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 Why high temperature proton ceramic 
electrolysers?

 Processing and performance of early-stage 
single cells

 Up-scaling strategies for tubular proton 
ceramic electrolysers



High temperature electrolysis enables 
utilization of waste heat resources
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Key differences between SOE and PCE
- advantages and challenges

 Solid Oxide Electrolysers
 Well proven technology

 Scalable production
 High current densities at thermo-neutral voltage

 Long term stability challenges
 Delamination of O2-electrode
 Oxidation and degradation of Ni-electrode with high 

steam contents
 High temperatures

 Proton Ceramic Electrolysers
 Less mature technology

 Fabrication and processing challenges
 Produces dry H2 directly
 Potentially intermediate temperatures

 Slow O2-electrode kinetics
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Development of tubular 
cathode supported 

electrolyte cell

Development and 
optimization of anodes 
and current collection

Single tube module 
development and 

testing

Multi-tube module testing
Aim: 1kW demo 
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Process integration and evaluation

High temperature electrolyser with novel 
proton ceramic tubular modules (2014-2017)



Tubular half-cell production

Dip-coating
suspensions

NiO based paste

Wet milling of 
precursors

Solid State Reactive Sintering

Extrusion of BZCY-NiO
support

Spray- or dip-coating



BZCY72 // BZCY72-NiO BZY10 // BZY10-NiO BZY10 // BZCY72-NiO

Dense electrolyte @ 
1550°C – 24h
1610°C – 6h

Porous electrolyte @ 
1550°C – 24h
1610°C – 6h
1650°C – 6h
1670°C – 6h

Dense electrolyte @ 
1550°C – 24 h
1610°C – 6 h
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40 microns 40 microns 40 microns



Development of new anode materials
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Anode processing on tubular cells

Electrolysis tests using gold as the current collector

Fired in dual atmosphere with applied bias:
- 2% O2 outside, 5% H2 inside
- Ecell = 1.4 V during firing (above 500°C)

Steam electrode (BGLC785) drip-coated and brush-painted

Capped and sealed using custom-made glass ceramic 
(CoorsTek Membrane Sciencies)

Single segment, reduced at 1000°C for 24h in 5% H2



Electrolysis tests of single cell 
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Improved performance with increasing 
steam content and current load
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Electrode resistance an order of magnitude higher 
than expected values from button cell testing
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Scaling up – segmented tubes to drive up 
the voltage



Scaling up – stacking individual segments



Scaling up – “Printing in series”



Segmented-in-series tubular cells

Porous support

H2 electrode (PCEC 
cathode)

H2O+O2 electrode (PCEC anode) with 
integrated and patterned external current 

collection

Novel interconnects
H2O + O2 flow

H2 flow

Electrolyte

Novel external current collectors at 
closed/open ends of tube 

1

1 BZCY (SSRS) + 
sintering aid + pore 
formers 

2
BZY10 (SSRS or oxide)
or BZCY72 (SSRS or 
oxide)
+ NiO

3 BZCY72 or 
BZY10 (SSRS or 
oxide)



Manufacturing process

Powder 
conditioning

Pastes 
preparation

Production of tubes 
by extrusion and 
collars

Dip-coating 
of tubes

Slurries 
preparation

Annealing of 
tubes (hang-
firing)

• Milling of SSRS 
precursors and 
oxide powders

• Drying
• Sieving
• Batching

• Water based slurry
for SSRS mixtures

• Organic based
slurries for oxide
mixtures

• Drying
• Cutting
• Masking and coating

• Drying in air (organic
based coating) or at 
60°C for water based
suspensions

Green supports with electrodes

Green support coated with cathode (green) 
and electrolyte (white) layers

Hang-firing of cells

Clean room activities

3 cm

20 cm



Parameters investigated

Supports
Support + 

fuel electrode

Support + 
fuel electrode + 

electrolyte

Shrinkage; porosity
• Annealing
• PF content
• Sintering aid

Shrinkage, porosity
• Coated part 
• Uncoated part

Thickness of electrode
• Viscosity
• Powder loading

Shrinkage, porosity
• Coated part
• Uncoated part

Thickness of electrode
• Viscosity
• Powder loading

Thickness and densification 
of electrolyte
• Oxide vs SSRS
• Powder loading
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 Broken section: several segments; non-optimized sintering



Optimized processing parameters for multi-layer sintering

23

30 µm

300 µm

 Dense electrolyte

 Dense NiO-BZCY 
(porosity will be 
generated by NiO
reduction to Ni)

 Porous BZCY 
support



Conclusions
 High temperature proton ceramic electrolysers can produce dry, 

pressurized hydrogen

 Processing and manufacturing of tubular half cells is now well established

 State-of-the-art electrolyser anodes are developed on button cell scale
 Deposition and firing protocols for tubular cells currently being developed

 Segmented-in-series tubular cells are needed to reduce total current of 
tubes in real operational conditions
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