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The Norwegian Academy of Science and Letters has decided
to award the Abel Prize for 2016 to Sir Andrew J. Wiles,

University of Oxford

for his stunning proof of Fermat’s Last Theorem
by way of the modularity conjecture for semistable

elliptic curves, opening a new era in number
theory.



Sir Andrew J. Wiles



Sketch proof of Fermat’s Last Theorem:

I Frey (1984): A solution

ap + bp = cp

to Fermat’s equation gives an elliptic curve

y2 = x(x − ap)(x + bp) .

I Ribet (1986): The Frey curve does not come from a
modular form.

I Wiles (1994): Every elliptic curve comes from a modular
form.

I Hence no solution to Fermat’s equation exists.
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Blaise Pascal (1623–1662)



Je n’ai fait celle-ci plus longue que parce
que je n’ai pas eu le loisir de la faire plus courte.

Blaise Pascal, Provincial Letters (1656)

(I would have written a shorter letter,
but I did not have the time.)



Perhaps I could best describe my experience of doing
mathematics in terms of entering a dark mansion. You
go into the first room and it’s dark, completely dark.
You stumble around, bumping into the furniture.
Gradually, you learn where each piece of furniture is.
And finally, after six months or so, you find the light
switch and turn it on. Suddenly, it’s all illuminated and
you can see exactly where you were. Then you enter
the next dark room . . .

Andrew Wiles (ca. 1994)





Fermat’s equation



Johann Wolfgang von Goethe (by J. H. Tischbein)



Wer nicht von dreitausend Jahren
sich weiß Rechenschaft zu geben,
bleib im Dunkeln unerfahren,
mag von Tag zu Tage leben.

Goethe, West-östlicher Divan (1819)

Den som ikke kan føre sitt regnskap
over tre tusen år,
lever bare fra hånd til munn.

Norsk oversettelse: Jostein Gaarder (1991)



Plimpton 322 (from Babylon, ca. 1800 BC)



1192 + 1202 = 1692

119

120
169

The first entry



Integers a, b, c with
a2 + b2 = c2

are called Pythagorean triples.

(May assume a, b, c relatively prime, and a odd.)

Theorem (Euclid)

Each such triple appears in the form

a = p2 − q2 b = 2pq c = p2 + q2

for integers p, q.



Geometric proof:

Each Pythagorean triple a, b, c corresponds to a pair

x =
a
c

y =
b
c

of rational numbers x , y with

x2 + y2 = 1 .

So (x , y) is a rational point on the unit circle.



O = (0,1)

P = (x , y)

Q = (t ,0)

Rational parametrization of the circle

t =
y

1− x vs. x =
t2 − 1
t2 + 1

y =
2t

t2 + 1



Each rational point (t ,0) on the line, with

t =
p
q

gives a rational point (x , y) on the circle, with

x =
p2 − q2

p2 + q2 y =
2pq

p2 + q2

and a Pythagorean triple a, b, c, with

a = p2 − q2 b = 2pq c = p2 + q2 .



Algebraic proof:

a2 = c2 − b2 = (c + b)(c − b)

is a square, so by unique factorization

c + b = d2 c − b = e2

are squares. Therefore

c =
d2 + e2

2
= p2 + q2 b =

d2 − e2

2
= 2pq

with
p = (d + e)/2 q = (d − e)/2 .



Pierre de Fermat (by Roland Le Fevre)



. . . cuius rei demonstrationem mirabilem sane detexi



Fermat’s claim: The equation

an + bn = cn

has no solutions in positive integers for n > 2.

Proof?



If n = pm we can rewrite the equation as

(am)p + (bm)p = (cm)p

so it suffices to verify the claim

I for n = 4 (done by Fermat), and
I for n = p any odd prime.



Sophie Germain (1776–1831)



Theorem (Germain (pre-1823))

Let p be an odd prime. If there exists an auxiliary prime q such
that xp + 1 ≡ yp mod q has no nonzero solutions, and xp ≡ p
mod q has no solution, then if ap + bp = cp then p2 must divide
a, b or c.

I Any such auxiliary prime q will satisfy q ≡ 1 mod p.
I If q = 2p + 1 is a prime, then both hypotheses are satisfied.
I Showing that p | abc is called the First Case of Fermat’s

Last Theorem.



Ernst Kummer (1810–1893)



Suppose
ap + bp = cp .

Using ω = exp(2πi/p) = cos(2π/p) + i sin(2π/p) we can
factorize

ap = cp − bp = (c − b)(c − ωb) · · · (c − ωp−1b) .

If unique factorization holds in Z[ω], then each factor

(c − b), (c − ωb), . . . , (c − ωp−1b)

must be an p-th power. Therefore . . .



1

ω

ω2

The number system Z[ω] for p = 3



Kummer carried this strategy through to prove Fermat’s claim
for all regular primes p. (The only irregular primes less than
100 are 37, 59 and 67). Led to:

I the study of new number systems, like Z[ω],
I the invention of ideal numbers (ideals) in rings, and
I an analysis of the subtleties of unique factorization (ideal

class groups).



The number systems Q(ω) with ω = exp(2πi/n) are called
cyclotomic fields. The powers of ω divide the circle into n equal
parts.

The systematic study of the ideal class groups of cyclotomic
fields is called Iwasawa theory.

The Main Conjecture of Iwasawa Theory was proved by Barry
Mazur and Andrew Wiles in 1984.



[Ralph Greenberg and] Kenkichi Iwasawa (1917–1998)



Fermat’s equation Elliptic curve



Niels Henrik Abel’s drawing of a lemniscate



The “first elliptic curve in nature” is E : y2 + y = x3 − x2.

Real solution set E(R) with (x , y) in R2 ⊂ P2(R)



Topology of complex solution set E(C) with (x , y) in C2 ⊂ P2(C)

Cross-sections



For any field K , the solution set E(K ) with (x , y) in K 2 ⊂ P2(K )
is an abelian group. The point at infinity is the zero element.

P + Q + R = 0

This group structure is related to Niels Henrik Abel’s addition
theorem, e.g. for curve length on the lemniscate.



The case K = Q is the most interesting, but also the most
difficult.

Theorem (Mordell (1922))

E(Q) is a finitely generated abelian group.



Louis Mordell (1888–1972)



Fermat’s equation Elliptic curve

L-function



F` = Z/(`) = {0,1, . . . , `− 1} is a field for each prime `.
Consider solutions (x , y) in (F`)

2 to

y2 + y ≡ x3 − x2 mod ` .

Ex.: 22 + 2 = 6 ≡ 48 = 43 − 42 mod 7 so (4,2) ∈ E(F7).
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Modular solution sets E(F`) in F2
` ⊂ P2(F`) for ` = 2, 3, 5, 7



A line in P2(F`) has ` points in F2
` and 1 point at∞. Let

#E(F`) = number of points in E(F`)

and define the integer a` so that

#E(F`) = `− a` + 1 .

` 2 3 5 7 . . .
#E(F`) 5 5 5 10 . . .

a` −2 −1 +1 −2 . . .

The numbers a` for y2 + y = x3 − x2



More detailed definitions specify an for all n ≥ 1. The Dirichlet
series

L(E , s) =
∞∑

n=1

an

ns

in a complex variable s is the Hasse–Witt L-function of E .



Helmut Hasse (1898–1979) Ernst Witt (1911–1991)



Fermat’s equation Elliptic curve

L-function

Modular form



SL2(Z)-symmetry of the upper half-plane H (by T. Womack)



A modular form f (z) is a highly symmetric complex function

f : H −→ C

defined on the upper half H = {z ∈ C | im(z) > 0} of the
complex plane.



The exponential map z 7→ q = exp(2πiz) maps the upper
half-plane H to the unit disc {q | |q| < 1}:

−2 −1 0 1 2

1

i

−1

−i

z 7→ q = exp(2πiz)

We can write f (z) = F (q) if and only if f (z) = f (z + 1).



Amazing property of the discriminant function

∆(q) = q
∞∏

n=1

(1− qn)24 = q − 24q2 + 252q3 − 1472q4 + . . .

The holomorphic function δ(z) = ∆(q), where q = exp(2πiz),
satisfies the symmetry condition

δ(
az + b
cz + d

) = (cz + d)12δ(z)

for all integer matrices
[
a b
c d

]
with ad − bc = 1.

I δ(z) is a modular form of weight 12.
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The infinite product

F (q) = q
∞∏

n=1

(1− qn)2(1− q11n)2

satisfies F (q)12 = ∆(q)∆(q11).

The associated function f (z) = F (q) satisfies

f (
az + b
cz + d

) = (cz + d)2f (z)

for all integer matrices
[
a b
c d

]
with ad − bc = 1 and c ≡ 0

mod 11.

I f (z) is a modular form of weight 2 and level 11.
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The Fourier expansion

F (q) =
∞∑

n=1

bnqn

contains the same information as the Dirichlet series

L(f , s) =
∞∑

n=1

bn

ns .

We call L(f , s) the Mellin transform of f (z) = F (q).



Fermat’s equation Elliptic curve

L-function

Modular form

Modularity



Martin Eichler (1912–1992)



F (q) = q
∞∏

n=1

(1− qn)2(1− q11n)2 =
∞∑

n=1

bnqn

= q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − . . .

is the “first modular form of weight 2 in nature”. Recall the table
of point counts for y2 + y = x3 − x :

` 2 3 5 7 . . .
#E(F`) 5 5 5 10 . . .

a` −2 −1 +1 −2 . . .
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Theorem (Eichler (1954))

For the “first” elliptic curve E : y2 + y = x3 − x2 and the “first”
modular form f (z) = (∆(z)∆(11z))1/12 of weight 2, the equality

a` = b`

holds for each prime `.

I The L-functions L(E , s) = L(f , s) are equal.



Yutaka Taniyama (1927–1958) Goro Shimura



Conjecture (Taniyama (1955), Shimura)

For each elliptic curve

E : y2 + α1xy + α3y = x3 + α2x2 + α4x + α6 ,

with α1, . . . , α6 ∈ Q and #E(F`) = `− a` + 1, there exists a
modular form f (z) of weight 2, with F (q) =

∑∞
n=1 bnqn, such

that
a` = b`

for almost every prime `.

I The L-functions L(E , s) = L(f , s) are equal.



Conjecture (Taniyama–Shimura)

Each elliptic curve defined over Q is modular.



Fermat’s equation Elliptic curve

L-function

Modular form



Definition

An elliptic curve is a smooth, projective, algebraic curve E of
genus one, with a chosen point O.

I By Riemann–Roch, E is isomorphic to the projective
planar curve given by a Weierstraß equation

y2 + α1xy + α3y = x3 + α2x2 + α4x + α6 .

I The origin O corresponds to a single point at infinity.
I If the coefficients α1, . . . , α6 lie in a field K , we say that E is

defined over K .



x
−9 0

16

x(x + 9)(x − 16)

x

y

−9 0
16

y2 = x(x + 9)(x − 16)

E(R)

A cubic polynomial and an elliptic curve E



If α1 = α3 = 0, the curve

y2 = x3 + α2x2 + α4x + α6

is smooth if and only if the right hand side has three distinct
roots, r1, r2 and r3.

I An equivalent condition is that

∆(E) = 16(r1 − r2)2(r1 − r3)2(r2 − r3)2

is nonzero.
I In general, the discriminant ∆(E) of E is an explicit integral

polynomial in α1, . . . , α6.
I The Weierstraß equation defines an elliptic curve over K if

and only if ∆(E) 6= 0 in K .



Let E be an elliptic curve defined over Q.

After a linear change of coordinates (with rational coefficients)
we may assume that α1, . . . , α6 ∈ Z, so that ∆(E) ∈ Z.

I A choice of equation

y2 + α1xy + α3y = x3 + α2x2 + α4x + α6

with integral coefficients that minimizes |∆(E)| will be
called a minimal equation for E .



Example: The minimal equation for y2 = x(x + 9)(x − 16) is

y2 + xy + y = x3 + x2 − 10x − 10 .

x

y

−9 0
16

Isomorphic curves, with ∆ = 212 · 34 · 54 and ∆ = 34 · 54



A minimal equation

y2 + α1xy + α3y = x3 + α2x2 + α4x + α6

can be viewed as an equation in F` for (x , y) ∈ F2
` , for any given

prime `.

There are three mutually exclusive cases:

I E(F`) is elliptic, ` - ∆(E), and ∆(E) 6= 0 in F`.
I E(F`) has a node n, and E(F`) \ {n} ∼= F×` is the

multiplicative group.
I E(F`) has a cusp c, and E(F`) \ {c} ∼= F` is the additive

group.



x

y

n
x

y

c

Nodal and cuspidal singularities (real images)



Definition

An elliptic curve E defined over Q is semistable if for each
prime ` the curve E(F`) is smooth or has a node, but does not
have a cusp.

Definition

The conductor of a semistable curve E is the product

N =
∏

`|∆(E)

`

of the primes ` where E(F`) has a node.



Example: The elliptic curve

y2 = x(x + 9)(x − 16)

has minimal equation y2 + xy + y = x3 + x2 − 10x − 10 of
discriminant ∆ = 34 · 54. Both E(F3) and E(F5) have nodes, so
E is semistable. Its conductor is N = 3 · 5 = 15.

Example: The elliptic curve

y2 = x(x − 9)(x + 16)

has minimal equation y2 = x3 + x2 − 160x + 308 of
discriminant ∆ = 212 · 34 · 54. The curve E(F2) has a cusp, so
E is not semistable.



Fermat’s equation Elliptic curve

L-function

Modular form



Definition

A modular form f of weight 2 and level N is a holomorphic
function defined on the upper half-plane H, such that

f (
az + b
cz + d

) = (cz + d)2f (z)

for all z ∈ H and all integer matrices
[
a b
c d

]
with ad − bc = 1

and c ≡ 0 mod N.

I We can write f (z) = F (q) for q = exp(2πiz), because
f (z + 1) = f (z).

I We require that F is holomorphic at q = 0, so that

F (q) =
∞∑

n=0

bnqn .



Technical conditions:

A modular form f (z) = F (q) of level N is

I a cusp form if f (z) = 0 “at the cusps”, so that b0 = 0;
I a newform if it is not “induced up” from a modular form of

smaller level M;
I an eigenform if it is an eigenvector for each Hecke operator

Tn for n relatively prime to N.

Most modular forms considered below will implicitly be
assumed to satisfy these three conditions. They give a basis for
the most relevant modular forms that are strictly of level N.



Fermat’s equation Elliptic curve

L-function

Modular form

Modularity



André Weil (1906–1998) [with Atle Selberg (1917–2007)]



Conjecture (Hasse–Weil (1967))

For each elliptic curve E defined over Q, with conductor N,
there exists a modular form f (z) of weight 2 and level N such
that

a` = b`

for all primes ` - N.

More detailed definitions specify N for all E , and an for all
n ≥ 1. The conjecture then asserts that an = bn for all n:

L(E , s) =
∞∑

n=1

an

ns =
∞∑

n=1

bn

ns = L(f , s) F (q) =
∞∑

n=1

bnqn .



Ob die Dinge immer, d. h. für jede über Q definierte
Kurve C, sich so verhalten, scheint im Moment noch
problematisch zu sein und mag dem interessierten
Leser als Übungsaufgabe empfohlen werden.

André Weil (January 1966)
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