UNSTABLE MODULES AND SULLIVAN'S CONJECTURE

JOHN ROGNES

May 1998

Steenrod operations. We consider mod p cohomology, and let q = 2p-2. Steenrod constructed natural transformations (operations)

$$Sq^i \colon H^n(X; \mathbb{F}_2) \to H^{n+i}(X; \mathbb{F}_2)$$

(Steenrod squares) for p = 2, and

$$P^i: H^n(X; \mathbb{F}_p) \to H^{n+qi}(X; \mathbb{F}_p)$$

(reduced powers) for odd primes p. Together with the mod p Bockstein operation $\beta = \beta_p$ associated to the short exact sequence $0 \to \mathbb{F}_p \to \mathbb{Z}/p^2 \to \mathbb{F}_p \to 0$, these generate all the stable cohomology operations in mod p cohomology, i.e., all those operations that commute with suspensions.

We have $Sq^0 = 1$ and $Sq^1 = \beta$ when p = 2, while $P^0 = 1$ for p odd.

The Steenrod algebra A. The mod 2 Steenrod algebra A = A(2) is the (associative unital) graded \mathbb{F}_2 -algebra generated by elements Sq^i for i > 0, modulo the two-sided ideal generated by the Adem relations

$$Sq^{a}Sq^{b} = \sum_{i=0}^{[a/2]} {b-i-1 \choose a-2i} Sq^{a+b-i}Sq^{i}$$

for all a, b > 0 such that a < 2b. Here Sq^0 is equal to the unit 1. The generator Sq^i has degree *i*.

For odd primes p, the mod p Steenrod algebra A = A(p) is the (associative unital) \mathbb{F}_p -algebra generated by elements β and P^i for i > 0, modulo the two-sided ideal generated by $\beta^2 = 0$ and the Adem relations

$$P^{a}P^{b} = \sum_{i=0}^{[a/p]} (-1)^{a+i} \binom{(p-1)(b-i)-1}{a-pi} P^{a+b-i}P^{i}$$

for all a, b > 0 such that a < pb, and

$$\begin{split} P^{a}\beta P^{b} &= \sum_{i=0}^{[a/p]} (-1)^{a+i} \binom{(p-1)(b-i)}{a-pi} \beta P^{a+b-i} P^{i} \\ &+ \sum_{i=0}^{(a-1)/p} (-1)^{a+i-1} \binom{(p-1)(b-i)-1}{a-pi-1} P^{a+b-i} \beta P^{i} \end{split}$$

Typeset by $\mathcal{AMS}\text{-}T_{E}X$

JOHN ROGNES

for all a, b > 0 such that $a \le pb$. Here P^0 is equal to the unit 1. The generator β (Bockstein) has degree 1, and the generator P^i has degree qi = 2i(p-1).

The classes Sq^{2^s} for $s \ge 0$ generate A(2) as an algebra, and the classes β and P^{p^s} for $s \ge 0$ generate A(p) as an algebra.

Let p = 2. For a sequence of natural numbers $I = (i_1, \ldots, i_n)$ let

$$Sq^I = Sq^{i_1} \dots Sq^{i_n} \in A(2)$$
.

The sequence I is admissible if $i_s \geq 2i_{s+1}$ for all $s \geq 1$. The set of admissible monomials Sq^I form a basis for A(2) as a vector space.

Let p be odd. For a sequence of integers $I = (\epsilon_0, i_1, \ldots, i_n, \epsilon_n)$ where the ϵ_s are 0 or 1 and the i_s are positive, let

$$P^{I} = \beta^{\epsilon_{0}} P^{i_{1}} \beta^{\epsilon_{1}} \dots P^{i_{n}} \beta^{\epsilon_{n}} \in A(p).$$

The sequence I is admissible if $i_s \ge pi_{s+1} + \epsilon_s$ for all $s \ge 1$. The admissible monomials P^I form a basis for A(p) as a vector space.

The mod p cohomology $H^*(X; \mathbb{F}_p)$ of any space or spectrum X is a graded left A(p)-module, with Sq^I (resp. P^I) acting by the composite of Steenrod's operations with the same name. Hereafter we write $H^*(X)$ for $H^*(X; \mathbb{F}_p)$ and A for A(p).

The category \mathcal{U} of unstable A-modules. The mod p cohomology of a space X satisfies a further instability condition. For p = 2 it is $Sq^i(x) = 0$ when $i > \deg(x)$, for p odd it is $\beta^{\epsilon}P^i(x) = 0$ when $\epsilon + 2i > \deg(x)$.

Definition. A graded A-module M is unstable if it satisfies the instability condition above. Let the category \mathcal{U} of unstable A-modules be the full subcategory of the category of graded A-modules, with objects the unstable modules.

The cohomology of a space is an unstable A-module. The cohomology of a spectrum is generally not unstable.

The Hopf algebra structure. The cohomology of a space X is a graded commutative unital \mathbb{F}_p -algebra, with respect to the cup product $xy = x \cup y$. The product and A-module structure are related: For any $x, y \in H^*(X)$ we have the Cartan formulas:

$$Sq^k(xy) = \sum_{i+j=k} Sq^i(x)Sq^j(y)$$

for p = 2 and

$$P^{k}(xy) = \sum_{i+j=k} P^{i}(x)P^{j}(y)$$
$$\beta(xy) = \beta(x)y + (-1)^{\deg(x)}x\beta(y)$$

for p odd. Milnor showed that the coproduct homomorphism $\Delta \colon A \to A \otimes A$ defined by

$$\Delta(Sq^k) = \sum_{i+j=k} Sq^i \otimes Sq^j$$

for p = 2 and

$$\Delta(P^k) = \sum_{i+j=k} P^i \otimes P^j$$
$$\Delta(\beta) = \beta \otimes 1 + 1 \otimes \beta$$

makes A a Hopf algebra. This lets us define an A-module structure on the tensor product of two A-modules (over \mathbb{F}_p), and the Cartan formulas assert that the cup product

$$H^*(X) \otimes H^*(X) \xrightarrow{\cup} H^*(X)$$

is A-linear. Thus the cohomology $H^*(X)$ of any space is an A-algebra.

The category \mathcal{K} of unstable A-algebras.

The mod p cohomology of a space satisfies a further instability condition. For p = 2 it is

$$Sq^i(x) = x^2$$
 for $i = \deg(x)$,

and for p odd it is

$$P^{i}(x) = x^{p}$$
 for $2i = \deg(x)$

Definition. A commutative unital graded A-algebra K is *unstable* if it satisfies the instability condition above. Let the category \mathcal{K} of unstable A-algebras be the full subcategory of the category of graded A-algebras, with objects the unstable algebras.

The cohomology of a space is an unstable A-algebra.

A basic example. Let $V = (\mathbb{Z}/p)^d$ be an elementary abelian *p*-group, i.e., a finite dimensional \mathbb{F}_p -vector space. The mod *p* cohomology of the classifying space BV is also the group cohomology of *V*, and denoted $H^*(V)$.

By the Künneth theorem, $H^*(V) \cong H^*(\mathbb{Z}/p)^{\otimes d}$.

When p = 2, $H^*(\mathbb{Z}/2) \cong \mathbb{Z}/2[x]$ is polynomial on a generator x of degree 1. The A-module structure is given by

$$Sq^i(x^n) = \binom{n}{i} x^{n+i}.$$

In general $H^*(V) \cong S(V^*)$ is the symmetric algebra on the dual of V in degree 1.

When p is odd, $H^*(\mathbb{Z}/p) \cong \mathbb{F}_p[x, y]/(x^2 = 0)$ is the tensor product of an exterior algebra on a generator x of degree 1 and a polynomial algebra on a generator y of degree 2. The A-module structure is given by $\beta(x) = y$ and

$$P^{i}(y^{n}) = \binom{n}{i} y^{n+i(p-1)}$$

In general $H^*(V) \cong E(V^*) \otimes S(V^*)$ is the exterior algebra on the dual of V in degree 1, tensored with the symmetric algebra on the dual of V in degree 2.

An A-algebra homomorphism from $H^*(V)$ is determined by its behavior in degree 1. Thus the map

 $\operatorname{Hom}(V, W) \to \operatorname{Hom}_{\mathcal{K}}(H^*(W), H^*(V))$

taking $f: V \to W$ to f^* is a bijection.

More generally a map of spaces $f: X \to Y$ induces a function

$$f^* \colon \operatorname{Hom}_{\mathcal{K}}(H^*(Y), H^*(X))$$

When is this set in bijection with [X, Y]?

JOHN ROGNES

Free objects F(n) in \mathcal{U} . The category \mathcal{U} is an abelian category. (The morphism sets are abelian groups, and morphisms have well-behaved kernels and cokernels.) We shall now see that it has enough projectives. We can therefore do classical homological algebra in \mathcal{U} , i.e., define $\operatorname{Ext}^{s}_{\mathcal{U}}(M, N)$.

Let $M = (M^n)_n$ be an unstable A-module. The functor $M \mapsto M^n$ from \mathcal{U} to the category \mathcal{E} of \mathbb{F}_p -vector spaces, is co-representable. Hence there is, up to isomorphism, a unique unstable A-module F(n) such that there is a natural isomorphism

$$\operatorname{Hom}_{\mathcal{U}}(F(n), M) \cong M^n$$

Since $M \mapsto M^n$ is exact, it follows that F(n) is projective in the abelian category \mathcal{U} .

The module F(n) can be explicitly constructed. For p = 2 let $I = (i_1, \ldots, i_n)$ be an admissible sequence. The *excess* of I is the sum

$$e(I) = \sum_{s} (i_s - 2i_{s+1}) = i_1 - i_2 - \dots - i_n.$$

Given n the sub-vector space of A generated by the Sq^{I} with e(I) > n is a left ideal. Similar definitions apply for odd p.

Proposition 1.6.2. The unstable A-module F(n) is the cyclic A-module on one generator ι_n in degree n, modulo the ideal of admissible monomials with e(I) > n. For p = 2 this is

$$F(n) = \Sigma^n A / \mathbb{F}_2 \{ Sq^I \mid e(I) > n \} \,.$$

The admissible monomials with $e(I) \leq n$ form a vector space basis for F(n). Thus F(n) is of finite type, i.e., finite dimensional in each degree.

For example, $F(0) = \mathbb{F}_p$, while $F(1) = \mathbb{F}_2\{x, x^2, x^4, x^8, ...\}$ for p = 2, and $F(1) = \mathbb{F}_p\{x, y, y^p, y^{p^2}, ...\}$ for p odd.

The unstable module $F(1)^{\otimes n}$ has dimension 1 in degree n. Thus there is a nontrivial map $F(n) \to F(1)^{\otimes n}$. If p = 2 the image of ι_n in $F(1)^{\otimes n}$ is Σ_n -invariant. Hence there is a map of unstable A-modules

$$F(n) \to (F(1)^{\otimes n})^{\Sigma_n}$$
.

This map is an isomorphism.

A representability lemma. To construct injective modules in \mathcal{U} , we shall represent exact contravariant functors $\mathcal{U} \to \mathcal{E}$.

Lemma 2.2.1. A (contravariant) functor $R: \mathcal{U}^{op} \to \mathcal{E}$ is representable if and only if it is right exact and takes direct sums to products.

An unstable representing module B(R) must satisfy

$$R(M) \cong \operatorname{Hom}_{\mathcal{U}}(M, B(R))$$

for all M. With M = F(n) this says $R(F(n)) \cong \operatorname{Hom}_{\mathcal{U}}(F(n), B(R)) \cong B(R)^n$, so evaluating R on the F(n) determined the degree n part of the representing module B(R).

Brown–Gitler modules.

The functor $H_n: \mathcal{U} \to \mathcal{E}$ given by

$$H_n(M) = \operatorname{Hom}_{\mathcal{E}}(M^n, \mathbb{F}_p) = M^{n*}$$

is representable, by the lemma above. The notation is such that $H_n(H^*(X)) = H_n(X)$ for spaces X of finite type. This functor is right exact and takes direct sums to products.

Definition. The *nth* Brown-Gitler module J(n) is the representing unstable Amodule for the functor H_n . There is a natural isomorphism

$$H_n(M) \cong \operatorname{Hom}_{\mathcal{U}}(M, J(n)).$$

As H_n is also left exact, this module J(n) is in fact injective in the abelian category \mathcal{U} . Any unstable A-module injects into a product of J(n)'s, so \mathcal{U} has enough injectives.

We have $J(n)^m \cong \operatorname{Hom}_{\mathcal{U}}(F(m), J(n)) \cong F(m)^{n*}$, which determines the groups $J(n)^m$. Since F(m) is (m-1)-connected, it follows that J(n) is concentrated in degrees $0 \leq * \leq n$. Thus J(n) is finite.

For example, $J(0) = \mathbb{F}_p$ in degree 0 is injective in \mathcal{U} .

Carlsson modules. Carlsson constructed certain unstable A-modules K(i) as sequential limits of the J(n)'s:

$$K(i) = \lim_{s} (\dots \to J(2^{s}i) \to J(2^{s-1}i) \to \dots \to J(i)).$$

These are also injective in \mathcal{U} for general reasons.

Carlsson showed that for p = 2 the unstable A-module $H^*(\mathbb{Z}/p)$ is a direct summand of K(1), and thus injective. Miller extended this to odd p, and Lannes and Zarati extended the injectivity assertion to $H^*(V)$ for general $V = (\mathbb{Z}/p)^d$.

 \mathcal{U} -injectivity of $H^*(V) \otimes J(n)$.

Theorem 3.1.1 (Carlsson, Miller, Lannes, Zarati). Let V be an elementary abelian p-group. Then the unstable A-module $H^*(V) \otimes J(n)$ is injective in \mathcal{U} for all n.

Lannes' functor T_V . Let *L* be an unstable *A*-module of finite type. The following is a consequence of Freyd's adjoint functor theorem.

Theorem 3.2.1 (Lannes). The functor $M \mapsto L \otimes M$ from \mathcal{U} to itself has a left adjoint denoted $N \mapsto (N : L)_{\mathcal{U}}$. There is a natural isomorphism

 $\operatorname{Hom}_{\mathcal{U}}((N:L)_{\mathcal{U}},M) \cong \operatorname{Hom}_{\mathcal{U}}(N,L\otimes M).$

We call $N \mapsto (N:L)_{\mathcal{U}}$ the division by L functor.

Definition. Lannes' functor T_V is the division by $H^*(V)$ functor:

$$T_V(N) = (N : H^*(V))_{\mathcal{U}}.$$

We write $T = T_{\mathbb{F}_p}$, so for $V = (\mathbb{Z}/p)^d$ we have $T_V = T^d$ (the *d*-fold composition). There is an adjunction

$$\operatorname{Hom}_{\mathcal{U}}(T_V(N), M) \cong \operatorname{Hom}_{\mathcal{U}}(N, H^*(V) \otimes M).$$

Theorem 3.2.2. The functor T_V is exact.

Proof. This is implied by the \mathcal{U} -injectivity of $H^*(V) \otimes J(n)$. \Box

First computations.

Proposition 3.3.2. The functor T_V commutes with colimits.

This holds for any left adjoint.

Proposition 3.3.2. The functor T_V commutes with suspensions.

Sketch proof. The suspension functor Σ in \mathcal{U} has a right adjoint, which commutes with tensor product with $H^*(V)$. \Box

An unstable A-module M is *locally finite* if each element $x \in M$ is contained in a finite A-submodule. Thus M is a colimit of finite A-modules.

The split injection $\mathbb{F}_p \to H^*(V)$ induces a split surjection $T_V(M) \to M$.

Proposition 3.3.6. Let M be a locally finite unstable A-module. Then $T_V(M) \cong M$.

Proof. $T_V(\mathbb{F}_p) \cong \mathbb{F}_p$ since $H^0(V) \cong \mathbb{F}_p$. By exactness $T_V(M) \cong M$ for any finite M, by induction over the dimension of M. By passage to colimits, the same holds for any locally finite M. \Box

For example, $T_V(H^*(X)) \cong H^*(X)$ for any finite dimensional CW-complex X.

 T_V and tensor products. Lannes' functor T_V commutes with tensor products.

Theorem 3.5.1 (Lannes). There is a natural isomorphism

$$T_V(M \otimes N) \cong T_V(M) \otimes T_V(N)$$

for unstable A-modules M and N.

The map arises by a chain of adjunctions from the product $H^*(V) \otimes H^*(V) \rightarrow H^*(V)$.

 T_V and unstable algebras. If K is an unstable A-algebra, so is $T_V(K)$. The product is given by

$$T_V(K) \otimes T_V(K) \cong T_V(K \otimes K) \to T_V(K)$$

using the isomorphism of 3.5.1 and the product $K \otimes K \to K$.

Theorem 3.8.1 (Lannes). Let K, L be unstable A-algebras. The unstable A-module $T_V(K)$ is in a natural way an unstable A-algebra, and there is a natural isomorphism

$$\operatorname{Hom}_{K}(T_{V}(K), L) \cong \operatorname{Hom}_{\mathcal{K}}(K, H^{*}(V) \otimes L)$$

In fact there exists a division functor $K \mapsto (K : H^*(V))_{\mathcal{K}}$ also in \mathcal{K} , which equals T_V .

Thus $T_V \colon \mathcal{K} \to \mathcal{K}$ is also a left adjoint in the category of unstable A-algebras. Since T_V preserves injections of unstable A-algebras, viewed as unstable A-modules, it follows that $H^*(V)$ is categorically injective in \mathcal{K} . But \mathcal{K} is not an abelian category (not even additive), so we cannot do ordinary homological algebra in \mathcal{K} . Instead one uses simplicial resolutions and comonad-derived functors.

There are then adjunctions

$$\operatorname{Ext}^{s}_{\mathcal{K}}(T_{V}(K), L) \cong \operatorname{Ext}^{s}_{\mathcal{K}}(K, H^{*}(V) \otimes L)$$

and similar formulas for the derived functors of suitable groups of derivations, rather than homomorphisms.

Cosimplicial spaces. A cosimplicial space X^{\bullet} is a (covariant) functor $X : \Delta \to$ Spaces, where we by spaces typically mean simplicial sets. It is a sequence of spaces $[q] \mapsto X^q$, together with coface and codegeneracy maps.

The cosimplicial space Δ^{\bullet} is given by $[q] \mapsto \Delta^{q}$, with the usual coface and codegeneracy maps. The *totalization* Tot X^{\bullet} of a cosimplicial space is the mapping space

$$\operatorname{Tot} X^{\bullet} = \operatorname{Map}(\Delta^{\bullet}, X^{\bullet}).$$

Its p-simplices are the set of maps (= natural transformations) $\Delta^p \times \Delta^{\bullet} \to X^{\bullet}$.

Restricting a map from Δ^{\bullet} to the s-skeleton $(\Delta^q)^{(s)} \subseteq \Delta^q$ in each codegree q, yields a map

$$\operatorname{Tot} X^{\bullet} \to \operatorname{Tot}_s X^{\bullet}$$

to the *sth* partial totalization.

Bousfield–Kan *R*-completion. Let *R* be a commutative unital ring, *Y* a simplicial set (= space). Let R(Y) be the simplicial set which in degree *q* is the free *R*-module $R\{Y_q\}$ on the set of *q*-simplices in *Y*. There is a monad (= triple) (R, μ, η) , with product $\mu: R(R(Y)) \to R(Y)$ and unit $\eta: Y \to R(Y)$. There is a cosimplicial space $[q] \mapsto R^{q+1}(Y)$ denoted $R^{\bullet}(Y)$, with coaugmentation η :

$$Y \longrightarrow R(Y) \xrightarrow{\longrightarrow} R(R(Y)) \xrightarrow{\longleftarrow} \cdots$$

Then $R_{\infty}(Y) = \operatorname{Tot} R^{\bullet}(Y)$, and the coaugmentation defines the completion map $Y \to R_{\infty}(Y)$.

Bousfield–Kan \mathbb{F}_p -completion. The map $Y \to \mathbb{F}_{p\infty}(Y)$ is Bousfield localization with respect to $H_*(-;\mathbb{F}_p)$ for virtually nilpotent spaces, i.e., connected spaces Y for which a subgroup of finite index in $\pi_1(Y)$ acts nilpotently on $\pi_*(Y)$. This includes all connected spaces with finite fundamental group. We often write $Y_p^{\wedge} = \mathbb{F}_{p\infty}(Y)$.

Bousfield–Kan homotopy spectral sequence. Let X^{\bullet} be a fibrant and pointed cosimplicial space. Then $[s] \mapsto \pi_t(X^s)$ defines a cosimplicial group. Its cohomotopy $\pi^s \pi_t(X^{\bullet})$ is the *s*th cohomology group of the associated cochain complex.

Get a pointed tower of principal fibrations

$$\operatorname{Tot} X^{\bullet} \to \ldots \to \operatorname{Tot}_s X^{\bullet} \to \operatorname{Tot}_{s-1} X^{\bullet} \to \ldots \to \operatorname{Tot}_0 X^{\bullet}.$$

The associated spectral sequence has E_2 -term

$$E_2^{s,t} = \pi^s \pi_t(X^{\bullet})$$

for $t \geq s \geq 0$ and converges (under mild conditions on X^{\bullet}) to $\pi_{t-s} \operatorname{Tot} X^{\bullet}$.

Homotopy of Map (X, Y_p^{\wedge}) . Let X and Y be connected spaces, with $H^*(X)$ and $H^*(Y)$ of finite type.

Proposition 8.4.1. Take the trivial map as base point in $Map(X, \mathbb{F}_{p\infty}(Y))$. Then

$$\pi^s \pi_t(\operatorname{Map}(X, \mathbb{F}_p^{\bullet}(Y))) \cong \operatorname{Ext}^s_{\mathcal{K}}(H^*(Y), \Sigma^t(H^*(X))^+)$$

for $t \ge 1$, $s \ge 0$, and

$$\pi^0 \pi_0(\operatorname{Map}(X, \mathbb{F}_p^{\bullet}(Y))) \cong \operatorname{Hom}_{\mathcal{K}}(H^*(Y), H^*(X)).$$

The Ext-groups are formed in the sense of homotopical algebra in the (nonabelian) category \mathcal{K} of unstable A-algebras, defined using resolutions generated by a comonad (= cotriple). This is the comonad generated by the forgetful functor $\mathcal{K} \to \mathcal{U}$ and its left adjoint $\mathcal{U} \to \mathcal{K}$.

The *p*-adic completion $\mathbb{F}_{p\infty}(Y)$ is the totalization of a cosimplicial space which is a generalized Eilenberg–Mac Lane space in each codegree. Hence its cohomology is accessible through the calculations of Cartan and Serre. This gives the E_2 -term above.

Similar formulas apply for other choices of base point, replacing groups of homomorphisms with groups of derivations, and Ext-groups with the derived functors of the derivations.

Miller's conjecture.

((Use the (s = t)-line in the spectral sequence. Lannes' vanishing results.))

Theorem 8.1.1 (Lannes). Let Y be a connected nilpotent space such that $H^*(Y)$ is of finite type and $\pi_1(Y)$ is finite. Then the natural map $[f] \mapsto f^*$ induces a bijection

$$[BV, Y] \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{K}}(H^*(Y), H^*(V)).$$

Remark. When Y is connected and finite dimensional, there is only the trivial unstable algebra homomorphism $H^*(Y) \to H^*(V)$. For (when p = 2) $Sq_0: x \mapsto x^2$ acts injectively on $H^*(V)$, and nilpotently on $H^*(Y)$ in positive degrees.

Miller's theorem.

Theorem 8.6.1. Let Y be a connected nilpotent space such that $H^*(Y)$ is of finite type and $\pi_1(Y)$ is finite. Then the canonical map $H^*(Y) \to TH^*(Y)$ is an isomorphism if and only if the space of based maps $Map_*(B\mathbb{Z}/p, Y)$ is contractible.

Proof sketch. Evaluation at the base point of $B\mathbb{Z}/p$ defines a map $\operatorname{Map}(B\mathbb{Z}/p, Y) \to Y$, and a map of spectral sequences with E_2 -terms:

$$\operatorname{Ext}^{s}_{\mathcal{K}}(H^{*}(Y), H^{*}(\mathbb{Z}/p) \otimes H^{*}(S^{t})) \to \operatorname{Ext}^{s}_{\mathcal{K}}(H^{*}(Y), H^{*}(S^{t})).$$

((Relate $H^*(\mathbb{Z}/p) \otimes H^*(S^t)$ to $\Sigma^t(H^*(\mathbb{Z}/p))^+$.))

The left term is isomorphic to $\operatorname{Ext}^{s}_{\mathcal{K}}(TH^{*}(Y), H^{*}(S^{t}))$ and the map is induced by the inclusion $H^{*}(Y) \to TH^{*}(Y)$. If this is an isomorphism the spectral sequences are isomorphic from the E_{2} -terms onwards. This proves that $\operatorname{Map}_{*}(B\mathbb{Z}/p, Y)$ is contractible after *p*-completion. An arithmetic square argument yields the integral result. \Box

Remark. Recall that $H^*(Y) \to TH^*(Y)$ is an isomorphism whenever $H^*(Y)$ is locally finite, e.g., when Y is finite dimensional.

The Sullivan conjecture. Let G be a group and X a G-space. The homotopy fixed point space $X^{hG} = \operatorname{Map}(EG, X)^G$ is the space of G-equivariant maps $EG \to X$. There is a canonical map

$$\gamma\colon X^G \to X^{hG}$$

taking a fixed point of X to the constant map from EG to it.

When the G-action is trivial, this is the "constant maps" section $\gamma: X \to Map(BG, X)$ in the fibration

$$\operatorname{Map}_*(BG, X) \to \operatorname{Map}(BG, X) \xrightarrow{ev} X.$$

Here ev evaluates a map at the base point.

The following was proven for $G = \mathbb{Z}/p$ and trivial G-action by Miller, then for a general \mathbb{Z}/p -action by Carlsson, Lannes and Miller (independently), and for general p-groups by Dwyer and Zabrodsky.

Theorem 9.1.1 and 9.1.2. Let G be a finite p-group, and X a finite G-CW complex. Then the map

$$(X^G)_p^{\wedge} \xrightarrow{\gamma} (X_p^{\wedge})^{hG}$$

is a homotopy equivalence.

The proof for $G = \mathbb{Z}/p$ is by reduction to Miller's theorem 8.6.1. The proof for general *p*-groups is by an induction on the order of *p*, using the existence of a central $C \cong \mathbb{Z}/p$ in any nontrivial *p*-group *G*.

Corollary. Let G be a finite p-group, and X a finite CW complex with trivial G-action. Then the based mapping space $Map_*(BG, X_p^{\wedge})$ is contractible.

Remark. The finiteness hypothesis on X is necessary. Take for example $X = K(\mathbb{Z}/p, n)$. Then $\pi_0 \operatorname{Map}_*(BG, X_p^{\wedge}) \cong H^n(BG)$ is typically nonzero.

The cohomology of $Map(BV, Y_p^{\wedge})$.

The evaluation map

$$BV \times \operatorname{Map}(BV, Y) \to Y$$

induces a homomorphism

$$H^*(Y) \to H^*(V) \otimes H^*(\operatorname{Map}(BV, Y)),$$

adjoint to a homomorphism

$$T_V H^*(Y) \to H^*(\operatorname{Map}(BV, Y))$$
.

It admits a lift over $H^*(\operatorname{Map}(BV, Y_p^{\wedge}))$.

Theorem 9.7.1 (Lannes). Let Y be a space such that $H^*(Y)$ and $T_V H^*(Y)$ are of finite type, and suppose $T_V H^*(Y)$ is trivial in degree 1. Then the natural map

$$T_V H^*(Y) \xrightarrow{\cong} H^*(\operatorname{Map}(BV, X_p^{\wedge}))$$

is an isomorphism.

This pretty much pins down the meaning of the functor T_V .