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Abstract

In this master’s thesis we derive a connection between filtration shifts
and differentials in a spectral sequence. We assume that the spectral
sequence comes from a Cartan–Eilenberg system, and we develop a
framework to fit the mapping cones of maps of filtered spectra or chain
complexes into a sequence of Cartan–Eilenberg systems. Restricting to
three-stage filtrations of the Cartan–Eilenberg systems, we give a complete
description of this connection. Specifically, we show that a filtration shift
leads to a non-zero differential in the spectral sequence associated to the
mapping cone, and vice versa. We also give a slight generalisation of this
result for longer filtrations, determining conditions at the level of the
Cartan–Eilenberg systems that lets us reduce to the case of three-stage
filtrations.
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Introduction

A common problem solving technique when faced with a difficult problem is
to break the problem into smaller pieces. A reflection of this technique in
mathematics is how we study objects by filtering them. For instance, thinking
of a topological pair as a filtration with the subspace filtering the whole space,
long exact sequences let us use what we know of the subspace to understand
the whole space. It is tempting to emulate this approach, only with longer
filtrations. This runs into the question of how we should combine knowledge
of the pieces into that of the whole. When working with topological pairs, we
only need to understand the subspace and how it fits within the whole space.
If we instead have several pieces, each with a relationship to the others, a
combinatorial explosion of data ensues. This is where spectral sequences enter
the stage. They are algebraic bookkeeping devices tracking all the data, and
they give us a procedure for getting information out. Still, spectral sequences
do not turn difficult problems into easy ones. A spectral sequence renders
information through better and better approximations. Each approximation
improves upon the previous ones through a homology computation. To perform
this computation, we need to understand a set of differentials. This is often
hard, and there are no generally applicable methods to decide such differentials.
In practice, we often have to rely on clever arguments or on exploiting structure
inherent in the exact problem we are studying.

Conceived by Leray [Ler46] during the second world war, spectral sequences
have become invaluable computational tools in algebraic topology and homo-
logical algebra. Serre gave an early demonstration of their power in [Ser51].
Introducing the Serre spectral sequence, he computed the homology and cohomol-
ogy of Eilenberg–MacLane spaces. These calculations had broad consequences
in homotopy theory. However, Serre spectral sequences often have many non-
trivial differentials. Without sufficient inherent structure, computing such a
spectral sequence can be an intractable problem. To combat such problems,
mathematicians have devised many other spectral sequences. The underlying
example in this thesis is the Adams spectral sequence for the sphere spectrum.
The sphere spectrum is a homotopy commutative ring spectrum, making the
stable homotopy groups a graded commutative ring. This multiplicative struc-
ture is reflected in the Adams spectral sequence. The presence of such abundant
structure has made the Adams spectral sequence a powerful tool to deduce
information about the homotopy groups of spheres.

In this master’s thesis we seek to develop a method to compute certain
differentials without relying on any extra structure. What motivates our
approach is the question of how filtration shifts appear from the perspective of a
spectral sequence. Given a map f : X → Y of filtered objects, a “filtration shift”
happens when an element taken from the filtration of X hits an element of Y
with a lift to a higher filtration. The objects we have in mind are filtered chain
complexes or spectra. The homology or homotopy groups of these give rise to
the Cartan–Eilenberg systems introduced in [CE56]. Consequently, we choose
to only consider spectral sequences with underlying Cartan–Eilenberg systems.
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INTRODUCTION

The main goal of this thesis is to prove a connection between filtration shifting
maps and differentials in the spectral sequences associated to their mapping
cones. Given a homotopy cofiber sequence of filtered chain complexes or spectra,
we devise a framework to fit the associated homology or homotopy groups into
a sequence of Cartan–Eilenberg systems. It is in this sense that we encapsulate
data about mapping cones. The direct path towards this goal begins with the
precise definition of a filtration shift in Definition 2.3.2. We formulate our
notion of an exact sequence of Cartan–Eilenberg systems in Definition 2.1.6.
This forms the context of our subsequent results. Restricting our attention to
only three filtration indices, we prove Theorem 4.1.7. This is our main result,
and it shows that there is a one-to-one correspondence between filtration shifts
and differentials in this restricted setting. We give a slight generalisation of this
theorem in Section 4.2.

While our method has the benefit of being concrete, the restrictions we
require are significant. Even so, practical examples suggest that our results can
still be useful.

Outline

We begin the first chapter by introducing triangulated categories. We discuss
their core features, and we encounter the first instance of a push-lift argument.
Such arguments lie at the heart of the development of our results in Chapter 4.
We end the chapter by looking at categories that are both symmetric monoidal
and triangulated. The relationship between these structures is intricate. We
discuss this, and end on another push-lift type result.

Chapter 2 and 3 develop the theory we need to formulate the results of the
final chapter. Chapter 2 begins by introducing our perspective on filtrations.
We then give the definition of a Cartan–Eilenberg system and look at a couple
of examples. Two notable definitions appear at the end of the first section. We
explain what we shall mean by an exact sequence of Cartan–Eilenberg systems,
and what it means for such a system to be suspended. These establish the
context of our work in Chapter 4. In the next section, we derive a push-lift
lemma for grids of exact sequences. Finally, we give a precise definition of
filtration shifts. The third chapter concerns itself with spectral sequences. We
present our grading conventions and construct the spectral sequences we need.
All the spectral sequences in Chapter 4 come from Cartan–Eilenberg systems,
and we describe the structure of these in detail.

The bulk of our original work appears in Chapter 4. The introduction of
this chapter motivates our approach. Section 4.1 is dedicated to the proof
of our central theorem. The final section gives a slight generalisation of this
result. This generalisation relies on certain structure morphisms of the Cartan–
Eilenberg systems being injective. We finish the section by describing what
these restrictions mean for the spectral sequences.
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INTRODUCTION

Conventions

We apply suspensions from the left, and we let this guide our sign conventions.
Wherever arbitrary categories appear, we assume that they are locally small,
and we let C (X,Y ) denote the set of morphisms in C from X to Y . In diagrams,
an arrow

X Y

decorated with a tail indicates that the morphism is a monomorphism. A
two-headed arrow

X Y

indicates that it is an epimorphism.
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1 Triangulated Categories

Triangulated categories were introduced by Verdier in his 1967 thesis under
Grothendieck. In that same thesis, Verdier introduced the derived category of
an abelian category. Passing from an abelian category to its derived category,
we retain additivity, but the category is no longer abelian. The purpose of a
triangulation is to capture some of the structure left behind. Most essentially,
we will be able to meaningfully recover a notion of exactness.

Whereas Verdier’s original focus was the derived category, triangulated
categories are now found in many different areas of mathematics. A prime
example of a triangulated category in algebraic topology is the stable homotopy
category. Incidentally, this example is only an instance of the more general fact
that the homotopy category of a stable model category is triangulated.

Dold and Puppe gave axioms similar to those of Verdier some years earlier,
but they did not include the octahedral axiom. We present the axioms as given
by May in [May01], and follow his exposition through the basic definitions. May
gives a slightly smaller number of axioms, most notably deducing the existence
of “fill-in” morphisms as a consequence, rather than including it as an axiom.

Let C be an additive category and suppose that we have an additive self-
equivalence Σ: C → C . Let 0 denote the zero object of C . Given an object X
of C , we call ΣX the suspension of X. A triangle on an ordered triple (X,Y, Z)
of objects of C is a sequence

X
f−−→ Y

g−−→ Z
h−−→ ΣX

of morphisms in C , where the last object is the suspension of the first object. We
often denote such a triangle by (X,Y, Z; f, g, h), or simply (f, g, h) if the names
of the objects are less relevant or can be inferred. A morphism of triangles
(f, g, h) and (f ′, g′, h′) is a commutative diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

α

g

β

h

γ Σα

f ′ g′ h′

in C . A morphism of triangles is an isomorphism if each vertical arrow is an
isomorphism.

Definition 1.0.1 ([May01, Definition 2.1]). A triangulation on an additive
category C is an additive self-equivalence Σ: C → C together with a class of
distinguished triangles satisfying the following axioms:

(T1) Let X be any object of C and f : X → Y a morphism in C , then:

a) The triangle X id−−→ X −→ 0 −→ ΣX is distinguished.
b) The morphism f : X → Y is part of a distinguished triangle

X
f−−→ Y

g−−→ Z
h−−→ ΣX.

1



TRIANGULATED CATEGORIES

c) Any triangle isomorphic to a distinguished triangle is distinguished.

(T2) (Rotation) If X f−−→ Y
g−−→ Z

h−−→ ΣX is distinguished, then so is

Y
g−−→ Z

h−−→ ΣX
−Σf−−−→ ΣY.

(T3) (Verdier’s Axiom) Consider the diagram

X Z W ΣU

Y V ΣY

U ΣX

f

h

h′

g′

g′′

j′′

f ′

g j′

h′′

Σf ′

f ′′

j

Σf

Assume that (f, f ′, f ′′) and (g, g′, g′′) are distinguished, and that h = g◦f
so that the upper left triangle commutes. Given morphisms h′ and h′′
such that (h, h′, h′′) is distinguished, then there are morphisms j and j′
forming a distinguished triangle (j, j′, j′′) and making the entire diagram
commutative.

A category equipped with a triangulation is a triangulated category. To
motivate this choice of name, it is instructive to replace C with a Z-graded
category C∗ where a morphism from X to Y of degree n is an element of
C (X,Σ−nY ) = C (ΣnX,Y ). Then C∗(X,Y ) =

⊕
n C (ΣnX,Y ), and a triangle

(f, g, h) along with its rotations form a helix

Z

X Y

ΣZ

ΣX ΣY

Projecting the solid arrows into the plane produces a triangle.

Remark 1.0.2. Stating Verdier’s axiom as a braid of distinguished triangles is
only one of many equivalent descriptions. The axiom as Verdier initially
described it is often referred to as the octahedral axiom for the way the
objects and morphisms form the skeleton of an octahedra. The axiom can
also be disposed of altogether. In [Nee01], Neeman proposes instead a notion
of a “good” morphism of triangles, requiring that in a diagram like the one
of Lemma 1.0.5, there should exist certain good choices of morphisms filling

2



TRIANGULATED CATEGORIES

in for the dashed vertical arrow. The content of the axiom is a close analogue
of the Noether isomorphism (X/A)/(K/A) ∼= X/K of abelian groups for a
sequence of inclusions A ⊂ K ⊂ X of subgroups. If we form the cofibers of
the inclusions A ⊂ X and A ⊂ K, then the short exact sequences align in a
commutative diagram

A X X/K

K X/A

K/A

We now turn to discuss some implications of the axioms. First among these
is that swapping any two signs of a distinguished triangle keeps the triangle
distinguished.

Lemma 1.0.3. If (f, g, h) is a distinguished triangle, then all of (f,−g,−h),
(−f, g,−h) and (−f,−g, h) are also distinguished triangles.

Proof. The diagram

X Y Z ΣX

X Y Z ΣX

f g h

−id

f −g −h

commutes and exhibits an isomorphism of triangles (f, g, h) and (f,−g,−h).
When the upper row triangle is distinguished, so is the lower row triangle. The
proof of the other cases is similar.

The next two lemmas were originally axioms of Verdier, but can be derived
from the axioms above. The first lemma shows that a distinguished triangle
(f, g, h) is distinguished if and only if (g, h,−Σ) is distinguished. The second
lemma ensures the existence of a fill-in between certain distinguished triangles,
and is a central feature of a triangulated category.

Lemma 1.0.4 ([May01, Lemma 2.4]). If (g, h,−Σf) is a distinguished triangle,
then so is (f, g, h).

Lemma 1.0.5 ([May01, Lemma 2.2]). If the rows are distinguished triangles
and the left square commutes in the following diagram, then there is a morphism
γ : Z → Z ′ making the remaining squares commute

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

α

g

β

h

γ Σα

f ′ g′ h′

3



TRIANGULATED CATEGORIES

Note that this lemma only guarantees that such a fill-in exists, not that
there is a unique or even a preferred choice of one. In fact, in a commutative
diagram with distinguished rows like

X 0 Z ΣX

0 Y ′ Z ′ 0,

any morphism Z → Z ′ may serve as a fill-in making all the squares commute.
Remark 1.0.6. Although triangulated categories are widely used and have proven
valuable, the axioms are considered unsatisfactory by some [GM03, Chapter
IV]. Among the issues contributing to this view is how forming cofibers is not
functorial. Given a morphism f : X → Y , we may complete it to distinguished
triangles (f, g, h) and (f, g′, h′). This leads to a commutative diagram

X Y Z ΣX

X Y Z ′ ΣX.

f g h

γ

f g′ h′

The fill-in lemma provides a morphism γ : Z → Z ′ making all the squares com-
mute. A triangulated version of the 5-lemma (Proposition 1.0.11) shows that γ
is an isomorphism, making (id, id, γ) an isomorphism of triangles. Thus the
distinguished triangle generated by a morphism f is unique up to isomorphism,
but the isomorphism is not unique due to the different possible choices of γ.

We proceed to discuss how distinguished triangles relates to long exact
sequences, first encountering a familiar property.

Lemma 1.0.7 ([BR20, Lemma 4.1.4]). The composition of any two consecutive
morphisms in a distinguished triangle is zero.

Proof. Consider a distinguished triangle (X,Y, Z; f, g, h). To see that the
composite hg is zero, we begin with the distinguished triangle

X −→ 0 −→ ΣX
−id−−→ ΣX

obtained from (T1) by rotation. Note that −Σid = −id by functoriality.
Flipping two signs keeps this triangle distinguished and leads to a diagram

X Y Z ΣX

X 0 ΣX ΣX

f g h

k

id

with distinguished rows. The left square commutes trivially, so that there is a
fill-in k : Z → ΣX by Lemma 1.0.5 making all the squares commute. From the
right square it follows that k = h, and from the middle square we conclude that
hg = 0. More generally, this argument shows the composition of the second
and third morphism of any distinguished triangle vanishes. In particular, it
applies to the rotation (h,−Σf,−Σg) of the initial triangle. As Σ is faithful,
Σ(gf) = 0 implies gf = 0, concluding the proof.

4



TRIANGULATED CATEGORIES

Now suppose that (X,Y, Z; f, g, h) is a distinguished triangle, and consider
the distinguished triangle

Y
g−−→ Z

h−−→ ΣX
−Σf−−−→ ΣY

we get by rotation. Rotating this triangle gives yet another distinguished
triangle, and continuing like this results in a sequence

X
f−−→ Y

g−−→ Z
h−−→ ΣX

−Σf−−−→ ΣY
−Σg−−−→ ΣZ

−Σh−−−→ Σ2X −→ · · · (1.0.8)

consisting of sequences of distinguished triangles. Certain functors into abelian
categories take such sequences into exact sequences. We give these functors
names in the case when the target category is the category Ab of abelian groups
and homomorphisms.

Definition 1.0.9 ([Ver96, Définition 1.1.5]). Let C be a triangulated category.
An additive functor H : C → Ab is homological if it is half-exact in the sense
that for every distinguished triangle

X
f−−→ Y

g−−→ Z
h−−→ ΣX,

the sequence

H(X)
H(f)−−−→ H(Y )

H(g)−−−→ H(Z)

of abelian groups is exact. An additive contravariant functor H : C op → Ab is
cohomological if it is half-exact in the same sense, with the obvious change in
variance.

If H : C → Ab is a homological functor and (f, g, h) a distinguished triangle,
then we get a long exact sequence

H(X)
H(f)−−−→ H(Y )

H(g)−−−→ H(Z)
H(h)−−−→ H(ΣX)

−H(Σf)−−−−−→ H(ΣY ) −→ · · ·

by applying H to the sequence (1.0.8).
Next, we introduce two particularly interesting instances of homological and

cohomological functors, namely those we get from the bifunctor

C (−,−) : C op × C → Ab

by locking in one of the arguments. First, we define some notation. Given a
morphism f : X → Y in C and an object W of C , we write

f∗ := C (W, f) : C (W,X) −→ C (W,Y )

for the homomorphism of abelian groups sending g : W → X to the composite
fg : W → Y . Dually, we write

f∗ := C (f,W ) : C (Y,W ) −→ C (X,W )

for the homomorphism sending g : Y →W to the composite gf : X →W .

Proposition 1.0.10 ([BR20, Proposition 4.1.5]). Let C be a triangulated
category. The functor C (W,−) : C → Ab is homological for any object W of C .

5



TRIANGULATED CATEGORIES

Proof. Consider a distinguished triangle (f, g, h). It follows from Lemma 1.0.7
that im f∗ ⊂ ker g∗, so to prove that the sequence

C (W,X)
f∗−−→ C (W,Y )

g∗−−→ C (W,Z)

is exact it remains to show the opposite inclusion. By (T1) and the rotation
axiom, any morphism j : W → Y satisfying gj = 0 fits in a commutative
diagram with distinguished rows as follows:

W 0 ΣW ΣW

Y Z ΣX ΣY.

j

−id

Σj

g h −Σf

The fill-in lemma provides a morphism Σi : ΣW → ΣX satisfying Σj = Σ(fi).
That Σ is an equivalence implies that j = fi, hence j ∈ im f∗, completing the
proof.

The proof that C (−,W ) : C op → Ab is cohomological is similar. A simple
consequence of this proposition is the following triangulated version of the usual
5-lemma.

Proposition 1.0.11 (Triangulated 5-lemma). Consider a morphism of distin-
guished triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′.

α β γ Σα

If both α and β are isomorphisms, then γ is also an isomorphism.

Proof. Applying C (Z ′,−) to the distinguished triangles gives a commutative
diagram

C (Z ′, X) C (Z ′, Y ) C (Z ′, Z) C (Z ′,ΣX) C (Z ′,ΣY )

C (Z ′, X ′) C (Z ′, Y ′) C (Z ′, Z ′) C (Z ′,ΣX ′) C (Z ′,ΣY ′),

α∗ β∗ γ∗ Σα∗ Σβ∗

where the rows are exact sequences of abelian groups. If α and β are iso-
morphisms, then α∗, β∗, Σα∗ and Σβ∗ are all isomorphisms. It follows from
the usual 5-lemma that γ∗ is an isomorphism. In particular, there is a mor-
phism γ−1 : Z ′ → Z such that γγ−1 = idZ′ . Repeating the argument with
the functor C (−, Z ′) produces the corresponding left inverse, hence γ is an
isomorphism.

Finally, we reproduce the 3× 3 lemma, attributed to Verdier in [DBB83].

6



PUSH-LIFT AND FILL-IN MORPHISMS

Proposition 1.0.12 ([May01, Lemma 2.6]). Assume that jf = f ′i and that
the top two rows and left columns are distinguished triangles in the diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

X ′′ Y ′′ Z ′′ ΣX ′′

ΣX ΣY ΣZ Σ2X.

f

i

g

j

h

k Σi

f ′

i′

g′

j′

h′

k′ Σi′

f ′′

i′′

g′′

j′′

h′′

k′′ −Σi′′

Σf Σg −Σh

Then there exists an object Z ′′ and morphisms f ′′, g′′, h′′, k, k′ and k′′ making it
a diagram of distinguished rows and columns. Moreover, the diagram commutes,
apart for the bottom right square which commutes up to the sign −1.

1.1 Push-Lift and Fill-In Morphisms

Now that we have seen the definition of a triangulated category and the basic
properties such a structure entails, we look at a slightly deeper consequence
of the fill-in lemma. This will be the first of many times that we encounter
diagrams where certain elements push and lift repeatedly to eventually form
a cycle. This lies at the heart of the arguments in Chapter 4, but whereas
those only rely on exactness, this section explores how such cycles arise from
choosing fill-ins.

Let C be a triangulated category and consider distinguished triangles

A
i−−→ B

j−−→ C
k−−→ ΣA

and
X

f−−→ Y
g−−→ Z

h−−→ ΣX.

If we apply the homological functor C (A,−) to the second distinguished triangle,
we get an exact sequence of abelian groups

· · · −→ C (A,X)
f∗−−→ C (A, Y )

g∗−−→ C (A,Z)
h∗−−→ C (A,ΣX) −→ · · ·

by Proposition 1.0.10. Similarly, we may apply the cohomological functor
C (−, X) to the first distinguished triangle to get an exact sequence

· · · −→ C (X,ΣA)
k∗−−→ C (X,C)

j∗−−→ C (X,B)
i∗−−→ C (X,A) −→ · · · .

Repeating this for the remaining objects of each triangle, the resulting sequences
align in a commutative diagram with exact rows and columns extending in each

7



PUSH-LIFT AND FILL-IN MORPHISMS

direction:

C (ΣA,X) C (ΣA, Y ) C (ΣA,Z) C (ΣA,ΣX)

C (C,X) C (C, Y ) C (C,Z) C (C,ΣX)

C (B,X) C (B, Y ) C (B,Z) C (B,ΣX)

C (A,X) C (A, Y ) C (A,Z) C (A,ΣX).

f∗

k∗

g∗

k∗

h∗

k∗ k∗

f∗

j∗

g∗

j∗

h∗

j∗ j∗

f∗

i∗

g∗

i∗

h∗

i∗ i∗

f∗ g∗ h∗

Now suppose β : B → X and γ : C → Y are morphisms of C making the
diagram

B C ΣA ΣB

X Y Z ΣX

j

β

k

γ

−Σi

Σβ

f g h

(1.1.1)

commutative, where the upper row is the distinguished triangle we get by rotat-
ing the triangle (i, j, k) once. Any such diagram admits a fill-in by Lemma 1.0.5,
and any morphism α : ΣA → Z filling in the dashed arrow sits in the group
C (ΣA,Z) while satisfying relations k∗(α) = g∗(γ) and h∗(α) = (−Σi)∗(Σβ).
These relations imply that the image of α in C (C,Z) lifts over g∗ to γ in C (C, Y ).
The left square of (1.1.1) commuting gives fβ = γj, so if we push γ down to
C (B, Y ), then the image lifts over f∗ to β ∈ C (B,X). Pushing β down along i∗
we have βi ∈ C (A,X). The right-hand square of (1.1.1) commuting is equivalent
to −ΣβΣi = hα. This in turn implies that βi = −Σ−1hΣ−1α, so if we push α
right along h∗, we find that the images i∗(β) in C (A,X) and h∗(α) ∈ C (ΣA,ΣX)
coincide up to a sign under the isomorphism E : C (A,X) → C (ΣA,ΣX) in-
duced by the suspension. This gives an inkling that pushing and lifting six times
in this way reduces to the negative of the identity whenever the morphisms
come from a fill-in diagram. We give precise meaning to this inkling in the

α h ◦ α

γ g ◦ α = α ◦ k

β γ ◦ j = f ◦ β

β ◦ i = −Σ−1h ◦ Σ−1α

Figure 1.1: The push-lift cycle coming from the fill-in in (1.1.1).

slightly more general setting where the first triangle is suspended. After 3n
rotations, we are left with a distinguished triangle

ΣnA
(−1)nΣni−−−−−−→ ΣnB

(−1)nΣnj−−−−−−−→ ΣnC
(−1)nΣnk−−−−−−−→ Σ1+nA.

8



PUSH-LIFT AND FILL-IN MORPHISMS

Applying the various homological and cohomological functors as before now
gives the following diagram:

C (Σ1+nA,X) C (Σ1+nA, Y ) C (Σ1+nA,Z) C (Σ1+nA,ΣX)

C (ΣnC,X) C (ΣnC, Y ) C (ΣnC,Z) C (ΣnC,ΣX)

C (ΣnB,X) C (ΣnB, Y ) C (ΣnB,Z) C (ΣnB,ΣX)

C (ΣnA,X) C (ΣnA, Y ) C (ΣnA,Z) C (ΣnA,ΣX).

f∗

((−1)nΣnk)∗

g∗

((−1)nΣnk)∗

h∗

((−1)nΣnk)∗ ((−1)nΣnk)∗

f∗

((−1)nΣnj)∗

g∗

((−1)nΣnj)∗

h∗

((−1)nΣnj)∗ ((−1)nΣnj)∗

f∗

((−1)nΣni)∗

g∗

((−1)nΣni)∗

h∗

((−1)nΣni)∗ ((−1)nΣni)∗

f∗ g∗ h∗

Proposition 1.1.2. Let (i, j, k) and (f, g, h) be the distinguished triangles above.
Assume b ∈ C (ΣnB, Y ) maps to zero in both C (ΣnA, Y ) and C (ΣnB,Z). Then

((−1)nΣni)∗f−1
∗ (b) = −h∗

(
((−1)nΣnk)∗

)−1
g∗
(
((−1)nΣnj)∗

)−1
(b),

where the indeterminacy of either expression is the image of

(−1)n+1(Σ−1h)∗(Σ
ni)∗ = (−1)n+1(Σni)∗(Σ−1h)∗.

Proof. If b maps to zero in both C (ΣnA, Y ) and C (ΣnB,Z), then exactness
gives morphisms γ : ΣnC → Y and β : ΣnB → X making the left square of the
following diagram commute.

ΣnB ΣnC Σ1+nA Σ1+nB

X Y Z ΣX.

(−1)nΣnj

β

(−1)nΣnk

γ

(−1)1+nΣ1+ni

Σβ

f g h

This diagram admits a fill-in, and if α : Σn+1A→ Z is such a fill-in, then

h ◦ α = Σβ ◦ (−1)1+nΣ1+ni and g ◦ γ = α ◦ (−1)nΣnk.

The second equality ensures that the images of α and γ meet in C (ΣnC,Z). The
first equality implies that Σ−1hΣ−1α = (−1)1+nβΣni. Pushing β down we have
(−1)nβΣni ∈ C (ΣnA,X), and pushing α right we have hα ∈ C (Σ1+nA,ΣX).
In particular, we see that the isomorphism

E : C (ΣnA,X) −→ C (Σ1+nA,ΣX)

takes (−1)nβ ◦ Σni to −h ◦ α. The indeterminacy due to the lift γ vanishes in
C (Σn+1A,ΣX), while the indeterminacy due to β is the image

im
(
(−Σ−1h)∗ : C (ΣnB,Σ−1Z) −→ C (ΣnB,X)

)
,

This set is reflected in C (ΣnA,X) as the image of

(−1)1+1(Σ−1h)∗(Σ
ni)∗ = (−1)1+n(Σni)∗(Σ−1h)∗

Finally, the indeterminacy involved in choosing the fill-in is

im
(
(−1)1+n(Σ1+ni)∗ : C (Σ1+nB,Z) −→ C (Σ1+nA,Z)),

and this appears in C (Σn+1A,ΣX) as the image of

(−1)1+nh∗(Σ
1+ni)∗ = (−1)1+n(Σ1+ni)∗h∗.
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1.2 Symmetric Monoidal Structure

Both the derived category and the stable homotopy category carry a product
structure, represented by the tensor product and smash product, respectively.
In the language of category theory, they are instances of monoidal categories.
Such a category comes with a bifunctor C × C → C behaving in a way we
expect a product would. If this product is also commutative, then we say that
the monoidal category is symmetric. It is these categories that we will look
at in this section, and both the derived category and the stable homotopy
category are in fact symmetric monoidal. Moreover, as we know, they are also
triangulated. When both of these structures are present, we would like to know
how they interact. This relationship is intricate, and there are several attempts
at elucidating it in the literature. Hovey, Palmieri and Strickland proposes
some compatibility axioms in [HPS97, A.2], and May proposes more axioms
in [May01, §4]. We will keep from going too deep into all the intricacies, and
shall lean on the slightly more compact axioms of [HPS97].

We begin this section by describing the symmetric monoidal structure in
more detail, and make sense of what it means for such a category to be “closed”.
Next, we give a brief introduction to categorical duality theory in the context
of closed symmetric monoidal categories. After the setup, we discuss the
compatibility axioms restraining the relationship between the triangulated and
closed symmetric monoidal structure. We finish off by discussing another push-
lift result, this time for diagrams arising as products of distinguished triangles.

A monoidal category is a category C equipped with a functor

∧ : C × C → C ,

called the monoidal product, and a unit object S of C . We require that the
monoidal product is associative and unital in the sense that there are specified
natural isomorphisms

X ∧ (Y ∧ Z) ∼= (X ∧ Y ) ∧ Z S ∧X ∼= X ∼= X ∧ S

for all objects X, Y and Z of C . Each of these natural transformations are
subject to certain coherence conditions, as explained in [Lan71, Chapter XI]. A
symmetric monoidal category is a monoidal category (C ,∧, S) together with a
twist isomorphism

τ : X ∧ Y
∼=−−→ Y ∧X,

natural in both X and Y , making the monoidal product coherently commutative.
A symmetric monoidal category is closed if the functor L : C → C given by
L : X 7→ X ∧ Y has a right adjoint R : Z 7→ F (Y, Z) for all objects Y of C . In
this case, we refer to F (X,Y ) as the internal hom, and there are isomorphisms

θ = θX,Z : C (X ∧ Y, Z) ∼= C (X,F (Y, Z)),

natural in all three variables. We let η : X → F (Y,X ∧ Y ) denote the unit of
this adjunction, and ε : F (Y,Z) ∧ Y → Y the counit. Note that the counit has
the appearance of an evaluation map, and we think of it as such. We recall the
following fact about adjunctions.

10
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Proposition 1.2.1 ([Lan71, Theorem IV.1.1]). Let R : D � C :L be a pair of
adjoint functors, with L left adjoint and R right adjoint. The right adjoint of
any morphism f : LX → Z is the composite

f̃ : X
η−−→ RLX

Rf−−→ RZ.

Conversely, the left adjoint of any morphism f̃ : X → RZ is the composite

f : LX
Lf̃−−→ LRZ

ε−−→ Z.

Remark 1.2.2. Our choice of notation is inspired by the stable homotopy category
of spectra, where ∧ would denote the smash product, S the sphere spectrum
and F (X,Y ) the function spectrum of spectra X and Y . In the derived category
of an abelian category, we would write ⊗ for the monoidal unit and Hom for
the internal hom.

Following [LMS86, §III.1], we construct some general nonsense morphisms
central to categorical duality theory. Before we begin, we define what we mean
by duality.

Definition 1.2.3. The dual of an object X of a closed symmetric monoidal
category (C ,∧, S, F ; τ) is the object DX := F (X,S).

For the rest of this section we fix a closed symmetric monoidal category
(C ,∧, S, F ; τ). Applying the adjunction twice to the morphism

ε : F (X ∧ Y, Z) ∧X ∧ Y → Z

gives an isomorphism

F (X ∧ Y,Z)
∼=−−→ F (X,F (Y,Z)).

With X ∧X ′ as the fixed object, the right adjoint of the composite

L(F (X,Y ), F (X ′, Y ′))
id∧τ∧id−−−−−→ F (X,Y ) ∧X ∧ F (X ′, Y ′) ∧X ′ ε∧ε−−→ Y ∧ Y ′

defines a pairing

∧ : F (X,Y ) ∧ F (X ′, Y ′) −→ F (X ∧X ′, Y ∧ Y ′).

With η : Z → F (S,Z ∧ S), this pairing specialises to a natural morphism

ν : F (X,Y ) ∧ Z id∧η−−−→ F (X,Y ) ∧ F (S,Z)
∧−−→ F (X,Y ∧ Z),

recalling that F (S,Z ∧S) ∼= F (S,Z). Finally, the right adjoint of the composite

X ∧ F (X,S)
τ−−→ F (X,S) ∧X ε−−→ S

defines a natural morphism

ρ : X −→ F (F (X,S), S).

Expressing this using the notation of duals, this is a morphism ρ : X → DDX.
Moreover, taking Y = S in ν, we get a morphism ν : DX ∧X → F (X,X).

With all of these morphisms in hand, we are ready to classify certain objects
as “dualisable”. This notion also appears in the literature as “strongly dualisable”
or “finite”, as in [LMS86, Definition III.1.1].

11
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Definition 1.2.4. An object X of a C is dualisable if the canonical morphism

ν : DX ∧X −→ F (X,X)

is an isomorphism in C .

Dualisable objects enjoy several nice properties, and we summarise the ones
we need in the next proposition.

Proposition 1.2.5 ([LMS86, Proposition III.1.3]). If X is a dualisable object
of C , then ρ : X → DDX is an isomorphism. If either X or Z are dualisable
and Y is any object of C , then

ν : F (X,Y ) ∧ Z −→ F (X,Y ∧ Z)

is an isomorphism. When Y = S, this isomorphism specialises to an isomor-
phism ν : DX ∧ Z → F (X,Z).

Assume now that C also carries a triangulation. Looking to the derived
category and the stable homotopy category, it is clear that the suspension and
the monoidal product interact in rich ways. We reproduce the axioms of [HPS97,
A.2], which attempts to describe this interaction. May proposes more axioms
in [May01, §4], and demonstrates how a subset of his axioms imply these ones.

We follow the convention that suspensions happen on the left, so that the
suspension of an object X should be the object ΣX = S1 ∧X. Here we shall
mean S1 := ΣS. More generally, we define Sn := ΣnS.

Definition 1.2.6 ([HPS97, Definition A.2.1]). Let (C ,∧, S, F ) be a closed
symmetric monoidal category with a triangulation. We say that the triangulation
is compatible with the closed symmetric monoidal structure if:

i) There is a natural isomorphism

eX,Y : ΣX ∧ Y
∼=−−→ Σ(X ∧ Y )

for each object X and Y of C . We require that e is compatible with the
associativity and unit morphisms in the sense that ΣrX ◦ eX,S = rΣX ,
and that the following diagram commutes

Σ(X ∧ Y ) ∧ Z

(ΣX ∧ Y ) ∧ Z

ΣX ∧ (Y ∧ Z) Σ(X ∧ (Y ∧ Z))

Σ((X ∧ Y ) ∧ Z)

eX,Y ∧idZ

aΣX,Y,Z

eX,Y∧Z

ΣaX,Y,Z

eX∧Y,Z

ii) For each distinguished triangle (X,Y, Z; f, g, h) and object W of C , the
triangles

X ∧W f∧id−−−→ Y ∧W g∧id−−−→ Z ∧W h∧id−−−→ Σ(X ∧W ),

12



SYMMETRIC MONOIDAL STRUCTURE

and

Σ−1F (X,W )
−F (h,id)−−−−−−→ F (Z,W )

F (g,id)−−−−−→ F (Y,W )
F (f,id)−−−−−→ F (X,W )

are distinguished. Here we identify ΣX ∧W and Σ(X ∧W ) through eX,W
in the first triangle, and we identify F (ΣX,W ) and Σ−1F (X,W ) through
the adjoint of e in the second triangle.

iii) The following diagram is commutative for each integer m and n:

Sm ∧ Sn Sm+n

Sn ∧ Sm Sn+m.

∼=

τ (−1)mn

∼=

Specifically, the monoidal product interacts with suspensions in a graded-
commutative manner.

The natural isomorphism eS,X gives a natural isomorphism

σ : S1 ∧X = ΣS ∧X eS,X−−−→ Σ(S ∧X) = ΣX,

and this again determines a natural isomorphism ΣX ∧Y ∼= Σ(X ∧Y ). As these
identifications essentially reduce to associativity of the monoidal product, we
often suppress them. When the right-hand side term of the product is the one
suspended, we use the twist to construct a natural isomorphism eτX,Y : X∧ΣY →
Σ(X ∧ Y ) making the diagram

X ∧ ΣY Σ(X ∧ Y )

ΣY ∧X Σ(Y ∧X).

eτX,Y

τ Στ

∼=

commutative. Given a distinguished triangle (X,Y, Z; f, g, h) and an object W
of C , then the top row of the following diagram is distinguished

X ∧W Y ∧W Z ∧W Σ(X ∧W )

W ∧X W ∧ Y W ∧ Z Σ(W ∧X).

f∧id

τ ∼=

g∧id

τ∼=

h∧id

τ∼= Στ∼=
id∧f id∧g eτ (id∧h)

The vertical arrows exhibit an isomorphism of triangles, hence the bottom row
is also a distinguished triangle.

Our final construction for now demonstrates how we extend the homological
functor C (S,−) to a functor π∗ : C → grAb taking values in the category of
graded abelian groups. Given a non-negative integer n and an object X of C ,
we define

πn(X) := C (S,Σ−nX) = C (ΣnS,X) = C (Sn, X).

As we assemble these groups we get a graded abelian group π∗(X).

13
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With all the theory in place, we return to the setting of the previous section.
Consider distinguished triangles

A
i−−→ B

j−−→ C
k−−→ ΣA

and
X

f−−→ Y
g−−→ Z

h−−→ ΣX

of C . Now that C also carries a product, we take the opportunity to use it.
In particular, taking the product of each object of the first triangle with the
second triangle in turn, and vice versa, we get a commutative diagram

A ∧X A ∧ Y A ∧ Z A ∧ ΣX

B ∧X B ∧ Y B ∧ Z B ∧ ΣX

C ∧X C ∧ Y C ∧ Z C ∧ ΣX

ΣA ∧X ΣA ∧ Y ΣA ∧ Z ΣA ∧ ΣX.

id∧f

i∧id

id∧g

i∧id

id∧h

i∧id i∧id

id∧f

j∧id

id∧g

j∧id

id∧h

j∧id j∧id

id∧f

k∧id

id∧g

k∧id

id∧h

k∧id k∧id

id∧f id∧g id∧h

Neither the rows nor the columns of this diagram are distinguished triangles.
We remedy this through the identifications above. Explicitly, we replace ΣA∧X
with Σ(A∧X), ΣA∧Y with Σ(A∧Y ) and so on without further ado, so that the
columns all become distinguished triangles. To make the rows distinguished, we
use the isomorphisms eτ . After we make these replacements, we get the following
diagram of distinguished rows and columns, where the squares commute apart
from the one in the bottom right, which commutes up to the sign −1.

A ∧X A ∧ Y A ∧ Z Σ(A ∧X)

B ∧X B ∧ Y B ∧ Z Σ(B ∧X)

C ∧X C ∧ Y C ∧ Z Σ(C ∧X)

Σ(A ∧X) Σ(A ∧ Y ) Σ(A ∧ Z) Σ2(A ∧X)

id∧f

i∧id

id∧g

i∧id

eτ(id∧h)

i∧id Σ(i∧id)

id∧f

j∧id

id∧g

j∧id

eτ(id∧h)

j∧id Σ(j∧id)

id∧f

k∧id

id∧g

k∧id

eτ(id∧h)

k∧id 	 −Σ(k∧id)

Σ(id∧f) Σ(id∧g) −Σ(eτ(id∧h))

Note that we add signs to the morphisms in the lower right to ensure that the
triangles are distinguished. That the bottom right square anti-commutes is due
to the two different suspensions involved. We differentiate them by adding a
decorative dot above one of them in the following diagram.

C ∧ Z C ∧ Σ̇X Σ̇(C ∧X)

Σ(A ∧ Z) Σ(A ∧ Σ̇X) Σ̇Σ(A ∧X)

id∧h

k∧id

eτX,C

k∧id Σ(k∧id)

Σ(id∧h) eτX,ΣA

14
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This diagram commutes by naturality. We focus on the lower horizontal
morphism in the right square. As we shift one suspension over the other, we
twist the product S1 ∧ S1, introducing a sign. In particular, we see that

eτX,ΣA : Σ(A ∧ Σ̇X)
∼=−−→ Σ̇Σ(A ∧X)

is the negative of

ΣeτX,A : Σ(A ∧ Σ̇X)
∼=−−→ ΣΣ̇(A ∧X).

The diagram of distinguished triangles above appears in [May01], and Andrews
and Miller derive a push-lift result in the associated homotopy groups for this
diagram in [AM17, Lemma 9.3.2]. We take a slightly different approach, proving
a similar result under the assumption that a certain fill-in morphism exists.

We begin by dualising the first distinguished triangle (i, j, k). This leads to
a distinguished triangle

Σ−1DA
−Dk−−−→ DC

Dj−−→ DB
Di−−→ DA.

If we rotate this triangle 3n+ 1 times, then we get a distinguished triangle

ΣnDC
(−1)nΣnDj−−−−−−−→ ΣnDB

(−1)nΣnDi−−−−−−−→ ΣnDA
(−1)nΣ1+nDk−−−−−−−−−→ Σ1+nDC.

It is this distinguished triangle that will serve as our jumping-off point. Applying
the various homological and cohomological functors as we did in the last section,
this triangle combines with the triangle (f, g, h) to construct a commutative
diagram consisting of exact columns and rows. This time around, the diagram
is the one in Figure 1.2. Suppose that there are morphisms α : ΣnDC → X and

C (Σ1+nDC,X) C (Σ1+nDC, Y ) C (Σ1+nDC,Z) C (Σ1+nDC,ΣX)

C (ΣnDA,X) C (ΣnDA,Y ) C (ΣnDA,Z) C (ΣnDA,ΣX)

C (ΣnDB,X) C (ΣnDB,Y ) C (ΣnDB,Z) C (ΣnDB,ΣX)

C (ΣnDC,X) C (ΣnDC, Y ) C (ΣnDC,Z) C (ΣnDC,ΣX)

((−1)nΣ1+nDk)∗

((−1)nΣnDi)∗

((−1)nΣnDj)∗

f∗ g∗ h∗

Figure 1.2: Horizontal and vertical exact sequences associated to the distin-
guished triangles. The unlabeled arrows are the ones of the corresponding row
or column.

β : ΣnDB → Y such that f ◦α = β ◦ (−1)nΣnDj. This corresponds to elements
of C (ΣnDC,X) and C (ΣnDB,Y ) with common image in C (ΣnDC, Y ), all of
this happening in the lower left corner of the Figure 1.2. Moreover, these data
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fit in a commutative diagram

ΣnDC ΣnDB ΣnDA Σ1+nDC

X Y Z ΣX.

(−1)nΣnDj

α

(−1)nΣnDi

β

(−1)nΣ1+nDk

γ Σα

f g h

Here both the rows are distinguished, so there is a fill-in γ : ΣnDA→ Z making
all the squares commute. This implies that there is a push-lift cycle, tracing a
path alternatingly touching the diagonal and the subdiagonal of the diagram,
taking α from the bottom left corner to Σα in the top right. If we assume
that the objects of the triangle (A,B,C; i, j, k) are dualisable, then the next
lemma shows how we might translate between the diagram in Figure 1.2, and
the diagram we get as the products of the two triangles.

Lemma 1.2.7. Let A and X be objects of C , and assume that A is dualisable.
For each integer n ≥ 0, there is a preferred isomorphism

πn(A ∧X)
∼=−−→ C (ΣnDA,X),

natural in A and X.

Proof. If A is dualisable, then ρ : A → DDA and ν : DAA ∧X → F (DA,X)
are both isomorphisms, hence the composite

A ∧X ρ∧id−−−→ DDA ∧X ν−−→ F (DA,X).

is an isomorphism. The closed structure provides an isomorphism

C (Sn, F (DA,X)) ∼= C (Sn ∧DA,X),

where we get Sn ∧DA ∼= ΣnDA by repeatedly applying σ : S1 ∧DA→ ΣDA.
Recalling that πn(A ∧X) = C (Sn, X ∧A) by definition, this combines to the
desired isomorphism

πn(A ∧X)
ν∗(ρ∧id)∗−−−−−−→ C (Sn, F (DA,X))

∼=−−→ C (ΣnDA,X).

Taking the cue of this lemma, we get an isomorphic version of Figure 1.2,
where we identify Σ1+nDC with ΣnDΣ−1C before we apply the isomorphism.

πn(Σ−1C ∧X) πn(Σ−1C ∧ Y ) πn(Σ−1C ∧ Z) πn(Σ−1C ∧ ΣX)

πn(A ∧X) πn(A ∧ Y ) πn(A ∧ Z) πn(A ∧ ΣX)

πn(B ∧X) πn(B ∧ Y ) πn(B ∧ Z) πn(B ∧ ΣX)

πn(C ∧X) πn(C ∧ Y ) πn(C ∧ Z) πn(C ∧ ΣX)
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We still have to determine the homomorphisms. We walk through the identifi-
cations. Take x ∈ πn(A ∧X), and note that the composite

x̃′ : Sn
x−−→ A ∧X ρ∧id−−−→ DDA ∧X ν−−→ F (DA,X)

is left adjoint to x′ : Sn ∧DA→ X. This describes chasing x from the bottom
left corner of the following diagram up to the top of the left column, where the
diagram commutes by naturality.

C (ΣnDA,X) C (ΣnDB,X)

C (Sn ∧DA,X) C (Sn ∧DB,X)

C (Sn, F (DA,X)) C (Sn, F (DB,X))

C (Sn, DDA ∧X) C (Sn, DDB ∧X)

C (Sn, A ∧X) C (Sn, B ∧X)

πn(A ∧X) πn(B ∧X)

(−1)n(ΣnDi)∗

(−1)n(id∧Di)∗

θ ∼= θ∼=
(−1)n(F (Di,id))∗

(−1)n(DDi∧id)∗

ν∗ ∼= ν∗∼=

(−1)n(i∧id)∗

(ρ∧id)∗ ∼= (ρ∧id)∗∼=

(−1)n(i∧id)∗

Mapping x′ across and moving the result back down along the right column,
we deduce that (−1)(ΣnDi)∗ : C (ΣnDA,X) → C (ΣnDB,X) corresponds to
(−1)n(i ∧ id)∗ : πn(A ∧ X) → πn(B ∧ X) under the preferred identifications
of domains and codomains. Repeating these identifications for the remaining
homomorphisms, we obtain the commutative diagram below, where the vertical
homomorphisms all carry the sign (−1)n:

πn(Σ−1C ∧X) πn(Σ−1C ∧ Y ) πn(Σ−1C ∧ Z) πn(Σ−1C ∧ ΣX)

πn(A ∧X) πn(A ∧ Y ) πn(A ∧ Z) πn(A ∧ ΣX)

πn(B ∧X) πn(B ∧ Y ) πn(B ∧ Z) πn(B ∧ ΣX)

πn(C ∧X) πn(C ∧ Y ) πn(C ∧ Z) πn(C ∧ ΣX)

(Σ−1k∧id)∗

(i∧id)∗

(j∧id)∗

(id∧f)∗ (id∧g)∗ (id∧h)∗

Now let a ∈ πn(C ∧ X) be the element corresponding to α ∈ C (ΣnDC,X)
under the induced identification of groups, and let a′ ∈ πn(Σ−1C ∧ ΣX) be
the element corresponding to Σα ∈ C (Σ1+nDC,ΣX). It is clear that there
is a push-lift cycle connecting these elements. However, it is not clear what
the exact relationship between them is. This depends on the way we identify
πn(C ∧X) ∼= π1+n(Σ(C ∧X)). Time not permitting a thorough exploration of
this, we give a handwavy summary of the above in the next proposition.
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Proposition 1.2.8. Let (A,B,C; i, j, k) and (X,Y, Z; f, g, h) be distinguished
triangles and suppose that the objects A, B and C are all dualisable. Assume
given a commutative diagram

ΣnDC ΣnDB ΣnDA Σ1+nDC

X Y Z ΣX,

(−1)nΣnDj

α

(−1)nΣnDi

β

(−1)nΣ1+nDk

γ Σα

f g h

and let a ∈ πn(C∧X) be the element corresponding to α under the identification
C (ΣnDC,X) ∼= πn(C∧X), and a′ ∈ πn(Σ−1C∧ΣX) the element corresponding
to Σα. Then there is a push-lift cycle connecting a to a′.
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2 Cartan–Eilenberg Systems

In [CE56, §XV.7], Cartan and Eilenberg gave axioms for what has since become
known as Cartan–Eilenberg systems. Their choice of axioms are geared towards
providing a spectral sequence with certain good properties. We shall discuss
this spectral sequence in Section 3.3, but rather than get ahead of ourselves,
we spend this chapter introducing Cartan–Eilenberg systems and set up the
theoretical framework we will be working within. We start off by giving the
definition of a Cartan–Eilenberg system in the form most useful to us and
derive some simple consequences of this definition. Then, we introduce exact
sequences of Cartan–Eilenberg systems. This definition naturally extends the
notion of exactness already present in each system, and is central to the work
we do later. In the second section of this chapter, we derive a push-lift lemma
for grids of exact sequences. We finish the chapter by formulating a notion
of a filtration shift. It is through filtration shifts that we tie together exact
sequences of Cartan–Eilenberg systems and spectral sequences in Chapter 4.

Before we go on, we detour briefly into filtrations and filtered objects. These
serve as a nice source of examples and will play an important role when we
discuss the convergence of spectral sequences. Working with collections of
filtered objects, bifiltered objects and spectral sequences, there are usually
enough indices around to cause confusion. As such, we do most of our work in
the category of graded abelian groups, which lets us hide at least one of the
indices. The objects of this category are sequences X = (Xt)t of abelian groups,
where we call t ∈ Z the internal degree for how it usually stays internal and out
of sight. The morphisms are sequences of homomorphisms of abelian groups.

Definition 2.0.1. A (descending) filtration (F sX)s of a graded abelian group
X is a sequence

· · · ⊂ F s+1X ⊂ F sX ⊂ F s−1X ⊂ · · · ⊂ X

of inclusions, where the filtration degree s runs through the integers. A graded
abelian group X is filtered if it comes equipped with a filtration.

A familiar and rudimentary example of a filtration is that of a pair (X,A)
of topological spaces, with A a subspace of X. Given such a pair, there are
various long exact sequences that might let us use our understanding of A to
learn about X. Letting the filtrations grow longer builds on this idea. We split
an object into increasingly granular pieces, learn about the pieces, and then
attempt to assemble what we learn to knowledge about that object.

To formalise this idea, let X be a graded abelian group with filtration
(F sX)s. For each filtration degree s there is a short exact sequence

0 −→ F s+1X −→ F sX −→ F sX

F s+1X
−→ 0 (2.0.2)

including F s+1X into F sX, followed by the canonical projection onto the
filtration quotient F sX/F s+1X. This sequence expresses the graded group
F sX as an extension of the filtration quotient by the subsequent group F s+1X.
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Definition 2.0.3. Given a filtered graded abelian group X, we define the
associated graded of X as the graded abelian group GrsX := F sX/F s+1X.

With a sufficiently good filtration, the associated graded inductively deter-
mine X through the extensions (2.0.2). We return to this in more detail in the
context of spectral sequences. For now, we content ourselves with hinting at
what we might mean by a sufficiently good filtration.

Definition 2.0.4. The filtration (F sX)s of a graded abelian group X is
exhaustive if the canonical morphism colims F

sX → X is an isomorphism. It
is bounded if F sX = 0 for s sufficiently large and F sX = X for s sufficiently
small.

Finally, a word on how homomorphisms of graded abelian groups interact
with filtrations. If X and Y are graded abelian groups filtered by (F sX)s and
(F sY )s, respectively, then a morphism f : X → Y is filtration-preserving if
f(F sX) ⊂ F s(Y ) for each integer s.

All of the above generalises to any abelian category. For example, in the
category of chain complexes of abelian groups, a filtration of a chain complex
X∗ is a decreasing sequence (F sX∗)s of subcomplexes of X∗.

2.1 Cartan–Eilenberg Systems

Cartan and Eilenberg introduced their axioms in the context of cohomology
and cohomological spectral sequences. Our definition is essentially the one
given by Douady in [Dou59], which is geared towards applications in the Adams
spectral sequence. Consequently, our indexing scheme is homotopical rather
than cohomological.

Let an extended integer be an element of the set Z of integers with symbols
−∞ and ∞ added in. We equip the extended integers with the usual ordering
of integers, but extended to have −∞ minimal and ∞ maximal.

Definition 2.1.1. A (homotopical) Cartan–Eilenberg system (π∗, η, ∂) consists
of graded abelian groups π∗(i, j) for each pair (i, j) of extended integers with
i ≤ j, structure morphisms

η : π∗(i, j) −→ π∗(i
′, j′)

preserving the degree for all pairs (i, j) and (i′, j′) of extended integers with
i ≤ j and i′ ≤ j′ satisfying i′ ≤ i and j′ ≤ j, and connecting morphisms

∂ : π∗(i, j) −→ π∗−1(j, k)

reducing the degree by 1 for all extended integers i ≤ j ≤ k. These must satisfy
the following:

i) (Functoriality) The morphism η : π∗(i, j) → π∗(i, j) is the identity, and
the composition

η ◦ η : π∗(i, j) −→ π∗(i
′, j′) −→ π∗(i

′′, j′′)

equals η : π∗(i, j)→ π∗(i
′′, j′′) for all extended integers i ≤ j, i′ ≤ j′ and

i′′ ≤ j′′ with i′′ ≤ i′ ≤ i and j′′ ≤ j′ ≤ j.
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ii) (Naturality) For all pairs of triples i ≤ j ≤ k and i′ ≤ j′ ≤ k′ of extended
integers with i′ ≤ i, j′ ≤ j and k′ ≤ k, the diagram

π∗(i, j) π∗−1(j, k)

π∗(i
′, j′) π∗−1(j′, k′)

∂

η η

∂

is commutative.

iii) (Exactness) The sequence

· · · −→ π∗(j, k)
η−−→ π∗(i, k)

η−−→ π∗(i, j)
∂−−→ π∗−1(j, k) −→ · · ·

is exact for all extended integers i ≤ j ≤ k.

iv) (Colimit) The canonical homomorphism

colim
i

π∗(i, j)
∼=−−→ π∗(−∞, j)

is an isomorphism for each extended integer j.

To simplify notation later on, we will often use the shorthand π∗(i) to mean
the group π∗(i,∞).

Before we give some examples of Cartan–Eilenberg systems, we discuss some
easy implications of the axioms. First among these is that π∗(i, i) = 0 for any
extended integer i. This follows from the exactness axiom providing an exact
sequence

π∗+1(i, i+ 1)
id−−→ π∗+1(i, i+ 1)

∂−−→ π∗(i, i)
η−−→ π∗(i, i+ 1)

id−−→ π∗(i, i+ 1),

where the first and last morphisms are identities by functoriality. Exactness
implies that ∂ = 0, so that im(η) = ker(η) = 0. This is only possible if π∗(i, i)
is trivial in each degree.

Lemma 2.1.2. Given a Cartan–Eilenberg system (π∗, η, ∂) and extended in-
tegers i′ ≤ i ≤ j ≤ k ≤ k′, the connecting morphism ∂ : π∗(i, j) → π∗−1(j, k)
factors as both

π∗(i, j)
∂′−−→ π∗−1(j, k′)

η′−−→ π∗−1(j, k)

and
π∗(i, j)

η′′−−→ π∗(i
′, j)

∂′′−−→ π∗−1(j, k).

Proof. Two applications of naturality gives a commutative diagram

π∗−1(j, k′)

π∗(i, j) π∗−1(j, k)

π∗(i
′, j),

η′

∂

∂′

η′′

∂′′

whence the conclusion follows.
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We now construct some Cartan–Eilenberg systems.
Example 2.1.3. Given a chain complex X∗, a subcomplex A∗ of X∗, and an
extended integer i, there is a Cartan–Eilenberg system (π∗, η, ∂) with

π∗(i) = H∗(X), π∗(i+ 1) = H∗(A), and π∗(i, i+ 1) = H∗(X/A).

All the other groups are trivial. The structure morphisms η are the maps
induced on homology by the inclusion of A∗ into X∗ and the projection of X∗
onto X∗/A∗. The connecting morphism ∂ is the connecting homomorphism
from the long exact sequence in homology associated to the pair (X∗, A∗).
Example 2.1.4. Let (F sX∗)s be an exhaustive filtration of a chain complex
X∗ with F−∞X∗ = X∗ and F∞X∗ = 0. Given two pairs (i, j) and (i′, j′) of
extended integers with i ≤ j, i′ ≤ j′, i′ ≤ i and j′ ≤ j, there are horizontal
short exact sequences aligning in a commutative diagram:

0 F jX∗ F iX∗ F iX∗/F
jX∗ 0

0 F j
′
X∗ F i

′
X∗ F i

′
X∗/F

j′X∗ 0.

Commutativity ensures that there is a well-defined chain map

h : F iX∗/F
jX∗ → F i

′
X∗/F

j′X∗

connecting the filtration quotients. Adding in a third extended integer k with
i, j ≤ k, there is a short exact sequence

0 −→ F jX∗/F
kX∗

h′−−→ F iX∗/F
kX∗

h′′−−→ F iX∗/F
jX∗ −→ 0

of chain complexes. Passing to homology, h induces a homomorphism

η := H∗(h) : H∗(F
iX∗/F

jX∗) −→ H∗(F
i′X∗/F

j′X∗),

and the long exact sequence associated to the short exact sequence of chain
complexes hands us a connecting homomorphism

∂ : H∗(F
iX∗/F

jX∗) −→ H∗−1(F jX∗/F
kX∗).

In particular, defining π∗(i, j) := H∗(F
iX∗/F

jX∗) gives a Cartan–Eilenberg
system (π∗, η, ∂).

Definition 2.1.5. A morphism f : (π∗, η, ∂)→ (π′∗, η
′, ∂′) of Cartan–Eilenberg

systems is a collection of degree-preserving homomorphisms

fi,j : π∗(i, j) −→ π′∗(i, j)

commuting with both the structure and connecting morphisms for each pair of
extended integers (i, j) with i ≤ j. Explicitly, we require that the two diagrams

π∗(i, j) π′∗(i, j)

π∗(i
′, j′) π′∗(i

′, j′),

fi,j

η η′

fi′,j′

π∗(i, j) π′∗(i, j)

π∗(j, k) π′∗(j
′, k′).

fi,j

∂ ∂′

fj,k

commute for all pairs of triples i ≤ j ≤ k and i′ ≤ j′ ≤ k′ of extended integers
with i′ ≤ i, j′ ≤ j and k′ ≤ k.
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Now suppose that we have a composable pair of morphisms of Cartan–
Eilenberg systems. As both morphisms are collections of homomorphisms of
graded abelian groups, it makes sense to ask whether a composite of such
homomorphisms is exact at their common graded group. The next definition
pinpoints the case when exactness occurs across all the homomorphisms.

Definition 2.1.6. A sequence

(π′∗, η
′, ∂′)

f−−→ (π∗, η, ∂)
g−−→ (π′′∗ , η

′′, ∂′′)

of Cartan–Eilenberg systems is exact at (π∗, η, ∂) if the sequence

π′∗(i, j)
f−−→ π∗(i, j)

g−−→ π′′∗ (i, j)

of graded abelian groups is exact at π∗(i, j) for all pairs of extended integers (i, j)
with i ≤ j. A long exact sequence of Cartan–Eilenberg systems is a sequence of
Cartan–Eilenberg systems exact at each position.

Example 2.1.7. Consider a morphism f : X∗ → Y∗ of filtered chain complexes
and form the mapping cone Cf∗ as in Definition A.1.3. We equip the mapping
cone with a filtration (F sCf)s making the inclusion i : Y∗ → Cf∗ filtration-
preserving and each sequence

F sY∗
i−−→ F sCf∗

q−−→ F sΣX∗ ∼= F sX∗−1

short exact, where q is the chain map projection Cf∗ → ΣX∗. In each filtration
degree, the restriction fs : F sX∗ → F sY∗ of f to the subcomplex F sX∗ has
mapping cone Cfs∗ as a subcomplex of Cf∗. Moreover, the componentwise
inclusions

Cfs+1
n
∼= F s+1Yn ⊕ F s+1Xn−1 ⊆ F sYn ⊕ F sXn−1

∼= Cfsn

ensures that Cfs+1
∗ ⊆ Cfs∗ for each s. Defining F sCf := Cfs thus gives

the desired filtration of Cf∗. Following Example 2.1.4, we associate Cartan–
Eilenberg systems

π′∗(i, j) := H∗(F
iY/F jY, η′, ∂′),

π∗(i, j) := H∗(F
iCf/F jCf, η, ∂),

π′′∗ (i, j) := H∗(F
iΣX/ΣXj , η′′, ∂′′)

to Y∗, Cf∗ and ΣX∗, respectively. Then the sequence

(π′∗, η
′, ∂′)

f∗−−→ (π∗, η, ∂)
i∗−−→ (π′′∗−1, η

′′, ∂′′)

is an exact sequence of Cartan–Eilenberg systems, as

H∗(F
iY/F jY )

i∗−−→ H∗(F
iCf/F jCf)

q∗−−→ H∗(F
iX/F jX)

is exact at H∗(F iY/F jY ) for each i ≤ j.
The final definition for now lets us suspend a Cartan–Eilenberg system.

Essentially, this reduces to shifting the components of the graded groups, but
we get a sign on the connecting morphism. The sign is necessary to ensure that
the suspended Cartan–Eilenberg system of a filtered chain complex or spectrum
is the Cartan–Eilenberg system associated to the suspension of that object.
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Definition 2.1.8. The suspension of a Cartan–Eilenberg system (π∗, η, ∂) is
the Cartan–Eilenberg system (Σπ∗, η, ∂) consisting of graded abelian groups

Σπ∗(i, j) = π∗−1(i, j)

for each pair (i, j) of extended integers with i ≤ j. The structure morphisms

η : Σπ∗(i, j)→ Σπ∗(i
′, j′)

are the shifts η : π∗−1(i, j)→ π∗−1(i′, j′) of the structure morphisms of (π∗, η, ∂),
while the connecting morphisms

∂ : Σπ∗(i, j)→ Σπ∗−1(j, k)

are given by the connecting morphisms −∂ : π∗−1(i, j)→ π∗−2(j, k) of (π∗, η, ∂),
but with a sign.

Remark 2.1.9. To elaborate on the sign convention, let (π∗, η, ∂) be the Cartan–
Eilenberg system associated to a filtered chain complex X∗. In Example 2.1.7,
we associated a Cartan–Eilenberg system to the suspension ΣX∗ of X∗, and
this is the system we want to call Σπ∗. This forces a sign on the connecting
morphism, as we discuss at the end of Appendix A.1.

Suspending a Cartan–Eilenberg system (π∗, η, ∂) a number n times leads
to the system Σnπ∗ with groups Σnπ∗(i, j) = π∗−n(i, j), where the structure
and connecting morphisms are shifted correspondingly, and the connecting
morphisms carry the sign (−1)

n.

2.2 A Push-Lift Lemma

To begin this section, we take a step back and look at grids of exact sequences
of abelian groups. Consider a commutative diagram

As+2 As+1 As As−1

Bs+2 Bs+1 Bs Bs−1

Cs+2 Cs+1 Cs Cs−1

Ds+2 Ds+1 Ds Ds−1.

i

f

i

f

i

f f

j

g

j

g

j

g g

k

h

k

h

k

h h

` ` `

Assume that each row forms a horizontal exact sequence, and that each column
forms a vertical exact sequence. We shall see that commutativity and exactness
is enough to identify a certain subgroup moving through isomorphic guises
along a path the shape of a staircase through the diagram. To get a feel for
this subgroup, let c be an element of Cs+1 mapping to zero across the diagonal
Cs+1 → Ds. If we push c into Cs along k : Cs+1 → Cs, then commutativity tells
us that k(c) is in the kernel of h : Cs → Ds. By exactness of the vertical sequence
involving Cs, there is an element b ∈ Bs hitting k(c) under g : Bs → Cs. Now,
nothing suggests that b is the only such element. Specifically, we have to control
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for the choices we have when picking b. If we assume that c was only determined
up to images of sums of elements of Cs+2 and Bs+1, then it turns out that k(c)
is determined up to images coming across the diagonal Bs+1 → Cs. The next
lemma concerns itself with proving this.

Lemma 2.2.1 (Push-lift). The homomorphism k : Cs+1 → Cs induces an
isomorphism

ker(Cs+1 → Ds)

im(Cs+2 ⊕Bs+1 → Cs+1)

∼=−−→ im(Cs+1 → Cs) ∩ im(Bs → Cs)

im(Bs+1 → Cs)

Proof. We prove that the induced homomorphism is both surjective and injective.
Let c ∈ Cs satisfy k(c′) = c = g(b) for c′ ∈ Cs+1 and b ∈ Bs. Then

hk(c′) = h(c) = hg(b) = 0

as hg vanishes by exactness, leaving c′ ∈ ker(Cs+1 → Ds). This shows that

k̄ : ker(Cs+1 → Ds)
im(Cs+1 → Cs) ∩ im(Bs → Cs)

im(Bs+1 → Cs)

is surjective. To see that k̄ has kernel im(Cs+2 ⊕ Bs+1 → Cs+1), note that
k(c′) = kg(b′) in Cs for b′ ∈ Bs+1 if and only if,

c′ − g(b′) ∈ ker(k : Cs+1 → Cs) = im(k : Cs+2 → Cs+1).

Thus c′ − g(b′) = k(c′′) for c′′ ∈ Cs+2, as desired.

Note that the proof of this lemma only relies on exactness. As such, the
result is still valid if we only require that the squares of the diagram commute
up to a sign.

The diagram permitting, these isomorphisms chain together to produce as
long a sequence of isomorphic subquotients as we would like. This is not very
interesting on its own. In practice, however, we often encounter long exact
sequences that are periodic. A typical example is the 3-periodic long exact
sequence in homology associated to a pair of topological spaces. In such cases,
we can continue the sequence of isomorphisms until we meet the group we
started in. This gets us an automorphism of subquotients, and a natural thing
to wonder is what we can say about this automorphism.

Example 2.2.2. Let Y∗ = (Y∗, ∂) be a chain complex of abelian groups with
subcomplexes X∗ and B∗, and define A∗ := X∗ ∩B∗. In each degree n, we form
the pushout Bn ← An → Xn of the inclusions f ′ : An → Bn and i′ : An → Xn.
This is the subgroup

Pn := (Bn ⊕Xn)/
{(
f ′(a),−i′(a)

)
: a ∈ An

}
= (Bn ⊕Xn)/{(a,−a) : a ∈ An = Bn ∩Xn}
∼=Bn +Xn

of Yn, where the isomorphism identifying Pn and Bn +Xn is the one induced
by (b, x) 7→ b+ x. Assembling these subgroups to a subcomplex P∗ of Y∗ with
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differential ∂B +∂X , the quotient complex Y∗/P∗ fits into the following diagram
of short exact sequences of chain complexes

0 0 0

0 A∗ X∗ X∗/A∗ 0

0 B∗ Y∗ Y∗/B∗ 0

0 B∗/A∗ Y∗/X∗ Y∗/P∗ 0

0 0 0

i′

f ′

i

f f ′′

j′

g′

j

g g′′

k′ k

Passing to homology, we combine the associated long exact sequences into a
diagram where the unmarked squares commute, and the squares marked 	
anti-commute.

Hn+2(Y/P ) Hn+1(B/A) Hn+1(Y/X) Hn+1(Y/P )

Hn+1(X/A) Hn(A) Hn(X) Hn(X/A)

Hn+1(Y/B) Hn(B) Hn(Y ) Hn(Y/B)

Hn+1(Y/P ) Hn(B/A) Hn(Y/X) Hn(Y/P )

Hn(X/A) Hn−1(A) Hn−1(X) Hn−1(X/A)

∂

∂ 	

k′∗

∂

k∗

∂ ∂

∂

f ′′∗

i′∗

f ′∗

i∗

f∗ f ′′∗

∂

g′′∗

j′∗

g′∗

j∗

g∗ g′′∗

∂

∂ 	

k′∗

∂

k∗

∂ ∂

∂ i′∗ i∗

Choose cycles b of Bn and x of Xn and suppose that x = b+ ∂y in Yn. This
determines a homology class in Hn(Y ) in the image of fn with a lift to Hn(B).
Pushing and lifting these cycles in either direction until we get to Yn/Pn, we
have the following maps:

y + P∗

x x+A∗

b x = ∂y + b

−y + P∗ b+A∗

Specifically, we push b down to a cycle b + An in Bn/An. By assumption,
this cycle is the image of −y + Pn+1 under the connecting homomorphism
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∂ : Hn+1(Y/P ) → Hn(B/A). Going the other way, the image x + An of x in
Xn/An lifts to a cycle y + Pn+1 in Yn+1/Pn+1. What this shows, is that a
sequence of six push-lift isomorphisms sends [y] to [−y] in Hn+1(Y/P ). As such
we might suspect that the automorphism of subquotients reduces to −id in
this case. However, the resulting sign depends on what cycle of isomorphisms
we follow. If we begin instead with a cycle a ∈ An satisfying a = ∂y, then a
includes to a cycle in both Xn and Bn. These cycles again are images of y+X∗
and y +B∗, hence the automorphism takes [y] to [y] in Hn+1(Y/P ).

We now specialise this discussion to the case where we have a 3-periodic
long exact sequence of Cartan–Eilenberg systems

· · · −→ (π′∗, η
′, ∂′)

f−−→ (π∗, η, ∂)
g−−→ (π′′∗ , η

′′, ∂′′)
h−−→ (Σπ′∗, η

′, ∂′) −→ · · · .

Fix extended integers i, j and k satisfying i ≤ j ≤ k. Laying the long exact
sequences internal to each system out horizontally, and aligning them with the
sequences from the exact sequence of Cartan–Eilenberg systems vertically, we
get a diagram

Σ−1π′′∗+1(i, j) Σ−1π′′∗ (j, k) Σ−1π′′∗ (i, k) Σ−1π′′∗ (i, j)

π′∗+1(i, j) π′∗(j, k) π′∗(i, k) π′∗(i, j)

π∗(i, j) π∗(j, k) π∗(i, k) π∗(i, j)

π′′∗ (i, j) π′′∗ (j, k) π′′∗ (i, k) π′′∗ (i, j)

Σπ′∗(i, j) Σπ′∗(j, k) Σπ′∗(i, k) Σπ′∗(i, j).

∂′′

Σ−1h

η′′

Σ−1h

η′′

Σ−1h Σ−1h

∂′

f

η′

f

η′

f f

∂

g

η

g

η

g g

∂′′

h

η′′

h

η′′

h h

∂′ η′ η′

This diagram extends in each direction, commutes, and both the columns and
the rows are exact sequences. If we identify the suspended systems with their
underlying systems, this diagram slots into the upper left of the diagram below,
with an extra column added on the right.

π′′∗+2(i, j) π′′∗+1(j, k) π′′∗+1(i, k) π′′∗+1(i, j) π′′∗ (j, k)

π′∗+1(i, j) π′∗(j, k) π′∗(i, k) π′∗(i, j) π′∗−1(j, k)

π∗+1(i, j) π∗(j, k) π∗(i, k) π∗(i, j) π∗−1(j, k)

π′′∗+1(i, j) π′′∗ (j, k) π′′∗ (i, k) π′′∗ (i, j) π′′∗−1(j, k)

π′∗(i, j) π′∗−1(j, k) π′∗−1(i, k) π′∗−1(i, j) π′∗−2(j, k)

−∂′′

h 	

η′′

h

η′′

h

−∂′′

h 	 h

∂′

f

η′

f

η′

f

∂′

f f

∂

g

η

g

η

g

∂

g g

∂′′

h 	

η′′

h

η′′

h

∂′′

h 	 h

−∂′ η′ η′ −∂′
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The rows and columns of this diagram are still exact sequences. However, it is
now only commutative up to sign, with the squares marked 	 anti-commuting.
Still, we get a chain of push-lift isomorphisms. Starting in the group π′′∗+1(i, j)
in the left column, we get the following sequence of isomorphic subquotients
along the path traced by the solid arrows in the diagram:

ker(π′′∗+1(i, j)→ π′∗−1(j, k))

im(π′′∗+1(i, k)⊕ π∗+1(i, j)→ π′′∗+1(i, j))

∼=−−→
im(π′′∗+1(i, j)→ π′′∗ (j, k)) ∩ im(π∗(j, k)→ π′′∗ (j, k))

im(π∗+1(i, j)→ π′′∗ (j, k))

∼=←−− ker(π∗(j, k)→ π′′∗ (i, k))

im(π∗+1(i, j)⊕ π′∗(j, k)→ π∗(j, k))

∼=−−→ im(π∗(j, k)→ π∗(i, k)) ∩ im(π′∗(i, k)→ π∗(i, k))

im(π′∗(j, k)→ π∗(i, k))

∼=←−− ker(π′∗(i, k)→ π∗(i, j))

im(π′∗(j, k)⊕ π′′∗+1(i, k)→ π′∗(i, k))

∼=−−→
im(π′∗(i, k)→ π′∗(i, j)) ∩ im(π′′∗+1(i, j)→ π′∗(i, j))

im(π′′∗+1(i, k)→ π′∗(i, j))

∼=←−−
ker(π′′∗+1(i, j)→ π′∗−1(j, k))

im(π′′∗ (i, k)⊕ π∗+1(i, j)→ π′′∗+1(i, j))

In particular, this sequence gives us an automorphism of

ker(Σπ′∗+1(i, j)→ Σπ∗(j, k))

im(Σπ′∗+1(i, k)⊕ π′′∗+1(i, j)→ Σπ′∗+1(i, j))
. (2.2.3)

Definition 2.2.4. We say that a long exact sequence

· · · −→ (π′∗, η
′, ∂′)

f−−→ (π∗, η, ∂)
g−−→ (π′′∗ , η

′′, ∂′′)
h−−→ (Σπ′∗, η

′, ∂′) −→ · · ·

of Cartan–Eilenberg systems is good if the automorphism (2.2.3) of subquotients,
arising as the composite of a sequence of six push-lift isomorphisms, is equal to
the negative of the identity.

2.3 Filtration Shifts

Suppose that X and Y are filtered abelian groups and that f : X → Y is a
filtration-preserving homomorphism connecting them. If we choose an element x
from somewhere in the filtration of X, then its image under f lands in the same
stage of the filtration of Y . However, f(x) might also lift to a later stage in the
filtration of Y . When this happens, we think of x as shifting up in filtration as
it is mapped into Y . Whenever x itself lifts higher in the filtration of X, such a
shift happens trivially. Also, if, say f(x) lifts over five filtration degrees, then it
also lifts over four and three and so on. As we spend this section formalising
this intuitive notion of a filtration shift, we will take care to rule out these
trivial cases. That is, our goal is to describe only the furthest shifts: the ones
from the first occurrence of x in the filtration of X, to the last occurrence of
f(x) in the filtration of Y . Before we move on to the details, we visit a simple
example.

28



FILTRATION SHIFTS

Example 2.3.1. Consider the abelian group Z of integers under addition, and
equip it with an exhaustive filtration F sZ := 2sZ for s ≥ 0, with each group
consisting of multiples of integers by increasingly higher powers of 2. Let
f : Z → Z be the filtration-preserving homomorphism taking each integer n
to 2n. Then f fits in a commutative diagram

· · · 2s+1Z 2sZ · · · 2Z Z

· · · 2s+1Z 2sZ · · · 2Z Z.

f f f f

Now take any s ≥ 0 and n ∈ 2sZ from the top row. By the way we constructed
the filtrations, the image of n under f always shifts up a degree. In this case,
we would like to say that f is a strictly filtration shifting map.

Looking ahead, we return to and discuss filtration shifts in the context
of Cartan–Eilenberg systems. Consequently, we choose to formalise them
in this context. Let f : (π′∗, η

′, ∂′) → (π∗, η, ∂) be a morphism of Cartan–
Eilenberg systems and fix an extended integer i. To reduce the number of
visible indices as we introduce a bifiltration relating these two systems, we shall
write X∗ := π′∗(i) = π′∗(i,∞) and Y∗ := π∗(i) = π∗(i,∞). We begin by defining
filtrations (F sX∗)s and (F sY∗)s of X∗ and Y∗, respectively, each consisting of
increasingly longer images into X∗ or Y∗. For each integer s ≥ i, let F sX∗ be
given by

F sX∗ := im(η′ : π′∗(s) −→ π′∗(i)),

and F sY∗ by
F sY∗ := im(η : π∗(s) −→ π∗(i)).

When s < i, we set F sX∗ := π′∗(i) and F sY∗ := π∗(i). These are both
exhaustive filtrations. When i is finite, this is immediate as the image of the
identity homomorphism on either X∗ or Y∗ is part of the filtration. When
i = −∞, we rely on the isomorphism colims π

′
∗(s)

∼= π′∗(−∞,∞) required by
the axioms of a Cartan–Eilenberg system. As each element of the sequential
colimit is the image along a structure morphism of some x ∈ π′∗(s) where s is
finite, we have

colim
s

F sX∗ = colim
s

im(η′ : π′∗(s) −→ π′∗(−∞,∞)) ∼= π′∗(−∞,∞) = X∗.

The same argument applies to F sY∗, only with fewer primes.
Next, we define a bifiltration of Y∗ taking into account how f interacts

with these filtrations. We are mapping between filtrations, so we naturally get
two indices to think about: the filtration degree we are mapping out of and
the one we are landing in. Before we give the definition, note that f respects
these filtrations in the sense that f(F sX∗) ⊂ F sY∗. This follows from the
commutative diagram

π′∗(s) π′∗(i)

π∗(s) π∗(i)

η′

f f

η
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F s−1,s+a+1
f F s,s+a+1

f F s+1,s+a+1
f

F s−1,s+a
f F s,s+af F s+1,s+a

f

F s−1,s+a−1
f F s,s+a−1

f F s+1,s+a−1
f

Figure 2.1: The bifiltration F s,s+af Y∗ of Y∗ depicted in the (s, s+ a)-plane.

implied by f being a morphism of Cartan–Eilenberg systems. For each pair of
integers s and a with a ≥ 0, let

F s,s+af Y∗ := f(F sX∗) ∩ F s+aY∗

be the subgroup of Y∗ in filtration degree (s, s+a) of a bifiltration (F s,s+af Y∗)s,a
of Y∗. When s ≤ i, the group in bifiltration (s, s + a) is simply the image
subgroup im(f) in Y∗. When s + a ≤ i, it is the image subgroup of the
composite f ◦ (η′ : π′∗(s)→ π′∗(i)). Finally, when s, s+ a ≥ i, we have

F s,s+af Y∗ = f(im(η′ : π′∗(s)→ π′∗(i))) ∩ im(η : π∗(s+ a)→ π∗(i)).

We proceed to inspect the various filtration quotients. As we fix the second
index and let the first run through the integers, we get a sequence

· · · ⊆
F s+1,s+a
f Y∗

F s+1,s+a+1
f Y∗

⊆
F s,s+af Y∗

F s,s+a+1
f Y∗

⊆
F s−1,s+a
f Y∗

F s−1,s+a+1
f Y∗

⊆ · · ·

of subquotients of F s+aY∗/F s+a+1Y∗, where each group in the sequence are
quotients of vertically adjacent groups of Figure 2.1. Letting the second index
vary, we get a filtration of the associated graded

GrsY∗ =
F sY∗
F s+1Y∗

of Y∗. The filtration quotients of this filtration are the groups

F s,s+af Y∗

F s,s+a+1
f Y∗ + F s+1,s+aY∗

=
f(F sX∗) ∩ F s+aY∗

f(F sX∗) ∩ F s+a+1Y∗ + F s+1X∗ ∩ F s+aY∗
.

These admit the interpretation we are looking for. An element y of such a
quotient is the image f(x) from filtration degree s, and lifts a steps in the
filtration of Y∗, where neither x nor y lifts any further.

Definition 2.3.2. We say that an element of F s,s+af Y∗ is a filtration shift from
filtration degree s of F sX∗ to filtration degree s+ a of F sY∗.
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3 Spectral Sequences

Spectral sequences are neat pieces of algebraic machinery. Conceived by Leray
during the second world war and reworked into their modern form by Koz-
sul some years later, they have since become an invaluable tool in algebraic
topology and homological algebra. At their core, spectral sequences look like
generalisations of exact sequences, and they are often used for the same purpose.
Where spectral sequences and exact sequences differ is in the amount of data
they handle. Exact sequences usually busy themselves managing pairs or triples
of objects, while spectral sequences happily accepts objects broken up into
infinitely fine pieces. This freedom to deconstruct objects comes at a cost,
however, and to keep the machine running we often need our objects to be richly
structured, or to reach for clever tricks. To develop such a trick is precisely the
goal of the next chapter.

This chapter gives an introduction to spectral sequences and our preferred
way of constructing them using exact couples. We briefly discuss convergence to
ensure that the spectral sequences we use actually compute what we want them
to compute. To finish the chapter, we introduce the spectral sequences arising
from Cartan–Eilenberg systems, which are the ones we are most interested in.

Our spectral sequences will be sequences of bigraded objects, so before we
give the definition we need to establish some terminology. A bigraded abelian
group X = X∗,∗ is a sequence X∗,∗ = (Xs,t)s,t of abelian groups indexed
over pairs of integers (s, t). We refer to such pairs of integers as bidegrees.
A morphism f : X → Y of bigraded abelian groups is a sequence of group
homomorphisms

fs,t : Xs,t −→ Y s,t

for all s, t ∈ Z. More generally, a morphism f : X → Y of bidegree (u, v) is a
sequence of group homomorphisms

fs,t : As,t −→ Bs+u,t+v

for all s, t ∈ Z. Composing f with a morphism g : Y → Z of bidegree (u′, v′)
gives a morphism gf : X → Z of bidegree (u + u′, v + v′). We say that a
morphism of bidegree (0, 0) is degree-preserving.

Definition 3.0.1. A spectral sequence is a sequence (Er)r≥1 of bigraded abelian
groups Er = E∗,∗r , along with the following data:

i) For every integer r ≥ 1, a morphism dr : Er → Er of bidegree (r, r − 1)
satisfying dr ◦ dr = 0.

ii) For every integer r ≥ 1, an isomorphism Er+1
∼= H(Er, dr), identifying

Er+1 with the homology of Er with respect to dr, i.e.

Es,tr+1
∼= ker(ds,tr )/ im(ds−r,t−r+1

r ).

We call Er the Er-term of the spectral sequence, and dr the dr-differential.
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s+ 1 + r • • • • • •

s+ r • • • • • •

...
...

...
...

...
...

s+ 1 • • • • • •

s • • • • • •

Figure 3.1: The Er-term of the spectral sequence in the (t− s, s)-plane

This definition assigns roles to three indices represented by the letters r,
s and t. The index r determines the term of the spectral sequence and the
destination of the differentials. The indices s and t give the bidegree of the
objects Er, and we call s the filtration degree and t the internal degree. The
difference t − s is the total degree. Given a class x of the Er-term with total
degree t − s, the dr differential maps x to a class of total degree t − s − 1,
reducing the total degree by 1.

The terms of a spectral sequence are alternatively called pages. This
illustrates how we might view a spectral sequence as a book, with each page
of the book a term of the spectral sequence. Turning the page reflects how we
move from one term onto the next by taking homology. The analogy extends
to how we often depict spectral sequences; drawing the terms one at a time
into planar diagrams as in Figure 3.1. If we let the total degree t− s increase
along the horizontal axis towards the right, and the filtration degree s along
the vertical axis and upwards, then a dr differential takes one step to the left
and r steps up.

Remark 3.0.2. There are many other ways to index spectral sequences. We use
Adams type grading with a view towards applications in the Adams spectral
sequence. Other common grading schemes include homological and cohomolog-
ical spectral sequences. In a homological spectral sequence, we write the Er
terms using homological indexing, and the differentials drs : Ers → Ers−r have
bidegree (−r, r − 1).

We can identify each subsequent term of a spectral sequence with a quotient
of subgroups of the E1-term. Let us write Z2 for the kernel of the d1-differential
and B2 for the image. As we identify the E2-term with the homology of
the E1-term, the d2-differential becomes a homomorphism Z2/B2 → Z2/B2.
Proceeding in this way, we identify Er with the quotient Zr/Br, and find that
the dr-differential Zr/Br → Zr/Br has kernel Zr+1/Br and image Br+1/Br.
Continuing inductively gives the following lemma.

Lemma 3.0.3 ([HR19, Lemma 2.2]). For any spectral (Er, dr)r≥1 and all
integers s and r ≥ 1, there are inclusions

0 = Bs1 ⊂ · · · ⊂ Bsr ⊂ · · ·Zsr ⊂ · · · ⊂ Zs1 = Es1 ,

with Esr ∼= Zsr/B
s
r .
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EXACT COUPLES

Before we move on to actually constructing spectral sequences, we make
sense of what it means to map between them.

Definition 3.0.4. A morphism f : (Er, dr)r≥1 → (′Er,
′dr)r≥1 of spectral se-

quences is a sequence of morphisms fr : Er → ′Er of bigraded abelian groups,
compatible with the differentials and the isomorphisms Er+1

∼= H(Er, dr) and
′Er+1

∼= H(′Er,
′dr). Explicitly, we require that the diagram

E∗,∗r
′E
∗,∗
r

E∗,∗r
′E
∗,∗
r

fr

dr
′dr

fr

commutes, and that fr+1 equals the induced homomorphism H(fr) for each
r ≥ 1, making the following diagram commutative:

H∗,∗(Er, dr) H∗,∗(
′Er,

′dr)

E∗.∗r+1
′E
∗.∗
r+1.

H(fr)

∼= ∼=
fr+1

There are various ways to construct spectral sequences. We reach for them
when confronted with understanding filtered objects, and the exact couples
we introduce next provides a nice stepping stone from filtrations to spectral
sequences.

3.1 Exact Couples

Exact couples will be our tool of choice to construct spectral sequences. We
follow Massey [Mas52, §1.4], but define them in their unrolled form as in
Boardman’s paper [Boa99, §0].

Definition 3.1.1. Let (As)s and (Es)s be sequences of graded abelian groups,
and suppose αs : As → As+1, βs : As → Es and γs : Es → As+1 are graded
morphisms of graded abelian groups. An unrolled exact couple

(A,E) = (As, Es;αs, βs, γs)s

is a diagram

· · · As+2 As+1 As As−1 · · ·

Es+1 Es Es−1

αs+1 αs

βs+1

αs−1

βs βs−1γs+1 γs γs−1

where each triangle forms a long exact sequence

· · · −→ As+1 αs−−→ As
βs−−→ Es

γs−−→ As+1 −→ · · · .

The internal degrees of the morphisms αs, βs and γs are −1, 0 and 0, respectively,
so that αs has bidegree (−1,−1), βs has bidegree (0, 0) and γs has bidegree
(1, 0).
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Given exact couples (A,E) and (′A, ′E), a morphism f : (A,E) → (′A, ′E)
between them is a collection of degree-preserving homomorphisms fs : As → ′A

s

and fs : Es → ′E
s for each integer s making the following diagrams commutative

As+1 As Es As+1

′A
s+1 ′A

s ′E
s ′A

s+1
.

αs

fs+1

βs

fs

γs

fs fs+1

αs βs γs

Theorem 3.1.2 ([McC01, Theorem 2.8]). Let (As, Es;αs, βs, γs)s be an exact
couple. There is a spectral sequence (Er, dr)r≥1 with Es1 := Es and ds1 :=
βs+1γs : Es1 → Es+1

1 for all integers s. If αs and βs have total degree 0 and γs
has total degree −1, then

ds,tr : Es,tr −→ Es+r,t+r−1
r

has bidegree (r, r − 1), where Es,tr = (Esr)t−s is a subquotient of Es,t1 = (Es)t−s.

We sketch the construction of this spectral sequence. Given an exact couple
(A,E;α, β, γ) and an integer r ≥ 1, we define the rth cycle group as

Zsr := γ−1
s im(αr−1 : As+r → As+1),

and the rth boundary group as

Bsr = βs ker(αr−1 : As → As−r+1).

Both the cycle groups and boundary groups are graded subgroups of Es for
each s, with Es,t = (Es)t−s containing the groups Zs,tr and Bs,tr in bidegree (s, t).
As r increases, we get inclusions ker(γs) ⊂ Zsr ⊂ Zsr+1 and Bsr+1 ⊂ Bsr ⊂ im(βs)
for each s ∈ Z, and we define

Esr := Zsr/B
s
r .

with Es,tr := Zs,tr /Bs,tr , making Er = E∗,∗r the Er-term of the spectral sequence.
This settles the objects, and the group Es of the exact couple appears as on
the E1-term as Es1 , as desired. It remains to define an appropriate differential.
If x ∈ Zsr and we write [x] ∈ Esr for its equivalence class modulo Bsr , then there
is a morphism

dsr : Esr −→ Es+rr

[x] 7−→ [βs+r(y)],

where y ∈ As+r is a lift of γs(x) over αr−1 : As+r → As+1. Assuming that this
is well-defined, then this reduces to ds1 = βs+1γs when r = 1 in line with the
theorem. The next two lemmas provide the final missing pieces.

Lemma 3.1.3. The dr-differential is well-defined.

Proof. An element x of Zsr has image γs(x) lifting over αr−1 : As+r → As+1 to
y ∈ As+r by definition. As Zs+rr contains the image of βs+r, it follows that
βs+r(y) defines a class [βs+r(y)] in Es+rr .
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Now suppose y′ ∈ As+r is another element satisfying αr−1(y′) = γs(x). This
places the difference y − y′ in ker(αr−1 : As+r → As+1), hence βs+r(y′) differs
from βs+r(y) by an element in Bs+rr . In particular, both βs+r(y) and βs+r(y′)
represent the same class in Es+rr . Finally, an element x′ ∈ Zsr representing the
same class as x in Esr differs from x by an element x− x′ ∈ Bsr . It follows from
the inclusion Bsr ⊂ ker(γs) that the image of x and x′ coincide under γs, so
that y remains a valid choice of lift.

Lemma 3.1.4. ker(dsr) = Zsr+1/B
s
r and im(ds−rr ) = Bsr+1/B

s
r .

Proof. To establish the first equality, take [x] ∈ ker(dsr) represented by x ∈ Zsr
with γs(x) = αr−1(y) in As+1 for a choice of y ∈ As+r. That dsr([x]) = 0 implies
that βs+r(y) ∈ Bs+rr , giving an element y′ ∈ ker(αr−1) ⊂ As+r satisfying
βs+r(y) = βs+r(y

′). Then y − y′ defines an element of ker(βs+r) = im(αs+r+1)
with image γs(x) in As+1, so that x ∈ Zsr+1. This proves the inclusion ker(dsr) ⊂
Zsr+1/B

s
r . Conversely, suppose x ∈ Zsr+1, such that γs(x) = αr(z) for z ∈

As+r+1. Then αs+r(z) defines an element of As+r with image γs(x) in As+1

and trivial image under βs+r, hence x ∈ dsr([x]) = [0].
Next, consider x ∈ Zs−rr with γs−r(x) = αr−1(y) in As−r+1 for some y ∈ As,

so that [βs(y)] ∈ im(ds−rr ). Then αr−1(y) ∈ ker(As−r+1 → As+r) by exactness,
so that βs(y) ∈ Br+1

s . To prove the opposite inclusion, choose y ∈ As with
αr(y) = 0 in As−r such that βs(y) ∈ Bsr+1. Then the image of y in As−r+1

defines an element of ker(αs−r) = im(γs−r), and there exists x ∈ Zs−rr with
ds−rr ([x]) = [βs(y)], as desired.

So where does this leave us? We have constructed a sequence of bigraded
objects (Er)s and well-defined morphisms dr : Er → Er of the right bidegree
(r, r − 1). Moreover, we can conclude that dr ◦ dr = 0 as the inclusion of Bsr+1

into Zsr+1 implies that (im(dr))s ⊂ (ker(dr))s by the last lemma. Finally, the
Noether isomorphism

Zsr+1/B
s
r+1

∼=−−→
Zsr+1/B

s
r

Bsr+1/B
s
r

=
ker(dsr)

im(ds−rr )

shows that projecting from Zsr+1 onto ker(dsr) induces an isomorphism Er+1
∼=

(H(Er, dr))s. Thus we conclude that we have indeed constructed a spectral
sequence.

3.2 Convergence

We need a notion of convergence to ensure that a spectral sequence is actually
computing what we want it to compute. A well-behaved spectral sequence
renders information about its target through increasingly better approximations.
The first issue we have to deal with is whether this target is the right one, and
this is tightly wound up in how we filter the objects we pass to the spectral
sequence. The second issue is whether the spectral sequence terminates. This
often happens in practice, as there is typically something finite about the data
we feed the spectral sequence, and the differentials will simply all vanish after
a certain point. In this case all later terms of the spectral sequence are equal,
and we say that the spectral sequence collapses. Other times, there are no
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CONVERGENCE

such restrictions on our data, and we need a more granular description of
convergence.

Recall that for any spectral sequence (Er, dr)r≥1 there are inclusions

0 = Bs1 ⊂ · · · ⊂ Bsr ⊂ · · ·Zsr ⊂ · · · ⊂ Zs1 = Es1 ,

and the Er-term is isomorphic to the quotient Zr/Br. When the spectral
sequence is the spectral sequence associated to an exact couple, Lemma 3.1.4
tells us that the subgroups Zsr and Bsr of Es1 are precisely the ones we defined
in the previous section.

Definition 3.2.1 ([Boa99, §5]). Let (Er, dr)r≥1 be a spectral sequence. Define
the group of infinite cycles as the limit

Zs∞ := lim
r≥1

Zsr =
⋂
r≥1

Zsr ,

and the group of infinite boundaries as the colimit

Bs∞ := colim
r≥1

Bsr =
⋃
r≥1

Bsr .

From this definition we deduce inclusions Bs∞ ⊂ Zs∞, Bs∞ ⊂ Bsr and Zs∞ ⊂
Zsr for all integers s and r ≥ 1. We define the E∞-term of the spectral sequence
as the bigraded group E∞ = (Es∞)s = E∗,∗∞ with

Es∞ := Zs∞/B
s
∞

for each s ∈ Z. Now the point of convergence is to relate this E∞-term to the
filtration (F sX)s of some group X. Before we can do this, we need another
piece of language. To this end, view the integers Z along with the usual order
relation ≥ as a category (Z,≥). Explicitly, this is a category with the integers as
objects and hom-sets Z(m,n) that contain a single morphism if m ≥ n, and that
are empty otherwise. Let AbZ denote the category of functors Z→ Ab. Recall
that the categorical limit lim: AbZ → Ab defines a functor right adjoint to the
constant diagram functor. As such, lim is left exact and has a right derived
functor. We denote this functor by Rlim and construct it as the cokernel of a
certain morphism, following [Wei94, §3.5]. Given a sequence (As)s of graded
abelian groups

· · · −→ As+1 αs−−→ As
αs−1−−−→ As−1 −→ · · · ,

we define a homomorphism

(id− α) :
∏
s

As −→
∏
s

As.

Here α is the homomorphism making the next diagram commute, where the
vertical arrows are the canonical projections onto the corresponding factor of
the direct product. ∏

sA
s

∏
sA

s

As+1 As

α

αs
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The kernel of this homomorphism is the limit limsA
s, and we define Rlim as

the cokernel RlimsA
s := coker(id− α). This results in an exact sequence

0→ lim
s
As −−→

∏
s

As
id−α−−−→

∏
s

As −−→ Rlim
s

As → 0.

Definition 3.2.2. A filtration (F sX)s of a graded abelian group X is Hausdorff
if lims F

sX = 0. It is complete if Rlims F
sX = 0.

Definition 3.2.3 ([Boa99, Definition 5.2]). A spectral sequence (Er, dr)r≥1

converges to a filtration (F sX)s of a graded abelian group X if there are
isomorphisms

GrsX = F sX/F s+1X ∼= Es∞

for each integer s, and the filtration is exhaustive and Hausdorff. If the filtration
is also complete, then the spectral sequence converges strongly.

Even if a spectral sequence (Er, dr)r converges strongly to a filtered object X
and we know the E∞-term, we might still not be able to determine X. This is
because the spectral sequence only determines the associated graded, and we
would need to uniquely solve all the extension problems

0→ F s+1X −→ F sX −→ GrsX → 0

to have certain information about X itself.

Remark 3.2.4. Technically, we are abusing language when we say that a spec-
tral sequence converges (strongly) to a certain object. Convergence is really
additional information and not a property of the spectral sequence. However,
as this is a natural thing to say, we shall continue doing so.

We now return to the spectral sequences arising from exact couples. If
(A,E;α, β, γ) is an exact couple, then we say that the sequence

· · · −→ As+2 αs+1−−−→ As+1 αs−−→ As
αs−1−−−→ As−1 −→ · · ·

is bounded above if Ak = 0 for k sufficiently large. We say that it is degreewise
bounded above if for each total degree n there is an integer k(n) such that
(As)n = 0 for all s > k(n). A natural target for the associated spectral sequence
is the sequential colimit A−∞ := colimsA

s. If we let ιs : As → A−∞ denote the
structure morphisms into the colimit, then

F sA−∞ := im(ιs : As → A∞)

defines an exhaustive filtration of A∞. To see this, note that any y ∈ A∞ is
the image ιs(x) of some x ∈ As for some integer s. Then y ∈ F sA−∞, and⋃
s F

sA−∞ = A−∞.

Theorem 3.2.5 ([Boa99, Theorem 8.10]). Let (A,E) be an exact couple with
associated spectral sequence (Er, dr)r≥1 and assume that the sequence

· · · −→ As+2 αs+1−−−→ As+1 αs−−→ As
αs−1−−−→ As−1 −→ · · ·

is degreewise bounded above. Then the spectral sequence converges strongly to
the filtration F sA−∞ = im(ιs : As → A−∞).
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3.3 Spectral Sequences and Cartan–Eilenberg Systems

At this point we have seen all we need to see of general spectral sequences,
and we return to the Cartan–Eilenberg systems introduced in the previous
chapter. As we hinted at then, a Cartan–Eilenberg system gives rise to a spectral
sequence much in the same way as an exact couple. In fact, when we construct
the spectral sequence associated to a Cartan–Eilenberg system we go through a
certain exact couple. Several reasons justify constructing spectral sequences
in this way. A Cartan–Eilenberg system carries more structure than an exact
couple, and this extra structure lets us express the terms and differentials of
the associated spectral sequences more concretely. Also, although we will not
get into this here, we can pair Cartan–Eilenberg systems in a way that induces
a pairing of spectral sequences. This way, we may endow our spectral sequences
with multiplicative structure, which can be very valuable in calculations.

The content of this section follows the unpublished notes of Rognes [Rog21].

Definition 3.3.1. To each Cartan–Eilenberg system (π∗, η, ∂) we associate an
exact couple (As, Es)s with (As)∗ = π∗(s,∞) and (Es)∗ = π∗(s, s + 1). The
morphisms αs and βs are given by η, and γs is given by ∂.

· · · π∗(s+ 1,∞) π∗(s,∞) · · ·

π∗(s, s+ 1)

η

η
∂

The spectral sequence associated to a Cartan–Eilenberg system is the spectral
sequence associated to the exact couple (As, Es; η, η, ∂)s.

The next proposition reveals how the extra structure present in a Cartan–
Eilenberg system lets us give more concrete descriptions of the internals of the
spectral sequence.

Proposition 3.3.2. The spectral sequence associated to a Cartan–Eilenberg
system (π∗, η, ∂) satisfies the following:

i) The rth cycle group is given by

Zsr = ∂−1 im(η : π∗−1(s+ r,∞)→ π∗−1(s+ 1,∞))

= ker(∂ : π∗(s, s+ 1)→ π∗−1(s+ 1, s+ r))

= im(η : π∗(s, s+ r)→ π∗(s, s+ 1)).

ii) The rth boundary group is given by

Bsr = η ker(η : π∗(s,∞)→ π∗(s− r + 1,∞))

= im(∂ : π∗+1(s− r + 1, s)→ π∗(s, s+ 1))

= ker(η : π∗(s, s+ 1)→ π∗(s− r + 1, s+ 1)).

In particular, η induces an isomorphism

Esr
∼=−−→ im(η : π∗(s, s+ r)→ π∗(s− r + 1, s+ 1))

The dr-differential is given by dsr : Esr → Es+rr sending [x] ∈ Esr represented by
x ∈ π∗(s, s+ 1) to ∂(z) ∈ π∗−1(s+ r, s+ r + 1), where z ∈ π∗(s, s+ r) is a lift
of x over η.
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Proof. We first prove the identities i) and ii), relying on Lemma 2.1.2 to factor
the connecting morphisms.

i) Exactness gives the first equality in the following computation:

∂−1 im(η : π∗−1(s+ r,∞)→ π∗−1(s+ 1,∞))

= ∂−1 ker(η : π∗−1(s+ 1,∞)→ π∗−1(s+ 1, s+ r))

= ker(∂ : π∗(s, s+ 1)→ π∗(s+ 1, s+ r)).

Factoring ∂ : π∗(s, s+ 1)→ π∗−1(s+ 1, s+ r) as the composite

π∗(s, s+ 1)
∂−−→ π∗−1(s+ 1)

η−−→ π∗−1(s+ 1, s+ r).

gives the second equality.

ii) Similarly:

η ker(η : π∗(s,∞)→ π∗(s− r + 1,∞)

= η im(∂ : π∗+1(s− r + 1, s)→ π∗(s,∞))

= im(∂ : π∗+1(s− r + 1, s)→ π∗(s, s+ 1)).

The first equality is a consequence of exactness, while the second follows
from factorisation.

To establish the isomorphism of Er-terms, note that η : π∗(s, s+ r)→ π∗(s−
r + 1, s+ 1) factors as

π∗(s, s+ r)
η′−−→ π∗(s, s+ 1)

η′′−−→ π∗(s− r + 1, s+ 1)

by functoriality. Using the first part of the proof, we identify im η′ as Zsr
and ker η′′ as Bsr . We know that Bsr ⊂ Zsr , hence the canonical isomorphism
π∗(s, s+ 1)/ ker(η′′)→ im(η′′) induced by η′′ restricts to an isomorphism

Esr = Zsr/B
r
s = im(η′)/ ker(η′′)

∼=−−→ im(η).

Finally, suppose x ∈ π∗(s, s+1) is contained in Zsr . Then there is z ∈ π∗(s, s+r)
such that η(z) = x, and naturality of the solid square in the diagram below gives
an element y := ∂z ∈ π∗−1(s+ r) with η(y) = ∂x in π∗−1(s+ 1). Naturality of
the solid triangle implies that η(y) = ∂z in π∗−1(s+ r, s+ r+ 1), and it follows
that dsr([x]) = [η(y)] = [∂(z)].

π∗−1(s+ r) π∗−1(s+ 1)

π∗−1(s+ r, s+ r + 1) π∗(s, s+ 1)

π∗(s, s+ r).

η

η ∂

η
∂

∂

This concludes the proof.
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In similar fashion, we can say a bit more about the Z∞-term and B∞-term.
If (π∗, η, ∂) is a Cartan–Eilenberg system, then the colimit

π∗ = π∗(−∞,∞) ∼= colim
s

π∗(s,∞)

is exhaustively filtered by

F sπ∗ := im(η : π∗(s,∞)→ π∗(−∞,∞)).

This forms a natural target for the associated spectral sequence.

Proposition 3.3.3. Let (π∗, η, ∂) be a Cartan–Eilenberg system with associated
spectral sequence (Er, dr)r≥1, and equip the target π∗ := π∗(−∞,∞) with its
canonical filtration. The infinite boundaries of this spectral sequence are the
groups

Bs∞ = im(∂ : π∗+1(−∞, s)→ π∗(s, s+ 1))

= ker(η : π∗(s, s+ 1)→ π∗(−∞, s+ 1)).

If the sequence

· · · −→ π∗(s+ 1)
η−−→ π∗(s)

η−−→ π∗(s− 1) −→ · · · (3.3.4)

is bounded above, then the infinite cycles are the groups

Zs∞ = ker(∂ : π∗(s, s+ 1)→ π∗−1(s+ 1,∞))

= im(η : π∗(s,∞)→ π∗(s, s+ 1)),

and the filtration (F sπ∗)s is bounded above. In particular, this ensures that E∗,∗r
converges strongly to π∗.

With all of the theory and construction work out of the way, we take a look
at a very simple example. Starting with a Cartan–Eilenberg system, we shall
forget all but two of the groups in the top row of the associated exact couple
and study the behaviour of the spectral sequences in some detail. This example
appears again in the next chapter to illustrate how we connect filtration shifts
and differentials.

Example 3.3.5. Let (π∗, η, ∂) be a Cartan–Eilenberg system and fix an integer i.
Extracting just the three groups π∗(i), π∗(i+1) and π∗(i, i+1) from this system,
we get an exact couple as follows:

· · · 0 π∗(i+ 1) π∗(i) π∗(i) · · ·

π∗(i+ 1) π∗(i, i+ 1) 0

η

id

id

η

id

∂

Here the groups As,t = (As)t of the top row are given by πt−s(i) for s ≥ i,
πt−s(i + 1) for s = i + 1, and are trivial otherwise. In the bottom row, the
groups Es,t = (Es)t are all trivial unless s = i or s = i + 1, in which case
Es,t = πt−s(i, i+ 1) and πt−s(i+ 1), respectively. We proceed to describe the
associated spectral sequence (Er, dr)r≥1 in detail. At the E1-term, only the
two groups Ei,t = πt−i(i, i + 1) and Ei+1,t = πt−i−1(i + 1) may be non-zero.
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As such, di,t1 = ∂ : πt−i(i, i+ 1)→ πt−i−1(i+ 1) is the only differential that can
hope to be non-zero. This makes computing the E2-term quite simple, and we
have

Es,t2 =


ker(∂ : πt−i(i, i+ 1)→ πt−i−1(i+ 1)) for s = i

coker(∂ : πt−i(i, i+ 1)→ πt−i−1(i+ 1)) for s = i+ 1

0 otherwise.

At the E2-term there is no room for further differentials, and the spectral
sequence collapses. The canonical filtration of the target group π∗(i) reduces to

0 ⊂ · · · ⊂ 0 ⊂ im(η : π∗(i+ 1)→ π∗(i)) ⊂ π∗(i) ⊂ · · · ⊂ π∗(i),

which is clearly bounded above. It follows that the spectral sequence is con-
vergent, and there are isomorphisms Es,t∞ ∼= F sπt−s(s)/F

s+1πt−s(s) for each s.
When s = i, this isomorphism is

ker(∂ : πt−i(i, i+ 1)→ πt−i−1(i+ 1)) ∼=
πt−i(i)

im(η : πt−i(i+ 1)→ πt−i(i))
,

and when s = i+ 1, it is

coker(∂ : πt−i(i, i+ 1)→ πt−i−1(i+ 1)) ∼= im(η : πt−i(i+ 1)→ πt−i(i)).

Both of these follow from the exactness axiom.
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4 Filtration Shifts and Differentials

A convergent spectral sequence approaches its target one term at a time, and
each term arises as the homology of the previous one. As such, it is vital
that we can determine the differentials on the current term of the spectral
sequence. There is no set way of doing this. Among the spectral sequences
that mathematicians know how to compute, many carry extra structure like an
algebra or a ring structure. This opens avenues for giving ad hoc arguments
deciding a single or a series of connected differentials. In this chapter, we present
an alternative method that does not rely on any such extra structure. We
assume that the spectral sequence in question comes from a Cartan–Eilenberg
system, and that this system sits in an exact sequence. Given this, we derive a
connection between filtration shifts and differentials in the associated spectral
sequences. Specifically, we describe situations in which a filtration shift leads to
a non-zero differential, and vice versa. Although this approach seems promising
in general, the results of this chapter only apply to restricted filtrations.

For the length of this chapter, we will be working with an exact sequence

(π′∗, η
′, ∂′)

f−−→ (π∗, η, ∂)
g−−→ (π′′∗ , η

′′, ∂′′)
h−−→ (Σπ′∗, η

′, ∂′) (4.0.1)

of Cartan–Eilenberg systems. Before we get too deep into the details, we
attempt to motivate the approach we take towards deriving this connection
between filtration shifts and differentials. To this end, let i be an integer and
extract the two adjacent groups in position (i,∞) and (i + 1,∞) from each
system, along with the connected group in position (i, i + 1). To lessen the
notational burden, we relabel these graded groups as follows:

A∗ := π′∗(i+ 1),

B∗ := π∗(i+ 1),

C∗ := π′′∗ (i+ 1),

X∗ := π′∗(i),

Y∗ := π∗(i),

Z∗ := π′′∗ (i),

(X,A)∗ := π′∗(i, i+ 1),

(Y,B)∗ := π∗(i, i+ 1),

(Z,C)∗ := π′′∗ (i, i+ 1).

Recall that we write π∗(i) to mean the group π∗(i,∞). To each of the systems we
associate spectral sequences (Er(X), dr)r≥1, (Er(Y ), dr)r≥1 and (Er(Z), dr)r≥1.
We computed these spectral sequences in Example 3.3.5. They all collapse at
the second term and converge to the very short filtrations containing only the
image from i+ 1 into i. In Section 2.3, we defined filtration shifts under f from
i to i+ 1 as elements of the quotient

F i,i+1
f Y∗

F i,i+2
f Y∗ + F i+1,i+1

f Y∗
=

im(f : X∗ → Y∗) ∩ im(η : B∗ → Y∗)

im(ηf = fη′ : A∗ → Y∗)
.

The right-hand side simplification is due to the vanishing of F i,i+2
f Y∗, and A∗

factoring through B∗. If we lay out the exact sequences internal to each system
horizontally, and the exact sequences coming from (4.0.1) vertically, there is a
large commutative diagram with exact columns and rows containing a piece
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like the one below.

(X,A)∗+1 A∗ X∗ (X,A)∗ A∗−1

(Y,B)∗+1 B∗ Y∗ (Y,B)∗ B∗−1

(Z,C)∗+1 C∗ Z∗ (Z,C)∗ C∗−1

(X,A)∗ A∗−1 X∗−1 (X,A)∗−1 A∗−2

∂′

f

η′

f

η′

f

∂′

f f

∂

g

η

g

η

g

∂

g g

∂′′

h

η′′

h

η′′

h

∂′′

h h

∂′ η′ η′ ∂′

Looking back to the quotient representing filtration shifts, it speaks of elements
of Y∗ in the image of both X∗ and B∗. This is precisely the setting of our
push-lift lemma (Lemma 2.2.1). Following through with two applications of this
lemma, lifting from Y∗ to B∗ and pushing down to C∗, we derive an isomorphism
of subquotients

im(f : X∗ → Y∗) ∩ im(η : B∗ → Y∗)

im(ηf : A∗ → Y∗)

∼=
im(g : B∗ → C∗) ∩ im(∂′′ : (Z,C)∗+1 → C∗)

im(∂′′g : (Y,B)∗+1 → C∗)).

(4.0.2)

From Example 3.3.5, we know that the d1-differential of E1(Z) is just the
connecting homomorphism ∂′′ : (Z,C)∗+1 → C∗. Also, the E1-terms in filtration
degree i + 1 are simply the groups A∗, B∗ and C∗. Thus the component of
the morphism E1(g) : E1(Y ) → E1(Z) mapping from Ei+1

1 (Y ) to Ei+1
1 (Z) is

g : B∗ → C∗ itself. That is, we have im(g : B∗ → C∗) = im(Ei+1
1 (g)). This

translates two of the three expressions in the target subquotient of (4.0.2) to
information about the spectral sequence. The final piece of the puzzle is to
recognise that the sequence

E1(Y )
g−−→ E1(Z)

h−−→ E1(ΣX)

is exact, as the E1-terms reduce to the corresponding groups of the Cartan–
Eilenberg systems. It follows that

ker(h : (Z,C)∗+1 → (X,A)∗) = im(g : (Y,B)∗+1 → (Z,C)∗+1),

and this group maps onto im(∂′′g : (Y,B)∗+1 → C∗) under ∂′′ : (Z,C)∗+1 → C∗.
Putting this all together, we get an isomorphism

F i,i+1
f Y∗

F i+1,i+1
f Y∗

∼=
im(′′d

i
1) ∩ im(Ei+1

1 (g))
′′di1(ker ′′Ei1(h)) ∩ im(Ei+1

1 (g))

connecting filtration shifts and differentials.

4.1 Three-Stage Filtrations

The goal of this section is to establish the promised connection between filtration
shifts and differentials. When we restrict attention to filtrations with only three
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stages, we can give a complete description of this connection. This is the content
of Theorem 4.1.7. The proof of this result follows the path outlined in the
introduction to this chapter. We begin by describing a homomorphism with
domain reminiscent of filtration shifts and codomain close to where we expect
our differentials to land. The question is how this can be made an isomorphism
and what that implies for the spectral sequences. Before we get going, we
introduce the notation

imi+j
η π∗(i) := im(η : π∗(i+ j)→ π∗(i))

to describe the image in π∗(i) of the structure morphism leaving position (i+
j,∞), and

imi,j
∂ π∗(j) := im(∂ : π∗+1(i, j)→ π∗(j))

the to describe the image in π∗(j) of the connecting morphism leaving posi-
tion (i, j).

Proposition 4.1.1. Let

(π′∗, η
′, ∂′)

f−−→ (π∗, η, ∂)
g−−→ (π′′∗ , η

′′, ∂′′)

be an exact sequence of Cartan–Eilenberg systems, and suppose i and j are
integers with j ≥ 1. The composite gη = η′′g : π∗(i+ j)→ π′′∗ (i+ 1) induces a
homomorphism

φ : im(fi) ∩ imi+jπ∗(i) −→
π′′∗ (i+ 1)

im(∂′′g = g∂ : π∗+1(i, i+ j)→ π′′∗ (i+ 1))
.

with kerφ ⊂ fi(imi+1
η′ π

′
∗(i))∩ imi+j

η π∗(i). Explicitly, φ is given by φ(y) = η′′g(ỹ)
for a lift ỹ of y ∈ π∗(i) over η : π∗(i+ j)→ π∗(i).

Proof. Choose y ∈ π∗(i) satisfying y = f(x) for x ∈ π′∗(i). Any two choices
of lifts of y over η : π∗(i + j) → π∗(i) differ by ∂ applied to an element of
π∗+1(i, i+ j) by exactness of the sequence

π∗+1(i, i+ j)
∂−−→ π∗(i+ j)

η−−→ π∗(i).

In particular, both lifts have the same image in

π′′∗ (i+ 1)

im(π∗+1(i, i+ j)→ π′′∗ (i+ 1))

under the homomorphism induced by gη = η′′g, hence φ is well-defined.
To determine the kernel, consider y ∈ kerφ with a lift ỹ ∈ π∗(i+ j). We may

assume that gη(ỹ) is zero in π′′∗ (i+1). If not, there is an element of π∗+1(i, i+j)
with image y′ ∈ π∗(i + j) such that gη(ỹ) = gη(y′). Then ỹ − y′ is a lift of
y mapping to zero in π′′∗ (i + 1), and we may replace ỹ with this lift without
affecting the value of φ(y). Now, gη(ỹ) = 0 places η(ỹ) in ker(g) ⊂ π∗(i+ 1) by
commutativity, hence η(ỹ) lifts over f to an element x̃ ∈ π′∗(i+ 1) by exactness.
It follows that ηf(x̃)) = y = η(ỹ), as desired.
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With this homomorphism in place, we specialise our discussion to the case
where we focus on a triple of filtration indices. Fixing integers i and j ≥ 1, we
consider the groups of the diagram

π′∗(i+ j) π′∗(i+ 1) π′∗(i)

π∗(i+ j) π∗(i+ 1) π∗(i)

π′′∗ (i+ j) π′′∗ (i+ 1) π′′∗ (i)

Σπ′∗(i+ j) Σπ′∗(i+ 1) Σπ′∗(i).

η′

f

η′

f f

η

g

η

g g

η′′

h

η′′

h h

η′ η′

Let (F sπ′∗(i))s, (F sπ∗(i))s, (F sπ′′∗ (i))s and (F sΣπ′∗(i))s denote the exhaustive
filtrations of each row of the diagram, with the right-hand group receiving
images from the left. Explicitly, (F sπ∗(i))s is the filtration

F i+jπ∗(i) F i+1π∗(i) F iπ∗(i)

· · · 0 imi+j
η π∗(i) imi+1

η π∗(i) π∗(i) · · · π∗(i)⊂ ⊂ ⊂ ⊂ ⊂ ⊂

with π∗(i) in filtration degrees less than or equal to i. As before, we take the
opportunity to relabel these groups, writing (X,K)∗ for the group π′∗(i, i+ 1),
(X,A)∗ for the group π∗(i, i+ j), and so on:

A∗ := π′∗(i+ j),

B∗ := π∗(i+ j),

C∗ := π′′∗ (i+ j),

K∗ := π′∗(i+ 1),

L∗ := π∗(i+ 1),

M∗ := π′′∗ (i+ 1),

X∗ := π′∗(i),

Y∗ := π∗(i),

Z∗ := π′′∗ (i).

The domain of the homomorphism φ from Proposition 4.1.1 is clearly reminiscent
of filtration shifts under f . With our choice of integers i and j, the domain
describes elements of Y∗ in the image of f : X∗ → Y∗ that lift to B∗. Our first
goal is to restrict φ to an isomorphism to a subquotient of the codomain, with
the domain of φ expressing the actual filtration shifts

F i,i+jf Y∗

F i,i+j+1
f Y∗ + F i+1,i+j

f Y∗
=

im(f : X∗ → Y∗) ∩ im(η : B∗ → Y∗)

im(ηf : K∗ → Y∗) ∩ im(η : B∗ → Y∗)
.

Starting with a sequence of push-lift isomorphisms beginning in the subgroup
im(f : X∗ → Y∗)∩ im(η : B∗ → Y∗) of Y∗, we shall derive the following sequence
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of isomorphic subquotients:

im(f : X∗ → Y∗) ∩ im(η : B∗ → Y∗)

im(ηf : K∗ → Y∗) ∩ im(η : B∗ → Y∗)

∼=←−− (η : B∗ → Y∗)
−1 im(f : X∗ → Y∗)

(η : B∗ → Y∗)−1 im(ηf : K∗ → Y∗)

∼=−−→ im(g : B∗ → C∗) ∩ im(∂ : (Z,C)∗+1 → C∗)

(g : B∗ → C∗)
(
(η : B∗ → Y∗)−1 im(ηf : K∗ → Y∗)

)
∼=←−− im(gη : B∗ →M∗) ∩ im(∂ : (Z,M)∗+1 →M∗)

(gη : B∗ →M∗)
(
(η : B∗ → Y∗)−1 im(ηf : K∗ → Y∗)

) .
(4.1.2)

The first isomorphism is simply a Noether isomorphism

(η : B∗ → Y∗)
−1 im(f : X∗ → Y∗)/ ker(η : B∗ → Y∗)

(η : B∗ → Y∗)−1 im(ηf : K∗ → Y∗)/ ker(η : B∗ → Y∗)

∼=
im(f : X∗ → Y∗) ∩ im(η : B∗ → Y∗)

im(ηf : K∗ → Y∗) ∩ im(η : B∗ → Y∗)
.

We spend the next two lemmas justifying the second and third isomorphisms,
the proofs of which reduce to simple diagram chases.

Lemma 4.1.3. The homomorphism g : B∗ → C∗ induces an isomorphism

(B∗ → Y∗)
−1 im(X∗ → Y∗)

(B∗ → Y∗)−1 im(K∗ → Y∗)

∼=−−→ im(B∗ → C∗) ∩ im((Z,C)∗+1 → C∗)

(B∗ → C∗)
(
(B∗ → Y∗)−1 im(K∗ → Y∗)

) .
Proof. We begin by proving that g induces a surjection

ḡ : (B∗ → Y∗)
−1 im(X∗ → Y∗) −→

im(B∗ → C∗) ∩ im((Z,C)∗+1 → C∗)

(B∗ → C∗)
(
(B∗ → Y∗)−1 im(K∗ → Y∗)

) .
Given any b ∈ B∗ in the domain of ḡ, the image of g(b) in Z∗ lifts through Y∗ to
X∗, and must be zero by exactness of the sequenceX∗ → Y∗ → Z∗. In particular,
we have ḡ(b) ∈ ker(η′′ : C∗ → Z∗) = im((Z,C)∗+1 → C∗). To see that ḡ is
surjective, let c denote an element of im(g : B∗ → C∗) mapping to zero in Z∗. If
b ∈ B∗ is an element with (g : B∗ → C∗)(b) = c, then the image of b in Y∗ lifts to
X∗ by exactness. This shows that b resides in (η : B∗ → Y∗)

−1 im(f : X∗ → Y∗),
proving that ḡ is surjective.

To prove injectivity, we prove the equality

ker ḡ = (η : B∗ → Y∗)
−1 im(ηf : K∗ → Y∗)

To establish the forward inclusion, suppose b ∈ B∗ is an element with

(η : B∗ → Y∗)(b) = (f : X∗ → Y∗)(x)

in Y∗ for some x ∈ X∗, and assume that ḡ(b) = 0. Then there exists b′ ∈ B∗
with (g : B∗ → C∗)(b) = (g : B∗ → C∗)(b

′), where the image of b′ in Y∗ meets
the set im(ηf : K∗ → Y∗). Take k′ ∈ K∗ satisfying

(ηf : K∗ → X∗)(k
′) = (η : B∗ → Y∗)(b

′),
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and define b∗ = b− b′. That b and b′ have common image under g : B∗ → C∗
implies that (η : B∗ → Y∗)(b

∗) ∈ ker(g : L∗ →M∗) = im(f : K∗ → L∗), so that
(η : B∗ → Y∗)(b

∗) lifts to an element k∗ ∈ K∗. It follows that

(ηf : K∗ → X∗)(k
∗ + k′) = (η : B∗ → Y∗)(b

∗) + (ηf : K∗ → Y∗)(k
′)

= (η : B∗ → Y∗)(b)− (η : B∗ → Y∗)(b
′) + (ηf : K∗ → Y∗)(k

′)

= (η : B∗ → Y∗)(b).

As (f : X∗ → Y∗)(x) = (η : B∗ → Y∗)(b), this shows that the image of b in Y∗ has
the desired lift k := k∗+k′ to K∗. The other inclusion follows immediately from
observing that an element b ∈ B∗ with (η : B∗ → Y∗)(b) = (ηf : K∗ → Y∗)(k) in
Y∗ has ḡ(b) contained in (g : B∗ → C∗)

(
(η : B∗ → Y∗)

−1 im(ηf : K∗ → Y∗)
)
.

Lemma 4.1.4. The homomorphism η′′ : C∗ →M∗ induces an isomorphism

im(B∗ → C∗) ∩ im((Z,C)∗+1 → C∗)

(B∗ → C∗)
(
(B∗ → Y∗)−1 im(K∗ → Y∗)

)
∼=−−→ im(B∗ →M∗) ∩ im((Z,M)∗+1 →M∗)

(B∗ →M∗)
(
(B∗ → Y∗)−1 im(K∗ → Y∗)

) .
Proof. Observe that we have equalities im((Z,C)∗+1 → C∗) = ker(C∗ → Z∗)
and im((Z,M)∗+1 → M∗) = ker(M∗ → Z∗) by exactness. As gη : B∗ → M∗
factors through C∗, any element of ker(M∗ → Z∗) in the image from B∗ is also
the image of an element of ker(C∗ → Z∗). Consequently, η′′ induces a surjection

im(B∗ → C∗) ∩ ker(C∗ → Z∗) im(B∗ →M∗) ∩ ker(M∗ → Z∗).

In terms of images, we see that η′′ induces a surjective homomorphism η̄′′ from

im(g : B∗ → C∗) ∩ im(∂′′ : (Z,C)∗+1 → C∗)

onto
im(η′′g : B∗ →M∗) ∩ im(∂′′ : (Z,M)∗+1 →M∗)

(η′′g : B∗ →M∗)
(
(η : B∗ → Y∗)−1 im(ηf : K∗ → Y∗)

) .
We claim that η̄′′ has kernel

ker η̄′′ = (g : B∗ → C∗)
(
(η : B∗ → Y∗)

−1 im(ηf : K∗ → Y∗)
)
.

To prove the forward inclusion, suppose η̄′′(c) = 0 for some element c ∈ C∗
with (g : B∗ → C∗)(b) = c = (∂′′ : (Z,M)∗+1 → M∗)(z̄) for b ∈ B∗ and
z̄ ∈ (Z,M)∗+1. Then the image of c in M∗ satisfies

(η′′g : B∗ →M∗)(b
′) = (η′′ : C∗ →M∗)(c)

for some b′ ∈ B∗, where (η : B∗ → Y∗)(b
′) = (ηf : K∗ → Y∗)(k

′) in Y∗ for some
k′ ∈ K∗. Now both b and b′ have common image in M∗, hence the image of
their difference b∗ = b − b′ in L∗ lifts to an element k∗ of K∗ by exactness.
Defining k := k∗ + k′, we have

(ηf : K∗ → Y∗)(k) = (η : B∗ → Y∗)(b
∗) + (ηf : K∗ → Y∗)(k

′)

= (η : B∗ → Y∗)(b)− (η : B∗ → Y∗)(b
′) + (ηf: K∗ → Y∗)(k

′)

= (η : B∗ → Y∗)(b).
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This shows that b ∈ (η : B∗ → Y∗)
−1(im(ηf : K∗ → X∗)), so that

c ∈ (g : B∗ → C∗)
(
(η : B∗ → Y∗)

−1 im(ηf : K∗ → Y∗)
)
.

To prove the opposite inclusion, suppose c ∈ C∗ satisfies c = (g : B∗ → C∗)(b)
for some b ∈ B∗, where (η : B∗ → Y∗)(b) = (ηf : K∗ → Y∗)(k). Then the image
(η′′ : C∗ →M∗)(c) of C∗ in M∗ defines an element of

(gη : B∗ →M∗)
(
(η : B∗ → Y∗)

−1 im(ηf : K∗ → Y∗)
)
,

as desired.

With these diagram chases out of the way, we are ready to demonstrate how
the homomorphism φ of Proposition 4.1.1 restricts to an isomorphism.

Proposition 4.1.5. The homomorphism φ descends to an isomorphism

im(X∗ → Y∗) ∩ im(B∗ → Y∗)

im(K∗ → Y∗) ∩ im(B∗ → Y∗)

∼=−−→ im(B∗ →M∗) ∩ im((Z,M)∗+1 →M∗)

im(B∗ →M∗) ∩ im((Y, L)∗+1 →M∗)
.

Proof. Let Ω denote the preimage Ω := (η : B∗ → Y∗)
−1 im(ηf : K∗ → Y∗). We

begin by establishing the equality

(η′′g : B∗ →M∗)(Ω) = im(η′′g : B∗ →M∗) ∩ im(∂′′g : (Y,L)∗+1 →M∗)

To prove the forward inclusion, let m ∈M∗ satisfy (η′′g : B∗ →M∗)(b) = m for
b ∈ B∗ with (η : B∗ → Y∗)(b) = (ηf : K∗ → Y∗)(k) in Y∗ for k ∈ K∗. Define

`∗ := (η : B∗ → L∗)(b)− (f : K∗ → L∗)(k)

in L∗. Note that (η : L∗ → Y∗)(`
∗) = 0 in Y∗, so there exists ȳ ∈ (Y,L)∗+1

mapping to `∗ under ∂ : (Y,L)∗+1 → L∗ by exactness. Furthermore,

(∂′′g : (Y,L)∗+1 →M∗)(ȳ) = (g : L∗ →M∗)(`
∗)

= (g : L∗ →M∗)(η(b)− f(k))

= (g : L∗ →M∗)(η(b))

= (η′′g : B∗ →M∗)(b).

This shows that m ∈ im(η′′g : B∗ →M∗)∩ im(∂′′g : (Y,L)∗+1 →M∗). To prove
the opposite inclusion, suppose

m = (η′′g : B∗ →M∗)(b) = (∂′′g : (, /L)∗+1 →M∗)(ȳ)

for b ∈ B∗ and ȳ ∈ (Y,L)∗+1. Let `∗ := (η : B∗ → L∗)(b)−(∂ : (Y, L)∗+1 → L∗),
so that `∗ goes to zero along g : L∗ → M∗. Then there exists k∗ ∈ K∗ with
(f : K∗ → L∗)(k

∗) = `∗ by exactness. As the composite η∂ : (Y, L)∗+1 → Y∗
vanishes, (η∂ : (Y, L)∗+1 → Y∗)(ȳ) is zero in Y∗, and

(ηf : K∗ → Y∗(k
∗) = (η : B∗ → Y∗)(b).

This proves the desired equality. The proposition now follows readily from the
sequence of isomorphisms in (4.1.2).
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This completes our first goal: determining the isomorphism induced by φ.
The next step is to make sense of this in the associated spectral sequences. We
return to the full notation and restate the previous proposition in that language.

Proposition 4.1.6. The homomorphism φ descends to an isomorphism

φ̄ :
im(fi) ∩ imi+j

η π∗(i)

im(fiη′) ∩ imi+j
η π∗(i)

∼=−−→
gi+1(imi+j

η π∗(i+ 1)) ∩ imi,i+1
∂′′ π′′∗ (i+ 1)

gi+1(imi+j
η π∗(i+ 1)) ∩ gi+1(imi,i+1

∂ π∗(i+ 1))

Note that we may pass from the case where we focus on three filtration
indices to the case where we include all filtration indices between i + 1 and
i+ j with no additional effort. The proofs above are simply independent of the
extra information. As we move to the associated spectral sequences, however,
we will be more diligent. To this end, we introduce truncated Cartan–Eilenberg
systems that we pass through the formalism of exact couples to obtain spectral
sequences.

We illustrate the construction of such a truncated Cartan–Eilenberg system
in the case of the system (π∗, η, ∂). The essence of the construction is to
forget all the groups seen by the exact couple apart from the ones in the
range (i,∞) to (i + j,∞). Define a Cartan–Eilenberg system (π̄∗, η, ∂) from
(π∗, η, ∂) by replacing the groups in position (i′, k) with trivial groups whenever
i′ < i + j and i′ ≤ k, modifying the structure morphisms and connecting
morphisms accordingly. Next, let π̄∗(i′,∞) = π∗(i) for i′ < i and π̄∗(i′, k) = 0
for i′ < i and i′ ≤ k, again making the obvious corrections to the morphisms.
Repeating this procedure for the other systems gives truncated Cartan–Eilenberg
systems (π̄′∗, η

′, ∂′), (π̄∗, η, ∂) and (π̄′′∗ , η
′′, ∂′′), where the associated unrolled

exact couples are the ones appearing in Figure 4.1. The canonical filtrations
(F sπ̄′∗)s, (F sπ̄∗)s and (F sπ̄′′∗ )s are exhaustive and bounded above, hence the
associated spectral sequences (′Ēr,

′dr)r≥1, (Ēr, dr)r≥1 and (′′Ēr,
′′dr)r≥1 all

converge to the respective filtered targets π̄′∗(i), π̄∗(i) and π̄′′∗ (i).

Theorem 4.1.7. Let

(π′∗, η
′, ∂′)

f−−→ (π∗, η, ∂)
g−−→ (π′′∗ , η

′′, ∂′′)
h−−→ (Σπ′∗, η

′, ∂′)

be an exact sequence of Cartan–Eilenberg systems. Fix integers i and j ≥ 1, and
consider the truncated systems (π̄′∗, η

′, ∂′), (π̄∗, η, ∂) and (π̄′′∗ , η
′′, ∂′′) along with

the associated spectral sequences (′Ēr,
′dr)r≥1, (Ēr, dr)r≥1 and (′′Ēr,

′′dr)r≥1.
There is an isomorphism

F i,i+jf π̄∗(i)

F i+1,i+j
f π̄∗(i)

∼=−−→
im(′′d

i
j) ∩ im(Ēi+jj (g))

′′dij(ker ′′Ē
i
j(h)) ∩ im(Ēi+jj (g))

relating filtration shifts under f from π̄′∗(i) to π̄∗(i+ j), and dj-differentials in
the spectral sequence associated to π̄′′∗ .

Proof. This follows from the isomorphism φ̄ of Proposition 4.1.6, after inter-
preting the codomain of φ̄ in the context of the spectral sequences associated
to the truncated Cartan–Eilenberg systems. Specifically, we will argue for the
following two identifications:

i) imi,i+1
∂′′ π̄′′∗ (i+ 1) ∩ g(imi+j

η π̄∗(i+ 1)) ∼= im(′′d
i
j) ∩ im(Ēi+jj (g)),
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0 π̄′∗(i+ j) · · · π̄′∗(i+ 1) π̄′∗(i) π̄′∗(i)

π̄′∗(i, i+ 1)

0 π̄∗(i+ j) · · · π̄∗(i+ 1) π̄∗(i) π̄∗(i)

π̄∗(i, i+ 1)

0 π̄′′∗ (i+ j) · · · π̄′′∗ (i+ 1) π̄′′∗ (i) π̄′′∗ (i)

π̄′′∗ (i, i+ 1)

0 Σπ̄′∗(i+ j) · · · Σπ̄′∗(i+ 1) Σπ̄′∗(i) Σπ̄′∗(i)

Σπ̄′∗(i, i+ 1)

f f f

g g g

f

h h h

g

h

Figure 4.1: Exact couples associated to the sequence of truncated Cartan–
Eilenberg systems.

ii) g(imi,i+1
∂ π̄∗(i+ 1)) ∩ g(imi+j

η π̄∗(i+ 1)) ∼= ′′dij(ker ′′Ē
i
j(h)) ∩ im(Ēi+jj (g)).

We shall establish each of these in turn, but begin by describing the image of
Ēi+jj (g) appearing in both identifications. Observe first that the structure of
the truncated Cartan–Eilenberg systems lead to isomorphisms

Ēi+jj
∼= im(η : π̄∗(i+ j)→ π̄∗(i+ 1)) = imi+j

η π̄∗(i+ 1),

′′Ē
i+j
j
∼= im(η′′ : π̄′′∗ (i+ j)→ π̄′′∗ (i+ 1)) = imi+j

η′′ π̄
′′
∗ (i+ 1)

(4.1.8)

by Proposition 3.3.2. The compatibility of g with the structure morphisms
ensures that the composite gη = η′′g : π̄∗(i + j) → π̄′′∗ (i + 1) factors through
π̄′′∗ (i + j), so that g(imi+j

η π̄∗(i + 1)) ⊂ imi+j
η′′ π̄

′′
∗ (i + 1). In particular, the

horizontal arrows in the left-hand square of

π̄∗(i+ j) Ēi+jj π̄∗(i+ 1)

π̄′′∗ (i+ j) ′′Ē
i+j
j π̄′′∗ (i+ 1)

g Ēi+jj (g) g

are surjections, hence im(Ēi+jj (g)) = im(π̄∗(i+j)→ ′′Ēi+jj ) ∼= g(imi+j
η π̄∗(i+1)).
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To obtain the first identification i), note that

im ′′d
i
j =

′′B̄
i+j
j+1

′′B̄
i+j
j

=
im(∂′′ : π̄′′∗+1(i, i+ j)→ π̄′′∗ (i+ j))

ker(η′′ : π̄′′∗ (i+ j)→ π̄′′∗ (i+ 1))

∼= im(η′′∂′′ : π̄′′∗+1(i, i+ j)→ π̄′′∗ (i+ j)→ π̄′′∗ (i+ 1))

= imi,i+1
∂′′ π̄′′∗ (i+ 1) ∩ imi+j

η′′ π̄
′′
∗ (i+ 1).

Here the last equality is a consequence of the commutative diagram

π̄′′∗ (i, i+ j) π̄′′∗ (i, i+ 1) π̄′′∗−1(i+ 1, i+ j)

π̄′′∗−1(i+ j) π̄′′∗−1(i+ 1) π̄′′∗−1(i+ 1, i+ j)

η′′

∂′′

∂′′

∂′′

η′′ η′′

with exact rows. That is, any z ∈ π′′∗−1(i+1) in imi,i+1
∂′′ π̄′′∗ (i+1)∩ imi+j

η′′ π̄
′′
∗ (i+1)

maps to zero along η′′ in the lower right-hand corner, so that an element
z̄ ∈ π′′∗ (i, i+ 1) with image ∂′′(z̄) = z lifts to π′′∗ (i, i+ j). Combining this with
the image of Ēi+jj (g) above gives the correct intersection:

im(′′d
i
j) ∩ im(Ēi+jj (g))

∼= imi,i+1
∂′′ π̄′′∗ (i+ 1) ∩ imi+j

η′′ π̄
′′
∗ (i+ 1) ∩ g(imi+j

η π̄∗(i+ 1))

= imi,i+1
∂′′ π̄′′∗ (i+ 1) ∩ g(imi+j

η π̄∗(i+ 1)).

To prove ii), we first observe how the identifications

′Ē
i
j
∼= im(η : π̄∗(i, i+ j)→ π̄∗(i, i+ 1))

′′Ē
i
j
∼= im(η′′ : π̄′′∗ (i, i+ j)→ π̄′′∗ (i, i+ 1))

lead to a commutative diagram

π̄′′∗ (i, i+ j) ′′Ē
i
j π̄′′∗ (i, i+ 1)

Σπ̄′∗(i, i+ j) Σ ′Ē
i
j Σπ̄′∗(i, i+ 1),

h
′′Ēij(h) h

where the horizontal morphisms in the right-hand square are injections. It
follows that

ker(′′Ē
i
j(h)) ∼= im(η′′ : π̄′′∗ (i, i+ j)→ π̄′′∗ (i, i+ 1)) ∩ g(π̄∗(i, i+ 1)),

where the exactness of the sequence of Cartan–Eilenberg systems gives the
equality ker(h : π̄′′∗ (i, i+ 1)→ Σπ̄′∗(i, i+ 1)) = g(π̄∗(i, i+ 1)). Via the isomor-
phisms (4.1.8), the image of this kernel under the ′′dij-differential is

∂(∂−1(imi+j
η′′ π̄

′′
∗ (i+ 1)) ∩ ker(h : π̄′′∗ (i, i+ 1)→ Σπ̄′∗(i, i+ 1))), (4.1.9)

where ∂ denotes the connecting morphism ∂′′ : π̄′′∗+1(i, i+ 1)→ π̄′′∗ (i+ 1). This
follows directly from the way we constructed differentials in spectral sequences
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arising from exact couples. The diagram below depicts the region of the linked
exact couples contributing to the construction of the differential, where the
arrows carrying labels are the ones taking parting in forming the set (4.1.9). To
simplify notation for the final part of the proof, this diagram also shows how
we relabel some of the groups.

C∗ M∗ Z∗

π̄′′∗ (i+ j) π̄′′∗ (i+ 1) π̄′′∗ (i)

π̄′′∗ (i, i+ 1) (Z,M)∗

Σπ̄′∗(i+ 1) Σπ̄′∗(i)

Σπ̄′∗(i, i+ 1)

η′′

∂′′

h

We claim that (4.1.9) is equal to the set

g(imi,i+1
∂ π̄∗(i+ 1)) ∩ imi+j

η′′ π̄
′′
∗ (i+ 1).

To see this, choose [m] ∈ dij(kerEij(h)) represented by an element m ∈ M∗
with m = ∂′′z̄ for some z̄ ∈ ker(h), where m lifts over η′′ to an element c ∈ C∗.
Exactness gives an element ȳ ∈ π̄∗(i, i+ 1) with g(ȳ) = z̄, hence η′′g(ȳ) = m.
This shows that

m ∈ g(imi,i+1
∂ π̄∗(i+ 1)) ∩ imi+j

η′′ π̄
′′
∗ (i+ 1).

Conversely, suppose η′′(c) = m = ∂′′g(ȳ) in M∗ for some c ∈ C∗ and ȳ ∈
π̄∗+1(i, i+ 1). Then z̄ := g(ȳ) defines an element of M∗ contained in ker(h) by
exactness, and ∂′′(z̄) = m. Pulling m back along ∂′′ shows that m is contained
in dij(kerEij(h)). This establishes the identity ii):

′′d
i
j(ker(′′Ē

i
j(h))) ∩ im(Ēi+jj (g))

= g(imi,i+1
∂ π̄∗(i+ 1)) ∩ imi+j

η′′ π̄
′′
∗ (i+ 1) ∩ g(imi+j

η π̄∗(i+ 1))

= g(imi,i+1
∂ π̄∗(i+ 1)) ∩ g(imi+j

η π̄∗(i+ 1)),

completing the proof.

4.2 Adding More Stages to the Filtrations

There are several natural ways to extend the results of the previous section.
In this section, we keep the three filtration indices from before, but place no
restriction on what happens in higher filtration degrees. Our goal is to derive
conditions ensuring that this situation reduces to that of Theorem 4.1.7.

We return again to the sequence (4.0.1) and fix integers i and j ≥ 1 as
before. Let us write Y∗ := π∗(i) and equip Y∗ with its usual filtration F sY∗ of
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η-images. This time around, this filtration has F i
′
Y∗ = Y∗ for i′ ≤ i, but we

impose no restrictions for i′ ≥ i+ j. Instead, we let Ȳ∗ := π∗(i, i+ j + 1) and
exhaustively filter this group by

F i+sȲ∗ = im(η : π∗(i+ s, i+ j + 1)→ π∗(i, i+ j + 1)). (4.2.1)

We seek to determine conditions on the level of the Cartan–Eilenberg systems
making filtration shifts for the first filtration correspond to that of the second.
Specifically, we determine conditions under which η : π∗(i) → π∗(i, i + j + 1)
induces an isomorphism

F i,i+jf Y∗

F i,i+j+1
f Y∗ + F i+1,i+j

f Y∗

∼=−−→
F i,i+jf Ȳ∗

F i,i+j+1
f Ȳ∗ + F i+1,i+j

f Ȳ∗
=

F i,i+jf Ȳ∗

F i+1,i+j
f Ȳ∗

.

These conditions take the form of injectivity requirements, leading to the
vanishing of certain differentials in the associated spectral sequences.

π′∗(i+ j + 1) π′∗(i+ 1) π′∗(i)

π′∗(i+ 1, i+ j + 1) π′∗(i, i+ j + 1)

π∗(i+ j + 1) π∗(i+ j) π∗(i)

π∗(i+ j, i+ j + 1) π∗(i, i+ j + 1)

Figure 4.2: The relevant groups of the Cartan–Eilenberg systems.

If y is an element of F i,i+jf Y∗ = im(fi) ∩ imi+j
η π∗(i), then its image η(y) in

π∗(i, i+ j + 1) defines an element of im(fi,i+j+1) ∩ imi+j,i+j+1
η π∗(i, i+ j + 1),

which is just F i,i+jf Ȳ∗. In particular, η : π∗(i) → π∗(i, i + j + 1) induces a
well-defined homomorphism

ψ : im(fi) ∩ imi+j
η π∗(i) −→ im(fi,i+j+1) ∩ imi+j,i+j+1

η π∗(i, i+ j + 1)

from a subgroup of π∗(i) to a subgroup of π∗(i, i+ j + 1). The next lemmas do
the legwork in deriving an isomorphism from this homomorphism. Again, these
boil down to diagram chases, where the groups involved appear as in Figure 4.2.

Lemma 4.2.2. If η : π′∗(i + j + 1) → π′∗(i) and η : π∗(i + j + 1) → π∗(i + j)
are injective, then ψ is surjective.

Proof. If η : π∗(i+ j+ 1)→ π∗(i+ j) is injective, then exactness of the sequence

π∗(i+ j) π∗(i+ j, i+ j + 1) π∗−1(i+ j + 1) π∗−1(i+ j)∂ η
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implies that ∂ = 0, hence η : π∗(i+ j)→ π∗(i+ j, i+ j + 1) is surjective. The
same argument shows that η : π′∗(i) → π′∗(i, i + j + 1) is surjective whenever
η : π′∗(i+ j + 1)→ π′∗(i) is injective. Now consider ȳ ∈ π∗(i, i+ j + 1) satisfying

η(ȳ′) = ȳ = f(x̄)

for ȳ′ ∈ π∗(i+ j, i+ j + 1) and x̄ ∈ π′∗(i, i+ j + 1). Choose lifts y′ ∈ π∗(i+ j)
and x ∈ π′∗(i) of ȳ′ and x̄, respectively. The difference f(x) − η(y′) in π∗(i)
defines an element of ker(η : π∗(i) → π∗(i, i+ j + 1)), and lifts to an element
y′′ ∈ π∗(i+ j + 1) by exactness. Define y∗ := η(y′′)− y′ in π∗(i+ j). Then

y := η(y∗) = f(x)

is an element of im(fi) ∩ imi+j
η π∗(i) with ψ(y) = ȳ in π∗(i, i+ j + 1), proving

that ψ is surjective.

Lemma 4.2.3. If η : π′∗(i+ j + 1)→ π′∗(i+ 1) and η : π∗(i+ j + 1)→ π∗(i+ j)
are injective, then ψ induces a surjective homomorphism

ψ̄ : im(fi) ∩ imi+j
η π∗(i)

−→
im(fi,i+j+1) ∩ imi+j,i+j+1

η π∗(i, i+ j + 1)

fi,i+j+1(imi+1,i+j+1
η′ π′∗(i, i+ j + 1)) ∩ imi+j,i+j+1

η π∗(i, i+ j + 1)

with kerψ = fi(im
i+1
η′ π′∗(i)) ∩ imi+j

η π∗(i) + im(fi) ∩ imi+j+1
η π∗(i).

Proof. Surjectivity is clear. To determine the kernel, we prove both inclusions.
To establish the forward inclusion, suppose ψ̄(y) = 0 for an element y in
im(fi) ∩ imi+j

η π∗(i), so that

ηf(x̄′) = ψ̄(y) = η(ȳ′)

in π∗(i, i+ j + 1) for x̄′ ∈ π′∗(i+ 1, i+ j + 1) and ȳ′ ∈ π∗(i+ j, i+ j + 1). Let
x ∈ π′∗(i) and y′ ∈ π∗(i + j) be elements satisfying f(x) = y = η(y′) in π∗(i).
Assuming that η : π′∗(i+ j+ 1)→ π′∗(i+ 1) is injective, it follows from exactness
that η : π′∗(i+ 1)→ π′∗(i+ 1, i+ j + 1) is surjective. Consequently, choose a lift
x′ ∈ π′∗(i+ 1) of x̄′, and define elements

π′∗(i) 3 x∗ := x− η(x′) and ỹ := ηf(x′)− η(y′) ∈ π∗(i).

Also define y∗ := f(x∗) in π∗(i). Note that both y∗ and ỹ are differences of
elements whose images agree in π∗(i, i + j + 1), hence both y∗ and ỹ sit in
ker(η : π∗(i) → π∗(i, i + j + 1)). As such, exactness gets us lifts z∗ and z̃ in
π∗(i+ j + 1) of y∗ and ỹ, respectively. With

π∗(i+ j) 3 z′′ := η(z′) + y′ and y′′ := η(z′′) ∈ π∗(i),

it follows that

y′′ + y∗ = (η : π∗(i+ j)→ π∗(i))(z
′′) + (f : π′∗(i)→ π∗(i))(x

∗)

=
(
(η : π∗(i+ j + 1)→ π∗(i)(z̃) + (η : π∗(i+ j)→ π∗(i))(y

′)
)

+
(
(f : π′∗(i)→ π∗(i))(x))(x)− (ηf : π′∗(i+ 1)→ π∗(i))(x

′)
)

= ỹ + (η : π∗(i+ j)→ π∗(i))(y
′) + y − (ηf : π′∗(i+ 1)→ π∗(i))(x

′)

= y.
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As we defined them, y′′ sits in f(imi+1
η′ π′∗(i)) ∩ imi+j

η π∗(i) and y∗ sits in
im(fi) ∩ imi+j+1

η π∗(i), hence the proposed kernel contains y.
To prove the opposite inclusion, choose an element y ∈ π∗(i) in the proposed

kernel. We may assume that y = y1 + y2 = y1, where and y1 = ηf(x′) = η(y′)
in π∗(i) for x′ ∈ π′∗(i+ 1) and y′ ∈ π∗(i+ j). To see that we can take y2 = 0,
note that exactness of the sequence

π∗(s+ k + 1)
η−−→ π∗(s)

η−−→ π∗(s, s+ k + 1),

places any element of im(fi)∩imi+j+1
η π∗(i) in kerψ. Define elements x̄′ := η(x′)

in π′∗(i+ 1, i+ j + 1) and ȳ′ := η(y′) in π∗(i+ j, i+ j + 1). Then

f(x̄′) = η(ȳ′) = ψ̄(y),

shows that ψ̄(y) = 0.

Combining the two lemmas we have the following result.

Proposition 4.2.4. If η : π′∗(i+j+1)→ π′∗(i+1) and η : π∗(i+j+1)→ π∗(i+j)
are injective, then η : π∗(i)→ π∗(i, i+ j + 1) induces an isomorphism

F i,i+jf Y∗

F i,i+j+1
f Y∗ + F i+1,i+j

f Y∗

∼=−−→
F i,i+jf Ȳ∗

F i+1,i+j
f Ȳ∗

.

Proof. Under the given conditions we deduce an isomorphism

im(fi) ∩ imi+j
η π∗(i)

fi(im
i+1
η′ π′∗(i)) ∩ imi+j

η π∗(i) + im(fi) ∩ imi+j+1
η π∗(i)

∼=−−→
im(fi,i+j+1) ∩ imi+j,i+j+1

η π∗(i, i+ j + 1)

fi,i+j+1(imi+1,i+j+1
η′ π′∗(i, i+ j + 1)) ∩ imi+j,i+j+1

η π∗(i, i+ j + 1)
.

This is precisely the one we want.

At this point, we are almost ready to state our conclusion. This conclusion
is an immediate consequence of Theorem 4.1.7, but we need to be precise about
what spectral sequences we have in mind. Let us write

X̄∗ := π′∗(i, i+ j + 1) and Z̄∗ := π′′∗ (i, i+ j + 1),

and equip both of these groups with exhaustive filtrations (4.2.1). Consider the
respectively truncated systems, and let (Ēr(X̄), dr(X̄))r≥1, (Ēr(Ȳ ), dr(Ȳ ))r≥1

and (Ēr(Z̄), dr(Z̄))r≥1 be the associated spectral sequences.

Proposition 4.2.5. Let

(π′∗, η
′, ∂′)

f−−→ (π∗, η, ∂)
g−−→ (π′′∗ , η

′′, ∂′′)
h−−→ (Σπ′∗, η

′, ∂′)

be an exact sequence of Cartan–Eilenberg systems. Fix integers i and j ≥ 1,
and consider the spectral sequences (Ēr(X̄), dr(X̄))r≥1, (Ēr(Ȳ ), dr(Ȳ ))r≥1 and
(Ēr(Z̄), dr(Z̄))r≥1 associated to the truncated systems X̄∗, Ȳ∗ and Z̄∗. There is
an isomorphism

F i,i+jf Y∗

F i,i+j+1
f Y∗ + F i+1,i+j

f Y∗

∼=−−→
im(dij(Z̄)) ∩ im(Ēi+jj (g))

dij(Z̄)(ker ′′Ē
i
k(h)) ∩ im(Ēi+jj (g))
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relating filtration shifts under f from π′∗(i) to π∗(i+ j), and dj-differentials in
the spectral sequence associated to Z̄∗.

To finish this section we describe how the injectivity conditions on the mor-
phisms of a Cartan–Eilenberg system affects the differentials of the associated
spectral sequence. The way we describe the boundary groups of a spectral
sequence using kernels of morphisms along the top row of an exact couple
suggests that we can expect differentials to vanish. We restrict our attention to
convergent spectral sequences.

Proposition 4.2.6. Let (π∗, η, ∂) be a Cartan–Eilenberg system and consider
the associated spectral sequence (Er, dr)r≥1. Fix integers i and j ≥ 1. If the
spectral sequence is convergent, then

η : πn(i+ j) −→ πn(i)

is injective if and only if the differentials

dr : Ea,a+n+1
r −→ Ea+r,a+r+n

r

are all zero for i ≤ a < i+ j and a+ r ≥ i+ j.

To illustrate this result, assume that η : π∗(i + j) → π∗(i) is the injective
morphism of the proposition. Then any differential originating in the range
of filtration degrees from i to i + j + 1, whose target is either in filtration
degree i+ j or crosses over it, has to be zero. Moreover, the vanishing of these
differentials is sufficient to ensure that η is injective. Figure 4.3 depicts the
vanishing differentials as solid arrows.

• •

• • •

i+ j • Ei+j,i+j+n1 •

• • •

• • •

i • Ei,i+n1 •

• •

n− 1 n n+ 1

Figure 4.3: The vanishing differentials of Proposition 4.2.6
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To prove Proposition 4.2.6 we make use of truncated spectral sequences
converging towards filtrations ending at π∗(i+ j) and π∗(i), respectively. Our
preliminary goal is to demonstrate that injectivity of η : π∗(i + j) → π∗(i) is
equivalent to a claim about the infinite boundaries of these spectral sequences.
First, define an exhaustive filtration of π∗(i+ j) with

F sπn(i+ j) := im(η : πn(s)→ πn(i+ j))

for s ≥ i+ j, and an exhaustive filtration of π∗(i) with

F sπn(i) := im(η : πn(s)→ πn(i)).

for s ≥ i. Naturally, these filtrations are tightly connected, and their differences
reveal information about η : π∗(i + j) → π∗(i). Let (Er(τ∗≥i+j), dr)r≥1 be
the spectral sequence associated to the filtration ending at π∗(i + j), and
(Er(τ∗≥i), dr)r≥1 the spectral sequence associated to the filtration ending at
π∗(i).

Lemma 4.2.7. If F sπn(i + j) is Hausdorff, then η : πn(i + j) → πn(i) is
injective if and only if

F sπn(i+ j)

F s+1πn(i+ j)
−→ F sπn(i)

F s+1πn(i)

is injective for each s ≥ i+ j.

Proof. Observe first that η : πn(i+ j)→ πn(i) is injective if and only if

F i+jπn(i+ j) −→ F i+jπn(i)

is injective, as the displayed map is just the inclusion of πn(i+ j) into its image
in πn(i). Also, when s ≥ i + j, then F sπn(i + j) → F sπn(i) is surjective as
η : πn(s) → πn(i) factors through πn(i + j). Suppose inductively that αs is
injective in the map of short exact sequences below, starting from s = i+ j.

0 F s+1πn(i+ j) F sπn(i+ j)
F sπn(i+ j)

F s+1πn(i+ j)
0

0 F s+1πn(i) F sπn(i)
F sπn(i)

F s+1πn(i)
0.

αs+1 αs ᾱs

By a special case of the snake lemma we have an exact sequence

ker(αs) −→ ker(ᾱs) −→ coker(αs+1).

As αs+1 is surjective, exactness shows that ᾱs is injective. Thus we conclude
that η : πn(i+ j)→ πn(i) is injective if and only if

F sπn(i+ j)

F s+1πn(i+ j)
−→ F sπn(i)

F s+1πn(i)

for each finite s ≥ i+ j.
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Lemma 4.2.8. Assume that the spectral sequences (Er(τ∗≥i+j), dr)r≥1 and
(Er(τ∗≥i), dr)r≥1 are both convergent. Then η : πn(i+ j)→ πn(i) is injective if
and only if

Es,s+n∞ (τ∗≥i+j) −→ Es,s+n∞ (τ∗≥i)

is injective for each s ≥ i+ j.

Proof. Convergence means that F sπi+j is Hausdorff and that the inclusions

Grsπn(i+ j) =
F sπn(i+ j)

F s+1πn(i+ j)
−→ Es,s+n∞ (τ∗≥i+j)

and
Grsπn(i) =

F sπn(i)

F s+1πn(i)
−→ Es,s+n∞ (τ∗≥i)

are isomorphisms for each s. Given s ≥ i + j, Lemma 4.2.7 tells us that
η : πn(i+ j)→ πn(i) is an isomorphism if and only if the left-hand side vertical
arrow is injective in the commutative diagram

Grsπn(i+ j) Es,s+n∞ (τ∗≥i+j)

Grsπn(i) Es,s+n∞ (τ∗≥i).

∼=

∼=

That is, if and only if Es,s+n∞ (τ∗≥i+j)→ Es,s+n∞ (τ∗≥i) is injective.

Finally, observe that Zs,s+nr (τ∗≥i+j) and Zs,s+nr (τ∗≥i) are isomorphic for
each r ≥ 1 when s ≥ i+ j, as both groups are isomorphic to

im(η : πs+n(s, s+ r)→ πs+n(s, s+ 1))

by Proposition 3.3.2. As this holds for all finite r, the induced map of limits
Zs,s+n∞ (τ∗≥i+j)→ Zs,s+n∞ (τ∗≥i) is an isomorphism. Applying the snake lemma
to the commutative diagram

0 Bs,s+n∞ (τ∗≥i+j) Zs,s+n∞ (τ∗≥i+j) Es,s+n∞ (τ∗≥i+j) 0

0 Bs,s+n∞ (τ∗≥i) Zs,s+n∞ (τ∗≥i) Es,s+n∞ (τ∗≥i) 0,

∼=

we conclude that Bs,s+n∞ (τ∗≥i+j)→ Bs,s+n∞ (τ∗≥i) is an isomorphism if and only
if η : π∗(i+ j)→ π∗(i) is injective.

Proof of Proposition 4.2.6. Fix an integer s ≥ i+ j. In the spectral sequence
(Er(τ∗≥i+j), dr) converging to F sπ∗(i + j), the last dr-differential landing in
filtration s is the differential

di+j,n+i+j+1
s−i−j : Ei+j,n+i+j+1

s−i−j (τ∗≥i+j) −→ Es,s+ns−i−j(τ∗≥i+j),

where r = s− i− j. Thus we conclude that

Bs,s+ns+1−i−j(τ∗≥i+j) = Bs,s+n∞ (τ∗≥i+j).
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Reasoning similarly for the spectral sequence (Er(τr∗≥i), dr) converging to
F sπ∗(i), we find that Bs,s+ns+1−i(τ∗≥i) = Bs,s+n∞ (τ∗≥i). Now Bs,s+ns+1−i−j(τ∗≥i+j)

and Bs,s+ns+1−i−j(τ∗≥i) are isomorphic subgroups as both are isomorphic to the
group

ker(η : πs+n(s, s+ 1)→ πs+n(i+ j, s+ 1)).

Summarizing the above, we have the following groups and relations

Bs,s+ns+1−i−j(τ∗ ≥ i+ j) Bs,s+n∞ (τ∗≥i+j)

Bs,s+ns+1−i−j(τ∗ ≥ i) Bs,s+ns+1−i(τ∗≥i) Bs,s+n∞ (τ∗≥i).

∼=

⊂

It follows that Bs,s+n∞ (τ∗≥i+j) → Bs,s+n∞ (τ∗≥i) is an isomorphism for each
s ≥ i+ j if and only if the inclusion

Bs,s+ns+1−i−j(τ∗≥i) ⊂ B
s,s+n
s+1−i(τ∗≥i)

is the identity for each s ≥ i+ j. For this to hold, we need the differentials

dr : Es−r,s−r+n+1
r (τ∗≥1) −→ Es,s+nr (τ∗≥i)

to be zero for s+ 1− i− j ≤ r ≤ s− i. Defining a := s− r, this is equivalent
to i ≤ a ≤ i+ j + 1 and a+ r ≥ i+ j. In the full spectral sequence (Er, dr)r,
this shows that η : π∗(i+ j)→ π∗(i) is injective if and only if the differentials

dr : Ea,a+n+1
r → Ea+r,a+r+n

r

vanish for i ≤ a < i+ j and a+ r ≥ i+ j.
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A.1 A Category of Chain Complexes

Definition A.1.1. A chain complex X∗ = (X∗, ∂) of abelian groups is a
sequence (Xn)n∈Z of abelian groups together with group homomorphisms
∂ : Xn → Xn−1 for each integer n satisfying ∂ ◦ ∂ = 0. The homomorphisms ∂
are called differentials.

There is a category Ch(Ab) of chain complexes of abelian groups. The
morphisms f : X∗ → Y∗ are sequences fn : Xn → Yn of group homomorphisms
that commute with the differentials, and are called chain maps. We let the
index n represent the degree, and say that the group Xn of a chain complex
X∗ is the group in degree n. The category of chain complexes is both complete
and cocomplete, with limits and colimits formed degreewise. The zero object
is the chain complex 0∗ = (0∗, 0) made up of only trivial groups. Moreover,
Ch(Ab) is closed symmetric monoidal. The monoidal product is the tensor
product X∗ ⊗ Y∗ given in degree n by

(X∗ ⊗ Y∗)n :=
⊕
i+j=n

Xi ⊗Z Yj ,

where ⊗Z denotes the tensor product of abelian groups. Given elements x ∈ Xi

and y ∈ Yj , the differential is defined by

∂(x⊗ y) = ∂x⊗ y + (−1)
i
x⊗ ∂y,

picking up a sign as the differential moves across the element of degree i in line
with the usual convention in homological algebra. The monoidal unit is the
chain complex U∗ = (U∗, 0) with Z concentrated in degree 0. The symmetry is
the twist isomorphism defined as

τ : (X∗ ⊗ Y∗) −→ (X∗ ⊗ Y∗),

x⊗ y 7−→ (−1)
ij
y ⊗ x

for elements x ∈ Xi and y ∈ Yj . Finally, the closed structure is given by the
hom complex F (X∗, Y∗)∗ defined as

F (X∗, Y∗)n :=
∏

i+j=n

HomZ(X−i, Yj),

with differential
(∂f)(x) = ∂f(x)− (−1)

i
f(∂x)

for f ∈ F (X∗, Y∗)i.
We proceed to construct some interesting chain complexes. Given a chain

complex X∗ = (X∗, ∂), a subcomplex A∗ = (A∗, ∂|A) of X∗ is a sequence
(An)n∈Z of subgroups An of Xn, where the differential ∂|A is the restriction of
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the differential ∂ : Xn → Xn−1 to the subgroup An. When A∗ is a subcomplex
of X∗, we can assemble the quotient groups Xn/An into a chain complex

· · · −→ Xn+1/An+1
∂−−→ Xn/An

∂−−→ Xn−1/An−1 −→ · · ·

denoted by X∗/A∗. Next, we define suspensions and mapping cones. We lift
these definitions from their topological counterparts, hence we need notions
of circle and interval chain complexes. The interval chain complex (I∗, ∂) is
given as

0 −→ R{e1}
∂−−→ R{i1, i0} −→ 0, ∂e1 = i1 − i0,

with i0 and i1 in degree 0 and e1 in degree 1. The circle complex is the chain
complex (S∗, 0) given as

0 −→ R{s1} −→ 0,

with s1 in degree 1.

Definition A.1.2. Given a chain complex X∗ = (X∗, ∂), the cylinder on X∗
is the chain complex (I ⊗X)∗ = I∗ ⊗X∗. Explicitly, the symmetric monoidal
structure determines the group in degree n as

(I ⊗X)n =
⊕
k+`=n

Ik ⊗R X`
∼= Xn ⊕Xn ⊕Xn−1.

The differential ∂ : (I ⊗X)n+1 → (I ⊗X)n is

∂(xn+1, x
′
n+1, xn) = (∂xn+1 − xn, ∂x′n+1 + xn,−∂xn).

There are inclusions i1, i0 : X∗ → I∗ ⊗X∗ inserting X∗ into either end of the
cylinder, with i1(x) = (x, 0, 0) and i0(x) = (0, x, 0).

The mapping cylinder Mf∗ of a chain map f : X∗ → Y∗ is the pushout

X∗ Y∗

I∗ ⊗X∗ Mf∗.

f

i0

Under the identifications for the cylinder, the group in degree n is

Mfn ∼= Xn ⊕ Yn ⊕Xn−1

The differential ∂ : Mfn+1 →Mfn is

∂(xn+1, yn+1, xn) = (∂xn+1 − xn, ∂yn+1 + f(xn),−∂xn).

The inclusion i : Y∗ → Mf∗ is a chain homotopy equivalence, with inverse
α : Mf∗ → Y∗ the chain map α(xn+1, yn+1, xn) = f(xn+1) + yn+1.

Definition A.1.3. Let f : X∗ → Y∗ be a chain map. The mapping cone of f is
the chain complex Cf∗ given as the quotient of the mapping cylinder by the
image of the inclusion i1 : X∗ → I∗ ⊗X∗. Explicitly, the group in degree n is

Cfn ∼= Yn ⊕Xn−1,

and the differential ∂ : Cfn+1 → Cfn is given by ∂(y, x) = (∂y + f(x),−∂x).
Collecting the canonical inclusions (Yn → Yn ⊕Xn−1)n∈Z into the first factor
gives an inclusion i : Y∗ → Cf∗.
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The suspension of a chain complex (X∗, ∂
X) is the chain complex

ΣX∗ := S∗ ⊗X∗

Explicitly, the symmetric monoidal structure determines the group in degree n as

(ΣX∗)n =
⊕
i+j=n

Si ⊗R Xj = R{s1} ⊗R Xn−1
∼= Xn−1,

with the differential ∂ : ΣXn+1 → ΣXn given by −∂X : Xn → Xn−1. Assem-
bling the canonical projections (Yn⊕Xn−1 → Xn−1)n∈Z onto the second factor
gives a chain map q : Cf∗ → ΣX∗. In particular, there is a short exact sequence
of chain complexes

0 −→ Y∗
i−−→ Cf∗

q−−→ ΣX∗ −→ 0. (A.1.4)

The chain homology functor H : Ch(ModR) → grAb associates to each
chain complex X∗ = (X∗, ∂) a graded abelian group Hn(X), and to each
chain map f : X∗ → Y∗ a homomorphism f∗ = H∗(f) : Hn(X) → Hn(Y ). If
the homomorphism f∗ is an isomorphism, we say that the chain map f is a
quasi-isomorphism.

Lemma A.1.5. Consider a chain complex X∗ and a subcomplex A∗ of X∗. Let
i : A∗ → X∗ denote the inclusion and j : X∗ → X∗/A∗ the projection onto the
quotient complex. There is a long exact sequence

· · · −→ Hn(A)
i∗−−→ Hn(X) −→ Hn(A/X)

∂−−→ Hn−1(A) −→ · · ·

in homology, where the connecting homomorphism is given by ∂[y +X∗] = [∂y]
for where y ∈ Y∗ with ∂y ∈ X∗.

Letting Σ denote the functor Ch(Ab) → Ch(Ab) sending an object to its
suspension, there are natural isomorphisms E : Hn(−) → Hn+1(−) ◦ Σ for
each n. In the context of the previous previous lemma, this leads to a diagram

Hn(A) Hn(X) Hn(X/A) Hn−1(A)

Hn+1(ΣA) Hn+1(ΣX) Hn+1(ΣX/ΣA) Hn(ΣA),

E ∼= E∼=

∂

E∼= E∼=

∂

where both rows are part of long exact sequences. Naturality tells us that the
two first squares commute. To determine the relation between the connecting
homomorphisms in the last square, take a cycle x+An ∈ Xn/An. The image
∂Xx of this cycle in An−1 corresponds to a cycle ∂Xx ∈ ΣAn under E. Going the
other way, we find that ∂ : Hn+1(ΣX/ΣA)→ Hn(ΣA) sends x to ∂ΣXx = −∂Xx.
In particular, we conclude that the last square anti-commutes.
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