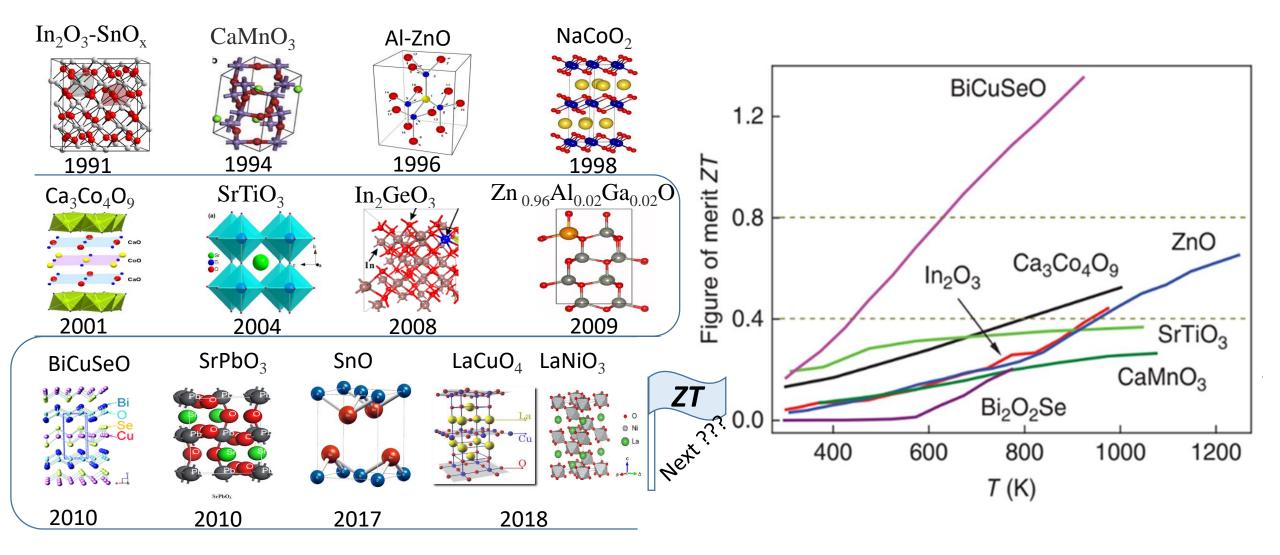


Oxide thermoelectrics

From material property to device architecture


Reshma Krishnan Madathil Centre for Materials Science and Nanotechnology (SMN) Department of Chemistry University of Oslo *reshma.madathil@smn.uio.no*

THERMiO workshop (09/03/2020)

UiO: Centre for Materials Science and Nanotechnology University of Oslo

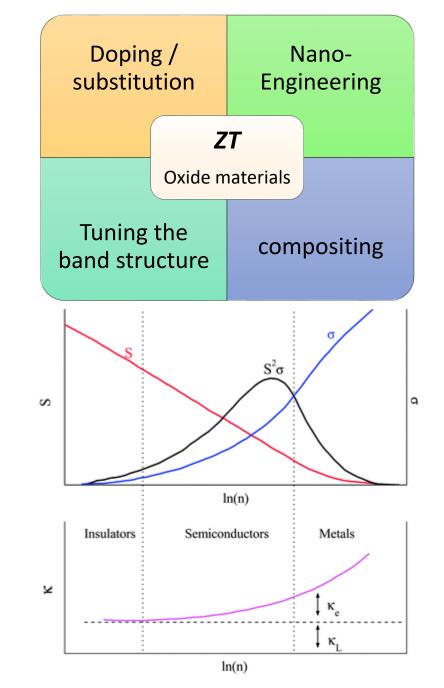
History of Oxide thermoelectrics

Oxide Thermoelectric Materials, john Wiley & Sons, 2019

"Phonon-glass electron-crystal" (or PGEC in short), which means that the materials should have a low lattice thermal conductivity as in a glass, and a high electrical conductivity as in a crystals

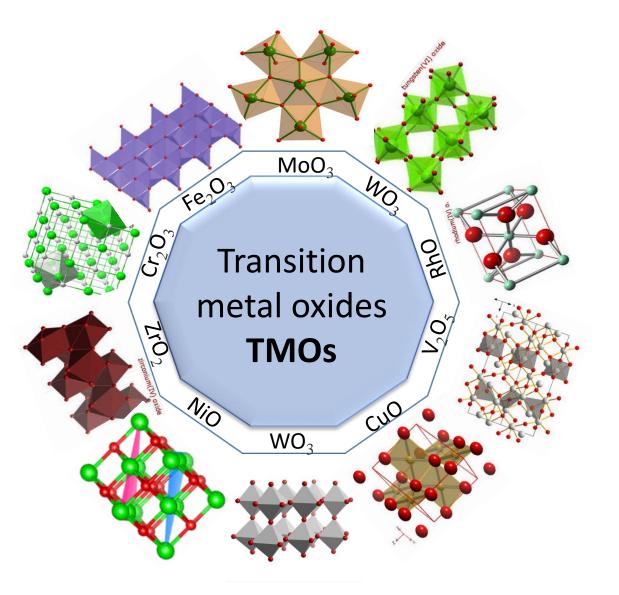
Strategies to tune and alter TE parameters

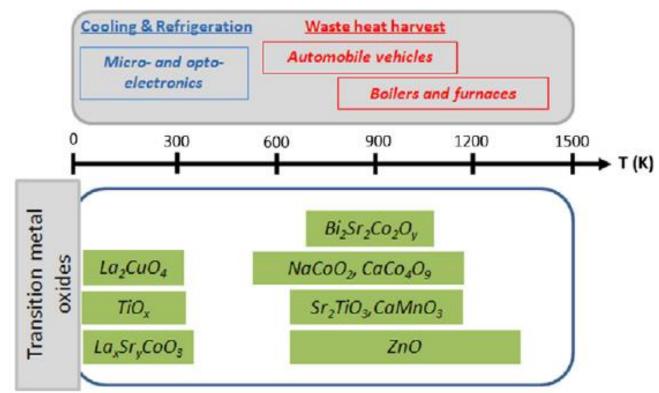
- Optimizing Carrier Concentration
 - incorporation of dopants and altering of stoichiometry
- Tuning the band structure /Electron band structure engineering
 -Seebeck coefficients are higher in multiple band systems than those with single-band
- □ Nanostructure Engineering


-Phonon scattering by nano-engineering-suppressing the lattice thermal conductivity

□ Manipulating the Defects

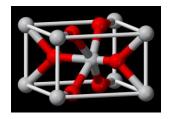
-The First Strategy of Reducing κ_L : Creating Structural Disorders


Composites

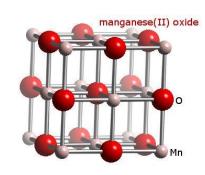

-Improved electronic properties and reduced $\kappa_{\!\scriptscriptstyle \rm L}$

Wanqing Dong et al, *Metals* **2018**, *8*(10), 781

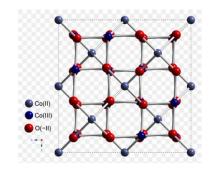
Transition metal oxides - Thermoelectric properties



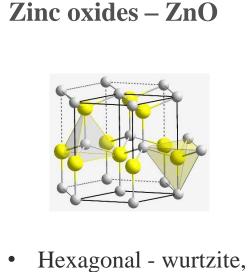
Operating temperature ranges of various TMOs and TMO composites


Sumeet Walia et al , *Progress in Materials Science* 58(8), 2013,1443–1489.

Titanium oxides – TiO_x


- Stoichiometric TiO₂
- Rutile and anatase exhibit a tetragonal structure
- ZT in pure TiO_2 is low <0.025
- Non-stoichiometric TiO_x
- ZT (<0.1).
- Doped TiO₂
- 2% Nb doped, anatase, n-type TiO₂ ZT~0.25
- TiO₂ composite
- Strontium titanate (SrTiO₃),
- $SrTi_{0.8}Nb_{0.2}O_3 ZT \sim 0.5$

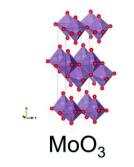
Manganese oxides – MnO_x



- α-MnO₂ (monoclinic structure) and β-MnO₂ (rutile structure)
- Doping and compositing are good strategies for high ZT of MnO_x
- perovskite type $CaMnO_3$. ZT > 0.1
- $CaMn_{0.96}Nb_{0.4}O_3 ZT \sim 0.2$

Cobalt oxides

- Two stable oxide compounds: Co₃O₄ and CoO
- cubic lattice
- Rare-earth cobalt oxides (RECoO₃)
- $Na_x CoO_2$ ZT~0.75
- Layered cobaltates
- Ca₃Co₄O₉ ZT~0.3



- Cubic- zinc -blende.Nano structured Al-ZnO
- Nano structured Al-ZnO ZT~0.44
- $Zn_{0.985}Ga_{0.015}O$ ZT~0.25
- $Zn_{0.96}Al_{0.02}Ga_{0.02}O$ ZT~0.65

Copper oxides – Cu₂O and CuO

- Cubic crystal structure
- La_2CuO_4 ZT~0.06 • $La_{1.98}Y_{0.02}CuO_4$ ZT~0.17

Molybdenum oxides:-MoO_x

- α -MoO₃ orthorhombic β -MoO₃ monoclinic
- (RMo_8O_{14})
- where R = La, Ce, Nd and Sm
- NdMo₈O₁₈ ZT~0.1

Less explored TMOs

➤ Tungsten oxides:-

ZnO,MnO₂, LiO₂ and TiO₂ doped WO₃

- > Vanadium oxides:- $Na_xV_2O_5$
- > Rhodium oxides:- $K_x RhO_2$
- \blacktriangleright Iron oxides:-Li_xFe_{2-x}O₃,Fe₂O₃/NiO
- \blacktriangleright Chromium oxides –Cr₂O₃,CuCrO₂
- ➢ Scandium oxides:- CuScO₂
- Zirconium oxides:- ZrO₂/CoSb₃
- Nickel oxides:- Li-NiO,Na-NiO
- Cadmium oxides:- CdO
- Iridium oxides:- Ca–Ir–O composite

Other transition metals are usually employed as dopants in other TE TMOs for tuning their various TE properties in order to achieve higher ZTs.

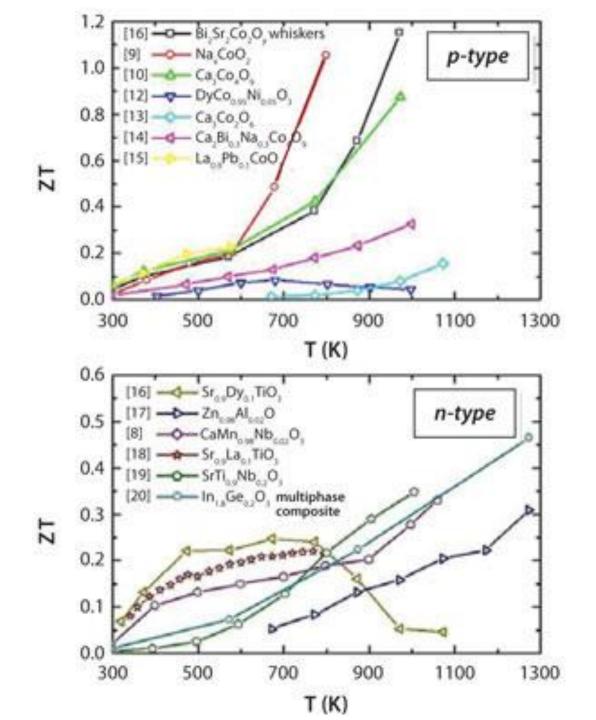
Sumeet Walia et al , Progress in Materials Science 58(8), 2013,1443-1489.

p-type thermoelectric oxide

Layered cobaltates

Doping with substitutional elements -alkaline earth metals- Sr, Ba, and Mg -or rare-earth elements for Ca-site- La,Y,Sc -transition metal elements for Co-site. $Ca_3Co_{4-x}M_xO_9$ (M = Fe, Cu, Mn, Ni, Ti, Cr, Cd, Nb, Ag) Other doping elements, such as Bi and Na. Dual doping/co-doping,

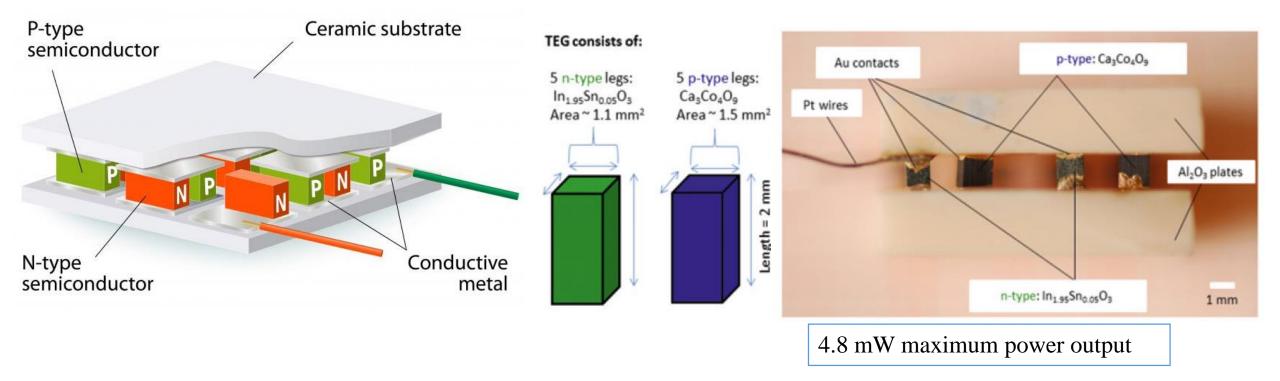
-co-doped with Ag & Lu, La&Fe

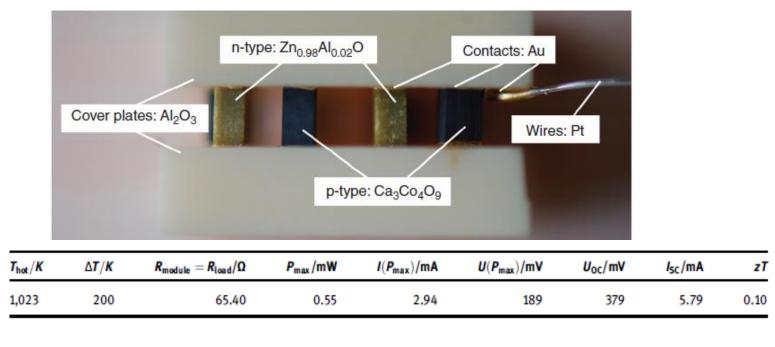

n-type oxide TE materials,

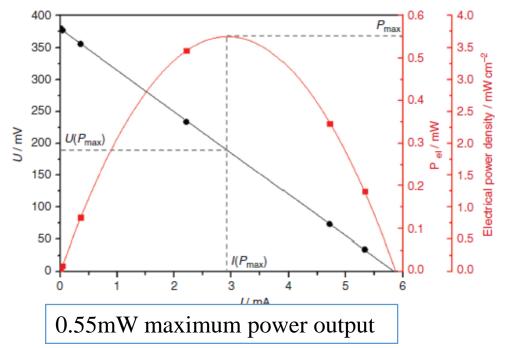
the commonly used materials include

-doped zinc oxide

-perovskite-type doped strontium titanate or electron-doped $SrTiO_3$


-calcium manganite


Architectures of TE Devices


Flat Bulk TE Device

Oxide-Based Thermoelectric Generator Using p-type $Ca_3Co_4O_9$ and n-type $In_{1.95}Sn_{0.05}O_3Legs$

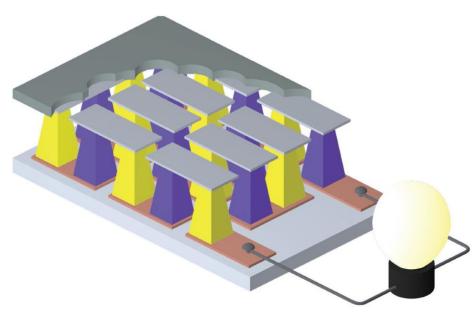
M. Bittner et al Energy Harvesting and Systems 2016

Pt wire						S (700 °C)	$\rho~(700~^\circ\mathrm{C})$	$S^2/ ho~(700~^\circ\mathrm{C})$	
fin (SUS430) 150 x 100 x 1 mm ³		Materials	ρ -T			μ V/K	$m\Omega \ cm$	10^{-4} W m ⁻¹ K ⁻² 4.8	
		Ca _{2.75} Gd _{0.25} Co ₄ O ₉ (p	leg)	Semiconducting		185	7.8		
<i>p</i> - leg	10 mm	$Ca_{0.92}La_{0.08}MnO_3$ (<i>n</i>)		Metallic		-120	6.6	2.2	
n- leg		Cond	dition	T_h , °C	ΔT , °C	V_o, mV	$V P_{\rm max}$, mW	
	d^{2}		a	477	235	550	19	9.8	
\rightarrow Al ₂ O ₃ co	ating	t	b	580	290	694	31	.8	
\leftrightarrow	v	C	с	672	335	838	46	5.5	
30 mm	>	Ċ	d	773	390	988	63	3.5	
150 mm 63	.5 mW maximu	m power output				ubara et al <i>Appl</i> .			

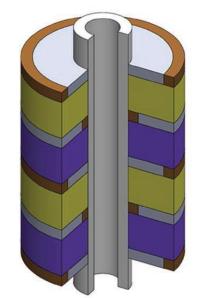
Module materials	No. <i>p-n</i> couples	T _{hot} (K)	Δ <i>T</i> (K)	V ₀ (V)	P _{max} (mW)	Legs-size (mm)	Power density (mW/cm ²)
<i>p</i> -Ca _{2.7} Bi _{0.3} Co ₄ O ₉ <i>n</i> -Ca _{0.92} La _{0.08} MnO ₃	8	773	390	0.9	63.5	3×3	44.1
$p-Ca_{2.7}Bi_{0.3}Co_4O_9$ $n-La_{0.9}Bi_{0.1}NiO_3$	140	1072	551	4.5	150	$1.3 \times 1.3 \times 5$	31.7
$p-\text{NaCo}_2\text{O}_4$ $n-\text{Zn}_{0.98}\text{Al}_{0.02}\text{O}$	12	839	462	0.8	58	$3 \times 4 \times 10$	20.1
$p-Ca_{2.7}Bi_{0.3}Co_4O_9$ $n-CaMn_{0.98}Mo_{0.02}O_3$	8	897	565	1	170	$5 \times 5 \times 4.5$	42.5
$p-Ca_{2.7}Bi_{0.3}Co_4O_9$ $n-CaMn_{0.98}Mo_{0.02}O_3$	8	1273	975	0.7	340	$5 \times 5 \times 4.5$	85
$p-\text{NaCo}_2\text{O}_4$ $n-\text{Zn}_{0.98}\text{Al}_{0.02}\text{O}$	12	934	455	0.8	52.5	$3 \times 4 \times 10$	18.2
$p-Ca_3Co_4O_9$ $n-(ZnO)_7In_2O_3$	44	1100	673	1.8	423	$p:15 \times 15 \times 27$ $n:15 \times 15 \times 18$	2.1
<i>p</i> -Ca _{2.76} Cu _{0.24} Co ₄ O ₉ <i>n</i> -Ca _{0.8} Dy _{0.2} MnO ₃	4	937	321	0.28	31	$7 \times 9 \times 25$	6.2
$p-Ca_{3}Co_{4}O_{9}$ $n-Zn_{0.98}Al_{0.02}O$	6	773	248	0.12	2.26	$4 \times 4 \times 10$	1.2
$p-{\rm Ca}_{3}{\rm Co}_{4}{\rm O}_{9}$ $n-{\rm Zn}_{0.98}{\rm Al}_{0.02}{\rm O}$	4	1173	700	0.67	256	$4 \times 4 \times 8$	2

Implementation in Thermoelectric devices

Segmented thermoelectric modules.


Combining different TE materials having different operation temperatures increases overall TE device performance .

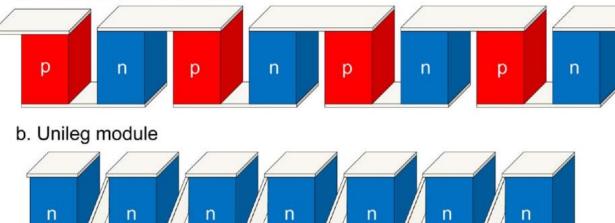
	Electric Thermorian Thermorian P-Ce _{0.9} Fe _{3.5} Co _{0.5} Sb ₁₂ / Yb ₁₄ MnSb ₁₁ n-CoSb ₃ /La _{3-x} Te ₄ p-Bi _x Sb _{2x} Te ₃ / Ag _{0.9} Pb ₉ Sn9Sb _{0.6} T ₂₀ n-Bi ₂ Te _{3x} Se _x / Ag _{0.86} Pb _{19+x} SbTe ₂₀ p-Bi ₂ Te ₃ /PbTe	T		Eff. (%)		
	Module materials	T _{hot} (K)	Δ <i>T</i> (K)	Cal.	Exp.	Reference
	$Yb_{14}MnSb_{11}$	1246	773	_	15	Fleurial et al. (2013)
	$p-\operatorname{Bi}_{x}\operatorname{Sb}_{2x}\operatorname{Te}_{3}/$ $\operatorname{Ag}_{0.9}\operatorname{Pb}_{9}\operatorname{Sn9Sb}_{0.6}\operatorname{T}_{20}$ $n-\operatorname{Bi}_{2}\operatorname{Te}_{3x}\operatorname{Se}_{x}/$	670	358	9	6.56	D'Angelo et al. (2011)
Segmented thermoelectric leg	$p-\text{Bi}_2\text{Te}_3/\text{PbTe}$ $n-\text{Bi}_2\text{Te}_3/\text{TAGS}$	803	510	_	10	Crane et al. (2009)
	<i>p</i> -Bi ₂ Te ₃ /CeFe ₄ Sb ₁₂ <i>n</i> -Bi ₂ Te ₃ /CoSb ₃	885	569	12	5.5	El-Genk and Saber (2003)
	<i>p</i> -HH/Ca ₃ Co ₄ O ₉ <i>n</i> -Zn _{0.98} Al _{0.02} O	1173	700	_	1.1	Hung et al. (2015a)


Nini Pryds, Advanced Ceramics for Energy Conversion and Storage,

Energ. Technol. 3(11), 2015, 1143–1151.

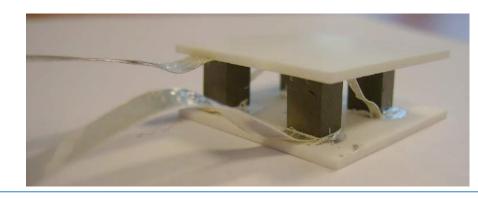
Bulk TEGs with pyramidal legs

Cylindrical-shaped TE devices

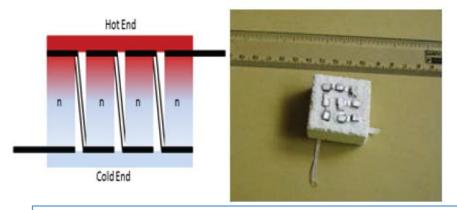


This design is advantageous for applications such as oil pipelines, cooling channels for power station transformers, vehicle exhaust pipe, etc., where the heat flow is in the radical direction

- Pyramidal legs help lowering the thermal conductance of the device increase the temperature gradient along the leg,
- Harnessing the Thomson effect that is largely ignored in the traditional (cuboid) structure.
- ➤ The measured output power shows ~70% proving the importance of geometrical configuration of the TE legs in the device performance.


Unileg thermoelectric device

a. Conventional π module

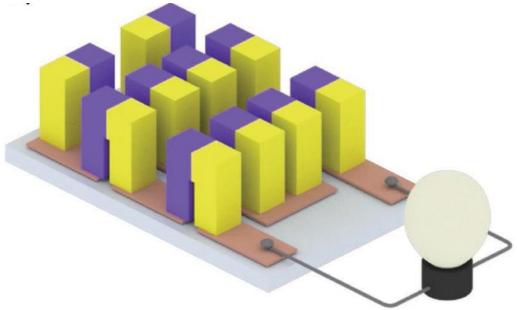

- ✓ Compatibility factor approach is not needed
- \checkmark Simplifies the process and consequently reduces the cost
- \checkmark Reduces problems of thermal expansion mismatch
- \checkmark Reduce design restrictions
- \checkmark Silver strips go from the bottom to the top of bars.

$\label{eq:ca_0.95} \textbf{Ca}_{0.95} \textbf{MnO}_{\scriptscriptstyle 3} \, \textbf{unileg thermoelectric device}$

maximum power output for this four-leg device is16 mW

$Ca_{0.92}La_{0.08}MnO_3$ unileg thermoelectric device

maximum power output for this nine-leg device is 50 mW


DAE Solid State Physics Symposium **(2016)** J. Appl. Phys. 104, 014505 (**2008)**

a)	Р	N	Р	Ν	b) N N N N

Differences between conventional thermoelectric device and *n*-type unileg module

			Nb		
Name	Materials	Туре	couple	Power (W)	MF
conventional	Ca _{2.7} Bi _{0.3} Co ₄ O ₉ /La _{0.9} Bi _{0.1} NiO ₃	pn	1	0.03	0.15
conventional	(Li)NiO/(Ba,Sr)PbO ₃	pn	2	0.034	0.3
conventional	(Gd)Ca ₃ Co ₄ O ₉ /(La)CaMnO ₃	pn	8	0.089	0.82
conventional	$Ca_{3}Co_{4}O_{9}/Ca_{0.95}Sm_{0.05}MnO_{3}$	pn	2	0.031	0.57
Unileg	$Ca_{0.95}Sm_{0.05}MnO_3/Ca_{0.95}Sm_{0.05}MnO_3$	n	2	0.016	0.15

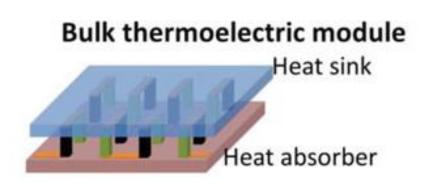
pn-junction-based TEGs

- Eliminate hot-side metallization completely
- Completely gets rid of contact issues between metal and semiconductor

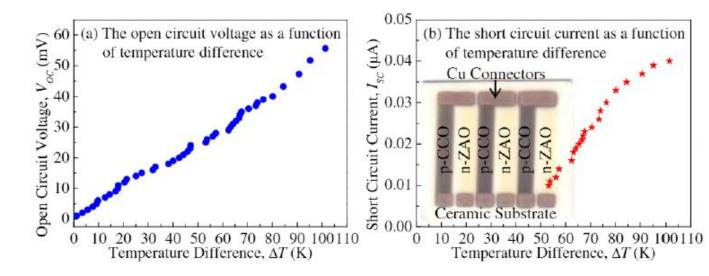
Li-doped NiO

 $Ba_{0.2}Sr_{0.8}PbO_3$

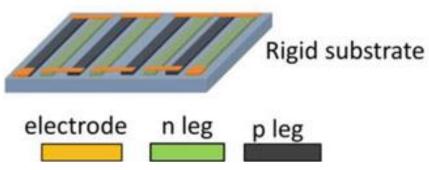
after


10 mm

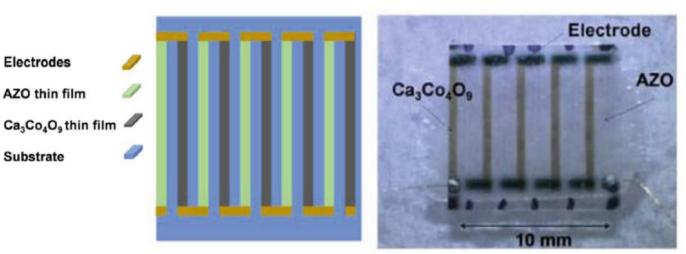
a) Joining by sinter forging p-type Li doped NiO n-type (BaSr)PbO₃ b Cutting junction c) <u>TE power factor measurement</u> junction A Air MgO Cold Hot sheet voltage leads tested element B The output power was 14mW


W. Shin et al. / Journal of Power Sources 103 (2001) 80-85

Thin- and Thick-Film TE Devices

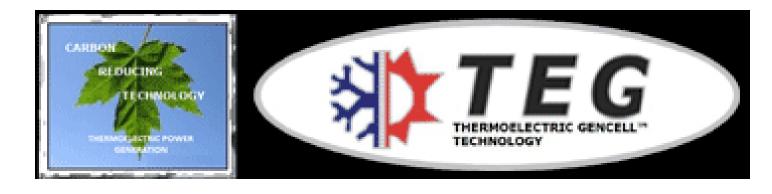

Micro-thermoelectric generators (μ -TDGs)

Thermoelectricity of p-CCO and n-ZAO thin films



Thin-film thermoelectric module

W. Somkhunthot, *Energy Procedia* 61, 795 (**2014**) S. Saini, *Energ. Conv. Manag* 114, 251 (**2016**)


Thin-film module based on AZO and CaCo₄O₉

Thermoelectric Modules Based on Oxide Thin Films

			Number				Sub. size		
			of legs	Deposition			$(mm L \times$	ΔT	Output
n-Type	p-Type	Contacts	(n + p)	technique	Size of a single leg	Sub.	mm W)	(°C)	power
Al-ZnO	Ca ₃ Co ₄ O ₉	Cu	4 + 4	DC sputtering	$20 \text{ mm} \times 3 \text{ mm} \times 440 \text{ nm t}$	Glass	25.0×50.0	78	N/A
Al-ZnO	NaCoO ₂	Cu	3 + 3	DC sputtering	$20 \text{ mm} \times 3 \text{ mm} \times 600 \text{ nm t}$	Al ₂ O ₃	25.0×50.0	79.3	N/A
ZnO	CuO	Direct overlap	5 + 5	PVD	$20 \text{ mm} \times 1 \text{ mm} \times 1000 \text{ nm t}$	Al ₂ O ₃	20.0×20.0	16	102pW ^a
Al-ZnO	Ca ₃ Co ₄ O ₉	Au	5 + 5	PLD	$8 \text{ mm} \times 3 \text{ mm} \times 300 \text{ nm t}$	Glass	10.0×10.0	230	0.3 pW
Al-ZnO	Ca ₃ Co ₄ O ₉	Au	5 + 5	PLD	$8 \text{ mm} \times 3 \text{ mm} \times 300 \text{ nm t}$	SrTiO ₃	10.0×10.0	230	16 pW
Al-ZnO	Ca ₃ Co ₄ O ₉	Au	5 + 5	PLD	$8 \text{ mm} \times 3 \text{ mm} \times 300 \text{ nm t}$	Al ₂ O ₃	10.0×10.0	230	29.9 pW
Al-ZnO	N-Cu _x O	Ag	8 + 8	Spray pyrolysis	N/A	Glass	12.7×6.4	28	N/A
Al ₂ O ₃ /ZnO	Bi _{0.5} Sb _{1.5} Te ₃	Ti/Au	4+4	ALD (n)/ sputtering (p)	$8 \text{ mm} \times 3 \text{ mm} \times 200 \text{ nm t}$	Si/SiO ₂	20.0×15.0	80	1 nW
$(ZnO)_5In_2O_3$	Pt	Pt	10 + 10	Screen printing	N/A	N/A	260 × 176	N/A	N/A
Pd/Ag	Ca ₃ Co ₄ O ₉	Pd/Ag	10 + 10	Screen printing	N/A	N/A	260 × 176	N/A	N/A
Au	CuCrO ₂ :3% Mg	Au	3 + 3	RF sputtering	100 nm t ^c	Glass	25.0×25.0	170	10.6 nW

Commercial products

Available high temperature:

•Calcium/Manganese (CMO) TEG modules up to 800°C hot side CMO ONLY!

•Cascade (High Temperature (CMO) bonded with Bi2Te3 cold side. Up to 600°C

These are the first Cascade Thermoelectric TEG modules ever to be available commercially hot side up to 600°C.
Introducing a new Cascade design that works up to 750 °C available soon check back on a regular basis!
CMO materials are extremely stable and will last up to 50 years with little or no degradation. They are the first high temperature material in this temperature range to be offered in the last 40 years!
Size:

•65 mm x 65 mm – 64 element design with 32 P & N-type Couples