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Intorudction

Algebraic K-theory is a field which uses ideas from Algebraic Topology to construct a series of invari-
ants of categories, the K-groups, and aims to organize the study of these groups. In this project we
will not concern ourselves with application of Algebraic K-theory, but rather are motivated by the
internal beauty of the subject.

There are several areas of mathematics which we will treat as acquired, summarized as follows.
As Algebraic K-theory studies categories, comfort with this language will be assumed at least up to
(co)limits, adjunctions and how these concepts interact (see approximately the first four chapters of
[1] or of [2]). The main tools we will use to construct and study K-theory will either come from or
be very inspired by ideas in Algebraic Topology, as such we treat any material contained in Hatcher’s
classic book ([3]) on the subject as acquired. The second tool we will use to study categories is the
language of simplicial objects, as their combinatorial nature make them a natural midway point be-
tween categories and spaces when attempting to study categories via Algebraic Topology (see sections
8.1 through 8.3 of [4] or the first chapter of [5]). We will also assume that the reader is familiar with
the basics of homological algebra (for example the content of the first three chapters of [4]), as this
general framework will make it much easier to draw inspiration from Algebraic Topology. A good
place to read about translating between categories and topological/simplicial spaces is section §3 of
chapter IV of the K-book ([6]). We will use notions and notation from this chapter without further
comment.
Finally, there are three subjects for which we do not assume familiarity, but will need, so the reader
should be ready to accept results from these areas and should not fear the basic language coming from
these subjects. These are: stable homotopy theory (see [7]), homotopical algebra (see [8] or [9] for a
more in depth look) and spectral sequences (see chapter 5 of [4]).

The goal of this project is to cover a selection of topics from chapters IV and V of Weibel’s K-book
([6]), with the end goal of relating the K-theories of some of the most basic rings (though not every
result we include is used in proving this statement).

In section §1, we define the space BGL(R)+ which is the key step of our first model for the
K-theory space of a ring. In subsection §1.1, we define acyclic maps and give a useful recognition
criterion. In §1.2, we study the +-construction in general, we prove the following existence theorem
which also provides a universal property.

Theorem 0.0.1. (Theorem 5.1 and 5.2 [10]) Let X be a path connected topological space and let P
be a perfect normal subgroup of π1(X). Then
(i) There exists f : X → Y , a +-construction relative to P .
(ii) Let f : X → Y be a +-construction relative to P which in addition is a cofibration. If g : X → Z
is any map such that P ≤ ker(π1(g)), then there is a unique up to homotopy map h : Y → Z such
that g = hf .

We are then equipped to define the K-theory space of a ring, and we provide a computation of
K0(R),K1(R) and K2(R). We end section §1 with a technical subsection which contains key results
to prove that BGL(R)+ is an H-space, though we defer the actual proof to subsection §2.3.

In section §2, we work towards defining a K-theory space for all symmetric monoidal categories. We
start by the topological analog of the group completion functor, which we also call group completion.
We do this in subsection §2.1, where after defining the relevant concepts, we prove the following
universal property of group completions of H-spaces.

Proposition 0.0.2. (Proposition 1.2 in [11]) Let X be a CW H-space such that π0(X) has a countable
cofinal sequence. Let g : X → Y be a group completion. Then if f : X → Z is any weak H-map into a
group-like H-space there exists a weak H-map f ′ : Y → Z unique up to weak homotopy such that f ′g
is weakly homotopic to f .

3



We then specialize in section §2.2, to the H-space structure on the geometric realization of a
symmetric monoidal category, and construct an auxiliary category whose geometric realization is
going to be the group completion of the classifying space of the original symmetric monoidal category.
The key element to prove this fact is the construction of a map

π0(S)−1Hq(X)→ Hq(S−1X)

which we show is an isomorphism in the following theorem.

Theorem 0.0.3. (Theorem 4.8 in [6] chapter IV), (page 221 of [12])(Theorem 7.2 of [13]) If every
map in S is an isomorphism and translations are faithful (i.e. ∀s, t ∈ S,Aut(t) → Aut(s□t) is an
injection), then the above map is an isomorphism.

This is one of the more theoretically demanding results in this project, in particular as it requires
constructing a spectral sequence. This result allows us to understand the homology of the base point
component of the K-theory space of a symmetric monoidal category which in turn allows us to compute
K1(S) for a symmetric monoidal category S. We then show in §2.3 that taking S to be the category
of finitely generated projective R-modules, the group completion construction yields a K-theory space
homotopy equivalent to the model constructed in subsection §1.3. The set-up of the proof aims to
show that we can use the results from subsection §1.4 to prove the equivalence of models. The goal
of this subsection (§2.3) is accomplished by the following result.

Theorem 0.0.4. (Theorem 4.10 in [6] chapter IV) Let S be a symmetric monoidal category such that
S = iso(S), with faithful translations and having a cofinal subsequence of the form {sn}∞n=1 for some
s ∈ S. Then

K(S)□ ≃ K0(S)×BAut(S)+,

with the plus construction relative to E = [Aut(S), Aut(S)].

We can use this comparison to give a description of K2 of a symmetric monoidal category.

In section §3, we define the K-theory space in general for quasi-exact categories. Subsection §3.1
is simply the necessary build up defining the Q-construction and thus the K-theory of quasi-exact
categories. We also compute the 0th K-group of quasi-exact categories. We then prove a handful
of elementary properties in section §3.2. As quasi-exact categories are naturally symmetric monoidal
categories, we then prove that under appropriate conditions, the Q-construction and group completion
construction provide homotopy equivalent K-theory spaces. This is done in subsection §3.3 and is
accomplished by the following theorem.

Theorem 0.0.5. (Theorem 7.1 of [6] chapter IV) Let A be a split quasi-exact category, and let
S = iso(A) be seen as a symmetric monoidal category. Then

ΩBQA ≃ BS−1S.

The proof of this statement is the longest one of this bachelor project, and we will spend the rest
of this section working on it.

In section §4, we define the final and most general K-theory space that we will deal with in this
project: the S. construction for Waldhausen categories. These are categories equipped with a notion
of weak equivalence and with a notion of cofibration. This section requires a lot of set up, which
we do in subsection §4.1. Before moving on to the next subsection, we will also define different
properties a Waldhausen category might have, which will be relevant when we start proving theorems
in section §5 that do not apply in full generality. In §4.2, we prove our final theorem which compares
two different models for K-theory spaces. We show that the quasi-exact categories can naturally be
seen as Waldhausen categories, and that applying the S. construction or the Q-construction yields
homotopy equivalent spaces. This is the content of the following theorem.
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Theorem 0.0.6. (Exercise 8.5, 8.6 in chapter IV of [6])(section 1.9 of [14]) Let A be a quasi-exact
category, we have a homotopy equivalence

BQA ≃ |iS.A|.

The notation iS. serves to indicate that we are taking the weak equivalences to be the isomorphisms.

This concludes, what could philosophically be considered, the first half of the project dealing with
defining and equating different constructions for K-theory. We then go on to prove the additivity
theorem in §4.3, a fundamental result which helps in understanding what K-theory does to functors.
This is accomplished by the following result.

Theorem 0.0.7. (Theorem from [15]) Let C be a Waldhausen category and consider the exact functor
F : EC → C × C which sends A↣ B ↠ C to (A,C). Then S.F is a homotopy equivalence.

In this section, we state a couple corollaries of this result which have also been called the additivity
theorem. It is in the following subsection §4.4, that we start using the language of spectra. First,
we prove that the K-theory space has the structure of an infinite loop space, and thus the functor
sending a Waldhausen category to its K-theory space can naturally be made to land in the category
of spectra, which has the added advantage of being stable. We accomplish this with the following
result, which will be a key ingredient in multiple proofs of the next section.

Proposition 0.0.8. (Proposition 1.5.5 in [14]) The sequence wS.D → wS.S.F → wS.S.C is a homo-
topy fibration.

Second, we also sketch how a bi-exact functor descends to a pairing in K-theory.

In section §5, we collect some important theorems in K-theory, the selection is motivated mainly by
the results that are required to prove that we have a homotopy fibration that relates the K-theory of:
the fields of prime order, the integers and the rationals. We start by proving Waldhausen localization
in §5.1.

Theorem 0.0.9. (2.1 in [6] chapter V) Let A be a category with cofibrations made into a Waldhausen
category with two different classes v(A) ⊂ w(A) of weak equivalences. Suppose that (A, w) is: satu-
rated, satisfies the cylinder axiom and the extension axiom. Denote by Aw the Waldhausen subcategory
of (A, v) of objects such that 0→ A is a w-weak equivalence. Then we have a homotopy fibration

K(Aw)→ K(A, v)→ K(A, w).

This result allows us to change the class of weak equivalences we are working with when studying
the K-theory of Waldhausen categories. The hypotheses of this result are in general not satisfied by
the crucial example of the category of finitely generated projective R-modules. The following result,
called the Gillet-Waldhausen theorem fixes this issue because categories of bounded chain complexes
satisfies the required hypotheses.

Proposition 0.0.10. (2.2 in [6] chapter V)(1.11.7 of [16]) Let C be an exact category in some ambient
abelian category A. Suppose further, that whenever f ∈ mor(C) is a surjection in A then ker(f) is
in C. By considering complexes concentrated in degree 0 we get an exact inclusion C → Chb(C) which
induces a homotopy equivalence on K-theory spaces.

To prove this result we require some basic familiarity with the language of spectra. We then prove
the approximation theorem in §5.2 which is the key result used to prove that a functor which is not
necessarily an inclusion is a homotopy equivalence.

Theorem 0.0.11. (Theorem 2.4 in [6] chapter V)(Theorem 10 in [17]) Suppose F : C → D is an
exact functor of saturated Waldhausen categories which satisfies the following requirements.

(i) A morphism in C is a weak equivalence if and only if its image is a weak equivalence.
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(ii) Every morphism in C can be factored as a cofibration followed by a weak equivalence (this is, in
particular, true if C has a cylinder functor satisfying the cylinder axiom).

(iii) F satisfies the approximate lifting property which states that for every map β : F (C)→ D there
is a cofibration α : C → C ′ and a weak equivalence β′ : F (C ′)→ D such that β′ ◦ F (α) = β.

Then, the induced map on K-theory spaces F : K(C)→ K(D) is a homotopy equivalence.

We then prove two results which apply only in the case where F is an inclusion of a subcategory.
The first of the two is the resolution theorem in §5.3.

Theorem 0.0.12. (Theorem 3.1 in [18]) Suppose A is a full exact subcategory of an exact category
B such that: a sequence of three objects in A which is exact in B is exact in A; A is closed under
extension and cokernels in B. Assume further that every object B in B has a resolution, i.e. an exact
sequence, 0→ B → A→ A′ → 0 with A,A′ ∈ A.
Then the inclusion A → B induces a homotopy equivalence K(A)→ K(B) on K-theory spaces.

We then prove the devissage theorem in §5.4.

Theorem 0.0.13. (Theorem 4.1 in [18]) Let A ⊂ B be an inclusion of abelian categories such that
A is closed under direct sum, subobject and quotient in B. Suppose every object in B has a finite
filtration by monics such that all the filtration quotients are in A. Then the inclusion A → B induces
a homotopy equivalence K(A)→ K(B) of K-theory spaces.

As promised, the final section §6 of this project relates the K-theory of some of the most funda-
mental rings. This is done by the following result.

Theorem 0.0.14. Denote by K(R) the K-theory space of the category of finitely generated projective
R-modules with weak equivalences being the isomorphisms and the cofibration being monics. Then we
have a homotopy fibration ∨

p

K(Fp)→ K(Z)→ K(Q).

The wedge is taken over all primes.

Conventions

We adopt a couple conventions for convenience and ease of comprehension.

For spaces, we assume all spaces to be nice enough so that the connected components have a
universal cover. For a space X we denote its universal cover by Xu. We call a space simple if π1 is
abelian and the natural actions on all higher homotopy groups are each trivial, in particular H-spaces
are simple. All the relevant spaces will be of the homotopy type of CW-complexes, thus even when
this is not explicitly stated we make this assumption. Unless necessary for clarity, we will not be both-
ering ourselves with explicitly mentioning base points, for instance when computing homotopy groups.

Encouraged by the appendix of [19], the reader is free to assume that whenever we mention spectra,
we are working with the category of symmetric spectra.

Rings are assumed to be associative with unit, but may fail to be commutative.

The notation [n] refers to the finite set {1, ..., n}.

There are several constructions for categories, notably geometric realization, for which we need our
categories to be small, we will not repeat this assumption throughout the text. Any category with a 0
object is assumed to be pointed, i.e. there is a distinguished 0 object and functors between categories
with 0 objects preserve the distinguished choice of such an object.
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This project contains a lot of diagrams, it will be clear from context (and clarified if not) whether
we are considering commutative, homotopy commutative or general diagrams. We do not name every
morphism in a diagram to avoid clutter. We adopt the philosophy that an oversaturated diagram
contains more information than no diagram at all, thus we have allowed ourselves some rather large
or intricate diagrams. What we mean by the decorated arrows ↪→,↠,

≃−→ will be clear from context,
and will match the intuition that ↪→ means a morphism which is “like a monic”, ↠ “like an epic” and
≃−→ “like an isomorphism”.

When a detail in a proof eluded me, I have decided to admit this in a remark at the end of the
proof. In particular, during a proof, we will allow ourselves to overlook any unclear steps. We make
this choice to not interrupt the flow while reading a proof.
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1 The +-construction for K-theory of rings

In this section, we will give the necessary definitions to define the K-theory of a ring using the +-
construction. First, we recall what an acyclic space is. Then we define what an acyclic map is, as we
will need this to define what a +-construction is.

1.1 Acyclic maps

Definition 1.1.1. (Definition 1.3 and 1.4 in [6] chapter IV) We call a topological space X acyclic if
it has the homology of a point. And we call a map f : X → Y of path-connected topological spaces
acyclic if the homotopy fiber of the map is acyclic.

The goal of a +-construction is to simplify the fundamental group of a space by quotienting out
by a perfect subgroup, while keeping the homology of the space unaffected. Studying the homotopy
long exact sequence for the homotopy fibration Ff → X

f−→ Y shows that if f is acyclic we have
π1(Y ) ∼= π1(X)/P (P is a normal subgroup) with P ∼= π1(Ff ) a perfect group because π1(F )ab =
H1(Ff ) = 0. The following result (which we will call “acyclic recognition”) shows that acyclic maps
induce isomorphisms on homology.
Proposition 1.1.2. (lemma 1.6 in [6] chapter IV) A map f : X → Y between path connected spaces
is acyclic if and only if f : H∗(X;M)→ H∗(Y ;M) is an isomorphism for every π1(Y )-module M .
Proof. (⇒) The map f : X → Y being acyclic means that the homotopy fibration Ff → X → Y
has an “easy” to understand homology. Homology of a fibration is best understood using the Serre
spectral sequence, which we can use as the necessary path connectedness is satisfied by assumption.
Notice that π1(Ff ) → π1(Y ) is trivial, and so if M is a π1(Y )-module, the π1(Ff ) structure on M
is trivial. This means that we can compute H∗(Ff ;M) using the universal coefficient theorem for
homology. Namely, Hi(Ff ;M) = M if i = 0 and is 0 otherwise. Recall that the E2 page of the Serre
spectral sequence is

E2
pq = Hp(Y ;Hq(Ff ;M)).

And so, we see that the spectral sequence collapses on the E2 page, because E2
pq = 0 for q ̸= 0. The

sequence converges to Hp+q(X;M), and clearly this implies that Hp(Y ;M) ∼= Hq(X;M). In order
to promote this abstract isomorphism to the desired result, we use that the edge homomorphism
Hp(X;M)→ E∞

p,0 ⊂ E2
p,0 = Hp(Y ;M) is the map induced by f .

(⇐) We cannot deal with the general case immediately, so we first treat the case that Y is simply
connected, and we will then deduce the full result by passing to universal covers. We also note that
for the twisted coefficients of Hq(X;M) the π1(X)-module structure on M is induced by the π1(Y )-
module structure and the map π1(f).
For the simply connected case, we need the so-called comparison theorem for the Serre spectral se-
quence (see theorem A.0.1 to recall the statement). We then apply it to the map of fibrations

Ff X Y

∗ Y Y

f

f IdY

IdY

.

If we take homology with untwisted Z coefficients; then the rightmost map obviously induces an
isomorphism on homology and the middle one is an isomorphism by assumption. Thus, using the
comparison theorem Ff has the homology of a point; in other words f is acyclic.

Now for the general case, let f : X → Y be a map that induces an isomorphism on homology with
arbitrary twisted coefficients. We can consider the universal cover of Y , call it Y u; then in order to
translate to the above case we take the following pullback

X ′ ∼= X ×Y Y u Y u

X Y

f ′

f

.
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We claim that f ′ : X ′ → Y u is an isomorphism on homology with Z coefficients, which by the proof in
the simply connected case will show that f ′ is acyclic. Consider the map f ′

∗ : Hq(X ′;Z)→ H(Y u;Z),
it turns out that the untwisted homology of covering spaces can be realized as some twisted homology
of the base space, as can be seen in [3] example 3H.2. In order to apply this idea, we need to
understand to which subgroup the cover X ′ → X corresponds to (it is obviously a covering space by
basic properties of pullback bundles). A prerequisite to understanding to which group X ′ corresponds
to; we need to prove that it is connected, as it is only in that case that it corresponds to a subgroup.
For this we use the equivalence of categories Cov(X) ∼= Setπ1(X), with connected covers corresponding
to π1(X)-sets with a single orbit. The π1(X)-set corresponding to X ′ is π1(Y ) by properties of
pullback bundles and the action is the one induced by the map π1(f). We can study this π1(X)-set
by using the isomorphism f∗ : H0(X;Z[π1(Y )]) → H0(Y ;Z[π1(Y )]), which yields an isomorphism
Z[π1(Y )]π1(X) ∼= Z[π1(Y )]π1(Y ) ∼= Z and this implies that there is a single π1(X)-orbit in π1(Y ).
We will show that P , the subgroup corresponding to X ′ → X corresponds to ker(π1(f)) ≤ π1(X).
Clearly P ≤ ker(f), which can be seen by applying π1 to the above pullback. For the reverse inclusion,
let γ : S1 → X represent a loop in the kernel of π1(f). Because f ◦γ : S1 → Y is trivial in π1(Y ) we can
lift it to Y u, then we can use the universal property of the pullback to get a map to X ′ which proves
the reverse inclusion. The above discussion is summarized in the following commutative diagram

S1

X ′ Y u

X Y

γ

∃(f◦γ)u

∃!

f ′

f

.

Now that we know to what group the cover corresponds to, we can use [3] 3H.2 to get H(X ′;Z) ∼=
H(X;Z[π1(X)/ker(f)] and H(Y u;Z) ∼= H(Y ;Z[π1(Y )]). So now to show f ′

∗ : H∗(X ′;Z)→ H∗(Y u;Z)
is an isomorphism, we can consider the following diagram

Hq(X ′;Z) Hq(Y u;Z)

Hq(X;Z[π1(X)/ker(f)]) Hq(Y ;Z[π1(Y )])

f ′

∼= ∼=
ϕ

;

where the bottom map is just defined as the natural composition of the other three maps. One can
observe that this diagram comes from the following diagram of chain complexes after applying the
homology functor

C∗(X ′;Z) C∗(Y u;Z)

C∗(Xu;Z)⊗π1(X) Z[π1(X)/ker(f)] C∗(Y u;Z)⊗π1(Y ) Z[π1(Y )]

∼=

f ′

∼=
fu

,

where fu is the lift of f ◦ p : Xu → Y to the universal cover Y u → Y of Y and p : Xu → X is the
universal cover of X. We claim Z[π1(X)/ker(f)] ∼= Z[π1(Y )] as π1(X) modules. If π1(f) is surjective,
then this follows at once from the first isomorphism theorem. Because the homotopy fiber of f having
the homology of a point, it is path connected, and so by studying the homotopy long exact sequence of
Ff → X → Y we get the desired surjectivity. And so ϕ : Hq(X;Z[π1(X)/ker(f)])→ Hq(Y ;Z[π1(Y )])
is an isomorphism by assumption, as once we replace the domain using the isomorphism just discussed
it is, in fact, the map f : Hq(X;Z[π1(Y )])→ Hq(Y ;Z[π1(Y )]).
Therefor, by the simply connected case f ′ is acyclic, all that remains to show is that this implies that
f is acyclic as well. We do this by showing that the spaces Ff ′ and Ff are homeomorphic, which
we do by showing that Ff ′ satisfies the universal property of Ff . For this we need to make the base
points explicit for the three spaces X,Y and Y u; x0, y0 and u0 respectively. And we also will no
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longer write X ′ for the space X ×Y Y u, as it will be easier if its pullback property is clear. We also
explicitly mention the fact that our pathspaces are pointed, for example the space Y I is the space of
maps I → Y sending 0 to y0.
To see that Ff ′ satisfies the desired universal property, one needs to understand the following com-
mutative diagram, which warrants some explaining.

Z

Ff ′ (Y u)I

X ×Y Y u Y u Ff Y I

X Y

α

β

(i)∃!g
(ii)∃!h

l◦β

p∗
ev1

Id

f ′

p

l

ev1

Id

f

.

The first point which needs clarifying are the maps p∗ : (Y u)I → Y I and l : Y I → (Y u)I , the former
is post-composition by p : Y u → Y , and the second is the map which sends a path γ : (I, 0)→ (Y, y0)
to the unique lift starting at u0. These maps are obviously mutually inverse, continuity follows easily
from the continuity of p, the fact that p is open and the definition of the compact open topology. To
see that for all β : Z → Y I , α : Z → X there is a unique pullback Z → Ff ′ (which is what we want to
show) we proceed as follows:
First, for existence, we can pull back α : Z → X and ev1 ◦ l ◦ β to define the map g : Z → X ×Y Y u.
Now pull back this g and l ◦ β to define h. For uniqueness suppose h̃ is another lift, then because
p, l are mutually inverse, the composition Z

h̃−→ Ff ′ → (Y u)I must be the map l ◦ β. Similarly, the
composition Z

h̃−→ Ff ′ → X ×Y Y u must be the pullback g and so h̃ must be the pullback of g and
l ◦ β which must be h. Which concludes the proof Ff ∼= Ff ′ , and therefor the entire proof as well.

1.2 The general +-construction

With the previous section completed, we can see that the following definition accomplishes what we
wanted a +-construction to do.

Definition 1.2.1. (Definition 1.4.1 in [6] chapter IV) Let X be a connected topological space with
fundamental group G and let P be a perfect normal subgroup of G. A +-construction relative to P
is an acyclic map f : X → Y such that ker(π1(f)) = P .

Often we will not specify with respect to which subgroup we are performing a +-construction, in
which case we are implicitly performing a +-construction with respect to the largest perfect subgroup
of the fundamental group, called the perfect radical. This is justified by the following result.

Proposition 1.2.2. (Exercise 1.5 in [6] chapter IV) Let G be a group, then the union of all perfect
subgroups is a perfect normal subgroup.

Proof. Let H,F be two perfect subgroups of G, and let P = ⟨H,F ⟩ be the subgroup generated by all
elements of H and F , then because H and F are perfect, we have H ≤ [P, P ] and F ≤ [P, P ], and
so [P, P ] containing every generator of P must contain P , so by double inclusion we have that P is
perfect. This implies that the union of all perfect subgroups is a perfect subgroup. Indeed, denoting
by R the union of all perfect subgroups, and letting h1, h2 be elements of R we have perfect subgroups
H1, H2 containing h1, h2 respectively. Thus, by the above reasoning, we also have that ⟨H1, H2⟩ ≤ R
and so both the product and the commutator of h1 and h2 are in R. Thus, we have that⋃

i∈I
Hi = ⟨Hi⟩i∈I ,
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where the indices run over all perfect subgroups.
We proceed to demonstrate that R is normal. For this, notice that if we let g ∈ G, then conjugation by
g is an isomorphism from P to gPg−1, being perfect is an isomorphism invariant, so the conjugates of a
perfect subgroup are perfect. This implies that the union of all perfect subgroups must be normal.

We have established now that any acyclic map is a +-construction for some perfect subgroup of
the fundamental group. It turns out this construction can be performed for any perfect subgroup; this
is the content of the following theorem due to Quillen, for which we follow the book by Berrick [10].

Theorem 1.2.3. (Theorem 5.1 and 5.2 [10]) Let X be a path connected topological space and let P
be a perfect normal subgroup of π1(X). Then
(i) There exists f : X → Y , a +-construction relative to P .
(ii) Let f : X → Y be a +-construction relative to P which in addition is a cofibration. If g : X → Z
is any map such that P ≤ ker(π1(g)), then there is a unique up to homotopy map h : Y → Z such
that g = hf .

The second result contained in this theorem immediately implies that a +-construction is unique
up to homotopy equivalence under X.

Proof. (i) We fix a space X and a perfect normal subgroup P of π1(X). For the remainder of this
proof, when we say +-construction, we implicitly mean relative to P . There are several ways to
perform the +-construction; we present a rather straightforward method from [10] 5.1. The general
case will be deduced from the case P = π1(X) by passing to the appropriate covering space. For now,
assume P = π1(X).
We can use the usual method of eliminating the fundamental group by attaching two cells to a
representative of each element of π1(X), constructing a simply connected space W , of which X is a
subspace. We can summarize this by the following pushout

∨π1(X)S
1 X

∨π1(X)D
2 W

.

We can, without loss of generality, assume the top map to be a cofibration, which allows us to use
excision to see Hq(W,X;M) ∼= Hq(∨π1(X)D

2,∨π1(X)S
1;M) ∼= H̃q(∨π1(X)S

2;M). So we see that
H̃q(W ;M) ∼= H̃q(X;M)⊕ H̃q(∨π1(X)S

2;M), with M some π1(W ) module. So we can easily attach 3
cells in such a way to kill the homology added by the 2 cells, summarized by the following diagram

∨π1(X)S
2 W

∨π1(X)D
3 Y

.

We claim that Y is the desired space. We work with homology with twisted coefficients N some π1(Y )
module, which we will not specify explicitly. To show it is the desired space, note that by the homology
exact sequence for (Y,X) and the acyclic recognition lemma, it suffices to show that Hq(Y,X) = 0 for
all q. We will show this by studying the map of triples (D3, S2, ∗) → (Y,W,X) defined by the above
diagram. On homology, this gives a map between long exact sequences of triples

Hq+1(Y,W ) Hq(Y,X) Hq(W,X)

Hq+1(∨π1(X)D
3,∨π1(X)S

2) Hq(∨π1(X)D
3, ∗) Hq(∨π1(X)S

2, ∗)

.

We can use excision on the two outer vertical maps followed by the 5 lemma to deduce the desired
result Hq(Y,X) = 0.
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So we know we can perform +-constructions when P = π1(X), now let P ≤ π1(X) be any perfect
normal subgroup. Let X ′ → X be the covering space associated to P , and Y ′ the +-construction
relative to π1(X ′), which exists by the above reasoning. We can also assume without loss of generality
that the map X ′ → Y ′ is a cofibration. We construct Y by a pushout

X ′ Y ′

X Y

.

Now, because we turned the top map into a cofibration, so is the bottom map, so we can use excision
to get Hq(Y ′, X ′) ∼= Hq(Y,X), but X ′ → Y ′ being acyclic means that Hq(Y ′, X ′) = 0, and so the
same holds for Hq(Y,X). So we know that X → Y is a +-construction, we just need it to be a
+-construction relative to the subgroup P . Recall that by the Seifert-Van Kampen theorem, π1(−)
preserves pushouts, in our case this result turns the above diagram into the following pushout

P 1

π1(X) π1(Y )

,

and so π1(Y ) ∼= π1(X)/P , which is the desired result.

(ii) Let f : X → Y be a cofibration which is a +-construction relative to P ≤ π1(X) and g : X → Z
be such that π1(g)(P ) = 0. Our goal is to construct a map h : Y → Z such that h ◦ f = g. For this
we shall need the following lemma

Lemma 1.2.4. (See the introduction to chapter 5 of [10]) Suppose we have a triangle

X

A B

α β

γ

,

with α, β cofibrations, which commutes up to homotopy, then it can be made to commute strictly by
replacing γ with γ′ which is a homotopic map.

Proof. Denote by Ht the homotopy from H0 = γ ◦ α to H1 = β, then simply applying the homotopy
lifting property to the following diagram

X B

A B

Ht

α IdB

γ=γ0

.

This yields a homotopy γt from γ = γ0 to a map γ1 = γ′ making the triangle commute strictly.

That being said we may return to our situation. In order to use the lemma, we factor g as
X → Mg → Z with the first map a cofibration and the second a homotopy equivalence. This
concludes the preliminary work. Ideally f would be invertible up to homotopy. We can fix this if we
can make π1(f) injective. Indeed, suppose π1(f) was injective, we know it is surjective by studying
the long exact sequence for Ff → X → Y using that Ff is path connected. So f would then be a
homology (with local coefficients) isomorphism which is an isomorphism on π1, which is enough to
show that f is a homotopy equivalence (using that, then the induced map on universal covers is a
homology isomorphism and exercise 4.2.12 [3]). We obviously will not be able to magically make f a

13



homotopy equivalence, but this is enough to motivate the proof idea. Indeed, consider the following
pushout

X Y

Mg Mg ∪X Y

f

ι ι′

f ′
,

because π1 preserves pushouts, and ι is up to homotopy the same as g, we can see that π1(f ′) is
injective. We can also, by excision, see that Hn(Mg ∪X Y,Mg;M) ∼= Hn(Y,X;M), which by acyclic
recognition is enough to show that f ′ is an acyclic, thus by the above reasoning, f ′ is a homotopy
equivalence. Call e′ a representative of the unique homotopy class inverse to the class of f ′. Now
consider the following diagram, with the left triangle strictly commutative and the right triangle only
up to homotopy

X

Y

Mg Mg ∪X Y Mg

f

ι ι

ι′

f ′ e′

.

A pushout of a cofibration is a cofibration, so ι′ ◦ f and ι are both cofibration, so by the lemma we
can make the diagram strictly commutative by replacing e′ by some e. We can define h = e ◦ ι′ and
we see this h is as desired after replacing Mg with Z again. We can see that any h̃ which is as desired
must be constructed similarly using the universal property of Mg ∪X Y and the fact that we have a
homotopy equivalence w : Z →Mg (call its inverse v). To see this, consider the following diagram

X Y

Mg Mg ∪X Y

Mg Z

f

ι h̃f ′

Id

ι′

∃!ẽ
v

w

.

From this diagram and the discussion above we can see that w ◦ h̃ = ẽ ◦ f ′, then post compose with v,
we lose strict commutativity, but get h̃ = v ◦ ẽ ◦ f ′. This shows that any map h̃ satisfying the desired
properties must be constructed in a way similar to h, and in this construction only the map e was a
choice, but in any case needed to be homotopy inverse to ι′ and so has a uniquely defined homotopy
type. Which concludes the proof.

1.3 The space BGL(R)+ and K-theory of rings

With all of this preliminary work done, we can define a K-theory of rings as follows.

Definition 1.3.1. (Definition 1.1 in [6] chapter IV) We define the space K(R) = K0(R)×BGL(R)+

and then Ki(R) = πi(K(R)) (with respect to some unimportant base point).

Let’s quickly unwind this definition, recall GL(R) = lim−→GLn(R) is a group, and so BGL(R) is
then the classifying space (a construction unique up to homotopy). As we established earlier, because
we are not specifying the subgroup relative to which we are performing a plus construction, it will
be relative to the perfect radical of π1(BGL(R)) = GL(R) which is E(R) the commutator subgroup
(this is the content of Whitehead’s lemma, see [10] theorem 1.11, we prove it by more abstract means
in §2.3). Taking the product with K0(R) which we view as a discrete topological space is an artificial
addition so that the K-theory defined this way matches the classical K-theory of rings in degree 0.
We can also quickly see that the K-theory defined this way matches classical K-theory in degree 1 as
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by construction π1(K(R)) = GL(R)/E(R).

In order to be sure that this is a satisfactory definition of the K-theory of a ring, we need to verify
that it matches classical theory in degree 2. So we want to show K2(R) = H2(E(R);Z), this is an
immediate consequence of the following more general result.

Proposition 1.3.2. (Exercise 1.8 in [6] chapter IV) Let P be a perfect normal subgroup of some
group G. Let f : BG → BG+ be the corresponding +-construction and denote the homotopy fiber by
Ff . Then π1(Ff ) is the universal central extension of P and π2(BG+) = H2(P,Z).

Proof. We consider the fibration Ff → BG → BG+ and study its homotopy long exact sequence,
which is

· · · → π2(BG)→ π2(BG+)→ π1(Ff )→ π1(BG)→ π1(BG+)→ π0(Ff )→ · · · .

The homotopy of BG is well understood, and we know that Ff is path connected because it is acyclic
by assumption, finally we also know that π1(BG+) = G/P by construction, so we get the exact
sequence

1→ π2(BG+)→ π1(Ff )→ G→ G/P → 1.

By the exactness condition we know that Im(π1(Ff )→ G) = P , so we get the short exact sequence

1→ π2(BG+)→ π1(Ff )→ P → 1.

Now, by the theory of central extensions, for which we refer the reader to [4] (6.9), we will obtain the
desired result if we show that the above short exact sequence is the universal central extension of P
(which exists as P is perfect). By the recognition criterion (6.9.7 in [4]), in order for that to be the
case we need to check

(i) Im(π2(BG+)→ π1(Ff )) ≤ Z(π1(Ff ))

(ii) π1(Ff ) is perfect.

(iii) Every central extension of π1(Ff ) splits as a product of an abelian group and π1(Ff ).

The second condition is equivalent to H1(Ff ;Z) = 0, and the third is implied if H2(Ff ;Z) = 0, both
of these are given by assumption that f is acyclic. So all we need to check is the first condition. To do
this we use exactness to instead try and show ker(π1(Ff ) → π1(BG)) ≤ Z(π1(Ff )). This follows at
once from the fact that the morphism π1(Ff ) → π1(BG) is a crossed module, as stated in [4] 6.6.12.
To see this, use the realization of the homotopy long exact sequence of a fibration as the homotopy
exact sequence of a pair (see the proof of theorem 4.41 in [3]) and the standard action of π1(A) on
π2(X,A) for a pair (X,A) (see lemma 4.39). This concludes the proof.

It is worth noting that the Kn are functors from the category of rings to the category of abelian
groups. Indeed, passing from R to BGL(R) is functorial; and although, with how we constructed it,
the +-construction (relative to the perfect radical of the fundamental group) a priori is not functorial
when viewed as a map into the category of topological spaces, it is when viewed as a functor into the
homotopy category of topological spaces, and because πn factors through the homotopy category, we
get that each Kn is a functor.

1.4 Technical preparations to show that BGL(R)+ is an H-space

I am aware of several directions to show that BGL(R)+ is an H-space. For example we can follow the
method which I believe is expected by exercise 1.11 of [6] chapter IV. That is to say extend the bloc
sum operation on BGL(R) to BGL(R)+. Another option is to follow theorem 1.11 from [10]. Yet
another possibility is to show that BGL(R)+ is weakly simple (spaces whose fundamental group acts
trivially on the homology of the covering space), and then compare it with a space which is known
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to be an H-space. We will do this by using lemma 6.2 of [20] (which is proposition 1.4.3 for us) and
theorem 4.10 of [6] (which we prove in section 2.3). In this section we present the technical results
which will allow us to deduce that BGL(R)+ is an H-space by showing it is isomorphic to the base
point component of a space which will clearly be an H-space (see §2.3).

The first result allows us to construct maps into simple spaces, in particular into H-spaces.

Proposition 1.4.1. (Theorem 2.5 in [21]) Let i : X → X+ be the natural map, with X+ the plus
construction with respect to the perfect radical. Furthermore, assume that X+ is weakly simple.
Suppose f : X → Y is a map into a simple CW-complex, then there is a map g : X+ → Y such that
f = g ◦ i. And furthermore, the map induced on homotopy groups is independent of the choice g.

Proof. The construction of the map is not too hard. In fact, it is a direct application of corollary 4.73
of [3]. We recall the statement here for convenience.

Proposition 1.4.2. If Y is a simple connected CW complex and (W,A) is a CW pair such that
Hn+1(W,A;πn(Y )) = 0 for all n ≥ 0, then every map A→ Y can be extended to a map W → Y .

In our situation W = X+, A = X,Y = Y . By assumption our Y satisfies the assumptions needed
to apply the above proposition, and we have Hn(X+, X;M) = 0 for all n and for all M , so we can
apply the theorem.
It remains to show the desired uniqueness property. Suppose g0, g1 are two such extensions. We will
construct a homotopy between them by considering the following extension problem:

X+ × ∂I ∪X × I Y

X+ × I

g0,g1

ι .

Now the obstruction lies in Hn+1(X+×I,X+×∂I∪X×I;πn(H)). However, we can use the suspension
isomorphism to get that these groups are isomorphic to Hn(X+, X;πn(H)), but as above, these groups
are 0. And so any two extensions of f are homotopic.

The above will, in due time, construct the desired map, and we will use the following result to
prove it is a homotopy equivalence. Keeping in mind when we will want to use the following result,
we note that H-spaces are weakly simple, as they are simple.

Proposition 1.4.3. (lemma 6.2 of [20]) Let f : X → Y be a map of weakly simple CW-spaces.
Suppose that Hn(f ;Z) are isomorphisms for all n ≥ 0 and π1(f) is an isomorphism for any choice of
compatible base points. Then f is a homotopy equivalence.

Proof. Let Z be any weakly simple CW-space. Described more explicitly, this implies if we take
γ ∈ π1(Z) and σ ∈ Cn(Zu), we have that [γσ] = [σ] in Hn(Zu;Z). Letting ϵ : Z[π1(Z)] → Z be the
augmentation map, this implies that the chain map Id⊗ϵ : C∗(Zu)⊗π1(Z)Z[π1(Z)]→ C∗(Zu)⊗π1(Z)Z,
equipping Z with the trivial action, is a weak equivalence of chain complexes. Which means the Z
homology of Z is naturally isomorphic to the Z homology of Zu.
We can deduce that our map f : X → Y is a π1 isomorphism, such that the induced map on covering
spaces is a homology isomorphism. We know this implies that f is a homotopy equivalence (see for
example [3] exercise 4.2.12).

The final technical result which we will need, in order to apply the above proposition, is to show
that X+ is, in fact, a weakly simple space. The case of interest to us is classifying spaces of direct-sum
groups, i.e groups which come equipped with a homomorphism ⊕ : G×G→ G. We will see why care
we about these kinds of groups in §2.3.
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Proposition 1.4.4. (Proposition 1.2 in [22]) Let (G,⊕) be a discrete direct sum group satisfying the
following technical conditions:
(i) [G,G] is a perfect subgroup of G.
(ii) For any finite {gi}ni=1 ⊂ G and any g ∈ G, there is h ∈ [G,G] such that ggig−1 = hgih

−1,∀i ∈ [n].
(iii) For any finite {gi}ni=1 ⊂ G, there exists c, d ∈ G such that c(gi⊕e)c−1 = d(e⊕gi)d−1 = gi∀i ∈ [n].
Then BG+, the plus construction with respect to [G,G], is weakly simple.

Proof. We start with a lemma which studies the homotopy fibration associated the geometric realiza-
tion of a short exact sequence of groups.

Lemma 1.4.5. Let 1 → H → G → G/H → 1 be a short exact sequence of groups. Then BH →
BG→ BG/H is a homotopy fibration and the natural action π1(BG/H) ↷ H∗(BH;Z) is induced by
conjugation by a choice of representative.

Proof. We work with the bar construction model for BG. To see that BH → BG → BG/H is a
homotopy fibration, consider the geometric realization of G q−→ G/H and take the homotopy fiber
FqH . Studying the homotopy long exact sequence shows that πn(FqH ) is H if n = 1 and 1 otherwise.
The homotopy fiber of a map of CW-complexes has the homotopy type of CW-complex. It then
follows from the homotopy uniqueness of spaces with the homotopy type of CW complex and a single
non-trivial homotopy group that FqH ≃ BH. And so, taking the homotopy fiber over the base point
[] ∈ BG/H0 we see that our original sequence was indeed a homotopy fibration.
The action of the base space on the fiber is given by the following commutative diagram

BH BG

BH BH × I BG/H

ι0

ι1 γ◦πI

γ̃
.

This diagram warrants some explanation. The map γ is a loop in BG/H based at [] the base point and
γ̃ is any lift fitting into this diagram, we will see how to construct such a lift in the next paragraph.
The important point is that γ̃ ◦ ι1 lands in the homotopy fiber over the base point, i.e. in BH. Thus
defining a map γ̃ ◦ ι1 : BH → BH. However, this depends on the choice of lift, we will show that
on homology the action is independent of the choice of lift. In order to do this we will construct the
above diagram in the category of small categories, where it is easier to understand the lift explicitly.
We write the one object categories corresponding to a group the same way as we denote the group.
The only other topological space which we need to see as a category is I, but this is just the geometric
realization of the category [1] with two objects and one morphism between them 0 → 1. The left,
top and right map are obvious to translate to the world of categories. The bottom map is not much
harder, but we make it explicit. The loop γ represents an element gH ∈ G/H; because we are working
with the bar construction γ ≃ [gH] where [gH] is the one simplex of BG/H corresponding to the
element gH ∈ G/H. So we can represent the map γ ◦ πI by the map H × [1]→ [1]→ G/H where the
second map sends the unique non identity morphism of [1] to [gH]. So far we have translated all the
maps except the lift to the category of small categories

H G

H H × [1] G/H

ι0

ι1 gH◦π[1]

.

The category H × [1] has two copies of the category H which we denote by H0 and H1 in the obvious
way, and these are connected by a single morphism which we call e : ∗0 → ∗1 with ∗i the unique object
of the appropriate copy of Hi. In order for the diagram to commute, the lift has to send H0 to H, seen
as a subcategory of G, by the identity. Similarly, the map e has to be sent to a lift of gH, i.e. to an
element of the form gh′ ∈ G. Then in order for this lift to be a functor (i.e. to respect composition)
we need h ∈ H1 to be sent to (gh′)h(gh)−1, call the map constructed this way Γ̃. It is easy to see that
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up to homotopy, any diagram of the form

BH BG

BH BH × I BG/H

ι0

ι1 γ◦πI

γ̃

comes from a diagram of the form

H G

H H × [1] G/H

ι0

ι1 [gH]◦π[1]

Γ̃ .

And so the map γ̃ ◦ ι1 corresponds to conjugation by gh′ for some choice of h′. But on homology
inner automorphism act trivially (see theorem 6.7.8 of [4]). And so the effect of conjugation by gh′ on
H∗(H) is independent of the choice of h′, which is what we wanted to show.

With this lemma in hand we can start to work on showing that BG+ is weakly simple with G
satisfying all the assumptions of the theorem. For this consider the homotopy fibration BE → BG→
BG/E where E = [G,G]. The action of [gE] ∈ G/E on H∗(E) is given by conjugation by some
representative g ∈ G of gE. Any element x ∈ H∗(E) can by the bar resolution be represented as a
formal sum of elements of the form (e1, ..., en), ei ∈ E. And the action on the cycle level is also given
by conjugation. By property (i) of G, on a finite subset (notably the finite set of all ei appearing in
the representation of x as a cycle in the bar resolution), conjugation by an element g of G can be
realized by e′ in E. In other words gxg−1 = e′xe′−1. But by theorem 6.7.8 in [4] inner automorphism
act trivially on homology. In other words G/H acts trivially on H∗(E). Next notice that BE → BG
is a covering space and so G acts on BE via deck transformations. The construction of this action
is similar enough to the construction of the action G/E ↷ H∗(E) to see that the action of deck
transformations on homology factor through this action. In other words ∀x ∈ H∗(E), gx = gEx with
the action of g given by deck transformations and the action of gE is the one we just constructed.
So we have proven that BG acts trivially on the homology of its covering space BE; if taking the
+-constructions preserve the property of being a covering space and the action of the fundamental
group, we get the desired result. This is accomplished in part by the following lemma.

Lemma 1.4.6. (Proposition 6.1 of [10]) Let X be a connected topological space with fundamental
group G, denote the perfect radical of G by P and let H be an intermediate normal subgroup. Denote
by X̃ the covering of X which corresponds to H. Then X̃+ is the covering of X+ corresponding to
H/P .

Proof. The covering space X̃ can be realized (up to homotopy equivalence) as the homotopy fiber of
the unique map X → K(G/H, 1) corresponding on π1 to the quotient by H. To see this, consider the
following diagram

X̃

Fq X K(G/H, 1)ι q

.

We can lift the map ι to a map into X̃ using the lifting properties of covering spaces. The map
constructed this way can easily be examined to be a weak homotopy equivalence, as both of our
spaces have the homotopy type of a CW-complex, we have that Fq is homotopy equivalent to X̃.
For the remainder of this proof, we understand the word ”covering space” to be up to homotopy
equivalence, the reader will notice that this is acceptable as the properties we use are related to the
action of the fundamental group on the covering space up to homotopy and the homotopy type of the
covering space. As P ≤ H we can use theorem 1.2.3 to extend this map to the plus construction,
and also take the homotopy fiber of that map. We will also want to assume that X → X+ is a
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fibration, which can always be done without loss of generality. Denoting fibrations by ↠ and using
that fibrations are stable under pullbacks we can summarize the situation in the following diagram

X̃ PK(G/H, 1)

X K(G/H, 1)

Y PK(G/H, 1)

X+ K(G/H, 1)

Id

Id

.

The back and front face are pullbacks by construction, it is not hard to see that the right face is a
pullback as well, and then it is simple to verify that the left face is a pullback as well. This implies
that X̃ → Y is a fibration and that X̃ ∼= Y ×X+ X. Expressing X̃ this way, it is easy to notice that
over each pair of compatible points x ∈ X̃, y ∈ Y the homotopy fibers can be identified (and are thus
homeomorphic). This shows that X̃ → Y is acyclic, thus a plus construction. It remains to verify:
with respect to which subgroup of π1(X̃) it is a +-constructions, that Y → X+ is a covering and to
which subgroup of π1(X+) it corresponds to as a covering space.
The fact that Y is a cover of X+ follows from the fact that the front face is a pullback square which
can be rewritten as

Y PK((G/P )/(H/P ), 1)

X+ K((G/P )/(H/P ), 1)

by the third isomorphism theorem. And so Y is the cover of X+ associated to H/P ≤ G/P ∼= π1(X+).
Now we know that Y is a plus construction of X+. By what we have done so far, we have the following
diagram of fundamental groups

π1(X̃) ∼= H H/P

π1(X) ∼= G π1(X+) ∼= G/P

.

The two vertical maps are inclusions and the bottom map is the evident quotient map, it is not hard
to see that the top map must be the quotient map we want it to be. So we have that Y is a plus
construction of X̃ with respect to P ≤ H ∼= π1(X̃). This is the desired result.

All that remains to be seen is that the action of π1(BG+) on the homology of its universal cover
BE+ is induced by the action of π1(BG) on H∗(E). This follows from the fact that acyclic maps are
homology isomorphism, that the action of π1(BG) on H∗(BE) factors through G/E and that the map
BG→ BG+ is the quotient map G→ G/E on fundamental groups. This proves that the fundamental
group of BG+ acts trivially on the homology of its universal cover BE+.

Remark 1.4.7. The above proof is quite complicated, and so I apologize for any mistakes. In particular
in lemma 1.4.6, I did not find a way to make this proof work with true covering spaces rather than
covering spaces up to homotopy equivalence. I did not find any source on covering spaces treated only
up to homotopy and thus am not entirely confident in what I have written.
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2 K-theory for Symmetric monoidal categories

In this section we wish to develop a K-theory for symmetric monoidal categories, which we will denote
by K□

n , but we might write Kn for aesthetic reasons if confusion is not likely. To do this we will define
the group completion for general homotopy commutative H-spaces, and prove a uniqueness result to
justify that the definition is not ad hoc. We will also construct, for a symmetric monoidal category S,
a category S−1S which turns the monoid of isomorphism classes of objects in S into a group in the
canonical way. Once this preparation is done we will show that BS → BS−1S is a group completion
of the H-space BS, a concept we will define in time. The last thing to do in this chapter is to relate the
+-construction K-theory developed last chapter with the K-theory we will construct in this chapter.

2.1 Group completion of H-spaces

Definition 2.1.1. (Definition 4.4 in [6] chapter IV) Let X be a homotopy commutative H-space,
we call a map f : X → Y a group completion of X if Y is an H-space, f is an H-space map,
π0(f) : π0(X) → π0(Y ) is the standard group completion of the monoid π0(X) and the homology
rings with coefficients in k of the two spaces are related by requiring

π0(X)−1f∗ : π0(X)−1H∗(X; k)→ H∗(Y ; k)

to be an isomorphism. If X is a CW-complex we also require that Y is a CW-complex

In the case of main interest to us, where X = BS our space is indeed a CW-complex. The
requirement that Y must be a CW-complex ensures that Y is group-like, or in other words Y has
homotopy inverses. This is a consequence of the following result.

Proposition 2.1.2. (Theorem 2.2 in [23] chapter X) Let X be a CW complex and an H-space. Then
X is group-like if and only if π0(X) is a group.

Proof. (⇒) This direction is clear enough that I will not reprove it.
(⇐) We will need the following lemma

Lemma 2.1.3. (4.17 in [23] chapter III) An H-space X which is also a CW-complex is group-like if
and only if the shear map ϕ : X ×X → X ×X defined by ϕ(x, y) = (x, xy) is a homotopy equivalence.

Proof. If X is group-like, it is easy to construct a homotopy inverse defined by ψ(x, y) = (x, h(x)y)
with h(x) the inverse of x up to homotopy. Now assume the shear map is a homotopy equivalence,
call a representative of the class of the homotopy inverse ψ, we want to show X is group-like. Define
h : X → X by π2 ◦ ψ ◦ ι1 where ιi : X → X ×X is the inclusion in the ith coordinate (and constant
equal to e, the homotopy identity, in the other coordinate), and πi : X ×X → X is projection onto
the ith factor. We want to show h : X → X defines homotopy inverses of elements x ∈ X, i.e. we
want to show

µ ◦ (1× h) ◦∆ ≃ ce
with µ : X ×X → X the H-space multiplication, ∆ : X → X ×X the diagonal map and ce : X → X
the constant map sending everything to the homotopy identity e ∈ X. We also want the above
homotopy to hold when replacing 1 × h by h × 1. We will content ourselves only with proving the
first homotopy, the other case dealt with by analogy. We prove the above statement by the following
chain of equalities/homotopies

µ ◦ (1× h) ◦∆ ≃ µ ◦ (π1 ◦ ψ ◦ ι1 × π2 ◦ ψ ◦ ι1) ◦∆.

The replacement of h is by definition and the replacement of 1 is by using that p1 ≃ p1 ◦ϕ◦ψ = p1 ◦ψ.

µ ◦ (π1 ◦ ψ ◦ ι1 × π2 ◦ ψ ◦ ι1) ◦∆ = µ ◦ (π1 × π2) ◦ (ψ ◦ ι1 × ψ ◦ ι1) ◦∆

= µ ◦ (π1 × π2) ◦∆ ◦ ψ ◦ ι1
= µ ◦ ψ ◦ ι1 ≃ π2 ◦ ι1 = ce.

The last homotopy comes from p2 ≃ p2 ◦ ϕ ◦ ψ = µ ◦ ψ. And so this proves the lemma.
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Now all that is left is showing that under the assumption that π0(X) is a group, the shear map
X ×X → X ×X is a homotopy equivalence. To show this we use Whitehead’s theorem (Hatcher’s
version does not explicitly deal with spaces which are not 0-connected, so we refer the reader to [23]
V.3.5 and the discussion preceding said theorem to ensure that our usage of Whitehead’s theorem
is correct). Let (x1, x2) be an arbitrary base point of X × X, and consider ϕ : (X × X, (x1, x2)) →
(X × X, (x1, x1x2)), we want to show it is an isomorphism on every homotopy group πi, i ≥ 0. We
want to understand πn(ϕ), to do this we just need to note that πn(X × X) ∼= πn(X) × πn(X) and
that the multiplication induced by µ : X ×X → X induces a group structure on πn(X), ∀n ≥ 0 and
this group structure agrees with the group structure given by concatenation by the Eckmann-Hilton
argument, knowing this it can be seen that πn(ϕ)(σ, τ) = (σ, στ) and this for all n ≥ 0, this being
clearly an isomorphism in each case, with the case n = 0 being true because π0(X ×X) is a group as
it is a product of two groups. And so the shear map is a weak homotopy equivalence, which because
X is a CW-complex proves our claim.

We need a couple definitions to state (and appreciate) the uniqueness result for group completions.

Definition 2.1.4. (Remark preceding theorem 4.10 in [6] chapter IV)(Remark preceding corollary
1.2 in [6] chapter II) Let M be a commutative monoid, and S ≤ M a submonoid. Then S is called
cofinal if ∀m ∈M, ∃n ∈M such that mn ∈ S. S is called a cofinal sequence if ∀m ∈M,∃n ∈M such
that mn ∈ S and S = {ai}∞i=1 such that ∀i,∃bi ∈M , such that biai = ai+1.

To appreciate how this definition might be useful in measuring failure to be a group, notice that
if M happens to be a group, then S = {1M} is cofinal. The reason for introducing both cofinal
submonoids and cofinal sequences is that the statement of the main theorem of this section is different
in [6] and in [11]. I have decided to follow the latter as Weibel refers to them (and not the other way
around), and to write this section, [11] was considerably more useful.

Definition 2.1.5. (Remark preceding theorem 4.4.3 in [6] chapter IV) Let ϕ : X → Y be a map of
topological spaces, we call it a phantom map if the induced map ϕ∗ : [A,X] → [A, Y ] is the trivial
map for all finite CW complexes A.

The point of this definition is to notice that if f : X → Y is a group completion of an H-space
and ϕ : X → Y is a phantom H-space map, then f + ϕ : X → Y is also a group completion, and so in
so far as non-trivial phantom maps exist, we cannot hope for uniqueness of group completions up to
homotopy equivalence. This is why we introduce the following weaker notion.

Definition 2.1.6. (Remark preceding theorem 4.4.3 in [6] chapter IV) We call two maps f, g : X → Y
weakly homotopic, denoted f ≃w g, if they induce the same map after applying the functor [A,−] for
all finite CW complexes A. In the case of group-like H-spaces this amounts to calling f and g weakly
homotopic if their difference is a phantom map.
The set of all maps under the equivalence relation of weak homotopy is denoted [X,Y ]w.

We regularly referred to [11] to prepare the proofs of this section. We are almost ready to state
the universal property of the group completion which will allow us to show the uniqueness result, we
just state and prove a technical lemma first.

Lemma 2.1.7. (lemma 1.1 in [11]) Suppose f : X → X ′ is an integral homology isomorphism and Y
a group-like H-space, with all spaces CW-complexes. Then
(i) f∗ : [X ′, Y ]→ [X,Y ] is an isomorphism.
(ii) f∗ : [X ′, Y ]w → [X,Y ]w is an isomorphism.

Proof. (i) We can assume Y is 0 connected by working connected component by connected component.
We suspend the situation, in order to momentarily shift to the 1-connected situation. We want to
prove that Σf∗ : [ΣX ′,ΣY ] → [ΣX,ΣY ] is an isomorphism. By the suspension isomorphism in
homology Σf : ΣX → ΣX ′ is an integral homology isomorphism between simply connected CW-
complexes, and so is a homotopy equivalence. So Σf∗ is an isomorphism. Now use the suspension
loop adjunction and get an isomorphism [X ′,ΩΣY ] → [X,ΩΣY ]. Because we know ΩΣY to be

21



(assuming the result that the loop space of a CW complex to again have the homotopy type of a CW
complex, see [24]) homotopy equivalent to the James reduced product J(Y ) by theorem 4J.1 in [3],
we get an isomorphism [X ′, J(Y )]→ [X, J(Y )]. Call λ the homotopy equivalence J(Y )→ ΩΣY , then
by observing the following diagram (which because λ∗ is an isomorphism defines the isomorphism
[X ′, J(Y )]→ [X, J(Y )])

[X ′, J(Y )] [X, J(Y )]

[X ′,ΩΣY ] [X,ΩΣY ]

λ∗ λ∗

f∗

we can also notice that the isomorphism is given by pulling back via f .
Now because Y is group-like there is a retraction up to homotopy of Y ι−→ J(Y ) r−→ Y determined by
choosing some way to take n-products (i.e. choosing where to put parenthesis when multiplying an
n-tuple from J(Y )). Our work so far summarizes nicely in the following diagram

[X ′, Y ] [X,Y ]

[X ′, J(Y )] [X, J(Y )]

[X ′, Y ] [X,Y ]

ι

f∗

ι

r

f∗

r

f∗

.

Commutativity of the diagram comes from the fact that we pulling back horizontally, but pushing
forward vertically. It is easy to see that pushforwards and pullbacks commute. Now using that the
composed vertical maps are the identity, the proof of the desired result is reduced to a quick diagram
chase.
(ii) As above we may assume Y to be connected. We get surjectivity for free from the above case.
Indeed, let [g]w be a weak homotopy class of maps X → Y represented by g. By the above case there
is a map g0 : X ′ → Y such that f∗[g0] = [g]. Homotopic maps are obviously weakly so, and thus
we get f∗[g0]w = [g]w. For injectivity, because we are dealing with groups, it suffices to show that
if f∗[ϕ]w = [∗]w then [ϕ]w = [∗]w. In other words if ϕ ◦ f restricted to any finite CW subcomplex is
nullhomotopic, then ϕ restricted to any finite CW complex is nullhomotopic.
Without loss of generality we assume f to be cellular, and then replace it with a cofibration up
to homotopy equivalence. We first make f cellular so that the map into the mapping cylinder is
a cellular inclusion, so that we may assume (X ′, X) to be a CW-pair, and the inclusion to be a
homology isomorphism. From the long exact sequence in homology of the pair (X ′, X) we get that
Hn(X ′, X;π) = 0 for any coefficient group π. Let A′ be some finite CW subcomplex of X ′, with the
goal of applying excision in mind, we add to A′ all the cells in X ′ not in X, call the new subcomplex
A′′. Let A = A′′ ∩X, which is a finite CW complex as it is equal to A′ ∩X. We get by excision that
Hn(A′′, A;π) = 0,∀n ≥ 0. Let ϕ : X ′ → Y be such that ϕ ◦ f is null homotopic when restricted to
a finite CW subcomplex, in particular f ◦ ϕ|A ≃ ∗. Because Y is simple and connected, and every
space in our discussion is a CW complex, we can imitate the reasoning done in §1.4.2 to see that the
obstruction to extending this homotopy to A′′ lies in Hn(A′′, A;πn(Y )) = 0. And so the extension
exists, in particular we can extend the nullhomotopy to A′, in other words ϕ : X ′ → Y is weakly
nullhomotopic, as desired.

Proposition 2.1.8. (Proposition 1.2 in [11]) Let X be a CW H-space such that π0(X) has a countable
cofinal sequence. Let g : X → Y be a group completion. Then if f : X → Z is any weak H-map into a
group-like H-space there exists a weak H-map f ′ : Y → Z unique up to weak homotopy such that f ′g
is weakly homotopy equivalent to f .

Proof. Let {ai}∞i=0 be a countable cofinal sequence in π0(X), which means ∀i,∃bi such that biai = ai+1.
We can take the mapping telescopes of the sequence of maps bi· : X → X, call this space TX. We
allowed ourselves the mild abuse of notation of writing bi both for the class in π0(X) and an actual
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element in X representing this class. Perform a similar construction for Y and Z, this time using
right translation by g(bi) and f(bi) respectively. Name the associated mapping telescopes TY and
TZ. Notice f and g are weak H-maps, so by replacing by weakly homotopic maps, there are maps
Tg : TX → TY and Tf : TX → TZ. Next notice that the multiplications by g(bi) and by f(bi) are
homotopy equivalences for each i because Y and Z are group-like, so the inclusions Y → TY and
Z → TZ are homotopy equivalences. The last thing to notice before moving on in the argument is
that Tf, Tg restricted to X ⊂ TX are just f, g respectively.
Computing the homology of TX (for example with [3] 3F.2) shows that Tg : TX → TY is a homology
isomorphism. Now using the above lemma we get an isomorphism [TY, TZ] → [TX, TZ]. By the
homotopy equivalences we mentioned above this yields an isomorphism [Y, Z]→ [TX, TZ], in partic-
ular this yields a map Tf ′ : TY → TZ, or equivalently f ′ : Y → Z, such that precomposing with
Tg : TX → TY ≃ Y we get Tf : TX → TZ, but by restricting to X, we get f ′g ≃ f .
Now we still want to show that f ′ is unique up to weak homotopy and that it is a weak H-map. We
first prove the former, suppose k : Y → Z is another weak H-map such that kg ≃w f , using the
homotopy equivalences TY ≃ Y and TZ ≃ Z, this is the same as Tk ◦Tg ≃w Tf . Then by the second
part of the above lemma, we have TkTg ≃w Tf ≃w Tf ′Tg, which by injectivity of the isomorphism
Tg∗ : [TY, TZ]w → [TX, TZ]w yields Tk ≃w Tf ′, which after appropriate restriction is the desired
result. To show that f ′ is a weak H-map, first notice that the product µ : X ×X → X yields a map
Tµ : TX × TX → TX using the commutativity up to homotopy, and this product is compatible up
to weak homotopy with the products of TY ≃ Y and TZ ≃ T , with the maps Tf, Tg, Tf ′ and their
appropriate restriction. Notice that Tg × Tg : TX × TX → TY × TY is also a homology isomor-
phism, and so the above lemma applies as well to precomposition by Tg × Tg. Now we just chain
some equalities and homotopies, which will allow us to conclude by injectivity of Tg × Tg. We allow
ourselves the abuse of notation of using Tµ for the multiplication of TX, TY and TZ.

Tµ(Tf ′ × Tf ′)(Tg × Tg) ≃ Tµ(Tf × Tf) ≃w TfTµ ≃ Tf ′TgTµ ≃w Tf ′Tµ(Tg × Tg);

so we get Tµ(Tf ′ × Tf ′) ≃w Tf ′Tµ, which by appropriate restriction is the desired result.

Remark 2.1.9. I have a suspicion that this proof goes through all the same if we just remove every
occurrence of the word “weak”, but the insistence of our main source to use weak homotopies leads
me to believe a technicality has eluded me.

We can “upgrade” the above results to a uniqueness result by using the following lemmas

Lemma 2.1.10. (lemma 4.4.1 in [6] chapter IV) (i) Weakly homotopic maps induce the same map
on integral homology.
(ii) Let f : X → Y be an H-space map with X and Y group-like. Then if f is a homology isomorphism
(or equivalently a group completion), f is a homotopy equivalence.

Proof. (i) Let f, g : X → Y be weakly homotopic maps, we want to show Hn(f) = Hn(g), for this let
α : ∆n → X represent some homology class [α] ∈ Hn(X). Then f∗([α]) = [f ◦ α] = [g ◦ α] = g∗([α])
which because α was arbitrary proves the claim.
(ii) We may get this result following lemma 4.4.1 [6] chapter IV. The result is then a direct corollary
to proposition 1.4.3; however, I like this proof a lot, so wanted to write it out. By direct application of
lemma 2.1.7 we get that the functors [−, X] and [−, Y ] turn f into an isomorphism. Start by applying
[−, X]. This yields the isomorphism f∗ : [Y,X] → [X,X], in particular a preimage g of the identity,
or concretely a map such that g ◦ f ≃ IdX . Now taking homology we see that g∗ = (f∗)−1 so g is also
an isomorphism on integral homology. By repeating the above reasoning we get h : X → Y such that
h ◦ g ≃ IdY , but by uniqueness up to homotopy of homotopy inverses we get that h ≃ f , and so f, g
are homotopy inverse homotopy equivalences.

And so we get the group completion uniqueness result.

Theorem 2.1.11. (Theorem 4.4.3 in [6] chapter IV) Let X be an H-space such that π0(X) admits
a countable cofinal sequence. Let f ′ : X → X ′ and f ′′ : X → X ′′ be group completions. Then there
exists a homotopy equivalence g : X ′ → X ′′ which is a weak H-map unique up to weak homotopy such
that gf ′ and f ′′ are weakly homotopy equivalent.
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Proof. We apply the universal property of group completion of H-spaces both for X → X ′ and
X → X ′′. We can summarize the situation we obtain by the following diagram, commutative up to
weak homotopy:

X ′

X X ′′

X ′

∃!wg′

∃!wIdX′

f ′

f ′

f ′′

∃!wg′′

,

where ∃!w means there exists a unique up to weak homotopy, we get an analogous diagram exchanging
the roles of X ′ and X ′′. By the above pair of lemmas, the diagrams commute strictly after applying
integral homology, and so g′, g′′ are integral homology isomorphisms, and so are homotopy equivalences.
The rest of the desired result is a direct consequence of the universal property.

2.2 The group completion BS−1S of BS

Let (S,□, e) be a symmetric monoidal category, (which we from here on out might abbreviate to “an
SM category”) then the geometric realization BS is an H-space. To see this one just has to recall/notice
that geometric realization preserves products, sends functors to maps of topological spaces and natural
transformations to homotopies. In the same way as it is natural to study monoids via group completion,
it is natural to turn BS into an H-space with homotopy inverses in the ”minimal” way. We could do
this by simply working with the space BS, but it is interesting to see if we can add inverses (up to
natural transformation at least) before taking the geometric realization. The most natural way to do
this is to proceed by studying actions of a symmetric monoidal category S on some category X (some
of our definitions work for general monoidal categories, but we will not be needing that).

Definition 2.2.1. (Definition 4.7 in [6] chapter IV) A symmetric monoidal category S is said to act
upon X by a functor □ : S × X → X if there are natural transformation s□(t□x) ∼= (s□t)□x and
e□x ∼= x satisfying the “expected” coherence conditions.

Given an action of S an SM category on a category X, we can form a translation category analogous
to the definition of G

∫
Y where G is some group and Y a G-set.

Definition 2.2.2. (Definition 4.7.1 in [6] chapter IV) We denote the translation category by ⟨S,X⟩.
The objects of this category are the same as X, but morphisms are equivalence classes of pairs
(s, s□x ϕ−→ y), s ∈ Ob(S), ϕ ∈Mor(X). Two pairs (s, ϕ), (s′ϕ′) are equivalent if there is an isomorphism
s
σ−→ s′ such that

s□x y

s′□x y

σ□x

ϕ

Idy

ϕ′

commutes.

We can formally invert the action of S on X by letting S act on S ×X on both factors at a time,
then considering the category S−1X = ⟨S, S × X⟩. We let S act on S−1X by multiplication on the
second coordinate. In what sense does this invert the action S on X?

Definition 2.2.3. (remark preceding theorem 4.8 in [6] chapter IV) Let S be a symmetric monoidal
category acting on a category X, we say that the action is invertible, or that S acts invertibly, if each
translation functor s□− : X → X is a homotopy equivalence.

For example in the case of the category S−1X, we have that s□− : S−1X → S−1X, (t, x) 7→
(t, s□x), has as homotopy inverse the functor sending (t, x) to (s□t, x) because there exists a natural
transformation from the identity to the functor defined by (t, x) 7→ (s□t, s□x).
Notice that S acts upon itself by translation, and so we have a category S−1S, on which S acts
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invertibly. It is worth noticing that in this case the translation category is also symmetric monoidal
with the product given by (s1, t1)□(s2, t2) = (s1□s2, t1□t2). This symmetric monoidal structure
category also admits ”inverses”, indeed

(s1, s2)□(s2, s1) = (s1□s2, s2□s1) ∼= (s1□s2, s1□s2).

Which because there is a map (e, e)→ (s1□s2, s1□s2) shows that π0(S−1S) admits inverses. However,
according to remark 4.2.2 of [6] chapter IV, this association is not a natural transformation. Exercise
4.3 of [6] chapter IV tells us that the map (s1, s2) 7→ (s2, s1) does in fact define a homotopy inverse
for BS−1S, however we will not pursue this question.

The final thing we wish to notice about this construction before returning to the more general case
is that the construction S 7→ S−1S can be extended to a functor Sym → Cat from the category of
small symmetric monoidal categories (with maps strict monoidal functors) to the category of small
categories. The reason for this observation is for it to be clear that K-theory of symmetric monoidal
categories, which we define now, is a functorial construction

Definition 2.2.4. (Definition 4.3 in [6] chapter IV) Let S be a symmetric monoidal category where
every map is an isomorphism (if this is not the case just replace S by iso(S)), then the K-theory of
S are the functors

K□
n (S) = πn(K□(S)),K□(S) = BS−1S.

The base point of BS−1S is the 0-cell corresponding to (e, e).

Let’s return to our general case of an SM category S acting on X. Then we have a natural
S equivariant functor ι : X → S−1X which on objects maps x to (e, x), which induces a map
Hq(X)→ Hq(S−1X), both of these groups are Z[π0(S)] modules, and so we can localize the above map
at the multiplicatively closed subset π0(S) (S is symmetric monoidal, thus Z[π0(S)] is commutative,
and so there are no subtleties with localization). Because π0(S) already acts invertibly on Hq(S−1X),
we get a map

π0(S)−1Hq(X)→ Hq(S−1X).

We have the following result due to Quillen, which will show that S → S−1S accomplishes our goal
of group completing S before geometric realization. To supplement the K-book, we used [12] to
understand the proof.

Theorem 2.2.5. (Theorem 4.8 in [6] chapter IV), (page 221 of [12])(Theorem 7.2 of [13]) If every
map in S is an isomorphism and translations are faithful (i.e. ∀s, t ∈ S,Aut(t) → Aut(s□t) is an
injection), then the above map is an isomorphism.

Proof. A motivation for this proof comes from the fact that on objects, the map fits nicely into the
sequence X → S ×X → S, i.e. a trivial fibration. We can hope that when considering morphisms,
and taking geometric realization, this sequence kind of looks like a fibration, and so we will be able to
analyze the homology of these categories using a Serre spectral sequence. This sadly will not actually
happen, but motivates what happens.
The appropriate categorical notion which imitates the idea of being a fibration will be to show that
P : S−1X → ⟨S, S⟩, which on objects is projection on the first coordinate, is cofibered with cofiber X.
For future reference we state this as a lemma.

Lemma 2.2.6. (Exercise 4.5 in [6] chapter IV), (page 220 of [12]) Let S be a symmetric monoidal
category acting on a category X. Furthermore, assume translations are faithful in S and that every
arrow in S is monic. Then, the natural projection functor P : S−1X → ⟨S, S⟩ is cofibered with cofiber
X.

Proof. On objects we obviously have the desired P−1(s) = X for all s ∈ S. To understand the
morphisms, let’s recall that the identity map of s ∈ ⟨S, S⟩ is the equivalence class of (e, e□s η−→ s) with
η : e□s → s the canonical isomorphism. We also from here on out identify P−1(s) interchangeably
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with the full subcategory of P/s where the objects correspond to the identity map in ⟨S, S⟩. And so
an arbitrary element in the preimage is a map of the form

(t, ϕ : t□s→ s, f : t□x→ x′) : (s, x)→ (s, x′),

with σ : t→ e an isomorphism such that the following diagram commutes

t□s s

e□s s

σ□s

ϕ

Ids

η

.

We would like to show that σ is uniquely determined. Indeed, let τ be another isomorphism such
that τ□s fits in the above diagram. The fact that η is monic implies that σ□s = τ□s, which because
translations are faithful implies the desired uniqueness.
And so in particular, fixing σt,ϕ : t→ e to be the unique isomorphism fitting in the above diagram, for
a map (t, ϕ : t□s→ s, f : t□x→ x′) in the preimage of s, we can send it to f ◦ (σ−1

t,ϕ□x)◦η−1 : x→ x′.
One can verify that this construction is functorial, and is an inverse to I : X → P−1(s) sending
x 7→ P (s, x) (e,η:e□s→s)−−−−−−−→ s and f : x→ x′ to:

P (s, x) P (s, x′)

s

P ((e,η,f◦η))

,

where the η in the second coordinate is the natural isomorphism e□s→ s in S and the other η is the
natural isomorphism e□x→ x in X. The fact that these two mapping are mutually inverse functors
is seen using the uniqueness of σt,ϕ and the equivalence relation for maps in P−1(s) inherited from
the definition of maps in S−1X. Though we will not explicitly do this here. From here on out we may
identify P−1(s) with X without further comment.
Now we want to show that the projection is pre-cofibered. Our goal is to find a left adjoint to the
inclusion I : X → P/s given by the above identifications X ∼= P−1(s) and P−1(s) as a full subcategory
of P/s. Define L(P (s′, x) (t,ϕ:t□s′→s)−−−−−−−−→) = t□x and let L send a map

P ((t, ϕ : t□s′ → s′′, f : t□x→ x′)) : (P (s′, x) (t′,ϕ′:t′□s′→s)−−−−−−−−−→)→ (P (s′′, x′) (t′′,ϕ′′:t′′□s′′→s)−−−−−−−−−−→ s)

to (t′′□f) ◦ (σ□x) : t′□x→ t′′□x′. This σ : t′ → t′′□t is the unique isomorphism making the following
diagram commute

t′□s′ s

t′′□t□s′ s

ϕ

σ□s′ Ids

ϕ′′(t′′□ϕ)

,

with existence and uniqueness established as above using the definition of maps in ⟨S, S⟩, the commu-
tativity of the diagram in ⟨S, S⟩ determined by the map in P/s, the fact that all maps in S are monic
and the faithfulness of translations. Now the fact that this construction is functorial is best proven
by pen and paper, using the uniqueness of the σ used in the definition. We will not make this proof
explicit. Now the adjunction isomorphism we are hoping for is between the sets

α : HomX(t□x, x′) ∼= HomP/s(P (s′, x) (t,ϕ:t□s′→s)−−−−−−−−→ s, P (s, x′) (e,η:e□s→s)−−−−−−−→ s) : β.

We will state the maps giving this isomorphism, but will not prove that they are in fact mutually
inverse or that the isomorphisms are natural. Define α(f) = (t, ϕ : t□s′ → s, f : t□x → x′) and
β(r, ψ : r□s′ → s, g : r□x → x′) = g ◦ (σ□x) where σ : t → e□r is the unique isomorphism making
the following diagram commute

t□s′ s

e□r□s′ s

ϕ

σ□s′ Ids

η◦(e□ψ)

.
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Now we wish to show that the functor is cofibered, i.e. P−1 : ⟨S, S⟩ → Cat is functorial. To do this
we compute the cobase functor associated to a map (t, ϕ : t□s → s′) : s → s′ in ⟨S, S⟩. We apply
successively the functors I : P−1(s) = X → P/s then (t, ϕ : t□s → s′)∗ : P/s → P/s′ and then
L : P/s′ → X = P−1(s′). This yields

x 7→ P (s, x) (e,η)−−−→ s 7→ P (s, x) t,ϕ:t□s→s′
−−−−−−−→ s′ 7→ t□x,

so the cobase change functor of (t, ϕ : t□s → s′) is just translation by t on X, which clearly satisfies
the desired property to make P : S−1X → ⟨S, S⟩ cofibered.

Having shown that the functor of interest is indeed cofibered, we need to show that cofibered
functors satisfy some kind of Serre spectral sequence, this is given by the following lemma.

Lemma 2.2.7. (Exercise 3.7 in [6] chapter IV)(Proof of theorem 7.2 of [13]) Let F : C → D be a
cofibered functor (between small categories), in particular F−1 : D → Cat is a functor. Then we have
a spectral sequence

E2
pq = Hp(D;HqF

−1)⇒ Hp+q(C;Z).

For the definition of homology of a category with a functor into abelian groups as coefficients, see (3.5)
of [6] chapter IV.

Proof. We prove this by applying the spectral sequences for a double complex (see definition 5.6.1 and
5.6.2 of [4] and the rest of chapter 5). We need to construct a double complex on which we will use
the spectral sequence machinery. Let E0

pq, p, q ≥ 0 be the free abelian group on the set of pairs

(F (cq)→ d0 → · · · → dp, c0 → · · · → cq),

with the di ∈ D and ci ∈ C, if either p or q is strictly less than 0 E0
pq = 0. We define the differentials

by defining vertical ∂vi , 0 ≤ i ≤ q and horizontal face ∂hi , 0 ≤ i ≤ p maps, and then using the vertical
differentials ∂vpq = (−1)p ∑q

i=0(−1)i∂vi and horizontal differentials ∂hpq = ∑p
i=0(−1)i∂hi . The fact that

this yields a double complex follows from standard computation. The horizontal face maps are given,
when i ̸= 0, p, by composing di−1 → di → di+1, when i = 0 replace di−1 by F (cq) for this to make
sense and when i = p simply delete dp. The vertical face maps, when i ̸= 0, q, are given by composing
ci−1 → ci → ci+1. When i = 0 instead simply delete c0 and when i = q, delete cq and replace
F (c− q)→ d0 with the composition F (cq−1)→ F (cq)→ d0.
Now that we have a double complex we can apply the double complex spectral sequences in hopes of
obtaining the desired spectral sequence. Notice because we are working with a first quadrant double
complex, both the row and column filtration converge to the same homology H∗(Tot(E0

••)). We first
use the column filtration to compute H∗(Tot(E0

••)). It is useful to write the 0th page of our spectral
sequence in different ways to compute the E1 and E2 pages both with the row and column filtration.
First, notice we can write

E0
pq =

⊔
c0→···→cq∈Nq(C)

⊔
F (cq)→d0→···→dp∈Np(F (cq)/D)

Z,

whereNq(C) denotes the q simplicies of the nerve of C. We will abbreviate this to E0
pq = ⊔

Nq(C)
⊔
Np(F (cq)/D).

Written this way it is easy to compute the homology in the p-direction using that homology commutes
with coproducts. So we get E1

pq = ⊔
Nq(C)Hp(F (cq)/D;Z). Because F (cq)/D has F (cq) Id−→ F (cq)

as an initial object we have that the category is contractible and thus the first page of our spectral
sequence is

E1
pq =

⊔
Nq(C)

δp=0Z.

To be clear, by δp=0Z means the 0 group if p ̸= 0 and Z otherwise. From this it is easy to see that
E2
pq = δp=0Hq(C;Z) and that there is no room for differentials left. So the homology of the total

complex is the homology of C.
Now to compute the E2 page of the spectral sequence by first taking homology in the q direction we
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need to present the 0th page differently. To do this we use that coproducts commute with each other
to write

E0
pq =

⊔
d0→···dp∈Np(D)

⊔
F (c0)→···→F (cq)→d0∈Nq(F/d0)

Z.

We do not explicitly verify that these are two equivalent ways of writing our double complex. Also,
we abbreviate similarly as above. Now we use that the functor is cofibered so F/d0 ≃ F−1(d0) to see
that taking the homology in the q direction yields

E1
pq =

⊔
Np(D)

Hq(F−1(d0);Z).

Now taking the homology in the p direction we get by definition

E2
pq = Hp(D;Hq(F−1)).

This converges to the homology of the total complex, which we computed to be H∗(C;Z). This
concludes the proof.

The following lemma along with theorem 4.8 of [23] chapter VI (which we admit) allows us to
conclude that homology of a category with coefficients in a morphism inverting functor into abelian
groups is the homology of the geometric realization with the associated local coefficients.

Lemma 2.2.8. (Exercise 3.1 in [6] chapter IV)(Lemma 6.1 of [13]) Call a functor F : C → D
morphism inverting if the image of every map is an isomorphism. If C is a category we have an
equivalence of categories

MI(SetC) ⇆ Cov(BC).
We denote by MI(SetC) the full subcategory of SetC of morphism inverting functors and Cov(BC)
is the category of covering spaces of BC.
In particular morphism inverting functors C → Ab correspond to local coefficient systems on BC.

Proof. We first define the two functors which will define the equivalence. Let F : C → Set be a
morphism inverting functor, there is a category C

∫
F defined in example 3.3.2 of [6] chapter IV.

This category comes equipped with an obvious forgetful functor UF : C
∫
F → C. We will show the

geometric realization of this functor is a covering map, thus defining on objects BU• : MI(SetC) →
Cov(BC). On morphisms, it is not hard to see that a natural transformation τ : F → G defines a
functor C

∫
τ : C

∫
F → C

∫
G which is equivariant with respect to the forgetful functors. From this

it follows naturally that it defines a map of covering spaces, once we prove BUF actually is a covering
space.
To see that BUF : B(C

∫
F ) → BC is a covering of topological space, we will instead show that it is

a cover of simplicial sets and refer to the following result without proof.

Proposition 2.2.9. (Corollary A.49 of [13]) Let p : E → B be a simplicial covering. I.e. it is a map
of simplicial sets, which is surjective on the 0-simplices and such that for any diagram of the form

∆(0) E

∆(n) B

p ,

there is a lift ∆(n)→ E which makes the diagram commute. Then the geometric realization of p is a
topological covering.

So we want to show that NUF : N(C
∫
F ) → NC is a simplicial covering. The surjectivity on 0

simplices follows from the evident surjectivity of UF . Now consider a diagram of the form

∆(0) N(C
∫
F )

∆(n) NC

p .
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The top horizontal map corresponds to a choice c0 ∈ C and an element x0 ∈ F (c0). The bottom
horizontal map corresponds to a choice of n composable maps starting at c0, i.e. a sequence

c0
f0−→ c1

f1−→ · · · fn−1−−−→ cn.

We can apply the functor F to this sequence and view it as a sequence of maps in C/F as follows

(c0, x0)→ (c1, f0(x0))→ · · · (cn, fn−1(fn−2(· · · (f0(x0))))).

This is the desired lift, proving the desired claim. Now we define the map the other way.
It is well known how to define π−1(γ) : π−1(x) → π−1(y) whenever γ : x → y is a path in some
topological space X and π : E → X is a covering space. It is also easy to see using the path
γ̄(t) = γ(1−t) that π−1(γ) is an isomorphism and that this construction depends only on the homotopy
class of γ. Applying this to some covering π : E → BC, we can define a morphism inverting functor
π−1 : C → Set by considering objects of C as 0 cells of BC and morphisms as 1 cells. This indeed
preserves composition because π−1 only detects homotopy class, and the path corresponding to f ◦ g
is homotopic to the concatenation of the paths corresponding to f and to g. To see that it preserves
identities it suffices to recall that the loop corresponding to Idc : c → c in BC is contractible. It is
not hard to see that a map of covering spaces yields a natural transformation of the corresponding
functors.
One can see that (−)−1 ◦ BU• is the identity map. On objects this can be seen as the fiber over
c ∈ BC0 of BUF is F (c) and a similar analysis of morphisms, which we do not make explicit, yields
the claim on morphisms. This implies that (−)−1 is essentially surjective and full, thus if we show
it is faithful we will have shown that it is an equivalence of categories. So suppose we are given two
distinct morphisms of covering spaces

E1 E2 E1 E2

BC BC

σ

π1 π2 π1

τ

π2 .

Covering spaces of CW complexes are themselves CW complexes by lifting cells. The cell structures
of E1 and E2 are compatible in such a way that if σ and τ agree on the n-skeleton of E1, they will
agree on the n + 1 skeleton by commutativity of the above diagrams and because restricted to the
interior of each cell π1 and π2 are homeomorphisms. So by induction, if σ|E0

1
= τ |E0

1
, then σ = τ .

Now assume by way of contradiction that the natural transformations σ∗, τ∗ : π−1
1 → π−1

2 are equal,
then by construction this says they agree on the 0-skeleton of E1, which is a contradiction. Thus,
the functor (−)−1 : Cov(BC)→MI(SetC) is a fully faithful and essentially surjective functor, which
shows it is an equivalence of categories.

Now we return from general theory to our case of interest. The spectral sequence for the functor
S−1X → ⟨S, S⟩ is

E2
pq = Hp(⟨S, S⟩;Hq(X))⇒ Hp+q(S−1X).

One can observe that the S action on the double complex which leads to this spectral sequence
commutes with the differentials and after taking homology the action is independent of a choice of
representative within an isomorphism class. Using exactness of localization, this means that we can
localize the spectral sequence at π0(S) and still get a spectral sequence. Because S acts invertibly on
S−1X, the localized spectral sequence is

E2
pq = Hp(⟨S, S⟩, π0(S)−1Hq(X))⇒ Hp+q(S−1X).

The functor π0(S)−1Hq(X) : ⟨S, S⟩ → Ab is constant on objects and on morphisms is the map
induced by the appropriate translation, which because of the localization is an isomorphism. So this
is a morphism inverting functor. This means we can use topological results, namely the following
lemma, to simplify E2

pq.
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Lemma 2.2.10. (remark preceding theorem 4.8 in [6] chapter IV) Let S = iso(S) be a symmetric
monoidal category with faithful translations. Then ⟨S, S⟩ is contractible.

Proof. Because every map in S is an isomorphism, we have that e is an initial object of ⟨S, S⟩. Indeed,
let s be some object, then any map e → s is of the form (t, ϕ : t□e → s). Suppose (t′, ϕ′ : t′□e → s)
is a different map e→ s, then we have a diagram

t□e s

t′□e s

ϕ

ϕ′−1◦ϕ Ids

ϕ′

.

This diagram shows that the two maps are in the same equivalence class, i.e. are the same map in
⟨S, S⟩. To prove that e is initial it suffices to notice that for any s, (s, η : s□e → s) is a map e → s.
This proves that e is initial, and so B⟨S, S⟩ is contractible,

This implies that our spectral sequence becomes

E2
pq = δp=0π0(S)−1Hq(X)⇒ Hp+q(S−1X).

There clearly is no room for differentials, so the spectral sequence collapses, and we obtain π0(S)−1Hq(X) ∼=
Hq(S−1X).
To obtain that the isomorphism is the desired isomorphism we use the comparison theorem (theorem
5.2.12 in [4]) and construct the maps on which we use this result via the following diagram which
comes from [13]

X S−1X

{0} ⟨S, S⟩

.

We do not detail this step of the proof, but point out to the interested reader that one has to localize
the spectral sequences at π0(S) before applying the comparison theorem.

Remark 2.2.11. As I am not entirely comfortable with the notions of spectral sequences, I am not
certain that this final argument is indeed the one that shows that the abstract isomorphism is realized
by the desired map. I have still included it in the proof as [13] heavily implies that this is in fact the
desired method.

Combining this result with the following lemma shows that the map BS → BS−1S is a group
completion.

Lemma 2.2.12. (lemma 4.3.1 in [6] chapter IV) Under the same assumptions as above, the map
S → S−1S induces a map π0(S) → π0(S−1S), and this map is the standard group completion of the
monoid π0(S).

Proof. We construct the isomorphism explicitly, let A be the group completion of π0(S). We construct
a map π0(S−1S) → A by defining a mapping α : S−1S → A which sends (m,n) → [m] − [n]. Given
how we defined the maps of S−1X, we have α(s□m, s□n) = α(m,n), and if we have maps f : m→ m′

and f : n → n′ we see α(m,n) = [m] − [n] = [m′] − [n′] = α(m′, n′). This is enough to see that α
defines a map π0(S−1S)→ A which is by construction an inverse to the map β : A→ π0(S−1S) given
by the universal property of A. Indeed, let [m] ∈ π0(S), then α(β([m])) = α([(m, e)]) = [m]− [e] = [m]
and similarly β(α([(m,n)])) = β([m]− [n]) = β([m]) + β(−[n]) = [(m, e)] + [(e, n)] = [(m,n)].

The above lemma is a computation of K□
0 (S), we can hope to also be able to compute some more

of the lower K□
i . We compute K1 in the following proposition. We will also be able to compute K2

by the end of the next section.
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Proposition 2.2.13. (Corollary 4.8.1 of [6] chapter IV) Let S = iso(S) be such that translations are
faithful and denote by YS the base point component of BS−1S. Then

Hq(YS) ∼= lim−→
s∈π0(S)

∫
π0(S)

Hq(Aut(s)).

In particular, because K□(S) is an H-space

K1(S) ∼= lim−→
s∈π0(S)

∫
π0(S)

H1(Aut(s)).

Proof. When we write s ∈ π0(S) we are implicitly choosing a representative of an isomorphism
class. Recall S ∼=

⊔
s∈π0(S)Aut(s) where Aut(s) are one object categories. We have for all q ≥ 0

Hq(BS−1S) ∼= π0(S)−1Hq(BS) ∼= π0(S)−1 ⊕s∈π0(S) Hq(Aut(s);Z). To localize at π0(S) we can form
the direct limit over the translation category π0(S)

∫
π0(S), similarly to forming Z2 as the direct limit

of the system Z ·2−→ Z ·2−→ · · · .
So we have

H∗(BS−1S) = lim−→
t∈π0(S)

∫
π0(S)

H∗(
⊔

s∈π0(S)
Aut(t□s)).

However, we are more interested in the homology of the base point component. Recall that the base
point of BS−1S is the 0-cell corresponding to the object (e, e), i.e. the image of the 0-cell e ∈ BS
by the map inducing the isomorphism of the previous theorem. And so the component of (e, e)
is given by lim−→s∈π0(S)

∫
π0(S)BAut(s□e)

∼= lim−→s∈π0(S)
∫
π0(S)BAut(s), and so denoting by YS the base

point component of BS−1S we get that

Hq(YS) = lim−→
s∈π0(S)

∫
π0(S)

Hq(Aut(s)).

Which is the desired result.

2.3 Relating K□
n (P (R)) to Kn(R)

It turns out there is a space homotopy equivalent to K□(S) = BS−1S of a symmetric monoidal
category, which is very similar to K(R) = K0(R)×BGLR(R)+, under a certain cofinality condition.
Before relating the +-construction to the group completion construction, we state a cofinality theorem
which we need to prove the main result of this section.

Definition 2.3.1. (remark preceding theorem 4.11 in [6] chapter IV) Let F : S → T be a monoidal
functor between symmetric monoidal categories. We call F cofinal if ∀t ∈ T, ∃t′ ∈ T, s ∈ S such that
t□T t

′ ∼= f(s).

In practice the functor F will often be the inclusion of a subcategory, the following theorem allows
us to use cofinal functors as a powerful replacement tool.

Theorem 2.3.2. (Theorem 4.11 in [6] chapter IV) Let F : S → T be a cofinal strictly monoidal functor
between symmetric monoidal categories such that every map is an isomorphisms and translations are
faithful. Then
(i) If T acts on a category X, then so does S via F , and S−1X ≃ T−1X.
(ii) If F : AutS(s) → AutT (Fs) is an isomorphism for all s ∈ S, then the base point components of
K□(S) and K□(T ) are homotopic.

Proof. (i) The fact that S acts on X via F does not warrant any further explanation. The homotopy
equivalence S−1X ≃ T−1X however does. This will be a corollary of the following lemma.

Lemma 2.3.3. (Exercise 4.6 in [6] chapter IV) Let S = iso(S) be a symmetric monoidal category
with faithful translations, which acts invertibly on a category X. Then S−1X ≃ X.
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Proof. Using lemma 2.2.6 we have that S−1X → ⟨S, S⟩ is cofibered with fiber X and cobase change
maps the translations. And furthermore we showed in lemma 2.2.10 that ⟨S, S⟩ is contractible.
The condition that S acts invertibly on X says that the translations are homotopy equivalences, and
so the cobase change maps of the cofibered functor ρ : S−1X → ⟨S, S⟩ are homotopy equivalences. So
we can use Quillen’s theorem B (A.0.3)and get a long exact sequence in homotopy

· · · → πn+1(⟨S, S⟩)→ πn(X)→ πn(S−1X)→ πn(⟨S, S⟩)→ · · · .

As we said ⟨S, S⟩ is contractible, which implies that the inclusion X → S−1X is a weak homotopy
equivalence, and so by Whitehead’s theorem is a homotopy equivalence as geometric realization lands
in the category of CW spaces.

Now we claim that S acts invertibly on X if and only if T does. If T acts invertibly, then it is
clear that S does. Now suppose S acts invertibly on X, let t ∈ T , we want to show t□ : X → X is a
homotopy equivalence. Let t′ ∈ T, s ∈ S be such that t′□t ∼= F (s), and let ϕ be the homotopy inverse
of F (s)□ : X → X. Then translation by t has a left homotopy inverse ϕ ◦ t′□ and right homotopy
inverse t′□ ◦ ϕ, which implies that translation by t is a πn isomorphism for each n, so is a homotopy
equivalence.
We remarked in §2.2 when defining the category S−1X that S always acted invertibly on this category.
And so we can chain the following homotopy equivalences

S−1X ≃ T−1(S−1X) ∼= S−1(T−1X) ≃ T−1X,

which yields the desired homotopy equivalence. The middle isomorphism comes from explicitly working
out the definition of both categories to notice they agree.
(ii) To do this we compare the homology of the base point components YS , YT of BS−1S and BT−1T .
We use the homology computation of YS in proposition 2.2.13 to compare these spaces.

H∗(YS) ∼= lim−→
π0(S)

∫
π0(S)

H∗(Aut(s)) F−→ lim−→
π0(S)

∫
π0(S)

H∗(Aut(Fs)).

The map F commutes with the colimit over the translation category by strict monadicity, and is an
isomorphism by assumption. By cofinality of F we have

lim−→
π0(S)

∫
π0(S)

H∗(Aut(Fs)) ∼= lim−→
π0(T )

∫
π0(T )

H∗(Aut(t)).

As this colimit can be identified with H∗(YT ) we get that the map induced by F between the base
point components of our spaces, YS and YT is an H-space map which is a homology isomorphism,
which by lemma 1.4.3 shows that these spaces are homotopy equivalent. This finishes the proof.

Before stating the theorem which will establish this connection we need the following definition

Definition 2.3.4. (remark preceding theorem 4.10 in [6]) Let S be a symmetric monoidal category
such that there is an object s ∈ S such that the sequence {sn}∞n=1 is cofinal (note that sn is the n-fold
product □ : S×S → S of s with itself, the notation unambiguous up to unique natural isomorphism).
Then define Aut(S) = lim−→NAutS(sn).

This definition of Aut(S) is more restrictive than the one used by Weibel, who accepts any cofinal
sequence in S to define Aut(S), which is even more restrictive than Bass’s definition in [25] where
the automorphism group is the colimit of automorphism groups over the translation category of the
underlying monoid. We work with our assumption to simplify the proof of the proposition below,
and not get too side tracked into chapter VII of Bass’s book [25], which we use alongside [26] when
proving [Aut(S), Aut(S)] is perfect. Note that our definition is not too restrictive, as major categories
of interest satisfy it, notably FinSet with s = {∗} and P (R) with s = R.
We begin by studying this group a bit, to apply lemma 1.4.4. The first thing we need to do is to show
that Aut(S) is a direct sum group. For this we use the pairing −□− : Aut(sn)×Aut(sm)→ Aut(sn+m),
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the problem is if we use this map, we will not get a map Aut(S)×Aut(S)→ Aut(S) as these maps do
not act well with the stabilization maps. This can be fixed if we postcompose these maps with some
Adσp , conjugation by σ ∈ Sp ↪→ Aut(sp). This can easily be seen to always be doable, by induction.
We summarize this idea in the following diagram

Aut(s)×Aut(s) Aut(s2)

Aut(s2)×Aut(s2) Aut(s4) Aut(s4)

... · · ·
...

Aut(sn)×Aut(sn) Aut(s2n) Aut(s2n)

...
...

(−□s,−□s)

□

−□s2

(−□s,−□s)

□ Adσ2

−□s2

(−□s,−□s) −□s2

□
Adσn

.

Now it can be seen that this gives a well-defined map −□− : Aut(S) × Aut(S) → Aut(S) in the
colimit.

Proposition 2.3.5. (Proposition 3 in [26]) Let S be a symmetric monoidal category such that S =
iso(S), with faithful translations and having a cofinal subsequence of the form {sn}∞n=1 for some s ∈ S.
Then E = [Aut(S), Aut(S)] is the perfect radical of Aut(S).

Proof. Notice that if the commutator subgroup is perfect, then it must be the perfect radical, as any
perfect subgroup is contained in the commutator subgroup.
So we show that E is perfect. To see this we will use a particular case of the abstract Whitehead
lemma.

Lemma 2.3.6. (1.7, 1.8 in [25] chapter VII) Let {sn}∞n=0 ⊂ S be cofinal. Let α ∈ Aut(sn) be of
the form α1□α2□...□αn, with αi ∈ Aut(s), σ ∈ Sn ≤ Aut(sn) be the cycle σ(i) = i − 1(mod n) and
β = Ids□α

−1
1 □(α2α1)−1□...□(αn−1...α1)−1.

Then
βσαβ−1 = σ(Ids□Ids□...□(αn...α1)).

In particular, if αn...α1 = Ids we have that α = [σ−1, β−1]

This lemma is proven by computing the LHS and RHS and comparing, which we do not bother
doing. With this in hand, we can now show that E is perfect. Let [α, β] ∈ E, then because Aut(S) =
lim−→Aut(sn), there must exist some n such that ∃αn, βn ∈ Aut(sn) such that ιn(αn) = α, ιn(βn) = β

with ιn : Aut(sn) → Aut(S) the canonical map. Consider now the elements αn□α−1
n □1, βn□1□βn ∈

Aut(s3n). By the above lemma, these are both commutators, and so their images α□α−1□1, β□1□β−1

in Aut(S) are in E. Now computing

[α□α−1□1, β□1□β−1]

yields [α, β], which shows that [E,E] = E, which is as desired. (note this also shows the non-abstract
Whitehead lemma, which we used without proving in the last section).

Lemma 2.3.7. (Remark preceding proposition 1.2 in [22]) Let S be a symmetric monoidal category
such that S = iso(S), with faithful translations and having a cofinal subsequence of the form {sn}∞n=1
for some s ∈ S. Then G = Aut(S) satisfies the following technical properties:
(i) [G,G] is a perfect subgroup of G.
(ii) For any finite {gi}ni=1 ⊂ G and any g ∈ G, there is h ∈ [G,G] such that ggig−1 = hgih

−1,∀i ∈ [n].
(iii) For any finite {gi}ni=1 ⊂ G, there exists a, b ∈ G such that a(gi⊕e)a−1 = b(e⊕gi)b−1 = gi∀i ∈ [n].
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Proof. We have already proven (i) above. Now assume we are given {gi}ni=1 ∈ Aut(S) and g ∈ Aut(S).
We can find N large enough so that all the gi and g come from Aut(sN ), denote the element of this
group sent to gi in the colimit by γi and denote the preimage of g in Aut(sN ) by γ. Now we place
ourselves in Aut(s2N ), where all the γi are sent to γi□IdsN . Consider δ = γ□γ−1, direct computation
shows that

(γ□IdsN )(γi□IdsN )(γ−1□IdsN ) = δ(γi□sN )δ−1.

And this equation still holds in the colimit, so in order for this to prove that Aut(S) satisfies property
(ii), we need δ ∈ [Aut(s2N ), Aut(s2N )] or that this holds after some amount of stabilizing. But this
inclusion is a direct application of the above abstract Whitehead lemma.
It will be useful to distinguish the pairing Aut(sn) × Aut(sm) → Aut(sn+m) for different n,m and
also from Aut(S)× Aut(S)→ Aut(S). So for the remainder of this proof we specify our notation by
□n,m, omitting subscripts if we are talking about the pairing Aut(S)× Aut(S)→ Aut(S). Note that
□ : Aut(S) × Aut(S) → Aut(S) is the stabilization of the maps Adσn ◦ □n,n, not of □n,n. Now we
show that ∃c, d ∈ Aut(S) such that a(gi□Id)a−1 = b(Id□gi)b−1 = gi. Once again we consider the
problem in Aut(sN ), with N as above. And so the equation we want to solve is

α(Adσ2N (γi□N,NIdsN ))α−1 = β(Adσ2N (IdsN□N,Nγi))β−1 = gi,

with α, β ∈ Aut(s2N ). By definition of conjugation, this equation is solved by α = β = σ−1
2N .

We are now ready to prove the big theorem of this section.

Theorem 2.3.8. (Theorem 4.10 in [6] chapter IV) Let S be a symmetric monoidal category such that
S = iso(S), with faithful translations and having a cofinal subsequence of the form {sn}∞n=1 for some
s ∈ S. Then

K(S)□ ≃ K0(S)×BAut(S)+,

with the plus construction relative to E = [Aut(S), Aut(S)].

Proof. Note that to prove the homotopy equivalence, it will suffice to prove that the connected com-
ponents are homotopic, as both spaces are of the form K0(S)×B with B the appropriate connected
component.
Because we are now only comparing connected components we can use the cofinality theorem and
replace S by the full subcategory {sn}∞n=0 (with s0 = e added in order for the resulting category to
indeed be symmetric monoidal). Now by the above lemmas and the lemmas from §1.4 we have that
BAut(S)+ is weakly simple, and so to prove the homotopy equivalences YS ≃ BAut(S)+ it suffices to
construct a homology isomorphism between the two spaces (recall YS is also weakly simple because it
is an H-space).
We construct this map in three steps.

(i) We first construct maps BAut(sn) → BS−1S for each n. We do this by taking the geometric
realization of Aut(sn)→ S → S−1S with all of the maps the natural inclusions.

(ii) We now need these maps to be compatible, at least up to homotopy, to get a map BAut(S)→
BS−1S by taking the mapping telescope model for BAut(S). The following diagram

Aut(sn) S S−1S

Aut(sn+1) S S−1S

s□− s□− s□−

is commutative. The right most map is given by the action of S on S−1S, and we know this ac-
tion is invertible, i.e. the geometric realization is a homotopy equivalence. Which means taking
mapping telescopes we get a well defined map BAut(S)→ BS−1S.
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(iii) We use the result from §1.4 which extends maps out of a space to the plus construction of that
space, assuming that one to be weakly simple. This allows us to extend the map we constructed
BAut(S)→ BS−1S to a map BAut(S)+ → BS−1S. Finally, we get the desired map by noticing
that BAut(S)+ is connected, so we can corestrict to YS .

Now all that remains to show that the map constructed this way is a homology isomorphism, we can
use proposition 2.2.13 to understand that on homology, the map constructed in (i) is the canonical
inclusion, in (ii) it is the identity map, and so in (iii) it is an isomorphism. To see this, in the following
diagram the +-construction and the map from (ii) are homology isomorphisms, so the third one is as
well

BAut(S) YS

BAut(S)+

.

So this concludes the proof.

The above theorem has in particular the interesting corollary that the K-theory of a ring R,
either as constructed in §1.3 or using the symmetric monoidal category of finitely generated projective
modules over R yield the same result.
We can use the above theorem to compute K□

2 in some cases. The result below can be improved if we
work with a more general definition of Aut(S) and improve the above theorem consequently.

Proposition 2.3.9. (Corollary 4.8.1 and exercise 4.10 in [6] chapter IV)(Theorem 4 in [26]) Let
S = iso(S) be such that ∃s ∈ S such that {sn}∞n=0 is cofinal and such that translations are faithful,
then

K□
2 (S) = lim−→

n∈N
H2([Aut(sn), Aut(sn)];Z).

Proof. We can apply the above theorem and computeK□
2 by computing π2(BAut(S)+). As π1(BAut(S)+) =

K1(S) there exists by representability of cohomology a natural map f : BAut(S)+ → K(K1(S), 1),
corresponding to the identity map on fundamental groups. We can try to compute π2(BAut(S)+)
by studying the homotopy long exact sequence Ff → BAut(S)+ → K(K1(S), 1). We can imme-
diately see that Ff is simply connected, and combining Hurewicz with the homotopy long exact
sequence yields K2(S) ∼= H2(Ff ;Z). The short exact sequence of groups E → Aut(S)→ K1(S) (recall
E = [Aut(S), Aut(S)]), yields a corresponding homotopy fibration, which we can try to compare to
our other homotopy fibration, as in the following diagram

BE BAut(S) BK1(S)

Ff BAut(S)+ BK1(S)

q

Id

f

.

Where q : BAut(S)→ K1(S) is the map corresponding to the quotient Aut(S)→ K1(S) on π1. The
diagram is indeed commutative as we can construct f by extending q. Using the commutativity, we
see that the map BE → BAut(S)+ lands in the homotopy fiber of some point, so we can consider the
following map of fibrations

BE BAut(S) BK1(S)

Ff BAut(S)+ BK1(S)

q

Id

f

.

Where the right most map is clearly a homology isomorphism, and the middle map is so by construc-
tion, so if we show that the base space acts trivially on the homology of the homotopy fiber for both
fibrations, we get H∗(BE;Z) ∼= H∗(Ff ;Z) by theorem A.0.1. To show this we follow [26].
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First we show that K1(S) ∼= π1(BK1(S)) acts trivially on H∗(BE;Z). By lemma 1.4.5 we know that
K1(S) acts on H∗(BE;Z) ∼= H∗(E;Z) via conjugation. For this to make sense use lemma 2.2.13,
theorem 2.3.2 and the fact that H1(G) = Gab is a left adjoint, thus preserves colimits, to notice that
K1(S) ∼= Aut(S)/E. To see that this action is trivial we can use that proposition 1.4.4 as Aut(S)
satisfies the assumptions of the proposition.
The final step of the proof is to show that π1(BK1(S)) acts trivially on H∗(Ff ). Notice that the map
f : BAut(S)+ → BK1(S) is an H-space map. Now we follow the proof of the lemma on page 16-09 of
[27] to show the desired claim. First notice that BAut(S)+ and BK1(S) are connected H-spaces. We
can let Ff be the fiber over the neutral element of BK1(S), and we can use the neutral elements as the
base points for the rest of this proof. Let [γ] ∈ π1(BK1(S)), which because f is a π1 isomorphism can
be represented by f ◦γA with γA : I → A a loop. For each af ∈ Ff we have that afγA (with the product
being the H-space product of A) is a lift of f ◦ γA. Fixing a simplex σ : ∆n → Ff representing some
homology class [σ] ∈ Hn(Ff ;Z) we see that [γ][σ] = [σγA(1)] = [σeA] with eA the neutral element of
A. But because homology turns homotopy into equality and that eA is a homotopy unit we have that
[σeA] = [σ], which shows the desired trivial action. This in turn allows the application of the spec-
tral sequence comparison theorem which shows K2(S) = π2(BAut(S+)) ∼= H2(Ff ;Z) ∼= H2(BE;Z)
which yields the desired result after noticing that: E = lim−→n∈N[Aut(sn), Aut(sn)], B commutes with
sequential colimits and so does homology.

Remark 2.3.10. I was not able to convince myself that f is in fact an H-space map. My main source
[26] claims this to be a consequence of the universality of the map into the +-construction with respect
to maps into H-spaces. This presumably is a reference to theorem 1.8 in chapter I of [6]. However,
although this result can be used to provide the map f , it says nothing about the map constructed this
way being an H-space map.
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3 The Q-construction

We introduce the Q-construction of K-theory which works for something called quasi-exact categories.
This construction is somewhat more abstract than the preceding two construction, its value lies in
its theoretical power to prove theorems. Many elementary properties of K-theory, such as sending
products to products, are easier to prove for the Q-construction than with the preceding two construc-
tions. We will end with the + = Q theorem, which will show that in some case we can enjoy both the
relative concreteness of the +-construction and the abstract advantages of the Q construction.

3.1 K-theory of quasi-exact categories

In this section we discuss Quillen’s Q-construction to define K-theory for exact categories. We will
follow [6] chapter IV section 6, and we will adapt the material to the situation of quasi-exact categories;
whose definition we take from exercise 14 from the corresponding section of the K-book. I believe
Weibel got this notion from [28], as he cites Deitmar, though this paper does not appear in the K-
book’s bibliography. We do this namely in order for our constructions to cover the category of finite
pointed sets.
We also note that in this section the implicit restriction of dealing with small categories enters before
taking geometric realization, as it is already necessary when we define the Q-construction.

Definition 3.1.1. (Exercise 6.14 in [6] chapter IV) Consider a category C with a distinguished zero
object 0 and admitting all finite coproducts ⊔. We specify a family E of sequences of composable
maps, which we call exact sequences, in C of the form

0→ A→ B → C → 0.

We call E admissible and the pair (C, E) a quasi-exact category if E satisfies

(i) E is closed under isomorphisms of sequences.

(ii) For any sequence 0→ A→ B → C → 0 in E the map A→ B is a kernel of B → C and B → C
is a cokernel of A → B. So in an exact sequence the maps A → B are monic and the maps
B → C are epic. We call the monics and epics appearing in an exact sequence admissible.

(iii) All sequences of the form 0→ A→ A ⊔B → B → 0 are in E .

(iv) The class of admissible epics is closed under composition and pullback along monics.

(v) The class of admissible monics is closed under composition and pullback along admissible epics.

Two small remarks on notation: we allow ourselves to not explicitly mention the family E of exact
sequences; we will denote admissible monics by ↣ and admissible epics by ↠. Weibel instead develops
the theory for exact categories, defined as follows

Definition 3.1.2. (Definition 7.0 in [6] chapter II) An exact category is a pair (C, E) with C an
additive category and E a collection of sequences of the form 0→ A→ B → C → 0. We require that
the pair (C, E) satisfies

(i) There is an embedding of C as a full subcategory of an abelian category A.

(ii) E is the collection of sequences in C which are exact in A.

(iii) C is closed under extension in A. This means if 0 → A → B → C → 0 is an exact sequence in
A such that A,C are in C, then there is an object isomorphic to B in C.

The claims in [29] §2 reassure us that exact categories are quasi-exact, we will not prove this here
as it is simply a matter of chasing diagrams. We however note that to show this claim the first three
conditions are easily verified; however, condition four and five require a little more investment.

We can now define the Q-construction on a quasi-exact category C.
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Definition 3.1.3. (Definition 6.1 in [6] chapter IV) Let (C, E) be a quasi-exact category. We define
a new category QC which has the same objects as C but has as morphisms from A to B equivalence
classes of pairs A ↞ B2 and B2 ↣ B; with two morphisms equivalent if they fit in a diagram of the
form

A B2 B

A B3 B

Id ∼= Id .

Composition of morphisms A ↞ B2 ↣ B and B ↞ C2 ↣ C is A ↞ C1 ↣ C; where C1 = B2 ×B C2
and the maps are defined by the following diagram

C1 C2 C

A B2 B

.

The fact that the maps A ↞ C1 and C1 ↣ C are indeed epic/monic as claimed follows from
axioms (iv) and (v) in the definition of a quasi-exact category.

It is worth spending some time to understand this construction better, for this recall that in an
arbitrary category a subobject of an object B is an equivalence class of monics B2 ↣ B, with two
monics equivalent if they factor through each other ([6] chapter IV 6.1.2). In a quasi-exact category
C, we call a subobject admissible if any choice of representative is an admissible monic. And so we
see that morphism in QC from A to B uniquely define a subobject of B; picking a representative, say
B2, to finish defining our morphism in QC we just need an epic map from B2 to A. This perspective
allows us to see that morphisms from 0 to B in QC correspond to subobjects of B.
Notice also that there are two distinguished classes of morphisms in QC of particular importance.
There are the morphisms of the form A = A ↣ B and A ↞ B = B, and it is easy to see that every
morphism A↞ B2 ↣ B factors uniquely as the composition of A↞ B2 and B2 = B2 ↣ B.
We can combine these two observation to obtain a 1-1 correspondence between isomorphisms in C
and QC. Indeed, if i : A ∼= B is an isomorphism in C we get an isomorphism in QC which we can
represent either as A ↞ B = B, because i−1 is an epimorphism, or as A = A ↣ B because i is a
monomorphism. Now given any isomorphism from A to B in QC, we see that the subobject defined by
the given isomorphism is maximal, and so is isomorphic to B, which implies that every isomorphism
comes from an isomorphism in C by choosing an appropriate representative.

Having developed some intuition with the Q-construction, we can define the associated K-theory
space.

Definition 3.1.4. (Definition 6.3 in [6] chapter IV) Let C be a quasi-exact category, then we define
KC = ΩBQC and we define the K-groups of C by

Ki(C) = πi(K(C)).

In order for this definition of Ki(C) to make unambiguous sense when considering base points we
need BQC to be connected. This can be seen by noticing that the map 0→ A in C defines a morphism
in QC from 0 to A. Thus, we have a path between the corresponding vertices of BQC, which shows
that the 1-skeleton of this space is connected, implying that the space is connected.
Note also that this is a functorial construction from the category whose objects are quasi exact cate-
gories and morphisms are functors preserving finite limits and finite colimits. We call such functors
exact, as they send exact sequences to exact sequences in quasi-exact categories. In exact categories,
an additive functor is exact if and only if it preserves exact sequences, further justifying the definition
(see [1] chapter VIII specifically page 201). The only point which needs discussing is that an exact
functor F : C → D induces a functor QF : QC → QD. We discuss this in the next section §3.2.
It is perhaps strange that we take functors preserving all finite limits and colimits as our definition of
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an exact functor, instead of simply a functor sending exact sequences to exact sequences. We do this
in order for Q to be functorial, and we justify it by the following example of a functor which preserves
exact sequences, but not coproducts.
Example 3.1.5. Consider the forgetful functor FinAb → FinSet∗ from the category of finite abelian
groups to the category of pointed finite sets, the distinguished point being the identity. FinAb has a
clear exact structure, and for FinSet take those sequence A f−→ B

g−→ C such that Im(f) = g−1(∗C)
with ∗C the distinguished element of C. The forgetful functor clearly sends exact sequences to exact
sequences, but does not preserve the coproduct, as in FinAb the cardinality is multiplicative with
respect to the coproduct, but it is additive with respect to the coproduct of FinSet.

We now compute K0(C).
Proposition 3.1.6. (Proposition 6.2 in [6] chapter IV)(Theorem 1 in [29] §2) Let C be a quasi-exact
category. The group K0(C) is generated by the objects [A] of C subject to the relations [B] = [A] + [C]
whenever 0→ A→ B → C → 0 is an exact sequence in C.
Proof. Call G the group generated by the objects of C subject to the relations [B] = [A]+[C] whenever
there is an exact sequence 0 → A ↣ B ↠ C → 0. Note that the additive notation is justified as for
any two objects [A], [B] we have the two exact sequence

0→ A→ A ⊔B → B → 0

and
0→ B → B ⊔A→ A→ 0.

We present only the proof from [6], there is another very interesting proof in [29]. Notice it is an easy
consequence of the Seifert-Van Kampen theorem that for any small category C if we find a maximal
tree T of the graph underlying C, then π1(C) admits a presentation with generators all morphisms of
C and relations given by

(i) [f ] = 1 if f ∈ T

(ii) [Idc] = 1 for all c ∈ C

(iii) [f ◦ g] = [f ][g].
In our case we can take T to be the collection of all morphisms 0 = 0 ↣ A, which is both clearly a tree
and maximal. From the composition (0 = 0 ↣ A) ◦ (A = A ↣ B) = (0 = 0 ↣ B) we see that every
morphism A↞ B1 ↣ B in QC defines an element of π1(BQC) independent of the monic in C defining
the morphism. Next we see that the composition (0 ↞ A = A) ◦ (A↞ B = B) = (0 ↞ B = B) shows
that we can restrict our set of generators to morphisms of the form 0 ↞ A, which we from here on
out abbreviate to (A). Now consider 0→ A ↣ B ↠ C → 0 an exact sequence of C. We consider the
composition in QC defined by the following diagram

P ∼= ker(B ↠ C) ∼= A B B

0 0 C

.

Which by the observations we have already made shows that for an exact sequence 0 → A ↣ B ↠
C → 0 we have (C ↞ B) = (A) in π1(BQC). This has two consequences. The first is obtained by
multiplying by (C) on the left yields (B) = (C)(A), which by the same reasoning as for G implies our
fundamental group to be abelian. The second is that two admissible epics with the same kernel yield
the same element in π1(BQC). We now have a clear map π1(BQC) → G sending (A) to [A]. This
map is an isomorphism if every relationship in π1(BQC) can be obtained from what we have already
discussed. To do this, consider an arbitrary composition of morphisms in QC

B1 ×B C1 C1 C

A B1 B

.
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This yields the relationship (B ↞ C1)(A ↞ B1) = (A ↞ B1 ×B C1). We can multiply by (A)
(no need to specify left or right as we have shown that the group is abelian), yielding the equation
(B ↞ C1)(B1) = (B1 ×B C1). We can decompose (B1 ×B C1) as (B1)(B1 ↞ B1 ×B C1); now we
may cancel out (B1) to get the equation (B ↞ C1) = (B1 ↞ B1 × C1) which is equivalent to our
original equation. These two elements are in fact the same in π1(BQC) as they have the same kernel
by abstract nonsense, which by above reasoning is enough to show that they define the same element.
This completes the proof.

3.2 Elementary properties

In this section we prove some simple computational tools for the K-theory of quasi-exact categories.

Proposition 3.2.1. (Mentioned in definition 6.3 and exercise 6.2 of chapter IV of [6]) The Q-
construction is a functor from the category of small quasi-exact categories qE to the category of small
categories Cat. Furthermore, for any pair of quasi-exact categories C,D it induces a functor, which
we also call Q, from FunqE(C,D) to FunCat(QC, QD).

Proof. We first define Q : qE → Cat on exact functors. Let F : C → D be an exact functor between
quasi-exact categories. On objects we naturally will define QFA = FA as QC and C have the same
objects. On morphisms, because F preserves admissible monics and admissible epics, we can simply
define F (A↞ B1 ↣ B) = FA↞ FB1 ↣ FB. Now we need to show that QF respects composition.
This follows from the fact that F preserves exact sequences and finite limits, in particular pullbacks.
Now that we have defined QF for any exact functor of quasi-exact categories, we can work on the
second part of the proposition. Fix quasi-exact categories C,D, we aim to define Q : FunqE(C,D)→
FunCat(QC, QD). To do this we need to define Q on natural transformations. Let F,G : C → D
be two functors and τ : F → G a natural transformation, then we can define Qτ : QF → QG by
QτA = τA, as justified by the following diagram

F (A) F (B1) F (B)

G(A) G(B1) G(B)

τA τB1 τB .

The map in the middle is not actually important, as it disappears” into the equivalence relation.
But it serves to show that Qτ defined this way is indeed a natural transformation. With all of our
constructions the preservation of identities is clear.

This result has the following corollary.

Corollary 3.2.2. (Exercise 6.2 in [6]) Let C ∼= C′ be equivalent quasi-exact categories, with the
equivalence established by exact functors. Then QC ∼= QC′.

This is namely useful to show that if we work with categories which are only skeletally small, its
K-theory can be defined by choosing an equivalent small subcategory. And the K-theory defined this
way is independent of the choice of equivalent small subcategory.

The product of two quasi-exact categories can easily be seen to be quasi-exact. The geometric
realization is known to commute with products, and it is easy to see that the Q-construction commutes
with products as well.

Proposition 3.2.3. (6.4 in [6] chapter IV) Let C,D be quasi-exact categories, then Ki(C × D) =
Ki(C)×Ki(D).

This proposition is enough to show that K(C) is an H-space as the coproduct is always exact, so
defines a map QC ×QC → QC which is associative up to natural isomorphism and admits a unit up
to natural isomorphism (the vertex corresponding to 0).
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Proposition 3.2.4. (Example 7.1.7 in [6] chapter II) Let I be a small filtering category, and C• :
I → qE be an I-shaped diagram of small quasi-exact categories. Then the colimit C = lim−→i∈I Ci is a
quasi-exact category and Kn(C) = lim−→i∈I Kn(Ci)

Proof. We need to show the colimit admits a natural quasi-exact structure. Because geometric re-
alization and homotopy groups commute with filtered colimits, we just need to show that the Q
construction preserve filtered colimits in order to have the desired claim.
Let C = {Ci}i∈I be a small filtered family of small quasi-exact categories. It will be useful to un-
derstand (co)limits in the category lim−→I

Ci better, to do this we use a realization I got while reading
[30]. Denote the set of functors between two small categories A,B by Fun(A,B). Then we have
Fun(J, C) = lim−→I

Fun(J, Ci). This means J-shaped diagrams in C always come from some Ci. This
also means that the natural functors ιi : Ci → C are cocontinuous as colimits commute with colimits.
Furthermore, I claim that we can similarly create finite limits: Suppose J is a finite category, and
let F : J → C be a J-shaped diagram in C. This diagram comes from some Ci. To account for this,
we call F : J → Ci, and refer to our original F by the appropriate post composition ιiF : J → C.
Assume further that in some Ck for k ≥ i ιikF : J → Ck admits a limit. Let d ∈ C be some object with
some cone over ιiF : J → C. We can use the fact that I is filtered and J to find some k′ such that
the cone with apex d comes from Ck′ and k′ ≥ k. Because the functors ιkk′ : Ck → Ck′ are exact, we
get ιkk′(lim←−J ιikF ) = lim←−J ιik′F , and so the cone in Ck′ defines a map d → lim−→J

ιiF in C. Uniqueness
of this map is proven similarly, assuming we have another one, finding some Ci′ which contains both
the map we constructed and the preimage of this hypothetical other map. In this category these two
maps must be the same by construction of the limit, and so they are in fact the same map in C.
In order to discuss a quasi-exact structure on C we need to specify a family of quasi exact sequences.
An exact sequence is a • → • → • shaped diagram, these all come from some Ci, so call a sequence in
C exact if it is exact in some Ci. Notice that the sequence is then also exact in each k ≥ i. For this
to make sense we need to be sure if Ai → Bi → Ci is exact in Ci, then, denoting the image in C by
A → B → C, we need the first map to be the kernel of the second, and the second the cokernel of
the first. But, by what we have shown, the functors ιi : Ci → C preserve finite limits and colimits, so
the desired property is satisfied. This implies the inclusion functors ιi : Ci → C sends exact sequences
to exact sequences, and so in particular admissible monomorphisms to admissible epimorphisms. In
light of our discussion about colimits and finite limits in C, it is easy to see that C with the specified
family of exact sequences is a quasi-exact category.
The fact that the Q-construction preserves colimits is not hard to see, and writing it out does not
teach much, so we omit the proof.

We remark that the mapping R → P (R) sending a ring to the category of finitely generated
projective modules is not a functor out of the category of rings. In the next section we will relate
the K-theory of P (R) via the Q-construction to the K-theory developed in §1.3. Assuming this, our
preceding remark implies that if R = lim−→α∈I Rα, we do not immediately have Ki(R) = lim−→I

Ki(Rα).
It turns out we actually do have this result. We can see this either by replacing P (R) with the
equivalent category of idempotent matrices over R (with maps induced by the maps Rn → Rm) (see
6.4 [6] chapter IV) or to use a device called Kleisli rectification (see exercise 6.5 [6] chapter IV).

3.3 The + = Q theorem

Following §7 of [6] chapter IV, we prove the key theorem in relating the different K-theories developed
thus far. Consider a quasi-exact category (A,∨, 0, E) there is a natural underlying symmetric monoidal
category obtained simply by ignoring E . Heuristically, we would expect the loss of information in doing
so to correspond to the exact sequences which are not split, i.e. of the form 0→ A→ A∨B → B → 0,
as these exact sequences can in a sense be detected by the symmetric monoidal structure. To state
this idea precisely we call a quasi-exact category split if every exact sequence is of the form. This
intuition turns out to be true as given by the following theorem.

Theorem 3.3.1. (Theorem 7.1 of [6] chapter IV) Let A be a split quasi-exact category, and let
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S = iso(A) be seen as a symmetric monoidal category. Then

ΩBQA ≃ BS−1S.

In the case that A = P (R) is the category of finitely generated projective modules, it is not hard
to check this category is split exact, and further because this category admits the cofinal sequence
{Rn}∞n=1 we can use the above theorem and theorem 2.3.8 to show that the Q-construction on P (R)
yields the same K-theory as the plus construction §1.3. So in particular we can transfer the results
from §3.2 to the case of rings (and any future results we might prove).

The main idea of the proof is to construct a fibration BS−1S → BC → BQA, with C contractible,
as taking the homotopy fiber will yield a fibration ΩBQA → BS−1S → BC, the first map will be
the desired weak equivalence by the homotopy long exact sequence and thus a homotopy equivalence
because both spaces are CW complexes. To construct the category C we need the following definition.

Definition 3.3.2. (7.3 in [6] chapter IV) Given a quasi-exact category A, we define the category EA
as follows. The objects of EA are the admissible short exact sequences of A and morphisms between
two such sequences A↣ B ↠ C,A′ ↣ B′ ↠ C ′ are equivalence classes of diagrams of the form

A B C

A′′ B C ′′

A′ B′ C ′

α

Id

Id

β

,

with the middle row also an admissible exact sequence. Two such diagrams are equivalent if there is
an isomorphism between them which is the identity at every vertex except potentially at the middle
right vertex.

Because of how morphisms are defined, there is an obvious functor t : EA → QA sending A ↣
B ↠ C to C. We denote the preimage of a certain C ∈ QA by EC (instead of just t−1(C)). Recall
this is the subcategory of EA whose objects are those sent to C by t and morphisms are those sent to
IdC by t. To be explicit, morphisms are the (equivalence class of) diagrams of the form

A B C

A′′ B C

A′ B′ C

α

Id

Id

β

Id

Id

,

with the rows exact sequences. We can see (7.4 [6] chapter IV) that α is an isomorphism as A ↣ B
and A′′ ↣ B are both kernels of the same map, so are isomorphic, and it is not hard to see α is this
isomorphism. Because we are working in a split quasi-exact category both B and B′ are isomorphic
to A ∨ C and that β is an isomorphism between them, coming from the universal property as the
coproduct. There is an inclusion S → EA, sending A to A IdA−−→ A → 0 and sending an isomorphism
σ : A→ A′

A A 0

A′ A 0

A′ A′ 0

Id

Id

σ−1

σ−1

Id

σ

Id

.
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As EA is symmetric monoidal under the operation of pointwise direct sum of exact sequences (we are
allowed to do these constructions as all our exact sequences split); we have that the category S acts
on EA by A ∨ (A′ ↣ B′ ↠ C ′) = A ∨A′ ↣ A ∨B′ ↠ C ′. Notice that for an exact sequence E in EA
we have t(A□E) = t(E), we say that the action is fiberwise (with respect to t).

The proof of the theorem is presented just as in [6] as a chain of lemmas. Our first two lemmas
serve to define the fibered functor which we will, with Quillen’s theorem B (A.0.3), use to obtain the
desired homotopy fibration.

Lemma 3.3.3. (Exercise 7.2 and lemma 7.7 of [6] chapter IV) With the same notation as for the
main theorem. The functor t : EA → QA is fibered. The base change maps are detailed in the course
of the proof.

Proof. The category EC embeds in C/t as the full subcategory of pairs of the form (C = t(E), E)
where E = A ↣ B ↠ C is an exact sequence in EC . This way we have an inclusion I : EC → C/t.
Our goal is to find a functor I ⊣ R which is a right adjoint to I, thus showing t is pre-fibered. Let
(C ϕ−→ t(E′), E′) with E′ = A′ ↣ B′ ↠ C ′ an exact sequence in EA. More explicitly, E′ and ϕ fit into
the diagram

C

C1

A′ B′ C ′

τ

σ

f ′ g′

.

We can complete this diagram as

C

A∗ ∼= ker(σ ◦ g∗) B∗ ∼= B′ ×C′ C1 C1

A′ B′ C ′

g∗

τ∗ τ

σ

f ′ g′

.

Fixing a choice B∗, A∗ of pullback and kernel, we can define R((ϕ : C → t(E′), E′)) = A∗ ↣ B∗ ↠ C.
Let (C → t(E′′), E′′) be another element in C/t, we want to define R on morphisms; to do that we
need a morphism in C/t which, by choosing a representative, is defined by a diagram of the following
form (which we purposefully contort somewhat to have space to add more elements)

C

C C1

C A′ B′ C ′

C2 A′′ B′ C3

A′′ B′′ C

Id

Id

Id

Id

.

We abuse notation slightly and write R(A′ ↣ B′ ↠ C ′, C → t(E′)) as R(A′) ↣ R(B′) ↠ C. We can
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fill the above diagram with R(A′′), R(B′′), R(A′) and R(B′)

C

C R(A′) R(B′) C1

C R(A′′) R(B′) A′ B′ C ′

R(A′′) R(B′′) C2 A′′ B′ C3

A′′ B′′ C

Id

Id

Id

Id

Id

Id

.

The middle exact sequence R(A′′) → R(B′) → C and the identity maps have been added in an-
ticipation of the morphism we wish to define between R(E′) and R(E′′) in EC . To define the map
R(A′′)→ R(A′) use that these are both kernels of R(B′)→ C. To define the map R(B′)→ R(B′′) we
need to define maps R(B′)→ B′′ and R(B′)→ C2. The first of these maps already is in our diagram
as can be seen by recalling that the identity map can be traversed “in reverse”. To construct a map
R(B′)→ C2 we can use that the slanted face commutes, i.e. the following triangle commutes in QA

C

C1 C2

C ′ C3 C ′′

.

Indeed, this implies that C2 is the pullback of C1 and C3 along C ′, and so to define the map R(B′)→ C2
it suffices to use the maps which already exist to C1 and C3. All of this can be summarized in the
following diagram

C

C R(A′) R(B′) C1

C R(A′′) R(B′) A′ B′ C ′

R(A′′) R(B′′) C2 A′′ B′ C3

A′′ B′′ C

Id

Id

Id

∼=

∼=

Id

Id

Id

.

The fact that the maps in EC are isomorphisms as already been discussed following the definition of
EA. This defines R on morphisms.

Now having defined a candidate right adjoint, we need to show it is actually a right adjoint. Fixing
E = A↣ B ↠ C and E′ = A′ ↣ B′ ↠ C ′, we want to define mutually inverse isomorphisms.

ψ : HomEC
(E,R((C → t(E′), E′))) ∼= HomC/t(I(E), (C → t(E′), E′)) : φ.
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We will content ourselves with defining ψ,φ. A morphism E to R(E′) in EC is given by the following
diagram

A B C

R(A′) B C

R(A′) R(B′) C

Id

∼= Id

∼= Id

Id

.

In order to define a corresponding map I(E) → (C → t(E′), E′) in C/t it is useful to complete the
above graph with the information ”lost” by R

A B C

R(A′) B C

R(A′) R(B′) C

A′ B′ C1

C ′

Id

∼= Id

∼= Id

Id

.

We want to define a morphism under C between E′ and E in C/t. For this we need a map A′ → A,
a map B → B′ and a map C → C ′ (though this last one in QA, not in A like the other two). There
is a map from B to B′ and a natural choice of map from C → C ′ is given by C ↞ C1 ↣ C ′. The
only map which needs constructing is a map A′ → A. For this notice that adding a 0 map A′ → C1
defines a cone over the diagram of which R(B′) is a limit, thus defines a map A′ → R(B′). From this
it is not hard to see that this map factors through R(A′), which we recall is the kernel of R(B′)→ C.
Once this is done it is clear how to use this map to define a map from A′ → A. This defines ϕ.
We now assume we have a map I(E) → (C → t(E′), E′), which can be described by the following
diagram

C

C C

C A B C

C1 A′ B C3

A′ B′ C ′

Id

Id Id

Id

Id

Id

.

And so we need to define a map E → R((C → t(E′), E′)). To do this we want to fill the following
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diagram with maps R(A′)→ A and B → R(B′)

C

C A B C

C R(A′) B A B C

R(A′) R(B′) C1 A′ B C3

A′ B′ C ′

Id

Id Id

Id

Id

Id

Id

Id

.

The map R(A′) → B clearly factors through A. To define the map B → R(B′) we use a reasoning
analogous to when we defined R on morphisms. Because of the commutativity of the slanted face (as
a diagram in QA) we see that C1 is a pullback of C and C3. We have obvious maps from B to C
and C3, thus defining a natural map to C1. Because we have a natural map B → B′ this defines via
pullback a natural map B → R(B′). This defines the map ψ. This completes the part of the proof that
t : EA → QA is fibered which we have set out to detail. We have mainly omitted explicitly checking
that: R is a functor, ϕ and ψ are mutually inverse and that they are natural in both variables.

Lemma 3.3.4. (Exercise 4.11 and 7.2 in [6] chapter IV) Let S be a symmetric monoidal category
which acts on a category X and let Y be another category. Let F : X → Y be a functor. We call the
action fiberwise (with respect to F ) if

X

S ×X X Y

FπX

□ F

commutes. Then for all y ∈ Y the action of S on X restricts to the fibers F−1(y), and so induces a
functor S−1F : S−1X → Y whose fibers are (S−1F )−1(y) = S−1F−1(y).
If in addition F is fibered and the action of S on the fibers commute with the base change functors,
we call such functors cartesian, then we also have that the functor S−1F is fibered.

Proof. The fact that the action restricts to the fibers is clear. Now define S−1F : S−1X → Y on
objects by (s, x)→ F (x). To define S−1F on maps, consider a diagram

(t□s, t□x) (s′, y)

(t′□s, t′□x) (s′, y)

σ□Id(s,x)

(ϕ,f)

Id

(ϕ′,f ′)

,

with σ : t→ t′ an isomorphism. We can view this as a diagram in S ×X and apply the functor F

F (x) F (y)

F (x) F (y)

f

IdF (x) IdF (y)

f ′

.

Where all the simplification comes from the fact that the action of S is fiberwise. So we see that
F (f) = F (f ′) whenever (ϕ, f) = (ϕ′, f ′), thus defining a functor S−1F : S−1X → Y . It is a simple
comparison to see that the fibers of this functor are S−1(F−1(y)).
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Now assume furthermore that F is fibered and that the action of S on X is cartesian. F being
fibered means we have an adjunction

F−1(y) ⊥ y/F

I

R

.

We want to define an adjunction

(S−1F )−1(y) ⊥ y/S−1F

I

S−1R

.

We do not change the notation of I as this functor is not within our control, and is always the same
inclusion. We introduce the abuse of notation R(y → F (x)) = R(x) and similarly for morphisms. We
do this to lighten the notation when defining S−1R. Now let y → F (s, x) be an object in y/S−1F , we
set S−1R(y → F (s, x)) = (s,R(x)). To define S−1R consider the following diagram

y

F (s, x) F (s′, x′)F (t,ϕ)
,

with ϕ : (t□s, t□x) (σ,f)−−−→ (s′, x′). We can send this to the map (t, S−1R(ϕ)), with S−1R(ϕ) :
(t□s, t□R(x)) (σ,R(f))−−−−−→ (s′, R(x′)). It is an easy verification that the codomain of S−1R is indeed
(S−1F )−1(y) and that on morphisms this definition is independent of the choice of representative.
To see that I ⊣ S−1R we define the unit S−1η and counit S−1ϵ similarly to our definition of S−1R,
using the unit and counit of I ⊣ R; and we get the commutativity of the desired diagrams for free.
Indeed, we only need to verify the commutativity in the X coordinate, as in the S coordinate we can
let every map be the identity. And on the X coordinate commutativity comes from the corresponding
commutative diagram for I ⊣ R, up to verifying compatibility with choice of representative. We do
not delve into the details.
All that remains to show is that the base change maps act as they must for the functor S−1F to be
fibered. This is the stage where we need the action of S on X to be cartesian with respect to F . Let
f : y → y′ be a map in Y , recall the base change map f∗ is defined by the composition

F−1(y′) y′/F y/F F−1(y)I f/F R .

Define S−1f∗ to be the base change map with respect to S−1F , i.e. the composition

(S−1F )−1(y′) y′/S−1F y/S−1F (S−1F )−1(y)I f/S−1F S−1R .

We can compute S−1f∗(s, x), doing so step by step we get

(s, x) 7→ y′ Idy′
−−→ F (s, x) 7→ y

f−→ F (s, x) 7→ S−1R(y f−→ F (s, x)) = (s,R(y f−→ F (x)) = (s, f∗(x)).

Having done this, we similarly get on morphisms

(t□s, t□x) (s′, x′)

(t′□s, t′□x) (s′, x′)

(σ□s,σ□x)

(ϕ,g)

Id

(ϕ′,g′)

7→
(t□s, f∗(t□x)) (s′, f∗(x′))

(t′□s, f∗(t′□x)) (s′, f∗(x′))

(σ□s,f∗(σ□x))

(ϕ,f∗(g))

Id

(ϕ′,f∗(g′))

.
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But by the cartesian assumption, we can take the t, t′ and σ out of the f∗, which shows that S−1f∗

is independent of a choice of a representative of a morphism in (S−1F )−1(y). With this computation
completed it is easy to see that F−1 being a functor implies that (S−1F )−1 is a functor. This concludes
the proof that S−1F is fibered.

We already know that the action of S on EA is fiberwise, and it is not hard to see it is cartesian
as well. So this defines a functor S−1t : S−1EA → QA (we will allow ourselves the abuse of notation
of calling this functor t, denoting it by S−1t only if it makes things significantly clearer). So the
fibers of the functor S−1t are S−1EC , in a perfect world, the fibers would have been S−1S (as then
the application of Quillen’s theorem B would be our only step left). The next three lemmas serve to
console ourselves from this disappointment.

Lemma 3.3.5. (Exercise 7.1 in [6] chapter IV) Let A be a quasi-exact category and let S = iso(A) be
the corresponding symmetric monoidal category. Translations are faithful in S. In particular BS−1S
is the group completion of ⊔

A∈AAut(A).

Proof. The second part of the lemma follows from the first. Let A,B ∈ S be two objects, we define a
map Aut(A) → Aut(A ∨ B) which sends an automorphism σ : A → A to σ ∨ IdB : A ∨ B → A ∨ B.
The following diagram shows we can obtain σ back from σ ∨ IdB

B B

A A ∨B A ∨B A

A A

IdB

0

IdA

σ∨IdB ∃!

σ

IdA

.

This concludes the proof.

Lemma 3.3.6. (Exercise 4.7 in [6] chapter IV and theorem on page 223 of [12]) Let S be a symmetric
monoidal category, X be a category on which S acts with every arrow monic. Suppose further that the
translations Aut(s) → Aut(s□x) are all injective. Then the sequence S−1S

−□x−−−→ S−1X
π−→ ⟨S,X⟩ is

a homotopy fibration (π is the natural projection).

Proof. The proof that the cofibration S−1X → ⟨S, S⟩ is cofibered with fiber X and cobase change
given by translation in lemma 2.2.6 can be adapted easily to showing that under the above assumption
the projection S−1X → ⟨S,X⟩ is cofibered with fiber S and cobase given by translation. We have a
fiberwise action of S on S−1X given by translation on the first coordinate, whose restriction to the
fibers is the translation action of S on itself. This action commutes with the cobase change maps up
to natural isomorphism because S is symmetric monoidal. And so we can use lemma 3.3.4 to obtain
a cofibered functor S−1S−1X → ⟨S,X⟩ with cofiber S−1S. The cobase change maps are given by
translation in the second coordinate, and so are homotopy equivalences as S acts invertibly on S−1S.
This is the necessary set up to apply Quillen’s theorem B (A.0.3), so we have a homotopy fibration
S−1S → S−1S−1X → ⟨S,X⟩. To prove that the sequence S−1S

−□x−−−→ S−1X → ⟨S,X⟩ is a homotopy
fibration we consider the following diagram from [12] page 223

S−1S S−1S−1X ⟨S,X⟩

S−1S S−1X ⟨S,X⟩

(A,B)7→(A,(B,x0)) (A,(B,x)) 7→x

(A,B) 7→(B,A)

(A,B) 7→(A,B□x0)

(A,x) 7→(e,(A,x))

(A,x)7→x

Id⟨S,X⟩ ,

with x0 some fixed element of X. The first and last map from front to back are obviously homotopy
equivalences, the middle map being a homotopy equivalence follows from lemma 2.3.3. The second
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square obviously commutes but the first does not. However, it does commute up to homotopy. To
show this we define natural transformations ω, ν fitting into the following diagram

(B, (A, x0)) (B, (B□A,B□x0)) (e, (A,B□x0))

(D, (C, x0)) (D, (D□C,D□x0)) (e, (C,D□x0))

(g,(f,Idx0 ))

ωA,B

(g,(g□f,g□Idx0 )) (Ide,(f,g□Idx0 ))

νA,B

ωC,D νC,D

,

with f : A → C, g : B → D maps in S. The map ωA,B is in S−1S−1X and so is defined by a triple
(s, ϕ, ψ) with s ∈ S, ϕ : s□B → B,ψ : s□(A, x0)→ (B□A,B□x0). But ψ is a map in S−1X so is itself
given by a triple t ∈ S, α : t□s□A→ B□A, β : t□x0 → B□x0. We can take s = e and t = B, letting
ϕ = ηB, α = B□ηA, β = IdB□x0 , with η the natural transformation e□− ∼= IdS . We define νA,B in
a very similar manner. This establishes a weak equivalence with a homotopy fibration, to obtain the
desired result please consult the following remark.

Remark 3.3.7. This proof in fact does not show the desired claim, indeed homotopy fibrations are
not closed under pointwise weak equivalence. In order to obtain the desired result we would have
to compare the null homotopies associated with these homotopy fibrations and how these interact
with the pointwise weak equivalence. Working out the details of this process eluded me and thus was
omitted from the proof.
Remark 3.3.8. To apply the above lemma to the case of interest S = iso(A) and X = EC , we need to
verify they satisfy the assumptions. Every arrow in EC is indeed monic, which follows from the fact
that arrows used to define the morphisms are all monic in A. The desired injectivity of translations
follows from a reasoning quite similar to the proof of lemma 3.3.5 showing that translations are faithful
in S.

Lemma 3.3.9. (Proposition 7.6 in [6] chapter IV) With the same notation as in the main theorem,
and letting E = A → B → C be an exact sequence in EC , we have that each S−1S

−□E−−−→ S−1EC is a
homotopy equivalence.

Proof. By the previous lemma, we have a homotopy long exact sequence for the maps S−1S
−□E−−−→

S−1EC → ⟨S, EC⟩. By Whitehead’s theorem, it suffices to show that EC is contractible. First notice
that EC admits a symmetric monoidal structure, given by

(A→ A ∨ C → C)□(A′ → A′ ∨ C → C) = A ∨A′ → A ∨A′ ∨ C → C.

This is indeed an admissible split exact sequence as every exact sequence in EA splits and every
split sequence is exact. The unit for this symmetric monoidal structure is e = 0 → C → C. It
is not hard to show that this monoidal structure induces a monoidal structure on ⟨S, EC⟩ and so in
particular this space is an H-space. Notice that because every exact sequence is split, for any sequence
E = A→ A ∨ C → C in ⟨S, EC⟩ we have a morphism (A, Id : A□e→ E) which defines a path from e
to E in B⟨S, EC⟩ showing that the 1-skeleton of this space is connected, which shows that this space
is connected. Using lemma 2.1.2 we see that the space B⟨S, EC⟩ is a group like H-space, in particular
has homotopy inverses.
Now notice that we have a natural transformation E 7→ E□E, which if E = A→ B → C is given by
the maps (A, Id : A□E → E□E). For this to be clear we specify that the first □ is the one coming
from the action of S whereas the second comes from the symmetric monoidal structure of EC . Writing
the H-space structure of B⟨S, EC⟩ additively, the above natural transformation defines a homotopy
between the identity map and multiplication by 2. This means that on every homotopy group the
identity equals multiplication by 2, which can only be the case if all the homotopy groups are 0, which
implies that our space is contractible by Whitehead’s theorem.

The next lemma allows us to pass from category theory to topology via Quillen’s theorem B.

Lemma 3.3.10. (Theorem 7.8 in [6] chapter IV) With the same notation as for the main theorem,
the sequence S−1EC → S−1EA → QA is a homotopy fibration.
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Proof. The only thing we need to show is that the base change maps are homotopy equivalences, as
then the result follows from Quillen’s theorem B (A.0.3). We use that every morphism factors to
reduce to showing that the base change maps associated to C ′ = C ′ ↣ C and C ′ ↞ C = C are
homotopy equivalences. We also use that homotopy equivalences satisfy 2 out of 3 to reduce further
to the maps to and from the 0 object. We use the following diagrams to accomplish this

0 C ′ C

C ′ C 0

.

Notice that because every map in EC is an isomorphism, we have that E0 ∼= S by sending A
∼=−→ A′ → 0

to A′. And so in particular S−1E0 ∼= S−1S.
Let E ∈ EC be the exact sequence 0→ C → C, we know from lemma 3.3.9 that−□E : S−1E0 → S−1EC
is a homotopy equivalence. Recall that for a map ϕ : C ′ → C, the base change map sends A→ B → C
to A′ → B′ → C ′ defined by in the following diagram

C ′

A′ ∼= ker(B′ → C ′) B′ ∼= B ×C C ′′ C ′′

A B C

.

Now consider the map 0 = 0 ↣ C, the base change map sends an exact sequence A → B → C to
A→ A→ 0 (with A→ A an isomorphism because it is the kernel of the unique map to the 0 object).
Now apply the functor −□E, which recalling that every exact sequence splits, yields A→ B → C. So
the base change map is a left inverse to −□E, thus is the homotopy inverse of a homotopy equivalence
and is in particular a homotopy equivalence.
Now consider the map 0 ↞ C = C, the base change map sends A → B → C to B → B → 0 (with
B → B an isomorphism as above). Post composing with −□E yields, because every exact sequence
splits, the exact sequence B → B ∨ C → C, or more explicitly A ∨ C → A ∨ C ∨ C → C. And so
we see the composition of the base change map with −□E is equal to C□− with the action of S on
S−1EC given by the inclusion S → EA. But we know S acts invertibly on S−1EC , so be C□− is a
homotopy equivalence. We conclude that the base change map is a homotopy equivalence by the fact
the homotopy equivalences satisfy two out of three. This concludes the proof.

As we remarked before starting the proof, this homotopy fibration implies we have a homotopy
fibration ΩBQA → BS−1S → BS−1EA (Because S−1S ≃ S−1EC). In order to obtain the desired
result by Whitehead’s theorem, it suffices to show that S−1EA is contractible, which is achieved by
the following lemma.

Lemma 3.3.11. (Proof of theorem 7.1 and exercise 7.3 in [6] chapter 4)(Lemma 7.10 of [13]) With
notation as above the category EA is contractible, and thus so is S−1EA.

Proof. For this we define for a category C the category Sub(C) whose objects are the morphisms of C
and a morphism from A→ B to C → D is given by a commutative diagram

A B

C D

.

Denote by iQA the subcategory of QA generated by monics C = C ↣ C ′, we will (in time) show that
Sub(iQA) ∼= EA are equivalent categories. Why will we do this? Because iQA has an initial object 0
and because we have the following lemma.
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Lemma 3.3.12. (Exercise 3.9 of [6] chapter IV) The functor cod : Sub(C) → C is a homotopy
equivalence

Proof. The functor cod : Sub(C)→ C is explicitly given on objects by cod(A→ B) = B. We will show
that this functor is a homotopy equivalence using Quillen’s theorem A (A.0.2). We first show that this
functor is pre-cofibered, i.e. the natural inclusion cod−1(B)→ Cod/B has a left adjoint. An element
of cod/B can be represented by a pair of composable morphisms A′ → B′ → B and a morphism by a
commutative diagram

A′ B′ B

A′′ B′′ B

IdB
.

Define L : cod/B → cod−1(B) by sending A′ → B′ → B to the composite A′ → B and define L
on morphisms in the obvious way. To see that this construction is a left adjoint to the inclusion
ι : cod−1(B)→ cod/B which sends A→ B to A→ B

IdB−−→ B compare the two following diagrams

A′ B A′ B′ B

A B A B B

g′◦f ′

IdB

f ′ g′

g′ IdBα

f

α

f IdB

.

It is not hard to see this establishes the isomorphism which shows L ⊣ ι. Now we notice that cod−1(B)
is contractible as it has a terminal object idB : B → B. This proves the desired result by Quillen’s
theorem A.

So all that remains to show that EA is contractible is that Sub(iQA) ∼= EA. The objects of
Sub(iQA) are A = A↣ B and morphisms are commutative diagrams of the form

A A B

A′ B

A′ A′ B′

IdA

IdA′

IdB

IdA′

.

Admissible monics fit into exact sequences by definition. We use this and the fact that all exact
sequences split to extend the above diagram into a diagram of the form

A A B C

A′ B C ′′

A′ A′ B′ C ′

IdA

IdA′

IdB

IdA′

.

This defines a functor Sub(iQA)→ EA, and it is easy to see that this functor is essentially surjective
and fully faithful, thus is an equivalence of categories. This proves that EA is contractible.
Now we want to show this implies that S−1EA is contractible. Because EA is contractible we have
that [BEA, BEA] = {∗} and so in particular S acts invertibly on EA. Thus, by 2.3.3 S−1EA ≃ EA
and so is contractible which concludes the proof.
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4 Waldhausen’s S. construction

In this section we define Waldhausen’s definition of K-theory for categories that now carry his name.
We will relate this construction to the Q construction. We then prove the additivity theorem, one
of the most important results in Algebraic K-theory. And finally we discuss how the S. construction
allows us to see that we have a K-theory spectra, and we introduce a potential multiplicative structure
which can appear in K-theory when we have the data of a ”biexact functor”.

4.1 Definition

We first define the categories of interest, which is done by defining separately a category with cofibra-
tions and a category with weak equivalences. A Waldhausen category will be a category which has
both cofibrations and weak equivalences.

Definition 4.1.1. (Definition 9.1 of [6] chapter II) A category with cofibrations is a category C, with
a 0 object, equipped with a specified class of morphisms co(C) which we call cofibrations and denote
by ↣. This class of morphisms is required to satisfy the following axioms:

(i) Every isomorphism is a cofibration;

(ii) The unique maps 0→ A are all cofibrations;

(iii) Cofibrations are closed under composition:

(iv) Cofibrations are closed under pushouts.

Two immediate consequences are noteworthy. First, the coproduct of any two objects exist by
taking the pushout of A↢ 0 ↣ B and the inclusion of factors are cofibrations. Second, by taking the
pushout of 0 ← A ↣ B we see that cofibrations admit cokernel, which we call quotients and denote
by B ↠ B/A. A sequence A↣ B ↠ B/A is called a cofibration sequence.

Definition 4.1.2. (Definition 9.1.1 of [6] chapter II) A category with weak equivalences is a category
C equipped with a specified class of morphisms w(C) which we call weak equivalences and denote by
∼−→. This class of morphisms is required to satisfy the following axioms:

(i) All isomorphisms are weak equivalences;

(ii) Weak equivalences are required to be closed under composition

(iii) A pushout of weak equivalences is a weak equivalence in the sense that if we have a diagram

A B C

A′ B′ C ′

∼ ∼ ∼

such that both rows admit a pushout, then the natural map A ∪B C → A′ ∪B′ C ′ is a weak
equivalence.

The third axiom for categories with weak equivalences is called the ”gluing axiom”. Combining
the above two definitions yields:

Definition 4.1.3. (Definition 9.1.1 of [6] chapter II) A Waldhausen category is a category with
cofibrations and weak equivalences.

We also introduce the notion of exact functors and Waldhausen subcategories.

Definition 4.1.4. (Remark following definition 8.1 of [6] chapter IV)

(i) A functor between Waldhausen categories which preserve the 0 object, cofibrations, weak equiv-
alences and pushouts along
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(ii) A Waldhausen subcategoryA of a Waldhausen category C is a subcategory such that the inclusion
is exact, the cofibrations are exactly the maps which are cofibrations in C with cokernel in A
and the weak equivalences are exactly the maps which are weak equivalences in C.

Having defined the appropriate notion of a map between Waldhausen categories, we now have a
category Wald of (small) Waldhausen categories. And so we get a notion of simplicial Waldhausen
category. We spend most of the rest of this section defining a particular simplicial Waldhausen category
S.C for any Waldhausen category C.
Definition 4.1.5. (Definition 8.3 of [6] chapter IV) Let C be a category with cofibrations. For n ≥ 0,
let SnC be the category whose objects are cofibrations sequences of length n

A1 ↣ A2 ↣ · · ·↣ An

together with a choice of every subquotient Aij = Aj/Ai which we require to be compatible in the
sense that they fit in a commutative diagram

An−1,n

...

A32 · · · An2

A21 A31 · · · An1

A1 A2 A3 · · · An

.

It is useful to add the convention that the bottom row is the 0th row, so we note A0i for Ai and to
write Aii = 0. It will also be useful to view the above diagram as an (n+1)× (n+1) square by adding
a 0th column which is all 0 and an nth row which is also all 0 and filling all the remaining empty
positions with the 0 object.
A morphism in this category is simply a natural transformation of cofibration of sequences.
This construction is functorial in an obvious way.

It is interesting to note that the explicit choice of subquotients is a matter of notational convenience
more so than of philosophical importance. What we mean by this is that because it is always possible
to make such a choice, we obtain equivalent categories whether we include the choice of subquotients
in the definition of objects. In light of this, we will not feel guilty if we omit explicitly mentioning the
choice of subquotients to make the notation lighter.
It turns out that the categories SnC inherit a Waldhausen structure from C. The weak equivalences are
easy to define simply as natural transformations which are pointwise weak equivalences. Cofibration
are slightly harder to define. For n = 0 we have that S0C is the trivial one object category and for
n = 1 we have S1C ∼= C, so in both of these case it is clear how to define cofibrations. For n = 2 we
call a map a cofibration if in the induced diagram

A1 A2 A12

B1 B2 B12

the outer vertical maps and the natural map A2 ∪A1 B1 → B2 are cofibrations. For a general n we
call a natural transformation a cofibration if for all 0 ≤ i < j < k ≤ n the induced diagram

Aij Aki Akj

Bij Bki Bkj
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is a cofibration in S2C. We do not verify that this indeed defines a Waldhausen structure on the
categories SnC. We also note that this is enough to show that cofibration in SnC are in particular
pointwise cofibrations (though this is in general not sufficient to be a cofibration).
We want the SnC to fit together into a simplicial Waldhausen category, i.e. we want to define face
and degeneracy functors. Viewing the objects of SnC as an (n + 1) × (n + 1) grid of objects in the
way indicated in the above definition there is a (somewhat) natural way to do this. Let 0 ≤ i ≤ n and
define ∂i : SnC → Sn−1C by deleting the ith row and ith column in the obvious way, for convenience
one might want to reindex the Aij as needed. Note that for ∂0, in order for the resulting n × n
square to start at the 0-column we need to quotient out by A1. As for the degeneracy functors let
σi : SnC → Sn+1C be the map duplicating the ith column and the ith row by inserting an identity
map and naturally fix Ai,i+1 to be the distinguished 0 object. The fact that the ∂i and σi satisfy
the necessary relation for S.C to be a simplicial object with SnC as n simplices is shown by routine
verification. However for this to be a simplicial Waldhausen category, we need all of these functors to
be exact, this is the content of the next proposition.

Proposition 4.1.6. (Exercise 8.2 of [6] chapter IV) Let C be a Waldhausen category. The functors
∂i : SnC → Sn−1C and σi : SnC → Sn+1C are all exact functors. In particular the S. construction maps
Waldhausen categories to simplicial Waldhausen categories, furthermore this construction naturally
defines a functor Wald→Wald∆op.

Proof. Due to the pointwise definitions of the 0 object and weak equivalences, it is easy to see that
both of these structures are preserved by the face and degeneracy functors. To see that cofibrations
are preserved, notice that a choice of 0 ≤ i < j < k ≤ n to test whether the induced map on the
associated triple of subquotients in the codomain Sn+1C or Sn−1C (depending on whether we want to
show the face or degeneracy maps preserve cofibrations) is a cofibration in S2C is, via reindexing, just
a corresponding choice of a triple subquotient in the domain SnC. But the morphism in S2C defined
by the reindexed triple is a cofibration by assumption of studying a cofibration in SnC. Once we know
cofibrations are preserved it is not hard to see that pushouts along cofibrations are preserved as the
pushout is computed pointwise. This concludes the proof.

It is not hard to see that if we denote wSnC the subcategory of SnC of weak equivalences, these
also fit into a simplicial category. We can view this as a functor w : Wald → Cat which by post
composition defines a functor Wald∆op → Cat∆

op . With this in hand we can define the K-theory
space of a Waldhausen category.

Definition 4.1.7. Let C be a Waldhausen category, denote by |wS.C| the following composition of
functors

Wald
S.•−−→Wald∆op w◦−−−−→ Cat∆

op B◦−−−−→ Top∆op |−|−−→ Top.

To clarify B ◦ − is postcomposition by geometric realization of categories and | − | is geometric
realization of simplicial topological spaces. The K-theory space K(C) of a Waldhausen category is
given by

Ω|wS.C|.

We define the K-groups of C to be the homotopy groups of KC.

Notice that there is no base point related ambiguity when taking the loop space of |wS.C| as this
space is connected. To see that this space is connected just notice that every point is path connected
to a 0 simplex, of which there is only one, as S0C = [1] is the trivial category. Also notice that the
coproduct, which always exists between two objects of a Waldhausen category, induces an H-space
structure on K(C).

Proposition 4.1.8. (Proposition 8.4 of [6] chapter IV) Let C be a Waldhausen category, then K0(C)
is generated by the set of weak equivalence classes of objects of C under the relation [B] = [A] + [B/A]
for every cofibration A↣ B.
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Proof. Because the loop space functor shifts homotopy groups we have that K0(C) = π1(|wS.C|).
Recall that wS0C is a point. Thus the fundamental group of a simplicial topological space X• with
X0 a point is presented by〈

[x],∀x ∈ π0(X1)
∣∣∣ ∂1([y]) = ∂0([y])∂2([y]),∀[y] ∈ π0(X2)

〉
.

To see this in general, one can consult the following MSE answer to a question I asked [31]. In our
case we have another way, which I learned from lemma 8.4.6 in [32]. Indeed, instead of viewing this as
a simplicial space, we view it as a bisimplicial set NpwSqC. We can study explicitly the (1, 0) simplices
to be trivial, the (0, 1) simplicies are the objects of C, the (1, 1) simplicies are the weak equivalences
of C and the (0, 2) simplicies correspond to cofibrations in C. With this in hand, we can understand
π1 by successive application of Seifert-Van Kampen (viewing the geometric realization as constructed
one cell at a time via pushouts) and recalling what the face maps for our bisimplicial set are, in order
to understand how the 2-cells glue to the 1-cells. It is not hard for the presentation we obtain this
way to be rewritten as the presentation we claimed above.
Independently of how, once we accept this presentation, it suffices to understand π0(BwS1C), π0(BwS2C)
and the maps ∂0, ∂1, ∂2 : wS2C → wS1C. The connected components of wS1C are the weak equiva-
lence classes of objects, wS2C are the weak equivalence classes of cofibrations and ∂i, 0 ≤ i ≤ 2 sends a
cofibration sequence to the ith element. Thus, it is clear that K0(C) has the claimed presentation.

We mention here three additional axioms a Waldhausen category can satisfy, which often come up
in nature and as hypotheses in theorems.

Definition 4.1.9. (Definition 9.1.1 in [6] chapter II) A Waldhausen category is called saturated if the
weak equivalences satisfy two out of three.

Definition 4.1.10. (8.2.1 in [6] chapter IV) We say that a Waldhausen category satisfies the extension
axiom if it satisfies the following 5-lemma. In a diagram of cofibration sequences where the outer maps
are weak equivalences,

A B C

A′ B′ C ′

≃ ≃ ,

then the middle map must also be a weak equivalence.

Definition 4.1.11. (Definition 8.8 and axiom 8.8.1 in [6] chapter IV) Let C be a Waldhausen category.
Recall Ar(C) is the category of arrows in C with morphisms from a→ b to c→ d being a pair a→ c
and b→ d making the obvious square commute. We say T : Ar(C)→ C is a cylinder functor if there
are natural transformation j1 : dom → T, j2 : cod → T and p : T → cod (where dom, cod are the
functors Ar(C) → C sending an arrow to the domain or codomain respectively). We require that all
of these maps satisfy some condition which we list here.

(i) They must fit into a diagram

A T (f) B

B

f

j1

p

j2

IdB

.

(ii) We must have T (0 ↣ A) = A and that the associated maps j2, p are both the identity.

(iii) The map j1 ⊔ j2 : A ⊔B → T (f) is a cofibration for all f : A→ B.

(iv) If a morphism (a, b) : f → f ′ in Ar(C) is pointwise a weak equivalence, then so is T (a, b) :
T (f)→ T (f ′).
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(v) If a morphism (a, b) : f → f ′ in Ar(C) is pointwise a cofibration then so is T (a, b) : T (f)→ T (f ′).
Furthermore, the map (whose existence is ensured by (iii))

dom(f ′) ⊔dom(f) T (f) ⊔cod(f) cod(f ′)→ T (f ′)

is also a cofibration.

We say that C satisfies the cylinder axiom if it has a cylinder functor T and every component map of
the natural transformation p : T → cod is a weak equivalence.

To round of this subsection off we define the relative K-theory space for an exact functor between
Waldhausen categories. Though we will only see why this space deserves this name with proposition
4.4.4.

Definition 4.1.12. (Definition 8.5.3 of [6] chapter IV) Let F : B → C be an exact functor between
Waldhausen categories. The category of small categories is complete, so define SnF as the pullback
(there is a mild abuse of notation as SnF is also the functor induced by F from SnB to SnC)

SnF Sn+1C

SnB SnC

∂0

SnF

.

A product of Waldhausen categories can easily be seen to be a Waldhausen category, and so it is not
hard to give SnF a natural Waldhausen category structure making it a Waldhausen subcategory of
SnB × Sn+1C.
The SnF fit into a simplicial Waldhausen category. We can apply the wS. construction degreewise
yielding a bisimplicial Waldhausen category wS.S.F . Now we can use geometric realization (three
times actually) to get a topological space which we denote by |wS.S.F |. The relative K-theory space
of F is

K(F ) = Ω2|wS.S.F |.

It will be interesting to notice that the functors SnB ← SnF → Sn+1C are exact. And similarly
using the cone SnB

SnF◦ιn←−−−−− C ιn+1−−−→ Sn+1C we can see that there is an inclusion as a Waldhausen
subcategory C → SnF . The maps ιn : C → SnC are given by inclusion as the constant cofibration
sequence C ↣ C ↣ · · ·↣ C.

4.2 Equivalence of the Q and S. construction

Let A be a quasi-exact category, such an object can naturally be seen as Waldhausen category by
declaring the cofibrations to be the admissible monics and the weak equivalences to be the isomor-
phisms. Upon doing this it is natural to ask whether the Q-construction and S. construction yield the
same K-theory, this is accomplished by the following result

Theorem 4.2.1. (Exercise 8.5, 8.6 in chapter IV of [6])(section 1.9 of [14]) Let A be a quasi-exact
category, we have a homotopy equivalence

BQA ≃ |iS.A|.

The notation iS. serves to indicate that we are taking the weak equivalences to be the isomorphisms.

Proof. In order to show this result we will construct the following commutative diagram

|s.A| |sub(s.A)| BQA

|iS.A| |sub(iS.A)| |iQ.A|

.
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We will then show that each map is a homotopy equivalence, which will yield the desired result that
|iS.A| ≃ BQA. By the fact that homotopy equivalences satisfy two out of three we will not need to
explicitly show that the middle vertical map and top right horizontal maps are homotopy equivalences.

We deal first with the left vertical map. For this we notice because we are working with small
categories, we have a functor Ob : Wald → Set which sends a category to its set of objects. We can
apply this degreewise to the S. construction, yielding a simplicial set s.C associated to any simplicial
Waldhausen category. Recall that sets can be viewed as categories with only identity morphisms, and
thus there is a natural inclusion s.C → iS.C. We claim this map is a homotopy equivalence. For
this first recall/notice (see proof of lemma 1.4.1 in [14]) that we can describe homotopies of simplicial
maps as follows. We have the over category ∆/[1], and so to any simplicial object in a category C we
can correspond the functor X∗ : (∆/[1])op → ∆op X−→ C∆op . A natural transformation of two functors
constructed this way τ : X∗ → Y ∗ corresponds to a homotopy of mapsX → Y . To make this somewhat
clearer notice that the face maps ∂0, ∂1 : [0]→ [1] and the obvious isomorphism ∆op ∼= (∆/[0])op gives
us two inclusions ∆op → (∆/[1])op, and so a diagram

∆op

∆op/[1] ⇓ τ C∆op

∆op
Y ∗

X∗

.

Restricting τ to the first or second copy of ∆ lying in ∆/[1] yields the two maps of simplicial sets
between which τ gives a homotopy. We leave further details to the interested reader. With this in
hand we can prove the following lemma.

Lemma 4.2.2. (Lemma 1.4.1 in [14]) A functor of Waldhausen categories F : C → D yields a map of
simplicial sets s.F : s.C → s.D. Furthermore, a natural transformation of functors yields a homotopy
of induced maps.

Proof. The fact that a functor of Waldhausen categories induces a map of simplicial sets is clear, to
prove that natural transformations τ : F → G of functors C → D induce simplicial homotopies we
use the above discussion. So we wish to construct a natural transformation τ∗ : s.C∗ → s.D∗. So we
need to associate to each map [n]→ [1] a map snC → snD. The elements of snC can be described as
a certain subset of the set of functors Ar([n]) → C. The category Ar([n]) is the category of arrows
in [n] with morphisms from a → b to c → d being pairs of morphism a → c, b → d fitting into a
commutative square. We make this remark as it will be easier to define τ∗ this way. Notice that the
natural transformation τ : F → G can equivalently be described as a functor C × [1]→ D.
Now let a : [n] → [1] be a map, and let A : Ar([n]) → C be a functor which corresponds to some
element of s.C. The Ar(−) construction can easily be extended to a functor of small categories, so let
τ∗,a(A) be the composition

Ar([n]) (A,Ar(a))−−−−−−→ C ×Ar([1]) (Id,p)−−−→ C × [1] τ−→ D.

The only element of the above definition which requires details is the map p : Ar([1]) → [1] which
maps Id0 to 0, Id1 to 1 and 0 → 1 to 1, from this it is obvious how to define p on morphisms.
From this it is simply a matter of verifying that the functor defined this way indeed corresponds to
an element of snD and that the map constructed this way is indeed natural. We do not make these
details explicit.

From this it follows that an equivalence of Waldhausen categories yields a homotopy equivalence
of corresponding simplicial sets. Now we prove the corollary to lemma 1.4.1 of [14], but for the proof
we follow the ideas implied in lecture 3 of [33] theorem 5.4.
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Proposition 4.2.3. (Corollary to lemma 1.4.1 of [14]) Let C be a Waldhausen category whose weak
equivalences are the isomorphism. Denote by s.C the simplicial set of objects underlying the simplicial
category S.C. The natural bisimplicial set inclusion s.C → iS.C is a homotopy equivalence (s.C is
constant in the second simplicial direction).

Proof. There is a Waldhausen category Ison(C) whose objects are the length n chain of composable
isomorphisms, whose morphisms are defined pointwise making the obvious ladder commute and whose
cofibrations and weak equivalences are defined pointwise. From this it is not hard to observe that
we have inSmC ∼= smIson(C), further this isomorphism is natural with respect the degeneracy and
face operators, so induces an isomorphism of bisimplicial sets. Under this isomorphism the natural
inclusion s.C → iS.C becomes the map s.C → s.Iso.(C) induced in degree n (in the simplicial direction
in which s.C is constant) by the inclusion as the length m identity chain ιn : C → Ison(C).
Because the s. construction preserves homotopy equivalences by the previous lemma, if we show that ιn
is a homotopy equivalence we are done. One can even show that it is an exact equivalence of categories,
following exercise 3.7 of lecture 2 of [33], but we will content ourselves by noting that it is a homotopy
equivalence with the help of Quillen’s theorem A A.0.2. Indeed, it is not hard to see that a terminal
object of ιn/(C1

∼−→ · · · ∼−→ Cn) is given by the obvious map (C1 = · · · = C1) → (C1
∼−→ · · · ∼−→ Cn).

This proves the desired claim.

Next we treat both left horizontal map, as they are homotopy equivalences for the same reason.
We first need to define what we mean by sub(X) for a simplicial object X.

Definition 4.2.4. (Appendix 1 of [34]) Consider T : ∆→ ∆ the functor which sends an ordered set
[n] to [2n + 1], where the effect of this functor on face and degeneracy maps are to be deduced from
writing T (x0 < x1 < · · · < xn) as x0 < x1 < · · · < xn < x′

n < x′
n−1 < · · · < x′

0. Then for a simplicial
object X the simplicial set sub(X) is the composition X ◦ T . We are slightly abusing the equivalence
of categories between ∆ and the category of finite ordered sets, but this is not a problem.

We do not verify that the above definition of Segal subdivision applied to the nerve of a category
produces the same simplicial set as first applying the subdivision defined in lemma 3.3.11 and then
taking the nerve. One can show that in general sub(X) ≃ X for any simplicial set, see for example
proposition A.1 in [34] or lemma 5.2 in [33] lecture 3. We only need to consider the case where X has
a single 0 simplex, this extra hypothesis allows for a (to my knowledge) new proof.

Lemma 4.2.5. Let X be a simplicial set with a single 0 simplex, then sub(X) ≃ X.

Proof. Let X be a simplicial set with a single 0 simplex. One can hope, for our common usage of the
notation sub(−) to not be too abusive that subdividing the category of simplices of X produces the
same result as taking the category of simplices of the subdivision of X. In formulas, we pray that

Simp(sub(X)) ≃ sub(Simp(X)).

Assuming this, it is easy to obtain the desired result. Indeed, we have the following chain of homotopy
equivalences by proposition A.0.7, lemma 3.3.12 and the assumption,

X ≃ N.Simp(X) ≃ N.sub(Simp(X)) ≃ N.Simp(sub(X)) ≃ sub(X).

Thus, if we find an equivalence of categories F : Simp(sub(X))→ sub(Simp(X)) we will have proven
the desired result. Denote by ∗ the unique 0 simplex of X, whenever we consider a map ∗ → ∆p in
Simp(X) we mean the inclusion as the first vertex. We can now define F . On objects, let F send
∆2n+1 → X to the following element of sub(Simp(X))

∗

∆2n+1 X

.
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Now given a morphism of simplices of sub(X)

∆2n+1 ∆2m+1

X

α

map it to the following map in sub(Simp(X))

∗ ∗

∆2n+1 ∆2m+1

X

Id

α .

It is easy to verify that this is indeed a functor with the claimed domain and codomain, to show that
it induces a homotopy equivalence we will use Quillen’s theorem A A.0.2. The reason we require to
have a single 0 simplex is so that we have a unique map ∆p → ∗ for all ∆p ∈ Ob(Simp(X)). Let B =

∆p

∆q X

be an object of sub(Simp(X)), we want to show that each F/B is contractible, we will do this by
providing a final object. Viewing Simp(sub(X)) as a subcategory of Simp(X) it is easy to notice that
this category is equivalent to the category Simp(sub(X))/∆q (this is where we need the existence and
uniqueness of morphisms ∆p → ∗). Denote by σ : [2q + 1]→ [q] the morphism which maps i to itself
when i ≤ q and to q if i ≥ q. Denote by d : [q] → [2q + 1] the natural inclusion, and notice that
σ ◦ d = Id. Then we can observe that

σ(∆q)

∆q X

d

will be the desired final object. Indeed, given a diagram

∆2n+1 σ(∆q)

∆q X

α d

we can always add σ ◦α : ∆2n+1 → σ(∆q) and given any map β : ∆2n+1 → σ(∆q) such that d ◦ β = α
we see by applying σ ◦− on both sides of the equality and using the identity σ ◦d = Id that β = σ ◦α.
This proves the desired result.

Remark 4.2.6. I was not able to show that to promote the abstract homotopy equivalent map to the
statement that the desired map is a homotopy equivalence. For this we refer the reader to lemma 5.2
of lecture 3 of [33].

This proves that the top horizontal map is a homotopy equivalence, to obtain the result for the
bottom map, fix the simplicial direction of the nerve, i.e. consider NpiS.A and its subdivision, and
then use the realization lemma A.0.5.

Now we show that the right most vertical map is a homotopy equivalence. For this we need the
following result called the swallowing lemma.
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Lemma 4.2.7. (Lemma 1.6.5 in [14]) Let A be a subcategory of a category B containing every object
(but not necessarily every morphism). Consider the bicategory AB defined in example 3.10.2 of [6]
chapter IV. The natural inclusion B → AB is a homotopy equivalence.

Proof. We can fix the A direction, and focus on showing that B → AnB is a homotopy equivalence.
This will yield the desired result by the realization lemma A.0.5. The m simplicies of the simplicial
set AnB are (n+ 1)× (m+ 1) grids with vertical maps in A and horizontal maps in B

A0n A1n · · · Amn

...
...

...

A01 A11 · · · Am1

A00 A10 · · · Am0

.

We can project on the bottom horizontal line, yielding a retract to the inclusion B → AnB. The other
composition sends a diagram as above to

A00 A10 · · · Am0

...
...

...

A00 A10 · · · Am0

A00 A10 · · · Am0

,

with every vertical map the identity. It is not hard to see how the arrows in the original diagram
allow us to define a natural transformation from this map to the identity, which shows that B is a
deformation retract of AnB. This proves the desired result.

Now let iQ.A be the simplicial category whose n simplices is the category whose objects degree n
elements of the nerve of QA and whose morphisms are pointwise isomorphisms making the obvious
diagram commute. Applying the above lemma shows that the obvious inclusion QA into iQ.A is a
homotopy equivalence.

Now we show that the bottom right map is a homotopy equivalence. We define the map degreewise.
So we need to define a map between the categories sub(iSnA) → iQnA. We also point out that the
index n is somewhat misleading, as we are working in the subdivided simplex, this corresponds to
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i0S2n+1A. So we are searching for a way to correspond to a diagram

A0n A1n · · · An−1,n Ann

A0,n−1 A1,n−1 · · · An−1,n−1

...
...

A01 A11

A00

an object of iQnA. Notice that the bottom “staircase” is a sequence of n composable morphisms in
QA, which is exactly what we are looking for. The rest of the diagram indicates all the ways how
to compose this staircase, as can be seen by recalling that composition is given by pullbacks. Recall-
ing that morphisms in QA are defined as an equivalence class of morphism we get the desired map
iSnA → iQnA by sending a diagram as above to the equivalence class of n the composable morphisms
in QA appearing in the staircase. To see that this is a homotopy equivalence notice that choosing a
representative yields a map the other way. It is not hard to see that this is an equivalence of categories.
Thus, the result map after geometric realization is a homotopy equivalence.

All that is left is to define the middle vertical map and the top right horizontal map. We will
not explicitly check that the diagram commutes as making this reasoning explicit adds nothing of
value. The middle vertical map comes from the functoriality of the sub(−) construction applied to
the left most vertical map. The top right map is defined in the same way as the bottom right maps
on object, the only difference is that by forgetting the morphisms we cannot check as directly that it
is a homotopy equivalence. Admitting that the diagram does in fact commute, this proves that the Q
and S. construction yield the same K-theory.

4.3 Additivity theorem

We now prove our first big theorem which does more than help define an Algebraic K-theory or equate
two Algebraic K-theories, the additivity theorem. Our proof comes from [15]. For this we define a
bisimplicial set for any exact functor F : C → D.

Definition 4.3.1. (Definition from [15]) Let F : C → D define S.F |D in bi-degree m,n to be the set

(0 = C0 ↣ · · ·↣ Cm, F (Cm) ↣ D0 ↣ · · ·↣ Dn),

with Ci ∈ C, Di ∈ D. The face and degeneracy operators are the natural deletion and insertion similar
to the definition of SnC. These maps fit together to make S.F |D a bisimplicial set.

Notice there is a natural projection S.F |D → S.C if we “cheat” and view S.C as bisimplicial set
which is constant in the second coordinate. For a simplicial set X. we denote X.L the associated
bisimplicial constant in the second coordinate. We define X.R, but constant in the first coordinate.
There is also a natural projection ρ : S.F |D → S.DR sending a generic element as in the definition to
0 = D0/D0 ↣ D1/D0 ↣ · · ·↣ Dn/D0. We use this definition to derive a technical lemma from the
following proposition.

Proposition 4.3.2. (Proposition from [15]) Let F : C → D be an exact functor between Waldhausen
categories. Then S.F : S.C → S.D is a homotopy equivalence if and only if ρ : S.F |D → S.DR is a
homotopy equivalence.
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Proof. We have a commutative diagram

S.DR S.F |D S.CL

S.DR S.IdD|D S.DL

Id

ρ

F

π

S.F

ρ π

,

where we allowed ourselves a slight abuse of notation in the middle vertical map. The proposition
follows if we show that both π appearing in the diagram and the bottom ρ are homotopy equivalences
because homotopy equivalences satisfy two out of three.
Notice if we show that the top π is a homotopy equivalence then because F is arbitrary we will have
shown that the bottom π is a homotopy equivalence. By the realization lemma (A.0.5) it suffices to
show that πm : S.F |D([m],−)→ SmCL is a homotopy equivalence. We can rewrite this as wanting to
show that the natural map ⊔

0=C0↣···↣Cm

N(co(F (Cm)/D))→
⊔

0=C0↣···↣Cm

∗,

is a homotopy equivalence (by co(F (Cm)/D) we mean the subcategory of F (Cm)/D with objects only
the cofibrations and morphisms only those which are cofibration in D). To prove this it suffices to
prove that each N(co(F (Cm)/D)) is contractible. This is clear because each co(F (Cm)/D) has the
identity map as an initial object.
It suffices to show that ρ : S.IdD|D → S.DR is a homotopy equivalence. For this we follow [35]. We
use the realization lemma A.0.5 in order to reduce to showing that ρn : S.IdD|D(−, [n])→ SnDR is a
homotopy equivalence. We will construct an explicit homotopy inverse, motivated by the fact that it is
not hard to find a map which is a strict one-sided inverse (and so we hope it is an inverse on the other
side up to homotopy). Define νn : SnDR → S.IdD|D(−, [n]) by sending 0 = F0 ↣ F1 ↣ · · · ↣ Fn
to 0 = 0 = · · · 0 ↣ F0 ↣ F1 ↣ · · · ↣ Fn. As was announced it is easy to see that ρn ◦ νn
is the appropriate identity map, now we study the other composition. We get that νn ◦ ρn maps
0 = D0 ↣ D1 ↣ · · · ↣ Dm ↣ E0 ↣ · · · ↣ En to 0 = 0 = · · · = 0 ↣ E0/E0 ↣ E1/E0 ↣ · · · ↣
En/E0. We show this map is homotopic to the identity by providing an explicit homotopy, we leave
it up to the reader to verify that this is a homotopy as this is routine verification. Let 0 ≤ i ≤ m
and consider the map hi : S.IdD|D([m], [n]) → S.IdD|D([m + 1], [n]) which sends a generic element
0 = D0 ↣ D1 ↣ · · ·↣ Dm ↣ E0 ↣ · · ·↣ En to 0 = D0 ↣ · · ·↣ Di ↣ E0 = E0 = · · · = E0 ↣
E1 ↣ · · · ↣ En. The map dm+1hm doubles E0 and then collapses the identity map inserted this
way, so is obviously the identity map. The map d0h0 replaces all the Di by E0 for i > 0, then deletes
D0 and finally quotients out by E0, all the E0 added thus become 0 and the part which “survives”
becomes E0/E0 ↣ E1/E0 ↣ · · ·↣ En/E0. So up to routine verification, this shows the desired claim
that νn ◦ ρn ≃ IdS.IdD|D(−,[n]). And this concludes the proof of this proposition

From this we can prove the technical result which is the test for homotopy equivalence we will use
in the proof of additivity.

Lemma 4.3.3. (Corollary from [15]) Let F : C → D be an exact functor of Waldhausen categories.
For each n ∈ N there is a simplicial map En : S.F |D(−, [n]) → S.F |D(−, [n]) which sends a generic
element

(0 = C0 ↣ · · ·↣ Cm, F (Cm) ↣ D0 ↣ · · ·↣ Dn)

to
(0 = 0 ↣ · · ·↣ 0, F (0) = 0 = D0/D0 ↣ D1/D0 ↣ · · ·↣ Dn/D0).

Suppose that each En is a homotopy equivalence, then so is S.F .

Proof. The map ρn : S.F |D → SnDR(−) is split by an inclusion In sending D1 ↣ · · ·↣ Dn to

(0 = 0 ↣ · · ·↣ 0, F (0) = 0 = D0/D0 ↣ D1/D0 ↣ · · ·↣ Dn/D0).
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It is not hard to see that In ◦ ρ = En. We apply geometric realization and πi. Because ρn ◦ In = Id
and In ◦ ρn is an isomorphism this is enough to see that πi(|ρn|) is injective and surjective, thus
an isomorphism. So ρn is a weak equivalence of CW complexes. Thus ρ is degreewise a homotopy
equivalence, which by the realization lemma implies that ρ is a homotopy equivalence. We conclude
the desired result by the previous proposition.

We are almost ready to prove the additivity theorem following Prof. McCarthy. We just need one
more definition.

Definition 4.3.4. (9.3 in [6] chapter II) Let C be a Waldhausen category, and denote by EC the
category whose objects are cofibrations sequences of C and with morphisms natural transformations
of such sequences. This category can be made into a Waldhausen category. Call a map

A B C

A′ B′ C ′

a cofibration if the outer vertical and the natural map A′ ∪A B → B′ are all cofibration. And call a
map a weak equivalence if it is pointwise a weak equivalence.

Theorem 4.3.5. (Theorem from [15]) Let C be a Waldhausen category and consider the exact functor
F : EC → C × C which sends A↣ B ↠ C to (A,C). Then S.F is a homotopy equivalence.

Proof. To make things clearer, consider a generic element of S.F |C2([m], [n])

0 = A0 A1 · · · Am Am S0 · · · Sn

0 = B0 B1 · · · Bm

0 = C0 C1 · · · Cm Cm T0 · · · Tn

.

The notation of the horizontal maps in the left part of the diagram is slightly misleading, as we require
more than being a pointwise cofibration. In addition, these assemble into a cofibration in EC
Let Xn be the subsimplex of S.F |C2(−.[n]) given by letting all the Ai = 0 and S0 = 0 and thus
Bi = Ci. We define Γ : S.F |C2(−, [n]) → S.F |C2(−, [n]) by the natural map given by quotienting by
A• and S0. Specifically, Γ sends a generic element as above to

0 0 · · · 0 0 0 = S0/S0 · · · Sn/S0

0 = C0 C1 · · · Cm

0 = C0 C1 · · · Cm Cm T0 · · · Tn

.

So Γ is a retraction of the natural inclusion Xn → S.F |C2(−, [n]). Suppose we show that En|Xn is a
homotopy equivalence and Γ ≃ IdS.F |C2(−,[n]). Then En ≃ En ◦Γ = En|Xn ◦Γ, which would show that
En is a homotopy equivalence, proving the claim by the above lemma.
We first show that En|Xn is a homotopy equivalence. We can write a general element of Xn as

0 0 · · · 0 0 = S0 S1 · · · Sn

0 = C0 C1 · · · Cm

0 = C0 C1 · · · Cm Cm T0 · · · Tn

.
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The image of such an element under En can be seen to be

0 0 · · · 0 0 = S0 S1 · · · Sn

0 0 · · · 0

0 0 · · · 0 0 0 = T0/T0 · · · Tn/T0

.

We construct an explicit homotopy from En|Xn to IdXn following [36]. Let hi : (Xn)m → (Xn)m+1
be the map which sends a generic element of Xn as above to

0 0 0 0 0 · · · 0 0 = S0 S1 · · · Sn

0 = C0 C1 · · · Ci T0 · · · T0

0 = C0 C1 · · · Ci T0 · · · T0 T0 T0 · · · Tn

Id Id

Id Id

.

We put enough T0 so that the left hand side consists of m+1 composable morphisms, in particular
hm adds one T0 at the very right. Then we can see that dmhm = IdXn as dm exactly removes the T0
which hm added. We also see that d0h0 is the desired map as h0 replaces every non-zero object on the
left half of the diagram by T0 and so d0 quotients this by T0, which is the desired map.

Next we show that Γ is in fact homotopic to the identity map, which will conclude the proof.
We provide an explicit definition of the components hi of a homotopy. Consider a generic element of
S.F |D([m], [n]), let Xj = Bj ⊔Aj S0 and 0 ≤ i ≤ m. Define hi of this generic element to be

0 = A0 A1 · · · Ai S0 S0 · · · S0

0 = B0 B1 · · · Bi Xi Xi+1 · · · Xm

0 = C0 C0 · · · Ci Ci Ci+1 · · · Cm

and
S0 S0 · · · Sm

Cm T0 · · · Tm

(one should imagine these two diagrams next to each other as an element of S.F |D([m+ 1], [n])). To
check that these maps assemble into the desired homotopy is routine verification. This concludes the
proof of the additivity theorem.

One can use the above homotopy level theorem to obtain a result more obviously warranting the
name of additivity theorem. For this we need the following definition.

Definition 4.3.6. (Definition 1.1 in [6] chapter V) Suppose we have three exact functors F, F ′, F ′′ :
C → D between Waldhausen categories, together with natural transformations which we denote F ↣
F ′ ↠ F ′′. We call such a sequence an exact or cofiber sequence of exact functors if for every object
A ∈ C we have that F (A) ↣ F ′(A) ↠ F ′′(A) is a cofibration sequence and for every cofibration
A↣ B the natural map F (A) ∪F ′(A) F (B′) ↣ F (B) is a cofibration.
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With this definition in hand we can state the additivity theorem as stated in the K-book.

Corollary 4.3.7. (Theorem 1.2 in [6] chapter V) Let F ↣ F ′ ↠ F ′′ : C → D be an exact sequence
of exact functors between Waldhausen categories. Then F ′

∗ ≃ F∗ + F ′′
∗ as maps between the H-spaces

K(C)→ K(D). In particular by taking homotopy groups we have Ki(F ′) = Ki(F ) +Ki(F ′′).

Proof. An exact sequence of functors can easily be seen to induce a functor EF : C → ED. Now
consider the exact functors s, t, q : ED → D which send an exact sequence respectively to the source,
target and quotient term of the exact sequence. Notice that t indeed preserves cofibrations (the rest
of the verification of exactness are clear) as can be seen by the following diagram

A B

A′ A′ ∪A B

B′

.

Indeed, the map B → A′ ∪A B is a cofibration as it is a pushout of a cofibration and A′ ∪A B → B′ is
a cofibration by the Waldhausen structure of ED.
It suffices to show that t∗ ≃ (s⊔ q)∗ because the H-space structure of K(C) comes from the coproduct.
It is not hard to see that the following diagram commutes

D ×D ED D
⊔ t

s⊔q

.

The functor ⊔ : D × D → ED sending a pair (A,B) to the exact sequence A ↣ A ⊔ B ↠ B is a
one-sided inverse of the map we proved to be a homotopy equivalence in the above theorem 4.3.5, and
in particular by 2 out of 3 is a homotopy equivalence. Thus, we see that t∗ ≃ s∗ + q∗ which proves the
desired claim.

Waldhausen [14] proves the equivalence of four different versions of the additivity theorem. We
add to our discussion of additivity the following version of additivity.

Definition 4.3.8. (Definition following lemma 1.1.6 in [14]) Let B be a Waldhausen category, with
two exact subcategories A, C. There is an obvious category of cofibrations E(A,B, C) whose objects
are the cofibrations with first term in A, middle term in B and final term in C. It is easy to see
how to make this a Waldhausen category, inspired by the definition of EC and that the three natural
projection functors are all exact.

Proposition 4.3.9. (Proposition 1.3.2 (iv) implies (i) from [14]) Let A, C be exact subcategories of a
Waldhausen category B, then the map wS.E(A,B, C)→ wS.A× wS.C sending A↣ B ↠ C to (A,C)
is a homotopy equivalence.

Proof. Call the functor we wish to show is a homotopy equivalence F , it splits by sending a pair (A,C)
to the cofibration sequence A ↣ A ⊔ C ↠ C, call this map σ. Because we know Fσ is the identity,
to prove the desired claim it suffices to show that the composition σF is homotopic to the identity.
Define two exact endofunctors of E(A,B, C), d which maps a cofibration A ↣ B ↠ C to the trivial
cofibration A = A↠ 0 and c which maps a cofibration sequence to the trivial cofibration 0 ↣ B = B.
It is not hard to see that we have exact sequences of endofunctors d ↣ Id ↠ c and d ↣ σF ↠ c.
By the corollary to the additivity theorem 4.3.7, this implies that σF ≃ c+ d ≃ Id which proves the
desired result.
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4.4 Infinite loop spaces and pairing in Waldhausen K-theory

In this section we wish to show that the definition of relative K-theory we gave warrants that name,
in other words it fits into an exact sequence of K-groups. We will be able to do this at the space
level, we shall then use this to deloop the K-theory space. For a functor F : C → D we already have
a sequence of exact functors between simplicial Waldhausen categories (D is viewed as a constant
simplicial Waldhausen category)

D → S.F → S.C.

We can apply the wS. construction degreewise and the next proposition explains why we might want
to do that.

Proposition 4.4.1. (Proposition 1.5.5 in [14]) The sequence wS.D → wS.S.F → wS.S.C is a homo-
topy fibration.

Proof. We will prove this by showing that we can apply lemma 5.2 of [37]. We have repeated the
statement of this result in the appendix as proposition A.0.6. The composition is clearly a constant
map, as we project onto a different coordinate then the one we include in to. Now we fix some n and
consider the sequence of simplicial sets

wS.D → wS.SnF → wS.SnC.

The base space is connected, so it suffices to show that this sequence of simplicial sets is a homotopy
fibration. We consider two interesting subcategories of SnF , on the one hand we have that D lives
in SnF by inclusion as the constant cofibration sequence, call A this subcategory isomorphic to D.
Now consider the subcategory B of pairs (0 = C0 ↣ C1 ↣ · · · ↣ Cn, 0 ↣ D0 ↣ · · · ↣ Dn) with
D0 = 0. We see that such elements are uniquely determined by the first coordinate, and so this
subcategory is isomorphic to SnC. Now there are exact functors JA, JB : SnF → SnF which map into
the subcategory denoted by the subscript. Define JA to send a generic element (0 = C0 ↣ C1 ↣
· · · ↣ Cn, 0 ↣ D0 ↣ · · · ↣ Dn) to (0 = · · · = 0, D0 = · · · = D0) and define JB to send a generic
element to (0 = C0 ↣ C1 ↣ · · · ↣ Cn, 0 ↣ D0/D0 ↣ D1/D0 ↣ · · · ↣ Dn/D0). It is clear that
these fit into an exact sequence of functors JA ↣ Id ↠ JB, and so by additivity we have that the
identity functor of wS.SnF is homotopic to wS.JA + wS.JB.
We have a map G : D × SnC → SnF which maps a pair (D, 0 = C0 ↣ C1 ↣ · · · ↣ Cn) to
(0 = C0 ↣ C1 ↣ · · · ↣ Cn, 0 ↣ D ↣ D ⊔ F (C1) ↣ · · · ↣ D ⊔ F (Cn)). The natural projection
(JA, JB) : SnF → D × SnC splits this map, and by the above discussion the other composition
is homotopic to the identity. Applying the wS. construction yields vertical homotopy equivalences
fitting into the following diagram

wS.D wS.SnF wS.SnC

wS.D wS.D × wS.SnC wS.SnC

Id wS.(JA,JB) Id .

Because the composites of both the top and bottom rows are equal to a constant map, the pointwise
weak equivalence is enough to deduce that the top row is a homotopy fiber sequence from the fact
that the bottom row is. This verifies the last assumption needed to apply lemma A.0.6, yielding the
desired result.

With such a tool in hand, it is natural to study what happens when F = IdC . The above lemma
yields something interesting in this case.

Lemma 4.4.2. (Lemma 8.5.4 in [6] chapter IV) The simplicial set wS.IdC is contractible.

Proof. A generic element of wSnIdC is entirely determined by its value in the second coordinate, which
is free to be anything. Thus, this space is equivalence to wSn+1C which means that as a simplicial
set wS.IdC = PwS.C (see [4] 8.3.14). We know that the path space of a simplicial set is homotopy
equivalent to the constant simplicial set of 0 simplices of the original simplicial set. In our case this
means wS.IdC is homotopy equivalent to a single point, i.e. contractible.
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We can use the above lemma in the fibration up to homotopy obtained in proposition 4.4.1 to
obtain Ω|wS.S.C| ≃ |wS.C|. In fact, we can do better.

Proposition 4.4.3. (8.5.5 in [6] chapter IV) The space K(C) is an infinite loop space, with (n− 1)th
delooping given by K(C) = Ωn|wSn.C|, where Sn.C is the nth iterated application of the S. construction.

Proof. We proceed by induction on n, the 0th delooping is by definition and the case n = 2 follows
from applying the loop space construction to the homotopy equivalence discussed above. Now suppose
we have that K(C) = Ωn|wSn.C|, we want to show the result for n + 1. From the fibration obtained
in proposition 4.4.1 applied to the identity functor, we can by repeated degreewise application of the
S. construction obtain a sequence of n+ 1-simplicial categories

wSn.C → wSn+1.IdC → wSn+1.C,

where wSn.C is constant in the “final” simplicial degree. By repeated application of the realiza-
tion lemma, lemma A.0.6 and geometric realization we can see on the one hand that wSn+1.IdC is
contractible (by degreewise contractility and induction) and the above sequence of n + 1 simplicial
categories is a fibration up to homotopy (because it is degreewise so by induction, and then apply
lemma A.0.6). This is enough to obtain the desired claim.

This allows to work with the K-theory spectrum KC which is Ω|wS.C| at level 0 and {|wSn.C|}∞n=1
beyond 0. Our work so far shows this is an Ω-spectrum. In fact one can even show (see appendix of [19])
that these spaces assemble into a symmetric spectrum, we will assume this result. It is easy to see this
does not change the definition of the K-groups of a Waldhausen category. We will not systematically
work with the K-theory spectrum, and will be alternating freely between this and the K-theory space.

By repeatedly taking the homotopy fiber of the fibration from proposition 4.4.1 and the discussion
preceding the previous result, we get for any exact functor of Waldhausen categories F : C → D a
fibration up to homotopy

Ω2|wS.S.F | → Ω|wS.C| → Ω|wS.D|.

As these are all K-theory spaces, we have almost justified calling K(F ) = Ω2|wS.S.F | a relative K-
theory space. In order for this space to actually deserve this name, we need the following proposition.

Proposition 4.4.4. (Exercise 1.7 in [6] chapter V) Let F : C → D be an exact functor of Waldhausen
categories. In the long exact sequence coming from the up to homotopy fibration

K(F )→ K(C)→ K(D)

constructed above, the map Ki(C)→ Ki(D) is the one induced by F .

Proof. We have a diagram of bisimplicial categories, where the two bisimplicial categories on the left
of the diagram are constant in the second simplicial direction

wS.C wS.SnIdC wS.SnC

wS.D wS.SnF wS.SnC

wS.F F Id .

The middle vertical map applies the functor F on the second coordinate in the obvious way, this is
well-defined as F is exact, so preserves quotients. We know that geometrically realizing this diagram
yields a map of up to homotopy fibrations. At which point we can take homotopy fibers. This yields

Ω|wS.S.C| |wS.C| |wS.SnIdC |

Ω|wS.S.C| |wS.D| |wS.SnF |

Id wS.F F .
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Our goal is to use that the first top horizontal map is a homotopy equivalence to consider the up to
homotopy fibration |wS.C| → |wS.C| → |wS.S.F | and understand the first map, we can do this by
adding a morphism to our diagram, to get

Ω|wS.S.C| |wS.C| |wS.SnIdC |

|wS.C| Ω|wS.S.C| |wS.D| |wS.SnF |

Id wS.F F

Id

.

Now the diagram only commutes up to homotopy, but this is enough to see, that up to homotopy, the
map wS.C → wS.D is the map induced by F . Which is the desired result.

This officially finishes the discussion to support the claim that K(F) is an appropriate construction
for relative K-theory. We may now move on to discussing pairings in K theory. To do this we use the
material at the end of section 8 in [6] chapter IV, the discussion on page 342 of [14] and the appendix
of [19].

Definition 4.4.5. (8.11 in [6] chapter IV) Let A,B, C be Waldhausen categories, a functor F :
A× B → C is called biexact if each functor F (A,−), F (−,B) is exact and for any pair of cofibration
(A ↣ A′) ∈ co(A).(B ↣ B′) ∈ co(B) the natural map F (A′, B) ∪F (A,B) F (A,B′) → F (A′, B′) is a
cofibration.

Now suppose we have a biexact functor F : A × B → C. To show that this induces a pairing in
K-theory F : KA ∧KB → KC. We detail the pairing in the case KA1 ∧KB1 → KC2 and refer the
reader to the appendix of [19] for a full exposition in the language of symmetric spectra.

A biexact functor induces a functor SnA × SmB → SnSmC by sending a pair (0 ↣ A1 ↣ · · ·↣
An, 0 ↣ B1 ↣ Bm) to a diagram

F (An, 0) F (An, B1) · · · F (An, Bm)

...
...

...

F (A1, 0) F (A1, B1) · · · F (A1, Bm)

0 F (0, B1) · · · F (0, Bm)

.

It is not hard these fit into a bisimplicial map, and then to restrict/corestrict to get a map wS.A ×
wS.B → wS.S.C. This corestriction works by bi-exactness. Notice, with notation as above, that if ei-
ther Ai = 0 for all 1 ≤ i ≤ n or Bi = 0 for all 1 ≤ i ≤ m then because we point of all our categories with
0 objects, we have that the image is a diagram with all object the 0 objects and all maps the identity.
What this means is that the geometric realization |wS.A| × |wS.B| → |wS.S.C| factors through the
smash product. The map |wS.A|∧|wS.B| → |wS.S.C| induces a map Ω|wS.A|∧Ω|wS.B| → Ω2|wS.S.C|.
Indeed, the smash product is a functor from Top2 to Top which means we can smash maps, in partic-
ular loops. This defines a map Ω|wS.A| ∧Ω|wS.B| → Ω2(|wS.A| ∧ |wS.B|) and now we post compose
with Ω2 of the map constructed above to get a map Ω|wS.A| ∧ Ω|wS.B| → Ω2|wS.S.C|.

This shows that a biexact functor induces a pairing of K-theory spectra which by precomposition
by Ω|wS.A|×Ω|wS.B| → Ω|wS.A|∧Ω|wS.B| provides a pairing Ki(A)×Kj(B)→ Ki+j(C). This ends
this section.
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Remark 4.4.6. Both in [14] and [6] there is some subtlety in the fact that S.S.C is a bicategory, and
thus we need to take week equivalences in two different directions and then we need to somehow show
wS.wS.C ≃ wS.S.C using the swallowing lemma. I was not able to apply the swallowing lemma to
obtain this result. Further, other sources, notably [19] ignores this subtlety in the appendix. Which
(somewhat) justifies ignoring this subtlety as well.
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5 Selection of theorems in K-theory

We prove in this section a selection of theorems, which we will use to relate the K-theory of the fields
of prime order, the rationals and the integers.

5.1 Waldhausen Localization

The key result of this section allows to change the class of weak equivalences in a Waldhausen category,
which we would expect to be related to the original Waldhausen category. Further intuition would
lead us to believe that in K-theory, the difference should be exactly those objects which are weakly
equivalent to 0 with respect to the finer class of weak equivalences. This intuition is correct as
formalized by the following statement.

Theorem 5.1.1. (2.1 in [6] chapter V) Let A be a category with cofibrations made into a Waldhausen
category with two different classes v(A) ⊂ w(A) of weak equivalences. Suppose that (A, w) is: satu-
rated, satisfies the cylinder axiom and the extension axiom. Denote by Aw the Waldhausen subcategory
of (A, v) of objects such that 0→ A is a w-weak equivalence. Then we have a homotopy fibration

K(Aw)→ K(A, v)→ K(A, w).

Proof. We use the notation of the theorem without repeating it. The proof will consist in applying
the homotopy fibration Ω|wS.S.C| → |wS.D| → |wS.S.F | for any exact functor F : C → D to the
exact inclusion ι : (Aw, v)→ (A, v) and then identifying the relative K-theory space. We will on the
one hand show that v.S.S.ι can be identified with v.cow.S.A (we will detail what this is in the course
of the proof) and then fit this into a commutative diagram which will allow us to replace v.cow.S.A
with wS.A.

We as usual allow ourselves to ignore the choice of quotients in the various S. constructions we use.
Consider A↣ B a cofibration which is also a w−weak equivalence, also called a w−trivial cofibration.
Applying the gluing axiom to

0 A B

0 B B

Id ∼w

∼w

Id

Id

shows that the map A/B → B/B ∼= 0 is a w−weak equivalence, which shows that a w−trivial
cofibration has quotient in Aw by applying the saturation axiom to

A/B

0 0
Id

.

Conversely, suppose A↣ B has quotient in Aw. We can apply the extension axiom to

A A 0

A B A/B

Id

Id

to obtain that such a cofibration must be w−trivial. So the w− trivial cofibrations are exactly those
whose quotient lies in Aw. What this shows is that projection onto the second coordinate of Snι yields
an equivalence with cownA the category of all sequences of n composable w−trivial cofibrations, with
morphisms ladders with vertical maps in A. Indeed, it is easy to see that if C0 ↣ C1 ↣ · · ·↣ Cn is
an element in the image of the projection Snι → SnA, then each cofibration C0 ↣ Ci is a w-trivial
cofibration, and because w(A) is saturated this is enough to show that each Ci ↣ Cj is a w−weak
equivalence and so in particular a w−trivial cofibration. This yields a map Snι → cownA, it is not
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hard to construct the map the other way thus establishing the equivalence of categories.
And so by exactness of the equivalence we also get an equivalence of vSnι and v.cownA which by
the realization lemma yields an equivalence of vS.ι and v.cow.A. Now because of the level of gen-
erality with which we are working we can replace A by S.A, which yields a homotopy equivalence
vS.S.ι→ v.cow.S.A. Indeed, saturation, the extension axiom and cylinder axiom are all inherited by
S. construction. And so we can postcompose the homotopy fibration

Ω|vS.S.Aw| → |v.SA| → |vS.S.ι|

with the homotopy equivalence we just established, to obtain the homotopy fibration

Ω|vS.S.Aw| → |v.SA| → |v.cow.S.A|.

We can replace the left most space by vS.Aw using the loop space structure of Waldhausen K-theory
shown in proposition 4.4.3. This allows us to fit the above homotopy fibration in the following diagram
of simplicial sets

vS.Aw vS.A v.cow.S.A

wS.A v.w.S.A

.

The bottom map is a homotopy equivalence by an immediate application of the swallowing lemma.
If we show that the vertical map is a homotopy equivalence we are done as replacing the base space
with a homotopy equivalent space does not change the homotopy type of the homotopy fiber, thus
we will get the desired result. The fact that the vertical map is a homotopy equivalence will follow at
once from the following lemma

Lemma 5.1.2. (Exercise 8.15 in [6] chapter IV)(Lemma 1.6.3 in [14]) Let (C, co, w) be a saturated
Waldhausen category with a cylinder functor T : C[2] → C satisfying the cylinder axiom. Then the
inclusion of the category of trivial cofibrations into the category of weak equivalences is a homotopy
equivalence.

Proof. Let w.C be the category of weak equivalence in C and cow.C the subcategory of those weak
equivalences which are also cofibrations. We show that the inclusion ι : cow.C → w.C is a homotopy
equivalence by appealing to Quillen’s theorem A (A.0.2).
That means we need to show that for each object B ∈ C that the category ι/B is contractible. By
the cylinder axiom, for every object f : A ∼w−−→ B in ι/B the map p : T (f)→ B is a weak equivalence,
thus T defines an endofunctor of ι/B, which we call p∗. The saturation axiom is used to see that the
maps A → T (f) ← B are weak equivalences by applying two out of three to the post composition
with p. These are also cofibrations as they are the composite of two maps which are axiomatically
cofibrations, for example in the case of A we have A↣ A ⊔B ↣ T (f).
This means that we can extend the maps A → T (f) ← B to maps of functors, which can easily be
checked to be natural, Id→ p∗ ← cIdB

, where cIdB
is the constant map sending every object A ∼w−−→ B

to the identity of B. This shows that the identity of ι/B is homotopic to a constant map, in other
words ι/B is contractible, which is the desired claim.

The above result can be “upgraded” to a result about K-theory spectra, i.e. we have a homotopy
fibration of spectra. This is interesting because spectra are a stable homotopy category and thus
homotopy fibrations and homotopy cofibrations are the same thing (see [9] theorem 7.1.11). The
upgrading into a result about spectra is done by the following result.

Proposition 5.1.3. (From my advisor Prof. Rognes) Suppose we have a sequence of functors of
Waldhausen categories A F−→ B

G−→ C such that K(G) ◦K(F ) is null homotopic (thus K(G) ◦K(F ) as
well by applying Ω∞). Then K(A) K(F )−−−→ K(B) K(G)−−−→ K(C) is a homotopy fibration in the category of
spaces with the additional property that π0(K(G)) is surjective if and only if K(A) K(F )−−−→ K(B) K(G)−−−→
K(C) is a homotopy fibration in the category of spectra.
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Proof. (⇐) Saying that K(A) K(F )−−−→ K(B) K(G)−−−→ K(C) is a homotopy fibration is the same as saying
that the natural map α : K(A)→ hofib(K(G)) is a weak equivalence. Now the spectra hofib(K(G))
can be understood better one degree at a time. We have hofib(K(G))n = hofib(K(G)n), in particular
in degree 0 we have that this is equal to hofib(K(G)). The map α is also constructed degreewise, thus
applying the functor Ω∞ : Sp → Top to all the data which is given to us yields a map α0 : K(A) →
hofib(K(G)) which can serve as the natural map between these two spaces.
We are done proving this direction if we show each πi(α0) is an isomorphism. Ideally, we want to show
that πi(α0) = πi(α), with the first π∗

i meant to emphasize that this is the functor whose domain is the
category of spectra. This (up to isomorphism) follows from the fact that both K(A) and hofib(K(G))
are Ω-spectra, thus all the maps in the diagram over which π∗

i (α) : π∗
i (K(A)) → π∗

i (hofib(K(G))) is
a colimit are isomorphisms. And so in particular πi(α0) is an isomorphism if and only if π∗

i (α) is an
isomorphism.
The fact that K(A) is an Ω-spectrum has been proven in proposition 4.4.3, so we just need to argue
the same holds true for hofib(K(G)). This follows at once by using the fact that Ω commutes
with homotopy fibers. To see this one needs the definition of K(B)n

K(G)n−−−−→ K(C)n and a small
strengthening of proposition 4.4.3 to generalize to morphisms. The desired surjectivity follows from
the connectivity of the spectra and the homotopy long exact sequence.
(⇒) We want to show that K(A) K(F )−−−→ K(B) K(G)−−−→ K(C) is a homotopy fibration, i.e. we want to
show that the natural map α : K(A)→ hofib(K(G)) is a weak equivalence. Note that both of these
spectra are connective, the first by study of i-cells of the nth level space for i < n and the second by the
homotopy long exact sequence and surjectivity of π0(K(G)). Thus, we only need to concern ourselves
with the positive homotopy groups. For this, same as above, we can use the fact that we are working
with Ω-spectra to see that π∗

i = πi ◦Ω∞. Now by assumption, the natural map K(A)→ hofib(K(G))
is a weak equivalence. And similarly as above, using the level-wise construction of α we can see that
the natural map K(A)→ hofib(K(G)) can be taken to be α0, thus proving that π∗

i (α) = πi(Ω∞(α))
is an isomorphism.

This allows us to upgrade Waldhausen localization as the nullhomotopy of the composite is defined
at the category level. Indeed, the composite functor Aw → A is the inclusion, and for every object
A ∈ Aw there is a unique morphism 0 → A which fit together into a natural transformation from
the 0 map to the composite. A perfectly analogous reasoning can be done after any number of finite
iterations of the S. construction essentially because weak equivalences are defined pointwise in S.A.
This in particular means that the induced map in K-theory spectra is nullhomotopic, and applying
Ω∞ yields the nullhomotopy of the homotopy fibration given by Waldhausen localization.

We present an application of the above theorem which allows us to compute the K-theory of an
exact category by instead computing K-theory of a Waldhausen category satisfying the cylinder axiom,
which is technically convenient. To state the theorem, we need to define Chb(C) for an exact category
C embedded into an abelian category A. This category is the category of bounded chain complexes in
C turned into a Waldhausen category by letting the cofibrations be the pointwise admissible monics
and the weak equivalences the maps which are quasi-isomorphisms in Chb(A). We do not verify that
this indeed, defines a Waldhausen category.

Proposition 5.1.4. (2.2 in [6] chapter V)(1.11.7 of [16]) Let C be an exact category in some ambient
abelian category A. Suppose further, that whenever f ∈ mor(C) is a surjection in A then ker(f) is
in C. By considering complexes concentrated in degree 0 we get an exact inclusion C → Chb(C) which
induces a homotopy equivalence on K-theory spaces.

Proof. Denote by Ch[a,b] the category of chain complexes in C such that the term indexed by i is 0
when i /∈ [a, b] and by C[a,b]

exact the subcategory of those complexes which are acyclic viewed as elements
of Ch(A). We can take the colimit as a and b tend to infinity to obtain the category Chb(C) of
bounded chain complexes and the subcategory Cbexact of those chain complexes which are acyclic in
A. We equip Ch[a,b] with two different class of weak equivalences i ⊂ w. The former is the class
of pointwise isomorphisms and the latter are those maps which are weak equivalences in Ch(A). It
is easy to see that the Waldhausen structure defined above on the colimit agrees with the colimit of

72



(Ch[a,b], w) taken in the category of Waldhausen categories. In other words we have the colimit in the
category of Waldhausen categories

lim−→(Ch[a,b], w) ∼= (Chb(C), w).

We similarly get a Waldhausen structure (Chb(C), i) and (Cbexact, i). The category Chb(C) is saturated
with respect to both classes of weak equivalences and admits a cylinder functor satisfying the cylinder
axiom given by the classical cylinder functor on chain complexes (see 1.5.5 in [4]). Thus, we can apply
the Waldhausen localization theorem to obtain a homotopy fibration

K((Chb)w, i)→ K(Chb, i)→ K(Chb, w).

One can observe that (Chb)w is the category of acyclic complexes, i.e. the category Cbexact because C is
closed under kernels of surjections and so by induction we can see that the images of the differentials
of bounded chain complexes are all in C, and thus a bounded chain complex in C is exact if and only
if it is exact in the ambient abelian category.
If we work with K-theory spectra, because we can upgrade Waldhausen localization to a homotopy
fibration of spectra, the above sequence is also a homotopy cofibration of spectra. Thus, from here on
out we work with an appropriate category of spectra. We are going to compute the homotopy cofiber
using a different method than Waldhausen localization, the spectra we will obtain this way is going to
be weakly homotopy equivalent to K(Chb, w) as the homotopy cofiber is uniquely defined up to weak
homotopy equivalence. The method we use is to write the category Chb as lim−→(a,b)→(−∞,∞)Ch

[a,b]. It is
clear how the inclusion (Chb)w → Chb restricts and corestricts to an inclusion (Ch[a,b])w → Ch[a,b] and
that the colimit of these is the original map. We will compute the cofiber of the restricted/corestricted
maps and then pass to the colimit. While we go through with this line of thought we will assume that
the weak equivalences are the isomorphisms.
We have a “forget differential functor” U : Ch[a,b](C)→ ∏b

i=a C, we will show this induces a homotopy
equivalence on K-theory. It is not hard to see, assuming that a < b, that this is the same map as the
composite

Ch[a,b](C)→ C × Ch[a+1,b] Id×U−−−→
b∏
a

C.

The first map sends a chain complex Ca → Ca+1 → · · · → Cb to (Ca, Ca+1 → · · · → Cb) and the
second map is the identity on the fist coordinate and the appropriate “forget differentials” functor
on the second coordinate. This opens the way for an induction on b − a starting at b = a + 1, at
which point the “forget differential map” is just the identity so obviously a homotopy equivalence.
Now assume we know U : Ch[a+1,b] →

∏b
a+1 C induces a homotopy equivalence on K-theory we

want to prove the result for Ch[a,b]. Consider the obvious inclusion of Ch[a+1,b] into Ch[a,b] and the
inclusion as chain complexes concentrated in degree a of C in Ch[a,b] to apply proposition 4.3.9 to
obtain K(E(C, Ch[a,b], Ch[a+1,b])) ≃ K(C) ×K(Ch[a+1,b]). The left-hand side of this equivalence can
easily be seen to be homotopy equivalent to Ch[a,b] as the rest of the data defining an object of the
extension category is determined by choosing the middle term of the exact sequence. The right hand
side is homotopy equivalent to ∏b

aK(C) by induction hypothesis. To compute the cofiber of the map
(Ch[a,b])w → Ch[a,b] using the K-theory homotopy equivalence we just proved, we need to understand
this inclusion better.
We do this by showing that K((Ch[a,b])w) is homotopy equivalent to ∏b

a+1K(C) and figuring out under
this and the above homotopy equivalences if we can see to what map the inclusion corresponds to. In
other words we wish to fill the following diagram into a square

K((Ch[a,b])w) K(Ch[a,b])

∏b
a+1K(C) ∏b

aK(C)

≃ ≃ .

When a = b + 1 we have that the map sending Ca
∂a−→ Ca+1 to Ca is an equivalence of categories as

it is fully faithful and essentially surjective because ∂a must be an isomorphism as this chain complex
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must be weakly equivalent to the 0 complex. In particular this map induces a homotopy equivalence
on K-theory spaces. This opens the way for an induction. Suppose we have the result for (Ch[a,b])w
we want to show we have (and understand) a homotopy equivalence (Ch[a,b+1])w ≃ ∏b+1

a+1 C. Now using
the natural inclusions (Ch[a,b])w ↪→ (Ch[a,b+1])w and C ↪→ (Ch[a,b+1])w, we will show that (Ch[a,b+1])w
is equivalent to the extension category E((Ch[a,b])w, (Ch[a,b+1])w, (Ch[b,b+1])w) and so by induction
and proposition 4.3.9 we will obtain that K((Ch[a,b])w) and ∏b

a+1K(C) are homotopy equivalence.
We will construct the equivalence on objects. Extension to morphisms, explicit verification that they
are inverse (up to natural isomorphism) and exactness are left out as the details do not add anything.
Given an exact complex Ca

∂a−→ · · · ∂b−→ Cb+1 we want to associate an extension. To obtain an exact
complex of one length less, we naturally delete Cb+1, but this is not necessarily surjective, so to fix
this we replace Cb by the image of ∂b−1 (or rather by exactness, the kernel of the surjective map ∂b,
which is in C by assumption). For similar reasons, to obtain an element of (Ch[b,b+1])w, we keep only
the last two terms, but for this to be exact we need to replace Cb by Im(∂b), which is isomorphic to
Cb+1 as exactness forces ∂b to be surjective (in order not to abuse closure properties we may assume
Im(∂b) = Cb+1). This shows how to an exact complex Ca

∂a−→ · · · ∂b−→ Cb+1 we associate the extension

Ca · · · Cb−1 Im(∂b−1) 0

Ca · · · Cb−1 Cb Cb+1

0 · · · 0 Im(∂b) Cb+1

∂a ∂b−2 ∂b−1

∂a ∂b−2 ∂b−1 ∂b

∼=

.

The second to last column is a cofibration because by exactness im(∂b−1) ∼= ker(∂b), and we have that
the quotient by the kernel is isomorphic to the image. The rest of the conditions to verify that this
is a cofibration are obvious. The inverse functor is given by sending an extension to the middle term.
This proof also allows us to see that the homotopy equivalence K((Ch[a,b])w)→ ∏b

a+1 C sends a chain
complex Ca → · · · → Cb to (Ba+1, Ba+2, ..., Bb) where Bi = Im(∂i−1) (which we recall all exist in C
by induction because this category is closed under kernels of surjections). We also record here that it
is not hard to see that the functors Im(∂k) are exact. Now we can finally fill in the square

K((Ch[a,b])w) K(Ch[a,b])

∏b
a+1K(C) ∏b

aK(C)

≃ ≃

as we wished. To do this we need to understand the map from the top left to the bottom right
only in function of the data the left vertical map remembers. For this notice that for every functor
•k : (Ch[a,b])w → C which maps Ca → · · · → Cb to Ck we have an exact sequence

Im(∂k−1) ↣ •k ↠ Im(∂b).

And so by additivityK(•k) = K(Im(∂k−1))+K(Im(∂k)), which implies that the map F : ∏b
a+1K(C)→∏b

aK(C) induced by the functor which sends (Ba+1, Ba+2, ..., Bb) to (Ba+1, Ba+1 ⊕ Ba+2, Ba+2 ⊕
Ba+3, ..., Bb−1 ⊕ Bb, Bb) fits as the bottom horizontal map in our diagram. Now we need to under-
stand the cofiber of this map.
Recall that we are working the additive category of spectra (proposition 3.2.9 in [7]), so products
and coproducts coincide. In particular, we can view our map as a map F : ∨b

a+1K(C) → ∏b
aK(C).
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Written this way it is clear that we can represent F by the following matrix

1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
...

... . . . . . . ...
0 0 0 . . . 1
0 0 0 · · · 1


.

Now because in time we will take the colimit as a tends to negative ∞ and b tends to positive ∞ we
will assume that a < 0 < b which will allow us to identify cofib(F ) in a way that is compatible with
the colimit. We also introduce the notation F ba to avoid confusion when we will notice compatibility
with the colimit. The sequence ∨b

a+1K(C) F b
a−→

∏b
aK(C)→ cofib(F ba) is also a fiber sequence because

we are working in a stable category. So there is a long exact sequence of homotopy groups, notice that
πi(F ba) can also be represented by the matrix representing F ba (though the interpretation is slightly
different). We now show that as a map of abelian groups πi(F ba) : ⊕ba+1Ki(C)→

∏b
aKi(C) is injective.

Consider the matrix representing F ba as a Z matrix, call this map of free abelian groups Γba. Then
notice we have Γba ⊗Ki(C) = Ki(F ba), which motivates studying Γba. It is a simple exercise in linear
algebra to obtain a short exact sequence

0→
b⊕

a+1
Z Γb

a−→
b∏
a

Z χ−→ Z→ 0.

Where χ : ∏b
a Z → Z sends (xa, ..., xb) to ∑b

i=a(−1)ixi is the Euler characteristic map. Recall that
in the category of abelian groups finite coproducts and finite products agree, we use both notations
as pedagogical aid in following the key ideas. This sequence has to be split by projectivity of Z,
and tensoring preserves the exactness of split exact sequences. In particular πi(F ba) = Γba ⊗K(C) is
injective.
This implies that the homotopy long exact sequence of the cofiber sequence ∨b

a+1K(C) F b
a−→

∏b
aK(C)→

cofib(F ba) splits into short exact sequences

0→
b⊕

a+1
Ki(C)

πi(F b
a)−−−−→

b∏
a

K(C)→ πi(cofib(F ba))→ 0.

By the same reasoning we used to show the injectivity of πi(F ba) we can see that πi(cofib(F ba)) = Ki(C)
and that the map is given by the tensor of the Euler characteristic. However, this does not show that
K(C) ≃ cofib(F ba). We need a map of spectra to realize the isomorphisms of homotopy groups.
For this, consider the following diagram where ι0 is inclusion into the 0th factor, with the map being
constant equal to the base point on all other factors

K(C)

∨b
a+1K(C) ∏b

aK(C) cofib(F ba)

ι0

F b
a

.

By applying the functor πi we see that the map K(C) → cofib(F ba) is the identity on homotopy
groups, thus is a homotopy equivalence. Viewing ∏b

aK(C) as a coproduct, we can view the map into
the cofiber as a matrix, which because we know its effect on homotopy groups, we can deduce to be
the Euler characteristic map. Finally, we notice that the homotopy equivalence is compatible with
colimit by construction.

What we have shown, is that we have cofiber sequence
b∏

a+1
K(C)→

b∏
a

K(C)→ K(C)
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and as we have already mentioned, we can replace the first map by the inclusion K((Ch[a,b])w) →
K(Ch[a,b]). The weak equivalence we use to do this is compatible with the colimit, thus we have a
cofiber sequence

K((Chb)w)→ K(Chb)→ K(C).

Comparing with what we obtained via Waldhausen localization and using uniqueness up to homotopy
equivalence of the cofiber, we get K(C) ≃ K(Chb, w).

We close of this section with an important corollary of additivity, the statement of the cofinality
theorem, which has its importance in K-theory.

Theorem 5.1.5. (Theorem 2.3 in [6] chapter V) Let (C, w) be a Waldhausen category with a cylinder
functor satisfying the cylinder axiom. Assume we are given a surjective homomorphism from π :
K0(C) → G some group, let D be the subcategory of elements such that π([D]) = 0. Then we have a
homotopy fibration K(D)→ K(C)→ G.

We will not being use it however, so we state it without proof. For a proof one can consult section
2 of [18].

5.2 Approximation Theorem

The approximation theorem is a very useful result in replacing categories with simpler categories.
In the proof of the approximation theorem we will need one little definition about posets and a
Waldhausen structure on a certain functor category. We will not make an explicit distinction between
a poset and the corresponding category.

Definition 5.2.1. (Beginning of section A.2 in [17]) Let P be a poset. We call a subposet S ⊂ P
saturated if whenever x < s, s ∈ S implies that x ∈ S.

Definition 5.2.2. (Beginning of section A.2 in [17]) Let C be a Waldhausen category, and P be a
poset. We give the functor category CP a Waldhausen structure as follows. The weak equivalences
are exactly the pointwise weak equivalences. The cofibrations are trickier to describe.
For any P ∈ P, let SP be the poset of elements strictly smaller than P . For any saturated subposet
S ⊂ P, let I(S, P ) be the full subcategory of [1] × P containing precisely all the objects of the form
[1]×S and (O,P ). Maps of functors P → C can be viewed as functors P× [1]→ C, thus by restriction
as functors I(S, P ). We call a map X : [1] × P → C a cofibration if for all P ∈ P the colimit
lim−→I(SP ,P )X exists and the canonical map lim−→I(SP ,P )X → X1(P ) is a cofibration.

With this in hand we may state and prove the approximation theorem.

Theorem 5.2.3. (Theorem 2.4 in [6] chapter V)(Theorem 10 in [17]) Suppose F : C → D is an exact
functor of saturated Waldhausen categories which satisfies the following requirements.

(i) A morphism in C is a weak equivalence if and only if its image is a weak equivalence.

(ii) Every morphism in C can be factored as a cofibration followed by a weak equivalence (this is in
particular true if C has a cylinder functor satisfying the cylinder axiom).

(iii) F satisfies the approximate lifting property which states that for every map β : F (C)→ D there
is a cofibration α : C → C ′ and a weak equivalence β′ : F (C ′)→ D such that β′ ◦ F (α) = β.

Then the induced map on K-theory spaces F : K(C)→ K(D) is a homotopy equivalence.

Proof. We will first show that if F : C → D satisfies the assumption of the theorem, then so does
SnF : SnC → SnD. We will then show that whenever F : C → D satisfies the assumptions of the
theorem, then F is a homotopy equivalence. Which by using the realization lemma (A.0.5) will show
the desired claim that S.F : S.C → S.D is a homotopy equivalence. The fact that SnF satisfies (i) is
obvious as weak equivalences are defined pointwise. For the second point, notice it is equivalent to
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proving the third point in the case F = IdC . We may thus move on to proving that SnF satisfies the
approximate lifting property, for this we follow [14] lemma 1.6.6. Suppose we have a map

F (A0) F (A1) · · · F (An)

B0 B1 · · · Bn

,

which we wish to factor by finding a cofibration

A0 A1 · · · An

A′
0 A′

1 · · · A′
n

and a weak equivalence

F (A′
0) F (A′

1) · · · F (A′
n)

B0 B1 · · · Bn

.

We may proceed by induction on n. Notice that the base case is dealt with by assumption as S1F = F .
Suppose we have the above data except for the degree n term, how can we add the degree n term?
We can form the pushout

An−1 A′
n−1

An An+1 ∪An−1 A
′
n−1

.

Applying F to this diagram, we see that maps into Bn allows us to define a map F (An∪An−1 A
′
n−1)→

Bn. We can apply the approximation property of F on this map to obtain a factorization

F (An ∪An−1 A
′
n−1) ↣ F (A′

n) ≃−→ Bn.

We take the map F (A′
n−1) ↣ F (A′

n) to be the obvious composition F (A′
n−1) ↣ F (An∪An−1A

′
n−1) ↣

F (A′
n). From here it is clear to see that the factorization constructed this way has all the desired

properties.

We now move on to showing that whenever F : C → D satisfies the assumptions of the theorem,
then wF : wC → wD is a homotopy equivalence. We will do this by using Quillen’s theorem A (A.0.2).
We want to show, that for each B ∈ D, the category F/B is contractible. We notice this category is
nonempty as the map 0→ B factorizes by assumption as 0→ F (A) ≃−→ B. We will use the following
lemma to show the desired contractibility.

Lemma 5.2.4. (Lemma 14 in [17]) Let C be a connected category. Suppose that for every finite poset
P and every functor Γ : P → C is null homotopic. Then C is contractible.

Proof. We will show that it is weakly contractible, which is enough as BC is a CW-complex. Fix some
c ∈ C which will serve as a base point. We want to show πn(C, c) = 0, for this consider a pointed
map α : Sn → BC. Via simplicial approximation we can consider this map at the simplicial level, i.e.
we can assume it is the geometric realization of a map SdkSn → N∗C for sufficiently large k. To clear
up notation, Sn = ∆n/∂∆n is the simplicial n-sphere and Sdk is barycentric subdivision. We can, by
subdividing again if necessary, assume k ≥ 2. Now using lemma 5.6 of [38], we see that SdkSn ∼= N∗P,
where P is some poset. This shows that the map α : Sn → BC is nullhomotopic by assumption. To
show it is nullhomotopic via a base point preserving homotopy, it suffices to apply proposition 4A.2
in [3].
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In order to apply this lemma we first need to show F/B is connected. To see this, consider two
objects Ai ≃−→ B, i ∈ [2] and factor the obvious map F (A1⊕A2)→ B as F (A1⊕A2) ↪→ F (A+

12) ≃−→ B.
Then by considering the following diagram

F (Ai)

F (A1 ⊕A2) B

F (A+
12)

≃

≃

and the fact that D is saturated, we get weak equivalences F (Ai)→ F (A+
12), which is enough to give a

path between A1 and A2 in B(F/B). That being said, we fix a finite poset and a functor Γ : P → F/B.
This consists of a P-shaped diagram, call it X, in wC, together with a map in wDP between F (X)
and the constant functor with image B which we denote by cB. We will construct a null homotopy
with the use of two lemmas which we now prove.

Lemma 5.2.5. (Lemma 11 in [17]) Let C be a Waldhausen category. Suppose we have a map X :
[1]×P → C. Let P ∈ P and S ′ ⊂ S ⊂ SP be saturated subposets. Suppose for all Q < P we have that
lim−→I(SQ,Q)X exists and further that the canonical map lim−→I(SQ,Q)X → X1(Q) is a cofibration. Then
lim−→I(S,P )X exists and the canonical map lim−→I(S′,P )X → lim−→I(S,P )X is a cofibration. In particular if
X1 is cofibrant, then lim−→P X1 exists.

Proof. We proceed by induction on the cardinality of S, which we henceforth call n. First observe
that for n = 0 the colimit must be X0(P ) and the map is a cofibration as it must be the identity map
(indeed in the case S ′ = S = ∅). Now assume the result holds for all cardinality up to and including
n, we want to show it holds in the case n+ 1.
If S ′ = S, then once we show the colimit exists, the resulting map is obviously a cofibration, and we
can choose Q ∈ S maximal. Otherwise, Q ∈ S maximal with the additional property that Q ∈ S. The
idea is to use the following diagram, the left term exists by induction hypothesis, the middle term by
assumption and the arrow on the right is a cofibration also by induction

lim−→I(S\{Q},P )X lim−→I(SQ,Q)X X1(Q) .

As pushouts along cofibrations exist in Waldhausen categories, the above diagram admits a pushout.
This pushout realizes the desired colimit as it has the universal property of lim−→I(S,P )X, which proves
this colimit exists. As pushouts of cofibrations are cofibrations, we have that the map lim−→I(S\{Q},P )X →
lim−→I(S,P )X is a cofibration. By induction hypothesis the map lim−→I(S′,P )X → lim−→I(S\{Q},P )X is a cofi-
bration as well. By composition lim−→I(S′,P )X → lim−→I(S,P )X is a cofibration as well.
We may now prove the remark in the specific case that X1 is cofibrant in CP . In this case, denote by
P ′ the poset obtained from P by appending a single maximal element +. Let X0(+) = 0, restating the
definition of X1 being cofibrant, the map 0→ X1 is a cofibration. By definition of cofibrations in CP

the condition required to apply the first part of the statement is satisfied. This implies the existence
of lim−→I(P ′,+), but this is in fact the colimit lim−→P X1 by comparison of universal properties.

Lemma 5.2.6. (Lemma 13 in [17]) Let C be a Waldhausen category such that every morphism can be
factored as a cofibration followed by a weak equivalence. Then the same holds true for CP , whenever
P is a finite poset.

Proof. We induct on the cardinality of P which we henceforth call n. The case n = 1 is just the
assumption in C. Now assume we have the result for all posets of cardinality n, we prove the result
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holds true for n + 1. Fix a morphism X → Y we wish to factor. Choose a maximal element P ∈ P,
by induction hypothesis we have a factorization

X|P\{P} ↪→ Z|P\{P}
≃−→ Y |P\{P}.

By the previous lemma, because X ↪→ Z is a cofibration, the colimit lim−→I(SP ,P )(X|P\{P} ↪→ Z|P\{P})
exists. Now we apply the factorization assumption in C to the map obtained by the universal property
lim−→I(SP ,P )(X|P\{P} ↪→ Z|P\{P}) → Y (P ). Thus, we obtain lim−→I(SP ,P )(X|P\{P} ↪→ Z|P\{P}) ↪→ P̃

≃−→
Y (P ). Set Z(P ) = P̃ , it is clear how to extend the map Z|P\{P} → Y |P\{P} to a map Z → Y , and
because weak equivalence are computed pointwise it is also clear that this is a weak equivalence. Now
we need to extend X|P\{P} ↪→ Z|P\{P} to a map X ↪→ Z. For this apply the previous lemma with
S = SP ,S ′ = ∅, P = P . This shows that the map X(P ) → lim−→I(SP ,P )(X|P\{P} ↪→ Z|P\{P}) is a
cofibration, thus we can post compose with lim−→I(SP ,P )(X|P\{P} ↪→ Z|P\{P})→ Z(P ), thus we have a
cofibration X(P )→ Z(P ) which we can use to define X → Z. The fact that this map is a cofibration
is clear by construction.

With these lemmas in hand, use the first of the two to factor the unique map from the constant
P-shaped diagram c0 to X as 0 ↪→ Y

≃−→ X. Now Y is cofibrant, so by the second lemma the colimit
lim−→P Y exists. The functor F commutes with this colimit as it preserves pushouts along cofibration and
this colimit can be constructed via successive pushouts. And so the composite F (Y ) → F (X) → cB
defines a map lim−→P F (Y )→ B, which we can write as F (lim−→P Y )→ B. Written this way, we can use
property (ii) which holds by assumption to factor this map as F (lim−→P Y ) ↪→ F (Z) ≃−→ B. We consider
the constant diagram cZ. Then, using that F preserves weak equivalences, we have a diagram

F (X)

F (Y ) F (cB)

F (cZ)

≃≃

≃

.

Now use that weak equivalence satisfy two out of three, are saturated in D (thus in DP) as well) and
that F reflects weak equivalences to see that Y → cZ is a weak-equivalence. This shows that we have
natural transformations X ≃←− Y ≃−→ cZ. This is the desired nullhomotopy.

For ease convenience we include without proof another version of the approximation theorem which
is very useful for dealing with subcategories of categories of chain complexes. We will in particular
need this in section §6.

Proposition 5.2.7. (Theorem 1.9.8 in [16]) Let A,B be two complicial biWaldhausen categories
which are closed under the canonical homotopy pushouts and homotopy pullbacks and F : A → B
a complicial exact functor. Suppose that F induces an equivalence of the derived categories, then it
induces a homotopy equivalence in K-theory.

We refer the reader to [16] for the details of all the relevant vocabulary. For our purposes it is
important to know that complicial Waldhausen categories are in particular subcategories of a cate-
gory of chain complexes Ch(M) with M abelian and that an exact complicial functor is simply an
exact functor which is computed by pointwise application. All the categories we will encounter will
obviously satisfy the necessary requirements (see example 1.2.12 to 1.2.15 in [16]). So when using the
above theorem, what one needs to verify is that the induced functor on the derived categories is an
equivalence.
Again for ease of reference, we include the following theorem which will give us sufficient condition for
an exact complicial functor of complicial biWaldhausen categories closed under homotopy pullbacks
and pushouts to induce an equivalence on the derived categories.
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Proposition 5.2.8. (1.9.7 in [16]) Let A,B be two complicial biWaldhausen categories which are
closed under the canonical homotopy pushouts and homotopy pullbacks and F : A → B a complicial
exact functor. Then F induces an equivalence of categories if

(i) A morphism in A is a weak equivalence if and only if its image is an equivalence in B.

(ii) For any B ∈ B there is an A ∈ A such that there is a weak equivalence b : F (A)→ B in B.

(iii) For any map b : FA′ → FA′′ in B, there is a weak equivalence a′ : A → A′ and a map
a′′ : A→ A′′ in A such that b ◦ F (a′) is chain homotopic to F (a′′) in B.

(iv) For any map a′;A′ → A′′ in A such that F (a′) is nullhomotopic in B there exists a weak
equivalence a : A→ A′ in A such that a′ ◦ a is nullhomotopic in A.

5.3 Resolution theorem

In this section we present one of the two main tools to replace a category by a subcategory whose
K-theory is (hopefully) simpler to understand. We do not follow the proof given in section 3 of chapter
V of the K-book [6], but instead follow Staffeldt’s proof in section 3 of [18] which places emphasis on
the S. construction.

Theorem 5.3.1. (Theorem 3.1 in [18]) Suppose A is a full exact subcategory of an exact category
B such that a sequence of three objects in A which is exact in B is exact in A, A is closed under
extension and cokernels in B. Assume further that every object B in B has a resolution, i.e. an exact
sequence, 0→ B → A→ A′ → 0 with A,A′ ∈ A.
Then the inclusion A → B induces a homotopy equivalence K(A)→ K(B) on K-theory spaces.

Proof. Let A ⊂ B be as in the statement of the theorem. We can apply proposition 4.4.1 to the
inclusion ι : A → B and obtain this way a homotopy fibration

iS.B → iS.S.A → iS.S.ι.

It is obvious that this reduces our problem to showing that iS.S.ι is contractible. Because the class of
weak equivalences is the isomorphisms we can apply proposition 4.2.3 to study s.S.ι and then use the
realization lemma to reduce further to showing the contractibility of s.Snι. It turns out this allows for
quite an efficient proof, as we can show that whenever an inclusion ι : A → B satisfies the hypothesis
of the theorem, then s.ι is contractible and that then Snι : SnA → SnB also satisfies the hypothesis
of the theorem. Proving these two claims will obviously be enough to prove the desired claim.
Let’s first show that s.ι is contractible. For convenience, we recall that s.ι = Ob(S.ι) and that S.ι is
the simplicial category whose n-simplices is the category of pairs

(A1 ↣ · · ·↣ An, B0 ↣ · · ·↣ Bn)

with the additional requirement that Bi/B0 ∼= Ai. It is not hard to notice that this is isomorphic
to the simplicial set given by taking the nerve of the category C whose objects are the same as B,
but the morphisms are the maps which are admissible monomorphisms in B with quotient lying in
A. Verifying this is just a matter of comparing the two definition, so we do not detail it any further.
Denote by mA the subcategory of A with all objects and maps being exactly the admissible monics.
The inclusion ι : A → B obviously restricts and corestricts to a map, which we denote γ : mA → C.
Now notice that mA is obviously contractible because it admits 0 as an initial object, thus if γ is a
homotopy equivalence, we are done. So naturally our strategy will be to apply Quillen’s theorem A
A.0.2, to do this let B ∈ C and consider the category B/γ.
We will show that the identity functor of this category is homotopic to a constant functor. For this
fix a resolution 0 → B → A0 → A′′

0 → 0 of B which can be done by assumption. Consider an object
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B ↣ A of B/γ and consider the following diagram

0

0 B A A/B 0

A0 A0 ⊕B A A/B

A′′
0 A′′

0

0

Id

Id

.

We can easily notice that all the rows and columns are exact sequences because B embeds in an abelian
category where we can check exactness. When proving results about diagrams in an abelian category
we are allowed to diagram chase, thus the claim follows easily. What this exactness allows is to define
functors given by the above diagram cA0 : (B ↣ A) 7→ (B ↣ A0) and A0 ⊕B − : (B↣A) 7→ (B ↣
A0 ⊕B A) and to use the above diagram to define the natural transformations

Id→ A0 ⊕B − ← cA0 .

This shows the desired contractability allowing the application of Quillen’s theorem A to γ which in
turn provides the desired contractability.
Thus, all that remains to show is that the inclusion ι : A → B satisfying the hypothesis of the theorem
implies that also Snι : SnA → SnB satisfies the hypothesis. All the closure properties are not hard to
verify, and we leave them to the reader. The only point requiring attention is the fact that objects in
SnB admit resolutions via objects in SnA.
We do this by inductively constructing partial resolutions such as

B1 B2 · · · Bi Bi+1 · · · Bn

A1 A2 · · · Ai

A′′
1 A′′

2 · · · A′′
i

.

When we say that a diagram as above is partial resolution, we mean it is pointwise a resolution in B,
and we require further that the natural maps Aj⊕B′

j
Bj+1 → A′

j+1 are all cofibrations. The case i = 1
can be dealt with by assumption that objects in B can be resolved via objects in A. So to proceed
with the induction, assume we have a diagram as above, we wish to add the (i+ 1)th column. Notice
Ai ⊕Bi Bi+1 is an object in B and thus can be resolved, i.e. we have an admissible exact sequence
Ai ⊕Bi Bi+1 ↣ Ai+1 → Ci+1. We have a natural map Bi+1 ↣ Ai ⊕Bi Bi+1 ↣ Ai+1, we set A′′

i+1 to
be the cokernel of this map. Thus, we can extend the above diagram to

B1 B2 · · · Bi Bi+1 · · · Bn

A1 A2 · · · Ai Ai+1

A′′
1 A′′

2 · · · A′′
i A′′

i+1

.

In order to complete the induction step we need to verify that Ai⊕Bi Bi+1 → Ai+1 and A′′
i → A′′

i+1 are
cofibrations and that A′′

i+1 is an object in A. The first assertion is completely obvious by construction
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of Ai+1, as the first term in the resolution of Ai ⊕Bi Bi+1. The fact that the second map is monic
follows from a diagram chase showing that A′′

i+1 is the pushout of A′′
i ← Ai ↣ Ai+1, and that pushouts

preserve cofibrations. Now to show that A′′
i+1 is in fact an object in A we consider the colimit of the

following diagram in two different ways

0 Ai Ai

0 Bi Ai

0 Bi+1 Ai+1

Id

Id

.

We first take horizontal pushouts, and take the pushout of the resulting vertical diagram. This yields
the pushout of the diagram 0 ← A′′

i ↣ A′′
i+1, i.e. the cokernel of the map A′′

i ↣ A′′
i+1. Then we

take first the vertical pushouts, resulting in 0 ← Ai ⊕Bi Bi+1 → Ai+1. We take the pushout of this
diagram, which gives Ci+1, which by construction is an object of A. Commutativity of colimits shows
then that A′′

i+1 fits into a short exact sequence A′′
i → A′′

i+1 → Ci+1 with both outer terms in A. Now
recall that A is closed under extensions in B, which implies the desired claim that A′′

i+1. This in turn
concludes the proof of the resolution theorem.

There are ways to generalize this theorem, such as allowing for resolutions on the left or allowing
longer resolutions. One possible source to find proofs of these alternative statements is in §3 of chapter
V of [6]. For ease of reference, we cite here the dual of our theorem

Proposition 5.3.2. (Proposition 3.1.1 in chapter V of [6]) Let B be an exact category and A be
a full exact subcategory closed under kernels and extensions such that every object B ∈ B admits a
resolution 0 → A → A′ → B → 0 with A,A′ ∈ A. Then the inclusion A → B induces an equivalence
in K-theory.

5.4 Devissage theorem

The devissage theorem which we prove in this section is based, like many results in K-theory, on the
intuition that K-theory splits exact sequences. Just like the theorems of the two previous sections it
serves to replace a category by a hopefully simpler category with the same K-theory.

Theorem 5.4.1. (Theorem 4.1 in [18]) Let A ⊂ B be an inclusion of abelian categories such that
A is closed under direct sum, subobject and quotient in B. Suppose every object in B has a finite
filtration by monics such that all the filtration quotients are in A. Then the inclusion A → B induces
a homotopy equivalence K(A)→ K(B) of K-theory spaces.

Proof. The proof we present is in spirit very similar to our proof of the resolution theorem. We can
use proposition 4.4.1 to obtain, after one delooping, a fiber sequence

iS.A → iS.B → iS.S.(A ⊂ B).

This reduces the problem to showing that iS.S.(A ⊂ B) is contractible. We use proposition 4.2.3 to
reduce to showing that s.S.(A ⊂ B) is contractible and then use the realization lemma to perform our
final reduction to showing that each s.Sn(A ⊂ B) is contractible. Now we use the same strategy as
in the previous section and show that if A ⊂ B satisfies the hypothesis of the theorem, then so does
SnA ⊂ SnB and whenever ι : A→ B satisfies the hypothesis of the theorem, then we have that s.ι is
contractible.
We prove first that ι : SnA ⊂ SnB also satisfies the hypothesis of the theorem. The only part we will
make explicit is the fibration condition, all the others being sufficiently clear. Take an element in SnB,
as usual we suppress the choices of subquotient, and so we denote such an element by

B1,p ↣ · · ·↣ Bn.p.
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There is a slight abuse of notation in using the symbol p whose value we have not defined yet. Filter
the object Bn,p in the way given by assumption to obtain a sequence Bn,1 ↣ · · ·↣ Bn,p (this is what
determines p). Taking successive pullbacks, we can obtain a diagram

B1,1 B2,1 · · · Bn,1

B1,2 B2,2 · · · Bn,2

...
...

...

B1,p B2,p · · · Bn,p

.

One can extend this diagram to include choices of quotients and maps between them, thus this defines
a sequence of maps B•,1 → · · · → B•,n such that each map is pointwise monic. We can observe that
this is in fact a sequence of maps which are admissible monic in SnB. Indeed, we can show that each
of the natural maps Bi,j+1 ⊕Bi,j Bi+1,j → Bi+1,j+1 is monic. We are working in an abelian category,
so we can use our intuition from the category of R-modules by Freyd-Mitchel embedding (theorem
1.6.1 in [4]). We know that by construction Bi,j = ker(Bi,j+1⊕Bi+1,j → Bi+1,j+1). The map we wish
to show is injective is the one obtained from Bi,j+1⊕Bi+1,j → Bi+1,j+1 by quotienting the domain by
the kernel, thus must have trivial kernel, which by embedding into a category of R-modules implies
the desired monicity. The fact that the filtration quotients are in SnA comes from the fact that these
are computed pointwise, that Bn,i+1/Bn,i ∈ Ob(A) and that A is closed under subobject, direct sum
and quotient. We do not spell out the details.
Now we may assume we are given an inclusion of abelian categories ι : A → B satisfying the assump-
tions of the theorem. We want to show that s.ι is contractible, which will conclude the proof. To
show this it would be useful to find a category whose nerve is our simplicial set, so that we may use
Quillen’s theorem A (A.0.2) to replace our simplicial set by an easier one. This is accomplished by
proposition A.0.7. So we want to show that the category Simp(s.ι) is contractible. The vertices of a
given simplex are totally ordered, thus there is a natural last vertex, which one can see in our case,
by definition of s.ι, defines a functor L : Simp(s.ι) → mB with mB the category of monic maps in
B. This category is contractible as 0 is an initial object of it. To be clear the category Simp(s.ι) has
as objects pairs (q,B ∈ sqι) and maps α : (q,B) → (r,B′) are defined by maps α : [q] → [r] with the
added condition that α∗(B′) = B. The functor L maps (q,B) to Bq and a map α : (q,B)→ (r,B′) to
Bq = B′

α(q) ↣ B′
r.

We will show that this functor is a homotopy equivalence by using Quillen’s theorem A, thus reducing
us further to showing that L/B̄ is contractible. It is not hard to see that this category is equivalent to
the category of simplicies of the simplicial set NB̄ whose q simplicies are the q+1 simplices of N.(mB)
subject to the two conditions the final vertex must be B̄ and that if B0 ↣ B1 ↣ · · · ↣ Bq ↣ B̄
is a q-simplex of NB̄ then Bi/B0 ∈ Ob(A). By proposition A.0.7 we have now replaced our problem
by showing that NB̄ is contractible. We do this by providing a chain of homotopies from the identity
map on NB̄ to a constant map on NB̄. For this we filter B̄

0 = C0 ↣ C1 ↣ · · ·↣ Cn−1 ↣ Cn = B̄

, and we may by assumption assume that Bi+1/Bi ∈ Ob(A). For each Ci we define Fi : NB̄ → NB̄

which maps
B0 ↣ B1 ↣ · · ·↣ Bq ↣ B̄

to
B0 + Ci ↣ B1 + Ci ↣ · · ·↣ Bq + Ci ↣ B̄,

where Bj + Ci = Bj ⊕ Ci/Ker(Bj ⊕ Ci → B̄). To verify that this map has NB̄ as a codomain as
we claim, we need to verify that Bj + Ci/B0 + Ci ∈ Ob(A). For this we can observe the following
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diagram, where Kj,i denotes Ker(Bj ⊕ Ci → B̄):

K0,i Kj,i Kj,i/K0,i

B0 ⊕ Ci Bj ⊕ Ci Bj ⊕ Ci/B0 ⊕ Ci Bj/B0 ∈ A

coker(α)

B0 + Ci Bj + Ci Bj + Ci/B0 + Ci

α

!1

∼=

!2

!1’

!2’

.

The maps marked by bold numbers are obtained by appropriate universal properties, the maps 1,1’
are obtained before the other two. Extending this reasoning slightly with the usual trick of including
the identity shows that 2 and 2’ are mutually inverse isomorphisms. This shows that Bj +Ci/B0 +Ci
is quotient of an object in A which by quotient closure shows that the Fi are in fact self-maps as
claimed.
Now notice that F0 is the identity whereas Fn sends every simplex to the degenerate simplex of
the same dimension corresponding to the 0 simplex B̄. So we are done if we construct homotopies
hi : NB̄ ×∆[1] → NB̄ from Fi−1 to Fi. To define hi we define tα which for an order preserving map
α : [q]→ [1] returns the largest element of [q] which is mapped to 0. Define hi to send a pair

(B0 ↣ · · ·Btα ↣ Btα+1 ↣ · · ·↣ Bq, α : [q]→ [1])

to
B0 + Ci−1 ↣ · · ·Btα + Ci−1 ↣ Btα+1 + Ci ↣ · · ·↣ Bq + Ci.

To show that this map is well-defined one needs to verify that Bj +Ci/B0 +Ci−1 is an object of A for
all j > tα (for all the other quotients we require to be in A, this has already been shown above). This
follows from a reasoning wholly analogous to the one above showing that Bj + Ci/B0 + Ci ∈ Ob(A).
Verifying that the hi indeed form homotopies is routine verification, we thus do not make it explicit.
This concludes the proof of the devissage theorem.
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6 Concluding with a fundamental homotopy fibration

We end this bachelor project with the proof of the following theorem.

Theorem 6.0.1. Denote by K(R) the K-theory space of the category of finitely generated projective
R-modules with weak equivalences being the isomorphisms and the cofibration being monics. Then we
have a homotopy fibration ∨

p

K(Fp)→ K(Z)→ K(Q).

The wedge is taken over all primes.

Proof. Recall that we write the category of finitely generated projective R-modules by P (R). The
reason one could expect this to be true is with the heuristic that the category P (Q) is very similar to the
category P (Z) where weak equivalences are rational equivalences, i.e. maps that become isomorphisms
after tensoring with Q. Denoting the class rational equivalence by wQ, we have a natural exact functor
given by the identity on the underlying categories (P (Z), i) → (P (Z), wQ) respectively. If categories
of modules had a cylinder functor, we would be able to use Waldhausen localization (theorem 5.1.1)
to study this map better, but in general this is not the case. We can make this the case by replacing
these categories by the appropriate categories of bounded chain complexes, with weak equivalences
given by requiring the induced map on homology to be a weak equivalence in (P (Z), i) or (P (Z), wQ).
Which can be done by using the Gillet-Waldhausen theorem (theorem 5.1.4).
Denote the category of bounded projective finitely generated Z chain complexes by C(P (Z)), the
class of weak equivalences by we and the class of rational weak equivalences by weQ. So we apply
Waldhuasen localization on the family of weak equivalences we ⊂ weQ and get the homotopy fibration

K((C(P (Z)))weQ , we)→ K(C(P (Z)), we)→ K(C(P (Z)), weQ).

We leave it to the reader to recall the basics of homological algebra needed to verify that we can
indeed apply the Waldhausen localization theorem.
Now, by the K-theory equivalence given by the Gillet-Waldhausen theorem, the middle term is already
as desired. We need to use the theorems we have at our disposal to replace the two outer terms by
what we desire.
We first deal with the right term. We will do this by using the approximation theorem (theorem
5.2.3). As we will not need to juggle different weak equivalences, for this part of the proof we denote
by C(P (Z)) the category of bounded Z chain complexes with rational quasi-isomorphisms as weak
equivalences and C(Q) the category of bounded Q chain complexes with quasi-isomorphisms as weak
equivalences. We have an exact functor C(P (Z)) → C(Q) given by tensoring each term in the chain
complex by Q. This functor sends weak equivalences to weak equivalences by construction, cofibrations
to cofibrations as Q is an injective Z-module and preserves pushouts (in particular along cofibrations)
as these are computed degreewise and − ⊗ Q : Z-mod → Q-mod is a left adjoint. So this functor is
exact. To show this functor induces an isomorphism in K-theory we need to show this functor satisfies
properties (i), (ii), (iii) using the same notation as in the statement of the approximation theorem.
Point (i) is again by construction and point (ii) follows from the fact that C(P (Z)) has a cylinder
functor. So only the third point requires attention.
Given a bounded chain complexes C• in C(P (Z)) and D• in C(Q) consider an arbitrary map α :
C• ⊗Q→ D• in C(Q) we need to find a cofibration β : C• → C ′

• in C(P (Z)) and a weak equivalence
σ : C ′

• ⊗ Q → D• such that σ ◦ β = α. To do this use that C(Q) has a cylinder functor to get a
factorization C• ⊗Q ↪→ E•

≃−→ D•. Focusing around the ith index, this data gives

Ci ⊗Q Qni Qmi
λiBi Si

with λ ∈ Q, Bi ∈ Matni×rk(Ci)(Z), Si ∈ Mmi×ni(Q). We can replace the Si by λiSi without changing
the fact that this is a quasi-isomorphism and replace λiBi by Bi, this does not change the composition.
Now for the map out of C• ⊗Q to still be a chain map we need to multiply the differentials of E• by
some scalars, this can be done by induction as our chain complexes are bounded. Now notice that all
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the differentials in E• can, up to multiplication by scalars, be assumed to be matrices with coefficients
in Z. In order to ensure that the map E• → D• is a still a map of chain complexes, we similarly as
before need to multiply all the Si by some scalars and again as our complexes are all bounded this can
be done by induction. What all of this moving of scalars means is that the map C•⊗Q→ E• is actually
in the image of −⊗Q : C(P (Z))→ C(Q). We choose some preimage of this map which is free in each
degree, call it β : C• → C ′

•. It is not hard to verify that restricting to projective modules makes ten-
soring with ⊗Q reflect monics, thus this is the desired β and the weak equivalence C ′

•⊗Q ∼= E•
≃−→ D•

is the desired weak equivalence. This proves that K(C(P (Z)), weQ) ≃ K(C(Q), we) which by the
Gillet-Waldhausen theorem is homotopy equivalent to K(Q) as desired.

Now we work towards proving that K((C(P (Z)))weQ , we) is homotopy equivalent to ∨
pK(Fp).

The first step is going to be to replace K((C(P (Z)))weQ , we) with the category of finitely generated
torsion abelian groups, which we denote by ZwQ . We denote categories of bounded chain complexes by
C(−), the argument saying what modules our chain complexes are composed of. If we consider chain
complexes with torsion homology we add a weQ in the exponent. We denote the category of finitely
generated Z-modules simply by Z. All of our modules are finitely generated and all of our comlexes
are bounded. We as usual denote Ff for the homotopy fiber of f : X → Y .
With this notation in hand, we can present our proof strategy for the first step. This is easiest to
understand when accompanied by the following diagram

K(ZwQ , i)

K(C(ZwQ), we))

K(C(Z)weQ , we) K(C(Z), we) K(C(Z), weQ)

Fι K(Z, ι) K(Z, wQ)

FPι K(P (Z), i) K(P (Z), wQ)

K(C(P (Z))weQ , we) K(C(P (Z)), we) K(C(P (Z)), weQ))

ι

P ι

.

What we aim to show is that the bottom left and top left K-theory spaces are homotopy equivalent.
We do this by showing that each of the vertical maps is a homotopy equivalences. Notice that the pairs
of horizontal composable morphisms are all homotopy fibrations either by Waldhausen localization
(theorem 5.1.1) or by construction. So by the five lemma if we show that the middle and right most
vertical maps are homotopy equivalences we get the fact that the left one is a homotopy equivalence
for free. For the top and bottom triples of vertical homotopy equivalences this follows from the
Gillet Waldhausen theorem. For the middle triple of vertical homotopy equivalences, this follows from
the resolution theorem. Indeed, finitely generated Z-modules all admit a length two resolution by
projective modules, the category of which is closed under extensions and kernels, thus we can apply
proposition 5.3.2. This means only the top lone vertical maps need to be shown to be homotopy
equivalences. For the very top map this follows from Gillet-Waldhausen (theorem 5.1.4). So we need
to show that the inclusion C(ZwQ)→ C(Z)weQ induces a K-theory equivalence.
To do this, we follow the method explained in theorem 1.5.2 of [39], in particular the proof of lemma
1.5.3. We use proposition 5.2.8 which by proposition 5.2.7 will show the desired homotopy equivalence.
We need to verify the 4 requirements of proposition 5.2.8 for the inclusion C(ZwQ)→ C(Z)weQ . Because
this is a fully faithful inclusion the only point that is not obvious is that for any complex C• ∈ C(Z)weQ
we can find a complex C ′

• ∈ C(ZwQ) and a quasi-isomorphism C• → C ′
•. We construct C ′

• by induction.
Let m > 1 be such that every homology group of C• is annihilated by m, this integer exists by the

86



finiteness assumptions. Now assume we have constructed a chain complex C
(k)
• which is such that

there is a quasi isomorphism C• → C
(k)
• and such that C(k)

i is annihilated by some power of m for
each i ≥ k. We will construct a complex C

(k−1)
• equipped with a quasi isomorphism C

(k)
• → C

(k−1)
•

and such that C(k−1)
i is annihilated by some power of m for each i ≥ k − 1. Because our complexes

are bounded, this will clearly be sufficient as this process will eventually no longer need to be iterated,
and we can start with k large enough so that Ci = 0 for all i ≥ k. For this, let p be an integer such
that mpC

(k)
k = 0, we construct the following short exact sequence of chain complexes

· · · 0 m2pC
(k)
k−1 ker(q) 0 · · ·

· · · C
(k)
k C

(k)
k−1 C

(k)
k−2 C

(k)
k−3 · · ·

· · · C
(k)
k C

(k)
k−1/m

2pC
(k)
k−1 C

(k)
k−1/mC

(k)
k−1 ⊕C(k)

k−1
C

(k)
k−2 C

(k)
k−3 · · ·

Id q Id

.

We let the bottom row be C(k−1)
• , clearly if we show that the top row has trivial homology we are

done by the long exact sequence in homology. For the top row to have trivial homology, it suffices for
the morphism ∂ : mC(k)

k−1 → ker(q) to be an isomorphism. To show injectivity, it suffices to show that
the kernel of C(k)

k−1 → C
(k)
k−2 is m2p torsion. This follows from the following two exact sequences

0→ Z
(k)
k → C

(k)
k → B

(k)
k−1 → 0

which shows that B(k)
k is mp torsion and

0→ B
(k)
k−1 → Z

(k)
k−1 → Hk−1(C(k)

• )→ 0

which shows that Z(k)
k−1 is m2p torsion. The surjectivity of ∂ : mC(k)

k−1 → ker(q) follows from the
surjectivity of q and the fact that the map q is the inclusion into the first coordinate. This proves the
final vertical homotopy equivalence C(ZwQ)→ C(Z)weQ of the above diagram.

Now, let’s show that ZwQ is in fact homotopy equivalent to ∨
K(Fp), which will conclude the proof.

By the fundamental theorem on finitely generated abelian groups, this is equivalent to the restricted
product (i.e. the colimit over the finite products) of the categories of p-torsion abelian groups for
prime p. Denoting this category by pT , because K-theory commutes with filtered colimits and finite
products (see section 3.2) and by passing to K-theory spectra, we can replace finite products with finite
coproducts. So all we have to show is that K(P (Fp)) ≃ K(pT ), where in both cases the cofibrations
are the monics and the weak equivalences are the isomorphism. We have an inclusion of categories
P (Fp)→ pT . Using the structure of finitely generated p-torsion groups, we know that all of these are
of order pn for some n, and that such a group always has a subgroup of order pn−1. The quotient by
this subgroup is Fp which is obviously in the image of the inclusion P (Fp)→ pT . With this it is easy
to see that all the assumptions needed to apply the Devissage theorem (theorem 5.4.1) are satisfied,
thus completing the proof.
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A Admitted results

I have tried to keep this bachelor project as honest as possible, in the sense that any result used, I
must have at least studied. I do this to minimize the number of bad surprises in terms of lack of
prerequisites a reader might have. Nonetheless, there are a handful of results which we collect here
which had to be admitted. There are some results mentioned in the text without proof, when this
is done it means that with the prerequisites listed in the introduction I was able to work through
the proofs with limited struggle. It is in this sense that the results in this section and the material
indicated as prerequisites should be sufficient to understand the in this project.

Theorem A.0.1. (Proposition 5.13 in [40]) Consider a map of fibrations

F E B

F ′ E′ B′

,

such that for both fibrations the action of the base space on the homology of the fiber is trivial. Then if
two of the three maps are isomorphisms on homology with coefficients in a PID, then so is the third.

Other than this first statement, all the results we admit without proof, yet without claiming them
as prerequisites are technical results concerning simplicial sets.

The first two of these results serve to relate category theory and topology. These are essential re-
sults in a bachelor project in K-theory, a subject which aims at associating topology inspired invariants
to different families of categories.

Theorem A.0.2. (3.7 Quillen’s theorem A in [6] chapter IV) Let F : C → D be a functor such that
F/d (dually d/F ) is contractible for each d ∈ D. Then F is a homotopy equivalence.

Theorem A.0.3. (3.8 Quillen’s theorem B in [6] chapter IV) Let F : C → D be a functor such
that for every morphism d ∈ d′ the induced functor F/d→ F/d′ (dually d′/F → d/F ) is a homotopy
equivalence. Then for each d ∈ D we have a homotopy fibration

F/d→ C
F−→ D.

The dual statements follow from the fact that BC ∼= BCop for every category C and that
Fun(Cop, Dop) ∼= Fun(C,D) for every pair of categories C and D.
Both the above results admit a rewording in the language of (pre-)(co)fibered functors (definition 3.7.3
in [6]) which we give.

Proposition A.0.4. (Corollary 3.7.4 and 3.8.1 in [6] chapter 4)

(i) Let F : C → D be a functor which is either pre-fibered or pre-cofibered and assume furthermore
that F−1(d) is contractible for all d ∈ D. Then F is a homotopy equivalence.

(ii) Let F : C → D be a functor which either fibered (or cofibered) and such all the base change (or
cobase change) maps are homotopy equivalences, then we have a homotopy fibration

F−1(d)→ C
F−→ D.

The following result, which we call the “realization lemma”, allows us to detect homotopy equiva-
lences of bisimplicial sets.

Proposition A.0.5. (Proposition 1.7 of [5] chapter 4) Suppose f : X•,• → Y•,• is a map of bisimplicial
set such that each fn : Xn,• → Yn,• is a homotopy equivalence, then f is a homotopy equivalence.
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Similarly, this result allows us to work degreewise when working with bisimplicial sets, thus reduc-
ing to simplicial sets.

Proposition A.0.6. (Lemma 5.2 in [37]) Let X•,• → Y•,• → Z•,• be a sequence of bisimplicial
sets such that the composite is constant. Suppose furthermore that for each n ≥ 0, the sequence
Xn,• → Yn,• → Zn,• is a fibration up to homotopy and that Zn,• is connected. Then the sequence of
bisimplicial sets is a fibration up to homotopy.

The following result allows us to go in the opposite direction of the nerve functor. I.e. it allows us
to use concepts from category theory to study simplicial sets.

Proposition A.0.7. (page 359 of [14]) Given a simplicial set X, we have a category Simp(X),
corresponding to the poset of simplicies of X which is such that N.Simp(X) ≃ X.

The proof is the discussion on page 359 of [14], for help with what the gluing lemma is I think
lemma 8.8 of [5] is more useful than the source Waldhausen refers to.
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