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Steenrod operations. We consider mod p cohomology, and let ¢ = 2p—2. Steen-
rod constructed natural transformations (operations)

Sq': H"(X;Fy) — H" (X TFy)
(Steenrod squares) for p = 2, and
P': H'(X;F,) — H"T"(X;F,)

(reduced powers) for odd primes p. Together with the mod p Bockstein operation
B = p, associated to the short exact sequence 0 — F, — Z/p* — F, — 0, these
generate all the stable cohomology operations in mod p cohomology, i.e., all those
operations that commute with suspensions.

We have Sq° =1 and Sq¢'! = 3 when p = 2, while P° =1 for p odd.

The Steenrod algebra A. The mod 2 Steenrod algebra A = A(2) is the (asso-
ciative unital) graded Fo-algebra generated by elements Sq° for i > 0, modulo the
two-sided ideal generated by the Adem relations
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for all a,b > 0 such that a < 2b. Here Sq is equal to the unit 1. The generator
Sq' has degree i.

For odd primes p, the mod p Steenrod algebra A = A(p) is the (associative
unital) F,,-algebra generated by elements 3 and P? for i > 0, modulo the two-sided
ideal generated by 32 = 0 and the Adem relations
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for all a,b > 0 such that a < pb. Here P is equal to the unit 1. The generator 3
(Bockstein) has degree 1, and the generator P* has degree gi = 2i(p — 1).

The classes Sq? for s > 0 generate A(2) as an algebra, and the classes 8 and
PP" for s > 0 generate A(p) as an algebra.
Let p = 2. For a sequence of natural numbers I = (iy,...,1,) let

Sql =S¢ ... Sq¢™ € A(2).

The sequence I is admissible if i5 > 2ig41 for all s > 1. The set of admissible
monomials Sq’ form a basis for A(2) as a vector space.

Let p be odd. For a sequence of integers I = (€g, i1, ... ,in,€,) Where the e, are
0 or 1 and the i are positive, let

Pl = pgeopiige  pPinge c Ap).

The sequence [ is admissible if iy > pisy1 + €5 for all s > 1. The admissible
monomials P! form a basis for A(p) as a vector space.

The mod p cohomology H*(X;F,) of any space or spectrum X is a graded left
A(p)-module, with Sq! (resp. P) acting by the composite of Steenrod’s operations
with the same name. Hereafter we write H*(X) for H*(X;F,) and A for A(p).

The category U of unstable A-modules. The mod p cohomology of a space X
satisfies a further instability condition. For p = 2 it is Sq¢*(z) = 0 when i > deg(z),
for p odd it is 8¢ P*(z) = 0 when € + 2i > deg(z).

Definition. A graded A-module M is unstable if it satisfies the instability condi-
tion above. Let the category U of unstable A-modules be the full subcategory of
the category of graded A-modules, with objects the unstable modules.

The cohomology of a space is an unstable A-module. The cohomology of a
spectrum is generally not unstable.

The Hopf algebra structure. The cohomology of a space X is a graded commu-
tative unital [F,-algebra, with respect to the cup product xy = x Uy. The product
and A-module structure are related: For any z,y € H*(X) we have the Cartan
formulas:

Sq*(xy) = > Sq'(x)S¢ ()
itj=k

for p =2 and

PHay)= ) P'(x)P(y)

i+j=k

Blay) = Bla)y + (—1)%e@zp(y)

for p odd. Milnor showed that the coproduct homomorphism A: A — A® A defined
by
A(Sg*) = Y 9¢' © 8¢
itj=k
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for p = 2 and

APF)= Y PeP
i+j=k
AB)=B@1+120

makes A a Hopf algebra. This lets us define an A-module structure on the tensor
product of two A-modules (over F,), and the Cartan formulas assert that the cup
product

H*(X)® H*(X) = H*(X)
is A-linear. Thus the cohomology H*(X) of any space is an A-algebra.

The category K of unstable A-algebras.
The mod p cohomology of a space satisfies a further instability condition. For

p=2itis

Sq'(z) = x* for i = deg(z),
and for p odd it is

P'(z) = 2P for 2i = deg(x).
Definition. A commutative unital graded A-algebra K is unstable if it satisfies
the instability condition above. Let the category K of unstable A-algebras be the
full subcategory of the category of graded A-algebras, with objects the unstable
algebras.

The cohomology of a space is an unstable A-algebra.

A basic example. Let V = (Z/p)¢ be an elementary abelian p-group, i.e., a finite
dimensional [F),-vector space. The mod p cohomology of the classifying space BV
is also the group cohomology of V', and denoted H*(V).

By the Kiinneth theorem, H*(V) = H*(Z/p)®?.

When p = 2, H*(Z/2) = Z/2|z] is polynomial on a generator x of degree 1. The
A-module structure is given by

Sqi(z") = (”> 2+

In general H*(V)) = S(V*) is the symmetric algebra on the dual of V' in degree 1.

When p is odd, H*(Z/p) = F,[z,y]/(z* = 0) is the tensor product of an exterior
algebra on a generator x of degree 1 and a polynomial algebra on a generator y of
degree 2. The A-module structure is given by f(z) = y and

) n n—+i(p—
b = (o

]

In general H*(V) = E(V*) ® S(V*) is the exterior algebra on the dual of V in
degree 1, tensored with the symmetric algebra on the dual of V' in degree 2.

An A-algebra homomorphism from H*(V') is determined by its behavior in de-
gree 1. Thus the map

Hom(V, W) — Homy (H*(W), H*(V))

taking f: V — W to f* is a bijection.

More generally a map of spaces f: X — Y induces a function

f*: Homge(H*(Y), H* (X)) .

When is this set in bijection with [X,Y] ?
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Free objects F'(n) in U. The category U is an abelian category. (The morphism
sets are abelian groups, and morphisms have well-behaved kernels and cokernels.)
We shall now see that it has enough projectives. We can therefore do classical
homological algebra in U, i.e., define Ext;, (M, N).

Let M = (M™),, be an unstable A-module. The functor M — M™ from U to the
category & of F,-vector spaces, is co-representable. Hence there is, up to isomor-
phism, a unique unstable A-module F'(n) such that there is a natural isomorphism

Homy (F(n), M) = M™.

Since M — M™ is exact, it follows that F'(n) is projective in the abelian category
U.

The module F(n) can be explicitly constructed. For p = 2 let I = (i1,...,10,)
be an admissible sequence. The excess of I is the sum

S

Given n the sub-vector space of A generated by the Sq! with e(I) > n is a left
ideal. Similar definitions apply for odd p.

Proposition 1.6.2. The unstable A-module F(n) is the cyclic A-module on one
generator v, in degree n, modulo the ideal of admissible monomials with e(I) > n.
For p =2 this is

F(n) = X"A/Fo{Sq" | e(I) > n}.
The admissible monomials with e(I) < n form a vector space basis for F(n). Thus

F(n) is of finite type, i.e., finite dimensional in each degree.

For example, F(0) = F,, while F(1) = Fo{z,2? 2% 2% ...} for p = 2, and
FQ1)=Fy{x,vy, yp,yPQ, ...} for p odd.

The unstable module F(1)®" has dimension 1 in degree n. Thus there is a
nontrivial map F(n) — F(1)®™. If p = 2 the image of ¢,, in F/(1)®" is 3,,-invariant.
Hence there is a map of unstable A-modules

F(n) — (F(1)%")*".

This map is an isomorphism.

A representability lemma. To construct injective modules in U, we shall rep-
resent exact contravariant functors U — £.

Lemma 2.2.1. A (contravariant) functor R: U°P — £ is representable if and only
if it is right exact and takes direct sums to products.

An unstable representing module B(R) must satisfy
R(M) = Homy, (M, B(R))
for all M. With M = F(n) this says R(F(n)) = Homy/(F(n), B(R)) = B(R)", so

evaluating R on the F'(n) determined the degree n part of the representing module
B(R).
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Brown—Gitler modules.
The functor H,,: U — &£ given by

H, (M) = Homg (M™,F,) = M"™*

is representable, by the lemma above. The notation is such that H,(H*(X)) =
H,(X) for spaces X of finite type. This functor is right exact and takes direct
sums to products.

Definition. The nth Brown—Gitler module J(n) is the representing unstable A-
module for the functor H,,. There is a natural isomorphism

H, (M) = Homy (M, J(n)).

As H, is also left exact, this module J(n) is in fact injective in the abelian
category U. Any unstable A-module injects into a product of J(n)’s, so U has
enough injectives.

We have J(n)™ = Homy, (F(m),J(n)) = F(m)™, which determines the groups
J(n)™. Since F(m) is (m — 1)-connected, it follows that J(n) is concentrated in
degrees 0 < x < n. Thus J(n) is finite.

For example, J(0) =, in degree 0 is injective in U.

Carlsson modules. Carlsson constructed certain unstable A-modules K (i) as
sequential limits of the J(n)’s:

K (i) = lim(--- — J(2%) — J(2°7h) — - — J(4)).

These are also injective in U for general reasons.

Carlsson showed that for p = 2 the unstable A-module H*(Z/p) is a direct
summand of K (1), and thus injective. Miller extended this to odd p, and Lannes
and Zarati extended the injectivity assertion to H*(V') for general V = (Z/p)*.

U-injectivity of H*(V) ® J(n).

Theorem 3.1.1 (Carlsson, Miller, Lannes, Zarati). Let V' be an elementary
abelian p-group. Then the unstable A-module H*(V) ® J(n) is injective in U for
all n.

Lannes’ functor Ty,. Let L be an unstable A-module of finite type. The following
is a consequence of Freyd’s adjoint functor theorem.

Theorem 3.2.1 (Lannes). The functor M — L ® M from U to itself has a left
adjoint denoted N — (N : L)y. There is a natural isomorphism

Homy,((N : L)y, M) = Homy (N, L ® M).
We call N — (N : L)y the division by L functor.
Definition. Lannes’ functor Ty is the division by H*(V') functor:
Ty (N) = (N - H* (V).

We write T' = Tk, , so for V = (Z/p)* we have Ty, = T (the d-fold composition).
There is an adjunction

Homy, (T (N), M) = Homy (N, H*(V) @ M).
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Theorem 3.2.2. The functor Ty is exact.

Proof. This is implied by the U-injectivity of H*(V) @ J(n). O

First computations.

Proposition 3.3.2. The functor Ty, commutes with colimits.
This holds for any left adjoint.

Proposition 3.3.2. The functor Ty, commutes with suspensions.

Sketch proof. The suspension functor Y in U has a right adjoint, which commutes
with tensor product with H*(V). O

An unstable A-module M is locally finite if each element x € M is contained in
a finite A-submodule. Thus M is a colimit of finite A-modules.
The split injection F, — H*(V') induces a split surjection Ty (M) — M.

Proposition 3.3.6. Let M be a locally finite unstable A-module. Then Ty (M) =
M.

Proof. Ty (F,) = F, since H*(V) = F,. By exactness Ty (M) = M for any finite
M, by induction over the dimension of M. By passage to colimits, the same holds
for any locally finite M. [

For example, Ty (H* (X)) =2 H*(X) for any finite dimensional CW-complex X.
Ty and tensor products. Lannes’ functor Ty, commutes with tensor products.

Theorem 3.5.1 (Lannes). There is a natural isomorphism
Ty(M@N)=2Ty(M)®Ty(N)

for unstable A-modules M and N .

The map arises by a chain of adjunctions from the product H*(V) @ H*(V) —
H*(V).

Ty and unstable algebras. If K is an unstable A-algebra, so is Ty (K). The
product is given by

Tv(K)@Ty(K) 2Ty (K ® K) — Ty (K)

using the isomorphism of 3.5.1 and the product K ® K — K.

Theorem 3.8.1 (Lannes). Let K, L be unstable A-algebras. The unstable A-
module Ty (K) is in a natural way an unstable A-algebra, and there is a natural
1somorphism

Hompg (Tv (K), L) = Homg (K, H*(V)® L) .

In fact there exists a division functor K — (K : H*(V))x also in K, which equals
Ty.

Thus Ty : K — K is also a left adjoint in the category of unstable A-algebras.
Since Ty, preserves injections of unstable A-algebras, viewed as unstable A-modules,
it follows that H*(V') is categorically injective in K.
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But K is not an abelian category (not even additive), so we cannot do ordinary
homological algebra in K. Instead one uses simplicial resolutions and comonad-
derived functors.

There are then adjunctions

Ext (Ty (K), L) = Ext (K, H*(V) ® L)

and similar formulas for the derived functors of suitable groups of derivations, rather
than homomorphisms.

Cosimplicial spaces. A cosimplicial space X*® is a (covariant) functor X: A —
Spaces, where we by spaces typically mean simplicial sets. It is a sequence of spaces
[q] — X9, together with coface and codegeneracy maps.

The cosimplicial space A® is given by [¢] — A?, with the usual coface and
codegeneracy maps. The totalization Tot X*® of a cosimplicial space is the mapping
space

Tot X* = Map(A®, X°).

Its p-simplices are the set of maps (= natural transformations) AP x A® — X°.
Restricting a map from A® to the s-skeleton (A9)(5) C A in each codegree ¢,
yields a map
Tot X* — Tot, X*

to the sth partial totalization.

Bousfield—Kan R-completion. Let R be a commutative unital ring, ¥ a sim-
plicial set (= space). Let R(Y') be the simplicial set which in degree ¢ is the free
R-module R{Y;} on the set of g-simplices in Y. There is a monad (= triple)
(R, p,n), with product p: R(R(Y)) — R(Y) and unit n: Y — R(Y). There is a
cosimplicial space [q] — RIT}(Y) denoted R®*(Y'), with coaugmentation 7:

Y —= R(Y) == R(R(Y)) =— -

Then R (Y) = Tot R*(Y), and the coaugmentation defines the completion map
Y = Roo(Y).

Bousfield-Kan F,-completion. The map Y — F,(Y) is Bousfield localization
with respect to H,.(—;F,) for virtually nilpotent spaces, i.e., connected spaces Y for
which a subgroup of finite index in 71 (Y") acts nilpotently on 7, (Y). This includes
all connected spaces with finite fundamental group. We often write ;' = oo (V).

Bousfield-Kan homotopy spectral sequence. Let X*® be a fibrant and pointed
cosimplicial space. Then [s] — 7 (X*®) defines a cosimplicial group. Its cohomotopy
w5 (X*®) is the sth cohomology group of the associated cochain complex.

Get a pointed tower of principal fibrations

Tot X®* — ... — Toty X®* — Toty_1 X®* — ... — Totg X°.
The associated spectral sequence has Fo-term
Eg’t =7 (X*)

for ¢ > s > 0 and converges (under mild conditions on X*) to m;_s Tot X°.
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Homotopy of Map(X,Y,"). Let X and Y be connected spaces, with H*(X) and
H*(Y) of finite type.

Proposition 8.4.1. Take the trivial map as base point in Map(X,Fp(Y)). Then
7 (Map (X, Fp(Y))) = Exti (H*(Y), 5" (H* (X)) ")
fort>1,s>0, and
mOmo(Map(X,F3(Y))) = Homy (H*(Y), H*(X)).

The Ext-groups are formed in the sense of homotopical algebra in the (non-
abelian) category K of unstable A-algebras, defined using resolutions generated by
a comonad (= cotriple). This is the comonad generated by the forgetful functor
K — U and its left adjoint U — K.

The p-adic completion F,(Y) is the totalization of a cosimplicial space which
is a generalized Eilenberg—Mac Lane space in each codegree. Hence its cohomology
is accessible through the calculations of Cartan and Serre. This gives the Fs-term
above.

Similar formulas apply for other choices of base point, replacing groups of homo-
morphisms with groups of derivations, and Ext-groups with the derived functors of
the derivations.

Miller’s conjecture.
((Use the (s = t)-line in the spectral sequence. Lannes’ vanishing results.))

Theorem 8.1.1 (Lannes). LetY be a connected nilpotent space such that H*(Y)
is of finite type and w1 (Y') is finite. Then the natural map [f] — f* induces a
bijection

[BV,Y] = Homy (H*(Y), H*(V)).

Remark. When Y is connected and finite dimensional, there is only the trivial
unstable algebra homomorphism H*(Y') — H*(V). For (when p = 2) Sqo: z +— 22
acts injectively on H*(V'), and nilpotently on H*(Y) in positive degrees.

Miller’s theorem.

Theorem 8.6.1. Let Y be a connected nilpotent space such that H*(Y') is of fi-
nite type and m (Y) is finite. Then the canonical map H*(Y) — TH*(Y) is an
isomorphism if and only if the space of based maps Map,(BZ/p,Y) is contractible.

Proof sketch. Evaluation at the base point of BZ/p defines a map Map(BZ/p,Y) —
Y, and a map of spectral sequences with Fs-terms:

Exti-(H*(Y), H*(Z/p) @ H*(S")) — Exty(H*(Y), H*(S")).

((Relate H*(Z/p) ® H*(S?) to Xt (H*(Z/p))™".))

The left term is isomorphic to Exty-(TH*(Y), H*(S")) and the map is induced by
the inclusion H*(Y) — TH*(Y). If this is an isomorphism the spectral sequences
are isomorphic from the Es-terms onwards. This proves that Map,(BZ/p,Y) is
contractible after p-completion. An arithmetic square argument yields the integral
result. [J

Remark. Recall that H*(Y) — TH*(Y) is an isomorphism whenever H*(Y) is
locally finite, e.g., when Y is finite dimensional.
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The Sullivan conjecture. Let G be a group and X a G-space. The homotopy
fixed point space X"¢ = Map(EG, X)© is the space of G-equivariant maps EG —
X. There is a canonical map

v: X9 5 Xhe

taking a fixed point of X to the constant map from EG to it.
When the G-action is trivial, this is the “constant maps” section ~v: X —
Map(BG, X) in the fibration

Map, (BG, X) — Map(BG,X) =% X .

Here ev evaluates a map at the base point.

The following was proven for G = Z/p and trivial G-action by Miller, then for a
general Z/p-action by Carlsson, Lannes and Miller (independently), and for general
p-groups by Dwyer and Zabrodsky.

Theorem 9.1.1 and 9.1.2. Let G be a finite p-group, and X a finite G-CW
complex. Then the map

(X9 25 (X))
1s a homotopy equivalence.

The proof for G = Z/p is by reduction to Miller’s theorem 8.6.1. The proof
for general p-groups is by an induction on the order of p, using the existence of a
central C' > Z/p in any nontrivial p-group G.

Corollary. Let G be a finite p-group, and X a finite CW complex with trivial
G-action. Then the based mapping space Map, (BG, X;)\) 18 contractible.

Remark. The finiteness hypothesis on X is necessary. Take for example X =
K(Z/p,n). Then mo Map, (BG, X)) = H"(BG) is typically nonzero.

The cohomology of Map(BV,Y;).
The evaluation map
BV x Map(BV,Y) - Y

induces a homomorphism
H*(Y)— H*(V)® H*(Map(BV,Y)),
adjoint to a homomorphism
TyH*(Y) — H*(Map(BV,Y)).

It admits a lift over H*(Map(BV,Y}")).

Theorem 9.7.1 (Lannes). Let Y be a space such that H*(Y) and Ty H*(Y') are
of finite type, and suppose Ty H*(Y') is trivial in degree 1. Then the natural map

o)

Ty H*(Y) = H*(Map(BV, X))

s an isomorphism.

This pretty much pins down the meaning of the functor Ty .



