

UiO: Centre for Materials Science and Nanotechnology University of Oslo

Top-down to know thermoelectrics Part 2 Fabrication of modules


Top-down to know thermoelectrics (TE)

-- From TE applications to Materials

TE industrial applications

TE modules

TE Pairs

TE Materials

Availability and Installation

Fabrication

Legs matching

Material properties

☐ Zinc Antimonides

Oxide

→ Silicide

Novel approaches and interface engineering for the fabrication of oxide thermoelectric modules

Reshma Krishnan Madathil

Centre for Materials Science and Nanotechnology (SMN) Department of Chemistry University of Oslo

reshmakm@student.matnat.uio.no

Principal supervisor

Truls Norby

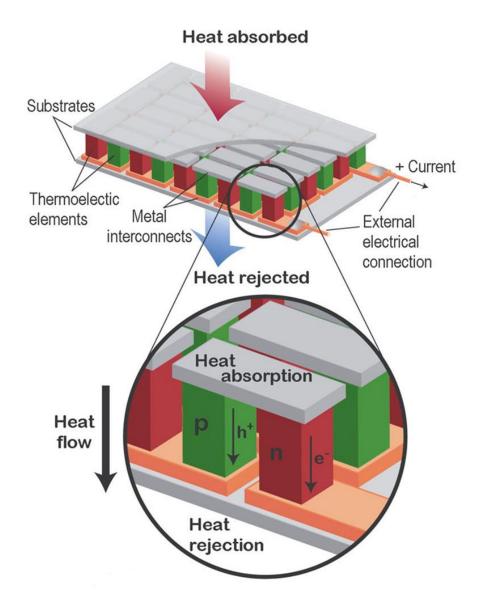
Department of Chemistry/ SMN/ UiO truls.norby@kjemi.uio.no

Subsidiary supervisors

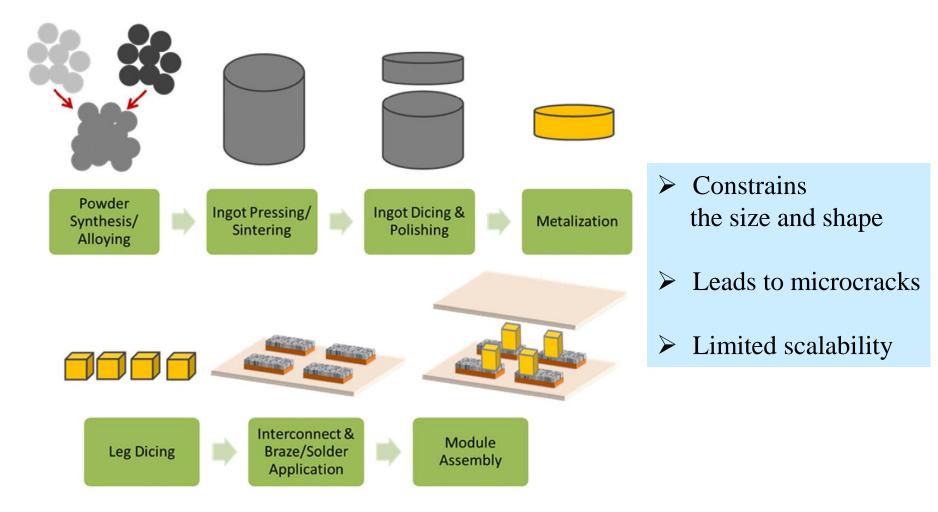
Reidar Haugsrud

Department of Chemistry/ SMN/ UiO reidar.haugsrud@smn.uio.no

Marie-Laure

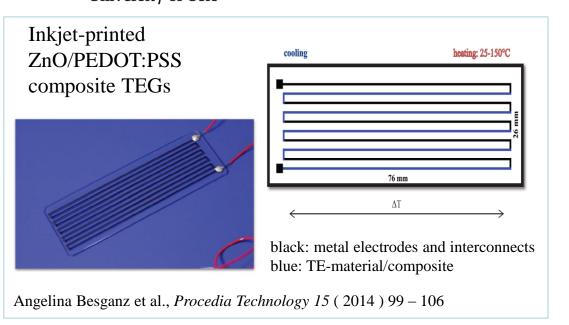

SINTEF materials and Chemistry Marie-Laure.Fontaine@sintef.no

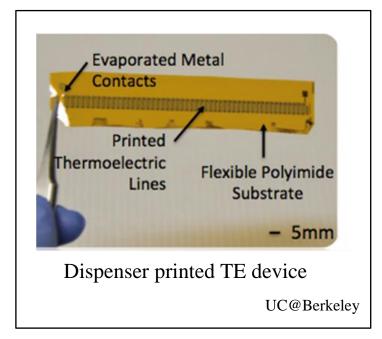
Kjell Wiik

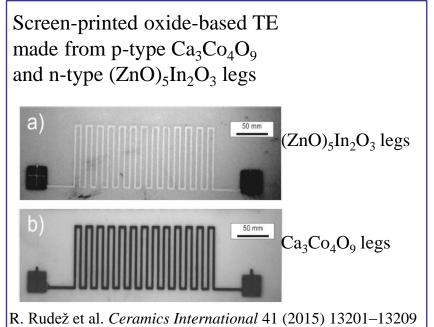

Department of Materials Science and Engineering NTNU kjell.wiik@ntnu.no

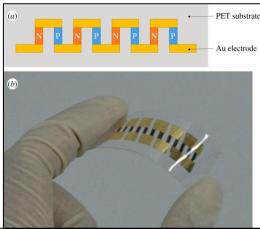
Plan of talk

- i. Traditional manufacturing techniques
- ii. Ohmic contact with conducting oxides
- iii. Additive fabrication/3D printing of oxide modules

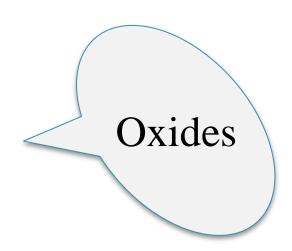

1. Traditional manufacturing techniques



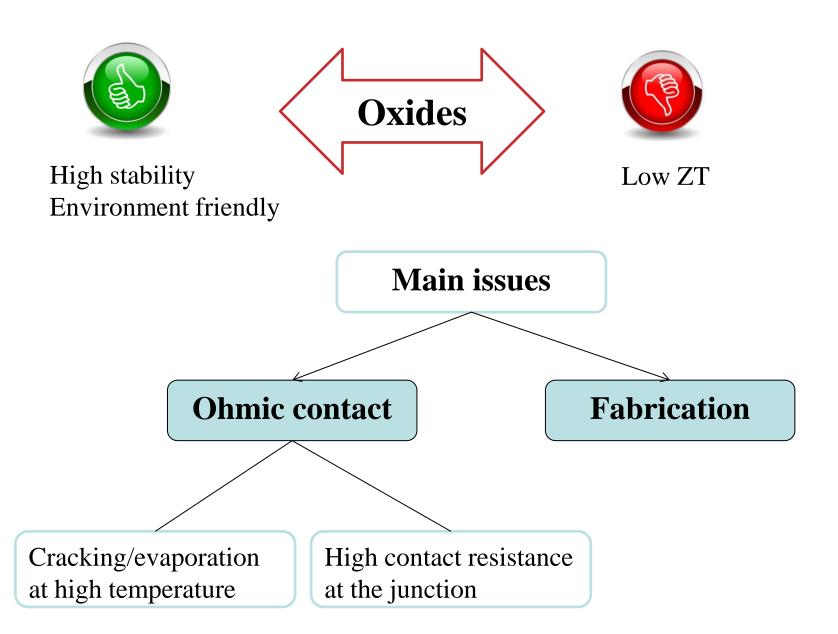

Schematic of a traditional TE device manufacturing process


Summary of TE device manufacturing methods comparing the traditional manufacturing approach to printing techniques

Printing technique	Material Class and Form	Patterning	Geometry	Post-processing	Scalability
Conventional TE Manufacturing	Inorganic semiconductor ingots	Automated or manual pick- and-place	Limited to simple geometries (rectangular)	Dicing, metallization, soldering	Limited
Inkjet Printing	Hybrid ^b inks: nanoparticle dispersions, reac- tive precursors	Direct/digital	Thin planar	Required for solvent/stabilizer burnout-particle coalescence or chemical reaction	High
Screen Printing	Hybrid pastes: dispersed solid phase, solvent, and binders	Mask/stencil	Thick planar	Required for binder burnout-particle coalescence	High
Dispenser Printing	Hybrid pastes: dispersed solid phase, solvent, and binders	Direct/digital	Free-form	Required for bind- er burnout-particle coalescence	Low-med
Stereolithography	Hybrid photocurable resins	Direct/digital	Free-form	Required for bind- er burnout-particle coalescence	Low-med

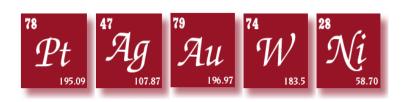


Schematic and (b) image of a inkjet-printed composite TE device on a flexible PET substrate.


Obstacles to commercialization of TE devices

- Scarcity
- Toxicity
- High costs of raw materials
- Stability and
- High processing cost

- ✓ Low thermal conductivity
- ✓ High Seebeck coeficient
- ✓ High thermal and chemical stability
- ✓ Environment friendly
- ✓ Abundant


UiO Centre for Materials Science and Nanotechnology University of Oslo

2. Conducting oxide interconnect

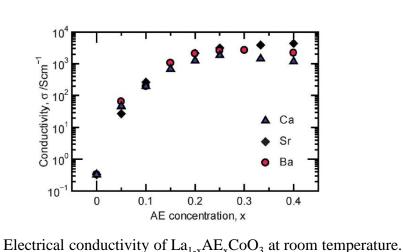
p-n oxide thermoelectric junctions still need an ohmic contact: Noble metal?

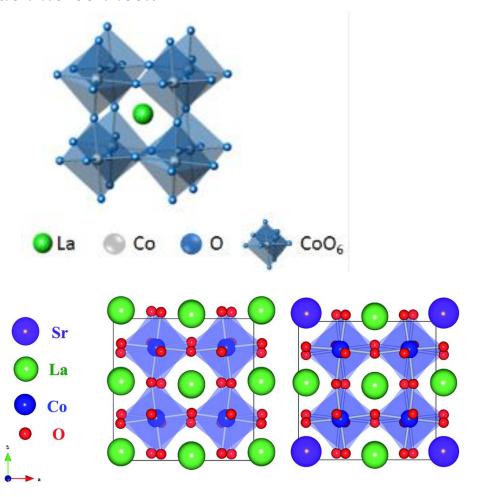
Or metallic oxide?

- Metal diffuse at high temperature
- High contact resistance at the junction
- Cracking/ evaporation of metal contact
- High cost

metallic oxide

- High thermal stability
- High resistance to chemical corrosion
- Favorable integration with TE oxide

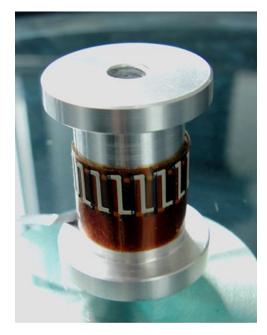

- I. High electrical conductivity
- II. High thermal conductivity
- III. Matched CTE with the TE elements
- IV. Low contact resistance at the interface
- V. Stability at high temperature
- VI. Ability to form strong mechanical bonds with the TE layer


W. Liu et al., Acta Materialia 87 (2015) 357-376

In this project, we will investigate alkaline earth doped LaCoO₃ as metallic oxide interconnect.

High, metallic conductivityLow cost

High thermal stability



(a) undoped (b) Sr-doped

3. Additive fabrication/3D printing

- Simplicity
- Affordability
- Material compatibility
- Less energy input
- Reduced material waste
- Scalability Ability to produce many devices rapidly

 The ease of altering design

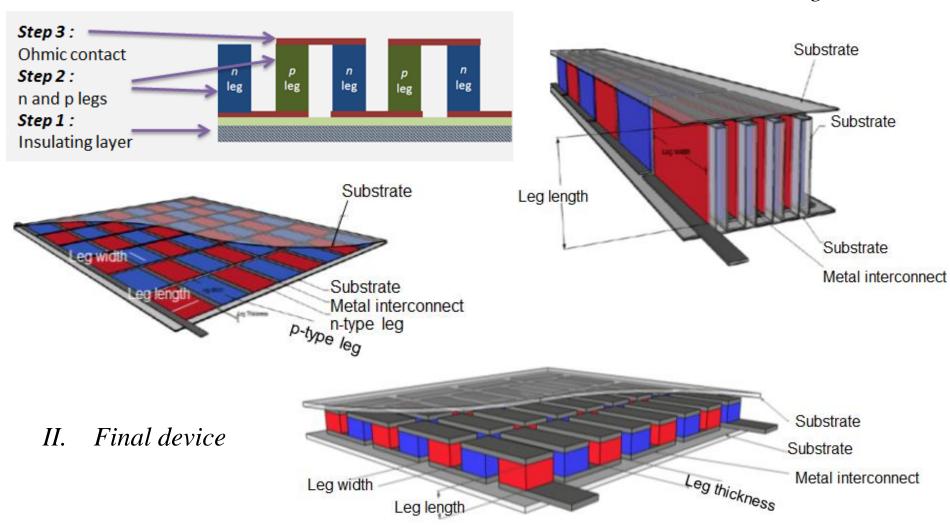
3D printing makes it possible: A demonstrator of a printed TEG wriggles flexibly around a sample component

UiO * Centre for Materials Science and Nanotechnology

University of Oslo

Types of 3D printing technologies

Additive manufacturing	Processes	Technologies/ Methods	
processes	TTUCCSSCS	reciniologics/ Methods	
Vat photopolymerization	Exposure to light and undergoes photopolymerization and become solid	 a. Stereolithography (SLA) b. Direct light processing (DLP) c. Continuous direct light processing (CDLP) 	
Powder bed fusion	Thermal source to induce fusion between powder particles	 a. Selective Laser Sintering (SLS) b. Selective laser melting (SLM) c. Direct metal laser sintering (DMLS) d. Electron beam melting (EBM) e. Multi jet fusion (MJF) 	
Material extrusion	Extrude a material through a nozzle onto a build plate	a. Fused Deposition Modeling (FDM)	
Material jetting	Materials cure or harden when exposed to light or elevated temperatures and printed	a. Material jettingb. Nano particle jetting (NPJ)c. Drop on demand (DOD) material jetting	
Binder jetting	Printing a binding agent onto a powder bed to form part cross sections	a. Binder jetting	
Direct energy deposition	Creates parts by melting material as it is deposited	a. Laser engineered net shape (LENS)b. Electron beam additive manufacture (EBAM)	


UiO Centre for Materials Science and Nanotechnology

University of Oslo

Device Architectures

I. Printing Pattern of Material on Substrate

II. Processing

Conclusion

- o Oxides are promising materials for TEGs at high temperatures
- o A good metallic oxide interconnect is needed for better TE performance.
- o 3D printing enable easier construction and various designs of TE modules.
- o TE devices can be made in a reliable and cost-effective manner with effective techniques

UiO Centre for Materials Science and Nanotechnology University of Oslo

