UiO **Department of Chemistry** University of Oslo

Development of Tubular Proton

Conducting Electrolysers

Einar Vøllestad², M.L. Fontaine¹, C. Denonville¹, R. Strandbakke², J.M. Serra³, D.R. Beeaff⁴, C. Vigen⁴ and T. Norby² ¹ SINTEF Materials and Chemistry, ² University of Oslo, ³ CSIC, ⁴ CoorsTek Membrane Sciences AS

UiO **Department of Chemistry** University of Oslo

Development of Tubular Proton Conducting Electrolysers

<u>Einar Vøllestad²</u>, M.L. Fontaine¹, C. Denonville¹, R. Strandbakke², J.M. Serra³, D.R. Beeaff⁴, C. Vigen⁴ and T. Norby² ' SINTEF Materials and Chemistry, ² University of Oslo, ³ CSIC, ⁴ CoorsTek Membrane Sciences AS

- Why high temperature proton ceramic electrolysers?
- Processing and performance of early-stage single cells
- Up-scaling strategies for tubular proton ceramic electrolysers

High temperature electrolysis enables utilization of waste heat resources

University of Oslo

Key differences between SOE and PCE

- advantages and challenges

- Solid Oxide Electrolysers
 - Well proven technology
 - Scalable production
 - High current densities at thermo-neutral voltage
 - Long term stability challenges
 - ► Delamination of O₂-electrode
 - Oxidation and degradation of Ni-electrode with high steam contents
 - High temperatures
- Proton Ceramic Electrolysers
 - Less mature technology
 - Fabrication and processing challenges
 - Produces dry H₂ directly
 - Potentially intermediate temperatures
 - Slow O₂-electrode kinetics

UiO **Department of Chemistry** University of Oslo

High temperature electrolyser with novel proton ceramic tubular modules (2014-2017)

Electra

Tubular half-cell production **CORSTEK**

NiO based paste

Extrusion of BZCY-NiO support

Solid State Reactive Sintering

Spray- or dip-coating

Development of new anode materials

UiO **Department of Chemistry** University of Oslo

Anode processing on tubular cells

Electrolysis tests of single cell

Improved performance with increasing steam content and current load

Electrode resistance an order of magnitude higher than expected values from button cell testing

Button cell wet air

UiO **Department of Chemistry** University of Oslo

Scaling up – segmented tubes to drive up the voltage

Scaling up – stacking individual segments

UiO **Department of Chemistry** University of Oslo

Scaling up – "Printing in series"

Segmented-in-series tubular cells

Manufacturing process

- Drying
- Sieving
- Batching

suspensions

- Water based slurry for SSRS mixtures
- Organic based slurries for oxide mixtures

Green supports with electrodes

Green support coated with cathode (green) and electrolyte (white) layers

Parameters investigated

Supports

Shrinkage; porosity

- Annealing
- PF content
- Sintering aid

Support + fuel electrode

Shrinkage, porosity

- Coated part
- Uncoated part

Thickness of electrode

- Viscosity
- Powder loading

Support + fuel electrode + electrolyte

Shrinkage, porosity

- Coated part
- Uncoated part

Thickness of electrode

- Viscosity
- Powder loading

Thickness and densification of electrolyte

- Oxide vs SSRS
- Powder loading

Broken section: several segments; non-optimized sintering

Optimized processing parameters for multi-layer sintering

23

Conclusions

- High temperature proton ceramic electrolysers can produce dry, pressurized hydrogen
- Processing and manufacturing of tubular half cells is now well established
- State-of-the-art electrolyser anodes are developed on button cell scale
 - > Deposition and firing protocols for tubular cells currently being developed
- Segmented-in-series tubular cells are needed to reduce total current of tubes in real operational conditions

UiO : Department of Chemistry University of Oslo

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244.

