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Abstract

We use the monoidal Grothendieck construction and the theory of lifts
of lax O-monoidal maps presented in [ACB19] to propose an alternative
construction of the relative Thom spectrum defined by J. Beardsley in
[Bea17]. The original method relies on the Kan complex to be reduced; our
method replaces this condition with an additional monoidality requirement
on the fibration. This allows us to apply our construction to systems of
invertible modules where the source is a non-connected Kan complex.

The cover image is Impression, Sunrise (1872) by Claude Monet, collection of Musée Marmottan Monet,
Paris
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Chapter 1

Introduction

The Thom spectrum has been proven to be a useful machinery in stable homotopy theory
since its introduction by J.M. Boardman [Boa69]. In recent years, mathematicians
such as M. Ando, A. Blumberg, D. Gepner, M.J. Hopkins, C. Rezk, and others have
published a series of papers where they have developed a modern approach to the Thom
functor that extended the classic treatment by L.G. Lewis, J.P. May, and M. Steinberger
[LMS86], see for example [And+14b], [And+14a] and [ABG18]. In particular, in the last
two aforementioned papers, the authors extended the functor to the framework of quasi-
categories originally by A. Joyal in [Joy02] and by J. Lurie in [Lur09]. Their work
suggests that ∞-categories constitute a natural setting for the Thom functor.

Let X be an associative monoidal Kan complex and R be a symmetric ring spectrum, a
system of invertible R-modules is a map ξ : X → Pic(R); where Pic(R) ⊆ LModR(Sp)
is the core of the full subcategory of invertible left R-modules. In [And+14a] M. Ando
et al. defined the ∞-categorical Thom spectrum ThR(ξ) of the system ξ as the colimit
of the composition of ξ with the inclusion Pic(R) ↪→ LModR(Sp).

Suppose that, in addition to the system of invertible R-modules ξ : X → Pic(R), we are
given an essentially surjective left fibration π : X → B where B is another associative
monoidal Kan complex. To each element b ∈ B we can associate the system of invertible
R-modules ξb : π−1(b) ↪→ X → Pic(R), and consequentially the left R-module ThR(ξb).
We can make this association functorial by defining it as the left Kan extension of ξ
composed with Pic(R) ↪→ LModR(Sp) along π

X Pic(R) LModR(Sp)

B.

ξ

π
ThR(ξ)B

Utilizing the theory of operadic left Kan extension or the monoidal Grothendieck
construction, it is possible to define the map ThR(ξ)B as a lax monoidal map and
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Chapter 1. Introduction

use its monoidality to equip the spectra ThR(ξb) with a left ThR(ξ1)-module structure;
effectively producing a lax monoidal functor

ThR(ξ)B : B → LMod ThR(ξ1)(Sp).

Now that we have defined a map from a Kan complex to the category of left ThR(ξ1)-
modules it is natural to ask if the map factors through Pic(ThR(ξ1)), that is to say, if
we can consider the map ThR(ξ)B as a system of invertible ThR(ξ1)-modules with base
the Kan complex B. The answer is in general no since the spectra ThR(ξb) are usually
not invertible left ThR(ξ1)-modules. However, if you assume that X and B are grouplike
Kan complexes and the map ThR(ξ)B is (strong) monoidal, we can use the fact that B
is grouplike to produce the following equivalence for each b ∈ B

ThR(ξb) ⊗ThR(ξ1) ThR(ξb̄) ≃ ThR(ξb·b̄) ≃ ThR(ξ1),

where b̄ is the homotopy inverse of the element b. The equivalence ensures that R-module
ThR(ξb) admits a structure as an invertible ThR(ξ1)-module.

J. Beardsley in [Bea17], utilizing the theory of operadic left Kan extensions, proved that
if π is an En-monoidal map of reduced grouplike Kan complexes and ξ is En-monoidal,
then the map ThR(ξ)B is En−1-monoidal and it defines an En−1-monoidal system of
invertible ThR(ξ1)-modules

ThR(ξ)B : B⊗ → Pic(ThR(ξ1))⊗.

After defining this new system, the author applied once again the Thom functor to
obtain a left ThR(ξ1)-module which he called relative Thom spectrum of ξ along π, and
proved that it recovers the original Thom spectrum ThR(ξ) as an En−1-algebra.

While the grouplike condition is not too restrictive, the reduced condition prevents
us from applying the construction to some interesting cases such as, for example, the
symmetric spherical fibration Jgp : Z × BU → Pic(S) given by the group-completion of
the so-called J map [Hop18].

In this thesis, we provide an alternative construction of the relative Thom spectrum,
which we will call the iterated Thom spectrum. This construction relies on the monoidal
Grothendieck construction instead of the theory of operadic left Kan extensions and
allows us to generalize Beardsley’s results to non-connected grouplike Kan complexes;
provided that we are willing to assume additional monoidality on the fibration π. The
main advantage of our construction is that we can consider for the fibration π the
projection on the path components of X. This provides plenty of examples where it is
possible to apply the iterated Thom spectrum construction, and in particular, will allow
us to produce a symmetric monoidal system of invertible MU-modules Z → Pic(MU)
from the symmetric monoidal spherical fibration Jgp : Z × BU → Pic(S) along the
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1.1. Outline

projection on the path components of Z× BU. From our main theorem, Theorem 5.4.4,
will follow that these two systems produce the same E∞-structure of the periodic complex
cobordism spectrum MUP.

1.1 Outline

The thesis is constituted of four further chapters. In the next three chapters, we will
present the reader with some basic definitions and results of the theory of ∞-operads and
the ∞-categorical version of the Thom functor; no claim of originality is made on the
content of these preliminary chapters. In chapter five we will use the results presented
in the previous part to develop the construction of the iterated Thom spectrum.

Let us explain in more detail what is the content of the specific chapters.

In chapter two we will give an introduction to the theory of ∞-operads developed by
J. Lurie in Higher Algebra, [Lur17]; presenting some of the fundamental definitions
and constructions involving ∞-operads with the intention of providing, when possible,
an intuition by presenting first the analogous constructions and definitions on the 1-
categorical level. This chapter will cover Section 2.1 and the first half of Section 2.2 of
[Lur17].

In chapter three, we will see how common algebraic notions can be generalized to the
context of ∞-operads. In particular, we will give the definitions of the ∞-categories
of associative left modules and bimodules; with a focus on the characterization of the
relative tensor product via the bar construction. In the rest of the chapter, we will
generalize these notions to a general ∞-operad O⊗ and then introduce the ∞-categorical
version of the little cubes operads.

Chapter four will conclude the exposition of the preliminary material. We will present
the ∞-categorical construction of the Thom spectrum functor, starting from the additive
case defined by M. Ando et al. in [And+14a] and then following with the monoidal case
defined in [ABG18]. We will then present the work of O. Antolín-Camarena and T.
Barthel where the authors developed a theory of lifts of lax O-monoidal maps; which
they then used to define a microcosmic version of the monoidal Thom functor [ACB19].

The last chapter is dedicated to the construction of the iterated Thom spectrum. In
the first two sections of this chapter, we will see how it is possible to use the theory of
monoidal principalG-bundles to factor certain lax monoidal pre-sheaves through (strong)
monoidal maps; this is the content of Proposition 5.3.3 which, as we will see, will play a
crucial role in the construction of the iterated Thom spectrum. In Section 5.3, we will
prove the main theorem of the thesis, Theorem 5.4.4, which states that starting from the
iterated Thom spectrum it is possible to partially recover the original Thom spectrum.
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Chapter 1. Introduction

1.2 For the reader who is not familiar with ∞-categories

With the idea that a reader who is not familiar with the ∞-categorical framework
developed by J.Lurie in [Lur09] might still be interested in understanding the main ideas
behind the construction of the relative Thom spectrum; we will provide some informal
intuitions on how ∞-categories work. These are not to be considered formal statements.

• ∞-categories are simplicial sets that satisfy certain properties. We can
use the simplicial structure to define the ∞-categorical analogue of familiar 1-
categorical notions. Let C be an ∞-category, then:

– The zero-cells, or vertices, play the role of the objects of the ∞-category.

– The one-cells are to be considered morphisms of C. For example, the
degenerate one-cell of a vertex v ∈ C is the identity morphism of v.

– A two-cell σ of C represent a "homotopy" that portrays the morphism d1(σ)
as the composition of the morphisms d2(σ) and d0(σ). For example, the
degenerate two-cells of a morphism α : v → w express the unitality of the
identity under composition

w

v w

α

α

id

w

v v.

α

id

α

– The three-cells indicate that the "homotopies" represented by the faces
commute, and so on for higher dimensional cells.

The condition that we required on the simplicial sets ensures that it is always
possible to compose two subsequent morphisms, i.e., there always exists a two-cell
that represents the commutativity between two subsequent morphisms and a third
morphism that plays the role of their composition; even if the composition is in
general not unique.

By identifying homotopic morphisms of C we obtain a unique composition of classes
of morphisms that equips the set of homotopic objects with the structure of a 1-
category. This 1-category is called the homotopic category of C and it is usually
denoted by hC.

• For a diagram to be commutative is a structure, not a property. When
we want to prove the commutativity of a diagram we need to specify cells of the
∞-category that make the diagram commute.

• Functor of ∞-categories are just morphisms between their underlying
simplicial sets. Moreover, there is a natural way to define the simplicial set of
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1.3. Notation

functors between two ∞-categories; which can be proven to be an ∞-category itself
[Lur17, Prop. 1.2.7.3].

• We can model topological spaces with ∞-categories. Starting from a
topological space X we can consider its singular set Sing(X). This simplicial
set belongs to a particular class of ∞-categories called Kan complexes. Loosely
speaking, a Kan complex is an ∞-category where every morphism is invertible. It
can be proven that the Kan complexes constitute a model for the weak homotopic
category of topological spaces [Gep20, Remark 1.4.2].

• Most of the familiar 1-categorical constructions have their analogue
in the ∞-categorical framework. Notions like adjunctions, left and right
Kan extensions, and the Grothendieck construction have been generalized to ∞-
categories.

If, somehow, we sparked the interest of the reader the author believes that [Gep20] by
D. Gepner and [Gro20] by M. Groth constitute a good introduction to the theory of
∞-categories.

1.3 Notation

We have chosen to use a notation that is as close as possible to the one used by J.
Lurie in Higher Algebra; with the idea that an interested reader will be facilitated to
integrate the preliminary chapters of this thesis with some of the more in-depth results
presented in Higher Algebra. In this document, we will use S to refer to the ∞-category
of Kan complexes and Sp to refer to the stable ∞-category of spectra. Moreover, we will
usually denote ∞-categories with calligraphic capital letters and Kan complexes with
capital letters. Suppose that p : C → D is a map of ∞-categories; if the functor p is clear
from context we will denote by CX the fiber of p over the object X of D and by pX the
composition CX ↪→ C p−→ D.
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Chapter 2

∞-operads

In this chapter, we will give a brief introduction to the theory of ∞-operads following
Higher Algebra by J. Lurie, [Lur17], presenting some of the basic definitions and results.
In order to maintain the content as accessible as possible we will often state weaker
versions of the results present in Higher Algebra. This will allow us to introduce less
technical machinery and make the connection with the analogous 1-categorical concepts
more explicit.

Before introducing the definition of ∞-operads let us focus first on how to generalize
the notion of a symmetric monoidal 1-category to the ∞-categorical framework. This
example is crucial for the understanding of the definition of ∞-operads and will motivate
most of the constructions that we will present in Chapter 2 and Chapter 3.

We recall that a symmetric monoidal 1-category C is a 1-category equipped with:

(1) A unit object 1 ∈ C.

(2) A product functor ⊗ : C × C → C.

(3) An associative natural equivalence α : (a ⊗ b) ⊗ c ≃ a ⊗ (b ⊗ c) such that the
following diagram commmute

a⊗ (b⊗ (c⊗ d)) (a⊗ b) ⊗ (c⊗ d) ((a⊗ b) ⊗ c) ⊗ d

a⊗ ((b⊗ c) ⊗ d) (a⊗ (b⊗ c)) ⊗ d

α

id⊗α

α

α⊗id

α

(⋆)

for each a, b, c, d ∈ C.

(4) Two unit natural equivalences ρ : a⊗1 ≃ a and λ : 1⊗b ≃ b such that the following
diagrams commute
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Chapter 2. ∞-operads

a⊗ (1 ⊗ b) (a⊗ 1) ⊗ b

a⊗ b

α

id⊗λ ρ⊗id

1 ⊗ 1

1 1

λ ρ

id

for each a, b ∈ C.

Diagram (⋆) is just the first of an infinite hierarchy of commutative diagrams that encode
the associativity of the product of more and more elements of C. In the 1-categorical
case it is easy to prove that the commutativity of these diagrams follows from the
commutativity of (⋆) [ML98, Section XI.1].

One can try to generalize the previous definition to ∞-categories by defining a naive
symmetric monoidal ∞-category as an ∞-category equipped with analogous structures.
However, providing the two-cells that make the analogue of diagram (⋆) commute is no
longer sufficient to ensure the commutativity of the higher hierarchy diagrams; for each
diagram involving the associativity of multiple objects of C one has to provide cells that
make the diagram commute. Therefore, giving an example of a symmetric monoidal
∞-category would require specifying an infinite hierarchy of cells of the ∞-category C.

In order to avoid this we will repackage the definition of symmetric monoidal 1-category
by giving an equivalent definition that will generalize easily to ∞-categories.

Construction 2.0.1. [Lur17, Construction 2.0.0.1] Let C be a symmetric monoidal
1-category. We define C⊗ to be the 1-category where:

(1) The objects are finite sequences of objects of C, possibly empty.

(2) A morphism f between two objects [C1, . . . , Cn], [C ′
1, . . . , C

′
m] of C⊗ consists of:

• a subset S ⊆ {1, . . . , n};

• a map of finite sets α : S → {1, . . . ,m};

• and a collection of morphisms {fj : ⊗
α(i)=j Ci → C ′

j}1≤j≤m of C.

(3) The composition of two morphisms f = (S, α, {fj}) : [C1, . . . , Cn] → [C ′
1, . . . , C

′
m]

and g = (T, β, {gk}) : [C ′
1, . . . , C

′
m] → [C ′′

1 , . . . , C
′′
l ] of C⊗ is given by:

• the subset U = α−1T ⊆ {1, . . . , n} of S;

• the composition β ◦ α : U → {1, . . . , l};

• and the collection of maps

⊗
(β◦α)(i)=k

Ci ≃
⊗

β(j)=k

⊗
α(i)=j

Ci
⊗fj−−→

⊗
β(j)=k

C ′
j
gk−→ C ′′

k
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for 1 ≤ k ≤ l.

The 1-category C⊗ admits a natural functor to another 1-category that in some ways
plays the role of the "prototype" symmetric monoidal 1-category; we will see that this
functor encodes the symmetric monoidal structure of C.

Definition 2.0.2. [Lur17, Notation 2.0.0.2] Let I be a finite set, we denote by I∗ the
set I ∐

{∗}. For each n ≥ 0 we denote by ⟨n⟩◦ the finite set {1, . . . , n} and by ⟨n⟩ the
pointed finite set ⟨n⟩◦

∗ = {∗, 1, . . . , n}.

We define F in∗ to be the 1-category where:

(1) The objects are the sets ⟨n⟩ where n ≥ 0.

(2) A morphism between two objects ⟨m⟩ and ⟨n⟩ of F in∗ is a function α : ⟨m⟩ → ⟨n⟩
with α(∗) = ∗.

(3) And the composition of two morphisms is defined in the obvious way.

Let n ≥ 0. For each 1 ≤ i ≤ n we denote by ρi : ⟨n⟩ → ⟨1⟩ the morphism of F in∗ given
by the formula

ρi(j) =

1 if i = j

∗ otherwise.

We observe that F in∗ is the 1-category obtained by applying Construction 2.0.1 to the
simplest symmetric monoidal 1-category, i.e., the final 1-category {∗} equipped with the
trivial product.

The 1-category C⊗ defined in Construction 2.0.1 admits a forgetful functor p : C⊗ →
F in∗, which satisfies two special properties:

(1) Is a (op-fibration) coCartesian fibration; therefore each morphism α : ⟨m⟩ → ⟨n⟩
of F in∗ defines a unique, up to isomorphism, functor α! : C⊗

⟨m⟩ → C⊗
⟨n⟩ between the

fibers.

(2) The functors ρi! define an isomorphism between the fiber C⊗
⟨n⟩ of p over the object

⟨n⟩ ∈ F in∗ and the n-fold Cartesian product of C.

These two properties ensure that it is possible to recover the symmetric monoidal 1-
category C from the forgetful functor p up to isomorphism, [Lur17, Remark 2.0.0.6].
The discussion above motivates the correct definition of symmetric monoidal ∞-category.

Definition 2.0.3. A symmetric monoidal ∞-category is a coCartesian functor p : C⊗ →
N(F in∗) between ∞-categories, such that: for each n ≥ 0 the functors ρi! : C⊗

⟨n⟩ → C⊗
⟨1⟩

induce an equivalence C⊗
⟨n⟩ ≃ (C⊗

⟨1⟩)
n.

CoCartesian morphisms and coCartesian fibrations play a central role in the theory of
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Chapter 2. ∞-operads

∞-operad. In Proposition A.1.1 we give a characterization of coCartesian morphisms.
For a more in-depth exposition we refer the reader to Section 2.4.1 of [Lur09].

2.1 Definitions

Let us start by recalling the 1-categorical definition of a colored operad.

Definition 2.1.1. [Lur17, Def. 2.1.1.1] A colored operad O is a 1-category equipped
with the following structures:

(1) A collection of objects {X,Y, Z, . . . } which we will refer to as the colors of the
operad O.

(2) For every finite set I, every I-indexed collection of objects {Xi}i∈I , and every
object Y ∈ O, there is a set MulO({Xi}i∈I , Y ) which will refer to as the set of
morphisms, or operations, from {Xi}i∈I to Y .

(3) For every map of finite sets I → J having fibers {Ij}j∈J , every I-indexed collection
of objects {Xi}i∈I , every J-indexed collection of objects {Yj}j∈J , and every object
Z ∈ O, there is map

∏
j∈J

MulO({Xi}i∈Ij , Yj) × MulO({Yj}j∈J , Z) → MulO({Xi}i∈I , Z),

that we will call the composition map.

(4) A collection of morphisms {idX ∈ MulO({X}, X)} which are left and right units
for the composition on O, that is to say: for every I-indexed collection {Xi}i∈I
and every object Y ∈ O, the compositions

MulO({Xi}i∈I , Y ) ≃MulO({Xi}i∈I , Y ) × {idY }

⊆MulO({Xi}i∈I , Y ) × MulO({Y }, Y )

→MulO({Xi}i∈I , Y ),

and
MulO({Xi}i∈I , Y ) ≃

∏
i∈I

{idXi} × MulO({Xi}i∈I , Y )

⊆
∏
i∈I

{MulO({Xi}, Xi)} × MulO({Xi}i∈I , Y )

→MulO({Xi}i∈I , Y )

coincide with the identity map from MulO({Xi}i∈I , Y ) to itself.

(5) The composition is associative in the following sense: for every sequence of maps
I → J → K of finite sets, every collection of objects {Wi}i∈I , {Xj}j∈J , {Yk}k∈K ,

14



2.1. Definitions

and every object Z ∈ O, the diagram

∏
j∈J MulO({Wi}i∈Ij , Xj) ×

∏
k∈K MulO({Xj}j∈Jk

, Yk) × MulO({Yk}k∈K , Z)

∏
k∈K MulO({Wi}i∈Ik

, Yk) × MulO({Yk}k∈K , Z)

∏
j∈J MulO({Wi}i∈Ij , Xj) ×

∏
k∈K MulO({Xj}j∈J , Z)

MulO({Wi}i∈I , Z)

commutes.

Remark 2.1.2. It is possible to recover from Definition 2.1.1 the notion of operads as
originally defined by J.M. Boardman, R. M. Vogt, and J.P. May in [BV68] and [May72];
by considering a topological colored operad O with a single color, meaning that the
sets of morphisms are equipped with topological structures and the compositions are
continuous maps. In this section, we will see that the notion of ∞-operads generalizes to
∞-categories the notion of colored operad rather than the one of single-colored operad.

Similar to the case of symmetric monoidal categories, if we try to generalize Definition
2.1.1 directly to the context of ∞-categories the structures associated with a colored
operad will require presenting an infinite hierarchy of coherent diagrams. We can in-
stead repackage the structures that define a colored operad O in a 1-category equipped
with a forgetful functor. The properties of this 1-category will motivate our definition
of ∞-operads.

Construction 2.1.3. [Lur17, Construction 2.1.1.7] Let O be a colored operad. We
define the 1-category O⊗ as follows:

(1) The objects of O⊗ are finite sequences of colors X1, . . . , Xn ∈ O, possibility empty.

(2) Given two sequences of objects

X1, . . . , Xn ∈ O, Y1, . . . , Ym ∈ O,

a morphism from {Xi}1≤i≤n to {Yj}1≤j≤m is given by:

• a morphism α : ⟨m⟩ → ⟨n⟩ of F in∗;

• together with a collection of morphisms

{ϕj ∈ MulO({Xi}α(i)=j , Yj)}1≤j≤m

of O.

15



Chapter 2. ∞-operads

(3) Composition of morphisms in O⊗ is given by the composition law of F in∗ and the
composition of the colored operad O.

We observe that, by construction, the 1-category O⊗ comes equipped with a forgetful
functor π : O⊗ → F in∗. It is possible to prove, [Lur17, Construction 2.1.17], that
starting from the 1-category O⊗ and the functor π we can recover the colored operad O
up to a canonical equivalence. In particular:

• for each ⟨n⟩ ∈ F in∗, the fiber O⊗
⟨n⟩ := π−1(⟨n⟩) is canonically equivalent to the

1-category On;

• for every finite set I with |I| = n, every I-indexed collection {Xi}i∈I , and every
object Y ∈ O the set MulO({Xi}i∈I , Y ) can be identified with the set of morphisms
f of O⊗ between X1, . . . , Xn to Y such that π(f)−1(∗) = ∗;

• the composition of O can be recovered from the composition law of O⊗.

This observation suggests that it is possible to give an equivalent definition of colored
operads by considering an ordinary 1-category O⊗ equipped with a forgetful functor
π : O⊗ → F in∗; provided that we require that the forgetful functor satisfies certain
properties that will allow us to reconstruct from π a unique colored operad. This ap-
proach will give us a characterization of colored operads that can easily be generalized
to ∞-categories.

Definition 2.1.4. [Lur17, Def. 2.1.1.10] An ∞-operad is a functor p : O⊗ → N(F in∗)
between ∞-categories which satisfies the following conditions:

(1) For every object C ∈ O⊗
⟨m⟩ and every inert morphism f : ⟨m⟩ → ⟨n⟩ in N(F in∗),

that is a morphism of N(F in∗) such that for each i ∈ ⟨n⟩ the inverse image f−1(i)
has exactly one element, there exists a p-coCartesian morphism f̄ : C → C ′ in O⊗

covering f . In particular, the morphism f induces a unique, up to equivalence,
functor f! : O⊗

⟨m⟩ → O⊗
⟨n⟩.

(2) Let C ∈ O⊗
⟨m⟩ and C ′ ∈ O⊗

⟨n⟩ be two objects of O⊗, let f : ⟨m⟩ → ⟨n⟩ ba a morphism
of N(F in∗), and MapfO⊗(C,C ′) be the union of the connected components of
MapO⊗(C,C ′) that lie over f . For every choice of p-coCartesian morphisms
ρ̄i : C ′ → C ′

i of O⊗ lying over the inert morphisms ρi : ⟨n⟩ → ⟨1⟩ for 1 ≤ i ≤ n,
the induced map

MapfO⊗(C,C ′) →
∏

1≤i≤n
Mapρ

i◦f
O⊗ (C,C ′

i)

is a homotopy equivalence.

(3) For each n ≥ 0, the functors {ρi! : O⊗
⟨n⟩ → O} define an equivalence of ∞-categories

O⊗
⟨n⟩ → (O⊗

⟨1⟩)
n. We will refer to O := O⊗

⟨1⟩ as the underlying ∞-category of O⊗.

It is common to use ∞-operad to refer to the ∞-category O⊗ rather than the functor
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2.1. Definitions

p : O⊗ → N(F in∗). Every time that we will refer to an ∞-category as an ∞-operad
we will always assume that the ∞-category is equipped with a functor that satisfies the
conditions of Definition 2.1.4.

Example 2.1.5. Let O be a colored operad. We have seen that O defines a unique
forgetful functor O⊗ → F in∗ where O⊗ is the 1-category defined in Construction 2.1.3;
then, we can use the nerve of the forgetful functor N(O⊗) → N(F in∗) to define an
∞-operad. This observation allows us to realize our first examples of ∞-operads:

• The commutative ∞-operad Comm⊗ which corresponds to the nerve of the identity
functor id : N(F in∗) → N(F in∗).

• The trivial ∞-operad Triv⊗ which corresponds to the nerve of the inclusion of the
subcategory Triv⊗ ⊆ F in∗ spanned by the inert morphisms of F in∗.

In Definition 2.1.4 we said that a morphism f : ⟨m⟩ → ⟨n⟩ of N(F in∗) is inert if it
induces an injective map ⟨m⟩◦ → ⟨n⟩◦ of finite sets. By definition, if O⊗ is an ∞-operad
an inert morphism f induces a functor

f! : Om ≃ O⊗
⟨m⟩ −→ O⊗

⟨n⟩ ≃ On.

(X1, . . . , Xm) 7−→ (Xf−1(1), . . . , Xf−1(n))

The functor f! can be interpreted as a projection map composed with the natural action
of the m-th symmetric group on Om determined by the morphism f . Therefore, we ex-
pect that the inert morphisms will not provide any useful information on the monoidal
structure of the ∞-category O⊗. We will now define another class of morphisms of
N(F in∗) that, on the contrary, will play a crucial role in studying the ∞-category O⊗.

Definition 2.1.6. We say that a morphism g : ⟨m⟩ → ⟨n⟩ of N(F in∗) is active if
g−1(∗) = ∗. Let p : O⊗ → N(F in∗) be an ∞-operad. We say that a morphism γ of O⊗

is inert if its image p(γ) is an inert morphism of N(F in∗) and γ is p-coCartesian; and
that γ is active if its image p(γ) is an active morphism of N(F in∗).

In many practical cases, when one needs to prove a property involving the morphisms
of O⊗ it is usually easy to prove that the property is satisfied for the inert morphisms of
O⊗ and that is stable under compositions. Then, one can use the following proposition
to reduce the proof to the case of active morphisms of O⊗.

Proposition 2.1.7. [Lur17, Prop. 2.1.2.4] Let O⊗ be an ∞-operad. The collection of
active and inert morphisms determines a factorization system, [Lur09, Def. 5.2.8.8], of
the ∞-category O⊗.

Definition 2.1.8. [Lur17, Def. 2.1.2.7] Let p : O⊗ → N(F in∗) and p′ : O′⊗ → N(F in∗)
be two ∞-operads. A map of ∞-operads, or operadic map, is a map of simplicial sets

17



Chapter 2. ∞-operads

F : O⊗ → O′⊗ satisfying the following conditions:

(1) The diagram of simplicial sets

O⊗ O′⊗

N(F in∗)
p

F

p′

commutes.

(2) The functor F carries inert morphisms of O⊗ to inert morphisms of O′⊗. That is
to say, the functor F preserves coCartesian morphisms if their image in N(F in∗)
is inert.

We denote by Alg O(O′) the full subcategory of FunN(F in∗)(O⊗,O′⊗) spanned by maps
of ∞-operads. The notation is justified by the fact that in some cases it is possible to
interpret maps of ∞-operads from O⊗ to O′⊗ as O-algebras of O′⊗. We will discuss this
in more detail in the next section after defining O-monoidal ∞-categories.

2.2 O-monoidal categories and their algebras

In this section, we will present a particular class of operadic maps, the coCartesian fi-
brations of ∞-operads, that we will then use to define an O-monoidal generalization of
the notion of symmetric monoidal ∞-categories. We will then follow by introducing the
O-monoidal analogue of algebras and monoidal functors.

Proposition 2.2.1. [Lur17, Prop. 2.1.2.12] Let O⊗ be an ∞-operad, and let p : C⊗ →
O⊗ be a coCartesian fibration. Then, the following conditions are equivalent:

(1) The composite map C⊗ → O⊗ → N(F in∗) exhibits C⊗ as an ∞-operad.

(2) For every object T ≃ T1 ⊕ · · · ⊕ Tn ∈ O⊗
⟨n⟩, the inert morphisms T → Ti induce an

equivalence of ∞-categories C⊗
T →

∏
1≤i≤n C⊗

Ti
.

Definition 2.2.2. [Lur17, Def. 2.1.2.13] A map p : C⊗ → O⊗ is a coCartesian fibration
of ∞-operads if it satisfies the equivalent conditions of Proposition 2.2.1. In this case, we
say that p exhibits C⊗ as an O-monoidal category, or that p is an O-monoidal structure
for C⊗. We will denote the pullback of simplicial sets C := C⊗ ×

O⊗
O as the underlying

category of the O-monoidal category of C⊗.

Informally, we can think of a coCartesian fibration of ∞-operads p : C⊗ → O⊗ as a
generalization of the forgetful functor defined in Definition 2.0.3, where the structure
on the ∞-category C⊗ is no longer encoded by the "prototype" symmetric monoidal ∞-
category N(F in∗), but it is instead encoded by the "prototype" O-monoidal category,

18



2.2. O-monoidal categories and their algebras

which is the ∞-operad O⊗ itself.

We observe that, since the map that defines an O-monoidal category C⊗ as an ∞-operad
factors through the ∞-operad structure of O⊗; the two notions of underlying category
of C⊗, i.e., the underlying category C⊗

⟨1⟩ of C⊗ considered as an ∞-operad, and the
underlying category C⊗ ×

O⊗
O of C⊗ considered as an O-monoidal category, coincide.

C O {⟨1⟩}

C⊗ O⊗ N(F in∗).

⌟ ⌟

p

By definition, if O⊗ is an ∞-operad the inert morphisms of N(F in∗) define functors
between the fibers. Similarly, if p : C⊗ → O⊗ is an O-monoidal category the morphisms
of O⊗ define functors between the fibers of p; we will call these functors O-operations.
In contrast to the case of inert morphisms of N(F in∗), the O-operations defined by ac-
tive morphisms usually provide useful information on the structure of the O-monoidal
category C⊗. Let us formally define the O-operations, and then see which information
they provide in the case where C⊗ is a Comm-monoidal category.

Definition 2.2.3. [Lur17, Remark 2.1.2.16] Let O⊗ be an ∞-operad, p : C⊗ → O⊗

be a coCartesian fibration of ∞-operads, and let f : X → Y be a morphism of O⊗,
where X ∈ O⊗

⟨m⟩ and Y ∈ O⊗
⟨n⟩. The coCartesian fibration p defines, up to equivalence,

a functor
⊗f : C⊗

X → C⊗
Y ,

we will refer to this functor as the O-operation defined by f . Let X̄ ∈ C⊗
X be an object

of C⊗, the image of X̄ by the functor ⊗f is the target of the unique, up to equivalence,
p-coCartesian morphisms of C⊗ with source X̄ covering f .

Let us see how we can recover the definition of symmetric monoidal ∞-category that we
presented in the beginning of the chapter as a special case of Definition 2.2.2.

Example 2.2.4. A symmetric monoidal ∞-category is a coCartesian fibration of ∞-
operads p : C⊗ → Comm⊗ = N(F in∗). Let β : ⟨2⟩ → ⟨1⟩ be the unique active morphism
of Comm⊗, we refer to the Comm-operation defined by β

⊗β : C2 ≃ C⊗
⟨2⟩ → C⊗

⟨1⟩ ≃ C

as the tensor product of C. Let η : ⟨0⟩ → ⟨1⟩ be the unique active morphism of N(F in∗),
we denote the Comm-operation defined by η

⊗η : ∆0 ≃ C⊗
⟨0⟩ → C⊗

⟨1⟩ ≃ C
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Chapter 2. ∞-operads

as the unit of C. Using the universal property of coCartesian morphisms, it is possible
to prove that the tensor product and the unit satisfy the usual axioms of a symmetric
monoidal category up to homotopy [Lur17, Remark 2.1.2.20]. In particular, these oper-
ations endow the homotopy category hC with a symmetric monoidal structure.

Example 2.2.5. If C is an ∞-category that admits all finite products, then it is possible
to define an essentially unique symmetric monoidal ∞-category C× → Comm⊗ called
Cartesian symmetric monoidal structure; which, with the process described above, will
equip C with the Cartesian product (C,C ′) → C × C ′. The ∞-category C× is formally
defined in [Lur17, Section 2.4.1].

Now that we have defined the notion of O-monoidal categories, we can introduce the
concept of O-algebras. In order to motivate our definition, we will first look at the
1-categorical case.

Remark 2.2.6. In the 1-categorical setting, a commutative algebra of a symmetric
monoidal 1-category (C,⊗, 1) is an object A ∈ C equipped with a unit

η : 1 → A,

and an associative, unital, and commutative algebraic structure

µ : A⊗A → A.

We now consider the 1-category C⊗ as in Construction 2.0.1 and see how we can
repackage the structure of the algebra A in terms of C⊗. The algebra object defines:

• for each ⟨n⟩ ∈ F in∗ an object A⟨n⟩ := (A, . . . , A) ∈ C⊗
⟨n⟩,

• for each morphism f : ⟨m⟩ → ⟨n⟩ a unique morphism f̄ : A⟨m⟩ → A⟨n⟩ covering
f given by composing projections, the unit map, and the algebraic structure of A
accordingly.

In particular, we can associate to the algebra object A of C a section of the forgetful
functor π

F in∗ C⊗

F in∗.

A(·)

π

The section A(·) maps the object ⟨m⟩ of F in∗ to the object A⟨m⟩ of C⊗, and maps the
morphism f : ⟨m⟩ → ⟨n⟩ to the morphisms f̄ : A⟨m⟩ → A⟨n⟩. Here the associativity,
unitality, and commutativity of the algebraic structure ensure that the section is a well-
defined functor.
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2.2. O-monoidal categories and their algebras

Definition 2.2.7. [Lur17, Def. 2.1.3.1] Let O⊗ be an ∞-operad, p : C⊗ → O⊗ be
an O-monoidal ∞-category, and let α : O′⊗ → O⊗ be an ∞-operad over O⊗. We
define the ∞-category of O′-algebras of C⊗ to be the full subcategory Alg O′/O(C) of
FunO⊗(O′⊗, C⊗) spanned by operadic maps. We observe that an object F of the ∞-
category Alg O′/O(C) corresponds to an operadic map over the ∞-operad O⊗

O′⊗ C⊗

O⊗.

α

F

p

In the special case where O′⊗ = O⊗ and the map α : O′⊗ → O⊗ is the identity of O⊗

we denote the ∞-category of O-algebra objects of C⊗ as Alg /O(C).

Remark 2.2.8. Let q : O⊗ → N(F in∗) = Comm⊗ be an ∞-operad and let p : C⊗ →
Comm⊗ be a symmetric monoidal ∞-category. We can define an O-monoidal category
p′ : C′ ⊗ → O⊗ by considering the pullback of the symmetric monoidal structure p of C⊗

along the map q

C′ ⊗ C⊗

O⊗ Comm⊗.

p′ ⌟ p

q

Limits of ∞-operads exist and are computed on the underlying ∞-categories. This,
combined with the fact that coCartesian fibrations are stable under pullbacks [Lur09,
Prop. 2.4.2.3], ensures that the map p′ : C′ ⊗ → O⊗ is a coCartesian fibration of ∞-
operads, i.e., C′ ⊗ is an O-monoidal category. By construction, the ∞-category Alg /O(C′)
of O-algebras of C′ ⊗ is equivalent to the ∞-category Alg O(C) of operadic maps from
O⊗ to C⊗. We will often use this equivalence implicitly by talking about O-algebras of
a symmetric monoidal ∞-category C⊗.

In many practical cases, such as the little cubes ∞-operads that we will define in Section
3.3, the ∞-operad O⊗ enjoys enough properties that will allow us to start from an O-
algebra A : O⊗ → C⊗ of C⊗ and recover the classical notion of an object of C equipped
with an algebraic structure and a unit. In particular, let O⊗ be an ∞-operad that:

• is single-colored, meaning that there exists a full and faithful map ∆0 → O⊗
⟨1⟩.

Since O⊗ is an ∞-operad every fiber O⊗
⟨n⟩ is equivalent to the discrete ∞-category

with a single object
O⊗

⟨n⟩ ≃ O×n ≃ (∆0)×n ≃ ∆0.

Abusing the notation, we will usually denote the unique object of the fiber O⊗
⟨n⟩

by ⟨n⟩; except for n = 0 where the standard notation for the object is ∅ ∈ O⊗
⟨0⟩.

• Has a distinguished active morphism β : ⟨2⟩ → ⟨1⟩ covering the unique active
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Chapter 2. ∞-operads

morphism ⟨2⟩ → ⟨1⟩ of N(F in∗).

• Is unital, meaning that the unique object ∅ ∈ O⊗
⟨0⟩ is both an initial and a final

object of O⊗.

Under these conditions, if C⊗ is an O-monoidal category and A : O⊗ → C⊗ is an O-
algebra of C⊗, then:

• the O-operation induced by the distinguished active morphism β defines a product
functor

⊗β : C2 ≃ C⊗
⟨2⟩ → C⊗

⟨1⟩ ≃ C

on the underlying category of C⊗. Let ν be the unique morphism of O⊗ from ∅ to
⟨1⟩, the target of the unique p-coCartesian morphism ν̄ of C⊗ covering ν defines
an object 1C of C that plays the role of the unit of the product.

• The algebra A defines a unique object of the underlying category C, naming the
image of the unique point ⟨1⟩ of O by the functor A. Since the functor A preserves
inert morphisms and C⊗ is O-monoidal then

A(⟨n⟩) ≃
∏

1≤i≤n
ρi!A(⟨n⟩) ≃

∏
1≤i≤n

A(⟨1⟩).

We will usually use the same notation to denote both the object A(⟨1⟩) ∈ C and
the operadic map A : O⊗ → C⊗.

• The image of the unique active morphism ν : ∅ → ⟨1⟩ by the functor A : O⊗ → C⊗

defines the unit morphism A(ν) : 1C → A of the algebra. To construct the
algebraic structure of A we start by considering the image of the distinguished
active morphism β by the operadic map A, that is the morphism A(β) : (A,A) → A

of C⊗. Since C⊗ is O-monoidal we know that there exists a p-coCartesian
β! morphism covering β and with source (A,A). The universal property of
coCartesian morphisms allows, starting from the diagram of solid arrows, to fill
the commutative diagram of C⊗ with the dashed arrow

 ⟨2⟩ ⟨1⟩β



(A,A) A

A⊗A
β!

A(β)

µ




⟨2⟩ ⟨1⟩

⟨1⟩
β

β

id

 .
id

A(·)

p
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2.2. O-monoidal categories and their algebras

The dashed arrow defined above is the algebraic structure of A.

In the special case of O⊗ = Comm⊗ this procedure will define an algebra object of the
symmetric monoidal homotopy category hC.

Remark 2.2.9. Let O⊗ be an ∞-operad and p : C⊗ → O⊗, q : D⊗ → O⊗ be two
O-monoidal categories. The O-monoidal category C⊗ is, in particular, an ∞-operad
over O⊗ and we can consider the ∞-category Alg C/O(D) of C-algebras of D⊗. In this
special case, is more useful to think of this ∞-category as the ∞-category of lax monoidal
functors between C⊗ and D⊗ rather than interpreting it as the ∞-category of algebra
objects of D⊗. Let us explain why this is the case; suppose that the ∞-operad is single-
colored and admits a morphism β covering the unique active morphism ⟨2⟩ → ⟨1⟩ of
N(F in∗) and let F be an object of Alg C/O(D). By definition, the object F corresponds
to an operadic map F : C⊗ → D⊗ over O⊗. We will now prove that for each C,C ′ ∈ C
the functor F defines a natural morphism

γ : F (C) ⊗
D
F (C ′) → F (C ⊗

C
C ′)

of D, where we are considering the products of C and D defined by β as described above.
Let g be the p-coCartesian morphism of C⊗ covering β with source (C,C ′) and h be
the q-coCartesian morphism of D⊗ covering β with source (F (C), F (C ′)). We define
the morphism γ as the dashed arrow obtained by applying the universal property of the
q-coCartesian morphism h to the following diagram of solid arrows

 (C,C ′) C ⊗
C
C ′g




(F (C), F (C ′)) F (C ⊗
C
C ′)

F (C) ⊗
D
F (C ′)

F (g)

h
γ




⟨2⟩ ⟨1⟩

⟨1⟩

β

β
id

 .

p

F

q

(⋆)

This is why, in this particular case, we will refer to the objects of Alg C/O(D) as lax
O-monoidal maps from C⊗ to D⊗.

Remark 2.2.10. We observe that if F : C⊗ → D⊗ is a lax O-monoidal map, for each
∞-operad O′⊗ over O⊗ the postcomposition with F induces a functor between the ∞-
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categories of O′-algebras

(F ◦ −) : Alg O′/O(C) → Alg O′/O(D).

We will refer to this functor as the functor induced by F on the O′-algebras.

Definition 2.2.11. [Lur17, Def. 2.1.3.7] Let O⊗ be an ∞-operad and C⊗, D⊗ be two
O-monoidal categories. We say that an ∞-operad map F : C⊗ → D⊗ over O⊗ is an
O-monoidal functor if it preserves coCartesian morphisms, i.e., it sends p-coCartesian
morphisms of C⊗ to q-coCartesian morphisms of D⊗. We will denote by Fun⊗

O(C,D) the
full subcategory of FunO⊗(C⊗,D⊗) spanned by O-monoidal functors. Some authors refer
to O-monoidal functors as strong O-monoidal functors and use O-monoidal functors to
refer to what we defined as lax O-monoidal maps.

Let O⊗ be a single-colored ∞-operad such that there exists a morphism β of O⊗ covering
the unqiue active morphism ⟨2⟩ → ⟨1⟩ and suppose that we have an O-monoidal functor
F : C⊗ → D⊗ of O-monoidal categories. Applying the same procedure described above,
for each pair of objects C,C ′ ∈ C, we can define a morphism

γ : F (C) ⊗
D
F (C ′) → F (C ⊗

C
C ′)

of D. In this case, however, both the morphisms F (g) and h of diagram (⋆) are q-
coCartesian, and from the dual version of [Lur09, Prop. 2.4.1.7] follows that the mor-
phism γ is q-coCartesian too. Now γ is a q-coCartesian morphism covering an equivalence
of O⊗; so we can apply [Lur09, Prop. 2.4.1.5] to prove that γ is an equivalence of D⊗.

The difference between lax O-monoidal maps and O-monoidal maps will play a central
role in Chapter 5. For example, the focus of Section 5.2 and Section 5.3 will be to prove
that certain lax O-monoidal maps are actually O-monoidal. Let us introduce a useful
proposition regarding the composition of O-monoidal maps that we will use multiple
times during the construction of the iterated Thom spectra. As a consequence of this
result we will be able to prove that different notions of equivalence of O-monoidal Kan
complexes are equivalent.

Proposition 2.2.12. Let A⊗, B⊗ and C⊗ be three O-monoidal categories. Suppose that
we have the following commutative diagram of simplicial sets

A⊗ B⊗ C⊗

O⊗,

p

F

p′

G

p′′
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2.2. O-monoidal categories and their algebras

where F is O-monoidal and essentially surjective. Then, G is O-monoidal if and only
if G ◦ F is O-monoidal.

Proof. Suppose that the map G is O-monoidal, since a composition of O-monoidal maps
is O-monoidal then G ◦ F is O-monoidal.

Suppose now that G ◦ F is O-monoidal. Let f : B → B′ be a p′-coCartesian morphism
of B⊗ covering the morphism α : X → X ′ of O⊗. We want to prove that G(f) is p′′-
coCartesian. Let us consider first the case where B is in the image of the functor F and
let A ∈ A⊗ be such that F (A) = B.

Since A⊗ is O-monoidal there exists a p-coCartesian morphism h : A → A′′ covering
α. F is an O-monoidal map and h is p-coCartesian, then F (h) is p′-coCartesian and
its universal property defines the morphism ℓ covering the identity up to a contractible
space of choices. Since both f and F (h) are p′-coCartesian morphisms with the same
source covering α, the morphism ℓ must be an equivalence.


A

A′′
h



B B′

B′′

f

F (h)
ℓ≃




C C ′

C ′′

G(f)

(G◦F )(h)
G(ℓ)≃




X X ′

X ′

α

α id

 .

F

p
p′

G

p′′

The image of ℓ by the functor G is again an equivalence, therefore a p′′-coCartesian
morphism [Lur09, Prop. 2.4.1.5]. Since G ◦ F is O-monoidal and h is p-coCartesian
then (G ◦ F )(h) is p′′-coCartesian covering α. Applying the dual version of [Lur09,
Prop. 2.4.1.7] we obtain that G(f) is p′′-coCartesian.

Let us now consider the case where B is not in the image of F . Since F is essentially
surjective, there exists an objectB ∈ B⊗ in the image of F and an equivalence γ : B → B.
The composition f ◦γ is p′-coCartesian so from the previous case it follows that G(f ◦γ)
is p′′-coCartesian. Since γ is an equivalence G(γ) is p′′-coCartesian. We can apply again
[Lur09, Prop. 2.4.1.7] to conclude that G(f) is p′′-coCartesian.

Applying Proposition 2.2.12 we can relate different notions of equivalence of O-monoidal
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Kan complexes.

Corollary 2.2.13. Let p : A⊗ → O⊗, p′ : B⊗ → O⊗ be two O-monoidal Kan complexes,
i.e., O-monoidal categories such that their underlying categories are Kan complexes, and
let F : A⊗ → B⊗ be an O-monoidal map. The following statements are equivalent:

(1) The map F is an equivalence of O-monoidal categories, that is, there exists an
O-monoidal map G : B⊗ → A⊗ such that F ◦G ≃ id and G ◦ F ≃ id.

(2) The map F is an equivalence of ∞-categories, i.e., there exists an inverse functor
G : B⊗ → A⊗ but we are not asking for the inverse to be O-monoidal.

(3) For each Z ∈ O the map F induces an equivalence on the fibers over Z, i.e., the
map FZ : A⊗

Z → B⊗
Z is an equivalence of ∞-categories.

Proof. It is trivial to check that (1) =⇒ (2). Implications (2) ⇔ (3) are proven in
[Lur17, Remark 2.1.3.8].

For (2) =⇒ (1), we first observe that since A and B are Kan complexes then p and
p′ are right fibrations [Lur09, Prop. 2.4.2.4]. In view of [Lur09, Lemma. 2.2.3.16] the
functor F is an equivalence of Set∆/O⊗ , i.e., there exists a functor G : B⊗ → A⊗ over O⊗

which is inverse to F and such that the following diagram of simplicial sets commutes

A⊗ B⊗ A⊗

O⊗.

p

F G

p′
p

We can apply Proposition 2.2.12 to F and G to prove that G is O-monoidal. Here F
is an equivalence and therefore is essentially surjective, and the composition G ◦ F is
equivalent to the identity, which is an O-monoidal map.

2.3 Some constructions of O-monoidal categories

In this section, we will see that under some reasonable conditions familiar 1-categorical
constructions can be generalized to O-monoidal categories. In particular, we will
see under which conditions full subcategories and ∞-overcategories of an O-monoidal
category are again O-monoidal.

2.3.1 Full subcategories

Starting from a full subcategory D of the underlying category C of an O-monoidal cate-
gory C⊗ which is closed under equivalences; we can construct a canonical full subcategory
D⊗ of the O-monoidal category C⊗ itself. This is defined in the beginning of Section
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2.2.1 of [Lur17].

Definition 2.3.1. Let C⊗ be an O-monoidal category, and D ⊆ C be a full subcategory
that is stable under equivalences. We denote by D⊗ the full subcategory of C⊗ spanned
by the objects D ≃ C⊗ equivalent to objects of the form (D1, . . . , Dn) where Di’s are
objects of D.

If C is a symmetric monoidal 1-category a full subcategory D ⊆ C does not inherit, in
general, the monoidal product of the 1-category C, but it is easy to prove that sufficient
conditions for the 1-category D to inherit the monoidal product are:

• being closed with respect to the product;

• and containing the unit object of C.

The following proposition generalizes this result to O-monoidal categories. Here the
conditions of being closed under the monoidal product and containing the unit object
are replaced by the condition of being closed under the O-operations of C⊗.

Proposition 2.3.2. [Lur17, Prop. 2.2.1.1] Let p : C⊗ → O⊗ be an O-monoidal category.
Let D ⊆ C be a full subcategory that is stable under equivalences, and consider D⊗ ⊆ C⊗

as defined in Definition 2.3.1. Suppose that for every morphism f : X → Y of O⊗ the
∞-category D⊗ is closed under the O-operation ⊗f : C⊗

X → C⊗
Y . Then:

(1) The composition D⊗ ↪→ C⊗ p−→ O⊗ is a coCartesian fibration of ∞-operads.

(2) The inclusion D⊗ ↪→ C⊗ is an O-monoidal functor.

In the special case where C⊗ is a symmetric monoidal ∞-category, it can be proven
that the condition of Proposition 2.3.2 is equivalent to the conditions that we had in
the 1-categorical case [Lur17, Remark 2.2.1.2]. A full subcategory D ⊆ C that is stable
under equivalences is closed under Comm-operations if and only if D contains the unit
object of C and is closed under the product ⊗ : C × C → C.

Another way to construct O-monoidal subcategories starting from an O-monoidal cate-
gory C⊗ is by considering localization functors.

Definition 2.3.3. [Lur17, Def. 2.2.1.6] Let p : C⊗ → O⊗ be an O-monoidal category.
Suppose that we have a family of localization functors {LX : CX → CX}X∈O. Then,
we say that the family of localizations is compatible with the O-monoidal structure of
C⊗ if for each morphism f : (X1, . . . , Xn) → Y , where Xi, Y ∈ O, and every family
{gi}1≤i≤n of LXi-equivalences, then the morphism ⊗f ({gi}1≤i≤n) is a LY -equivalence.
By LXi-equivalences we mean morphisms of C⊗

Xi
such that their image by the functor

LXi is an equivalence of C⊗
Y .
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Proposition 2.3.4. [Lur17, Prop. 2.2.1.9] Let p : C⊗ → O⊗ be an O-monoidal category,
and let {LX : CX → CX}X∈O be a family of compatible localization functors. We denote
by D the full subcategory spanned by the objects of C which are in the image of a functor
LX for some X ∈ O, and consider the full subcategory D⊗ as defined in Definition 2.3.1.
Then:

(1) There exists a commutative diagram

C⊗ D⊗

O⊗,

L⊗

p

and a natural transformation α : idC⊗ → L⊗ which exhibits L⊗ as a left adjoint to
the inclusion D⊗ ⊆ C⊗ and such that p(α) is the identity natural transformation
from p to itself, that is to say, the functor L⊗ and the inclusion D⊗ ↪→ C⊗ are
adjoint functors relative to O⊗ as defined in [Lur17, Def. 7.3.2.2].

(2) The composition D⊗ ↪→ C⊗ p−→ O⊗ is a coCartesian fibration of ∞-operads.

(3) The inclusion D⊗ ⊆ C⊗ is a map of ∞-operads and the localization L⊗ : C⊗ → D⊗

is an O-monoidal functor.

In the 1-categorical setting, if O is a (single-colored) operad and X is an O-algebra of
topological spaces; then, the space of the path components π0(X) admits an O-algebra
structure such that the projection map π0 : X → π0(X) is a map of O-algebras. Using
Proposition 2.3.4 we can prove that, if O⊗ is a single-colored ∞-operad, this result gener-
alizes to the ∞-category of O-algebras of the O-monoidal category of Kan complexes S⊗.

Proposition 2.3.5. Let O⊗ be a single-colored ∞-operad, and X : O⊗ → S⊗ be an O-
algebra of the O-monoidal category S⊗ associated to the Cartesian symmetric monoidal
∞-category S× as defined in Remark 2.2.8, Then:

(1) There exists an O-algebra π0(X) : O⊗ → S⊗ such that the image of ⟨1⟩ by π0(X)
is the Kan complex of the path components of X(⟨1⟩).

(2) There exists a morphism of O-algebras π0 : X → π0(X) that induces the projection
to the path components of X(⟨1⟩) on the underlying categories.

Proof. We consider the Cartesian symmetric monoidal category S× and the localization
L : S → Disc that associates to a Kan complex its discrete subcategory, [Lur09,
Remark 5.5.6.21]. From [Lur17, Example 2.2.1.7] we know that the localization L is
compatible with the symmetric monoidal structure of S×. Applying Proposition 2.3.4
we can define a symmetric monoidal functor

L× : S× → Disc×,
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which is left adjoint to the inclusion R× : Disc× ↪→ S× relative to N(F in∗).

We can now consider the pullback of L× along the map O⊗ → N(F in∗); we will denote
this O-monoidal map as

L⊗ : S⊗ → Disc⊗.

From [Lur17, Prop. 7.3.2.5] follows that L⊗ is again left adjoint to the inclusion
R⊗ : Disc⊗ ↪→ S⊗. We consider the maps induced by the two adjoint functors on
the ∞-categories of O-algebra objects, from [Lur17, Remark 7.3.2.13] the maps are once
again adjoint

Alg /O(S) Alg /O(Disc).
L

R

⊣ (⋆)

Using the adjunction (⋆) we can prove implications (1) and (2). Let u be the unit
transformation of the adjunction. The image of X by the composition of R ◦ L defines
an O-algebra π0(X) and the morphism defined by the natural transformation u on the
object X gives the map π0 := uX : X → π0(X) between O-algebras of S⊗. By evaluating
π0 on the object ⟨1⟩ of O we recover the usual projection on the path components as a
morphism of the underlying category of S⊗.

2.3.2 Overcategories

Other important 1-categorical constructions that, under reasonable conditions, extend
to O-monoidal categories are the undercategories and overcategories. In Section 2.2.2
of [Lur17] these constructions are presented with a high level of generality; for our ap-
plications that level of generality is not required, and, in order to improve the clarity of
the exposition, we will focus only on the case of an ∞-overcategories over an O-algebra
object. This corresponds to considering the definitions and the results of Section 2.2.2
of [Lur17] with K = ∆0.

Definition 2.3.6. [Lur17, Def. 2.2.2.1] Let O⊗ be an ∞-operad and let p : C⊗ → O⊗ be
an O-monoidal category. Suppose that A : O⊗ → C⊗ is an O-algebra of C⊗. We define
the simplicial set C⊗

/A equipped with a map p′ : C⊗
/A → O⊗ by the following universal

property: for every map of simplicial sets Y → O⊗, there is a canonical bijection of
FunO⊗(Y, C⊗

/A) with the collection of diagrams

Y Y × ∆1 Y

O⊗ C⊗ O⊗.

id×{1}

A p

We denote the simplicial set C⊗
/A as the O-monoidal overcategory of C⊗ over A.
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The simplicial set C⊗
/A comes equipped with a natural forgetful functor U : C⊗

/A → C⊗,
and Theorem 2.2.2.4 of [Lur17] states that, as our notation suggests, this functor post-
composed with the O-monoidal structure of C⊗ presents C⊗

/A as an O-monoidal category.

Theorem 2.3.7. Let p : C⊗ → O⊗ be an O-monoidal category and let A : O⊗ → C⊗ be
an O-algebra of C⊗. Then:

(1) A morphism in C⊗
/A is inert if and only if its image in C⊗ by the forgetful functor

U : C⊗
/A → C⊗ is inert.

(2) The map p′ : C⊗
/A → O⊗ is a coCartesian fibration of ∞-operads.

By part (1) of Theorem 2.3.7 we have that the forgetful functor U : C⊗
/A → C⊗ preserves

and reflects inert morphisms, in particular, it is a lax O-monoidal map. The following
proposition will imply that the forgetful functor actually preserves and reflects any
coCartesian morphisms, and is, therefore, an O-monoidal map. The proposition is stated
for relative colimit diagrams. It is sufficient to say that if C⊗ is an O-monoidal category
then a diagram of the form

f : (∆0)▷ = ∆1 → C⊗

is a relative colimit diagram if and only if it corresponds to a p-coCartesian morphism
of C⊗ [Lur09, Example 4.3.1.4]. For the interested reader, the theory of relative colimits
is discussed in [Lur09, Section 4.3.1].

Proposition 2.3.8. [Lur17, Prop. 2.2.2.9] Suppose that we are given a commutative
diagram

Y C⊗
/A

(Y )▷ O⊗,

f

p′
f̄

g

satisfying the following condition: the composite map Y
f−→ C⊗

/A → C⊗ can be extended
to a p-colimit diagram g′ : (Y )▷ → C⊗ lying over g.

Then:

(1) Let f̄ : (Y )▷ → C⊗
/A be a map rendering the diagram commutative. Then, f̄ is

a p′-colimit diagram if and only if the composite map (Y )▷ f̄−→ C⊗
/A → C⊗ is a

p-colimit diagram.

(2) There exists a map f̄ satisfying the equivalent conditions of (1).

From Proposition 2.3.8 with Y = ∆0, combined with our previous observation regarding
relative colimit diagrams, follows that a functor f : ∆1 → C⊗

/A corresponds to a p′-
coCartesian morphism if and only if the composition U ◦f corresponds to a p-coCartesian
morphism of C⊗. In particular, U : C⊗

/A → C⊗ is an O-monoidal map.
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2.4. Monoidal Grothendieck construction

2.4 Monoidal Grothendieck construction

In Section 3.2 of [Lur17] J. Lurie develops the ∞-categorical version of the Grothendieck
construction, defining an equivalence between the ∞-category of coCartesian fibrations
with base a small ∞-category B and the ∞-category of functors over B with target the
∞-category of small ∞-categories Cat

CoCart(B) ≃−→ Fun(B, Cat).

This functor is called the straightening functor and its inverse the unstraightening
functor, and we denote them with StB and UnB respectively.

Informally the straightening assigns to a coCartesian fibration π : A → B a functor
B → Cat that maps an object X ∈ B to the small ∞-category AX of the fiber over X
of the fibration π; and maps a morphism f : X → Y of B to the functor f! : AX → AY

defined, up to equivalence, by the fibration π.

In the special case where the coCartesian fibration is, in particular, a left fibration, then
for each X ∈ B the fiber AX is a Kan complex, and the equivalence specializes to an
equivalence between the ∞-category of left fibrations with base B and the ∞-category
of pre-sheaves over B

LFib(B) ≃−→ Fun(B,S).

In this section, we will see that the Grothendieck construction extends to O-monoidal
categories. A brief description of the monoidal Grothendieck construction is already
present in Section 2.4.1 of [Lur17] where the author utilizes results involving a
particular class of functors called lax Cartesian structures and the classical Grothendieck
construction to define its monoidal version. A more explicit proof of the monoidal
straightening and unstraightening equivalence can be found in the appendix of [Hin15].

Another interesting study on the subject that we would like to point out is [Ram22]
by M. Ramzi. In this paper, the author defines the so-called metacosmic monoidal
Grothendieck construction; producing the equivalence at the level of symmetric monoidal
∞-categories instead of an equivalence of their O-algebras. Even if Ramzi’s metacosmic
version of the Grothendieck construction is never used directly in our arguments, we
believe that his work might be relevant for future developments, since it opens the
possibility of defining a metacosmic version of the iterated Thom spectrum.

We start by defining the analogue of a coCartesian fibration for the monoidal case.

Definition 2.4.1. [Ram22, Def. 1.11] An O-monoidal map π : C⊗ → D⊗ is a coCartesian
O-fibration if for each X ∈ O the map induced by π on the fibers πX : C⊗

X → D⊗
X

is a coCartesian fibration, and the O-operations preserve π-coCartesian edges. That
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is to say, for each morphism f : X → Y of O⊗ where X = (X1, . . . , Xn) and
Y = (Y1, . . . , Ym) with Xi, Yj ∈ O, and each collection of morphisms {gi}1≤i≤n where
gi is πXi-coCartesian, then the image of {gi}1≤i≤n by the O-operation induced by f

corresponds to a collection {hj}1≤j≤m of morphisms where hj ’s are πYj -coCartesian
morphisms. We define coCartO(D) to be the full subcategory of the ∞-category
coCart(D⊗) of coCartesian fibrations with base D⊗ spanned by coCartesian O-fibrations.

In the previous definition, in order to define the ∞-category of coCartO(D) as a full sub-
category of coCart(D⊗) we implicitly used the fact that every coCartesian O-fibration
is, in particular, a coCartesian fibration of ∞-categories. This is the content of the fol-
lowing lemma.

Lemma 2.4.2. [Ram22, Lemma 1.10] Let O⊗ be an ∞-operad and let π : C⊗ → D⊗ be
a coCartesian O-fibration. Then the functor π : C⊗ → D⊗ is a coCartesian fibration of
∞-operads.

We can finally introduce the monoidal version of the Grothendieck construction.

Proposition 2.4.3. [Hin15, Prop. A.2.1] Let O⊗ be an ∞-operad and C⊗ and O-
monoidal category. There is an equivalence of ∞-categories

coCartO(C) ≃ Alg C/O(Cat)

between coCartesian O-fibrations with base C⊗ and lax O-monoidal functors C⊗ → Cat⊗.
The equivalence induces the standard Grothendieck construction on the underlying
categories.

Similar to the classical Grothendieck construction, the monoidal version specializes to
an equivalence between the ∞-category of left O-fibrations and the ∞-category of lax
O-monoidal pre-sheaves; where the definition of left O-fibration is analogous to Defini-
tion 2.4.1.

Corollary 2.4.4. [Ram22, Corollary 4.8] Let O⊗ be an ∞-operad and C⊗ and O-
monoidal category. There is an equivalence of ∞-categories

LFibO(C) ≃ Alg C/O(S)

between left O-fibrations with base C⊗ and lax O-monoidal pre-sheaves C⊗ → S⊗.

The special case C⊗ = O⊗ will play an important role in Chapter 5. We observe that by
definition of O-operations, a functor C⊗ → O⊗ is a coCartesian O-fibration if and only
if it is a coCartesian fibration of ∞-operads. Then, the ∞-category of left O-fibrations
with base O⊗ is equivalent to the ∞-category of O-monoidal categories X⊗ → O⊗ such
that the underlying category X is a Kan complex. We will call the objects of this ∞-
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category O-monoidal Kan complexes. By Applying Corollary 2.4.4 we obtain that the
∞-category of O-monoidal Kan complexes is equivalent to the ∞-category of O-algebras
of S⊗.

Informally, in this special case, the monoidal Grothendieck construction allows us to
pass from statements regarding O-algebras of S⊗ to statements regarding O-monoidal
Kan complexes and vice versa. For example, we can use the monoidal straighten-
ing/unstraightening equivalence to rephrase Proposition 2.3.5 in terms of O-monoidal
Kan complexes.

Proposition 2.4.5. Let O⊗ be a single-colored ∞-operad, and X⊗ be an O-monoidal
Kan complex. Then:

(1) There exists an O-monoidal category q : π0(X)⊗ → O⊗ such that its underlying
category is the Kan complex of the path components of X.

(2) There exists an O-monoidal map π0 : X⊗ → π0(X)⊗ that induces the projection
on the path components on the underlying categories.

(3) The map π0 is a left O-fibration.

Proof. For implication (1) we consider the monoidal unstraightening of the O-algebra
π0(X) : O⊗ → S⊗ defined in Proposition 2.3.5. We obtain a left O-fibration
π0(X)⊗ → O⊗ that on the underlying categories corresponds to the unstraightening
of the functor (π0)⟨1⟩ : {⟨1⟩} → S, i.e., the left fibration π0(X) → {⟨1⟩}.

For part (2) we consider the unstraightening of the morphism of O-algebras π0 : X →
π0(X) defined in Proposition 2.3.5. We obtain a morphism of LFibO(O) that, by abusing
the notation, we will also denote by π0. Since we defined the ∞-category LFibO(O) as the
full subcategory of LFib(O⊗) spanned by left O-fibrations, the morphism π0 correspond
to a functor

X⊗ π0(X)⊗

O⊗

π0

that preserves the coCartesian morphism of the O-monoidal structure of X, that is to
say, the morphism π0 correspond to an O-monoidal map π0 : X⊗ → π0(X)⊗.

For part (3), we have to prove that the functor π0 induces a left fibration on the
underlying categories π0 : X → π0(X) and that the π0-coCartesian morphisms are
compatible with the O-monoidal structure. By construction, the functor induced on the
underlying categories is the usual projection on the path components of X, which is a
left fibration. It only remains to prove the compatibility with the O-operations. Let
α : ⟨r⟩ → ⟨1⟩ be an active morphism of O and let γ be a π0-coCartesian morphism
of X⊗

⟨r⟩. The morphism α defines a functor ⊗α : X⊗
⟨r⟩ → X⊗

⟨1⟩, we wish to prove that
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⊗α(γ) is a π0-coCartesian morphism of X = X⊗
⟨1⟩. X is a Kan complex, therefore ⊗α(γ)

must be an equivalence and applying [Lur09, Prop. 2.4.1.5] we obtain that ⊗α(γ) is
π0-coCartesian.

We now introduce a result that we will use multiple times in the last chapter to compute
the straightening of pullbacks of coCartesian O-fibrations along lax O-monoidal maps.

Lemma 2.4.6. [Ram22, Lemma 3.12] Let π : C⊗ → D⊗ be a coCartesian O-fibration,
O′⊗ be an ∞-operad over O⊗, and let f ∈ Alg O′/O(D). Then the following two
constructions equip the pullback Cf := C ×

D
O′ with an O′-monoidal structure:

• Let ψ : D⊗ → Cat⊗ be the lax O-monoidal map that classifies π. The composition
of lax O-monoidal maps

O′⊗ → D⊗ → Cat⊗

classifies a coCartesian O-fibration π′ : C⊗
f → O′⊗, which by Lemmma 2.4.2 is in

particular a coCartesian fibrations of ∞-operads.

• Or we can take the pullback of ∞-operads

C⊗
f C⊗

O′⊗ D⊗.

π′′ ⌟ π

f

By [Ram22, Prop. 1.4] the map π′′ is a coCartesian fibration of ∞-operads.

Then, the two O′-monoidal structures π′ : C⊗
f → O′⊗ and π′′ : C⊗

f → O′⊗ are equivalent.

A natural question that arises from the monoidal Grothendieck construction is: under
which conditions on the left O-fibration π : X⊗ → B⊗ is the lax O-monoidal functor
ψ : B⊗ → S⊗ given by its straightening not only lax O-monoidal but O-monoidal?
We observe, however, that it is not reasonable to ask for the map ψ to be O-monoidal,
intuitively because it generally does not map the unit of B⊗ to the unit of S⊗. We will
see that the proper map to consider is instead the map induced by the lax O-monoidal
pre-sheaf ψ on the O-monoidal categories of O-modules that we will define in Section
3.2 of the next chapter.
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Modules of O-monoidal categories

In the previous chapter, we introduced the O-monoidal categories and their O-algebras.
The next natural step is to define the ∞-categories of modules of an O-monoidal category.
We will start with the associative monoidal case, where the construction of the ∞-
categories of associative left modules and associative bimodules can be inferred from
the 1-categorical case with a procedure similar to the one of our motivating example,
Construction 2.0.1. These notions can be generalized to O-monoidal categories, in
particular, it is possible to define the ∞-category of O-modules of an O-monoidal
category and, provided that the ∞-operad satisfies some technical conditions, this ∞-
category admits the structure of an O-monoidal category. In the last section of this
chapter, we will define an important family of ∞-operads that generalizes to ∞-categories
the little cubes operads originally defined in [BV68, Def. 5] by J.M. Boardman and R.M.
Vogt.

3.1 Associative modules

We start by defining the ∞-operad Assoc⊗ that, similarly to what we have seen for the
∞-operad Comm⊗, will encode the structure of an associative monoidal ∞-category. We
will then use the ∞-operad Assoc⊗ to define the ∞-categories of associative left modules
and associative bimodules.

3.1.1 Associative ∞-operad

In the beginning of Chapter 2, we have seen how it is possible, starting with a symmetric
monoidal 1-category C to construct a 1-category C⊗ equipped with a coCartesian for-
getful functor π : C⊗ → F in∗ that reconstructs C and its product up to equivalence. It
is natural to ask if a similar procedure exists for associative monoidal 1-categories too.
Notably, the "prototype" symmetric monoidal 1-category F in∗ admits only one active
morphism ⟨n⟩ → ⟨1⟩; which represents the product of n elements of C. Therefore the
coCartesian fibration π defines a unique product functor ⊗ : Cn → C. If we aim to
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generalize this construction to associative monoidal 1-categories we need to replace the
1-category F in∗ with a 1-category that admits an active morphism ⟨n⟩ → ⟨1⟩ for each
possible linear ordering of ⟨n⟩◦; so that for each of these morphisms the coCartesian
fibration will define an associative product ⊗σ : Cn → C that will correspond to first
permuting the n-tuple of objects of C following the linear ordering and then applying
the associative product of C. This observation suggests that the "prototype" associative
monoidal 1-category is the 1-category where the objects are the same of F in∗ and the
morphisms are the morphisms of F in∗ equipped with a linear ordering on each fiber.

Definition 3.1.1. [Lur17, Def. 4.1.1.1] We define the associative colored operad Assoc
as the colored operad where:

(1) The set of colors consists of a single color ∗.

(2) For each finite set I, the set of morphisms MulAssoc({∗}i∈I , ∗) is given by the linear
orderings of the set I.

(3) Let f : I → J be a map of finite sets with fibers {Ij}j∈J . The composition map

∏
j∈J

MulAssoc({∗}i∈Ij , ∗) × MulAssoc({∗}j∈J , ∗) → MulAssoc({∗}i∈I , ∗),

assigns the pair given by a collection of linear orderings {⪯j}j∈J ∈∏
j∈J MulAssoc({∗}i∈Ij , ∗) and a linear ordering ⪯′∈ MulAssoc({∗}j∈J , ∗) to the

unique linear ordering ⪯′′ of I that satisfies the following property: for each x, y ∈ I

such that f(x) = f(y) = j then x ⪯′′ y if and only if x ⪯j y, and for each x, y ∈ I

such that f(x) ̸= f(y) then x ⪯′′ y if and only if f(x) ⪯′ f(y).

Applying the Construction 2.1.1 to the single-colored operad Assoc we obtain the "pro-
totype" associative monoidal 1-category.

Definition 3.1.2. We define the 1-category Assoc⊗ as the 1-category where:

(1) The objects are the objects of F in∗.

(2) Given a pair of objects ⟨m⟩, ⟨n⟩ ∈ Assoc⊗, a morphism with source ⟨m⟩ and target
⟨n⟩ consists of a pair (α, {⪯i}1≤i≤n) where α is a morphism of F in∗ and ⪯i is a
linear ordering of the fiber of α over {i} ∈ ⟨n⟩◦.

(3) The composition of a pair of morphisms

(α, {⪯i}1≤i≤n) : ⟨m⟩ → ⟨n⟩, (β, {⪯′
j}1≤j≤l) : ⟨n⟩ → ⟨l⟩

is the pair (β ◦ α, {⪯′′
j }1≤j≤l), where the ordering ⪯′′

j is defined analogously to the
ordering defined by the composition map of Definition 3.1.1.

We observe that the 1-category Assoc⊗ comes equipped with a natural forgetful functor
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to F in∗, and that the nerve of this functor defines a new ∞-operad.

Definition 3.1.3. Let Assoc⊗ be the ∞-operad defined by the nerve of the forgetful
functor Assoc⊗ → N(F in∗). We will call this ∞-operad associative ∞-operad.

The previous discussion justifies our definition of an associative monoidal ∞-category.

Definition 3.1.4. An associative monoidal ∞-category is a coCartesian fibration of
∞-operads with target the ∞-operad Assoc⊗.

Suppose that O⊗ is an ∞-operad equipped with a map q : Assoc⊗ → O⊗ from the
associative ∞-operad. This is the case for the commutative associative ∞-operad and the
little cubes ∞-operads E⊗

k with k ≥ 1. Let p : C⊗ → O⊗ be an O-monoidal category. We
will use the term associative algebras of C⊗ to refer to the ∞-category of Assoc-algebras
Alg Assoc/O(C). As we observed in Remark 2.2.8, this ∞-category is equivalent to the
∞-category Alg /Assoc(C′), where C′ ⊗ is the associative monoidal ∞-category obtained
by taking the pullback of the O-monoidal structure p along the operadic map q. Once
again we remind the reader that we sometimes will use this equivalence implicitly.

The associative ∞-operad enjoys a natural functor from the nerve of the simplicial ∞-
category.

Construction 3.1.5. [Lur17, Construction 4.1.2.9] Given an object [n] ∈ ∆ we define
a cut in [n] to be an equivalence relation on the set [n] with at most two equivalence
classes, and such that each subset of [n] corresponding to an equivalence class is convex.
We observe that the set of cuts is in bijection with the set of partitions of [n] in two,
possibly empty, convex sets (S0, S1), provided that we identify the two trivial partitions
([n], ∅) ≃ (∅, [n]). We will denote by cut([n]) the set of cuts in [n]. This set admits a
canonical bijection with the set ⟨n⟩

⟨n⟩ ≃−→ cut([n])

i 7−→

({0, 1, . . . , n}, ∅) if i = ∗

({0, 1, . . . , i− 1}, {i, . . . , n}) otherwise.

By considering this bijection, we can construct a functor cut : ∆op → Assoc⊗ that on
the objects is given by [n] 7→ cut([n]) ≃ ⟨n⟩. Explicitly, the functor cut is defined as
follows:

(1) For each object [n] ∈ ∆ we have cut([n]) = ⟨n⟩.

(2) Let α : [n] → [m] be a morphism of ∆. Then the morphism cut(α) : ⟨m⟩ → ⟨n⟩ of
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Assoc⊗ is given by the following formula

cut(α)(i) =

j if ∃j s.t. α(j − 1) ≤ i ≤ α(j)

∗ otherwise,

where to each fiber cut(α)−1{j} we assign the linear ordering induced by the
natural linear ordering of ⟨n⟩◦ by the inclusion cut(α)−1{j} ⊆ ⟨n⟩◦.

The nerve of the functor cut induces a functor of ∞-categories cut : N(∆op) →
N(Assoc⊗) = Assoc⊗.

3.1.2 Left modules

Let C⊗ be an associative monoidal ∞-category and let A ∈ Alg /Assoc(C) be an associative
algebra of C⊗; the goal of this section is to develop the theory of left A-modules of the
associative monoidal ∞-category C⊗.

We recall that if C is an associative monoidal 1-category and A is an associative algebra
of C, a left A-module M of C is an object of C equipped with a left A-action, or module
structure, ϕ : A⊗M → M such that the following diagrams commute

A⊗A⊗M A⊗M

A⊗M M,

id⊗ϕ

µ⊗id

ϕ

ϕ

1C ⊗M A⊗M

M.

η⊗id

ϕ

Similarly to what we have seen with the definition of monoidal categories and O-algebras,
before trying to generalize this notion to the ∞-categorical framework, we need to repack-
age the structures associated with a left A-module by constructing a colored operad that
will encode this information with respect to the 1-category C⊗ defined in Construction
2.0.1.

Definition 3.1.6. [Lur17, Def. 4.2.1.1] We define the colored operad LM as follows:

(1) The set of objects has two elements: the element a which represents the associative
algebra, and the element m which represents the left module.

(2) Let {Xi}i∈I be a finite collection of objects of LM and Y another object of LM.
Then:

• if Y = a, MulLM({Xi}i∈I , Y ) is the collection of all linear orderings of I
provided that for each i ∈ I we have Xi = a, and it is empty otherwise;

• if Y = m, then MulLM({Xi}i∈I , Y ) is the collection of all linear orderings
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{i1, . . . , in} on the set I such that Xin = m and for each j < n the object
Xij = a, and is empty otherwise.

Here the two morphisms of MulLM({a, a}, a) represent the associative algebraic
structures of a, and the unique operation ϕ ∈ MulLM({a,m},m) represent the
module structure of m as a left a-module.

(3) The composition of LM is analogous to the composition of linear orderings that
we have described in Definition 3.1.2.

We observe that the full suboperad spanned by the object a is isomorphic to the col-
ored operad Assoc that we defined in Definition 3.1.2. Furthermore, the colored operad
LM admits an operadic map LM → Assoc; the map is defined by assigning to each
operation of MulLM({Xi}i∈I , Y ) its linear ordering of I. We defined LM⊗ to be the
1-category obtained by applying the procedure described in Construction 2.1.3 to the
colored operad LM.

Remark 3.1.7. Let C be a symmetric monoidal 1-category and let A be an associative
algebra of C. Starting from a left A-module M of C we can define an operadic map F

from LM⊗ to C⊗ that represents the module M

LM⊗ C

F in∗.

F

We define the functor F as the functor that assigns to the object a the algebra A, to
the object m the left module M , and to the morphisms of LM⊗ the morphisms of C⊗

given by compositions of the algebraic structures of A and the module structures of
M accordingly. Here we are implicitly using that the Construction 2.1.3 is somehow
functorial.

On the other hand, starting from an operadic map F : LM⊗ → C⊗ such that the
composition with the inclusion Assoc⊗ ↪→ LM⊗ corresponds to the map given by an
algebra A = F (a) as described in Remark 2.2.6, the image of the unique morphisms
ϕ ∈ MapLM⊗({a,m},m) defines a left A-module structure on the object M := F (m).
From the definition of the 1-category LM⊗, it follows that the module structure of M
is unital and compatible with the algebraic structure of A.

We are now ready to pass to the ∞-categorical case.

Definition 3.1.8. We define the ∞-operad LM⊗ to be the nerve of the forgetful
functor LM⊗ → F in∗ obtained by applying Construction 2.1.3 to LM. The nerve
of the inclusion Assoc → LM defines a map of ∞-operads Assoc⊗ ↪→ LM⊗.

Remark 3.1.7 motivates our definition of left modules of an associative monoidal ∞-
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category C⊗.

Definition 3.1.9. [Lur17, Def. 4.2.1.13] We define the ∞-category LMod (C) of
left modules of C⊗ to be the ∞-category Alg LM/Assoc(C) as defined in Definition
2.2.7. Precomposition with the functor Assoc⊗ ↪→ LM⊗ defines a forgetful functor
LMod (C) → Alg /Assoc(C).

Let A be an associative algebra of C⊗. We define the ∞-category LModA(C) of left
A-modules of C to be the following pullback of ∞-categories

LModA(C) LMod (C)

{A} Alg /Assoc(C).

⌟

In the 1-categorical framework, we know that if f : A → B is a morphism of associative
algebras of a monoidal 1-category C; then f induces a change of algebra functor

LModB(C) → LModA(C).

The functor maps a left B-module (N,ϕB : B ⊗N → N) to the left A-module with the
same underlying object and with the left A-action given by

ϕA : A⊗N
f⊗id−−−→ B ⊗N

ϕB−−→ N.

The following result recovers this association between morphisms of algebras and func-
tors of ∞-categories of left modules in a functorial way.

Corollary 3.1.10. [Lur17, Corollary 4.2.3.3] Let C⊗ be an associative monoidal ∞-
category and let θ : LMod (C) → Alg /Assoc(C) be the forgetful functor defined above.
Then θ is a Cartesian fibration.

3.1.3 Bimodules

The definition of the ∞-category of left modules that we gave in the previous section
extends without any particular effort to bimodules. We start by defining the analogue
of the colored operad LM for bimodules.

Definition 3.1.11. [Lur17, Def. 4.2.1.1] We define the colored operad BM as follows:

(1) The set of objects has three elements: the element a− that represents the left
algebra, the element a+ that represents the right algebra, and the element m that
represents the a−-a+-bimodule.

(2) Let {Xi}i∈I be a finite collection of objects of BM and let Y be another object of
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BM, then:

• If Y = a−(= a+), MulBM({Xi}i∈I , Y ) is the collection of all linear orderings
of I provided that for each i ∈ I we have Xi = a−(= a+), and it is empty
otherwise;

• If Y = m, then MulBM({Xi}i∈I , Y ) is the collection of all linear orderings
{i1, . . . , in} on the set I such that there exists exactly one ij ∈ I such that
Xij = m and for each k < j we have Xik = a− and for each s > j we have
Xis = a+.

Here the two operations of MulBM({a−, a−}, a−) represent the associative algebraic
structure of a−, the two operations of MulBM({a+, a+}, a+) represent the
associative algebraic structure of a+, and the operations ϕ− ∈ MulBM({a−,m},m)
and ϕ+ ∈ MulBM({a+,m},m) represent the module structures of m as an a−-a+-
bimodule.

(3) The composition of BM is analogous to the composition of linear orderings that
we have described in Definition 3.1.2.

We observe that the full suboperad spanned by the object a− and the one spanned by
the object a+ are isomorphic to the colored operad Assoc; we will denote these two
suboperads by Assoc− and Assoc+ respectively. Furthermore, the suboperad spanned
by a− and m is isomorphic to the colored operad LM, similarly the suboperad spanned
by a+ and m is isomorphic to RM which is the dual version of LM. Finally, the op-
erad BM admits an operadic map to Assoc defined by assigning each operation of
MulBM({Xi}i∈I , Y ) to its linear ordering of I.

Definition 3.1.12. We define the ∞-operad BM⊗ to be the nerve of the forgetful
functor of 1-categories BM⊗ → F in∗ obtained by applying Construction 2.1.3 to BM.
We have two inclusions Assoc ↪→ LM given by the full suboperads spanned by a− and
by the full suboperad a+; the nerves of these inclusions define two maps of ∞-operads:
Assoc⊗

− ↪→ LM⊗ and Assoc⊗
+ ↪→ LM⊗.

The previous discussion motivates our definition of bimodules of an associative monoidal
∞-category C⊗.

Definition 3.1.13. We define the ∞-category BMod (C) of bimodules of C⊗ to be the
∞-category Alg BM/Assoc(C). Precomposition with the functors Assoc⊗

− ↪→ BM⊗ and
Assoc⊗

+ ↪→ BM⊗ defines a forgetful functor BMod (C) → Alg Assoc(C) × Alg Assoc(C).

Let A and B be two associative algebras of C⊗. We define the ∞-category ABModB(C)
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of A-B-bimodules of C⊗ to be the following pullback of ∞-categories

ABModB(C) BMod (C)

{A} × {B} Alg /Assoc(C) × Alg /Assoc(C).

⌟

For the reader who is keen to get a better intuition for the ∞-category of A-A-bimodules
we suggest consulting Section A.1, where they will find a more in-depth treatment on
the morphisms of the ∞-category ABModA(C). In particular, in Section A.1 we will
focus on explaining how it is possible to recover from a morphism of ABModA(C) the
familiar 1-categorical notion of a morphism of the underlying objects that commutes
with the left and right A-operations of the modules.

3.1.4 Relative tensor product

The main feature that distinguishes associative bimodules from associative left modules
is the existence of a natural relative tensor product. We will define this product and
see that under reasonable conditions it equips the ∞-category ABModA(C) with an
associative monoidal structure.

Once again we will first look at the 1-categorical case to justify our construction of the
relative tensor product. Let C be an associative monoidal 1-category with:

• A,B and C three associative algebras of C;

• M an A-B-bimodule of C;

• and N a B-C-bimodule of C.

Then, under some reasonable hypotheses, for example, if the 1-category C is cocomplete,
we can define the relative tensor product M ⊗B N of M and N as the object of A-
C-bimodules that corepresents bilinear maps with source M ⊗ N . One can check that
the relative tensor product can be modeled by the reflexive coequalizer of the following
diagram of C

M ⊗B ⊗N M ⊗N M ⊗B N, (⋆)

where the two maps from left to right are the right B-action of M and the left B-action
of N , and the map from right to left is the unit of B. If we aim to generalize this
construction to the ∞-categorical framework we have to take into account that (⋆) is
only the first of an infinite hierarchy of diagrams that M ⊗B N has to equalize up to
coherent homotopy. For example, for each n ≥ 0 we expect the following diagram to
commute up to coherent homotopy

M ⊗Bn+1 ⊗N M ⊗Bn ⊗N M ⊗B N
... (⋆⋆)
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where the collection of morphisms is given by the right B-action of M , the algebraic
structure of B, the left B-action of N and the unit of B. In the 1-categorical case, it
is easy to prove that from the commutativity of diagram (⋆) it follows that diagram
(⋆⋆) commutes. In particular, if we repackage all these diagrams by forming a simplicial
object of the 1-category C, which is classically denoted as the bar construction of M and
N

BarB(M,N) :=
[
. . . M ⊗B ⊗N M ⊗N

]
,

then its geometric realization is once again the object M ⊗B N . In the ∞-categorical
framework, however, this is not the case, and the simplicial object BarB(M,N) is
necessary to express the commutativity of all the diagrams like (⋆⋆). This is why we
will define the ∞-categorical version of the relative tensor product as the geometric
realization of the bar construction rather than the reflexive coequalizer of the analogue
of diagram (⋆).

If we aim to construct the simplicial object BarB(M,N) in the ∞-category ABMod C(C)
we need to take into consideration that we have to specify cells of C that express the
commutativity of the face and degeneracy maps up to coherent homotopy. We aim to
provide these structures by defining a (generalized) ∞-operad called Tens⊗

≺ which we can
informally think of as the ∞-operad that encodes the structure of the bar construction
together with the augmentation to its geometric realization.

In order to construct the ∞-operad Tens⊗
≺ we first have to define another ∞-operad

called Tens⊗.

Definition 3.1.14. [Lur17, Def. 4.4.1.1] We define the 1-category Tens⊗ to be the
1-category where:

(1) An object of Tens⊗ is given by:

• an object ⟨n⟩ ∈ Assoc⊗;

• an object [k] of ∆op;

• and a pair of maps c−, c+ : ⟨n⟩◦ → [k] such that for each i ∈ ⟨n⟩◦ we have
c−(i) ≤ c+(i) ≤ c−(i+ 1).

(2) Let (⟨n⟩, [k], c−, c+) and (⟨n′⟩, [k′], c′
−, c

′
+) be two objects of Tens⊗. Then a

morphism of Tens⊗ between the two objects is given by:

• a morphism α : ⟨n⟩ → ⟨n′⟩ of Assoc⊗;

• a morphism λ : [k′] → [k] of ∆ such that for every j ∈ ⟨n′⟩◦, with
α−1(j) = {i0 ≺ i1 ≺ · · · ≺ im} we have

λ(c′
−(j)) = c−(i0), λ(c′

+(j)) = c+(im),
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and

c−(i0) ≤ c+(i0) = c−(i1) ≤ c+(i1) = c−(i2) ≤ · · · ≤ c+(im−1) = c−(im) ≤ c+(im).

We denote by Tens⊗ the ∞-category given by the nerve of the 1-category Tens⊗.

The ∞-category Tens⊗ comes equipped with a forgetful functor Tens⊗ → N(∆)op ×
Assoc⊗; this forgetful functor exhibits Tens⊗ as a generalized ∞-operad as defined in
[Lur17, Def. 2.3.2.1]. Moreover, the forgetful functor allows us to define the generalized
∞-operad Tens⊗

≺ that we will use to model the bar construction.

Definition 3.1.15. [Lur17, Notation 4.4.2.1] The morphism [1] ≃ {0, 2} ↪→ [2] defines
a map of simplicial sets γ : ∆1 → N(∆)op. We define Tens⊗

≺ to be the pullback of the
forgetful functor Tens⊗ → N(∆)op along γ

Tens⊗
≺ := Tens⊗ ×

N(∆)op
∆1.

Before proceeding with the construction of the relative tensor product we take a moment
to describe some of the structure of the generalized ∞-operad Tens⊗

≺ with the aim of
providing some intuition for its role in the construction of the relative tensor product.
The following observations are consequences of [Lur17, Prop. 4.4.1.11] and [Lur17, Re-
mark 4.4.2.2].

Remark 3.1.16. The forgetful functor Tens⊗
≺ → ∆1 is a correspondence between the

∞-operads Tens⊗
[2] := Tens⊗ ×

N(∆)op
[2] and Tens⊗

[1] := Tens⊗ ×
N(∆)op

[1]. Moreover, we have

that:

• The ∞-operad Tens⊗
[2] is the pushout of the following diagram of ∞-operads

Assoc⊗ Assoc⊗
− BM⊗

Assoc⊗
+

BM⊗ Tens⊗
[2].

≃

⌜

≃

In particular, the underlying category of Tens⊗
[2] has three distinguished objects

that represent the algebras:

– the object a0 := (⟨1⟩, [2], c− = 0, c+ = 0) that models the left algebra;

– the object a1 := (⟨1⟩, [2], c− = 1, c+ = 1) that models the middle algebra;
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– and a2 := (⟨1⟩, [2], c− = 2, c+ = 2) that models the right algebra;

and two distinguished objects that represent the modules:

– the object m01 := (⟨1⟩, [2], c− = 0, c+ = 1) that models the a0-a1-bimodule;

– the object m12 := (⟨1⟩, [2], c− = 1, c+ = 2) that models the a1-a2-bimodule.

If C⊗ is an associative monoidal ∞-category, we have the following equivalence

Alg /Tens[2](C) ≃−→ BMod (C) ×
Alg /Assoc(C)

BMod (C).

So, giving an operadic map F : Tens⊗
[2] → C⊗ is equivalent to giving a pair of

bimodules M ∈ ABMod (C)B and N ∈ BBMod (C)C , where M(m) = F (m01),
N(m) = F (m12), M(a−) = F (a0), M(a+) = N(a−) = F (a1), and N(a+) = F (a2).

• The ∞-operad Tens⊗
[1] is equivalent to the ∞-operad BM⊗ defined in Definition

3.1.12. Therefore, its underlying category has three distinguished objects:

– the object a− := (⟨1⟩, [1], c− = 0, c+ = 0) that models the left algebra;

– the object a+ := (⟨1⟩, [1], c− = 1, c+ = 1) that models the right algebra;

– and m := (⟨1⟩, [1], c− = 0, c+ = 1) that, as we will see, corresponds to the
relative tensor product of m01 and m12.

• There is a distinguished active morphism ϵ that represents m as the augmentation of
the bar construction to its geometric realization. Let (m01,m12) ≃ (⟨2⟩, [2], c−, c+)
be the object of Tens⊗

[2] where

c−(1) = 0, c−(2) = 1, and c+(1) = 1, c+(2) = 2.

Let β be the active morphism of Assoc⊗ covering ⟨2⟩ → ⟨1⟩ equipped with the
natural linear ordering of the fiber and let γ : [2] → [1] be the morphism of N(∆op)
defined in Definition 3.1.15. Then, the pair (β, γ) defines a morphism ϵ of Tens⊗

≺

from (m01,m12) ≃ (⟨2⟩, [2], c−, c+) to m.

To introduce the simplicial objects in the picture, we need to define yet another ∞-
category.

Definition 3.1.17. We denote by Step the full subcategory of Fun([1],∆)op spanned
by those morphisms f : [n] → [k] in ∆ such that for each 1 ≤ i ≤ n we have
f(i) ≤ f(i− 1) + 1.

Remark 3.1.18. [Lur17, Notation 4.4.2.4] The 1-category Step admits a functor into
the 1-category Tens⊗ defined above. Let cut : ∆op → Assoc⊗ be the functor of
Construction 3.1.5. We define the functor Φ : Step → Tens⊗ as follows:
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• let f : [n] → [k] be an object of Step, then Φ(f) = (cut(f), [k], c−, c+) where
c−, c+ : ⟨n⟩◦ → [k] are given by:

c−(i) = f(i− 1), c+(i) = f(i);

• let α : f → f ′ be a morphism of Step, which corresponds to a commutative
diagram of the form

[n] [k]

[n′] [k′] ,

α0

f

α1

f ′

then Φ(α) = (cut(α0), α1).

Furthermore, the 1-category Step admits a functor from the opposite simplicial category
∆op. We define the functor u : ∆op → Step as follows: let [n] be an object of ∆op, then
u([n]) is the morphism f : [n+ 2] → [2] given by

f(i) =


0 if i = 0

1 if 0 < i < n+ 2

2 if i = n+ 2.

We can extend the functor u to a functor u+ : ∆op
+ → Step from the pointed

opposite simplicial category by assigning to the object [−1] := {∗} ∈ ∆op
∗ the object

{id : [1] → [1]} ∈ Step.

Composing u and u+ with the functor Φ : Step → Tens⊗ and then passing to nerves
we can define:

• the simplicial object U : N(∆)op → Tens⊗
[2]; which we can informally think of as

the simplicial object

. . . (m01, a1, a1,m12) (m01, a1,m12) (m01,m12);

• and the augmented simplicial object U+ : N(∆∗)op → Tens⊗
≺; which can be

informally described as

. . . (m01, a1, a1,m12) (m01, a1,m12) (m01,m12) m.ϵ

In both cases the face maps are the morphisms of Tens⊗
[2] that represent the module

structures of m01 and m12, and the algebraic structure of a1. The augmentation is given
by the morphism ϵ described in Remark 3.1.16.
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If C⊗ is an associative monoidal ∞-category, starting from an operadic map F : Tens⊗
≺ →

C⊗ and precomposing with the functor U+ we can define the augmented simplicial abject
F ◦U+ : N(∆∗)op → C⊗ of C⊗; that, following the same notation that we used in Remark
3.1.16, we can informally describe as

. . . (M,B,B,N) (M,B,N) (M,N) X := F (m).

We can finally define the relative tensor product of BMod (C).

Definition 3.1.19. [Lur17, Def. 4.4.2.3] Let q : C⊗ → Assoc⊗ be an associative monoidal
∞-category and let F : Tens⊗

≺ → C⊗ be a map of generalized ∞-operads such that
Tens⊗

[2] → Tens⊗
≺

F−→ C⊗ determines a composable pair of bimodules M,N ∈ BMod (C)
and Tens⊗

[1] → Tens⊗
≺

F−→ C⊗ defines a bimodule object X ∈ BMod (C). We will say that
F exhibits X as the relative tensor product of M and N if F is an operadic q-colimit
diagram as defined in [Lur17, Def. 3.1.1.2].

Instead of delving into the theory of operadic colimit diagrams, we will see that, under
reasonable conditions, we can give an equivalent characterization of the relative tensor
product via the bar construction of M and N that does not involve operadic colimits.
But first, we have to define the bar construction of two bimodules.

Construction 3.1.20. [Lur17, Notation 4.4.2.4] Let U+ : N(∆∗)op → Tens⊗
≺ be the

augmented simplicial object defined in Remark 3.1.18 with augmentation the object m.
By considering the augmentation as a constant simplicial object, U+ defines a morphism
β : U → U ′ of (non-augmented) simplicial objects of Tens⊗

≺ where U is the simplicial
object U : N(∆)op → Tens⊗

[2] ↪→ Tens⊗
≺ defined above and U ′ is the constant simplicial

object with constant value m ∈ Tens⊗
[1].

Now suppose that we have a commutative diagram of generalized ∞-operads

Tens⊗
[2] C⊗

Tens⊗
≺ Assoc⊗,

F0

q

f

where q is a coCartesian fibration of ∞-operads, i.e., C⊗ is an associative monoidal
∞-category. The commutative diagram induces a commutative diagram on the ∞-
categories of simplicial objects

Fun(N(∆)op,Tens⊗
[2]) Fun(N(∆)op, C⊗)

Fun(N(∆)op,Tens⊗
≺) Fun(N(∆)op,Assoc⊗).

(F0◦−)

(q◦−)

(f◦−)
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Starting from the simplicial object U ∈ Fun(N(∆)op,Tens⊗
[2]) and applying (F0 ◦ −) we

obtain the simplicial object F0 ◦ U of C⊗. On the other hand, postcomposing U with
the inclusion in Tens⊗

[2] → Tens⊗
≺ and with the map f we obtain the simplicial object

f ◦ U of Assoc⊗. By the commutativity of the diagram, the object F0 ◦ U covers the
object f ◦ U . Finally, the image of the morphism β : U → U ′ by the functor f defines a
morphism f ◦ β : f ◦ U → f ◦ U ′ between simplicial objects of Assoc⊗.

Since q is coCartesian q′ := (q◦−) is a coCartesian fibration too [Lur18, Theorem 5.2.1.1]
and there exists a coCartesian morphism with source F0 ◦U covering the morphism f ◦β.
The target of this morphism is a simplicial object of C⊗ that we define to be the bar
construction of M and N . We will denote this simplicial object with BarB(M,N)•.

[
U

] [
F0 ◦ U BarB(M,N)•

]
[
U U ′β

] [
f ◦ U f ◦ U ′f◦β

]
.

(F0◦−)

q′

(f◦−)

Moreover, if we are given a functor F that extends the map F0

Tens⊗
[2] C⊗

Tens⊗
≺ Assoc⊗,

F0

f

F

the image of the morphism β by postcomposition with F defines yet another morphism
F ◦ β : F0 ◦ U → F ◦ U ′ of simplicial objects of C⊗ with source F0 ◦ U and that covers
the morphism f ◦ β. By the universal property of coCartesian morphisms, we can fill
the following diagram of simplicial objects of C⊗ with the dashed arrow γ

F0 ◦ U BarB(M,N)•

F ◦ U ′
F◦β

γ

 .

Assuming that the ∞-category C⊗ admits enough colimits, we can pass to the geometric
realizations of the simplicial objects to obtain the following diagram of C⊗


|F0 ◦ U | |BarB(M,N)•|

F (m)
|F◦β|

|γ|

 .
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It is natural to ask when the morphism |γ| is an equivalence of C⊗. In the next theorem
we will see that, under some mild hypotheses, this is equivalent to asking if F exhibits
X as the relative tensor product of M and N .

Theorem 3.1.21. [Lur17, Theorem 4.4.2.8] Let q : C⊗ → Assoc⊗ be a coCartesian
fibration of ∞-operads which is compatible with N(∆)op-indexed colimits, in the sense of
[Lur17, Def. 3.1.1.8]. Suppose that we are given a commutative diagram of solid arrows
of generalized ∞-operads

Tens⊗
[2] C⊗

Tens⊗
≺ Assoc⊗,

F0

q

f

F

where F0 corresponds to a pair of bimodules M ∈ ABModB(C), N ∈ BBMod C(C). Then
there exists an extension F of F0 that fills the diagram, which exhibits X = F|Tens⊗

[1]
∈

A′BMod C′(C) as the relative tensor product of M and N . Moreover, if F is an arbitrary
extension of F0 making the above diagram commute, then F exhibits X as the relative
tensor product of M and N if and only if the following condition are satisfied:

(1) The functor F induces q-coCartesian morphisms A → A′, B → B′.

(2) The functor F induces an equivalence

|BarB(M,N)•| ≃−→ F (m).

Is important to notice that the first condition is always satisfied if the morphisms of
algebras induced by F are identities.

Example 3.1.22. [Lur17, Example 4.4.2.11] Let q : C⊗ → Assoc⊗ be an associative
monoidal ∞-category. Assume that C admits geometric realization of simplicial objects
and that the tensor product functor ⊗ : C × C → C preserves geometric realization
separately in each variable. This is equivalent to the condition of being compatible with
N(∆)op-indexed colimits of Theorem 3.1.21. Consider the forgetful functor Tens⊗

≺ ↪→
Tens⊗ → Assoc⊗. Then the relative tensor product defines a functor

BMod (C) ×
Alg /Assoc(C)

BMod (C) ≃ Alg Tens[2]/Assoc(C) → BMod (C)

Moreover, from Theorem 3.1.21 it follows that for each triple of associative algebra
objects A,B,C ∈ Alg /Assoc(C), the functor restricts to a map

ABModB(C) × BBMod C(C) → ABMod C(C),
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Chapter 3. Modules of O-monoidal categories

taking A = B = C we obtain a product functor of the ∞-category ABModA(C)

⊗A : ABModA(C) × ABModA(C) → ABModA(C).

In [Lur17, Section 4.4.3] it is proven that this product is unital and associative.

Even if we have defined an associative and unital product of the ∞-category ABModA(C)
we have not explicitly provided an Assoc-monoidal structure that presents the ∞-
category ABModA(C) as an associative monoidal ∞-category as defined in Definition
3.1.4. We will produce such structure in the next section as the special case O⊗ = Assoc⊗

of a more general construction of O-monoidal categories of O-modules.

3.2 O-modules

In the previous section, starting from an associative monoidal ∞-category C⊗, we have
defined the ∞-category of bimodules BMod (C) and proved that for any associative
algebra A the ∞-category ABModA(C) admits an associative and unital product functor
given by the relative tensor product. In this section, we will generalize this construction
to general O-monoidal categories. Starting from an O-monoidal ∞-category C⊗ we will
define the ∞-category of O-modules ModO(C)⊗ and we will see that, under reasonable
conditions on the ∞-operad O⊗ and the O-monoidal category C⊗, for each O-algebra A
of C⊗ the ∞-category ModO

A(C)⊗ admits a natural O-monoidal structure.

In the special case where O⊗ = Assoc⊗ we have an equivalence between the underlying
category of ModAssoc

A (C)⊗ and the ∞-category ABModA(C); the associative product
defined by the Assoc-monoidal structure of ModAssoc

A (C)⊗ will correspond, under this
equivalence, to the relative tensor product defined at the end of the previous section.

Until this point, all the ∞-operads that we considered have been defined by the nerve
of a 1-category, which has made it easy to motivate our constructions by first looking
at the 1-categorical cases. Now we aim to define the ∞-category of O-modules for a
general ∞-operad O⊗, which might not be the nerve of a 1-category. Therefore, in this
case, we will not be able to draw an explicit connection with 1-categories.

We begin by introducing the notion of semi-inert morphisms of N(F in∗) and O⊗.

Definition 3.2.1. A morphism α : ⟨m⟩ → ⟨n⟩ of N(F in∗) is semi-inert if for each
i ∈ ⟨n⟩◦ the set α−1(i) has at most one element. We will say that α is null if it is the
semi-inert morphism that carries ⟨m⟩ to the distinguished point ∗ of ⟨n⟩.

Let p : O⊗ → N(F in∗) be an ∞-operad and let f : X → Y be a morphism of O⊗. We
will say that f is semi-inert if the following conditions are satisfied:

(1) The image p(f) is a semi-inert morphism of N(F in∗).
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3.2. O-modules

(2) For every inert morphism g : Y → Z of O⊗, if p(g ◦ f) is an inert morphism of
N(F in∗), then g◦f is an inert morphism of O⊗; in particular g◦f is p-coCartesian.

We say that a morphism f is null if its image p(f) is null in N(F in∗).

Definition 3.2.2. [Lur17, Notation 3.3.2.1] Let O⊗ be a unital ∞-operad, i.e., an ∞-
operad such that the unique object ∅ ∈ O⊗

⟨0⟩ is both initial and final. We denote by KO

the full subcategory of Fun(∆1,O⊗) spanned by the semi-inert morphisms of O⊗; and
by e0, e1 : KO → O⊗ the evaluation maps given by evaluating on {0} and {1}. We say
that a morphism of KO, which corresponds to a commutative square of O⊗, is inert if
its images under e0 and e1 are inert morphisms of O⊗.

Suppose that the ∞-operad O⊗ is unital and let Z be an object of O. Then the fiber
product {Z} ×

Fun({0},O⊗)
KO possess two sets of distinguished objects:

• the identity morphism {idZ : Z → Z} ∈ KO, that informally represents the O-
module;

• and the set of null morphisms {NaZ : Z → ∅ → Y }Y ∈O⊗ , which represents the
O-algebra.

Starting from a unital ∞-operad O⊗ and an O-monoidal category C⊗, we will see how
to construct the ∞-category ModO(C)⊗; and how to associate to each O-algebra A an
∞-operad ModO

A(C)⊗.

Construction 3.2.3. [Lur17, Construction 3.3.3.1] We denote by M̃od
O

(C)⊗ the
simplicial set over O⊗ defined by the following universal property: for every map of
simplicial sets X → O⊗ there is a canonical bijection

FunO⊗(X, M̃od
O

(C)⊗) ≃ FunFun({1},O⊗)(X ×
Fun({0},O⊗)

KO, C⊗).

We denote by ModO(C)⊗ the full simplicial subset of M̃od
O

(C)⊗ spanned by the vertices
v̄ with the property that the functor

{v̄} ×
Fun({0},O⊗)

KO → C⊗

induced by the inclusion {v̄} ↪→ M̃od
O

(C)⊗ carries inert morphisms to inert morphisms.

Similarly, if we denote by K0
O the full subcategory of KO spanned by the null morphisms

of O⊗; we can define the simplicial set Ãlg /O(C) over O⊗ to be the simplicial set that
satisfies the following universal property: for every map of simplicial sets X → O⊗ there
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Chapter 3. Modules of O-monoidal categories

is a canonical bijection

FunO⊗(X, Ãlg /O(C)) ≃ FunFun({1},O⊗)(X ×
Fun({0},O⊗)

K0
O, C⊗).

Let Alg p/O(C) denote the full simplicial subset of Ãlg /O(C) spanned by the vertices w̄
with the property that the functor

{w̄} ×
Fun({0},O⊗)

K0
O → C⊗

induced by the inclusion {w̄} ↪→ Ãlg /O(C) carries inert morphisms to inert morphisms.

By definition, all the objects of K0
O correspond to morphisms of O⊗ that are null, but

since we assumed the ∞-operad O⊗ to be unital, the null morphisms are uniquely
identified by their target and their source. This observation is formalized in [Lur17,
Lemma 3.3.3.3] where it is proven that the evaluation maps form a trivial Kan fibration
between the ∞-category K0

O and the product O⊗ × O⊗.

We can use this result to obtain some intuition on the objects of the ∞-category
Alg p/O(C). An object A ∈ Alg p/O(C) corresponds to an object Z ∈ O⊗ and a functor
over O⊗ that preserves inert morphisms

F : {Z} ×
Fun({0},O⊗)

K0
O → C⊗.

Since the evaluation maps give a trivial Kan fibration K0
O → O⊗ × O⊗ the functor F

defines a unique O-algebra of C⊗

O⊗ ≃ {Z} ×
Fun({0},O⊗)

(O⊗ × O⊗) ≃−→ {Z} ×
Fun({0},O⊗)

K0
O

F−→ C⊗.

Therefore, an object of Alg p/O(C) corresponds to a pair given by an object of O⊗ and
an object of Alg /O(C). Formally, the evaluation maps induce a categorical equivalence
O⊗ × Alg /O(C) → Alg p/O(C) [Lur17, Remark 3.3.3.7].

We can finally define the ∞-category of O-modules of C⊗.

Definition 3.2.4. [Lur17, Def. 3.3.3.8] Let O⊗ be a unital ∞-operad and C⊗ → O⊗ an
O-monoidal category. We define ModO(C)⊗ to be the following pullback of simplicial
sets

ModO(C)⊗ := ModO(C)⊗ ×
Alg p

/O(C)
(O⊗ × Alg /O(C)).

Let A be an O-algebra of C⊗. We denote by ModO
A(C)⊗ the pullback

ModO
A(C)⊗ := ModO(C)⊗ ×

Alg p
/O(C)

(O⊗ × {A}) ≃ ModO(C)⊗ ×
Alg /O(C)

({A}).
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For now, we have defined ModO
A(C)⊗ only as a simplicial set, but we will see that under

reasonable conditions it admits an O-monoidal structure. Let us start by defining a suf-
ficient condition on the ∞-operad O⊗ which ensures that the simplicial set ModO

A(C)⊗

is an ∞-operad.

Definition 3.2.5. Let O⊗ be an ∞-operad. We say that O⊗ is coherent if:

(1) It is unital, meaning that the unique object ∅ ∈ O⊗
⟨0⟩ is both initial and final.

(2) The underlying category O is a Kan complex.

(3) The evaluation map e0 : KO → O⊗ is a flat categorical fibration as defined in
[Lur17, Def. B.3.8].

In order to avoid the introduction of unnecessary material we have chosen to define a
coherent ∞-operad using the characterization given in [Lur17, Theorem 3.3.2.2] instead
of the classical definition [Lur17, Def. 3.3.1.9]. Condition (3) is a technical condition
and it is sufficient to say that most of the ∞-operads we will consider, such as, for ex-
ample, the little cubes ∞-operads that we will define in the next sections, are coherent
∞-operads.

Theorem 3.2.6. [Lur17, Theorem 3.3.3.9] Let C⊗ → O⊗ be an O-monoidal category,
where O⊗ is a coherent ∞-operad, and let A be an O-algebra of C⊗. Then, the induced
map ModO

A(C)⊗ → O⊗ is a map of ∞-operads.

We can assume some additional properties on the O-monoidal category C⊗ that ensures
that the induced map ModO

A(C)⊗ → O⊗ is a coCartesian fibration, i.e., ModO
A(C)⊗ is an

O-monoidal category.

Definition 3.2.7. Let O⊗ be an ∞-operad and let q : C⊗ → O⊗ be an O-monoidal
category. We say that q : C⊗ → O⊗ is a presentable O-monoidal category if it satisfies
the following conditions:

(1) The coCartesian fibration q is compatible with small colimits, [Lur17, Def. 3.1.1.18].

(2) For each Z in O, the fiber C⊗
Z is a presentable ∞-category.

Theorem 3.2.8. [Lur17, Theorem 3.4.4.2] Let O⊗ be a small coherent ∞-operad,
q : C⊗ → O⊗ be a presentable O-monoidal ∞-category, and let A ∈ Alg /O(C) be an
O-algebra object of C⊗. Then, the induced map ModO

A(C)⊗ → O⊗ exhibits ModO
A(C)⊗

as a presentable O-monoidal ∞-category.

Remark 3.2.9. Let C⊗ and D⊗ be two presentable O-monoidal categories and let
F : C⊗ → D⊗ be a lax O-monoidal map. Then, the map F induces a lax O-monoidal
functor F ′ on the ∞-categories of O-modules. To define the functor F ′ we use the
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universal properties of the simplicial sets M̃od
O

(C)⊗ and M̃od
O

(D)⊗. For each simplicial
set X over O⊗ we have

FunO⊗(X, M̃od
O

(C)⊗)
≃

−−−−→
≃

−−−−→ FunO⊗(X ×
Fun({0},O⊗)

KO, C⊗)

(F◦−)−−−−→ FunO⊗(X ×
Fun({0},O⊗)

KO,D⊗)

≃
−−−−→ FunO⊗(X, M̃od

O
(D)⊗).

(⋆)

by the ∞-categorical version of the Yoneda embedding, [Lur09, Prop. 5.1.3.1], the
composition (⋆) defines a unique, up to equivalence, functor

F ′ : ModO(C)⊗ → ModO(D)⊗.

Let A be an O-algebra object of C⊗, and let B be the image in Alg /O(D) of the algebra
A by the functor F . Restricting F ′ to ModO

A(C)⊗ we obtain the following lax O-monoidal
map

F ′ : ModO
A(C)⊗ → ModO

B(D)⊗.

Let us now go back to the question about O-monoidal pre-sheaves that we asked at
the end of Chapter 2. Let O⊗ be a coherent ∞-operad, π : X⊗ → B⊗ be a left O-
fibration, and let ψ : B⊗ → S⊗ be its straightening. As we mentioned in our previous
discussion, the lax O-monoidal map ψ does not generally preserve the unit, but we can
consider instead the map induced by the lax O-monoidal pre-sheaf on the ∞-categories
of O-modules

ψ′ : ModO(B)⊗ → ModO(S)⊗.

Since O⊗ is coherent the Kan complex B⊗ admits a trivial O-algebra 1B as defined in
[Lur17, Section 3.2.1]. Restricting ψ′ to the ∞-operad of 1B-modules we obtain

ψ′ : ModO
1B

(B)⊗ → Mod⊗
F (S)⊗,

where F is the O-algebra induced by ψ from the trivial algebra 1B. Applying Lemma
2.4.6 to the composition

F : O⊗ 1B−−→ B⊗ ψ−→ S⊗

we obtain that under the equivalence described in Corollary 2.4.4, the algebra F

corresponds to the O-monoidal Kan complex F⊗ given by the pullback of π over the
trivial algebra 1B. We refer to the O-monoidal Kan complex F⊗ as the fiber of π over
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the unit of B⊗.
F⊗ X⊗

O⊗ B⊗.

⌟ π

1B

Now the map ψ′ is a lax O-monoidal map that preserves the trivial algebra and it is
reasonable to ask under which conditions it is (strong) O-monoidal. In the first sections
of Chapter 5, we will provide an answer to this question for the special case where the
∞-operad O⊗ belongs to the family of little cubes ∞-operads that we will introduce in
the next section.

We end this section by showing that, under the sufficient conditions for the existence
of the relative tensor product of Theorem 3.1.21, the ∞-category of Assoc-modules
ModAssoc

A (C)⊗ is indeed a generalization of the associative monoidal ∞-category of bi-
modules defined in Example 3.1.22.

Proposition 3.2.10. [Lur17, Prop. 4.4.3.12., Theorem. 4.4.1.28] Let C be an associative
monoidal ∞-category and let A be an associative algebra of C. Assume that C admits
geometric realizations of simplicial objects and that the tensor product of C preserves
geometric realizations separately in each variable. Then:

(1) The operadic map ModAssoc
A (C)⊗ → Assoc⊗ is coCartesian, i.e., it exhibits

ModAssoc
A (C) as an associative monoidal ∞-category.

(2) The underlying category ModAssoc
A (C) is equivalent to the ∞-category ABModA(C).

(3) The tensor product of ModAssoc
A (C) corresponds to the relative tensor product

functor ⊗A : ABModA(C) × ABModA(C) → ABModA(C) defined in Example
3.1.4.

3.3 Little cubes ∞-operads and their modules

In this section we will introduce an infinite family of ∞-operads called little cubes ∞-
operads. These are the ∞-categorical analogue of the little cubes operads originally
introduced by J.M. Boardman and R. M. Vogt in [BV68, Def. 5]. Similar to the
1-categorical case, the little cubes ∞-operads can be arranged in a sequence of ∞-
operads where each element encodes more monoidal structure than the previous one. In
particular, they can be arranged in an infinite sequence of operadic maps

E⊗
0 → E⊗

1 → E⊗
2 → · · · → E⊗

∞,

where the ∞-operad E⊗
1 is equivalent to the associative ∞-operad Assoc⊗ that we

described in Section 3.1.1, and the colimit of the sequence which is denoted by E⊗
∞

is equivalent to the commutative ∞-operad Comm⊗.
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We will start by defining the 1-categorical little cubes operads as single-colored topo-
logical operads, and then use the construction described in Construction 2.1.3 to define
their ∞-categorical analogue. Let us begin with the definition of rectilinear embeddings.

Definition 3.3.1. Let k ≥ 0. We denote by □k := (−1, 1)k an open cube of dimension k.
We say that a map f : □k → □k is a rectilinear embedding if there exist real constants
ai > 0 and bi for 1 ≤ i ≤ k such that

f(x1, . . . , xk) = (a1x1 + b1, . . . , akxk + bk).

Let S be a finite set, we say that a map □k × S → □k is a rectilinear embedding if
for each s ∈ S the restriction □k × {s} → □k is a rectilinear embedding. We define
Rect(□k × S,□k) to be the set of rectilinear embeddings from □k × {s} to □k equipped
with the topology it inherits as an open subset of (R2k)S .

We now define the little cubes operad tEk for k ≥ 0 as a single-colored topological op-
erad, i.e., a colored operad where the sets of morphisms are equipped with a topology
and the composition maps are continuous.

Definition 3.3.2. [Lur17, Def. 5.1.0.2] We define the colored operad tEk as follows:

(1) The set of objects has a single element ∗.

(2) Let S be a finite set, the space of S-indexed operations Mul tEk
({∗}s∈S , ∗) is the

topological space of rectilinear embeddings Rect(□k × S,□k).

(3) Composition of operations is defined by the composition of rectilinear embeddings.

With the usual procedure, we can define the ∞-categorical version of the little cubes
operads.

Definition 3.3.3. Let tE⊗
k be the topological category obtained from applying

Construction 2.1.3 to the single-colored topological operad tEk. Since tE⊗
k is a topological

category, it is, in particular, a fibrant simplicial category, and the coherent nerve of the
forgetful functor tE⊗

k → F in∗ defines the ∞-operad E⊗
k : N( tE⊗

k ) → N(F in∗).

The little cubes ∞-operads enjoy many useful properties; first of all, they are coher-
ent single-colored ∞-operads [Lur17, Theorem 5.1.1.1]. Moreover, they satisfy the ∞-
categorical analogue of the Dunn additivity theorem [Lur17, Theorem 5.1.2.2].

Theorem 3.3.4 (Dunn Additivity Theorem). Let k, k′ ≥ 0 be non-negative integers.
Then, there exists a bifunctor E⊗

k ×E⊗
k′ → E⊗

k+k′, see [Lur17, Construction 5.1.2.1], that
exhibits the ∞-operad E⊗

k+k′ as a tensor product of the ∞-operads E⊗
k and E⊗

k′.

We will not discuss in detail the notion of tensor product of ∞-operads. We can briefly
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say that given two ∞-operads O⊗ and O′⊗ it is possible to construct a new ∞-operad
O⊗ ⊗O′⊗ such that: if C⊗ is a symmetric monoidal ∞-category, then the two ∞-operads
and their tensor product satisfy the following equivalence [Lur17, Section 2.2.5]

Alg O⊗O′(C) ≃ Alg O(Alg O′(C)).

Once again, we point the reader who is interested in a more extensive discussion on the
tensor product of ∞-operads to Section 2.2.5 of [Lur17] where the author defines the
tensor product and presents some of its main properties.

Thanks to the Dunn additivity theorem, it is possible to prove many results involving the
∞-category Ek-modules. The proof of the following two theorems is quite involved and
requires some machinery that we have chosen to not include in this thesis, so without
making any claim of completeness, we will present the statement of the theorems and
then foreshadow how we will use these results during the construction of the Iterated
Thom spectrum.

Theorem 3.3.5. [Lur17, Theorem 5.1.3.2] Let k ≥ 1 be an integer, q : C⊗ → E⊗
k be

an Ek-monoidal category, and let ι : E⊗
1 → E⊗

k be a map of ∞-operads. Provided that
C admits geometric realization of simplicial objects and that the tensor product functor,
given by the map ι, preserves geometric realizations of simplicial objects. For each Ek-
algebra object A of C⊗. Then:

(1) The map ModEk
A (C)⊗ → E⊗

k is a coCartesian fibration of ∞-operads.

(2) Let C′ ⊗ be the associative monoidal ∞-category given by the pullback of q along
ι : E⊗

1 → E⊗
k . And similarly let A′ denote the associative algebra of C′ ⊗ given by

taking the pullback of A. Then there exists a functor

F : ModEk
A (C)⊗ ×

E⊗
k

E⊗
1 → ModE1

A′ (C)⊗

which is associative monoidal. Here we are implicitly considering the equivalence
E⊗

1 ≃ Assoc⊗.

Let us go back to our motivating question with O⊗ = E⊗
n . Let π : X⊗ → B⊗ be a left En-

fibration; in Chapter 2 we asked under which conditions its straightening ψ : B⊗ → S⊗

is an En-monoidal map and observed that since the pre-sheaf does not generally map
the unit to the unit it was unreasonable to ask for strong monoidality. In the previous
section, we solved this issue by considering instead the map induced by ψ on the ∞-
categories of En-modules

ψ′ : ModEn
1B

(B)⊗ → ModEn
F (S)⊗.

In Chapter 5 we will provide a sufficient condition on the fibration π, namely that it
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Chapter 3. Modules of O-monoidal categories

comes from an En+1-fibration of grouplike Kan complexes, which ensures that the map
ψ′ is En-monoidal. A key passage of the argument will be using Theorem 3.3.5 to reduce
a statement regarding lax En-monoidal maps to a statement regarding lax E1-monoidal
maps; this will allow us to invoke Proposition 3.2.10 and check the monoidality for the
more familiar ∞-categories of associative bimodules described in Section 3.1.3.

As we will see in the next chapter, the theory of Thom spectrum is defined for left
modules, and until now, we focus instead on the theory of En-modules; this is because,
as explained above, working with En-modules allows us to reduce the statements to the
associative case, where we have a good description of the relative tensor product thanks
to the bar construction. However, at some point, in order to recover the Thom functor,
we will need to pass to the ∞-categories of left modules, and we will plan to do so by
using the functor described in the following theorem.

Theorem 3.3.6. [Lur17, Theorem 5.1.4.10] Let k ≥ 1 and let q : C⊗ → E⊗
k be an

Ek-monoidal category. Suppose that C admits geometric realizations of simplicial objects
and that the tensor product functor preserves geometric realizations of simplicial objects
separately in each variable. Then, for each Ek-algebra object A of C⊗ there exists a
functor

ModEk
A (C)⊗ ×

E⊗
k

E⊗
k−1 → LModA(C)⊗

which is Ek−1-monoidal.
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Thom functor

Let us begin by providing a brief description of the 1-categorical Thom spectrum functor
to give some motivation for its ∞-categorical generalization. The standard reference
for the 1-categorical version is [LMS86] by L.G. Lewis, J.P. May, and M. Steinberger;
otherwise one can consult [And+14b] by M. Ando et al. for a more modern approach to
the subject.

Let R be an E1-ring spectrum. We define the topological space GL1(R) as the pullback
of the following diagram

GL1(R) Ω∞R

π0(Ω∞R)× π0(Ω∞R),

⌟
ξ

where π0(Ω∞R)× is the discrete space of units of the group π0(Ω∞R). The E1-structure
ofR equips the space GL1(R) with an E1-monoidal structure. Let us assume that GL1(R)
is not only an E1-algebra but a grouplike (strict) monoid; as explained in [And+14b] it
is possible to avoid this assumption by working on the 1-category of ∗-modules, which
is the space analogue of EKMM’s spectra, where the monoids are exactly E1-algebras.

Since GL1(R) is a grouplike monoid we can consider its universal principal GL1(R)-
bundle EGL1(R) → BGL1(R). Suppose that we are given a system of invertible R-
modules, i.e., a map ξ : X → BGL1(R), that we can informally think of as a pre-sheaf
of free rank-one R-modules. The monoid GL1(R) acts on the pullback of ξ along the
universal GL1(R)-bundle

P EGL1(R)

X BGL1(R).

⌟

ξ
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In particular, the spectrum Σ∞
+ P admits the structure of a left Σ∞

+ GL1(R)-module. We
define the left R-module Thom spectrum of ξ as the following derived smash product

ThR(ξ) := R ∧
Σ∞

+ GL1(R)
Σ∞

+ P.

It is possible to generalize this construction by considering instead a pre-sheaf of
invertible R-modules; replacing the space BGL1(R) with the geometric realization of
the nerve of the full subcategory of left R-modules spanned by the invertible objects.
This topological space is usually referred to as the Picard space of R and denoted by
Pic(R).

We observe that the 1-categorical version presents an interaction between topological
spaces and the 1-category of invertible left R-modules, and it relates those two different
categories via the geometric realization of the nerve of the latter. However, the rigidness
of 1-categories makes this passage somehow unnatural. Let us assume, for example, that
the ring spectrum R is an Em-algebra with m ≥ 2. Then the product of R equips the
1-category of invertible left R-modules with a relative tensor product that makes it a
symmetric monoidal 1-category. From the coherence criterion [ML98, Theorem XI.3.1]
we know that a symmetric monoidal 1-category is equivalent to a strictly symmetric
monoidal 1-category. Therefore, by passing to the nerve the strict symmetric monoidal
structure of the 1-category of invertible R-modules equips the space Pic(R) with the
structure of an E∞-algebra of topological space; effectively producing an E∞-space from
an E2-ring spectrum.

This is just one of the reasons suggesting that the framework of ∞-categories might
be a more natural setting for the Thom functor. First of all, in ∞-categories we can
model topological spaces with Kan complexes, so it is no longer necessary to consider
the nerve of a category and we can directly define a system of invertible R-modules to be
a functor ξ : X → Pic(R) from a Kan complex to the ∞-categorical analogue of Pic(R).
Furthermore, we will no longer encounter the rigidness problem described above since,
if R is an Em-ring spectrum, the ∞-category of left R-modules admits, in general, only
an Em−1-monoidal structure, [Lur17, Corollary 5.1.2.6].

Suppose that R is a commutative ring spectrum. One of the fundamental properties of
the 1-categorical Thom spectrum is that it maps O-algebras to O-algebras. This suggests
that we should exepect to being able to realize a monoidal version of the ∞-categorical
Thom functor as a functor between the ∞-categories of O-algebras

ThR : Alg /O(S/Pic(R)) → Alg /O(LModR(Sp)). (⋆)

As we will see in Section 4.2 the authors of [ABG18] have been able to realize a more
refined version of (⋆). In particular, they defined the metacosmic version of the functor,
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that is to say, they produced a monoidal functor of symmetric monoidal ∞-categories

ThR : S⊗
/Pic(R) → LModR(Sp)⊗

which induces on the ∞-categories of O-algebras the functor (⋆).

In Section 4.3, we will present the paper [ACB19] by O. Antolín-Camarena and T.
Barthel where the authors developed a theory of lifts of lax O-monoidal maps to O-
monoidal overcategories, which they then used to describe the monoidal Thom spectrum
via a useful universal property.

From now on, we will use LModR instead of LModR(Sp) to denote the ∞-category of
left R-modules.

4.1 Additive Thom functor

In [And+14a] the authors developed the general theory of Thom functor in the language
of ∞-categories and they proved that the construction is compatible with their previous
1-categorical definition presented in [And+14b]. It is important to point out that in
[And+14a] M.Ando et al. defined a system of invertible R-modules to be a map with
source a Kan complex and with target the subcategory spanned by the R-modules that
are equivalent to R. In this section, in order to improve the coherence of the exposition,
we will present the results contained in [And+14a] by considering the target of the system
of invertible R-modules to be the core of the subcategory spanned by the invertible R-
modules, which we will denote also by Pic(R); so that the additive case will agree with
the monoidal version that we will present in the next section.

We start by using the additive Grothendieck construction to produce an equivalence
between the ∞-category of Kan complexes over X and the ∞-category of pre-sheaves
over X.

Theorem 4.1.1. [Lur09, Theorem 2.2.1.2] Let X be a Kan complex, then the
Grothendieck construction defines an equivalence of ∞-categories

Fun(Xop,S) ≃ S/X ,

which sends a pre-sheaf over X to its colimit, regarded as a Kan complex over X.

We now formally define the ∞-categorical analogue of the 1-category Pic(R).

Definition 4.1.2. Let R be an Em-ring spectrum with m ≥ 2, i.e., an Em-algebra of the
symmetric monoidal stable ∞-category of spectra defined in [Lur17, Def. 7.1.0.1]. We
consider the Em−1-monoidal ∞-category of left R-modules LMod ⊗

R, [Lur17, Def. 7.1.3.5],
and define the ∞-category Pic(R) to be the core of the full subcategory of LModR
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spanned by the invertible left R-modules. We recall that the core of an ∞-category C,
which we denote by C≃, is the Kan complex given by the following pullback of simplicial
sets

C≃ C

N(hC≃) N(hC),

⌟

where hC≃ is the maximal subgroupoid of the 1-category hC.

We can now define the additive ∞-categorical version of the Thom functor.

Definition 4.1.3. [And+14a, Def. 2.20] The Thom R-module spectrum is the colimit
preserving functor

ThR : S/Pic(R) → LModR,

that maps a system of invertible R-modules ξ : X → Pic(R) to the colimit of the
following compostion of functors

X Pic(R) LModR.
f ι

4.2 Monoidal Thom functor

In [ABG18] M.Ando, A. Blumberg, and D. Gepner introduced a theory of parametrized
objects which they have then used to formalize a generalized monoidal Thom spectrum
functor. In particular, the functor is defined as the stabilization of the counit of an
adjunction; this adjunction can be interpreted as the categorification of the adjunction
between units and group rings.

For the rest of this section, we will fix a coherent ∞-operad O⊗ equipped with a unit
map η : E⊗

1 → O⊗. This is the same condition imposed in [ABG18], but, since we are
interested in the particular case of O⊗ = E⊗

n , in order to simplify the results we are
willing to assume in addition that the ∞-operad is single-colored.

Let X be an O-algebra of S⊗. By the monoidal Grothendieck construction we know
that X corresponds to an O-monoidal Kan complex X⊗ with underlying category X.
It is possible to prove that the ∞-category Fun(X,S) of pre-sheaves over X⊗ admits a
natural O-monoidal structure which can be informally interpreted as given by the Day
convolution product.

Definition 4.2.1. [Lur17, Construction 2.2.6.7] Let X be an O-algebra of S⊗. There
exists an O-monoidal category that we will denote by FunO(X,S)⊗, with underlying
category Fun(X,S). Moreover, as a consequence of the macrocosmic monoidal
Grothendieck construction by M. Ramzi [Ram22, Corollary 4.9], we know that this
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O-monoidal category is equivalent to the overcategory S⊗
/X as defined in Section 2.3.6.

We will now introduce the two functors that realize the aforementioned adjunction. We
start from the left adjoint functor Pre : Alg O(S) → Alg O(LMod S(PrL)). We will define
the functor Pre as the monoidal version of the functor that assigns to a Kan complex
X the ∞-category Fun(X,S) considered as an object of the ∞-category of presentable
∞-categories.

We first realize the additive version of the functor Pre. By abusing the notation we will
use Pre to denote the additive functor, the monoidal functor, and the functor induced
on the O-algebras.

Proposition 4.2.2. [ABG18, Prop. 6.11] There is a unique colimit-preserving functor

Pre : S → PrL,

whose values at the space X is the ∞-category S/X of pre-sheaves over X.

The authors then claim that, as a consequence of the properties of the Day convolution
product, the functor extends to a symmetric monoidal functor once we equip S and PrL

with the Cartesian monoidal structures described in [Lur17, Prop. 2.4.1.5].

Proposition 4.2.3. [ABG18, Prop. 6.12] The functor Pre : S → PrL extends to a
symmetric monoidal functor

Pre : S× → (PrL)×.

If we consider the functor induced by Pre on the O-algebra objects we obtain the fol-
lowing maps between the ∞-categories of O-algebras.

Corollary 4.2.4. [ABG18, Corollary 6.13] The functor Pre : S× → (PrL)× induces on
the ∞-category of O-algebras the following functor

Pre : Alg O(S) → Alg O(PrL),

which assigns to an O-algebra X of S× the O-monoidal presentable ∞-category S⊗
/X .

This last functor will be the left adjoint functor of the adjunction that we will use to
realize the monoidal Thom spectrum.

Before defining the right adjoint functor Pic : Alg O(S) → Alg gp
O (S), we need to in-

troduce some preliminary notation. We start by defining the subcategory of grouplike
O-algebras of S⊗.

Definition 4.2.5. We define Alg gp
O (S) to be the full subcategory of Alg O(S) spanned
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by the O-algebra objects of S×

O⊗ X−→ S×

such that the associative algebra given by precomposing with the unit η

E⊗
1

η−→ O⊗ X−→ S×

is a grouplike space as defined in [Lur17, Def. 5.2.6.2].

The functor Pic will assign to an O-monoidal category C⊗ its Picard ∞-groupoid, or
Picard space, equipped with an O-monoidal structure. We will first define the Picard
space of an O-monoidal category and then see that it admits a natural O-monoidal
structure.

Definition 4.2.6. [ABG18, Def. 1.4] Let q : C⊗ → O⊗ be an O-monoidal category.
The unit η : E⊗

1 → O⊗ determines a distinguished active morphism β : ⟨2⟩ → ⟨1⟩ of
O⊗ and the O-operation induced by β defines a product of the underlying category
⊗β : C × C → C. We start by considering the full subcategory of C⊗ spanned by the
objects that are invertible under the product ⊗β. We denote this subcategory by Pic(C).
The Picard space of C, which we will denote by Pic(C), is the maximal subgroupoid, or
core, of the ∞-category Pic(C). If C⊗ = LMod ⊗

R where R is an En-ring spectrum with
n ≥ 2 we usually use Pic(R) instead of Pic(LModR).

It is not hard to prove that the full subcategory Pic(C) satisfies the hypothesis of Propo-
sition 2.3.2 and therefore inherits the O-monoidal structure of LMod ⊗

R. It is not imme-
diate, however, that its core inherits the O-monoidal product too. This is proven in the
following proposition.

Proposition 4.2.7. [ACB19, Prop. 2.5] Let O⊗ be an ∞-operad and let q : C⊗ → O⊗

be an O-monoidal category. We define C⊗
coCart to be the subcategory of C⊗ spanned by

q-coCartesian morphisms. The restriction of q to this subcategory q̃ : C⊗
coCart → O⊗ is

a coCartesian fibration of ∞-operads and for each Z ∈ O, the underlying ∞-category
(C⊗

coCart)Z is the core of CZ . That is to say, if the ∞-operad O⊗ is single-colored, the
coCartesian fibration q̃ : C⊗

coCart → O⊗ equips C≃ with an O-monoidal structure.

We can finally define the functor Pic as the functor that assigns to a presentable O-
monoidal category its Picard space equipped with its natural O-monoidal structure.

Theorem 4.2.8. [ABG18, Theorem 7.7] Let O⊗ be a (single-colored) coherent ∞-operad
equipped with a unit η : E⊗

1 → O⊗. Then the functor

Pic : Alg O(PrL) → Alg gp
O (S)
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is right adjoint to the functor

Pre : Alg gp
O (S) → Alg O(PrL).

Let C⊗ be a presentable O-monoidal category. The counit of the adjunction

S⊗
/Pic(C) → C⊗

is a morphism of O-monoidal presentable category, i.e., a colimit preserving O-monoidal
functor. Passing to the stable setting, that is to say, replacing the Cartesian monoidal ∞-
category (PrL)× with the Cartesian monoidal category of stable presentable ∞-categories
(PrL

St)×, and repeating the procedure, we obtain the following adjunction

Alg gp
O (S) Alg O(PrL

St).

PreSt

Pic

⊣

For each stable presentable O-monoidal category R⊗ ∈ Alg O(PrL
St) the counit of the

adjunction defines the following morphism of presentable O-monoidal stable categories

Sp⊗
/Pic(R) → R⊗.

We can finally define the O-monoidal Thom spectrum functor.

Corollary 4.2.9. [ABG18, Corollary 8.1] Let R⊗ be a stable presentable O-monoidal
category. The composite functor

ThR : S⊗
/Pic(R) → Sp⊗

/Pic(R) → R⊗

is a map of presentable O-monoidal ∞-categories. We refer to this functor as the
generalized monoidal Thom spectrum functor.

4.3 Universal property of Thom spectra

In [ACB19] the authors, with an approach similar to the one utilized in [And+14a]
to define the additive version, realized a microcosmic version of the Thom spectrum
functor. Starting from an En-monoidal system of invertible R-modules X⊗ → Pic(R)⊗,
they considered the functor induced on the underlying categories X → Pic(R) and its
additive Thom spectrum as an object of LModR obtained by the following left Kan
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extension
X Pic(R) LModR

∆0.

ξ ι

ThR(ξ)

Then the authors proved that this colimit admits a natural En-algebra structure provided
by the En-monoidal system of invertible R-modules. Similar to the additive case, this
En-algebra structure is defined by the operadic left Kan extension of the composition of
X⊗ → Pic(R)⊗ with Pic(R)⊗ ↪→ LMod ⊗

R along the En-monoidal structure p : X⊗ → E⊗
n .

X⊗ Pic(R)⊗ LMod ⊗
R

E⊗
n E⊗

n .

ξ ι

id

ThR(ξ)

This association defines a functor

ThR : AlgX/En
(Pic(R)) → Alg /En

(LModR).

Let us fix an ∞-operad O⊗, a small O-monoidal category p : C⊗ → O⊗ and a cocom-
plete O-monoidal category D⊗. We start by defining the functor M that assigns to a
lax O-monoidal map F : C⊗ → D⊗ a natural O-algebra structure on the colimit of the
map induced on the underlying categories.

Theorem 4.3.1. [ACB19, Theorem 2.8] Let F : C⊗ → D⊗ be a lax O-monoidal map.
Then, there exists an O-algebra of D⊗ given by a functor MF : O⊗ → D⊗ such that for
every object Z ∈ O we have MF (Z) = colim FZ : CZ → DZ .

From the proof of [ACB19, Theorem 2.8] we can see that the O-algebra MF corresponds
to the operadic left Kan extension of F along the O-monoidal structure p : C⊗ → O⊗.
Similar to the non-operadic case the operadic left Kan extension along an operadic map
p is left adjoint to the functor given by precomposing with p.

Corollary 4.3.2. [ACB19, Corollary 2.11] There exists a functor M left adjoint to

(− ◦ p) : Alg /O(D) → Alg C/O(D),

and the functor M assigns to each lax O-monoidal map F ∈ Alg C/O(D) the colimit
O-algebra MF defined in Theorem 4.3.1.

Via the adjunction with the functor (− ◦ p), O. Antolín-Camarena and T. Barthel de-
fined a universal property that relates the colimit O-algebras to lax O-monoidal lifts to
overcategories.
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Lemma 4.3.3. [ACB19, Lemma 2.12] Let p : C⊗ → O⊗ and D⊗ be two O-monoidal
categories, A be an O-algebra of D⊗ and let F : C⊗ → D⊗ be a lax O-monoidal map.
Then, lax O-monoidal lifts of F along the projection D⊗

/A → D⊗

D⊗
/A

C⊗ D⊗,F

correspond to lax O-monoidal natural transformations

C⊗ D⊗.

F

A◦p

More precisely, there is a homotopy equivalence

MapAlg C/O(D)(F,A ◦ p) ≃ {F} ×
Alg C/O(D)

Alg C/O(D/A).

In particular, the homotopy realizes an equivalence of ∞-categories

Alg /O(C)/A → Alg /O(C/A).

Combining Corollary 4.3.2 and Lemma 4.3.3 we obtain the following characterization of
the colimit O-algebra MF of a lax O-monoidal map F .

Theorem 4.3.4. [ACB19, Theorem 2.13] Let p : C⊗ → O⊗ and D⊗ be two O-monoidal
categories and let F : C⊗ → D⊗ be a lax O-monoidal map. Then, the O-algebra MF of
Theorem 4.3.1 is characterized by the following universal property: for each O-algebra
A of D⊗, the space of O-algebra maps MapAlg /O

(D)(MF,A) is homotopy equivalent to
the space of lax O-monoidal lifts of F along the projection D⊗

/A → D⊗

D⊗
/A

C⊗ D⊗.F

Let us consider the case where O⊗ is the little cubes ∞-operad E⊗
n with n ≥ 1, the

∞-category C⊗ is an En-monoidal Kan complex, and the ∞-category D⊗ is the En-
monoidal ∞-category of left R-modules where R is an En+1-ring spectrum. Then, we
can use the functor M to give an alternative presentation of the Thom spectrum func-
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tor. In particular, we will associate to an En-monoidal system of invertible R-modules
ξ : X⊗ → Pic(R)⊗ the En-algebra of LMod ⊗

R given by applying the functor M to the
composition of ξ with the inclusion ι : Pic(R)⊗ ↪→ LMod ⊗

R.

Definition 4.3.5. [ACB19, Def. 3.1] Let Pic(R)⊗ be the En-monoidal Kan complex as
in Definition 4.2.6. We define the generalized Thom spectrum functor ThR to be the
following composition of functors

AlgX/En
(Pic(R)) AlgX/En

(LModR) Alg /En
(LModR).

ThR

(ι◦−) M

It might look like we obtained something slightly more general than our initial goal since
the Thom spectrum functor of Definition 4.3.5 is defined for any lax En-monoidal systems
instead of just for (strong) En-monoidal systems. But this is not really the case. By
definition, Pic(R)⊗ is an En-monoidal category where each morphism is coCartesian, so
every lax En-monoidal map X⊗ → Pic(R)⊗ automatically maps coCartesian morphisms
of X⊗ to coCartesian morphisms of Pic(R)⊗ and it is, therefore, En-monoidal.

4.4 Relative Thom spectra

We conclude the exposition of the preliminary material with a brief overview of J.
Beardsley’s construction of the relative Thom spectrum [Bea17]; outlining the main
differences between the iterated Thom spectrum that we will present in the next chapter
and the relative Thom spectrum.

Before presenting the results it is necessary to fix some notation. We will take the freedom
of making some changes to J. Beardsley’s notation in order to make it consistent with
the notation that we will use in Chapter 5.

Let π : X⊗ → B⊗ be a left En-fibration of En-monoidal Kan complexes with n ≥ 2. We
denote by F⊗ the En-monoidal Kan complex obtained by applying [Ram22, Prop. 1.4]
to the following pullback diagram of ∞-operads

F⊗ X⊗

E⊗
n B⊗,

i

⌟ π

1B

where 1B is the trivial En-algebra of B⊗ as defined in [Lur17, Section 3.2.1]. From
Lemma 2.4.6 we know that under the equivalence given by the monoidal Grothendieck
construction LFibEn(En) ≃ Alg /En

(S), the En-monoidal Kan complex F⊗ corresponds
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to the following En-algebra of S⊗

F : E⊗
n

1B−−→ B⊗ ψ−→ S⊗,

were ψ is the straightening of the En-fibration π. By definition, the En-algebra F is
the image of the trivial algebra 1B by the functor induced by ψ on the ∞-categories of
En-algebras.

Let R be an Em-ring spectrum with n ≤ m. Suppose that in addition to the En-fibration
π we are given a system of invertible R-modules ξ : X⊗ → Pic(R)⊗. We define ξ1 to be
the lax En-monoidal map given by the following composition

ξ1 : F⊗ i−→ X⊗ ξ−→ Pic(R).

Definition 4.4.1. We say that an ∞-category C is reduced if its 0-skeleton consists
of a single vertex. Moreover, we say that an O-monoidal category C⊗ is reduced if its
underlying category is reduced. It is not hard to prove that any connected Kan complex
is equivalent to a reduced Kan complex.

We can now present the main theorem of [Bea17].

Theorem 4.4.2. [Bea17, Theorem 1] Suppose π : X⊗ → B⊗ is a left En-fibration of
reduced Kan complexes for n > 1. Let ξ : X⊗ → BGL1(R)⊗ be an En-monoidal system
of free rank-one R-modules. Then, there is an En−1-monoidal system of free rank-one
ThR(ξ1)-modules B⊗ → BGL1(ThR(ξ1))⊗ whose associated Thom spectrum is equivalent
to ThR(ξ).

Applying the theory of orientations discussed in [ABG18, Corollary 1.8] to the system
B⊗ → BGL1(ThR(ξ1))⊗ J. Beardsley proved the following corollary.

Corollary 4.4.3. [Bea17, Corollary 4] Given the assumptions of Theorem 4.4.2, there is
a morphism of En−1-algebras of left R-modules R → ThR(ξ1) → ThR(ξ) which induces
a Thom isomorphism of En−2-algebras of left R-modules

ThR(ξ) ∧ThR(ξ1) ThR(ξ) ≃ ThR(ξ) ∧R R[B],

where R[B] = R ∧S Σ∞
+ B.

Theorem 4.4.2 is presented for systems of free rank-one R-modules but we believe that
the result can be generalized without any major change in the argument to systems of
invertible R-modules. The reduced condition, on the contrary, is crucial for the proof of
Theorem 4.4.2. While J. Beardsley in [Bea17] presented many interesting applications for
the relative Thom spectrum, the reduced condition prevents one from applying Theorem
4.4.2 to other interesting cases, for instance to the symmetric monoidal spherical fibration

69



Chapter 4. Thom functor

given by the group completion of the so-called J map Jgp : Z × BU → Pic(S) [Hop18]
along the symmetric left fibration given by the projection on the path components of
Z × BU.

In the next chapter, we will propose an alternative construction of the relative Thom
spectrum. We will call this construction iterated Thom spectrum for reasons that
will be clear to the reader. The advantage of our construction is that it replaces the
reduced condition with the condition of having an additional E1-monoidal structure on
the fibration, effectively replacing the left En-fibration π with a left En+1-fibration.
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Iterated Thom spectra

Now that we have introduced some basic ∞-categorical machinery, let us reformulate
with the proper language the informal description of the iterated Thom spectrum that
we have given during the introduction.

Let R be an Em-ring spectrum and let ξ : X⊗ → Pic(R)⊗ be an En-monoidal system
of invertible R-modules over a grouplike Kan complex with 2 < n + 1 ≤ m, suppose
that in addition we are given an essentially surjective left En-fibration π : X⊗ → B⊗ of
grouplike Kan complexes. As we mentioned during the introduction, it is possible to use
left Kan extensions to produce a functor on the underlying categories

X Pic(R) LModR

B.

ξ

π ThR(ξ)B

Utilizing either the theory of operadic left Kan extensions, as in Beardsley’s work [Bea17],
or the monoidal Grothendieck construction combined with the theory of lax En-monoidal
lifts, see Lemma 4.3.3, we can realize the previous functor as a lax En-monoidal map

ThR(ξ)B : B⊗ → LMod ⊗
R.

We now consider the map induced by ThR(ξ)B on the En−1-monoidal categories of left
modules, and, after pre and postcomposing with the appropriate equivalences we obtain
the following lax En−1-monoidal functor

ThR(ξ)B : B⊗ ≃ LMod 1B (B)⊗ → LMod ThR(ξ1)(LModR)⊗ ≃ LMod ⊗
ThR(ξ1),

where ThR(ξ1) is the image of the trivial algebra 1B of B⊗. We can now ask if
the resulting lax En−1-monoidal functor ThR(ξ)B factors through the En−1-monoidal
subcategory Pic(ThR(ξ1))⊗ ⊆ LMod ⊗

ThR(ξ1), we will prove that this is the case if and
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only if the map ThR(ξ)B is En−1-monoidal, and provide a sufficient condition on the
fibration π that ensures that the map is En−1-monoidal. In particular, we will prove
that if the left En-fibration π admits the structure of a left En+1-fibration then ThR(ξ)B

is En−1-monoidal. Instead of attacking the problem directly, we will first prove that if
ψ : B⊗ → S⊗ is the lax En+1-monoidal pre-sheaf given by the straightening of π, then
the lax En-monoidal functor induced by ψ on the category of En-modules

ψ′ : B⊗ ≃ ModEn
1B

(B)⊗ → ModEn
F (S)⊗

is En-monoidal, where F is the image of the trivial algebra 1B of B⊗ by the map induced
by ψ. We will then construct the functor ThR(ξ)B starting from the En-monoidal map
ψ′ utilizing only operations that preserve the monoidality.

Once we have proved that the map ThR(ξ)B factors through the En−1-monoidal category
Pic(ThR(ξ1))⊗ we can regard it as a system of invertible ThR(ξ1)-modules and apply
the monoidal Thom functor of Definition 4.3.5 to obtain an En−1-monoidal left ThR(ξ1)-
module that we will denote as the iterated Thom spectrum of ξ along π. We will
then prove that by considering the iterated Thom spectrum as an En−1-algebra of left
R-modules we can recover the original Thom spectrum ThR(ξ) as an En−1-algebra of
LMod ⊗

R.

In this chapter, unless explicitly stated, with categories we will always mean ∞-
categories, and with operads we will always mean ∞-operads.

5.1 En-monoidal principal G⊗-bundles

In this section, we will propose a definition for En-monoidal principal G⊗-bundles X⊗

over B⊗. Our main reference is the exposition of T. Nikolaus, U. Schreiber, and D.
Stevenson on the general theory of principal G-bundles in the context of ∞-categories
[NSS14]. (The authors of [NSS14] denote the base of a principal G-bundle with X; we
have chosen to utilize B to denote the base and use X instead of P to denote the space
over B. We hope that this change does not create any confusion in the reader.)

Let us first recall the 1-categorical definition of a principal G-bundle in the context of
topological spaces. Let X and B be topological spaces, and G a topological group. Let
ρ : X × G → X be an action of G on X and h : X → B a continuous map compatible
with the action ρ. We say that h : X → B is a principal G-bundle over B if:

• the action is principal, meaning that the shear map

η := (ρ, pr1) : X ×G → X ×
B
X

is an isomorphism; which implies that the action is free and transitive over B;
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5.1. En-monoidal principal G⊗-bundles

• the bundle X → B is isomorphic to the quotient map X → X/G;

• and the bundle is locally trivial.

Before presenting the definitions of ∞-action and ∞-principal G-bundle, we would like
to point out that while in 1-categories for the map ρ : X ×G → X to be associative and
compatible with the product of G are properties of the map ρ, in ∞-categories to be
associative and compatible are instead structures associated to the map ρ. For example,
for each diagram that encodes the notion of associativity and compatibility with the
product of G, we have to specify two-cells that make the diagram commute and, as we
will see in the definition, these structures are encoded with a functor from N(∆op) to
the ∞-category S.

Definition 5.1.1. [NSS14, Def. 3.1] Let X ∈ S and G be a group object of S as defined
in [NSS14, Def. 2.16]. A G-action on X is a groupoid object (X//G)•

. . . X ×G×G X ×G X,
d1

ρ=d0

where d1 : X × G → X is the projection and such that the degree-wise projection is a
morphism of simplicial objects

. . . X ×G×G X ×G X

. . . G×G G ∗.

The face map d0 : X × G → X is the morphism that corresponds to the 1-categorical
notion of G-action, as explained in [NSS14, Remark 3.2].

Definition 5.1.2. [NSS14, Def. 3.4] Let B ∈ S and G be a group object of S as defined
in [NSS14, Def. 2.16]. An ∞-principal G-bundle over B is:

• a morphism X → B in S;

• a G-action on X;

such that the map X → B exhibits B as the geometric realization of the simplicial object
(X//G)•.

Remark 5.1.3. In [NSS14, Prop. 3.13] the authors prove that there exists a universal
principal G-bundle, ∗ → BG, and every principal G-bundle can be constructed as the
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pullback of the universal one along a morphism B → BG. That is to say, there is an
equivalence

GBund(B) ≃ MapS(B,BG)

Remark 5.1.3 justifies our definition of En-monoidal principal G⊗-bundle.

Definition 5.1.4. Let B⊗ be an En-monoidal Kan complex and G⊗ a group object
in the category of En-monoidal Kan complexes as defined in [NSS14, Def. 2.16], i.e.,
an En+1-monoidal grouplike Kan complex. An En-monoidal principal G⊗-bundle is an
En-monoidal map

B⊗ → BG⊗,

where BG⊗ is the En-monoidal bar construction of G⊗ defined in [Lur17, Section 5.2].

Remark 5.1.5. Any En-monoidal principal G⊗-bundle defines a principal G-bundle on
the underlying categories. Let h : B⊗ → BG⊗ be an En-monoidal principal G⊗-bundle
over B⊗. If we consider the functor induced by h on the underlying categories we obtain
a map B → BG and considering its pullback along the universal principal G-bundle we
obtain a principal G-bundle over B.

Let us define the notion of the En-monoidal shear map associated with an En-monoidal
principal G⊗-bundle.

Definition 5.1.6. Let h : B⊗ → BG⊗ be an En-monoidal principal G⊗-bundle over B⊗.
By definition, BG⊗ is the geometric realization of the simplicial object Bar(G)• defined
in [Lur17, Section 5.2.2]. We now consider the following pullback square of simplicial
objects of En-monoidal categories

B⊗ ×
BG⊗

Bar(G)• B⊗

Bar(G)• BG⊗,

⌟ h

where we are considering B⊗ and BG⊗ as constant simplicial objects with target B⊗

and BG⊗ respectively. Let X⊗ be the En-monoidal fiber of h over the unit; then the
two face maps d0, d1 : X⊗ ×

E⊗
n

G⊗ → X⊗ of the pullback will define an En-monoidal shear
map

η = (d0, d1) : X⊗ ×
E⊗

n

G⊗ X⊗ ×
B⊗

X⊗.

Remark 5.1.7. The En-monoidal principal bundles satisfy the principality condition,
i.e., the shear maps are always equivalences. Let h : B⊗ → BG⊗ be an En-monoidal
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principal G⊗-bundle. From Corollary 2.2.13 we know that in order to prove that the
En-monoidal shear map is an equivalence it is sufficient to check that the functor in-
duced on the underlying categories is an equivalence, but this is exactly the shear map
of the principal G-action of the underlying categories described in Remark 5.1.5, and in
[NSS14, Prop. 3.7] it is proven that principal G-bundles satisfy the principality condition.

The main examples of En-monoidal principal bundles that we are interested in come
from En+1-monoidal essentially surjective maps between grouplike Kan complexes.

Proposition 5.1.8. Let π : X⊗ → B⊗ be an essentially surjective morphism of En+1-
monoidal grouplike Kan complexes. Then X⊗ ×

E⊗
n+1

E⊗
n naturally admits the structure

of an En-principal F⊗-bundle over B⊗ ×
E⊗

n+1

E⊗
n , where F⊗ is the En+1-monoidal Kan

complex defined by the following pullback

F⊗ X⊗

E⊗
n+1 B⊗.

ι

⌟ π

1B

Proof. From Dunn additivity theorem 3.3.4 the operad E⊗
n+1 is equivalent to the tensor

product of the operads E⊗
1 and E⊗

n , therefore there is an equivalence of ∞-categories

Alg En+1(S) ≃ Alg E1(Alg En(S)).

Since the ∞-category of En+1-monoidal Kan complexes is equivalent to the category
Alg En+1(S), we can consider F⊗, X⊗, and B⊗ as E1-algebra objects of the category
of En-monoidal Kan complexes, i.e., En-monoidal Kan-complexes equipped with En-
monoidal associative products.

Now we consider the following sequence of En-monoidal maps

F⊗ X⊗ B⊗

BF⊗ BX⊗ BB⊗.

ι π

h

Bι Bπ

The map h defines the required En-monoidal principal F⊗-bundle over B⊗. The
sequence is given by considering the long fiber sequence associated with the fibration
BF → BX → BB and applying [Lur17, Theorem 5.2.6.10] to recognize grouplike Ek-
algebras of S⊗ as k-fold loop spaces.
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5.2 En-monoidal pre-sheaves from En-monoidal principal bun-

dles

Let π : X⊗ → B⊗ be an essentially surjective left En+1-fibration of grouplike Kan
complexes. We denote by ψ : B⊗ → S⊗ the lax En-monoidal pre-sheaf which classifies π,
i.e., the operadic map given by the straightening of π. The goal of this section is
to prove that we can factor the pre-sheaf ψ through a (strong) En-monoidal map
ψ′ : B⊗ → ModEn

F (S)⊗ using the principal En-monoidal action of the fiber F⊗ on
X⊗ described in Proposition 5.1.8.

Suppose that we are given:

• p′ : X⊗ → E⊗
n+1 and p : B⊗ → E⊗

n+1 two En+1-monoidal grouplike Kan complexes,
where n ≥ 2;

• and an essentially surjective left En+1-fibration π : X⊗ → B⊗, as defined in
Definition 2.4.1.

Let 1X be the trivial En+1-algebra of X⊗ as defined in [Lur17, Section 3.2.1]. We denote
by 1B the image of 1X by the map induced by π on the En+1-algebras. Let F⊗ be the
fiber of π over 1B. If it is clear from context we will omit the subscripts B and X from
the trivial algebras.

Using the equivalence Alg En+1(S) ≃ Alg E1(Alg En(S)), we can consider X⊗ and B⊗

as En-monoidal Kan complexes equipped with En-monoidal associative products. From
Proposition 5.1.8 we know that X⊗ admits the structure of an En-monoidal principal
F⊗-bundle over B⊗. In particular, the En-monoidal shear map η is an equivalence of
left En-fibrations

X⊗ ×
E⊗

n

F⊗ X⊗ ×
B⊗

X⊗

X⊗.

≃
η

We start by applying the En-monoidal straightening functor [Ram22, Cor. 4.8] to the
left En-fibration π to obtain a lax En-monoidal map, or En-monoidal pre-sheaf, that
classifies π

ψ : B⊗ → S⊗.

Where q : S⊗ → E⊗
n is the En-monoidal category obtained by taking the pullback of the

Cartesian structure S× → N(F in∗), see Example 2.2.5, along the map E⊗
n → N(F in∗)

as described in Remark 2.2.8.

In order to produce a (strong) En-monoidal functor we consider the map induced by ψ
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on the categories of En-modules over the trivial algebra 1B

ModEn
1B

(B)⊗ ModEn
F (S)⊗

B⊗ S⊗.

ψ′

ψ

Where the vertical maps are forgetful functors and the En-algebra F is the En-algebra
of S⊗ induced by the trivial En-algebra 1B and the map ψ. As we have seen at the end
of Chapter 4, the En-algebra F classifies the En-monoidal Kan complex F⊗ defined in
Proposition 5.1.8. We claim that the map ψ′ is En-monoidal, and the rest of this section
will be dedicated to proving this claim.

Since 1 := 1B is a trivial algebra of B⊗, the forgetful functor ModEn
1 (B)⊗ → B⊗

is an equivalence of ∞-operads [Lur17, Prop. 3.4.2.1] therefore by Proposition 2.2.13
we know that it admits an En-monoidal inverse. We fix an En-monoidal inverse
B⊗ ≃−→ ModEn

1 (B)⊗ and consider the map

B⊗ ≃−→ ModEn
1 (B)⊗ ψ′

−→ ModEn
F (S)⊗.

If our claim that ψ′ is En-monoidal is true, then this composition is also En-monoidal.
Before proving the claim, we need two technical lemmas. The following two results are
almost direct consequences of a combination of results from [Lur09] and [Lur17].

Lemma 5.2.1. Let A⊗, B⊗ and C⊗ be three O-monoidal categories and suppose that
we have the following diagram of simplicial sets

A⊗ B⊗ C⊗

O⊗,

p

F

p′

G

p′′

where G is an O-monoidal map that induces a conservative functor on the underlying
categories, i.e., a functor that reflects equivalences. Then, F is O-monoidal if and only
if G ◦ F is O-monoidal.

Proof. The "only if" implication is trivial.

For the "if" implication, let us suppose that the composition G ◦ F is O-monoidal. Let
g : A → A′ be a p-coCartesian morphism of A⊗ covering the morphism α : X → X ′ of
O⊗; we wish to show that the morphism F (g) : B → B′ is p′-coCartesian. Since A⊗ is
O-monoidal we can assume without loss of generality that X ′ ∈ O.

The category B⊗ is O-monoidal, so there exists a p′-coCartesian morphism h : B → B′′

77



Chapter 5. Iterated Thom spectra

covering α with source B. By the universal property of coCartesian morphisms, there
exists a unique, up to a contractible space of choices, morphism ℓ : B′′ → B′ covering
the identity that fits in the following commutative diagram of B⊗

B B′

B′′.

F (g)

h
ℓ (⋆)

Now we consider the image of the diagram (⋆) by the functor G.

 A A′g



B B′

B′′

F (g)

h
ℓ



C C ′

C ′′

(G◦F )(g)

G(h)
G(ℓ)≃




X X ′

X ′
α

α

id

 .

F

p p′

G

p′′

The functors G and G ◦ F are both O-monoidal, i.e., they preserve coCartesian
morphisms, so the morphisms (G ◦F )(g) and G(h) are p′′-coCartesian. Since (G ◦F )(g)
and G(h) are coCartesian morphisms covering the same morphism of O⊗ and having
the same source, the morphism G(ℓ) must be an equivalence, but by hypothesis, the
functor G reflects equivalences of the underlying categories, so ℓ is an equivalence of B.
Since all equivalences are coCartesian morphisms, we can use the dual version of [Lur17,
Prop. 2.4.1.7] to conclude that F (g) is p′-coCartesian.

Lemma 5.2.2. Let C⊗ be an En-monoidal category and A ∈ Alg /En
(C). The E1-

monoidal functor
ModEn

A (C)⊗ ×
E⊗

n

E⊗
1 → ModE1

A′ (C′)⊗

defined in [Lur17, Construction 5.1.3.1] induces a conservative functor on the
underlying categories, i.e., the functor reflects the equivalences of the underlying
categories. Here C′ ⊗ = C⊗ ×

E⊗
n

E⊗
1 and A′ ∈ Alg /E1(C′) is the image of A by the forgetful

functor Alg /En
(C) → Alg /E1(C′).

Proof. We claim that the forgetful functor ModEn
A (C) → C is conservative. Let us

suppose that this claim is true. Since the inclusion E⊗
1 → E⊗

n induces an equivalence
on the underlying categories, the pullback of ModEn

A (C) → C along E1 → En must be
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conservative too. From the commutativity of the following diagram

ModEn
A (C) ×

En

E1 ModE1
A′ (C′)

C′,

it follows that the functor ModEn
A (C) ×

En

E1 → ModE1
A′ (C′) is conservative.

We now prove the claim. [Lur17, Corollary 3.4.3.4] states that the map ϕ : ModEn(C)⊗ →
Alg /En

(C) is a coCartesian fibration and a morphism of ModEn(C)⊗ is ϕ-coCartesian if
and only if its image in C⊗ is an equivalence. Let f be a morphism of ModEn

A (C)⊗ such
that its image in C⊗ is an equivalence; we wish to prove that f is an equivalence as well.
We aim to do so by proving that f is a coCartesian morphism covering an equivalence
and applying [Lur09, Prop. 2.4.1.3]. By definition, the category ModEn

A (C)⊗ fits in the
following pullback diagram

ModEn
A (C)⊗ ModEn(C)⊗

{A} Alg /En
(C).

ϕA ⌟ ϕ

From [Lur09, Prop. 2.4.2.3] we know that coCartesian fibrations are stable under
pullbacks. Moreover, the map ModEn

A (C)⊗ → ModEn(C)⊗ reflects and preserves
coCartesian morphisms. So f is a ϕA-coCartesian morphism if and only if its image
f̄ is ϕ-coCartesian. Since the following diagram commutes

ModEn
A (C)⊗ ModEn(C)⊗

C⊗

the image in C⊗ of f̄ is an equivalence. Hence from [Lur17, Corollary 3.4.3.4] we
know that f̄ is a ϕ-coCartesian morphism, this implies that f is a ϕA-coCartesian
morphism covering the identity of {A} and by [Lur09, Prop. 2.4.1.3] it is in particular
an equivalence. We have proven that the functor ModEn

A (C)⊗ → C⊗ is conservative. It
immediately follows that the functor induced on the underlying categories is conservative
as well.

Proposition 5.2.3. The map ψ′ : ModEn
1 (B)⊗ → ModEn

F (S)⊗ is En-monoidal.

Proof. We consider the lax En-monoidal map ϕ′ given by the following composition
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ModEn
1 (X)⊗ ModEn

1 (B)⊗ ModEn
F (S)⊗

ϕ′

π′ ψ′
.

Since π′ is an essentially surjective En-monoidal map, from Proposition 2.2.12 we know
that ψ′ is En-monoidal if and only if the composition ϕ′ = ψ′ ◦π′ is En-monoidal. There-
fore, it is sufficient to prove that ϕ′ is En-monoidal.

Let γn be a p′-coCartesian morphism of ModEn
1 (X)⊗ covering the morphism γn : ⟨r⟩ →

⟨m⟩ of E⊗
n . We wish to show that ϕ′(γn) is a q′-coCartesian morphism of ModEn

F (S)⊗,
where q′ is the En-monoidal structure of ModEn

F (S)⊗ induced by the En-monoidal struc-
ture q : S⊗ → E⊗

n as described in Theorem 3.2.8.

Since n ≥ 1, E⊗
n is equivalent to the tensor product of n copies of E⊗

1 there exists an
operad map E⊗

1 → E⊗
n , such that γn is the image of a morphism γ1 of E⊗

1 . Then,
the morphism γn must be the image of a morphism γ1 of the E1-monoidal category
ModEn

1 (X)⊗ ×
E⊗

n

E⊗
1 .

We claim that to prove that the image of the morphism γn by the map ϕ′ is q′-coCartesian
it is sufficient to prove that the map ϕ′′ induced by ϕ′ on the pullbacks along E⊗

1 → E⊗
n

is E1-monoidal
ModEn

1 (X)⊗ ModEn
F (S)⊗

ModEn
1 (X)⊗ ×

E⊗
n

E⊗
1 ModEn

F (S)⊗ ×
E⊗

n

E⊗
1 .

ϕ′

ϕ′′

Let us prove the claim. Assuming that ϕ′′ is E1-monoidal, we wish to prove that the
morphism ϕ′(γn) is coCartesian. From [Lur09, Prop. 2.4.1.3] we know that since γn

is coCartesian so is γ1. We assumed that the functor ϕ′′ is E1-monoidal so the image
ϕ′′(γ1) is coCartesian and, in particular, it is locally coCartesian. Combining [Lur09,
Remark 2.4.1.12] and [Lur09, Prop. 2.4.2.8] we obtain that ϕ′(γn) is coCartesian.

By Theorem 3.3.5 we know that the map of ∞-operads E⊗
1 → E⊗

n induces E1-monoidal
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functors H and G that fit in the following diagram

ModEn
1 (X)⊗ ×

E⊗
n

E⊗
1 ModEn

F (S)⊗ ×
E⊗

n

E⊗
1

ModE1
1X

(X ′)⊗ ModE1
F (S ′)⊗,

ϕ′′

H G

ϕ′′′

where X ′ ⊗ = X⊗ ×
E⊗

n

E⊗
1 and S ′ ⊗ = S⊗ ×

E⊗
n

E⊗
1 .

In Lemma 5.2.2 we have seen that G induces a conservative functor on the underlying
categories, so, by Lemma 5.2.1, in order to prove that ϕ′′ is E1-monoidal it is sufficient
to prove that the map ϕ′′′ is E1-monoidal.

Since E⊗
1 ≃ Assoc⊗, we have effectively reduced the proof to the case where X⊗ and B⊗

are associative monoidal grouplike Kan complexes with a principal associative monoidal
action of F⊗ on X⊗. The action is the one defined by the associative monoidal principal
F⊗-bundle obtained by taking the pullback of the map B⊗ → BF⊗ along the functor
Assoc⊗ → E⊗

n . In order to simplify the notation, we will refer to the map ϕ′′′ by ϕ′, as
if we were considering from the beginning associative monoidal categories.

Let β̄ be a coCartesian morphism of ModAssoc
1 (X)⊗ covering a morphism β of Assoc⊗;

we have to prove that ϕ′(β̄) is a coCartesian morphism of ModAssoc
F (S)⊗. Without loss of

generality, we can assume that β is the unique active morphism with source ⟨2⟩ and target
⟨1⟩ given by the natural linear ordering of ⟨2⟩, see proof of [Lur17, Theorem 5.1.3.2].

From Proposition 3.2.10 it follows that the monoidal categories ModAssoc
1 (X)⊗ and

ModAssoc
F (S)⊗ are equivalent to the categories 1BMod1(X) and FBModF (S) equipped

with the relative tensor product defined in Section 3.1.4. Then there exist elements
x, y ∈ ModAssoc

1 (X) ≃ 1BMod1(X) ≃ X such that

β̄ : (x, y) → xy,

where xy is the product of x and y. Since the map ϕ′ is lax Assoc-monoidal we know
that there exist a unique coCartesian morphism β̃ covering β and a morphism ℓ covering
the identity that fit in the following diagram of ModAssoc

F (S)⊗

(ϕ′(x), ϕ′(y)) ϕ′(xy)

ϕ′(x) ⊗F ϕ
′(y).

β̃

ϕ′(β̄)

ℓ

In order to prove that the morphism ϕ′(β̄) is coCartesian it is sufficient to prove that the
morphism ℓ is an equivalence. From Proposition 3.2.10 we know that we can describe
the product of ModAssoc

F (S)⊗ via the bar construction. Let H̄ : Tens⊗
≺ → X⊗ be the
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map that presents xy as the relative tensor product of x and y

Tens⊗
[2] X⊗

Tens⊗
≺ Assoc⊗,

H

p

h

H

where the bottom horizontal map is the one defined in [Lur17, Def. 4.4.1.1]

h : Tens⊗
≺ ↪→ Tens⊗ → Assoc⊗.

Postcomposing with the operadic map ϕ′ we obtain the following commutative diagram

Tens⊗
[2] X⊗ S⊗

Tens⊗
≺ Assoc⊗.

H ϕ′

q
H

Then the morphism ℓ, which we claim to be an equivalence, corresponds to the morphism
from the geometric realization of the bar construction of ϕ′(x) and ϕ′(y) to the image of
m by the map ϕ′ ◦ H̄

ϕ′(x) ⊗F ϕ
′(y) ≃ |BarF (ϕ′(x), ϕ′(y))•| → ϕ′(|Bar1(x, y)•|) ≃ ϕ′ ◦ H̄(m) = ϕ′(xy). (⋆)

We refer to the morphism (⋆) as the morphism induced by the lax monoidal structure
of ϕ′ on x and y; the rest of the proof consists of proving that this morphism is an
equivalence.

Let us consider the morphism of associative monoidal left fibrations η given by the shear
map of the monoidal principal action of F⊗ on X⊗ over B⊗

X⊗ ×
Assoc⊗

F⊗ X⊗ ×
B⊗

X⊗

X⊗.

ν

≃
η

µ

Applying the monoidal straightening functor to η we obtain a natural equivalence
between the lax associative monoidal pre-sheaves that classify the two left Assoc-
fibrations ν and µ. Since, in both cases, the fibrations are defined from pullbacks,
we can use Lemma 2.4.6 to compute their classifying operadic maps. The lax monoidal
pre-sheaves that classify the left fibrations are the pre-sheaf ϕ = ψ ◦π, and the constant
pre-sheaf that maps the category X⊗ to the algebra object F
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
X⊗ ⊗

B⊗
X⊗ X⊗

X⊗ B⊗

µ ⌟
π

π



 X⊗ B⊗ S⊗π

StX(µ)

ψ




X⊗ ×

Assoc⊗
F⊗ F⊗

X⊗ Assoc⊗

ν ⌟
p



 X⊗ Assoc⊗ S⊗p

StX(ν)

F

 .

StX

StX

Where we are abusing notation by denoting by F the associative algebra of S⊗, the
associative algebra considered as an F -bimodule, and F considered as an object of S.
Applying the monoidal straightening functor to the equivalence of associative monoidal
left fibrations η, we obtain a natural equivalence of lax associative monoidal pre-sheaves

B⊗

X⊗ S⊗.

Assoc⊗

ψπ

p

η≃

F

Let x be an object of X and let x : BM⊗ → X⊗ be the operadic map that describes x
as a 1X -bimodule. We denote by F and Xa, where a = π(x), the F -bimodules obtained
by postcomposing x with the operadic maps F ◦ p and ϕ respectively. Postcomposition
with the natural equivalence η

ηx : BM⊗ × J X⊗ × J S⊗,
x×id η

where J is the nerve of the free groupoid of the direct 1-category [1], defines an
equivalence ηx of F -bimodules with source F and target Xa

B⊗

BM⊗ X⊗ S⊗

Assoc⊗

Assoc⊗ Assoc⊗.

ψ

x

p

π

p q

η≃

F

id
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To have a better intuition for the morphism ηx we suggest consulting Section A.2 where
we describe how it is possible to recover from the map ηx : BM⊗ × J → S⊗ the classical
notion of a morphism of the underlying objects that is compatible with the left and right
F -action.

The next step consists of using the natural transformation η to produce the following
commutative diagram

F F ⊗
F
F

Xab Xa ⊗
F
Xb.

ηxy≃

≃

ηx⊗
F
ηy≃

Where the horizontal morphisms are the ones defined by the lax monoidal structures of
the pre-sheaves F ◦ p and ϕ = ψ ◦ π on x and y, and b = π(y). By the two-out-of-three
rule, we will get that the bottom horizontal map is an equivalence as well.

Let us consider once again the map H that presents xy as the relative tensor product of
x and y

Tens⊗
[2] X⊗

Tens⊗
≺ Assoc⊗.

H

p

h

H

By considering the diagram given by taking the Cartesian product of the functors with
the identity of J and then postcomposing with the natural transformation η we obtain
the following commutative diagram

Tens⊗
[2] × J X⊗ × J S⊗

Tens⊗
≺ × J Assoc⊗.

H η

q

h◦pr1
H

Restricting the map (η ◦ H) to Tens⊗
≺ × {0, 1} we can define two maps of ∞-operads

from Tens⊗
≺ to the category S⊗:

• the map of ∞-operads

(η ◦H)|{0} = (F ◦ p ◦H) : Tens⊗
≺ −→ S⊗,

which, after precomposing with the functor U+ : N(∆op
+ ) → N(Step) → Tens⊗

≺

described in Remark 3.1.18, defines the augmented simplicial object (F ◦p◦H◦U+)•

with augmentation F . We can informally think of (F ◦p◦H◦U+)• as the augmented
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simplicial object

. . . (F, F, F ) (F, F ) F ;

• and the map of ∞-operads

(η ◦H)|{1} = (ϕ ◦H) : Tens⊗
≺ −→ S⊗,

which defines the augmented simplicial object (ϕ ◦ H ◦ U+)• with augmentation
Xab, which can informally be described as

. . . (Xa, F,Xb) (Xa, Xb) Xab.

Precomposing (η ◦H) with U+ we obtain an equivalence of augmented simplicial objects

(F ◦ p ◦H ◦ U+)•
≃−→ (ϕ ◦H ◦ U+)•,

or, equivalently, a commutative square of (non-augmented) simplicial objects of S⊗.
(The commutative square is produced by precomposing the functor that classifies the
previous morphism with the nerve of the standard projection from the cylinder category
of ∆op to the category ∆op

∗ .)

(F ◦ p ◦H ◦ U)• F

(ϕ ◦H ◦ U)• Xab,

η•≃ ηxy≃

where we are considering F and Xab as constant simplicial objects with values F and
Xab, and U is the functor described in Remark 3.1.18.

By [Lur18, Theorem 5.2.1.1] we know that postcomposition with a coCartesian fibration
is coCartesian, in particular, the functor

Fun(N(∆op),S⊗) Fun(N(∆op),Assoc⊗)(q◦−)

is coCartesian. Let β be the morphism of Fun(N(∆op),Assoc⊗) defined by the augmented
simplicial object N(∆op

+ ) U+−−→ Tens⊗
≺

h−→ Assoc⊗.

We consider the following diagram of Fun(N(∆op),S⊗), where the morphisms β! are the
coCartesian morphisms covering β and the objects BarF (F, F )• and BarF (Xa, Xb)• are
defined as in Construction 3.1.20
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BarF (F, F )•

(F ◦ p ◦H ◦ U)• F

(ϕ ◦H ◦ U)• Xab

BarF (Xa, Xb)•.

β!

η•≃ ηxy≃

β!

With the same procedure as the one described in Section A.1, starting from the diagram
of solid arrows, we can use the universal property of the coCartesian morphisms to obtain
the following commutative diagram of Fun(N(∆op),S⊗)

BarF (F, F )•

(F ◦ p ◦H ◦ U)• F

(ϕ ◦H ◦ U)• Xab

BarF (Xa, Xb)•.

≃ BarF (ηx,ηy)

β!

η•≃ ηxy≃

β!

The right-most commutative square can be informally described as

. . . F × F × F F × F F

. . . Xa × F ×Xb Xa ×Xb Xab.

ηx×η1×ηy≃ ηx×ηy≃ ηxy≃

We now focus on the geometric realization of the right-most square

F |BarF (F, F )•|

Xab |BarF (Xa, Xb)•|.

≃ ≃

where the bottom and the top horizontal morphisms are the morphisms defined by the
lax monoidal structures of the maps ϕ and F ◦ p. By unitality of the relative tensor
product [Lur17, Prop. 4.4.3.16] the top horizontal morphism is an equivalence. By the
two-out-of-three rule, the bottom map must be an equivalence too.
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5.3. Construction of the iterated Thom spectrum

5.3 Construction of the iterated Thom spectrum

In this section, we will apply a series of operations, namely postcomposition with
monoidal functors and base changes, to the En-monoidal functor

ψ′ : B⊗ → ModEn
F (S)⊗

introduced in the previous section to obtain the system of invertible ThR(ξ1)-modules
ThR(ξ)B as an En−1-monoidal map. Once we have obtained the functor ThR(ξ)B we
will apply to it O. Antolín-Camarena and T. Barthel’s version of the monoidal Thom
functor to define the iterated Thom spectrum ThThπ(ξ) of ξ along π as an En−1-algebra
of LMod ⊗

ThR(ξ1).

Our initial hypotheses are the following:

• an Em-ring spectrum R;

• an essentially surjective left En+1-fibration π : X⊗ → B⊗ of grouplike Kan
complexes with 2 < n+ 1 ≤ m;

• and an En-monoidal system of invertible R-modules ξ : X⊗ → Pic(R)⊗, i.e., a
morphism of En-monoidal Kan complexes where Pic(R)⊗ is the category defined
in Definition 4.2.6.

As usual, we will use the equivalence Alg En+1(S) ≃ Alg E1(Alg En(S)) to consider X⊗,
B⊗ and Pic(R)⊗ as En-monoidal categories equipped with associative En-monoidal prod-
ucts. We start by producing a lax En-monoidal version of the map b 7→ ξb.

Construction 5.3.1. The system ξ : X⊗ → Pic(R)⊗ defines the following morphism of
left En-fibrations

X⊗ Pic(R)⊗ ×
E⊗

n

B⊗

B⊗.

π

(ξ,π)

pr2

Applying the En-monoidal straightening functor to the morphism (ξ,π), we obtain
a natural transformation between the En-monoidal pre-sheaves that classify the two
fibrations

B⊗ S⊗.

E⊗
n

ψ

p
(ξ,π)

Pic(R)

In view of Lemma 4.3.3 we know that the natural transformation (ξ,π) defines a lift
ξB : B⊗ → S⊗

/Pic(R) of the lax En-monoidal map ψ to the overcategory S⊗
/Pic(R) as
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defined in Definition 2.3.6
S⊗
/Pic(R)

B⊗ S⊗.

U

ψ

ξB (∗)

We can now consider the diagram induced by (∗) on the categories of En-modules

ModEn
ξ1

(S/Pic(R))⊗

B⊗ ≃ ModEn
1 (B)⊗ ModEn

F (S)⊗.

U ′

ψ′

ξB

From Proposition 5.2.3 we know that the map ψ′ is En-monoidal, and to prove that its
lift ξB is En-monoidal we plan to apply Lemma 5.2.1.

Proposition 5.3.2. The map ξB : B⊗ → ModEn
ξ1

(S/Pic(R))⊗ defined above is En-
monoidal.

Proof. First, we prove that the map U ′ : ModEn
ξ1

(S/Pic(R))⊗ → ModEn
F (S)⊗ induced by

the forgetful functor is conservative and En-monoidal:

• We start by proving that it is En-monoidal. Applying the same argument as for
Proposition 5.2.3 we can reduce the problem to n = 1.

Let β̄ be a coCartesian morphism of ModAssoc
ξ1 (S/Pic(R))⊗ covering a morphism β of

Assoc⊗; we have to prove that U ′(β̄) is a coCartesian morphism of ModAssoc
F (S)⊗.

We can assume without loss of generality that β is the unique active morphism
covering ⟨2⟩ → ⟨1⟩ given by the natural linear ordering of ⟨2⟩. Then there exist
elements f, g ∈ ModAssoc

ξ1 (S/Pic(R)) ≃ ξ1BMod ξ1(S/Pic(R)) such that

β̄ : (f, g) → f ⊗ξ1 g.

The map U ′ is lax Assoc-monoidal, hence there exists a unique coCartesian
morphism β̃ covering β and a morphism ℓ covering the identity that fit in the
following diagram of ModAssoc

F (S)⊗

(U ′(f), U ′(g)) U ′(f ⊗ξ1 g)

U ′(f) ⊗F U
′(g).

β̃

U ′(β̄)

ℓ

In order to prove that the morphism U ′(β̄) is coCartesian it is sufficient to prove
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that the morphism ℓ is an equivalence. From Proposition 3.2.10 we know that
the product of ModAssoc

F (S)⊗ can be modeled by the bar construction. Let
H̄ : Tens⊗

≺ → S⊗
/Pic(R) be the map that presents f ⊗ξ1 g as the relative tensor

product of f and g

Tens⊗
[2] S⊗

/Pic(R)

Tens⊗
≺ Assoc⊗.

H

p

h
H

Postcomposing with the operadic map U we obtain the following commutative
diagram

Tens⊗
[2] (S/Pic(R))⊗ S⊗

Tens⊗
≺ Assoc⊗.

H U

q

h
H

By Remark 3.1.20 we know that the morphism ℓ is an equivalence if and only if
U ◦ H̄ presents U(f ⊗ξ1 g) as the relative tensor product of U(f) and U(g). From
the dual version of [Lur17, Lemma 2.2.2.9] it follows that the forgetful functor
U : S⊗

/Pic(R) → S⊗ preserves colimits, therefore

U ◦ H̄(m) ≃ U(|Barξ1(f, g)|) ≃ |U(Barξ1(f, g))| ≃ |BarF (U(f), U(g))|.

Applying Theorem 3.1.21 we conclude that U ◦H̄ presents U(f⊗ξ1 g) as the relative
tensor product of U(f) and U(g) and therefore ℓ is an equivalence.

• We will now prove that the map U ′ induces a conservative functor on the underlying
categories. From the proof of Lemma 5.2.2 we know that the vertical arrows of the
following commutative diagram are conservative

ModEn
ξ1

(S/Pic(R)) ModEn
F (S)

S/Pic(R) S.

U ′

U

Then, in order to prove that U ′ is conservative, is sufficient to prove that functor
U is conservative, but U is a right fibration [Lur17, Corollary 2.1.2.2] and from the
dual of [Lur17, Prop. 2.1.1.5] it follows that every right fibration is conservative.

To conclude the proof we apply Lemma 5.2.1 with F = ξB, G = U ′, and F ◦G = ψ′.

The theory of Thom spectra is defined for the monoidal categories of left modules instead
of the categories of bimodules. Until now we have stated our arguments in the categories
of En-bimodules, ModEn

A (C)⊗, because thanks to results like Theorem 3.3.5 we have a

89



Chapter 5. Iterated Thom spectra

better description of the coCartesian morphisms of these En-monoidal categories. Since
we no longer need to use these results, we can pass to the categories of left modules.
We can do that by considering the pullback of ξB along E⊗

n−1 → E⊗
n and postcompose

it with the En−1-monoidal functor described in Theorem 3.3.6

B⊗ ×
E⊗

n

E⊗
n−1 ModEn

ξ1
(S/Pic(R))⊗ ×

E⊗
n

E⊗
n−1 LMod ξ1(S/Pic(R))⊗;ξB

Abusing the notation we will also denote this composition by ξB. Postcomposing ξB

with the map induced by the monoidal Thom functor on the category of left modules,
where we are considering the monoidal Thom functor defined in Theorem 4.2.8, and
then postcomposing again with the equivalence LMod ⊗

ThR(ξ1)(LModR) ≃−→ LMod ⊗
ThR(ξ1)

defined in [Lur17, Corollary 7.1.3.4]; we obtain the En−1-monoidal map

B⊗ LMod ξ1(S/Pic(R))⊗ LMod ThR(ξ1)(LModR)⊗ LMod ⊗
ThR(ξ1).

ξB

ThR(ξ)B

Th′
R ≃

We refer to this composition as the En−1-monoidal system of ThR(ξ1)-modules over B
associated to ξ along π.

We will now prove that since the category B is a grouplike Kan complex, the map
ThR(ξ)B factors through the En−1-monoidal Kan complex Pic(ThR(ξ1))⊗.

Proposition 5.3.3. The En−1-monoidal map

ThR(ξ)B : B⊗ → LMod ⊗
ThR(ξ1)

factors through the inclusion Pic(ThR(ξ1))⊗ ↪→ LMod ⊗
ThR(ξ1).

Proof. We first prove that the map factors through the subcategory (LMod ⊗
ThR(ξ1))coCart

as defined in Proposition 4.2.7; we recall that this is the subcategory of LMod ⊗
ThR(ξ1)

spanned by coCartesian morphisms. Since ThR(ξ)B is En−1-monoidal, it maps
coCartesian morphisms to coCartesian morphisms, hence it is sufficient to prove that
every morphism of B⊗ is coCartesian.

Proposition [Lur09, Prop. 2.4.2.4] states that every edge of B⊗ is coCartesian if and only
if each fiber B⊗

⟨k⟩ of the coCartesian fibration B⊗ → E⊗
n−1 is a Kan complex. Since B⊗

is En−1-monoidal, the fiber over ⟨k⟩ is equivalent to the k-fold Cartesian product of B,
Proposition 2.2.1; and, by hypothesis, B is a Kan complex.
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Now we want to prove that the image of ThR(ξ)B is contained in the En−1-monoidal full
subcategory of (LMod ⊗

ThR(ξ1))coCart spanned by invertible objects, i.e., Pic(ThR(ξ1))⊗.
Let b ∈ B, we wish to prove that ThR(ξ)B(b) is an invertible left ThR(ξ1)-module. By
hypothesis, B is grouplike, therefore there exists an element b ∈ B which is homotopy
inverse to b, that is

b · b ≃ 1B, b · b ≃ 1B. (∗)

Applying the En−1-monoidal functor ThR(ξ)B to the equivalences (∗) we obtain

ThR(ξ)B(b) ⊗
ThR(ξ1)

ThR(ξ)B(b̄) ≃ ThR(ξ)B(b · b̄) ≃ ThR(ξ)B(1B) ≃ ThR(ξ1),

ThR(ξ)B(b̄) ⊗
ThR(ξ1)

ThR(ξ)B(b) ≃ ThR(ξ)B(b̄ · b) ≃ ThR(ξ)B(1B) ≃ ThR(ξ1),

this proves that ThR(ξ)B(b) is invertible.

Proposition 5.3.3 was the last result necessary for the construction of the En−1-monoidal
system of invertible ThR(ξ1)-modules over B associated to ξ along π

ThR(ξ)B : B⊗ → Pic(ThR(ξ1))⊗.

Now that we have defined a system of invertible ThR(ξ1)-modules over B we can apply
the Thom functor defined in Definition 4.3.5 to obtain an En−1-algebra of ThR(ξ1)-
modules.

Definition 5.3.4. Let ThR(ξ)B be the system of invertible ThR(ξ1)-modules defined
above. We define the iterated Thom spectrum of ξ along π to be the En−1-algebra of
left ThR(ξ1)-modules obtained by applying the functor M described in Theorem 4.3.1
to the following operadic map

B⊗ Pic(ThR(ξ1))⊗ LMod ⊗
ThR(ξ1).

ThR(ξ)B

We will denote this algebra by ThThπR(ξ). If it is clear from context we will omit the
fibration π from the notation.

5.4 Compatibility of the Thom spectrum and the iterated Thom

spectrum

In the previous section, we have defined the iterated Thom spectrum associated with
the En-monoidal system of invertible R-modules ξ : X⊗ → Pic(R)⊗ along a left En+1-
fibration π : X⊗ → B⊗. The goal of this section is to determine to what extent it is
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possible to recover the left R-module En-algebra ThR(ξ) associated with the original
system of invertible R-modules ξ from the iterated Thom spectrum ThThR(ξ) defined
in Definition 5.3.4.

We first observe that the ∞-category LMod ThR(ξ1) admits, in general, only an En−1-
monoidal structure; therefore one should not expect to be able to reconstruct the En-ring
spectrum ThR(ξ) from the En−1-ring spectrum ThThR(ξ). However, the main result of
this section states that if we consider ThThR(ξ) as an En−1-algebra in left R-modules,
then it is equivalent to ThR(ξ) considered as an En−1-algebra in left R-modules.

Starting from the lax En+1-monoidal pre-sheaf ψ : B⊗ → S⊗ it is clear that we can
reconstruct the fibration π : X⊗ → B⊗ via the monoidal unstraightening. Alternately,
and similarly to the non-monoidal case, we can recover the En+1-monoidal Kan complex
X⊗ as a certain colimit of the pre-sheaf ψ.

We will prove that the image of the pre-sheaf ψ by the functor M defined in Theorem
4.3.1 is equivalent to the En+1-monoidal Kan complex X⊗ considered as En+1-algebra of
S⊗. The following proposition is the result of a personal exchange with Maxime Ramzi;
we would like to thank Maxime for the support given.

Proposition 5.4.1. [Ram24] Let O⊗ be an ∞-operad, p : B⊗ → O⊗, p′ : X⊗ → O⊗

be an O-monoidal Kan complexes and let π : X⊗ → B⊗ be a left O-fibration. Let
ψ : B⊗ → S⊗ be the lax O-monoidal pre-sheaf that classifies the left fibration π. Then,
M(ψ) and X are equivalent as O-algebras of S⊗, where X is the pre-sheaf X : O⊗ → S⊗

that classifies the operadic structure of X⊗.

Proof. From Corollary 4.3.2 we know that the functor M is left adjoint to the functor
(− ◦ p) given by precomposing with the structure map p : B⊗ → O⊗

AlgB/O(S) Alg /O(S).
M

(−◦p)

⊣

We will define another functor L : AlgB/O(S) → Alg /O(S) such that the image of the
pre-sheaf ψ by L is exactly the operad map X : O⊗ → S⊗ that classifies the O-monoidal
structure of X⊗. Then, we will prove that the functor L is left adjoint to (− ◦ p) too,
and by the uniqueness of left adjoints we will obtain the equivalence

{O⊗ X−→ S⊗} = L(ψ) ≃ M(ψ)

of objects of Alg /O(S).
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We start by constructing the functor L as the following composition

AlgB/O(S) Alg /O(S)

LFibO(B) LFibO(O)

L

UnB

p∗

StO

where St and Un are the functors defined by the monoidal Grothendieck construction,
and p∗ is the functor that postcomposes left O-fibrations with base B⊗ with the map
p : B⊗ → O⊗. Here it is crucial that B⊗ is an O-monoidal Kan complex, otherwise
postcomposition with p would have only produced coCartesian O-fibrations instead of a
left O-fibrations.

The adjunction between the functor L and the functor (− ◦ p) will follow from the
adjunction

LFibO(B) LFibO(O)
p∗

p∗

⊣ (⋆)

between the functors p∗ and p∗ induced by the structure map p : B⊗ → O⊗ on the
categories of left O-fibrations. In particular, we will define the counit of the adjunction
L ⊣ (− ◦ p) using the straightening/unstraightening equivalence on the counit of the
adjunction p∗ ⊣ p∗.

First, we claim that the following diagram commutes

Alg /O(S) AlgB/O(S)

LFibO(O) LFibO(B),

(−◦p)

UnO UnB

p∗

that is to say p∗ ◦ UnO ≃ UnB(− ◦ p).

Let us assume the claim to be true, and let h : p∗p
∗ → id be the counit transformation

of the adjunction p∗ ⊣ p∗. We define the natural transformation h̄ : L(−◦p) → id, which
we will then prove to be the counit of the adjunction L ⊣ (− ◦ p), to be the morphism
given by the following composition

L(− ◦ p) = (StO p∗ UnB)(− ◦ p) StO p∗p
∗ UnO id.≃ St h Un

To prove that L is left adjoint to (− ◦ p) we have to show that for each ϕ ∈ AlgB/O(S)
and A ∈ Alg /O(S) applying the functor L and then postcomposing with the morphism
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given by the natural transformation h̄ we obtain an equivalence of mapping spaces

MapAlg B/O(S)(ϕ,A ◦ p) ≃ MapAlg /O(S)(L(ϕ), A).

To prove this we consider the following chain of equivalences

MapAlg B/O(S)(ϕ,A ◦ p) ≃ MapLFibO(B)(UnB(ϕ), p∗UnO(A))

≃ MapLFibO(O)(p∗ ◦ UnB(ϕ),UnO(A))

≃ MapAlg /O(S)(L(ϕ), A).

The first equivalence is given by applying the unstraightening functor and using the
claim UnB(− ◦ p) ≃ p∗UnO. The second equivalence is given by applying the functor
p∗ and then postcomposing with the morphism given by the counit h defined above.
Since the functors p∗ and p∗ are adjoint the resulting map is an equivalence of mapping
spaces. Finally, the third equivalence is given by applying the straightening functor. Let
f : ϕ → (A ◦ p) be a morphism of AlgB/O(S). We now prove that the image of f by the
chain of equivalences corresponds to the morphism obtained by applying the functor L
to f and then postcomposing it with the morphism given by h̄.

We start by applying the unstraightening functor to f

UnBϕ
UnBf−−−→ UnB(A ◦ p).

The equivalence UnB(−◦p) ≃ p∗UnO defines an equivalence of LFibO(B) from UnB(A◦p)
to p∗UnOA; let us call it γ. The image of f by the first equivalence of the chain is the
morphism

UnBϕ
UnBf−−−→ UnB(A ◦ p) γ−→ p∗UnOA.

The second equivalence of the chain consists of applying p∗ and then postcomposing
with the counit h.

p∗UnBϕ
p∗UnBf−−−−−→ p∗UnB(A ◦ p) p∗γ−−→ p∗p∗UnOA

hUnO−−−→ UnOA.

Finally, we apply the straightening functor; this passage completes the chain of
equivalences.

StOp
∗UnBϕ

StOp
∗UnBf−−−−−−−→ StOp

∗UnB(A◦p) StOp
∗γ−−−−→ StOp

∗p∗UnOA
StOhUnO−−−−−−→ StOUnOA

≃−→ A.

We recognize that by definition of L and h̄ the resulting morphism is exactly

(h̄ ◦ −)Lf : Lϕ Lf−−→ L(A ◦ p) h̄−→ A.

It only remains to prove the claim, but this follows directly from the fact that the
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straightening/unstraightening equivalence

LFibO(Z⊗) ≃ Alg Z/O(S)

is natural in Z⊗ [GHN17, Corollary A.32].

We established that is possible to reconstruct the En-monoidal Kan complex X⊗ from
the lax En-monoidal pre-sheaf ψ via the functor M . The next step is to prove that we
can reconstruct the En-monoidal map ξ : X⊗ → Pic(R)⊗ from the lax En-monoidal lift
ξB : B⊗ → S⊗

/Pic(R) defined in Construction 5.3.1.

Proposition 5.4.2. Under the same hypotheses as Proposition 5.4.1, let C ∈ Alg /O(S)
and let ξ : X → C be a morphism of O-algebras. Let ξB : B⊗ → S⊗

/C be a lax O-
monoidal lift of ψ; here we are using the same notation as in Construction 5.3.1. Then,
after identifying Alg /O(S/C) ≃ Alg /O(S)/C , we have

M(ξB) ≃ ξ

as elements of Alg /O(S/C)

Proof. The argument is analogous to the one of Proposition 5.4.1. We will define a
functor L such that L(ξB) ≃ ξ and then prove that L is left adjoint to the functor
(− ◦ p). The only difference is that in this case, the operadic maps are no longer lax O-
monoidal pre-sheaves and in order to pass to the categories of left O-fibrations and use the
adjunction p∗ ⊣ p∗ we have to first apply the equivalence F : Alg /O(S/C) → Alg /O(S)/C
defined after Lemma 4.3.3. In this way, we are able to consider the operadic lifts from
B⊗ to S⊗

/C as lax monoidal pre-sheaves with source B⊗ over the pre-sheaf defined by
the composition B⊗ p−→ O⊗ C−→ S⊗.

We start by constructing the functor L as the following composition

AlgB/O(S/C) Alg /O(S/C)

AlgB/O(S)/C◦p Alg /O(S)/C

LFibO(B)/p∗UnO(C) LFibO(O)/p∗p∗UnO(C) LFibO(O)/UnO(C),

L

F

UnB

F−1

p∗ (hUn(C)◦−)
StO

where St and Un are the monoidal straightening and unstraightening functors, the
functors p∗ and p∗ are the morphisms of left O-fibrations induced by the map p :
B⊗ → O⊗, and the functor (hUn(C) ◦ −) is given by postcomposing the objects of
LFibO(O)/p∗p∗UnO(C) with the morphism hUn(C) : p∗p

∗UnO(C) → UnO(C) defined by
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the counit of the adjunction p∗ ⊣ p∗ on the object UnO(C).

We observe that the composition corresponding to the bottom row of the diagram

LFibO(B)/p∗UnO(C) LFibO(O)/p∗p∗UnO(C) LFibO(O)/UnO(C)
p∗ hUn(C)◦−

is itself a left adjoint functor as described in [Lur09, Lemma 5.2.5.2]; in particular, its
right adjoint is the functor induced by p∗ on the overcategories over the left O-fibration
UnO(C).

With an argument similar to the one of Proposition 5.4.1, we will define a natural
transformation h̄ : L(− ◦ p) → id which we will then prove to be the counit of the
adjunction L ⊣ (− ◦ p). Let ĥ : (hUn(C) ◦ −)p∗ p

∗ → id be the counit of the adjunction
(hUn(C) ◦ −)p∗ ⊣ p∗. We define the morphism h̄ to be the following composition

L(− ◦ p) id

(F−1 StO (hUn(C) ◦ −) p∗ UnB F )(− ◦ p) F−1 StO (hUn(C) ◦ −)p∗p
∗ UnO F.

h̄

≃

F−1 St ĥ Un F

In order to prove that L is left adjoint to (− ◦ p) we have to prove that for each
ξB ∈ AlgB/O(S/C) and ϕ ∈ Alg /O(S/C) applying the functor L and then postcomposing
with the morphism given by the natural transformation h̄ produces an equivalence
between mapping spaces

MapAlg B/O(S/C)(ξB, ϕ ◦ p) ≃ MapAlg /O(S/C)(L(ξB), ϕ). (⋆)

Instead of introducing new notation, we are treating ξB as a general element of
AlgB/O(S/C). We will denote the pre-sheaf given by postcomposing it with the forgetful
functor and its monoidal unstraightening as usual. We still need to introduce some
notation related to the operadic map ϕ; we will denote by Y : O⊗ → S⊗ its associated
pre-sheaf, with ν : Y → C the image of ϕ by the functor F , and with Y ⊗ the monoidal
unstraightening of the pre-sheaf Y . We will now prove (⋆) by a chain of equivalences

MapAlg B/O(S/C)(ξB, ϕ ◦ p) ≃ MapAlg B/O(S)/C◦p
(ψ ξ−→ C ◦ p, Y ◦ p ν◦p−−→ C ◦ p)

≃ MapLFibO(B)/UnB(C◦p)
(X⊗ UnB(ξ)−−−−→ UnB(C ◦ p),UnB(Y ◦ p) UnB(ν◦p)−−−−−−→ UnB(C ◦ p))

≃ MapLFibO(B)/p∗C⊗
(X⊗ UnB(ξ)−−−−→ p∗C⊗, p∗Y ⊗ p∗UnO(ν)−−−−−−→ p∗C⊗)

≃ MapLFibO(O)/C⊗
(p∗X

⊗ hUn(C)◦p∗UnB(ξ)
−−−−−−−−−−−→ C⊗, Y ⊗ UnO(ν)−−−−−→ C⊗)

≃ MapAlg /O(S/C)(L(ξB), ϕ).
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The first two equivalences are given by applying the functors F and UnB respectively.
Both of those functors are categorical equivalences; thus they induce equivalences of
mapping spaces. The third equivalence is given by postcomposing with the equivalence
of LFibO(B) defined by UnB(− ◦ p) ≃ p∗UnO. The fourth equivalence is given by
applying the functor (hUn(C) ◦ −)p∗ and then postcomposing with the morphism given
by the natural transformation ĥ defined above. Since (hUn(C) ◦ −)p∗ and p∗ are adjoint
the resulting process is an equivalence. The final equivalence is given by applying the
straightening functor StO and the functor F−1.

Let g : ξB → (Y ◦ p) be a morphism of AlgB/O(S/C). We will now prove that the image
of g by the chain of equivalences is the morphism obtained by applying the functor L to
g and then postcomposing it with the counit h̄ defined above.

Applying the functor F to g we obtain the morphism

ψ Y ◦ p

C ◦ p.

Fg

ξ ν◦p

We are abusing the notation by referring to the image of g by F as a morphism of the
category LFibO(B) rather than the two-cell that fills the diagram; which corresponds
to the actual image of g, since it is a morphism of the overcategory. We believe that
this abuse of notation is reasonable since it makes the argument much easier to follow.
However, one should keep in mind that the morphisms of overcategories that we will
discuss correspond to two-cells. The image of the morphism after the second equivalence
of the chain is

X⊗ UnB(Y ◦ p)

UnB(C ◦ p).

UnBFg

UnBξ UnB(ν◦p)

Now we postcompose with the morphism induced by the equivalence UnB(− ◦ p) ≃−→
p∗UnO on the overcategories

X⊗ UnB(Y ◦ p) p∗Y ⊗

UnB(C ◦ p) p∗C⊗.

Fg

UnBξ UnB(ν◦p)

≃

p∗UnOν

≃
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Applying the functors p∗ and (hC⊗ ◦ −) we obtain

p∗X
⊗ p∗UnB(Y ◦ p) p∗p

∗Y ⊗

p∗UnB(C ◦ p) p∗p
∗C⊗ C⊗.

(hC⊗ ◦−)p∗UnBFg

p∗UnBξ p∗UnB(ν◦p)

≃

p∗p∗UnBν

≃ hUnOF

Postcomposing with the counit ĥ we obtain the image of g after the fourth equivalence
of the chain

p∗X
⊗ p∗UnB(Y ◦ p) p∗p

∗Y ⊗ Y ⊗

p∗UnB(C ◦ p) p∗p
∗C⊗ C⊗.

(hC⊗ ◦−)p∗UnBFg

p∗UnBξ p∗UnB(ν◦p)

≃

p∗p∗UnBν

hUnOF

UnOν

≃ hUnOF

We apply the straightening functor StO

X StOp∗UnB(Y ◦ p) StOp∗p
∗Y ⊗ Y

StOp∗UnB(C ◦ p) StOp∗p
∗C⊗ C.

StO(hC⊗ ◦−)p∗UnBFg

StOp∗UnBξ StOp∗UnB(ν◦p)

≃

StOp∗p∗UnBν

StOhUnOF

StOUnOν

≃ StOhUnOF

Finally, we apply the homotopy inverse of F to the diagram. The resulting morphism
is the image of g by the chain of equivalences. We recognize the composition
F−1StO(hC⊗ ◦ −)p∗UnBF as the functor L

X F−1StOp∗UnB(Y ◦ p) StOp∗p
∗Y ⊗ Y

Lg ≃ F−1StOhUnOF

and conclude that the image of g by the chain of equivalences is indeed the morphism
obtained by applying the functor L to g and then postcomposing it with the counit h̄.

It only remains to prove that the image of the lax En-monoidal lift ξB defined in
Construction 5.3.1 by the functor L is equivalent to the morphism of algebras ξ : X →
Pic(R) considered as an element of Alg /En

(S/Pic(R)); in this case C = Pic(R). We defined
ξB : B⊗ → S⊗

/Pic(R) to be the lift of the pre-sheaf ψ : B⊗ → S⊗ obtained by applying F−1

to the straightening of the morphism of left En-fibrations (ξ,π) : X⊗ → Pic(R)⊗ ×E⊗
n
B⊗,

so UnB ◦ F (ξB) ≃ (ξ,π) as objects of LFibEk(B)/p∗Pic(R). The image of the object (ξ,π)
by the functors p∗ and (hUn(C) ◦ −) corresponds to the composition

X⊗ Pic(R) ×E⊗
n
B⊗ Pic(R)⊗

E⊗
n

(ξ,π)

p ◦ π

pr1
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considered as an object of left En-fibrations with base E⊗
n over the left En-fibration

Pic(R)⊗ → E⊗
n . This is exactly the system of invertible R-modules ξ : X⊗ → Pic(R)⊗,

hence hUn(C) ◦ p∗(ξ,π) ≃ ξ. It only remains to apply the straightening functor and the
map F−1 to consider ξ as an En-algebra of the En-monoidal category S⊗

/Pic(R).

{
B⊗ S⊗

/Pic(R)
ξB

} {
E⊗
n S⊗

/Pic(R)
ξ

}

 B⊗ S⊗
ψ

Pic(R) ◦ p

(ξ,π)


 E⊗

n S⊗
X

Pic(R)

ξ



X⊗ Pic(R)⊗ ×E⊗

n
B⊗

B⊗

(ξ,π)

π pr2



X⊗ Pic(R)⊗ ×E⊗

n
B⊗ Pic(R)⊗

E⊗
n

(ξ,π)

p ◦ π

pr1



X⊗ Pic(R)⊗ ×E⊗

n
B⊗

E⊗
n

(ξ,π)

p ◦ π p ◦ pr2

 .

L

F

UnB

F−1

p∗

StO

h◦−

We can now prove the main result of this section, the spectra ThThR(ξ) and ThR(ξ)
are equivalent as En−1-algebras of the category of left R-modules. We will see that, by
combining the previous results, the statement will follow from the commutativity of the
following diagram

Alg B/En−1(LMod ξ1(S/Pic(R))) Alg B/En−1(LMod ThR(ξ1)(LModR))

Alg B/En−1(S/Pic(R)) Alg B/En−1(LModR) Alg B/En−1(LMod ThR(ξ1))

Alg/En−1(S/Pic(R)) Alg/En−1(LModR) Alg/En−1(LMod ThR(ξ1)),

Th′
R

≃

ThR

M M M

H

ThR H

where the unlabeled arrows are forgetful functors and H is the functor induced on the
En−1-algebras by the change of algebra functor described in [Lur17, Section 7.1.3]. Before
proving that the diagram commutes, let us justify why the result will follow from its
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commutativity.

In Construction 5.3.1 we defined the lax En+1-monoidal lift ξB : B⊗ → S⊗
/Pic(R).

Considering the image of ξB by the pullback along E⊗
n−1 ↪→ E⊗

n+1 we obtain an object
of the middle-left category, we will call this map also ξB. Then we have proven that the
operadic map induced by ξB on the categories of left modules, an object of the top-left
category, is an En−1-monoidal map.

We defined the En−1-monoidal map ThR(ξ)B, an object of the middle-right category, by
postcomposing the map ξB first with the map induced by the Thom functor ThR on the
category of left modules, and then with the equivalence LMod ThR(ξ1)(LModR)⊗ →
LMod ⊗

ThR(ξ1). We have then proven that the map ThR(ξ)B factors through the
subcategory Pic(ThR(ξ1))⊗.

Finally, we defined the iterated Thom spectrum ThThR(ξ), an object of the bottom-right
category, by applying the functor M to the following composition of lax En−1-monoidal
maps

B⊗ Pic(ThR(ξ1))⊗ LMod ⊗
ThR(ξ1).

ThR(ξ)B

Starting with the object ξB ∈ Alg B/En
(LMod ξ1(S/Pic(R))), this process corresponds to

following the top-most and then the right-most arrows of the diagram.

On the other hand, starting again from the map ξB, top-left category, we can compose
it with the forgetful functor to obtain the lax En−1-monoidal map ξB : B⊗ → S⊗

/Pic(R),
middle-left category. We have proven in Proposition 5.4.2 that by applying the functor
M to the map ξB one recovers the original system of invertible R-modules ξ as an
En−1-algebra object of S⊗

/Pic(R), bottom-left category. The Thom spectrum ThR(ξ), an
object of the bottom-middle category, can be obtained by applying the Thom functor
to the algebra ξ. Starting again from the top-left category, this process corresponds to
following the left-most and then the bottom-most arrows of the diagram.

We will use the following lemma to solve most of the commutative squares.

Lemma 5.4.3. Let B⊗, C⊗ and D⊗ be O-monoidal categories. Suppose that we have
two operadic maps L and R which are left and right adjoint relative over O⊗ [Lur17,
Def. 7.3.2.2]

C⊗ D⊗

O⊗ .

L

R

⊣
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Then, the diagram
Alg B/O(C) Alg B/O(D)

Alg /O(C) Alg /O(D)

(L◦−)

M M

(L◦−) (⋆)

commutes. Where M is the functor defined in Theorem 4.3.1.

Proof. We first prove that the functors induced by L and R on the categories of O-
algebra objects and B-algebra objects are adjoint. We will prove it for the B-algebras,
the procedure for the O-algebras is analogous. Postcomposition with the functors L and
R form an adjunction on the categories of functors over O⊗

FunO⊗(B⊗, C⊗) FunO⊗(B⊗,D⊗).

(L◦−)

(R◦−)

⊣

This follows from the fact that adjunctions are closed under exponentiations and then
considering the adjunction induced on the overcategories of functors over O⊗ [Lur09,
Prop. 5.2.5.1].

We recall that the category Alg B/O(D) is the full subcategory of FunO⊗(B⊗,D⊗)
spanned by the operadic maps. In particular, for each ψ, ϕ ∈ Alg B/O(D) we have

MapAlg B/O(D)(ψ, ϕ) ≃ MapFunO⊗ (B⊗D⊗)(ψ, ϕ).

Hence it is immediate to check that the functors (L ◦ −) and (R ◦ −) restricted to
the categories of B-algebras are left and right adjoint. Let ϕ ∈ Alg B/O(D) and
γ ∈ Alg B/O(C)

MapAlg B/O(D)(L ◦ γ, ϕ) ≃ MapFunO⊗ (B⊗,D⊗)(L ◦ γ, ϕ)

≃ MapFunO⊗ (B⊗,C⊗)(γ,R ◦ ϕ)

≃ MapAlg B/O(C)(γ,R ◦ ϕ).

Both the functors M and (L ◦ −) admit right adjoints, so the diagram (⋆) commutes if
and only if the diagram of right adjoint functors commutes

Alg B/O(C) Alg B/O(D)

Alg/O(C) Alg/O(D).

(R◦−)

(−◦p)

(R◦−)

(−◦p)
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Since the horizontal functors of the diagram are given by postcomposing with the map
R : D⊗ → C⊗ and the vertical functors are given by precomposing with the map
p : B⊗ → O⊗ the diagram commutes.

Theorem 5.4.4. Let R be an Em-ring spectrum, π : X⊗ → B⊗ be an essentially
surjective left En+1-fibration of grouplike Kan complexes with 2 < n + 1 ≤ m, and
ξ : X⊗ → Pic(R)⊗ be an En-monoidal system of invertible R-modules. Then,

(1) There exists an En−1-monoidal system of invertible ThR(ξ1)-modules ThR(ξ)B :
B⊗ → Pic(ThR(ξ1))⊗.

(2) The Thom spectrum of the system ThR(ξ)B defines an En−1-algebra ThThR(ξ) of
LMod ⊗

ThR(ξ1) that we denote as the iterated Thom spectrum of ξ along π.

(3) The iterated Thom spectrum ThThR(ξ), as an En−1-algebra of left R-modules, is
equivalent to the ThR(ξ) considered as an En−1-algebra of left R-modules.

Proof. Implications (1) and (2) follow from the constructions of Section 5.3.

Part (3) follows from Proposition 5.4.2 and the commutativity of the diagram

Alg B/En−1(LMod ξ1(S/Pic(R))) Alg B/En−1(LMod ThR(ξ1)(LModR))

Alg B/En−1(S/Pic(R)) Alg B/En−1(LModR) Alg B/En−1(LMod ThR(ξ1))

Alg/En−1(S/Pic(R)) Alg/En−1(LModR) Alg/En−1(LMod ThR(ξ1)).

Th′
R

≃

ThR

M M M

H

ThR H

We will now prove square by square that the diagram commutes:

• The top-left square

Alg B/En−1(LMod ξ1(S/Pic(R))) Alg B/En−1(LMod ThR(ξ1)(LModR))

Alg B/En−1(S/Pic(R)) Alg B/En−1(LModR)

Th′
R

ThR

commutes since we have defined Th′
R to be the functor induced by ThR on the

categories of left modules.
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• For the bottom-left square

Alg B/En−1(S/Pic(R)) Alg B/En−1(LModR)

Alg/En−1(S/Pic(R)) Alg/En−1(LModR),

ThR

M M

ThR

we observe that the En−1-monoidal functor ThR : S⊗
/Pic(R) → LMod ⊗

R induces a
colimit preserving functor of presentable categories (ThR)⟨1⟩ : S/Pic(R) → LModR

on the underlying categories. So there exists a functor G⟨1⟩ : LModR → S/Pic(R)

which is right adjoint to (ThR)⟨1⟩. Applying [Lur17, Corollary 7.3.2.7] we can
extend the functor G⟨1⟩ to an operadic map over E⊗

n−1

LMod ⊗
R S⊗

/Pic(R)

E⊗
n−1

G

which is right adjoint to ThR relative to E⊗
n−1. We can apply Lemma 5.4.3 to

conclude that the square commutes.

• The top-right triangle

Alg B/En−1(LMod ThR(ξ1)(LModR))

Alg B/En−1(LModR) Alg B/En−1(LMod ThR(ξ1))

≃

commutes by definition of the change of algebra functor LMod ⊗
ThR(ξ1) → LMod ⊗

R

[Lur17, Section 7.1.3];

• And finally, to prove the commutativity of the bottom-right square

Alg B/En−1(LModR) Alg B/En−1(LMod ThR(ξ1))

Alg/En−1(LModR) Alg/En−1(LMod ThR(ξ1)),
M M

H

H

we apply again Lemma 5.4.3. By [Lur17, Prop. 7.1.2.6] the change of algebra
functor LMod ⊗

ThR(ξ1)LMod ⊗
R induces a small-colimit preserving functor on the

underlying presentable categories. Hence, the functor induced on the underlying
categories admits a right adjoint functor G⟨1⟩. Applying [Lur17, Corollary 7.3.2.7]
we extend the functor G⟨1⟩ to an operadic map over E⊗

n−1 which is right adjoint
to the change of algebra functor. The commutativity of the square follows from
Lemma 5.4.3.

103



Chapter 5. Iterated Thom spectra

As an immediate application for Theorem 5.4.4, we can consider the theory of orien-
tations of Thom spectra discussed in [ACB19, Section 3.2] on the system ThR(ξ)B to
recover the iterated Thom spectrum version of Corollary 4.4.3.

Corollary 5.4.5. Under the hypotheses of Theorem 5.4.4, there exists an equivalence of
En−1-algebras of left ThR(ξ1)-modules

IndThR(ξ)
ThR(ξ1)(ThR(ξ)) ≃ IndThR(ξ)

S (Σ∞
+ B),

where Ind are the functors obtained from the map described in [Lur17, Prop. 7.1.2.6].
The equivalence induces on the underlying ThR(ξ1)-modules the following equivalence

ThR(ξ) ⊗
ThR(ξ1)

ThR(ξ) ≃ ThR(ξ) ⊗
S

Σ∞
+ B.

Proof. Let ThR(ξ)B : B⊗ → Pic(ThR(ξ1))⊗ be the En−1-monoidal system of invertible
ThR(ξ1)-modules of Theorem 5.4.4. Since B⊗ is grouplike, the equivalence ThThR(ξ) →
ThR(ξ) provides an En−1-ThR(ξ)-orientation of the system ThR(ξ)B. Applying [ACB19,
Prop. 3.16] to the ThR(ξ)-orientation we obtain the following equivalence of En−1-
algebras of left ThR(ξ)-modules

IndThR(ξ)
ThR(ξ1)(ThR(ξ)) ≃ IndThR(ξ)

ThR(ξ1)(ThThR(ξ)) ≃ IndThR(ξ)
S (Σ∞

+ B).

Applying the change of algebras induced by the map of En−1-algebras ThR(ξ1) → ThR(ξ)
we obtain the required equivalence of ThR(ξ1)-modules.

5.5 Examples

As we mentioned at the end of Chapter 4, the main advantage of our construction com-
pared with Beardsley’s relative Thom spectrum is that we are no longer assuming the
Kan complexes to be reduced. Let X⊗ be an En+1-monoidal Kan complex, in Propo-
sition 2.4.5 we have proven that the projection on the path components of X admits
the structure of an En+1-monoidal map π0 : X⊗ → π0(X)⊗ that makes it a left En+1-
fibration. This allows us to produce many examples of iterated Thom spectra since we
can associate to each En-monoidal system of invertible R-modules ξ : X⊗ → Pic(R)⊗

the system of invertible ThR(ξ1)-modules over π0(X) of ξ along the projection on the
path components π0.

Corollary 5.5.1. Let R be an Em-ring spectrum, X⊗ an En+1-monoidal grouplike Kan
complex with 2 < n+1 ≤ m, and ξ : X⊗ → Pic(R)⊗ an En-monoidal system of invertible
R-modules. Then:
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5.5. Examples

(1) There exists an En−1-monoidal system of invertible ThR(ξ1)-modules ThR(ξ)π0(X) :
π0(X)⊗ → Pic(ThR(ξ1))⊗.

(2) The Thom spectrum of the system ThR(ξ)π0(X) defines an En−1-algebra ThThπ0
R (ξ)

of LMod ⊗
ThR(ξ1).

(3) The iterated Thom spectrum ThThπ0
R (ξ), as an En−1-algebra of left R-modules, is

equivalent to the ThR(ξ) considered as an En−1-algebra of left R-modules.

Proof. Let π0 : X⊗ → π0(X)⊗ be the left En+1-fibration of grouplike Kan complexes
defined in Proposition 2.4.5. The result follows directly from Theorem 5.4.4 applied to
π0.

Example 5.5.2. The motivating example for the construction of the iterated Thom
spectrum is the E∞-monoidal spherical fibration Jgp : (Z × BU)⊗ → Pic(S)⊗ given
by the group-completion of the so-called J map, [Hop18]. The spherical fibration Jgp

presents the periodic complex cobordism spectrum MUP ≃
∨
n∈Z Σ2nMU as an E∞-

Thom spectrum. Since we can express the ∞-operad E⊗
∞ as the tensor product of E⊗

∞

and E⊗
1 , applying Corollary 5.5.1 to Jgp : (Z× BU)⊗ → Pic(S)⊗ along the projection on

the path components π0 : (Z × BU)⊗ → Z⊗ we obtain:

• an E∞-monoidal system of invertible MU-modules ThS(Jgp)Z : Z⊗ → Pic(MU)⊗.

• and an E∞-algebra of left MU-modules ThThπ0
S (Jgp), such that considering its E∞

underlying ring spectrum we recover the E∞-ring spectrum ThS(Jgp) ≃ MUP.

We do not necessarily need X⊗ to be a grouplike Kan complex to construct the iter-
ated Thom spectrum along the projection on its path components. We will prove that
Corollary 5.5.1 still holds if we assume that the Kan complex X⊗ is just a replete Kan
complex. Having the possibility to apply the iterated Thom spectrum construction to
replete Kan complexes is particularly relevant. This is because systems of invertible
modules over replete Kan complexes play an important role in the latest developments
of the theory of topological logarithmic structures.

Definition 5.5.3. Let X⊗ be an En+1-monoidal Kan complex. We say that X⊗ is
replete if the following square is a pullback square

X⊗ X⊗
gp

π0(X)⊗ π0(X)⊗
gp,

γ

π ⌟ πgp

γ

(⋆)

where the horizontal arrows are the group completions of X⊗ and π0(X)⊗.
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Chapter 5. Iterated Thom spectra

A pre-log symmetric spectrum (A,M,α), as defined in [Rog09, Def. 7.1], consists of:
a symmetric ring spectrum A, a M commutative monoid of the category of J -spaces,
and a map of commutative monoids α : M → Ω•

⊗A. We point out that specifying the
map α is equivalent to specifying its adjoint SJ [M ] → A. For technical reasons, one
usually assumes the space M to be replete. For an in-depth exposition of the subject, we
refer the reader to [Rog09]; where J. Rognes originally defined topological logarithmic
structures and log THH.

In recent years J. Rognes, S. Sagave, and C. Schlichtkrull published a series of two papers
presenting many interesting results on log THH; [RSS18] and [RSS15]. In particular, in
[RSS18] the authors computed log THH in some important examples. A key step of
their argument is computing the homology of the spectrum SJ [M ] by recognizing it as
the Thom spectrum of a system of invertible S-modules of the form

MhJ → BJ ≃−→ QS0 → Z × BO → Pic(S).

Considering the effectiveness of this approach; the authors suggested extending the clas-
sical definition of pre-log symmetric spectrum by considering Thom spectra over M as
the source of topological pre-log structures instead of SJ [M ].

Corollary 5.5.4. Let R be an Em-ring spectrum, X⊗ an En+1-monoidal replete Kan
complex with 2 < n+1 ≤ m, and ξ : X⊗ → Pic(R)⊗ an En-monoidal system of invertible
R-modules. Then:

(1) There exists an En−1-monoidal system of invertible ThR(ξ1)-modules ThR(ξ)π0(X) :
π0(X)⊗ → Pic(ThR(ξ1))⊗;

(2) The system ThR(ξ)π0(X) defines an En−1-algebra ThThπ0
R (ξ) of LMod ⊗

ThR(ξ1);

(3) The iterated Thom spectrum ThThπ0
R (ξ), as an En−1-algebra of left R-modules, is

equivalent to the ThR(ξ) considered as an En−1-algebra of left R-modules.

Proof. Let X⊗ be a replete En+1-monoidal Kan complex and let ξ : X⊗ → Pic(R)⊗ be
an En-monoidal system of invertible R-modules. Since Pic(R)⊗ is grouplike the system
ξ factors through the group completion γ : X⊗ → X⊗

gp

X⊗ Pic(R)⊗

X⊗
gp.

γ

ξ

ξgp

Let π : X⊗ → π0(X)⊗ be the left En−1-fibration defined in Proposition 2.4.5 and
ψ : X⊗ → π0(X)⊗ be the lax En-monoidal pre-sheaf that classifies the left En-fibration
π. Since the square (⋆) is a pullback diagram, we can use Lemma 2.4.6 to prove that
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the pre-sheaf ψ is the composition of the group completion γ : π0(X)⊗ → π0(X)⊗
gp and

the lax En-monoidal pre-sheaf ψgp that classifies the left fibration πgp : X⊗
gp → π0(X)⊗

gp:

π0(X)⊗ S⊗

π0(X)⊗
gp.

γ

ψ

ψgp

Now we can use the map ξ to produce an En-monoidal lift of ψ to the category S⊗
/Pic(R) as

described in Construction 5.3.1. We wish to show that the lift ξπ0(X) : π0(X)⊗ → S⊗
/Pic(R)

factors as the composition of the group completion γ and the lift ξπ0(X)gp
gp : π0(X)⊗

gp →
S⊗
/Pic(R) given by the En-monoidal map ξgp

S⊗
/Pic(R)

π0(X)⊗ π0(X)⊗
gp S⊗.

γ

ξπ0(X)

ξ
π0(X)gp
gp

ψgp

We observe that the two lifts ξπ0(X) and ξπ0(X)gp
gp ◦ γ are given by applying Lemma 4.3.3

to the straightenings of the following morphisms of left En-fibrations with base π0(X)⊗

X⊗ Pic(R)⊗ ×
E⊗

n

π0(X)⊗

π0(X)⊗,

π

(ξ,π)

pr2

X⊗ Pic(R)⊗ ×
E⊗

n

π0(X)⊗

π0(X)⊗.

π

γ∗(ξgp,πgp)

pr2

To show that the two lifts ξπ0(X)gp
gp ◦ γ and ξπ0(X) are equivalent is sufficient to prove

that the following is a pullback diagram

X⊗ X⊗
gp

Pic(R)⊗ ×
E⊗

n

π0(X)⊗ Pic(R)⊗ ×
E⊗

n

π0(X)⊗
gp;

γ

(ξ,π) ⌟ (ξgp,πgp)
(id,γ)

but this is a consequence of the fact that (⋆) is a pullback diagram. Passing to the
categories of En-modules; as a consequence of our previous discussion, the map induced
by the lift ξπ0(X) is equivalent to the composition of the En-monoidal map induced
by ξ

π0(X)gp
gp on the categories of En-modules and the En-monoidal map induced by the

group completion γ. Applying Proposition 2.2.12 we conclude that ξπ0(X) : π0(X)⊗ →
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ModEn
ξ1

(S/Pic(R))⊗ is En-monoidal

π0(X)⊗ ≃ ModEn
1 (π0(X))⊗ ModEn

ξ1
(S/Pic(R))⊗

ModEn
1 (π0(X)gp)⊗.

γ

ξπ0(X)

ξ
π0(X)gp
gp

Following with the construction as in Section 5.3, we obtain the En−1-monoidal system
of ThR(ξ1)-modules

ThR(ξ)π0(X) : π0(X)⊗ → LMod ⊗
ThR(ξ1).

The construction of the map ThR(ξ)π0(X) only involves taking pullbacks and
postcomposing the En−1-monoidal lift ξπ0(X) with En−1-monoidal functors. Therefore,
from the previous discussion, follows that the map ThR(ξ)π0(X) factors as the
composition of the group completion γ and the map ThR(ξgp)π0(X)gp

π0(X)⊗ LMod ⊗
R

π0(X)⊗
gp

γ

ThR(ξ)π0(X)

ThR(ξgp)π0(X)gp

Now π0(X)⊗
gp is an En+1-monoidal grouplike Kan complex; hence we can apply

Proposition 5.3.3 to conclude that the map ThR(ξgp)π0(X)gp factors through the
full subcategory Pic(ThR(ξ1))⊗. So the map ThR(ξ)π0(X) must factor through
Pic(ThR(ξ1))⊗ too. We have finally obtained the system of invertible ThR(ξ1)-modules
associated with ξ and π. Parts (2) and (3) follow from the construction of the iterated
Thom spectrum ThThR(ξ) and the discussion on its compatibility with the Thom
spectrum ThR(ξ) without any variation from the arguments presented in Sections 5.3
and Section 5.4.

Example 5.5.5. Corollary 5.5.4 allows us to apply the iterated Thom spectrum
construction directly to the spherical fibration J : (N × BU)⊗ → Pic(S)⊗. In this case,
the spherical fibration J presents the spectrum MUP≥0 ≃

∨
n∈N Σ2nMU as an E∞-Thom

spectrum. Applying Corollary 5.5.4 to J : (N × BU)⊗ → Pic(S)⊗ along the projection
on the path components π0 : (N × BU)⊗ → N⊗ we obtain:

• an E∞-monoidal system of invertible MU-modules ThS(J)N : N⊗ → Pic(MU)⊗;

• and an E∞-algebra of left MU-modules ThThπ0
S (J), such that considering its un-

derlying ring E∞-spectrum we recover the E∞-ring spectrum ThS(J) ≃ MUP≥0.
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Appendix A

Morphisms of bimodules

A.1 Morphism induced on the underlying objects

Let C⊗ be an associative monoidal category and let A ∈ Alg /Assoc(C) be an associative
algebra of C. In this section, we will try to give some intuition for the morphisms of the
category ABModA(C). In particular, we will see how it is possible to recover the classical
notion of a morphism of C between the underlying objects that is compatible with the
right and left A-actions.

By definition ABModA(C), is the category

{A} ×
Alg /Assoc(C)

Alg BM/Assoc(C) ×
Alg /Assoc(C)

{A},

where the maps Alg BM/Assoc(C) → Alg /Assoc(C) are defined by precomposition with the
embeddings Assoc⊗

− ↪→ BM⊗ and Assoc⊗
+ ↪→ BM⊗.

Let f : ∆1 → ABModA(C) be a morphism of ABModA(C) between the bimodules
M : BM⊗ → C⊗ and N : BM⊗ → C⊗. Since Alg BM/Assoc(C) is the full subcategory of
FunAssoc⊗(BM⊗, C⊗) spanned by the maps of ∞-operads over Assoc⊗; the morphism f

corresponds to a natural transformation between the operadic maps M and N

BM⊗ C⊗

Assoc⊗,

M

N
p

f

or alternatively
BM⊗ × ∆1 C⊗

Assoc⊗.

f

p
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We recall that the operad BM⊗ has three distinguished objects: m that represents the
bimodule, a− that represents the left algebra, and a+ that represents the right algebra.

We will denote by M and N the underlying objects of the category C defined by
the operadic maps, i.e., the images M(m) and N(m). Similarly, we will denote by f

the morphism of C between the underlying objects M and N defined by the natural
transformation f , i.e., fm : M = M(m) → N(m) = N .

Let us see how we can recover a commutative diagram that expresses the compatibility of
the morphism f with the bimodule structures of the objects M and N from the natural
transformation f . We will focus on the right action; the argument for the compatibility
of the left action is analogous.

Let β : (m, a+) → m be the active morphism of BM⊗ that represents the right action.
We consider the following diagram of ∞-category; where the top-left diagram belongs
to the category BM⊗ × ∆1

{0}

{1}

∆1


(m, a+) m

(m, a+) m

β

β




(M,A) M

(N,A) N

(f,id) f




⟨2⟩ ⟨1⟩

⟨2⟩ ⟨1⟩

id

β

id

β

 .

f

p

Let β! be the coCartesian morphisms of C⊗ covering the morphism β of Assoc⊗. Starting
from the diagram of solid arrows


(m, a+) m

(m, a+) m

β

β





M ⊗A

(M,A) M

(N,A) N

N ⊗A

f⊗id

β!

(f,id) f

β!


,f (⋆)
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our goal is to produce the dashed arrows and the commutativity of the right-most
diagram.

In order to do so we need the following characterization of coCartesian morphisms; this
is the dual version of [Lur09, Remark 2.4.1.4].

Proposition A.1.1. Let p : X → S be an inner fibration of simplicial sets. An edge
γ : ∆1 → X is p-coCartesian if and only if for every n ≥ 2 and every commutative
diagram of solid arrows

∆{0,1}

Λn0 X

∆n S,

γ

there exists a dashed arrow as indicated, rendering the diagram commutative.

We will produce the commutative diagram (⋆) in two steps, splitting the initial
commutative square of BM⊗ × ∆1 into two triangles. Starting from the diagram of
solid arrows


(m, a+) m

m

β

τ





M ⊗A

(M,A) M

N

β!

f




⟨1⟩

⟨2⟩ ⟨1⟩

⟨1⟩

id

id

β

β

β

id


,

f

p

since β! is coCartesian we can use Proposition A.1.1 for n = 2 to first construct the
dashed arrows and the two-cells ∆{0,1,2} and ∆{0,1,3}, and then with n = 3 we can
construct the two-cell ∆{1,2,3}. (The two-cell ∆{0,2,3} is just the image of the two-cell τ
by the functor f , and the three-cell of Assoc⊗ is just the degeneracy of the one cell that
corresponds to the morphism β.)
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Repeating the same process with the lower triangle of the commutative square of
BM⊗ × ∆1 we obtain


(m, a+)

(m, a+) m
β

ν





M ⊗A

(N,A)

(M,A) N

N ⊗A

id⊗f(f ,id)

β!

β!





⟨1⟩

⟨2⟩ ⟨1⟩

⟨1⟩

id

id

β

β

β

id


.

f

p

Combining the two-cells we finally obtain the commutative diagram

M M ⊗A

N N ⊗A.

f f⊗id

A.2 Compatibility of ηx with the left F -action

During the proof of Proposition 5.2.3 we have been able to produce a natural
transformation η between the associative monoidal categories X⊗ and S⊗; and then
showed that for each x ∈ X the natural transformation η defined a morphism ηx between
objects of the category FBModF (S). It might be counterintuitive that the morphism ηx

is a morphism of F -bimodules since, objectwise, it corresponds to the multiplication by
x on the left ηx : f 7→ x · f ; which does not seem compatible with the left F -action of F
and Xa. The compatibility here follows from the fact that we have defined the natural
transformation η not only as a natural transformation between the underlying categories
X and S but as a natural transformation between the associative monoidal categories.

Let x : BM⊗ → X⊗ be the operadic map that presents the element x as a 1x-bimodule.
We consider the following diagram, where β is the morphism of BM⊗ that represents
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the left action

{0}

{1}

∆1


(a−,m) m

(a−,m) m

β

β




(F, F ) F

(F,Xa) Xa

(id,ηx) ηx




⟨2⟩ ⟨1⟩

⟨2⟩ ⟨1⟩

id

β

id

β

 .

η◦x

q

We can use the fact that S⊗ is associative monoidal and the universal property of the
coCartesian morphisms covering β to produce the dashed arrows starting from the solid
diagram; this process is described with more details in Section A.1.


(a−,m) m

(a−,m) m

β

β





F × F

(F, F ) F

(F,Xa) Xa

Xa × F

id×ηx

β!

(id,ηx) ηx

β!


.

η◦x

The rightmost square describes the compatibility of ηx with the left F -action of F and
Xa. Since the diagram is a diagram in S, the commutativity of the square means that
there exists a homotopy between the two compositions. We know that the map id×ηx is
not unique; it is instead defined up to a contractible space of choice by the coCartesian
morphism β!. So for id × ηx instead of the natural choice (f, f ′) 7→ (f, ηx(f ′)), we can
choose the map that applies ηx to the second component and conjugate by x the first
component, (f, f ′) 7→ (x · f ·x, ηx(f ′)). It can be proven that this map is a candidate for
id× ηx too since conjugation by x is homotopic to the identity. Now, since x · x ≃ 1, it
is easier to see why such homotopy between the two compositions exists.
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