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1. Complex cobordism and Elliptic cohomology
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1.1. Formal group laws. Let G be 1-dimensional Lie group, and let x : U → R
be a coordinate chart in a neighborhood U of the identity element e, with x(e) = 0.
The group multiplication G × G → G defines the germ of a map F : R × R → R,
with F (x(g1), x(g2)) = x(g1 · g2) near (0, 0). If G is real analytic, the map germ is
given by a power series

F (x1, x2) = x1 + x2 +
∑
i,j≥1

ai,jx
i
1x
j
2 .

The identity component of G is commutative, so ai,j = aj,i. When viewed as a
formal power series in R[[x1, x2]], this F is an example of a 1-dimensional formal
group law defined over R. A 1-dimensional commutative formal group law F over
a commutative ring R is a formal power series

F (x1, x2) ∈ R[[x1, x2]]

such that F (x1, 0) = x1, F (0, x2) = x2, F (x1, x2) = F (x2, x1) and F (F (x1, x2), x3) =
F (x1, F (x2, x3)). (This idea generalizes to higher dimensions, but only 1-dimensional
commutative formal groups will be relevant here. Formal groups are intermediate
between Lie groups (or algebraic groups) and Lie algebras.)

1.2. The Lazard ring. Let FGL(R) be the set of (1-dimensional commutative)
formal group laws over R. A ring homomorphism φ : R → R′ induces a function
φ∗ : FGL(R) → FGL(R′), with (φ∗F )(x1, x2) = x1 + x2 +

∑
i,j≥1 φ(ai,j). The

covariant functor

R 7−→ FGL(R)

is corepresentable: there is a universal formal group law

FL(x1, x2) = x1 + x2 +
∑
i,j≥1

ai,jx
i
1x
j
2

defined over a ring L = Z[ai,j | i, j ≥ 1]/∼, called the Lazard ring, where the
relations ∼ are those required for FL to satisfy commutativity and associativity.
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2 JOHN ROGNES

Lazard proved that L is a polynomial ring in countably many variables. The uni-
versal propery asserts that the natural map

Hom(L,R)
∼=−→ FGL(R)

φ 7−→ F = φ∗FL

is a bijection for each R. In other words, Spec(R) 7→ FGL(R) is a (pre-)sheaf on
schemes over Spec(Z), represented by the affine scheme Spec(L). We can identify
L with (the global sections of) the structure sheaf OFGL.

1.3. Complex (co-)bordism. The complex bordism spectrum MU is an E∞ ring
spectrum (= coherently homotopy commutative, brave new ring) given by the se-
quence of Thom spaces

MU2n = Th(γn ↓ BU(n)) = EU(n)+ ∧U(n) S
2n

for n ≥ 0, where γn is the tautological Cn-bundle over the infinite complex Grass-
mannian BU(n) = Grn(C∞). The associated homology and cohomology theories,
called complex bordism and complex cobordism, associate to each finite CW com-
plex X the graded abelian groups

MU∗(X) = π∗(MU ∧X+) = colim
n

π∗+2n(MU2n ∧X+)

MU−∗(X) = π∗F (X+,MU) = colim
n

π∗+2n Map(X+,MU2n) .

Its coefficient ring

MU∗ = π∗(MU) = colim
n

π∗+2n(MU2n) ∼= ΩU∗

is the graded ring of bordism classes of stably almost complex manifolds. Milnor
and Novikov, independently, proved that it is a polynomial ring in countably many
variables.

1.4. Quillen’s theorem. There is a class x ∈MU2(CP∞) (a complex orientation,
in the sense of Dold) such that

MU−∗(CP∞) ∼= MU∗[[x]]

MU−∗(CP∞ × CP∞) ∼= MU∗[[x1, x2]]

with x1 = x× 1 and x2 = 1×x, and the classifying map m : CP∞×CP∞ → CP∞
for the tensor product of complex line bundles induces a ring homomorphism

m∗ : MU−∗(CP∞) −→MU−∗(CP∞ × CP∞)

that takes x to a formal group law

FMU (x1, x2) ∈MU∗[[x1, x2]]

defined over MU∗. It expresses the tensor product law for the first Chern class in
complex cobordism. Quillen proved that the representing homomorphism

φ : L
∼=−→MU∗

with φ∗FL = FMU is an isomorphism. In other words, the complex bordism spec-
trum, with its standard complex orientation, realizes the Lazard ring and the uni-
versal formal group law. The algebraic structure sheaf OFGL = L can be lifted to
a topological structure sheaf Otop

FGL = MU in E∞ ring spectra.
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1.5. The Conner–Floyd theorem. The multiplicative group Gm(R) = GL1(R)
admits a coordinate x : U → R near e = 1 given by x(g) = g−1, with Fm(x1, x2) =
(x1 + 1)(x2 + 1)−1 = x1 +x2 +x1x2, called the multiplicative formal group law. It
is defined over Z, and the classifying ring homomorphism φm : L→ Z corresponds
to a ring homomorphism Td : MU∗ = ΩU∗ → Z called the Todd genus. To get a
degree-preserving homomorphism we let R = Z[u±1] with |u| = 2 and consider

Fm(x1, x2) = x1 + x2 + ux1x2

defined over Z[u±1], classified by a graded ring homomorphism Td : MU∗ → Z[u±1].
Conner and Floyd proved that there are natural isomorphisms

MU∗(X)⊗MU∗ Z[u±1] ∼= KU∗(X)

MU−∗(X)⊗MU∗ Z[u±1] ∼= KU−∗(X) ,

where KU denotes complex topological K-theory. In particular, the algebraic ten-
sor products on the left hand sides define generalized homology and cohomology
theories.

The coherent direct sum and tensor product of vector bundles makes KU an E∞
ring spectrum. The (graded) algebraic structure sheaf OGm

= Z[u±1] can be lifted

to a topological structure sheaf Otop
Gm

= KU in E∞ ring spectra.

1.6. Landweber’s exact functor theorem. It is perhaps surprising that this
works, because Z[u±1] is not flat as an MU∗-module, so one might expect ex-
actness to fail. Landweber discovered necessary and sufficient conditions on an
MU∗-module R∗ for the functor

X 7→MU∗(X)⊗MU∗ R∗

to define a generalized homology theory, which is then represented by a spectrum
R, so that R∗(X) ∼= MU∗(X) ⊗MU∗ R∗. In particular, π∗(R) ∼= R∗. (We omit to
explain Landweber’s regularity conditions, but will return to them later.)

1.7. The Honda formal group law. Let F be a formal group law defined over R.
Write x1 +F x2 = F (x1, x2) for the formal sum of x1 and x2. For each m ≥ 1 the
m-series

[m]F (x) = x+F + · · ·+F x ∈ R[[x]]

expresses multiplication by m in the formal group law. For each prime p and each
integer n ≥ 1 there is a height n Honda formal group law

Fn(x1, x2) ∈ Fpn [[x1, x2]]

defined over the finite field Fpn , with p-series [p]Fn(x) = xp
n

. There is a graded
version defined over Fpn [u±1], with |u| = 2, with p-series

[p]Fn(x) = up
n−1xp

n

.

The classifying homomorphism

φn : MU∗ = L −→ Fpn [u±1]

does not satisfy Landweber’s conditions.
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1.8. Lubin–Tate theory. However, the universal deformation

F̃n(x1, x2) ∈WFpn [[u1, . . . , un−1]][u±1][[x1, x2]]

of the formal group law Fn, constructed by Lubin and Tate, is classified by a
homomorphism

φ̃n : MU∗ = L −→WFpn [[u1, . . . , un−1]][u±1] = En∗

that does satisfy Landweber’s conditions. Here WFpn denotes the ring of Witt
vectors on Fpn , which is an unramified extension of degree n of the ring of p-adic
integers Zp = WFp, and u1, . . . , un−1 are deformation parameters with |ui| = 0.
Hence the functor

X 7→MU∗(X)⊗MU∗ En∗ = En∗(X)

defines a generalized homology theory, represented by a spectrum En, called the
n-th Lubin–Tate theory. Hopkins, Miller and Goerss proved that En is an E∞ ring
spectrum. The (graded) algebraic structure sheaf OF̃n

= WFpn [[u1, . . . , un−1]][u±1]

can be lifted to a topological structure sheaf Otop

F̃n
= En in E∞ ring spectra.

The information about finite CW-complexes seen by En is said to be of chromatic
complexity ≤ n, and is the same information as that seen by closely related spectra
called the n-th Morava E-theory, and the n-th Johnson–Wilson spectrum E(n).

Example: E1 = KU∧p , with π∗(E1) = E1∗ = Zp[u±1], and E(1) is the Adams

summand of KU(p), with π∗(E(1)) = Z(p)[v
±1
1 ].

1.9. Elliptic (co-)homology. An elliptic curve C defined over a commutative
ring R is a flat and proper scheme over Spec(R), with a chosen unit section, such
that each fiber is a smooth genus 1 curve. By choosing a local coordinate x near
the unit section, the standard group multiplication C×Spec(R)C → C is given by a
rational function, which can be expanded in a power series to define a 1-dimensional
commutative formal group law

FC/R(x1, x2) ∈ R[[x1, x2]] .

There is also a graded version, defined over R[u±1], with |u| = 2. The associated
homomorphism

φC : MU∗ = L −→ R[u±1]

may or may not satisfy Landweber’s conditions (cf. Franke). When they are satis-
fied, the resulting theories

Ell(C/R)∗(X) = MU∗(X)⊗MU∗ R[u±1]

Ell(C/R)−∗(X) = MU−∗(X)⊗MU∗ R[u±1]

are called elliptic (co-)homology theories, and are represented by “even periodic”
spectra Ell(C/R), with π∗(Ell(C/R)) ∼= R[u±1].

Examples of elliptic cohomology theories were introduced by Landweber, Ravenel
and Stong, and by Ochanine, as receptacles for Witten’s genus for string manifolds,
which he informally defined in terms of index theory on free loop spaces (ca. 1986).
By Deuring–Eichler, the height of an elliptic formal group law at a closed point
Spec(k)→ Spec(R) is 1 or 2, so elliptic cohomology theories are closely related to
the Lubin–Tate theories E1 = KU∧p and E2.
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1.10. Weierstrass curves. Let A = Z[a1, a2, a3, a4, a6] and consider the Weier-
strass curve W̄ of points (X : Y : Z) satisfying

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 ,

given by the projective closure of

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

defined over A. We set |x| = 4, |y| = 6 and |ai| = 2i, so that the equation is
homogeneous of degree 12. The discriminant ∆ ∈ A is a polynomial with |∆| = 24.
The Weierstrass curve W̄ has singularities, but becomes smooth when we invert ∆.
Let W be the resulting elliptic curve defined over A[∆−1]. The associated formal
group law FW/A[∆−1] and homomorphism

φW : MU∗ = L −→ A[∆−1]

satisfies Landweber’s conditions, hence defines the Weierstrass elliptic (co-)homology
theory

Ell∗(X) = MU∗(X)⊗MU∗ A[∆−1]

Ell−∗(X) = MU−∗(X)⊗MU∗ A[∆−1]

with 24-periodic coefficient ring Ell∗ = Z[a1, . . . , a4, a6][∆−1].
Each elliptic curve is isomorphic to the pullback of the smooth part of a Weier-

strass curve, so Ell = Ell(W/A[∆−1]) has a weak universal property. However,
elliptic curves admit nontrivial automorphisms, so the isomorphism is not unique,
and therefore Ell is not a fully universal elliptic cohomology spectrum. To account
for this we must pass to the moduli stack of elliptic curves.

2. The sphere spectrum and topological modular forms

S

{{ �� %%

KO TMF LK(n)S

2.1. Strict isomorphisms. A second coordinate x′ : U ′ → R near e ∈ G can be
compared with the first coordinate x : U → R, by the germ of a map f : R → R
with f(x(g)) = x′(g) near 0. We write

f(x) = b0x+
∑
i≥1

bix
i+1 ,

with b0 invertible. If F ′ : R × R → R is the formal group law associated to G and
x′, then f : F → F ′ is a formal isomorphism, in the sense that f(F (x1, x2)) =
F ′(f(x1), f(x2)). We concentrate on the strict case, when b0 = 1.

For formal group laws F and F ′ defined over R, a strict isomorphism f : F → F ′

is a formal power series

f(x) ∈ R[[x]]

such that f(0) = 0, f(F (x1, x2)) = F ′(f(x1), f(x2)) and (df/dx)(0) = 1. Here f
and F determine F ′, by the formula

F ′(x1, x2) = f(F (f−1(x1), f−1(x2))) ∈ R[[x1, x2]] .
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2.2. The moduli stack of formal group laws. For each R, let MFGL(R) be the
(small) groupoid of formal group laws and the strict isomorphisms between them,
all defined over R. The set of objects is obj MFGL(R) = FGL(R), and the set of
morphisms from F to F ′ is the set of strict isomorphisms

f(x) = x+
∑
i≥1

bix
i+1

defined over R, from F to F ′. Let mor MFGL(R) denote the set of all morphisms in
MFGL(R). A ring homomorphism θ : R → R′ induces a functor θ∗ : MFGL(R) →
MFGL(R′). On objects it is given by F 7→ θ∗F , as before. On morphisms it is
given by f 7→ θ∗f , where (θ∗f)(x) = x +

∑
i≥1 θ(bi)x

i+1 ∈ R′[[x]]. We obtain a
covariant functor

R 7−→MFGL(R)

from commutative rings to groupoids. In other words, Spec(R) 7→ MFGL(R) is a
(pre-)stack.

There is a universal strict isomorphism fLB : FLB → F ′LB defined over the ring
LB = L ⊗ B where B = Z[bi | i ≥ 1], with f(x) = x +

∑
i≥1 bix

i+1. Here
FLB = η∗LFL, where the “left unit” ηL : L → LB is the usual inclusion. It follows
that F ′LB is given by

F ′LB(x1, x2) = fLB(FLB(f−1
LB(x1), f−1

LB(x2))) ∈ LB[[x1, x2]] .

This is a formal group law over LB, so there is a unique ring homomorphism

ηR : L −→ LB

such that F ′LB = η∗RFL. (Here ηR(a1,1) = a1,1 + 2b1, but explicit formulas for
the “right unit” quickly get complicated.) The universal property asserts that the
natural map

Hom(LB,R) −→ mor MFGL(R)

θ 7−→
(
θ∗fLB : (θηL)∗FL −→ (θηR)∗FL

)
is a bijection.

2.3. A Hopf algebroid. The commutative rings L and LB corepresent the ob-
ject and morphisms sets, respectively, in the covariant functor R 7→ MFGL(R) to
groupoids. Equivalently, Spec(L) and Spec(LB) represent the object and morphism
sets in the (pre-)stack

Spec(R) 7−→MFGL(R) .

The homomorpisms ηL : L → LB and ηR : L → LB corepresent the source and
target maps, respectively, in these groupoids:

s, t : MFGL(R) −→ FGL(R)

(f : F → F ′) 7−→ F, F ′ .

The projection ε : LB → L with ε(bi) = 0 for each i ≥ 1 corepresents the identity
morphism map:

id : FGL(R) −→MFGL(R)

F 7−→ (idF : F → F ) .

The tensor product LB ⊗L LB, where the first copy of LB is viewed as a (right)
L-module using ηR, and the second copy of LB is viewed as a (left) L-module using
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ηL, corepresents composable pairs (f, f ′) of strict isomorphisms, where f : F → F ′

and f ′ : F ′ → F ′′. The composite f ′ ◦f : F → F ′′ is a strict isomorphism, so by the
universal property of fLB there is a unique ring homomorphism (the “coproduct”,
or diagonal)

ψ : LB −→ LB ⊗L LB

such that ψ∗fLB = f ′ ◦ f ((suitably interpreted)). Finally, each strict isomorphism
f : F → F ′ has an inverse, f−1 : F ′ → F , so there is a unique ring homomorphism
(the “conjugation”, or antipode)

χ : LB −→ LB

such that χ∗fLB = f−1
LB , which corepresents the passage from f to f−1.

The pair (L,LB), together with the structural morphisms

L

ηL

��

ηR

@@LB
εoo

ψ
//

χ

��

LB ⊗L LB

and the relations they satisfy, corresponding to two-sided unitality and associativity
for composition of morphisms, together with the existence of a two-sided inverse,
constitute a Hopf algebroid. In total, this is the corepresenting object for the functor
MFGL from commutative rings to groupoids. Equivalently, (Spec(L),Spec(LB))
and the morphisms ηL, ηR, ε, ψ and χ give a presentation of MFGL as an affine
stack.

2.4. Complex bordism, revisited. Let S be the sphere spectrum, given by the
sequence of spheres Sn = Sn for n ≥ 0, and let η : S →MU and µ : MU ∧MU →
MU be the unit map and the multiplication map for the E∞ ring spectrum MU .
Consider the maps

1 ∧ η : MU ∼= MU ∧ S −→MU ∧MU

η ∧ 1: MU ∼= S ∧MU −→MU ∧MU

µ : MU ∧MU −→MU

1 ∧ η ∧ 1: MU ∧MU ∼= MU ∧ S ∧MU

−→MU ∧MU ∧MU ∼= (MU ∧MU) ∧MU (MU ∧MU)

γ : MU ∧MU −→MU ∧MU

where γ denotes the twist isomorphism. Quillen also showed that there is a strict
isomorphism

f : (1 ∧ η)∗FMU −→ (η ∧ 1)∗FMU

defined over MU∗MU = π∗(MU ∧MU), and the representing homomorphism

θ : LB
∼=−→MU∗MU
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is an isomorphism. Furthermore, the Hopf algebroid structure maps of (L,LB) are
precisely those obtained by applying π∗ to the diagram

MU

1∧η

!!

η∧1

>>MU ∧MU
µ
oo

1∧η∧1
//

γ

��

(MU ∧MU) ∧MU (MU ∧MU)

One relevant fact is that MU∗MU ∼= LB is flat as a left L-module using ηL (hence
also as a right L-module, using ηR, due to the existence of the conjugation χ), so
that the product

MU∗MU ⊗MU∗ MU∗MU
∼=−→ π∗((MU ∧MU) ∧MU (MU ∧MU))

is an isomorphism. We say that (MU∗,MU∗MU) ∼= (L,LB) is a flat Hopf alge-
broid.

The (graded) algebraic pair of structure sheaves OMFGL
= (L,LB), together

with the prestack/Hopf algebroid structure maps, can be lifted to a topological

pair of structure sheaves Otop
MFGL

= (MU,MU ∧MU) in E∞ ring spectra, together

with the prestack/Hopf algebroid structure maps.

2.5. Global sections. The global sections in the algebraic moduli stack MFGL is
the equalizer

Γ(MFGL,O) = eq(L
ηL //

ηR
//LB ) ∼= Z .

The natural generalization of global sections for the topological moduli stack is the
totalization

Γ(MFGL,O
top) = Tot(MU //

//MU ∧MUoo
//
//
//MU ∧MU ∧MUoo

oo . . .)

' S

of the cosimplicial E∞ ring spectrum given in codegree s by the smash product

(MU ∧MU) ∧MU · · · ∧MU (MU ∧MU) ∼= MU∧(s+1) .

As indicated, this totalization is equivalent to the sphere spectrum. The associated
spectral sequence

Es,t2 = Exts,tLB(L,L) =⇒s πt−s(S)

is the Adams–Novikov spectral sequence. Here the E2-term can in principle be
calculated as the cohomology of the cobar complex

0→ L
d0−→ LB

d1−→ LB ⊗L LB
d2−→ . . . .

The edge homomorphism from topological to algebraic global sections is the degree
map

π∗(S) −→ E0,∗
2
∼= Z .

It is a rational isomorphism, but the kernel contains extremely subtle p-torsion for
all primes p.

2.6. Real topological K-theory. ((Recover KO = KUhC2 as global sections of
the moduli stack MGm

∼ BC2 of multiplicative groups.))



TOPOLOGICAL MODULAR FORMS - I 9

2.7. Morava’s change-of-rings theorem. ((Devinatz–Hopkins: Recover LK(n)S =

EhGn
n as the homotopy fixed points for the action of the extended Morava stabilized

group.))

2.8. Landweber’s exact functor theorem, revisited. Miller (with Hopkins?)
has reformulated the conditions for Landweber’s exact functor theorem as saying
that for any given ring homomorphism MU∗ = L→ R, the functor

X 7→MU∗(X)⊗MU∗ R

defines a generalized homology theory R∗(X) if and only if the morphism

Spec(R) −→MFGL

is flat, in the sense of morphisms of algebraic stacks.

2.9. The moduli stack of elliptic curves. For each R, let MEll(R) be the
groupoid of elliptic curves and isomorphisms between them, all defined over R. For
each ring homomorphism φ : R→ R′ there is a functor

φ∗ : MEll(R) −→MEll(R
′)

given by pullback of flat and proper schemes over φop : Spec(R′)→ Spec(R).
For each R, we obtain a functor

F (R) : MEll(R) −→MFGL(R)

that takes an elliptic curve C to its associated formal group law FC , and takes
an isomorphism f : C → C ′ of elliptic curves to the induced strict isomorphism
f : FC → FC′ , all defined over R.

WARNING: This step has been oversimplified. To get a formal group law FC we
must equip the elliptic curves with local coordinates. To get a strict isomorphism
we must keep track of tangential data. These issues are related.

2.10. The Goerss–Hopkins–Miller theorem. The stack morphism

F : MEll −→MFGL

is flat. Hence for any flat morphism C : Spec(R) →MEll, which corresponds to a
suitable elliptic curve C defined over R, the composite

FC : Spec(R)→MEll →MFGL

is flat. Thus Landweber’s exact functor theorem applies, and the functor

X 7→MU∗(X)⊗MU∗ R[u±1] = Ell(C/R)∗(X)

is a (multiplicative) homology theory, represented by a (ring) spectrum Ell(C/R).
We get a presheaf of (multiplicative) (co-)homology theories

(C : Spec(R)
flat−→MEll)

O∗7−→ Ell(C/R)∗(−)

on the flat site of MEll, which lifts the graded version

(C : Spec(R)
flat−→MEll)

O7−→ R[u±1]

of the algebraic structure sheaf of MEll.
One might try to lift the presheaf of (co-)homology theories to a presheaf of

spectra. We know this can be done one object at a time, but to do this functorially
in the morphisms of MEll requires hard work.
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Hopkins and Miller proved that if one passes to the coarser site consisting only of
étale morphisms C : Spec(R)→MEll, and asks the apparently harder question of
lifting the presheaf of multiplicative cohomology theories to a presheaf of A∞ ring
spectra, then such a lift does exist. This involves an obstruction theory related to
Hochschild cohomology, and in this framework the obstruction groups (to existence)
vanish. Thus there exists a presheaf of A∞ ring spectra

(C : Spec(R)
étale−→MEll)

Otop

7−→ Ell(C/R)

on the étale site of MEll.
Goerss, Hopkins and Miller then developed a refined obstruction theory for lifting

the presheaf of multiplicative cohomology theories to a presheaf of E∞ ring spectra.
This involves an obstruction theory related to André–Quillen cohomology, and again
the obstruction groups (to existence) vanish. Thus there exists a presheaf of E∞
ring spectra

(C : Spec(R)
étale−→MEll)

Otop

7−→ Ell(C/R)

on the étale site of MEll:

(MEll)ét
Otop

//

Otop
((

��

{E∞ ring spectra}

��

{A∞ ring spectra}

��

(MEll)fl
O∗ //

O

&&

multiplicative
(co-)homology

theories


��

{graded rings}

The algebraic structure sheaf of (MEll)ét can thus be lifted to a topological strucure
sheaf Otop in E∞ ring spectra.

In both cases the obstruction groups to uniqueness do not vanish. Lurie uses
a modified construction, using ∞-categories, to get an obstruction problem where
both the obstructions to existence and the obstructions to uniqueness vanish, hence
giving a uniquely defined construction of the sheaf Otop of E∞ ring spectra.

2.11. Topological Modular Forms.

S //

��

MU

��

TMF // Ell(C/R)

The global sections in the algebraic moduli stack MEll is the ring

Γ(MEll,O) = MF∗ ∼=
Z[c4, c6,∆

±1]

(c34 − c26 = 1728∆)
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of integral modular forms, as calculated by Deligne/Tate. Here |c4| = 8 and |c6| =
12.

The global sections in the corresponding topological moduli stack is by definition
the Topological Modular Forms spectrum

TMF = Γ(MEll,O
top) .

There is a descent spectral sequence

Es,t2 = Hs
ét(MEll, ω

⊗t/2) =⇒s πt−s(TMF ) ,

called the elliptic spectral sequence. (The terms with t odd are zero.) The edge
homomorphism from topological to algebraic global sections is a map

TMF∗ = π∗(TMF ) −→ E0,∗
2 = MF∗

from topological modular forms to integral modular forms. It is a rational iso-
morphism. Both the kernel and cokernel are nontrivial, but consist only of 2- and
3-torsion. For example, ∆ ∈ MF24 is not in the image from TMF∗, but 24∆ and
∆24 are.

Borcherds has shown that the theta-functions of even unimodular lattices, which
are modular forms, satisfy certain congruences. Hopkins has shown that these
congruences are those satisfied by the image of TMF∗ in MF∗. Hence theta-
functions of even unimodular lattices “are” topological modular forms.

2.12. Weierstrass curves, revisited. Under the linear coordinate change

x 7→ x+ r

y 7→ y + sx+ t

with r, s, t ∈ R a Weierstrass curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, . . . , a4, a6 ∈ R is mapped isomorphically to another Weierstrass curve

y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6

also defined over R. Recall that |ai| = 2i, and set |r| = 4, |s| = 2 and |t| = 6.
Let MWei(R) be the groupoid of Weierstrass curves and linear isomorphisms, all
defined over R. Letting R vary we obtain a Weierstrass (pre-)stack MWei. It is
corepresented by a Hopf algebra (A,Λ), where

A = Z[a1, . . . , a4, a6]

Λ = A[r, s, t] .

Here ηL : A → Λ is the usual inclusion, while ηR : A → Λ maps ai to a′i. (For
example, ηR(a1) = a′1 = a1 + 2s.)

Inverting ∆ ∈ A, we obtain a (pre-)stack MWei[∆
−1] of elliptic curves and

isomorphisms, corepresented by (A[∆−1],Λ[∆−1]). The functor

MWei[∆
−1]

∼−→MEll

is an equivalence of (pre-)stacks, and induces cohomology isomorphisms

Hs
ét(MEll, ω

⊗t/2)
∼=−→ Exts,tΛ (A,A)[∆−1] .
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The ring of integral modular forms is thus the equalizer

MF∗ = eq(A[∆−1]
ηL //

ηR
//Λ[∆−1])

= eq(A
ηL //

ηR
//Λ)[∆−1]

Furthermore, the E2-term of the elliptic spectral sequence

Es,t2 = Exts,tΛ (A,A)[∆−1] =⇒s πt−s(TMF )

is obtained from the cohomology of the cobar complex

0→ A
d0−→ Λ

d1−→ Λ⊗A Λ
d2−→ . . .

by inverting ∆.

2.13. Connective topological modular forms. It is desirable to realize the un-
localized form of the elliptic spectral sequence as a spectral sequence

Es,t2 = Exts,tΛ (A,A) =⇒s πt−s(tmf)

for a connective E∞ ring spectrum tmf , with TMF∗ ∼= π∗(tmf)[∆−24].
This can be done, but requires an intermediate step. There is a Deligne–Mumford

compactification M̄Ell of the moduli stack of elliptic curves, where additional curves
with nodal singularities are permitted. The sheaf Otop extends over M̄Ell, and one
can consider its E∞ ring spectrum

Tmf = Γ(M̄Ell,O
top)

of global sections. Here MEll ⊂ M̄Ell is the substack where ∆ is invertible, so
TMF ' Tmf [∆−24]. The compactness of M̄Ell leads to a form of Serre duality for
π∗(Tmf), called Anderson duality (see papers by Stojanoska), and the connective
cover

tmf = Tmf [0,∞)

of Tmf is the sought-after connective topological modular forms spectrum.
Hopkins–Mahowald (see a paper by Mathew) showed that

H∗(tmf ;F2) ∼= A ⊗A(2) F2 = A /A {Sq1, Sq2, Sq4}
as a module over the mod 2 Steenrod algebra A , where A(2) = 〈Sq1, Sq2, Sq4〉 is
a finite subalgebra of A . This can be taken as the basis for a calculation of the
2-completed homotopy groups of tmf , by means of the Adams spectral sequence

Es,t2 = Exts,tA (H∗(tmf ;F2),F2) =⇒s πt−s(tmf)∧2 .

Here the E2-term can be rewritten as

Es,t2
∼= Exts,tA(2)(F2,F2) .

We return to this in later talks.


