark 3.24 We can also rewrite the pushout squares in Definition3.23as follows

HH(Z[M])
ψ //

φ

²²

HH(Z[M], M)

²²
HH(A) // HH(A, M)

where Z[M] has the canonical pre-log structure. In this sense the log Hochschild
homology of the canonical pre-log rings (Z[M], M) (together with the Hochschild
homology of ordinary rings) determines the log Hochschild homology of general pre-
log rings. It can also be convenient to base change the top row of this square along
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ᾱ : Z[M] → A, to obtain a pushout square

A⊗Z[M] HH(Z[M])
ψ //

φ

²²

A⊗Z[M] HH(Z[M], M)

φ̄
²²

HH(A)
ψ̄ // HH(A, M)

of simplicial commutativeA-algebras. HereA⊗Z[M] HH(Z[M], M) ∼= A⊗ Z[BMgp].

4 Logarithmic K ähler differentials

We return to a review of the log K̈ahler forms in algebra, modifying Kato’s discussion
[35, §1, §3] to emphasize Dan Quillen’s view on commutative ring derivations in terms
of abelian group objects [60, §2]. Again, we restrict attention to commutative rings,
but the generalization to commutativeR-algebras over a base commutative ringR is
easy.

Definition 4.1 Let A be a commutative ring and letJ be a left A-module. Since
A is commutative, we can also think ofJ as a rightA-module, with ja = aj. The
square-zero extensionA⊕ J is the commutative ring with multiplication map

(A⊕ J) × (A⊕ J) → (A⊕ J)

that takes (a1⊕j1, a2⊕j2) to a1a2⊕(j1a2+a1j2). The obvious projectionǫ : A⊕J → A
makesA⊕ J a commutative ring overA, with augmentation idealJ having the zero
multiplication J × J → J.

Remark 4.2 The inclusionη : A → A ⊕ J taking a to a ⊕ 0, the multiplication
µ : A⊕ J⊕ J ∼= (A⊕ J)×A (A⊕ J) → A⊕ J takinga⊕ j1⊕ j2 to a⊕ (j1 + j2), and the
conjugationχ : A⊕ J → A⊕ J takinga⊕ j to a⊕ (−j), makeA⊕ J an abelian group
object in the categoryCRing/A of commutative rings overA. As Quillen remarks, the
functor J 7→ A ⊕ J is an equivalence from the categoryModA of A-modules to the
category (CRing/A)ab of abelian group objects inCRing/A.

Definition 4.3 Let A andJ be as above. Thederivations of A with values inJ is the
abelian group

Der(A, J) = (CRing/A)(A, A⊕ J)

of ring homomorphismsD : A → A⊕J overA. These all have the formD(a) = a⊕d(a)
where d(ab) = d(a)b + ad(b), so the additive group homomorphismd : A → J is
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a derivation in the more elementary sense. TheKähler differentials of A is the
A-module

Ω
1
A = A{da | a ∈ A}/(d(ab) = (da)b + a(db))

generated by symbolsda for a ∈ A, subject to the relationsd(ab) = (da)b+ a(db) for
all a, b ∈ A. It corepresents derivations, in the following sense.

Lemma 4.4 The universal derivationD : A → A⊕ Ω1
A, taking a to D(a) = a⊕ da,

induces a natural isomorphism

HomA(Ω1
A, J) ∼= Der(A, J) .

Lemma 4.5 Let g: C → A be a homomorphism of commutative rings, and letJ
be anA-module. Writeg#J for J viewed as aC-module viag. Composition with
g⊕ id : C⊕ J → A⊕ J induces an isomorphism

Der(C, g#J) ∼= (CRing/A)(C, A⊕ J) .

Proof This is clear, sinceǫ : C ⊕ J → C is the pullback ofǫ : A ⊕ J → A along
g.

Lemma 4.6 Let M = 〈X〉 be the free commutative monoid on a setX. Then

Ω
1
Z[M]

∼= Z[M] ⊗ Mgp

is the freeZ[M] -module induced up fromMgp, with dx corresponding to1⊗γ(x), for
all x ∈ X ⊂ M .

Proof For eachZ[M]-moduleJ, there are natural isomorphisms

Der(Z[M], J) ∼= {functionsd : M → J with d(ab) = d(a)b + ad(b)}
∼= {functionsX → J}
∼= CMon(M, (J, +)) ∼= Ab(Mgp, (J, +))
∼= HomZ[M](Z[M] ⊗ Mgp, J) .

HenceZ[M] ⊗ Mgp corepresents derivations ofZ[M].

Remark 4.7 When extended to simplicial commutative rings, the functorA 7→

Der(A, J) admits homotopical right derived functors, known as the André–Quillen
cohomology groupsDq(A, J), see Quillen [60, §4]. These are corepresented as the
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cohomology groupsHq(HomA(LΩ1
A, J)) of (the chain complex associated to) the sim-

plicial A-moduleLΩ1
A = A⊗P• Ω

1
P•

, known as thecotangent complex, whereP•
≃
−→ A

is a cofibrant simplicial commutative ring resolution ofA. (Cofibrant effectively means
that P• is a free commutative ring, i.e., a polynomial ring, in each simplicial degree.)
The homology groups of the cotangent complex are the André–Quillen homology
groups Dq(A, J) = Hq(J ⊗A LΩ1

A). As special cases,D0(A, J) ∼= Der(A, J) and
D0(A, J) ∼= J⊗AΩ1

A. When we pass from the algebraic to the topological context in the
next sections, we will automatically be working with mapping spaces that incorporate
these derived functors. Therefore the natural generalization of the Kähler differentials
will be the topological form of the cotangent complexLΩ1

A, namely the topological
André–Quillen homology spectrum TAQ(A).

Lemma 4.8 Let M be a commutative monoid, and letF•
≃
−→ M be a cofibrant

simplicial commutative monoid resolution ofM . Then

LΩ
1
Z[M] ≃ Z[M] ⊗ Fgp

• .

Proof Cofibrancy effectively means thatF• is a free commutative monoid in each
simplicial degree. ThenP• = Z[F•]

≃
−→ Z[M] is a cofibrant simplicial ring resolution

of Z[M], and Ω1
P•

∼= Z[F•] ⊗ Fgp
• , by Lemma4.6. HenceLΩ1

Z[M] ≃ Z[M] ⊗Z[F•]

(Z[F•] ⊗Fgp
• ) ∼= Z[M] ⊗Fgp

• , whereFgp
• denotes the degreewise group completion on

F• .

Remark 4.9 In the notation of Lemma4.6, dm∈ Ω1
Z[M] does typically not correspond

to 1⊗γ(m) ∈ Z[M]⊗Mgp whenm∈ M \X. For example,d(x2) = 2x dxcorresponds
to 2x⊗ γ(x) rather than 1⊗ γ(x2), whenx ∈ X. It follows that the simplicialZ[M]-
module structure onZ[M] ⊗ Fgp

• in Lemma4.8 is usually not induced up from the
simplicial abelian group structure onFgp

• . It would be if the simplicial operators
on F• took monoid generators to monoid generators, but this is rarely the case. For
example, if a face ofy ∈ F1 is x2 ∈ F0, wherey and x are monoid generators, then
the corresponding face of 1⊗ γ(y) is 2x⊗ γ(x), not 1⊗ γ(x2).

The zero-th homotopy group ofLΩ1
Z[M] recovers the K̈ahler differentialsΩ1

Z[M] , which
also does not need to be an extendedZ[M]-module. It will be a finitely generated
projectiveZ[M]-module whenZ[M] is smooth overZ, but as we have just discussed,
the face mapsZ[M]⊗Fgp

1 ⇉ Z[M]⊗Fgp
0 with coequalizerπ0LΩ1

Z[M] are not extended
Z[M]-module maps in general. In the same way, the topological André–Quillen
homology TAQ(S[M]) to be discussed in Definition10.3, will not in general be an
extendedS[M]-module, even if this is so whenM is a grouplike or free commutative
I -space monoid. See Remark10.11.
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Remark 4.10 To define log derivations and log Kähler differentials, we should deter-
mine the abelian group objects in a category of log rings over a fixed log ring (A, M). A
maximal choice is the categoryLog/(A, M) of all log rings overA. A minimal choice
is the subcategorystrLog/(A, M) of log rings with a strict homomorphism to (A, M),
and strict homomorphisms between these. An intermediate choice, and probably the
most interesting one, is the categoryLogrep/(A, M) of replete log rings over (A, M).

The forgetful functors fromLog to PreLog, CRing and CMon are right adjoints,
hence preserve limits. It follows that the categorical product inLog/(A, M) of two log
rings (B1, N1) and (B2, N2), both over (A, M), is the log ring (B1 ×A B2, N1 ×M N2)
over (A, M). HereB1 ×A B2 ⊂ B1 × B2 andN1 ×M N2 ⊂ N1 × N2 are the usual fiber
products.

When both augmentations (Bi , Ni) → (A, M) are strict, and both projections (B1 ×A

B2, N1 ×M N2) → (Bi , Ni) are strict, then (B1 ×A B2, N1 ×M N2) is the product of
(B1, N1) and (B2, N2) in the subcategorystrLog/(A, M). When both augmentations
(Bi , Ni) → (A, M) are replete, the fiber product (B1 ×A B2, N1 ×M N2) is replete
over (A, M) (by Lemma3.11), so this is the product of (B1, N1) and (B2, N2) in
Logrep/(A, M).

Definition 4.11 Let (A, M) be a log ring and letJ be anA-module. Thesquare-zero
extension (A ⊕ J, η∗M) is the log ring withA ⊕ J as its underlying commutative
ring, and the inverse imageη∗M of M along the inclusionη : A → A ⊕ J as its
underlying commutative monoid. The projectionǫ : A ⊕ J → A induces a strict
homomorphism (ǫ, ǫ♭) : (A⊕ J, η∗M) → (A, ǫ∗η∗M) ∼= (A, M), sinceǫη = idA, which
makes (A⊕ J, η∗M) an object ofstrLog/(A, M).

Lemma 4.12 Let (A, M) andJ be as above. There is an isomorphism

M × (J, +) ∼= η∗M

of commutative monoids, where(J, +) denotes the underlying additive monoid ofJ.
Under this isomorphism, the log structure mapη∗α : η∗M → A ⊕ J takes(m, j) to
α(m) · (1⊕ j) = α(m) ⊕ α(m) · j .

Proof We have a commutative diagram

{1} //

²²

GL1(A) //

²²

M
α //

η♭

²²

(A, ·)

(η,·)
²²

(1 + J, ·) // GL1(A⊕ J) // η∗M
η∗α // (A⊕ J, ·)
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of commutative monoids. The preimage ofGL1(A⊕J) ⊂ (A⊕J, ·) in (A, ·) is GL1(A),
so its preimage inM is also isomorphic toGL1(A), since (M, α) is a log structure. It
follows that the middle square is the pushout defining the logificationη∗M . The left
hand square is also a pushout, sinceGL1(A⊕ J) ∼= GL1(A) × (1 + J, ·). This gives an
isomorphismM × (1 + J, ·) ∼= η∗M . When combined with the monoid isomorphism
(J, +) ∼= (1+ J, ·) that takesj ∈ J to 1+ j ∈ 1+ J, we obtain the isomorphism of the
lemma.

Lemma 4.13 Let (A, M) be a log ring. The functor taking anA-module J to the
square-zero extension(A⊕ J, η∗M) is an equivalence from the categoryModA of A-
modules to the category of(strLog/(A, M))ab of abelian group objects instrLog/(A, M).

Proof The two projections from

(A⊕ J ⊕ J, M × J × J) ∼= ((A⊕ J) ×A (A⊕ J), η∗M ×M η∗M)

to (A⊕ J, η∗M) ∼= (A⊕ J, M × J) are strict, hence ((A⊕ J)×A (A⊕ J), η∗M ×M η∗M)
is the product of (A⊕ J, η∗M) with itself in strLog/(A, M).

The inverse image ofM alongη : A → A⊕J, the inverse image ofη∗M×M η∗M along
µ : (A⊕J)×A(A⊕J) → (A⊕J), and the inverse image ofη∗M alongχ : A⊕J → A⊕J,
are all canonically isomorphic toη∗M . Hence the abelian group object structure maps
η , µ andχ of A⊕J in CRing/A are all covered by strict homomorphisms of log rings
(η, η♭), (µ, µ♭) and (χ, χ♭), specifying how (A⊕ J, η∗M) is an abelian group object in
strLog/(A, M).

Conversely, an abelian group object (B, N) in strLog/(A, M) must map by the forgetful
functor to an abelian group object inCRing, so B ∼= A ⊕ J must be a square-zero
extension. For the unit homomorphism (η, η♭) : (A, M) → (B, N) to be strict, we
must haveN ∼= η∗M . HenceModA → (strLog/(A, M))ab is an equivalence of
categories.

Remark 4.14 By the previous lemma, the category of abelian group objects in
strLog/(A, M) does not depend on the log structure onA. It is plausible that the
larger category of abelian group objects inLog/(A, M), where the morphisms are
not required to be strict, provides a more interesting category of “log modules” over
(A, M). In this case, the underlying commutative ring of an abelian group object (B, N)
in Log/(A, M) must still be a square-zero extensionB ∼= A⊕ J, while the underlying
commutative monoid must be an abelian group objectN in CMon/M .

The latter objects must have the formǫ : N → M , whereǫ−1(m) ⊂ N is an abelian
group for eachm ∈ M , and the monoidal pairingN × N → N is given by group
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homomorphismsǫ−1(m1) × ǫ−1(m2) → ǫ−1(m1m2), for m1, m2 ∈ M . For ex-
ample, each abelian groupK determines an abelian group objectN = M × K in
CMon/M , with structure mapsǫ(m, k) = m, η(m) = (m, e), µ(m, k1, k2) = (m, k1k2)
andχ(m, k) = (m, k−1). However, in the current generality there are also abelian group
objects that do not have this form. For example, ifM ∼= (N0, +) andK ∼= (Z, +), the
commutative submonoidN ⊂ M × K with ǫ−1(e) = {e} andǫ−1(m) = K for m 6= e,
is an abelian group object inCMon/M . In this example,N is integral but not finitely
generated. ReplacingK ∼= (Z, +) by K ∼= Z/2 we get a fine (= finitely generated and
integral) exampleN that is not saturated.

It therefore appears that the full category (Log/(A, M))ab is rather complicated. By
restricting attention to fs (= fine and saturated) monoidsN andM , or by working only
with N that are replete overM , one may ensure that the abelian group objects in the
restricted subcategory ofCMon/M all have the formN = M × K , for an abelian
group K . This seems to lead to more manageable categories (Logfs/(A, M))ab and
(Logrep/(A, M))ab, respectively. For example, an object ofLogrep/(A, M) will have
the form (A⊕ J, M × K, γ) for someA-moduleJ, some abelian groupK and some
pre-log structure

γ : M × K → (A⊕ J, ·) .

This leads to questions like whichγ specify (replete) log structures, and which objects
(A⊕ J, M × K, γ) are abelian group objects inLogrep/(A, M). We think these abelian
objects in replete log rings over (A, M) constitute a good candidate for a category of
log modules over (A, M).

In the topological context, it is more natural to consider stable objects, or spectra,
rather than abelian group objects. The slogan is that “stabilization is abelianization”,
as seen e.g. in Schwede [72]. We view replete log rings under and over (A, M) as a
based (= pointed) category, and can form non-empty coproducts within this category,
as in Definition3.12. Passing to simplicial replete log rings under and over (A, M), we
can form tensor products with non-empty simplicial sets, and tensor product with the
simplicial circleS1

• specifies a suspension functor on this category. The stable category
of (symmetric) spectra

SpΣ((A, M)/Logrep/(A, M))

of simplicial replete log rings under and over (A, M), with respect to this suspension
functor, appears to be the best algebraic category of log modules over (A, M). In
joint work with Steffen Sagave we are investigating the QuillenK -theory [61] of
this category, and its relation to the QuillenK -theory of the localizationA[M−1] =

A⊗Z[M] Z[Mgp].
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Definition 4.15 Let (A, M) be a log ring andJ an A-module. Thelog derivationsof
(A, M) with values inJ is the abelian group

Der((A, M), J) = (Log/(A, M))((A, M), (A⊕ J, η∗M))

of homomorphisms (D, D♭) : (A, M) → (A⊕ J, η∗M) of log rings over (A, M).

More precisely, we should form the abelian group of strict log homomorphisms over
(A, M), but this is no restriction, as the following lemma shows.

Lemma 4.16 Every log homomorphism(D, D♭) : (A, M) → (A⊕J, η∗M) over(A, M)
is strict.

Proof The inverse imagesD∗M and η∗M are the pushouts ofGL1(A) → M along
GL1(D) and GL1(η) : GL1(A) → GL1(A ⊕ J), respectively. HereGL1(A ⊕ J) is the
coproduct ofGL1(A) and (1+ J, ·) both alongGL1(D) and alongGL1(η), so both
D∗M and η∗M are coproducts ofM and (1+ J, ·), and D♭ induces the canonical
isomorphism between them.

To corepresent log derivations by a module of log differentials, we express the group of
log derivations as a pullback of the groups of ring derivations and monoidderivations,
subject to a compatibility condition. This uses the following definition.

Definition 4.17 Let M be a commutative monoid, andK an abelian group. The
commutative monoid derivationsof M with values inK is the abelian group

Der♭(M, K) = (CMon/M)(M, M × K)

of monoid homomorphismsD♭ : M → M × K over M . These all have the form
D♭(m) = (m, d♭(m)), whered♭ : M → K is a monoid homomorphism, and correspond
bijectively to the group homomorphismsMgp → K , whereMgp is the group completion
of M . We might call the abelian groupMgp thecommutative monoid differentials
of M . Recall that we writeγ : M → Mgp for the canonical monoid homomorphism.

Lemma 4.18 The universal monoid derivationD♭ : M → M × Mgp, taking m to
D♭(m) = (m, γ(m)), induces a natural isomorphism

Ab(Mgp, K) ∼= Der♭(M, K) .
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Remark 4.19 In other words,Mgp corepresents commutative monoid derivations.
Unlike in the commutative ring case, this construction is already derived, since if
F•

≃
−→ M is a cofibrant simplicial commutative monoid resolution (withF• a free

commutative monoid in each simplicial degree), then the degreewise group completion
Fgp

• is still weakly equivalent toMgp. For a proof, see Puppe [58, §3.6, Satz 13]
or Quillen’s appendix in Friedlander–Mazur [24]. In other words, thecommutative
monoid cotangent complexLMgp = Fgp

• is weakly equivalent to the commutative
monoid differentialsMgp.

Proposition 4.20 Let (A, M, α) be a log ring andJ anA-module. There is a pullback
square

Der((A, M), J) //

²²

Der(A, J)

φ∗

²²
Der♭(M, (J, +))

ψ∗

// Der(Z[M], ᾱ#J)

of abelian groups. Here(J, +) denotes the underlying abelian group ofJ, and ᾱ#J
denotesJ viewed as aZ[M] -module via the adjoint log structure map̄α : Z[M] → A.

The homomorphismφ∗ is induced by the ring homomorphism̄α, taking a derivation
D : A → A ⊕ J to the compositeD ◦ ᾱ. The homomorphismψ∗ is induced by
the monoid homomorphismη∗α : η∗M → (A ⊕ J, ·), taking a monoid derivation
D♭ : M → η∗M to the ring homomorphismZ[M] → A⊕ J that is left adjoint to the
composite monoid homomorphismη∗α ◦ D♭ .

Proof Recall from Lemma4.5 the identification of Der(Z[M], ᾱ#J) with the ring
homomorphismsZ[M] → A⊕ J over A, and from Lemma4.12the identification of
Der♭(M, (J, +)) with the monoid homomorphismsM → η∗M overM . A log derivation
(D, D♭) : (A, M) → (A ⊕ J, η∗M) consists of a ring derivationD : A → A ⊕ J and
a monoid derivationD♭ : M → η∗M , subject to the compatibility condition that the
diagram

M
α //

D♭

²²

(A, ·)

(D,·)
²²

η∗M
η∗α // (A⊕ J, ·)

of commutative monoids commutes. By adjunction, this is equivalent to the commu-
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tativity of the diagram

Z[M] ᾱ //

Z[D♭]
²²

A

D
²²

Z[η∗M]
η∗α // A⊕ J

of commutative rings. Hence the pair (D, D♭) defines a derivation homomorphism
precisely whenφ∗(D) = ψ∗(D♭).

Lemma 4.21 Let (A, M, α) be a log ring. The functors fromA-modules to abelian
groups that takeJ to Der(A, J) and Der(Z[M], ᾱ#J) are corepresented by the Kähler
differentialsΩ1

A and the inducedA-moduleA⊗Z[M] Ω1
Z[M] , respectively. The natural

homomorphismφ∗ is corepresented by theA-module homomorphism

φ : A⊗Z[M] Ω
1
Z[M] → Ω

1
A

given by
φ(a⊗ dm) = a · dα(m)

for a ∈ A andm∈ M . It is left adjoint to theZ[M] -module homomorphismΩ1
Z[M] →

Ω1
A induced byᾱ : Z[M] → A.

Proof This is clear.

Lemma 4.22 Let (A, M, α) be a log ring. The functors fromA-modules to abelian
groups that takeJ to Der♭(M, (J, +)) and Der(Z[M], ᾱ#J) are corepresented by the
inducedA-modulesA⊗ Mgp andA⊗Z[M] Ω1

Z[M] , respectively, The natural homomor-
phismψ∗ is corepresented by theA-module homomorphism

ψ : A⊗Z[M] Ω
1
Z[M] → A⊗ Mgp

given by
ψ(a⊗ dm) = a · α(m) ⊗ γ(m)

for a ∈ A andm∈ M .

Proof For eachA-moduleJ there are natural chains of isomorphisms

HomA(A⊗ Mgp, J) ∼= Ab(Mgp, (J, +))
∼= CMon(M, (J, +))

∼= Der♭(M, (J, +))

= (CMon/M)(M, η∗M)
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(using the identificationη∗M ∼= M × (J, +) from Lemma4.12) and

(CMon/(A, ·))(M, (A⊕ J, ·)) ∼= (CRing/A)(Z[M], A⊕ J)
∼= Der(Z[M], ᾱ#J)

= (CRing/Z[M])(Z[M], Z[M] ⊕ J)
∼= HomZ[M](Ω

1
Z[M] , J)

∼= HomA(A⊗Z[M] Ω
1
Z[M] , J) .

To find the corepresenting homomorphismψ , we let J = A⊗ Mgp and note that the
identity homomorphism ofA⊗Mgp corresponds, under the first chain of isomorphisms
above, to the monoid homomorphismD♭ : M → η∗M ∼= M× (J, +) overM that takes
m to D♭(m) = (m, 1 ⊗ γ(m)). By Proposition4.20, ψ∗ takes thisD♭ to the monoid
homomorphismη∗α ◦ D♭ : M → (A⊕ (A⊗ Mgp), ·) over (A, ·) that takesm to

α(m) · (1⊕ (1⊗ γ(m))) = α(m) ⊕ (α(m) ⊗ γ(m)) .

Under the second chain of isomorphisms above, this corresponds to theA-module
homomorphismψ : A⊗Z[M] Ω1

Z[M] → A⊗Mgp that takesa⊗ dm to a ·α(m)⊗ γ(m),
for m∈ M . Hence thisψ is theA-module homomorphism that corepresentsψ∗ .

Remark 4.23 The elementsm ∈ M generateZ[M] as a ring, so thedm for m ∈ M
generateΩ1

Z[M] as a Z[M]-module, and the formulaψ(1 ⊗ dm) = α(m) ⊗ γ(m)
determines theA-module homomorphismψ . To see that it is well defined, we may
check thatψ(1⊗d(mn)) = α(mn)⊗γ(mn) equalsψ(1⊗((dm)n+m(dn))) = α(m)α(n)⊗
γ(m) + α(m)α(n) ⊗ γ(n).

Remark 4.24 The A-module homomorphismψ is induced by theZ[M]-module
homomorphismΩ1

Z[M] → Z[M]⊗Mgp that takesdm to ζ(m)⊗γ(m), in the notation of
Definitions2.12and3.1. As we shall explain in Remark13.7, the latter homomorphism
corresponds to the stabilization of the repletion mapψ : Z[M] ⊗ Z[M] → Z[M] ⊗rep

Z[M] ∼= Z[M] ⊗ Z[Mgp], in the stable category associated to the based category
Z[M]/CRing/Z[M].

Definition 4.25 Let (A, M, α) be a pre-log ring. Thelog Kähler differentials of
(A, M) is theA-moduleΩ1

(A,M) defined by the pushout square

A⊗Z[M] Ω1
Z[M]

ψ //

φ

²²

A⊗ Mgp

φ̄
²²

Ω1
A

ψ̄ // Ω1
(A,M)
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in A-modules of the homomorphismsφ andψ from Lemmas4.21and4.22, respec-
tively. We write da for ψ̄(da) andd logm for φ̄(1⊗ γ(m)), with a ∈ A andm ∈ M ,
whereφ̄ and ψ̄ are the canonical homomorphisms. Note thatd(ab) = (da)b + a(db),
d log(mn) = d logm+d logn, anddα(m) = α(m) d logm, for a, b ∈ A andm, n ∈ M .

Remark 4.26 In other words,

Ω
1
(A,M) = Ω

1
A ⊕ (A⊗ Mgp)/ ∼

where∼ is A-linearly generated by the relationdα(m) = φ(1⊗ dm) ∼ ψ(1⊗ dm) =

α(m) ⊗ γ(m) for m ∈ M . Thus we recover Kato’s definition of log differentials [35,
(1.7)]. The relationdα(m) = α(m) d logm, which shows thatd logm has the formal
properties of thelogarithmic differential a−1da for a = α(m), is the main reason for
the use of the adjective “log”, or “logarithmic”, in this theory.

Like in Kato’s introduction, we permit (M, α) to be a pre-log structure in the definition
of Ω1

(A,M) . When (M, α) (or its logification (M, α)a) is the trivial log structure,ψ and
ψ̄ are isomorphisms, soΩ1

(A,M)
∼= Ω1

A. See also Lemma11.27.

Proposition 4.27 Let (A, M, α) be a log ring. The universal log derivation

(D, D♭) : (A, M) → (A⊕ Ω
1
(A,M), η

∗M) ,

taking a ∈ A to D(a) = (a, da), and takingm ∈ M to D♭(m) = (m, d logm), induces
a natural isomorphism

HomA(Ω1
(A,M), J) ∼= Der((A, M), J) .

Proof Use Proposition4.20, Lemmas4.21and4.22, and Definition4.25.

Lemma 4.28 Let X ⊂ X ⊔ Y be a pair of sets, letM = 〈X〉 be the free commutative
monoid generated byX, and letA = Z[〈X⊔Y〉] be the free commutative ring generated
by X⊔Y. Let α : M → (A, ·) be the monoid homomorphism extending the composite
inclusion X ⊂ X ⊔ Y → A. ThenMgp ∼= Z{X} is the free abelian group generated
by X, φ : A ⊗ Z{X} → A ⊗ Z{X ⊔ Y} is the inclusion induced byX ⊂ X ⊔ Y,
ψ : A ⊗ Z{X} → A ⊗ Z{X} is the sum overx ∈ X of the injective A-module
homomorphismsx· : A → A taking a to xa, and

Ω
1
(A,M)

∼= A{X} ⊕ A{Y}

wherex ∈ X andy ∈ Y correspond tod logx anddy in Ω1
(A,M) , respectively. There is

a short exact sequence

0 → Ω
1
A

ψ̄
−→ Ω

1
(A,M)

res
−→

⊕

x∈X

A/xA→ 0 ,

where the residue mapres takesd logx to 1 ∈ A/xA, anddy to 0.
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Remark 4.29 Following Ofer Gabber, see Olsson [55, §8], we can define thelog
cotangent complexof a pre-log ring (A, M) as the simplicialA-module

LΩ
1
(A,M) = A⊗(P•,F•) Ω

1
(P•,F•) ,

where (P•, F•)
≃
−→ (A, M) is a cofibrant simplicial pre-log ring resolution of (A, M).

Cofibrancy ensures that in each simplicial degreeq, the pre-log ring (Pq, Fq) is freely
generated by a pair of setsXq ⊂ Xq ⊔ Yq, as in the lemma above. Our log topological
André–Quillen homology spectrum TAQ(A, M) will be the generalization to pre-log
S-algebras of this log cotangent complex.

Remark 4.30 For a map (R, P, ρ) → (A, M, α) of pre-log rings, Kato also defines
an A-moduleΩ1

(A,M)/(R,P) of relative log K̈ahler differentials, which agrees with the
absolute log K̈ahler differentials when (R, P) = (Z, {1}). The logification maps
(R, P) → (R, Pa) and (A, M) → (A, Ma) induce isomorphisms

Ω
1
(A,M)/(R,P)

∼=
−→ Ω

1
(A,Ma)/(R,P)

∼=
←− Ω

1
(A,Ma)/(R,Pa) .

For maps (R, P, ρ) → (A, M, α) → (B, N, β) of fine pre-log rings there is a transitivity
exact sequence

B⊗A Ω
1
(A,M)/(R,P) → Ω

1
(B,N)/(R,P) → Ω

1
(B,N)/(A,M) → 0

of B-modules, see Kato [35, Proposition 3.12]. For a pushout square

(R, P) //

²²

(T, Q)

²²
(A, M) // (B, N)

of pre-log rings, withB = A⊗R T , N = M ⊕P Q and A flat over R, there is a base
change isomorphism

B⊗T Ω
1
(T,Q)/(R,P)

∼= Ω
1
(B,N)/(A,M)

of B-modules, see [35, page 196]. We say thatA → B is formally étale if Ω1
B/A = 0,

and (A, M) → (B, N) is formally log étale if Ω1
(B,N)/(A,M) = 0. We shall discuss

topological analogues of these results later in the paper.

Remark 4.31 The log K̈ahler differentials of the canonical log structure satisfy

Ω
1
(Z[M],M)

∼= Z[M] ⊗ Mgp .
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Hence, for a general pre-log ring (A, M) there is a pushout square

A⊗Z[M] Ω1
Z[M]

ψ //

φ

²²

A⊗Z[M] Ω1
(Z[M],M)

φ̄
²²

Ω1
A

ψ̄ // Ω1
(A,M)

of A-modules. The localization map (A, M) → (A[M−1], Mgp) induces a further map

Ω
1
(A,M) → Ω

1
(A[M−1],Mgp)

∼= Ω
1
A[M−1] ,

where the last isomorphism uses thatMgp,a is the trivial log structure onA[M−1].

Example 4.32 We continue the discussion of log structures on discrete valuation rings
from Example2.16, referring to Serre [75, §I.6] and Hesselholt–Madsen [29, §2.2]
for more details. LetA → B be a finite extension of discrete valuation rings, with
uniformizersπ andx, fraction fieldsK → L, and residue fieldsk → ℓ, respectively.
In particular, B is the integral closure ofA in L. We assume thatK and L are of
characteristic 0, and thatk andℓ are perfect fields of characteristicp.

We can writeπ = uxe in B, whereu is a unit ande is the ramification index. For
simplicity we may assume thatu = 1, since the pre-log structures〈π〉 and〈xe〉 on A
have the same logification. Letφ(X) ∈ A[X] be the minimal polynomial ofx over A,
so thatB ∼= A[X]/(φ(X)). Then

Ω
1
B/A

∼= B/(φ′(x), exe−1){dx}

and
Ω

1
(B,〈x〉)/(A,〈π〉)

∼= B/(xφ′(x), e){d logx}

sincedφ(x) = φ′(x) dx, dπ = d(xe) = exe−1 dx andd logπ = d log(xe) = e dlogx.

If A → B is unramified, soe = 1, thenΩ1
B/A = 0 andΩ1

(B,〈x〉)/(A,〈π〉) = 0, soA → B
is (formally) étale and (formally) loǵetale.

If A → B is totally ramified, soe = [L : K], thenφ(X) is an Eisenstein polynomial

φ(X) = Xe − πθ(X)

whereθ(X) ∈ A[X] has degree< e, andθ(0) is a unit inA. Then

(φ′(x), exe−1) = (πθ′(x), exe−1)

is contained in (x) unlesse = 1, so Ω1
B/A = 0 only if A → B is an isomorphism.

Furthermore,
xφ′(x) = exe − xπθ′(x) = π(eθ(x) − xθ′(x))
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so (xφ′(x)) ⊂ (π) ⊂ (x). HenceΩ1
(B,〈x〉)/(A,〈π〉) = 0 if and only if e is a unit in

B/(x) = ℓ, i.e., if and only ifp ∤ e.

A general finite extensionA → B is the composite of an unramified and a totally
ramified extension, soA → B is étale if and only ife = 1, and (A, 〈π〉) → (B, 〈x〉)
is log étale if and only ifp ∤ e, i.e., if and only if A → B is tamely ramified. In
this way, log geometry extends the range ofétaleness (and smoothness) to allow tame
ramification.

5 Symmetric logarithmic structures

We recall an interpretation of the Hochschild homology of a ring, based on Quillen [60,
§3], which is similar to the interpretation of the Kähler differentials as a corepresenting
object for derivations. Thereafter we extend this point of view to the log case.

Definition 5.1 Let A be an associative ring, always with unit, and letAe = A⊗ Aop,
so thatAe-modules are the same asA-bimodules. LetK be anA-bimodule. The
square-zero extensionA⊕ K is the associative ring with multiplication

(a1 ⊕ k1) · (a2 ⊕ k2) = a1a2 ⊕ (k1a2 + a1k2) .

The augmentationǫ : A⊕ K → A taking a⊕ k to a makesA⊕ K an associative ring
over A, with two-sided augmentation idealK having the zero multiplication.

Remark 5.2 The structure mapsη , µ andχ, defined as in Remark4.2, makeA⊕ K
an abelian group object in the categoryARing/A of associative rings overA. The
functor K 7→ A ⊕ K is an equivalence from the categoryModAe of A-bimodules to
the category (ARing/A)ab. See Quillen [60, §3].

Definition 5.3 Theassociative derivationsof A with values inK is the abelian group

ADer(A, K) = (ARing/A)(A, A⊕ K)

of associative ring homomorphismsD : A → A⊕ K over A. Define theA-bimodule
DA of associative differentialsby the short exact sequence

0 → DA
i
−→ A⊗ A

m
−→ A → 0

of A-bimodules, wherem(a⊗ b) = ab. It corepresents associative derivations, in the
following sense.
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Lemma 5.4 The universal associative derivationD : A → A ⊕ DA, taking a to
D(a) = a⊕ da wherei(da) = 1⊗ a− a⊗ 1, induces a natural isomorphism

HomAe(DA, K) ∼= ADer(A, K) .

When A = T(X) is the free associative ring generated by a setX, ADer(T(X), K) ∼=
{functionsX → K}, soDT(X)

∼= T(X)e ⊗ Z{X} is a freeT(X)e-module.

Definition 5.5 If A is a commutative ring, so thatm: A ⊗ A → A is a ring homo-
morphism, we say that anA-bimoduleK is symmetric if the left and rightA-module
actions onK agree: a · k = k · a for a ∈ A, k ∈ K . Equivalently,K is symmetric
if K ∼= m#J, where J is the underlying leftA-module of K and m#J denotes the
A-bimodule obtained fromJ by restriction alongm. Let

SDer(A, J) = ADer(A, m#J)

be thesymmetric derivationsof A with values inJ.

Lemma 5.6 The restriction functorm# : ModA → ModAe is compatible with the
forgetful functor (CRing/A)ab → (ARing/A)ab under the equivalencesModA ≃

(CRing/A)ab andModAe ≃ (ARing/A)ab.

Proof The forgetful functor between abelian group objects exists because theforgetful
functor CRing/A → ARing/A preserves finite products. The compatibility amounts
to the fact thatA⊕ J in Definition4.1agrees withA⊕ m#J in Definition5.3.

Lemma 5.7 Let A be a commutative ring, letJ be anA-module, and letm#J be the
corresponding symmetricA-bimodule. There is a natural isomorphism

HomA(A⊗Ae DA, J) ∼= ADer(A, m#J) .

In other words, the symmetric derivations ofA are corepresented by theA-module
A⊗Ae DA of symmetric differentials.

Remark 5.8 For a commutative ringA and anA-moduleJ, a symmetric derivation
D : A → A⊕ m#J over A is the same as an ordinary derivationD : A → A⊕ J over
A. Hence the symmetric differentialsA⊗Ae DA

∼= DA/D2
A are canonically isomorphic

to the K̈ahler differentialsΩ1
A. However, sinceDA is defined for associative rings and

Ω1
A for commutative rings, their homotopically derived functors will be different.

The case of K̈ahler differentials and the cotangent complex was discussed in Re-
mark4.7. In the associative setting the functorA 7→ ADer(A, K) acquires homotopical
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right derived functors when extended to simplicial rings. These functors are corep-
resented by the simplicialA-bimodule LDA = Ae ⊗Te

•
DT• , where T•

≃
−→ A is a

cofibrant simplicial ring resolution ofA. As usual, cofibrant effectively means that
T• is a free associative ring, i.e., a tensor algebra overZ, in each simplicial de-
gree. We callLDA theassociative cotangent complex. When the composite functor
A 7→ SDer(A, J) = ADer(A, m#J) is derived in the same way, the corepresenting object
is the simplicialA-moduleA ⊗Ae LDA

∼= A ⊗Te
•

DT• , which we call thesymmetric
cotangent complex.

Remark 5.9 By Lemma5.4, LDA is a freeAe-module in each simplicial degree. If
we assume thatA is flat overZ, thenTe

•
≃
−→ Ae, so LDA

≃
−→ DA is a freeAe-module

resolution. LetB• = B(A, A, A) = ∆1
• ⊗ A be the two-sided bar construction onA.

Since we are assuming thatA is flat overZ, ǫ : B•
≃
−→ A is a flatAe-module resolution,

and there is a weak equivalenceA ⊗Ae LDA ≃ B• ⊗Ae DA. Hence the short exact
sequence ofA-bimodules definingDA yields a homotopy cofiber sequence

A⊗Ae LDA → B• → HH(A)

of simplicial A-modules, where we use thatB• ⊗Ae A ∼= HH(A). The left (or right)
unit inclusion A → A ⊗ A = B0 → B• is a weak equivalence, and the composite
map A → HH(A) equals the usual structure mapη . We might therefore, somewhat
imprecisely, say that

A⊗Ae LDA → A
η
−→ HH(A)

is a cofiber sequence up to homotopy, whereη is split injective. In particular, there are
isomorphisms

HHq+1(A) ∼= πq(A⊗Ae LDA) ∼= TorA
e

q (A, DA)

for q ≥ 0.

Definition 5.10 Let A be an associative ring. Anassociative pre-log structure(M, α)
on A is an associative monoidM and a monoid homomorphismα : M → (A, ·) to the
underlying multiplicative monoid. It is anassociative log structureif the restricted
homomorphismα−1GL1(A) → GL1(A) is an isomorphism. Anassociative (pre-)log
ring is an associative ring with an associative (pre-)log structure. Ahomomorphism
(f , f ♭) : (A, M) → (B, N) of associative pre-log rings is a ring homomorphismf : A →

B and a monoid homomorphismf ♭ : M → N such that (f , ·) ◦α = β ◦ f ♭ . Associative
log rings generate a full subcategoryALog of the categoryAPreLog of associative
pre-log rings.
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Lemma 5.11 Let (A, M) be a log ring, and letJ be anA-module. Then(A, M) is also
an associative log ring, and the forgetful functor(Log/(A, M))ab → (ALog/(A, M))ab

takes the abelian group object(A⊕ J, η∗M) in Log/(A, M) to an abelian group object
(A⊕ m#J, η∗M) in ALog/(A, M). Hereη∗M ∼= M × (J, +).

Proof The underlying associative ring of a commutative log ring (A, M) is an asso-
ciative log ring, since the forgetful functor preserves the formation ofGL1(A) ⊂ (A, ·)
and the pullbackα−1GL1(A) ⊂ M . There is a forgetful functor between abelian group
objects because the forgetful functorLog/(A, M) → ALog/(A, M) preserves finite
products. The factorization ofη∗M is from Lemma4.12.

Remark 5.12 We omit to discuss inverse images of associative log structures, general
abelian group objects inALog/(A, M), associative log derivations, and associative log
differentials.

Definition 5.13 Let (A, M) be a (commutative) log ring, and letJ be anA-module.
The log symmetric derivationsof (A, M) with values inJ is the abelian group

SDer((A, M), J) = (ALog/(A, M))((A, M), (A⊕ m#J, η∗M))

of homomorphisms (D, D♭) : (A, M) → (A⊕ m#J, η∗M) of associative log rings over
(A, M).

Definition 5.14 Let M be an associative monoid, andK an abelian group. The
associative monoid derivationsof M with values inK is the abelian group

ADer♭(M, K) = (AMon/M)(M, M × K)

of monoid homomorphismsD♭ : M → M × K over M . Let H1(BM) ∼= Mab,gp be the
abelian group ofassociative monoid differentialsof M .

If M is commutative, thesymmetric monoid derivationsof M with values inK is
the abelian group

SDer♭(M, K) = (AMon/M)(M, M × K)

of monoid homomorphismsD♭ : M → M × K over M . Let H1(BM) ∼= Mgp be the
symmetric monoid differentials of M .

Lemma 5.15 There is a universal associative monoid derivationD♭ : M → M ×

H1(BM), takingm to D♭(m) = m⊕ [m] where[m] is the homology class ofm viewed
as a1-simplex inBM. It induces a natural isomorphism

Ab(H1(BM), K) ∼= ADer♭(A, K) .
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WhenM is a free associative monoid, there is a weak equivalence

ΣH1(BM) ≃ Z̃{BM}

of simplicial abelian groups, whereΣH1(BM) is the simplicial suspension of the
constant simplicial abelian groupH1(BM), Z{BM} is the degreewise free abelian group
on the simplicial setBM, andZ̃{BM} is the kernel of the augmentationZ{BM} → Z.

Proof For each abelian groupK , there is a natural chain of isomorphisms

(AMon/M)(M, M × K) ∼= AMon(M, K)
∼= CMon(Mab, K)
∼= Ab(Mab,gp, K) = Ab(H1(BM), K) .

WhenM is the free associative monoid on a setX, BM is weakly equivalent to a wedge
sum ofX circles, soZ̃{BM} has homotopy concentrated in dimension 1, which makes
it weakly equivalent to the suspensionΣH1(BM).

Remark 5.16 As for derivations of rings, symmetric monoid derivations and commu-
tative monoid derivations are the same, but their homotopically derived functors are
different. Theassociative monoid cotangent complexof M is the simplicial abelian
groupLH1(BM) = H1(BF•), whereF•

≃
−→ M is a simplicial resolution ofM by free as-

sociative monoids. By Lemma5.15there is a weak equivalenceΣH1(BF•) ≃ Z̃{BF•},
andZ̃{BF•} ≃ Z̃{BM} by the Hurewicz theorem, so

ΣLH1(BM) ≃ Z̃{BM}

has homotopy groupsπqLH1(BM) ∼= Hq+1(BM) for q ≥ 0, isomorphic to the higher
homology groups ofBM.

When M is a commutative monoid, thesymmetric monoid cotangent complexof
M is the same simplicial abelian groupLH1(BM) = H1(BF•), whereF•

≃
−→ M is a

cofibrant associative monoid resolution ofM , so the formulaΣLH1(BM) ≃ Z̃{BM}

continues to hold.

Proposition 5.17 Let (A, M, α) be a (commutative) log ring andJ an A-module.
There is a pullback square

SDer((A, M), J) //

²²

SDer(A, J)

φ∗

²²
SDer♭(M, (J, +))

ψ∗

// SDer(Z[M], ᾱ#J)

of abelian groups. The homomorphismφ∗ is induced byᾱ : Z[M] → A, and the
homomorphismψ∗ is induced byη∗α : M × (J, +) ∼= η∗M → (A⊕ J, ·).
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Lemma 5.18 The functors fromA-modules to abelian groups that takeJ to SDer(A, J)
andSDer(Z[M], ᾱ#J) are corepresented by the symmetric differentialsA⊗Ae DA and
the inducedA-moduleA⊗Z[M]e DZ[M] , respectively. The natural homomorphismφ∗

is corepresented by theA-module homomorphism

φ : A⊗Z[M]e DZ[M] → A⊗Ae DA

induced byᾱ : Z[M] → A.

Lemma 5.19 The functors fromA-modules to abelian groups that takeJ to

SDer♭(M, (J, +)) and SDer(Z[M], ᾱ#J)

are corepresented byA⊗ Mgp and A⊗Z[M]e DZ[M] , respectively. The natural homo-
morphismψ∗ is corepresented by theA-module homomorphism

ψ : A⊗Z[M]e DZ[M] → A⊗ Mgp

given by
ψ(a⊗ dm) = a · α(m) ⊗ γ(m)

for a ∈ A andm∈ M .

Proof We have a natural chain of isomorphisms

(AMon/(A, ·))(M, (A⊕ J, ·)) ∼= (ARing/A)(Z[M], A⊕ J)
∼= ADer(Z[M], ᾱ#J)

= (ARing/A)(Z[M], Z[M] ⊕ J)
∼= ModZ[M]e(DZ[M] , J)
∼= ModA(A⊗Z[M]e DZ[M] , J) .

Let J = A⊗Mgp and note, as in the proof of Lemma4.22, that the identity homomor-
phism ofA⊗ Mgp corresponds to aD♭ ∈ SDer♭(M, (J, +)) that maps underψ∗ to the
monoid homomorphismη∗α◦D♭ over (A, ·) that takesm in M to α(m)⊕(α(m)⊗γ(m))
in (A⊕ J, ·). Under the chain of isomorphisms above, this corresponds to theZ[M]-
bimodule homomorphism that takesdm in DZ[M] to α(m)⊗ γ(m) in J, and thus to the
assertedA-module homomorphism.

Definition 5.20 Let (A, M, α) be a (commutative) pre-log ring. Thesymmetric log
Kähler differentials of (A, M) is theA-moduleA⊗Ae D(A,M) defined by the pushout
square

A⊗Z[M]e DZ[M]
ψ //

φ

²²

A⊗ Mgp

φ̄
²²

A⊗Ae DA
ψ̄ // A⊗Ae D(A,M)
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in A-modules.

Proposition 5.21 There is a natural isomorphism

HomA(A⊗Ae D(A,M), J) ∼= SDer((A, M), J) .

Remark 5.22 Thesymmetric log cotangent complexshould now be constructed as

L(A⊗Ae D(A,M)) = A⊗Te
•

D(T•,F•)

using a cofibrant replacement (T•, F•)
≃
−→ (A, M) in a (closed) model structure on

simplicial associative log rings, in the sense of Quillen [59]. We have not worked out
the details of such a model structure, but it is clear that the simplicial object above will
be the pushout in a suitable category of the maps

A⊗ LH1(BM)
Lψ
←−− A⊗Z[M]e LDZ[M]

Lφ
−→ A⊗Ae LDA

connecting the symmetric cotangent complex ofZ[M] to the symmetric monoid cotan-
gent complex ofM and the symmetric cotangent complex ofA.

Recall the cofiber sequence up to homotopy

A⊗Ae LDA → A
η
−→ HH(A)

from Remark5.9, whereη is split injective as a map of simplicial commutative rings.
The analogous sequence forZ[M] takes the form

A⊗Z[M]e LDZ[M] → A
η
−→ A⊗Z[M] HH(Z[M]) ,

after base change along ¯α : Z[M] → A. By Lemma5.15 there is also a cofiber
sequence up to homotopy

A⊗ LH1(BM) → A
η
−→ A⊗ Z[BM] ,

whereη is again split injective, with mapping coneA⊗ ΣLH1(BM) ≃ A⊗ Z̃{BM}.
Here Z[BM] = Z{BM} as simplicial abelian groups, but sinceBM is a simplicial
commutative monoid, we can also think ofZ[BM] as a simplicial commutative ring,
and therefore we switch to the monoid ring notation.

This suggests that thelog Hochschild homologyof (A, M) should sit in a cofiber
sequence up to homotopy

L(A⊗Ae D(A,M)) → A
η
−→ HH(A, M)
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with η split injective. In particular, HH(A, M) should be a homotopy pushout of
homomorphisms

A⊗ Z[BM]
ψ
←− A⊗Z[M] HH(Z[M])

φ
−→ HH(A)

in a suitable category.

Lemma 5.23 The extensionφ : A ⊗Z[M] HH(Z[M]) → HH(A) of (the suspension
of) Lφ : A ⊗Z[M]e LDZ[M] → A ⊗Ae LDA is homotopy equivalent to the natural ho-
momorphism of simplicial commutative rings induced byᾱ : Z[M] → A. It is given
by

φ(a⊗ (m0, m1, . . . , mq)) = (aα(m0), α(m1), . . . , α(mq))

in simplicial degreeq.

Lemma 5.24 The extensionψ : A⊗Z[M] HH(Z[M]) → A⊗Z[BM] of (the suspension
of) Lψ : A ⊗Z[M]e LDZ[M] → A ⊗ LH1(BM) is homotopy equivalent to the natural
homomorphism of simplicial commutative rings obtained from

Z[(ǫ, π)] : HH(Z[M]) ∼= Z[BcyM] → Z[M × BM] ∼= Z[M] ⊗ Z[BM]

by base change alonḡα : Z[M] → A. Here ǫ : BcyM → M and π : BcyM → BM
are the natural maps taking(m0, m1, . . . , mq) in simplicial degreeq to

∏q
i=0 mi and

[m1| . . . |mq] , respectively. The simplicial ring homomorphism is given by

ψ(a⊗ (m0, m1, . . . , mq)) = a
q

∏

i=0

α(mi) ⊗ [m1| . . . |mq]

in simplicial degreeq.

Proof By Lemma5.19, ψ : A⊗Z[M]e DZ[M] → A⊗Mgp takes 1⊗dm to α(m)⊗γ(m).
The identificationA⊗Z[M]e DZ[M]

∼= A⊗Z[M] HH1(Z[M]) takes 1⊗dm to 1⊗ (1, m) =

1⊗σm, and the identificationA⊗Mgp ∼= A⊗H1(BM) takesα(m)⊗γ(m) to α(m)⊗[m].
Henceψ : A⊗Z[M] HH(Z[M]) → A⊗Z[BM] takes 1⊗σm to α(m)⊗ [m], and agrees
with the claimed formula in dimensions≤ 1.

WhenM is an associative monoid, we interpretA⊗Z[M] HH(Z[M]) as HH(Z[M], A),
i.e., the Hochschild homology ofZ[M] with coefficients in the bimoduleA. WhenM
is free associative, both HH(Z[M], A) andA⊗ Z[BM] are trivial in dimensions≥ 2,
henceψ agrees with the claimed formula in all dimensions.

Returning to the case of a commutative monoidM , let F•
≃
−→ M be a resolution by a sim-

plicial associative monoid that is free associative in each degree. Then HH(Z[F•], A) →
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A⊗Z[BF•] agrees with the claimed formula forψ in all degrees and dimensions. It fol-
lows (modulo coherence) thatψ : A⊗Z[M] HH(Z[M]) ∼= HH(Z[M], A) → A⊗Z[BM]
is given by the asserted formula, since both maps HH(Z[F•], A) → HH(Z[M], A) and
Z[BF•] → Z[BM] are weak equivalences.

Remark 5.25 Given Lemmas5.23and5.24, it is quite clear that HH(A, M) should
be the pushout ofφ andψ in the category of simplicial commutative rings, so that we
have the following three (homotopy) pushout squares

Z[M]
Z[η] //

ᾱ

²²

Z[BcyM]
Z[(ǫ,π)] //

²²

Z[M × BM]

²²
A // A⊗Z[M] HH(Z[M])

ψ //

φ

²²

A⊗ Z[BM]

φ̄
²²

HH(A)
ψ̄ // HH(A, M)

in that category. Up to the weak equivalenceB × BM
≃
−→ B × BMgp ∼= BrepM of

Lemma3.17, the composite of the two right hand squares is exactly the same as the
second pushout square of Definition3.23, where HH(A, M) was defined as the replete
tensor product ofS1

• copies of (A, M). We view this agreement of constructions,
one in terms of replete pre-log structures, and the other in terms of a symmetric
log derivations, as a confirmation that both notions are meaningful and appropriate.
However, the former definition has the advantage that it produces a cyclicobject, and
the structure mapsφ andψ defining the pushout are not just defined up to homotopy.
These features will be essential when we proceed to consider cyclotomic structure in
the topological context.

Remark 5.26 One may reverse engineer the passage between the symmetric log cotan-
gent complex and the log Hochschild homology, to determine that the morphismsLφ

andLψ in Remark5.22should be viewed as morphisms in a category of desuspended
simplicial non-unital commutative rings, and the pushout definingL(A ⊗Ae D(A,M))
should be formed in that category. In other words, the suspensionΣL(A⊗Ae D(A,M))
is the pushout ofΣLφ andΣLψ in simplicial non-unital commutative rings. This fits
with the degree zero partA⊗Ae D(A,M) being the pushout ofφ andψ in A-modules, as
in Definition5.20.

Definition 5.27 Let R→ A be a homomorphism of commutative rings. Thede Rham
complex

Ω
∗
A/R = Λ

∗
AΩ

1
A/R
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is the exterior algebra overA on the K̈ahler differentials ofA relative toR. It is the
free graded commutativeA-algebra generated by theA-moduleΩ1

A/R. WhenR = Z

we omit it from the notation. As in Remark5.8there are identifications

Ω
1
A/R

∼= A⊗Ae DA/R
∼= HHR

1(A) ,

taking a db to the Hochschild class ofa ⊗ b. In view of the graded commutative
A-algebra structure on HHR∗ (A) there is a canonical map

Ω
∗
A/R → HHR

∗ (A) .

By the Hochschild–Kostant–Rosenberg theorem [31], see also Loday [42, 3.4.4], this
map is an isomorphism whenA is smooth overR.

Let (R, P) → (A, M) be a homomorphism of pre-log rings. Thelog de Rham complex

Ω
∗
(A,M)/(R,P) = Λ

∗
AΩ

1
(A,M)/(R,P)

is the exterior algebra overA on the log K̈ahler differentials of (A, M) relative to (R, P).
It is the free graded commutativeA-algebra generated byΩ1

(A,M)/(R,P) . When (R, P) =

(Z, {1}) (the absolute case) we omit it from the notation. There are identifications

Ω
1
(A,M)/(R,P)

∼= A⊗Ae D(A,M)/(R,P)
∼= HH(R,P)

1 (A, M)

taking a db anda d logm to the log Hochschild classes of̄ψ(a⊗ b) and φ̄(a⊗ [m]),
respectively. See Remark3.24and Definitions4.25and5.20. Hence there is a canonical
map

(5.1) Ω
∗
(A,M)/(R,P) → HH(R,P)

∗ (A, M)

of graded commutativeA-algebras.

Proposition 5.28 When (A, M) is log smooth over(R, P), so thatΩ1
(A,M)/(R,P) is a

finitely generated projectiveA-module, then the canonical map (5.1) is an isomorphism

Remark 5.29 We plan to prove this result, together with its topological generalization
for log THH smooth (R, P) → (A, M), in joint work with Philipp Reinhard. The idea is
to construct a log Quillen spectral sequence, analogous to Quillen [60, (8.2)], Minasian
[51, 2.7] and McCarthy–Minasian [48, 1.1] in the classical cases.
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Part II

Logarithmic structures on structured ring
spectra

6 Topological foundations

We now promote the algebraic theory of the previous part to a topological setting, where
rings are replaced by structured ring spectra and monoids are replacedby structured
H -spaces. In fact, we have at least two choices of topological foundations, based
on the work of Peter May et al [21] and of Jeff Smith et al [32], respectively, so we
begin by reviewing these. We emphasize the topological analogues of the categories,
functors and adjunctions that played key roles in Sections2 through5. A third choice of
foundations, in the context of infinity-categories, with better formal properties when it
comes to adjunctions, has been contemplated by Clark Barwick, but we cannot discuss
its details in this review.

Definition 6.1 Let U be the category of (compactly generated weak Hausdorff) un-
based topological spaces and continuous maps. LetT be the category of (compactly
generated weak Hausdorff) based topological spaces and base-point preserving contin-
uous maps. LetMS be the category ofS-modules, in the sense of Elmendorf–Kriz–
Mandell–May [21, §II.1]. There are adjunctions

S[−] : U
(−)+ //

T
Σ∞

//
oo MS: Ω∞

Ω∞
oo

with the left adjoints on top, where the unlabeled arrow is the forgetful functor. We
write X 7→ S[X] = Σ∞(X+) for the composite functorU → MS, andE 7→ Ω∞E for
the composite functorMS → U , so thatS[−] is left adjoint toΩ∞ .

The suspension spectrum functorΣ∞ : T → MS is the composite of the suspension
prespectrum functorΣ∞ from T to Lewis–May prespectraPU on a fixed universe
U (a countably infinite dimensional inner product space), the spectrificationfunctor L
to Lewis–May spectraSU , the free functorL to L-spectra, and the functorS∧L (−)
to S-modules. ByLewis–May (pre-)spectra, we mean the non-equivariant form of
the G-(pre-)spectra discussed in Lewis–May–Steinberger [39, §I.2]. The underlying
infinite loop space functorΩ∞ : MS → T is the composite of the functorFL(S,−) to
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L-spectra, the forgetful functors to spectra and prespectra, and evaluation at the zero-th
indexing space 0 in the universe.

Definition 6.2 The cartesian product of spaces, resp. the smash products of based
spaces and ofS-modules, turn (U ,×, ∗), (T ,∧, S0) and (MS,∧, S) into symmetric
monoidal categories. LetCS be the category ofcommutative S-algebras, i.e., the
commutative monoids inMS. For a fixed commutativeS-algebraA, let CA = A/CS

be the category ofcommutative A-algebras, i.e., the commutativeS-algebras under
A.

Let L be thelinear isometriesoperad (in (U ,×, ∗)) associated to the fixed universe
U , with j -th spaceL(j) equal to the contractible space of linear isometriesUj → U .
Following May [47, §3] we letL+ be the operad in (T ,∧, S0) with j -th spaceL(j)+ ,
adding a disjoint zero. The underlying Lewis–May spectrum of each commutative
S-algebraA has a canonicalL-action, with structure map

∨

j≥0

L(j) ⋉Σj A∧j → A ,

making it anE∞ ring spectrum for theE∞ operadL, see [21, §II.4]. These are
homotopy commutative ring spectra satisfying coherence conditions of all orders.
Evaluating on zero-th spaces, one finds thatΩ∞A has a canonicalL+ -action

∨

j≥0

L(j)+ ∧Σj Ω
∞(A)∧j → Ω

∞A

in (T ,∧, S0) that makes it anL0-space. Applying the forgetful functor to unbased
spaces, there is a canonicalL-action

∐

j≥0

L(j) ×Σj Ω
∞(A)j → Ω

∞A

in (U ,×, ∗) that makesΩ∞A an L-space. To emphasize that we retain the (multi-
plicative)L- or L+ -action onΩ∞A, we denote it byΩ∞

⊗ A.

Let L0[T ] be the category ofL0-spaces inT , less formally known asE∞ spaces with
zeroMay [46, §IV.1], and letL[U ] be the category ofL-spaces inU , similarly known
as E∞ spaces. These are homotopy commutativeH -spaces satisfying coherence
conditions of all orders. There are two composable adjunctions

S[−] : L[U ]
(−)+ //

L0[T ]
Σ∞

//
oo CS: Ω∞

⊗
Ω∞

⊗

oo
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as before, where all functors are compatible with those in Definition6.1 via the
functors that forget the multiplicative structure. For example, given anL-spaceM , the
unreduced suspension spectrumS[M] is the commutativeS-algebra withL-action

∨

j≥0

L(j) ⋉Σj (Σ∞M+)∧j ∼= Σ
∞(

∐

j≥0

L(j) × Mj)+ → Σ
∞M+

on its underlying Lewis–May spectrum.

Definition 6.3 There are free functorsL : U → L[U ], L0 : T → L0[T ] and
P: MS → CS, defined byLX =

∐

j≥0L(j) ×Σj Xj , L0Y =
∨

j≥0L(j)+ ∧Σj Y∧j

and PE =
∨

j≥0 E∧j/Σj , for X in U , Y in T and E in MS. These three functors
are left adjoint to the forgetful functorsL[U ] → U , L0[T ] → T and CS → MS,
respectively.

Remark 6.4 There are topological model structures on the categoriesU , T andMS,
such that cofibrations are retracts of relative cell objects, weak equivalences have the
usual meaning, and fibrations are Serre fibrations [21, §VII.4]. The two composable
adjunctions in Definition6.1 form Quillen pairs, hence induce weak equivalences
between the derived (= homotopically meaningful) mapping spaces, such as

MS(S[X], E) ≃ T (X+, Ω∞E) ≃ U(X, Ω∞E) .

Furthermore, there are topological model structures on the categoriesL[U ], L0[T ]
and CS, as explained in [21, §VII.4], such that the two composable adjunctions in
Definition6.2consist of Quillen pairs. Hence there are weak equivalences of (derived)
mapping spaces

CS(S[M], A) ≃ L0[T ](M+, Ω∞
⊗ A) ≃ L[U ](M, Ω∞

⊗ A) .

Lastly, the three adjunctions in Definition6.3 are also given by Quillen pairs, in-
ducing weak equivalencesL[U ](LX, M) ≃ U(X, M) for X in U and M in L[U ],
L0[T ](L0Y, N) ≃ T (Y, N) for Y in T and N in L0[T ], and CS(PE, A) ≃ MS(E, A)
for E in MS andA in CS.

Lemma 6.5 The categoryL[U ] is complete and cocomplete, and the formation of
limits commutes with the forgetful functor toU . The colimit of a diagram ofL-spaces
i 7→ Mi is given by the coequalizer

L(colimi LMi)
µ◦Lκ //

Lξ
// L(colimi Mi)
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formed inU , wherecolim is the colimit inU , κ : colimi LMi → L(colimi Mi) is the
canonical map,µ : LL → L expresses composition inL, andξ is the colimit of the
structure mapsξi : LMi → Mi .

The coproduct of cofibrantM1 andM2 in L[U ] is weakly equivalent to the cartesian
productM1 × M2, via the canonical mapM1

∐

M2 → M1 × M2.

Similar statements hold for limits, colimits and coproducts inL0[T ] , relative toT ,
using the limits, colimits and smash products inT .

Proof Being a right adjoint, the forgetful functor commutes with limits. The exis-
tence of colimits inL[U ], and the expression for the colimit in terms of a (reflexive)
coequalizer, follow as in [21, II.7.4]. The monadL preserves reflexive coequalizers by
[21, II.7.2]. See Basterra–Mandell [13, 6.8] for the weak equivalence of the coproduct
and cartesian product.

Definition 6.6 Let L[U ]gp ⊂ L[U ] be the full subcategory ofgrouplike L-spaces.
For eachL-spaceM let FM be the grouplike subL-space consisting of the homotopy
invertible elements inM . See May [46, §III.2]. The inclusionι : FM → M is the
embedding of a set of full path components, and is therefore a fibration. The resulting
functorF : L[U ] → L[U ]gp is right adjoint to the forgetful functor, withι : FM → M
as the adjunction counit. For each commutativeS-algebraA we write GL1(A) for the
grouplikeL-spaceFΩ∞

⊗ A. There is a pullback square

GL1(A) ι //

π

²²

Ω∞
⊗ A

π

²²
GL1(π0A) // π0A

of L-spaces, where the vertical maps take a point to its path component, and the
horizontal maps are inclusions.

Definition 6.7 Let C∞ be the little ∞-cubes operad, with j -th spaceC∞(j) the
colimit over n of the spaceCn(j) of j little n-cubes inIn = [0, 1]n. See May [45,
§4]. Like L, C∞ is an E∞ operad. LetC∞[U ] be the category ofC∞ -spaces,
and letC∞[U ]gp be the full subcategory of grouplikeC∞ -spaces. To eachC∞[U ]-
spaceM there is an associated prespectrumB∞M = {n 7→ BnM}, with n-th space
BnM given by a monadic bar constructionB(Σn, Cn, M). See May [45, §9, §13]. Here
CnX =

∐

j≥0 Cn(j)×Σj X
n/ ≃1 denotes the freeCn-space on a unit-pointed space (X, 1),

so CnS0 =
∐

j≥0 Cn(j)/Σj , for example. The adjoint structure mapsBnM → ΩBn+1M
are weak equivalences forn ≥ 1. The associated infinite loop spaceΓM = Ω∞B∞M
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is grouplike, and this construction defines agroup completion functor Γ : C∞[U ] →
C∞[U ]gp. At the level of homotopy categories,Ho(Γ) : Ho(C∞[U ]) → Ho(C∞[U ]gp)
is left adjoint to the forgetful functorHo(C∞[U ]gp) → Ho(C∞[U ]), but this adjunction
does not strictly lift toC∞[U ] andC∞[U ]gp. Still, there is a natural group completion
map γ : M → ΓM , which induces the adjunction unit at the level of homotopy
categories.

Using the chainC∞ ← C∞ × L → L of maps ofE∞ operads, it is possible to define
two adjunctions

L[U ] // (C∞ × L)[U ]
//oo
C∞[U ]oo

that induce a chain of equivalences at the level of homotopy categories,but which do
not compose to a direct adjunction betweenL-spaces andC∞ -spaces. Stringing these
constructions together we get a group completion functorΓ : L[U ] → L[U ]gp, with
a natural mapγ : M → ΓM that is a weak equivalence whenM is grouplike. Again,
this Ho(Γ) is left adjoint to the forgetful functorHo(L[U ]gp) → Ho(L[U ]), but its lift
Γ is not an adjoint in the strict sense.

Remark 6.8 We may also viewL as a non-Σ operad, in which case it is anA∞

operad. The underlying Lewis–May spectrum of an associativeS-algebraA has a
canonical non-Σ L-action, soΩ∞

⊗ A is a non-Σ L0-space, i.e., anA∞ space with zero.
Forgetting the special role of 0, it is also a non-Σ L-space, i.e., anA∞ space. The
homotopy unitsFΩ∞

⊗ A = GL1(A) form a grouplike non-Σ L-space, and we can group
complete a non-Σ L-space by passing fromL to the non-Σ operad of “little ordered
intervals”, which has the same algebras as the ordinary operadC1. For C1-spacesM ,
BM = B(Σ, C1, M) andΓM = ΩBM still make sense.

Definition 6.9 Let S be the category of simplicial sets, letS0 be the category of
based simplicial sets, and letSpΣ be the category ofsymmetric spectrain the sense
of Hovey–Shipley–Smith [32]. We view symmetric spectra as right modules over the
sphere spectrumS.

We now follow Schlichtkrull [69, §2] and [70, §2]. Let I be the skeleton category
of finite sets and injective functions, with one objectn for each integern ≥ 0,
and morphism setsI(m, n) equal to the set of injective functionsα : {1, . . . , m} →

{1, . . . , n}. Let SI be the category ofI -spaces, i.e., functorsX : I → S , and let
SI

0 be the category ofbasedI -spaces, i.e., functorsY : I → S0. The permutations
Σn = I(n, n) act from the left onY(n), and the inclusion{1, . . . , n} → {1, . . . , n, n+1}
induces a stabilization mapYn → Yn+1. There are two composable adjunctions

S[−] : SI
(−)+ //

SI
0

Σ•
//

oo SpΣ : Ω•

Ω•
oo
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where the unlabeled arrow is the forgetful functor. The functor (−)+ takesX in SI to
X+ with X+(n) = X(n)+ . The functorΣ• takesY in SI

0 to the symmetric spectrum
with n-th spaceΣnYn = Yn ∧ Sn, with the diagonalΣn-action and structure maps
σ : Σ(Yn ∧ Sn) → Yn+1 ∧ Sn+1 induced by the stabilization map above. The functor
Ω• takesE in SpΣ to a basedI -spaceΩ•E, with n-th spaceΩnEn. Eachα in I(m, n)
induces the mapα∗ : ΩmEm → ΩnEn taking f : Sm → Em to the composite

Sn γ−1

−−→ Sm ∧ Sn−m f∧1
−−→ Em ∧ Sn−m σ

−→ En
γ
−→ En ,

whereγ : n → n is any choice of permutation that extendsα.

Remark 6.10 The colimit-over-I functor colimI : SI → S is left adjoint to the
constant-I -space functorS → SI . In the model structures of Christian Schlichtkrull
and Steffen Sagave [68], [67], this adjoint pair is a Quillen equivalence, so that we
can viewI -spaces as an equivalent model for simplicial sets (or topological spaces).
Similar remarks apply for basedI -spaces, based simplicial sets and based spaces.

The reason for working withI -spaces in place of spaces has to do with the monoidal
structures, since commutative monoids inI -spaces model arbitraryE∞ spaces, whereas
commutative monoids in ordinary spaces become products of Eilenberg–MacLane
spaces upon group completion.

For non-cofibrantI -spaces the correct homotopy type is computed by the colimit over
I of a cofibrant replacement, i.e., by the homotopy colimitXhI = hocolimI X. In
particular, a mapX → Y of I -spaces is aweak equivalenceif and only if XhI → YhI

is a weak equivalence of simplicial sets (or spaces). In line with this characterization,
the homotopy groups ofX are defined to be the homotopy groups ofXhI . An I -
spaceX is positively fibrant if each simplicial setX(n) is fibrant, and for each
morphismα : m → n in I with m ≥ 1 the mapα∗ = X(α) : X(m) → X(n) is a
weak equivalence. LetN ⊂ I be the subcategory with the same objects, but only
the inclusionsα : {1, . . . , m} → {1, . . . , n} (with α(i) = i for all i ) as morphisms.
An I -spaceX is semi-stableif the canonical map hocolimN X → hocolimI X is a
weak equivalence. Positively fibrantI -spaces are semi-stable, since the nerve ofI is
contractible. See Schwede [73, §I.4.5] for a discussion of semi-stability in the context
of symmetric spectra, and Schlichtkrull [68] for the case ofI -spaces.

Definition 6.11 The concatenation⊔ of finite sets turns (I,⊔, 0) into a symmetric
monoidal category, so the functor categoriesSI andSI

0 inherit symmetric monoidal
pairings from the cartesian product inS and the smash product inS0, respectively.
For X1 andX2 in SI , we writeX1 ⊠ X2 for this product,

(X1 ⊠ X2)(n) = colim
n1⊔n2→n

X1(n1) × X2(n2) ,
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defined as the left Kan extension of the compositeI × I
X1×X2−−−−→ S × S

×
−→ S along

⊔ : I × I → I . In lack of a better symbol, we writeY1 ⊡ Y2 for the smash product in
SI

0 of two basedI -spacesY1 andY2. We keep the standard notationE1 ∧ E2 for the
smash product of two symmetric spectra.

Let CSI be the category of commutative monoids inI -spaces and letCSI
0 be the

category of commutative monoids in basedI -spaces. We usually refer to these as
commutative I -space monoidsandcommutative basedI -space monoids, respec-
tively. Let CSpΣ be the category of commutative monoids in symmetric spectra, i.e.,
thecommutative symmetric ring spectra. For a fixed commutative symmetric ring
spectrumR, let CR = R/CSpΣ be the category ofcommutative R-algebras, i.e., the
commutative symmetric ring spectra underR.

The left adjoints (−)+ and Σ• in Definition 6.9 are strong monoidal, and the right
adjoints (the forgetful functor andΩ• ) are (lax) monoidal, see Mac Lane [44, §XI.2].
Hence there are composable adjunctions

S[−] : CSI
(−)+ //

CSI
0

Σ•
//

oo CSpΣ : Ω•
⊗

Ω•
⊗

oo

relating the three categories of commutative monoids. Note that we writeΩ•
⊗A for

Ω•A equipped with the commutative monoidal structure inherited from that onA.

Remark 6.12 For a commutative monoidM in I -spaces,MhI = hocolimI M has a
canonical action by the Barratt–Eccles operadEΣ, with j -th spaceEΣj Schlichtkrull
[71, 6.5]. This is anE∞ operad, and the functor hocolimI : CSI → EΣ[U ] induces
an equivalence of homotopy- and infinity-categories. Hence we can viewcommutative
monoids inI -spaces as a model forE∞ spaces. Similarly, commutative monoids in
basedI -spaces are a model forE∞ spaces with zero.

Definition 6.13 There are free functorsC : SI → CSI , C0 : SI
0 → CSI

0 and
P: SpΣ → CSpΣ , defined by CX =

∐

j≥0 X⊠j/Σj , C0Y =
∨

j≥0 Y⊡j/Σj and
PE =

∨

j≥0 E∧j/Σj . These are left adjoint to the respective forgetful functors. In

the definition ofCX, X⊠j denotes thej -fold productX ⊠ · · · ⊠ X formed inSI , and
similarly for Y⊡j = Y ⊡ · · · ⊡ Y in SI

0 .

Remark 6.14 There are simplicial model structures on the categoriesSI , SI
0 and

SpΣ Sagave–Schlichtkrull [67], Schwede [73, §III.2], such that the adjunctions in
Definition6.9form Quillen pairs, with induced weak equivalences

SpΣ(S[X], E) ≃ SI
0 (X+, Ω•E) ≃ SI(X, Ω•E)
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(after cofibrant and fibrant replacements ofX and E, respectively). Here we have in
mind the positive (projective, stable) model structures, where a symmetric spectrum
E is positively fibrant if each simplicial setEn is fibrant for n ≥ 0, and each adjoint
structure mapEn → ΩEn+1 is a weak equivalence forn ≥ 1.

There are corresponding (projective) model structures onCSI , CSI
0 andCSpΣ , such

that the adjunctions in Definitions6.11and6.13form Quillen pairs. Hence there are
weak equivalences of derived mapping spaces

CSpΣ(S[M], A) ≃ CSI
0 (M+, Ω•

⊗A) ≃ CSI(M, Ω•
⊗A)

and CSI(CX, M) ≃ SI(X, M), CSI
0 (C0Y, N) ≃ SI

0 (Y, N) and CSpΣ(PE, A) ≃

SpΣ(E, A).

Lemma 6.15 The categoryCSI is complete and cocomplete, and the formation of
limits commutes with the forgetful functor toSI . The coproductM1 ⊠ M2 of M1

andM2 in CSI is weakly equivalent to the cartesian productM1 × M2, for cofibrant
and semi-stableM1 and M2. Similar statements hold forCSI

0 , where the coproduct
N1⊡N2 of N1 andN2 is weakly equivalent to the smash productN1∧N2, for cofibrant
and semi-stableN1 andN2.

Proof The unit maps∗ → M1 and ∗ → M2 induce the structure mapsM1 =

M1 ⊠ ∗ → M1 ⊠ M2 and M2 = ∗ ⊠ M2 → M1 ⊠ M2 that expressM1 ⊠ M2 as
the coproduct inCSI of M1 and M2. The pairingM1 ⊠ M1 → M1 specifies maps
M1(n1) × M1(n2) → M1(n1 ⊔ n2), and similarly forM2, so there are maps

(M1 × M2)(n1) × (M1 × M2)(n2) ∼= (M1(n1) × M1(n2)) × (M2(n1) × M2(n2))

→ M1(n1 ⊔ n2) × M2(n1 ⊔ n2) ∼= (M1 × M2)(n1 ⊔ n2)

that makeM1 × M2 a commutativeI -space monoid. There is a natural equivalence

(M1)hI × (M2)hI → (M1 ⊠ M2)hI

for cofibrantM1 andM2, and a natural map

(M1 × M2)hI → (M1)hI × (M2)hI ,

which is a weak equivalence whenM1 andM2 are semi-stable. See Schlichtkrull [68]
for more details.

Definition 6.16 Let (CSI)gp be the full subcategory ofgrouplike commutative
monoids in I -spaces. These are the commutative monoids inI -spacesM such
that the commutative monoidπ0MhI is an abelian group. The forgetful functor
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(CSI)gp → CSI admits a left adjointF : CSI → (CSI)gp, defined in Schlichtkrull
[69]. It takes a commutative monoidM to the grouplike commutative submonoidFM ,
with FM(n) ⊂ M(n) consisting of the simplices inM(n) that have invertible image
in the multiplicative commutative monoidπ0MhI . We write ι : FM → M for the
adjunction counit. It is a fibration, since each inclusionFM(n) ⊂ M(n) is the embed-
ding of a set of full path components. For each commutative symmetric ring spectrum
A we write GL1(A) for the grouplike commutative monoid inI -spacesFΩ•

⊗A. For
positively fibrant (or semi-stable)A there is a pullback square

GL1(A) ι //

π

²²

Ω•
⊗A

π

²²
GL1(π0A) // π0A

of commutative monoids inI -spaces, sinceπ0(Ω•
⊗A)hI

∼= π0A.

Definition 6.17 We can use the (iterated) bar construction to deloop and group com-
plete commutative monoids inI -spaces. For a not necessarily commutative monoid
(M, µ, η) in (SI , ⊠, ∗), let thebar construction BM = B⊠M be the basedI -space
obtained by diagonalization from the simplicialI -space

[q] 7→ M ⊠ · · · ⊠ M

(q copies ofM ), with face maps induced byµ and the unique mapM → ∗, and with
degeneracy maps induced byη , in the usual way. The levelwise suspensionΣM of M ,
with (ΣM)(n) = Σ(M(n)), includes intoBM as the simplicial 1-skeleton, and there is
an adjoint map

γ : M → ΩBM

whereΩBM is the levelwise loop space, with (ΩBM)(n) = Ω(BM(n)). For positively
fibrant (or semi-stable)M we get that (ΩBM)hI ≃ ΩB(MhI), so γ : M → ΩBM is a
weak equivalence if and only ifM is grouplike.

In this generality is not obvious how to use loop sum to makeΩBM a strictly associative
and/or commutative monoid inI -spaces. However, for commutativeI -space monoids
M the multiplicationµ : M ⊠ M → M is anI -space monoid map, soBM is itself a
commutativeI -space monoid, with multiplicationBµ : BM ⊠ BM ∼= B(M ⊠ M) →
BM. This pairing corresponds to natural maps

Bµ(n1, n2) : BM(n1) × BM(n2) → BM(n1 ⊔ n2) .

The pointwise product of loops inBM now makesΩBM a commutativeI -monoid,
with multiplication ΩBM ⊠ ΩBM → ΩBM given by the maps

ΩBµ(n1, n2) : ΩBM(n1) × ΩBM(n2) → ΩBM(n1 ⊔ n2)
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obtained by looping the maps above. See also Lima-Filho [40, page 134]. ThenΩBM
is a commutativeI -space monoid, andγ : M → ΩBM is a commutativeI -space
monoid homomorphism. We give

ΓM = ΩBM

this commutativeI -space monoid structure. This defines thegroup completion
functorΓ : CSI → (CSI)gp, which at the level of homotopy categories is left adjoint to
the forgetful functor. The group completion mapγ : M → ΓM induces the adjunction
unit at the level of homotopy categories. See Schlichtkrull [68] for more on group
completion of commutativeI -space monoids.

For commutativeI -space monoidsM the bar construction can be iterated arbitrarily
often. Letting B0M = M and BnM = B(Bn−1M) for n ≥ 1 we get a symmetric
spectrum

B•M = {n 7→ BnM}

in the category of basedI -spaces, whereΣn acts onBnM by permuting the order of
the n bar constructions. Applying the homotopy colimit overI , we get a symmetric
spectrum

B∞M = (B•M)hI = {n 7→ (BnM)hI}

in (based) simplicial sets. For the positively fibrant (or semi-stable)M mentioned
above, the adjoint structure mapsBnM → ΩBn+1M are weak equivalences forn ≥ 1,
so we get a weak equivalence

(ΓM)hI
≃
−→ hocolim

n
Ω

n(BnM)hI .

We think of B∞M = (B•M)hI as the prespectrum associated to the commutativeI -
space monoidM , with underlying infinite loop space weakly equivalent to the group
completion (ΓM)hI of MhI .

Remark 6.18 For M as above andN a grouplike commutativeI -space monoid, there
is a chain of weak equivalences

CSI(M, N) ≃ (CSI)gp(ΓM, ΓN) ≃ (CSI)gp(ΓM, N)

sinceγ : N → ΓN is a weak equivalence, soΓ is left adjoint to the forgetful functor
in the infinity-categorical sense.

Definition 6.19 We can also apply a bar construction to certain monoids in based
I -spaces, but these do not produce deloopings in the usual sense. The unit for the
symmetric monoidal pairing⊡ in basedI -spaces is the constantI -spaceS0 =
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{0, 1}. For each object (Y, ǫ) in the categorySI
0 /S0 of basedI -spaces overS0 we

let Y0 = ǫ−1(0) andY1 = ǫ−1(1). A not necessarily commutative monoid (N, η, µ, ǫ)
in this category consists of mapsη : S0 → N, µ : N ⊡ N → N and ǫ : N → S0,
subject to unitality and associativity conditions overS0. For suchN we let the
based bar constructionB∧N = B⊡N be theI -space under and overS0 obtained by
diagonalization from the simplicial basedI -space

[q] 7→ N ⊡ · · · ⊡ N = N⊡q ,

with face maps induced byµ and ǫ and degeneracy maps induced byη , in the
usual way. The inclusion of zero-simplices defines a mapS0 → B∧N, and the
product ǫ⊡q : N⊡q → (S0)⊡q ∼= S0 defines the retractionB∧N → S0. Note that
(B∧N)1 = B(N1) is the usual bar construction, whereas (B∧N)0 depends both onN0

andN1. The simplicial 1-skeleton ofB∧N is the disjoint union

ΣS0(N) = Σ(N0) ⊔ Σ(N1) .

The right adjoint toΣS0 is ΩS0 , with ΩS0(Y) = Ω(Y0) ⊔ Ω(Y1). The inclusion of the
simplicial 1-skeletonΣS0N → B∧N is left adjoint to a map

γ : N → Γ∧N = ΩS0B∧N ,

which is the disjoint union of a mapγ0 : N0 → Ω(B∧N)0 and the usual group comple-
tion mapγ1 : N1 → Ω(B∧N)1 = ΩB(N1).

Now suppose thatN is a commutative basedI -space monoid overS0. Then the
multiplication µ : N ⊡ N → N is a basedI -space monoid map overS0, so B∧N is
itself a commutative basedI -space monoid overS0, with multiplicationµ : (B∧N) ⊡

(B∧N) ∼= B∧(N⊡N) → B∧N. The pointwise product of loops inB∧N makesΩS0B∧N
a commutative basedI -space monoid overS0, andγ is a morphism in that category.

In the commutative case, the based bar construction can be iterated infinitely often.
Letting B0

∧N = N andBn
∧N = B∧(Bn−1

∧ N) for n ≥ 1 we get a symmetric spectrum

B•
∧N = {n 7→ Bn

∧N}

in the category ofI -spaces under and overS0, with suspension operatorΣS0 . We can
view this as a pair of symmetric spectra in basedI -spaces, withn-th terms (Bn

∧N)0

and (Bn
∧N)1 = Bn(N1), respectively. Doing a base change alongS0 → ∗ we get a

symmetric spectrum
B̄•
∧N = {n 7→ B̄n

∧N = (Bn
∧N)/S0}

in basedI -spaces. Here (Bn
∧N)/S0 ∼= (Bn

∧N)0 ∨ (Bn
∧N)1. Applying the homotopy

colimit over I we get the ordinary symmetric spectra (B∞
∧ N)0 = {n 7→ (Bn

∧N)0,hI},
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(B∞
∧ N)1 = {n 7→ (Bn

∧N)1,hI} = B∞(N1), and

B̄∞
∧ N = {n 7→ (B̄n

∧N)hI}

in (based) simplicial sets.

WhenN = M+ is obtained from a commutativeI -space monoid by adding a disjoint
zero, withǫ : N → S0 defined so thatN0 = {0} andN1 = M , thenN⊡N ∼= (M⊠M)+ ,
Bn
∧N ∼= (BnM)+ for all n ≥ 0, Γ∧N ∼= (ΓM)+ , and B̄∞

∧ N ∼= B∞M . In particular,
γ : N → Γ∧N is an equivalence if and only ifM is grouplike.

Remark 6.20 An obvious problem is to determine for whichN (with non-isolated
zero) the mapγ : N → Γ∧N = ΩS0B∧N is an equivalence. The submonoidN1 must
be grouplike, since (Γ∧N)1 = ΩB(N1), but the analogous condition onN0 with its
N1-action does not seem to be known.

Definition 6.21 We say that a basedI -spaceY isconically basedif it can be expressed
as a pushoutY = cone(L) ∪L Y′ in I -spaces, where cone(L) is the unreduced cone
on anI -spaceL, so that the cone point of cone(L) corresponds to the base point of
Y. We callL the link of the base point. The unreduced cone of anI -space is defined
pointwise: cone(L)(n) = cone(L(n)) = L(n)+∧∆1. We think ofY′ as the complement
of the base point inY, obtained bypuncturing Y at ∗. The property of being conically
based is obviously not preserved by most homotopy equivalences. IfY = X+ has an
isolated base point, it is conically based withL = ∅ the emptyI -space andY′ = X.

If Y1 andY2 are conically based, with linksL1 andL2, thenY1 ⊡ Y2 is also conically
based, with link

(Y′
1 ⊠ L2) ∪L1⊠L2 (L1 ⊠ Y′

2)

and (Y1 ⊡ Y2)′ ∼= Y′
1 ⊠ Y′

2. By induction, C0Y is conically based ifY is, and
(C0Y)′ ∼= C(Y′).

We say that a based commutativeI -space monoidN = cone(L) ∪L N′ is conically
based if the multiplicationµ : N ⊡ N → N takesN′ ⊠ N′ ⊂ N ⊡ N to N′ ⊂ N. In
this caseN′ is a commutativeI -space monoid. IfN is a commutative conically based
I -space monoid overS0, then so isBn

∧N for all n ≥ 0, and (Bn
∧N)′ ∼= Bn(N′).

Lemma 6.22 Let M = CX be free on anI -spaceX, and letN = C0Y be free on
a basedI -spaceY. We view N = C0Y as augmented overS0 = C0(∗) by the map
induced byY → ∗, so N1 = {1}. Then there are weak equivalencesB∞M ≃ S[X]
andB̄∞

∧ N ≃ Σ∞Y.

If Y = cone(L) ∪L Y′ is conically based, thenN = C0Y is conically based with
N′ = C(Y′), soB∞(N′) ≃ S[Y′] .
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Proof In the based caseB∧N = B∧C0Y ∼= C0ΣY, soBn
∧N ∼= C0Σ

nY. The inclusion
(ΣnY)+ → C0Σ

nY is (2n−1)-connected (for cofibrantY), soΣ•Y → B̄•
∧N is a (stable)

equivalence. Passing to homotopy colimits overI we get the claimed equivalence
Σ∞Y ≃ B̄∞

∧ N.

The unbased case follows from the based case by settingY = X+ , so thatN = M+ ,
and noting that̄B∞

∧ N = B∞M andΣ•Y = S[X].

The conically based case then follows from the unbased case by settingX = Y′ , so
that M = N′ .

7 Logarithmic structures in topology

We now discuss topological analogues of log rings, where the commutative rings
are replaced by structured ring spectra (meaning commutativeS-algebras or com-
mutative symmetric ring spectra) and the commutative monoids are replaced byE∞

spaces (meaningL-spaces or commutativeI -space monoids), orE∞ spaces with zero
(meaningL0-spaces or commutative basedI -space monoids).

Definition 7.1 Let A be a commutative symmetric ring spectrum. Apre-log structure
on A is a pair (M, α) consisting of a commutativeI -space monoidM and a map

α : M → Ω
•
⊗A

of commutativeI -space monoids. Specifyingα is equivalent to specifying the left
adjoint map

ᾱ : S[M] → A

of commutative symmetric ring spectra. Apre-log symmetric ring spectrum (A, M, α),
often abbreviated to (A, M), is a commutative symmetric ring spectrumA with a pre-log
structure (M, α). A map

(f , f ♭) : (A, M, α) → (B, N, β)

of pre-log symmetric ring spectra consists of a mapf : A → B of commutative
symmetric ring spectra and a mapf ♭ : M → N of commutativeI -space monoids,
such that the square

M
α //

f ♭

²²

Ω•
⊗A

Ω•
⊗

f
²²

N
β // Ω•

⊗B
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of commutativeI -space monoids commutes. In adjoint terms, the condition is that the
square

S[M] ᾱ //

S[f ♭]
²²

A

f

²²
S[N]

β̄ // B

of commutative symmetric ring spectra commutes. A map (f , f ♭) of pre-log symmetric
ring spectra is aweak equivalenceif f and f ♭ are both weak equivalences.

Let PreLog(S) be the resulting category of pre-log symmetric ring spectra. It is equal
to the comma-category (or under-category)CSI/Ω•

⊗ associated to

Ω
•
⊗ : CSpΣ → CSI .

and isomorphic to the comma-category (or over-category)S[−]/CSpΣ associated to

S[−] : CSI → CSpΣ .

See Mac Lane [44, §II.6]. There are forgetful functors fromPreLog(S) to CSpΣ and
CSI , taking (A, M) to A and M , respectively. For a fixed pre-log symmetric ring
spectrum (A, M), let PreLog(A, M) = (A, M)/PreLog(S) be the category ofpre-log
(A, M)-algebras, i.e., pre-log symmetric ring spectra under (A, M).

Definition 7.2 Let A be a commutative symmetric ring spectrum. Abased pre-log
structure on A is a pair (N, α) consisting of a commutative basedI -space monoidN
and a mapα : N → Ω•

⊗A of commutative basedI -space monoids. Equivalently, a
pre-log structure specifies a map ¯α : Σ•N → A of commutative symmetric ring spectra.
The categoryPreLog0(S) of based pre-log symmetric ring spectrais the comma-
categoryCSI

0 /Ω•
⊗ , which is isomorphic to the comma-categoryΣ•/CSpΣ . There are

obvious forgetful functors fromPreLog0(S) to CSpΣ , CSI
0 andPreLog(S).

Remark 7.3 Working in commutativeS-algebras, one may define the category
PreLog(S) of pre-log S-algebras as L[U ]/Ω∞

⊗ , where Ω∞
⊗ : CS → L[U ]. It is

isomorphic toS[−]/CS, where S[−] : L[U ] → CS. In the based setting, the cate-
gory PreLog0(S) of based pre-logS-algebras is defined to beL0[T ]/Ω∞

⊗ , where
Ω∞
⊗ : CS → L0[T ]. It is isomorphic toΣ∞/CS, whereΣ∞ : L0[T ] → CS. See also

Definition9.1below.

For definiteness, we shall mostly work with commutative symmetric ring spectra and
commutativeI -space monoids, since the description of the coproducts and deloopings
of the latter (Definitions6.11and6.17) is notationally a little more convenient than for
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L-spaces (Lemma6.5and Definition6.7). On the other hand, for more general work
with En ring spectra andEn spaces for 1< n < ∞, as in Section9, the operadic point
of view is more convenient. Since we are principally interested in multiplicativeE∞

spaces (with or without zero), rather than inE∞ ring spaces May [46, §VI.1], we are
not directly affected by the consistency issues raised in May [47], although some care
in the comparison of definitions is certainly required.

Definition 7.4 Let α−1GL1(A) ⊂ M be defined by the pullback square

α−1GL1(A)
α̃ //

ι̃

²²

GL1(A)

ι

²²
M

α // Ω•
⊗A

of commutativeI -space monoids. The pullback is weakly equivalent to the homotopy
pullback, sinceι is a fibration. The pre-log structure (M, α) on A is said to be alog
structure if the restricted map ˜α : α−1GL1(A) → GL1(A) is a weak equivalence. A
log symmetric ring spectrum is a commutative symmetric ring spectrum with a log
structure. The log symmetric ring spectra generate a full subcategory, denotedLog(S),
of PreLog(S).

A based pre-log structure (N, α) on A is a based log structure if the underlying
(unbased) pre-log structure is a log structure.

Remark 7.5 It might seem more natural to define based log structures in terms of a
pullback square in the category of commutative basedI -space monoids. If we replace
GL1(A) by GL1(A)+ , by adding a disjoint zero, the extended mapι+ : GL1(A)+ →

Ω•
⊗A will usually not be a fibration, and the pullback ceases to be homotopy invariant.

If we take the homotopy pullback, or equivalently, replace the disjoint zeroby the path
space of the zero-th component, then it appears that the resulting space of based log
derivations (see Definition11.8) will not be a corepresentable functor, so that we get
no good notion of based log differentials. If we add the full path component of zero
in Ω•

⊗A to GL1(A), then the log condition also normalizes the part ofM mapping by
α to the zero-component, which is undesirable in some topological applications (see
Example7.18).

Definition 7.6 To each pre-log structure (M, α) on A there is anassociated log
structure (M, α)a = (Ma, αa), whereMa is defined by the upper left hand pushout
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square in the following diagram

α−1GL1(A)
α̃ //

ι̃

²²

GL1(A)

²²
ι

³³

M //

α //

Ma

αa

$$IIIIIIIII

Ω•
⊗A

of commutativeI -space monoids, andαa : Ma → Ω•
⊗A is the canonical map induced

by α and ι. When α−1GL1(A) is trivial, the pushout is the coproductMa ∼= M ⊠

GL1(A), which is weakly equivalent to the cartesian productM×GL1(A) (for cofibrant
and semi-stableM andA).

Lemma 7.7 The associated log structure(Ma, αa) is a log structure onA. If (A, M, α)
is a cofibrant log symmetric ring spectrum, then the canonical map(A, M, α) →

(A, Ma, αa) is a cofibration and a weak equivalence.

Proof A product in Ma maps to a homotopy unit inΩ•
⊗A if and only if each factor

maps to a homotopy unit. Hence the preimage (αa)−1GL1(A) ⊂ Ma is the pushout of
the preimages

α−1GL1(A)
id
←− α−1GL1(A)

α̃
−→ GL1(A) ,

and it is therefore isomorphic toGL1(A).

If Ω•
⊗A is obtained by attachingCSI -cells of the form (C∆n, C∂∆n) to M , then

each cell either lies withinGL1(A), or meetsGL1(A) only at the monoid unit. Hence
GL1(A) is obtained fromα−1GL1(A) by attaching the cells of the first kind, only, so
α̃ is a cofibration. Hence the pushout definingMa is homotopically meaningful when
(A, M, α) is cofibrant.

If, furthermore, (M, α) is a log structure onA, then α̃ is a cofibration and a weak
equivalence, so its pushoutM → Ma is also a cofibration and a weak equivalence.

Lemma 7.8 The logification functor (−)a : PreLog(S) → Log(S) induces a left
adjoint to the forgetful functor, at the level of homotopy categories. There is a natural
chain of weak equivalences

Log(S)((A, Ma), (B, N)) ≃ PreLog(S)((A, M), (B, N))

≃ PreLog(S)((A, M), (B, Na))

for (A, M) a pre-log symmetric ring spectrum and(B, N) a log symmetric ring spectrum.
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Proof Given a map (f , f ♭) : (A, M, α) → (B, N, β) of pre-log symmetric ring spectra,
where (N, β) is a log structure onB, we get a commutative diagram

M

f ♭

²²

α−1GL1(A)
ι̃oo α̃ //

²²

GL1(A)

GL1(f )
²²

N β−1GL1(B)
ι̃oo β̃

≃
// GL1(B)

and a chain of maps

Ma f ♭,a

−−→ Na ←− N .

When (B, N, β) is cofibrant, the right hand map is a weak equivalence. Hence we get
a well-defined right adjoint morphism (f , f ♭,a) : (A, Ma) → (B, N), in the homotopy
category.

Definition 7.9 To each based pre-log structure (N, α) onA we associate anassociated
based log structure(N, α)a = (Na, αa), whereNa is defined by the pushout square

α−1GL1(A)+
α̃+ //

ι̃+

²²

GL1(A)+

²²
N // Na

of commutative basedI -space monoids. The mapαa : Na → Ω•
⊗A is the pushout of

the mapsα andι+ : GL1(A)+ → Ω•
⊗A. Whenα−1GL1(A) is trivial the pushout is the

coproductNa = N ⊡ GL1(A)+ , which for reasonableN andA is weakly equivalent to
N ∧ GL1(A)+ . The analogues of Lemmas7.7and7.8hold for based log structures.

Definition 7.10 Let A be a commutative symmetric ring spectrum. Thetrivial pre-log
structure on A is the pair ({1}, α), where{1} is the initial and terminal commutative
I -space monoid, andα : {1} → Ω•

⊗A is the unique map. Thetrivial log structure on
A is the associated log structure ({1}, α)a = (GL1(A), ι). We say that (A, GL1(A), ι) is
atrivial log symmetric ring spectrum . We get functors (−)triv : CSpΣ → PreLog(S)
and (−)triv,a : CSpΣ → Log(S), left adjoint to the forgetful functors.

Remark 7.11 We view the opposite categoryLog(S)op as the category of affine
derived log schemes, with a forgetful functor to the categoryAff (S) = (CSpΣ)op of
affine derived schemes, in the sense of Jacob Lurie. It is no more difficult to formulate
the global notion of a derived log scheme, which is locally glued together from affine
derived log schemes, than it is to define derived classical schemes in termsof affine
derived schemes. We will only work locally, i.e., on affine pieces, in this paper.
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Definition 7.12 Let M be a commutative monoid inI -spaces. Thecanonical pre-log
structure on S[M] is the pair (M, ζ), whereζ : M → Ω•

⊗S[M] is right adjoint to the
identity onS[M]. Thecanonical log structureon S[M] is the associated log structure
(M, ζ)a.

Let N be a commutative monoid in basedI -spaces. Thecanonical based pre-log
structure on Σ•N is the pair (N, ζ), whereζ : N → Ω•

⊗Σ•N is right adjoint to the
identity onΣ•N. Thecanonical based log structureon Σ•N is the associated based
log structure (N, ζ)a.

We get free functors (−)can: CSI → PreLog(S), (−)can: CSI
0 → PreLog0(S),

(−)can,a : CSI → Log(S) and (−)can,a : CSI
0 → Log0(S), left adjoint to the forgetful

functors.

Lemma 7.13 The functor(−)+ : PreLog(S) → PreLog0(S), taking(A, M) to (A, M+),
and its restriction(−)+ : Log(S) → Log0(S), are left adjoint to the respective forgetful
functors.

Remark 7.14 We can summarize these adjunctions in the following diagram, where
the∞-symbols indicates an adjunction only in an infinity-categorical sense. As usual,
the left adjoints are either on the left hand side, or on top.

CSpΣ

(−)triv

²²
CSI

(−)can
//

(−)+
²²

PreLog(S)oo

OO

(−)a
//

(−)+
²²

Log(S)oo

(−)+
²²

∞

CSI
0

(−)can
//

OO

PreLog0(S)oo

OO

(−)a
//
Log0(S)oo ∞

OO

The unlabeled arrows are forgetful functors.

Definition 7.15 For a pre-log symmetric ring spectrum (A, M), thetrivial locus is the
pre-log symmetric ring spectrum (A[M−1], ΓM), where

A[M−1] = A∧S[M] S[ΓM] .

There is a canonical map (A, M) → (A[M−1], ΓM), and (A[M−1], ΓM)a is the trivial
log structure. For log symmetric ring spectra (A, M) the functor (A, M) 7→ A[M−1] is
left adjoint to (−)triv,a (at the level of homotopy- or infinity-categories), which therefore
has both a left and a right adjoint.
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Example 7.16 Let (A, M, α) be a (discrete) pre-log ring, and letc: CMon→ CSI be
the “constantI -space” functor that views a commutative monoid as a commutativeI -
space monoid. The Eilenberg–Mac Lane symmetric ring spectrumHA hasn-th space
HAn ≃ K(A, n), and there is a natural equivalencec(A, ·) → Ω•HA of commutative
I -space monoids. Furthermore, there is a natural equivalencecGL1(A) → GL1(HA),
and c commutes with pullbacks. Hence (HA, cM, cα) is a pre-log symmetric ring
spectrum, and it is a log symmetric spectrum if and only if (A, M, α) is a log ring. We
usually write (HA, M, α) in place of (HA, cM, cα).

Example 7.17 Let A be a commutativeS-algebra, and letY ∈ T be a based space.
Choose a based mapy: Y → Ω∞

⊗ A, and extendy freely to a map̄y0 : L0Y → Ω∞
⊗ A of

L0-spaces (=E∞ spaces with zero). Then (A, L0Y, ȳ0) is a based pre-logS-algebra.
We call (L0Y, ȳ0) thefree E∞ based pre-log structureon A generated byy.

WhenX ∈ U is an unbased space,x : X → Ω∞
⊗ A an unbased map, and̄x : LX → Ω∞

⊗ A
its free extension to a map ofL-spaces (=E∞ spaces), we get thefree E∞ (unbased)
pre-log structure (LX, x̄) on A generated byx.

WhenY = X+ has a disjoint base point, soL0Y = (LX)+ , the freeE∞ based pre-log
structure generated byy: Y → Ω∞

⊗ A restricts to the freeE∞ unbased pre-log structure
generated byx : X → Ω∞

⊗ A, wherex = y|X. When the base point ofY is not isolated,
there is no such overlap of definitions.

Example 7.18 As special cases of the previous example, we consider the commutative
S-algebrasA = ℓ andB = ku or ku(p) . Hereku is the connective complexK -theory
spectrum, withΩ∞ku≃ BU×Z andπ∗ku = Z[u] with |u| = 2. For a fixed primep, ℓ

is the Adams summand of thep-local K -theory spectrumku(p) , with Ω∞ℓ ≃ W×Z(p)

andπ∗ℓ = Z(p)[v1] with |v1| = q = 2p− 2.

We have based and unbased pre-log structures (L0S2, ū0) and (LS2, ū) on ku, generated
by a mapS2 → Ω∞

⊗ ku representingu ∈ π2ku. Similarly, we have based and unbased
pre-log structures (L0Sq, v̄1,0) and (LSq, v̄1) on ℓ, generated by a mapSq → Ω∞

⊗ ℓ

representingv1 ∈ πqℓ. HereL0Sd =
∨

j≥0L(j)+∧Σj S
dj andLSd =

∐

j≥0L(j)×Σj (Sd)j .
Note that these pre-log structures map entirely into the zero-componentBU ∼= BU×{0}
(resp.W ∼= W × {0}), with the single exception that theE∞ space unit in thej = 0
summand of the source maps to theE∞ space unit 1 inBU × {1} (resp.W× {1}).

There is a mapf : ℓ → ku(p) of commutativeS-algebras, inducing the ring homomor-
phism f∗ : Z(p)[v1] → Z(p)[u] that takesv1 to up−1. In the based category, this lifts to
a map

(f , f ♭) : (ℓ, L0Sq, v̄1,0) → (ku(p), L0S2, ū0)
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of based pre-logS-algebras, wheref ♭ : L0Sq → L0S2 is freely generated by the
composite mapSq ∼= (S2)∧(p−1) → L(p− 1)+ ∧Σp−1 (S2)∧(p−1) → L0S2. The middle
map depends on a contractible choice of a point inL(p− 1). To make the diagram

L0Sq
v̄1,0 //

f ♭

²²

W× Z(p)

Ω∞
⊗

f
²²

L0S2 ū0 // BU(p) × Z(p)

strictly commute, we must assume that the representing mapSq → W× Z(p) for v1 is
chosen to lift the composite mapSq → L0S2 → BU(p) × Z(p) . See the examples at the
end of §3.3 for more on this map of based pre-logS-algebras.

Remark 7.19 In the unbased category, there is no map

(f , f ♭) : (ℓ, LSq, v̄1) 6→ (ku(p), LS2, ū)

of (unbased) pre-logS-algebras lifting the usual mapf : ℓ → ku(p) , for odd primesp.
For f ♭ : LSq → LS2 must freely extend a map

Sq → LS2
=

∐

j≥0

L(j) ×Σj (S2)j

that takesSq to the j = p− 1 summand in a rationally nontrivial way. But any map
from Sq to L(j) ×Σj (S2)j lifts throughL(j) × (S2)j ≃ (S2)j , andπq((S2)j) is torsion.

This is an unsatisfactory feature of the unbased theory, since we expect f : ℓ → ku(p)

to behave as a tamely ramified extension of commutativeS-algebras, with ramification
locus corresponding to (v1) ⊂ π∗ℓ downstairs, and (u) ⊂ π∗ku(p) upstairs. The
ramification should be tame, since (v1) = (u)p−1 and the ramification indexe = p− 1
is prime to the residue characteristic. By analogy with Example4.32, we might
therefore expect there to be log structures onℓ andku(p) such thatf lifts to a logétale
map. Further evidence in this direction is given by Christian Ausoni’s discussion in [3,
§10]. As Example7.18and this remark shows, this is plausible in the context of based
log structures, but not so for unbased log structures.

However, as in Example12.16, the freeE∞ based log structures onℓ and ku(p) are
too simple to realizef as part of a loǵetale map. In a later paper, we will describe
a recently found modification of the current theory, working with commutativeMU -
algebras in place of commutativeS-algebras, where this loǵetale realization problem
has a positive solution. HereMU is the complex bordism spectrum.
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Example 7.20 Among the based pre-log structures (N, α) on a commutativeS-algebra
A, such thatα takes all but the identity element ofA to the zero-th path component of
A, there is a terminal example. It hasN = (Ω•

0A) ⊔ {1}, whereΩ•
0A ⊂ Ω•

⊗A denotes
the full path component of the base point 0. Note thatN has the multiplicativeE∞

structure, not the additive one. Thisfull zero-th path component pre-log structure
is canonically associated toA, and each map likef : ℓ → ku(p) of commutativeS-
algebras is covered by a corresponding pre-log map. However, it seems to be difficult
to determine the associated based deloopingsBn

∧(N), and we have not been able to
analyze any interesting cases.

Example 7.21 Let A be a commutative symmetric ring spectrum, and letY be a based
I -space. Choose a basedI -space mapy: Y → Ω•

⊗A, and extendy freely to a map
ȳ0 : C0Y → Ω•

⊗A. Then (A, C0Y, ȳ0) is a based pre-log symmetric ring spectrum. A
homotopy class [u] in πd(A), for d ≥ 0, is realized at some leveln in the I -space
Ω•
⊗A, by a mapu: Sd → ΩnAn. WhenA is positively fibrant, we may assumen = 1.

Letting Y = FnSd be the freeI -space generated bySd at leveln, we get anI -space
map y: Y = FnSd → Ω•

⊗A, which generates a based pre-log structure (C0Y, ȳ0) on
A, as above. We call this the free commutative pre-log structure onA generated byu.
There is, of course, a corresponding unbased construction.

Definition 7.22 Let f : A → B be a map of commutative symmetric ring spectra, and
let (M, α) be a pre-log structure onA. Theinverse image log structure

(f ∗M, f ∗α) = (M, Ω•
⊗f ◦ α)a

on B is the log structure associated to the pre-log structure given by the compositemap

M
α
−→ Ω

•
⊗A

Ω•
⊗

f
−−→ Ω

•
⊗B

of commutativeI -space monoids. Hence there is a commutative diagram

(Ω•
⊗f ◦ α)−1GL1(B) //

²²

M
α //

f ♭

²²

Ω•
⊗A

Ω•
⊗

f

²²
GL1(B) // f ∗M

f ∗α // Ω•
⊗B

where the left hand square is a pushout square. In particular, there isa canonical map
(f , f ♭) : (A, M) → (B, f ∗M) of (pre-)log symmetric ring spectra.

Similar definitions can be made for based (pre-)log structures, using the associated
based log structure from Definition7.9.
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Lemma 7.23 The space of log maps(A, M) → (B, N) covering a fixed mapf : A → B
of commutative symmetric ring spectra is weakly equivalent to the space of log maps
(B, f ∗M) → (B, N) coveringidB, the identity onB.

Proof The space of commutativeI -space monoid mapsM → N that make the
following diagram commute

M
α //

²²Â
Â
Â

!!B
BB

BB
BB

B Ω•
⊗A

Ω•
⊗

f
²²

N
β

// Ω•
⊗B

agrees with the space of pre-log maps from (M, Ω•
⊗f ◦ α) to (N, β) coveringidB, and

this is weakly equivalent to the space of log maps from (M, f ∗α) to (N, β) covering
idB, essentially by Lemma7.8.

Lemma 7.24 The canonical map(M, α) → (Ma, αa) from a pre-log structure onA
to the associated log structure induces a weak equivalence

(f ∗M, f ∗α)
≃
−→ (f ∗(Ma), f ∗(αa))

of inverse image log structures onB.

Proof The part (Ω•
⊗f ◦ αa)−1GL1(B) of the pushoutMa that sits overGL1(B) is the

pushout of the parts ofM ← α−1GL1(A) → GL1(A) that sit overGL1(B), i.e., the
pushout of (Ω•

⊗f ◦ α)−1GL1(B) ← α−1GL1(A) → GL1(A). So in the commutative
diagram

α−1GL1(A)
α̃ //

²²

GL1(A)

²²
(Ω•

⊗f ◦ α)−1GL1(B) //

²²

(Ω•
⊗f ◦ αa)−1GL1(B) //

²²

GL1(B)

²²
M // Ma // f ∗(Ma)

the upper left hand square, the rectangle formed by the two left hand squares, and the
lower right hand square are pushout squares. It follows that the lower left hand square,
and the rectangle formed by the two lower squares, are pushout squares. Hencef ∗M ,
which is the pushout of the latter rectangle, is equivalent tof ∗(Ma).
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Definition 7.25 A map (f , f ♭) : (A, M) → (B, N) of log symmetric ring spectra is
strict if the corresponding commutativeI -space monoid mapf ∗M → N is a weak
equivalence. We writestrLog(S) ⊂ Log(S) for the subcategory of strict maps.

Definition 7.26 Let f : A → B be a map of commutative symmetric ring spectra and
let (N, β) be a pre-log structure onB. Thedirect image pre-log structure (f∗N, f∗β)
on A is defined by the pullback square

f∗N
f∗β //

²²

Ω•
⊗A

Ω•
⊗

f
²²

N
β // Ω•

⊗B

of commutativeI -space monoids. When (N, β) is a log structure onB, (f∗N, f∗β) will
also be a log structure onA, called thedirect image log structure, since the part off∗N
sitting overGL1(A) ⊂ Ω•

⊗A is the pullback ofβ−1GL1B and GL1(A) over GL1(B),
which then is isomorphic toGL1(A). There is a canonical map (f , f ♭) : (A, f∗N) →

(B, N) of (pre-)log symmetric ring spectra.

Lemma 7.27 The space of log maps(A, M) → (B, N) covering a fixed mapf : A → B
of commutative symmetric ring spectra is weakly equivalent to the space of log maps
(A, M) → (A, f∗N) coveringidA, the identity onA.

Proof The space of commutativeI -space monoid mapsM → f∗N that make the
upper square commute

M
α //

²²Â
Â
Â Ω•

⊗A

=

²²
f∗N

f∗α //

²²

Ω•
⊗A

Ω•
⊗

f
²²

N
β

// Ω•
⊗B

agrees, by the universal property of pullbacks, with the space of commutativeI -space
monoid mapsM → N that make the outer rectangle commute.

Remark 7.28 The present definition of a pre-log structure on a commutativeS-algebra
A is only really suitable for connectiveA, since the functorsΩ∞

⊗ andGL1 ignore the
negative homotopy groups ofA. In other words, the pre-log structures onA are the
same as the pre-log structures on its connective cover, and this is undesirable in some
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topological applications. For example, the based Bott pre-log structure (L0S2, ū0)
on the connectiveK -theory spectrumku is generated by a mapu: S2 → Ω∞

⊗ ku.
It gives a non-trivial log structure onku, since multiplication byu induces a map
Σ2ku → ku that is not a weak equivalence. However, the corresponding pre-log
structure (L0S2, Ω∞

⊗ i ◦ ū0) on the periodicK -theory spectrumKU , wherei : ku→ KU
is the connective covering map, should ideally be viewed as a trivial log structure, since
multiplication byu induces a weak equivalenceΣ2KU → KU .

We hope to resolve this point in a later paper, as an application of the gradedversion
of I -spaces developed in Sagave–Schlichtkrull [67]. Conversely, the Bott structure on
ku should arise as the direct imagei∗GL1(KU) of the trivial “graded” log structure on
KU . More generally, the connective covere of any commutativeS-algebraE with
periodic homotopy groups should inherit a non-trivial canonical graded log structure
i∗GL1(E) from E, as the direct image along the connective covering mapi : e→ E.

8 Logarithmic topological Hochschild homology

Definition 8.1 A map ǫ : M → P of commutativeI -space monoids isexact if the
diagram

M
γ //

ǫ

²²

ΓM

Γǫ
²²

P
γ // ΓP

is a homotopy pullback square. A mapǫ : M → P of commutativeI -space monoids is
virtually surjective if the induced homomorphismπ0Γǫ : π0ΓM → π0ΓP of abelian
groups is surjective. Let

(CSI/P)vsur ⊂ CSI/P

be the full subcategory of virtually surjectiveM over P. We say that a virtually
surjective M over P is replete if it is also exact, i.e., if the diagram above is a
homotopy pullback square. Let

(CSI/P)rep ⊂ (CSI/P)vsur

be the full subcategory of repleteM over P.

Definition 8.2 For a virtually surjectiveǫ : M → P, let therepletion of M overP be
the pullback

Mrep
= P×ΓP ΓM
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in the square diagram above, with the canonical structure mapǫrep : Mrep → P. The
following diagram of commutativeI -space monoids commutes, where the right hand
square is a pullback by construction:

M //

ǫ

²²

Mrep //

ǫrep

²²

ΓM

Γǫ
²²

P
= // P

γ // ΓP

We call the mapM → Mrep therepletion map.

Proposition 8.3 For virtually surjectiveǫ : M → P, the maps

M → Mrep → ΓM

induce weak equivalences

ΓM
≃
−→ Γ(Mrep)

≃
−→ Γ(ΓM)

upon group completion. HenceMrep is replete overP.

Proof We start with the pullback square definingMrep, from Definition8.2. For each
q ≥ 0, the square ofq-fold ⊠-products

Mrep ⊠ · · · ⊠ Mrep //

²²

ΓM ⊠ · · · ⊠ ΓM

²²
P ⊠ · · · ⊠ P // ΓP ⊠ · · · ⊠ ΓP

is a homotopy pullback square, since (P⊠P)hI ≃ PhI×PhI , and similarly in the three
other corners of the square. More precisely, this equivalence holds ifP is a cofibrant
I -space, and similarly for the three other corners, so we should first apply cofibrant
replacement to the pullback square definingMrep. This does not affect the homotopy
type of Mrep, ΓM , etc., and will therefore be suppressed in the rest of the argument.

We now wish to apply the Bousfield–Friedlander theorem [16, Theorem B.4], to
conclude that the diagonalized square

B(Mrep) //

²²

B(ΓM)

²²
BP // B(ΓP)
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is a homotopy pullback square of commutativeI -space monoids. Assuming this, we
can pass to pointwise loop spaces to get the homotopy pullback square

Γ(Mrep) //

²²

Γ(ΓM)

²²
ΓP // Γ(ΓP) .

Here the lower horizontal map is a weak equivalence, hence so is the upper horizontal
map. It follows that

Mrep //

²²

Γ(Mrep)

²²
P // ΓP

is a homotopy pullback square, soMrep is replete.

To apply the Bousfield–Friedlander theorem, we need to know that

X• : [q] 7→ ΓM ⊠ · · · ⊠ ΓM

andY• : [q] 7→ ΓP⊠· · ·⊠ΓP (q copies ofΓM , resp.ΓP) satisfy theπ∗ -Kan condition
(see [16, §B.3]), and thatπv

0(X•) → πv
0(Y•) is a (Kan) fibration. The bar construction

on any group (or groupoid) is fibrant, and the same argument shows thatX• and Y•

satisfy theπ∗ -Kan condition. The zero-th vertical homotopy groups ofX• andY• are

πv
0(X•) : [q] 7→ π0(Xq) = (π0ΓM)q

andπv
0(Y•) = (π0ΓP)q, soπv

0(X•) → πv
0(Y•) is the map of bar constructionsB(π0ΓM) →

B(π0ΓP) induced by the group homomorphismπ0Γǫ : π0ΓM → π0ΓP. By assump-
tion ǫ : M → P is virtually surjective, soπ0Γǫ is surjective, and this precisely ensures
that B(π0ΓM) → B(π0ΓP) is a fibration.

Lemma 8.4 The functor (−)rep : (CSI/P)vsur → (CSI/P)rep is left adjoint to the
forgetful functor, at the level of homotopy- or infinity-categories. (Homotopy) colimits
of non-empty diagrams exist in(CSI/P)vsur, and are formed inCSI/P. Homotopy
colimits of non-empty diagrams exist in(CSI/P)rep, and are constructed by first
forming the homotopy colimit in(CSI/P)vsur and then applying(−)rep.

Definition 8.5 Let (R, P) be a base pre-log symmetric ring spectrum. A pre-log
symmetric ring spectrum (A, M) over (R, P) is virtually surjective if the underlying
commutativeI -space monoidM is virtually surjective overP. It is a replete pre-log
symmetric ring spectrum if the underlying commutativeI -space monoidM is replete
over P.



82 John Rognes

Let (PreLog(S)/(R, P))vsur and (PreLog(S)/(R, P))rep be the full subcategories of
PreLog(S)/(R, P) generated by the virtually surjective and the replete pre-log sym-
metric ring spectra, respectively. Let

(−)rep : (PreLog(S)/(R, P))vsur → (PreLog(S)/(R, P))rep

be the functor that takes a virtually surjective (A, M) over (R, P) to the replete pre-log
symmetric ring spectrum

(A, M)rep
= (A∧S[M] S[Mrep], Mrep)

over (R, P).

Homotopy colimits of non-empty diagrams in (PreLog(S)/(R, P))rep are constructed
by first forming the homotopy colimit inPreLog(S)/(R, P), thereby remaining within
(PreLog(S)/(R, P))vsur, and then applying (−)rep.

Lemma 8.6 Let (A, M, α) be a replete pre-log symmetric ring spectrum over a log
symmetric ring spectrum(R, P, ρ). ThenFM = α−1GL1(A).

Proof Consider the diagram

FM //

Fǫ

²²

α−1GL1(A) //

²²

M
γ //

ǫ

²²

ΓM

Γǫ

²²
FP

= // ρ−1GL1(R) // P
γ // ΓP

of commutativeI -space monoids. The left hand and middle horizontal maps are
inclusions of a full set of path components. The homomorphismπ0Γǫ is surjective,
the right hand square is a homotopy pullback, and the inclusionFP → ρ−1GL1(R)
is the identity. With these modifications, the proof proceeds just like the proof of
Lemma3.13.

Proposition 8.7 Let (A, M) be a replete pre-log symmetric ring spectrum over a log
symmetric ring spectrum(R, P). Then the associated log symmetric ring spectrum
(A, Ma) is a replete log symmetric ring spectrum over(R, P).

Proof The proof proceeds like that of Proposition3.14, except that we do not need to
assume thatP is “integral” in order to know that

M ⊠ GL1(A) //

²²

ΓM ⊠ GL1(A)

²²
Ma γ // ΓMa
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is a homotopy pullback square, since the lower row is obtained by forming theFM -
homotopy orbits of the upper row, up to weak equivalence.

Remark 8.8 In joint work with Steffen Sagave we develop a theory oflog modules
over a log symmetric ring spectrum (R, P), given as the stable model category of spectra
in the based category (R, P)/Logrep/(R, P) of replete log symmetric ring spectra under
and over (R, P).

Example 8.9 Let (A, M) be a pre-log symmetric ring spectrum andX• a simplicial
set. TheX• -fold ⊠-product X• ⊗ M is the diagonal of the simplicial commutative
I -space monoid

[q] 7→ Xq ⊗ M = M ⊠ · · · ⊠ M

(with one copy ofM for each element ofXq). There is a natural weak equivalence
Γ(X• ⊗ M) ≃ X• ⊗ ΓM .

Let Y• be a non-empty simplicial set. TheY• -fold replete⊠-productY• ⊗
rep M over

M is the pullback
Y• ⊗

rep M //

²²

Y• ⊗ ΓM

ǫ

²²
M

γ // ΓM

of commutativeI -space monoids. IfY• = (X•)+ has a disjoint base point, then
Y• ⊗

rep M ≃ M × (X• ⊗ΓM). TheY• -fold replete smash productY• ⊗
rep (A, M) is the

replete pre-log symmetric ring spectrum (Y• ⊗
rep A, Y• ⊗

rep M) over (A, M) given by
the pushout

S[Y• ⊗ M] //

²²

S[Y• ⊗
rep M]

²²
Y• ⊗ A // Y• ⊗

rep A

of commutative symmetric ring spectra.

Definition 8.10 Let M be a commutativeI -space monoid. Thecyclic bar construc-
tion on M is the commutativeI -space monoidBcyM = S1

• ⊗M , whereS1
• = ∆1

•/∂∆1
•

and the tensor product is formed in (SI , ⊠, ∗). The replete bar construction
BrepM = S1

• ⊗
rep M is the repletion ofBcyM over M , given as the pullback

BrepM //

²²

BcyΓM

ǫ

²²
M

γ // ΓM
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of commutativeI -space monoids. Bothγ and ǫ are maps of cyclic commutative
I -space monoids, whereM and ΓM have the trivial cyclic structure, soBrepM is a
cyclic commutativeI -space monoid, andBcyM → BrepM is a cyclic map.

There are natural weak equivalencesBcyΓM ≃ ΓM ⊠ B(ΓM) and BrepM ≃ M ⊠

BM ≃ M ⊠ B(ΓM). The latter depends on the equivalenceM ×ΓM (ΓM ⊠ B(ΓM)) ≃
M ⊠ B(ΓM), which can be seen by using that (M1 ⊠ M2)hI ≃ (M1)hI × (M2)hI . The
repletion map

BcyM → BrepM ≃ M × B(ΓM)

is homotopic to the composite

(ǫ, π) : BcyM
∆
−→ BcyM × BcyM

ǫ×π
−−→ M × BM ≃ M × B(ΓM)

whereǫ is the augmentation andπ is the usual projection map.

Thetopological Hochschild homologyof a commutative symmetric ring spectrumA
is the commutativeA-algebra THH(A) = S1

• ⊗ A. If A = S[M] then

THH(S[M]) = S1
• ⊗ S[M] ∼= S[S1

• ⊗ M] = S[BcyM] .

Definition 8.11 Let (A, M, α) be a pre-log symmetric ring spectrum. Thelog
topological Hochschild homologyof (A, M), denoted THH(A, M), is defined to be
S1

• ⊗
rep (A, M). Hence there is a pushout square

A∧S[M] THH(S[M])
ψ //

φ

²²

A∧S[M] S[BrepM]

φ̄
²²

THH(A)
ψ̄ // THH(A, M)

of commutativeA-algebras. The mapφ is induced by ¯α : S[M] → A, and the map
ψ is induced by the repletion mapBcyM → BrepM . Both φ andψ are maps of cyclic
commutativeA-algebras, so THH(A, M) is a cyclic commutativeA-algebra.

Remark 8.12 In view of the identification THH(S[M]) ∼= S[BcyM], THH(A, M) can
also be defined by the pushout square

S[BcyM]
ψ //

ᾱ
²²

S[BrepM]

²²
THH(A) // THH(A, M)

of commutative symmetric ring spectra, where the upper horizontal mapψ is induced
by the repletion map.



Topological logarithmic structures 85

Example 8.13 Let A = HZp be the Eilenberg–Mac Lane spectrum, letM = 〈p〉 =

{pj | j ≥ 0}, and letα : 〈p〉 → Zp ≃ Ω•A be the inclusion. Applying base change
alongS→ HZp → H = HFp to the pushout square of Remark8.12we get a pushout
square

H ∧ (Bcy〈p〉)+ //

²²

H ∧ (Brep〈p〉)+

²²
H ∧HZp THH(Zp) // H ∧HZp THH(Zp, 〈p〉)

of commutativeH -algebras. Recall from Propositions3.20and3.21that

Bcy〈p〉 ≃ ∗ ⊔
∐

j≥1

S1(j) and Brep〈p〉 ≃
∐

j≥0

S1(j) .

The homotopy algebras in the upper row are

H∗(B
cy〈p〉) = P(g) ⊗ E(dp)

H∗(B
rep〈p〉) = P(g) ⊗ E(d logp)

whereg is the generator ofH0(S1(1)) that corresponds to the 0-simplex (p), dp is the
generator ofH1(S1(1)) that corresponds to the loop (1, p), andd logp is the generator
of H1(S1(0)) that corresponds to the loop (p−1, p). The repletion map inducesg 7→ g
anddp 7→ g d logp. Furthermore,

π∗(H ∧HZp THH(Zp)) = π∗(THH(Zp); Z/p) = E(λ1) ⊗ P(µ1)

where|λ1| = 2p− 1 and|µ1| = 2p. This calculation is due to Marcel B̈okstedt (un-
published, ca. 1987). For a proof close to Bökstedt’s original argument, see Angeltveit–
Rognes [2, Theorem 5.12(a)] form = 1, using the conventionBP〈0〉 = HZ(p) . For an
earlier reference, see Franjou–Pirashvili [23].

The map ¯α inducesg 7→ 0 anddp 7→ 0. Hence the K̈unneth spectral sequence

E2
∗∗ = TorH∗(Bcy〈p〉)

∗∗ (π∗(THH(Zp); Z/p), H∗(B
rep〈p〉))

=⇒ π∗(THH(Zp, 〈p〉); Z/p)

hasE2-term

E2
∗∗ = TorP(g)⊗E(dp)

∗∗ (E(λ1) ⊗ P(µ1), P(g) ⊗ E(d logp))
∼= E(λ1) ⊗ P(µ1) ⊗ E(d logp) ⊗ TorE(dp)

∗∗ (Fp, Fp)
∼= E(d logp, λ1) ⊗ P(µ1) ⊗ Γ(κ0)

where the generators have bidegrees|d logp| = (0, 1), |λ1| = (0, 2p − 1), |µ1| =

(0, 2p) and|κ0| = (1, 1). Hereκ0 is represented by [dp] in the bar complex computing
Tor, andΓ(κ0) = Fp{γi(κ0) | i ≥ 0} denotes the divided power algebra onκ0.
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The inclusion THH(Zp) → THH(Zp, 〈p〉) takesλ1 to zero, so there is a differential

dp(γp(κ0)) = λ1

up to a unit inFp, leaving theE∞ -term

E∞
∗∗ = E(d logp) ⊗ P(µ1) ⊗ Pp(κ0)

wherePp(κ0) = P(κ0)/(κp
0) is the truncated polynomial algebra onκ0 of height p.

There is a multiplicative extension

κp
0 = µ1

in total degree 2p, so that

π∗(THH(Zp, 〈p〉); Z/p) ∼= E(d logp) ⊗ P(κ0)

as an algebra, with|d logp| = 1 and|κ0| = 2. Hence there is an abstract isomorphism

π∗(THH(Zp, 〈p〉); Z/p) ∼= π∗(THH(Zp|Qp); Z/p)

where THH(Zp|Qp) is as defined by Hesselholt–Madsen [29, §1.5]. We conjecture
that this isomorphism is realized by an equivalence

THH(Zp, 〈p〉) ≃ THH(Zp|Qp)

of cyclic commutative THH(Zp)-algebras.

Example 8.14 More generally, Hesselholt and Madsen [29] consider local fieldsK
(complete discrete valuation fields of characteristic zero with perfect residue field
k of characteristicp 6= 2) with valuation ringA ⊂ K and uniformizerπ . Let
α : M = 〈π〉 → (A, ·) be the inclusion, and letW = W(k) be the Witt ring. As
explained in Serre [75, §I.6, Prop. 18], the minimal polynomialφ(x) of π ∈ A over
W has the formφ(x) = xe − pθ(x), wheree is the ramification index ofK and θ(x)
is of degree< e with θ(0) a unit. The K̈ahler differentialsΩ1

A/W
∼= A/(φ′(π)){dπ}

are generated bydπ with annihilator ideal the different (φ′(π)) ⊂ A, while the log
Kähler differentialsΩ1

(A,M)/W
∼= A/(πφ′(π)){d logπ} are generated byd logπ with

annihilator ideal (πφ′(π)) ⊂ (p) ⊂ A. As explained in [29, §2.2] there is a natural
short exact sequence

0 → Ω
1
A/W

ψ̄
−→ Ω

1
(A,M)/W

res
−→ k → 0

whereψ̄(dπ) = π d logπ and res(d logπ) = 1. In [29, 1.5.5], Hesselholt and Madsen
define a usefulad hocmodel THH(A|K) for the log topological Hochschild homology
of (A, M), such that there is a homotopy cofiber sequence

THH(k)
i∗−→ THH(A)

j∗
−→ THH(A|K)
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wherei∗ is the transfer map associated to the surjectioni : A → A/(π) = k, and j∗ is
the natural map associated to the inclusionj : A → A[π−1] = K . In [29, 2.4.1] they
prove that

π∗(THH(A|K); Z/p) ∼= A/p⊗ E(d logπ) ⊗ P(κ0)

whereA/p⊗E(d logπ) ∼= Ω∗
(A,M)/p is the modp reduction of the log de Rham complex

of (A, M), and|κ0| = 2.

Conjecturally, the following isomorphism is induced by an equivalence

THH(A, 〈π〉) ≃ THH(A|K)

of cyclic commutative THH(A)-algebras.

Proposition 8.15 Let A, 〈π〉 andK be as above. There is an isomorphism

π∗(THH(A, 〈π〉); Z/p) ∼= π∗(THH(A|K); Z/p)

of π∗(THH(A); Z/p)-algebras.

Proof We will only prove this in the wildly ramified case, whenp|e. One can use
descent arguments, like in Hesselholt–Madsen [29, §2.4], to deal with the tamely
ramified (p ∤ e) and unramified (e = 1) cases.

We have a pushout square

HA/p∧ Bcy〈π〉+ //

²²

HA/p∧ Brep〈π〉+

²²
HA/p∧HA THH(A) // HA/p∧HA THH(A, 〈π〉)

of commutativeHA/p-algebras, and an associated Künneth spectral sequence

E2
∗∗ = TorH∗(Bcy〈π〉;A/p)

∗∗ (π∗(THH(A); Z/p), H∗(B
rep〈π〉; A/p))

=⇒ π∗(THH(A, 〈π〉); Z/p) .

In the wildly ramified case,

π∗(THH(A); Z/p) ∼= A/p⊗ E(α1) ⊗ P(α2)

by Lindenstrauss–Madsen [41, Theorem 4.4(ii)], with|α1| = 1 and|α2| = 2, andj∗

takesα2 to a unit timesκ0. Hence theE2-term is isomorphic to

E2
∗∗

∼= TorE(dπ)
∗∗ (A/p⊗ E(α1) ⊗ P(α2), E(d logπ))
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wheredπ 7→ α1 anddπ 7→ π d logπ in the respective factors. Hence theE2-term is
concentrated on the vertical axis, the Künneth spectral sequence collapses, and we get
the isomorphism

π∗(THH(A, 〈π〉); Z/p) ∼= (A/p⊗ E(α1) ⊗ P(α2)) ⊗E(dπ) E(d logπ)
∼= A/p⊗ E(d logπ) ⊗ P(α2) .

The abstract isomorphism withπ∗(THH(A|K); Z/p) takesα2 to a unit timesκ0.

Definition 8.16 Let N be a commutative basedI -space monoid overS0, as in Defini-
tion6.19. Thebased cyclic bar constructionon N is Bcy

∧ N = S1
• ⊗N, where the tensor

product is formed in (SI
0 , ⊡, S0). The suspension spectrumΣ∞N is a commutative

symmetric ring spectrum, and

THH(Σ•N) = S1
• ⊗ Σ

•N ∼= Σ
•(S1

• ⊗ N) = Σ
•Bcy

∧ N .

Now suppose thatN = cone(L) ∪L N′ is a commutative conically basedI -space
monoid. Based on discussions of symmetric conically basedI -space monoid deriva-
tions, like Definition5.14and Lemma12.4, we are led to declare thebased replete
bar construction of N to be

Brep
∧ N = N ⊡ B(ΓN′)+ .

Discussions similar to Lemma5.19and Proposition12.7specify the repletion map

ψ : Bcy
∧ N → Brep

∧ N

up to homotopy, but it is best described as the suspension of the based shear map
sh: N ⊡ N → N ⊡ (ΓN′)+ given in Definition13.14. Here the suspension is formed
in the category of commutativeI -space monoids under and overN.

Definition 8.17 Let (A, N, α) be a conically based pre-log symmetric ring spectrum.
Thebased log topological Hochschild homologyTHH0(A, M) of (A, M) is defined
by the pushout square

A∧Σ•N THH(Σ•N)
ψ //

φ

²²

A∧Σ•N Σ•Brep
∧ N

φ̄
²²

THH(A)
ψ̄ // THH0(A, N)

of commutativeA-algebras. HereA∧Σ•N Σ•Brep
∧ N ≃ A∧ B(ΓN′)+ ≃ A∧ BN′

+ .
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9 Operadic logarithmic structures

Definition 9.1 Let A be a commutativeS-algebra and leto: O → L be an operad
augmented over the linear isometries operad, so that eachL-spaceM has an underlying
O -spaceo#M . By anO pre-log structure on A we mean a pair (M, α), whereM is
anL-space andα : o#M → o#Ω∞

⊗ A is a map of the underlyingO -spaces. Amap

(f , f ♭) : (A, M) → (B, N)

of O pre-log S-algebras is a mapf : A → B of commutativeS-algebras, and a map
f ♭ : M → N of L-spaces, such that the square

o#M
α //

o#f ♭

²²

o#Ω∞
⊗ A

o#Ω∞
⊗

f
²²

o#N
β // o#Ω∞

⊗ B

commutes inO[U ]. To make homotopy-theoretic sense of this structure, we will need
to cofibrantly replaceo#M (ando#N) in the category ofO -spaces. The category ofO
pre-logS-algebras is the comma category

OPreLog(S) = (o#, o#
Ω
∞
⊗ )

whereo# : L[U ] → O[U ] and o#Ω∞
⊗ : CS → O[U ], see Mac Lane [44, §II.6].

WhenO is anEn operad, like the littlen-cubes operadCn, we say that (M, α) is anEn

pre-log structure onA. To makeCn augmented overL, we will implicitly replace it by
the product operadCn ×L. Similarly, the category ofO based pre-logS-algebrasis
defined to be (o#, o#Ω∞

⊗ ), where nowo# : L0[T ] → O0[T ] ando#Ω∞
⊗ : CS → O0[T ].

Remark 9.2 In view of the fact thatCn−1-algebras in associativeS-algebras are
En ring spectra, see Brun–Fiedorowicz–Vogt [17, Theorem C], we might modelEn-
algebras inI -spaces byCn−1-algebras in associativeI -monoids, to get a definition
of an En pre-log structure on a commutative symmetric ring spectrumA. For n = 2,
this would consist of a commutativeI -space monoidM and a mapα : M → Ω•

⊗A of
C1-algebras in associativeI -space monoids.

Remark 9.3 When discussing topological André–Quillen homology forA andS[M],
we will needA andM to be commutative orE∞ objects, and in order to form the log
topological Andŕe–Quillen homology TAQ(A, M) for (A, M) we will need thatα is
an E∞ map. On the other hand, when discussing topological Hochschild homology
of A and S[M], we only needA and M to be associative orA∞ objects. However,
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to form the log topological Hochschild homology of (A, M) we will make use of
the repletionBrepM of the cyclic bar constructionBcyM as a space overM . For an
augmentationǫ : BcyM → M to exist, extending the identity on the zero-simplices
M ⊂ BcyM , it is necessary and sufficient thatM is acyclic A∞ spaceas defined e.g. by
Vigleik Angeltveit, see [1, 4.1, 4.4] and Getzler–Kapranov [25]. This means thatM is
homotopy-commutative in a somewhat strong sense. For example,ǫ must take each
1-simplex (a, b) to a homotopyγa,b from ab to ba, and it must take each 2-simplex
(a, b, c)

abc

bca

γa,bc
yyyyyyyy

γca,b
cab

γab,c
EEEEEEEE

to a second order homotopy (= 2-cell) connecting the composite homotopyγab,c∗γca,b

from abc via cab to bca to the direct homotopyγa,bc from abc to bca.

a

==
==

==
==

b

==
==

==
= c

ppp
p

ppp
pp

ppp
p

a

==
==

==
==

==
==

==
==

==
b

³³
³³

³³
³³
³³
³³
³

c

³³
³³
³³
³³
³³

³³
³³

c

==
==

==
==

a

==
==

==
==

b
ppp

p

ppp
pp

ppp
p

=⇒

b c a b c a

A generalE2 spaceM will admit the homotopiesγa,b, but might not admit the second
order homotopy, since the full twistγb,c∗γc,b is often not homotopic to the identity. An
E3 spaceM will admit the second homotopy, but also satisfies coherence conditions
for non-cyclic permutations that may not be required in a cyclicA∞ structure. To
extend a retraction toM from the 2-skeleton to the 3-skeleton ofBcyM part of an
E4 structure will be needed, and so on. It would be interesting to know in operadic
terms what it means forBcyM to admit a retraction toM , but for our purposes it seems
reasonable just to assume thatM is E∞ , so that we can rectify it to a commutative
I -space monoid, for which the retractionǫ : BcyM → M always exists.

In the case of grouplikeM , Thomas Kragh has pointed out that ifM = ΩX, with
X an H -group, we haveBcyM ≃ ΛX and ΩX → ΛX admits a retraction, since the
homotopy fiber sequenceΩX → ΛX → X admits a section andΛX is an H -group.
Hence for grouplikeM it suffices thatBM is anH -group. For example, this applies to
all grouplikeE2-spaces.

Assuming thatM is cyclic A∞ , or E∞ , we will need thatA and α are associative
in order to define THH(A, M), but more commutativity inA and α will give more
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multiplicative structure to THH(A, M). If α is a map ofEn spaces, or more precisely, a
map ofCn−1-algebras in associative monoids, then THH(A, M) will be a Cn−1-algebra
in spectra, i.e., anEn−1 ring spectrum. As the following lemmas show, this seems to
be a relevant setting for topological log geometry over the sphere spectrum.

Definition 9.4 Let A be an associativeS-algebra, and letx ∈ Ω∞
⊗ A be a chosen point.

Let M =
∐

j≥0L(j) be the free non-Σ L-space on a single point{1}, and extend
the map 17→ x freely to a mapx̄ : M → Ω∞

⊗ A of non-Σ L-spaces (=A∞ spaces),
taking the contractible spaceL(j) to the path component ofxj , for eachj ≥ 0. Let
〈x〉 = {1, x, x2, . . . } be the free associative (and commutative) monoid generated byx.
The collapse mapM → 〈x〉 is an equivalence ofA∞ spaces. We call (M, x̄) the free
A∞ pre-log structure on A generated byx, and usually denote it by (〈x〉, x̄) or 〈x〉.

If A is an En ring spectrum, or more precisely aCn−1-algebra in associativeS-
algebras, thenΩ∞

⊗ A is a Cn−1-algebra in non-Σ L-spaces, hence is equivalent to
a Cn-space. Suppressing this equivalence, each pointx ∈ Ω∞

⊗ A specifies aCn-map
x̄ : CnS0 → Ω∞

⊗ A, whereCnS0 is the freeCn-space on one generator. We call (CnS0, x̄)
thefree En pre-log structure on A generated byx.

Lemma 9.5 Let p be a prime and writeH∗(X) for H∗(X; Fp). Let A be anE2 ring
spectrum andx ∈ Ω∞

⊗ A a point. If p is odd, assume that[x] ∈ H0(Ω∞
⊗ A) has trivial

Browder operationλ1([x], [x]) = 0 in H1(Ω∞
⊗ A). If p = 2, assume that Cohen’s

“top” operation ξ1([x]) = 0 in H1(Ω∞
⊗ A). Both hypotheses are trivially satisfied if

H1(Ω∞
⊗ A) = 0. Then the algebra homomorphism

x̄∗ : H∗(C2S0) → H∗(Ω
∞
⊗ A)

induced by the freeE2 pre-log structurēx : C2S0 → Ω∞
⊗ A is zero in positive degrees,

hence factors through the augmentation

H∗(C2S0) → H∗(〈x〉) = P(e) .

In other words, there is no modp homological obstruction to there being anE2 pre-log
structure(M, α) on A, with M ≃ 〈x〉, so that the compositeC2S0 → 〈x〉 ≃ M

α
−→ Ω∞

⊗ A
is homotopic tox̄.

Proof By Fred Cohen’s calculation [18, III.A.1],

H∗(C2S0) = P(e) ⊗ E(hi | i ≥ 0)⊗ P(gi | i ≥ 1)

for p odd, whereP andE indicate the polynomial and exterior algebras on the listed
generators, respectively. Heree = [1], h0 = λ1(e, e), hi = ξ1(hi−1) andgi = βhi for
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all i ≥ 1, where the Browder operationλ1 (which is 0 for allE3 spaces) and the top
operationξ1 are defined in [18, §III.1], while β is the Bockstein operation. See also
Yamaguchi [82, page 522]. TheE2-map x̄ takese to [x] and h0 to λ1([x], [x]), which
is 0 by assumption. By naturality of the operations it follows that alsohi andgi map
to 0, for all i ≥ 1, so x̄∗ factors through the augmentation toP(e) = H∗(〈x〉). The
proof for p = 2 is very similar.

Lemma 9.6 There is noE3 pre-log structure(M, α) onkuwith M ≃ 〈p〉, such that the
(homotopy) generator maps to a point in thep-th component ofΩ∞

⊗ ku≃ (BU× Z)⊗ .
The same conclusion applies for thep-completionkup of ku. Hence there is no suchE3

pre-log structure on any other commutativeS-algebraA with a commutativeS-algebra
map tokup.

Proof For C3-spacesM there is a top operationξ2 : H0(M) → H2p−2(M) that agrees
with Q1 for E4 spaces. The generatore = [1] ∈ H0(M) maps to [p] ∈ H0(BU × Z),
so if α is aC3-map the classξ2(e) in H2p−2(M) = 0 maps toQ̃1[p] in H2p−2(BU×Z),
whereQ̃r denotes the multiplicative Dyer–Lashof operation. Now

Q̃r [p] ≡ −Qr [1] ∗ [pp − p]

modulo∗-decomposables by Cohen–Lada–May [18, II.2.8], and

Qr [1] ≡ −(−1)rbr(p−1) ∗ [p]

modulo∗-decomposables by [18, II.7.1]. HereH∗(BU) = P(bi | i ≥ 1) with |bi | = 2i ,
where bi is the image of a generator ofH2i(BU(1)) under the inclusionBU(1) ⊂

BU × {0} ⊂ BU × Z. HenceQ̃1[p] ≡ −bp−1 ∗ [pp] 6= 0 in H2p−2(BU × Z). In
particular, it cannot be the image underα∗ of ξ2(e) = 0.

These modp homological calculations hardly distinguish betweenku and kup. The
last conclusion follows by naturality, since anE3 pre-log structureα : M → Ω∞

⊗ A
composed with anE∞ mapΩ∞

⊗ A → Ω∞
⊗ kup would produce anE3 pre-log structure

on kup.

Lemma 9.7 Let A be a commutativeS-algebra such that the unit mapS → A
takes the Hopf mapη ∈ π1(S) to zero in π1(A)[1/p] . For simplicity assume that
Z ∼= π0(S) → π0(A) is injective, and writeN × 〈p〉 ⊂ Ω∞

⊗ A for the subL-space
consisting of the path components corresponding to〈p〉 ⊂ π0(A). Consider the group
completion

Γ(p̄) : Γ(C2S0) → Γ(N × 〈p〉)
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of theC2-mapp̄: C2S0 → N×〈p〉 freely generated by1 7→ p. HereΓ(C2S0) ≃ Ω2S2

andΓ(N × 〈p〉) ≃ N[1/p] × 〈p, p−1〉. Restricted to the0-th component in the source,

Γ0(p̄) : Ω
2
0S2 → N[1/p]

is null-homotopic as aC2-map.

Proof The additive group completion equivalenceΓ(C2S0) ≃ Ω2S2 is due to Graeme
Segal [74, Theorem 1], see also Cohen–Lada–May [18, III.3.3]. The multiplicative
group completion equivalenceΓ(N × 〈p〉) ≃ N[1/p] × 〈p, p−1〉 is due to Peter May
[46, VII.5.3], generalizing a result of Jørgen Tornehave. The Hopf fiber sequence
S1 → S3 η

−→ S2 loops to a fiber sequenceΩS3 → ΩS2 → S1 with a section, so there
are equivalences

Ω
2S3 × Z

≃
←− Ω

2S3 × ΩS1 ≃
−→ Ω

2S2

of Ω-spaces. The inclusionΩ2η : Ω2S3 → Ω2
0S2 of the zero-th component is an

Ω2-equivalence, and the composite

C2S1 ≃
−→ Ω

2S3 ≃
−→ Ω

2
0S2 → Γ1(N × 〈p〉) ≃ N[1/p]

is the freeC2-map generated by its restrictionS1 → N[1/p], representing the image of
η in π1(N[1/p]) ∼= π1(A)[1/p]. By assumption the map fromS1 is null-homotopic as
a based map, hence the freeC2-map it generates is null-homotopic as aC2-map.

We view these lemmas as motivation for the following hypothesis.

Hypothesis 9.8 Let A be anE2 ring spectrum withπ1(A) = 0, and letx ∈ Ω∞
⊗ A.

Then the freeA∞ pre-log structure(〈x〉, x̄) on A generated byx lifts to an E2 pre-log
structure(M, α) on A, with M ≃ 〈x〉 andα homotopic tox̄.

Definition 9.9 Let A be a commutativeS-algebra, letY = Sd be a sphere, and let
y: Sd → Ω∞

⊗ A be a based map representing a homotopy class inπd(A) with Hurewicz
image [y] ∈ Hd(Ω∞

⊗ A). There are canonical maps

C1,0Sd
=

∨

j≥0

C1(j)+ ∧Σj Sdj ≃
∨

j≥0

Sdj

→ C2,0Sd
=

∨

j≥0

C2(j)+ ∧Σj Sdj ≃
∨

j≥0

Sdj
hBj

→ L0Sd
=

∨

j≥0

L(j)+ ∧Σj Sdj ≃
∨

j≥0

Sdj
hΣj

,
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whereBj is the j -th braid group. Letσj be theRj -bundle overBΣj associated to the
usual inclusionΣj → O(j), and letβj be theRj -bundle overBBj associated to the
composite homomorphismBj → Σj → O(j), so thatβj is the pullback ofσj along the
usual mapBBj → BΣj . ThenSdj

hΣj
= EΣj+ ∧Σj Sdj ∼= Th(dσj) is the Thom complex

of d timesσj , andSdj
hBj

= EBj+ ∧Bj Sdj ∼= Th(dβj) is the Thom complex ofd timesβj .
From here on we assume thatd is even.

Proposition 9.10 When Y = Sd is an even sphere each vector bundledβj over BBj

is trivial, so Sdj
hBj

∼= Σdj(BBj+). Hence each inclusionSdj → Sdj
hBj

admits a retraction

r j : Sdj
hBj

→ Sdj , and these combine to a retraction of based spaces

r : C2,0Sd → C1,0Sd .

Proof For d = 2 there is a trivialization of 2βj , given in Cohen–Mahowald–Milgram
[19, Theorem 1] by an explicit map

ν : C2(j) ×Σj (R2)j → (R2)j .

To eachj -tuple c = (c1, . . . , cj) of little squares (= 2-cubes) inI2 we can associate a
j -tuple z = (z1, . . . , zj) of distinct points inI2 ⊂ R2, given by the barycenters of the
squares. IdentifyingR2 with C, we let

ν(z, ξ) = (
∑

i

ξi ,
∑

i

ziξi , . . . ,
∑

i

zj−1
i ξi)

for ξ = (ξ1, . . . , ξj) in (R2)j ∼= Cj . Simultaneously reordering thezi and ξi by a
permutation inΣj does not change these sums, soν is well-defined. For a fixed
z = (z1, . . . , zj) the linear mapξ 7→ ν(z, ξ) is given by a Vandermonde matrix, which
is nonsingular because thezi are all distinct. Taking the Whitney sum of (d/2) copies
of this trivialization we get a trivialization ofdβj .

Remark 9.11 We would like to know if there is a basedE2 structure onC1,0Sd ≃
∨

j≥0 Sdj such that the retractionr : C2,0Sd → C1,0Sd is anE2 map. The composite

C2,0(C1,0Sd)
i
−→ C2,0(C2,0Sd)

µ
−→ C2,0Sd r

−→ C1,0Sd

where i in induced by the inclusion, andµ expresses composition in the operadC2,
decomposes as a wedge sum of maps

C2(j)+ ∧G (Sdi1 ∧ · · · ∧ Sdij ) → Sd|i| ,

whereG ⊂ Σj is the stabilizer of (i1, . . . , i j) and|i| = i1+· · ·+i j . This can be modeled
by cabling, taking C2(j) to C2(|i|), and using the retractionC2(|i|)+ ∧G Sd|i| → Sd|i| .
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For a more rigid model, we might replaceC2(j) by the homotopy-equivalent space
BPj , wherePj ⊂ Bj is the pure braid group onj strings, and use the cabling map
BPj → BP|i| . We do not know if there is a map

BPj+ ∧G (Sdi1 ∧ · · · ∧ Sdij ) → Sd|i|

that generates a basedE2 structure on
∨

j≥0 Sdj .

Lemma 9.12 If λ1([y], [y]) = 0 in H2d+1(Ω∞
⊗ A), as it is for anyE3 ring spectrumA,

then the algebra homomorphism

(ȳ0)∗ : H̃∗(C2,0Sd) → H∗(Ω
∞
⊗ A)

induced by the freeE2 based pre-log structure factors through the retraction

r∗ : H̃∗(C2,0Sd) → H̃∗(C1,0Sd) ∼= P(e) ,

wheree∈ H̃d(Sd) ⊂ H̃∗(C1,0Sd) is the fundamental class.

Proof We have isomorphisms

H̃∗(C2,0Sd) ∼=
⊕

j≥0

H∗(BBj ; Fp{ej})

∼= P(e) ⊗ E(hi | i ≥ 0)⊗ P(gi | i ≥ 1) .

Sinced is even,Bj acts trivially onFp{ej}. We haveh0 = λ1(e, e), hi = ξ1(hi−1) and
gi = βhi for i ≥ 1. Here|e| = d, |hi | = 2pi(d + 1)− 1 and|gi | = 2pi(d + 1)− 2.
(These conventions specialize to those used in the proof of Lemma9.5whend = 0.)
The retractionr∗ takese to e and maps eachhi andgi to zero. TheC2-mapȳ0 takese
to [y], so if λ1([y], [y]) = 0 then allhi andgi map to zero inH∗(Ω∞

⊗ A). Hence (̄y0)∗
factors throughr∗ , as claimed

Lemma 9.13 There is noE3 pre-log structure(M, α) on ku with M ≃ C1,0S2,
such that the generatore of H2(M) ⊂ H̃∗(C1,0S2) ∼= P(e) maps to[u] in H2(BU) ⊂
H∗(BU × Z), where[u] is the Hurewicz image of the Bott classu: S2 → BU.

Proof We write H∗(BU) = P(bi | i ≥ 1), as in the proof of Lemma9.6, so [u] = b1.
There is a natural operationξ2 : H2(M) → H4p−2(M) for C3-spaces, which agrees with
Q2 for E4 spaces by Cohen–Lada-May [18, III.1.3]. The Bott class [u] is primitive, so

Q̃r ([u] ∗ [1]) = (Q̃r [u]) ∗ [1] + (Qr [u]) ∗ [1]
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by [18, II.8.6]. HereQ̃r ([u] ∗ [1]) = 0 for r > 0 by [18, II.7.2], sinceBU(1)× 1 →

Ω∞
⊗ ku is anE∞ map from a strictly commutative monoid. Furthermore,

Qr [u] ≡ (−1)r (r − 1)br(p−1)+1

modulo ∗-decomposables by Kochman’s calculations [37, Theorem 6], soQ̃2[u] ≡

−b2p−1 6= 0 modulo∗-decomposables. In particular,Q̃2[u] cannot be the image under
α∗ of ξ2(e) = 0 in H∗(M).

Remark 9.14 The graded analogue of Lemma9.7 is presently hypothetical. The
stable Snaith splitting [76] of C2Sd induces an isomorphism

H̃∗(C2,0Sd) ∼= H∗(C2Sd) ∼= P(e) ⊗ E(hi | i ≥ 0)⊗ P(gi | i ≥ 1) .

There is no obvious notion of group completion in the category of basedE∞ spaces,
but there may be a suitable category of gradedE∞ spaces, or commutative monoids in
gradedI -spaces, where this makes sense. See Sagave–Schlichtkrull [67].

To recover the summands̃H∗(S
dj
hBj

) ∼= H∗(BBj ; Fp{ej}) in H̃∗(C2,0Sd) one introduces
a weight functionw, with w(e) = 1, w(hi) = 2pi and w(gi) = 2pi . The monomials
of total weight j then form a basis forH∗(BBj ; Fp{ej}). If we assume that this (non-
connective) graded group completion has the effect of inverting the fundamental class
e, the weight zero component of the result has homology

H∗(Γ0C2,0Sd) ∼= E(h̄i | i ≥ 0)⊗ P(ḡi | i ≥ 1)

whereh̄i = e−2pi
hi and ḡi = e−2pi

gi all have weight zero. This algebra is isomorphic
to

H̃∗(C2,0S1) ∼= H∗(C2S1) ∼= H∗(Ω
2S3) .

We can reach the same result from a different point of view, involving theconically
based spaces. WithN = C2,0Sd ≃

∨

j≥0 Sdj
hBj

the base point complementN′ ≃
∐

j≥0 BBj ≃ C2S0 has group completionΓN′ ≃ Ω2S2, and its zero-th path component
is Γ0N′ ≃ Ω2

0S2 ≃ Ω2S3. Hence the obstruction, in the base point component after
group completion, to improving a free basedA∞ pre-log structure generated by a map
Sd → Ω∞

⊗ A into a basedE2 pre-log structure, lies in theE2 map Ω2S3 → Ω∞
⊗ A

generated byη .

Hypothesis 9.15 Let A be anE2 ring spectrum withπ1(A) = 0, and lety: Sd →

Ω∞
⊗ A, whered ≥ 0 is even. Then the free basedA∞ pre-log structure(C1,0Sd, ȳ0) on

A generated byy lifts to a basedE2 pre-log structure(M, α) on A, with M ≃ C1,0Sd

andα homotopic toȳ0.
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Example 9.16 Let (C1,0S2, ū0) be the freeA∞ based pre-log structure onku(p) gen-
erated by a mapS2 → Ω∞

⊗ ku(p) representingu ∈ π2ku(p) , and let (C1,0Sq, v̄1,0) be
the freeA∞ based pre-log structure onℓ generated by a mapSq → Ω∞

⊗ ℓ represent-
ing v1 ∈ πqℓ. Let f : ℓ → ku(p) be the usual map of commutativeS-algebras. The
inclusionSq = S2(p−1) → C1,0S2 to the j = p− 1 summand extends to anA∞ map

f ♭ : C1,0Sq → C1,0S2

that makes (f , f ♭) : (ℓ, C1,0Sq) → (ku(p), C1,0S2) a map ofA∞ based pre-logS-algebras.
Note that the natural map

ℓ ∧Σ∞C1,0Sq Σ
∞C1,0S2 → ku(p)

is an equivalence, since the left hand side is equivalent to
∨p−1

j=0 Σ2ℓ, and compare
with Lemma12.15. Assuming some uniqueness or other compatibility of theE2 lifts
in Hypothesis9.15, the map (f , f ♭) can be promoted to be a map ofE2 based pre-log
S-algebras. If so, THH(Σ∞C1,0Sq) and THH(Σ∞C1,0S2) becomeA∞ ring spectra,
we can construct THH(ℓ, C1,0Sq) and THH(ku(p), C1,0S2), and

THH(ℓ, C1,0Sq) → THH(ku(p), C1,0S2)

becomes a map ofA∞ ring spectra.

Remark 9.17 We summarize the results of these calculations. ForA = ku and
M = 〈p〉, Lemmas9.5, 9.6 and9.7 consider the existence ofEn pre-log structures
α : M → Ω∞A⊗ taking the monoid generator to thep-th component ofΩ∞A⊗ . An
A∞ = E1 pre-log structure certainly exists, and there is no homological obstruction to
the existence of anE2 pre-log structure, but noE3 pre-log structure exists.

For A = ku andM =
∨

j≥0 S2, Proposition9.10and Lemmas9.12and9.13concern
En pre-log structuresα : M → Ω∞A⊗ mappingS2 ⊂ M to Ω∞A⊗ to represent the
Bott classu ∈ π2ku. An A∞ = E1 pre-log structure certainly exists, and there is no
homological obstruction to the existence of anE2 pre-log structure, but noE3 pre-log
structure exists.

In Hypotheses9.8 and9.15, we propose a natural generality for the existence ofE2

pre-log structures. In Example9.16, we discuss the consequences for the existence
of a map (ℓ, M) → (ku(p), N) of E2 pre-log S-algebras, withM ≃

∨

k≥0 Sqk and
N ≃

∨

j≥0 S2j .
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Part III

Logarithmic topological Andr é–Quillen
homology

10 Topological André–Quillen homology

We now extend the construction of log Kähler forms and the log cotangent complex to
the topological context.

Definition 10.1 Let A be a commutative symmetric ring spectrum and letJ be a
left A-module spectrum. SinceA is commutative, we can also think ofJ as a right
A-module. Thesquare-zero extensionA ∨ J is the commutative symmetric ring
spectrum with multiplication map

(A∨ J) ∧ (A∨ J) ∼= (A∧ A) ∨ (A∧ J) ∨ (J ∧ A) ∨ (J ∧ J) → A∧ J

given by the multiplicationµ : A∧A → A on the first wedge summand, by the module
actionsA∧J → J andJ∧A → J on the second and third summands, and by the trivial
mapJ ∧ J → ∗ on the fourth summand. We have maps

A
η
−→ A∨ J

ǫ
−→ A

of commutative symmetric ring spectra, whereA is the unit inclusion andǫ collapses
J to ∗. We think ofJ as the kernel ofǫ, making it a square-zero ideal inA∨ J.

Definition 10.2 Let A be commutative symmetric ring spectrum, and letJ be an
A-module. Aderivation of A with values inJ is a mapd : A → A∨J of commutative
symmetric ring spectra overA. We let

DerS(A, J) = (CSpΣ/A)(A, A∨ J)

be the (homotopy invariant) mapping space of all such derivations.

More generally, for a mape: R→ A of commutative symmetric ring spectra, we say
that aderivation of A overR with values inJ is a mapd : A → A∨ J of commutative
symmetric ring spectra underR and overA. It is a dashed arrow making the following
diagram

(10.1) R
ηe //

e
²²

A∨ J

ǫ

²²
A

d
<<y

y
y

y
y = // A
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commute, in the category of commutative symmetric ring spectra. We let

DerR(A, J) = (R/CSpΣ/A)(A, A∨ J)

be the mapping space of all such derivations. We usually abbreviateR/CSpΣ and
R/CSpΣ/A to CR andCR/A, respectively.

Definition 10.3 The following definition is due to Maria Basterra [12]. The topolog-
ical Andr é–Quillen homologyof A over R is theA-module

TAQR(A) = TAQ(A/R) = LQARIA(A∧L

R A) .

In other words, it is the homotopy invariant form ofQAIA(A ∧R A). Here A ∧R A
is viewed as a commutative symmetric ring spectrum under and overA, via the left
unit map id ∧ e: A ∼= A ∧R R → A ∧R A and the multiplicationµ : A ∧R A → A.
The augmentation ideal functor IA : CA/A → NA, to the category of non-unital
commutativeA-algebras, is right adjoint to the functorN 7→ A∨N, and this adjoint pair
forms a Quillen equivalence. Theindecomposable quotientfunctorQA : NA → MA,
to the category ofA-modules, is left adjoint to the functor that gives anA-module the
trivial multiplication.

We say thate: R → A is formally étale if TAQR(A) is contractible. WhenR = S is
the sphere spectrum, we simply write TAQ(A) for TAQS(A).

Proposition 10.4 The topological Andŕe–Quillen homology corepresents derivations,
in the sense that there is a natural weak equivalence

MA(TAQR(A), J) ≃ DerR(A, J)

of homotopy invariant mapping spaces. There is a universal derivation

du : A → A∨ TAQR(A)

of A over R that corresponds to the identity map ofTAQR(A).

Proof This is essentially Basterra’s result [12, 3.2]. By the (Quillen) adjunctions

MA // NA

QAoo A∨(−)//
CA/A

IA

oo

one gets equivalences

MA(TAQR(A), J) ≃ NA(IA(A∧R A), J) ≃ (CA/A)(A∧R A, A∨ J) ,
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and by the left hand pushout square in the diagram

R
e //

e
²²

A
η //

²²

A∨ J

ǫ

²²
A // A∧R A

::t
t

t
t

t µ // A

of commutative symmetric ring spectra, the dashed arrows correspond to derivations
of A over R with values inJ.

Remark 10.5 Implicit in Proposition10.4is the result that

DerR(A, J) ≃ Ω
n DerR(A, ΣnJ)

is an infinite loop space, sinceMA(TAQR(A), J) ≃ ΩnMA(TAQR(A), ΣnJ), for all
n ≥ 0. Hence the square-zero extensionA ∨ J is an “infinite loop object” inCR/A,
topologically analogous to the role ofA⊕ J as an abelian group object inCRing/A.
See Remark4.2.

Lemma 10.6 Let g: C → A be a map of commutativeR-algebras, and letJ be
an A-module. Writeg#J for J viewed as aC-module viag. Composition with
g∨ id : C∨ J → A∨ J induces a weak equivalence

DerR(C, g#J)
≃
−→ (CR/A)(C, A∨ J) .

Proof This follows since the right hand square in the diagram

R //

²²

C∨ J
g∨id //

ǫ

²²

A∨ J

ǫ

²²
C

<<y
y

y
y

y = // C
g // A

is a homotopy pullback.

Proposition 10.7 Let R
e
−→ A

f
−→ B be maps of commutative symmetric ring spectra.

There is a natural homotopy cofiber sequence

B∧A TAQR(A) → TAQR(B) → TAQA(B)

of B-modules, known as thetransitivity sequencefor e and f .

Proof See Basterra [12, 4.2] for this topological analogue of Quillen’s [60, 5.1].
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Proposition 10.8 Let e: R→ A andg: R→ T be maps of commutative symmetric
ring spectra. There is a natural weak equivalence

T ∧R TAQR(A)
≃
−→ TAQT(T ∧R A)

of (T ∧R A)-modules, known asflat base changealongg.

Proof See Basterra [12, 4.6] for this topological analogue of Quillen’s [60, 5.3].

Lemma 10.9 Let M = CX =
∐

j≥0 X⊠j/Σj be the free commutativeI -space monoid
on anI -spaceX, so thatS[M] = PS[X] =

∨

j≥0 S[X]∧j/Σj is the free commutative
symmetric ring spectrum on the symmetric spectrumS[X] . Then

TAQ(S[M]) ≃ S[M] ∧ S[X]

and the universal derivationdu : S[M] → S[M] ∨ (S[M] ∧ S[X]) is the commutative
symmetric ring spectrum map that extends the symmetric spectrum map

i ∨ (η ∧ id) : S[X] → S[M] ∨ (S[M] ∧ S[X])

given as the wedge sum of the inclusioni : S[X] → S[M] and the unit mapη ∧

id : S[X] ∼= S∧ S[X] → S[M] ∧ S[X] .

Similarly, letN = C0Y =
∨

j≥0 Y⊡j/Σj be the free commutative basedI -space monoid
on a basedI -spaceY, so thatΣ•N = PΣ•Y is the free commutative symmetric ring
spectrum on the symmetric spectrumΣ•Y. Then

TAQ(Σ•N) ≃ Σ
•N ∧ Σ

•Y

and the universal derivationdu : Σ•N → Σ•N ∨ (Σ•N ∧ Σ•Y) is the commutative
symmetric ring spectrum map that extends the symmetric spectrum map

i ∨ (η ∧ id) : Σ
•Y → Σ

•N ∨ (Σ•N ∧ Σ
•Y)

given as the wedge sum of the inclusioni : Σ•Y → Σ•N and the unit mapη ∧

id : Σ•N ∼= S∧ Σ•Y → Σ•N ∧ Σ•Y.

Proof For eachS[M]-moduleJ, the space Der(S[M], J) of dashed maps

S //

²²

S[M] ∨ J

ǫ

²²
S[M]

99s
s

s
s

s
= // S[M]
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in the category of commutative symmetric ring spectra is equivalent to the spaceof
dashed maps

S[M] ∨ J

ǫ

²²
S[X]

99t
t

t
t

t
i // S[M]

in the category of symmetric spectra, which by projection alongp: S[M] ∨ J → J is
equivalent to the space of symmetric spectrum mapsS[X] → J. In particular, these
are corepresented by the symmetric spectrumS[X], and by the inducedS[M]-module
TAQ(S[M]) = S[M] ∧ S[X].

The universal derivationdu corresponds to the identity onS[M] ∧ S[X] as anS[M]-
module map, which corresponds toη ∧ id : S[X] → S[M] ∧ S[X] as a symmetric
spectrum map, and to the multiplicative extension ofi ∨ (η ∧ id) : S[X] → S[M] ∨
(S[M] ∧ S[X]) as a symmetric ring spectrum map overS[M].

The proof in the based case is identical.

Remark 10.10 For more general commutativeI -space monoidsM , built as cell
complexes by attaching copies ofCX along CA for suitableI -spacesA ⊂ X, one
can inductively compute TAQ(S[M]) by combining Propositions10.7and10.8with
Lemma10.9. For example, ifN is a CW complex in commutative basedI -space
monoids, so that thek-skeletonNk is obtained fromNk−1 by attachingCX alongCA
for X ≃

∨

Dk andA ≃
∨

Sk−1, then there is a homotopy cofiber sequence

Σ
•N ∧Σ•Nk−1 TAQ(Σ•Nk−1) → Σ

•N ∧Σ•Nk TAQ(Σ•Nk) → Σ
•N ∧

∨

Sk

of Σ•N-modules. The homotopy colimit

TAQ(Σ•N) = hocolim
k

(

Σ
•N ∧Σ•Nk TAQ(Σ•Nk)

)

can then be assembled from the filtration quotientsΣ•N ∧
∨

Sk , in the usual manner
known from cellular homology and the Atiyah–Hirzebruch spectral sequence, see
Baker–Gilmour–Reinhard [11].

Remark 10.11 For grouplikeE∞ spacesM , Basterra and Mandell [13, Theorem 5]
prove that TAQ(S[M]) ≃ S[M] ∧ B∞M as an extendedS[M]-module. The condition
that M is grouplike is omitted in the published statement, but was needed for their
intended argument, as Mike Mandell has kindly pointed out. We therefore reproduce
part of their argument here, to show where the grouplike hypothesis is needed.
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The shear mapΓM × M → ΓM × M , given on elements by (m, n) 7→ (mγ(n), n),
induces a weak equivalence

S[ΓM] ∧ S[M] → S[ΓM] ∧ S[M]

of commutativeS[ΓM]-algebras. This is a map of augmentedS[ΓM]-algebras, where
the augmentation on the left hand side is induced by the multiplicationΓM × M →

ΓM × ΓM → ΓM , and the augmentation on the right hand side is induced by the
projection ΓM × M → ΓM × ∗ ∼= ΓM that collapsesM to ∗. By [13, The-
orem 6.1] the commutativeS[ΓM]-algebra indecomposables of the two sides are
S[ΓM]∧S[M] TAQ(S[M]) and the extended moduleS[ΓM]∧B∞M , respectively. Hence
TAQ(S[M]) ≃ S[M] ∧ B∞M whenM is grouplike, but for generalM this only holds
after base change alongS[M] → S[ΓM].

Since pre-log structures mappingM into GL1(A) only give rise to trivial log structures,
the Basterra–Mandell result for grouplikeM is not directly relevant to our discussion.
Also the extended version is of modest direct use, since a pre-logS-algebra (A, M)
becomes log trivial after base change to (A∧S[M] S[ΓM], M) or (A∧S[M] S[ΓM], ΓM).
However, a slightly modified version of the shear map above is of fundamental impor-
tance in the general description of repletion maps given in Section13below.

11 Logarithmic topological André–Quillen homology

Definition 11.1 Define the grouplike commutativeI -space monoid (1+ Ω•J)⊗ by
the homotopy fiber sequence

(1 + Ω
•J)⊗ → GL1(A∨ J)

GL1(ǫ)
−−−→ GL1(A)

whereGL1(ǫ) is split by GL1(η). More explicitly, itsn-th space is the homotopy fiber
at ηn : Sn → An of the projectionΩn(An ∨ Jn) → ΩnAn. We get a weak equivalence

GL1(A) ⊠ (1 + Ω
•J)⊗

≃
−→ GL1(A∨ J)

(for semi-stableA andJ) expressingGL1(A∨J) as the homotopy coproduct ofGL1(A)
and (1+ Ω•J)⊗ .

Lemma 11.2 The projectionA∨ J → J induces a weak equivalence

(1 + Ω
•J)⊗

≃
−→ Ω

•J

of I -spaces, which is compatible up to preferred homotopy with the grouplikeE∞

structures on(1 + Ω•J)⊗,hI and (Ω•J)hI . Hence the spectrum associated to the
commutativeI -space monoid(1 + Ω•J)⊗ is weakly equivalent to the underlying
spectrum ofJ.
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Proof The inclusionA∨ J → A× J is a stable equivalence, so the map of homotopy
fibers

(1 + Ω
•J)⊗ → Ω

•J

(for the projections toA) is also a weak equivalence.

For brevity, writeFn for the homotopy fiber ofΩn(An ∨ Jn) → ΩnAn at ηn. Given a
pinch mapSm+n → Sm+n ∨ Sm+n, the compositeFm× Fn → Fm+n → Ωm+nJm+n has
a preferred homotopy to the composite

Fm × Fn → Ω
mJm × Ω

nJn → Ω
m+nJm+n × Ω

m+nJm+n → Ω
m+nJm+n ,

where the middle map is the product of the stabilization maps inJ, and the right hand
map is the loop sum specified by the pinch map. Parametrizing the pinch maps by
pairs of little (m+ n)-cubes, and generalizing to products with more than two factors,
we get the desired equivalence ofE∞ structures.

Remark 11.3 An alternative argument in the language ofL-spaces can be given using
[13, Theorem 6.1]. Basterra and Mandell construct a weak equivalenceof S-modules
LQSRISS[Ω∞J] → J, which is left adjoint to a mapRISS[Ω∞J] → J of non-unital
commutativeS-algebras, which in turn is right adjoint to a mapS[Ω∞J] → S∨ J
of commutativeS-algebras overS, which finally is left adjoint to a map of grouplike
L-spaces fromΩ∞J to the homotopy fiber ofGL1(S∨ J) → GL1(S), and the latter
is equivalent to (1+ Ω∞J)⊗ . This map of grouplikeL-spaces is the desired weak
equivalence.

Definition 11.4 Let (M, α) be a log structure onA. Theinverse image log structure
(η∗M, η∗α) on A ∨ J is given by the upper central pushout square in the following
diagram of commutativeI -space monoids.

1 //

²²

GL1(A) //

GL1(η)
²²

M
α //

η♭

²²

Ω•
⊗A

Ω•
⊗

η

²²
(1 + Ω•J)⊗ //

²²

GL1(A∨ J) //

GL1(ǫ)
²²

η∗M
η∗α //

ǫ♭

²²

Ω•
⊗(A∨ J)

Ω•
⊗

ǫ

²²
1 // GL1(A) // M

α // Ω•
⊗A

Sinceǫη = id we can identifyǫ∗η∗M with M .

Lemma 11.5 There is a chain of weak equivalences

M × (1 + Ω
•J)⊗

≃
←− M ⊠ (1 + Ω

•J)⊗
≃
−→ η∗M
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andη∗α maps(m, 1 + j) to α(m) · (1 + j) = α(m) + α(m)j . The natural mapsη♭ and
ǫ♭ correspond to the product of the identity onM with the base point inclusion and
collapse maps1 → (1 + Ω•J)⊗ → 1, respectively.

Proof The upper left hand square in Definition11.4is a homotopy pushout, hence so
is the rectangle with vertices 1,M , (1+ Ω•J)⊗ andη∗M .

Definition 11.6 When (M, α) is a pre-log structure onA, we define

η∗M = M ⊠ (1 + Ω
•J)⊗ .

In view of Lemma11.2, there is a weak equivalenceη∗M ≃ M × Ω•J. We define the
pre-log structure

η∗α : η∗M → Ω
•
⊗(A∨ J)

as the coproduct in commutativeI -space monoids of the pre-log structureΩ•
⊗η ◦

α : M → Ω•
⊗(A∨ J) and the composite

iJ : (1 + Ω
•J)⊗ → GL1(A∨ J)

ι
−→ Ω

•
⊗(A∨ J) .

There results a commutative diagram

1 //

²²

M
α //

η♭

²²

Ω•
⊗A

Ω•
⊗

η

²²
(1 + Ω•J)⊗ //

²²

η∗M
η∗α //

ǫ♭

²²

Ω•
⊗(A∨ J)

Ω•
⊗

ǫ

²²
1 // M

α // Ω•
⊗A

of commutativeI -space monoids, where the two left hand squares are pushouts.

Lemma 11.7 Let (M, α) be a pre-log structure onA, andJ an A-module. There is
an equivalence

(η∗M)a ≃ η∗(Ma)

of log structures inA∨ J.

Proof The proof is similar to that for Lemma7.24.
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Definition 11.8 Let (A, M) be a pre-log symmetric ring spectrum, and letJ be an
A-module. Alog derivation of (A, M) with values inJ is a map

(d, d♭) : (A, M) → (A∨ J, η∗M)

of pre-log symmetric ring spectra over (A, M). Let

DerS((A, M), J) = (PreLog(S)/(A, M))((A, M), (A∨ J, η∗M))

be the mapping space of all such log derivations.

More generally, for a map (e, e♭) : (R, P) → (A, M) of pre-log symmetric ring spectra
we say that alog derivation of (A, M) over (R, P) with values in theA-moduleJ is a
map

(d, d♭) : (A, M) → (A∨ J, η∗M)

of pre-log symmetric ring spectra under (R, P) and over (A, M). In other words, it is a
dashed arrow making the diagram of pre-log symmetric ring spectra

(11.1) (R, P) //

(e,e♭)
²²

(A∨ J, η∗M)

(ǫ,ǫ♭)
²²

(A, M)

(d,d♭)
88qqqqqq

= // (A, M)

commute. The top horizontal map is (η, η♭) ◦ (e, e♭) = (ηe, η♭e♭). We let

Der(R,P)((A, M), J) = (PreLog(R, P)/(A, M))((A, M), (A∨ J, η∗M))

be the mapping space of all such log derivations.

Lemma 11.9 The logification maps(R, P) → (R, Pa) and (A, M) → (A, Ma) induce
weak equivalences

Der(R,Pa)((A, Ma), J)
≃
−→ Der(R,P)((A, Ma), J)

≃
−→ Der(R,P)((A, M), J) .

Proof Let Z be the space of dashed arrows making the diagram

(R, P) //

(e,e♭)
²²

(A∨ J, η∗Ma)

(ǫ,ǫ♭)
²²

(A, M)

88pppppp
// (A, Ma)

commute, in the category of pre-log symmetric ring spectra. The first map of thelemma,
and the natural map Der(R,P)((A, Ma), J) → Z, are weak equivalences by Lemma7.8,
since we are considering spaces of pre-log maps into the log symmetric ring spectra



Topological logarithmic structures 107

(A∨ J, η∗Ma) and (A, Ma). The natural map Der(R,P)((A, M), J) → Z is also a weak
equivalence, because

η∗M //

ǫ♭

²²

η∗Ma

ǫ♭

²²
M // Ma

is a homotopy pullback square. Hence the second map in the lemma is also a weak
equivalence.

Definition 11.10 Let M andK be commutativeI -space monoids, withK grouplike.
The space ofcommutative I -space monoid derivationsof M with values inK is the
mapping space

Der♭(M, K) = (CSI/M)(M, M × K)

of commutativeI -space monoid homomorphismsd♭ : M → M × K over M .

More generally, lete♭ : P → M be a map of commutativeI -space monoids. The
space

Der♭P(M, K) = (P/CSI/M)(M, M × K)

of commutative I -space monoid derivationsof M over P with values inK is the
space of dashed arrowsd♭ making the diagram

(11.2) P
η♭e♭

//

e♭

²²

M × K

ǫ♭

²²
M

d♭
;;w

w
w

w
w = // M

of commutativeI -space monoids commute.

Lemma 11.11 There are natural equivalences

Der♭(M, K) ≃ CSI(M, K) ≃ SpΣ(B∞M, B∞K)

and
Der♭P(M, K) ≃ SpΣ(B∞M/B∞P, B∞K) .

The universal commutativeI -space monoid derivation

d♭
u : M → M × ΓM

of M corresponds to the identity map ofB∞M , and is given by the composite

M
∆
−→ M × M

id×γ
−−−→ M × ΓM .
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More generally, the universal commutativeI -space monoid derivation

d♭
u : M → M × Ω

•(B•M/B•P)

of M over P corresponds to the identity map ofB∞M/B∞P.

Proof It is clear that commutativeI -space monoid homomorphismsd♭ : M → M×K
under P and overM correspond to commutativeI -space monoid homomorphisms
M → K that takeP to ∗.

P //

e♭

²²

∗

²²
M //___ K

SinceK is grouplike, the latter are equivalent to mapsB∞M → B∞K of symmetric
spectra, that come with a nullhomotopy of the restriction toB∞P. These are in turn
equivalent to maps from the homotopy cofiber ofB∞P → B∞M , which we write as
B∞M/B∞P.

Remark 11.12 Implicit in Lemma11.11is the result that

Der♭(M, K) ≃ Ω
n Der♭(A, BnK)

is an infinite loop space, sinceSpΣ(B∞M, B∞K) ≃ ΩnSpΣ(B∞M, B∞BnK), for all
n ≥ 0, and similarly for non-trivialP. The productM × K is an “infinite loop object”
in CSI/M .

Proposition 11.13 Let (e, e♭) : (R, P, ρ) → (A, M, α) be a map of pre-log symmetric
ring spectra, and letJ be anA-module. There is a homotopy pullback square

Der(R,P)((A, M), J) //

²²

DerR(A, J)

φ∗

²²
Der♭P(M, (1 + Ω•J)⊗)

ψ∗

// DerS[P](S[M], ᾱ#J) .

Proof A log derivation (d, d♭) as in diagram (11.1) is equivalent to a pair of log
derivationsd and d♭ , as in diagrams (10.1) and (11.2), respectively, subject to the
compatibility conditionΩ•

⊗d ◦ α = η∗α ◦ d♭ in the space of dashed arrows

(11.3) P //

e♭

²²

Ω•
⊗(A∨ J)

Ω•
⊗

ǫ

²²
M

::v
v

v
v

v α // Ω•
⊗A
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making this a commutative diagram inCSI , or equivalently, in the space of dashed
arrows

(11.4) S[P] //

S[e♭]
²²

A∨ J

ǫ

²²
S[M]

;;v
v

v
v

v
ᾱ // A

making this a commutative diagram inCSpΣ . The upper horizontal arrows are (Ω•
⊗η)◦

α ◦ e♭ and η ◦ ᾱ ◦ S[e♭], respectively. By Lemma10.6, the latter space is weakly
equivalent to DerS[P](S[M], ᾱ#J), since there is a homotopy pullback square

S[M] ∨ J ᾱ∨id //

ǫ

²²

A∨ J

ǫ

²²
S[M] ᾱ // A .

The mapφ∗ takes a derivationd of A overR with values inJ to Ω•
⊗d◦α, which under

these identifications corresponds tod◦ ᾱ : S[M] → A∨J and its lift (up to contractible
choice) to a derivation ofS[M].

The mapψ∗ takes a commutativeI -space monoid derivationd♭ of M over P with
values in (1+ Ω•J)⊗ to η∗α ◦ d♭ , which corresponds toη∗α ◦ S[d♭] : S[M] → A∨ J,
and to its lift to a derivation ofS[M].

Remark 11.14 In view of Remarks10.5and11.12,

Der(R,P)((A, M), J) ≃ Ω
n Der(R,P)((A, M), ΣnJ)

for all n ≥ 0, so the square-zero extensions (A∨ J, η∗M) are infinite loop objects in
Log(S)/(A, M).

Lemma 11.15 Let (e, e♭) : (R, P, ρ) → (A, M, α) be a map of pre-log symmetric
ring spectra. The functors fromA-modules to (infinite loop) spaces that takeJ to
DerR(A, J) andDerS[P](S[M], ᾱ#J) are corepresented by theA-modulesTAQR(A) and
A∧S[M] TAQS[P](S[M]) , respectively. The natural mapφ∗ is corepresented by the map

φ : A∧S[M] TAQS[P](S[M]) → TAQR(A)

of A-modules, induced by the maps̄ρ : S[P] → R andᾱ : S[M] → A of commutative
symmetric ring spectra. For(R, P) = (S, 1), it is left adjoint to theS[M] -module map
TAQ(S[M]) → TAQ(A) induced byᾱ.
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Proof The functor J 7→ DerR(A, J) is corepresented by TAQR(A), by Proposi-
tion 10.4. The functorK 7→ DerS[P](S[M], K), from S[M]-modules, is corepresented
by TAQS[P](S[M]), hence its composite withJ 7→ ᾱ#J is corepresented by the base
changeA∧S[M] TAQS[P](S[M]).

Modulo the identifications given by Lemma10.6, the mapφ∗ is given by composi-
tion with ᾱ, as discussed at the end of the proof of Proposition11.13. Hence the
corepresenting mapφ is also induced by ¯α.

Lemma 11.16 Let (e, e♭) : (R, P, ρ) → (A, M, α) be a map of pre-log symmetric
ring spectra. The functors fromA-modules to (infinite loop) spaces that takeJ to
Der♭P(M, (1 + Ω•J)⊗) and DerS[P](S[M], ᾱ#J) are corepresented by theA-modules
A ∧ (B∞M/B∞P) and A ∧S[M] TAQS[P](S[M]) , respectively. The natural mapψ∗ is
corepresented by a map

ψ : A∧S[M] TAQS[P](S[M]) → A∧ (B∞M/B∞P)

of A-modules.

Proof By Lemmas11.2and11.11we have a natural chain of equivalences

Der♭P(M, (1 + Ω
•J)⊗) ≃ Der♭P(M, Ω•J)

≃ SpΣ(B∞M/B∞P, J) ≃ MA(A∧ (B∞M/B∞P), J) .

HenceA ∧ (B∞M/B∞P) corepresents the first functor. The existence of a corepre-
senting map follows from the Yoneda lemma.

Proposition 11.17 Let (A, M, α) be a pre-log symmetric ring spectrum, and assume
that M = CX is the free commutativeI -space monoid on anI -spaceX. Let ᾱX =

ᾱ ◦ i : S[X] → A be the restriction of the adjoint structure mapᾱ : S[M] → A over the
inclusion i : S[X] → S[M] . The corepresenting map

ψ : A∧S[M] TAQ(S[M]) → A∧ B∞M

factors as

A∧S[M] TAQ(S[M]) ≃ A∧ S[X]
id∧S[∆]
−−−−→ A∧ S[X × X] ≃ A∧ S[X] ∧ S[X]
id∧ᾱX∧id
−−−−−→ A∧ A∧ S[X]
µ∧id
−−−→ A∧ S[X] ≃ A∧ B∞M

where∆ : X → X × X is theI -space diagonal andµ : A∧ A → A is the symmetric
ring spectrum product.
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Proof The first and last weak equivalences follow from Lemmas10.9 and 6.22,
respectively.

To identify the A-module mapψ , we view it as corepresenting a derivationd of
S[M] with values in the underlyingS[M]-module ᾱ#J of the extendedA-module
J = A∧ B∞M , as in diagram (11.4). We fix this value ofJ for the rest of the proof.
By adjunction, such a derivation corresponds to a commutativeI -space monoid map
M → Ω•

⊗(A∨ J) over Ω•
⊗A, as in diagram (11.3). The relevant commutativeI -space

monoid map is the compositeη∗α ◦ d♭ in the following diagram

M
α //

η♭

²²

Ω•
⊗A

Ω•
⊗

η

²²
(1 + Ω•J)⊗ // η∗M

η∗α //

ǫ♭

²²

Ω•
⊗(A∨ J)

Ω•
⊗

ǫ

²²
M

= //

d♭
99s

s
s

s
s

s
M

α // Ω•
⊗A

of commutativeI -space monoids. Hered♭ is the map that is corepresented by the
identity map ofJ = A ∧ B∞M , more-or-less as in Lemma11.11. Modulo the weak
equivalence

η∗M = M ⊠ (1 + Ω
•J)⊗

≃
−→ M × (1 + Ω

•J)⊗

(for reasonableM andJ), we can writed♭ as the composite

M
∆
−→ M × M

id×(1+γ′)
−−−−−−→ M × (1 + Ω

•J)⊗

where (1+ γ′) is the composite

M
γ
−→ Ω

•B•M
Ω•(ηA∧id)
−−−−−−→ Ω

•(A∧ B•M) = Ω
•J ≃ (1 + Ω

•J)⊗ .

Hereγ is the group completion map,ηA : S→ A is the unit map forA, and the last
equivalence uses Lemma11.2.

The mapη∗α is the coproduct of the mapΩ•
⊗η ◦ α and the inclusion

iJ : (1 + Ω
•J)⊗ → Ω

•
⊗(A∨ J) ,

hence can be written as the composite

M ⊠ (1 + Ω
•J)⊗

α⊠iJ−−−→ Ω
•
⊗A ⊠ Ω

•
⊗(A∨ J)

λ′

−→ Ω
•
⊗(A∨ J)

whereλ′ is the pairing induced from theA-module action onA∨ J. The composite
η∗α ◦ d♭ therefore factors as

M
∆
−→ M × M ≃ M ⊠ M

α⊠iJ(1+γ′)
−−−−−−−→ Ω

•
⊗A ⊠ Ω

•
⊗(A∨ J)

λ′

−→ Ω
•
⊗(A∨ J) .
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Passing to left adjoints, we find that the derivationd corepresented byψ is the
composite map

d : S[M]
S[∆]
−−→ S[M × M] ≃ S[M] ∧ S[M]

ᾱ∧(1+ǫ′)
−−−−−→ A∧ (A∨ J)

λ
−→ A∨ J

where (1+ ǫ′) is the composite

S[M]
ǫ
−→ B∞M

ηA∧id
−−−→ A∧ B∞M = J → A∨ J

using the unit ofA. Hereǫ is left adjoint toγ , andλ is the leftA-module action on
A∨ J.

So far we did not use thatM = CX is free. Now we use this, and the proof of
Lemma10.9, to see that the derivationd is corepresented by the composite map

ψ′ : S[X]
i
−→ S[M]

d
−→ A∨ J

p
−→ J

of symmetric spectra. The factorization ofd gives the following factorization

S[X]
i
−→ S[M]

S[∆]
−−→ S[M × M] ≃ S[M] ∧ S[M]

ᾱ∧ǫ
−−→ A∧ B∞M

of ψ′ . We can rewrite this as

S[X]
S[∆]
−−→ S[X × X] ≃ S[X] ∧ S[X]

ᾱX∧id
−−−→ A∧ S[X] ≃ A∧ B∞M ,

by noting that the composite

S[X]
i
−→ S[M]

ǫ
−→ B∞M

is the weak equivalence of Lemma6.22. The mapψ is theA-module extension ofψ′ ,
hence is given by the composite

A∧ S[X]
id∧S[∆]
−−−−→ A∧ S[X × X] ≃ A∧ S[X] ∧ S[X]

id∧ᾱX∧id
−−−−−→ A∧ A∧ S[X]

µ∧id
−−−→ A∧ S[X] .

Remark 11.18 For a map (R, P) → (A, M) of pre-log symmetric ring spectra, such
that (A, R) is a CW pair in commutative symmetric ring spectra and (M, P) is a CW
pair in commutativeI -space monoids, we can determineA ∧S[M] TAQS[P](S[M]),
A∧ (B∞M/B∞P) andψ modulo the skeleton filtration, as in Remark10.10.

Definition 11.19 Let (e, e♭) : (R, P, ρ) → (A, M, α) be a map of pre-log symmetric
ring spectra. Thelog topological André–Quillen homologyof (A, M) over (R, P),
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denoted TAQ(R,P)(A, M) or TAQ((A, M)/(R, P)), is defined by the homotopy pushout
square

A∧S[M] TAQS[P](S[M])
ψ //

φ

²²

A∧ (B∞M/B∞P)

φ̄
²²

TAQR(A)
ψ̄ // TAQ(R,P)(A, M)

of A-modules. Hereφ is induced by (e, e♭) and corepresentsφ∗ as in Lemma11.15,
while ψ corepresentsψ∗ as in Lemma11.16. We say that (e, e♭) is formally log étale
if TAQ (R,P)(A, M) is contractible. When (R, P) = (S, 1) we simply write TAQ(A, M)
for TAQ(R,P)(A, M).

Remark 11.20 By analogy with the notation in Definition4.25, we think of φ̄ : A∧

(B∞M/B∞P) → TAQ(R,P)(A, M) as generating the log differentials, symbolically
taking a ∧ γ(m) to a d logm. We think of ψ̄ : TAQR(A) → TAQ(R,P)(A, M) as the
inclusion of the ordinary differentials among the log differentials. The pushout along
A∧S[M] TAQS[P](S[M]) imposes the symbolic relationsdα(m) = α(m) d logm between
these differentials.

Proposition 11.21 The log topological Andŕe–Quillen homology corepresents log
derivations, in the sense that there is a natural weak equivalence

MA(TAQ(R,P)(A, M), J) ≃ Der(R,P)((A, M), J)

of mapping spaces. There is a universal log derivation

(du, d♭
u) : (A, M) → (A∨ TAQ(R,P)(A, M), η∗M)

of (A, M) over (R, P) that corresponds to the identity map ofTAQ(R,P)(A, M).

Proof This is clear from Proposition11.13and Lemmas11.15and11.16.

Corollary 11.22 A map (e, e♭) : (R, P, ρ) → (A, M, α) of pre-log symmetric ring
spectra is formally loǵetale if and only if all spaces of log derivations of(A, M)
over (R, P) are contractible, i.e., if the space of dashed arrows in diagram (11.1) is
contractible for eachA-moduleJ.

Corollary 11.23 The logification maps

(R, P) → (R, Pa) and (A, M) → (A, Ma)
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induce weak equivalences

TAQ(R,P)(A, M)
≃
−→ TAQ(R,P)(A, Ma)

≃
−→ TAQ(R,Pa)(A, Ma) .

Hence the log topological André–Quillen homology isinsensitive to logification.

In particular, ψ̄ : TAQR(A) → TAQ(R,P)(A, M) is a weak equivalence for each strict
log map (e, e♭) : (R, P) → (A, M), so a strict map of log symmetric ring spectra is
formally log étale if and only if the underlying map of commutative symmetric ring
spectra is formallýetale.

Proof The first claims are clear from Proposition11.21and Lemma11.9. The second
claims follow, since for a strict mapM ≃ e∗P = Pa, and it is clear from Definition11.19
that TAQR(A) ≃ TAQ(R,P)(A, P).

For an alternative proof, starting with the free caseM = CX, note that by Proposi-
tion 11.17the mapψ is an equivalence whenα : M → Ω•

⊗A factors throughGL1(A).
A homotopy inverse can be constructed by replacing ¯αX : S[X] → A with a multiplica-
tive inverse. Hencēψ : TAQ(A) → TAQ(A, M) is a weak equivalence when (M, α)a

is trivial. The general case follows by CW approximation and induction, using the
transitivity and flat base change results of Propositions11.28and11.29.

Remark 11.24 WhenA = S[M], both maps

φ : A∧S[M] TAQ(S[M]) → TAQ(A)

φ̄ : A∧ B∞M → TAQ(S[M], M)

are weak equivalences, so the comparison map

ψ̄ : TAQ(S[M]) → TAQ(S[M], M)

is identified with the mapψ that was described in Proposition11.17for free M .

Lemma 11.25 Let (e, e♭) : (R, P) → (A, M) be a map of pre-log symmetric ring
spectra, and letC = R∧S[P] S[M] , so that the left hand square is a pushout in the
following diagram

S[P]
S[e♭] //

ρ̄

²²

S[M] = //

²²

S[M]

ᾱ

²²
R // C // A

of commutative symmetric ring spectra. Then there is a natural homotopy cofiber
sequence

A∧ (B∞M/B∞P)
φ̄
−→ TAQ(R,P)(A, M) → TAQC(A)
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of A-modules. Hence(R, P) → (A, M) is formally logétale if and only if the connecting
map

∂ : TAQC(A) → ΣA∧ (B∞M/B∞P)

is an equivalence.

Proof By the homotopy pushout square of Definition11.19, the homotopy cofiber of

φ : A∧S[M] TAQS[P](S[M]) → TAQR(A)

is equivalent to the homotopy cofiber of

φ̄ : A∧ (B∞M/B∞P) → TAQ(R,P)(A, M) .

By flat base change along ¯ρ : S[P] → R we have an equivalence

C∧S[M] TAQS[P](S[M]) ≃ TAQR(C) ,

so we can rewriteφ as the map

A∧C TAQR(C) → TAQR(A)

with homotopy cofiber TAQC(A), by the transitivity sequence forR→ C → A.

Remark 11.26 It is clear that (R, P) → (A, M) will be formally log étale if B∞P →

B∞M is an A-homology equivalence (soA ∧ (B∞M/B∞P) ≃ ∗) and C → A is
formally étale (so TAQC(A) ≃ ∗). The converse holds in the algebraic context of fine
log schemes (or fine log rings), as proved by Kato [35, 3.5]. In the topological context
it remains to be determined whether∂ can be an equivalence, in cases where TAQC(A)
andA∧ (B∞M/B∞P) are not trivial.

Lemma 11.27 Let (A, M, α) be a pre-log symmetric ring spectrum. The map

ψ̄ : TAQ(A) → TAQ(A, M)

is a weak equivalence if and only if the logification(M, α)a is equivalent to the trivial
log structure.

Proof The mapψ̄ is a weak equivalence if and only if the mapψ∗ of Proposition11.13
is a weak equivalence, for allA-modulesJ. Hereψ∗ takes a sectiond♭ : M → η∗M
to its composite withη∗α, shown as dashed arrows in the diagram

η∗M
η∗α //

ǫ♭

²²

Ω•
⊗(A∨ J)

Ω•
⊗

ǫ

²²
M

α //

99t
t

t
t

t
t

d♭

>>

A
@

Â ~
}

Ω•
⊗A
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of commutativeI -space monoids. Henceψ∗ is a weak equivalence if and only if the
solid square is homotopy cartesian. Nowη∗M ≃ M × (1 + Ω•J)⊗ ≃ M × Ω•J by
Lemma11.2, andΩ•

⊗(A∨J) ≃ Ω•
⊗A×Ω•J. By Lemma11.5, η∗α maps the homotopy

fiber Ω•J over m to the homotopy fiberΩ•J over α(m) by multiplication byα(m).
Hence this is an equivalence, for allA-modulesJ, if and only if α(m) is homotopy
invertible for all m. In other words, this holds precisely whenα : M → Ω•

⊗A has
image contained inGL1(A), which is equivalent to the condition that (M, α)a agrees
with the trivial log structure onA.

Proposition 11.28 Let (R, P)
(e,e♭)
−−−→ (A, M)

(f ,f ♭)
−−−→ (B, N) be maps of pre-log symmet-

ric ring spectra. There is a natural homotopy cofiber sequence

B∧A TAQ(R,P)(A, M) → TAQ(R,P)(B, N) → TAQ(A,M)(B, N)

of B-modules, known as thetransitivity sequencefor (e, e♭) and(f , f ♭).

Proof The sequence corepresents a homotopy fiber sequence

Der(A,M)((B, N), K) → Der(R,P)((B, N), K) → Der(R,P)((A, M), f #K) ,

for all B-modulesK , hence is a homotopy cofiber sequence. For a different argument,
consider the commutative diagram:

B∧A TAQR(A)

²²

B∧S[M] TAQS[P](S[M])
φoo ψ //

²²

B∧ (B∞M/B∞P)

²²
TAQR(B)

²²

B∧S[N] TAQS[P](S[N])
φoo ψ //

²²

B∧ (B∞N/B∞P)

²²
TAQA(B) B∧S[N] TAQS[M](S[N])

φoo ψ // B∧ (B∞N/B∞M)

The left hand and middle columns are homotopy cofiber sequences by Proposition10.7,
and this is clear for the right hand column. Hence the column of homotopy pushouts
is also a homotopy cofiber sequence.

Proposition 11.29 Let

(R, P)
(g,g♭) //

(e,e♭)
²²

(T, Q)

²²
(A, M)

(f ,f ♭) // (B, N)
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be a pushout square of pre-log symmetric ring spectra, soB = T∧RA andN = Q⊕PM .
There is a natural weak equivalence

B∧A TAQ(R,P)(A, M) = T ∧R TAQ(R,P)(A, M)
≃
−→ TAQ(T,Q)(T ∧R A, Q⊕P M) = TAQ(T,Q)(B, N)

known asflat base changealong(g, g♭).

Proof By the pushout property of the left hand square below

(R, P)
(g,g♭) //

(e,e♭)
²²

(T, Q) //

²²

(B∨ K, η∗N)

(ǫ,ǫ♭)
²²

(A, M)
(f ,f ♭) // (B, N)

88qqqqqq
= // (B, N)

whereK is a B-module, the space of dashed lifts is equivalent to the space

(PreLog(R, P)/(B, N))((A, M), (B∨ K, η∗N))

of lifts across the outer rectangle, which is weakly equivalent to

Der(R,P)((A, M), f #K)

by the log analogue of Lemma10.6, since

(A∨ K, η∗M)
(f∨id,η∗f ♭) //

(ǫ,ǫ♭)
²²

(B∨ K, η∗N)

(ǫ,ǫ♭)
²²

(A, M)
(f ,f ♭) // (B, N)

is a homotopy pullback square. Hence Der(T,Q)((B, N), K) is corepresented by

B∧A TAQ(R,P)(A, M) ∼= T ∧R TAQ(R,P)(A, M) .

For an alternative proof, note that there is a pushout square

S[P]
S[g] //

S[e]
²²

S[Q]

²²
S[M]

S[f ] // S[N]

of commutative symmetric ring spectra, and a homotopy pushout square

B∞P
B∞g //

B∞e
²²

B∞Q

²²
B∞M

B∞f // B∞N
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of symmetric spectra. Hence the vertical maps in the following diagram

T ∧R TAQR(A)

²²

B∧S[M] TAQS[P](S[M])
φoo ψ //

²²

B∧ (B∞M/B∞P)

²²
TAQT(B) B∧S[N] TAQS[Q](S[N])

φoo ψ // B∧ (B∞N/B∞Q)

are weak equivalences, by Proposition10.8. Hence the induced map of homotopy
pushouts is also a weak equivalence. ReplacingB by T ∧R A in the upper row, we
obtain the flat base change equivalence.

Proposition 11.30 Let (A, M) → (R, P) be a virtually surjective map of pre-log
symmetric ring spectra, in the sense that(π0M)gp = π0ΓM → π0ΓP = (π0P)gp is
surjective. LetMrep = P ×ΓP ΓM be the repletion ofM over P, and let Arep =

A∧S[M] S[Mrep] . Then there is a weak equivalence

Arep ∧A TAQ(A, M)
≃
−→ TAQ(Arep, Mrep) ,

and the repletion map(A, M) → (Arep, Mrep) is formally log étale. In this sense, log
topological Andŕe–Quillen homologycommutes with repletion.

Proof Consider the following diagram

Arep ∧A TAQ(A)

²²

Arep ∧S[M] TAQ(S[M])
φoo ψ //

²²

Arep ∧ B∞M

≃

²²
TAQ(Arep)

²²

Arep ∧S[Mrep] TAQ(S[Mrep])
φoo ψ //

²²

Arep ∧ B∞Mrep

TAQA(Arep) Arep ∧S[Mrep] TAQS[M](S[Mrep])
≃oo

of Arep-modules. The left hand and middle columns are homotopy cofiber sequences
by transitivity (Proposition11.28). The right hand vertical map is an equivalence by
Proposition8.3, sinceΓM → Γ(Mrep) is an equivalence. The bottom horizontal map
is an equivalence by flat base change alongS[M] → A. Hence the induced map of
horizontal homotopy pushouts

Arep ∧A TAQ(A, M)
≃
−→ TAQ(Arep, Mrep)

is a weak equivalence. By transitivity, TAQ(A,M)(Arep, Mrep) is contractible.
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Corollary 11.31 Let (R0, P0) be a base pre-log symmetric ring spectrum and let

(R, P)
(g,g♭) //

(e,e♭)
²²

(T, Q)

²²
(A, M) // (Brep, Nrep)

be a pushout square of replete pre-log symmetric ring spectra over(R0, P0), so that
Nrep = Q ⊕rep

P M is the repletion ofN = Q ⊕P M over P0, B = T ∧R A and
Brep = B∧S[N] S[Nrep] . In other words,(Brep, Nrep) = (T, Q)∧rep

(R,P) (A, M). Then there
is a natural weak equivalence

Brep ∧A TAQ(R,P)(A, M)
≃
−→ TAQ(T,Q)(Brep, Nrep)

of Brep-modules, which we callreplete base changealong(g, g♭).

12 Based logarithmic topological Andŕe–Quillen homology

We now turn to based log derivations.

Definition 12.1 Let (N, α) be a based log structure on a commutative symmetric
ring spectrumA, and letJ be anA-module. Theinverse image based log structure
(η∗N, η∗α) of (N, α) alongη : A → A∨J is given by the upper central pushout square
in the diagram

S0 //

²²

GL1(A)+ //

GL1(η)+
²²

N
α //

η♭

²²

Ω•
⊗A

Ω•
⊗

η

²²
(1 + Ω•J)⊗,+ //

²²

GL1(A∨ J)+ //

GL1(ǫ)+
²²

η∗N
η∗α //

ǫ♭

²²

Ω•
⊗(A∨ J)

Ω•
⊗

ǫ

²²

S0 // GL1(A)+ // N
α // Ω•

⊗A

of commutative basedI -space monoids. The upper left hand square is a homotopy
pushout, so we get weak equivalences

η∗N ≃ N ⊡ (1 + Ω
•J)⊗,+

≃ N ∧ (1 + Ω
•J)⊗,+ ≃ N ∧ (Ω•J)+ .

When (N, α) is only a based pre-log structure, we defineη∗N by these formulas.
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Definition 12.2 Let N be a commutative basedI -space monoid and letK be a group-
like I -space monoid. The space ofcommutative basedI -space monoid derivations
of N with values inK is the space Der♭

0(N, K) of dashed arrowsd♭ making the diagram

S0 //

²²

N ∧ K+

ǫ♭

²²
N

d♭
;;v

v
v

v
v = // N

of commutative basedI -space monoids commute.

The space Der0((A, N), J) of based log derivationsof a based pre-log symmetric ring
spectrum (A, N) with values inJ is defined similarly, consisting of pairs (d, d♭) where
d : A → A ∨ J is a derivation andd♭ : N → η∗N ≃ N ∧ (Ω•J)+ is a commutative
basedI -space monoid derivation, such that the diagram

N
α //

d♭

²²

Ω•
⊗A

Ω•
⊗

d
²²

η∗N
η∗α // Ω•

⊗(A∨ J)

commutes.

Lemma 12.3 Let Y = cone(L)∪L Y′ be a conically basedI -space, and letN = C0Y.
There are natural equivalences

Der♭0(N, K) ≃ SI(Y′, K) ≃ SpΣ(S[Y′], B∞K)

for all grouplike commutativeI -space monoidsK .

Proof SinceN = C0Y is free, the commutative basedI -space monoid derivations
d♭ : N → N ∧ K+ are equivalent to the basedI -space mapsY → (C0Y) ∧ K+ over
C0Y, or equivalently, to the basedI -space mapsf : Y → Y ∧ K+ over Y. We think
of such maps as graphs of mapsY → K , except that special care is required near
the base point 0 ofY. Using the cone coordinate in cone(L) ⊂ Y, any such mapf
can deformed to a mapg that is constant in the cone direction over cone(L). The
deformation collapses a growing neighborhood of the cone vertex to that vertex, while
stretching a complementary neighborhood of the base to cover the cone. This way, the
graph over cone(L) flows into the special fiber 0× K ⊂ Y × K , gradually becoming
independent of the cone coordinate. The deformation is constant overY′ . The end
mapg is simplicial/continuous at the base point ofY because the special fiber has been
collapsed inY∧K+ . By restriction overY′ ⊂ Y we get an equivalence between these
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mapsg and the space ofI -space mapsY′ → Y′ × K over Y′ , which we identify with
the space ofI -space mapsY′ → K .

This deformation retraction provides the first natural equivalence. Thesecond equiva-
lence is standard, sinceK ≃ Ω•B•K for grouplikeK .

Lemma 12.4 Let N = cone(L) ∪L N′ be a commutative conically basedI -space
monoid. There are natural equivalences

Der♭0(N, K) ≃ CSI(N′, K) ≃ SpΣ(B∞(N′), B∞K)

for all grouplike commutativeI -space monoidsK .

Proof By a deformation retraction like that in the proof of Lemma12.3, the space
Der♭0(N, K) is equivalent to the space of commutativeI -space monoid mapsN →

N ∧ K+ over N that are constant in the cone direction over cone(L) ⊂ N. This space
is identified with the space of commutativeI -space monoid mapsN′ → K , and is
equivalent to the space of symmetric spectrum mapsB∞(N′) → B∞K , sinceK is
grouplike.

Proposition 12.5 Let (A, N) be a based pre-log symmetric ring spectrum, andJ an
A-module. There is a homotopy pullback square

Der0((A, N), J) //

²²

Der(A, J)

φ∗

²²
Der♭0(N, (1 + Ω•J)⊗)

ψ∗

// Der(Σ•N, ᾱ#J) .

Here φ∗ is corepresented by the mapφ : A ∧Σ•N TAQ(Σ•N) → TAQ(A) induced by
ᾱ : Σ•N → A, andψ∗ takes a commutative basedI -space derivationd♭ : N → N∧K+

to the compositeη∗α◦d♭ with η∗α : N∧K+ → Ω•
⊗(A∨J), interpreted in adjoint form

as a commutative symmetric ring spectrum mapΣ•N → A∨ J overA, or equivalently,
as a derivation ofΣ•N with values inᾱ#J.

Definition 12.6 Let (A, N, α) be a based pre-log symmetric ring spectrum, with
N = cone(L) ∪L N′ conically based. We define thebased log topological Andŕe–
Quillen homologyof (A, N), denoted TAQ0(A, N), by the pushout square

A∧Σ•N TAQ(Σ•N)
ψ //

φ

²²

A∧ B∞(N′)

φ̄
²²

TAQ(A)
ψ̄ // TAQ0(A, N)
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of A-modules. Hereφ is induced by ¯α, and ψ corepresents the natural mapψ∗

described in Proposition12.5.

More generally, for a map (e, e♭) : (R, Q, ρ) → (A, N, α) of conically based pre-log
symmetric ring spectra, define TAQ(R,Q)

0 (A, N) by the pushout square

A∧Σ•N TAQΣ•Q(Σ•N)
ψ //

φ

²²

A∧ (B∞N′/B∞Q′)

φ̄
²²

TAQR(A)
ψ̄ // TAQ(R,Q)

0 (A, N)

of A-modules. When TAQ(R,Q)
0 (A, N) ≃ ∗, we say that (R, Q) → (A, N) is formally

based logétale.

Proposition 12.7 Let (A, N, α) be a based pre-log symmetric ring spectrum, and
assume thatN = C0Y is the free commutative basedI -space monoid on a conically
basedI -spaceY = cone(L) ∪L Y′ . Let ᾱY = ᾱ ◦ i be the composite

Σ
•Y

i
−→ Σ

•N
ᾱ
−→ A .

The corepresenting map

ψ : A∧Σ•N TAQ(Σ•N) → A∧ B∞(N′)

factors as

A∧Σ•N TAQ(Σ•N) ≃ A∧ Σ
•Y

id∧Σ•δ
−−−−→ A∧ Σ

•(Y∧ Y′
+) ≃ A∧ Σ

•Y∧ S[Y′]
id∧ᾱY∧id
−−−−−→ A∧ A∧ S[Y′]
µ∧id
−−−→ A∧ S[Y′] ≃ A∧ B∞(N′)

where theconical diagonal mapδ : Y → Y ∧ Y′
+ restricts to the diagonal overY′ ,

and is constant in the cone direction overcone(L) ⊂ Y.

Proof The proof is similar to that of Proposition11.17. Let J = A∧ B∞(N′). The
commutative basedI -space derivationd♭ : N → η∗N = N⊡Ω•J+ ≃ N∧Ω•J+ factors
asδ : N → N ∧ N′

+ composed withid ∧ γ′
+ , whereγ′ : N′ → Ω•(A∧ B•N′) ≃ Ω•J.

Hence the composite

N
d♭

−→ N ∧ Ω
•J+

η∗α
−−→ Ω

∞(A∨ J)
p
−→ Ω

∞J
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is right adjoint to the composite

Σ
•N

Σ•δ
−−→ Σ

•N ∧ S[N′]
ᾱ∧ǫ+
−−−→ A∧ B∞(N′) .

Using thatN = C0Y is free, we find (as in Lemma10.9) that η∗α ◦ d♭ is right adjoint
to the derivationd of Σ•N that is corepresented by the composite map

ψ′ : Σ
•Y

Σ•δ
−−→ Σ

•Y∧ S[Y′]
ᾱY∧id
−−−→ A∧ S[Y′]

of symmetric spectra. The equivalenceB∞(N′) ≃ S[Y′] is from Lemma6.22. The
mapψ is theA-module extension ofψ′ , giving the claimed factorization.

Lemma 12.8 If N = M+ has a disjoint zero, thenTAQ0(A, N) ∼= TAQ(A, M).

Proof This is clear fromN′ = M and Definitions11.19and12.6.

Example 12.9 Let Y = cone(L) ∪L Y′ be a conically basedI -space. It can be
expressed as a pushout

∗+ //

²²

Y+

²²
∗ // Y

in the category of basedI -spaces, where∗+ = S0, Y+ and∗ = {0} all have disjoint
zeros. However, this is usually not a pushout of conically basedI -space. Applying
C0 we get a pushout square

(A, (C∗)+) //

²²

(A, (CY)+)

²²
(A, 1+) // (A, C0Y)

of based pre-log symmetric ring spectra, for any pre-log structureα : C0Y → Ω•
⊗A.

There is no base change formula for based log TAQ in this case, since the square of
symmetric spectra

S≃ B∞C∗ //

²²

B∞CY≃ S[Y]

²²
∗ = B∞1 // B∞C0(Y)′ ≃ S[Y′]

can only be a homotopy pushout ifΣ∞(cone(L)/L) ≃ S, which mostly happens for
L = ∅. Here we have used Lemma6.22in every corner. On the other hand there is a
base change formula for pushouts of conically based pre-log structures.
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Proposition 12.10 Let (R, P)
(e,e♭)
−−−→ (A, M)

(f ,f ♭)
−−−→ (B, N) be maps of conically based

pre-log symmetric ring spectra. There is a natural homotopy cofiber sequence

B∧A TAQ(R,P)
0 (A, M) → TAQ(R,P)

0 (B, N) → TAQ(A,M)
0 (B, N)

of B-modules, known as thebased transitivity sequence.

Proof The proof is practically identical to that of Proposition11.28, using the homo-
topy cofiber sequence

(B∞M′/B∞P′) → (B∞N′/B∞P′) → (B∞N′/B∞M′)

of symmetric spectra.

Proposition 12.11 Let

(R, P)
(g,g♭) //

(e,e♭)
²²

(T, Q)

²²
(A, M)

(f ,f ♭) // (B, N)

be a pushout square in the category of conically based pre-log symmetric ring spectra.
There is a natural weak equivalence

T ∧R TAQ(R,P)
0 (A, M)

≃
−→ TAQ(T,Q)

0 (B, N)

known asbased flat base change.

Proof The proof is practically identical to that of Proposition11.29, using the homo-
topy pushout square

B∞P′
B∞g //

B∞e
²²

B∞Q′

²²
B∞M′

B∞f // B∞N′

of symmetric spectra.

Example 12.12 Let B = kube the connective complexK -theory spectrum, letY ≃ S2

be a conically basedI -space, and letN = C0Y ≃ C0S2 be the free commutative con-
ically basedI -space monoid generated byY. Let β : N → Ω•ku be the commutative
basedI -space monoid map that extends a basedI -space mapu: Y → Ω•ku that
represents the generator ofπ∗(ku) = Z[u], with |u| = 2. Then TAQ(Σ•N) ≃ Σ•N∧S2
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by Lemma10.9. Furthermore,Y′ ≃ (S2)′ ≃ ∗, N′ ≃ C(S2)′ ≃ C∗, andB∞N′ ≃ S,
by Lemma6.22. By Proposition12.7the map

ψ : ku∧ S2 ≃ ku∧Σ•N TAQ(Σ•N) → ku∧ B∞N′ ≃ ku

is the multiplication-by-u map defined as the composite

u· : ku∧ S2 id∧u
−−→ ku∧ ku

µ
−→ ku.

This uses that
δ : S2 → S2 ∧ (S2)′+ ≃ S2 ∧ S0 ∼= S2

is homotopic to the identity. Hence we have a homotopy pushout square

ku∧ S2 u· //

φ

²²

ku

φ̄
²²

TAQ(ku)
ψ̄ // TAQ(ku, C0S2)

of ku-modules.

Example 12.13 Let A = ℓ be thep-local Adams summand of the connective complex
K -theory spectrum, letq = 2p − 2, let X ≃ Sq be a conically basedI -space, and
let M = C0X ≃ C0Sq be the free commutative conically basedI -space monoid. Let
α : M → Ω•ℓ be the commutative basedI -space monoid map that extends a based
I -space mapv1 : X → Ω•ℓ that represents the generator ofπ∗(ℓ) = Z(p)[v1], with
|v1| = q. Then TAQ(Σ•M) ≃ Σ•M∧Sq by Lemma10.9. Furthermore,X′ ≃ (Sq)′ ≃ ∗,
M′ ≃ C(Sq)′ ≃ C∗, andB∞M′ ≃ S, by Lemma6.22. By Proposition12.7the map

ψ : ℓ ∧ Sq ≃ ℓ ∧Σ•M TAQ(Σ•M) → ℓ ∧ B∞M′ ≃ ℓ

is the multiplication-by-v1 map defined as the composite

v1· : ℓ ∧ Sq id∧v1−−−→ ℓ ∧ ℓ
µ
−→ ℓ .

This uses that
δ : Sq → Sq ∧ (Sq)′+ ≃ Sq ∧ S0 ∼= Sq

is homotopic to the identity. Hence we have a homotopy pushout square

ℓ ∧ Sq v1· //

φ
²²

ℓ

φ̄
²²

TAQ(ℓ)
ψ̄ // TAQ(ℓ, C0Sq)

of ℓ-modules.
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Example 12.14 We can compare Example12.13and thep-local version of Exam-
ple 12.12in terms of the based transitivity sequence of Proposition12.10. We have
a map (f , f ♭) : (ℓ, M) → (ku(p), N) given by the usual inclusionf : ℓ → ku(p) and the
commutativeI -space monoid mapf ♭ : M → N, with M ≃ C0Sq andN ≃ C0S2, that
extends the usual mapSq → (S2)⊡(p−1)/Σp−1 → C0S2.

Applying base change alongf : ℓ → ku(p) to the mapv1·, we are led to compare it to
the mapu· via the following commutative square

ku(p) ∧ Sq up−1· //

(p−1)up−2·
²²

ku(p)

(p−1)·≃

²²
ku(p) ∧ S2 u· // ku(p)

of ku(p) -modules. Hereup−1· is obtained by base change fromv1·. The right hand
vertical map is induced by the punctured mapf ♭,′ : M′ → N′ , whereM′ ≃ C∗ and
N′ ≃ C∗ and f ♭,′ takes the generator ofM′ to the (p− 1)-th power of the generator of
N′ . Hence the mapS≃ B∞M′ → B∞N′ ≃ S corepresenting

(f ♭)∗ : Der♭0(N, K) → Der♭0(M, K)

has degree (p− 1). Since the square homotopy commutes, the left hand vertical map
must be multiplication by the different (p− 1)up−2 of v1 = up−1. This is compatible
with its description as the map of (topologically derived) Kähler differentials

ku(p) ∧Σ•C0Sq TAQ(Σ•C0Sq) → ku(p) ∧Σ•C0S2 TAQ(Σ•C0S2) ,

induced byf ♭ , takingdv1 = d(up−1) to (p− 1)up−2du.

We have a similar commutative square

ku(p) ∧ℓ TAQ(ℓ)
ψ̄ //

φ

²²

ku(p) ∧ℓ TAQ(ℓ, M)

φ̄
²²

TAQ(ku(p))
ψ̄ // TAQ(ku(p), N)

and the vertical homotopy cofibers of the cube formed from these two squares assemble
to a homotopy pushout square

(Σ2ku(p))/(Σqku(p)) //

φ

²²

∗

²²
TAQ(ku(p)/ℓ)

ψ̄ // TAQ((ku(q), C0S2)/(ℓ, C0Sq))
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of ku(p) -modules. Here

(Σ2ku(p))/(Σqku(p)) ≃
p−2
∨

j=1

Σ
2jHZ(p)

is the homotopy cofiber of the different map (p − 1)up−2· : ku(p) ∧ Sq → ku(p) ∧ S2,
while the homotopy cofiber of multiplication by (p− 1) is p-locally contractible.

Hence the map (f , f ♭) : (ℓ, C0Sq, α) → (ku(p), C0S2, β(p)) is (formally) based loǵetale
if and only if the map

φ : (Σ2ku(p))/(Σqku(p)) → TAQ(ku(p)/ℓ) = TAQℓ(ku(p))

(induced byα : Σ•C0Sq → ℓ andβ(p) : Σ•C0S2 → ku(p) ) is a weak equivalence.

Lemma 12.15 Let (e, e♭) : (R, Q) → (A, N) be a map of conically based pre-log
symmetric ring spectra, and letC = R∧Σ•Q Σ•N, so that the left hand square is a
pushout in the following diagram

Σ•Q Σ•e♭
//

ρ̄

²²

Σ•N
= //

²²

Σ•N

ᾱ

²²
R // C // A

of commutative symmetric ring spectra. Then there is a natural homotopy cofiber
sequence

A∧ (B∞N′/B∞Q′)
φ̄
−→ TAQ(R,Q)

0 (A, N) → TAQC(A)

of A-modules. Hence(R, Q) → (A, N) is formally based loǵetale if and only if the
connecting map

∂ : TAQC(A) → ΣA∧ (B∞N′/B∞Q′)

is an equivalence.

Proof The proof is practically identical to that of Lemma11.25.

Example 12.16 We apply Lemma12.15to the map (ℓ, C0Sq) → (ku(p), C0S2). In
this caseS≃ B∞C0(Sq)′ → B∞C0(S2)′ ≃ S is multiplication by (p− 1), which is a
p-local equivalence. Hence the targetΣA∧ (B∞N′/B∞Q′) of ∂ is contractible, and
(f , f ♭) is formally based loǵetale only if the map

C = ℓ ∧Σ•C0Sq Σ
•C0S2 → ku(p) = A
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is formallyétale. Now bothC andA are connective, and the map is aπ0-isomorphism,
so this will only happen ifC → A is an equivalence. See Basterra [12, Lemma 8.2],
or the corrected statement in Baker–Gilmour–Reinhard [11, Lemma 1.2]. However,C
andA are not equivalent.

To see this, consider the base change alongR = ℓ → H = HFp. If C → A is an
equivalence, then so is

H ∧Σ•C0Sq Σ
•C0S2 → H ∧ℓ ku(p) ,

where the right hand side has homotopyPp−1(u) = P(u)/(up−1) concentrated in even
dimensions 0≤ ∗ ≤ (2p− 4). The homotopy of the left hand side can be computed
by the Künneth spectral sequence

E2
∗∗ = TorH̃∗(C0Sq)

∗∗ (Fp, H̃∗(C0S2)) =⇒ π∗(H ∧Σ•C0Sq Σ
•C0S2) .

By the Snaith splitting,̃H∗(C0Sq) ∼= H∗(CSq) can be computed as in Cohen–Lada–May
[18, I.4.1]. It is isomorphic to the free graded commutative algebra on generators

ιq, βQpιq, Qpιq, . . .

in dimensionsq = 2p− 2, 2p2 − 3, 2p2 − 2, etc. Similarly,H̃∗(C0S2) ∼= H∗(CS2) is
isomorphic to the free graded commutative algebra on generators

ι2, βQ2ι2, Q2ι2, . . .

in dimensions 2, 4p − 3, 4p − 4, etc. Hence, in dimensions∗ < (2p2 − 3) the
algebraH̃∗(C0Sq) agrees withP(ιq), andH̃∗(C0S2) is flat overP(ιq). In this range of
dimensions the spectral sequence is therefore concentrated on the vertical axis, where
in addition to the termsP(ι2) ⊗P(ιq) Fp = Pp−1(ι2) there are further terms, starting
with Fp{βQ2ι2} in dimension (4p− 3). Hence the mapC → A = ku(p) is precisely
(4p− 3)-connected, and is not an equivalence.

Example 12.17 There is an action on thep-complete connectiveK -theory spectrum
kup by the group∆ ∼= GL1(Z/p) ∼= Z/(p − 1) of roots of unity inZp, with k ∈ ∆

acting as thep-adic Adams operationψk . The mapf : ℓp → kup identifies thep-
complete Adams summand with the homotopy fixed pointskuh∆

p of this action. There

is a similar∆-action on thep-complete sphereS2
p , and the mapf ♭ : C0Sq

p → C0S2
p

factors through the homotopy fixed points

M = (C0S2
p)h∆ ≃

∨

(p−1)|j≥0

(S2j
p )hΣj .
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Furthermore, the pre-log structure (C0Sq
p, αp) on ℓp factors through a pre-log structure

(M, βh∆
p ), whereβh∆

p is given as the∆-homotopy fixed points of the map

βp : N = C0S2
p → Ω

•kup .

Now M′ ≃
∐

(p−1)|j≥0 BΣj maps toN′ ≃
∐

j≥0 BΣj by the inclusion, which identifies

B∞M′ with the subspectrum ofB∞N′ ≃ S such thatΩ∞B∞M′ ≃
∐

(p−1)|j Qj(S0) ⊂

Q(S0) = Ω∞S. HenceB∞M′ → B∞N′ becomes an equivalence after smashing with
kup, so

(ℓp, M) = (ℓp, (C0S2
p)h∆) → (kup, C0S2

p) = (kup, N)

is formally based loǵetale only if the map

D = ℓp ∧Σ•M Σ
•N → kup

is an equivalence. As in Example12.16, we are led to calculate the maps

H∗(CSq) → H∗(CS2)∆ → H∗(CS2)

in a range of dimensions. HerẽH∗(N) = H∗(CS2)∆ agrees withP((ι2)p−1) up to
dimension (6p− 7), where a new classιp−2

2 · βQ2ι2 enters. Forp ≥ 5 this range of
dimensions contains the extra classβQ2ι2 in H∗(CS2) that contributes toπ∗(D), so
D → kup is also precisely (4p− 3)-connected, and is not an equivalence.

Remark 12.18 The previous two examples show that neither (ℓ, C0Sq) → (ku(p), C0S2)
nor (ℓp, (C0S2

p)h∆) → (kup, C0S2) are formally based loǵetale. On the other hand, Au-
soni [3, §10] has shown that when THH(ℓp|Lp) and THH(kup|KUp) are defined so as
to sit in homotopy cofiber sequences

THH(Zp)
π∗−→ THH(ℓp)

ρ∗
−→ THH(ℓp|Lp)

THH(Zp)
π∗−→ THH(kup)

ρ∗
−→ THH(kup|KUp)

of spectra, where the two maps labeledπ∗ are transfer maps, then there is an equivalence

kup ∧ℓp THH(ℓp|Lp)
≃
−→ THH(kup|KUp) .

If there are conically based pre-log structuresM and N on ℓp and kup, respectively,
such that

THH(ℓp|Lp) ≃ THH(ℓp, M)

THH(kup|KUp) ≃ THH(kup, N) ,

then this equivalence is effectively equivalent to the condition that (ℓp, N) → (kup, M)
is formally based loǵetale.
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Examples12.16and12.17show that this is not the case for the free commutative based
pre-log structureN = C0S2 on kup that is generated by the Bott classu: S2 → kup,
when M is either C0Sq or (C0S2)h∆ . This does not exclude the possibility that
a conically based pre-log structureN on kup with THH(kup|KUp) ≃ THH(kup, N)
exists, but if it does, it will require more (free commutative) cells than the single one
generated by the Bott class. The calculations above suggest that the next cell needed
is a (4p− 2)-cell, attached to cancelβQ2ι2.

The search for a suitable log structureN on kup seems to be related to the question of
how to presentHZp as a commutativekup-algebra. One possibility is thatN should be
built as a CW commutative conically basedI -space monoid, with cells in one-to-one
correspondence with a model forHZp as a CW commutativekup-algebra.

13 Shear maps and repletion

Definition 13.1 Let M be a commutative monoid. We view the diagonal map

∆ : M → M × M

as a map of commutative monoids overM , where the source is augmented by the
identity mapM → M , and the target is augmented by the projectionpr1 : M×M → M
to the first factor. For reasons related to the cyclic structures discussedin Remark3.18,
we compose the diagonal map with the group completion map

id × γ : M × M → M × Mgp

in the second factor. This target is also augmented by the projectionpr1 : M×Mgp → M
to the first factor, andid× γ is a map of commutative monoids overM . The extension
of the composite map (id × γ)∆ to a map of commutative monoids under and overM
is theshear map

sh: M × M
id×∆
−−−→ M × M × M

µ×γ
−−−→ M × Mgp

given bysh(x, y) = (xy, γ(y)), whereµ is the multiplication map. Both the source and
target are commutative monoids underM , by the inclusionsin1 : M → M × M and
in1 : M → M × Mgp on the respective first factors. The source is augmented overM
by µ, and the target is augmented overM by pr1.

Passing to monoid rings, there is a shear map

ψ = Z[sh] : Z[M] ⊗ Z[M] → Z[M] ⊗ Z[Mgp]
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of augmented commutativeZ[M]-algebras, given by linearly extending the formula
ψ(x, y) = (xy, γ(y)) for x, y ∈ M . On both sides theZ[M]-algebra unit is the inclusion
on the first tensor factor, the source is augmented by the ring multiplication, and the
target is augmented by the projectionZ[M] ⊗ Z[Mgp] → Z[M] ⊗ Z ∼= Z[M] induced
by Mgp → ∗. Either shear map is an isomorphism if and only ifM is an abelian group.

Definition 13.2 The categoryM/CMon/M of commutative monoids under and over
M has tensor products with based sets, whereY⊗̃MN is the base change of theY-fold
coproduct

⊕Y
M N = N ⊕M · · · ⊕M N along the augmentationN → M in the base

point summand. Hence the category of simplicial objects inM/CMon/M has tensor
productsY⊗̃MN with based simplicial sets. In the case of the circleS1 = ∆1/∂∆1

we obtain the suspensionS1⊗̃MN in this category, and more generally, tensor product
with the n-sphereSn realizesn-fold suspensionSn⊗̃MN in this category.

Lemma 13.3 The suspension

S1⊗̃M(M × M, µ) ∼= BcyM

of M × M augmented byµ is the cyclic bar construction, whereas the suspension

S1⊗̃M(M × Mgp, pr1) ∼= M × BMgp

of M × Mgp augmented bypr1 is M times the suspension ofMgp in simplicial
commutative monoids, i.e., the bar constructionBMgp. The suspension of the shear
map

S1⊗̃Msh: BcyM → M × BMgp ∼= BrepM

equals the composite of

(ǫ, π) : BcyM
∆
−→ BcyM × BcyM

ǫ×π
−−→ M × BM

with the weak equivalenceid × Bγ : M × BM → M × BMgp. It takes theq-simplex
(m0, m1, . . . , mq) to the pair consisting ofm0m1 · · ·mq and[γ(m1)| . . . |γ(mq)] . Hence
S1⊗̃Msh equals the repletion mapBcyM → BrepM .

The suspension inZ[M]/CRing/Z[M] takes the shear map

ψ : Z[M] ⊗ Z[M] → Z[M] ⊗ Z[Mgp]

to the corepresenting map

ψ = ψ[1] : HH(Z[M]) = Z[BcyM] → Z[M × BMgp] ∼= Z[BrepM]

from Remark3.24and Lemma5.24, whereZ[BrepM] = HH(Z[M], M).
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Definition 13.4 The Hochschild homology ofZ[M], the log Hochschild homology
of (Z[M], M), and the repletion homomorphism

ψ : HH(Z[M]) → HH(Z[M], M)

can be (re-)defined as the suspension in augmented commutativeZ[M]-algebras of the
shear mapZ[M] ⊗ Z[M] → Z[M] ⊗ Z[Mgp].

The log Hochschild homology of a general pre-log ring (A, M, α) is (re-)defined by
the homotopy pushout

HH(Z[M])
ψ //

φ

²²

HH(Z[M], M)

φ̄
²²

HH(A)
ψ̄ // HH(A, M)

in simplicial commutative rings, whereφ is induced by the pre-log structure map
ᾱ : Z[M] → A.

Lemma 13.5 For n ≥ 1, then-fold suspension

Sn⊗̃M(M × M, µ) ∼= Sn ⊗ M

is then-th order cyclic bar construction onM ,

Sn⊗̃M(M × Mgp, pr1) ∼= M × BnMgp

is M times then-fold bar construction onMgp, and then-th suspension of the shear
map

Sn⊗̃Msh: Sn ⊗ M → M × BnMgp ∼= Sn ⊗rep M

equals the repletion map.

Definition 13.6 Then-fold suspension inZ[M]/CRing/Z[M] takes the shear map to
the repletion map

ψ = ψ[n] : HH[n](Z[M]) = Z[Sn ⊗ M] → Z[M × BnMgp] = HH[n](Z[M], M)

from Pirashvili’s n-th order Hochschild homology of Z[M] (see [56, §5.1]) to an
n-th order log Hochschild homology of (Z[M], M). In general, then-th order log
Hochschild homologyHH[n](A, M) of (A, M) is defined by a homotopy pushout of
simplicial commutative rings, like that in Definition13.4.
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Remark 13.7 In [63], Robinson and Whitehouse definedΓ-homology groupsHΓ∗(A),
which are theE∞ DGA analogue of the André–Quillen homology groupsD∗(A) for
commutative (simplicial) rings. In particular,HΓ0(A) ∼= D0(A) ∼= Ω1

A. By a the-
orem of Pirashvili and Richter [57, Theorem 1], the groups HH[n]

∗+n(A) stabilize to
the Γ-homology groupsHΓ∗(A) when n → ∞. Hence stabilization of higher order
Hochschild homology does not quite give André–Quillen homology in the context of
commutative rings (unlessA is aQ-algebra), but itsE∞ DGA analogue. In the topolog-
ical setting there is no essential difference betweenE∞ ring spectra and commutative
S-algebras, and stabilization of higher order topological Hochschild homology does,
indeed, give topological André–Quillen homology, as proved by Basterra and Mandell
[13, Theorem 4]. See Proposition13.12below.

Definition 13.8 Let M be a commutativeI -space monoid, with group completion
ΓM . There is a chain of maps

M ⊠ M
id⊠∆
−−−→ M ⊠ M × M

≃
←− M ⊠ M ⊠ M

µ⊠γ
−−−→ M ⊠ ΓM

where the middle map is a weak equivalence for reasonable (cofibrant and semi-stable)
M . These are maps of commutativeI -space monoids under and overM , where the
left handM ⊠ M is augmented by the commutative monoid multiplicationµ, and the
right handM ⊠ ΓM is augmented by the projectionM ⊠ ΓM → M ⊠ ∗ ∼= M .

There is a chain of maps

ψ : S[M] ∧ S[M]
id∧S[∆]
−−−−→ S[M] ∧ S[M × M]

≃
←− S[M] ∧ S[M] ∧ S[M]

µ∧γ
−−→ S[M] ∧ S[ΓM]

of augmented commutativeS[M]-algebras, with augmentations induced from those in
the commutativeI -space monoid case.

Lemma 13.9 The suspension

S1⊗̃S[M](S[M] ∧ S[M], µ) ∼= S1 ⊗ S[M] = THH(S[M])

of S[M] ∧ S[M] augmented byµ is the topological Hochschild homology ofS[M] .
The suspension

S1⊗̃S[M](S[M] ∧ S[ΓM], pr1) ≃ S[M] ∧ BΓM+ = THH(S[M], M)

of S[M] ∧ S[ΓM] augmented bypr1 is the S[M] -module extended up from the bar
constructionB(S, S[ΓM], S) ∼= S[BΓM] . HereTHH(S[M], M) ∼= S[BrepM] is the log
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topological Hochschild homology of(S[M], M). The suspension of the shear mapψ

is the corepresenting map

ψ = ψ[1] : THH(S[M]) → THH(S[M], M)

from Definition8.11.

Proof This is clear by a comparison with Definition8.10.

Definition 13.10 The topological Hochschild homology ofS[M], the log topological
Hochschild homology of (S[M], M), and the repletion map

ψ : THH(S[M]) → THH(S[M], M)

can be (re-)defined as the suspension in commutative augmentedS[M]-algebras of the
shear map

ψ : S[M] ∧ S[M] → S[M] ∧ S[ΓM] .

More precisely, the shear map is a chain of maps, and the repletion map is the suspended
chain of maps. Thelog topological Hochschild homologyof a pre-log symmetric
ring spectrum (A, M, α) is defined by the homotopy pushout

THH(S[M])
ψ //

φ

²²

THH(S[M], M)

φ̄
²²

THH(A)
ψ̄ // THH(A, M)

of commutative symmetric ring spectra, whereφ is induced by ¯α : S[M] → A.

Definition 13.11 For n ≥ 1, then-th order topological Hochschild homology

THH[n](S[M]) = Sn⊗̃S[M](S[M] ∧ S[M], µ)

of S[M], the n-th order log topological Hochschild homology

THH[n](S[M], M) = Sn⊗̃S[M](S[M] ∧ S[ΓM], pr1) ∼= S[M] ∧ Bn
ΓM+

of (S[M], M), and the repletion map

ψ = ψ[n] : THH[n](S[M]) → THH[n](S[M], M)

are defined as then-fold suspensions in commutative augmentedS[M]-algebras of the
source and target of the shear map, and the shear map itself. For general (A, M, α),
the n-th order log topological Hochschild homologyTHH[n](A, M) is defined by a
homotopy pushout, like in Definition13.10.
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Proposition 13.12 The stabilization asn → ∞ of the repletion mapψ[n] in n-th
order topological Hochschild homology is the corepresenting map

ψ = ψ[∞] : TAQ(S[M]) → TAQ(S[M], M) = S[M] ∧ B∞
ΓM

in topological Andŕe–Quillen homology, from Lemma11.16. This equals the map of
commutativeS[M] -algebra indecomposables

LAbS[M]
S[M](S[M] ∧ S[M], µ) → LAbS[M]

S[M](S[M] ∧ S[ΓM], pr1) ≃ S[M] ∧ LAbS
SS[ΓM]

induced by the shear mapψ .

Proof (See Basterra–Mandell [13, §2] for the definition of the commutative algebra
indecomposables functorLAb.) Let THH

[n]
(A) be the (homotopy) cofiber of the unit

η : A → THH[n](A). The sequence

{n 7→ THH
[n]

(A)}

defines a spectrum ofA-modules. The category ofA-modules is already stable, so this
spectrum corresponds to theA-module given by the homotopy colimit

hocolim
n

Σ
−nTHH

[n]
(A) .

By [13, Theorem 4], this homotopy colimit is equivalent to the commutativeA-algebra
indecomposablesLAbA

A(A ∧ A, µ) ≃ TAQ(A), as anA-module. In the special case
A = S[M], this gives the claim for TAQ(S[M]).

It is clear that the spectrum

{n 7→ THH
[n]

(S[M], M) ∼= S[M] ∧ Bn
ΓM}

stabilizes to TAQ(S[M], M) = S[M] ∧ B∞ΓM , and that this equals

LAbS[M]
S[M](S[M] ∧ S[ΓM], pr1) ∼= S[M] ∧ LAbS

SS[ΓM] ≃ S[M] ∧ B∞
ΓM ,

by [13, 6.1].

By Proposition11.17in the case whenA = S[M], we have checked that the corepre-
senting map agrees with the stabilized shear map, whenM = CX is a free commutative
I -space monoid. The general comparison result can be deduced from this (modulo
coherence issues) by freely resolving a general commutativeI -space monoid. For
an alternative proof, we can start with the comparison for topological Hochschild
homology in Lemma13.9and stabilize.
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Definition 13.13 Thelog topological André–Quillen homologyof a pre-log symmet-
ric ring spectrum (A, M, α), denoted TAQ(A, M), can be (re-)defined as the homotopy
pushout

A∧S[M] TAQ(S[M])
ψ //

φ

²²

A∧S[M] TAQ(S[M], M)

φ̄
²²

TAQ(A)
ψ̄ // TAQ(A, M)

of A-modules, whereψ is the stable shear mapψ[∞] extended along ¯α : S[M] → A,
andφ is induced by ¯α.

Definition 13.14 Let N be a commutative conically basedI -space monoid. Hence
N = cone(L)∪L N′ , and the multiplicationµ : N⊡N → N restricts to a multiplication
N′ ⊠ N′ → N′ making N′ a commutativeI -space monoid, with group completion
ΓN′ . Let

δ : N → N ∧ N′
+

be theconical diagonal map. This is a map of commutative basedI -space monoids
over N, where the source is augmented by the identity and the target is augmented by
the projectionpr1 : N ∧ N′

+ → N ∧ ∗+
∼= N, induced by the unique mapN′ → ∗.

Over N′ ⊂ N the mapδ equals the diagonal map

δ|N′ : N′ ∆
−→ N′ × N′ ⊂ N ∧ N′

+

and over cone(L) the mapδ is constant in the cone direction.

Thebased shear map

sh: N ⊡ N
id⊡δ
−−−→ N ⊡ N ∧ N′

+

≃
←− N ⊡ N ⊡ N′

+

µ∧γ
−−→ N ⊡ ΓN′

+

is a chain of maps of commutativeI -space monoids under and overN. The source
N ⊡ N is augmented byµ and the targetN ⊡ ΓN′

+ is augmented bypr1. It induces a
chain of maps

ψ : Σ
•N ∧ Σ

•N
id∧Σ•δ
−−−−→ Σ

•N ∧ Σ
•(N ∧ N′

+)
≃
←− Σ

•N ∧ Σ
•N ∧ S[N′]

µ∧γ
−−→ Σ

•N ∧ S[ΓN′]

of augmented commutativeΣ•N-algebras.

Definition 13.15 Let N be a commutative conically basedI -space monoid. The
suspension

S1⊗̃Σ•N(Σ•N ∧ Σ
•N, µ) = Σ

•Bcy
∧ N = THH(Σ•N)
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of Σ•N ∧Σ•N augmented byµ is the topological Hochschild homology ofΣ•N. The
based log topological Hochschild homology of (Σ•N, N) can be (re-)defined as the
suspension

S1⊗̃Σ•N(Σ•N ∧ S[ΓN′], pr1) = Σ
•N ∧ B(ΓN′)+ = THH0(Σ•N, N)

of Σ•N ∧ S[ΓN′] augmented bypr1. The repletion map

ψ = ψ[1] : THH(Σ•N) → THH0(Σ•N, N)

can be (re-)defined as the suspension of the shear mapψ . Thebased log topological
Hochschild homologyof a conically based pre-log symmetric ring spectrum (A, N, α)
is defined by the homotopy pushout

THH(Σ•N)
ψ //

φ

²²

THH0(Σ•N, N)

φ̄
²²

THH(A)
ψ̄ // THH0(A, N)

of commutative symmetric ring spectra, whereφ is induced by ¯α : Σ•N → A.

Similarly, we definen-th order based log topological Hochschild homologyof
(A, N), denoted THH[n]

0 (A, N), by starting with the caseA = Σ•N and considering the
n-fold suspension in the categoryΣ•N/CSpΣ/Σ•N of (the target of) the shear mapψ .

Proposition 13.16 The stabilization asn → ∞ of the repletion mapψ[n] = Sn⊗̃Σ•Nψ

is the corepresenting map

ψ = ψ[∞] : TAQ(Σ•N) → TAQ0(Σ•N, N) = Σ
•N ∧ B∞

ΓN′

in based topological André–Quillen homology, as in Definition12.6. This equals the
map of commutativeΣ•N-algebra indecomposables

LAbΣ•N
Σ•N(Σ•N ∧ Σ

•N, µ) → LAbΣ•N
Σ•N(Σ•N ∧ S[ΓN′], pr1) ≃ Σ

•N ∧ B∞
ΓN′

induced by the shear mapψ .

Definition 13.17 Thebased log topological Andŕe–Quillen homologyTAQ0(A, N)
of a conically based pre-log symmetric ring spectrum (A, N, α) can be (re-)defined as
the homotopy pushout

A∧Σ•N TAQ(Σ•N)
ψ //

φ

²²

A∧Σ•N TAQ0(Σ•N, N)

φ̄
²²

TAQ(A)
ψ̄ // TAQ0(A, N)

of A-modules, whereψ is the stable shear mapψ[∞] extended along ¯α : Σ•N → A,
andφ is induced by ¯α.
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cohomology of log schemes overC, Kodai Math. J. 22 (1999) 161–186

[37] S O Kochman, Homology of the classical groups over the Dyer-Lashof algebra, Trans.
Amer. Math. Soc. 185 (1973) 83–136

[38] A Langer, T Zink , De Rham-Witt cohomology for a proper and smooth morphism, J.
Inst. Math. Jussieu 3 (2004) 231–314

[39] L G Lewis, Jr , J P May, M Steinberger, J E McClure , Equivariant stable homo-
topy theory, volume 1213 ofLecture Notes in Mathematics, Springer-Verlag, Berlin
(1986)With contributions by J. E. McClure

[40] P Lima-Filho , Completions and fibrations for topological monoids, Trans. Amer. Math.
Soc. 340 (1993) 127–147

[41] A Lindenstrauss, I Madsen, Topological Hochschild homology of number rings,
Trans. Amer. Math. Soc. 352 (2000) 2179–2204

[42] J-L Loday , Cyclic homology, volume 301 ofGrundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], second edition,
Springer-Verlag, Berlin (1998)Appendix E by Marı́a O. Ronco, Chapter 13 by the
author in collaboration with Teimuraz Pirashvili

[43] S Lunøe-Nielsen, J Rognes, On the Tate construction of topological Hochschild
homology and its relation to the construction of Singer(in preparation)

[44] S Mac Lane, Categories for the working mathematician, volume 5 ofGraduate Texts
in Mathematics, second edition, Springer-Verlag, New York (1998)

[45] J P May, The geometry of iterated loop spaces, Springer-Verlag, Berlin (1972)Lectures
Notes in Mathematics, Vol. 271

[46] J P May, E∞ ring spaces and E∞ ring spectra, Lecture Notes in Mathematics, Vol.
577, Springer-Verlag, Berlin (1977)With contributions byFrank Quinn, Nigel Ray and
Jørgen Tornehave

[47] J P May, What precisely are E∞ ring spaces and E∞ ring spectra? (2009)(in this
volume)

[48] R McCarthy , V Minasian, HKR theorem for smooth S-algebras, J. Pure Appl. Algebra
185 (2003) 239–258

[49] J E McClure , R E Staffeldt, On the topological Hochschild homology of bu. I, Amer.
J. Math. 115 (1993) 1–45

[50] J S Milne, Arithmetic duality theorems, volume 1 ofPerspectives in Mathematics,
Academic Press Inc., Boston, MA (1986)



Topological logarithmic structures 141
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