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Introduction

Let B be a commutative S-algebra. Relating the algebraic K-theory of B to
its topological cyclic homology by trace methods [16] is very useful in order to
understand K (B), as the cyclic homology is more accessible to calculations.

The study of the topological cyclic homology spectrum T'C/(B) [6] requires
knowledge of the equivariant structure of Bokstedt’s THH (B), the topolo-
gical Hochschild homology spectrum of B. These are spectrum analogues of
Hochschild complexes for commutative rings in the algebraic world and come
equipped with a natural action of the circle group of complex units.

In our context we will work with equivariant T-spectra where T = S? is
the circle group of complex units. Our spectra will be cyclotomic, a class
of T-spectra containing all spectra arising as topological Hochschild spectra
of some Functor with Smash Products. For such spectra T one defines the
topological cyclic homology as a certain inverse limit where the spectra in
the limit system consist of fixed point spectra of T" with actions of the various
finite cyclic p-subgroups of T. With the goal of computing the topological
cyclic homology, we are then faced with the problem of getting a grip on the
building blocks of the pro-spectrum defining it.

Generally, for GG a finite group and X a G-spectrum, it is a hard problem
to calculate the homotopy type of the fixed point spectrum of X under the
action of G. However, it is in many cases possible to calculate the homotopy
version of these fixed points by a standard spectral sequence. There is a
functorially defined comparison map I' : X¢ — X"¢ between the fixed points
and the homotopy fixed points and one can ask the question if this map is a
homotopy equivalence, possibly after some appropriate completion.

In the case of X =T = THH(B) and G = Cjy. cyclic of order p", this
comparison map sits in a commutative diagram

R

Thcpn N TCopm TCpn_ 1
‘(Fn lfn (0.0.1)
Tthn N* Tthn R" thpn
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where the rows are homotopy cofiber sequences. Here T,¢, is the homotopy
orbits-construction on 7' with respect to the action of Cp». The quotient
T in the lower right corner is the Tate construction on T with respect to
the action of C». Note in particular that the fibers on the left are equivalent
and so the right hand square is homotopy Cartesian. Hence, we may rephrase
the question of comparing fixed points with homotopy fixed points by the
canonical map T',, into the equivalent question of comparing the spectra on
the right by the vertical map T,.

We say that a map of spectra f : X — Y is k-co-connected if it induces a
weak equivalence in degrees x > k. The following theorem by Tsalidis leads
to an inductive approach to the problem.

Theorem 0.0.1 (Tsalidis [27]). If the map T is k-co-connected for some
k after p-completion, then I',, is k-co-connected after p-completion for all
n > 1.

In light of this theorem, we may concentrate on the case n = 1 and the
map I'y : T — T, We will in the following suppress the prime p and denote
this map by 7.

Previous and new results

In the following we will consider T'(B) = THH (B) where B will be one of
the spectra S, MU, BP, BP(m — 1) for m > 0. This family of spectra are
connected by maps S — MU — BP — BP(m — 1). The main diagram to
have in mind when we arrive at computations in chapter 8 is the following:

T(S) T(MU) T(BP) - T(BP(m —1))

¥ ¥ ) ¥

T(S) —T(MU)"» —T(BP)!“» — .- ——=T(BP{(m —1))'“»

Working homotopically, Hesselholt-Madsen [20], Bokstedt-Madsen [8] and
Ausoni-Rognes [3| have done calculations in the cases m = 0,1, 2, respect-
ively, showing co-connectivity results for the map v in order to make T'C-
calculations. These calculations rely on the existence of Smith-Toda ring
spectra V' (m) of chromatic type m -+ 1, which are conjectured not to exist for
m > 4. Hence, new strategies for calculation are sought in order to tackle
the entire tower of spectra.
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In the other end, in the case of the sphere spectrum, the map ~ is known
to be a p-adic equivalence. This is an equivalent formulation of the affirmed
Burnside ring-conjecture of Segal for the cyclic groups C,.

The proof of the Segal conjecture for groups of prime order is of special
interest as it serves as a recipe for our approach to the rest of the intermediate
cases in the diagram above. The main ideas are the following: The Tate con-
struction is equivalent to a homotopy inverse limit of truncated Tate spectra
holimT“»[n]. If the spectrum T is a bounded below spectrum of finite type

n——oo

over [, then so are the all the truncated Tate spectra in the tower defining
the inverse limit. In other words, the Tate spectrum T%“ is equivalent to a
homotopy inverse limit of bounded below spectra of finite type over TF,.

For any such tower of spectra X — ... X, ;1 — X, — ..., we may
apply cohomology with IF)-coefficients and form the sequential direct limit
of cohomology groups. This limit is seldom equal to the cohomology of the
inverse limit of spectra but is still of interest. We denote this colimit by
H}(X;F,), the continuous cohomology of X.

Theorem 0.0.2 (Caruso-May-Priddy [15]). If X = holiZan is a homo-
ne

topy inverse limit where X,, is bounded below and of finite type over I, for
each n, then there is a spectral sequence

By = Exty (HI(X;F,),Fy)

(X (0.0.2)

p

converging strongly to the p-completed homotopy of X. The Ext’s are taken
over modules of the T, -Steenrod algebra A.

In order to prove co-connectivity results for the comparison map v :
THH(S) — THH(S)!” in the case of the Segal conjecture one resolves the
target by an inverse system of truncated Tate-spectra. One then calculates
the colimit of the associated cohomology groups with F,-coefficients in order
to provide input for the spectral sequence in the theorem above.

The key point in the proof of the Segal conjecture for cyclic groups of
prime order is that the map v induces an isomorphism of Ext-groups and
thus an isomorphism of Caruso-May-Priddy spectral sequences.

This fact was originally shown to be true by calculations of Lin for p = 2
and Gunawardena for p # 2. See [23| and [1] for published accounts on this.
The proofs depend on identifying the structure of the continuous cohomology
as a module over the Steenrod algebra. Indeed, Singer defined an endofunctor
R, (—) on the category of modules over the Steenrod algebra. For any A-
module M, there is a natural evaluation morphism ¢ : R, M — M of A-
modules. The key property of this map is that it induces an isomorphism
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Exta(M,F,) — Ext,(R+M,F,) of Ext-groups. The Segal conjecture follows
from the fact that the continuous cohomology of T'H H(S)!“» is isomorphic as

an A-module to R, T, and the map v induces the evaluation map € : R, F, —
F.

-
The present work follow this homological approach to showing co-connectivity
for v by replacing the equivariant sphere spectrum S¢, = THH(S) by the

spectra THH (BP) and THH(BP(m—1)) for all m > 0 at the prime p = 2.

Theorem 0.0.3. For T(BP{m — 1)) the map Ty is a p-adic equivalence in
sufficiently high degrees after smashing with a suitable finite CW -complez.
If we assume that BP is coherent enough so that H,(T (BP);Fy) admits an
action by the Dyer-Lashof algebra, then the homotopy fized points and the
strict fized points of T(BP) are p-adically equivalent.

By saying that I'y is an equivalence in sufficiently high degrees, we simply
mean that there exists an integer k such that I'; is k-co-connective. An upper
bound for the lowest such £ is given in theorem 11.3.4.

We remark that the co-connectivity of I'y for B = BP(m) will be shown
to increase with m. It is therefore surprising that the infinite case has the
optimal co-connectivity property.

New methods

In order to compare Caruso-May-Priddy spectral sequences, we need to know
the continuous cohomology groups H (T (B)!?) as modules over the Steen-
rod algebra. We do this by working with the dual object, namely the con-
tinuous homology HS(T(B)!“?). To this extent there is a homological Tate-
spectral sequence converging to HST(B)!“2. This spectral sequence is an
A,-comodule algebra spectral sequence, and we will utilize all of the struc-
ture provided when doing calculations.

The first step is to analyze the differentials of the Tate spectral sequence
converging to these homology groups thus giving the additive structure. This
is manageable mainly because of the algebra structure inherited from the
product of the Tate construction. Work by Bruner and Rognes [12] enables
us to identify infinite cycles and determine the E*°-terms of these spectral
sequences.

We then proceed by analyzing the A,-comodule extensions in the homolo-
gical Tate spectral sequence. This is possible by using naturality of the action
of the Steenrod algebra applied to a certain map ¥ : R, (B) — T(B)!* we
introduce in chapter 6.
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The continuous homology of the spectrum in the source is then completely
identified as an A,-comodule and by naturality we are able to identify much
of the A,-module structure of H¢T(B)!2. Not all A,-comodule structure is
detected, but the missing parts will come from the map v : T(B) — T(B)~.
The following diagram will be helpful to have in mind in chapters 8-11:

T(B)

J{w (0.0.3)
R.(B) —~T(B)'":

The spectrum R (B) realizes the Singer construction on the A-module H*(B;F,).
By that we mean that H*(R,(B)) = R, (H*B) as an A-module. In our ap-
plications the dual map in homology will be injective, capturing much of the
hidden A,-comodule extensions in the homological Tate spectral sequence
converging to H¢(T(B)!C?).

The calculations proceed analogous to the Segal conjecture for C,. In
the case of THH(BP) we are able to show that the continuous cohomology
of its Tate-construction is isomorphic to Ry H*T'(BP) and that the map ~*
under this identification is equal to the evaluation map e. Also in the case
of the truncated BP(m — 1)-spectra we are able to describe the continuous
cohomology in a convenient closed form using the Singer functor. The map
has in these cases a non-trivial cokernel which we are able to describe as well.
This gives us complete control on the map of Caruso-May-Priddy spectral
sequences and enables us to prove theorem 0.0.3.



Chapter 1

Limits of spectra

We introduce our first definitions regarding towers of spectra and their asso-
ciated homology groups and cohomology groups. These towers will consist
of spectra such that the singular F, (co-)homology at each stage will be
bounded below and of finite type over .

The motivation for this definition is a result by Caruso-May-Priddy saying
that that there is an inverse limit of Adams spectral sequences arising from
such towers, calculating the homotopy of the inverse limit spectrum.

The input for this inverse limit of Adams spectral sequences will give us
the definitions of the continuous (co-)homology groups.

1.1 Inverse limit of Adams spectral sequences

We will work at a fixed prime p. In applications this will be p = 2 but some
of the general theory will be stated for any prime.

Let {Y,,}nez be a collection of spectra with stable maps f, : YV, — Y, 1
for all n and let Y be the homotopy inverse limit over this system.

) NG T 'S Ch (AN (1.1.1)

Definition 1.1.1. Fiz a prime p. We say that a spectrum Y is bounded below
and of finite type over F, if the singular homology of Y with F,-coefficients
H.(Y;TF,) is bounded below and of finite type over .

When p is understood we will write H(—) for H(—;F,) and say that a
spectrum Y is bounded below and of finite type without reference to the
prime p.

12
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We assume for the rest of this chapter that Y is the inverse limit of a
tower of spectra (1.1.1) such that each Y;, is bounded below and of finite
type over [F,.

For each n there is an Adams spectral sequence {E,(Y,,)}, with Ey-term

B3N (Y,) = Bxt} (H" (Vi ), Fy) = ms(Va)y
converging strongly to the p-completed homotopy groups of Y,,. Here A
denotes the mod p Steenrod algebra.

The tower (1.1.1) induces maps of Adams spectral sequences fy. : {E,(Y,)} —
{E;(Yns1)}. Forevery rlet E.(Y) = lim,_, o, E"(Y},) denote the inverse limit
as n goes to —oo. Under the assumption that each Y, is bounded below and
of finite type, it was proven in [15] that {E£,(Y)}, is a spectral sequence con-
verging strongly to 7, Y}, Tt is clear that the Fy-term of this inverse limit of
Adams spectral sequences is given by

Ey'(Y) = Ext(colimH* (Y F,), F,) (1.1.2)

n——oo

1.2 Continuous (co-)homology

The spectral sequence (1.1.2) is central to the proof of the Segal conjecture
for groups of prime order and will be the foundation for the present work.
To emphasize the role of the colimit of cohomology groups, we make the
following definition.

Definition 1.2.1. Let p be any prime. LetY be the homotopy inverse limit of
a tower of spectra as in (1.1.1) with each'Y, bounded below and of finite type
over F,. Then define the continuous cohomology of Y with I, -coefficients as
the colimit

H(Y;F,) = colimH" (Yn; Iy .
Dually, define the continuous homology of Y with F,-coefficients as the in-
verse limit

H{(Y,F,) = lim H,(Y,;F,).

n——oo
We choose to suppress from the notation the tower of which Y is a ho-

motopy inverse limit. In case confusion could appear, we will emphasize the
tower of spectra explicitly.
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Since we are considering field coefficients and each spectrum Y, is as-
sumed to be of finite type over F,, we get that the hom-dual of H Y is
isomorphic to HSY. The continuous homology will typically be an infinite
dimensional vectorspace over I, in each degree, so the double dual is gener-
ally not isomorphic to the continuous cohomology.

Note that the continuous cohomology is a direct limit of bounded below A-
modules. The direct limit may of course not exist in the category of bounded
below modules, but we do get a natural A-module structure on H}(Y;TF,) in
the category of A-modules with no boundedness restrictions.

Dually, the continuous homology is an inverse limit of bounded below
A,-comodules, but the inverse limit may not be neither bounded below nor
an algebraic A,-comodule. In general we get a completed coaction of A,

HY — A,®HY

where —®— denotes the completed tensor product.

Let {Yy, fu} and {Z,, g.} be towers of bounded below spectra of finite
type, and assume that we have maps i, : Y,, — Z,, such that g,0%, = 1,410 f,
for each n. Then we get a tower of spectra {Z,/Y,}, where Z, /Y, is the
homotopy cofiber of 7,,. Thus we have a commutative diagram of spectra in
the stable category

Y e Y, I Yot frt1
ll l/ln lin+l
Z . Zn 9n Zn+1 In+1

| |

Z/Y—>—>Zn/Yn—>Zn+1/Yn+1—>

where Y % 7 — Z/Y is a stable (co)-fibration sequence. From the long
exact sequence in homology for each cofiber sequence Y,, — Z, — Z,,/Y, we
see that each Z,/Y,, is bounded below and of finite type. Moreover, we get
a long exact sequence

LS HTYW S HZ)Y 5 HZ S HY - (1.2.1)

of continuous cohomology groups.



Chapter 2

Equivariant spectra

We review some notions from stable equivariant homotopy theory. The im-
portant tool for us will be the construction of the extended powers of spec-
tra. In chapter 6 we will show that this construction will supply the bridge
between the algebraic Singer construction and the topological Tate construc-
tion.

2.1 Equivariant spectra

We work within the framework of [22]. Let X be an equivariant G-spectrum
indexed on a complete G-universe U. Let i : U9 — U be the inclusion of the
trivial G-universe. The forgetful functor i* : G.Y% — G./%° has a left

adjoint 7,. For any genuine G-spectrum X € G.¥% , the counit
€0, X = X

induces a non-equivariant equivalence. Hence, if X is a free G-CW spectrum
then € is a G-equivalence.

When considering any of the functors (=)', (=)ug or (=)¢ from G-
spectra to spectra, we need only the naive definition of G-spectra. Indeed,
suppose X € G.¥% . Then the composite

is an equivalence in G.¥% . When taking orbits or fixed points we first
restrict to naive spectra, so for example in the case of orbits we have (EG4 A

15
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Let N C G be a subgroup and let X € G.Y% be a naive G-spectrum
that is N-free. Then there is a transfer isomorphism of G/ N-spectra

7:X/N 5 (80N, x)" (2.1.2)

Here adG is the adjoint representation of V.

In our applications, G = N and G will be a closed subgroup of T. In
particular G will be abelian, so the adjoint representation will be trivial of
dimension 1 if and only if G = T and zero otherwise. In this situation the
transfer equivalence takes its most simple form; for a G-free naive G-spectrum
X there is an isomorphism of non-equivariant spectra

X/G S om4mexe,

2.2 The equivariant half-smash functor

We recall the definition and chain level description of the extended power
construction from [11], chapter I. We then review the relevant definitions
and facts about Dyer-Lashof operations in the Fy-homology of an H..-ring
spectrum.

In this and the following section, m will be a subgroup of ¥; the group of
permutations on j letters.

Let G be a compact Lie group and let % and %' be G-universes. For a
G-CW complex W one then has the equivariant half-smash functor

W (=) : hG.SU — hGSU'

generalizing the functor W, A(—) on the category of based G-spaces. Indeed,
for Y any G-space, there is a natural isomorphism of spectra ([11], proposition
1.1)
W xSV 2 35®°(W,AY).

The half-smash functor has a right-adjoint functor F[W, —), analogous to the
adjoint pair W, A (=), Map(W,, —) on the level of G-spaces.

When W is a free 7-CW complex and X is a G-CW spectrum, then
W x X is a m-free (m x G)-CW spectrum.

Let X, Y be G-spectra indexed on a G-universe %/. Then define the
external smash product X AY as the G-prespectrum indexed on % by

(XAY)UaV)=XU)ANX(V).

When X = Y we denote their external smash product by X, This is a
Yy x G-spectrum indexed on the universe % ? where G acts diagonally and
Y, acts by permuting the factors.
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Definition 2.2.1. Let X be a G-spectrum. The nth extended power con-
struction on X, denoted by D, X, is defined by

D,X := EX, x5, X",

When n = 2, it is customary to call Do(X) the quadratic construction on X.

2.3 Homology of the extended power construc-
tion
Let W be a free m-CW complex and let X be a CW spectrum with cellular

action of 7. Then by theorem 1.1.3 in [11] we have that W x, X is a CW
spectrum with cellular chains

C.(W xr X) = CW ®, C.X (2.3.1)

The following is an immediate corollary.

Corollary 2.3.1. Let w be a finite group and let X be as above. Then if X
1 bounded below and of finite type, then so is Em X, X.

Proof. Since 7 is finite, we may choose a w-free CW complex W with finitely
many 7-cells in each degree. Thus, both W and X are bounded below and
of finite type with cellular chains given by equation (2.3.1), so the claim
follows. O

Let 1 C ¥;. As stated in corollary 2.1 [11], we have that the external
smash product X©) is a CW spectrum with cellular chains C,X®/. The
action of 7 is permuting the tensor factors and we have

C.(Wx, XU)=2COW®, C,X% . (2.3.2)

Finally, when working over a field, there is a m-equivariant chain homotopy
H,X® 5 C, X%

given by choosing representatives for homology classes. Via this equivalence,
(2.3.2) can be rewritten as

C.(Wx, XU)=COW®, H X% (2.3.3)

Thus the homology of D, X is computed by group homology:
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Corollary 2.3.2 ([11], Corollary 2.3).
H.D.X = H,(m; H . X®)

In our applications we will work over the field Fy and will only discuss the
case T = Yo = {1,T}. In this case the Fy-homology of Dy X is particularly
easy to describe by a standard calculation in group homology of 3. In fact,
choose a free resolution W, — Fy by letting W,, = Fy[35]{e,} be the free
Fy [35]-module on a generator e, in degree n and differentials d,, : W,, — W,,_;
given by multiplication with the norm element 1+ T for all n. Tensoring W,
with H,X®? over F»[3,] produces a chain complex

U H X9 ' H X9 e} ' H, X2 e
From this we get that

H*DQX = IFQ{@(] XRr R 1'2} &) Fg{ei RrX LE‘Z 2 0} (234)

where the elements x;, x5 and x run through basis elements of H,X such
that x; # 29, and {71 ® 79,7 ® 2} Tun through a ¥,-basis for H,X®?

2.4 Homology operations

We recall the construction of external and internal homology operations
as defined in [11], chapter IX, §1. For any H, ring spectrum E and any
spectrum X one defines external homology operations E,X — E,,D,X in-
dexed by E,,D,S™ as follows. Let o € E,,D,S™ be represented by a map
a:S™ = END,S". Then, for any x € E, X represented by z : S™ = EAX,
let Qo2 € E,,,D, X be the composite

Sm % EAD,S" "B EAD(EAX) LY EAD,EAD,X
1AERAL PN

W ENEADX S EAD,X

(2.4.1)

If X happens to be an H,, ring spectrum itself, the composition by the map
INE - EAND,X — E A X internalizes this operation.

For E = S we get Bruner’s homotopy operations and for £ = HT, we get
the Dyer-Lashof operations @' in singular homology with mod p coefficients.
For details on this last fact, see proposition IX.1.2 of [11].
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When p =2 and £ = HF, = H is the F, Eilenberg-MacLane spectrum,
H,.DsF was described in (2.3.4). Then for z € H;X and i > k, the class
Q'z € Hy ;X is the value of ¢;_;, ®  ® x under the map

Eou t Hy Dy X — H, X .

We will sometimes use the lower index notation ();x to mean the value of
e; ® r ® x under the map &,. For x € H, X, these two conventions relates
by the formula Q'x = Q;_jx.

There is a homotopy commutative diagram

DQXLX

P

XAX

where p is the multiplication map and the vertical map is induced by the
inclusion of the zero-skeleton of EY,. Thus, the classes ¢y ® 1 ® x5 in
equation (2.3.4) maps to their Pontryagin products z; - o € H, X under the

map &ay.



Chapter 3

The Tate construction

We define the Tate construction and set up the relation with homotopy orbit-
and homotopy fixed point spectra. We show that the Tate spectrum can be
expressed as the homotopy inverse limit of bounded below spectra. In light
of chapter 1 we will then focus on the continuous (co-)homology groups of
the Tate construction.

The first section is concerned with the general setup of the Tate construc-
tion and its relatives; the homotopy orbit spectrum and the homotopy fix
point spectrum.

We then move on to describing the homological Tate spectral sequences.
There are two types, one converging to the continuous homology of the Tate
construction and one converging to the continuous cohomology. These spec-
tral sequences will be dual to each other but, as already noted in section 1.2,
their abutments will generally not be dual.

Propositions 3.3.4, 3.3.5 and 3.3.6 state the properties of the (co-)homological
Tate spectral sequences converging to the (co-)homology of the Tate construc-
tion of a G-spectrum X. We will revisit these results in the next chapter
where X = THH(B) will be the topological Hochschild homology spectrum
of a commutative S-algebra B, and G will be a cyclic group of prime order.

3.1 Homotopy-orbits, -fixed point and the Tate
construction

Let G be a compact Lie group and X a G-spectrum. We start by recalling the
definitions of the homotopy-orbit, -fixed point spectrum of X together with
their relative the Tate construction. For further details, see the introduction
in [18].

Let EFG be a free contractible G-space. Define EG to be the unreduced

20
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suspension of FG. This is a G-space with exactly two fixed points. Choosing
one of these as a base point makes FG into a based G-space and we have a
fundamental cofiber sequence of based G-spaces

EG, — 5° - EG (3.1.1)

defined by letting the first map collapse EG onto the non-basepoint of S°.

Definition 3.1.1. For a genuine G-spectrum X indexed on a complete uni-
verse U , we let

Xne = FEG; Agi*X  homotopy orbit spectrum of X
X" = Map(EG,,X)Y homotopy fixed point spectrum of X

X'¢ =[EG AMap(EG,,X)]¢ Tate spectrum of X

Here i : %% C U is the inclusion of the G-fived universe and i*X is the
underlying G-spectrum of X indezed on trivial G-representations only.

The projection EG, — S° induces a map of G-spectra

X — Map(EG,, X) (3.1.2)

for any G-spectrum Y. Smashing the cofiber sequence (3.1.1) with the map
(3.1.2) and taking G-fixed points, we get the following map of cofiber se-
quences:

[EG, A X]¢ X6 [EG A X]¢
lg L l (3.1.3)
[EG, A Map(EG,, X)]¢ Xhe Xt

The left vertical map is an equivalence by the equivariant Whitehead theorem
since the map (3.1.2) is a non-equivariant equivalence.

In the following, G will be any closed subgroup of the circle group of
complex units of norm 1. We denote the circle group by T. In particular,
G is commutative and the adjoint representation ad(G) will be the trivial
representation of dimension dim G.

By the equivariant Whitehead theorem, the map EG, — S° induces an
equivalence of G-spectra EG, A Map(EG,,X) + EG, A Map(S% X) =
EG. A X. In addition, by the G-equivalence i, FG, Ai*X = EG. A X and
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the Adams transfer equivalence Y™ CEG | Aq i*X = [i,EG, A i*X]%, we
can rewrite (3.1.3) as the homotopy commutative diagram

MGy, X6 [EG A X]¢
L l (3.1.4)
Edim GXhG N" XhG XtG .

The Segal conjecture for finite groups can be interpreted as a homotopy limit
problem showing that the middle map comparing G-fixed points and homo-
topy G-fixed points are equivalent. The above diagram formalizes the idea
of breaking the homotopy limit problem into free and singular parts. This
approach was successfully taken in Carlsson’s proof of the Segal conjecture
for finite p-groups [13].

The spectra in the lower row have been studied by means of spectral
sequences converging to the their homotopy groups. These spectral sequences
arise in the case of the homotopy orbit- and fixed point spectra by choosing
a filtration of EG and by a filtration of EG introduced by Greenlees [17] in
the case of the Tate spectrum X*“.

We will in the end of this chapter return to the case of the Tate filtration
and the resulting Tate spectral sequence, but we will be concerned with the
spectral sequences that arises from applying homology with F,-coefficients
instead of homotopy.

We end this section with some facts about the Tate construction.

Proposition 3.1.2 (Greenlees-May [18], proposition 2.6). There is a

natural equivalence ¥ Map(EG, EG. A X) = FEG A Map(EG,, X) of G-
spectra.

Proof. We have a commutative diagram of G-spectra

Map(S°, EG4 A X) Map(EG4, EG4 A X) —= ¥ Map(EG, EG, A X)

~ /

EG. AMap(S°, EG4 A X)

~

12

EG+ N Map(SO, X)

~

EG, ANMap(EG,, X) Map(EG., X) EG A Map(EG., X)

(3.1.5)
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in which the rows are (co-)fiber sequences arising from the fundamental
cofiber sequence (3.1.1). O

Lemma 3.1.3. Let f : X — Y be a map of G-spectra that is a non-
equivariant homotopy equivalence. Then the induced map of Tate spectra
f1¢ 0 X' — Y'Y is a homotopy equivalence which is filtration preserving
with respect to any filtration of EG.

Proof. The stable equivariant Whitehead theorem implies that the map 1A f :
EG, N X — EG, ANY is a G-homotopy equivalence. The map of Tate
spectra is induced by applying the functor X Map(EE’, —)¢ which takes G-
equivalences to equivalences. O

Lemma 3.1.4. If X is G-equivalent to G N'Y for some spectrum Y, then
X' ~ x is contractible.

Proof. Since G is compact we have the G-isomorphism
EG AMap(EG,4, G4 AY) ~ EGAMap(EG,,Y) A G, .

The projection EG A G, — = is a G-equivariant homotopy equivalence so
the lemma follows. O

Remark: The same conclusion also holds if X ~o; K A'Y for some finite free
G-complex K. In our application, however, we will only encounter the case

K:G+.

3.2 Tate cohomology and the Greenlees filtra-
tion of G

We recall the definition of the Tate (co-)homology groups from [14]. Let
G be a finite group and let {P,,d.} be a complete resolution of the trivial
F,G-module F, by free F,G-modules. This is a diagram

By & Py
]Fp/

where the P;’s are free F,,G-modules and the horizontal sequence is exact.

di d_q d_o

Py
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Definition 3.2.1. Giwen an F,G-module M the Tate homology and cohomo-
logy groups are defined by

Hy(G; M) = Hy(P. ®r,c M)

and R

H*(G; M) = H*(Homg, (P, M))
where {P,} is a complete F,G-resolution. These groups are independent of
the chosen I, G-resolution and there are isomorphisms

H¥(G; M)~ H ), (G, M) (3.2.1)

for all k.

Complete resolutions in algebra have topological analogues introduced by
Greenlees [17]. We recall briefly the construction. Let EG be equipped with
a G-CW structure and consider the associated skeleton filtration.

To form a complete resolution of EG we will have to work in the stable
category of G-spectra. Whenever a space appears in the following, we will
mean its suspension spectrum. Thus, H,(X;F,) = H,(X) will mean spec-
trum homology with F,-coefficients of ¥*°X.

Let Fj, be the cofiber of EGY™ — 5% for k > 0 and F, = D(F_y),
the Spanier-Whitehead dual of F_,, for £ < 0. The filtration quotients
are recognized as Fy/F, | ~ \/ X*G, for all k, since EG is a free G-CW-
complex. This holds for k£ < 0 as well because of the equivariant equivalence
D(G,) ~G,.

This gives a sequential system of maps with non-equivariantly contractible
homotopy inverse limit, and homotopy direct limit equivalent to EG:

$ . .. F o F 5 F=S53F>F—>..—EG (3.2.2)

Applying F,-homology to the filtration {F}} gives a spectral sequence with
E}, = Hy((F,/F,_1;F,) and differential d}, : B}, — E}_,, ., that converges

to H,(FEG;TF,) = 0. The spectral sequence collapses at the E*-term since
Fy./Fy 1 is a wedge of k-spheres. Hence, we get a long exact sequence

o ——=Hy(Fy/F) —— H,(Fy/ Fy) —— Ho(Fo/Fy) — -

l / (3.2.3)

Hy(S%) =T,

of free F,G-modules. Letting P, = Hy.1(Fy4.1/F) for all £, yields a complete
resolution of I, by free I, G-modules.



CHAPTER 3. THE TATE CONSTRUCTION 25

3.3 Continuous homology of the Tate construc-
tion

Let G C T and let X be a G-spectrum which is bounded below and of finite
type over [F,.

By means of the Greenlees filtration (3.2.2), we may filter the Tate con-
struction. For n € Z, let E\é/Fn,l be the cofiber of the map F,,_; — Eé,
and let -

X'n] = [EG/F, 1 NMap(EG, X)]¢. (3.3.1)

For all n we have maps X‘“[n] — X'“[n+1], and we will study the continuous
(co-)homology of X*¢ with respect to this filtration. To make sense of the
continuous (co-)homology groups, we need the following.

Lemma 3.3.1. The homotopy inverse limit of X'“[n] as n — —oc is equi-
valent to X'“. The homotopy colimit as n — oo is contractible.

Proof. Let {F,},cz be the Greenlees filtration (3.2.2) of EG. Consider the
stable G-equivariant (co-)fibration sequence F, — EG — EG/F, for n € Z.
It is still a (co-)fibration sequence after smashing with Map(EG ., X), taking
fixed points and passing to the homotopy inverse limit over n. In other words
we have a fibration sequence

holim[F,, A Map(EG, X)]¢ — X'¢ — holimX"“[n] .

n——0o0 n— —0o0

When n is negative, F,, = D(F_,) is the Spanier-Whitehead dual of F_,, so
the fiber is equivalent to

holim[D(F_,,) A Map(EG, X)]% 2 holim Map(F_,,, Map(EG, X))“
n——oo n——00
=~ Map(hocolimF,,, Map(EG,, X))¢
n— 00
= Map(EGa Map(EG-i-a X))G
~ Map(EG A EG,, X)¢

~ %

(3.3.2)

Here we are using that F, is dualizable in the stable category of G-spectra,
and that EG A EG is G-equivariantly contractible.

To show the last part of the lemma we use that, for n > 0, E\C/J/Fn is a
free G-CW complex. Indeed, for n positive,

EG/F, = EG/EG"™ ~ SEG/EG" .
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Thus, by the transfer equivalence we have
X'S[n] = [EG/F, AMap(EG+, X)]|¢ ~ X9 CEG/F, A¢ i* Map(EG, X) .

Since colimits commute with orbits and smash products, the result follows
since hocolimEG / Eé(n) is G-equivariantly contractible. O

n—oe

For n € Z, we let X*“(") = [F,, AMap(EG, X)]¢. We have the following
diagram in which the columns are fibration sequences.

I - XtG(nfl) - s XtG(n) - X G
XtG ey XtG XtG . _>XtG (3‘3‘3)
X1G e XtG[n] - XtG[n +1] e *

When X is bounded below and of finite type over I, each of the spectra
X'[n] will be bounded below and of finite type as well. By lemma 3.3.1 it
now makes sense to talk about the continuous homology and cohomology of
X' defined in chapter 1.1, with respect to the Tate-filtration {X“[n]},cz.

In the case X and Y are both bounded below spectra of finite type, we
can sharpen lemma 3.1.3 in terms of the continuous cohomology groups.

Lemma 3.3.2. Let f : X — Y be a map of G-spectra such that f is a
non-equivariant homotopy equivalence. Then the induced map of continuous
cohomology groups of their associated Tate-spectra f'* : H*X'¢ — H*Y'@
s an isomorphism.

If X and Y are both bounded below and of finite type, it follows from this
that f induces a p-adic equivalence.

Proof. Using the Greenlees filtration of X*“ and Y'“ we get a map of towers

1

X6 —= o= X160 —= XO[1] = NXpg

L e

Y16 e YIG[)] — = YIO[1] =~ SVig

1

The map f“[1] : X!“[1] — Y'“[1] in the tower is identified with X f),; which
is an equivalence by the equivariant Whitehead theorem. In addition, f!“
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induces X" f for n > 0 on the nth filtration layer, which is also an equivalence.
The result follows by induction after applying cohomology.

The last statement follows since the inverse limit of Adams spectral se-
quences for X*@ and Y*¢ are isomorphic on the E,-term. O

We chose to express X'“ as the homotopy inverse limit of the tower in
the lower row of diagram (3.3.3). In light of lemma 3.1.2 there is another
obvious tower, namely
n—1
( ),EGJr AX)Y,.

(3.3.4)

X s o S Map(EG", EG. A X)¢ — ¥ Map(EG

This tower is again a tower of bounded below spectra of finite type, and the
homotopy inverse limit of the tower is equivalent to the Tate construction on
X.

We have not shown that the continuous (co-)homology groups are inde-
pendent of the choice of tower, but the next comparison result says that the
two towers introduced so far are equivalent.

Lemma 3.3.3. For n < 0 there is a natural equivalence

(—n

X'n] ~ S Map(EG " Y, EGL A X)C.

Proof. Forn < 0, the cofiber spectrum Ef?/Fn is the cofiber of the composite

D(Eé(_n)) — D(S%) ~ 8% — EG, where D(—) denotes the G-equivariant

Spanier-Whitehead dual. We have a cofibration sequence of spectra
EGT™Y & 50 BG"

Taking Spanier-Whitehead duals we get a stable homotopy cofibration se-

quence

)

F, = D(EG" ") = D(5°) — D(EG ™).

Hence, we get the following commutative diagram where the squares are
stable pushout squares

F, — D(S°%) = BC
[ | l

*—= D(EG\™ V) — EG/F, .
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Thus, the homotopy fiber of D(EGS:"A)) — EE/FR is equivalent to the
homotopy fiber of S® — EG, which is EG ., so we have a fibration sequence

EG, — D(EG\" ") = EG/F, . (3.3.5)

We then have the following analogue of diagram (3.1.5)

EG, NX Map(BG{" ™V, EG, A X)

- lN (3.3.6)
EG, AMap(EG,,X) —= D(EGU™ V) A F(EG,, X).

We get the upper row by applying Map(—, EG. A X) to the cofibration

sequence

' EGU" Y - 50 2q"

s EG "
and the lower row by smashing the cofibration sequence (3.3.5) with Map(EG, X).
The two vertical maps are G-equivalences, so the map of cofibers

S Map(EG ", EG, A X) — EG/F, A Map(EG., X)

is a G-equivalence as well. The lemma now follows by taking G-fixed points.
O

3.3.1 The homological Tate spectral sequence

We will show that the Tate filtration (3.3.1) gives rise to a spectral sequence
converging to the continuous homology H¢(X'“).

Applying homology with F,-coefficients to the lower tower of spectra in
diagram (3.3.3), we get an inverse system of homology groups

H¢(XY) — ... — H,(X"[n]) = H(X[n+1]) — ... (3.3.7)

with inverse limit equal, by definition 1.2.1, to the continuous homology of
X' with respect to the tower { X*“[n]},cz. Note that, in general, homology
and inverse limits do not commute, so the inverse limit is generally not the
homology of X*¢.

Direct limits and homology do on the other hand commute, so by lemma
3.3.1, the colimit H,(X*“[n]) as n — oc is trivial. Hence, by |5, Lemma 5.4
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(b)], we get an exhaustive, complete Hausdorff filtration of H¢(X'“) by the
subgroups

FrHeX'C = ker[HS(X'C) — HY(X'C[n + 1])]. (3.3.8)

For every n, we have a fiber sequence

[F,,/Fp_1 A Map(EG., X)]¢ —= X'C[n] — X*C[n + 1]. (3.3.9)

Since F,/F,  is a free G-spectrum, the fiber is equivalent to [F,/F, A X]¢
by the map induced by the non-equivariant homotopy equivalence EG, —
S%. Applying homology with F,-coefficients, these fibration sequences yield
an unrolled exact couple

H.(X"[n]) ———= H.(X"%[n +1])
Is 10

H.([Fy/Fyy A X]6)

which in turn gives a spectral sequence with E;’t = H,([F,/Fs 1 A X]9).
As noted above, the colimit H,(X'“[n]) as n — oc is trivial, so the spectral
sequence converges conditionally in the sense of Boardman ([5] Definition
5.10) to the inverse limit HS(X') = lim,,_, , H,(X"“[n)).

To identify the Eg—term, we use the natural isomorphisms

Hs+t([F5/stl/\X]G) = s+t(FS/stl/\GX)

~ H.(F,/F, 1) ®g ¢ H(X). (3:3.11)

With these identifications the d'-differential is d,_y ® id : Hy(Fs/Fs_1) ®r,c
Hy(X) = Hs_(Fs—1/Fi—2) ®r,¢ Hi(X), where d, is the differential in the

complete resolution (3.2.3). Thus we get the homological Tate spectral se-
quence

E2,(X) = H, |(G; H/(X)) = H*(G; H(X)) = H(X'®)  (3.3.12)

converging conditionally to the continuous homology of X'“ with F,-coefficients.
Since we are assuming that X has bounded below homology, the homo-
logical Tate spectral sequence is concentrated above some horizontal line.
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Thus the spectral sequence is in one with entering differentials in the sense
of Boardman.

Since X is of finite type, the E?-term is finitely generated in each bidegree
so Boardman'’s derived limit RE° vanishes as well and the spectral sequence
converges strongly to its target. See |5, Theorem 7.1] for further details.

If we did not assume the finite type condition, we could get strong con-
vergence if we knew that the spectral sequence collapsed at some finite stage.

The spectral sequence arises by applying homology with IF,-coefficients.
Hence, the exact couple (3.3.10) is equipped with a coaction of the dual mod
p Steenrod algebra A, and the resulting spectral sequence is an A,-comodule
spectral sequence. As noted in section 1.1, the continuous homology is a
completed A,-comodule. This coaction induces an A, comodule structure on
the associated graded with respect to the filtration (3.3.8) and convergence
of the spectral sequence means that the associated graded is isomorphic to
the E®-term as comodules over A,.

We summarize the facts of the present section in the following proposition.

Proposition 3.3.4. Let G C T be a finite subgroup and let X be a bounded
below G-spectrum of finite type over IF,.

Then X' is equivalent to a homotopy inverse limit of a tower of bounded
below spectra of finite type. There is an A,-comodule homology type Tate
spectral sequence converging strongly to the continuous homology of X'¢ as a
completed A,-comodule. The homological Tate spectral sequence has E2-term

E2,(X) = H*(G; H(X;F,)) = HY(X'9;F,). (3.3.13)

We also get a cohomological Tate spectral sequence by dualizing the exact
couple (3.3.10). This produces a filtration of the colimit cohomology groups,
i.e. the continuous cohomology H*(X!“), by the image subgroups

F,H(X') = im[H* (X*[n]) — H(X")].

The filtration is by definition exhaustive, and is in addition both complete
and Hausdorff because of the Milnor lim-lim! exact sequence

0 — RlimH*"'X'“[n] — H*(hocolimX'“[n]) — limH*X'“[n] — 0.
(3.3.14)

We are using that the homotopy colimit of X‘“[n] as n — oo is homotopy
trivial by lemma 3.3.1, so the middle term vanishes.
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Thus the Tate filtration of X' gives rise to a conditionally convergent,
cohomology type spectral sequence with target equal to the continuous co-
homology H}(X'%).

Again, since X is assumed to be bounded below, we get a half-plane spec-
tral sequence concentrated above some horizontal line. This is now a spectral
sequence with exiting differentials and by [5, Theorem 6.1] the spectral se-
quence converges strongly to the continuous cohomology H}(X'“).

Since the cohomological exact couple comes from applying cohomology
with F,-coefficients, we get a natural A-module structure on the spectral
sequence with differentials being A-module homomorphisms.

Proposition 3.3.5. Let G C T be a finite subgroup and let X be a bounded
below G-spectrum of finite type over T,.

Then X'¢ is equivalent to a homotopy inverse limit of a tower of bounded
below spectra of finite type. There is an A-module, cohomology type Tate
spectral sequence converging strongly to the continuous cohomology of X'¢ as
an A-module. The cohomological Tate spectral sequence has Ey-term

Eg’t(X) = ﬁ—s(G§ Ht(XSFp)) = H:(XtGE]Fp) . (3'3'15)

The cohomological Tate spectral sequence is dual to the homological Tate spec-
tral sequence in the sense that EY , is dual to E* in each bidegree for all r

and that the cohomological differential d, : Est — EStrt=r+l s dual to the
homological differential d": E¢,,, .1 — Eg, for all s,t and r > 1.

3.3.2 Multiplicative structure

Assume that X is a bounded below, finite type G-equivariant ring spectrum.
We assume that the unit n : S — X and the multiplication map p: XA X —
X are equivariant with respect to the G-action.

By [18, Proposition 3.5] both the homotopy fixed point spectrum X"¢
and the Tate spectrum X'“ are ring spectra. In the Tate case the product is
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defined in the following way: There is a composition

[EG A Map(EG.., X)|¢ A [EG A Map(EG,., X)|¢

[EG A EG AMap(EG, A EG,, X A X))¢
IALAA* (3.3.16)

[EG A EG A Map(EG, X A X))¢

1/\1/\#*

[EG A EG A Map(EG.,, X)]% .

Up to homotopy, there is a unique G-equivalence EG A EG S EG. Tak-
ing the composition above followed by this homotopy equivalence, we get a
product X' A X'¢ — X'G The unit comes from the unit of X, together
with the canonical map S° — EG by the composition

S5 X - F(EG,,X) — EGA F(EG,,X). (3.3.17)

The homotopy fixed point spectrum also has a product coming from the
product on X and the diagonal map A : EGy — EG, A EG,. The first two
maps of (3.3.17) compose to give a unit for X after taking G-fixed points.
The ring structures are compatible in that the map X*¢ — X!¢ of (3.1.4) is
a map of ring spectra.

Up to homotopy there is a unique homotopy equivalence EGy A EG 5
EG, as well. Using this we may define a product on the homotopy orbit
spectrum X;s. However, this spectrum lacks a unit, so it is not a ring
spectrum.

The above facts can be found in [18, section §3|.

Let H denote the I, Eilenberg-MacLane spectrum. To discuss the mul-
tiplicative structure of the homological Tate spectral sequence, we note that
the continuous homology of X'“ can be realized as the homotopy groups of
the spectrum (H A X)!“. Indeed, for n < 0, we have

(HAX)C[n] ~SMap(BEG " ,EG, A H A X)©
—~—(—n-1
~ SH AMap(EG ", EG, A X)©
~ Y H A X%n].
The first and last equivalences follow from lemma 3.3.3 and the middle equi-

valence follows from the fact that /E\C/v’(inil) is dualizable. Thus, we have
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that 7.(H A X)'“[n] = H,(X'“[n]) for all n < 0. For a general G-spectrum
X, we then have the following maps for any k:

me(H A X)C — limy, o m(H A X)[n]

= lim, , o, Hy(X'O[n]) = HE(XG) . (3.3.18)

Since X was assumed to be bounded below and of finite type, then the groups
in the inverse limit system are all of finite type, so lim' vanishes and the first
map in (3.3.18) is an isomorphism.

We may now give (H A X)!“ an increasing filtration by filtering EG by
the Greenlees filtration (3.2.2). This produces a homotopical Tate spectral
sequence with E?-term isomorphic to

B2, 2 H5(G;m(H A X)) 2 H™(G; Hy(X)) (3.3.19)

converging to the homotopy 7, 4(H A X)'¢ 22 HE(X!). See [20] for reference
to this homotopical Tate spectral sequence.

When X is a G-equivariant ring spectrum, then so is H A X and we have
seen that (H A X)'“ is also a ring spectrum. The induced ring structure on
the homotopy of (H A X)! then gives a ring structure on the continuous
homology by the isomorphism above.

Moreover, the homotopical Tate spectral sequence (3.3.19) is an algebra
spectral sequence with differentials being derivations with respect to the
product.

Proposition 3.3.6. Let G C T be a finite subgroup and let X be a bounded
below G-ring spectrum of finite type over F,.

Then X'¢ is equivalent to a homotopy inverse limit of a tower of bounded
below spectra of finite type. There is an A,-module algebra, homology type
Tate spectral sequence converging strongly to the continuous homology of X'
as an A,-comodule algebra.

The homological Tate spectral sequence has E2-term

E?,(X) = H *(G; Hi(X;F,)) = H(X'9F,) (3.3.20)

and the differentials are derivations with respect to the product from the Tate
cohomology groups.
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3.4 A model for X2

For any G-representation V' we denote the unit sphere of V' by S(V') and the
one-point compactification of V' by SV. These are then (unbased) G-spaces,
and by choosing a fixed point of SV we get a cofiber sequence

S(V)y - 8%— sV (3.4.1)

where the first map collapses S(V') to the non-basepoint of S°.

Let L = R with the antipodal action of Cy. We choose S(ooL) as a model
for ECy. For V. = ooL, the cofiber sequence (3.4.1) is a model for (3.1.1)
and we have an explicit filtration of subskeleta

S(nL) = ECS™ c EC,
snt— g ¢ EC,.

Moreover, the cofiber sequence (3.4.1) respects this filtration, so for each
n > 0 we have

BCfY — 50— o

H (3.4.2)
S(nL), g0 gnl.
There is a shearing isomorphism of Cs-spaces
sh, : ¥n8nk — Gn A ST (3.4.3)

where C5 acts on the target by permuting the factors. The shearing map is
defined by one-point compactifying the equivariant map R* @R"* — R" R
sending (x,y) — (z +y,z —y). Further, the diagonal map A : S' — ST A S!
defines a map

Sl A (Sn—l)/\Q A/\_1>/\1 Sl ASHA (Sn—l)/\2 o (Sn)/\z

for each n > 0. By desuspending the composite above n times, we get a

stable map
A R (Gn=h)AZ e (GnyAZ, (3.4.4)
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Remember that (—)"? denotes the external 2-fold smash product with equivari-
ance given by permutation of the factors. Thus, we are looking at a directed
system in the stable equivariant category

SO — L (SN s N (S (3.4.5)

We have the following compatibility result.

Lemma 3.4.1. The increasing system of subskeleta S™* C S*°L corresponds
via the shearing isomorphism (3.4.3) to the system (3.4.5).

Proof. The following diagram of Cy-equivariant spaces commutes
R R oy R(n—l)L —R"@® R*E
l@shnll% shnl% (346)
R @ Rnfl EB Rnfl Rn EB R"

where the maps are given by

(fl?(), z, y) e (.ZE(], z, O: y)

I I (3.4.7)

(zﬂax+yax_y)'—>(x0ax+yax07$_y)'

After one-point compactifying every space in diagram (3.4.6), we get

Zns(nfl)L - EnSnL

l~ l~ (3.4.8)

anfl A Snfl &)Sn A Sn

which yields the following stable diagram after desuspending n times:

S(nfl)L gnlL
lN lN (3.4.9)
Z—n+1(5’n—1)/\2 A Z—n(sn)/\Q

The upper arrow is the inclusion of the (n—1)th skeleton into the nth skeleton
and the lemma follows by the commutativity of the diagram. O
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We may then give a very concrete model for X*“ in the case G = Cs.

Corollary 3.4.2. Let X be a genuine Cy-equivariant spectrum indezxed on a
complete Cy-universe % and let i : U#* — U be the inclusion of the Co-
trivial universe. Then X'C? is naturally equivalent to the homotopy inverse
limit

holim¥X"ECoy Ac, (S ™) ANi* X .

n—oo

The maps in the inverse limit system are given by the stable diagonal maps
(3.4.5).

Proof. For any compact Lie group G we may assume that the skeleta FG™
EG, and thus the skeleta Efl(n) C Ef?, are finite C'W-complexes. In partic-

ular, EEJ(n) is dualizable and there are natural equivalences of G-spectra
Map(EG", EGy A X) ~g D(EG") A EG, A X
for all n > 0. Thus,

S Map(EG, BG4 A X) 2 holimS Map(EG", EG., A X)

n—oo

~ holimSD(EG™) A EG, A X

n—o0

The spectra in the inverse limit system are Cy-free, so by (2.1.1) and the
Adams transfer isomorphism (2.1.2) we get that

X6 =S Map(EG, EG, A X)¢
~ holimSD(EG™) Ag EGL A i* X

n—oo

When G = Cy and ECy, = S(ocoL) with the explicit skeleton filtration (3.4.2),
the proof follows by applying lemma 3.4.1. Indeed, we have

D(ECY) = D(5mL) & D(s-nsm A 57
2 YnD(S) A D(S™) = £15 A S

The arrow denotes the isomorphism induced by the shearing isomorphism of
diagram (3.4.9) after taking its Spanier-Whitehead dual. O



Chapter 4

T'HH and the Segal conjecture

We recall the definition of the topological Hochschild homology spectrum
T(B) for an FSP or symmetric spectrum defined on spheres B. We then
follow [19] and discuss how the fundamental map of cofiber sequences (3.1.4)
simplifies because of the cyclotomic structure of T'(B). By the resulting
diagram (4.1.2) we can state our strategy to prove theorem 0.0.3. This will
be done in section 4.2.

In the last part of the chapter we will specialize the (co-)homological Tate
spectral sequences for the case when X = T'(B) and G = Cy.

4.1 Topological Hochschild homology

We review some of the basic definitions from [19, §2]|. Let B be a functor with
smash products. Then one defines a T-prespectrum by letting the Vth space
be the realization of the simplicial space THH (B;S"), with k-simplices

THH(B;SY), = hocolim Map(S™ A...AS% B(S™)A...B(S%)ASY).

(20,-yxp )ETRFL

(4.1.1)

The homotopy colimit is taken over the (k + 1)-fold product of the category
I of finite sets and injective maps.

The T-equivariance comes from the fact that THH(B;S"), is a cyclic
space in the sense of Connes, thus the realization can be given a natural
action of the circle group T. Passing from prespectra to spectra, we get a
genuine T-spectrum which we denote by T'(B).

For any FSP or symmetric spectrum defined on spheres B, T(B) is a
cyclotomic spectrum in the sense of Madsen |7, Proposition 1.3]. That is,
there is a natural equivalence of T-spectra p’(‘;ptI)CPT(B) ~ T(B). Moreover,

37
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there is an equivalence [EC, A X]% ~ ®% X for any T-spectrum X. With
these equivalences, we can write diagram (3.1.4) with X = T(B) in the
following form

T(B)nc,n — T(B)%" — T(B)Cm-

H lr" lf" (4.1.2)
T(B)hc,n — T(B)"“»" ——T(B)! .

When B is a commutative symmetric spectrum defined on spheres or a com-
mutative FSP, T'(B) will be a ring spectrum and the maps I',, and [, will be
multiplicative.

Bokstedt introduced a homology type spectral sequence

E?~ HH,(H.(B)) = H.(T(B)) (4.1.3)

starting with Hochschild homology and converging to the homology groups
of T(B). This is a first quadrant spectral sequence when B is bounded below.
If B is of finite type, it follows that T'(B) is bounded below and of finite type
as well.

4.2 The Segal conjecture for groups of prime
order

The Segal conjecture for cyclic p-groups of order p™ can be formulated as a
homotopy limit problem, namely showing that when B = S the map I, is
a p-adic equivalence. The right hand square of diagram (4.1.2) is homotopy
Cartesian, so this is equivalent to showing that I, is a p-adic equivalence.

In the present work we will be concerned with the case n = 1 only. Thus,
we will consider the diagram (4.1.2) when n = 1. Since this diagram is the
most important diagram in this document, it deserves to be written explicitly.
For brevity, we let v = [y and T =T,.

T(B)ne, —T(B) T(B)
H lf l7 (4.2.1)
T(B)nc, —=T(B)"“» —=T(B)!“

Since T'(B) is bounded below and of finite type, we may take the constant
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tower to express T'(B) as the homotopy inverse limit of bounded below spec-
tra of finite type. In this case H,(T(B)) = HS(T(B)) and the map 7 induces
a map of continuous homology

v o Ho(T(B)) — HE(T(B)») (4.2.2)

and continuous cohomology

vt HY(T(B)) — H*(T(B)). (4.2.3)

The Segal conjecture for cyclic groups of order p is solved in (at least)
two steps. In this case, B = S, and the problem is to show that the map
v : T(S) — T(S)' is a p-adic equivalence. Then by the inverse limit of
Adams spectral sequences (1.1.2), it is enough to show that v* induces an
isomorphism

v Exta(H*(T(S)), F,) — Exta(H(T(S)),F,) (4.2.4)

of Ext-groups. This was accomplished by Lin for p = 2 [23] and Gunawardena
for p > 2 |1] using calculations in the category of modules over the mod p
Steenrod algebra.

The strategy for proving theorem 0.0.3 is to follow this strategy by repla-
cing S by one of the S-algebras BP or BP{m—1).

It turns out that H}(T(S)!“r) is isomorphic to the Singer construction
on the A-module F,. We will come back to the isomorphism (4.2.4) when we
introduce this construction in chapter 5.

Forn > 1, the Segal conjecture was settled by Carlsson, using an inductive
method in homotopy. This approach was generalized by Tsalidis [27].

4.3 The Tate spectral sequences for TH H(B)

We specialise the spectral sequences from section 3.3.1 to the case when
X = T(B) is the topological Hochschild homology of an S-algebra B, and
G = Cy, the cyclic group of order two. We assume that B is bounded below
and of finite type over Fs.

We start by identifying the E?(T(B))-terms. Since the Cy-action on T'(B)
factors through the circle action

A: T, AT(B) = T(B). (4.3.1)
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The induced action on homology H,(T(B)) is trivial since T is path connec-
ted. Hence

H=*(Cy; H.(T(B)) = H*(Cy; F,) ® H.(T(B)). (4.3.2)

The Tate cohomology groups with trivial coefficients can be calculated ex-
plicitly [14]
H*(Cy;Fy) & P(u,u™t) . (4.3.3)

This is a graded algebra with deg(u) = —1. See |14, p.250-252).

The spectral sequence E”(T'(S)) is particularly simple, since H, (T(S)) =
H,(S) is concentrated in degree zero. Indeed, E(T(S)) = P(u,u™") is con-
centrated on the horizontal axis. Thus, there is no room for further differen-
tials and the spectral sequence collapses on the E%term.

The unit n : S — B induces a map from the equivariant sphere spectrum
T(n):Se, =T(S) — T(B), and further a map

T(n)'® : E"(T(S)) — E"(T(B)) (4.3.4)

of spectral sequences. This map is given on the E2-terms as the map sending
u® in bidegree (—s,0) to the class u* ® 1, for all s € Z.
By naturality of the map (4.3.4), this implies that the classes u®* ® 1 €
EES’O(T(B)) are all infinite cycles, i.e. they can not support differentials.
We specialize propositions 3.3.4 and 3.3.6 in the case X = T'(B):

Proposition 4.3.1. Let B be a bounded below S-algebra of finite type over
F,.

Then T(B)'“2 is equivalent to a homotopy inverse limit of a tower of
bounded below spectra of finite type. There is an A,-comodule, homology
type Tate spectral sequence converging strongly to the continuous homology
of T(B)? as a completed A,-comodule.

The homological Tate spectral sequence has E2-term

Ef* (T(B)) = P(u,u™') ® H,(T(B);IF,)) = H(T(B)!*; ) (4.3.5)

and the classes u® @ 1 in bidegree (—s,0) are infinite cycles for all s € 7.

Further, if B is a commutative S-algebra, then T(B) is an S-algebra and
the spectral sequence becomes an A,-comodule algebra spectral sequence. In
this case the differentials are derivations with respect to the product from the
Tate cohomology groups.
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By the duality isomorphism (3.2.1) of Tate groups, we have that H_, (Ca; Fy) 22
H*1(Cy; ). By this isomorphism, we then let

H_,(Cy;Fy) 2 X P(v,v7") deg(v) =1
where Yo ! is dual to u .
Dual to proposition 4.3.1, we have the following specialization of propos-
ition 3.3.5:

Proposition 4.3.2. Let B be a bounded below S-algebra of finite type over
F,.

Then T(B)'“2 is equivalent to a homotopy inverse limit of a tower of
bounded below spectra of finite type. There is an A-module, cohomology type
Tate spectral sequence converging strongly to the continuous cohomology of
T(B)'“> as an A-module. The cohomological Tate spectral sequence has Es-
term

E3Y(T(B)) = SP(v,v™") ® H*(T(B);F) = H;(T(B)'**;F,).  (4.3.6)

The cohomological Tate spectral sequence is dual to the homological Tate spec-
tral sequence in the sense that Ej:’* 18 dual to E;f’* in each bidegree for all v
and that the cohomological differential d, : Eﬁt — Ef”’t”"“ s dual to the
homological differential d" : E;"M’t_,“ — EAg’t for all s,t and r > 1.

In particular, none of the classes Yv*~t @ 1 in bidegree (s,0) are hit by
any differentials.

We end this section with a note on the map 7.

Proposition 4.3.3. The map v : T(S) — T(S)! induces a non-trivial

map of continuous homology groups taking the unit in H,(T(S)) to the unit
in H(T(S)Hr).

Proof. Let S denote the equivariant sphere spectrum and let C' = C, be
the cyclic group of order p. We use that the equivariant sphere spectrum is
split (see [18, §1]). This means that there is a map s : S — S¢ such that s
followed by the inclusion of the fixed points F': S¢ — S is a non-equivariant
equivalence.

The Frobenius map F can be factored as the composition S¢ g g
where S"¢ — S is the map forgetting equivariance.
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We get an extension of diagram (4.2.1)

S\
Spo —> gC S
r lv
Spo M ghe gio
trf g téL
She S SY0] —=XShe

where the middle vertical composite is an equivalence. We know from the
homological Tate spectral sequence for T(S)!¢ that Hy(S'°[0]) & H§(SC) =
F,. To show that the map <, is non-trivial on continuous homology groups,
it suffices to show that the map g, is surjective. This follows from the long
exact sequence in homology since Sy is 0-connected. U

4.4 The Tate spectral sequence for G =T

In addition to what we have developed, there is also a Tate spectral sequence
for the full circle group T. We will state its properties and relate it to our case.
This spectral sequence can be derived from a related homological homotopy
fixed points spectral sequence discussed in [12].

Proposition 4.4.1. Let B be a bounded below S-algebra of finite type over
]FQ.

Then T(B)" is equivalent to a homotopy inverse limit of a tower of
bounded below spectra of finite type. There is an A,-module, homology type
Tate spectral sequence converging strongly to the continuous homology of
T(B)™™ as a completed A,-comodule.

The homological Tate spectral sequence is concentrated in even columns
and has E*-term

E? (T(B)) = P(t,t ") ® H(T(B): ) = H{(T(B)'";F,).  (4.4.1)

The classes t" ® 1 have bidegree (—2n,0) and are infinite cycles for all s € 7.

Further, let o : H,(T(B)) — H.1(T(B)) be the map sending o €
H.(T(B)) to the homology class \.([e] ® «), where X is the circle action
(4.3.1).
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Then for a € H,(T(B)), the d*-differential is given by

Et"@a)=t""®@0(a). (4.4.2)

If B is a commutative S-algebra, then T (B) is an S-algebra and the spec-
tral sequence becomes an A,-comodule algebra spectral sequence. In this case
the differentials are derivations with respect to the product from the Tate
cohomology groups.

Let X be a T-equivariant spectrum and let C' = Cy C T. There is an
equivalence X'“ ~ Map(T/C,,Map(ET, ET, A X)). The collapse map
T/C — T/T and the stable T-transfer X(T/T, ) — T/C. define restriction
and Verschiebung-maps of Tate-spectra X' — X¢ — ©-1 X

On homological Tate spectral sequences for X = T'(B) this corresponds
to the maps that respectively injects even columns and projects onto odd
columns. Since there are no odd differentials in the T-Tate spectral sequence,
it follows from the fact that the differentials are derivations that there can
be no odd differentials in the Cs-Tate spectral sequences either. Thus, we
have a short exact sequence of continuous homology groups:

0— HX'™ — HEXO2 — S THeXT — (4.4.3)

We will see that this sequence is not split as completed A,-comodules.
From proposition 4.4.1 and (4.4.3), we also get that the d?-differentials in
the homological C5-Tate spectral sequence is given by

P ®@a)=u?®o(a). (4.4.4)

4.5 Homotopy fixed point spectral sequences

In addition to the Tate spectral sequence there is also a homological homo-
topy fixed point spectral sequence.
By the skeleton filtration of EG we get a tower of spectra

XMG — = X" p—1] = X"Mn] - ... = X"0] ~ X (4.5.1)
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expressing X"“ as the homotopy inverse limit. This tower and the associated
homological homotopy fixed point spectral sequence was studied in [12| and
relates by the norm sequence (4.2.1) to our case.

If X is a bounded below S-algebra of finite type, then it makes sense
to talk about the continuous homology groups H¢(X"?) and we have the
following result from [12, Proposition 2.4]:

Proposition 4.5.1. Let X be as above. Then there is a homological ho-
motopy fized point spectral sequence concentrated in the left half-plane above
some horizontal line with

E7, = H(Gy Hy(X)) = Hi(X")

converging strongly to the continuous homology of X"<.
The norm map (4.2.1) induces a map of spectral sequences that includes
the half-plane into the whole plane.



Chapter 5

The Singer construction

In section 5.2 we will review the definition and some important properties
of the Singer construction at the prime p = 2. We will in section 5.1 briefly
recall some facts about the mod 2 Steenrod algebra, its dual and the finite
sub Hopf algebras A,, and E,,.

For any A-module M the Singer construction R, M is an A-module re-
sembling the A-module A ® M in some ways. For one, there is an evaluation
map € : R, M — M analogous to the evaluation map A ® M — M sending
Sq" @ x — Sq™(x).

The Singer construction appeared originally in [25], but the work presen-
ted here concentrates on its relation to the work of Lin for the case of
the Segal conjecture for the group C5. A published account of this work
is found in [23] where the calculation of Lin shows that the induced map
e Exta(Fy,Fy) — Exts (R Fy,Fy) is an isomorphism. A further study ap-
pears in [1], where a more conceptual definition of the Singer construction is
given.

For the purposes of chapter 10 and theorem 10.1.1, we need only the
property that €* induces an Ext-isomorphism.

In section 5.4 we will use the language of [1] to restate the main technical
lemma of [23] in a slightly more general way. Essentially, we will show that
when M is a cyclic A,,-module, we have a short exact sequence of left A-
modules

A®p, K= A@a, ReM 5@, S A®a, , M (5.0.1)

where the kernel A® 4, K is generated over A by classes of negative degree.
This result is a direct generalization of [23, Lemma 1.3], where the case
M = T, is considered. We will use the ideas of the cited paper to derive
lemma 5.4.2.

45
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This result will play a central role in chapter 11, where the quotient map
q of (5.0.1) will arise in connection with the Segal conjecture for T'(BP(m)).
In fact, the map ~* : H}T(BP{(m))!“> — H*T(BP{m)) will turn out to be
built up from copies of the map ¢ in diagram (5.0.1). At the end of chapter
11, we wish to state a co-connectivity result for m,(y). This will be done by
arguing in terms of Ext-groups, and section 5.5 will supply the technical tool
needed for the proof of theorem 11.3.4.

To make the link with topology, we will in section 5.6 review a con-
struction from [11] where the Singer construction on the F,-cohomology of
a spectrum is given as a certain Tate construction involving the extended
powers from definition 2.2.1.

Finally, in section 5.7 we will define a homological version of the Singer
construction.

5.1 The mod 2 Steenrod algebra

Let A denote the mod 2 Steenrod algebra. We recall some facts from [24].
As an algebra, A is generated by the squaring operations Sq" for all n > 1
modulo the Adem relations. There is also a coproduct Sq™ +— ) Sq' ®
Sq’, making A into a connected cocommutative Hopf algebra.

The dual Steenrod algebra A, is a commutative Hopf algebra. As an
algebra it is isomorphic to the polynomial algebra P(&,|n > 0) where &, has
degree 2" — 1. The coproduct is given by (&) =32, ,_, & ;.

As a Hopf algebra, A is the union of an increasing system of finite sub
Hopf algebras

i+j=n

AgC A C...A,C...CA

where A, is generated as an algebra by the elements {Sq?"|0 < n < m}.
The dual Hopf algebra A,,, is a quotient of A,. Namely, let I(m) C A, be
the Hopf ideal

I(m):( 2m+1’ %m,_,_, 4 §?n+l’€k|k2m+1)' (5.1.1)

m?

Then A,,. = A,/I(m).

For each m > 0 we also have the sub Hopf algebra E,, C A, generated
as an algebra by the Milnor primitives {Q,|0 < n < m}. The generators are
given recursively by @, = [Sq*", Q._1] and Qo = Sq'. Moreover, we have
that Q2 = 0, so E,, is an exterior algebra for each m > 0. Dually, E,,, is
isomorphic to the quotient of A, by the Hopf ideal

H(m)=(&,...,8,&%|k>m+1). (5.1.2)
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Let B C A be a sub Hopf algebra. Regarding F, as an B-module by the
augmentation map B — Fy, we let IB C B be the augmentation ideal. Then
by A/B we mean the quotient A/A-IB = A®pFy. In particular this is a
left A-module.

5.2 Basic construction

The Singer construction is an endofunctor on the category of modules over
the Steenrod algebra. In [11]| the value of the functor on a module M is
denoted R, (M) and is isomorphic as an Fy-vector space to XFy[v, v @ M
where T, [v, v™!] is the ring of Laurent polynomials on a generator v of degree
one.

The action of the Steenrod squares are given explicitly by

S @x) =), (r_i)Ev”'S_i ® Sq'w (5.2.1)

§—21

for all z € M.

An important property of this functor is that it comes equipped with a
natural transformation € : Ry(M) — M of A-modules, given by the rule
Yo'l @ xS

Definition 5.2.1. A map of A-modules L. — M 1is a Tor-equivalence if the
induced map

Torit (F,, L) — Tor’ (F,, M) (5.2.2)

18 an isomorphism.
The relevance of this is the following.

Proposition 5.2.2 ([1]). If L — M is a Tor-equivalence then for every
bounded above right A-module K the induced map

Tor (K, L) — Tor’ (K, M) (5.2.3)
18 an isomorphism. Moreover, for every bounded below left A-module N of
finite type, the induced map

Ext® (M, N) — Ext®(L, N) (5.2.4)

18 an isomorphism.
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The Singer construction and the evaluation e can be defined for odd
primes as well, and the following important result holds for all primes:

Theorem 5.2.3 (Gunawardena, Miller [1]). The evaluation map € is a
Tor-equivalence.

Corollary 5.2.4. Let M, N be any left A-modules such that N is bounded
below and of finite type over F,. Then any A-linear map [ : R, (M) - N
factors uniquely as f o€ for some A-linear homomorphism f: M — N.

Proof. Since N is bounded below and of finite type, a special case of theorem
5.2.3 and proposition 5.2.2 says that €¢* : Hom (M, N) — Homu (R, (M), N)
is an isomorphism, and the corollary follows. O

Remark: A special case of this occurs when N = M is a cyclic A-module.
Then F, = Hom (M, M) = Hom (R, (M), M), so any A-linear map R, (M) —
M is an F,-multiple of e.

5.3 The definition of Adams-Gunawardena-Miller

Whenever we have a left A,, ;-module M we may induce it up to an A-
module by tensoring with A from the left over A,, ;. In [1], the Singer
module is defined in a way resembling this construction. We will review the
definition when p = 2. This case is omitted in the cited paper, but is included
indirectly in the predecessor [23] where the ideas originally appeared.

Let A, be the dual Steenrod algebra at the prime 2 and let J(m) be the
ideal

om 2m—1

J(m):(2 5 S3 7"'767%15672n+17€m+2:"')

of A,. Define B,,, = A,/J(m) and let B',,, = B,..[¢]'] be By, localized by
inverting &;. The quotient B,,, is a left A,,,-comodule and a right A,,_1,-
comodule. The bi-comodule structure is inherited from the coproduct on
A,.

Multiplication by f%mH respects the bi-comodule structure and gives a
morphism of bi-comodules B,,, — Bj..

The localized quotient B, , can be obtained as the colimit of the sequential

limit system
. 2m+1
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where the maps are multiplication by {fmﬂ, and thus B’,,, inherits the struc-
ture of an A,,.-A,,_1x bi-comodule.

Both B,,, and B',,, are of finite type, and their duals will be denoted by
B,, and B’,, respectively. These will then be A,,-A,,_1 bi-modules.

The canonical maps of ideals (0) — J(m + 1) — J(m) induce natural
surjective maps

Ay — Bpi1x — B (5.3.2)
of A=A 14 bi-comodules. Dually we get injections of A,,-A,, 1 bimodules

B, = By — A. (5.3.3)

Inverting &;, (5.3.2) gives the following commutative diagram of A,,.-A,,_1.
bi-comodules for m > 0:

i !
Bm+1* ’ Bm*

Dually, we get the following commutative diagram of A,,-A,, | bimodules:

/ !
B, —B,, .,

L

B,y — By (5.3.5)

N

A

For reasons to appear later, we give the top left vertical map of this diagram
the name ¢y : B), = B,,.

Let M be an A-module of finite type over Fy. Then from the upper row
of (5.3.5) we get maps of left A,,-modules

B, @, M~ B, &, M- B, &, M (5.3.6)
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for all m > 0. The Singer construction on M is defined as the colimit over
these maps as m tends to infinity:

R, (M) = colimBy, @a,, , M. (5.3.7)

The evaluation map € : R (M) — M is constructed from diagram (5.3.5) by
taking the colimit

€:R.(M)=colimB, ®4,_, M — colimA®,, _, M =M.

We end this section by emphasizing some facts about the bi-modules B, and
B,,.

For p # 2, the following lemma is the content of [1, Lemma 2.1] and its
proof for p = 2 follows directly from the proof in [1|, making the standard
modifications for the case p = 2. The proof of B], being a free right A,, ;-
module in the case p = 2 can also be found in |23, proof of Lemma 2.4|.

Lemma 5.3.1. (i) B], is free as a left A,,-module. The elements dual to
2™ for k € 7 may be taken as a base.

(ii) Bl is free as a right A,,_1-module. The elements dual to &F for k € Z
may be taken as a base.

The second part of the lemma is equivalent to saying that the composite
map B ® A1 — B, ® A,,_1 — B], is an isomorphism of right A,, ;-
modules.

Following the discussion in [1, right below Lemma 2.1], we note that for
M an A,,-module, the map

B;n ®Am—l M — B;n—l—l ®Am M

is an isomorphism of left A,,-modules. This is true since, when considered
as groups, both sides are isomorphic to B(0) ® M.

This means in particular that when considering the left A,,-module struc-
ture of Ry (M), we can take B',,®4, _, M as our model. Note that when M is
just a left A,,_;-module, tensoring with B’,, over A,,_; gives a functor from
left A,,_i-modules to left A,,-modules, which we also denote by R, (—). This
Singer construction on A,, ;-modules fits into the commutative diagram of
module categories

A—ModR+—(_)>A—Mod

| |

Ay — Mod™ L 4 Mod
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where the vertical arrows represent the obvious forgetful functors. The fact
that the Singer construction takes A,, ;-modules to A,,-modules will play a
crucial part in our estimations in chapter 11.

It is important to note that lemma 5.3.1 does not state that B! is free
as an A,,-A,,_1 bi-module. See the remark on page 55.

5.4 Splitting

In the original paper [23| the authors study the Singer construction on the
trivial module F,, where the latter is made into a left A-module by the
augmentation map A — Fy coming from the Hopf-algebra structure on A.
Recall that the Singer-module R (Fy) = corlgmB;n ®a,, , Fy is isomorphic to
YP(v,v ') with v of degree one and with the action of the Steenrod algebra
as given by the formula (5.2.1).

Our notation differs from the one in the cited paper by a suspension. In
the original context the Singer functor is defined to be a desuspension of our
Ri(-).

We will review some of the work done in [23]. Let ¥P = R, (Fy) =
YP(v,v7"). For a fixed m, one then studies the cohomological object P as
the inverse limit of a tower of quotients

P—...— P/F—k2m+1—1,m — P/F(—k+1)2m+1—1,m —...—0 (541)

where F, ,, C P is the left A,, submodule of P generated by classes of degree
strictly less than r.

The main technical result in the cited paper is that after inducing up from
left A,,-modules to left A-modules, each of the finite stages in the tower of
quotients splits as a sum of cyclic A-modules:

Lemma 5.4.1. ([23], lemma 1.8) There is a splitting of left A-modules
A ®Am P/F_Lm & ®2j2m+1_1A//Am_1 )
>0
This lemma has the following generalization:

Proposition 5.4.2. Let M be a left A,,_1-module of finite type. There is a
short exact sequence of left A-modules

0= A®a, K= A®a, Ri(M) = @S Ac4, , M 0.

J=0
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The kernel is given by K = kerqy ®a4,, , M.

If M is generated over A,,_1 by classes of degree less than or equal to
zero, then the kernel A ®4,, K 1is generated over A by classes in degree less
than or equal to —2™m+1.

The proof will given later.

The maps in the limit system (5.3.1) defining B’,,. are injections, and
we get a filtration of the colimit consisting of A,,.-A,,_1. comodules Q. C
Qr 1+ C ... C Qos C B, where Q. is explicitly given as the sub A,,,-
A,,_1. bi-comodule Bm*{ﬁfzmH} ~ yk2"T B Since we have inverted &,
this filtration extends naturally to a bi-infinite filtration by also defining
Qis = B {EF™} for k < 0, so we have a limit system

0-)...‘—>Q2*<—>Q1*<—>QU*<—>Q71*‘—>...‘—>B;H* (542)

of Aps-Am_1.-bicomodules with trivial inverse limit and B],, as its direct
limit. We note that all the Qg are isomorphic as A,,.-A,,_1.-comodules, up
to suspension.

The filtration quotients are recognized as suspensions of A,,,. Indeed the
quotient Qo./Q1+ is isomorphic to the quotient in the short exact sequence
gmtl

0= 2" A, /T (m) S A, LT (m) — A, J[T(m) + (€)= 0

and J(m) + (£2""") = I(m). Thus we have short exact sequences of A,,-
A, —1x bi-comodules

0= Qrite = Qe — IF2" AL 0 (5.4.3)
for all £ € Z.
The colimit By, is of finite type and we have a dual filtration
B —...5Q10—=>Q —>Q —>Q—...=>0 (5.4.4)

of A,-A,,—1-bimodules expressing B] as the inverse limit. This tower of
quotients corresponds to the tower (5.4.1). In fact, there is an isomorphism
of left A,,-modules Q; ®4,,_, F» = XP/Fyom+1_1,, for every k € Z.

Again we have Q) = $F2""" B, and the filtration kernels are given by the

short exact sequences

0— SF2" A — Qr = Qrpr — 0 (5.4.5)
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for all k£ € Z.

Let M, be the left A,,_i,-comodule dual to M. We may induce up the
filtration (5.4.2) by cotensoring with A, from the left using the left A,,.-
comodule structure or cotensoring with M, from the right using the right
Ap—1.-comodule structure. Dually, we may tensor the filtration (5.4.4) with
A from the left over A,, and M from the right over A,,_;. Any combination
of these preserves exactness since @)y is free as a right module over A,, | for
all £ by lemma 5.3.1, and since A is flat over A,,.

Let g : B!, — @y be the projection onto the kth stage in the tower
(5.4.4). Then we have a short exact sequence of towers of A,,-A,,_; bi-
modules:

-+ >——=ker(q_1)>—= ker(qo)>——ker(q; )>——- - -

B! o B! B! B! .o (5.4.6)
‘ lq_l lqo lql
B, R Q-1 Qo 1

As noted, tensoring this diagram with M over A,, ; from the right pre-
serves exactness, so we get a similar diagram of left A,,-modules:

cor——=ker(q 1) ®a,,_, M>—=ker(q) ®4,,_, M>—---

B, ®a, ,M=—=B,®4, , M=——=--- (54.7)

l41®1 l%@l

Q—l ®Am,1 M Q(] ®Am71 M-— ...

Note that the middle row is just R, (M) considered as a left A,,-module.
We will now look at the cohomological object A ®4,, Bj, as an A-A,, i-
bimodule.

Lemma 5.4.3. The short exact sequences
0— A*DAm*Qk—l—l* — A*DAm*Qk* — Eka_HA* — 0

split as A.-A,,_1+ bi-comodules. Dually we have split short exact sequences
of A-A,,_1 bi-modules

0— Ek2m+1A —Z) A®Am Qk — A®Am Qk-i-l — 0.
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Proof. It suffices to prove the lemma in the cohomological situation. Moreover,
it will be enough to consider the case £ = 0 since the bi-modules Q) are iso-
morphic up to suspension. Then Qg = B,,.

The inclusions of ideals (0) C J(m) C I(m) give a surjection of A,,,-
A,_1+ bi-comodules A, — B,,, — A,,.. Dually, we have inclusions of A,,-
A,—1 bi-modules A,, C B,, C A. These inclusions and the multiplication
map ¢ on A give rise to the following commutative diagram of A-A,,_; bi-
modules

A®us Ap—> ARy Bn

A ? A®, A.
The top horizontal map is the injection in the short exact sequence of the

lemma and the lower horizontal map is the multiplication. The lower right
half of the diagram provides the needed splitting. O

Corollary 5.4.4. For all m > 0 and all k € 7Z there are isomorphisms of
A-A,,_1 bimodules
A®u4, Qn= Pr* A
Jj>k
The surjections A @4, Qr — A®a, Qri1 are compatible via these iso-
morphisms with the obvious projections, sending the summand j = k to zero.

Proof. Using lemma 5.4.3 inductively [ times, we get the splitting

n+l—1

A®4, Qn= (P Y A) & (A®4, Qui)

j=n

Since A is connected and the connectivity of ),,.; tends to infinity with [,
this expression stabilizes in each degree at a finite stage, and we obtain the
desired formula by passing to the colimit over /. This shows that each A-
A,,-bimodule in the tower can be identified with a sum of suspensions of
A.

The split in lemma 5.4.3 implies that there is a bimodule isomorphism of
towers based at L, := A®4,, Q,

A ®Am Qn—2 A ®Am Qn—l - Ln

- - ‘

S O - S A I

n—2<j<n

Since the base L, is isomorphic to @ ., %/2""" A, the claim follows. O

jzn
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Proof of Proposition 5.4.2. When considered as a left A,,-module we take
B! ®a, , M as a model for Ry (M).

Using the right A,, ;-module structure we get, by lemma 5.3.1, a short
exact sequence of left A,,-modules

0— ker(q) ®a,_, M — B @4 _ M ' Qy@s_, M—0 (548)

by tensoring with M from the right. The exact sequence in proposition
5.4.2 now follows by tensoring (5.4.8) with A from the left over A,,. This
produces again an exact sequence since A is flat over A,,. By corollary
5.4.4, the quotient is isomorphic as a left A-module to the required sum of
suspended copies of A ®4,,_, M. The kernel is equal to A ®,,, K where
K = ker(qo) ®a,, , M. We claim that K is generated as a left A,,-module
from classes in degrees less than or equal to —2™*!. From this the last
statement of the lemma follows.

Both B! and Qo = B,, are free as left A,,-modules. Indeed, by lemma
5.3.1, we may identify B}, = A, [&"", &7 ] and By, & A, [¢8"] such
that on duals go : B!, — By, is identified with the obvious projection. Thus,
we can identify the quotient map gq as canonical projection in the short exact
sequence of left A,,-modules

0 — ker(qo) — @2j2m+1Am — @2j2m+1Am —0.

jez §>0

Thus ker(qo) = @, i7" A, as a left A,-module. In particular we see
that ker(qo) has all its left A,,-generators in degree less than or equal to
_2m+1‘

When M is generated by classes of degree less than or equal to zero,
K = ker(qy) ®4,,_, M is generated as a left A,,-module by classes in degrees
less than or equal to —2™ !, O

Remark: Note that we do not have the bimodule splitting of lemma 5.4.3
prior to inducing up to left A-modules. To see this, consider the case m = 1.
Let Fy be the trivial left Ag-module concentrated in degree zero. Tensoring
with Fy over Ay from the right produces a short exact sequence

0— Al//AU — Bl//AO — E4B1//A0 — 0.

As comodules, we have By, = P(&) @ E(&), Ao = E(&) and By,Oy4,, Fy &
P(&) @ {1,626 + &,6E + £}, The picture of By /Ay in cohomology
looks like this
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where the A; JA¢ sub-module is drawn in bold-face. The inclusion of this sub
module can not allow a retraction because of the non-trivial Sq! originating
from degree 4.

We do not have an isomorphism between A ®,4, Bj, and lim;A @4, Q,
as tensor products and limits do not commute in this case. The problem
arises because A is not finite.

We end this section by some remarks on the relationship between these
objects. We will not need these remarks in the rest of our work, but we
include them for the sake of completeness.

Corollary 5.4.5. The inverse limit of the system {A®a,, Qr}r ask — —o0
18 1somorphic to the infinite product

[[z* A

JEZ
as an A-A,,_1-bimodule.
Proof. By corollary 5.4.4, the inverse limit system in question is isomorphic
to the system where the kth bimodule is ., 372" A, Since A is bounded
below, this sum is naturally isomorphic to the product of suspensions of A.
The map from the kth to the (k + 1)th filtration sends the bottom factor

Sk2™ A to zero and is the identity on the remaining factors. Thus, the inverse
limit is isomorphic to the product. O

There are natural homomorphisms xi : A®a,, B, = A®ua,, Qi for all £,
compatible with the maps in the inverse limit system over k. Thus, there is
a unique map

k:A®a, B, — lim A@,, Q=[] A
k——o0 iz
J

compatible with the maps k.

Lemma 5.4.6. The map k is an injection.
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Proof. The Steenrod algebra A is an increasing union of the finite sub Hopf-
algebras A,. For each » > m and each s € Z we have the following diagram:

A®, B, " lilgnA ®a,, Qr ~A®4 Q,

|

Ar ®Am B;n —g>h£nAr ®Am Qk —>Ar ®Am Qs

The lower left horizontal map is an isomorphism since A, is a finitely gen-
erated free right A,,-module and inverse limits commute with finite sums.
The right vertical map is injective since @), is free as a left A,,-module. The
upper horizontal composition is k.

Any x € A®a,, B), can be lifted to 2’ € A, ®4,, B, for a sufficiently
large r. Assume z is contained in the kernel of k. This happens if and only
if x maps to zero under k, for all s. Since the right vertical map is injective,
the lifting «’ maps trivially to A, ® 4, Qs for all s. Thus 2’ maps trivially to
limy A, ®4,, Q via the isomorphism, and hence 2’ = 0. O

We are really showing that x can be factored as

A ®Am hmk Qk > colim hmk A,« ®Am Qk
— limy, colimA, @4, Q
= hmk A ®Am Qk

where the arrow represents the canonical homomorphism commuting limits
and colimits. The argument shows that this homomorphism is injective as
long as the maps A, ®4,, Qs — A,11 ®a,, Qs are injective for all s.

Remark: One might wonder what the injective image of x looks like inside

the infinite product. Identifying the tower {A ®4,, Q}rez with the tower
292" AV, o of corollary 5.4.4 we see that im x must contain the in-
>k € Yy

finite direct sum @, 372" A, This follows since when restricted to im &,
the maps at every stage in the tower should be surjections.

However, by the definition of the splittings in lemma 5.4.3 it follows that
the element 1®1 € A®4,, B}, maps non-trivially by the composition 74 (1®qy)
in diagram (5.4.9) for every k sufficiently small.

A®a,, Bl

m

ll®Qk
(5.4.9)
Zk2m+1A9A ®Am Qk

~_

Tk
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Hence the image of 1 ® 1 inside the infinite product must be represented by
an infinite sequence (zy)rez where x, # 0 for infinitely many k. Such an
element is not in the direct sum-sub bimodule.

Considered as a left A,,-module only, we know that B/ is free on generat-
ors in degrees equal to zero modulo 2™*'. Hence, A®.,,, B, = @, 3727 A
as a left A-module. The point is that this iSsomorphism is not compatible with
the right action.

Even though the structure of A ®,4, R, (M) seems a bit entangled, we
shall see that it will behave cohomologically as if it were a direct sum, when
M is bounded above.

5.5 Cohomological properties of A ®,4, R (M)

In later applications we will study maps of A-modules A ®,,, R, (M) - N
that are surjective, but not injective. We will describe the kernel of these
maps by lemma 5.4.2. The maps will arise as maps of continuous cohomology
groups and the following result will be of interest to us in connection with
the Caruso-May-Priddy-spectral sequence (1.1.2). We use the notation of
lemma 5.4.2.

Proposition 5.5.1. Assume that M is a bounded above left A,,_1-module
and let K be the left A,,-module ker(qy) ®a, _, M. For all s,t there is an
isomorphism

Ext} (A ®a4, K,F) = Exti"t(@ 2 A ®a,,_, M,Fy).
j<0

Proof. For k <0, let K* =ker(q;) ®4,_, M. Then K° = K. From diagram
(5.4.7) we have a descending chain of submodules

.CKF'cKFc...CK

and for any £ < [ < 0 we have the following isomorphism of short exact
sequences:

A®,,, [K'/KF

-

jom~+1
k§<lzj A ®Am_l M — A4 ®Am Qk ®Am—1 M—A ®Am Ql ®Am_1 M

A@a, [Re(M)/KY —= A®a, [Ry(M)/K']

IR

~
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Hence for any £ < 0 there is a short exact sequence

0= A®, KF 2 A®4, K— @ V7" A®s,, M0 (551

k<j<0

Fixing s and t, we claim that Ext%'(K* F,) = 0 for all integers k& < 0
sufficiently small. Indeed, by a change of rings-isomorphism Extjt(A ®a,,
Kk Fy) = Extjfn (ker(qx) ®a,,_, M,Fy). As k — —oo, the maximal degree of
ker(gy) tends to —oo as k grows. The same holds for ker(qx) ®4,,_, M under
the assumption that M is bounded above.

Let s,t be fixed. Since we are considering Ext over the finite algebra A,,,
we can always choose an integer k£ small enough and a projective resolution
P, — ker(qx) ®a4,,_, M such that P; vanishes in degree ¢. This implies that
Hom', (P,,F,) vanishes and that Ext?’ (ker(qx) ®a,,_, M,F) = 0.

By the long exact sequence of Ext-groups induced by (5.5.1) we see that
for a fixed pair s,t we have

Exty (A®a, K,F) 2 Exty( @ 2" A®,, , M.F)
—k<j<0

for k£ small enough. Passing to the limit over smaller k, the right hand

side does not change by the same argument as above, so the proposition
follows. 0

5.6 Topological model for the Singer construc-
tion

Let X be a non-equivariant bounded below spectrum of finite type. Then
H*(X) is an A-module, and we may consider the Singer construction on
H*(X). As before, we are considering the case p = 2.

Following [11, IT §5], we will show how to realize R, (H*(X)) as the
continuous cohomology of a certain Tate spectrum.

The system of stable diagonal maps (3.4.4) induces maps of spectra

L= SPFID,(SLX) L S D, (57X (5.6.1)

This is a tower of bounded below spectra of finite type, so it makes sense to
consider the continuous cohomology of its homotopy inverse limit.
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Theorem 5.6.1 (|11, theorem 5.1]). For any bounded below and finite
type spectrum X, there is a natural isomorphism

w : colimSH* (S" DX " X)) = S R, (H*(X)) .

n—0o0

Note that we have to introduce a single desuspension in the theorem in
order to make the statement compatible with our definition of R (—).

Proposition 5.6.2. Let X be as above, and let X? be the Xo-spectrum with
Yo acting by permuting the factors. Then there is a natural isomorphism

HE(X"2)™2 = R (H(X).
Proof. By corollary 3.4.2 we have

(X"2)P2 ~ holimEY"EYs, As, (57"B)

n—o0

By [22, VI.1.17| we have a natural isomorphism of ¥y-spectra
EYyx (X"B) X EXyy A(X7"B).
The result now follows from theorem 5.6.1. O
In light of proposition 5.6.2 we make the following definition.

Definition 5.6.3. Let X be a non-equivariant bounded below spectrum of
finite type. Then
R (X) = (X"

We note that the tower (5.6.1) was also used by Jones [21] to relate the
root invariant and the quadratic construction.

We will in the next section look closer at the cohomological Tate spectral
sequence converging to R (H*(X)).

5.6.1 The Tate spectral sequence for R, X

The tower of spectra (5.6.1) induces a direct limit system after applying

cohomology with Fsy-coefficients:

) ST HASr D, (S LX) 5 L SR (HA(X)).
(5.6.2)

.o H'S"Dy (S X

By theorem 5.6.1, the direct limit is isomorphic to X 'R, (H*(X)).
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Still following [11, 1T §5], we describe this cohomological system explicitly.
The homology of Dy(X""X) is given by (2.3.4). Dualizing to cohomology, we
denote the dual of e; by w;. Then for x € H*(X), we have ¥ w,;®(X "x)®? €
H*Y"Dy(X¥7"X) and for p = 2, [11, Lemma I1.5.6] states that

(DAY (D, ® (D"2)92) = D7 ;1 @ (8" La)e? (5.6.3)

and that the terms of the cohomology involving w; ® x; ® x5 lie in the kernel
of X"A*,

For x € H?(X), the isomorphism of theorem 5.6.1 (|11, page 47, proof of
I1.5.1]) is given by

WX "Wy, @ (X 7"2)%%) =0/t @ . (5.6.4)

The cohomological Tate spectral sequence for (X”?)"*2 has Ej-term
Byt = H.(Sy H* (X))

5.6.5
SP(v,v7") @ Fo{z @ 2 }aen(x) ( )

11l

where z € H*(X) runs through an Fy-basis of H*(X). By the explicit de-
scription (5.6.3) of the maps in (5.6.2), we see that the spectral sequence
collapses at the FEy-term.

Hence, we make the following connection between the Singer construction
and the Tate spectral sequence.

Proposition 5.6.4. Let X be a bounded below spectrum of finite type. The

cohomological Tate spectral sequence E.(R.(X)) converging to H* (R, (X)) 2
R, (H*(X)) has Ey-term equal to

EAI;’J* & EP(’U, Uﬁl) X ]F2 {LE (4 x}mGH*(X)

where © € H*(X) runs through an Fy-basis of H*(X). For x € HIX, the
element Y097 ' @ x € Ry (H*(X)) in the abutment is represented in the
spectral sequence by the class Yv" ' @ x%? in filtration 7.

Proof. We have already noted that the spectral sequence collapses.

By the isomorphism (5.6.4), the element v7" " '®z corresponds to X1 "w®
(Xr12)®? € H(X"?)™2. As it cannot be pulled back further in the system
(5.6.2), it is represented in the spectral sequence by the element Yv' ™' ®
%2, O
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5.7 The dual Singer construction

Definition 5.7.1. Let M, be a bounded below left A,-comodule of finite type
with dual A-module M.

The homological Singer construction Ry (M,) is defined as the dual of
R, (M).

The discussion about duality in section 1.2 applies to the cohomological
and homological Singer construction as well.

As an Fy-vector space the Singer construction on M was given as the
suspended tensor product XP(v,v"!) ® M. Even if M is of finite type in
each degree, this object will be infinite dimensional in each degree whenever
M is unbounded above. In our case M will typically be the cohomology
of some bounded below spectrum of finite type, hence M will typically be
bounded below but not from above.

We let P(u,u') be the dual of X P(v,v!) with " of degree —n dual to
Yv "1 Then

R, (M,) = [Ry(M)],] = P(u,u™" )M, (5.7.1)

where —®— is the completed tensor product.
The A-module action map A ® R, (M) — R, (M) for the cohomological
Singer construction dualizes to a map

v:R, (M) =[R (M), = [A® R (M)], 2 A.®R(M,) (5.7.2)

so Ry (M,) is a completed A,-comodule.
Dualizing (5.2.1), we get that the dual Steenrod operations are given by

SgE(u" @ a) =3, (T )unt T @ Sqla (5.7.3)

§—21

for o € M,. The sum (5.7.3) is finite since M, is bounded below, so we have
the following commutative diagram:

R.(M,) L AR, (M),
(5.7.4)

The dual of the evaluation map € : R, (M) — M is given by the formula
&) =Y, u" ®SqLa. (5.7.5)
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With definition 5.7.1 and proposition 5.6.2 we get that for a bounded be-
low spectrum X of finite type we have R, (H,(X)) = H{(R, (X)) as a com-
pleted A,-comodule. This follows since HS(R; (X)) is dual to H} (R (X)),
as mentioned in section 1.2.

We have then the dual of proposition 5.6.4:

Proposition 5.7.2. Let X be a bounded below spectrum of finite type. The
homological Tate spectral sequence E™(R, (X)) converging to H{(Ry (X)) =
R, (H.(X)) has E*®-term equal to

EA:Z =~ P(u,u™") @ Fo{a®*}aem. (x)

where o € H,(X) runs through an Fy-basis of H.(X). For a € Hy(X),
the element w1 @ o € Ry (H.(X)) in the abutment is represented in the
spectral sequence by the class u" ® a®? in filtration —n.



Chapter 6

The Bokstedt map

At this point all the relevant topological and algebraic structure has been
discussed and defined. In this chapter we set up the connection between the
Singer construction and the continuous cohomology of T(B)¢ for B a com-
mutative S-algebra. The main calculational result we will use in subsequent
chapters is stated in theorem 6.1.1. The first section of this chapter will be
concerned with the construction of the map ¥ and the %)roof of its properties.

In fact, the basic construction will give a map [DSV B]/C2 — T(B)!C2 of
C,-Tate spectra. Then, by the inclusion B"? = DéO)B C Dél)B, we get a
composite map of Tate spectra

U : R,B — [D\Y B — T(B)' .

The construction of ¥ depends on T'(B) being an equivariant F.-ring
spectrum. In chapter 7 we will use the simplicial structure of the topolo-
gical Hochschild spectrum to reprove theorem 6.1.1 without using any F..-
structure.

6.1 FE,-structure

Let B be a commutative S-algebra of finite type and let T'(B) be the topo-
logical Hochschild homology spectrum of B. Then T'(B) is a T-equivariant
commutative S-algebra or, equivalently, a T-equivariant F-ring spectrum.
We have structure maps &, : D, T(B) — T(B) for each n > 0 and they can
be taken as maps in the category of T-equivariant spectra. We will only use
the map & in the following.

The T-equivariant map A : S x B — T(B) together with the second
structure map & of the F-structure is used to define the following composite

B: Dy(S" x B) %% D,T(B) 53 T(B). (6.1.1)
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The composite 3 is a map of T-spectra and thus induces a filtered map of

Tate-spectra
B¢ Dy(ST x B)YY — T(B)¢ (6.1.2)

for any closed subgroup G C T. In the remainder of this chapter we will
discuss the structure of Dy(S! x B) and its associated Cy-Tate spectrum.
This is manageable mainly because the T-equivariance of Dy(S' x B) is
‘concentrated’ on the circle factors.

For this discussion we need not assume that B is bounded below and of
finite type. For all applications, however, these assumptions will hold. In
this case we have that T'(B) is connective and of finite type, and by corollary
2.3.1 we have that all three spectra in (6.1.1) are bounded below and of finite
type.

The composite (6.1.1) appears in [10]|, where the author uses naturality
to solve multiplicative extension problems in the Bokstedt spectral sequence
for T(Fy) and T(Z). In our context we will use naturality of the Tate con-
struction to provide key input for determining the A,-comodule structure of
HeT(B)e,

The following theorem will provide necessary input for our calculations
in the chapters following chapter 8:

Theorem 6.1.1. Let B be a commutative S-algebra. Then there is a map
of non-equivariant spectra

U : R, B = (B"?)!®2 — T(B)': (6.1.3)

which induces the following map of E%-terms of homological Tate spectral
sequences:

' ®a®? = uf ®a’.
Here o € H,B and o = p.(t A1)« (a ® o) € H,T(B) where . : B — T(B)
is the inclusion of the zero-simplices and p : T(B) ANT(B) — T(B) is the
multiplication map.

The proof of this theorem will be given at the end of the following section.

6.2 Approximating the extended power construc-
tion

In the following, we will consider different equivariant structures on the circle
group. Let T denote the circle as a 35 x T-space by letting T act by multi-
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plication and ¥, act as the subgroup of order two. We write S! for the same
underlying T-space, but we consider S! as a X5 x T-space by letting 3o act
trivially. Thirdly, we give the torus S' x S the structure of a 35 x T-space
by letting T act diagonally and let ¥y act by permuting the factors.

The twisted diagonal AT : T — S' x S' that maps z — (—x,7) is a
Y9 X T-equivariant map. Remember that 5 acts on the circle in the source
as the subgroup of order two. This gives a map of T x Ys-spectra

AT T x B" — (S' x B)" (6.2.1)

which on the level of prespectra is given by

(23)o(AT ALAL)

T, AB(V)AB(W) SLAB(V)ASLAB(W)

for representations V,WW € U". The last map in the composite above, la-
belled (23), is the canonical isomorphism permuting the second and the third
factors. Applying the half-smash functor EX5 X (—) on the map (6.2.1) pro-
duces a map of T-spectra:

EXyxy, AT
e

EY, x5, (T x B'?) Do(S' x B) . (6.2.2)

The Ys-map 7 : E¥y — * is a non-equivariant homotopy equivalence. The
half-smash is a functor in both variables, so we get an induced map E¥, x
T x B — T x B"? of ¥, x T-spectra. Remember that T was given the
antipodal action by X3, so Y5 acts freely as the subgroup of T of order two.
In particular, T x B*? is a free Ys-spectrum and so by passing to Ys-orbits
we get an equivalence of T-spectra

mx 1:EYy xy, (T x B"?) = T xy, B".

Identifying T as the 1-skeleton of EY,, we have T xyx, B = Dél)B. By

choosing an inverse to the map m X 1 we define 1) : Dél)B — T'(B) to be the
composite

T —1
b Dél)B(K_IL EY, xy, T x B2 IK_AT>D2(51 x B) —B>T(B) . (6.2.3)

This is a map of T-spectra, so applying the Cs-Tate construction we get a
map 9'¢2 : DSV B!C2 — T(B)!C2_ preserving the Tate-filtration. On E'-terms



CHAPTER 6. THE BOKSTEDT MAP 67

of the homological Cy-Tate spectral sequences, the map /2 : EI(DS)B) —
EY(T(B)) is given by

C*(Cos 1) : C*(Cyy H,DSV(B)) = C*(Cy; H,T(B)).

We will describe 1), using a chain level description of the spectra in diagram
(6.2.3).

When B is a CW spectrum, we can give T x B"? the structure of a CW
spectrum with cellular action of the group ¥,. Then by theorem [11, 1.1.3|
we have that EYy Xy, T X B"? is a CW spectrum with cellular chains

C.EY, Xy, (T x B"?) 22 C,(EY,) ®x, C.(T x B"?).

Give T the structure of a free ¥o-CW complex with one free ¥,-cell in di-
mensions 0,1, i.e. C,T =Fy[35]{1, e} where 1 has degree 0 and e has degree
1. The boundary map 0 : C;T — CyT is given by 0(Te) = d(e) =1+ T.
Let W, be the chain complex of section 2.3, given by W,, = F»[¥s]{e, } in
degree n. There is a Yy-chain equivalence C,(X"?) ~ H,X®? and we get

C*EZQ Xy, (T X B/\2) =W ®22 ]FQ [22]{1, 6} X H*X®2 . (624)

Likewise for Dy(S! X B) = EYy Xy, (S! x B)"? we have

C.Dy(S* x B) =W ®s, C,(S* x S') @ H,B®2. (6.2.5)

In order to make the map E¥y Xy, AT into a ¥s-cellular map, we need to
choose a finer decomposition of the torus S*x,S! than the usual CW-structure
with only one 2-cell. Indeed, we let

C.(S* x SY) = Fy[35]{A, B,a,b,e,y} ®Fo{d, z} (6.2.6)

with 0-cells x,y, 1-cells a, b, d, e and 2-cells A, B. If we let ¥y = {1,¢}, this
cell decomposition is depicted in figure 6.1.

The twisted diagonal map AT : T — S! x St is now a ¥j-equivariant
cellular map sending 1 — y and e +— e. Thus EY; Xy, AT is determined by

the formulas
6ER1lRa®khf —eRyUQa® S

6.2.7
6EReERARL HeR®eRa®f ( )

where e; € W; and o, f € H, X.
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tA
tb te
t d
YV B
ta B €
A
x a Y b

Figure 6.1: Yy-cell decomposition of S x S*

The map 7 X 1 : EXy Xy, T X B — Dél)B was given by collapsing EY,
to a point. On the chain level 7, : W — F, is given by

1 ifn=0
€n .
0 ifn>0

and 7 x 1: W ®g, C,(T) ® H,B®? - W @y, H, B¥? is given by

R®1IRaRP —egRa® P

6.2.8
ReRa®RP —eQa®pB ( )

for a, f € H,B. Classes involving e, for n > 0 lie in the kernel of 7 x 1.
With the above maps and concrete cellular models we can now prove our
first result.

Proof of Theorem 6.1.1. The inclusion of the subgroup Cy C T induces a
map of Cy-spectra,

i:Cyxy, B C Ty, B> =DVB.

Further there is an isomorphism Cy Xy, B"? & B"? of Cy-spectra such that
Cy acts on B? by permutation of the factors.

Hence, composing the inclusion i followed by v (6.2.3) and applying the
Cs-Tate construction, we get the filtration preserving map

U (BM)' — T(B)".
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The source of this map is by definition R, B. R
The map of homological Tate spectral sequences is given on the E?-term
by
H *(Co; (Vo)) : H *(Cy; H,B*?*) — H *(Cy; H,T(B)) .

Let o € H,B. Then i,a®? = ¢y ® a®? is a cycle in H,T xy, B"? and by
(6.2.8) and (6.2.7) we see that ((1 x A)o(rx 1) toi),(a®?) =eRy®a®? €
C.Do(S' x B). This cycle is homologous to ey ®  ® a®? since

ey ®@a®a®) =e @ (z+y) @ a®?.

In homology, 3 (6.1.1) sends this class to the product o* € H,T(B). O



Chapter 7

Inclusion of zero-simplices

In chapter 6 we introduced a map R, B — T(B)!“? linking the Singer con-
struction on the homology of B to the continuous homology of T'(B)!“2. We
will in the present chapter give another proof of theorem 6.1.1 by a different
construction. To do this we must consider the topological Hochschild ho-
mology spectrum as a genuine Cy-spectrum indexed on a complete universe
2 . Also, we assume that B is an FSP or a symmetric spectrum defined on
spheres and use the definition of 7'(B) given in [19].

In the last section we apply the construction in this chapter to show the
Segal conjecture in its original form, i.e. for B = §S.

7.1 Edgewise subdivision

Let V. C % and recall from chapter 4 that the Vth space in the pre-
spectrum defining T'(B) is given by the realization of the simplicial space
THH(B;SY).. The p-fold edgewise subdivision functor sd,(—) of Bokstedt-
Hsiang-Madsen [6] comes equipped with a homeomorphism of C,-spaces after
realization

D, :|sd, THH(B;SV). = |THH(B;S").| (7.1.1)

such that C, C S* acts simplicially on the source.

For any simplicial space X, we have a map ¢ : X < |X,| defined by inclu-
sion of the zero-simplices. The p-fold edgewise subdivision of THH (B;S"),
has zero-simplices

lsd, THH(B; SV)]y =THH(B;S"),
= hocolim F(S®™ A...AS%™ B(S™)A...B(S™)ASY).

(z05e..,xp)EIP
(7.1.2)
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The generator of C, acts by cyclically shifting the factors (zo,...,z,) one
position to the right. By the inclusion of the zero-simplices and the homeo-
morphism (7.1.1), we define 7 as a map of prespectra that on V’th spaces is
the composition

#: THH(B; SV), 1 —— |sd, THH(B; SV).| —2= |[THH(B; SV).| .

After passing to spectra, ¥ induces a map of genuine C,-spectra

*: B —» T(B). (7.1.3)

The following diagram commutes up to non-equivariant homotopy

B

|sd, THH(B).|

lg (7.1.4)
B——|THH(B).|=T(B)

where the horizontal maps are the inclusions of the zero-simplices, and the
left vertical map is the iterated multiplication map of B. The composition
along the upper horizontal map followed by the right vertical isomorphism
is by definition (*. Note that the other maps of diagram (7.1.4) are not
C)p-equivariant.

By the commutativity of diagram (7.1.4), we see that on homology /* is
given by the iterated multiplication followed by the inclusion of zero-simplices
H.B®" — H,B — H,T(B). Applying the Tate construction with respect to
C, C T we get a map E’,(B"?) — E7_(T(B)) which is the iterated product
in each column of the E%-term.

Theorem 7.1.1. Let B be a commutative FSP or commutative symmetric
spectrum defined on spheres. Then the following diagram exists and com-
mutes up to homotopy

B———T(B)
e |
(t?)tp tC
R, Bl T(BYO .

The upper horizontal map is the inclusion of the 0-simplices.
For p = 2, the map (12)!°* induces the following map of E*-terms of
homological Tate spectral sequences:

¥ Ra®? = utal.
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Here o € H,B and o* = 1,p1.(a ® ) € H,T(B) where . : B — T(B) is the
wnclusion of the zero-simplices and - BA B — B is the multiplication map.

Remark: The last part of the theorem can easily be extended to the case
of odd primes. The restriction p = 2 appears because we have only given a
definition of the Singer construction in this case.

Proof. Let p be a prime and let C' = C,, C T be the cyclic subgroup of order
p. For any genuine C-spectrum X we have an equivalence of spectra

[EC A X]C 5 a°X .
The map is defined on V’th spaces as
colim[QVV(EC A X(W))]¢ — (‘:/gliénQWC’VX(W)C
cu

wcw
induced from the inclusion W¢ C W and the homeomorphisms [E\C/’ A
X(W)]¢ =2 X(W)C. The proof of the fact that this induces an equivalence
of spectra can be found in [19, page 34, the proof of Proposition 2.2|.
From the cyclotomic structure (chapter 4) of T"H H we have an equivalence
of T-spectra T'(B) ~ p®°T(B). Thus, we have a commutative diagram

B - T(B)
C(pA 0 c
O (B"P) d°T(B)
~ ~ (7.1.5)

[EC A B")C 2 [EC A T(B)]C

(B/\p)tC

The lower left spectrum is by definition R, B. The upper square is gotten
by the “simplicial cyclotomic structure equivalence”; see [19]. Indeed, on Vth
spaces there is a diagram

colimQW ~VTHH(B; SW)y — colimQW“~V|THH(B; S"W°)|
wcu wcu

- -

colim[QW =V sde THH(B; SV )]¢ —~ colimQV“~V|sdc THH (B; SV)|¢
wWcu wcu
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where the horizontal maps are given by inclusion of the 0-simplices into the
realization. The vertical maps are induced by restriction to fixed point maps
of the type F(X,Y)% — F(X% Y%). The diagram can be rewritten as

B(V) T(B)(V)

.

(®CB"")(V) — (2“T(B))(V)

which is exactly the upper square in (7.1.5) on V’th spaces.
By choosing inverses to the homotopy equivalences in diagram (7.1.5),
the outer square gives the diagram in the proposition. O

7.2 The Segal conjecture for groups of prime
order

When B = S is the sphere spectrum, the inclusion S < T'(S) = S¢, and the
iterated multiplication map S™? — S are both equivalences, thus by diagram
(7.1.4) the Cjy-equivariant map ¢* is a non-equivariant equivalence. Hence
it induces an isomorphism of continuous cohomology groups of Tate spectra
H!T(S) = HjSéip. The latter was identified in chapter 5 as the Singer
construction on F,, so the map v : T(S) — T(S)"“” induces an A-module
homomorphism R, F, — F, on continuous cohomology. By proposition 4.3.3,
v, and hence * is non-trivial and thus an Ext-isomorphism by corollary 5.2.4.
The conclusion that v and hence I : Sg: — ngp is a 2-adic equivalence
follows by theorem 0.0.2 since v* induces an isomorphism of Es-terms of the
inverse limit of Adams spectral sequences.

Remark: Note that the isomorphism H*T'(S)!? = R, F, implies that T'(S)!“>
~/ S. This is not enough to prove the Segal conjecture, since we must know
that the map 7 induces this equivalence, i.e. we must know that v induces
an Ext-isomorphism.



Chapter 8

Computations

In this chapter we give the first step in the proof of theorem 0.0.3. Precisely,
we will calculate the additive structure of HS(T(B)!°?) for B = BP{m—1),
BP and MU. The funny indexing of BP{m—1) will simplify later formulas.

These calculations can be found in [12] in the case of the homological
homotopy fixed point spectral sequence in proposition 4.5.1. We will refer to
the cited paper to show that our spectral sequences collapse at the F3_terms.
This will be done by proposition 4.5.1 which supplies the bridge between
the homological homotopy fixed point spectral sequence and the homological
Tate spectral sequence.

Using either the inclusion of zero-simplices or chapter 6, we show in sec-
tion 8.4 how to detect some of the hidden A,-extensions in the homological
Tate spectral sequence. The complete picture will be worked out the in the
last chapters.

Our calculations in the case of BP will use that there is a map of S-
algebras ¢ : MU — BP which is surjective in homology. Because of this,
even though the case B = MU does not appear in theorem 0.0.3, it will play
an important role in the proof.

In the remaining chapters, we will work at the prime p = 2 only.
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8.1 Overview
To fix the setting, consider the following diagram:

H.MU H.BP H,BP{m—1) H,.HT,
H.T(MU) H.T(BP) H,T(F,)
- - -
HeT(MU)!®* —— H°T(BP)!®> —— HT(BP{m—1))!"> — H°T (F,)*:
(8.1.1)

The maps ¢, come from the inclusion of the zero-simplices, and the maps 7,
come from the cyclotomic structure of T'(B).

We recall the structure of the upper row first. For the complex cobordism
spectrum MU, the homology with Z-coefficients is, by a result of Milnor,
isomorphic to a polynomial algebra with generators in even degrees

H.(MU) = Z[bgk > 1] deg(by) = 2k . (8.1.2)

The polynomial generators come from unstable homology classes Sy €
Hy1o(BU(1);Z) by the homotopy equivalence BU(1) ~ MU(1) given by
the zero-section in the canonical bundle over BU(1).

We recall the A,-comodule structure of H,MU.

Theorem 8.1.1 ([26], theorem 20.10). There is an isomorphism
k't HLMU — D(A,) ® P(vili #27 — 1)

of graded A.-comodules algebras, where the v;’s are all A.-comodule primit-
ives and their degrees are deg(v;) = 2i. Here D(A,) = P(&}k > 0) denotes
the double of A,.

By &, we mean (&), where y is the involution coming from the Hopf algebra
structure on A,.
The Brown-Peterson spectrum B P at the prime two has homology groups

H.(BP)= D(A,) =P |k>1) (8.1.3)
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and A,-comodule structure inherited from the inclusion D(A,) C A, into the
dual Steenrod algebra. Dually, the cohomology is given by

H*(BP) =~ AJJE (8.1.4)

as the quotient of A by the exterior sub Hopf algebra E generated by the
Milnor primitives {@Qy}n>0. In particular, H*(BP) is cyclic as a left A-
module.

For 0 < m < oo, the connective Johnson-Wilson spectrum BP{(m—1) at
the prime two has homology

H,BP(m—1)= P(&,...,&,& | k>m+1) (8.1.5)

with A,-comodule structure given by the obvious inclusion into the dual
Steenrod algebra. Dually, the cohomology of BP(m—1) is

H*(BP(m—1)) 2 AJEy_,

where FE,, ; is the exterior sub Hopf algebra generated by the elements
{Qn}m>n>0. For this to make sense when m = 0, we introduce the con-
vention that E_; = F,. In particular, H*(BP(m—1)) is cyclic as a left
A-module.

On homology, the map ¢ : MU — BP induces the unique map of A,-
comodules sending 1 to 1 and sending v; to zero. In particular ¢, is surjective.

On the other hand, the maps H,(BP) — H.(BP(m—1)) — H.(BP{ —
1)) = H,(HF,) = A, are all injections, identified by the isomorphisms (8.1.3)
and (8.1.5) with the obvious inclusions.

All of the spectra MU, BP and BP(m —1) are S-algebras. Thus, we
can consider their associated topological Hochschild homology spectra. The
Bokstedt spectral sequence calculates the homology of T'(B) in these cases.
The contents of the following proposition can be found in |2, Theorem 5.12].

Proposition 8.1.2. For B = MU, BP, or BP{(m—1) for m > 0, we have
the following isomorphisms of A,-comodule algebras over H,B:

H.T(MU) = HMU ® E(oby, | k> 1)
H.T(BP) =~ H.BP R E(\, | k > 1) (8.1.6)
H,T(BP(m—1)) = H.BP(m—1) @ E(\, | 1 < k < m) @ P(jtm,)

where Ny = o0& and py, = 0&ny1. For B = BP,BP{m—1) the exterior
classes are all A,-comodule primitives and for BP{m—1) there is a non-
trivial Bockstein Sqlpi, = \y,.
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It is known that MU can be realized as a commutative S-algebra. For
BP(—1) = HF,, BP(0) = HZ) and BP(1) = ku ) this is also true, but it
is not known to be true for BP(m—1) when m > 2. In our calculations con-
cerning m > 2, we will assume that BP(m—1) has a commutative structure.
See [4] for more information.

8.2 Differential graded algebras

In the next section we will be calculating the E3-term of the homological
Tate spectral sequence for T'(B). We will use that the d?-differential is given
by the map in homology induced by the circle action (4.4.2).

Here, we will give a useful algebraic tool to make these calculations easier.
The idea can be found in [12, proof of 6.1].

Let K (x) be the differential graded algebra whose underlying Fy-algebra
is
P(r) ® P(Xx) deg(x) odd

P(r)® S(Xz) = {P(:E) ® E(Xz) deg(z) even.

The differential d is of degree 1 and is given by specifying that d(z ® 1) =
1 ® Xz and d(1 ® Xx) = 0 and extending to a derivation. The homology
of K (z) with respect to the differential can be calculated using that d is a
derivation as follows.

Lemma 8.2.1. The homology of K(x) with respect to the differential d is
given by:
(22 deg(z) odd

~ )P
H(K(x),d) = {P(xQ) ® E(zXz) deg(x) even.

Proof. 1f deg(x) is even, then K(z) = P(z) ® E(Xx) and since d(z) = Xz
and d(z%) = 0 it follows that d(2?**!) = 2%%z for all k. The homology
is therefore isomorphic to a polynomial algebra on the class 2% tensor an
exterior algebra on zXx.
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When deg(z) is odd, then K (z) = P(z)®P(Xz). This time, d(z?*!(Xx)!) =
22* (L) for all k,1 > 0, so the homology is polynomial on the class z2. O

8.3 The homological Tate spectral sequence

Having described the homology of T'(B) for B = MU, BP, BP{m—1) as
comodules over the dual Steenrod algebra, we are now in position to calcu-
late the Tate spectral sequences converging to the continuous homology of
T(B)*2. The discussion splits into two parts, the first handling the infinite
cases of MU and BP.

Since we are looking at topological Hochschild spectra, we have complete
control on the circle action on homology groups. In fact, the descriptions
of the homology groups in proposition 8.1.2 have this information built into
them. In the calculations we are about to do we also use that the o-operator
is a derivation with respect to the algebra structure on homology. This last
fact can be found in |2, Proposition 5.10]

We list the E%-terms of the homological Tate spectral sequences here for
later reference.

B2 (MU) 2= P(u,u™")® H.MU ® E(oby | k > 1)
E2 (BP) = P(u,u™")® H,BP®@ E(\, | k > 1)
Ef,*(BP<m—1>) > Plu,u ™)@ H.BP(m—1) @ E(\ | 1 <k <m) ® P(um)

(8.3.1)

8.3.1 The additive structure of HS(T(MU)!

To calculate the E3-term of the homological Tate spectral sequence for T'(MU)'“2,
we recall from proposition 4.4.1 that the d?-differential is given by the formula

(v ®a) =2 ® o(a) (8.3.2)

for « € H,(T(MU)). Recall that ¢ = u? when referring to 4.4.1.

Using the notation of section 8.2 and lemma 8.1.2, we have that H, (T (MU))
together with the differential operator o can be written as the differential
graded algebra K(b; | & > 1). This uses that MU is a commutative S-
algebra. Applying the Kiinneth formula and remembering that deg(by,) = 2k,
we may calculate the homology of H,T(MU) with respect to the o-operator
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as in section 8.2. We get that the E3-term of the Co-Tate spectral sequence
converging to the continuous homology of T(MU)!“? is isomorphic to

E? (MU) = P(u,u )@ P(b | k> 1) ® E(bob, | 1> 1) (8.3.3)

The corresponding homological homotopy fixed point spectral sequence
from proposition 4.5.1 for T(MU) has E3-term isomorphic to

B2 (MU) 2 P(u)® P(b} | k> 1) ® E(hob, | 1> 1)

modulo some classes in filtration —1 and 0. This spectral sequence is con-
sidered by Bruner-Rognes [12, Theorem 6.4 a|, where the authors show that
the spectral sequence collapses at this stage.

Thus, it follows from proposition 4.5.1 and the fact that the differentials
in the homological Tate spectral sequence are derivations, that the spectral
sequence (8.3.3) collapses on the E3-term as well.

Proposition 8.3.1. The homological Tate spectral E"(T(MU)) collapses at
the E3-term. Hence additively,

HT(MU)' 2 P(u,u )®[PbF | k> 1)@ E(bjob, | 1 > 1)]

8.3.2 The additive structure of H¢(T(BP)!“"

We now do the calculation for BP. To determine the E3-term of the Tate
spectral sequence, we write H,BP = K (&} | k > 1), analogously to the case
of MU, and derive that

E3 (BP) = P(u,u™) ® P(&} | k> 1) ® E(E20€2 | 1> 1), (8.3.4)

We will now use that we have a surjection on homology H, MU — H,BP to
determine the E°°-term of the Tate spectral sequence.

Proposition 8.3.2. The homological Tate spectral E™(T(BP)) collapses at
the E3-term. Hence additively,

HT(MU)* = P(u,u )@[P(& | k> 1) ® E(&ogf | 12 1)]

Proof. The map T'(¢) : T(MU) — T(BP) induces a surjective map on ho-
mology groups. The induced map of homological Tate spectral sequences is
also surjective on E?-terms given by

1T (¢)s: Plu,u ) @ H(T(MU)) — P(u,u ") ® H,(T(BP)) .
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Therefore, by proposition 8.3.1, the spectral sequence ET(T(BP)tC‘—’) col-
lapses at the E3-term. O

From the A,-comodule structure of H,(T(MU)) and H.(T(BP)), pro-
positions 8.3.1 and 8.3.2 give partial information about the completed A,-
comodule structure of H(T(MU)'“?) and HS(T(BP)'“?), namely the A,-
comodule structure on the associated graded with respect to the Tate filtra-
tion.

We spell out what this means in the general case of E"(X'¢) (so X could
be T(MU) or T(BP)). Let & € H(X'“) be a class in the abutment repres-
ented in the spectral sequence by u* ® a € E®(X'C) in Tate filtration —s.
Then for n > 0, the value of the dual Steenrod operation Sq' & € Hy_, (X')
will be represented in the homological Tate spectral sequence in filtration less
than or equal to —s. If Sqla is in fact represented in filtration —s, then its
representative is u® ® Sq?(«). In the case Sq7(a) = 0, we can only conclude
that Sq? (@) has filtration lower than —s. We will refer to the A,-comodule
structure on the associated graded comodules as the vertical A,-structure.

To gain full control of the A,-comodule structure on the abutment, we
will need to study the map v, : T(B) — T(B)!“2. Together with theorem
6.1.1, we will in chapter 10 establish the completed A,-comodule structure
on H}(T(BP)'?) and prove the first part of theorem 0.0.3.

The next section deals with the case B = BP(m—1) for co >m > 0. In
these cases we will also record explicitly the vertical A,-comodule structure.
The resulting formulas will be used in chapter 11.

8.3.3 The additive structure of H¢(T(BP(m—1))">

For this section, we assume that BP{m—1) has the structure of a commut-
ative S-algebra, so that T(BP{(m—1)) is an S-algebra. We are considering
the cases co > m > 0, so the family {BP{(m—1)} includes the Eilenberg-
MacLane spectra BP( — 1) = HF, and BP(0) = HZ together with the
2-local connective complex K-theory spectrum ku. These three spectra are
known to be commutative S-algebras.

In order to calculate the E3-term of the Tate spectral sequence, we rewrite
the homology of T(BP(m—1)) so that the Oth column in the homological
Tate spectral sequence, E&*(BP(m—l)), is isomorphic to

P&, &2 i, & E>m+2)@EN | m>k>1)® P(un) (8.3.5)

where &, is the homogeneous class & + &, 10&, 1 = & + Sk,luf,’j"””. We

have chosen £, such that it is a cycle with respect to the derivation o. Indeed,
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we have o(&,,04,) = &miatr T 0 (Emi14r0€miiyr) = /%%:H + (uz,)? = 0 for

all 7 > 0. This trick of rewriting can be found in [3] and [12].

Using the notation of section 8.2, we may now identify this algebra, to-
gether with its differential operator o, as K(€2,...,&%,6041) @ P(&, | k >
m+2). As mentioned, all the {'-classes are cycles, so applying the Kiinneth-
formula we get the following expression for Eg’*(BP(m—l)):

P&, &2 G k>m+2)@ B(G ol |m>1>1). (8.3.6)

We will now record the vertical A,-comodule structure on E3(T(BP(m—
1))').

Lemma 8.3;3. The A,-comodule structure inherited from the comodule struc-
ture on the E*-term (8.3.6) is given by the formula

(&) =2 & @ (& ) (8:3.7)

for k> m + 3. In addition

V() =8 @08+ Y6062, (8.3.8)

i>0

We interpret £, = &, form +1>k > 1 and & = 1 for the formula to make
sense. o
In addition, all the classes £fo&f are A,-comodule primitives.

Proof. We verify this formula by using that the coaction map v : H,T(BP{(m—
1)) = A, ® H,T(BP(m—1)) is a map of algebras and that it commutes with
the derivation o. Indeed, for k > m+2, v(0&;,) = 1®0(v&) =Y., @08, =
1®0& (=1@p2 "), When k > m + 2, all £2_ are squares for i # 0,
so o vanishes on these classes. Then, for £ > m + 3, we have the following
congruences modulo A, ® im(o)

V(& 1) v(0& 1) = Zgz ® 5131140&71
= Z gz X 513114(0—5]97171')? + Z gj ® 513]‘_1_]'0—51971

i<k—m—2 k—m—1<j

= kZ fz‘ ® (gk—1—i05k—1—i)2i + ) Zl ‘gj ® 0-(5]3];17]‘5/6—1)
1<k—m— ) —m—1<j

= Y &4® (f_kfkingflfi)Ql
1<k—m—2

(8.3.9)
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since the j-indexed terms are zero on E?. Then we have

(&) =v(&) + V{(Ek—l)’/(‘jgk—l) i

Zgz b2 5132_1 + Y O4® (gk71710§7k714)2

' o sk _ i . (83.10)
= Y &O(Gmit&—iobhas) + Y 508

i<k—m—2 k—m—1<j

=YL& ® (&)

The case k = m + 2 differs a bit. Now vo&_1 = 1 ® 0&pi1 + & ® 082,
The last term does not disappear in this case since &2 is not a square in
H, T(BP{m—1)). A straightforward calculation like (8.3.9) gives that

V(Em1)V(0Ems1) = 1 ® Emt10Emer + & @ (§2,0Emi1 + Emr1082,) + 6 ® E4082,
=1 ® €m+10—€m+1 + 61 ® 62 0—62

The middle term &, ®(—) disappears modulo A,®im(c) since o is a derivation,
i.e. xoy + yox = o(xy). Using this we get

V( m+2) + V(Eerlo—ngrl)
Zgz ® €m+2 i +1® gm—l—lafm-i-l + 51 ® 52 ‘752

1®E&,.,+ & ®EL0E2, +Z§z®§m+2 i

i>1

=8 OG0 + Y60,

>0

V( m+2)

Again,we set £ = £, when 7 < m + 1 to shorten notation.
Finally, we check that the exterior classes are A,-comodule primitives.
Let 1 <k <m. Then

v(§ogt)

V(E)Z? o) =v() (1@ ok}
27 2l+1 06 =1Q ot}

We summarize this in the following proposition.
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Proposition 8.3.4. The homological Cy-Tate spectral sequence for B =
BP(m—1) collapses at the E*-stage and thus we get that EX,(BP(m—1)) is
1somorphic to

Plu,u™) @ P(&), .+, & &, & | B > m+2) @ E(Eo&f | m > 1> 1)

as an A.-comodule algebra. The vertical A,-comodule structure is determined
by the fact that the exterior generators are A,-comodule primitives and that
there is a short exact sequence of A,-comodules

(o€ |m>k>1)CER(m—1) = PE,....E &G [ k>m+1).

The kernel is the ideal generated by the exterior generators vy and the quotient
map is defined by sending & to the classes with the same name for k < m+1
and sending &, to &, for k > m + 2. The quotient is canonically a sub
A,-comodule algebra of A,.

There is an extension Sq2&mys = Vm, 50 the sequence does not split as
A,-comodules. By (8.3.8), this is the only extension.

Proof. Again referring to [12, Proposition 6.1], we have the corresponding
homological homotopy fixed point spectral sequence with E3-term

Ei’*(BP(mjl)) ~ o
Pu) @ P(&}, ..., 60 &80, 6 | k> m+2) @ E(§o&l |m>12>1)

modulo some classes in filtration —1 and 0. As in the case of T(MU), this
spectral sequence is shown to collapse at this stage so again by proposition
4.5.1 and the fact that the differentials in the homological Tate spectral
sequence are derivations, the spectral sequence E’"(BP(m—l)tCQ) collapses
on the E3-term as well. O

8.4 A,-comodule structure

Recall by theorem 6.1.1 that for B = MU, BP or any of our BP(m—1), we
have a map of Tate spectra

U:R,B—T(B)"“.

Note that for B = BP we must apply chapter 7 instead of the theory in
chpater 6 since BP is not known to be commutative. Alternatively, we may
produce the results in this section for B = BP using the map ¢ : MU — BP.
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From proposition 5.6.2 we have that HS(R,B) = R, (H.B) as a com-
pleted A,-comodule. The map ¥ induces the map

' @ a®? s ut @ a?. (8.4.1)

of E2-terms of homological Tate spectral sequences. Here a € H,B and
a? = L. (a® a) € HT(B) where « : B — T(B) is the inclusion of the
zero-simplices and p: B A B — B is the multiplication map.
Recall the dual Steenrod operations in the dual Singer construction from
(5.7.3):
St(u"®@a) =, (L2t @ Sqla (8.4.2)

§—21

By this formula and proposition 5.7.2 we get the following theorem by using
naturality with respect to the map (8.4.1):

Theorem 8.4.1. Let B be a bounded below commutative S-algebra of finite
type.

Fora € Hy(B) and s € Z, let w """ Qa € Ry(H.(B)). Then ¥, (u " ®
«) € H.(T(B)) is represented in the homological Tate spectral sequence by
the element u™ ® o? in filtration —n.

This gives a choice of classes in the abutment represented by the classes
u" @ a?. With this choice of representatives, the dual Steenrod operations are
given by

Sqi(u" ® a?) =, ((F )% @ (Sqia)? (8.4.3)

s—21

foralln € Z and o € H,B.



Chapter 9

Low degree calculations

To prepare for chapter 10, we need some low-degree facts about the map -,
in the case of B = BP{—1) = HF, and BP(0) = HZ.

Indeed, we will show that the map v, : H.(T(Z)) — HS(T(Z)'“?) sends
the class A\; non-trivially to the class represented in the homological Tate
spectral sequence by u?® £20€2. This fact was conjectured by Békstedt and
Rognes in 1994.

9.1 The case BP{—1)

Our discussion starts by a theorem of Hesselholt and Madsen:

Theorem 9.1.1 ([19], proposition 5.3). The map ~ : T(F,) — T(F,)"
imduces a p-adic equivalence of connective covers.

From this we derive

Corollary 9.1.2. The image of py = o& under the map . : H.T(Fy) —
H{T(F,)'> is represented in Tate filtration 2 by [u~?] € E3 ().

Proof. Let T = T(Fy). From Bokstedt’s calculations [9] we know that T
is homotopy equivalent to a wedge of even suspensions of HF,. We have
.1 = P(p) where po has degree 2. The Hurewicz map into Fy-homology is
injective and maps ji to the class with the same name in H,T. This follows
since g = 0, is A,-comodule primitive.

Let 0 : T — XTj¢, be the boundary map in the Norm-restriction se-
quence. The lower half of diagram (9.1.1) comes from the fundamental square

85
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(3.1.4).
Ox
7T2T = Tl(Tth)

lHur \LHur

HyT —"— H\(Tic,) (9.1.1)

l ,y*
ol

H3(T")

Q

The proof of theorem 9.1.1 shows that the map 0, : mT — m T, of ho-
motopy groups is an isomorphism. Hence, J,j must be represented by a
non-zero class in the homotopical homotopy orbit spectral sequence. As fig-

7. T(F2)ne,

H.T(F3)nc,

A A

Figure 9.1: The E%-terms of the homotopical and homological homotopy
orbit spectral sequences

ure 9.1 shows, there is no room for differentials in the (both homotopical and
homological) homotopy orbit spectral sequence affecting any of the classes in
bidegree (0,0) or (1,0). Thus, mTye, is cyclic with generator of filtration 1.
Since 0,4 is non-trivial it must be represented in filtration 1 indicated by a
box in the left figure.

The Hurewicz map m.The, — Hi(The,; Fo) induces a map of homotopy
orbit spectral sequences which is an isomorphism on E?-terms in vertical
degree 0. Hence the Fy-Hurewicz image of 0, must be non-trivial and must
be represented in bidegree (1,0) in the homological homotopy orbit spectral
sequence.

The result follows since the map d" induces a filtration shifting isomorph-
ism £55(F2) = EPG(EThe, ). O
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9.2 The integers

Recall that H,T(Z) = H,HZ ® E(\1) ® P(p1) and that there is a non-trivial
homology Bockstein relation Sqlu; = A;. All higher dual Steenrod squares
vanish on ;.

We calculated the E>®-term of the Tate spectral sequence converging to
the continuous homology of HST(Z)!“? in proposition 8.3.4. Additively it
was given by B (Z) = P(u,u™) ® P(&,&3,&|k > 3) ® E(1). Here we let
v1 = E20&? to shorten notation. Note that vy is not the coaction of some
A,-comodule.

To make our next calculations easier, we will want to work modulo a
certain Aq,-sub comodule. Let M, be an increasing filtered graded comodule.
Any nonzero class © € M, has a well defined filtration ¢(z). For any k € Z,
consider the sub-vector space M, (k) defined degreewise by

My (k) = {z € My|deg(z) — ¢(z) > k}

When X is a G-spectrum and M, = HSX' the subspace M (k) is simply
spanned by those classes represented in the homological Tate spectral se-
quence by an element of bidegree (s,t) where ¢ > k.

Lemma 9.2.1. The sub-vector space HET(Z)'*(8) C HET(Z)'°? is a Ay, sub-
comodule.

Proof. We will show that Sql and Sq? applied to any class in HET(Z)12(8)
will be represented in vertical degrees > 8.

Any class x with representative [z] in vertical degree strictly greater than
9 must have [Sq%z| and [Sqlz] of vertical degree at least 8.

We must check the classes represented in vertical degree 8 and 9. We
have EX(Z) = P(u,u™!) ® P(&,&2,&|k > 3) ® E(1y). Hence, EX(Z) =
P(u,u) @ F{&} and E5(Z) = P(u,u ') @ Fo {1 &} }. See figure 9.2.

By theorem 8.4.1 we have chosen a representative for u"£8 so that Sqlu"€ =
()utiE and Sq?ur&d = (7, urt2ES. Both are represented in vertical de-
gree 8.

The last possibility would be a non-trivial vertical Sq2v1£}, but the ver-
tical A,-comodule structure of proposition 8.3.4 tells us that Sq?v & =
0 modulo filtrations and must therefore be represented in vertical degree
strictly greater than 8. O

In the following we will work with H¢(T(Z)'*?) modulo the Aj,-sub-
comodule HET(Z)'“2(8) of classes of vertical degree greater than 8. The
reader might find it helpful to consult figure 9.2 in the discussion that fol-
lows.
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The class who's representative is [u"&5] is well defined for any r € Z since
there is no ambiguity left in lower filtrations. Thus Sq2&} is a well defined
class and the vertical A,-coaction says that [Sq?u"&3] = [u"v1]. We choose
Sq2&; to be represented by [u"v;]. Note that by these choices together with
the choices coming from R, (HZ) via theorem 8.4.1, we have now chosen
classes in the abutment for all representatives in H¢(T(Z)!¢?) for all the
classes in E%(T(Z)'°) with t < 8.

Total degree 4 of HST(Z)!°? modulo HET(Z)'“2(8) is additively given as

I, {U_4, gil: UV, U2g§, u3£§} :
Modulo Tate-filtrations < —4, total degree 2 is given as
Py {u=2, v, wlvy, u'EY}

From the inclusion of zero-simplices, R, HZ — T(Z)!“2, and the explicit
formulas for the A;,-comodule coaction in the Singer construction, we get
the following formulas

s = (e

qGuisy =, JuE

> R, 9.2.1
S = (g 20
Satuey = ())ur&g + el

These operations and the Sq2&; are depicted with solid curves in figure 9.2.
We list some values of Sq? : H{T(Z)'> — HST (7).

u?t =0
4 2¢4
1 P utg

P8 s s (9.2.2)

P& >l +u'd.

Lemma 9.2.2. [Sqlu"v,] is well defined modulo filtrations < —r — 1 and
given by [Sqiu'ni] = ()], In figure 9.2, these dual operations are
drawn with solid dashed lines.

Proof. We start with [11] in filtration zero. Again we refer to figure 9.2. The
class u&2 has trivial Sq! modulo filtrations < —1. This follows directly from
the vertical A,-structure. There are only two classes representing [v;] modulo
filtration < —1 and they differ by u&2. Since Sq! annihilates this ambiguity
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s=-9/2

T T ‘T
ut wd W w T

Figure 9.2: Some A-module structure in the case of the integers

modulo filtrations, the coaction of Sq! on HE(T(Z)!¢?) is well defined modulo
filtration < —1.

Let v; be a representative for [v4]. Recall from (4.4.3) that we have an
extension of filtered A,-comodules

0— HT(Z)'"" — HT(2)' — S HT(Z)T — 0

such that the first map induces an injection of the even columns of Tate
spectral sequences. Since we may alter the representative 1; by any element
in filtration —1, we may assume that v lifts to HT(Z)!". The E*-term
of the T-Tate spectral sequence for T'(Z) is isomorphic to the even columns
of the Cy-Tate spectral sequence. Since Sql[vi] is represented in filtration
< 0 it follows that it is represented in filtration < —1. This shows that
Sqllv] € HET(Z)'? is trivial modulo filtrations < —1.

The classes represented by [u"] on the horizontal axis have Sqiu" =
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(71?75)1&"*5 for all s > 0. We know the Ag.-coaction on r; modulo fil-
tration < —1, so the Ag,-coaction on the product u"v; is known modulo
filtration < —r — 1. Tt is given by the Cartan formula: [Sql(u"v;)] =

[(Satum)vi] + [u” Saien] = [(§)u" ). O

Theorem 9.2.3. The classes Ay and py of degrees 3 and 4, have non-trivial
images under the map ~y, : H,T(Z) — HCT(Z)!>. Their values are repres-
ented in the spectral sequence by the classes

(v ()] = u™?

[v.(A)] = vl (9.2.3)

in Tate filtration 4 and —2 respectively.

Proof. We start by identifying the image of p;. The map HZ — HF, is
injective in homology, mapping & to the class with the same name in H,F,.
The o-operator is natural with respect to maps HZ — HT,, so this implies
that puy = 0& > 0& = p2 € H,T(F,). Consider the following commutative
diagram:

H,T(Z) H,T(F,)

lw* l% (9.2.4)
HET(Z)'% —— HET(F,)'C:

Corollary 9.1.2 says that [v.(u)] = [u 2] in the Tate spectral sequence on
the right. By the algebra structure, we get that ~.(u3) is represented by
[u="] in filtration 4. Since the map of spectral sequences E%%(T(Z)'“*) —

Egot(T (Fy)'2) is an isomorphism in vertical degree ¢ = 0, we must have that

v.(p1) is represented by u™* in E%(T(Z)!°?) as well and the first claim of
the theorem follows.

The first ambiguity of 7, (u1) lies in filtration 0 represented by &F. This
class has non-trivial Sq*¢} = 1 modulo negative filtrations. By the fact that
Sqtu= =1 we see that v,(y;) = u™* + & modulo negative filtrations.

Since Sq27,(p1) must be trivial in HT(Z)!? it must in particular be
trivial modulo HST(Z)'2(8) and modulo Tate-filtration < —4. By the Sq?-
coactions listed in (9.2.2) the only possibility for this to happen is that
Ye(p1) = u™t + & 4+ ury modulo filtrations < —1. Indeed, the Fy-linear
map

2 —4 4 2¢42 03 -2 274 3 472
Sq*:]F2{u ,fl,uul,qu,ufé}%IFg{u 7“61:“1/1:'“62}
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has image Fy {u2€}, uvy, u*€2}. The class u~* lies in the kernel, so Sq? induces
a surjective linear map

St Fo{ &y, uvr, u’&, gy} — Fa{u’sy, u'vy, u' S}

The list of cooperations (9.2.2) implies that this map is an isomorphism when
restricted to the subspace Fy{&1, u?€2, u3€,}, implying that any class in the
kernel of Sq? that can be written as a sum that includes £ must also contain

uv.
Lemma 9.2.2 now implies that v, A1 = Sqly,p1 = Sql(u=* + & + uvy) =
u?v; modulo filtrations < —2, 80 [y,u1] = [u?vy]. O
%

Theorem 9.2.3 enables us to completely determine the map v, : H,T(Z)
HCT(Z)'? in chapter 11.



Chapter 10
BP

In this chapter we finally come to the proof of the part of theorem 0.0.3
dealing with BP.

The proof will consist of describing the precise structure of HS(T(BP)
as a completed A,-comodule. This involves the description of the map ¥, :
R, (H,(BP)) — H¢(T(BP)!?) from theorem 8.4.1 and knowledge about the
map 7. : HS(T(BP)) — HE(T(BP)'“?). Specifically, we will need to know
where the exterior classes Ay € H.(T(B)) map under 7,. It will turn out
that the images of 7, and ¥, generate the entire continuous homology of
T(BP)“.

As a technical point in the proof of proposition 4.3.3 we will have to
assume that BP is coherent enough to give H,T(BP) a well defined action
of the Dyer-Lashof operations.

th_))

10.1 Main theorem

The main theorem of this chapter is the following:

Theorem 10.1.1. The continuous cohomology of T(BP)'* with respect to
the Tate filtration is isomorphic to Ry (H*T(BP)). Under this identific-
ation the map ~* corresponds to the evaluation map € : Ry (H*T(BP)) —
H*(T(BP)) up to some non-zero scalar. In particular, v* is a Tor-equivalence.

This shows the first part of theorem 0.0.3: Since 7* induces an Ext-
isomorphism, it induces an isomorphism of Es-terms of the inverse limit of
Adams spectral sequences, and we get that v : T(BP) — T(BP)!“* is a
2-adic equivalence. By the homotopy Cartesian square in diagram (4.1.2),
we get:

92
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Theorem 10.1.2. The map I : T(BP)®? — T(BP)"“? is a 2-adic equival-

ence.

The proof of theorem 10.1.1 will be given in the end of section 10.2.

10.1.1 Homology operations

The Brown-Peterson spectrum BP is an S-algebra, but is not known to be co-
herent enough as to allow an H..-structure or even better; be a commutative
S-algebra. However, the maps MU — BP — HIF, are maps of S-algebras
such that in Fy-homology, the first is surjective and the last is injective.
Moreover, the composite is a map of commutative S-algebras. Hence, the
Dyer-Lashof operations acting on H,HTFy restrict to the injective image of
H.BP.

We state some basic properties for the o-operator acting on the Fy-
homology of a commutative S-algebra. The next result and its proof can
be found in |2, Propositions 5.9 and 5.10].

Proposition 10.1.3. Let B be a commutative S-algebra. Then the o-operator
1$ a graded derivation with respect to the homology algebra multiplication and
commutes with the Dyer-Lashof operations. That is, for ai,as € H,(B;T,)
and any integer k we have

Qk(aal) = UQk(Oél)
in addition to the Leibniz rule
o(a1ag) = o(ay)as + ayo(as)
We are working over Fy, so the usual signs are not present.

In addition to the previous proposition we recollect some facts about
the Dyer-Lashof operations. These operations acting on H,(HF,) = A, are
known and explicitly listed in [11, III theorem 2.2|. In particular we have
that Q2" (£2) = &, for all k > 1. Indeed, for any z we have Q*"z? = (Q"z)?,
and so Q¥ 02 = 0?2 = 0 (Q¥'€)? = IE 1

The map ¢, : H.MU — H,BP is surjective in homology. Choose a
lifting of 512 € H,BP and denote this lifting by b;. Then define by, = Q2k b
for all & > 2. We then have ¢,(b;) = &2. Moreover, the induced map
T(¢). : H.T(MU) — H,T(BP), maps oby, to o&? since Q' commutes with
the o-operator. Denote the element by, by \j.

Assuming that BP is coherent enough to give H,T(BP) a well defined
action of the Dyer-Lashof operations, we have:
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Lemma 10.1.4. The following is true for all k > 0 and all \y € H,T(BP):
() Q) =0
(i1) Q*" (M) = M
(iii) Q¥ H2(\) =0
Proof. (i) follows from the fact that any odd operation must act trivially on
even-degree homology. ) )
(i) For any z we have Q*"z® = (Q"x)%, and so Q* "' 0&2 = 0 Q¥ &} =
R i
o(Q” &) = 0&iy-
From the explicit list of operations from [11, III, Theorem 2.2] one gets
that Q¥ +1¢, = 0. From this, (iii) follows. Indeed, Q"™ *20£2 = o(Q**' TV ¢2)
U(Q2k+1£k)2 =0. O

Lemma 10.1.5. Let B be a commutative S-algebra. Then for any class
x € H,T(B)

Q¥ (ror) = Q"(2) - 0Q" (2)
for all r, modulo classes in the image of o.

Proof. We use the Cartan formula and the fact that o is a derivation with
respect to the algebra structure on H,T(B). Indeed

Q7 (zox) =3, Q"(x)oQ" ™ (x) . .
= Q" (2)0Q" () + X, o(Q (#)Q" 7 (2)) .

We are also using (10.1.3) saying that the o-operator commutes with the
Dyer-Lashof operations. O

The following lemma says that we have Dyer-Lashof operations acting on
the Oth column of the Tate spectral sequence.

Lemma 10.1.6. Let B be a commutative S-algebra. Suppose given a class
x € H,T(B)"? such that [z] € ng’n is an infinite cycle in the homological
Tate spectral sequence surviving to the E®-term. If Q'lz] € Eﬁ‘fnﬂ- is an
infinite cycle, then this class represents Q'x in the spectral sequence.

Proof. By the Norm-Restriction sequence and the fact that x has filtration
zero, we conclude that the class x can be lifted to the homotopy fixed points
of X and is represented in the homotopy fixed point spectral sequence by
[z] in filtration zero. The edge homomorphism T'(B)"“> — T(B) takes all
classes of negative filtration to zero and is an injection on classes represented
in the Oth column. Thus, to determine where Q'(x) is represented in the
Tate spectral sequence, we may lift = to the homotopy fixed points, push it
into the homology of T'(B) and apply the Q'-operation. O
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10.2 Proof of the main theorem

In the proof of the next proposition, things would have been easier if BP
were known to have an F-structure. Even though the homology of BP
allows the action of the Dyer-Lashof algebra, we can not conclude that the
homology of the Tate-construction on T'(BP) carries the same structure. We
will work around this, using that we still have a map from T'(MU)'“? which
is surjective on E%°. The trouble is that the map to T(F,)> is no longer
injective on continuous homology (the kernel is the ideal generated by the
Ar’s) so we need to take a little more care.

Proposition 10.2.1. Assume that BP is coherent enough to give H,T(BP)
a well defined action of the Dyer-Lashof operations.

For all k, the exterior class N\, € H,T(BP) is sent by . to a non-zero
class represented by A}, = u2(2k*1)1/k in the Tate spectral sequence.

Proof. We proceed by induction on k. Consider the following commutative
diagram:

HT(S)' @ H,T(MU) 2L~ HeS': @ H,T(BP)

l(w)* l (10.2.1)
HET(MU)©: HT(BP)'® |

tCy

The continuous homology of T'(S)!“? is as before identified with the Laurent
polynomials P(u,u '), mapping u® for all s by the unit T(n) to the classes
in T(BP)!“> represented by the infinite cycles with the same name in the
spectral sequence. The map 1 A v on the left is the composition Sz AT —
T AT — T (for T = T(MU). The corresponding map on the right is
gotten by applying continuous homology to the composition T'(S)AT(BP) —
T(SABP) = T(BP). The left vertical and the top horizontal map commute
with the action of the Dyer-Lashof algebra.

By theorem 9.2.3 we already know by mapping down to HZ that the
statement in the proposition is true for £ = 1. In other words we have that
u?®@\ € HES'» @ H,T(BP) maps to a class represented by v in filtration
zero. To see this, note that the maps of spectral sequences on Ew—terms,
E=(T(MU)) — E¥,(T(BP)) — E*,(T(Z)), are isomorphisms in bidegrees
(*,t) for t < 5. The differences at the E>-terms are cancelled by the d2-
differential.

Since the image of =2 ® ob; maps down to a class in HST(BP)!“? rep-

resented by [4] and the map gzﬁii‘—’ of spectral sequences is an isomorphism
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in vertical degrees < 5, we get that (n A 7).(u? ® ob,) is represented by
[blabl] € ES%(T(MU))

For each k > 1, define 8, € HT(MU)'®> by B = Q7B and 8, =
biob;. Then we have that 3, maps to a class in HST(BP)'? represented by
v € E® This is OK for £ = 1 and by induction on k one derives that
in fact

0,2k+2_3*
Be = (Q% Q%) (Q* - Q¥by) = broby (10.2.2)

modulo the image of 0. We are using lemma 10.1.5 and that the Q%’s commute
with the o-operator.

Similarly, define ay E HES': @ H,T(MU) by the same recipe; aj1 =
Q2k+2ak and @y = u 2 ® ob;. By definition of b;, we have that a; —
u=22" =D @\, for k = 1. Assume by induction this also holds for k < n. Since
the map (1® ¢), commutes with the Dyer-Lashof operations, the Cartan for-
mula then gives

(1® @y = Q%" (u -2<2"—1) ® )
=3, Q (u@" D) @ Q¥ (N, .

The terms in the sum vanish unless 7 > |u=22"~1| = 27*1 —2 and 272 —j >
|Ap| = 271 — 1, that is 2! — 2 <4 < 2"*! 4 1. This reduces the sum to
four terms:

(10.2.3)

Y oeia @ WD) @ QP () (10.2.4)

Moreover, the terms with 7 odd vanish by (i) in lemma 10.1.4. Together with
lemma 10.1.4 (iii), we get that

(1@ @)som = Q7 2(u*C" )@ Q™ 2(),)
+Q2n+1( _2 on _ 1 ) Q2n+1( )

Q2n+1( —2(2"— 1)) Q )\n+1

— u 2(2"+1 1) ® )\n+1 .

(10.2.5)

The last equality follows from the Nishida relations; Sq?Q°(u?) = Q2 (u?)+
Q7 '(Sqlu?) = Q7%(u*) = u*, which implies that Q%? = u® (Remember
that deg(u?) = —2, so @Q°u? may be non-zero.) By the Cartan formula
Q"N (zy) = 2% - Q°(y) for all x and ¥, so when z = u~*?") and y = u® we get
the desired equality.

So u~22"-1) & Ar maps to v, for £k > 1. Then it follows that the product
1 ® Ay maps to u22* =1 @ 1y, and we are done. O
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By the preceding proposition the classes X¢ = 422"y, represent the

images of Ay under 7,. From proposition 8.3.4 we know that the classes A
are A,-comodule primitives, hence their images under v, are A,-comodule
primitives as well.

We know that the map ¢ : MU — BP induces a surjection ¢¢ : HS(T(MU)¥?) —
HE(T(BP)!“?). Then for each k, choose ¢ in the preimage of \¢. The ideal
generated by the classes \{ for & > 1 is a sub A,-comodule, and we will
refer to the image of this ideal in HS(T(BP)'?) as the ideal generated by
the classes Af for £ > 1 and denote it by (A{ | £ > 1). Since each class A
is A,-comodule primitive, the ideal generated by these classes is an A,-sub
comodule.

The A,-comodule quotient of H¢(T(BP)!?) by the ideal generated by the
ideal (Af) can then be described as the completed A,-comodule represented
by the corresponding quotient of the E*_term:

E®(T(BP))/(X¢ | k> 1) = P(u,u™") @ P(£,EL,..) (10.2.6)

Proof of theorem 10.1.1. By 8.4.1 and the cyclotomic structure of T(BP),
we have maps
H,.(T)

l% (10.2.7)
R, (H.BP) <> H¢(T(BP)!C2)

The composition
R H,BP Y HT'®> — HT'®>/(\o|k > 1)

is an isomorphism. Indeed, the image of W, consists of classes represented
by the sub algebra P(u,u™") ® P(&} |> 1) C EX(T(BP)!®).

We then define a map of filtered A,-comodules E(\{) ® R, (H.BP) —
HE¢(T(BP)!?) by the formula \{ @ x +— A;W¥(z). Since ¥, is split, this
map is injective. Surjectivity follows since it induces a surjection of associ-
ated graded comodules. Since all the generators of E(A{) are A,-comodule
primitives, we have an isomorphism of filtered A,-comodules

E(X{|k > 1) ® Ry(H.(BP)) = Ry [E(M|k > 1) ® H(BP)] = R H.T(BP).
(10.2.8)
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Therefore,
H¢(T(BP)'“?) = R, (H,T(BP)) (10.2.9)

as a completed A,-comodule. Remember that the continuous homology is
the inverse limit of bounded below A,-comodules of finite type. By taking
into account that the isomorphism (10.2.9) is an isomorphism of filtered A,-
comodules, we may take the dual of this inverse limit system. We then get
that as A-modules,

H*(T(BP)!®) & R, (H*T(BP)) 2 E(X)* ® Ry (H*(BP)).  (10.2.10)

The map v, in homology is nontrivial. This follows from proposition
4.3.3 using the unit 7'(S) — T(BP). In addition we know that the class )y
corresponds to the classes Af for £ > 1. Dually, v* is non-trivial on the dual
of the exterior algebra E(\; | k > 1).

Moreover, we have that H*B = AJ/E is a cyclic A-module so by corollary
5.2.4 we conclude that v*: Ry (H*(T(BP)) — H*(T(BP)) can be identified
with the evaluation map € up to some non-zero scalar. O

Remark: Assuming that we have an analogue of proposition 4.3.3 for B =
MU, we could prove, using the same proof as above, the Segal conjecture for
MU. The problem is that the classes byob; are not all generated by by0b,
over the Dyer-Lashof algebra. We are using that the homology of BP is
cyclic over the Dyer-Lashof algebra, which is not the case for H,MU.



Chapter 11
BP{m—1)

In this last chapter we prove the last part of theorem 0.0.3. The proof is
obtained by noticing that the continuous cohomology H: (T (BP{m—1))!?)
is induced up over A,,_;. The main point is that A,,_; is a finite sub Hopf
algebra of A.

The key tool for this chapter is proposition 5.4.2.

11.1 Overview

Assume that B = BP(m — 1) has the structure of a commutative S-algebra.
Proposition 8.3.4 gave the E*°-term of the spectral sequence converging to
the continuous homology of T(BP{m—1))!“ as the algebra

o

%k, %

(m—1)2P(u,u™") ® P(m), @ EQ\{]1 <k <m), (11.1.1)

where the subalgebra P(m), := P(&f, ..., &y &2 41, &k > m + 2) has filtra-
tion zero and the exterior class A\{ has bidegree (—2(2F — 1), 253 — 3). Note
that P(m), has nothing to do with the homotopy of the Brown-Peterson
spectra P(m).

The map T(BP)'®> — T(BP{m—1))'°> induces an isomorphism of F-
terms of Tate spectral sequences in vertical degrees less than or equal to
2m+2 _ 3 and gives representatives for the A,-comodule primitive exterior
classes Af = 7v.(Ag) for m > k > 1. We have the following commutative
diagram

H.T(BP) H,.T(BP{m—1))

| |

HT(BP)!®2 — HT(BP(m—1)):

99
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and 7, (\g) = Af everywhere.

Let E(m — 1) by the subalgebra generated by the exterior classes A\, €
H.T(BP(m—1)) for 1 < k < m. These generators are all A,-comodule
primitives and correspond 1-1 with the classes [u2""'~Dy,] € HT(BP{m—
1))1“2 via the map 7,. For shorter notation, let A = 7,(\x) and let E(m—1)¢
be the exterior algebra generated by the classes Aj for 1 < £k < m.

The collection of {\¢}y, in HET(BP{m—1))!? form a sub A,-comodule
since the classes are all A,comodule primitives, and thus the ideal gener-
ated by these classes forms a sub A,-comodule. The quotient HST(BP{m—
)2 /(A¢1 < k < m) is a filtered A,-comodule with associated graded
isomorphic to P(u,u ') @ P(m)..

Note that the quotient splits off H,T(BP{m—1))!> as an algebra, but
not as an A,-comodule. There are dual Steenrod operations going from this
algebra to the ideal. See e.g. figure 9.2 for the case of m = 1. Dually, in co-
homology, we have a filtered sub A-module with associated graded isomorphic
to XP(v,v™!)® P(m) inside the continuous cohomology of T (BP(m—1))!2,

11.2 The extreme cases

Recall that H,BP = P(& | k > 1) & (AJE),. For brevity, we will denote
the polynomial algebra P(&} | k > 1) by D(AJE.).

The map BP — BP{— 1) = HF, induces a map of the associated Tate
spectra on T'HH and their continuous homology groups. All the exterior
classes A lie in the kernel. The inclusion of zero-simplices and the map down
to T'(Fy) compose into an injective map of filtered A,comodules R, H,BP —
H¢T(BP)? — HCT(Fy)'“2. Injectiveness is checked by inspection on the
induced map of associated graded comodules. Indeed, the composite map
above is given on associated graded comodules as the map

P(u,u™')® D(AJE,)

|

P(u,u™")® D(AJE,) ® E(X¢|k > 1)

|

P(u,u™") @ P(&], &k > 2)

sending D(AJE,) = P(&L|k > 1) injectively to the obvious sub algebra of
P(0), = P(£2,&|k > 2) and all the exterior generators to zero.

We will now determine the structure of H¢T'(IF,)!“? as a completed A,-
comodule. Tt will turn out that HST(Fy)!“? is coinduced over A, from a
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quotient Ay, comodule and we start by describing this quotient.

In cohomology the augmentation A/E — Fy induced an A-linear surjec-
tion R{(AJE) — R, (Fy). On the other hand, the inclusion Fy — A/JE of
[Fy-vector spaces is an Ag-homomorphism since there are no room for any Sq'
in AJE. This gives a splitting of the augmentation map when restricted to
Ag-modules. Dual to the inclusion, the quotient map AJE, — Fy is a map
of Ag.-comodules.

Likewise, in cohomology, there is a map R, F, — H*T(F,)!“? which on
associated graded modules is the inclusion S P (v,v™") < S P(v,v™!)®@ A J/A,.
This map is well defined since there is only one non-trivial class in each degree
of maximal filtration. Because of degree reasons, there is also in this case not
any room for any vertical Sq'’s, so the inclusion is an Ag-homomorphism. The
dual map HT (Fy)'¢? — R, Ty of completed Ag,-comodules given on the level
of associated graded comodules is the map P(u,u™") ® P(0), — P(u,u™")
dividing out by the ideal (€2, &,k > 2).

The above discussion is summarized in the following diagram:

R, (AJB,)— HT(BP)!®> — H°T(F,)!c:

i) ]

R+ (IFQ) R+ (IFQ) :

Disregarding the left split, this diagram is commutative. The vertical maps
are maps of completed Agp,-comodules. The upper composite map is inject-
ive, and it is easily checked by considering the map of associated graded
comodules that the composite self map of R F, is the identity.

Proposition 11.2.1. There is an isomorphism of completed A.-comodules
HET (Fy)1? — A0, R, TF,.

Proof. The isomorphism is defined by the composite

HET (Fy)!C: — A0, HT(F,)'% 5! A0, R, T, . (11.2.1)

The first map is the completed A,-coaction map. Both these maps are maps
of filtered A,-comodules and the induced map on filtration quotients are
suspensions of the map

P(&, &k > 2) = A,04, P(&, &k > 2), — A.O4,. Fs. (11.2.2)

In cohomology, this composite is the identity on A /A, and in particular an
isomorphism. O
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We can now describe the map R, H,BP — HST(Fy)'“? explicitly. We
have a commutative diagram

AO4 Ry Fy ——— A0y, R,T,
1DqT 1DqT
AOu, Ry AJE~— A0, HT (Fy )t (11.2.3)

RyAJE.“~———— HT(F,)! .
The right vertical composite is an isomorphism by proposition 11.2.1. Via

this identification, Ry AJE, — HST(Fy)'“2 = A4, R,y is the left vertical
composite. In cohomology this is the map

A ® 40 R+F2 — A XA, R+A//E — R+A//E (1124)

defined by first including R, Fy — R, AJE and then using the A-module
action map.

11.3 The intermediate cases

As noted, the map VU, : Ry AJE, — A0, R, F, factors through the quo-
tient HST(BP(m—1))'“2/(\¢|1 < k < m) for all m > 1.

Theorem 11.3.1. The continuous cohomology of T(BP{m—1))'? sits in a
short exact sequence of filtered A-modules

0= A®a, Ri(An_1)Em_1) = HT(BP{m—1))> — (X¢|k > 1)* =0
(11.3.1)

where the quotient is the dual of the ideal generated by the exterior classes
A

The map H*T(BP{m—1))®> — H*T(BP) — R, (H*BP) = R, (AJE)
restricted to the submodule in the sequence above is given by

A4, Ri(Ap 1 JEm1) > A®4 Ri(AJE) = Ro(AJE).

The first map is induced by the inclusion of A, 1-modules Ay 1 /JEm 1 <
AJJE and the last map is the A-action map on R, (AJE).
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Proof. In cohomology, we have the following diagram where the upper hori-
zontal composite is the map (11.2.4).

A @4, Ry (F2) A®a, Ri(AJE) RLAJE

Am @4y B4 (F2) — Ap ®4, R-I—JAml//Eml) — Ry (An—1/Em-1) -
(11.3.2)

The vertical maps are A,,-homomorphisms. We claim that the lower com-
posite is surjective. Indeed, the diagram is a diagram of filtered A,,-modules,
and the lower horizontal map is given on filtration quotients as suspensions
of the map

Am /AU = Am ®A0 ]F2 — Am ®A0 D(Amfl//Emfl) — D(Amfl//Emfl) .
(11.3.3)

Here, D(A,, 1//E;n_1) is the double module of A, 1/E,, ;.

The target is cyclic over A,, on one generator in degree zero and this
element is hit by 1 € A,, /A It then follows that the composite (11.3.3) is
a surjection of filtered A,,-modules.

Look now at the injective composite

A®y, R, (Fy) — H*T(BP(m—1))!2 - H*T(BP)!®* — R, (AJE) .

We claim that the image of the submodule A,, ®4, Ri(Am 1/Em-1) in
H}T(BP)'* is also isomorphic to Ry (Apy_1//Em_1).

To see this, we dualize and work in homology. The inclusion A,, ®4,
R, (Fy) — A®4, R, (F,) is dual to a surjection of A,,.-comodules. Denote its
kernel Iy(m). Similarly, we have a surjection of A,,,-comodule R (AJE,) —
R (Am_1)Em-1,) with kernel I (m). We have the following diagram of
filtered completed A,,.-comodules

To(m) Ro(AJE) — = R (A 1fBr 1)

| -

| - |

To(m)¢ A Ry (Fy) — 2 4 Og. Ry (Fy)
(11.3.4)
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The outer square is the dual of the outer square in diagram (11.3.2). The
horizontal maps are inclusions, hence the upper outer square is a pullback
square.

The left hand squares are also pullback squares, i.e. Io(m) = i, (R (AJE.))N
I,(m) and similarly for I,,,(m). This implies that the vertical maps into and
out of @, are injections. We will show that R, (A,—1/Em-1,) < Qm is
surjective.

To do this we analyze the maps in the above diagram on associated graded
comodules. The lower horizontal surjection in the diagram is given on filtered
comodules by suspensions of the map A//Aq, — A, by dividing out by the
ideal I(m) = (2", €27, ..., &4 1, &lk > m+2) C P(&2, &k > 2) = AJ/Aq..
Hence, the filtration kernels of go(m) are given by suspensions I(m). The
middle vertical map induces the inclusion map D(A/JE,) — P(m), — A//Ao.
on filtration kernels. Hence, we get a diagram like above of maps of filtration
kernels

&k > 1) P(&lk 21)
(7%’"*1’ < 7;1n7 7g1+lagk|k >m+ 2)C—>P(gili e '557%7,7 _7%1+1’gk|k > m+ 2)
(7%”‘4‘1’ ey 7;1n7 7g1+lagk|k 2 m + 2)(—>P(g%’gk|k Z 2) )

It is now clear that the quotients of the two upper horizontal maps are
isomorphic. Hence, the map Ry (A;—1/Em-1+) < Qn in diagram (11.3.4)
is an isomorphism of A,,,-comodules. We now have a commutative diagram
analogous the case for m = 0:

A0, . Ry (Am—1)Emn—1.) ———=A.04,,. R (Am—1/Em—1+)
10¢eo (m)T IDQM(M)T
AO4,. Ry (AJE.) = A,O4,, H{T(BP(m—1)) /(X})

R (AJE.)S HT(BP(m—1))"/(X).

(11.3.5)

In order to show the theorem, we need to show that the vertical composite
map on the right is an isomorphism of completed A,-comodules. Again, this
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is a map of filtered A,-comodules, which on filtration kernels are given by
the upper row in diagram (11.3.6):

P(m), —= A,04,,.P(m), — A.Oy4, . P(m)./I(m)

f j j oo
A, —Y A0, A, AO4 A JI(m).

The lower row in this diagram is the dual of the maps A ®4,, A, — A®a,,
A — A whose composite is the isomorphism A ®4,, A,, = A. Hence, both
the horizontal composite maps are injections. Both source and target are
comodules of finite type in each degree so to show surjectivity, it is enough
to show that they are of the same dimension degreewise.

It is clear that as a vector space, P(m), is isomorphic to the tensor
product P(&"" .. €4 €2 1, Emsa, .. .) @ P(ELk > 1)/I(m) which in turn
is isomorphic to (AJAn). @ P(ELk > 1)/I(m). This vector space has the
same degreewise dimension over Fy as A0, . P(&Hk > 1)/1(m).

The last claim follows from the more general fact that A ®p M =y,
A/B® M for all bounded above A-modules M of finite degreewise rank over
Fy and all B C A such that A ®p (—) is flat.

O

Dividing out by the ideals generated by the exterior classes A, and Af the
map 7, induces a map

H.T(BP(m—1))/(\lk < m) =~ HT(BP(m—1))!"/(\; |k < m)

IR

~

P(,U/m) ® A//Em—l* A*DAm* R—i— (Am—l//Em—l*)

in homology. The class p,, is A,-comodule primitive since we have killed A,,,
so the dual of the lower horizontal map translates to a map of A-modules

7t A®u, Ri(An 1 fBm1) » @S2 AJE 1. (11.3.7)

0<i

Proposition 11.3.2. The map ~v* is surjective. The kernel of v* satisfies

Ext’f! (ker(v"), F) 2 Ext’ () X2 A JEp—1. F>)

§<0

for all s,t.
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Proof. We will first show that

A®a, Ri(Anet [Bnet) B @2 A B,y
i>0
is surjective for all £ > 0. This follows since the A-module generators on the
right are dual to z, for i > 0 and since v, (y ) is represented by u=2""" in
the homological Tate spectral sequence E%(T(BP(m—1))!).
Using lemma 5.4.2 in the case M = A,, 1 /E,, 1 we get the lower hori-
zontal sequence in the following diagram:

DX AYE,,

i>0

iom+1
A®4, K A®4, Ry (Ap 1)Em 1) —= D" AfBnos.

J=0

(11.3.8)

Since M = A, 1//Em_1 generated over A,, 1 by classes of degree less than
or equal to zero, then, by the same lemma, the kernel A ®,4, K is generated
by A from classes in degree less than or equal to —2™!, Thus, A ®4,, K is
contained in the kernel of the A-module homomorphism 5* since the target
of this map is concentrated in positive degrees.

The quotient direct sum on the right and the target of 4* are abstractly
isomorphic and of degreewise finite dimensions as vector spaces over Fy, so
surjectivity of 4* implies injectivity as well. This implies that A ®,4, K is
indeed the whole kernel of ¥*. O

In order to estimate the co-connectivity of v after smashing with some
finite complex F'(m), we will use the above results to show vanishing results of
the E?-term of the Caruso-May-Priddy spectral sequence for the cofiber of .
By the fundamental Norm-Restriction square (4.2.1) the same coconnectivity
result holds for the map of fixed points T(B)®> — T(B)"¢=.

The following is an elementary fact about comodule algebras.

Lemma 11.3.3. Let R be a graded commutative A,-comodule algebra and
assume that R = S® FE(e) as algebras, where the exterior class e is primitive
with respect to the A,-comodule coaction on R.

Then the ideal (¢) C R is a sub A,-comodule and the map 'R /(e) — (e)
defined by YI°l[x] s e -z is an A.-comodule isomorphism.
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Proof. Since e is a primitive element, the degree |e| self map on R defined
by multiplication by e is an A,homomorphism. The image of this map is the
ideal (e¢) C R which is then a sub A,-comodule. Moreover, the kernel of the
multiplication map is also equal to the ideal (e), so we have a short exact
sequence

0— Yle) c XIR 5 (e) = 0

of A,-comodules. Hence, XI¢/R/(e) — (e) given by Zl[z] — e -z is an
isomorphism of A,-comodules. O

Theorem 11.3.4. Assume that there exists a finite complex F(m) of chro-
matic type m such that its cohomology with Fy-coefficients is isomorphic as
a left A-module to the finite sub-Hopf algebra A,,_1 C A.

After smashing with F(m), the map Ty : T(BP{m—1))?> — T(BP{m—
1)) becomes an isomorphism on homotopy groups in degree strictly greater
than 2™ (m — 2) + m + 2.

Proof. After smashing with F'(m), the kernel of 7#* can be estimated on Ext-
groups as follows:

Extyj (ker(7),F,) = Exty' (6D, q Ej2m+_1A//Emfl) ® A1, Fy)
> Ext (A® @, X" Ap1 fEm—1), o) (11.3.9)
> Extz (D, S A1 fEn—1), Fa)

Here we are using a shearing isomorphism (A®u,, 4, ,/En_) @ Apm-1 =
A ® (Am_1/En_1). This isomorphism is dependent on the fact that the
module A,, ; is the cohomology of a spectrum, and has a natural A-action
compatible with the self action of the inclusion A,,_; C A.

Since we are taking Ext over a field, the Ext-groups are concentrated in
homological degree zero where Ext]%:(—, —) = Hom{, (—, —). We have that
Hom{, (—,F») = Homp, (57'—,F,), so it follows that Ext?’ (ker 5, F,) = 0 if
s> 0ort > d(m). Where 6(m) is the top dimension of ker 7*.

We claim that §(m) = 2™ (m — 4) + 2m + 6. Indeed,

d(m) = |[ker 7" @ Ay |
= ||(®j<0 Ej2m+1Am—1//E'm—1||
= ||2_2m+1Am71//Emfl||
= =2 [ A1 B || = =27 + [|D(Am-2) |
= —2m+L 4 2(2™(m — 3) +m + 3)
=2 (m —4)+2m +6.

(11.3.10)

Here we are using that ||A,,|| = 2™*(m — 1) + m + 5.
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Fix m and let T = T(BP{(m—1)) and T* = T(BP{m—1))'“2. The proof
of the theorem now follows from an inductive procedure.

We know that H,T and HST' are both commutative completed A,-
comodule algebras of the form considered in lemma 11.3.3. Hence, we have
short exact sequences

Sl H, T/ (Ay) —— (App)— H, T H,T/(Am)
lzum% l l% l% (11.3.11)
Sl HeTt /(A8 ) —> (\S,) > HET" H{T' /(A7)

with maps between them induced by v,. We are using that v, is a map of
completed A,comodule algebras.

We will now repeat the procedure with H, T and HET" replaced by H.T'/(
and HET"/(XS)) respectively. Thus, by induction, we get

SMHT/ Ay - - M) HT/ Ay o, A1) ——= HT/ Ay -5 Ar)

| l |

ST (A, . A HET (X A y) e HETH (A, D)
(11.3.12)

for each 1 < r < m. The vertical maps are induced by ~,.

We are now in position to estimate the coconnectivity of v. We start
when r» = 1. From the long exact sequence of Ext-groups and the first part
of this proof, we see that Ext%’(ker(v*/(Am, - . ., \2), Fy) vanishes when s > 0
and ¢ > max{|\| + d(m),d(m)} = |A\1| + 6(m). By induction on r, we then
get that Ext’ (ker(y*),Fy) = 0 when s > 0 and t > 3", _, . |\ +(m). Te.

t >d6(m)+ > (2F1—1)
—om)—m+d- Y
= §(m) — m+4(§5f— 1)

= 2" (m —4)+2m+6 —m + 2(2™ — 2)
=2""(m—2)+m+2.

O

Remark: In the presence of a finite spectrum V' (m — 1) realizing the exterior
sub-Hopf algebra F,, ; C A, we might improve on our estimates. In this

Am)
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case, Ext?' (ker 7*,F,) = Ext’' (D, ¢ 372" A, F,). We then get that 6(m) =
1D, SI2TUR,|| = =27+ thus Ext%'(ker 4*,F,) vanishes for s > 0 or
t > —2m+h,

Theorem 11.3.5. Assume that there exists a Smith-Toda complez V(m—1).
After smashing with V(m — 1), the map Ty : T(BP{(m—1))?? — T(BP{m—
1))z becomes an isomorphism in degrees strictly greater than 2™ —m — 4.

Proof. By the induction in the last part of the proof of theorem 11.3.4, we get
that Ext%' (ker v*®E,,, 1,F,) vanishes for s > 0 or t > §(m)—m+4(2"™—1) =
—omtl iy 2. 2mFl g = 9mtl gy — 4, U

Note that the improvement of the latter theorem occurs only for m > 2.
For the algebraic cases T(Z) and T'(Fy) the two theorems state the same res-
ult, and they are in agreement with earlier calculations by Bokstedt-Madsen
for T(Z) |7] and Hesselholt for T'(F).
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