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Abstract
We prove that the comparison map from 𝐺-fixed points
to 𝐺-homotopy fixed points, for the 𝐺-fold smash power
of a bounded below spectrum 𝐵, becomes an equiva-
lence after 𝑝-completion if 𝐺 is a finite 𝑝-group and
𝐻∗(𝐵; 𝔽𝑝) is of finite type. We also prove that the map
becomes an equivalence after 𝐼(𝐺)-completion if𝐺 is any
finite group and 𝜋∗(𝐵) is of finite type, where 𝐼(𝐺) is the
augmentation ideal in the Burnside ring.
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1 INTRODUCTION

Let 𝐺 be a finite group, let 𝐵 be a flat orthogonal spectrum, and let

𝐵∧𝐺 =
⋀
g∈𝐺

𝐵

be the 𝐺-fold smash power of 𝐵, that is, the smash product of one copy of 𝐵 for each element of 𝐺.
The group 𝐺 acts from the left on 𝐵∧𝐺 by permuting the smash factors, and the resulting orthog-
onal spectrum with 𝐺-action prolongs essentially uniquely to an orthogonal 𝐺-spectrum indexed
on any given choice of a complete 𝐺-universe. This construction is originally due to Marcel Bök-
stedt (ca. 1987, cf. [10, §2.4]), who worked in the context of functors with smash product. In the
context of orthogonal spectra, it is the special case 𝐵∧𝐺 = 𝑁𝐺

{𝑒}
𝐵 of the Hill–Hopkins–Ravenel [11]

norm. When 𝐵 = 𝑆 is the sphere spectrum, this construction produces the 𝐺-equivariant sphere
spectrum 𝑆∧𝐺 = 𝑆𝐺 .
For any 𝐺-spectrum 𝑋, there is a comparison map

𝛾∶ 𝑋𝐺 = 𝐹(𝑆0, 𝑋)𝐺 ⟶ 𝐹(𝐸𝐺+,𝑋)𝐺 = 𝑋ℎ𝐺
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568 BERGSAKER and ROGNES

from 𝐺-fixed points to 𝐺-homotopy fixed points, induced by the collapse map 𝑐∶ 𝐸𝐺+ → 𝑆0. Let
𝑝 be a prime and suppose for a little while that 𝐺 is a 𝑝-group. We then say that the (generalized)
Segal conjecture holds for the 𝐺-spectrum 𝑋 if the comparison map 𝛾 becomes an equivalence
after 𝑝-completion. When 𝑋 = 𝑆𝐺 , this is equivalent to Graeme Segal’s Burnside ring conjecture
for the 𝑝-group𝐺, in the strong form proved by Gunnar Carlsson.We adapt the overall strategy [1,
5, 6, 19] from Carlsson’s proof to establish the following result, which specializes to his theorem
in the case 𝐵 = 𝑆.

Theorem 1.1. Let 𝑝 be a prime, 𝐺 a finite 𝑝-group, and 𝐵 a flat orthogonal spectrum. Suppose that
𝜋∗(𝐵) is bounded below and that 𝐻∗(𝐵; 𝔽𝑝) is of finite type. Then the Segal conjecture holds for the
smash power 𝐺-spectrum 𝐵∧𝐺 . In other words, the comparison map

𝛾∶
(
𝐵∧𝐺

)𝐺
⟶ (𝐵∧𝐺)ℎ𝐺

becomes an equivalence after 𝑝-completion.

The proof is given near the end of Section 3 for 𝐺 not elementary abelian, and at the end of Sec-
tion 5 for𝐺 ≅ (𝐶𝑝)

𝑘 with 𝑘 ⩾ 1. Themain novelty of our work concerns howwe deal with the fact
that in general the 𝐺-spectrum 𝐵∧𝐺 is not split in the sense of May–McClure [16, Definition 10],
so that [6, Theorem B] does not apply, even though this is so for 𝐵 = 𝑆.
When 𝐺 ≅ 𝐶𝑝, the theorem was proved earlier by Sverre Lunøe–Nielsen and the second

author [14, Theorem 5.13], and the case 𝐺 ≅ 𝐶𝑝𝑛 was proved by these authors together with Mar-
cel Bökstedt and Robert Bruner in [3, Theorem 2.7]. For 𝐺 ≅ 𝐶𝑝, the finite-type hypothesis on
𝐻∗(𝐵; 𝔽𝑝) was subsequently lifted by Nikolaus–Scholze in [18, Theorem III.1.7]. We do not know
whether the finite-type hypothesis can be removed for 𝐺 containing elementary abelian 𝑝-groups
(𝐶𝑝)

𝑘 of rank 𝑘 ⩾ 2.
Now return to the case of a general finite group 𝐺. Let 𝐼(𝐺) ⊂ 𝐴(𝐺) denote the augmentation

ideal in the Burnside ring. For any 𝐺-spectrum 𝑋, the comparison map

𝛾∶ 𝑋𝐺 𝜄
⟶ (𝑋∧

𝐼(𝐺)
)𝐺

𝜉∗

⟶ 𝑋ℎ𝐺

extends naturally over the spectrum-level 𝐼(𝐺)-completion map here denoted as 𝜄, cf. Greenlees–
May [8, §4]. We now say that the (generalized) Segal conjecture holds for the 𝐺-spectrum 𝑋

when the natural extension 𝜉∗ is an equivalence. When 𝐼(𝐺)-completion induces 𝐼(𝐺)-adic com-
pletion at the level of 𝐺-equivariant homotopy groups, May–McClure [16, p. 217] refer to this
assertion about 𝜉∗ as the completion conjecture, and such results are referred to as comple-
tion theorems in [8]. In particular, the Segal (or completion) conjecture for the 𝐺-spectrum 𝑆𝐺
is equivalent to the strong form of Segal’s Burnside ring conjecture for the general finite
group 𝐺.
When 𝐺 is a 𝑝-group, it follows from work of Kári Ragnarsson [21, Theorem C], adapting

[16, Proposition 14] to the nonsplit case, that the two formulations just given of the Segal
conjecture agree for bounded below 𝐺-spectra 𝑋 with 𝜋∗(𝑋) of finite type, since the compar-
ison map 𝛾 becomes an equivalence after 𝑝-completion if and only if it becomes one after
𝐼(𝐺)-adic completion. See Proposition 6.2. Hence, we can apply [16, Theorem 13] to deduce
the following form of the Segal conjecture for general finite groups and their smash power
spectra.
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Theorem 1.2. Let 𝐺 be a finite group and 𝐵 a flat orthogonal spectrum. Suppose that 𝜋∗(𝐵) is
bounded below and of finite type. Then the Segal conjecture holds for the smash power 𝐺-spectrum
𝐵∧𝐺 . In other words, the natural map

𝜉∗ ∶
(
(𝐵∧𝐺)∧

𝐼(𝐺)

)𝐺
⟶ (𝐵∧𝐺)ℎ𝐺

is an equivalence, inducing an isomorphism

𝜋∗(𝛾)
∧
𝐼(𝐺)

∶ 𝜋∗

(
(𝐵∧𝐺)𝐺

)∧
𝐼(𝐺)

≅
⟶ 𝜋∗

(
(𝐵∧𝐺)ℎ𝐺

)

of 𝐼(𝐺)-adically completed homotopy groups.

We give the proof at the end of Section 6. Wemake the assumption that 𝜋∗(𝐵) is of finite type in
order to ensure that the spectrum-level 𝐼(𝐺)-completion induces algebraic 𝐼(𝐺)-adic completion
at the level of 𝐺-equivariant homotopy groups, so as to be able to refer directly to the algebraic
induction theory of [16]. Presumably, this can be sidestepped by carrying out the induction theory
closer to the spectrum level.
The first author obtained a proof of Theorem 1.1 around April 2013, and lectured on the result

at a conference in December 2015 [2]. The second author returned to the argument in May and
June 2022, finding some simplifications that have been incorporated into the present account. We
apologize for the long delay in publication. In his July 2022 ICMaddress [17, Remark 7.11], Thomas
Nikolaus conjectured that Theorem 1.1 also holds without the finite-type assumption on mod 𝑝

homology. As mentioned above, we do not know how to remove this hypothesis.
The hallmark signs of Gunnar Carlsson’s breakthrough approach to the classical Segal con-

jecture are evident throughout our paper. We heartily congratulate him on the occasion of
his anniversary.

2 ISOTROPY SEPARATION AND 𝑺-FUNCTORS

To prove the Segal conjecture for the 𝐺-spectra 𝐵∧𝐺 , we follow Carlsson and inductively assume
that it holds for the 𝐽-spectra 𝐶∧𝐽 for all proper subquotient groups 𝐽 = 𝐾∕𝐻 of 𝐺. This is useful,
because of the following proposition.

Proposition 2.1. Let𝐻 < 𝐾 ⊂ 𝐺, let 𝐽 = 𝐾∕𝐻, and let 𝐵 be a flat orthogonal spectrum.

(a) The restriction res𝐺
𝐾
(𝐵∧𝐺) along 𝐾 ⊂ 𝐺 of the 𝐺-spectrum 𝐵∧𝐺 is equivalent to the 𝐾-spectrum

𝐶∧𝐾 , where

𝐶 = 𝐵∧𝐺∕𝐾 =
⋀

𝐾g∈𝐺∕𝐾

𝐵

is the smash product of one copy of 𝐵 for each right coset of 𝐾 in 𝐺.
(b) The geometric 𝐻-fixed point spectrum Φ𝐻(𝐶∧𝐾) of the 𝐾-spectrum 𝐶∧𝐾 is equivalent to the 𝐽-

spectrum 𝐶∧𝐽 .
(c) If 𝜋∗(𝐵) is bounded below and 𝐻∗(𝐵; 𝔽𝑝) is of finite type, then 𝜋∗(𝐶) is bounded below and

𝐻∗(𝐶; 𝔽𝑝) is of finite type.
(d) If 𝜋∗(𝐵) is bounded below and of finite type, then 𝜋∗(𝐶) is bounded below and of finite type.
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Proof. See [10, Proposition 2.5] or [11, Proposition B.209] for part (b). The remaining claims are
clear. □

As usual, let 𝐸𝐺 denote any 𝐺-CW space with 𝐸𝐺{𝑒} contractible and 𝐸𝐺𝐾 empty for each non-
trivial subgroup 𝐾 ⊂ 𝐺. Also, let 𝐸 denote any 𝐺-CW space with 𝐸𝐾 contractible for each
proper subgroup 𝐾 ⊂ 𝐺 and 𝐸𝐺 empty. Define 𝐸𝐺 and 𝐸 by the homotopy cofiber sequences

𝐸𝐺+

𝑐
⟶ 𝑆0 ⟶ 𝐸𝐺

𝐸+

𝑐
⟶ 𝑆0 ⟶ 𝐸 ,

where the collapse maps 𝑐 send 𝐸𝐺 and 𝐸 to the nonbase point of 𝑆0. Following [5, §III], let
𝜌 = ker(𝜖∶ ℂ{𝐺} → ℂ) be the reduced regular complex representation of 𝐺. Then 𝑆∞𝜌 is a model
for 𝐸 , conveniently filtered by the 𝐺-CW subspaces

𝑆0 ⊂ ⋯ ⊂ 𝑆𝑚𝜌 ⊂ ⋯ ⊂ 𝑆∞𝜌 . (2.1)

Proposition 2.2 ([5, Theorem A(b)], [6, Lemma 1.9]). Let 𝐺 be a nontrivial 𝑝-group and suppose
that Theorem 1.1 holds for each proper subgroup of𝐺. Let 𝐵 be a flat orthogonal spectrumwith𝜋∗(𝐵)

bounded below and𝐻∗(𝐵; 𝔽𝑝) of finite type, and suppose also that

𝐹(𝑆∞𝜌, 𝐵∧𝐺)𝐺

becomes trivial after 𝑝-completion. Then

𝛾∶ (𝐵∧𝐺)𝐺 ⟶ (𝐵∧𝐺)ℎ𝐺

becomes an equivalence after 𝑝-completion.

Proof. Consider the commutative square

The right-hand arrow is an equivalence because𝐸𝐺 × 𝐸 ≃𝐺 𝐸𝐺. The lower arrow is a homotopy
limit of maps

(𝐵∧𝐺)𝐾 ≅ 𝐹(𝐺∕𝐾+, 𝐵
∧𝐺)𝐺 ⟶ 𝐹(𝐸𝐺+ ∧ 𝐺∕𝐾+, 𝐵

∧𝐺)𝐺 ≃ (𝐵∧𝐺)ℎ𝐾 ,

with 𝐾 ranging over the proper subgroups of 𝐺, and therefore, becomes an equivalence after 𝑝-
completion by the inductive hypothesis and Proposition 2.1(a,c). The left-hand arrow becomes an
equivalence after 𝑝-completion if and only if its homotopy fiber, namely, 𝐹(𝑆∞𝜌, 𝐵∧𝐺)𝐺 , becomes
trivial after 𝑝-completion. □
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We continue to follow Carlsson’s strategy of isotropy separation, considering the homotopy
cofiber sequence

𝐹(𝑆∞𝜌, Σ−1𝐸𝐺 ∧ 𝐵∧𝐺)𝐺
𝛿

⟶ 𝐹(𝑆∞𝜌, 𝐸𝐺+ ∧ 𝐵∧𝐺)𝐺
𝑐

⟶ 𝐹(𝑆∞𝜌, 𝐵∧𝐺)𝐺 . (2.2)

Clearly, 𝐹(𝑆∞𝜌, 𝐵∧𝐺)𝐺 becomes trivial after 𝑝-completion if and only if the connecting map 𝛿

becomes an equivalence after 𝑝-completion, and this is what we will verify. We note that

𝐹(𝑆∞𝜌, Σ−1𝐸𝐺 ∧ 𝐵∧𝐺)𝐺 ≃ holim
𝑚

𝐹(𝑆𝑚𝜌, Σ−1𝐸𝐺 ∧ 𝐵∧𝐺)𝐺

and

𝐹(𝑆∞𝜌, 𝐸𝐺+ ∧ 𝐵∧𝐺)𝐺 ≃ holim
𝑚

𝐹(𝑆𝑚𝜌, 𝐸𝐺+ ∧ 𝐵∧𝐺)𝐺

≃ holim
𝑚

(Σ2𝑚𝐸𝐺+ ∧ (Σ−2𝑚𝐵)∧𝐺)𝐺

≃ holim
𝑚

Σ2𝑚𝐸𝐺+ ∧𝐺 (Σ−2𝑚𝐵)∧𝐺

= holim
𝑚

Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵) .

Here the first two equivalences are induced by the filtration (2.1), the third equivalence follows
from an identification 𝑆𝑚𝜌 ∧ 𝑆2𝑚 ≅ (𝑆2𝑚)∧𝐺 , and the fourth equivalence is a case of the Adams
transfer equivalence [12, Theorem II.7.1]. The final identity uses the notation

𝐷𝐺𝐵 = 𝐸𝐺+ ∧𝐺 𝐵∧𝐺

for the𝐺-fold extended power of any spectrum 𝐵, where𝐺 is viewed as a subgroup of the symmet-
ric group on |𝐺| elements. In particular,𝐷𝐺𝑆 = 𝐵𝐺+. Themap in the limit system that corresponds
to restriction along 𝑆𝑚𝜌 ⊂ 𝑆(𝑚+1)𝜌 is then the twisted diagonal map

Σ2(𝑚+1)𝐷𝐺(Σ
−2(𝑚+1)𝐵) = Σ2𝑚Σ2𝐷𝐺(Σ

−2(𝑚+1)𝐵)
Δ

⟶ Σ2𝑚𝐷𝐺(Σ
2Σ−2(𝑚+1)𝐵) ≃ Σ2𝑚𝐷𝐺(Σ

−2𝑚𝐵)

of [4, Definition II.3.1], associated to the based CW space 𝑆2. For brevity, we introduce the
following notations.

Definition 2.3. Let

𝑉(𝐺, 𝐵) = holim
𝑚

𝐹(𝑆𝑚𝜌, Σ−1𝐸𝐺 ∧ 𝐵∧𝐺)𝐺

and

𝑊(𝐺, 𝐵) = holim
𝑚

Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵)

define functors of 𝐵, so that there is a natural homotopy cofiber sequence

𝑉(𝐺, 𝐵)
𝛿

⟶ 𝑊(𝐺, 𝐵) ⟶ 𝐹(𝑆∞𝜌, 𝐵∧𝐺)𝐺 .
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For 𝐺-spectra 𝑋, the spectra 𝐹(𝑆∞𝜌, 𝐸𝐺 ∧ 𝑋)𝐺 , hence also the spectra 𝑉(𝐺, 𝐵), have been fully
analyzed by means of Carlsson’s theory of 𝑆-functors [5, §§IV–VI]. Recall that an elementary
abelian 𝑝-group is a group of the form𝐺 ≅ (𝐶𝑝)

𝑘. The rank 𝑘 ⩾ 1 Tits building 𝑘 is the classifying
space of the partially ordered set of proper, nontrivial subgroups of (𝐶𝑝)

𝑘, and by the Solomon–Tits
theorem [23], its double suspension

Σ2𝑘 ≃

𝑝(
𝑘
2)⋁
𝑆𝑘

has the homotopy type of a finite wedge sum of 𝑘-spheres. Here 𝑝(
𝑘
2) denotes 𝑝 raised to the power(𝑘

2

)
= 𝑘(𝑘 − 1)∕2. The wedge sum in the following result suggested the use of the letter “𝑉” in

𝑉(𝐺, 𝐵).

Theorem 2.4 ([5, §§IV–VI], [6, §§3–4]). Let𝐺 be a nontrivial 𝑝-group and suppose that Theorem 1.1
holds for each proper subquotient of𝐺. Let𝐵 be a flat orthogonal spectrumwith𝜋∗(𝐵) bounded below
and𝐻∗(𝐵; 𝔽𝑝) of finite type.

(a) If 𝐺 = (𝐶𝑝)
𝑘 , then there are natural equivalences

𝑉(𝐺, 𝐵)∧𝑝 ≃ 𝐹(Σ2𝑘, 𝐵)
∧
𝑝 ≃

𝑝(
𝑘
2)⋁
Σ−𝑘𝐵∧

𝑝 .

(b) If 𝐺 is not elementary abelian, then 𝑉(𝐺, 𝐵)∧𝑝 ≃∗.

Proof. This is the special case 𝑘𝐺 = 𝐵∧𝐺 , 𝑗 = 𝑘𝐺∕𝐺 = Φ𝐺(𝐵∧𝐺) of Caruso–May–Priddy’s [6,
Theorem A], in view of the equivalence Φ𝐺(𝐵∧𝐺) ≃ 𝐵 recalled in Proposition 2.1(b). □

As pointed out in [6, Remark 8.4], for 𝐺 = (𝐶𝑝)
𝑘, there is a natural action of 𝐺𝐿𝑘(ℤ∕𝑝) on the

terms in the sequence (2.2), and the maps are 𝐺𝐿𝑘(ℤ∕𝑝)-equivariant. This uses that the 𝐺-actions
on𝐵∧𝐺 ,𝐸𝐺+ → 𝑆0 → 𝐸𝐺 and 𝑆∞𝜌 all extend to permutation actions by the symmetric group Σ|𝐺|.
Hence, the normalizer 𝑁 of 𝐺 in Σ|𝐺| acts naturally on the 𝐺-fixed point spectra in (2.2), and
these actions factor through the Weyl group 𝑁∕𝐺. This normalizer is classically known as the
holomorph of 𝐺, and is isomorphic to the semidirect product Aut(𝐺)⋉ 𝐺 for the tautological
action of the automorphism group Aut(𝐺) on 𝐺. In the case 𝐺 = (𝐶𝑝)

𝑘, the normalizer is the
semidirect product𝑁 ≅ 𝐺𝐿𝑘(ℤ∕𝑝)⋉ (𝐶𝑝)

𝑘. Here, theWeyl group𝑁∕𝐺 = 𝐺𝐿𝑘(ℤ∕𝑝) acts linearly
on (𝐶𝑝)

𝑘, via ℤ∕𝑝 = End(𝐶𝑝).
Similarly, 𝐺𝐿𝑘(ℤ∕𝑝) acts on the partially ordered set of proper, nontrivial subgroups of (𝐶𝑝)

𝑘,
hence also on 𝑘 and 𝐹(Σ2𝑘, 𝐵)

∧
𝑝 , and the first equivalence in Theorem 2.4(a) respects these

𝐺𝐿𝑘(ℤ∕𝑝)-actions. The induced action on

St𝑘 ∶= 𝐻𝑘(Σ
2𝑘; ℤ) ≅

𝑝(
𝑘
2)⨁
ℤ

is the Steinberg representation. Let 𝑈𝑘(ℤ∕𝑝) ⊂ 𝐺𝐿𝑘(ℤ∕𝑝) be the subgroup of upper triangu-
lar matrices with “ones” on the diagonal. This is a 𝑝-Sylow subgroup, of order 𝑝(

𝑘
2), and the

Solomon–Tits theorem also says that the restriction along𝑈𝑘(ℤ∕𝑝) ⊂ 𝐺𝐿𝑘(ℤ∕𝑝) of the Steinberg
representation is the regular integral representation.
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Addendum 2.5. The homotopy cofiber sequence (2.2) is 𝐺𝐿𝑘(ℤ∕𝑝)-equivariant, and the equiva-
lence in Theorem 2.4(a) can be written𝑈𝑘(ℤ∕𝑝)-equivariantly as

𝑉(𝐺, 𝐵)∧𝑝 ≃ 𝑈𝑘(ℤ∕𝑝)+ ∧ Σ−𝑘𝐵∧
𝑝 .

Proof. As reviewed above, the Solomon–Tits equivalence can be written 𝑈𝑘(ℤ∕𝑝)-equivariantly
as Σ2𝑘 ≃ 𝑈𝑘(ℤ∕𝑝)+ ∧ 𝑆𝑘, and the rest of the analysis respects this action. □

As stated at the beginning of this section, we assume throughout the remainder of the paper
that Theorem 1.1 holds for each proper subquotient of 𝐺. In particular, the inductive hypotheses
in Proposition 2.2 and Theorem 2.4 are satisfied when 𝐺 is a 𝑝-group.

3 TOWERS OF EXTENDED POWERS

In the papers [5, §III], [6, §8], the spectrum 𝐹(𝑆∞𝜌, 𝐸𝐺+ ∧ 𝑋)𝐺 is analyzed under the hypothesis
that the𝐺-spectrum𝑋 is split. This enables a translation into nonequivariant terms, involving the
𝑋-homology of a tower

⋯ ⟶ 𝐵𝐺−(𝑚+1)𝜌 ⟶ 𝐵𝐺−𝑚𝜌 ⟶ ⋯ ⟶ 𝐵𝐺+

of Thom spectra. The smash power 𝐺-spectra 𝑋 = 𝐵∧𝐺 are not generally split. (For example, with
𝐵 = 𝐻 = 𝐻𝔽𝑝 and 𝐺 = 𝐶𝑝, we have 𝜋0((𝐵

∧𝐺)𝐺) ≅ ℤ∕𝑝2 by a variant of [10, Theorem 3.3], and
this group does not contain𝜋0(𝐵

∧𝐺) ≅ 𝔽𝑝 as a direct summand.)We shall therefore instead follow
Steenrod [24] and calculate with the mod 𝑝 cohomology of the tower

⋯ ⟶ Σ2(𝑚+1)𝐷𝐺(Σ
−2(𝑚+1)𝐵)

Δ
⟶ Σ2𝑚𝐷𝐺(Σ

−2𝑚𝐵) ⟶ ⋯ ⟶ 𝐷𝐺𝐵 (3.1)

of 𝐺-fold extended power spectra. Recall that we write 𝑊(𝐺, 𝐵) for the homotopy limit of
this tower.
Let 𝑝 be a prime, briefly write 𝐻∗(−) = 𝐻∗(−; 𝔽𝑝) and 𝐻∗(−) = 𝐻∗(−; 𝔽𝑝), and let 𝐿 = 𝑒(𝜌) ∈

𝐻
2(|𝐺|−1)
g𝑝 (𝐺) be themod𝑝 Euler class of the𝐺-representation 𝜌. If𝐺 = (𝐶𝑝)

𝑘 is elementary abelian
and 𝑝 is odd, then its group cohomology

𝐻∗
g𝑝(𝐺) = 𝐸(𝑥1, … , 𝑥𝑘) ⊗ 𝑃(𝑦1, … , 𝑦𝑘)

is a tensor product of exterior and polynomial algebras, with |𝑥𝑖| = 1, |𝑦𝑖| = 2, and 𝛽(𝑥𝑖) = 𝑦𝑖 for
each 1 ⩽ 𝑖 ⩽ 𝑘. If instead 𝑝 = 2, then

𝐻∗
g𝑝(𝐺) = 𝑃(𝑥1, … , 𝑥𝑘)

with |𝑥𝑖| = 1 and 𝛽(𝑥𝑖) = 𝑥2
𝑖
for each 1 ⩽ 𝑖 ⩽ 𝑘. In either case

𝐿 =
∏
𝑥≠0

𝛽(𝑥) ,
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where 𝑥 ranges over the (𝑝𝑘 − 1) nonzero elements in 𝐻1
g𝑝(𝐺) = 𝔽𝑝{𝑥1, … , 𝑥𝑘}. Let 𝐴 denote the

mod 𝑝 Steenrod algebra.

Proposition 3.1. Let 𝐺 be a 𝑝-group and 𝐵 a bounded below spectrum with 𝐻∗(𝐵; 𝔽𝑝) of finite
type.

(a) There is a natural 𝐴- and𝐻∗
g𝑝(𝐺)-linear isomorphism

𝐻∗(𝐷𝐺𝐵)[𝐿
−1] ≅ colim

𝑚
𝐻∗(Σ2𝑚𝐷𝐺(Σ

−2𝑚𝐵)) =∶ 𝐻∗
𝑐 (𝑊(𝐺, 𝐵)) .

(b) There is an𝐻∗
g𝑝(𝐺)-linear isomorphism

𝐻∗(𝐷𝐺𝐵)[𝐿
−1] ≅ 𝐻∗

g𝑝(𝐺)[𝐿
−1]{𝑏⊗𝐺 ∣ 𝑏 ∈ } ,

where  is a homogeneous basis for𝐻∗(𝐵) and 𝑏⊗𝐺 denotes the tensor product of one copy of 𝑏
for each element g ∈ 𝐺.

(c) If 𝐺 is not elementary abelian, then𝐻∗(𝐷𝐺𝐵)[𝐿
−1] = 0.

(d) If 𝐺 = (𝐶𝑝)
𝑘 , then the isomorphisms in (a) and (b) are 𝐺𝐿𝑘(ℤ∕𝑝)-linear.

Proof.

(a) For each 𝑚 ⩾ 0, there is a Thom isomorphism 𝐻∗(Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵)) ≅ 𝐻∗+2𝑚(|𝐺|−1)(𝐷𝐵𝐺)

under which the homomorphism induced by Δ is given by multiplication by 𝐿, cf. [4,
Lemma II.5.6]. Hence, the continuous cohomology𝐻∗

𝑐 (𝑊(𝐺, 𝐵)) is isomorphic to the colimit
of the sequence

⋯ ⟵ 𝐻∗+2(𝑚+1)(|𝐺|−1)(𝐷𝐺𝐵)
𝐿

⟵ 𝐻∗+2𝑚(|𝐺|−1)(𝐷𝐺𝐵) ⟵ ⋯ ⟵ 𝐻∗(𝐷𝐺𝐵) ,

that is, the localization of𝐻∗(𝐷𝐺𝐵) away from the Euler class 𝐿.
(b) Following Steenrod [24, §VIII.3], we have a natural isomorphism

𝐻∗(𝐷𝐺𝐵) ≅ 𝐻∗
g𝑝(𝐺;𝐻

∗(𝐵)⊗𝐺) .

A basis for 𝐻∗(𝐵)⊗𝐺 is given by the tensor products 𝑏′ = ⊗g∈𝐺𝑏g , where each 𝑏g ∈  lies
in the chosen basis, and the action by 𝐺 permutes these generators (up to signs). Hence,
𝐻∗

g𝑝(𝐺;𝐻
∗(𝐵)⊗𝐺) splits as a direct sum of summands

𝐻∗
g𝑝(𝐺; 𝔽𝑝[𝐺∕𝐾]{𝑏′}) ≅ 𝐻∗

g𝑝(𝐾; 𝔽𝑝{𝑏
′}) ,

where 𝐾 is the stabilizer of 𝑏′. If 𝐾 is a proper subgroup of 𝐺, then 𝐿 restricts trivially to
𝐻∗

g𝑝(𝐾), and the summand 𝐻∗
g𝑝(𝐺; 𝔽𝑝[𝐺∕𝐾]{𝑏′}) is annihilated by localization away from 𝐿.

Only the summands with 𝑏′ = 𝑏⊗𝐺 survive, each of which contributes 𝐻∗
g𝑝(𝐺)[𝐿

−1]{𝑏′} to
𝐻∗(𝐷𝐺𝐵)[𝐿

−1].
(c) If 𝐺 is not elementary abelian, then 𝐿 ∈ 𝐻∗

g𝑝(𝐺) is nilpotent by the Quillen–Venkov
theorem [5, Lemma III.1], [20] hence𝐻∗

g𝑝(𝐺)[𝐿
−1] = 0.

(d) The action of each element in 𝐺𝐿𝑘(ℤ∕𝑝) permutes the elements in 𝐺 = (𝐶𝑝)
𝑘, hence also

permutes the tensor factors in 𝑏⊗𝐺 , all of which are equal. □
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To pass from continuous cohomology to homotopy groups, we make use of an inverse limit of
Adams spectral sequences associated to the tower (3.1), as in [5, §III], [6, §7], and [14, §2].

Proposition 3.2. Let𝐺 be a 𝑝-group and 𝐵 a bounded below spectrumwith𝐻∗(𝐵; 𝔽𝑝) of finite type.
There is a natural, strongly convergent, inverse limit Adams spectral sequence

𝐸𝑠,𝑡
2

= Ext𝑠,𝑡
𝐴
(𝐻∗(𝐷𝐺𝐵)[𝐿

−1], 𝔽𝑝) ⟹ 𝜋𝑡−𝑠𝑊(𝐺, 𝐵)∧𝑝 .

Proof. Each spectrum Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵) is bounded below with mod 𝑝 homology of finite type. Its

mod 𝑝 Adams spectral sequence

𝐸∗,∗
2

(𝑚) = Ext∗,∗
𝐴

(𝐻∗(Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵)), 𝔽𝑝) ⟹ 𝜋∗Σ

2𝑚𝐷𝐺(Σ
−2𝑚𝐵)∧𝑝

is therefore strongly convergent, with𝐸∗,∗
2

(𝑚) finite in each bidegree. By [6, Proposition 7.1], in the
slightly generalized form from [14, Proposition 2.2], the algebraic limit groups𝐸∗,∗

𝑟 = lim𝑚 𝐸∗,∗
𝑟 (𝑚)

(and the induced differentials 𝑑𝑟) also form a spectral sequence, with 𝐸2-term

𝐸∗,∗
2

= lim
𝑚

Ext∗,∗
𝐴

(𝐻∗(Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵)), 𝔽𝑝)

≅ Ext∗,∗
𝐴

(colim
𝑚

𝐻∗(Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵)), 𝔽𝑝)

= Ext∗,∗
𝐴

(𝐻∗
𝑐 (𝑊(𝐺, 𝐵)), 𝔽𝑝) ≅ Ext∗,∗

𝐴
(𝐻∗(𝐷𝐺𝐵)[𝐿

−1], 𝔽𝑝) .

Moreover, this spectral sequence converges strongly to

𝜋∗ holim𝑚
Σ2𝑚𝐷𝐺(Σ

−2𝑚𝐵)∧𝑝 = 𝜋∗𝑊(𝐺, 𝐵)∧𝑝 ,

as asserted. □

Proposition 3.3. Let 𝐺 be a 𝑝-group that is not elementary abelian, and let 𝐵 be a bounded below
spectrum with𝐻∗(𝐵; 𝔽𝑝) of finite type. Then𝑊(𝐺, 𝐵)∧𝑝 ≃∗.

Proof. By Proposition 3.1(c), we have 𝐻∗(𝐷𝐺𝐵)[𝐿
−1] = 0, so 𝐸∗,∗

2
= 0 in the inverse limit spectral

sequence of Proposition 3.2, which by strong convergence implies 𝜋∗𝑊(𝐺, 𝐵)∧𝑝 = 0. □

We can now collect some of the threads, as in the proof of [5, Theorem C].
Proof of Theorem 1.1 for 𝐺 not elementary abelian. Let 𝐺 be a 𝑝-group that is not elementary

abelian, and suppose that Theorem 1.1 holds for each proper subquotient of𝐺. Let 𝐵 be a bounded
below flat orthogonal spectrum with 𝐻∗(𝐵; 𝔽𝑝) of finite type. By Theorem 2.4(b), 𝑉(𝐺, 𝐵)∧𝑝 ≃∗.
By Proposition 3.3, 𝑊(𝐺, 𝐵)∧𝑝 ≃∗. Hence, 𝐹(𝑆∞𝜌, 𝐵∧𝐺)𝐺 becomes trivial after 𝑝-completion, by
the homotopy cofiber sequence in Definition 2.3. Therefore, 𝛾∶ (𝐵∧𝐺)𝐺 → (𝐵∧𝐺)ℎ𝐺 becomes an
equivalence after 𝑝-completion, by Proposition 2.2. □

In the elementary abelian case, with𝐺 ≅ (𝐶𝑝)
𝑘, we need better control of the connectingmap 𝛿.

Suppose that𝐵 is bounded belowwith𝐻∗(𝐵; 𝔽𝑝) of finite type. Then𝑉(𝐺, 𝐵)∧𝑝 andΣ
2𝑚𝐷𝐺(Σ

−2𝑚𝐵)

are also bounded below with mod 𝑝 homology of finite type, in view of our inductive hypothesis
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on 𝐺 and Theorem 2.4(a). For each𝑚 ⩾ 0, the composite map

𝑉(𝐺, 𝐵)
𝛿

⟶ 𝑊(𝐺, 𝐵) ⟶ Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵)

induces a morphism

Ext∗,∗
𝐴

(𝐻∗(𝑉(𝐺, 𝐵)), 𝔽𝑝) ⟶ Ext∗,∗
𝐴

(𝐻∗(Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵)), 𝔽𝑝) = 𝐸∗,∗

2
(𝑚)

of strongly convergent Adams spectral sequences. Passing to the limit over 𝑚, these define a
natural morphism of spectral sequences

𝐸2(𝛿)∶ Ext∗,∗
𝐴

(𝐻∗(𝑉(𝐺, 𝐵)), 𝔽𝑝) ⟶ Ext∗,∗
𝐴

(𝐻∗
𝑐 (𝑊(𝐺, 𝐵)), 𝔽𝑝) = 𝐸∗,∗

2

converging to 𝜋∗(𝛿)
∧
𝑝 ∶ 𝜋∗𝑉(𝐺, 𝐵)∧𝑝 → 𝑊(𝐺, 𝐵)∧𝑝 . By construction, 𝐸2(𝛿) = 𝑓∗

𝐵
is induced by the

homomorphism 𝑓𝐵 specified in the following definition.

Definition 3.4. Let 𝑓𝐵 = 𝛿∗𝜅 be the natural 𝐴- and Aut(𝐺)-linear homomorphism defined by
the composition

𝑓𝐵 ∶ 𝐻∗
𝑐 (𝑊(𝐺, 𝐵))

𝜅
⟶ 𝐻∗(𝑊(𝐺, 𝐵))

𝛿∗

⟶ 𝐻∗(𝑉(𝐺, 𝐵)) ,

where

𝜅∶ 𝐻∗
𝑐 (𝑊(𝐺, 𝐵)) = colim

𝑚
𝐻∗(Σ2𝑚𝐷𝐺(Σ

−2𝑚𝐵)) ⟶ 𝐻∗(𝑊(𝐺, 𝐵))

is the canonical map from the continuous to the ordinary mod 𝑝 cohomology associated to the
tower (3.1).

4 COMPARISON OF 𝐓𝐨𝐫𝑨-EQUIVALENCES

We now assume that 𝐺 = (𝐶𝑝)
𝑘 with 𝑘 ⩾ 1, so that Aut(𝐺) = 𝐺𝐿𝑘(ℤ∕𝑝), and that Theorem 1.1

holds for each proper subquotient of 𝐺. We will show that

𝛿∧𝑝 ∶ 𝑉(𝐺, 𝐵)∧𝑝 ⟶ 𝑊(𝐺, 𝐵)∧𝑝

is an equivalence for suitable 𝐵 by using the classical Segal conjecture to show that the 𝐴- and
𝐺𝐿𝑘(ℤ∕𝑝)-linear homomorphism

𝑓𝐵 ∶ 𝐻∗(𝐷𝐺𝐵)[𝐿
−1] ≅ 𝐻∗

𝑐 (𝑊(𝐺, 𝐵)) ⟶ 𝐻∗(𝑉(𝐺, 𝐵)) ≅

𝑝(
𝑘
2)⨁
Σ−𝑘𝐻∗(𝐵) ,

cf. Definition 3.4, Proposition 3.1(a,d), and Theorem 2.4(a), is a Tor𝐴-equivalence in the key cases
𝐵 = 𝑆 and 𝐵 = 𝐻 = 𝐻𝔽𝑝. More precisely, as a 𝑈𝑘(ℤ∕𝑝)-module, the target can be rewritten as

𝐻∗(𝑉(𝐺, 𝐵)) ≅ Σ−𝑘𝐻∗(𝐵)[𝑈𝑘(ℤ∕𝑝)] ,
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cf. Addendum 2.5. The proof will be an application of the following comparison theorem of
Priddy–Wilkerson. (As an aside, we recall that for 𝑝-groups 𝑈, an 𝔽𝑝[𝑈]-module is projective
if and only if it is free.)

Theorem 4.1 ([19, Theorem III(i)]). Let 𝐴 be the mod 𝑝 Steenrod algebra, let 𝑈 be a 𝑝-group,
and let 𝐴[𝑈] = 𝐴 ⊗ 𝔽𝑝[𝑈] denote the group algebra. Let 𝑓∶ 𝑀 → 𝑁 be a surjective 𝐴[𝑈]-module
homomorphism, where𝑀 and𝑁 are projective as 𝔽𝑝[𝑈]-modules. If

𝑓𝑈
∗ ∶ Tor𝐴∗,∗(𝔽𝑝,𝑀

𝑈) ⟶ Tor𝐴∗,∗(𝔽𝑝,𝑁
𝑈)

is an isomorphism, then

𝑓∗ ∶ Tor𝐴∗,∗(𝔽𝑝,𝑀) ⟶ Tor𝐴∗,∗(𝔽𝑝,𝑁)

is an isomorphism, too.

Recall from [1, Proposition 1.2] that the conclusion about 𝑓∗, i.e., that it is a Tor𝐴-equivalence,
also implies that

𝑓∗ ∶ Ext∗,∗
𝐴

(𝑁,𝑄) ⟶ Ext∗,∗
𝐴

(𝑀,𝑄) (4.1)

is an isomorphism for each 𝐴-module 𝑄 that is bounded below and of finite type. This will be
applied with 𝑄 = 𝔽𝑝 to show that a morphism of Adams spectral sequences is an isomorphism.
For brevity we hereafter set

𝑈 ∶= 𝑈𝑘(ℤ∕𝑝) ⊂ 𝐺𝐿𝑘(ℤ∕𝑝) . (4.2)

Remark 4.2. Our approach to specifying 𝑓𝐵 differs from that of [19, (1.7)], where 𝑓 for 𝐵 = 𝑆 is
instead defined via the evidently surjective projection

𝑓∶ 𝐻∗
g𝑝(𝐺)[𝐿

−1] ≅ 𝐻∗
𝑐 (𝑊(𝐺, 𝑆)) ⟶ 𝔽𝑝 ⊗𝐴 𝐻∗

g𝑝(𝐺)[𝐿
−1]

onto the 𝐴-module coinvariants, followed by an (a posteriori) identification of the target with
Σ−𝑘 St𝑘 ⊗𝔽𝑝 ≅ 𝐻∗(𝑉(𝐺, 𝑆)). This will not work for many other spectra 𝐵, including 𝐵 = 𝐻, since
𝐴 generally acts nontrivially on𝐻∗(𝑉(𝐺, 𝐵)).

To verify that our homomorphism 𝑓𝐵 is surjective for 𝐵 = 𝐻, we now rely on the classi-
cal Segal conjecture in the case 𝐵 = 𝑆, including the delicate comparison in [6, §§5–6] of 𝑆𝐺
with 𝐹(𝐸𝐺+,𝐻), representing stable equivariant cohomotopy and mod 𝑝 Borel cohomology,
respectively.

Proposition 4.3. 𝑓𝑆 ∶ 𝐻∗
g𝑝(𝐺)[𝐿

−1] → Σ−𝑘𝔽𝑝[𝑈] is surjective.

Proof. The edge homomorphism of the inverse limit Adams spectral sequence

𝐸∗,∗
2

= Ext∗,∗
𝐴

(𝐻∗
𝑐 (𝑊(𝐺, 𝑆)), 𝔽𝑝) ⟹ 𝜋∗𝑊(𝐺, 𝑆)∧𝑝
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from Proposition 3.2 factors as

𝜋∗𝑊(𝐺, 𝑆)∧𝑝
ℎ

⟶ Hom𝐴(𝐻
∗(𝑊(𝐺, 𝑆)), 𝔽𝑝)

𝜅∗

⟶ Hom𝐴(𝐻
∗
𝑐 (𝑊(𝐺, 𝑆)), 𝔽𝑝) ,

where ℎ is induced by the Hurewicz homomorphism. By Adams–Gunawardena–Miller [1,
Theorem 1.1(a,b)], there is a Tor𝐴-equivalence

𝐻∗
𝑐 (𝑊(𝐺, 𝑆)) ≅ 𝐻∗

g𝑝(𝐺)[𝐿
−1] ⟶

𝑝(
𝑘
2)⨁
Σ−𝑘𝔽𝑝 .

Hence, the inverse limit Adams spectral sequence is isomorphic to the direct sum of 𝑝(
𝑘
2) copies of

theAdams spectral sequence for 𝑆−𝑘, and this implies that𝑊(𝐺, 𝑆)∧𝑝 ≃
⋁𝑝(

𝑘
2)
Σ−𝑘𝑆∧𝑝 . In particular,

the homomorphisms ℎ̄ and 𝜅∗ℎ̄ in

𝜋−𝑘𝑊(𝐺, 𝑆)∕𝑝
ℎ̄

⟶ Hom−𝑘
𝐴

(𝐻∗(𝑊(𝐺, 𝑆)), 𝔽𝑝)
𝜅∗

⟶ Hom−𝑘
𝐴

(𝐻∗
𝑐 (𝑊(𝐺, 𝑆)), 𝔽𝑝)

are isomorphisms, hence so is 𝜅∗. It follows that 𝜅 is surjective. Finally, 𝛿∧𝑝 is an equivalence for
𝐵 = 𝑆, by the classical Segal conjecture, so 𝛿∗ ∶ 𝐻∗(𝑊(𝐺, 𝑆)) → 𝐻∗(𝑉(𝐺, 𝑆)) is an isomorphism.
Hence, 𝑓𝑆 = 𝛿∗𝜅 is surjective. □

Proposition 4.4. 𝑓𝐻 ∶ 𝐻∗(𝐷𝐺𝐻)[𝐿−1] → Σ−𝑘𝐴[𝑈] is surjective.

Proof. By naturality of 𝑓𝐵 with respect to the mod 𝑝 Hurewicz map ℎ∶ 𝑆 → 𝐻, the 𝐴-module
diagram

commutes, where𝐴 = 𝐻∗(𝐻) and 𝔽𝑝 = 𝐻∗(𝑆). The left-hand homomorphism ℎ∗ and 𝑓𝑆 are both
surjective, by Propositions 3.1(b) and 4.3. Hence, the image of 𝑓𝐻 contains all of the 𝐴-module
generators of Σ−𝑘𝐴[𝑈], in degree −𝑘, which by 𝐴-linearity implies that 𝑓𝐻 is surjective. □

The projectivity hypothesis in Theorem 4.1 follows easily from the special case considered by
Priddy–Wilkerson.

Proposition 4.5. Let 𝐵 be bounded below with 𝐻∗(𝐵; 𝔽𝑝) of finite type. Then 𝐻∗(𝐷𝐺𝐵)[𝐿
−1] and

Σ−𝑘𝐻∗(𝐵)[𝑈] are both projective as 𝔽𝑝[𝑈]-modules.

Proof. Suppose 𝑝 is odd. By [19, Proposition 2.4], the homomorphism

𝑃(𝑦1, … , 𝑦𝑘)[𝐿
−1]𝐺𝐿𝑘(ℤ∕𝑝) ⟶ 𝑃(𝑦1, … , 𝑦𝑘)[𝐿

−1]
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is a 𝐺𝐿𝑘(ℤ∕𝑝)-Galois extension of commutative rings, in the sense of [7, Theorem 1.3,
Definition 1.4]. It follows from [7, Theorem 2.2, Theorem 4.2(a)] that

𝑃(𝑦1, … , 𝑦𝑘)[𝐿
−1]𝑈 ⟶ 𝑃(𝑦1, … , 𝑦𝑘)[𝐿

−1]

is a 𝑈-Galois extension, so that 𝑃(𝑦1, … , 𝑦𝑘)[𝐿
−1] is a projective 𝔽𝑝[𝑈]-module. Hence [19,

Proposition 2.5] implies that

𝐻∗
g𝑝(𝐺)[𝐿

−1] = 𝐸(𝑥1, … , 𝑥𝑘) ⊗ 𝑃(𝑦1, … , 𝑦𝑘)[𝐿
−1]

and

𝐻∗(𝐷𝐺𝐵)[𝐿
−1] ≅ 𝐻∗

g𝑝(𝐺)[𝐿
−1]{𝑏⊗𝐺 ∣ 𝑏 ∈ }

are also projective as 𝔽𝑝[𝑈]-modules. The case 𝑝 = 2 is a little simpler, replacing 𝑃(𝑦1, … , 𝑦𝑘) by
𝑃(𝑥1, … , 𝑥𝑘), omitting the factor 𝐸(𝑥1, … , 𝑥𝑘), and noting that our Euler class 𝐿 is the square of
the class considered by Priddy–Wilkerson. The claim for Σ−𝑘𝐻∗(𝐵)[𝑈] ≅ 𝔽𝑝[𝑈]{Σ−𝑘𝑏 ∣ 𝑏 ∈ } is
immediate. □

Our next aim is to generalize results of Li–Singer and Adams–Gunawardena–Miller to identify
𝐻∗(𝐷𝐺𝐵)[𝐿

−1]𝑈 as an 𝐴-module with the 𝑘-fold iterated desuspended 𝐶𝑝-Singer construction
𝑇𝑘(𝐻∗(𝐵)), which is Tor𝐴-equivalent to Σ−𝑘𝐻∗(𝐵). The notation 𝑇(𝑀), for any 𝐴-module 𝑀, is
that of [1, §2], and is equal to the 𝐴-module denoted as Σ−1𝑅+(𝑀) in [14, Definition 3.1]. We shall
use the expressions

𝑇(𝐻∗(𝐵)) ≅ 𝐻∗
𝑐 (𝑊(𝐶𝑝, 𝐵)) = colim

𝑚
𝐻∗(Σ2𝑚𝐷𝐶𝑝

(Σ−2𝑚𝐵))

≅ 𝐻∗(𝐷𝐶𝑝
𝐵)[𝐿−11 ] ≅ 𝐻∗

g𝑝(𝐶𝑝;𝐻
∗(𝐵)⊗𝑝)[𝐿−11 ]

≅ 𝐻∗
g𝑝(𝐶𝑝)[𝐿

−1
1 ]{𝑏⊗𝑝 ∣ 𝑏 ∈ }

from [14, Theorem 5.9], extending [4, Theorem II.5.1], as presentations of this version of the Singer
construction. Here, 𝐿1 = −𝛽(𝑥1)

𝑝−1 ∈ 𝐻
2(𝑝−1)
g𝑝 (𝐶𝑝) is the case 𝑘 = 1 of the Euler class 𝐿.

Definition 4.6. For any group 𝐻, let 𝐶𝑝 ≀ 𝐻 = 𝐶𝑝 ⋉𝐻𝑝 denote the wreath product, that is, the
semidirect product where 𝐶𝑝 acts on the 𝑝th power 𝐻𝑝 by cyclically permuting the factors. Let
𝐶𝑝 × 𝐻 → 𝐶𝑝 ≀ 𝐻 be the diagonal inclusion mapping (g , ℎ) to (g ; ℎ, … , ℎ), and let

𝑑∶ (𝐶𝑝)
𝑘 = 𝐶𝑝 ×⋯ × 𝐶𝑝 ⟶ 𝐶𝑝 ≀⋯ ≀ 𝐶𝑝 = ≀𝑘𝐶𝑝

denote its (𝑘 − 1)-fold iterate, with𝐻 = ≀𝑖𝐶𝑝 at the 𝑖th instance.

Lemma4.7. View𝑑 as an inclusion of subgroups ofΣ𝑝𝑘 . The normalizer of𝐺 = (𝐶𝑝)
𝑘 in the𝑝-Sylow

subgroup ≀𝑘𝐶𝑝 of Σ𝑝𝑘 is𝑈𝑘(ℤ∕𝑝)⋉ (𝐶𝑝)
𝑘 , with Weyl group the 𝑝-Sylow subgroup𝑈 = 𝑈𝑘(ℤ∕𝑝) of

𝐺𝐿𝑘(ℤ∕𝑝).

Proof. The normalizer of (𝐶𝑝)
𝑘 in Σ𝑝𝑘 is 𝐺𝐿𝑘(ℤ∕𝑝)⋉ (𝐶𝑝)

𝑘, and the lemma follows by restricting
to elements in the 𝑝-Sylow subgroup ≀𝑘𝐶𝑝 of Σ𝑝𝑘 . □
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The diagonal inclusion 𝑑 induces a natural map of extended powers

𝐷(𝐶𝑝)
𝑘𝐵 ≃ 𝐸Σ𝑝𝑘+ ∧(𝐶𝑝)

𝑘 𝐵∧𝑝𝑘
⟶ 𝐸Σ𝑝𝑘+ ∧≀𝑘𝐶𝑝

𝐵∧𝑝𝑘
≃ 𝐷𝐶𝑝

(⋯𝐷𝐶𝑝
(𝐵)⋯) ,

and a morphism of collapsing [15, Lemma 1.1(iii)] homotopy orbit spectral sequences, from

′𝐸∗,∗
2

= 𝐻∗
g𝑝(≀

𝑘𝐶𝑝;𝐻
∗(𝐵)⊗𝑝𝑘

) ⟹ 𝐻∗(𝐸Σ𝑝𝑘+ ∧≀𝑘𝐶𝑝
𝐵∧𝑝𝑘

)

to

′′𝐸∗,∗
2

= 𝐻∗
g𝑝((𝐶𝑝)

𝑘;𝐻∗(𝐵)⊗𝑝𝑘
) ⟹ 𝐻∗(𝐸Σ𝑝𝑘+ ∧(𝐶𝑝)

𝑘 𝐵∧𝑝𝑘
) ,

given at the 𝐸2-terms by the homomorphism

𝑑∗ ∶ 𝐻∗
g𝑝(≀

𝑘𝐶𝑝;𝐻
∗(𝐵)⊗𝑝𝑘

) ⟶ 𝐻∗
g𝑝((𝐶𝑝)

𝑘;𝐻∗(𝐵)⊗𝑝𝑘
) . (4.3)

More generally, for each𝑚 ⩾ 0, the diagonal inclusion induces a map

𝑑𝐵,𝑚 ∶ Σ2𝑚𝐷(𝐶𝑝)
𝑘Σ−2𝑚𝐵 ⟶ Σ2𝑚𝐷𝐶𝑝

(⋯𝐷𝐶𝑝
(Σ−2𝑚𝐵)⋯) ≃ Σ2𝑚𝐷𝐶𝑝

Σ−2𝑚(⋯Σ2𝑚𝐷𝐶𝑝
Σ−2𝑚(𝐵)⋯)

to the 𝑘-fold iterate of Σ2𝑚𝐷𝐶𝑝
Σ−2𝑚(−) applied to 𝐵, and these are compatible under the twisted

diagonal maps Δ. Passing to cohomology, we obtain homomorphisms

𝑑∗𝐵,𝑚 ∶ 𝐻∗(Σ2𝑚𝐷𝐶𝑝
Σ−2𝑚(⋯Σ2𝑚𝐷𝐶𝑝

Σ−2𝑚(𝐵)⋯)) ⟶ 𝐻∗(Σ2𝑚𝐷(𝐶𝑝)
𝑘Σ−2𝑚𝐵)

factoring through the 𝑈-invariants of the target, and passing to colimits over 𝑚, we obtain an
𝐴-module homomorphism

𝑑∗𝐵 ∶ 𝑇𝑘(𝐻∗(𝐵)) ≅ colim
𝑚1,…,𝑚𝑘

𝐻∗(Σ2𝑚1𝐷𝐶𝑝
Σ−2𝑚1(⋯Σ2𝑚𝑘𝐷𝐶𝑝

Σ−2𝑚𝑘(𝐵)⋯))

≅ colim
𝑚

𝐻∗(Σ2𝑚𝐷𝐶𝑝
(⋯𝐷𝐶𝑝

(Σ−2𝑚𝐵)⋯))

⟶ colim
𝑚

𝐻∗(Σ2𝑚𝐷(𝐶𝑝)
𝑘Σ−2𝑚𝐵) = 𝐻∗(𝐷𝐺𝐵)[𝐿

−1]

from the 𝑘-fold iterate of 𝑇 applied to 𝐻∗(𝐵), with image contained in the 𝑈-invariants of the
target. Here we use that the Singer construction 𝑇 commutes with sequential colimits, and that
the 𝑘-tuples (𝑚,… ,𝑚) are cofinal among the (𝑚1, … ,𝑚𝑘).

Proposition 4.8. Let 𝐵 be bounded below with 𝐻∗(𝐵; 𝔽𝑝) of finite type. The homomorphism 𝑑∗
𝐵

factors through a natural isomorphism of 𝐴-modules

𝑇𝑘(𝐻∗(𝐵))
≅

⟶ 𝐻∗(𝐷𝐺𝐵)[𝐿
−1]𝑈 .
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Proof. In the case 𝐵 = 𝑆, William Singer’s result [22, Proposition 9.1] (for 𝑝 = 2) and the extension
[1, Theorem 1.4] of [13, (1.6)] (for 𝑝 odd) show that

𝑑∗𝑆 ∶ 𝑇𝑘(𝔽𝑝)
≅

⟶ 𝐻∗
g𝑝(𝐺)[𝐿

−1]𝑈 ⊂ 𝐻∗
g𝑝(𝐺)[𝐿

−1]

maps 𝑇𝑘(𝔽𝑝) isomorphically to the 𝑈-invariants of 𝐻∗
g𝑝(𝐺)[𝐿

−1]. In general, we can rewrite the
lift of 𝑑∗

𝐵
as

𝐻∗
g𝑝(𝐶𝑝; (⋯𝐻∗

g𝑝(𝐶𝑝;𝐻
∗(𝐵)⊗𝑝)[𝐿−11 ]⋯)⊗𝑝)[𝐿−11 ] ⟶ 𝐻∗

g𝑝((𝐶𝑝)
𝑘;𝐻∗(𝐵)⊗𝑝𝑘

)[𝐿−1]𝑈 ,

or as

𝑇𝑘(𝔽𝑝){𝑏
⊗𝑝𝑘

∣ 𝑏 ∈ } ⟶ 𝐻∗
g𝑝(𝐺)[𝐿

−1]𝑈{𝑏⊗𝑝𝑘
∣ 𝑏 ∈ } .

Here, both sides are filtered by the cohomological degree of 𝑏⊗𝑝𝑘 , and the homomorphism
respects these filtrations. Then, just as in (4.3),

𝑑∗𝐵(𝑥 ⋅ 𝑏⊗𝑝𝑘
) ≡ 𝑑∗𝑆(𝑥) ⋅ 𝑏

⊗𝑝𝑘 modulo lower filtrations

for 𝑥 ∈ 𝑇𝑘(𝔽𝑝) and 𝑏 ∈ 𝐻𝑞(𝐵), and it follows by induction on the degree 𝑞 that the lift of 𝑑∗
𝐵
is an

isomorphism. □

Proposition 4.9.

𝑓𝑈
𝐻 ∶ 𝐻∗(𝐷𝐺𝐻)[𝐿−1]𝑈 ⟶ Σ−𝑘𝐴[𝑈]𝑈 ≅ Σ−𝑘𝐴

is a Tor𝐴-equivalence.

Proof. For any 𝐴-module 𝑀, the Tor𝐴-equivalence 𝜖∶ 𝑇(𝑀) → Σ−1𝑀 of [1, Theorem 1.3]
can be iterated 𝑘-fold to give a Tor𝐴-equivalence 𝜖𝑘 ∶ 𝑇𝑘(𝑀) → Σ−𝑘𝑀. When combined with
Proposition 4.8, this gives a Tor𝐴-equivalence

𝐻∗(𝐷𝐺𝐵)[𝐿
−1]𝑈 ≅ 𝑇𝑘(𝐻∗(𝐵))

𝜖𝑘

⟶ Σ−𝑘𝐻∗(𝐵) .

It follows that the source and target of 𝑓𝑈
𝐵
are abstractly Tor𝐴-equivalent, but it remains to verify,

in the special case 𝐵 = 𝐻, that 𝑓𝑈
𝐻
induces this equivalence. Using (4.1) with 𝑄 = Σ−𝑘𝐴, we see

that

Hom𝐴(𝐻
∗(𝐷𝐺𝐻)[𝐿−1]𝑈, Σ−𝑘𝐴) ≅ Hom𝐴(Σ

−𝑘𝐴, Σ−𝑘𝐴) ≅ 𝔽𝑝 ,

so that 𝑓𝑈
𝐻
is a multiple in 𝔽𝑝 times a Tor𝐴-equivalence. The conclusion now follows, since

Propositions 4.4 and 4.5 imply that 𝑓𝑈
𝐻
is nonzero. □
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5 THE ELEMENTARY ABELIAN CASE

We continue to assume that 𝐺 = (𝐶𝑝)
𝑘 with 𝑘 ⩾ 1, and that Theorem 1.1 holds for each proper

subquotient of 𝐺.

Proposition 5.1. 𝑓𝐻 ∶ 𝐻∗(𝐷𝐺𝐻)[𝐿−1] → Σ−𝑘𝐴[𝑈] is a Tor𝐴-equivalence.

Proof. This follows from the Priddy–Wilkerson comparison theorem, that is, Theorem 4.1, for the
𝐴[𝑈]-module homomorphism 𝑓 = 𝑓𝐻 , since 𝑓𝐻 is surjective by Proposition 4.4, its source and
target are 𝔽𝑝[𝑈]-projective by Proposition 4.5, and its 𝑈-invariant part 𝑓𝑈

𝐻
is a Tor𝐴-equivalence

by Proposition 4.9. □

Theorem 5.2. 𝛿∧𝑝 ∶ 𝑉(𝐺,𝐻)∧𝑝 → 𝑊(𝐺,𝐻)∧𝑝 is an equivalence.

Proof. By Proposition 3.2 and Definition 3.4, we have a morphism

𝐸2(𝛿) = 𝑓∗
𝐻 ∶ Ext∗,∗

𝐴
(Σ−𝑘𝐴[𝑈], 𝔽𝑝) ⟶ Ext∗,∗

𝐴
(𝐻∗(𝐷𝐺𝐻)[𝐿−1], 𝔽𝑝)

of Adams and inverse limit Adams spectral sequences, converging to the homomorphism

𝜋∗(𝛿
∧
𝑝)∶ Σ−𝑘𝔽𝑝[𝑈] ≅ 𝜋∗𝑉(𝐺,𝐻)∧𝑝 ⟶ 𝜋∗𝑊(𝐺,𝐻)∧𝑝 .

Here 𝑓∗
𝐻
is an isomorphism by Proposition 5.1 and (4.1), which implies that 𝜋∗(𝛿

∧
𝑝) is an

isomorphism, as claimed. □

This proves Theorem 1.1 for𝐺 = (𝐶𝑝)
𝑘 and 𝐵 = 𝐻. Given this toehold result, we can deduce the

theorem for bounded below 𝐵 with𝐻∗(𝐵; 𝔽𝑝) of finite type by the inductive strategy of Nikolaus–
Scholze [18, §III.1]. Recall that 𝑘 denotes the rank 𝑘 Tits building, which is a finite complex.

Proposition 5.3. Let 𝐵′ → 𝐵 → 𝐵′′ be a homotopy cofiber sequence of bounded below spectra with
mod 𝑝 homology of finite type. Then

𝑉(𝐺, 𝐵′)∧𝑝 ⟶ 𝑉(𝐺, 𝐵)∧𝑝 ⟶ 𝑉(𝐺, 𝐵′′)∧𝑝

and

𝑊(𝐺, 𝐵′) ⟶ 𝑊(𝐺, 𝐵) ⟶ 𝑊(𝐺, 𝐵′′)

are homotopy cofiber sequences.

Proof. It is clear that

𝐹(Σ2𝑘, 𝐵
′) ⟶ 𝐹(Σ2𝑘, 𝐵) ⟶ 𝐹(Σ2𝑘, 𝐵

′′)

is a homotopy cofiber sequence. This implies the corresponding result for 𝑉(𝐺,−)∧𝑝 by
Theorem 2.4.
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For the second claim, we follow the proof of [4, Proposition II.3.11]. We may assume 𝐵′ → 𝐵 is
a cofibration, with 𝐵∕𝐵′ = 𝐵′′. There is a filtration

𝐷𝐺(𝐵
′) = Γ𝑝

𝑘
(𝐵) → ⋯ → Γ𝑖+1(𝐵) → Γ𝑖(𝐵) → ⋯ → Γ0(𝐵) = 𝐷𝐺(𝐵)

with quotients

Γ𝑖(𝐵)∕Γ𝑖+1(𝐵) ≃ 𝐸𝐺+ ∧𝐺

(𝑝
𝑘

𝑖 )⋁
(𝐵′)∧𝑖 ∧ (𝐵′′)∧𝑝

𝑘−𝑖 .

For 𝑖 = 0, this is 𝐷𝐺(𝐵
′′). For 0 < 𝑖 < 𝑝𝑘, it is a finite wedge sum of spectra, each of the form

𝐸𝐺+ ∧𝐾 (𝐵′)∧𝑖 ∧ (𝐵′′)∧𝑝
𝑘−𝑖

with 𝐾 ⊂ 𝐺 a proper subgroup. These filtrations and splittings are compatible with the twisted
diagonal maps Δ. Since the inclusion 𝑒∶ 𝑆0 → 𝑆𝜌 is 𝐾-equivariantly null-homotopic, it follows
that

holim
𝑚

Σ2𝑚Γ𝑖(Σ−2𝑚𝐵)

Σ2𝑚Γ𝑖+1(Σ−2𝑚𝐵)
≃ ∗

for each 0 < 𝑖 < 𝑝𝑘. Hence𝑊(𝐺, 𝐵)∕𝑊(𝐺, 𝐵′) → 𝑊(𝐺, 𝐵′′) is an equivalence. □

Proposition 5.4. Let 𝐵 be a bounded below spectrum, with Postnikov tower

𝐵 → ⋯ → 𝜏⩽𝑛+1𝐵 → 𝜏⩽𝑛𝐵 → ⋯ .

The natural maps

𝑉(𝐺, 𝐵)∧𝑝
≃

⟶ holim
𝑛

𝑉(𝐺, 𝜏⩽𝑛𝐵)
∧
𝑝

and

𝑊(𝐺, 𝐵)
≃

⟶ holim
𝑛

𝑊(𝐺, 𝜏⩽𝑛𝐵)

are equivalences.

Proof. It is clear that

𝐹(Σ2𝑘, 𝐵)
≃

⟶ holim
𝑛

𝐹(Σ2𝑘, 𝜏⩽𝑛𝐵)

is an equivalence, and, by Theorem 2.4, this implies the corresponding result for 𝑉(𝐺,−)∧𝑝 .
For the second claim, note that since 𝐵 is bounded below, the connectivity of

Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵) ⟶ Σ2𝑚𝐷𝐺(Σ

−2𝑚𝜏⩽𝑛𝐵)

increases to infinity with 𝑛, for each fixed𝑚 ⩾ 0. Hence,

Σ2𝑚𝐷𝐺(Σ
−2𝑚𝐵)

≃
⟶ holim

𝑛
Σ2𝑚𝐷𝐺(Σ

−2𝑚𝜏⩽𝑛𝐵)
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is an equivalence. The result follows by passing to the homotopy limit over𝑚 and interchanging
the order of the two homotopy limits. □

Theorem5.5. Let𝐺 = (𝐶𝑝)
𝑘 with 𝑘 ⩾ 1, suppose that Theorem 1.1 holds for each proper subquotient

of𝐺, and let 𝐵 be a flat orthogonal spectrum with 𝜋∗(𝐵) bounded below and𝐻∗(𝐵; 𝔽𝑝) of finite type.
Then

𝛿∧𝑝 ∶ 𝑉(𝐺, 𝐵)∧𝑝 → 𝑊(𝐺, 𝐵)∧𝑝

is an equivalence.

Proof. It suffices to prove that 𝛿∕𝑝∶ 𝑉(𝐺, 𝐵)∕𝑝 → 𝑊(𝐺, 𝐵)∕𝑝 is an equivalence. In view of
Proposition 5.3 and the homotopy cofiber sequence

𝐵
𝑝

⟶ 𝐵 ⟶ 𝐵∕𝑝 ,

this is equivalent to checking that 𝛿∧𝑝 for 𝐵∕𝑝 is an equivalence. Each Postnikov section 𝜏⩽𝑛(𝐵∕𝑝)

has only finitely many nonzero homotopy groups, each of order a finite power of 𝑝. Hence, the
result for 𝜏⩽𝑛(𝐵∕𝑝) follows by induction from Theorem 5.2 and Proposition 5.3. The result for 𝐵∕𝑝
then follows from Proposition 5.4. □

Proof of Theorem 1.1 for 𝐺 elementary abelian. Let 𝐺 = (𝐶𝑝)
𝑘 with 𝑘 ⩾ 1, suppose that Theo-

rem 1.1 holds for each proper subquotient of 𝐺, and let 𝐵 be a bounded below flat orthogonal
spectrum with 𝐻∗(𝐵; 𝔽𝑝) of finite type. By Theorem 5.5, the map 𝛿∧𝑝 ∶ 𝑉(𝐺, 𝐵)∧𝑝 → 𝑊(𝐺, 𝐵)∧𝑝
is an equivalence. Hence, 𝐹(𝑆∞𝜌, 𝐵∧𝐺)𝐺 becomes trivial after 𝑝-completion, by the homotopy
cofiber sequence in Definition 2.3. Therefore, 𝛾∶ (𝐵∧𝐺)𝐺 → (𝐵∧𝐺)ℎ𝐺 becomes an equivalence
after 𝑝-completion, by Proposition 2.2. □

6 THE FINITE GROUP CASE

We now assume that𝐺 is any finite group and that 𝐵 is a flat orthogonal spectrum that is bounded
below and of finite type. We aim to prove Theorem 1.2 concerning the 𝐺-spectrum 𝑋 = 𝐵∧𝐺 .
Let 𝑝 be a prime, and let 𝐾 ⊂ 𝐺 be a 𝑝-Sylow subgroup. By Proposition 2.1(a,d), the restriction

res𝐺
𝐾
(𝐵∧𝐺) = 𝐶∧𝐾 is the 𝐾-fold smash power of 𝐶 ≅ 𝐵∧𝐺∕𝐾 , which is also bounded below and of

finite type. In particular,𝐻∗(𝐶; 𝔽𝑝) is of finite type, so by Theorem 1.1 the map

𝛾∶ (𝐶∧𝐾)𝐾 ⟶ (𝐶∧𝐾)ℎ𝐾

becomes an equivalence after 𝑝-completion.
The 𝐾-spectrum 𝐶∧𝐾 will not generally be split, so to translate between 𝑝-adic and 𝐼(𝐾)-

adic completion, we need a replacement for [16, Proposition 14]. Our Proposition 6.2 will be
deduced from the following result of Ragnarsson, relating the spectrum-level 𝐼(𝐾)-completion
of Greenlees–May [8, §1] to 𝑝-completion.
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Theorem 6.1 ([21, Theorem C]). Let 𝐾 be a 𝑝-group and 𝑌 a bounded below 𝐾-spectrum. Then
there is a natural homotopy cofiber sequence

(𝐸𝐾+ ∧ 𝑌)𝐾 ⟶ (𝑌∧
𝐼(𝐾)

)𝐾 ⟶ ((𝐸𝐾 ∧ 𝑌)𝐾)∧𝑝 .

Proposition 6.2. Let 𝐾 be a 𝑝-group and 𝑌 a bounded below 𝐾-spectrum with 𝜋∗(𝑌) of finite type.
Suppose that 𝛾∶ 𝑌𝐾 → 𝑌ℎ𝐾 becomes an equivalence after 𝑝-completion. Then

𝜉∗ ∶ (𝑌∧
𝐼(𝐾)

)𝐾
≃

⟶ 𝑌ℎ𝐾

is an equivalence.

Proof. For brevity, let 𝑍 = 𝐹(𝐸𝐾+, 𝑌). Note that the 𝐾-Tate construction

𝑌𝑡𝐾 = (𝐸𝐾 ∧ 𝑍)𝐾 = (𝐸𝐾 ∧ 𝐹(𝐸𝐾+, 𝑌))
𝐾 ,

is already 𝑝-complete, since 𝐾 is a 𝑝-group and 𝜋∗(𝑌) is bounded below and of finite type, cf. [9].
Using Theorem 6.1, we have vertical maps

of horizontal homotopy cofiber sequences. The left-hand vertical map is always an equivalence,
and themiddle vertical composite 𝛾 = 𝜉∗𝜄 becomes an equivalence after𝑝-completion by assump-
tion. Hence, also the right-hand composite �̃� = �̃�∗𝜄 becomes an equivalence after 𝑝-completion.
But �̃�∧𝑝 = �̃�∗, since (𝐸𝐾 ∧ 𝑍)𝐾 is 𝑝-complete, so �̃�∗ is an equivalence. It follows that 𝜉∗ is an
equivalence, as claimed. □

To verify the equivariant bounded below hypothesis for 𝑌 = 𝐶∧𝐾 , and a finite-type hypothesis
needed for [8, Theorem 1.6(ii)], we can use the following variant of the folklore result proved in [21,
Proposition 3.1].

Lemma 6.3. Let𝐾 be a finite group and𝑌 a𝐾-spectrum. Let𝐻 range over all subgroups of𝐾. Then
every fixed-point spectrum 𝑌𝐻 is bounded below (and of finite type) if and only if every geometric
fixed-point spectrum Φ𝐻(𝑌) is bounded below (and of finite type).

Proof. It suffices to prove this with “bounded below” replaced by “connective.” Let be the family
of proper subgroups of 𝐾. By induction on 𝐾, we may assume that 𝑌𝐻 and Φ𝐻(𝑌) are connective
(and of finite type) for all𝐻 ∈  . In the homotopy cofiber sequence

(𝐸+ ∧ 𝑌)𝐾 ⟶ 𝑌𝐾 ⟶ Φ𝐾(𝑌),
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the left-hand term is built from nonnegative suspensions of (𝐾∕𝐻+ ∧ 𝑌)𝐾 ≃ 𝑌𝐻 , where 𝐻 ∈ 

(and the suspension degrees increase to infinity), hence is connective (and of finite type). Thus,
𝑌𝐾 is connective (and of finite type) if and only if Φ𝐾(𝑌) is connective (and of finite type). □

Proof of Theorem 1.2. We keep the notation from the beginning of this section. By Proposi-
tion 2.1, each geometric fixed-point spectrum Φ𝐻(𝐶∧𝐾) is bounded below and of finite type, so
by Lemma 6.3, the 𝐾-spectrum 𝑌 = 𝐶∧𝐾 is bounded below and of finite type. Theorem 1.1 for 𝐾
and 𝐶 and Proposition 6.2 then prove that

𝜉∗ ∶ (𝑌∧
𝐼(𝐾)

)𝐾
≃

⟶ 𝑌ℎ𝐾

is an equivalence. Moreover, by [8, Theorem 1.6(ii)],

𝜋∗((𝑌
∧
𝐼(𝐾)

)𝐾) ≅ 𝜋∗(𝑌
𝐾)∧

𝐼(𝐾)

is given algebraically by 𝐼(𝐾)-adic completion. Hence, Theorem 1.2 holds for the 𝐾-spectrum 𝑌

given by the restriction of the 𝐺-spectrum 𝑋 = 𝐵∧𝐺 . The algebraic part of this statement is the
completion conjecture for 𝑌, in the terminology of May–McClure [16, p. 217]. Since this applies
for all Sylow subgroups𝐾 of 𝐺, the completion conjecture also holds for the 𝐺-spectrum𝑋 by [16,
Theorem 13], so that

𝜋∗(𝛾)
∧
𝐼(𝐺)

∶ 𝜋∗(𝑋
𝐺)∧

𝐼(𝐺)

≅
⟶ 𝜋∗(𝑋

ℎ𝐺)

is an isomorphism. Since the 𝐺-spectrum 𝑋 is also bounded below and of finite type, we have

𝜋∗((𝑋
∧
𝐼(𝐺)

)𝐺) ≅ 𝜋∗(𝑋
𝐺)∧

𝐼(𝐺)
,

by a second appeal to [8, Theorem 1.6(ii)]. Hence,

𝜉∗ ∶ (𝑋∧
𝐼(𝐺)

)𝐺
≃

⟶ 𝑋ℎ𝐺

is an equivalence, which proves Theorem 1.2 for 𝐺 and 𝐵. □
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