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Abstract

The real bordism spectra for unoriented, oriented, spin, and string bordism
each have an orientation map which is a map of E∞ ring spectra. In the first
three cases the orientations have sections, but these sections are not maps
of E∞ spectra. In this text the author uses Dyer-Lashof operations to place
bounds on the existence of En sections of the orientation maps, as well as
the existence of En sections of the topological Hochschild homology of the
orientation maps.
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Chapter 1

Introduction

In [Tho54], René Thom showed that the the unoriented and oriented bordism rings N∗
and Ω∗ are isomorphic to the homotopy groups of the MO and MSO, the Thom spectra
associated with the classifying spaces of the orthogonal and special orthogonal groups.
Thom determined the structure of N∗ by producing an equivalence of spectra between
MO and a wedge sum of suspensions of the Eilenberg-Maclane spectrum HF2. Similarly,
in [Wal60], C.T.C Wall determined the structure of Ω∗ by demonstrating a 2-local
equivalence between MSO and wedge sums of suspensions of HF2 and HZ. Associated
to the 4 and 8 connective covers of BO, there are the string and spin bordism spectra
MSpin and MString. Just as MO has an orientation map MO → HF2 and MSO has
an orientation MSO → HZ, there are canonical orientation maps MSping → ko and
MString → tmf . In, [ABP67], D.W. Anderson, E.H. Brown Jr., and F.P. Peterson
demonstrated a splitting of the orientation MSpin → ko analogous to those produced
by Thom and Wall, but no such splitting is currently known for MString.

The bordism spectra MO, MSO, MSpin, and MString are not just spectra,
however. They are E∞ ring spectra, each having an action by an E∞ operad defining
a product which not only commutes up to homotopy, but for which all commuting
homotopies are themselves homotopic, all homotopies between commuting homotopies
are homotopic, and so on. The spectra HF2, HZ, ko, and tmf are also E∞ spectra, and
the orientation maps MO → HF2, MSO → HZ, MSpin → ko, and MString → tmf
respect this E∞ structure, but the sections of these maps do not. By a result of Mark
Mahowald in [Mah77], there exists an E2 section of MO → HF2, but this is still a long
way from the E∞ section we might hope for. Thus the question arises: how commutative
can a section of these orientation maps be?

One of the best ways to find obstructions to the existence of En structures, or to the
existence of En maps, is through the use of Dyer-Lashof operations. These operations,
first defined by Shôrô Araki and Tatsuji Kudo for p = 2 in [KA56], and extended to
odd primes by Eldon Dyer and Richard K. Lashof in [DL62], are homology operations
applying to the mod p homology of any En or E∞ spectrum. Since the first n operations
Q0, . . . , Qn−1 are defined for, and natural with respect to maps of, En spectra, these
may be used to place constraints on the existence of such structures.

In this text, we will study the mod 2 homology of the real bordism spectra MO,
MSO, MSpin, and MString, together with their Dyer-Lashof operations. We will then
use this information to prove the following:

1. The orientation MO → HF2 does not admit an E3 section.

2. The orientation MSO → HZ does not admit an E5 section.
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Chapter 1. Introduction

3. The orientation MSpin → ko does not admit an E9 section.

4. The orientation MString → tmf does not admit an E17 section.

See Proposition 5.1.3 and Proposition 5.1.4.
In [BFV07], Morten Brun, Zbigniew Fiedorowicz, and Rainer M. Vogt showed that

topological Hochschild homology defines a functor from En+1 spectra to En spectra.
Thus, if there exists an En+1 section of, say, MO → HF2, then there is an induced
En section of THH(MO) → HF2. It is possible, however, that there might exist
sections of THH(MO) → THH(HF2) which do not arise in this way, and these sections
might preserve more of the E∞ structure. In order to place bounds on this, we will
use the Bökstedt spectral sequence to determine the mod 2 homology of THH(MO),
THH(MSO), THH(MSpin), and THH(MString), as well as the relative topological
Hochshcild homology spectra THH(MO,HF2), THH(MSO,HZ), THH(MSpin, ko),
and THH(MString, tmf). We will then use this information, together with Dyer-Lashof
operations, to prove the following.

1. THH(MO) → THH(HF2) does not admit an E3 section.

2. THH(MSO) → THH(HZ) does not admit an E5 section.

3. THH(MSpin) → THH(ko) does not admit an E9 section.

4. THH(MString) → THH(tmf) does not admit an E17 section.

See
The approximate structure of this text is as follows. In Chapter 2, we define the

classifying spaces BO, BSO, BSpin, and BString, as well as their Thom spectra, and
we describe the mod 2 homology of these in terms of the Husemoller-Witt decomposition
of bipolynomial Hopf algebras. In Chapter 3 we define operads and En operads, then
show how the linear isometries operad gives an E∞ structure to the real bordism spectra.
We also discuss Dyer-Lashof operations and Steenrod (co-)operations, and describe
how these act on the homology of MO and HF2. In Chapter 4 we define topological
Hochschild homology, and discuss how the tensor product of operads is used to make it a
functor from En+1 spectra to En spectra. In Chapter 5, we do a number of computations
to establish our main original results,

1.1 Notation

Throughout this text, Fp denotes the field with p elements for p a prime, Z(p) will denote
the integers localized at the prime (p), and all homology and cohomology is taken with
coefficients in F2 unless otherwise stated. In addition, all spaces are assumed to be
compactly generated weak Hausdorff, and all spectra lie in a modern category of spectra
with a symmetric monoidal smash product.

1.2 Acknowledgements

I would like to thank my supervisor, John Rognes. Thank you for all the teaching and
guidance throughout the last two years, for your patience and support. You have truly
made this an incredible experience. I would also like to extend a heartfelt thanks to
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Chapter 2

The Bordism Spectra

2.1 Grassmann Manifolds

Let us begin by defining the spectra BO and MO and describing their homology,
following the treatment in Milnor and Stasheff [MS74].

Definition 2.1.1. [MS74, p. 56] Let 0 ≤ n,m. As a set, the Grassmann manifold
Gn(Rn+m) is defined to be the set of n-dimensional linear subspaces of Rn+m and the
Stiefel manifold Vn(Rn+m) is defined to be the set of n-frames of Rn+m. To topologize
these, consider Vn(Rn+m) to be a subspace of (Rn+m)n and Gn(Rn+m) to be a quotient
space of Vn(Rm), where the quotient map sends each n-frame to the subspace that it
spans.

The inclusion Rn+m ↪→ Rn+m ⊕ R ∼= Rn+m+1 induces an inclusion Gn(Rn+m) ↪→
Gn(Rn+m+1). The colimit of these inclusions is denoted Gn(R∞). Similarly, there is
an inclusion Gn(Rn+m) ↪→ Gn+1(Rn+1+m) given by sending an n-plane ℓ ⊆ Rn+m ∼=
Rn⊕Rm to the image of the composite ℓ⊕R ↪→ Rn⊕Rm⊕R → Rn⊕R⊕Rm ∼= Rn+1+m.
These then induce inclusions Gn(R∞) ↪→ Gn+1(R∞), and the colimit of these is denoted
G∞(R∞). The spaces Gn(R∞) turn out to be the classifying spaces of the orthogonal
groups O(n), and are thus often denoted BO(n), or simply BO in the case n = ∞.

The spaces Gn(Rn+m) have canonical n-dimensional vector bundles, often called
tautological vector bundes, whose total spaces are En(Rn+m) = {(v, ℓ) ∈ Rn+m ×
Gn(Rn+m) | v ∈ ℓ}. The map γnm : En(Rn+m) → Gn(Rn+m) is given by projection
onto the second factor, and each fiber of this map inherits a vector space structure as
a subspace of Rn+m. As before, there are inclusions En(Rn+m) ↪→ En(Rn+m+1), and
the colimit of these is denoted En(R∞) or En. One may check that the projections
En(Rn+m) → Gn(Rn+m) give rise to a map γn : En → BO(n), and that γn inherits the
structure of a vector bundle, called the universal bundle [MS74, p. 60].

Now let DEn and SEn denote the disk and sphere bundles of γn, i.e. the space of
vectors v of norm |v| ≤ 1 and |v| = 1, respectively. The Thom space of γn is then defined
to be Th(γn) = DEn/SEn. Now let ϵ1 denote the trivial line bundle over BO(n) and
note that the pullback of γn+1 under the inclusion BO(n) ↪→ BO(n + 1) is isomorphic
to ϵ1 ⊕ γn. Thus there is an inclusion R×En ↪→ En+1, and this induces, after a suitable
rescaling, a map ΣTh(γn) → Th(γn+1). The Thom spectrum MO may now be defined
by letting MO(n) = Th(γn), and letting the structure maps ΣMO(n) → MO(n+ 1) be
the maps just defined.
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Chapter 2. The Bordism Spectra

2.2 Cohomology of BO(n) and the Thom Isomorphism

The cohomology of BO is best understood in terms of certain elements called Stiefel-
Whitney classes.

Definition-Proposition 2.2.1. [MS74, p. 37-38, Chapter 8] To each vector bundle
ξ : E(ξ) → B(ξ) over a paracompact base space B(ξ) there is associated a sequence of
cohomology classes wi(ξ) ∈ H i(B(ξ);F2), i ≥ 0, called Stiefel-Whitney classes. These
satisfy and are uniquely characterised by the following axioms.

1) We have w0(ξ) = 1 ∈ H0(B(ξ);F2). If ξ is an n-plane bundle, then wi(ξ) = 0 for
i > n.

2) (Naturality) If a map f : B(ξ) → B(η) is covered by a bundle map between vector
bundles ξ and η, then f∗(wi(η)) = wi(ξ) for each i.

3) (Whitney Product Theorem) If ξ and η are vector bundles over the same base
space B, then wi(ξ ⊕ η) = ∑

j+k=iwj(ξ) ∪ wk(η).
4) For the canonical line bundle γ1

1 over RP 1 = G1(R2), the class w1(γ1
1) is nonzero.

We will also need the following basic result.

Corollary 2.2.2. If ϵ is a trivial vector bundle over a base space B, and η is any vector
bundle over B, then wi(ϵ⊕ η) = wi(η).

The mod 2 cohomology of BO(n) may now be described as a polynomial algebra in
the Stiefel-Whitney classes associated to the universal bundles γn.

Proposition 2.2.3. [MS74, Theorem 7.1]

H∗(BO(n)) = F2[wi | 1 ≤ i ≤ n].

Let in : BO(n) ↪→ BO(n + 1) be the inclusion, and note that i∗n(γn+1) = ϵ1 ⊕ γn,
where ϵ1 is the trivial line bundle. Thus i∗n : H∗(BO(n+1)) → H∗(BO(n)) is the quotient
map sending wn+1 to 0. By the description in [MS74, Chapter 6], BO(n) ↪→ BO(n+ 1)
may be realized as an inclusion of subcomplexes, so that H∗(colimn→∞BO(n)) ∼=
limn→∞H∗(BO(n))/ lim1

n→∞H∗−1(BO(n)). Since H∗(BO(n + 1)) → H∗(BO(n)) is
surjective, lim1

n→∞H∗−1(BO(n)) = 0, so that H∗(BO) = F2[wi | i ≥ 1].
The cohomology of BO may be related to that of MO via the so-called Thom

isomorphism theorem.

Theorem 2.2.4. [MS74, Theorem 10.2] Let ξ : E → B be an n-plane bundle. Let
E0 denote the space of nonzero vectors in E, and, for any fiber F , let F0 denote the
space of nonzero vectors in F . Then there exists a unique class u ∈ Hn(E,E0) such
that the restriction of u to Hn(F, F0) ∼= F2 is nonzero for every fiber F . The map
− ∪ u : H∗(E) → H∗+n(E,E0) is an H∗(E)-module isomorphism.

Since H∗(En, (En)0) ∼= H∗(DEn, SEn) ∼= H̃∗(MO(n)) and H∗(BO(n)) ∼= H∗(En),
the Thom isomorphism theorem gives isomorphisms H∗(BO(n)) ∼= H̃∗+n(MO(n)).
Further, it is not difficult to check that the map H̃∗+1(MO(n+1)) → H̃∗+1(ΣMO(n)) ∼=
H̃∗(MO(n)) sends u to u, so that we get an induced isomorphism H∗(BO) ∼= H∗(MO).
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2.3. Products and Homology

2.3 Products and Homology

The Whitney sum of vector bundles induces a product µm,n : BO(m) × BO(n) →
BO(m + n) which is covered by a bundle map γm × γn → γm+n. This then induces
a homomorphism µ∗

m,n : H∗(BO(m + n)) → H∗(BO(m)) ⊗ H∗(BO(n)). Since µm,n is
covered by a bundle map, µ∗

m,n(wi) = ∑
wj ⊗ wk, where the sum is taken over all j, k

with 0 ≤ j ≤ m, 0 ≤ k ≤ n, and j + k = i.
In Section 3.2 we will see that the Whitney sums induce a product µ : BO×BO → BO

which is associative, commutative, and unital up to homotopy. The homomorphism
µ∗ : H∗(BO) → H∗(BO) ⊗ H∗(BO) is then given by µ∗(wi) = ∑

j+k=iwj ⊗ wk. In
the dual case of homology, µ gives H∗(BO) the structure of an F2 algebra via the
Pontryagin product, and the diagonal ∆: BO → BO × BO induces a homomorphism
∆∗ : H∗(BO) → H∗(BO)⊗H∗(BO) dual to the cup product. We then have the following.

Proposition 2.3.1. [May12, Theorem 21.4.5] Let bi ∈ H∗(BO) be the image of the
unique nonzero class in Hi(BO(1)) = Hi(RP∞) under the inclusion BO(1) ↪→ BO.
Then H∗(BO) = F2[bi | i ≥ 1], and ∆∗(bi) = ∑

j+k=i bj ⊗ bk.

Note that since H ∗ (BO(1)) = F2[w1], bi is dual in the monomial basis (of H∗(BO)))
to wi1.

In the case of MO, the Whitney sum may be used to define a product MO∧MO →
MO such that the Thom isomorphism H∗(BO) ∼= H∗(MO) is an isomorphism of F2-
algebras. Under this identification, we will also write H∗(MO) = F2[bi | i ≥ 1].

2.4 Hopf Algebras

The product on BO induces a product in its homology, and together with the map
H∗(BO) → H∗(BO) ⊗H∗(BO) which is dual to the cup product it makes H∗(BO) into
a kind of object known as a Hopf algebra. Thus to understand its structure, it is best
to first consider Hopf algebras more generally.

We begin with some definitions, mostly following the treatment of Milnor and
Moore in [MM65]. For the rest of this section R is a commutative ring and all tensor
products are taken over R. Given graded R-modules A and B, the twisting isomorphism
τ : A ⊗ B → B ⊗ A is defined by τ(a ⊗ b) = b ⊗ a. Note that in most topological
applications, τ includes a sign (−1)|a||b|, but in our case it will be convenient to work
with an unsigned twist. Note also that the signed and unsigned twists are equal in the
cases where R = F2 or A and B have no odd degree elements.

Definition 2.4.1. [MM65, Definition 2.1] A coalgebra over R consists of a non-
negatively graded R-module A together with of graded R-module homomorphisms

∆ : A → A⊗A

ϵ : A → R

such that the following diagrams commute.

A A⊗A

A⊗A A⊗A⊗A

∆

∆ ∆⊗id
id⊗∆

7



Chapter 2. The Bordism Spectra

A

A⊗R A⊗A R⊗A

∆
∼=

id⊗ϵ ϵ⊗id

∼=

Then ∆ is called a comultiplication and ϵ is called a counit for ∆.

In addition to coalgebras, we will also need to be able to speak of comodules.

Definition 2.4.2. [MM65, Definition 2.2] Let (A,∆, ϵ) be a coalgebra over R. A left
A-comodule consists of a non-negatively graded R-module M together with a graded
R-module homomorphism ψ : M → A⊗M such that the following diagrams commute.

M A⊗M

A⊗M A⊗A⊗M

ψ

ψ ∆⊗id
id⊗ψ

M

A⊗M R⊗M

ψ

ϵ⊗id

∼=

Just as the isomorphism R ⊗ R ∼= R can be used to consider R to be an R-algebra,
one may also consider R to be an R-coalgebra. Thus we may consider augmentations of
both algebras and coalgebras.

Definition 2.4.3. [MM65] Let (A,µ, η) be an R-algebra. An augmentation of A is an
algebra homomorphism ϵ : A → R. Let (A,∆, ϵ) be an R-coalgebra. A coaugmentation
of A is a coalgebra homomorphism η : R → A.

We now have what we need to define a bialgebra.

Definition 2.4.4. [MM65, Definition 4.1] A bialgebra over R consists of a non-
negatively graded R-module A together with graded R-module homomorphisms

µ : A⊗A → A

η : R → A

∆ : A → A⊗A

ϵ : A → R

such that

1. The triple (A,µ, η) forms an R-algebra with augmentation ϵ.

2. The triple (A,∆, ϵ) forms an R-coalgebra with coaugmentation η.

3. The following diagram commutes.

A⊗A A A⊗A

A⊗A⊗A⊗A A⊗A⊗A⊗A

µ

∆⊗∆

∆

id⊗τ⊗id
µ⊗µ

8



2.4. Hopf Algebras

Just as the tensor product of two algebras can be given a product and unit making
it an algebra, the tensor product of two coalgebras can be given a coproduct and counit
making it a coalgebra. Combining these, we then get a bialgebra structure on the tensor
product of bialgebras. Concretely, if (A,∆A, ϵA) and (B,∆B, ϵB) are coalgebras, the
coproduct on A⊗B is given by

A⊗B
∆A⊗∆B−→ A⊗A⊗B ⊗B

id⊗τ⊗id−→ A⊗B ⊗A⊗B

and the counit is given by
A⊗B

ϵA⊗ϵB−→ R⊗R
∼=−→ R.

With this convention, point (3) in Definition 2.4.4 is equivalent to either ∆ being an
algebra homomorphism or µ being a coalgebra homomorphism. (Unitality follows from
η and ϵ being (co)augmentations.)

A Hopf algebra is a bialgebra together with a certain conjugation endomorphism.

Definition 2.4.5. Let (A,µ, η,∆, ϵ) be an R-bialgebra. A conjugation on A is an R-
module homomorphism c : A → A such that

µ(id ⊗ c)∆ = µ(c⊗ id)∆ = ηϵ.

A bialgebra together with a conjugation is a Hopf algebra.

For many bialgebras, this extra structure is in fact automatic.

Proposition 2.4.6. [MM65, Proposition 8.2] Let (A,µ, η,∆, ϵ) be an R-bialgebra. If A
is connected, i.e., if η : R → A0 and ϵ : A0 → R are inverse isomorphisms, then there
exists a unique conjugation c : A → A.

Proposition 2.4.7. [MM65, Propositions 8.6, 8.7, 8.8] Let (A,µ, η,∆, ϵ, c) be a
connected Hopf algebra. Then the following diagrams commute.

A⊗A A⊗A

A A⊗A

A A

c⊗c

µ τ

c µ

A A

A⊗A A

A⊗A A⊗A

∆ c

τ ∆
c⊗c

Thus c is an antiautomorphism. In addition, if (A,µ, η) is a commutative algebra or
(A,∆, ϵ) is a cocommutative coalgebra, then c2 = id.

One of the most important properties of Hopf algebras is that their duals also inherit
Hopf algebra structures, allowing one to work equally well with either A or A∗, or in our
case, with homology or cohomology.

Proposition 2.4.8. [MM65, Proposition 4.8] Let (A,µ, η,∆, ϵ, c) be a Hopf algebra with
each An projective and finitely generated. Then (A∗,∆∗, ϵ∗, µ∗, η∗, c∗) has the structure
of a Hopf algebra.

In order to understand the structure of Hopf algebras, it is often useful to consider the
the quotient module of indecomposables and its dual notion, the submodule of primitives.
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Chapter 2. The Bordism Spectra

Definition 2.4.9. [MM65, Definition 3.7] Let (A,µ, η) be an R-algebra with
augmentation ϵ : A → R. The augmentation ideal of A is the defined to be I(A) = ker(ϵ).
The module of indecomposables of A is Q(A) = coker(I(A) ⊗ I(A)) µ−→ I(A)).

Let (A,∆, ϵ) be an R-coalgebra with coaugmentation η : R → A. Define J(A) =
coker(η). The module of primitive elements of A is P (A) = ker(J(A) ∆−→ J(A) ⊗ J(A)).

Note that a Hopf algebra homomorphism A → B induces maps Q(A) → Q(B) and
P (A) → P (B), so that Q and P are functors.

In addition to BO, we will also consider certain n-connective covers of BO, that
is, spaces BO⟨n⟩ together with covering maps BO⟨n⟩ → BO inducing isomorphisms
πi(BO⟨n⟩) ∼= πi(BO) for i ≥ n and with πi(BO⟨n⟩) = 0 for i < n. For n = 2, 4, 8, the
homology of BO⟨n⟩ is best understood as a sub-Hopf algebra of H∗(BO), and for this
purpose it is helpful to view H∗(BO) as a certain tensor product of Hopf algebras known
as the Husemoller-Witt decomposition, so let us define this.

Definition 2.4.10. Let p be prime, let R be a Z(p)-algebra and let d ≥ 1. Define a
bipolynomial Hopf algebra B[d] = BR[d] by letting B[d] = R[bi | i ≥ 1] as an algebra,
with |bi| = di. Define the coproduct by ∆(bi) = ∑

j+k=i bj ⊗ bk, with the convention
that b0 = 1, and define a counit via ϵ : B[d] → B[d]0 ∼= R.

Clearly the indecomposable elements of B[d] are given by QB[d] = R{bi | i ≥ 1}.
For the primitive elements, the standard basis for PB[d] is given by the following.

Proposition 2.4.11. [Hus71, Proposition 4.2] For n ≥ 1, define elements qn inductively
by the Newton relations,

qn =
n−1∑
i=1

(−1)i+1biqn−i + (−1)n+1nbn.

Then PB[d] = R{qi | i ≥ 1}.

Husemoller constructed sub-Hopf algebras B(p)[d] ⊂ B[d] as the kernel of a certain
homomorphism B[d] →

⊗
p∤ℓ,ℓprimeB[ℓd], see [Hus71, Notation 6.3]. Using a Hopf algebra

homomorphism fr : B[rd] → B[d] satisfying fr(qi) = qri, one may also consider B(p)[rd]
as sub-Hopf algebras of B[d] for r ≥ 1 [Hus71, Proposition 5.1]. He then shows that
B(p)[r] is a bipolynomial Hopf algebra generated by certain elements ar,j , and for our
purposes we may consider this to be the definition of B(p)[rd]

Definition-Proposition 2.4.12. [Hus71, Propositions 8.2, 8.3] Let r ≥ 1. Then there
exist elements ar,j ∈ B[d] for j ≥ 0 with |ar,j | = rpj that are uniquely defined by
qrpj = ∑j

i=0 p
iap

j−i

r,i . Let B(p)[rd] denote R[ar,j | j ≥ 0]. Then B(p)[rd] is a sub-Hopf
algebra of B[d].

Note that although the formula qrpj = ∑j
i=0 p

iap
j−i

r,i is insufficient to define the ar,j
over any ring with p-torsion, it does define the ar,j over Z(p), and taking a tensor product
with R gives unique elements in each BR[d].

The Husemoller Witt decomposition is then given by the following.

Proposition 2.4.13. [Hus71, Theorem 6.5] The inclusions B[kd] ↪→ B[d] for k coprime
to p induce an isomorphism of Hopf algebras⊗

k≥1,p∤k
B(p)[kd] ∼= B[d].

10
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Table 2.1: The primitive elements qi and the generators ak,j in BZ(2) [1] in degrees 0 through 6.

q1 = b1

q2 = b2
1 − 2b2

q3 = b3
1 − 3b1b2 + 3b3

q4 = b4
1 − 4b2

1b2 + 4b1b3 + 2b2
2 − 4b4

q5 = b5
1 − 5b3

1b2 + b2
1b3 + 5b1b

2
2 − 5b1b4 − 5b2b3 + 5b5

q6 = b6
1 − 6b4

1b2 + 6b3
1b3 + 9b2

1b
2
2 − 6b2

1b4 − 12b1b2b3 + 6b1b5 − 2b3
2 + 6b2b4 + 3b2

3 − 6b6

a1,0 = b1

a1,1 = −b2

a1,2 = −b2
1b2 + b1b3 − b4

a3,0 = b3
1 − 3b1b2 + 3b3

a3,1 = −b3
2 + 3b1b2b3 − 3b2

1b4 − 3b2
3 + 3b2b4 + 3b1b5 − 3b6

a5,0 = b5
1 − 5b3

1b2 + 5b1b
2
2 + 5b2

1b3 − 5b2b3 − 5b1b4 + 5b5

Thus, in particular, B[d] = R[ak,j | j ≥ 0, k ≥ 1, p ∤ k] as an algebra. Note also that
if R is an Fp algebra, then qkpj = ap

j

k,0 + . . .+ pjak,j = ap
j

k,0, which gives a much simpler
description of the primitives qi than the generators bi allow.

2.5 Connected Covers of BO

We are now ready to consider the homology of BO and its covers in this new context,
using p = 2 and R = F2. To begin with, one sees that H∗(BO;F2) ∼= BF2 [1], and that
we may thus use this new basis to write H∗(BO) = F2[ak,j | j ≥ 0, k ≥ 1, 2 ∤ k] as a Hopf
algebra. (H∗(BO) is also isomorphic to BF2 [1], and Proposition 2.3.1 is a consequence
of the more general fact that the Hopf algebras BR[d] are self dual.)

In addition to BO, we will consider the connected covers BSO = BO⟨2⟩, BSpin =
BO⟨4⟩ and BString = BO⟨8⟩. The cohomology of these may be described in terms of
the action by the Steenrod algebra, discussed in Section 3.4.

Proposition 2.5.1. [Koc83, Corollary 2.6] Let 1 ≤ n ≤ 3. Then the ideal (Awn−1
2 ) ⊆

H∗(BO⟨2n−1⟩) is a Hopf ideal, where wi denotes the i’th Stiefel-Whitney class and A
denotes the Steenrod algebra, and the covering map BO⟨2n⟩ → BO⟨2n−1⟩ induces an
isomorphism of Hopf algebras

H∗(BO⟨2n−1⟩)/(Aw2n−1) ∼= H∗(BO⟨2n⟩).

Note that this pattern does not continue. In fact, by [Koc83, Theorem 2.9], there is
no space X with a map X → BO⟨8⟩ identifying H∗(X) with H∗(BO⟨8⟩)/(Aw8). For
1 ≤ n ≤ 3, however, we may view H∗(BO⟨2n⟩) as quotient Hopf algebras of H∗(BO).
Dualising to homology, we instead get a sequence of sub-Hopf algebras. To describe
these, we must first define some functions α, ρ : N → N.

11
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Definition 2.5.2. Given k ≥ 0, write k = ∑m
i=0 ri2i for m ≥ 0 and 0 ≤ ri ≤ 1. The bit

sum of k is then α(k) = ∑m
i=0 ri. Given n ≥ 0, define ρn(k) = max(n+ 1 − α(k), 0).

The homology of BO⟨2n⟩ is then given by the following.

Proposition 2.5.3. [Bak85, Theorem 1.13] Let 0 ≤ n ≤ 3. Then the map BO⟨2n⟩ →
BO induces an isomorphism of Hopf algebras

H∗(BO⟨2n⟩) ∼=
⊗
k≥0
2∤k

F2[a2ρn(k)
k,j | j ≥ 0].

In particular, this gives the following descriptions of H∗(BSO), H∗(BSpin), and
H∗(BString):

H∗(BSO) = F2[ak,j | 2 ∤ k, k ≥ 3, j ≥ 0] ⊗ F2[a2
1,j | j ≥ 0]

H∗(BSpin) = F2[ak,j | 2 ∤ k, k ≥ 7, (∄m)(k = 2m + 1), j ≥ 0]
⊗ F2[a2

2m+1,j | m ≥ 1, j ≥ 0]
⊗ F2[a4

1,j | j ≥ 0]
H∗(BString) = F2[ak,j | j ≥ 0, k ≥ 15, α(k) ≥ 4]

⊗ F2[a2
k,j | j ≥ 0, k ≥ 7, α(k) = 3]

⊗ F2[a4
k,j | j ≥ 0, k ≥ 3, α(k) = 2]

⊗ F2[a8
1,j | j ≥ 0]

Note that rather then considering connected covers of BO directly, one may instead
take connected covers of the spaces BO(n) and take a similar colimit. This gives
another way of constructing the covers of BO, and from this we may define Thom
spectra MO⟨2n⟩. Since the Thom isomorphism theorem still applies, we see that
H∗(MO⟨2n⟩) ∼= H∗(BO⟨2n⟩) just as in the BO case, and we will use this identification
to also write H∗(MO⟨2n⟩) = F2[a2ρn(k)

k,j | j ≥ 0, k ≥ 1, 2 ∤ k].

Note 2.5.4. Just as H∗(BO) ∼= BF2 [1], one may show that H∗(BU) ∼= BF2 [2]. Many of
the results cited throughout this text are written about the homology of BU , not BO.
However, there is a non-grade preserving isomorphism of Hopf algebras B[2] → B[1],
and this isomorphism can, in many cases, be used to convert results about BU to results
about BO.

12



Chapter 3

Operads and Operations

3.1 Operads

There is a product ϕ : BO×BO → BO representing the Whitney sum of vector bundles,
and this product is not commutative. It does, however, have a commuting homotopy
H : ϕ ≃ ϕτ , where τ : BO ×BO → BO ×BO is the map (a, b) 7→ (b, a). This is enough
to ensure, for instance, that H∗(BO) becomes a commutative ring, but it is not all the
information that can be gleaned. We could, for instance, construct a second homotopy
H̃ : ϕ ≃ ϕτ by precomposing H by τ×f , where f : I → I is given by t 7→ 1− t. This new
homotopy will in general not be the same as H, but we may ask if there is a homotopy
G between them. If such a G does exist, then we may of course construct a G̃ and so
on and so forth. In order to keep track of these kinds of commuting homotopies, we will
need some additional machinery, and the concept of an operad provides this.

Definition 3.1.1. [May72, Definition 1.1] [Man22, Definition 2.1] An operad O in the
category of topological spaces consists of a sequence of spaces O(n) for n ≥ 0 together
with composition maps Γ : O(n) ×

∏n
i=1 O(ji) → O(∑n

i=1 ji) for each n and j1, . . . , jn, a
unit map 1 : ∗ → O(1), and a right action of the symmetric group Σn on O(n) for each
n such that the following axioms are satisfied:

1. (Associativity) The following diagram commutes for all m, j1, . . . , jm, and
k1, . . . , kj , where j = ∑m

i=1 ji, k = ∑j
i=1 ki, ti = ∑i−1

ℓ=1 jℓ, and si = ∑ti+ji
ℓ=ti+1 kℓ.

(O(m) ×
∏m
i=1 O(ji)) ×

∏j
i=1 O(ki) O(m) ×

∏m
i=1

(
O(ji) ×

∏ti+ji
ℓ=ti+1 O(kℓ)

)

O(j) ×
∏j
i=1 O(ki) O(m) ×

∏m
i=1 O(si)

O(k) O(k)

Γ×id×...×id id×Γ×...×Γ

Γ Γ

2. (Unitality) The following diagrams commute for all m.

∗ × O(m) O(1) × O(m) O(m)1×id

∼=

Γ

13
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O(m) × ∗m O(m) ⊗ O(1)m O(m)id×1×...×1

∼=

Γ

3. The composition map Γ: O(m) ×
∏m
i=1 O(ji) → O(j) is (Σj1 × . . . × Σjm)-

equivariant for each m, j1, . . . , jm and j = ∑m
i=1 ji, where (Σj1 × . . . × Σjm) acts

on O(m) ×
∏m
i=1 O(ji) via its action on ∏m

i=1 O(ji) and acts on O(j) via the block
sum inclusion (Σj1 × . . .× Σjm) ↪→ Σj .

4. The following diagram commutes for all m, j1, . . . , jm, and σ ∈ Σm, where
j = ∑m

i=1 ji, cσ permutes the O(ji) factors according to σ, and σj1,...jm ∈ Σj

permutes blocks of size j1, . . . , jm by σ.

O(m) × O(j1) × . . .× O(jm) O(m) × O(j1) × . . .× O(jm)

O(m) × O(jσ−1(1)) × . . .× O(jσ−1(m))

O(j) O(j)

Γ

σ×id×...×id

id×cσ

Γ
σj1,...,jm

The archetypal example of an operad is the endomorphism operad EX . Given a space
X, the endomorphism operad is defined by EX(n) = Map(Xn, X). The composition
maps Γ are then defined by composition of maps, the identity 1 is the inclusion of the
identity on X, and the symmetric group Σn acts on EX via the left action on Xn, i.e., by
permuting arguments. With this example in mind, the axioms of the previous definition
simply express that:

1. Composition of functions is associative.

2. f ◦ id = f = id ◦ f for any f .

3. When composing operations as in f = g◦(h1 × . . .×hm), permuting the arguments
of each hi is equivalent to permuting the arguments of f in blocks.

4. When composing functions as in f = g ◦ (h1 × . . .×hm), permuting the hi and the
arguments of g is equivalent to permuting blocks of the arguments of f .

In addition to the composition and identity maps, the endomorphism operad comes
with action maps ξm : EX(m) ×Xm → X defined by ξm(f, x1, . . . , xm) = f(x1, . . . , xm).
Given a morphism of operads O → EX , i.e., a sequence of Σn-equivariant maps
O(n) → EX(n) commuting with composition and identity maps, we get induced action
maps O(m) × Xm → X. In this case we say that X is an O-algebra or an O-space.
Alternatively, we may define O-spaces without making reference to EX as follows.

Definition 3.1.2. [Man22, Definition 4.1] Let O be an operad in the category of
topological spaces. An O-space consists of a space X together with action maps
ξm : O(m) ×Xm → X for m ≥ 0 such that the following axioms are satisfied.
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1. For each m ≥ 0, the map ξm : O(m) × Xm → X is Σm equivariant, where Σm

acts diagonally on O(m) ×Xm via the right action on O(m) and the right action
by inverses on Xm (i.e. the action given by (x1, . . . , xm)σ = σ−1(x1, . . . , xn) =
(xσ(1), . . . , xσ(n))), and Σm acts trivially on X.

2. The following diagram commutes for each m, j1, . . . jm, where j = ∑m
i=1 ji.

(O(m) ×
∏m
i=1 O(ji)) ×Xj O(m) ×

∏m
i=1(O(ji) ×Xji)

O(j) ×Xj O(m) ×Xm

X X

Γ×id id×ξj1 ×...×ξjm

ξj ξm

3. The following diagram commutes.

∗ ×X O(1) ×X X
1×id

∼=

ξ1

Note that although the definitions here are written in terms of spaces, they apply
just as well in categories of spectra that have a symmetric monoidal smash product,
or more generally to any symmetric monoidal category. Simply replace the cartesian
product of spaces with the smash product (or the monoidal product) and replace the
one point space ∗ with the sphere spectrum S (or the unit of the monoidal product).

Apart from the endomorphism operad, perhaps the simplest operads are the
commutative operad Com and the associative operad Ass. The commutative operad
is defined simply by Com(m) = ∗ with the only possible compositions, identity, and Σm

actions. The triviality of the action by Σ2 implies that any pairing defined by it must
be commutative, and in fact it is not difficult to show that giving a space the structure
of a Com-algebra is equivalent to giving it the structure of a commutative monoid. If
we allow for noncommutativity, we get the associative operad Ass, defined by letting
Ass(m) = Σm. The action by Σm is then given by composition, and the composition
Γ: Σm ×

∏m
i=1 Σji → Σj is given by (σ, σ1, . . . σm) 7→ σj1,...,jm(σ1, . . . , σm). As in the

commutative case, one may show that an Ass-algebra structure on a space is equivalent
to the structure of a monoid.

3.2 En Operads and Commutativity

Where the associative and commutative operads parametrize operations that are strictly
associative and commutative, the En operads are designed to parametrize operations
with some degree of associativity and commutativity up to homotopy.

Definition 3.2.1. [BV68, Example 2.5][Man22, Construction 3.5] Let n ≥ 1. The
Boardman Vogt little n-cubes operad Cn is defined as follows. The space Cn(m)
consists of ordered m-tuples (f1, . . . , fm) of embeddings fi : [0, 1]n → [0, 1]n of the form
fi(x1, . . . , xn) = (y1 + a1x1, . . . , yn + anxn) for 0 ≤ yi < 1 and 0 < ai ≤ 1 − yi such
that the interiors fi((0, 1)n) are parwise disjoint. This set is topologized as a subspace
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of Map([0, 1]n, [0, 1]n)m. The identity is given by id: [0, 1]n → [0, 1]n. The group Σm

acts by reordering the m embeddings. Composition is given by

Γ((f1, . . . , fm), (g1,1 . . . , g1,j1), . . . , (gm,1, . . . , gm,jm)) =
(f1g1,1, . . . , f1g1,j1 , . . . , fmgm,1, . . . , fmgm,jm)

Given an embedding f : [0, 1]n → [0, 1]n, one constructs f × id : [0, 1]n+1 → [0, 1]n+1,
and this induces a morphism of operads Cn → Cn+1. Taking colimits of the relevant
spaces and maps, one obtains the little ∞-cubes operad C∞

The natural setting of the little n-cubes operads is in describing the products in an
n-fold loop space. Given a pointed space (X,x0), one may define an action by Cn on
ΩnX in the following way. Viewing points of ΩnX as maps γ : [0, 1]n → X sending the
boundary to x0, define ξm : Cn(m) × (ΩnX)m → ΩnX by

ξm((f1, . . . , fm), γ1, . . . , γm)(u) =
{
γi(v) fi(v) = u

x0 u /∈
⋃
i im(fi).

The point in C1(2) given by t 7→ t/2 and t 7→ 1/2+ t/2 then represents the usual product
on a loopspace, and the fact that the product in Ω2X is commutative up to homotopy
is simply a consequence of C2(2) being path connected. In general, the spaces of Cn
become more and more highly connected as n increases, culminating in C∞ consisting of
contractible spaces.

Proposition 3.2.2. [May72, Theorem 4.8][Man22, p. 12] For 1 ≤ n ≤ ∞, let C(m,Rn)
denote the space of m ordered parwise distinct points in Rn. Then Cn(m) is Σm-
equivariantly homotopy equivalent to C(m,Rn).

In particular, we have that C1(m) ≃ Ass(m) while C∞(m) ≃ Com(m), corresponding
to the least and greatest degrees of commutativity we might expect. We see also that
Cn(2) ≃ Sn−1, so that a Cn-algebra in some sense extends the older notion of anHn-space,
see f.ex., [Bro60].

While the little n-cubes operads are a useful model for describing commutativity
of operations, there are many contexts, such as that of BO and MO, in which other
operads are more practical to work with. Hence we extend our view somewhat to the
notion of En operads.

Definition 3.2.3. [Man22, Definition 3.6] An operad O in the category of topological
spaces is an En operad if there exists a zigzag of morphisms of operads relating O to
the little n-cubes operad Cn such that the m’th component map of each morphism is a
Σm equivariant homotopy equivalence for each m. An En space is then an O-space for
O any En operad.

An operad O in the category of spectra is an En operad if there exists a zigzag
of morphisms of operads relating O to Cn such that the m’th component map of each
morphism is a weak equivalence for each m. An En spectrum is then an O-spectrum for
any En operad O.

Let f : A → B be a morphism of operads. An action ξ of B on a space X
may then be pulled back along f to define an action f∗(ξ) of A on X by letting
f∗(ξ)m = ξm(fm × id) : A × Xm → X. A map of En spaces is then a morphism of
operads f : A → B between En operads together with a map of spaces g : X → Y from
an A space to a B space, such that g is a map of A spaces, where the A space structure
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on Y is the pullback of the B space structure along f . Maps of En spectra are defined
analagously.

In the case of E∞ operads in spaces there is a somewhat simpler characterization
then the definition in therms of little ∞-cubes.

Proposition 3.2.4. [Man22, Proposition 3.7] An operad O in spaces is an E∞ operad
if and only if O(m) is contractible and has the Σm-equivariant homotopy type of a free
Σm-cell complex, i.e. a space built of cells of the form (Σm ×Dn,Σm × Sn−1).

In our case, we will make use of the Boardman-Vogt linear isometries operad. See
[BV68] and [May77, Chapter I.1]. Let I((Rm)k,Rn) be the space of linear isometries
(Rm)k → Rn and let L(k) = limm→∞ colimn→∞I((Rm)k,Rn) denote the space of linear
isometries (R∞)k → R∞. Then defining compositions, identity, and Σk actions as in the
case of the endomorphism operad gives L the structure of an E∞ operad.

Now, the quotient of the orthogonal group O(Rn ⊕ Rm) by O(Rn) ⊕ O(Rm) may
be identified with Gn(Rn+m) by identifying f ∈ O(Rn ⊕ Rm) with the subspace
f(Rn ⊕ {0}) ⊆ Rn ⊕ Rm ∼= Rn+m. Note that under this identification, the
maps Gn(Rn+m) → Gn(Rn+m+1) → Gn+1(Rn+1+m+1) are induced by the inclusions
O(Rn ⊕ Rm) → O(Rn ⊕ Rm+1) → O(Rn+1 ⊕ Rm+1). For m,n, k ≥ 1, define a map
θ̃m,n,k : I((Rm)k,Rn) ×O(Rm ⊕ Rm)k → O(Rn ⊕ Rn) as follows. Let f ∈ I((Rm)k,Rn),
and let g1, . . . , gk ∈ O(Rm ⊕ Rm). Let V = im(f) ⊆ Rn ⊕ Rn, and let V ⊥ denote
its orthogonal complement. The map θ̃m,n,k(f, g1, . . . , gk) is then given by letting the
following diagram commute.

Rn ⊕ Rn Rn ⊕ Rn

V ⊕ V ⊥ ⊕ V ⊕ V ⊥ V ⊕ V ⊥ ⊕ V ⊕ V ⊥

(Rm)k ⊕ V ⊥ ⊕ (Rm)k ⊕ V ⊥ (Rm)k ⊕ V ⊥ ⊕ (Rm)k ⊕ V ⊥

(Rm ⊕ Rm)k ⊕ V ⊥ ⊕ V ⊥ (Rm ⊕ Rm)k ⊕ V ⊥ ⊕ V ⊥

∼=

θ̃m,n,k(f,g1,...,gk)

∼=

f⊕id⊕f⊕id ∼=

∼=

∼= f

g1⊕...⊕gk⊕id⊕id

∼=

The maps θ̃m,n,k then induce maps θm,n,k : I((Rm))k,Rn) × Gm(Rm+m)k →
Gn(Rn+n). These now fit together to define θm,k : I((Rm))k,R∞) × Gm(Rm+m)k →
G∞(R∞), and these in turn fit together to define θk : L(k)×G∞(R∞) → G∞(R∞). This
defines an operad action of L on BO = G∞(R∞)

Thus BO is an E∞ space. By [LMS86, Theorem IX.7.1], MO inherits an E∞
structure from BO, and is thus an E∞ spectrum. The E∞ structure on BSO, BSpin,
BString, and their associated Thom spectra are defined completely analogously.

3.3 Dyer-Lashof Operations

Associated to the homology of any En spectrum are certain operations, called Dyer-
Lashof or Araki-Kudo operations, arising from the geometry of the En operad. Since
these operations are natural with respect to maps of En spectra, they may be used to
place bounds on the existence of such maps.
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Definition-Proposition 3.3.1. [Law20, Theorem 5.2] For X any En-spectrum, for
n ≥ 1, there exist specific functions Qi : Hj(X) → H2j+i(X), called Dyer-Lashof
operations, for each 0 ≤ i ≤ n− 1 for which the following hold:

1. Qi is natural with respect to maps of En spectra.

2. Qi is an F2-module homomorphism for 1 ≤ i ≤ n− 2.

3. Q0(x) = x2, for x ∈ H∗(X).

4. Qi(1) = 0 for 1 ≤ i ≤ n− 1.

5. (Cartan Formula) For x, y ∈ H∗(X) and 1 ≤ i ≤ n − 2, Qi(xy) =∑
j+k=iQj(x)Qk(y)

6. (Adem Relations) For x ∈ H∗(x) and 0 ≤ i < j ≤ n − 1, Qj(Qi(x)) =∑( k−i−1
2k−j−i

)
Qj+2i−2k(Qk(x))

7. (Stability) σQ0 = 0 and σQi = Qi−1σ for 1 ≤ i ≤ n − 1, where σ : H∗(ΩX) →
H∗+1(X) is the homology suspension.

8. If the En structure on X extends to an En+1 structure on X, then the Dyer-Lashof
operations associated to the En structure agree with those associated to the En+1
structure.

Note that linearity and the Cartan formula do not in general hold for the topmost
operation Qn−1. In this case there exist similar formulas involving a bilinear map
[−,−] : Hi(X) ⊗ Hj(X) → Hi+j+(n−1)(X) called the Browder Bracket. If, however,
the En structure on X extends to an En+1 structure, then both linearity and the Cartan
formula hold for Qn−1 as well. Note also that if X is an E∞-spectrum, then H∗(X) has
Dyer-Lashof operations Qi for all i ≥ 0. In this case one often writes Qi+|x|(x) = Qi(x),
so that Qj is the operation that raises degrees by j.

The Dyer-Lashof operations on BO were first determined by Kochman in terms of a
recursive algorith, but the following closed formula is due to Priddy.

Proposition 3.3.2. [Law20, Theorem 5.15][Pri75, Theorem 2.4] In H∗(BO) =
F2[bi | i ≥ 1] we have, for each n ≥ 1,

∑
i≥0

Qi(bn) =

 ∞∑
k=n

n∑
j=0

(
k − n+ j − 1

j

)
bk+jbn−j

 ∞∑
j=0

bj

−1

.

By [LMS86, Proposition IX.7.4], the Thom isomorphism H∗(BO) → H∗(MO)
preserves Dyer-Lashof operations, so that this also gives a description for MO.

Although this is somewhat unhelpful when working with the ak,j generators, it does
have the useful consequence that Qi(bn) ≡

(n+i−1
n

)
b2n+i modulo decomposables.

3.4 Steenrod (Co)operations

Just as the Dyer-Lashof operations act on the homology of any En spectrum, there
exist operations, called Steenrod squares, which act on the mod 2 cohomology of any
spectrum. These squares generate an associative, but not commutative, algebra known
as the Steenrod algebra A, over which all cohomology (with F2 coefficients) is a module.
For our purposes however, we will be more interested in the dual Steenrod algebra A∗,
under which homology becomes a comodule.
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Definition-Proposition 3.4.1. [SE62, pp. 1–2] For i ≥ 0, there exist natural
transformations of functors Sqi : H∗(−) → H∗+i(−), where H∗(−) is viewed as a
functor from topological spaces (or spectra) into the category of graded F2-modules.
The homomorphisms Sqi satisfy the following properties.

1. (Cartan Formula) For x, y ∈ H∗(X), Sqi(x ∪ y) = ∑
j+k=i Sq

j(x) ∪ Sqk(y).

2. For s : H∗(X) → H∗+1(X) the usual suspension isomorphism and x ∈ Hn(X),
Sqi(s(x)) = s(Sqi(x)).

3. For x ∈ Hn(X), Sq0(x) = x, and, if X is a space, Sqn(x) = x2 and Sqi(x) = 0 for
i > n.

4. Sq1 is the Bockstein homomorphism associated to the short exact sequence

0 → Z/2 → Z/4 → Z/2 → 0.

5. (Adem Relations) For 0 < i < 2j, we have

SqiSqj =
[i/2]∑
k=0

(
j − k − 1
i− 2k

)
Sqi+j−kSqk.

The Steenrod operations interact with Dyer-Lashof operations via the so-called
Nishida relations. Note that here too the top Dyer-Lashof operation Qn−1 is a special
case.

Proposition 3.4.2. [Law20, Theorem 5.18][NIS68] For X an En spectrum, and for
r ≥ 0 and 0 ≤ s ≤ n− 2,

Sqr∗Q
s =

∑
i

(
s− r

r − 2i

)
Qs−r+iSqi∗ : H∗(X) → H∗−r+s(X),

where Sqr∗ : H∗(X) → H∗−r(X) is dual to Sqr.

Since mod 2 cohomology is represented by the Eilenberg-Mac Lane spectrum HF2,
such operations are represented by classes in H∗(HF2), by the Yoneda lemma . After
identifying an operation with the cohomology class representing it, one has the following
by a result of Serre in [Ser52].

Proposition 3.4.3. [Swi02, Theorem 18.15] Define a finite sequence of integers I =
(i1, . . . in) to be admissible if I = (0) or if each i is positive and im ≥ 2im+1 for
1 ≤ m ≤ n − 1, and let SqI denote the product Sqi1 . . . Sqin. With this notation,
one has

H∗(HF2) = F2{SqI | I is an admissible sequence}.

The Steenrod algebra is then by definition A = H∗(HF2), and the fact that the
Sqi give operations on cohomology can be rephrased as saying that for any space (or
spectrum) X, H∗(X) has the canonical structure of an A-module.

Dualising, we write A∗ = H∗(HF2) for the dual Steenrod algebra. It turns out that
A∗ may be given the structure of a Hopf algebra, and this structure is described by the
following.

19



Chapter 3. Operads and Operations

Proposition 3.4.4. [Mil58, Theorems 2, 3] As an algebra, A∗ = H∗(HF2) = F2[ξi | i ≥
1], with ξi ∈ H2i−1(HF2). The coproduct on A∗ is given by ∆(ξi) = ∑

j+k=i ξ
2k

j ⊗ ξk,
where as usual we use the convention that ξ0 = 1.

Let c : A∗ → A∗ be the conjugation and set ζi = c(ξi). We then have A∗ = F2[ζi | i ≥
1] and ∆(ζi) = ∑

j+k=i ζj ⊗ ζ2j

k .

Note that there is some inconsistency between sources on which generators are
denoted ξi and which are denoted ζi. In particular, the notation used here is not the
same as is used in [Mil58] for p = 2.

Given a space (or spectrum) X, we have an action by the Steenrod algebra that
takes the form of a map A ⊗ H∗(X) → H∗(X). In the homology case, there is a map
ψ : H∗(X) → A∗ ⊗H∗(X) making H∗(X) into a A∗-comodule. If H∗(X) happens to be
bounded below and finitely generated in each degree then this is simply the dual of the A-
module structure on H∗(X). In the case of HF2, the A-module structure on H∗(HF2) =
A is the obvious one: the action A⊗H∗(HF2) → H∗(HF2) defining the module structure
is simply the product in A. Thus the coaction H∗(HF2) → A∗ ⊗H∗(HF2) is simply the
coproduct in A∗. In the case of BO and MO, the comodule structures are given on the
bi by the following.

Proposition 3.4.5. [Swi73, Theorem 2] Let X denote the formal sum
∑∞
i=0 ξi. Then

the coaction ψBO : H∗(BO) → A∗ ⊗H∗(BO) on H∗(BO) = F2[bi | i ≥ 1] is given by

ψBO(bi) =
i∑

j=0
(Xj)i−j ⊗ bj ,

where (Xj)i−j denotes the degree i− j component of Xj.
The coaction ψMO : H∗(MO) → A∗ ⊗H∗(MO) on H∗(MO) = F2[bi | i ≥ 1] is given

by

ψMO(bi) =
i∑

j=0
(Xj+1)i−j ⊗ bj .

Note that although the Thom isomorphism gives H∗(BO) ∼= H∗(MO) as algebras,
this map does not respect the A∗-coaction. Instead, these can be related by the inclusion
BO(1) → MO(1). Since the 0-sphere bundle SE1 → BO(1) has SE1 = S∞ ≃ ∗, this
map induces an isomorphism on homology given by bi 7→ bi−1, where the degree shift is
due to MO(1) being the first level of the spectrum MO, and this isomorphism respects
the A∗-coaction by naturality.

One may show that the coactions on H∗(BO) and H∗(MO) are map of algebras, so
that the above proposition is in principle a complete description. In addition, since the
inclusions H∗(BO⟨2n)⟩ ⊆ H∗(BO) are induced by the covering maps BO⟨2n⟩ → BO,
naturality also allows us to apply the the above proposition to BSO, BSpin, and
BString, along with their associated Thom spectra.

As an Eilenberg-Mac Lane spectrum over a commutative ring, HF2 has the structure
of an E∞ spectrum, and the dual Steenrod algebra thus has Dyer-Lashof operations of
its own.

Proposition 3.4.6. [Bru+86, Theorems III.2.2, III.2.4] The Dyer-Lashof operations
on A∗ are given by the following formulas.

1.

1 + ξ1 +
∞∑
i=0

Qi(ξ1) =

 ∞∑
j=0

ξj

−1
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2. For all i ≥ 0, j ≥ 1,

Qi(ζj) =
{
Q2j+1+i−4(ξ1) i ≡ 0, 1 mod 2j

0 otherwise.

3. Q2i−3(ξ1) = ζi for i ≥ 2.

Inherent in this result are the following useful useful facts, which we will have
significant use for later. Note that point (2) below follows from point (1) because the
conjugation in A∗ is its own inverse.
Corollary 3.4.7. 1.

ζi =


 ∞∑
j=0

ξj

−1


2i−1

2.

ξi =


 ∞∑
j=0

ζj

−1


2i−1

3.
Q1(ζi) = ζi+1

3.5 Integral Liftings

3.5.1 Lifts of Dyer-Lashof Operations

The formulas given so far for the Dyer-Lashof operations and Steenrod cooperations on
H∗(BO) and H∗(MO) were given in terms of the generators bi, but in order to work
in the homology of BSO, BSpin, BString, or any of their Thom spectra, we will need
to understand these operations in terms of the elements ak,j . For this purpose, the
primitive elements qi offer a useful middle ground, with one small caveat: the formula
qk2j = ∑j

i=0 2ia2j−i

k,i , which can be used for many calculations when taken over Z(2) or Q,
reduces simply to qk2j = a2j

k,0 when taken over F2, leaving most generators uninvolved.
To remedy this, one may first do calculations in BZ(2) [1], then map down to the case of
F2 coefficients at the end. Of course, Dyer-Lashof and Steenrod (co-)operations are not
a priori defined in this context, but by the work of Lance in [Lan83] they may be lifted
to it anyway.

Lance writes his results in terms of the mod p homology of BU for odd primes p,
but the proof adapts quite readily to the case of BO with p = 2. The main tools are the
following lemma together with Kochman’s description of the Dyer-Lashof operations in
BO and BU .
Lemma 3.5.1. [Lan83, Lemma 2.1] Let p be prime and let Tj be the j’th Witt
polynomial, given by Tj(t0, . . . , tj) = ∑j

i=0 p
itp

j−i

i . Let g0, g1, . . . be polynomials or
formal power series in indeterminates t0, t1, . . . with integral coefficients such that
gj(t) ≡ gj−1(tp) mod pj for j ≥ 1, where t = (t0, t1, . . .) and tp = (tp0, t

p
1, . . .). Then

the equations
gj(t) = Tj(ϕ0(t), . . . , ϕj(t))

inductively define polynomials or formal power series ϕj with integral coefficients for
j ≥ 0.
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Recall that H∗(BU ;Fp) = BFp [2] for p any prime, so we may write F2[b̃i | i ≥ 1] with
|b̃i| = 2i and denote the standard basis for the primitive elements by {q̃i}i≥1.

Proposition 3.5.2. [Koc73, Theorem 97] There is an algorithm for computing Qr(b̃n) in
H∗(BU ;Fp) for p an odd prime or Q2r(b̃n) in H∗(BU ;F2) using the following properties.

1. The maps Qr : H∗(BU ;Fp) → H∗+2r(p−1)(BU ;Fp) and Q2r : H∗(BU ;F2) →
H∗+2r(BU ;F2) are linear for all r ≥ 0.

2. Qr(b̃n) = 0 over Fp and Q2r(b̃n) = 0 over F2 for n > r ≥ 0.

3. (Cartan Formula) For x, y ∈ H∗(BU ;Fp) or x, y ∈ H∗(BU ;F2), Qr(xy) =∑
i+j=rQ

i(x)Qj(y).

4. (CoCartan Formula) For x ∈ H∗(BU ;Fp) or x ∈ H∗(BU ;F2), if ∆(x) = ∑
x′⊗x′′,

then ∆(Qr(x)) = ∑
i+j=rQ

i(x′) ⊗Qj(x′′).

5. Qn(b̃n) = b̃pn in H∗(BU ;Fp) and Q2n(b̃n) = b̃2
n in H∗(BU ;F2).

6. (Nishida Relations) P s∗Q
r = ∑

i

(r(p−1)−(p−1)s
s−pi

)
Qr−s+iP i∗ as operations on

H∗(BU ;Fp) and Sqs∗Qr = ∑
i

( r−s
s−2i

)
Qr−s+iSqi∗ as operations on H∗(BU ;F2)

7. Qr(q̃n) = (−1)r+n
(r−1
n−1

)
q̃n+r(p−1) in H∗(BU ;Fp) and Q2r(q̃n) =

(r−1
n−1

)
q̃n+r in

H∗(BU ;F2).

8. Qr(bn) ≡ (−1)r+n+1(r−1
n

)
b̃n+r(p−1) modulo decomposables in H∗(BU ;Fp) and

Q2r(b̃n) ≡
(r−1
n

)
b̃n+r modulo decomposables in H∗(BU ;F2).

This theorem can also be used to describe Dyer-Lashof operations in H∗(BO;F2).
One way to see this is to use that there is a non-grade preserving homomorphism of Hopf
algebras f : H∗(BO;F2) → H∗(BU ;F2) sending bi to b̃i and qi to q̃i. The homomorphism
f respects Dyer-Lashof operations in the sense that Q2r(f(x)) = f(Qr(x)), as can be
seen most easily by comparing the descriptions in [Law20, Theorem 5.15], and it respects
Steenrod operations in a similar manner, by the Wu formula . Thus the version that
applies to H∗(BO;F2) is the following.

Corollary 3.5.3. There is an algorithm for computing Qr(bn) in H∗(BO;F2) using the
following properties.

1. The maps Qr : H∗(BO;F2) → H∗+r(BO;F2) are linear for r ≥ 0.

2. Qr(bn) = 0 for n > r ≥ 0.

3. (Cartan Formula) For x, y ∈ H∗(BO;F2), and r ≥ 0, Qr(xy) =∑
i+j=rQ

i(x)Qj(y).

4. (CoCartan Formula) For x ∈ H∗(BO;F2) and r ≥ 0, if ∆(x) = ∑
x′ ⊗ x′′ then

∆(Qr(x)) = ∑
i+j=rQ

i(x′) ⊗Qj(x′′).

5. Qn(bn) = b2
n for n ≥ 1.

6. (Nishida Relations) Sqs∗Qr = ∑
i

( r−s
s−2i

)
Qr−s+iSqi∗.

7. Qr(qn) =
(r−1
n−1

)
qn+r.

8. Qr(bn) ≡
(r−1
n

)
bn+r modulo decomposables.
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We now consider the construction and verification of the lift itself in the case of
H∗(BO;F2), following the proof of [Lan83, Theorem 4.2]. To avoid confusion, denote
the generators of BZ(2) [1] by b̂i and âk,j , and denote the standard primitive elements
by q̂i, so that the quotient map BZ(2) [1] → BF2 [1] ∼= H∗(BO;F2) sends b̂i, âk,j , and
q̂i to bi, ak,j , and qi. Now note that in BZ(2) [1], the primitive elements are given by
q̂k2j = Tj(âk,0, . . . , âk,j) for j ≥ 0, k ≥ 1, and k odd. Let a = {âk,j | j ≥ 0, k ≥ 1, 2 ∤ k}
and define gk,j(a) = ∑∞

r=0
( r−1
k2j−1

)
q̂k2j+r ∈ Z(2)[[âk,j ]]. Note that Tj(âk,0, . . . , âk,j) ≡

Tj−1(â2
k,0, . . . , â

2
k,j−1) modulo 2j . This, together with the the identities

r

(
r − 1
k2j − 1

)
≡ 0 mod 2j

and (
2r − 1
k2j − 1

)
−
(

r − 1
k2j−1 − 1

)
≡ 0 mod 2j ,

ensures that gk,j(a) ≡ gk,j−1(a2) mod 2j . Thus we may inductively define power series
Q̂(âk,j), and thus an algebra homomorphism Q̂ : Z(2)[âk,j ] → Z(2)[[âk,j ]], by requiring
that

Tj(Q̂(âk,0), . . . , Q̂(âk,j)) = gk,j(a).

Setting Q̂r(x) to be the degree |x|+r term of Q̂(x), we get Z(2)-module homomorphisms
Q̂r : BZ(2)[1] → BZ(2) [1] raising degrees by r. These will be our lifted Dyer-Lashof
operations.

Thus it remains to show that the homomorphisms Q̂r reduce mod 2 to the Dyer-
Lashof operations. We do this be checking that Q̂r satisfies each of the requirements for
Kochman’s algorithm in Corollary 3.5.3 modulo 2. To begin with, (1), (3), and (7) are
satisfied by construction. Tensoring with Q, we see that the coCartan formula (4) follows
in BQ[1] since BQ[1] is primitively generated and the Q̂r satisfy the Cartan forumula
and send primitives to primitives. Since BZ(2) [1] has no torsion, the coCartan formula
follows in BZ(2) [1] as well. Since Q̂r(qn) = 0 for n > r ≥ 0 by construction, it follows
by the Cartan formula and BQ[1] being primitively generated that Qr(x) = 0 for any x
with |x| > r ≥ 0, so (2) holds. Point (8) follows from (7), the Cartan formula, the fact
that q̂n ≡ (−1)n+1nb̂n modulo decomposables, and the following identity:

n+ r

n

(
r − 1
n− 1

)
+
(
r − 1
n

)
= 2

(
r

n

)
≡ 0 mod 2.

It remains to show (5) and the Nishida relations (6). Lance’s proofs of these are
significantly more involved, but the arguments apply just as well to the H∗(BO;F2) case
here too.

Thus the homomorphisms Q̂r reduce modulo 2 to Dyer-Lashof operations. In other
words, we have the following.

Proposition 3.5.4. There exist Z(2)-module homomorphisms Q̂i : BZ(2) [1]j →
BZ(2) [1]2j+i for i, j ≥ 0 which satisfy and are uniquely defined by the following.

1. For any i ≥ 0 and x, y ∈ BZ(2) [1], Q̂i(xy) = ∑
j+k=i Q̂j(x)Q̂k(y).

2. For any i ≥ 0 and j ≥ 1, Q̂i(q̂j) =
(i+j−1
j−1

)
q̂2j+i
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The maps Q̂i : BZ(2) [1]j → BZ(2) [1]2j+i reduce modulo 2 to the Dyer-Lashof operations
Qi : Hj(BO) → H2j+i(BO).

When making use of this lifting, we will often take the additional step of tensoring
with Q and working in BQ[1] for convenience. Thus, if we wished to calculate Q1(a1,1),
we would use that in BQ[1] we have

Q̂1(â1,1) = Q̂1

(1
2 q̂2 − 1

2 q̂
2
1

)
= 1

2Q̂1(q̂2) − Q̂0(q̂1)Q̂1(q̂1) = q̂5 − q̂2q̂3,

so that in H∗(BO) we must have Q1(a1,1) = q5 − q2q3 = a5,0 + a2
1,1a3,0.

3.5.2 Lifts of Steenrod Co-operations

The case of Steenrod co-operations is similar in spirit, as done by Baker in [Bak85,
Sections 2, 3]. First, let Â∗ = Z(2)[ξ̂i | i ≥ 1] with |ξ̂i| = 2i − 1. Define a Z(2)-
algebra homomorphism ∆: Â∗ → Â∗ ⊗Z(2) Â∗ by ∆(ξ̂i) = ∑

j+k=i ξ̂
2k

j ⊗ ξ̂k. We may now
define homomorphisms ψ̂BO, ψ̂MO : BZ(2) [1] → Â∗ ⊗Z(2) B

Z(2) [1] by simply interpreting
the formulas in Proposition 3.4.5 as using integral coefficients. Clearly these reduce
modulo 2 to the usual coaction, so it only remains to determine the value of ψ̂BO(q̂i)
and ψ̂MO(q̂i), for which Baker makes use of a description of ψ̂BO and ψ̂MO in terms of
power series.

Proposition 3.5.5. [Propositions 2.6,3.5][Bak85] Define formal power series

ξ(T ) =
∑
i≥0

ξ̂iT
2i ∈ Â∗[[T ]],

and
b(T ) =

∑
i≥0

b̂iT
i ∈ BZ(2) [1][[T ]].

Then the homomorphisms ψ̂BO, ψ̂MO : BZ(2) [1][[T ]] → (Â∗ ⊗Z(2) B
Z(2) [1])[[T ]] satisfy the

following.

ψ̂BO

∑
i≥1

(−1)iq̂iT i
 =T (ξ ⊗ 1)′(T )

(ξ ⊗ 1)(T )
∑
j≥1

(−1)jξ(T )j ⊗ q̂j

ψ̂MO

∑
i≥1

(−1)iq̂iT i
 =T (ξ ⊗ 1)′(T )

(ξ ⊗ 1)(T )

∑
j≥1

(−1)jξ(T )j ⊗ q̂j − 1 ⊗ 1

+ 1 ⊗ 1

Here (ξ⊗1)(T ) = ∑
i≥1(ξ̂i⊗1)T 2i ∈ (Â∗ ⊗Z(2)B

Z(2) [1])[[T ]], and (ξ⊗1)′(T ) is the formal
derivative of (ξ ⊗ 1)(T ) with respect to T .

Proof. Baker initially gives a proof in the case of BU which directly translates to BO,
then indicates how the proof may be adapted to MU , so we here consider the details of
the case of MO. First note that the Newton polynomials in Proposition 2.4.11 describing
the relationship between the b̂i and the q̂i may be rewritten as

∑
i≥1

(−1)iq̂iT i = −T b
′(T )
b(T ) .
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Now let b̄(T ) = Tb(T ). We then have from Proposition 3.4.5 that

ψ̂MO(b̂i) =
∑
0≤j

(ξ(T )j+1)T i+1 ⊗ b̂j ,

where (ξ(T )j+1)T i+1 denotes the term of (ξ(T )j+1) of T -degree i+ 1. Thus

ψ̂MO(b̄)(T ) = (1 ⊗ b̄) ◦ (ξ ⊗ 1)(T ),

where ◦ denotes the usual functional composition of power series. Since

∑
i≥1

(−1)iq̂iT i = −T b
′(T )
b(T ) = −T b̄

′(T )
b̄(T )

+ 1

we may then calculate

ψ̂MO

∑
i≥1

(−1)iq̂iT i


= ψ̂MO

(
−T b̄

′(T )
b̄(T )

+ 1
)

= −T ((1 ⊗ b̄) ◦ (ξ ⊗ 1))′(T )
(1 ⊗ b̄) ◦ (ξ ⊗ 1)(T )

+ 1 ⊗ 1

= −T ((1 ⊗ b̄)′ ◦ (ξ ⊗ 1)(T )) · (ξ ⊗ 1)′(T )
(1 ⊗ b̄) ◦ (ξ ⊗ 1)(T )

+ 1 ⊗ 1

= T
(ξ ⊗ 1)′(T )
(ξ ⊗ 1)(T )

(
−(ξ ⊗ 1)(T )(1 ⊗ b̄)′ ◦ (ξ ⊗ 1)(T )

(1 ⊗ b̄) ◦ (ξ ⊗ 1)(T )

)
+ 1 ⊗ 1

= T
(ξ ⊗ 1)′(T )
(ξ ⊗ 1)(T )

∑
j≥1

(−1)j(1 ⊗ q̂j)((ξ ⊗ 1)(T ))j − 1 ⊗ 1

+ 1 ⊗ 1

= T
(ξ ⊗ 1)′(T )
(ξ ⊗ 1)(T )

∑
j≥1

(−1)jξ(T )j ⊗ q̂j − 1 ⊗ 1

+ 1 ⊗ 1
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Chapter 4

Topological Hochschild Homology

4.1 Simplicial Objects

The topological Hochschild homology of an E1 spectrum and the delooping of an E1
space may be constructed by glueing together spaces of the form Xn × ∆n along the
faces of ∆n. The structure that allows for such a construction is that of a simplicial
space, so let us begin by defining this.

Let ∆ be the category whose objects are the linearly ordered sets [n] = {0, 1, . . . , n}
for n ≥ 0 and whose morphisms are the weakly increasing functions between these sets.
Define a functor F : ∆ → T op by letting F ([n]) = ∆n = {(t0, . . . , tn) ∈ Rn+1 |

∑n
i=0 ti =

1, t0, . . . , tn ≥ 0}, the standard n-simplex, and letting F (µ : [q] → [p]) be the affine
linear map sending the vertex vi to vµi . Among these maps, two kinds are of particular
interest. For 0 ≤ i ≤ n, define the i’th face map δi : [n− 1] → [n] by

δ(j) =
{
j j < i

j + 1 j ≥ i,

and define the i’th degeneracy map σi : [n+ 1] → [n] by

σi(j) =
{
j j ≤ i

j − 1 j > i.

In terms of simplices, F (δi) then defines the inclusion of an n− 1-dimensional face into
∆n and F (σi) defines a map ∆n+1 → ∆n that collapses one of the edges. In fact, these
are the only maps one needs to consider in light of the following lemma.

Lemma 4.1.1. [Mac94, Lemma V.III.5.1] Let µ : [q] → [p] be any morphism in ∆.
Then µ has a unique factorization µ = δi1 . . . δisσj1 . . . σjt with 0 ≤ is < . . . < i1 ≤ p,
0 ≤ j1 < . . . < jt < q and q − t+ s = p.

With this in mind, there are now two equivalent definitions of a simplicial object.

Definition 4.1.2. A simplicial object in a category C is a (contravariant) functor
S : ∆op → C. A map of simplicial objects is then a natural transformation of functors.

Alternatively, a simplicial object in a category C consists of a family of objects
{Sn}n≥0 together with face maps di : Sn → Sn−1 and degeneracy maps si : Sn → Sn+1
for 0 ≤ i ≤ n such that the following are satisfied.

1. didj = dj−1di for i < j.

27



Chapter 4. Topological Hochschild Homology

2. sisj = sj+1si for i ≤ j.

3. disj =


sj−1di i < j

id i = j, i = j + 1
sjdi−1 i > j + 1

A map of simplicial objects is then a family of maps commuting with the face and
degeneracy maps.

Definition 4.1.3. Given a simplicial space X•, i.e., a simplicial object in the category
of topological spaces, the geometric realization |X•| is the quotient of ∐∞

n=0Xn × ∆n by
the relations (di(x), y) = (x, δi(y)) and (si(x), y) = (x, σiy). This defines a functor from
the category of simplicial spaces to topological spaces.

Alternatively, one may define |X•| as a colimit of spaces |X•|n, where |X•|0 = X0
and |X•|n is defined by a pushout

∐n−1
i=0 (Xn−1 × ∆n) ⊔

∐n
j=0(Xn × ∆n−1) |X•|n−1

Xn × ∆n |X•|n.

Here the lefthand vertical arrow is given by si × id on the i’th Xn−1 × ∆n component
and id × δj on the j’th Xn × ∆n−1 component. The upper horizontal arrow is given
id×σi on the i’th Xn−1 ×∆n component and dj × id on the j’th Xn×∆n−1 component,
followed by the inclusion Xn−1 × ∆n−1 → |X•|n−1. This definition then immediately
generalizes to the geometric realization of a simplicial spectrum by replacing products
with smash products and ∆n by ∆n

+.

In addition to spaces and spectra, one may also consider geometric realization as a
functor from simplicial O-algebras to O-algebras in light of the following.

Proposition 4.1.4. [Man22, Theorem 7.5] Let O be an operad in the category of
topological spaces or spectra and let X• be a simplicial O-algebra. Then |X•|, the
geometric realization of the underlying space or spectrum, has the canonical structure
of an O-algebra.

On the algebraic side of things, a simplicial R-module may be used to construct a
chain complex whose homology has a number of nice properties.

Definition 4.1.5. Let R be a commutative ring and let M• be a simplicial R-module.
Define a chain complex (M∗, d) whose component modules are those of M• by letting
d : Mn → Mn−1 be given by

d =
n∑
i=0

(−1)idi.

Then M∗ is the chain complex associated to M•, and H∗(M∗) is the homology of M•.

Given simplicial R-modules A• and B•, there is a product simplicial R-module
(A × B)• with (A × B)n = (An) ⊗R (Bn). The associated chain complex (A × B)∗
is then not the same as the tensor product A∗ ⊗RB∗, but they are closely related by the
Eilenberg-Zilber theorem.
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Proposition 4.1.6. [Mac94, Theorems 8.1, 8.5, 8.8] Let A• and B• be simplicial R-
modules for R a commutative ring. There exists a natural chain equivalence

(A×B)∗
f

⇄
g

(A∗) ⊗ (B∗).

The component maps f : An ⊗Bn →
⊕

i+j=nAi ⊗Bj are given by

f(a⊗ b) =
∑
i+j=n

d̃j(a) ⊗ di0(b).

Here d̃ denotes the "last" face operator, i.e., dm : Am → Am−1 for any m.
The component maps g : Am ⊗Bn → Am+n ⊗Bm+n are given by

g(a⊗ b) =
∑
(µ,ν)

(−1)sgn(µ,ν)(sνn . . . sν1a) ⊗ (sµm . . . sµ1b).

Here the sum is taken over all (m,n) shuffles (µ, ν), i.e. permutations of {1, . . . ,m+n}
whose restrictions µ : {1, . . . ,m} → {1, . . . ,m + n} and ν : {m + 1, . . . ,m + n} →
{1, . . . ,m+ n} are order preserving.

Given a product (A × A)• → A•, we can then precompose its induced map
in homology with the shuffle map g and the homology product H∗(A) ⊗ H∗(A) →
H∗(A∗ ⊗A∗) to define a product in homology H∗(A) ⊗H∗(A) → H∗(A).

4.2 Topological Hochschild Homology

Definition 4.2.1. [Lod98, p. 9] Let R be a commutative ring, let A be a (not necessarily
commutative) R-algebra, and let M be an A-bimodule. Define a simplicial R-module
C•(A,M) by letting Cn(A,M) = M ⊗R A

⊗n with degeneracy and face operators given
by

di(m⊗ a1 ⊗ . . .⊗ an) =


ma1 ⊗ a2 ⊗ . . .⊗ an i = 0
m⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ an 1 ≤ i ≤ n− 1
anm⊗ a1 ⊗ . . .⊗ an−1 i = n

si(m⊗ a1 ⊗ . . .⊗ an) = m⊗ a1 ⊗ . . .⊗ ai ⊗ 1 ⊗ ai+1 ⊗ . . .⊗ an

The Hochschild homology of (A,M) is then H∗(A,M) = H∗(C∗(A,M)). In the case
M = A we write HH∗(A) = H∗(A,A).

If A happens to be commutative, then there is a product C•(A,A) ⊗ C•(A,A) →
C•(A,A) given by (a0 ⊗ . . . ⊗ an)(a′

0 ⊗ . . . ⊗ a′
n) = a0a

′
1 ⊗ . . . ⊗ ana

′
n, so that HH∗(A)

gains the structure of a commutative R-algebra.
In the case that A is projective, there is another useful description of HH∗(A).

Definition 4.2.2. Let A be an R-algebra M be a right A-module, and N be a left A-
module. Let Cbarℓ (A) = M ⊗R A

⊗ℓ ⊗RN and denote an element m⊗ a1 ⊗ . . .⊗ aℓ ⊗n ∈
Cbarℓ (M,A,N) by m[a1| . . . |an]m. Define face and degeneracy maps by

di(m[a1| . . . |aℓ]n) =


ma1[a1| . . . |aℓ]n i = 0
m[a1| . . . |aiai+1| . . . aℓ]n 1 ≤ i ≤ ℓ

m[a1| . . . |an−1]aℓn i = ℓ

si(m[a1| . . . |aℓ]n) = m[a1| . . . |ai|1|ai+1| . . . aℓ]n
Then Cbar• (M,A,N) is a simplicial R-module, called the two sided bar construction.
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The bar construction has a number of useful versions in various categories, but in
the case of Hochschild homology, the its main use is this. In the case M = N = A,
Cbar• (A) = Cbar• (A,A,A) has an "extra degeneracy" given by

s(a0[a1| . . . |aℓ]aℓ+1) = 1[a0| . . . |aℓ]aℓ+1.

The property that sdi = dis makes s a contracting homotopy for Cbar∗ (A) such that,
if A happens to be projective, Cbar∗ (A) provides a projective resolution of A. If A is
projective as an R-module, then it is also projective as a module over the enveloping
algebra Ae = A⊗R A

op, where the (left) module action is given by

(a′
1 ⊗ a′

2)(a0[a1| . . . |aℓ]aℓ+1) = a′
1a0[a1| . . . |aℓ]aℓ+1a

′
2

Since M ⊗Ae Cbar∗ (A) ∼= C∗(A,M) for any A-bimodule M , this gives the following.

Proposition 4.2.3. [Lod98] Let R be a commutative ring, A be an R-algebra, and M
be an A-bimodule. Then

H∗(A,M) ∼= TorAe

∗ (M,A)

The geometric analogue of Hochschild homology is the geometric realization of a
corresponding simplicial spectrum, called topological Hochschild homology, or THH.

Definition 4.2.4. [EKMM, Definition IX.2.1] Let A be an S-algebra and let M be an
A-bimodule. Let µ : A ∧ A → A and η : S → A denote the product and unit of A and
let ϕr : A ∧ M → M and ϕl : M ∧ A → M denote the left and right actions by A on
M . Define a simplicial spectrum THH•(A,M) by letting THHn(A,M) = M ∧A∧n and
letting the face and degeneracy operators be given by

di =


ϕr ∧ idn−1 i = 0
id ∧ idi−1 ∧ µ ∧ idn−i−1 1 ≤ i ≤ n− 1
(ϕl ∧ idn−1)τ i = n

si = id ∧ idi ∧ η ∧ idn−i,

where τ : M∧A∧n−1∧A → A∧M∧A∧n−1 is the commuting isomorphism. The topological
Hochschild homology of A relative to M is then given by THH(A,M) = |THH•(A,M)|.
In the case M = A we write THH(A) = THH(A,A).

Just as in the algebra case, if the product on A is strictly commutative, then THH(A)
also inherits the structure of a commutative S-algebra.

One might hope for a close relation between the homology of THH(A) and the
Hochschild homology of H∗(A), and indeed this relation appears in the form of the
Bökstedt spectral sequence.

Proposition 4.2.5. [EKMM, Theoremm IX.2.9] Let E be a commutative ring spectrum,
let A be an S-algebra, and let M be a cell Ae-module. If E∗(A) is E∗-flat then there is
a spectral sequence of the form

E2
p,q = HE∗

p,q (E∗(A), E∗(M)) ⇒ Ep+q(THH(A,M)),

where HE∗
p,q denotes Hochschild homology over the ring E∗ with homological degree p and

internal degree q. The composite map

E∗(M) → E2
0,∗ → E∞

0,∗ → E∗(THH(A;M))
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is the E∗-module homomorphism i∗ induced by the inclusion M = |THH•(A;M)|0 →
THH(A,M). If A is a commutative S-algebra then the spectral sequence

E2
p,q = HHE∗

p,q (E∗(A)) ⇒ Ep+q(THH(A))

is a spectral sequence of differential E∗(A)-algebras, and the composition

E∗(A) → E2
1,∗ → E∞

1,∗ → E∗+1(THH(A))/im(i∗)

is the E∗-module homomorphism σ induced by the composition

ΣA ∼= Σ(S ∧A) → Σ(A ∧A) → A ∧A ∧ ∆1
+ → |THH•(A)|1 → THH(A).

Here the map E∗(A) → E2
1,∗ = HH1(E∗(A)) is given by a 7→ [1 ⊗ a] ∈ HH1(E∗(A)).

4.3 THH of En Spectra

If we are not so lucky as to be working with a strictly associative and/or commutative
S-algebra, there is still a way to make use of THH by replacing an En spectrum with an
En−1-algebra in S-algebras. The key ingredient in this procedure is the tensor product
of operads.

Definition 4.3.1. [BV79, p. 120] Let A and B be operads in the category of topological
spaces. The tensor product of A and B is then an operad A⊗B together with morphisms
f : A → A⊗B and g : B → A⊗B such that the following interchange diagram commutes,
and such that A ⊗ B is the initial object among such operads.

A(n) × B(m) B(m) × A(n)

(A ⊗ B)(n) × (A ⊗ B)(m) (A ⊗ B)(m) × (A ⊗ B)(n)

(A ⊗ B)(n) × ((A ⊗ B)(m))n (A ⊗ B)(m) × ((A ⊗ B)(n))m

(A ⊗ B)(nm) (A ⊗ B)(mn)

fn×gm gm×fn

id×∆ id×∆

Γ Γ

σ

Here ∆ denotes the diagonal map in each case, and σ ∈ Σmn is the permutation sending
im + j + 1 to jn + i + 1 for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. Thus an operad action
by A ⊗ B on a space X determines and is uniquely determined by an A-action and a
B-actions such that, for any a ∈ A(n) and b ∈ B(m), the following interchange diagram
commutes.

(Xn)m = (Xm)n Xn

Xm X

bn

am a

b

In other words, an A ⊗ B-algebra is equivalent to an A-algebra in the category of B-
algebras.
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Note that in the case A is the associative operad Ass, the structure of an Ass⊗ B-
algebra is equivalent to the structure of a monoid in the category of B-algebras. In
[BFV07], the authors show that Ass⊗ Cn is an En+1 operad, and they then use that to
prove the following.

Proposition 4.3.2. [BFV07, Theorem 3.4] Let f : A → M be a map of En+1 spectra.
Then there exists a commutative diagram of En+1 spectra and maps of En+1 spectra

YA XA A

YM XM M

fY fX f

such that the horizontal arrows are homotopy equivalences, YA and YM are Ass ⊗ Cn-
algebras, and fY is a map of Ass⊗ Cn-algebras.

Thus if we are given En+1 spectra A and M and an En+1 map A → M , we can first
replace these with Ass⊗Cn spectra YA and YM . These are then monoids in the category
of Cn-algebras, so they may be used to define a simplicial Cn-algebra THH•(YA, YM ),
whose geometric realization is then a Cn-algebra THH(YA, YM ), which one may also call
THH(A;M).

Given an En+1-spectrum A, we then get an En spectrum THH(A). One would hope
that the Bökstedt spectral sequence then also becomes an algebra spectral sequence as
in the strictly commutative case, and indeed it is.

Proposition 4.3.3. [AR05, Theorem 4.3] Let A be an E2-spectrum. The Böckstedt
spectral sequence

E2
p,q = HHF2

p,q(H∗(A)) ⇒ Hp+q(THH(A))

is a spectral sequence of A∗-comodule F2 algebras. If A is an E3-spectrum then Er∗,∗ is
a spectral sequence of commutative H∗(A)-algebras in A∗-comodules.
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Chapter 5

Computations

5.1 Orientation Maps

Let u : MO → HF2 denote the orientation map, i.e., the map represented by the
cohomology class 1 ∈ H∗(MO). This map may be realized as a map of E∞-ring spectra
[Law20, Proposition 5.29]. Thom showed in [Tho54] that MO splits as a wedge sum of
suspensions ΣiHF2, and this result then gave an essentially complete description of the
of the unoriented bordism ring π∗(MO). This splitting does not necessarily preserve the
E∞ structure of MO, but Mahowald showed in [Mah77] that HF2 is the Thom spectrum
of a map Ω2S3 → BO, from which one gets an E2 section HF2 → MO.

For the connected covers MSO, MSpin, and MString there is a similar story. Let
An denote the subalgebra of A generated by Sq1, . . . , Sq2n . Then the quotient algebras
A//A0, A//A1 and A//A2 may be realized as the mod 2 cohomology of E∞ spectra HZ,
ko, and tmf [AR05, p. 1257]. The map u then lifts to orientation maps MSO → HZ,
MSpin → ko, and MString → tmf , which are also E∞ maps, and which we will also
denote by u[AHR10, Theorems 6.1, 12.3]. Wall showed in [Wal60] that MSO splits
2-locally as a wedge sum of suspensions of HZ and HF2, and Anderson, Brown, and
Shapiro produced a similar splitting for MSpin in [ABP67] . For MString no such
splitting is known. See Fig. 5.1. We aim here to find upper bounds on the possible
commutativity of such splittings by determining which Dyer-Lashof operations it is
possible for a section of u∗ to respect.

For −1 ≤ n ≤ 2 let

eo(n) =


HF2 n = −1
HZ n = 0
ko n = 1
tmf n = 2.

The homology of eo(n) is then given in each case by the following.

MString MSpin MSO MO

tmf ko HZ HF2

E2

Figure 5.1: The orientations u : MO⟨2n⟩ → eo(n− 1) and sections of these.
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Proposition 5.1.1. [AR05, Propsosition 6.1] Let −1 ≤ n ≤ 3. Then there is a map of
commutative ring spectra eo(n) → HF2 inducing the following identification in homology.

H∗(eo(n)) = F2[ζ2n+2−i

i | i ≤ n+ 1] ⊗ F2[ζi | i ≥ n+ 2]

Thus we have

H∗(HZ) = F2[ζ2
1 , ζ2, . . .]

H∗(ko) = F2[ζ4
1 , ζ

2
2 , ζ3, . . .]

H∗(tmf) = F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .].

In order to understand how the orientation maps look in homology, we will make use
of the Steenrod cooperations. Let ϵ denote the counit of the Hopf algebra structures on
H∗(MO) and A∗, and let ψ : H∗(−) → A∗ ⊗ H∗(−) denote the coaction on homology.
We then have the following commutative diagram.

H∗(MO) A∗ ⊗H∗(MO) A∗ ⊗ F2

A∗ A∗ ⊗ A∗ A∗ ⊗ F2

A∗

ψ

u∗

id⊗ϵ

id⊗u∗ id
ψ

id

id⊗ϵ

∼=

Here the lefthand square commutes becuase ψ is natural, and the bottom triangle
commutes since the coaction ψ : H∗(HF2) → A∗ ⊗ H∗(HF2) is equal to the coproduct
∆ : A∗ → A∗ ⊗ A∗. To see that the righthand square commutes, we need only that
u∗(1) = 1, since ϵ is in both cases the map sending all positive degree terms to 0. This
is simply a consequence of u representing the nontrivial element of H0(MO) ∼= F2.

Thus to find u∗(x) it suffices to find the term of the form − ⊗ 1 in ψ(x). For the
generators bi this is reasonably straightforward. We have from Proposition 3.4.5 that
ψ(bi) = ∑i

j=0(Xj+1)i−j ⊗ bj , where X = ∑∞
i=0 ξi, so that

u∗(bi) = (X)i =
{
ξm 2m − 1 = i

0 (∄m)(2m − 1 = i).

In terms of the generators ak,j and ζi there is not such a nice formula, although the
previous description can be used to do calculations in low degrees. To do this, use the
formulas in Proposition 2.4.11 and Definition-Proposition 2.4.12 with integral coefficients
to write the elements ak,j as polynomials in the bi, then use point (2) in Corollary 3.4.7
to write each ξi as a polynomial in the elements ζj . See Table 5.1 for the results of such
a calculation. For the indecomposable elements qi, however, Proposition 3.5.5 gives that
u∗(qi) = (X−1)i, so that in particular, u∗(q2i−1) = ζi by Corollary 3.4.7.

Note that although these calculations are done in the case MO → HF2, they also
give descriptions of the MSO, MSpin, and MString cases by Proposition 2.5.3 and
Proposition 5.1.1.

Before we go on, we recall some important formulas. By Proposition 2.5.3, the mod
2 homology of M(⟨2n⟩) is given by

H∗(M⟨2n⟩) = F2[a2ρn(k)
k,j | j ≥ 0, k ≥ 1, 2 ∤ k],
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Table 5.1: The homomorphism u∗ : H∗(MO) → H∗(HF2) on generators in degrees 0 through 19.

u∗(a1,0) = ζ1

u∗(a1,1) = 0
u∗(a1,2) = ζ4

1 + ζ1ζ2

u∗(a1,3) = ζ8
1 + ζ1ζ3

u∗(a1,4) = ζ16
1 + ζ7

1ζ
3
2 + ζ6

1ζ2ζ3 + ζ1ζ
5
2 + ζ1ζ4 + ζ3

2ζ3

u∗(a3,0) = ζ2

u∗(a3,1) = ζ6
1 + ζ2

2

u∗(a3,2) = ζ6
1ζ

2
2 + ζ2

1ζ2ζ3

u∗(a5,0) = ζ2
1ζ2

u∗(a5,1) = ζ10
1 + ζ2ζ3

u∗(a7,0) = ζ3

u∗(a7,1) = ζ8
1ζ

2
2 + ζ2

3

u∗(a9,0) = ζ6
1ζ2 + ζ2

1ζ3 + ζ3
2

u∗(a9,1) = ζ18
1 + ζ4

1ζ
2
3 + ζ2

1ζ
3
2ζ3 + ζ2ζ4

u∗(a11,0) = ζ4
1ζ3

u∗(a13,0) = ζ2
2ζ3

u∗(a15,0) = ζ4

u∗(a17,0) = ζ14
1 ζ2 + ζ10

1 ζ3 + ζ8
1ζ

3
2 + ζ4

1ζ
2
2ζ3 + ζ2

1ζ
5
2 + ζ2

1ζ4 + ζ2ζ
2
3

u∗(a19,0) = ζ12
1 ζ3 + ζ4

1ζ4 + ζ4
2ζ3

Table 5.2: The homomorphism u∗ : H∗(MSO) → H∗(HZ) on monomials in degrees 0 through 4.

u∗(1) = 1
u∗(a2

1,0) = ζ2
1

u∗(a3,0) = ζ2

u∗(a2
1,1) = 0

u∗(a4
1,0) = ζ4

1
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Table 5.3: The homomorphism u∗ : H∗(MSpin) → H∗(ko) on monomials in degrees 0 through 8.

u∗(1) = 1
u∗(a4

1,0) = ζ4
1

u∗(a2
3,0) = ζ2

2

u∗(a7,0) = ζ3

u∗(a4
1,1) = 0

u∗(a8
1,0) = ζ8

1

Table 5.4: The homomorphism u∗ : H∗(MString) → H∗(tmf) on monomials in degrees 0 through
16.

u∗(1) = 1
u∗(a8

1,0) = ζ8
1

u∗(a4
3,0) = ζ4

2

u∗(a2
7,0) = ζ2

3

u∗(a15,0) = ζ4

u∗(a8
1,1) = 0

u∗(a16
1,0) = ζ16

1

Table 5.5: Dyer-Lashof Operations in H∗(HF2).

Q2(ζ1) = ζ4
1

Q3(ζ1) = ζ2
1ζ2 Obstruction

Q4(ζ2) = ζ4
1ζ

2
2 Obstruction

Q5(ζ2) = ζ4
1ζ3 Obstruction

Q8(ζ3) = ζ8
1ζ

2
3 Obstruction

Q9(ζ3) = ζ8
1ζ4 Obstruction

Q16(ζ4) = ζ16
1 ζ2

4 Obstruction
Q17(ζ4) = ζ16

1 ζ5 Obstruction
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for 0 ≤ n ≤ 3, where |ak,j | = k2j , ρn(k) = max(n + 1 − α(k), 0), and α denotes the bit
sum. By Proposition 3.5.4 Dyer-Lashof operations in H∗(MO) lift to integral operations
Q̂r : Z(2)[âk,j ] → Z(2)[âk,j ]. The lifts Q̂r are uniquely defined by the Cartan formula and

Q̂r(q̂i) =
(
i+ r − 1
i− 1

)
q̂2i+r.

The primitive elements are given by

q̂k2j = â2j

k,0 + . . .+ 2j âk,j ,

in the integral case and
qk2j = a2j

k,0

in the mod 2 case.
On the other side of things, by Proposition 5.1.1, the homology of eo(n− 1) is given

by
H∗(eo(n− 1)) = F2[ζ2n+1−1

i | 1 ≤ i ≤ n] ⊗ F2[ζi | i ≥ n+ 1]

for 0 ≤ n ≤ 3, where |ζi| = 2i − 1. By Proposition 3.4.6, the Dyer-Lashof operations are
given in H∗(HF2) by

Qr(ζi) =
{
Q2i+1+r−4ζ1 r ≡ 0, 1 mod 2i

0 otherwise

and

Qr(ζ1) =

( ∞∑
i=0

ξi

)−1

r+2

,

where, by Corollary 3.4.7,

ξi =


 ∞∑
j=0

ζj

−1


2i−1

.

We will also have significant use throughout the rest of this chapter of the p = 2 case
of the following result from elementary number theory, known as Lucas’s theorem.

Proposition 5.1.2. [Fin47, Theorem 1] Let α = ∑n
i=0 αip

i and β = ∑n
i=0 βip

i, where
0 ≤ αi, βi ≤ p− 1 and n ≥ 0. Then(

α

β

)
≡

n∏
i=0

(
αi
βi

)
mod p.

We begin with the simplest case.

Proposition 5.1.3. The F2-algebra homomorphism u∗ : H∗(MO) → H∗(HF2) admits
a unique algebra section s that commutes with the Dyer-Lashof operation Q1. s also
commutes Q2, but not Q3. Thus the orientation map u : MO → HF2 does not have an
E4 section.
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Proof. In degree 1, the map u∗ is an isomorphism given by a1,0 = q1 7→ ζ1. Thus a
section s would have to satisfy s(ζ1) = q1. By Corollary 3.5.3, we have for all i ≥ 1 that
Q1(q2i−1) =

(2i−1
2i−2

)
q2i+1−1 = q2i+1−1, while Q1(ζi) = ζi+1 by Corollary 3.4.7. Thus by

induction, if s commutes with Q1, then it must be given by s(ζi) = q2i−1. To see that
this does define a section of u∗, one could appeal to the existence of an E2 section of
u : MO → HF2, but we have also seen directly that u∗(q2i−1) = ζi.

By construction, we have that s commutes with Q1. For Q0, Q0s = sQ0 because
Q0(x) = x2 for any x, and s is an algebra homomorphism. For Q2, we have that
Q2(ζi) = 0 for i ≥ 2 by Proposition 3.4.6, while Q2(q2i−1) =

( 2i

2i−2
)
q2i+1 = 0 for i ≥ 2. In

the i = 1 case, we have Q2(ζ1) = ζ4
1 , while Q2(q1) = q4 = q4

1, so this commutes as well.
For Q3, however, we have that Q3(ζ1) = ξ5

1 + ξ2
1ξ2 = ζ2

1ζ2, whereas Q3(q1) = q5. Thus,

s(Q3(ζ1)) = a2
1,0a3,0 ̸= a5,0 = Q3(s(ζ1)).

The cases of MSO, MSpin, and MString are all quite similar, and they benefit
from a somewhat more systematic approach.

Proposition 5.1.4. Let 1 ≤ n ≤ 3. Then the F2-algebra homomorphism u∗ :
H∗(MO⟨2n⟩) → H∗(eo(n − 1)) admits a unique algebra section sn that commutes with
the Dyer-Lashof operation Q1. The section sn commutes with Qr for 0 ≤ r ≤ 2n+1 − 1,
but it does not commute with Q2n+1. Thus the orientation map u : MO⟨2n⟩ → eo(n− 1)
does not have an E2n+1+1 section.

Proof. We begin by showing that if sn commutes with Q1, then it must be given by
sn(ζ2n+1−i

i ) = q2n+1−i

2i−1 for 1 ≤ i ≤ n and sn(ζi) = q2i−1 for i ≥ n + 1. We see from
Table 5.2, Table 5.3, and Table 5.4 that u∗ is an isomorphism in degrees 0 through
2n+1 − 1, and that in these degrees sn must be given by sn(ζ2n+1−i

i ) = a2n+1−i

2i−1,0 = q2n+i−1

for 1 ≤ i ≤ n and sn(ζn) = q2n−1. As in Proposition 5.1.3 we have that Q1(ζi) = ζi+1
and Q1(q2i−1) = q2i+1−1, so the claim follows by induction.

Let s0 denote the section of u∗ : H∗(MO) → H∗(HF2) constructed in Proposi-
tion 5.1.3, and note that each sn is merely a restriction of s0. In particular, sn is
in fact a section of u∗.

To see which Dyer-Lashof operations sn respects, we use that, by Proposition 3.4.6,
Corollary 3.5.3, and Lucas’s theorem, we have

Qi(ζj) =
{
Qi+2j+1−4ζ1 i ≡ 0, 1 mod 2j

0 otherwise
(5.1)

Qi(q2j−1) =
(
i+ 2j − 2

2j − 2

)
qi+2j+1−2 =

{
qi+2j+1−2 i ≡ 0, 1 mod 2j

0 otherwise
. (5.2)

From these we see that sn(Qr(ζm)) = 0 = Qr(sn(ζm)) for 2 ≤ r ≤ 2m − 1. Note that s0
commutes with Q0 and Q1, and thus sn does as well. Now, let X,Y be E∞ spectra and
let x ∈ H∗(X). We then have by the Cartan formula that, for all r ≥ 0,

Qr(x2) =
{
Qr/2(x)2 2 | r
0 2 ∤ r.

(5.3)

Let f : H∗(X) → H∗(Y ) be an algebra homomorphism and let i ≥ 0 be such
that f(Qr(x)) = Qr(f(x)) for all 0 ≤ r ≤ i. We then have by Eq. (5.3) that
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f(Qr(x2)) = Qr(f(x2)) for all 0 ≤ r ≤ 2i + 1. Thus, for any j ≥ 0, we have that
f(Qr(x2j )) = Qr(f(x2j )) for all 0 ≤ r ≤ 2ji+ 2j − 1 by induction.

In our case, letting f = s0 and i = 2m − 1, this gives s0(Qr(ζ2n+1−m

m )) =
Qr(s0(ζ2n+1−m

m )) for all 1 ≤ m ≤ n + 1 and 0 ≤ r ≤ 2n+1−m(2m − 1) + 2n+1−m − 1 =
2n+1 − 1. Since sn is a restriction of s0, it follows that sn commutes with Qr for all
0 ≤ r ≤ 2n+1 − 1.

To see that sn does not commute with Q2n+1 , note that Q2n+1(ζn+1) = ζ2n+1
1 ζ2

n+1 ,
while Q2n+1(q2n+1−1) = q2n+2+2n+1−2. Thus

sn(Q2n+1) = q2n+1
1 q2

2n+1−1 = a2n+1
1,0 a2

2n+1−1,0 ̸= a2
2n+1+2n−1,0 = q2n+2+2n+1−2

= Q2n+1(sn(ζn+1)).

5.2 THH of Bordism Spectra

As Topological Hochschild homology is a functor from En+1 spectra to En spectra,
the orientations u : MO⟨2n⟩ → eo(n − 1) for 0 ≤ n ≤ 3 induce E∞ maps
THH(u) : THH(MO⟨2n⟩) → THH(eo(n − 1)). An En+1 section of u then induces
an En section of THH(u), but it is possible that THH(u) could have sections with
higher degrees of commutativity that are not induced by sections of u. In order to
place bounds on this, we will determine the mod 2 homology of THH(MO⟨2n⟩) and
THH(MO⟨2n⟩, eo(n − 1)), and use this to prove analogues of Proposition 5.1.3 and
Proposition 5.1.4.

We begin with a simple calculation.

Lemma 5.2.1. HHF2
∗ (F2[t]) ∼= F2[u] ⊗

∧(v), where u lies in degree 0 and is represented
by t, and v lies in degree 1 and is represented by 1 ⊗ t.

Proof. Since F2[t] is projective as an F2-module, we may make use of the description of
Hochschild homology as HHR

∗ (A) = TorA
e

∗ (A,A) and choose a a simpler resolution, as
in Fig. 5.2. From the resolution in the bottom row we see after tensoring with F2[t] over
F2[t]e that, as an F2-module,

HHi(F2[t]) ∼=
{
F2[t] i ∈ {0, 1}
0 otherwise,

To see how these are represented in the top row, note that α may be taken to be the
identity, so that HH0[F2[t]] is generated as a module by the classes of tn for various n, as
expected. For HH1, we have that d′(β(tn ⊗ t⊗ 1)) = α(d(tn ⊗ t⊗ 1)) = tn+1 ⊗ 1 + tn ⊗ t,
so that β(tn ⊗ t ⊗ 1) = tn ⊗ 1. Tensoring with F2[t], we then have that HH1(F2[t]) is
generated as a module by the classes of tn ⊗ t for various n.

The product structure in Hochschild homology is defined by composing the homology
product with the shuffle map in Proposition 4.1.6 and the homomorphism induced by
the product the in simplicial F2-module C•(A,A). Unpacking these definitions, we get
that the products in HH∗(F2[t]) are given by

[tn] ⊗ [tm] 7→ [tn ⊗ tm] 7→ [tn ⊗ tm] 7→ [tn+m]

[tn] ⊗ [tm ⊗ t] 7→ [(tn) ⊗ (tm ⊗ t)] 7→ [(tn ⊗ 1) ⊗ (tm ⊗ t)] 7→ [tn+m ⊗ t]
The lemma then follows.
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x⊗ y ⊗ z xy ⊗ z + x⊗ yz

x⊗ y xy

. . . F2[t]⊗4 F2[t] ⊗ F2[t] ⊗ F2[t] F2[t] ⊗ F2[t] F2[t]

. . . 0 F2[t] ⊗ F2[t] F2[t] ⊗ F2[t] F2[t]

x⊗ y (t⊗ 1 + 1 ⊗ t)(x⊗ y)

x⊗ y xy

d d

β

d

α

d′ d′ d′

Figure 5.2: The projective resolution used in the definition of HH∗(F2[t]) compared to a shorter
resolution.

Recall that for an S-algebra A, the F2 homomorphism σ : H∗(A) → H∗+1(THH(A))
is induced by the composition

ΣA ∼= Σ(S ∧A) → Σ(A ∧A) → A ∧A ∧ ∆1
+ → |THH•(A)|1 → THH(A)

. We will have significant use of the following facts about σ.

Proposition 5.2.2. [AR05, Proposition 5.10] For A any E2 spectrum, the F2-module
homomorphism σ follows a Leibniz rule. In other words, for x, y ∈ H∗(A), σ(xy) =
xσ(y) + σ(x)y.

Proposition 5.2.3. Let A be an En+1 spectrum, and let 0 ≤ r ≤ n − 2. Then
Qrσ = σQr+1.

We can now use the Bökstedt spectral sequence described in Proposition 4.2.5 to
calculate the homology of THH(MO). The proof given here is based on the proof of
[AR05, Theorem 6.2].

Proposition 5.2.4.

H∗(THH(MO)) ∼= F2[ak,j | j ≥ 0, k ≥ 1, 2 ∤ k] ⊗F2[σak,j | j ≥ 1, k ≥ 1, 2 ∤ k] ⊗F2[σa1,0]

Here we are identifying elements of H∗(MO) with their images under the inclusion
MO = |THH•(MO)|0 → THH(MO).

Proof. The second page of the Bökstedt spectral sequence in this case is given by
E2

∗∗
∼= HH∗(H∗(MO)) = HH∗(F2[ak,j | j ≥ 0, k ≥ 1, 2 ∤ k]). Since Hochschild homology

commutes with tensor products (when everything is flat) , we have

E2
∗,∗

∼=
⊗
j≥0
k≥1
2∤k

HH∗,∗(F2[ak,j ]) ∼=
⊗
j≥0
k≥1
2∤k

(F2[uk,j ] ⊗
∧

(vk,j))

∼= F2[uk,j | j ≥ 0, k ≥ 1, 2 ∤ k] ⊗
∧

(vk,j | j ≥ 0, k ≥ 1, 2 ∤ k)
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0 0 u3,0;u1,0u1,1;u3
1,0 v3,0; . . . v1,0v1,1

0 0 u1,1;u2
1,0 v1,1;u1,0v1,0 0

0 0 u1,0 v1,0 0

0 0 1 0 0

Figure 5.3: The E2
∗∗ term of the Bökstedt spectral sequence.

where uk,j lies in bidegree (0, k2j) and vk,j lies in bidegree (1, k2j).
We now claim that the spectral sequence collapses at the E2

∗∗ term. Since the
differential in the Bökstedt spectral sequence follows a Leibniz rule, it suffices to check
that d is zero on generators. This may be seen by checking that d(uj,k) and d(vj,k) lie
in degrees where E2

pq is trivial. See Fig. 5.3 for the case of the differentials in E2
∗,∗.

Thus we may write E∞
∗∗

∼= E2
∗∗

∼= F2[uk,j | k, j] ⊗
∧(vk,j | k, j). The elements uk,j

and vk,j are represented in HH∗(H∗(MO)) by ak,j and 1 ⊗ ak,j , so by Proposition 4.2.5
uk,j = i∗(ak,j) ∈ H∗(THH(MO)), where i : MO → THH(MO) is the inclusion of the
0-skeleton, and vk,j = σ(ak,j) ∈ H∗(THH(MO))/im(i∗). Thus the associated graded of
H∗(THH(MO)) is given by F2[ak,j | j ≥ 0, k ≥ 1, 2 ∤ k] ⊗

∧(σak,j | j ≥ 0, k ≥ 1, 2 ∤ k).
As an F2-module, this is free, so the additive structure of H∗(THH(MO)) is given, and
the multiplicative structure is almost given. We have a list of generators, and we see
that there are no relations between products of these generators, with one exception:
the squares of the generators σak,j remain unkown.

In order to determine squares, we use Dyer-Lashof operations. By Proposition 5.2.3,
we have that (σak,j)2 = Q0(σak,j) = σ(Q1ak,j). To calculate these, we will use Lance’s
integral lifting, modulo decomposables, as defined in Proposition 3.5.4. In BQ[1] we
have Q̂1(âk,j) ≡ Q̂1(2−j q̂k2j ) = kq̂k2j+1+1 ≡ kâk2j+1+1,0 modulo decomposables, so that
in H∗(MO) we have Q1(ak,j) ≡ ak2j+1+1,0 modulo decomposables. Since σ follows a
Leibniz rule, it takes decomposable elements to decomposable elements. Thus we get
(σak,j)2 ≡ ak2j+1+1,0 mod decomposables. The proposition immediately follows.

Making similar identifications in the MSO, MSpin, and MString cases, we get the
following.

Proposition 5.2.5. For 0 ≤ n ≤ 3, we have

H∗(THH(MO⟨2n⟩) ∼= F2[a2ρn(k)
k,j | j ≥ 0, k ≥ 1, 2 ∤ k]

⊗
∧

(σ(a2ρn(k)
k,j ) | j ≥ 0, k ≥ 1, 2 ∤ k, α(k) < n+ 1)

⊗ F2[σ(ak,j) | j ≥ 0, k ≥ 2n+1 − 1, 2 ∤ k, α(k) = n+ 1]
⊗ F2[σ(ak,j) | j ≥ 1, k ≥ 2n+2 − 1, 2 ∤ k, α(k) > n+ 1].

Proof. The majority of the argument in Proposition 5.2.4 generalizes immediately. The
one major point of difference is in determining the squares of σ(a2ρn(k)

k,j ). For k such that
α(k) ≤ n, a2ρn(k)

k,j is a square, so that Q1(a2ρn(k)
k,j ) = 0 and σ(a2ρn(k)

k,j )2 = 0. For k such
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Table 5.6: The homomorphism THH(u)∗ : H∗(THH(MO)) → H∗(THH(HF2)) on monomials
in degrees 0 through 2.

THH(u)∗(1) = 1
THH(u)∗(a1,0) = ζ1

THH(u)∗(σa1,0) = σ(ζ1)
THH(u)∗(a1,1) = 0
THH(u)∗(a2

1,0) = ζ2
1

that α(k) ≥ n + 1, a2ρn(k)
k,j = ak,j , and we claim that σ(ak,j)2 ≡ σ(ak2j+1+1,0) modulo

decomposables.
Note, however, that we must be slightly more careful about which elements are truly

decomposable here. Let B(n) denote the preimage of H∗(MO⟨2n⟩) under the quotient
map BZ(2) [1] → H∗(MO). Thus B(n) is generated by the elements a2ρn(k)

k,j together with
the elements of 2BZ(2) [1]. In addition, the quotient map B(n) → H∗(MO⟨2n⟩) still takes
decomposable elements to decomposable elements, and because H∗(MO⟨2n⟩) is closed
under the Dyer-Lashof operations, B(n) is closed under the lifted Dyer-Lashof operations
Q̂i. Since the Q̂i follow a Cartan formula, they take decomposable elements in B(n) to
decomposable elements in B(n). Now let k ≥ 1 be such that k is odd and α(k) ≥ n+ 1.
Then we have that, for j ≥ 0, q̂k2j = ∑j

i=0 2iâ2j−i

k,i ≡ 2j âk,j modulo decomposables in
B(n). Thus 2jQ̂1(âk,j) = k2j âk2j+1+1,0 + x, where x is some decomposable element
of degree k2j+1 + 1. Now the indecomposable elements of B(n) have an additive
basis given by {2âi,ℓ}i,ℓ,ρn(i)≥1 ∪ {â2ρn(i)

i,ℓ }i,ℓ. The elements of this basis which become
decomposable when multiplied by 2j are precisely those elements of the form â2ρn(i)

i,ℓ for
ρn(i) ≥ 1, but these all lie in even degrees. Since x lies in an odd degree, 2−jx must
then also be decomposable in B(n). Thus Q̂1(âk,j) ≡ âk2j+1+1,0 modulo decomposables
in B(n), so that Q1(ak,j) ≡ ak2j+1+1,0 modulo decomposables in H∗(MO⟨2n⟩), and
σ(ak,j)2 ≡ σ(ak2j+1+1,0) modulo decomposables in H∗(THH(MO⟨(2n⟩)).

Finally, let i ≥ 3 be odd. Then there exist unique j ≥ 0 and k ≥ 1 with k odd such
that i = k2j+1 +1, and α(i) = α(k)+1. Thus σ(ai,ℓ)) ≡ σ(ak,j)2 modulo decomposables
for some j ≥ 0 and k ≥ 1 with α(k) ≥ n+ 1 if and only if ℓ = 0 and α(i) ≥ n+ 2. The
result then follows.

For THH(eo(n − 1)), the cases n = 2 and n = 3 are done in [AR05], and the cases
n = 0 and n = 1 are no different.

Proposition 5.2.6. [AR05, Theorom 6.2] Let 0 ≤ n ≤ 3. Then we have

H∗(THH(eo(n− 1))) ∼=F2[ζ2n+1−m

m | 1 ≤ m ≤ n] ⊗ F2[ζm | m ≥ n+ 1]
⊗
∧

(σ(ζ2n+1−m

m ) | 1 ≤ m ≤ n) ⊗ F2[σ(ζn+1)]

5.3 Sections of THH of the Orientation

Proposition 5.3.1. Let 0 ≤ n ≤ 3. The F2-algebra homomorphism THH(u)∗ :
H∗(THH(MO⟨2n⟩) → H∗(THH(eo(n − 1))) admits a unique algebra section sn that

42



5.3. Sections of THH of the Orientation

Table 5.7: The homomorphism THH(u)∗ : H∗(THH(MSO)) → H∗(THH(HZ)) on monomials
in degrees 0 through 4.

THH(u)∗(1) = 1
THH(u)∗(a2

1,0) = ζ2
1

THH(u)∗(σ(a2
1,0)) = σ(ζ2

1 )
THH(u)∗(a3,0) = ζ2

THH(u)∗(σ(a3,0)) = σ(ζ2)
THH(u)∗(a2

1,1) = 0
THH(u)∗(a4

1,0) = ζ4
1

Table 5.8: The homomorphism THH(u)∗ : H∗(THH(MSpin)) → H∗(THH(ko)) on monomials
in degrees 0 through 8.

THH(u)∗(1) = 1
THH(u)∗(a4

1,0) = ζ4
1

THH(u)∗(σ(a4
1,0)) = σ(ζ4

1 )
THH(u)∗(a2

3,0) = ζ2
2

THH(u)∗(σ(a2
3,0)) = σ(ζ2

2 )
THH(u)∗(a7,0) = ζ3

THH(u)∗(σ(a7,0)) = σ(ζ3)
THH(u)∗(a4

1,1) = 0
THH(u)∗(a8

1,0) = ζ8
1
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Table 5.9: The homomorphism THH(u)∗ : H∗(THH(MString)) → H∗(THH(tmf)) on
monomials in degrees 0 through 16.

THH(u)∗(1) = 1
THH(u)∗(a8

1,0) = ζ8
1

THH(u)∗(σ(a8
1,0)) = σ(ζ8

1 )
THH(u)∗(a4

3,0) = ζ4
2

THH(u)∗(σ(a4
3,0)) = σ(ζ4

2 )
THH(u)∗(a2

7,0) = ζ2
3

THH(u)∗(σ(a2
7,0)) = σ(ζ2

3 )
THH(u)∗(a15,0) = ζ4

THH(u)∗(σ(a15,0)) = σ(ζ4)
THH(u)∗(a8

1,1) = 0
THH(u)∗(a16

1,0) = ζ16
1

commutes with Q1 and Q2n. The section sn commutes with Qr for all 0 ≤ r ≤ 2n+1 − 1,
but it does not commute with Q2n+1. Thus the map of spectra u : THH(MO⟨2n⟩) →
THH(eo(n− 1)) does not admit an E2n+1+1 section.

Proof. We begin by showing that if sn commutes with Q1 and Q2n , then it must be
given by sn(ξ2n+1−m

m ) = a2n+1−m

2m−1,0 and sn(σ(ζ2n+1−m

m )) = σ(a2n+1−m

2m−1,0 ) for 1 ≤ m ≤ n,
sn(ζm) = q2m−1 = a2m−1,0 for m ≥ n + 1, and sn(σ(ζn+1)) = σ(a2n+1−1. First, we see
from Table 5.6, Table 5.7, Table 5.8, and Table 5.9 that THH(u)∗ is an isomorphism in
degrees 0 through 2n+1 − 1, and that a section sn must satisfy sn(ζ2n+1−m

m ) = a2n+1−m

2m−1,0
for 1 ≤ m ≤ n + 1 and sn(σ(ζm)) = σ(a2n+1−m

2m−1,0 ) for 1 ≤ m ≤ n. Since sn(ζn+1) =
a2n+1−1,0 = q2n+1−1, we must have sn(ζm) = q2m−1 = a2m−1,0 for all m ≥ n + 1 by the
same argument as in Proposition 5.1.3. Thus it remains to determine sn(σ(ζn+1).

We see from Table 5.6, Table 5.7, Table 5.8, and Table 5.9 that sn(σ(ζn+1)) must be
equal to either σ(a2n+1−1,0) or σ(a2n+1−1,0) + a2n

1,1. We claim that if sn commutes with
Q2n , then we must have sn(σ(ζn+1) = σ(a2n+1−1,0). First, by Proposition 3.4.6 we have

Q2n(σ(ζn+1) = σ(Q2n+1(ζn+1) = 0

in the case that n ≥ 1 and

Q1(σ(ζ1)) = σ(Q2(ζ1)) = σ(ζ4
1 ) = 0

in the case that n = 1, since σ follows a Leibniz rule and is thus zero on squares.
Similarly, by Corollary 3.5.3 we have that

Q2n(σ(a2n+1−1,0) = σ(Q2n+1(q2n+1−1) = σ

((
2n+1 + 2n − 1

2n+1 − 1

)
q2n+2+2n−1

)
.

If n ≥ 1, then
(2n+1+2n−1

2n+1−1
)

≡ 0 modulo 2, so that Q2n(σ(a2n+1−1,0)) = 0. In the case
n = 0, q4+1−1 = q4 = q4

1, so that Q1(σ(a1,0)) = 0. To calculate Q2n(a2n

1,1) we make use
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of the integral lifts again. In BQ[1] we have

q̂2 = â2
1,0 + 2â1,1 = q̂2

1 + 2â1,1

by Definition-Proposition 2.4.12, so that

Q̂1(â1,1) = Q̂1

(1
2 q̂2 − 1

2q
2
1

)
= 1

2Q̂1(q̂2) + Q̂0((̂q)1)Q̂1(q̂1) = q̂5 − q̂2q̂3.

Thus we get Q1(a1,1) = q5 + q2q3 = a5,0 + a2
1,0a3,0 ̸= 0, and by the Cartan formula

Q2n(a2n

1,1) = Q1(a1,1)2n ̸= 0. Thus sn(σ(ζn+1)) must be σ(a2n+1−1,0).
It now remains to check that sn actually is a section of THH(u)∗ and to check which

Dyer-Lashof Operations sn respects. To begin with, note that THH(u)∗ factors as a
tensor product of algebra homomorphisms

u′
∗ : H∗(MO⟨2n⟩) → H∗(eo(n− 1))

and

u′′
∗ :
∧

(σ(a2ρn(k)
k,j ) | j ≥ 0, k ≥ 1, 2 ∤ k, α(k) < n+ 1)

⊗ F2[σ(ak,j) | j ≥ 0, k ≥ 2n+1 − 1, 2 ∤ k, α(k) = n+ 1]
⊗ F2[σ(ak,j) | j ≥ 1, k ≥ 2n+2 − 1, 2 ∤ k, α(k) > n+ 1]

→
∧

(σ(ζm) | 1 ≤ m ≤ n) ⊗ F2[σ(ζn+1)].

Here we are identifying H∗(MO⟨2n⟩) and H∗(eo(n − 1)) with their images in
H∗(THH(MO⟨2n⟩) and H∗(THH(eo(n − 1))), and under this identification u′

∗ = u∗.
Similarly, the sn we have just defined factors as a tensor product of

s′
n : H∗(eo(n− 1)) → H∗(MO⟨2n⟩)

with

s′′
n :
∧

(σ(ζm) | 1 ≤ m ≤ n) ⊗ F2[σ(ζn+1)]

→
∧

(σ(a2ρn(k)
k,j ) | j ≥ 0, k ≥ 1, 2 ∤ k, α(k) < n+ 1)

⊗ F2[σ(ak,j) | j ≥ 0, k ≥ 2n+1 − 1, 2 ∤ k, α(k) = n+ 1]
⊗ F2[σ(ak,j) | j ≥ 1, k ≥ 2n+2 − 1, 2 ∤ k, α(k) > n+ 1],

where s′
n is just the section of u∗ defined inProposition 5.1.4.

We already know from Proposition 5.1.4 that s′
n is a section of u′

∗ and that s′
n

commutes with Qr for 0 ≤ r ≤ 2n+1 −1. For s′′
n, we have that u′′

∗(s′′
n(σ(ζn+1))) = σ(ζn+1)

and u′′
∗(s′′

n(σ(ζ2n+1−m

m ))) = σ(ζ2n+1−m

m ) for 1 ≤ m ≤ n by construction. Thus sn is an
algebra section of THH(u)∗, and it remains to check for which r, Qr(sn(σ(ζ2n+1−m

m ))) =
sn(Qr(σ(ζ2n+1−m

m ))) for 1 ≤ m ≤ n+ 1.
First, let 1 ≤ m ≤ n. Then as usual Qr(σ(ζ2n+1−m

m )) = σ(Qr+1(ζ2n+1−m

m )). If r is
even, then Qr+1(ζ2n+1−m

m ) = 0, and if r is odd, then Qr+1(ζ2n+1−m

m ) = Q(r+1)/2(ζ2n−m

m )2.
In either case, sn(Qr+1(σ(ζ2n+1−m

m ))) = 0, andQr+1(sn(σ(ζ2n+1−m

m ))) = Qr+1(σ(an+1−m
2m−1,0 )) =

0 by the same argument. Finally, for 1 ≤ r ≤ 2n+1 − 2, we have

Qr(σ(ζn+1)) = σ(Qr+1(ζn+1)) = 0
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and

Qr(σ(a2n+1−1,0)) = σ(Qr+1(q2n+1−1)) = σ

((
r + 2n+1 − 1

2n+1 − 1

)
q2n+2−1+r

)
= 0.

For r = 2n+1 − 1, we have

Q2n+1−1(σ(ζn+1)) = σ(Q2n+1(ζn+1)) = σ(ζ2n+1
1 ζ2

n+1) = 0,

and

Q2n+1−1(σ(a2n+1−1,0)) = σ(Q2n+1(q2n+1−1)) = σ

((
2n+2 − 2
2n+1 − 2

)
q2n+2+2n+1−2

)

= σ(q2
2n+1+2n−1) = 0.

For r = 2n+1, however, we have

Q2n+1(σ(ζn+1)) = σ(Q2n+1+1(ζn+1)) = σ(ζ2n+1
1 ζn+2) = ζn+1

1 σ(ζn+2).

Since σ(ζn+1)2 = σ(Q1(ζn+1)) = σ(ζ2), we then have sn(Q2n+1(σ(ζn+1)))) =
sn(ζn+1

1 σ(ζn+1)2) = an+1
1,0 σ(a2n+1−1,0)2. On the other hand,

Q2n+1(σ(a2n+1−1,0)) = σ(Q2n+1−1(q2n+1−1)) = σ

((
2n+2 − 1
2n+1 − 2

)
q2n+2+2n+1−1

)

= σ(a2n+2+2n+1−1,0).

Now α(2n+2 + 2n+1 − 1) = n + 2, so σ(a2n+2+2n+1−1,0) is decomposable in
H∗(THH(MO⟨(2n))). To determine how it decomposes, we split into two cases.

First, assume that n ≥ 1. Then σ(a2n+1+2n−1,0) is indecomposable, and we have that

σ(a2n+1+2n−1,0)2 = σ(Q1(q2n+1+2n−1)) = σ

((
2n+1 + 2n − 1
2n+1 + 2n − 2

)
q2n+2+2n+1−1

)
= a2n+2+2n+1−1,0.

Thus we have

Q2n+1(sn(σ(ζn+1))) = σ(a2n+1+2n−1,0)2 ̸= an+1
1,0 σ(a2n+1−1,0)2 = sn(Q2n+1(σ(ζn+1))).

Now assume n = 0. Then σ(a1,1), σ(a1,0), and a1,0 are indecomposable. As we
have previously seen, Q1(a1,1) = a5,0 + a2

1,0a3,0, so that σ(a1,1)2 = σ(a5,0 + a2
1,0a3,0) =

σ(a5,0) + a2
1,0σ(a3,0). In addition, we have

σ(a1,0)2 = σ(Q1(q1)) = σ(q3) = σ(a3,0).

Putting these together, we have that σ(a22+21−1,0) = σ(a5,0) = σ(a1,1)2 + a2
1,0σ(a3,0).

Thus,

Q2(s0(σ(ζ1))) = σ(a1,1)2 + a2
1,0σ(a3,0) ̸= a2

1,0σ(a1,0)2 = s0(Q2(σ(ζ))).
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