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Steenrod operations. We consider mod p cohomology, and let q = 2p−2. Steen-
rod constructed natural transformations (operations)

Sqi : Hn(X;F2) −→ Hn+i(X;F2)

(Steenrod squares) for p = 2, and

P i : Hn(X;Fp) −→ Hn+qi(X;Fp)

(reduced powers) for odd primes p. Together with the mod p Bockstein operation
β = βp associated to the short exact sequence 0 → Fp → Z/p2 → Fp → 0, these
generate all the stable cohomology operations in mod p cohomology, i.e., all those
operations that commute with suspensions.

We have Sq0 = 1 and Sq1 = β when p = 2, while P 0 = 1 for p odd.

The Steenrod algebra A. The mod 2 Steenrod algebra A = A(2) is the (asso-
ciative unital) graded F2-algebra generated by elements Sqi for i > 0, modulo the
two-sided ideal generated by the Adem relations

SqaSqb =

[a/2]
∑

i=0

(

b− i− 1

a− 2i

)

Sqa+b−iSqi

for all a, b > 0 such that a < 2b. Here Sq0 is equal to the unit 1. The generator
Sqi has degree i.

For odd primes p, the mod p Steenrod algebra A = A(p) is the (associative
unital) Fp-algebra generated by elements β and P i for i > 0, modulo the two-sided
ideal generated by β2 = 0 and the Adem relations

P aP b =

[a/p]
∑

i=0

(−1)a+i

(

(p− 1)(b− i)− 1

a− pi

)

P a+b−iP i

for all a, b > 0 such that a < pb, and

P aβP b =

[a/p]
∑

i=0

(−1)a+i

(

(p− 1)(b− i)

a− pi

)

βP a+b−iP i

+

(a−1)/p
∑

i=0

(−1)a+i−1

(

(p− 1)(b− i)− 1

a− pi− 1

)

P a+b−iβP i
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for all a, b > 0 such that a ≤ pb. Here P 0 is equal to the unit 1. The generator β
(Bockstein) has degree 1, and the generator P i has degree qi = 2i(p− 1).

The classes Sq2
s

for s ≥ 0 generate A(2) as an algebra, and the classes β and
P ps

for s ≥ 0 generate A(p) as an algebra.
Let p = 2. For a sequence of natural numbers I = (i1, . . . , in) let

SqI = Sqi1 . . . Sqin ∈ A(2) .

The sequence I is admissible if is ≥ 2is+1 for all s ≥ 1. The set of admissible
monomials SqI form a basis for A(2) as a vector space.

Let p be odd. For a sequence of integers I = (ǫ0, i1, . . . , in, ǫn) where the ǫs are
0 or 1 and the is are positive, let

P I = βǫ0P i1βǫ1 . . . P inβǫn ∈ A(p) .

The sequence I is admissible if is ≥ pis+1 + ǫs for all s ≥ 1. The admissible
monomials P I form a basis for A(p) as a vector space.

The mod p cohomology H∗(X;Fp) of any space or spectrum X is a graded left
A(p)-module, with SqI (resp. P I) acting by the composite of Steenrod’s operations
with the same name. Hereafter we write H∗(X) for H∗(X;Fp) and A for A(p).

The category U of unstable A-modules. The mod p cohomology of a space X
satisfies a further instability condition. For p = 2 it is Sqi(x) = 0 when i > deg(x),
for p odd it is βǫP i(x) = 0 when ǫ+ 2i > deg(x).

Definition. A graded A-module M is unstable if it satisfies the instability condi-
tion above. Let the category U of unstable A-modules be the full subcategory of
the category of graded A-modules, with objects the unstable modules.

The cohomology of a space is an unstable A-module. The cohomology of a
spectrum is generally not unstable.

The Hopf algebra structure. The cohomology of a space X is a graded commu-
tative unital Fp-algebra, with respect to the cup product xy = x ∪ y. The product
and A-module structure are related: For any x, y ∈ H∗(X) we have the Cartan
formulas:

Sqk(xy) =
∑

i+j=k

Sqi(x)Sqj(y)

for p = 2 and

P k(xy) =
∑

i+j=k

P i(x)P j(y)

β(xy) = β(x)y + (−1)deg(x)xβ(y)

for p odd. Milnor showed that the coproduct homomorphism ∆: A → A⊗A defined
by

∆(Sqk) =
∑

i+j=k

Sqi ⊗ Sqj



UNSTABLE MODULES AND SULLIVAN’S CONJECTURE 3

for p = 2 and

∆(P k) =
∑

i+j=k

P i ⊗ P j

∆(β) = β ⊗ 1 + 1⊗ β

makes A a Hopf algebra. This lets us define an A-module structure on the tensor
product of two A-modules (over Fp), and the Cartan formulas assert that the cup
product

H∗(X)⊗H∗(X)
∪
−→ H∗(X)

is A-linear. Thus the cohomology H∗(X) of any space is an A-algebra.

The category K of unstable A-algebras.
The mod p cohomology of a space satisfies a further instability condition. For

p = 2 it is
Sqi(x) = x2 for i = deg(x),

and for p odd it is
P i(x) = xp for 2i = deg(x).

Definition. A commutative unital graded A-algebra K is unstable if it satisfies
the instability condition above. Let the category K of unstable A-algebras be the
full subcategory of the category of graded A-algebras, with objects the unstable
algebras.

The cohomology of a space is an unstable A-algebra.

A basic example. Let V = (Z/p)d be an elementary abelian p-group, i.e., a finite
dimensional Fp-vector space. The mod p cohomology of the classifying space BV
is also the group cohomology of V , and denoted H∗(V ).

By the Künneth theorem, H∗(V ) ∼= H∗(Z/p)⊗d.
When p = 2, H∗(Z/2) ∼= Z/2[x] is polynomial on a generator x of degree 1. The

A-module structure is given by

Sqi(xn) =

(

n

i

)

xn+i .

In general H∗(V ) ∼= S(V ∗) is the symmetric algebra on the dual of V in degree 1.
When p is odd, H∗(Z/p) ∼= Fp[x, y]/(x

2 = 0) is the tensor product of an exterior
algebra on a generator x of degree 1 and a polynomial algebra on a generator y of
degree 2. The A-module structure is given by β(x) = y and

P i(yn) =

(

n

i

)

yn+i(p−1) .

In general H∗(V ) ∼= E(V ∗) ⊗ S(V ∗) is the exterior algebra on the dual of V in
degree 1, tensored with the symmetric algebra on the dual of V in degree 2.

An A-algebra homomorphism from H∗(V ) is determined by its behavior in de-
gree 1. Thus the map

Hom(V,W ) −→ HomK(H
∗(W ), H∗(V ))

taking f : V → W to f∗ is a bijection.
More generally a map of spaces f : X → Y induces a function

f∗ : HomK(H
∗(Y ), H∗(X)) .

When is this set in bijection with [X,Y ] ?
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Free objects F (n) in U . The category U is an abelian category. (The morphism
sets are abelian groups, and morphisms have well-behaved kernels and cokernels.)
We shall now see that it has enough projectives. We can therefore do classical
homological algebra in U , i.e., define ExtsU (M,N).

Let M = (Mn)n be an unstable A-module. The functor M 7→ Mn from U to the
category E of Fp-vector spaces, is co-representable. Hence there is, up to isomor-
phism, a unique unstable A-module F (n) such that there is a natural isomorphism

HomU (F (n),M) ∼= Mn .

Since M 7→ Mn is exact, it follows that F (n) is projective in the abelian category
U .

The module F (n) can be explicitly constructed. For p = 2 let I = (i1, . . . , in)
be an admissible sequence. The excess of I is the sum

e(I) =
∑

s

(is − 2is+1) = i1 − i2 − · · · − in .

Given n the sub-vector space of A generated by the SqI with e(I) > n is a left
ideal. Similar definitions apply for odd p.

Proposition 1.6.2. The unstable A-module F (n) is the cyclic A-module on one
generator ιn in degree n, modulo the ideal of admissible monomials with e(I) > n.
For p = 2 this is

F (n) = ΣnA/F2{Sq
I | e(I) > n} .

The admissible monomials with e(I) ≤ n form a vector space basis for F (n). Thus
F (n) is of finite type, i.e., finite dimensional in each degree.

For example, F (0) = Fp, while F (1) = F2{x, x
2, x4, x8, . . . } for p = 2, and

F (1) = Fp{x, y, y
p, yp

2

, . . . } for p odd.
The unstable module F (1)⊗n has dimension 1 in degree n. Thus there is a

nontrivial map F (n) → F (1)⊗n. If p = 2 the image of ιn in F (1)⊗n is Σn-invariant.
Hence there is a map of unstable A-modules

F (n) −→ (F (1)⊗n)Σn .

This map is an isomorphism.

A representability lemma. To construct injective modules in U , we shall rep-
resent exact contravariant functors U → E .

Lemma 2.2.1. A (contravariant) functor R : Uop → E is representable if and only
if it is right exact and takes direct sums to products.

An unstable representing module B(R) must satisfy

R(M) ∼= HomU (M,B(R))

for all M . With M = F (n) this says R(F (n)) ∼= HomU (F (n), B(R)) ∼= B(R)n, so
evaluating R on the F (n) determined the degree n part of the representing module
B(R).
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Brown–Gitler modules.
The functor Hn : U → E given by

Hn(M) = HomE(M
n,Fp) = Mn∗

is representable, by the lemma above. The notation is such that Hn(H
∗(X)) =

Hn(X) for spaces X of finite type. This functor is right exact and takes direct
sums to products.

Definition. The nth Brown–Gitler module J(n) is the representing unstable A-
module for the functor Hn. There is a natural isomorphism

Hn(M) ∼= HomU (M,J(n)) .

As Hn is also left exact, this module J(n) is in fact injective in the abelian
category U . Any unstable A-module injects into a product of J(n)’s, so U has
enough injectives.

We have J(n)m ∼= HomU (F (m), J(n)) ∼= F (m)n∗, which determines the groups
J(n)m. Since F (m) is (m − 1)-connected, it follows that J(n) is concentrated in
degrees 0 ≤ ∗ ≤ n. Thus J(n) is finite.

For example, J(0) = Fp in degree 0 is injective in U .

Carlsson modules. Carlsson constructed certain unstable A-modules K(i) as
sequential limits of the J(n)’s:

K(i) = lim
s
(· · · → J(2si) → J(2s−1i) → · · · → J(i)).

These are also injective in U for general reasons.
Carlsson showed that for p = 2 the unstable A-module H∗(Z/p) is a direct

summand of K(1), and thus injective. Miller extended this to odd p, and Lannes
and Zarati extended the injectivity assertion to H∗(V ) for general V = (Z/p)d.

U-injectivity of H∗(V )⊗ J(n).

Theorem 3.1.1 (Carlsson, Miller, Lannes, Zarati). Let V be an elementary
abelian p-group. Then the unstable A-module H∗(V ) ⊗ J(n) is injective in U for
all n.

Lannes’ functor TV . Let L be an unstable A-module of finite type. The following
is a consequence of Freyd’s adjoint functor theorem.

Theorem 3.2.1 (Lannes). The functor M 7→ L ⊗M from U to itself has a left
adjoint denoted N 7→ (N : L)U . There is a natural isomorphism

HomU ((N : L)U ,M) ∼= HomU (N,L⊗M) .

We call N 7→ (N : L)U the division by L functor.

Definition. Lannes’ functor TV is the division by H∗(V ) functor:

TV (N) = (N : H∗(V ))U .

We write T = TFp
, so for V = (Z/p)d we have TV = T d (the d-fold composition).

There is an adjunction

HomU (TV (N),M) ∼= HomU (N,H∗(V )⊗M) .
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Theorem 3.2.2. The functor TV is exact.

Proof. This is implied by the U -injectivity of H∗(V )⊗ J(n). �

First computations.

Proposition 3.3.2. The functor TV commutes with colimits.

This holds for any left adjoint.

Proposition 3.3.2. The functor TV commutes with suspensions.

Sketch proof. The suspension functor Σ in U has a right adjoint, which commutes
with tensor product with H∗(V ). �

An unstable A-module M is locally finite if each element x ∈ M is contained in
a finite A-submodule. Thus M is a colimit of finite A-modules.

The split injection Fp → H∗(V ) induces a split surjection TV (M) → M .

Proposition 3.3.6. Let M be a locally finite unstable A-module. Then TV (M) ∼=
M .

Proof. TV (Fp) ∼= Fp since H0(V ) ∼= Fp. By exactness TV (M) ∼= M for any finite
M , by induction over the dimension of M . By passage to colimits, the same holds
for any locally finite M . �

For example, TV (H
∗(X)) ∼= H∗(X) for any finite dimensional CW-complex X.

TV and tensor products. Lannes’ functor TV commutes with tensor products.

Theorem 3.5.1 (Lannes). There is a natural isomorphism

TV (M ⊗N) ∼= TV (M)⊗ TV (N)

for unstable A-modules M and N .

The map arises by a chain of adjunctions from the product H∗(V )⊗H∗(V ) →
H∗(V ).

TV and unstable algebras. If K is an unstable A-algebra, so is TV (K). The
product is given by

TV (K)⊗ TV (K) ∼= TV (K ⊗K) −→ TV (K)

using the isomorphism of 3.5.1 and the product K ⊗K → K.

Theorem 3.8.1 (Lannes). Let K, L be unstable A-algebras. The unstable A-
module TV (K) is in a natural way an unstable A-algebra, and there is a natural
isomorphism

HomK(TV (K), L) ∼= HomK(K,H∗(V )⊗ L) .

In fact there exists a division functor K 7→ (K : H∗(V ))K also in K, which equals
TV .

Thus TV : K → K is also a left adjoint in the category of unstable A-algebras.
Since TV preserves injections of unstable A-algebras, viewed as unstable A-modules,
it follows that H∗(V ) is categorically injective in K.
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But K is not an abelian category (not even additive), so we cannot do ordinary
homological algebra in K. Instead one uses simplicial resolutions and comonad-
derived functors.

There are then adjunctions

ExtsK(TV (K), L) ∼= ExtsK(K,H∗(V )⊗ L)

and similar formulas for the derived functors of suitable groups of derivations, rather
than homomorphisms.

Cosimplicial spaces. A cosimplicial space X• is a (covariant) functor X : ∆ →
Spaces, where we by spaces typically mean simplicial sets. It is a sequence of spaces
[q] 7→ Xq, together with coface and codegeneracy maps.

The cosimplicial space ∆• is given by [q] 7→ ∆q, with the usual coface and
codegeneracy maps. The totalization TotX• of a cosimplicial space is the mapping
space

TotX• = Map(∆•, X•) .

Its p-simplices are the set of maps (= natural transformations) ∆p ×∆• → X•.
Restricting a map from ∆• to the s-skeleton (∆q)(s) ⊆ ∆q in each codegree q,

yields a map
TotX• −→ Tots X

•

to the sth partial totalization.

Bousfield–Kan R-completion. Let R be a commutative unital ring, Y a sim-
plicial set (= space). Let R(Y ) be the simplicial set which in degree q is the free
R-module R{Yq} on the set of q-simplices in Y . There is a monad (= triple)
(R,µ, η), with product µ : R(R(Y )) → R(Y ) and unit η : Y → R(Y ). There is a
cosimplicial space [q] 7→ Rq+1(Y ) denoted R•(Y ), with coaugmentation η:

Y // R(Y )
//

//
R(R(Y ))oo

//

//

//

. . .
oo

oo

Then R∞(Y ) = TotR•(Y ), and the coaugmentation defines the completion map
Y → R∞(Y ).

Bousfield–Kan Fp-completion. The map Y → Fp∞(Y ) is Bousfield localization
with respect to H∗(−;Fp) for virtually nilpotent spaces, i.e., connected spaces Y for
which a subgroup of finite index in π1(Y ) acts nilpotently on π∗(Y ). This includes
all connected spaces with finite fundamental group. We often write Y ∧

p = Fp∞(Y ).

Bousfield–Kan homotopy spectral sequence. LetX• be a fibrant and pointed
cosimplicial space. Then [s] 7→ πt(X

s) defines a cosimplicial group. Its cohomotopy
πsπt(X

•) is the sth cohomology group of the associated cochain complex.
Get a pointed tower of principal fibrations

TotX• −→ . . . −→ Tots X
• −→ Tots−1 X

• −→ . . . −→ Tot0 X
• .

The associated spectral sequence has E2-term

Es,t
2 = πsπt(X

•)

for t ≥ s ≥ 0 and converges (under mild conditions on X•) to πt−s TotX
•.



8 JOHN ROGNES

Homotopy of Map(X,Y ∧
p ). Let X and Y be connected spaces, with H∗(X) and

H∗(Y ) of finite type.

Proposition 8.4.1. Take the trivial map as base point in Map(X,Fp∞(Y )). Then

πsπt(Map(X,F•
p(Y ))) ∼= ExtsK(H

∗(Y ),Σt(H∗(X))+)

for t ≥ 1, s ≥ 0, and

π0π0(Map(X,F•
p(Y ))) ∼= HomK(H

∗(Y ), H∗(X)) .

The Ext-groups are formed in the sense of homotopical algebra in the (non-
abelian) category K of unstable A-algebras, defined using resolutions generated by
a comonad (= cotriple). This is the comonad generated by the forgetful functor
K → U and its left adjoint U → K.

The p-adic completion Fp∞(Y ) is the totalization of a cosimplicial space which
is a generalized Eilenberg–MacLane space in each codegree. Hence its cohomology
is accessible through the calculations of Cartan and Serre. This gives the E2-term
above.

Similar formulas apply for other choices of base point, replacing groups of homo-
morphisms with groups of derivations, and Ext-groups with the derived functors of
the derivations.

Miller’s conjecture.
((Use the (s = t)-line in the spectral sequence. Lannes’ vanishing results.))

Theorem 8.1.1 (Lannes). Let Y be a connected nilpotent space such that H∗(Y )
is of finite type and π1(Y ) is finite. Then the natural map [f ] 7→ f∗ induces a
bijection

[BV, Y ]
∼=
−→ HomK(H

∗(Y ), H∗(V )) .

Remark. When Y is connected and finite dimensional, there is only the trivial
unstable algebra homomorphism H∗(Y ) → H∗(V ). For (when p = 2) Sq0 : x 7→ x2

acts injectively on H∗(V ), and nilpotently on H∗(Y ) in positive degrees.

Miller’s theorem.

Theorem 8.6.1. Let Y be a connected nilpotent space such that H∗(Y ) is of fi-
nite type and π1(Y ) is finite. Then the canonical map H∗(Y ) → TH∗(Y ) is an
isomorphism if and only if the space of based maps Map∗(BZ/p, Y ) is contractible.

Proof sketch. Evaluation at the base point of BZ/p defines a map Map(BZ/p, Y ) →
Y , and a map of spectral sequences with E2-terms:

ExtsK(H
∗(Y ), H∗(Z/p)⊗H∗(St)) −→ ExtsK(H

∗(Y ), H∗(St)) .

((Relate H∗(Z/p)⊗H∗(St) to Σt(H∗(Z/p))+.))
The left term is isomorphic to ExtsK(TH

∗(Y ), H∗(St)) and the map is induced by
the inclusion H∗(Y ) → TH∗(Y ). If this is an isomorphism the spectral sequences
are isomorphic from the E2-terms onwards. This proves that Map∗(BZ/p, Y ) is
contractible after p-completion. An arithmetic square argument yields the integral
result. �

Remark. Recall that H∗(Y ) → TH∗(Y ) is an isomorphism whenever H∗(Y ) is
locally finite, e.g., when Y is finite dimensional.
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The Sullivan conjecture. Let G be a group and X a G-space. The homotopy
fixed point space XhG = Map(EG,X)G is the space of G-equivariant maps EG →
X. There is a canonical map

γ : XG −→ XhG

taking a fixed point of X to the constant map from EG to it.
When the G-action is trivial, this is the “constant maps” section γ : X →

Map(BG,X) in the fibration

Map∗(BG,X) −→ Map(BG,X)
ev
−→ X .

Here ev evaluates a map at the base point.
The following was proven for G = Z/p and trivial G-action by Miller, then for a

general Z/p-action by Carlsson, Lannes and Miller (independently), and for general
p-groups by Dwyer and Zabrodsky.

Theorem 9.1.1 and 9.1.2. Let G be a finite p-group, and X a finite G-CW
complex. Then the map

(XG)∧p
γ
−→ (X∧

p )
hG

is a homotopy equivalence.

The proof for G = Z/p is by reduction to Miller’s theorem 8.6.1. The proof
for general p-groups is by an induction on the order of p, using the existence of a
central C ∼= Z/p in any nontrivial p-group G.

Corollary. Let G be a finite p-group, and X a finite CW complex with trivial
G-action. Then the based mapping space Map∗(BG,X∧

p ) is contractible.

Remark. The finiteness hypothesis on X is necessary. Take for example X =
K(Z/p, n). Then π0 Map∗(BG,X∧

p )
∼= Hn(BG) is typically nonzero.

The cohomology of Map(BV, Y ∧
p ).

The evaluation map
BV ×Map(BV, Y ) → Y

induces a homomorphism

H∗(Y ) → H∗(V )⊗H∗(Map(BV, Y )),

adjoint to a homomorphism

TV H
∗(Y ) → H∗(Map(BV, Y )) .

It admits a lift over H∗(Map(BV, Y ∧
p )).

Theorem 9.7.1 (Lannes). Let Y be a space such that H∗(Y ) and TV H
∗(Y ) are

of finite type, and suppose TV H
∗(Y ) is trivial in degree 1. Then the natural map

TV H
∗(Y )

∼=
−→ H∗(Map(BV,X∧

p ))

is an isomorphism.

This pretty much pins down the meaning of the functor TV .


